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Notations

N {1, 2, 3, . . . }
Z+ {0, 1, 2, . . . }
R+ Set of all non-negative real numbers
T R+ or Z+

Mn Set of all n× n complex matrices
B(H) Set of all bounded linear operators on the Hilbert space H
Eij Matrix units in Mn

Eij 1⊗ Eij in A⊗Mn

Br(E,F ) Set of all right linear maps from E to F
Br(E) Br(E,E)
Ba(E,F ) Set of all bounded adjointable maps from E to F
Ba(E) Ba(E,E)
Ba,bil(E,F ) Set of all bounded adjointable bilinear maps from E to F
Ba,bil(E) Ba,bil(E,E)
Ss SOT closure of S
E � F Interior tensor products of the Hilbert C∗-modules E and F
E�̄sF The strong closure of E � F
F(E) The full Fock module over E
IΓ(E) The time ordered Fock module over E

Abbreviations

CP Completely Positive
CB Completely Bounded
CCP Conditionally Completely Positive
UCP Unital Completely Positive
UNCP Unital Normal Completely Positive
QDS Quantum Dynamical Semigroup(s)
QMS Quantum Markov Semigroup(s)
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Introduction

In classical probability Markov processes are random processes where the future is depen-
dent on the present but not on the past. The stochastic dependence of the future on the
present is described through transition probabilities. Random walks, Brownian motion
and so on are examples of such processes. Countable state Markov processes are known as
Markov chains, and their transition probabilities are described through stochastic matrices.
One may have the processes in discrete time (where the time is usually parametrized by
Z+) or continuous time (with parametrization using R+), and accordingly one has discrete
or continuous semigroups of stochastic matrices. These semigroups have non-commutative
or quantum analogues known as quantum dynamical semigroups (QDS) (See Definition
2.3.5). In the non-commutative or quantum analogues, the role of transition probabilities
(or stochastic matrices) is played by completely positive (CP) maps (See Definition 2.1.16)
on C∗-algebras (cf. [EK98,Stø13]). So CP maps appear naturally in quantum probability
(unital CP maps are known as quantum Markov maps in quantum probability). Trace pre-
serving, unital CP maps are known as quantum channels in quantum information theory.
In this thesis we study the following two problems about Quantum Markov Maps.

Problem 1: Quantum channels in quantum information theory, describe how quantum
states get changed or transformed in open systems. In this context, it is important to know
whether a given completely positive map admits square roots or higher order roots within
the category of CP maps. Since completely positive maps are closed under composition,
it makes sense to study the question of roots in this setting, namely: given a C*-algebra
or von Neumann algebra A, a number n ∈ N, and a completely positive map φ : A → A,
is there another completely positive map ψ : A → A such that φ = ψn? One may

01991 Mathematics Subject Classification. primary: 46L57; secondary: 60J10, 81P45, 46L08, 81S22.
Key words and phrases: completely positive maps, Markov chains, matrix algebras, operator algebras,
product systems, Hilbert C∗-modules, quantum dynamical semigroups, dilation theory.
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Chapter 1. Introduction

go further and ask whether the given CP map embeds in a one parameter semigroup
of completely positive maps, that is, whether we can find a continuous time quantum
dynamical semigroup τ = {τt : t ∈ R+} such that φ = τt0 for some t0. We are also
interested in knowing as to when does a CP map appear as a limit of a quantum dynamical
semigroup and if so in how many different ways. This requires studying asymptotics of these
semigroups. Surprisingly some quantum dynamical semigroups may reach an equilibrium
state in finite time. Such phenomenon seems to be rare in classical Markov processes.
However, this has been observed in [Bha12] by Bhat in the quantum case for a whole class
of semigroups and it would be good to understand this phenomenon in a more general
setup.

We introduce the concept of completely positive roots of completely positive maps on
operator algebras. We do this in different forms: as asymptotic roots, proper discrete
roots and as continuous one-parameter semigroups of roots. We present several general
existence and non-existence results, some special examples in settings where we understand
the situation better, and several open problems. Our study is closely related to Elfving’s
embedding problem in classical probability, which is about characterizing stochastic ma-
trices which can be embedded in one parameter semigroups of stochastic matrices (See
[Dav10, VB18, Kin62, G37]) and the divisibility problem of quantum channels, which is
essentially about factorizing CP maps (See [Wol11,BC16,WC08]).

Problem 2: Semigroups of unital CP maps are known as quantum Markov semigroups
(QMS) and semigroups of unital endomorphisms are known as E0-semigroups in quantum
probability. While studying units of E0-semigroups ofB(H) Powers was led into considering
block CP semigroups (CP semigroups of block-wise acting maps) (See [Pow03] and [BLS08],
[Ske10]). In [BM10], Bhat and Mukherjee proved a structure theorem for block QMS on
B(H ⊕ K). The main point is that when we have a block QMS, there is a contractive
morphism between inclusion systems (synonymous with subproduct system) of diagonal
CP semigroups. Moreover, this morphism lifts to associated product systems. Our main
goal is to explore the structure of block quantum dynamical semigroups on general von
Neumann algebras, using the technology of Hilbert C∗-modules.

W. Paschke’s version (See [Pas73]) of Stinespring’s theorem (See [Sti55]) associates
a Hilbert C∗-module along with a generating vector to every completely positive map.
Building on this, to every QDS on a C∗-algebra B one may associate an inclusion system
E = (Et) of Hilbert B-B-modules with a generating unit ξ = (ξt). The extension of the
theory of block CP maps in [BM10] to the general case, is not straight forward for the
following reason. In the case of B(H), we need only to consider product systems of Hilbert
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Chapter 1. Introduction

spaces, whereas now we need to deal with both product systems of Hilbert B-modules
and also product systems of Hilbert-M2(B) modules (See Theorem 4.2.1) and their inter-
dependences. But a careful analysis of these modules does lead us to a morphism between
inclusion systems as in the B(H) case and this morphism can also be lifted to a morphism
at the level of associated product systems. At various steps we consider adjoints of maps
between our modules and so it is convenient to have von Neumann modules. The picture
is unclear for Hilbert C∗-modules.

This thesis contains four chapters including this chapter. The second chapter contains
the preliminaries required for the next two core chapters. The third and fourth chapters
are based on the two preprints mentioned in the Publications/Preprints. In the following
we give brief details about the chapters:

Chapter 2: First we present the definitions and results about quantum Markov maps in
Section 2.1. We give an introduction to the theory of Hilbert C∗-modules in Section 2.2,
where we also explain the GNS-construction by Paschke [Pas73]. The GNS-construction is
in a sense an extension of Stinespring dilation theorem (cf. Observation 2.2.4). The GNS-
construction is more useful as the GNS-construction of the composition of two CP maps
can be written as a submodule of the tensor product of their individual GNS-constructions
(cf. Observation 2.2.5). Finally we give a brief introduction to the quantum dynamical
semigroups in Section 2.3, where we also show the connection between QDS and product
systems of Hilbert C∗-modules or von Neumann modules, and we briefly recall the con-
struction of E0-dilation through Hilbert C∗-modules, by Bhat and Skeide in [BS00], of a
conservative QDS on a unital C∗-algebra or von Neumann algebra. At the end of this
section we give a brief introduction to the time ordered Fock module.

Chapter 3: We give a complete characterization for the asymptotic roots in Theorem
3.2.1. As a byproduct, this theorem answers Problem 3 in [Arv03, p.387] affirmatively. We
provide several existence and non-existence results under different additional assumptions,
e.g. regarding the dimension or structure of the algebra or the range of the CP map. In
particular, for the case of states on Md or B(H) or Cd we have a complete characterization
of existence of n-th roots (See Theorems 3.3.1, 3.3.2 and 3.3.3). We give few examples
to indicate that a “complete and elegant” characterization of existence or non-existence
of roots is expected to be complicated (See Examples 3.3.1, 3.3.2, 3.3.3 and 3.3.4). Using
[Den88, Cor.4] we prove Proposition 3.4.1, which gives a connection between proper discrete
roots and proper continuous roots in the finite dimensional case. Using the ideas used in
[Bha12] we prove Theorem 3.4.1. This contains results on existence and non-existence of
proper continuous roots of states on B(H).

3



Chapter 1. Introduction

Chapter 4: Let A be a unital C∗-algebra and B be a von Neumann algebra. Suppose

Φ =
φ1 ψ

ψ∗ φ2

 : M2(A) → M2(B) is a block-wise acting CP map. In Theorem 4.2.1

we prove that ψ is determined by the diagonals φ1 and φ2 up to a adjointable bilinear
contraction T : E2 → E1, where Ei is a GNS-representation for φi, i = 1, 2. Using this we
prove a structure theorem for a block QDS on M2(B) in Theorem 4.3.1. This says that
given a block QDS onM2(B) there is a contractive morphism between the inclusion systems
associated to diagonal CP semigroups, determining the off-diagonal maps. Example 4.2.1,
indicates that we can not replace the von Neumann algebra B in these theorems by an
arbitrary C∗-algebra. In Theorem 4.4.1, we prove that if B is a von Neumann algebra, then
any morphism between inclusion systems of von Neumann B-B-modules can be lifted to a
morphism between the product systems generated by these inclusion systems. In Theorem
4.3.2, we notice that the E0-dilation of a block quantum Markov semigroup constructed in
[BS00] by Bhat and Skeide is again a semigroup of block maps.

Conventions: Throughout this thesis, all Hilbert spaces are taken as complex and separa-
ble, with scalar products linear in the second variable. All C∗-algebras are complex vector
spaces.

∗ ∗ ∗ ∗ ∗
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Preliminaries

2.1 Introduction to quantum Markov maps

Quantum Markov maps are non-commutative analogues of transition probability matrices
(or stochastic matrices) of Markov chains in classical probability. In the following subsec-
tions, we present the basic notions of this theory. We begin with recalling the concept of
stochastic matrices.

2.1.1 Stochastic Matrices

Definition 2.1.1. Let {Xn : n ∈ N} be a set of random variables taking values in a
countable set S, defined on a common probability space. The set of random variables is
said to be a Markov chain if the following holds:

P (Xn+1 = xn+1|X0 = x0, X1 = x1, · · · , Xn = xn) = P (Xn+1 = xn+1|Xn = xn) (2.1.1)

for xj ∈ S, 1 ≤ j ≤ n+ 1. The set S is known as the state space of the Markov chain.

A Markov chain can be interpreted as a set of random processes observed in discrete
time intervals such that the outcome of the future depends only on the present.

Example 2.1.1. Suppose an urn initially consists of 3 red and 2 blue identical balls. At
each time epoch a ball is picked at random and replaced with a ball of the other color. Let
si denote the state that the urn contains i red balls and (5 − i) blue balls for 0 ≤ i ≤ 5.
Then the state space is given by

S = {si : 0 ≤ i ≤ 5}.

5



Chapter 2. Preliminaries

It is easy to see that (2.1.1) holds as the change in state is dependent on chances of picking
either a blue ball or a red ball. This in turn purely depends on the current configuration
of the urn. Also, for two states s and t, P (Xn+1 = s|Xn = t) is independent of n. This
time invariance property is referred to as time homogeneity of the Markov chain.

In this example, we can thus represent the Markov chain with a finite matrix P whose
(i, j)th element is given by P (Xn+1 = sj|Xn = si) for each 0 ≤ i, j ≤ 5. Some elementary
computations yield us the transition probability matrix P of the Markov chain given by:

P =



0 1 0 0 0 0
1
5 0 4

5 0 0 0
0 2

5 0 3
5 0 0

0 0 3
5 0 2

5 0
0 0 0 4

5 0 1
5

0 0 0 0 1 0


.

Observe that for any n ∈ N, P n is a matrix whose (i, j)th entry denotes the probability
that the Markov chain transitions from state si to state sj in exactly n steps. It is easy to
see that the classical semigroup property

P n+m = P nPm, for all n,m ∈ Z+, (2.1.2)

holds for Markov chains with finite state spaces (cf. [KS76,Chu79]).

Observe that, the transition probability matrix P of a Markov chain with d states is a
d× d stochastic matrix, that is

pij ≥ 0, for 1 ≤ i, j ≤ d, and
d∑
j=1

pij = 1 for all i. (2.1.3)

We can treat this P as a linear map on the commutative C∗-algebra Cd (See the
definitions in the next subsections). In this setup, Eq. (2.1.3) is nothing but the statement
that the map P is positive (indeed, completely positive cf. Theorem 2.1.4) and unital. Our
interest is to study the non-commutative or quantum analogue of these maps. They are
known as quantum Markov maps in quantum probability. We shall precisely define them
in the following subsections.

In general, the semigroup property (2.1.2) holds even when the state space S of Markov
chains is infinite. Further, when the indexing set of the random variables is uncountable

6



2.1.2. C∗-algebras

i.e., for Markov processes, a generalization of Markov chains, the semigroup property still
holds. The semigroup property is crucial for our purposes and we shall retain it in our
non-commutative generalizations.

2.1.2 C∗-algebras

C∗-algebras are the non-commutative analogues of the function spaces C(X), the space of
all continuous functions on a locally compact Hausdorff space X. Quantum Markov maps
would be maps acting on C∗-algebras. Here we recall the basic definition and we set up
our notation. We refer to the following standard books for the proofs and details of this
subsection [Con00,Sun97,KR97,Mur90,Tak02].

Definition 2.1.2. Let A be an algebra, an involution ∗ : A → A is a map which maps
a 7→ a∗ such that for all a, b ∈ A, α ∈ C the following conditions hold:
(i) (a∗)∗ = a,

(ii) (ab)∗ = b∗a∗,

(iii) (αa+ b)∗ = ᾱa∗ + b∗.

Definition 2.1.3. An algebra A is said to a normed algebra if there is a norm on A
satisfying:

‖ab‖ ≤ ‖a‖‖b‖, for all a, b ∈ A. (2.1.4)

A normed algebra A is said to be a Banach algebra if it is complete with respect to the
norm.

Definition 2.1.4. A normed algebra with an involution is said to be a pre-C∗-algebra if

‖a∗a‖ = ‖a‖2, for all a ∈ A. (2.1.5)

Definition 2.1.5. A pre-C∗-algebra A is said to be a C∗-algebra if it is complete with
respect to the norm. If A has a unit/identity 1 (i.e., 1x = x1 = x ∀ x ∈ A), then A is
said to be a unital C∗-algebra.

Remark 2.1.1. Note that a C∗-algebra is a Banach algebra with an involution fulfilling
(2.1.5). If A is a C∗-algebra and a ∈ A, then ‖a∗‖ = ‖a‖ and ‖aa∗‖ = ‖a‖2. If the
multiplication in A is commutative, then A is said to be commutative or abelian. An
algebraic homomorphism between two C∗-algebras, which respects the involutions is said
to be a ∗-homomorphism . An isomorphism between two C∗-algebras is a bijective ∗-
homomorphism.

7



Chapter 2. Preliminaries

Remark 2.1.2 (unitization). LetA be a C∗-algebra. Consider Ã = {(a, λ) : a ∈ A, λ ∈ C}
with addition (a, λ)+(b, µ) = (a+b, λ+µ), multiplication (a, λ)(b, µ) = (ab+µa+λb, λµ),
involution (a, λ)∗ = (a∗, λ̄), and norm ‖(a, λ)‖ = supb∈A,‖b‖≤1 ‖ab+ λb‖. Then Ã is a unital
C∗-algebra containing A as an ideal. If A has no unit, then Ã/A is one dimensional. If B is
a C∗-algebra with identity and if ϕ : A → B is a ∗-homomorphism, then ϕ1(a+λ) = ϕ(a)+λ
defines a ∗-homomorphism ϕ1 : Ã → B.

Example 2.1.2. (i) Cn is a finite dimensional commutative, unital C∗-algebra with
sup-norm.

(ii) Mn(C), (n > 1) is a finite dimensional non-commutative, unital C∗-algebra.
(iii) If X is a compact Hausdorff space, C(X), the collection all continuous functions on

X, is a commutative, unital C∗-algebra. (It is infinite dimensional, if X is infinite).
(iv) B(H), the algebra of bounded linear operators on H, is a non-commutative, unital

C∗-algebra. (It is infinite dimensional, if dimH =∞).
(v) If X is a locally compact Hausdorff space, C0(X), the algebra of continuous functions

on X that vanish at infinity, is a commutative, C∗-algebra. C0(X) is unital if and
only if X is compact. (It is infinite dimensional, if X is an infinite set).

(vi) K(H), the algebra of compact operators on H, is a non-commutative, non-unital
C∗-algebra. (It is infinite dimensional, if dimH =∞).

Definition 2.1.6. If A is a pre-C∗-algebra and a ∈ A, then we say that:

(i) a is self adjoint or hermitian if a = a∗,

(ii) a is normal if a∗a = aa∗,

(iii) when A has an identity 1, a is unitary if a∗a = aa∗ = 1,
(iv) a is positive if a = b∗b for some b ∈ A. We write a ≥ 0 to denote a is positive.

If A is a unital Banach algebra and a ∈ A, the spectrum of a is denoted by σA(a) or
simply by σ(a) and the spectral radius of a is denoted by r(a) and they are defined as

σ(a) = {λ ∈ C : a− λ1 is not invertible in A}, (2.1.6)

r(a) = sup{|λ| : λ ∈ σ(a)}. (2.1.7)

If A is a unital C∗-algebra and a ∈ A is self adjoint, then ‖a‖ = r(a). If A and B
are two unital C∗ -algebras, a ∈ A and ϕ : A → B is a ∗-homomorphism, then it is easy
to see that σ(ϕ(a)) ⊆ σ(a). From these two facts it follows that, if ϕ is an isomorphism,
then ϕ is an isometry. This in particular says that the norm in a C∗-algebra is unique.

8



2.1.2. C∗-algebras

The spectrum of elements in a C∗-algebra has the following nice property: If B ⊆ A is
a C∗-subalgebra of the C∗-algebra A with a common unit, then σB(a) = σA(a) for any
a ∈ B.

Let A be a commutative Banach algebra with an identity. Let Σ be the maximal ideal
space of A. i.e.,

Σ = {I ⊆ A : I is a maximal ideal in A}. (2.1.8)

Recall that {ϕ : A → C : ϕ is linear, multiplicative and ϕ(1) = 1}, the set of non-zero
complex homomorphisms is identified with Σ (via. φ 7→ kerφ ∈ Σ). Each non-zero complex
homomorphism has norm 1, so Σ ⊆ A∗1, the unit ball of A∗ (the Banach space dual of A).
If we equip Σ with the relative weak* topology of A∗, then Σ becomes a compact Hausdorff
space. For a ∈ A define â : Σ → C by â(f) = f(a) for f ∈ Σ. Then â is continuous i.e.,
â ∈ C(Σ). This function â is called the Gelfand transform of a. Define γ : A → C(Σ) by
γ(a) = â. Then γ is an algebraic homomorphism, with ‖γ‖ = 1. The map γ is called the
Gelfand transform for the algebra A.

Theorem 2.1.1. Let A be a commutative unital C∗-algebra. Then the Gelfand transform
γ : A → C(Σ) defined above is an isomorphism.

Now suppose A is a commutative C∗-algebra without an identity. Let Ã be the uniti-
zation of A as explained in Remark 2.1.2. Let Σ and Σ̃ denote the maximal ideal spaces of
A and Ã respectively. As A has no identity, by Remark 2.1.2, A is a maximal ideal in Ã.
Let h : Ã → C be the unique homomorphism with kerh = A. Then we have Σ = Σ̃ \ {h}.
This observation with Theorem 2.1.1 gives us the following corollary.

Corollary 2.1.1. Let A be a commutative C∗-algebra (without an identity). Then the
Gelfand transform γ : A → C0(Σ) is an isomorphism, where Σ is the maximal ideal space
of A.

We now move to maps on C∗-algebras.

Definition 2.1.7. If A and B are C∗-algebras, a linear map φ : A → B is said to be
positive if φ(a) ≥ 0 for all a ≥ 0. We write φ ≥ 0 to mean φ is positive.

Notation. If τ, ψ : A → B are linear maps, we denote ψ ≤ τ if τ − ψ ≥ 0.

Definition 2.1.8. Let A be a C∗-algebra and H be a Hilbert space. A ∗-homomorphism
π : A → B(H) is said to be a representation of A in H. If A is unital, then it is assumed
that π(1) = 1.

9



Chapter 2. Preliminaries

Definition 2.1.9. A representation π of a C∗-algebra A in H is said to be faithful if it
is injective, non-degenerate if span π(A)H = H and cyclic if there is a vector e ∈ H such
that {π(a)e : a ∈ A} is dense in H. A vector e ∈ H that satisfies this condition is called a
cyclic vector.

Definition 2.1.10. A (unital) map φ from A onto B ⊆ A is called a conditional expecta-
tion, if φ2 = φ and ‖φ‖ = 1.

Definition 2.1.11. A positive linear functional on a C∗-algebra A is said to be a state if
it has norm 1.

Suppose A is a C∗-algebra and π : A → B(H) is a representation. If e is a unit vector
in H and ϕ : A → C is defined by ϕ(a) = 〈e, π(a)e〉, then ϕ is a state on A. Conversely,
we have the following GNS theorem:

Theorem 2.1.2 (Gelfand-Naimark-Segal (GNS) construction). Let ϕ be a state on a C∗-
algebra A. Then there is a cyclic representation π : A → B(H) with a unit cyclic vector
e ∈ H such that

ϕ(a) = 〈e, π(a)e〉 for all a ∈ A. (2.1.9)

The triple (π,H, e) is called a GNS-triple for ϕ.

The GNS construction with some work gives us the following theorem, which says that
every abstract C∗-algebra is isomorphic to a C∗-algebra of operators on a Hilbert space.

Theorem 2.1.3. Every C∗-algebra A has a faithful representation. Moreover every sepa-
rable C∗-algebra has a faithful representation on a separable Hilbert space.

The following is a Radon-Nikodym type theorem for positive linear functionals.

Proposition 2.1.1 ([Con00, Proposition 32.1]). Let ϕ be a state on a C∗-algebra A, with
a GNS triple (πϕ,Hϕ, eϕ) and let ψ be a positive linear functional on A, then ψ ≤ ϕ if and
only if there is a unique operator T with Tπ(a) = π(a)T for all a ∈ A and 0 ≤ T ≤ I such
that ψ(a) = 〈eϕ, πϕ(a)Teϕ〉 for all a ∈ A.

The states where the collection of dominated positive linear functionals is trivial are
known as pure states. They give rise to irreducible GNS representations. Here is the formal
definition.

10



2.1.3. von Neumann algebras

Definition 2.1.12. A state ϕ on A is called pure if for any positive linear functional ψ on
A such that ψ ≤ ϕ, there is a scalar λ such that ψ = λϕ.

The space of all states on a C∗-algebra A, is a weak* compact convex subset of A∗, the
Banach space dual of A.

Theorem 2.1.4 ([Con00, Theorem 32.7]). Let ϕ be a state on A. Then ϕ is pure if and
only if ϕ is an extreme point of the space of all states on A.

2.1.3 von Neumann algebras

von Neumann algebras are the non-commutative analogues of the measurable function
spaces L∞(X,µ), for measure spaces (X,µ). They are C∗-algebras with additional algebraic
and topological properties. Often it is convenient to have the set up of von Neumann
algebras.

Definition 2.1.13. If S is a subset of B(H), the commutant of S, denoted by S ′ is defined
by

S ′ = {T ∈ B(H) : TS = ST for all S ∈ S}. (2.1.10)

The double commutant of S is defined by S ′′ = {S ′}′ and similarly S ′′′ = S(3), · · · .

Remark 2.1.3. Clearly I ∈ S ′ and S ⊆ S ′′ for any subset S. If N ⊆M we have from the
definition of commutants thatM′ ⊆ N ′ and hence N ′′ ⊆M′′. From these observations we
can see that, for any subset S of B(H) we have S ′ = S ′′′. Moreover we see that

S ′ = S ′′′ = S(5) = · · · , and S ⊆ S ′′ = S(4) = · · · .

Notation. For any S ⊆ B(H) we denote the strong operator topology (SOT) closure of S
as Ss.

Theorem 2.1.5 (Double Commutant Theorem). If A is a unital C∗-subalgebra of B(H),
then As = A′′.

Definition 2.1.14. A strongly closed, unital C∗-subalgebra of B(H) is called a von Neu-
mann algebra

Example 2.1.3. (i) Any finite dimensional C∗-algebra is a von Neumann algebra.
(ii) Let (X,µ) be a measure space, then L∞(X,µ), the collection all essentially bounded,

measurable functions on X is a commutative von Neumann algebra.

11
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(iii) B(H), the algebra of bounded linear operators on H, is a non-commutative, von
Neumann algebra. (It is infinite dimensional, if dimH =∞).

Theorem 2.1.6 (Vigier, see [Mur90]). Let (uλ)λ∈Λ be an increasing net of hermitian op-
erators on a Hilbert space H. Assume that it is bounded above. Then (uλ)λ∈Λ is strongly
convergent.

Definition 2.1.15. Let A and B be von Neumann algebras. We say that a positive map
φ : A → B is normal if φ(uλ) ↑ φ(u) for all bounded increasing net (uλ)λ∈Λ of self-adjoint
operators such that uλ ↑ u.

Example 2.1.4. Let H be a Hilbert space. Let K(H) denote the algebra of all compact
operators on H let C denote the Calkin algebra B(H)/K(H). Let q : B(H) → C be the
quotient map. Let ϕ be any state on C. Then ρ : B(H) → C defined by ρ = ϕ ◦ q is not
normal.

Notation. We introduce the bra-ket notations here. For a more general description of this
notation look at Subsection 2.2.1.4. Let H and K be Hilbert spaces. For a ∈ H, b ∈ K, we
define the operator |b〉〈a| : H → K as follows:

|b〉〈a| (a′) = 〈a, a′〉b, for a′ ∈ H.

Theorem 2.1.7. Let π : B(H) → B(K) be a normal representation. Then there exist a
Hilbert space P and an isometry W : H⊗P → K such that

π(X) = W (X ⊗ IP)W ∗. (2.1.11)

(If π is unital, we can choose W to be unitary).

Furthermore, there exists a collection of operators {Vn : H → K}n≥1 (finite or countably
infinite) such that V ∗mVn = δmn,

∑
m VmV

∗
m = π(1) and

π(X) =
∑
n

VnXV
∗
n , (2.1.12)

for all X ∈ B(H), where the sum in (2.1.12) is in SOT.

Proof. We shall give the sketch of the proof. Fix a ∈ H with ‖a‖ = 1 and consider the
rank-one projection Pa = |a〉〈a| . Take P = ran(π(|a〉〈a|)). Now define W : H⊗P → K by

W (x⊗ π(|a〉〈a|)y) = π(|x〉〈a|)y (2.1.13)

for x, y ∈ H. Now we can verify the following:
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(i) W is an isometry. (unitary, if π is unital)
(ii) W ∗z = ∑

k ek ⊗ π(|a〉〈ek|)z, where {ek}k is an orthonormal basis for H.
(iii) π(X) = W (X ⊗ IP)W ∗ for all X ∈ B(H).

For the second part, Fix an orthonormal basis {en} for P . Define Vn : H → K by

Vnx = W (x⊗ en), for x ∈ H. (2.1.14)

2.1.4 Quantum Markov maps

Quantum Markov maps are special classes of completely positive (CP) maps. In this
subsection we define completely positive (CP) maps and present a few important structure
theorems for CP maps.

Recall that, if H is any Hilbert space, the natural identification Mn(B(H)) ' B(Hn)
gives us a norm that makes Mn(B(H)) as a C∗-algebra. Now given any C∗-algebra A, by
Theorem 2.1.3 A can be identified as a C∗-subalgebra of B(H) for some Hilbert space H.
Therefore, as A acts on H,Mn(A) acts on Hn in the usual way. Using this we identify
Mn(A) as a C∗-subalgebra of Mn(B(H)).

Definition 2.1.16. Let A and B be C∗-algebras. If φ : A → B is a linear map, then define
φn : Mn(A)→Mn(B) by

φn((aij)) = (φ(aij)), for (aij) ∈Mn(A). (2.1.15)

Then,

(i) φ is said to be n-positive if φn is positive.
(ii) φ is said to be completely positive (CP) if φ is n-positive for all n ∈ N.
(iii) φ is said to be completely bounded(CB) if sup

n∈N
‖φn‖ <∞, and in this case, we set

‖φ‖cb = sup
n∈N
‖φn‖. (2.1.16)

Remark 2.1.4. (i) Unital CP maps are known as quantum Markov maps in quantum
probability. (ii) Trace preserving, unital CP maps are known as quantum channels in
quantum information theory.

We can see that ‖·‖cb is a norm on the space of completely bounded maps. It is easy to
observe that if φ is n-positive, then φ is k-positive for k ≤ n. Also ‖φk‖ ≤ ‖φn‖ for k ≤ n.

13
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Remark 2.1.5. Note for any C∗-algebra A that we have the isomorphism Mn(A) '
A⊗Mn . In this identification φn = φ⊗ idn : A⊗Mn → B⊗Mn, where idn is the identity
map on Mn . Therefore φ is n-positive if and only if φ⊗ idn is positive.

Proposition 2.1.2. Let φ : A → B be a linear map. Then φ is n-positive if and only if∑
i,j b
∗
iφ(a∗i aj)bj ≥ 0 for all a1, a2, . . . an ∈ A, b1, b2, . . . , bn ∈ B.

Proposition 2.1.3 ([Pau02, Proposition 3.6]). Let φ : A → B be a CP map between
C∗-algebras. Then φ is CB and ‖φ‖cb = ‖φ‖ = ‖φ(1)‖.

Example 2.1.5. (i) Any ∗-homomorphism between two C∗-algebras is a CP map.
(ii) Let A = (aij) ∈ Mn be a positive matrix. Define φ : Mn → Mn by φ(X) = (aijxij)

the Schur product (entry-wise product) of A and X = (xij). Then φ is CP.
(iii) Let P = (pij) ∈ Mn . Consider φ : Cn → Cn defined by φ(x) = Px. Then φ is positive

(and hence CP by Proposition 2.1.4) if and only if the entries pij are non-negative.
φ is unital if and only if P is a stochastic matrix.

(iv) Let A be a C∗-algebra. Fix x, y ∈ A and define φ : A → A by φ(a) = xay. Then φ
is a CB map with ‖φ‖cb ≤ ‖x‖‖y‖. If x = y∗, then φ is CP.

(v) φ : M2 → M2 defined by φ(A) = A′ is a positive map which is not 2-positive, where
A′ is the matrix transpose of A. Hence not CP. But this is a CB map.

(vi) If φ is CP. Note that −φ is CB but not CP.

Proposition 2.1.4 (Stinespring[Sti55]). Every positive map on a commutative C∗-algebra
is CP.

Proposition 2.1.5 (Arveson [Arv69]). Let B be a commutative C∗-algebra. Suppose φ :
A → B is a positive linear map, then φ is CP.

Let A be a C∗-algebra, π : A → B(K) be a ∗-homomorphism, and let V : H → K
be a bounded linear map. Then φ : A → B(H) defined by φ(a) = V ∗π(a)V is a CP
map. Conversely, we have the following characterization theorem (generalization of GNS
construction) by Stinespring for CP maps from any C∗-algebra into B(H) for some Hilbert
space H.

Theorem 2.1.8 (Stinespring’s dilation theorem [Sti55]). Let A be a unital C∗-algebra
and φ : A → B(H) be a CP map. Then there exists a triple (K, π, V ) of a Hilbert space
K, a unital ∗-homomorphism π : A → B(K) and a bounded operator V : H → K with
‖φ(1)‖ = ‖V ‖2 such that

φ(a) = V ∗π(a)V, for all a ∈ A. (2.1.17)

The triple (K, π, V ) is called a Stinespring representation or Stinespring triple for φ.
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Remark 2.1.6. (i) Note that if φ is unital, then V is an isometry. So in this case we may
identify H as a subspace of K with V (H). Hence V ∗ is the projection PH of K onto H and
we have φ as a compression of the ∗-homomorphism as follows:

φ(a) = PHπ(a)|H, for all a ∈ A. (2.1.18)

(ii) Let K̂ = span π(A)VH. Then K̂ reduces π(A) and hence π restricted to K̂ defines
a ∗-homomorphism π|K̂ : A → B(K̂). Note that VH ⊆ K̂. Therefore we have φ(a) =
V ∗π|K̂(a)V. That is, (K̂, π|K̂, V ) is also a Stinespring triple for φ.

Definition 2.1.17. A Stinespring representation (K, π, V ) of φ : A → B(H) is called a
minimal Stinespring representation if

K = span π(A)VH. (2.1.19)

From Remark 2.1.6 (ii), it follows that every CP map φ : A → B(H) has a mini-
mal Stinespring representation. The following proposition shows that any two minimal
representations are isomorphic.

Proposition 2.1.6. If (Ki, πi, Vi), i = 1, 2 are two minimal Stinespring representations for
a CP map φ : A → B(H) then the map U : K1 → K2 defined by

U

(∑
i

π1(ai)V1hi

)
=
∑
i

π2(ai)V2hi

is a unitary satisfying UV1 = V2 and Uπ1U
∗ = π2.

We have the following useful inequality as a corollary to the Stinespring’s dilation
theorem.

Proposition 2.1.7 (Kadison-Schwarz inequality). Let A and B be unital C∗-algebras. Let
φ : A → B be a CP map. Then for every a ∈ A we have

φ(a∗)φ(a) ≤ φ(a∗a)‖φ(1)‖. (2.1.20)

Theorem 2.1.9. Let φ : A → B ⊆ B(H) be a normal CP map where A and B are von
Neumann algebras and let (K, π, V ) be the minimal Stinespring representation of φ. Then
the map π : A → B(K) is normal.

For normal CP maps between the algebras of operators on Hilbert spaces, we have the
following result as a consequence of Theorems 2.1.7, 2.1.8 and 2.1.9.
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Theorem 2.1.10. Let φ : B(H) → B(K) be a normal CP map. Then there exist Ln ∈
B(H,K), n ∈ N such that

φ(X) =
∑
n

LnXL
∗
n for all X ∈ B(H). (SOT sum) (2.1.21)

For the CP maps on the space of n× n matrices Mn, we have the following characteri-
zation theorem by Choi.

Theorem 2.1.11 (Choi [Cho75]). Let B be a C∗-algebra, let φ : Mn → B and let Eij, 1 ≤
i, j ≤ n be the standard matrix units for Mn . Then the following are equivalent:

(i) φ is CP.
(ii) φ is n-positive.
(iii) (φ(Eij))ni,j=1 is positive in Mn(B).

Notation. Let A,B be C∗-algebras, and φ : A → B be a linear map. Define φ∗ : A → B by

φ∗(a) = φ(a∗)∗, for all a ∈ A (2.1.22)

and
Reφ = φ+ φ∗

2 , Imφ = φ− φ∗

2i .

Then Reφ and Imφ are self-adjoint, linear maps such that φ = Reφ+ i Imφ.

Theorem 2.1.12 ([Pau02, Theorem 8.3]). Let A be a unital C∗-algebra and let ψ : A →
B(H) be a CB map. Then there exists CP maps φi with ‖φi‖cb = ‖φ‖cb, i = 1, 2 such that
Φ : M2(A)→M2(B(H)) defined by

Φ
a b

c d

 =
φ1(a) ψ(b)
ψ∗(c) φ2(d)


is CP.

The following theorem for CB maps, follows from the previous theorem and it is ana-
logues to the Stinespring representation for CP maps.

Theorem 2.1.13 ([Pau02, Theorem 8.4]). Let A be a unital C∗-algebra and let ψ : A →
B(H) be a CB map. Then there exists a tuple (K, π, V1, V2) of a Hilbert space K, a ∗-
homomorphism π : A → B(K) and bounded operators Vi : H → K, i = 1, 2 with ‖ψ‖cb =
‖V1‖‖V2‖ such that

ψ(a) = V ∗1 π(a)V2, for all a ∈ A. (2.1.23)
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Definition 2.1.18. Let A,B be unital C∗-algebras and let α, β : A → B be CP maps.
Then α is said to dominate β if α− β is CP and we write α ≥ β to mean α dominates β.

The following theorem of Arveson for CP maps is analogues to the Proposition 2.1.1.

Theorem 2.1.14 ([Arv69, Lemma 1.4.1]). Suppose α, β : A → B(H) are CP maps such
that α ≥ β. Let (K, π, V ) be a (minimal) Stinespring representation of α. Then there exists
a unique T ∈ π(A)′ such that 0 ≤ T ≤ I and β(·) = V ∗π(·)TV.

Theorem 2.1.15 ([PS85, Corollary 2.7]). Let A be a unital C∗-algebra and let φ : A →
B(H) be CP and ψ : A → B(H) be CB. Let Φ : M2(A) → M2(B(H)) be defined by

Φ =
 φ ψ

ψ∗ φ

 That is, Φ
a b

c d

 =
 φ(a) ψ(b)
ψ∗(c) φ(d)

 . Suppose (K, π, V ) is the minimal

Stinespring representation of φ. Then Φ is CP if and only if there exists a contraction
T ∈ π(A)′ such that ψ(·) = V ∗Tπ(·)V.

2.2 Hilbert C∗-modules

A Hilbert C∗-module is a right module over a C∗-algebra B with a B-valued inner product
fulfilling axioms (Definition 2.2.1) similar to the axioms of an inner product of a Hilbert
space. Hilbert C∗-modules were first introduced by Kaplansky in [Kap53], where his idea
was to generalize Hilbert space by allowing the inner product to take values in a (commu-
tative unital) C∗-algebra (he called them as “C∗-modules”). Paschke [Pas73] and Rieffel
[Rie74] introduced the Hilbert C∗-modules over non-commutative C∗-algebras.

The theory of Hilbert C∗-modules is already rich, well studied and is considered as a
valuable tool in operator algebra theory. Many authors call them as C∗-correspondences.
Here though we define (semi-) pre-Hilbert C∗-modules, we present the theory, restricted
to the Hilbert C∗-modules only. We refer to [Ske01,Lan95] and the references from there
for further details on the theory of Hilbert C∗-modules.

We use the theory of Hilbert C∗-modules, to study CP maps and the semigroups of
CP maps. In [Pas73] Paschke obtained the GNS-construction for any CP map between
two C∗-algebras, which says that: given a CP map φ : A → B there exist a A-B-module
E (called as “GNS-module”) and a cyclic vector ξ ∈ E such that φ(a) = 〈ξ, aξ〉 for all
a ∈ A. The advantage of the GNS-construction is that we can write the GNS-module of
the composition of two CP maps, as a submodule of the tensor product of their individual
GNS-modules (See Observation 2.2.5). This is not the case with the Stinespring’s dilation.
This helps us to connect the semigroups of CP maps on B with the product systems of
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Hilbert B-B-modules. In the same paper Paschke proved also that von Neumann modules
are self-dual.

Arveson in [Arv89] established the connection between product systems of Hilbert
spaces and E0-semigroups on B(H). In [BS00], Bhat and Skeide observe the connection
between inclusion systems of Hilbert C∗-modules and CP semigroups and using that they
constructed the E0-dilation for unital CP semigroups on a unital C∗-algebra B. Muhly and
Solel [MS07] took a dual approach to achieve this, where they have called these Hilbert
C∗-modules as C∗-correspondences.

Definition 2.2.1. Let B be a pre- C*-algebra. A complex vector space E is said to be an
inner product B-module or pre-Hilbert B-module if E is a right B-module, with a B-valued
inner product 〈·, ·〉 : E × E → B such that

(i) λ(xb) = (λx)b = x(λb) for x ∈ E, b ∈ B, λ ∈ C, (compatibility)
(ii) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 for x, y, z ∈ E,α, β ∈ C,
(iii) 〈x, yb〉 = 〈x, y〉b for x, y ∈ E, b ∈ B,
(iv) 〈x, y〉∗ = 〈y, x〉 for x, y ∈ E,
(v) 〈x, x〉 ≥ 0 for all x ∈ E,
(vi) 〈x, x〉 = 0 if and only if x = 0.

Observe that (ii) shows that the inner product is linear in second variable, and it follows
from (iv) that the inner product is conjugate linear in the first variable. Also (iii) and (iv)
together implies that 〈xb, y〉 = b∗〈x, y〉 for x, y ∈ E, b ∈ B.

If E satisfies all the conditions of an inner product B-module except (vi) then E is said
to be a semi-inner product B-module or semi-Hilbert B-module.

Proposition 2.2.1. Let E be a pre-Hilbert B-module and let x, x′ ∈ E. If

〈y, x〉 = 〈y, x′〉, for all y ∈ E,

then x = x′. Consequently, if 1 ∈ B is the unit of B, then w1 = w for all w ∈ E.

We have the following version of Cauchy-Schwarz inequality for the semi-inner product
modules. Note that this inequality is not an inequality of numbers but of elements of the
C∗-algebra B.

Proposition 2.2.2 ([Lan95, Proposition 1.1]). Let E be a semi-inner product B-module.
If x, y ∈ E, then

〈x, y〉〈y, x〉 ≤ ‖〈y, y〉‖〈x, x〉. (2.2.1)
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For x ∈ E we define ‖x‖ := ‖〈x, x〉‖
1
2 . The following proposition is immediate from this

definition and Proposition 2.2.2.

Proposition 2.2.3. Let E be a semi-Hilbert B-module. For any x, y ∈ E and b ∈ B we
have the following inequalities:

(i) ‖xb‖ ≤ ‖x‖‖b‖.
(ii) ‖〈x, y〉‖ ≤ ‖x‖‖y‖.

Using the inequality (ii) of Proposition 2.2.3 we can easily prove that if E is a semi-inner
product B-module then ‖·‖ is a semi-norm on E and if E is an inner product B-module
then ‖·‖ is a norm on E.

Let E be a semi-inner product B-module. Consider

N = {x ∈ E : 〈x, x〉 = 0}.

Then N is a sub-B-module (B-submodule) of E. Define a B-valued inner product on E/N
by

〈x+N, y +N〉 = 〈x, y〉 for x, y ∈ E.

This inner product makes E/N into an inner product B-module.

Definition 2.2.2. Let B be a C∗-algebra. An inner product B-module is said to be a
Hilbert B-module or Hilbert C∗-module over the C∗-algebra B if it is complete with respect
to the norm: ‖x‖ = ‖〈x, x〉‖

1
2 .

Example 2.2.1. (i) Hilbert spaces are Hilbert C-modules.
(ii) Any C∗-algebra B is a Hilbert B-module with the inner product given by 〈b, c〉 = b∗c.
(iii) Let H,G be Hilbert spaces. Let B be a C∗-subalgebra of B(G). Let E any subspace of

B(G,H) such that EB ⊂ E and E∗E ⊂ B. Then E becomes a Hilbert B-module with
the right action SX = S ◦X for S ∈ E,X ∈ B and inner product 〈S, T 〉 = S∗ ◦T for
S, T ∈ E. In particular, B(G,H) is a Hilbert B(G)-module (Note that the operator
norm and the Hilbert module norm coincide).

(iv) If {Eα}α∈Λ is a family of Hilbert B-modules. The direct sum of Eα’s is defined as

⊕
α∈Λ

Eα =

x = (xα) :
∑
α∈Λ
〈xα, xα〉 converges in B

 ,
with the module action (xα)b = (xαb) and the inner product 〈(xα), (yα)〉 = ∑

α〈xα, yα〉.
For n ∈ N, we define En := ⊕ni=1E.
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(v) Let H be a Hilbert space and B be a C∗-algebra. Then the closure of the algebraic
tensor product H⊗B is a Hilbert B-module with the module action (h⊗a)b = h⊗ab
for h ∈ H, a, b ∈ B and the inner product 〈h⊗a, g⊗ b〉 = 〈h, g〉a∗b for h, g ∈ H, a, b ∈
B.

2.2.1 Operators on Hilbert C∗-modules

Let E be a Hilbert B-module. Then for any x ∈ E we have, as in the Hilbert space case
that

‖x‖ = sup{‖〈x, y〉‖ : y ∈ E, ‖y‖ ≤ 1}.

Hence for any linear map T : E → F between Hilbert B-modules we have

‖T‖ = sup
‖x‖≤1

‖Tx‖ = sup
‖x‖,‖y‖≤1

‖〈y, Tx〉‖. (2.2.2)

Though Hilbert modules have structures similar to Hilbert spaces they have the follow-
ing significant differences.

(i) Hilbert spaces are self-dual, that is, each bounded linear functional on a Hilbert
space arises by taking inner product with a unique fixed vector x ∈ H (namely,
〈x| : H → C) but not all Hilbert C∗ modules are self-dual (cf. [Pas73]).

(ii) The theory of Hilbert spaces is mainly based on the orthogonal complements of closed
subspaces. (Example 2.2.2 shows that) In the module setup, unlike in the Hilbert
space case, not all closed submodules are complemented.

(iii) Every bounded linear operator between Hilbert spaces has an (unique) adjoint but
for operators between Hilbert modules it is not always the case (See Example 2.2.3).

We shall discuss these more precisely after defining the following natural definitions
and notations which are motivated from the theory of Hilbert spaces, to build a theory of
Hilbert C∗-modules (analogues to the theory of Hilbert spaces).

Definition 2.2.3. Let T : E → F be a map between the pre-Hilbert B-modules E and F.
We say that T is right B-linear or module map if T is complex linear and T (xb) = T (x)b
for x ∈ E, b ∈ B and we say that T is bounded if ‖T‖ = sup‖x‖≤1 ‖Tx‖ <∞.

2.2.1.1 Self-duality

Notation. For a Hilbert B-module E we define

Er = {ϕ : E → B : ϕ is bounded and right B-linear}.
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E∗ = {x∗ : E → B : x ∈ E;x∗(y) = 〈x, y〉, for all y ∈ E}.

The space Er is the space of bounded right B-functionals or just B-functionals and E∗

is the dual module of E. The map x 7→ x∗ is an anti-linear Banach space isometry from E

onto E∗. As every x∗ is a B-functional, we have E∗ ⊆ Er and this can be a proper inclusion
(cf. [Pas73]).

Definition 2.2.4. A Hilbert B-module E is said to be self-dual if Er = E∗.

Self-dual modules have properties in common with both Hilbert spaces and von Neu-
mann algebras. We shall state those results after giving the required definitions.

2.2.1.2 Complementability

Let F be a closed submodule of a Hilbert B-module E. We define the orthogonal comple-
ment F⊥ of F, by

F⊥ = {y ∈ E : 〈x, y〉 = 0,∀x ∈ F}. (2.2.3)

Then F⊥ is also a closed submodule of E.

Definition 2.2.5. Let E be a Hilbert C∗-module over B. A closed submodule F of E is or-
thogonally complemented or complemented if E = F ⊕F⊥. F is topologically complemented
if there is a closed submodule G such that E = F +G and F ∩G = {0}.

Example 2.2.2 ([Lan95, page 7]). Let B = C(X) for some compact Hausdorff space X.
Let Y be a closed nonempty subset of X such that Y c = X. Let E = B and F = {f ∈ B :
f(Y ) = {0}} ⊆ E. Then F⊥ = {0}. Hence E 6= F ⊕ F⊥.

As we have mentioned already, Example 2.2.2 shows that not all closed submodules are
complemented. Clearly every complemented submodule is topologically complemented.
We shall discuss more about complementability in the subsection about projections.

2.2.1.3 Adjointability

Definition 2.2.6. Let E and F be Hilbert B-modules. A map T : E → F is said to be
adjointable if there exists a map T ∗ : F → E such that

〈Tx, y〉 = 〈x, T ∗y〉 for x ∈ E, y ∈ F. (2.2.4)

The map T ∗ is called the adjoint of T.
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It is easy to see that if T has an adjoint then it is unique. Here we record some
additional properties of the adjoint.

Observation 2.2.1. Let E and F be Hilbert B-modules and let T : E → F be an
adjointable map. Then

(i) T is right B-linear.
(ii) T is bounded (follows from Banach-Steinhaus theorem).
(iii) T ∗ is also adjointable with (T ∗)∗ = T.

(iv) Using (2.2.2) we can prove the same way as it is for the operators on Hilbert spaces,
that ‖T‖2 = ‖T ∗T‖ = ‖T ∗‖2.

Example 2.2.3 ([Lan95]). Let E,F be as in Example 2.2.2. Let i : F → E be the inclusion
map. Suppose i were adjointable, then (i∗(1))∗f = 〈i∗(1), f〉 = 〈1, f〉 = f, ∀f ∈ F hence
i∗(1) = 1. But 1 /∈ F. Thus there is no adjoint for i.

Notation. Let E and F be Hilbert B modules.

Br(E,F ) = {T : E → F : T is bounded right B-linear}
Ba(E,F ) = {T : E → F : T is adjointable}

Also we write Br(E) and Ba(E) for Br(E,E) and Ba(E,E) respectively.

Let E and F be Hilbert B-modules. Note that Br(E,B) = Er. Also note that every
x∗ ∈ E∗ is adjointable with adjoint (x∗)∗ : B → E given by b 7→ xb. Thus E∗ ⊆ Ba(E,B).

We have Ba(E,F ) ⊆ Br(E,F ) from the observation 2.2.1(ii). Example 2.2.3 shows
that not all bounded maps between Hilbert modules are adjointable. Ba(E) is a closed
subalgebra of the Banach algebra of all bounded maps on E. Indeed using the observation
2.2.1(iv) we can see that Ba(E) is a C∗-algebra.

Now we shall state some of the well-known results without proof.

Proposition 2.2.4 ([Pas73]). Let E be a self-dual Hilbert B-module and let F be any
Hilbert B-module. Then any bounded B-linear map T : E → F is adjointable.

Theorem 2.2.1 ([Pas73, Theorem 2.8]). Let B be a unital C∗-algebra. For a linear map
T : E → F between Hilbert B-modules the following are equivalent:

(i) T ∈ Br(E,F ).
(ii) There exists a real number k ≥ 0 such that 〈Tx, Tx〉 ≤ k〈x, x〉 for all x ∈ E.

Corollary 2.2.1 ([Pas73, Remark 2.9]). Let E and F be Hilbert C∗-modules over a unital
C∗-algebra B. If T ∈ Br(E,F ) then ‖T‖ = inf{k 1

2 : 〈Tx, Tx〉 ≤ k〈x, x〉,∀x ∈ E}.
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2.2.1.4 Finite rank and compact operators

Now we shall define a class of operators which are analogues to finite rank operators on
Hilbert spaces.

Notation. Let E be a Hilbert B-module and let x, y ∈ E. Let

|x〉 : B → E be defined by b 7→ xb,

〈y| : E → B be defined by z 7→ 〈y, z〉.

Then we have |x〉 ∈ Ba(B, E) with |x〉∗ = 〈x| ∈ Ba(E,B).

Now let E and F be Hilbert B-modules and let x ∈ E, y ∈ F.We denote the composition
of |y〉 with 〈x| as |y〉〈x| that is,

|y〉〈x| = |y〉 ◦ 〈x| : E → F is the operator given by x′ 7→ y〈x, x′〉.

We have |y〉〈x| ∈ Ba(E,F ) and |y〉〈x|∗ = |x〉〈y| ∈ Ba(F,E).

We identify E ⊂ Ba(B, E) via E 3 x 7→ |x〉 ∈ Ba(B, E) and as 〈y| = y∗ ∈ F ∗, clearly
F ∗ ⊂ Ba(F,B). Therefore sometimes we may write |x〉〈y| as xy∗.

Definition 2.2.7. Let E and F be Hilbert B-modules. The operators |y〉〈x| ∈ Ba(E,F )
defined above are called the rank-one operators. The linear span F(E,F ) of all rank-one
operators is called finite rank operators and its completion K(E,F ) is called the space of
compact operators. We write F(E) and K(E) instead of F(E,E) and K(E,E) respectively.

Remark 2.2.1. Notice that, neither the rank-one operators are of rank 1, nor the finite
rank operators are of finite rank in the usual sense. Also in general, the compact operators
are not compact in the sense of operators between Banach spaces. However, this space of
‘compact operators’ is also a Banach space.

Proposition 2.2.5. Let E and F be Hilbert B-modules. Then we have

(i) |y〉〈x| |x′〉〈y′| = |y〈x, x′〉〉〈y′| = |y〉〈y′〈x′, x〉| for x, x′ ∈ E and y, y′ ∈ Y.
(ii) T |x〉〈y| = |Tx〉〈y| for x ∈ E, y ∈ F and T ∈ Ba(E).
(iii) |x〉〈y|S = |x〉〈S∗y| for x ∈ E, y ∈ F and S ∈ Ba(F ).

The Proposition 2.2.5 shows thatK(E) is an ideal inBa(E). Indeed it is a C∗-subalgebra
of Ba(E).
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2.2.1.5 Positive operators

Definition 2.2.8. Let E be a Hilbert C∗-module over a C∗-algebra B. A B-linear map
T : E → E is said to be positive if 〈x, Tx〉 ≥ 0 for all x ∈ E.

If T is positive, T is adjointable and T ∗ = T. If T is positive we denote it by T ≥ 0.
Also if T, S ∈ Ba(E) such that T − S ≥ 0 then we also write T ≥ S or S ≤ T.

Proposition 2.2.6. For T ∈ Br(E), the following are equivalent:

(i) T is positive.
(ii) T is positive in the C∗-algebra Ba(E).

2.2.1.6 Projections

Definition 2.2.9. Let E be a Hilbert B-module. An adjointable linear map P : E → E

is said to be a projection if P = P ∗ = P 2.

As P is adjointable it is B-linear. Note that the identity ‖P‖ = ‖P ∗P‖ = ‖P‖2 implies
that ‖P‖ = 1 or ‖P‖ = 0.

Proposition 2.2.7. Let F be a closed submodule of a Hilbert C∗-module E. Then F is
complemented in E if and only if there exists a projection P ∈ Ba(E) onto F.

Proposition 2.2.8. Let E and F be Hilbert B-modules. Suppose T ∈ Ba(E,F ) has closed
range. Then

(i) ker(T ) and ran(T ) are complemented submodules of E and F respectively.
(ii) T ∗ ∈ Ba(F,E) has closed range.

Remark 2.2.2. Let E,F be Hilbert C∗-modules and let T ∈ Ba(E,F ). Then

(i) It is easy to prove ker(T ∗) = ran(T )⊥. But unlike in the Hilbert spaces, it need not
be the case that ker(T ∗)⊥ = ran(T ).

(ii) We always have ran(T ) = ran(TT ∗) and hence ran(T ∗) = ran(T ∗T ).
(iii) If ran(T ) is closed, then

a) using Proposition 2.2.8 we can prove that E = ker(T ) ⊕ ran(T ∗) and F =
ran(T )⊕ ker(T ∗)

b) ran(T ) = ran(TT ∗) hence, since ran(T ∗) is also closed, ran(T ∗) = ran(T ∗T ).
(iv) If ran(T ) is not closed, Then neither ker(T ) nor ran(T ) need to be complemented.
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Definition 2.2.10. A Hilbert B-module is said to be complementary if it is complemented
in all Hilbert B-modules where it appears as a submodule.

Proposition 2.2.9 ([Ske01, Proposition 1.5.9]). Self-dual Hilbert C∗-modules are comple-
mentary.

2.2.1.7 Isometries, unitaries and partial isometries

Definition 2.2.11. Let E and F be Hilbert B-modules. A map V : E → F is said to be
an isometry if

〈V x, V y〉 = 〈x, y〉, for all x, y ∈ E. (2.2.5)

Proposition 2.2.10. For a map V : E → F the following are equivalent:

(i) V is an isometry.
(ii) V is B-linear and ‖V x‖ = ‖x‖ for all x ∈ E.

Isometries need not be adjointable always. So the identity V ∗V = IE need not hold for
isometries between Hilbert modules.

Proposition 2.2.11. An isometry V : E → F is adjointable if and only if ran(V ) is
complemented in F.

Corollary 2.2.2. For V : E → F the following are equivalent:

(i) V is an isometry with complemented range.
(ii) V is adjointable and V ∗V = IE.

Definition 2.2.12. A surjective isometry between Hilbert C∗-modules is said to be a
unitary.

Proposition 2.2.12. For U : E → F the following are equivalent.

(i) U is a unitary.
(ii) U is adjointable and U∗U = IE, UU

∗ = IF .

Two Hilbert B-modules E and F are said to be isomorphic if there is a unitary U :
E → F and we write E ' F.

Definition 2.2.13. Let E and F be Hilbert B-modules. A map V ∈ Ba(E,F ) is said to be
a partial isometry if F0 = ran(V ) is complemented in F and there exists a complemented
submodule E0 of E such that V : E0 → F0 is unitary and V is zero on E⊥0 .
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The following proposition shows some equivalent conditions for a partial isometry (sim-
ilar to the partial isometries in the Hilbert space operators).

Proposition 2.2.13 ([Lan95]). For V ∈ Ba(E,F ) the following are equivalent:

(i) V is a partial isometry.
(ii) V ∗V is a projection in Ba(E).
(iii) V V ∗ is a projection in Ba(F ).
(iv) V = V V ∗V.

(v) V ∗V V ∗ = V ∗.

We have polar decomposition for operators T on Hilbert C∗-modules with the property
that the closures of the ranges of T and T ∗ are both complemented.

Theorem 2.2.2 ([Lan95]). Let E and F be Hilbert B-modules. Let T ∈ Ba(E,F ) be
such that both ran(T ) and ran(T ∗) are complemented. Then there exists a partial isometry
V : E → F such that T = V |T |, where |T | is the positive square root of the operator T ∗T
in the C∗-algebra Ba(E).

2.2.2 Representations on Hilbert C∗-modules

Definition 2.2.14. Let A and B be C∗-algebras and let E be a Hilbert B-module. A
representation of A on E is a ∗-homomorphism π : A → Ba(E), and it is non-degenerate
if span π(A)E = E.

If A is unital then a representation π of A is non-degenerate if and only if π is unital.
If π is any representation of A on E, then the submodule Ẽ = span π(A)E is invariant
under the action of A and hence π : A → Ba(Ẽ) is a non-degenerate representation.

Definition 2.2.15. Let A and B be C∗-algebras. A Hilbert B-module E with a non-
degenerate representation π : A → Ba(E) is said to be a Hilbert A-B-module or A-B-
correspondence.

If E is a Hilbert A-B-module, π induces a left action on E by A and we denote the
action of a ∈ A on x as ax instead of π(a)x for all a ∈ A, x ∈ E. Note that as π is a
representation we have

‖ax‖ ≤ ‖π(a)‖‖x‖ ≤ ‖a‖‖x‖.
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Definition 2.2.16. Let E and F be Hilbert A-B-modules. A linear map T : E → F is said
to be A-B-linear or bilinear or two sided if T (axb) = aT (x)b for all x ∈ E, a ∈ A, b ∈ B.

Notation. Ba,bil(E,F ) = the space of all bounded, adjointable, bilinear maps from E to F.
When F = E we write Ba,bil(E) instead of Ba,bil(E,E).

The complement of an A-B-submodule in E is an A-B-submodule. The range of a
projection P is an A-B-submodule if and only if P is bilinear.

Example 2.2.4. Let A and B be C∗-algebras.

(i) Any Hilbert B-module E is a Hilbert Ba(E)-B-module with the left action given by
π(φ)x = φ(x) for φ ∈ Ba(E), x ∈ E. Moreover En = ⊕ni=1E is an Mn(Ba(E))-B-
module with the similar natural left action.

(ii) Let {Eα}α∈Λ be a family of Hilbert A-B-modules. Then the direct sum ⊕
α∈Λ

Eα of
Eα’s as defined in Example 2.2.1(iv) is a Hilbert A-B-module with the left action
a(xα) = (axα).

(iii) If E is a Hilbert A-B-module, then En is a Hilbert Mn(A)-B-module.
(iv) If E is a Hilbert A-B-module, then E(n) (= En considered as row vectors) is a Hilbert

A-Mn(B)-module.
(v) If E is a Hilbert A-B-module, then Mn(E) is a Hilbert Mn(A)-Mn(B)-module with

usual matrix multiplication as module actions and 〈(xij), (yij)〉 = (∑k〈xki, ykj〉).

2.2.3 Tensor products of Hilbert C∗-modules

For our purpose we need interior tensor products of Hilbert C∗-modules, hence in this
section we present the definitions and some properties of them. For further details about
interior tensor products look at [Lan95,Ske01].

2.2.3.1 Interior tensor products

Let E be a Hilbert B-module and F be a Hilbert B-C-module. Consider the algebraic
tensor product E ⊗ F. Define right C-module action on E ⊗ F by

(x⊗ y)c = x⊗ yc for x ∈ E, y ∈ F and c ∈ C,

and define a C-valued sesquilinear form on E ⊗ F by

〈x⊗ y, x′ ⊗ y′〉 = 〈y, 〈x, x′〉y′〉 for x, x′ ∈ E and y, y′ ∈ F. (2.2.6)
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Then with this sesquilinear form E ⊗ F becomes a semi-inner product C-module. Let

NE⊗F = {z ∈ E ⊗ F : 〈z, z〉 = 0}. (2.2.7)

The completion of inner product C-module E⊗F/NE⊗F is called the interior tensor product
of the Hilbert modules E and F, and it is denoted by E�B F or just by E�F. We denote
the coset of x⊗ y in E � F by x� y.

If T : E → E ′ and S : F → F ′ are bounded (bilinear) maps, then, T � S : E � F →
E ′ � F ′ is a bounded bilinear map defined by (T � S)(x� y) = Tx� Sy for x ∈ E, y ∈ F.

Proposition 2.2.14. Let E1, E2 be Hilbert B-modules and let a ∈ Ba(E1, E2). Let F be a
Hilbert B-C-module. Then

a� id : (x� y) 7→ ax� y (2.2.8)

extends to a well-defined adjointable operator a� id : E1�F → E2�F with adjoint a∗� id
and

‖a� id‖ ≤ ‖a‖. (2.2.9)

Moreover, if E1 = E2 the map a 7→ a� id is a unital ∗-homomorphism from Ba(E)→
Ba(E � F ).

It follows from Proposition 2.2.14 that, in the above construction of tensor product, if
E is a Hilbert A-B-module, then we have E � F as a Hilbert A-C-module with the left
action of A given by

a(x� y) = ax� y for x ∈ E, y ∈ F and a ∈ A. (2.2.10)

Remark 2.2.3. Let NB be the subspace of E ⊗ F generated by elements of the form

xb⊗ y − x⊗ by, x ∈ E, y ∈ F, b ∈ B.

Then we can show that (cf. [Lan95])NE⊗F = NB. Therefore (2.2.6) defines an inner product
on E ⊗ F/NB. Thus we can consider the interior tensor product E � F as the completion
of the inner product module E ⊗ F/NB.

Proposition 2.2.15. The interior tensor product has the following properties:

(i) associative, i.e.,

(E1 � E2)� E3 ' E1 � (E2 � E3) via (x1 � x2)� x3 7→ x1 � (x2 � x3).
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(ii) distributive over addition (direct sum), i.e.,

(E1 ⊕ E2)� E ' (E1 � E)⊕ (E2 � E) via (x1 ⊕ x2)� x 7→ (x1 � x)⊕ (x2 � x).

Observation 2.2.2. Let B be a C∗-algebra. We identify E � B and E (via x� b 7→ xb),
also we identify B � F and F (via b� y 7→ by).

Observation 2.2.3. Let E be a Hilbert B-module and let F be a Hilbert B-C-module.
Let x ∈ E. Then

Lx : y 7→ x� y (2.2.11)

defines a mapping F → E � F with ‖Lx‖ ≤ ‖x‖ and Lx ∈ Ba(F,E � F ) with the adjoint
given by

L∗x : x′ � y 7→ 〈x, x′〉y. (2.2.12)

Observation 2.2.4. Let E,F, F ′, G be bilinear Hilbert modules and β : F → F ′ be a
bilinear isometry. Then the map id�β � id : E � F �G→ E � F ′ �G is also a bilinear
isometry.

2.2.4 GNS-construction

The following construction is due to Paschke in [Pas73], which intimately connects inte-
rior tensor products of Hilbert C∗-modules and compositions of CP maps. For next two
subsections we mostly follow the notation and set up of [BBLS04,BS00]. For any CP map
into B(H) we have the Stinespring’s dilation Theorem 2.1.8. The GNS-construction is a
generalization of the Stinespring’s dilation to CP maps between arbitrary C∗-algebras.

2.2.4.1 Construction

Let A and B be unital C∗-algebras and let φ : A → B be a CP map. Consider the algebraic
tensor product A⊗ B. For a, a′ ∈ A, b, b′ ∈ B, define

〈a⊗ b, a′ ⊗ b′〉 = b∗φ(a∗a′)b.

Then 〈·, ·〉 makes A ⊗ B into a semi-Hilbert A-B-module in a natural way. Let E be the
completion ofA⊗B/NA⊗B, whereNA⊗B = {z ∈ A⊗B : 〈z, z〉 = 0} and let ξ = 1⊗1+NA⊗B,
then we have

φ(a) = 〈ξ, aξ〉, for all a ∈ A. (2.2.13)
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Moreover, ξ is cyclic (i.e., E = span AξB). The pair (E, ξ) is called the GNS-
construction of φ and E is called the GNS-module. It is obvious that φ is unital if and only
if 〈ξ, ξ〉 = 1.

Definition 2.2.17. Let φ : A → B be a CP map. Let E be a Hilbert A-B-module and
ξ ∈ E, we call (E, ξ) as a GNS-representation for φ if φ(a) = 〈ξ, aξ〉 for all a ∈ A. It is
said to be minimal if

E = span AξB.

If (E, ξ) and (F, ζ) are two minimal GNS-representations for φ then the map ξ 7→ ζ

extends as a bilinear unitary from E to F.

When we know the Stinespring’s representations of two CP maps, the Stinespring’s
representation of the composition of these two CP maps, is not clear in terms of their
individual Stinespring representations. But GNS-construction is very powerful in this
regard, as we mentioned before. Namely, the GNS-module of the composition of two CP
maps can be written as a submodule of the (interior) tensor product of the GNS-modules
of those CP maps, as follows:

Observation 2.2.5. Let φ : A → B and ψ : B → C be CP maps with GNS-representations
(E, ξ) and (F, ζ) respectively. Let (K,κ) be the minimal GNS-representation of ψ◦φ. Note
that

〈ξ � ζ, aξ � ζ〉 = 〈ζ, 〈ξ, aξ〉ζ〉 = 〈ζ, φ(a)ζ〉 = ψ ◦ φ(a), for all a ∈ A. (2.2.14)

This says that (E � F, ξ � ζ) is a GNS-representation (not necessarily minimal) for ψ ◦ φ.
Thus the the mapping

κ 7→ ξ � ζ (2.2.15)

extends as a unique bilinear isometry from K to E � F. Hence we may identify K as the
submodule span(Aξ � ζC) of E � F.

Note that E � F = span(AξB � BζC) = span(Aξ � BζC) = span(AξB � ζC).

2.2.5 von Neumann modules

Let B be a C∗-algebra and E be a Hilbert B-module. Suppose π is a non-degenerate
representation of B on a Hilbert space G (G can be viewed as a Hilbert B-C-module).
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Consider the (interior) tensor product H = E � G. Note that H is a Hilbert space as it is
a Hilbert C-module.

For x ∈ E let Lx : G → H be defined by Lx(g) = x � g, then Lx ∈ B(G,H) (See
Observation 2.2.3) with L∗x : x′ � g 7→ 〈x, x′〉g (= π(〈x, x′〉)g). Define η : E → B(G,H) by
η(x) = Lx. Then we have L∗xLy = π(〈x, y〉) ∈ B(G), hence, if the representation of B on G
is faithful then so is η. Also we have Lxb = Lxb so that we may identify E as a concrete
subset of B(G,H).

Definition 2.2.18. The map η is referred as the Stinespring representation of E (associ-
ated with G).

Moreover, when E is a Hilbert A-B-module, H is a Hilbert A-C-module. i.e., H is a
Hilbert space with a (nondegenerate) representation ρ : A → B(H) defined by

ρ(a)(x� g) = ax� g. (2.2.16)

(Note that ρ(a) = a � id ∈ B(H) in the notation of Proposition 2.2.14) In this case we
have Laxb = ρ(a)Lxb for x ∈ E, a ∈ A, b ∈ B. Therefore we may identify E as a concrete
subset of B(G,H) (cf. Example 2.2.1(iii)).

Definition 2.2.19. The map ρ defined above is called the Stinespring representation of
A (associated with E and G). (See Remark 2.2.4 below)

Remark 2.2.4. Let φ : A → B(G) be a CP map. Suppose (E, ξ) is the GNS-construction
for φ. Let η : E → B(G,H) be the Stinespring representation of E as defined above, then

φ(a) = 〈ξ, aξ〉 = L∗ξLaξ = L∗ξρ(a)Lξ.

Note that Lξ is an isometry in B(G,H) if and only if φ is unital. So we obtain the usual
minimal Stinespring representation (H, ρ, Lξ) of φ.

Conversely, if (H, π, V ) is the minimal Stinespring representation for φ. ConsiderB(G,H)
as a Hilbert A-B(G)-module, where the left action of A is given by the representation π.
Let E = span AVB(G) ⊆ B(G,H). Then (E, V ) is a minimal GNS-representation for φ.

In Particular, if B is a von Neumann algebra on a Hilbert space G, we always consider
E as a concrete subset of B(G, E � G).

Definition 2.2.20. Let B be a von Neumann algebra on a Hilbert space G. A Hilbert
B-module E is said to be a von Neumann B-module if E is strongly closed in B(G, E�G).
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Proposition 2.2.16 ([Pas73]). If E is a von Neumann B-module, then Ba(E) is a von
Neumann algebra.

Definition 2.2.21. Let A be a von Neumann algebra. A von Neumann B-module E is said
to be von Neumann A-B-module if it is a Hilbert A-B-module such that the Stinespring
representation ρ of A on E � G is normal.

Theorem 2.2.3 ([Pas73]). von Neumann modules are self-dual. That is, for any ϕ ∈
Ba(E,B) there exists x ∈ E such that ϕ(y) = x∗(y) = 〈x, y〉 for all y ∈ E. In particular,
we have Ba(E) = Br(E).

Proposition 2.2.17 ([Pas73]). Every von Neumann module has a pre-dual.

The following propositions are from [BS00].

Proposition 2.2.18. Let E be a Hilbert A-B-module, where A is a C∗-algebra and B is
a von Neumann algebra on a Hilbert space G. Then the maps x 7→ xb : E → E for b ∈ B,
x 7→ ax : E → E for a ∈ A and the B-functional x 7→ 〈y, x〉 : E → B are strongly
continuous. Hence Es ⊂ B(G,H) ⊂ B(G ⊕H) is a Hilbert A-B-module and von Neumann
B-module, where H = E � G.

Proposition 2.2.19. Let φ : A → B be a normal CP map between von Neumann algebras.
Let E be the GNS-module for φ. Then Es is a von Neumann A-B-module.

Proposition 2.2.20. Let E be a von Neumann A-B-module. Suppose π is a normal
representation of B on a Hilbert space G. Then the Stinespring representation ρ of A on
E � G is normal.

Proposition 2.2.21. Let E be a von Neumann A-B-module and F be a von Neumann
B-C-module where C acts on the Hilbert space G. Then E � F s

, the strong closure of E�F
in B(G,E � F � G) is a von Neumann A-C-module.

Definition 2.2.22. Due to Propositions 2.2.19, 2.2.20 and 2.2.21 we make the following
conventions:

(i) Whenever B is a von Neumann algebra and φ : A → B is a CP map, by GNS-module
we always mean Es

, where E is the GNS-module, constructed above.
(ii) If E and F are von Neumann modules, by tensor product of E and F we mean the

strong closure E�̄sF = E � F s of E � F and we still write E � F.

32



2.2.6. Inductive limits

2.2.6 Inductive limits

Definition 2.2.23. Let L be a partially ordered set, which is directed increasingly. A
family (Et)t∈L of vector spaces with a family (βts)t≥s of linear maps βt,s : Es → Et, is said
to be an inductive system1 over L if βtrβrs = βts for all t ≥ r ≥ s and βtt = idEt .

Let N denotes the subspace of E⊕ = ⊕
t∈L
Et, consisting of all those x = (xt) for which

there exists s ∈ L (with s ≥ t for all t with xt 6= 0) such that ∑t∈L βstxt = 0 ∈ Es. The
inductive limit E = lim ind

t∈L
Et of the family (Et)t∈L is defined as the space E = E⊕/N .

Proposition 2.2.22 ([BS00]). The canonical mappings it : Et → E have the property:
itβts = is for all t ≥ s. Also E = ⋃

t∈L
itEt.

Notation. Let i : E⊕ → E denote the canonical mapping.

Definition 2.2.23 in a sense is algebraic. So it is referred as algebraic inductive limit.
However when we have a inductive system of topological spaces, it is necessary to enlarge
the inductive limits in order to preserve the structure. e.g. the inductive limits of Hilbert
modules need not be complete always. So we make the following conventions.

Definition 2.2.24. (i) The inductive limit of an inductive system of Hilbert modules
is defined as the norm completion of the algebraic inductive limit.

(ii) The inductive limit of an inductive system of von Neumann modules is defined as
the strong completion of the algebraic inductive limit.

Observation 2.2.6 ([BS00, Proposition A.6]). Let (Et, βts) be a inductive system, where
Et’s are Hilbert C∗-modules and βts are isometries. Let E be the inductive limit of this
inductive system. Define

〈x, x′〉 =
∑
t,t′
〈βstxt, βst′x′t′〉,

where x = i((xt)), x′ = i((x′t)) ∈ E and s such that bxt = x′t = 0 whenever t > s. Then
〈·, ·〉 defines an inner product on E and clearly the canonical maps it’s are isometries.

Further, if Et’s are two-sided Hilbert C∗ modules and βts are bilinear maps. Then E is
also two-sided, and the canonical mappings it respect the left multiplications.

1We refer to [BS00, appendix A] for the detailed proofs of the results of this section.
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2.3 Quantum dynamical semigroups

We begin with some general theory of one-parameter semigroups of linear maps on Banach
spaces. Then in the next subsection we shall move on to our main interest of strongly
continuous one-parameter semigroups of CP maps on C∗-algebras.

2.3.1 Some general theory

In this subsection we introduce the standard definitions and some results about the theory
of one-parameter semigroups of (continuous) linear maps on Banach spaces. More generally,
we have the theory of semigroups of linear maps on locally convex topological vector spaces,
but we restrict to Banach spaces. For more details and the proofs of this subsection we
refer the reader to [Yos95,Gol17,Dav80].

Definition 2.3.1. Let X be a Banach space. A family τ = (τt)t≥0 ⊂ B(X) of bounded
linear maps in X is called a C0-semigroup or strongly continuous one-parameter semigroup
on X if:
(i) τs+t = τsτt for each s, t ∈ R+;
(ii) τ(0) = I, identity operator on X;
(iii) The map t 7→ τt(x) is continuous for each x ∈ X. (strong continuity)

Definition 2.3.2. A C0-semigroup τ is said to be uniformly continuous if

‖τt − I‖ → 0 as t→ 0. (2.3.1)

Definition 2.3.3. A C0-semigroup τ on X is called a C0-contraction semigroup on X if
‖τt‖ ≤ 1 for all t ∈ R+.

Definition 2.3.4. Let τ be a C0-semigroup on X. The (infinitesimal) generator L of τ is
defined by

L(x) = lim
t→0

τt(x)− x
t

, for x ∈ D(L) (2.3.2)

where, D(L) is the domain of L, consisting of x ∈ X, for which the above limit (2.3.2)
exists.

Here D(L) is a subspace of X and L is a linear map from D(L) to X. In general D(L)
is not equal to X but it is always a dense subspace of X. Also L is always a closed linear
operator. A semigroup is uniquely determined by its generator.
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2.3.2. Quantum dynamical semigroups

Theorem 2.3.1. Let L ∈ B(X). Then the family τ = (τt) defined by τt = etL is a uniformly
continuous C0-semigroup with generator L.

Conversely, if τ is a uniformly continuous C0-semigroup, then the generator L of τ is
a bounded linear operator on X and τt = etL.

Theorem 2.3.1 shows that the C0-semigroups (satisfying strong continuity, see Definition
2.3.1(iii)) which do not satisfy the uniform continuity condition (2.3.1) are precisely the
ones having unbounded generators.

Theorem 2.3.2 (Hille-Yosida [Gol17]). L is the generator of a C0-contraction semigroup
if and only if L is densely defined, closed operator fulfilling, for each λ ∈ (0,∞), λ ∈ σ(L)c

and2 ∥∥∥λ(λ− L)−1
∥∥∥ ≤ 1.

Theorem 2.3.3 ([Gol17]). Let τ be a C0-semigroup. Then there exist constants M ≥
1, ω ≥ 0 such that

‖τt‖ ≤Meωt for all t ∈ R+.

Theorem 2.3.4 (Stone’s theorem [Gol17]). L is the generator of a C0-unitary group on a
complex Hilbert space H if and only if L is skew-adjoint (i.e., iL is self-adjoint).

2.3.2 Quantum dynamical semigroups

In this section we restrict to the case that the Banach space X is a C∗-algebra or a von
Neumann algebra A and we study the semigroups of CP maps. In this section T denotes
R+ or Z+. For the details and proofs look at [SG07] and its references.

Definition 2.3.5. LetA be a unital C∗-algebra. A one-parameter semigroup of contractive
CP maps φ = (φt)t∈T on A is said to be a quantum dynamical semigroup (QDS). That is,
a family (φt)t∈T of linear maps on A is said to be a QDS if

(i) φt is CP for all t ∈ T;
(ii) φs+t = φs ◦ φt for all t ∈ T;
(iii) φ0(a) = a for all a ∈ A;
(iv) φt(1) ≤ 1 for all t ∈ T; (contractivity)

It is said to be conservative QDS or Quantum Markov semigroup (QMS) if φt is unital
for all t ∈ T. In practice, in addition to (i)-(iv) we may assume continuity of t→ φt(a) in
different topologies, depending upon the context.

2See (2.1.6) from Subsection 2.1.2 for the definition of σ(L).
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Definition 2.3.6. A QDS φ is said to be uniformly continuous QDS if

‖φt − id‖ → 0 as t→ 0. (2.3.3)

A QDS φ is uniformly continuous if and only if the generator is bounded (cf. Theorem
2.3.1)

Definition 2.3.7. Let A be a unital C∗-algebra. A one-parameter semigroup ϑ = (ϑt)t∈T
of unital endomorphisms of A is said to be an E0-semigroup.

Clearly every E0-semigroup is a Quantum Markov Semigroup. If φ is a semigroup of
CP maps or endomorphisms on a von Neumann algebra A, we typically assume that every
φt is normal.

Definition 2.3.8. Let φ = (φt) be a QDS on a C∗-algebra A. An E0-semigroup ϑ = (ϑt)
on a C∗-algebra B ⊇ A is said to be an E0-dilation of φ if there is a projection P ∈ B such
that A = PBP and φt(a) = Pϑt(a)P for all a ∈ A, t ∈ T.

Definition 2.3.9. Let A be a C∗-subalgebra of a C∗-algebra B. Let L : A → B be a
bounded linear adjoint preserving map. Then L is said to be conditionally completely
positive (CCP) if

n∑
i,j=1

b∗iL(a∗i aj)bj ≥ 0

for all a1, . . . an in A and b1, . . . , bn in B satisfying ∑n
i=1 aibi = 0 and for all n ∈ N.

Theorem 2.3.5 ([SG07]). A bounded linear adjoint preserving map L on a unital C∗-
algebra is CCP if and only if etL is CP for all t ≥ 0.

The structure of generators of uniformly continuous quantum dynamical semigroups on
matrix algebras was obtained by Gorini, Kossakowski and Sudershan. This was extended
to type I von Neumann algebras by Lindblad. A detailed account of this can be seen
in K R Parthasarathy [Par92]. The extension to general C∗-algebras was carried out by
Christensen and Evans [CE79]. Here we just state the B(H) version.

Theorem 2.3.6. The generator L of a uniformly continuous QDS on B(H) can be written
as

L(T ) =
∞∑
n=1

R∗nTRn +GT + TG∗

for T ∈ B(H), where Rn, G ∈ B(H) such that −Re(G) is a positive operator and the sum
on the right-hand side converges strongly.
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2.3.3 Product systems and morphisms

W. Arveson introduced tensor product system of Hilbert spaces in order to classify E0-
semigroups of B(H). We need to look at product systems of Hilbert C∗-modules to study
E0-semigroups of general C∗-algebras. Analyzing similar structures for quantum dynamical
semigroups of C∗-algebras Bhat and Skeide ([BS00]) looked at inclusion systems of Hilbert
C∗-modules and their inductive limits to product systems. The name ‘inclusion systems’ is
from ([BM10], and similar objects were called subproduct systems in Solel, Shalit [SS09]).
Let T denote the set of all non-negative real numbers R+ or the set of all non-negative
integers Z+.

Definition 2.3.10. Let B be a C∗-algebra (von Neumann algebra). An inclusion system
(E, β) is a family E = (Et)t∈T of Hilbert B-B-modules (von Neumann B-B-modules) with
E0 = B and a family β = (βs,t)s,t∈T of (adjointable) bilinear isometries βs,t : Es+t → Es�Et
such that, for all r, s, t ∈ T,

(βr,s � idEt)βr+s,t = (idEr �βs,t)βr,s+t.

It is said to be a product system if every βst is unitary.

Recall that: if B is a von Neumann algebra, and if each Et is a von Neumann B-B-
modules, as we already mentioned, by Es � Et we mean Es�̄sEt, the strong closure of
Es � Et.

Definition 2.3.11. Let (E, β) be an inclusion system. A family ξ� = (ξt)t∈T of vectors
ξt ∈ Et is called a unit for the inclusion system, if βs,t(ξs+t) = ξs� ξt. It is said to be unital
if 〈ξt, ξt〉 = 1 for all t ∈ T, and generating if ξt is cyclic in Et for all t ∈ T. Suppose (E, β) is
a product system, a unit ξ� = (ξt)t∈T is said to be a generating unit for the product system
(E, β) if Et is spanned by images of elements bnξtn � · · · � b1ξt1b0 (ti ∈ T,∑ ti = t, bi ∈ B)
under successive applications of appropriate mappings id�β∗s,s′ � id .

Observation 2.3.1. Suppose ξ� is a unit for an inclusion system (E, β). Consider φt :
B → B defined by

φt(b) = 〈ξt, bξt〉 for b ∈ B.

Then as βs,t’s are bilinear isometries and ξ� is a unit, for b ∈ B we have

φt ◦ φs(b) = φt(〈ξs, bξs〉) = 〈ξt, 〈ξs, bξs〉ξt〉 = 〈ξs � ξt, b(ξs � ξt)〉 = 〈ξt+s, bξt+s〉 = φt+s(b).

That is, (φt)t∈T is a CP semigroup. Further, (φt) is unital if and only if ξ� is a unital unit.
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Example 2.3.1. Let φ = (φt)t∈T be a CP semigroup on a C∗-algebra B and let (Et, ξt)
be the GNS-construction for φt. (If B is a von Neumann algebra, we assume that φt’s are
normal, Et = E

s

t for all t and Et � Es = Et�̄sEs.)

Recall that ξt is a unit cyclic vector in Et such that φt(b) = 〈ξt, bξt〉 for all b ∈ B, and
E0 = B and ξ0 = 1. Define βs,t : Es+t → Es � Et by

ξt+s 7→ ξs � ξt. (2.3.4)

Then by Observation 2.2.5, βs,t’s are bilinear isometries. Now

(βr,s � IEt)βr+s,t(ξr+s+t) = (βr,s � IEt)(ξr+s � ξt) = (ξr � ξs)� ξt
= ξr � (ξs � ξt) = (IEr � βs,t)(ξr � ξs+t)
= (IEr � βs,t)βr,s+t(ξr+s+t),

shows that (E, β) is an inclusion system. It is obvious to see that ξ� = (ξt) is generating
unit for (E, β).

Definition 2.3.12. For a CP semigroup φ, the triple (E, β, ξ�) given in Example 2.3.1 is
called the inclusion system associated to the CP semigroup φ. When β is clear from the
context, we just write (E, ξ�) as the inclusion system associated to the CP semigroup φ.

Definition 2.3.13. Let (E, β) and (F, γ) be two inclusion systems. Let T = (Tt)t∈T be
a family of adjointable two-sided (bilinear) maps Tt : Et → Ft, satisfying ‖Tt‖ ≤ etk for
some k ∈ R. Then T is said to be a morphism or a weak morphism from (E, β) to (F, γ)
if every γs,t is adjointable and

Ts+t = γ∗s,t(Ts � Tt)βs,t for all s, t ∈ T. (2.3.5)

It is said to be a strong morphism if

γs,tTs+t = (Ts � Tt)βs,t for all s, t ∈ T. (2.3.6)

Clearly a strong morphism is also a weak morphism.

2.3.4 E0-dilation of quantum Markov semigroups

In this subsection we recall the E0-dilation of a QMS as presented by Bhat and Skeide
in [BS00]. Let φ = (φt)t∈T be a conservative CP semigroup (QMS). Let (E, β) be the
inclusion system associated to φ as explained in Definition 2.3.12. First goal is to show
that this inclusion system leads to a product system by performing some inductive limits.
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2.3.4. E0-dilation of quantum Markov semigroups

Notation. Let 0 < t ∈ T. For any t = (tn, . . . , t1) ∈ Tn we denote |t| = ∑n
i=1 ti. Let

It = {t = (tn, . . . , t1) ∈ Tn : n ∈ N, t = tn > · · · > t1 > 0}. (2.3.7)

It has the natural notion of inclusion, union and intersection of tuples. Inclusion defines
a partial order on It. Let

Jt = {t = (tn, . . . , t1) ∈ Tn : ti > 0, |t| = t, n ∈ N}. (2.3.8)

For s = (sm, . . . , s1) ∈ Js and t = (tn, . . . , t1) ∈ Jt we define the joint tuple s^ t ∈ Js+t by

s^ t = ((sm, . . . , s1), (tn, . . . , t1)) = (sm, . . . , s1, tn, . . . , t1).

We define a partial order “ ≥ ” on Jt as follows: t ≥ s = (sm, . . . , s1), if for each j

(1 ≤ j ≤ m) there are (unique) sj ∈ Jsj such that t = sm ^ · · ·^ s1.

For t = 0 we extend the definitions of It and Jt as I0 = J0 = {()}, where () is the empty
tuple. Also for t ∈ Jt we put t^ () = t = () ^ t.

Proposition 2.3.1 ([BS00, Proposition 4.1]). The mapping (tn, . . . , t1) 7→ (∑n
i=1 ti, . . . ,

∑1
i=1 ti)

is an order isomorphism Jt → It.

Fix t > 0 in T. For t = (tn, . . . , t1) ∈ Jt we define Et = Etn � · · · � Et1 and E() = E0.

In particular we have E(t) = Et. By Observations 2.2.4 and 2.2.5

ξt 7→ ξt = ξtn � · · · � ξt1 (2.3.9)

defines a bilinear isometry βt(t) : Et → Et. Note that βt(t) is also given by

βt(t) = (βtn,tn−1 � id)(βtn+tn−1,tn−2 � id) . . . (βtn+···+t3,t2 � id)βtn+···+t2,t1 .

Now suppose t = (tn, . . . , t1) = sm ^ · · · ^ s1 ≥ s = (sm, . . . , s1) with |sj| = sj, then
we define

βts = βsm(sm) � · · · � βs1(s1).

Then βts : Es → Et is a bilinear isometry. Clearly βtrβrs = βts for all t ≥ r ≥ s. Thus
((Et)t∈Jt , (βts)t≥s) forms an inductive system of Hilbert B-B-modules.

Hence, the inductive limit Et = lim ind
t∈Jt

Et is a Hilbert B-B-module and the canonical
mappings it : Et → Et are bilinear isometries (cf. [BS00, Proposition 4.3]). Note in partic-
ular that i(t) : Et → Et is a bilinear isometry. The following observation shows that Et has
a special vector.
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Observation 2.3.2. Let ξt = i(t)ξt. Then it is easy to prove using Proposition 2.2.22 that
itξt = ξt for all t ∈ Jt. Moreover,

〈ξt, bξt〉 = 〈i(t)ξt, bi(t)ξt〉 = 〈i(t)ξt, i(t)bξt〉 = 〈ξt, bξt〉 = φt(b). (2.3.10)

Also as φ is unital, 〈ξt, ξt〉 = 1.

For each s ∈ T, recall from Proposition 2.2.22, that Es = span{isEs : s ∈ Js}. For any
given r ∈ Js+t, there exist s ∈ Js and t ∈ Jt such that s ^ t ≥ r. Therefore we have
Es+t = span{is^t(Es^t) : s ∈ Js, t ∈ Jt}.

For s ∈ Js, t ∈ Jt clearly Es � Et = Es^t. Using this trivial observation we define
ust : Es � Et → Es+t by

ust(isxs � ityt) = is^t(xs � yt) for xs ∈ Es, yt ∈ Et, s ∈ Js, t ∈ Jt. (2.3.11)

Indeed, by repeated applications of Proposition 2.2.22, we can prove the following theorem.

Theorem 2.3.7 ([BS00, Theorem 4.8]). With the above notations (E� = (Et)t∈T, u =
(ust)s,t∈T) forms a product system. The family ξ� = (ξt)t∈T forms a generating, unital unit
for this product system.

Remark 2.3.1. Since ust is a unitary for all s, t ∈ T, we always make the identification:

Es � Et = Es+t. (2.3.12)

Now we perform a second inductive limit to patch the Et’s together and using this new
module we get, an E0-dilation for the QMS φ.

Let s, t ∈ T with t ≥ s. Let γts = Lξt−s : Es → Et−s � Es = Et, namely x 7→ ξt−s � x
(See Observation 2.2.3 for the notations). Now let t ≥ r ≥ s. As (ξt) is a unit we have
γts = ξt−s � id = ξt−r � ξr−s � id = γtrγrs. Therefore ((Et)t∈T, (γts)t≥s) forms an inductive
system. The inductive limit E = lim ind

t→∞
Et is a Hilbert B-module and the canonical

mappings kt : Et → E are isometries (cf. [BS00, Proposition 5.1]). As in Observation 2.3.2,
E also has a special vector: namely ξ = k0ξ

0 satisfying ξ = ktξ
t, for all t ∈ T, and 〈ξ, ξ〉 = 1.

In the following proposition we use notations from Subsection 2.2.1.4.

Proposition 2.3.2 ([BS00, Corollary 5.3]). The map j0 : B → Ba(E) defined by j0(b) =
|ξ〉 b 〈ξ| is a faithful representation, where ξ is as above. Moreover, the map a 7→ j0(1)aj0(1)
defines a conditional expectation Ba(E)→ j0(B).
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Theorem 2.3.8 ([BS00, Theorem 5.4]). For all t ∈ T we have

E � Et = E . (2.3.13)

extending (2.3.12) in a natural way. Moreover, ξ � ξt = ξ for all t ∈ T.

Using the identification (2.3.13) we define the following endomorphisms to get an E0-
dilation of the given CP semigroup.

Define ϑt : Ba(E)→ Ba(E � Et) = Ba(E) by

ϑt(a) = a� idEt , for all a ∈ Ba(E).

Theorem 2.3.9 ([BS00]). ϑ = (ϑt)t∈T is an E0-dilation of the CP semigroup φ = (φt)t∈T.

Remark 2.3.2. Let B be a von Neumann algebra acting on a Hilbert space G. Let (φt)t∈T
be a normal CP semigroup on B. With the conventions of Definitions 2.2.22 and 2.2.24 the
whole construction holds.

So in the above dilation theory, replacing C∗-albebra by von Neumann algebra B and
unital CP semigroup by unital normal CP semigroup φ, we get the following theorem.

Theorem 2.3.10 ([BS00]). Let (φt) be a conservative normal CP semigroup on a von
Neumann algebra B. Then with the above notations,

(i) The family E� = (Et)t∈T forms an inclusion system of von Neumann B-B-modules
and ξ = (ξt)t∈T forms a unital, generating unit for this inclusion system. Also
〈ξt, bξt〉 = φt(b).

(ii) The family E� = (Et)t∈T forms a product system of von Neumann modules and ξ� =
(ξt)t∈T forms a unital, generating unit for this product system. Also 〈ξt, bξt〉 = φt(b).

(iii) We have E = E � Et for all t ∈ T and in this identification ξ = ξ � ξt.
(iv) j0 : B → Ba(E) defined by j0(b) = |ξ〉 b 〈ξ| is a normal representation.
(v) (ϑt)t∈T (given by ϑt : Ba(E) → Ba(E) ' Ba(E � Et) via., (a 7→ a � idEt)) is an

E0-dilation of (φt). i.e.,

j0(1)ϑt(j0(b))j0(1) = j0(φt(b)), for all b ∈ B.

2.3.5 The time ordered Fock module

The time ordered Fock modules are one of the fundamental examples of product systems
of Hilbert C∗-modules.
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Definition 2.3.14. Let E be a Hilbert B-B-module. The full Fock module over E is
defined as

F(E) =
∞⊕
n=0

E�n (2.3.14)

where E�0 = B and ω = 1 ∈ E�0 denotes the vacuum. If B is a von Neumann algebra,
then Fs(E) denotes the von Neumann B-B-module F(E)s.

Definition 2.3.15. Let T ∈ Ba,bil(E) be a contraction. The second quantization of T is
defined as

F(T ) = ⊕∞n=0T
�n ∈ Ba(F(E)),

where T�0 = id .

Definition 2.3.16. Let E be a Hilbert B-B-module. For t ∈ R, the time shift St in
Ba,bil(L2(R, E)) is defined as [Stf ](s) = f(s− t).

Definition 2.3.17. Let E be a Hilbert B-B-module and (M,µ) be a measure space. Con-
sider the algebraic tensor product L2(M) ⊗ E as a pre-Hilbert B-B-module with right
action (f ⊗ x)b = f ⊗ xb, left action b(f ⊗ x) = f ⊗ bx and inner product 〈f ⊗ x, g ⊗ y〉 =
〈x, y〉

∫
M f̄ gdµ. Let L2(M,E) denote the completion of this pre-Hilbert module. Note that

L2(M,E) can be treated as the completion of the set of functions on M taking values in
E. If E is von Neumann B-B-module, then by L2,s(M,E) we mean the strong closure of
L2(M)⊗ E, which is a von Neumann B-B-module.

Let E be a Hilbert B-B-module. Let I ⊆ R be a measurable subset of R. Inner product
in L2(I, E) is given by 〈f ⊗ x, g ⊗ y〉 = 〈x, y〉

∫
I f(t)g(t)dt and L2(I, E)�n = L2(In, E�n).

For n ∈ N, let ∆n denote the indicator function of the subset {(tn, . . . , t1) : tn ≥ · · · ≥ t1}
of Rn and let ∆0 = 1. Then ∆n can be treated as a multiplication operator on L2(In).
Hence ∆n acts as a projection on L2(I, E)�n so that ∆ = ⊕∞n=0∆n is the projection of the
time ordered part of F(L2(I, E)).

Definition 2.3.18. The time ordered Fock module over E is the two-sided submodule

IΓ(E) = ∆(F(L2(R+, E))) =
∞⊕
n=0

∆nL
2(R+, E)�n

of F(L2(R+, E)) and the extended time ordered Fock module overE is defined as ∆F(L2(R, E)).

Notation. For t ≥ 0, define IΓt(E) := ∆F(L2([0, t), E)) ⊂ IΓ(E).

If B is a von Neumann algebra on a Hilbert space G and if E is a von Neumann
B-B-module, then we consider the strong closures, IΓs(E) = IΓ(E)s and IΓst(E) = IΓ(E)t

s
.
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2.3.5. The time ordered Fock module

Define ust : IΓs(E)� IΓt(E)→ IΓs+t(E) by

[ust(Xs � Yt)](sm, . . . s1, tn . . . , tn) = [F(St)Xs](sm, . . . , s1)� Yt(tn . . . , t1)
= Xs(sm − t, . . . , s1 − t)� Yt(tn . . . , t1),

for s + t ≥ sm ≥ · · · ≥ s1 ≥ t ≥ tn ≥ · · · ≥ t1 ≥ 0, Xs ∈ ∆m(L2([0, s], E)�m, Yt ∈
∆n(L2([0, t], E)�n. Then ust is unitary for all s, t.

The following theorem by Bhat and Skeide is analogues to the well-known factorization
Γ(L2([0, s+ t])) = Γ(L2([t, s+ t]))⊗ Γ(L2([0, t])) of the symmetric Fock spaces.

Theorem 2.3.11 ([BS00]). (IΓ�(E) = (IΓt(E))t∈R+ , u = (ust)s,t∈R+) is a product system.

Corollary 2.3.1. Let E be a von Neumann B-B-module. Let IΓs�(E) = (IΓst(E))t∈R+ and let
ust be defined as above and extended to the strong closures. Then (IΓs�(E), u = (ust)s,t∈R+)
is a product system of von Neumann B-B-modules.

Theorem 2.3.12 ([LS01]). Let E be a Hilbert B-B-module. Let β ∈ B, ζ ∈ E and let
ξ0 = (ξ0

t )t∈R+ with ξ0
t = etβ be the uniformly continuous semigroup in B with generator β.

Then ξ(β,ζ)� = (ξ(β,ζ)
t )t∈R+ where the component ξnt of ξt = ξ

(β,ζ)
t ∈ IΓt(E) in the n-particle

sector is defined by

ξnt (tn, . . . , t1) = ξ0
t−tnζ � ξ

0
tn−tn−1ζ � · · · � ξ

0
t2−t1ζξ

0
t1 , (2.3.15)

is a unit for IΓ�(E). Moreover, the function t 7→ ξt ∈ IΓt(E) ⊆ IΓ(E) and the CP semigroup
φ(β,ζ) with φ(β,ζ)

t (b) = 〈ξ(β,ζ)
t , bξ

(β,ζ)
t 〉 are uniformly continuous and the generator L(β,ζ) of

φ(β,ζ) is

L(β,ζ)(b) = 〈ζ, bζ〉+ bβ + β∗b. (2.3.16)

Conversely, let ξ� be a unit such that t 7→ ξt ∈ IΓ(E) is a continuous function. Then
there exist unique β ∈ B and ζ ∈ E such that ξt = ξ

(β,ζ)
t as defined by (2.3.15).

Observation 2.3.3. Theorem 2.3.12 holds also for von Neumann B-B-modules E. (cf.
[BBLS04, Observation 2.3.14]).

Theorem 2.3.12 says that the continuous units of IΓ�(E) is parameterized by B × E.
Let Uc(E) denote the set of continuous units of IΓ�(E). Consider the algebraic subsystem
IΓUc�(E) = (IΓUc�

t (E))t∈R+ of the time ordered system IΓ�(E) which is generated by Uc(E).
Note that any morphism maps a unit to a unit. Using this observation the following
theorem is proved in [BBLS04].
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Chapter 2. Preliminaries

Theorem 2.3.13 ([BBLS04]). Let E and E ′ be Hilbert B-B-modules. Then setting

wt(ξ(β,ζ)
t ) = ξ

(γ+β+〈η,ζ〉,η′+aζ)
t (2.3.17)

we establish a one-to-one correspondence between possibly unbounded continuous mor-
phisms w� = (wt)t∈R+ from IΓUc�(E) to IΓUc�(E ′) and matrices

γ =
γ η∗

η′ a

 ∈ Ba,bil(B ⊕ E,B ⊕ E ′).

Moreover, the adjoint of w� is given by the adjoint matrix Γ∗ =
γ∗ η′∗

η a∗

 .
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Roots of Completely Positive Maps

3.1 Introduction

In many mathematical settings, the concept of a square-root or higher order roots is fa-
miliar, e.g. in the context of real numbers, in the context of matrices, in the context of
real-valued functions, or measures. What all of these settings have in common is the un-
derlying structure of a semigroup. To be slightly more formal, given a semigroup (A, ?)
and given a ∈ A and n ∈ N, we can ask whether there exists some x ∈ A such that
a = x ? x ? · · · ? x (x appearing n times). Then we may call x an n-th root of a. If such
a root exists for all n, we would call a infinitely divisible. We may also ask whether there
is a one-parameter semigroup (xt)t∈R+ in A (namely xs+t = xs ? xt, for all s, t ∈ R+),
such that xt0 = a for some t0 > 0. If this is the case then a may be called embeddable
(into a continuous semigroup). Finally, if there is a topology on A, we may also look for
asymptotic roots or asymptotic embeddability, that is, whether there is a one-parameter
semigroup (xt)t∈R+ , with limt→∞ xt = a.

Yuan [Yua76] deals with some of these questions in the full generality of topological
semigroups, but without further structure it seems that one cannot say too much. We would
like to add such structure and look at unital normal completely positive (UNCP) maps
on von Neumann algebras. They arise in many ways in operator algebras and quantum
physics and are natural objects to study (cf. [EK98,Stø13,Wol11]). Since ‘composition’ is
an associative operation on UNCP maps, it makes sense to study the question of roots also
in this setting, namely: given a von Neumann algebra A, a number n ∈ N, and a UNCP
map φ : A → A, is there another UNCP map ψ : A → A such that φ = ψn? It turns out
that currently surprisingly little is known in general.

However, there are a number of connection points with results in related areas. For
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Chapter 3. Roots of Completely Positive Maps

example, we could specialize to commutative algebras. Then UNCP maps become stochas-
tic maps of Markov chains in classical probability theory. A notable special case is that
of (discrete or continuous) convolution semigroups of probability measures. Existence
and uniqueness criteria for roots of stochastic maps have been studied earlier (See e.g.
[HP01,HL11]). Suppose a given Markov chain on a countable state space converges to an
invariant distribution (an absorbing state). Then typically such a convergence happens ex-
ponentially (i.e., asymptotically) over time. In discrete time there are some instances when
the convergence takes place in finite time. An analysis of transition probability matrices of
such Markov chains can be seen in [BG78] and [Sub76]. This does not work in continuous
time if the semigroup generator is bounded, [GI88]. But the condition of boundedness of
the generator might be too strong, and it is widely believed that under some very minimal
continuity assumptions on the transition semigroup, convergence in finite time should be
impossible. However, we are not aware of any proof. Surprisingly the non-commutative
counterpart is more involved and convergence in finite continuous time to a given pure
state is indeed possible as has been shown in [Bha12]; more precisely, for a given normal
pure state ϕ on B(H), identified with the completely positive map φ = ϕ(·)1, it is possible
to construct a quantum Markov semigroup (τt)t∈R+ (a strongly continuous one-parameter
semigroup of UNCP maps) on B(H) which coincides with φ at all times t ≥ 1; in other
words, for all states ψ, we get ψ ◦ τt = ϕ, for t ≥ 1. Hence convergence in the continuous
setting is possible in finite time, for all pure states on B(H). A trivial consequence is that
φ has an n-th root, for every n ∈ N. It is natural to ask what happens in the case of
φ = ϕ(·)1 where ϕ is a mixed state. What can be said about n-th roots or semigroups of
roots of φ? And in light of our first observation, what can be said about n-th roots and
semigroups of roots of more general completely positive maps φ, not only those arising
from states?

If we drop the assumption of convergence to an invariant distribution, many things can
happen. E.g. the question of continuous roots of a given stochastic map makes sense here
and is known under the name of Elfving’s embedding problem, dating back to 1937 [G37]:
given a stochastic map S, when can we find a map L such that eL = S and all etL, for t ≥ 0,
are stochastic maps? A number of necessary and sufficient criteria have been found over
the years, see e.g. [Dan10,Dav10,Kin62,VB18] for a non-exhaustive list. One particularly
interesting condition is: if S is infinitely divisible, i.e., it has n-th roots for all n, then it
is embeddable into a semigroup [Kin62]. The non-commutative analogue of this question
is not so easy but we may restrict ourselves to finite dimensions to start with. Indeed it
should be noted that completely positive (trace-preserving) maps in finite dimensions form
the basis of quantum information theory (there termed “quantum channels” [Wol11]).
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3.1. Introduction

The question of asymptotic behavior of sequences of compositions of quantum channels
appears relevant in quantum information problems, e.g. in the context of entanglement
breaking maps [RJP18], and the question of “divisibility” of quantum channels, which
is essentially the meaning of a root, has also been studied in a few places. A number
of divisibility criteria can be found in [Den88,WC08,WECC08, BC16] and some of the
questions we pose here have also been discussed in [WC08,BC16] but with slightly different
terminology and complementary answers. Most notably though, it has been shown that
the complexity of the problems of deciding whether a given quantum channel (or stochastic
map) has a square-root or whether it is embeddable into a continuous semigroup are NP-
hard [CEW12a,CEW12b,BC16]. This means that the set of such quantum channels has
no simple expression other than explicit enumeration of its elements, and it is impossible
to find a simply verifiable criterion for the existence of such roots as in the case of positive
numbers or matrices, for example. However, this should not discourage from looking for
interesting new relations or characterizations, at least for some special classes of UNCP
maps, and that is what we would like to do here.

Our outline for this chapter is as follows. In Section 3.2, we start by describing the
quantum analogue and generalization of the “exponential” convergence to a given invariant
distribution: given a UNCP map, is there a continuous one-parameter semigroup that
converges to φ as t → ∞? We completely clarify this question. Such semigroups we will
call asymptotic continuous roots. As a byproduct we obtain an affirmative answer to a
question of Arveson (Problem 3 in [Arv03, p.387]) through very elementary methods.

We then move on to the question of proper roots in the finite-time setting, where Section
3.3 deals with the n-th root case while Section 3.4 deals with the continuous semigroup
case. We are able to provide several existence and non-existence results under different
additional assumptions, e.g. regarding the dimension or structure of the algebra or the
range of the CP map. In particular, for the case of states on Md or B(H) or Cd we have
a complete characterization of existence of n-th roots. However, we are still far from a
full understanding and have to leave some questions in the form of conjectures and open
problems.

Our diversity of results together with the few related results in literature, e.g. [HL11,
CEW12a,CEW12b,BC16], indicate that a “complete and elegant” characterization is un-
likely to be found though. We are mainly concerned with the existence or non-existence of
roots of UNCP maps. Whenever such roots exist, they are typically far from unique, and
a subsequent natural question would be to find a useful characterization of all such roots
for a given UNCP map. We deal with UNCP maps (in finite and infinite dimension) and
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Chapter 3. Roots of Completely Positive Maps

to some minor extent with the commutative special case of stochastic maps though we do
not look at the related question of nonnegative roots of (entry-wise) nonnegative matrices
as can be found in other places, e.g. [Min88].

3.2 Asymptotic roots

In the present section we work in the C∗-algebraic setting because it appeared more natural
to us; however, everything can be adjusted and translated in a straight-forward way to the
von Neumann algebraic setting, cf. also Remark 3.2.1 below, which would also bring it
more in line with the subsequent sections.

Definition 3.2.1. Given a unital C*-algebra A and a bounded unital completely positive
(UCP) map φ : A → A,

(ad) an asymptotic discrete root of φ is a UCP map τ : A → A such that τn → φ

(pointwise in norm), as n→∞;
(ac) an asymptotic continuous root of φ is a uniformly continuous one-parameter semi-

group (τt)t≥0 of UCP maps on A such that τt → φ (pointwise in norm), as t→∞.

We then have:

Theorem 3.2.1. Let A be a unital C*-algebra and φ a UCP map of A. Then the following
three statements are equivalent:

(i) φ is idempotent, i.e., φ2 = φ;
(ii) φ has an asymptotic continuous root;
(iii) φ has an asymptotic discrete root.

Proof. (i) ⇒ (ii). Suppose φ2 = φ. Then define the map

L = φ− id = −(id−φ) : A → A,

which is bounded and conditionally completely positive [EK98, Section 4.5] and therefore
generates a uniformly continuous UCP semigroup τ (cf. Theorem 2.3.5). We find

Ln(x) = (−1)n(id−φ)n(x) = (−1)n(id−φ)(x), x ∈ A,

and therefore

τt(x) =
∞∑
n=0

(−t)n(id−φ)n
n! x =

∞∑
n=0

(−t)n
n! (id−φ)(x) + φ(x) = e−t(id−φ)(x) + φ(x).
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3.2. Asymptotic roots

We see

‖τt(x)− φ(x)‖ = e−t‖x− φ(x)‖ ≤ e−t(1 + ‖φ‖)‖x‖, x ∈ A, (3.2.1)

so τt → φ uniformly, as t→∞, so τ is an asymptotic continuous root for φ.

(ii) ⇒ (iii) is obvious.

(iii) ⇒ (i). Suppose now that there is an asymptotic discrete root τ of φ. Then the
fact that τm → φ as m→∞ allows us to make the following manipulations:

φ ◦ τn(x) = lim
m→∞

τm ◦ τn(x) = lim
n+m→∞

τn+m(x) = φ(x), x ∈ A,

and therefore
φ2(x) = lim

m→∞
φ ◦ τm(x) = lim

m→∞
φ(x) = φ(x), x ∈ A,

so φ2 = φ.

Remark 3.2.1. Let A be a unital C∗-algebra and φ a UCP map of A.

(i) An asymptotic root of φ is in general not unique.

(ii) We did not specify the dimension of A and the Hilbert space H on which it acts. In
fact, the statements are interesting in both finite and infinite dimensions.

(iii) If φ has an asymptotic (discrete/continuous) root with respect to the strong op-
erator topology then the above proof shows that φ also has an asymptotic (dis-
crete/continuous) root with respect to the uniform topology.

(iv) The definition, theorem and proof continue to hold true upon replacing C∗-algebras
by von Neumann algebras, replacing UCP by UNCP, and replacing the uniform by
the strong operator topology.

Remark 3.2.2. As a byproduct, the theorem answers Problem 3 in [Arv03, p.387] affir-
matively, namely given an eigenvalue list (λ1, λ2, . . .) with 0 ≤ λi ≤ 1 and ∑i λi = 1 as in
[Arv03, Section 12.4], consider the density matrix

D = Diag(λ1, λ2, . . .) ∈ B(H),

the normal state ϕ = Tr(D·) on B(H), and the UNCP map

φ = ϕ(·)1 : B(H)→ B(H).
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Chapter 3. Roots of Completely Positive Maps

Then the asymptotic root in the above proof is a UNCP semigroup with bounded generator
that has ϕ as absorbing state: for every normal state ψ on B(H) and every x ∈ B(H), we
get

|ψ ◦ τt(x)− ϕ(x)| = |ψ(τt(x)− ϕ(x)1)| ≤ ‖τt(x)− ϕ(x)1‖ ≤ 2e−t‖x‖

where the last inequality follows from (3.2.1); thus,

‖ψ ◦ τt − ϕ‖ → 0, t→∞,

meaning that ϕ is an absorbing state for (τt)t≥0, which answers Problem 3 in [Arv03, p.387].

3.3 Proper discrete roots

In this and the following section, we work exclusively with von Neumann algebras.

3.3.1 General statements

Our fundamental definition is the following:

Definition 3.3.1. Given a von Neumann algebra A, a UNCP map φ : A → A and an
integer n ∈ N \ {1}, a proper n-th discrete root of φ is a UNCP map τ : A → A such that
τn = φ and τ k 6= φ for all k < n. We call n the order of τ .

We need a notational convenience which turns out very important in many proofs and
characterizations:

Definition 3.3.2. For every UNCP map φ on a von Neumann algebra A, we define the
support projection as the smallest projection pφ ∈ A such that φ(pφ) = 1. We write
p′φ := 1− pφ ∈ A.

The existence and the uniqueness of pφ follow from [Dix81, Proposition I.4.3], roughly
as follows: one first realizes that the set of x ∈ A such that φ(x∗x) = 0 forms a σ-weakly
closed left ideal in A. For such ideals there exists a maximal projection p such that the
ideal consists of all x ∈ A with x = xp. This is exactly the projection p = p′φ = 1 − pφ
from the preceding definition.

We use the following block matrix decomposition of x ∈ A:

x =
x11 x12

x21 x22

 =
pφxpφ pφxp

′
φ

p′φxpφ p′φxp
′
φ

 . (3.3.1)
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3.3.1. General statements

A first useful fact is the following variation of [BM14, Theorem 4.2] about the relation
with nilpotent NCP maps:

Lemma 3.3.1. Let A be a von Neumann algebra, φ a UNCP map of A and n ∈ N.
Suppose there exists a proper n-th discrete root τ of φ. Then

(i) τ(pφ) ≥ pφ;
(ii) there also exists a nilpotent NCP map α : p′φAp′φ → p′φAp′φ of order at most n such

that

τ

0 0
0 x

 =
0 0

0 α(x)

 , x ∈ p′φAp′φ;

(iii) for every
0 x

y z

 ∈ A w.r.t. to the above block decomposition, there is
0 x′

y′ z′

 ∈ A
such that

τ

0 x

y z

 =
0 x′

y′ z′

 ;

(iv) pφτ(·)pφ restricts to a proper discrete root of pφφ(·)pφ on pφApφ of order at most n.

Proof. (i). We first notice that τ(pφ) ≤ 1 since τ was assumed to be UNCP. Therefore
0 ≤ pφτ(pφ)pφ ≤ pφ. Let us write b = pφ − pφτ(pφ)pφ ≥ 0. We would like to show that
b = 0.

To start with,
τ ◦ φ = τ ◦ τn = τn+1 = τn ◦ τ = φ ◦ τ.

This implies

φ(pφ) = 1 = τ(1) = τ(φ(pφ)) = φ(τ(pφ)) = φ(pφτ(pφ)pφ),

thus
φ(b) = φ(pφ − pφτ(pφ)pφ) = 0.

Let eb ∈ A be the support projection of b, which can be defined through Borel functional
calculus. Notice that eb ≤ pφ because b ≤ pφ, so pφ − eb is a subprojection of pφ. Then it
follows from the construction of the spectral theorem (in projection-valued measures form
[RS72, Section 7.3]) that φ(b) = 0 if and only if φ(eb) = 0. Since we have already proved
φ(b) = 0, we find

φ(pφ − eb) = φ(pφ)− φ(eb) = 1− 0 = 1.
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Chapter 3. Roots of Completely Positive Maps

Thus pφ−eb fulfills the properties of a support projection of φ and therefore must be equal
to pφ due to its uniqueness, so eb = 0, hence b = 0.

(ii). Unitality of τ together with part (i) implies τ(p′φ) ≤ p′φ. Thus, τ(p′φ · p′φ) is a NCP
map with image in p′φAp′φ, hence giving rise to an NCP map

α = τ |p′
φ
Ap′

φ
: p′φAp′φ → p′φAp′φ.

Since τ is an n-th root of φ, we have

0 = φ

0 0
0 x

 = τn

0 0
0 x

 =
0 0

0 αn(x)

 , x ∈ p′φAp′φ,

implying that α is nilpotent of order at most n.

(iii). Part (i) shows that τ(p′φ) ≤ p′φ. Using the block decomposition in (3.3.1), and
Proposition 2.1.7 we can write0 0

0 1

 ≥ τ

0 0
0 1

 ≥ τ
[ 0 0

x∗ 0

0 x

0 0

] ≥ τ

0 x

0 0

∗ τ
0 x

0 0

 ,
for every x ∈ pφAp′φ with x∗x ≤ p′φ. This means that

τ

0 x

0 0

 =
0 x′

0 z′


with certain x′ ∈ pφAp′φ, z′ ∈ p′φAp′φ. Together with part (ii) and the self-adjointness of τ ,
we have, for any x ∈ pφAp′φ, y ∈ p′φApφ, z ∈ p′φAp′φ:

τ

0 x

y z

 =
0 x′

y′ z′


with certain x′ ∈ pφAp′φ, y′ ∈ p′φApφ, z′ ∈ p′φAp′φ.

(iv). Since pφ ∈ A and pφφ(pφ)pφ = pφ = pφτ(pφ)pφ by part (i), it is clear that both
pφφ(·)pφ and pφτ(·)pφ restrict to UNCP maps on pφApφ. Moreover, it follows from part
(iii) that

pφτ(pφτ(·)pφ)pφ = pφτ
2(·)pφ,

and by induction, since τn = φ, we get that pφτ(·)pφ is a proper discrete root of pφφ(·)pφ
of order at most n.
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If φ is idempotent then there is generally more hope to say something about roots. A
particularly nice case of idempotency is that where φ has rank one, namely φ = ϕ(·)1 for
some normal state ϕ on A. In that case, we get the following easy correspondence:

Lemma 3.3.2. Given a von Neumann algebra A, a normal state ϕ on A and n ∈ N, let
φ = ϕ(·)1, which is UNCP. Then a map τ on A is a proper n-th discrete root of φ if and
only if τ = φ+α with α some normal nilpotent map of order n such that α ◦φ = 0 = φ ◦α
and φ+ α is CP.

Proof. (⇒) Consider α = τ−φ. Clearly α is normal. Since φ◦τ = τ ◦φ = τn+1 = φ we have,
for all k ≥ 1 αk = τ k−φ. Now since τ k 6= φ for k < n and τn = φ we have αk 6= 0 for k < n

and αn = 0. i.e., α is nilpotent of order n. Also φ◦α = φ◦ (τ −φ) = 0 = (τ −φ)◦φ = α◦φ.
The converse part (⇐) is trivial.

When d = dimA < ∞, Lemma 3.3.2 shows that any UNCP map arising from a state
on A cannot have proper discrete roots of order higher than d. Indeed the following lemma
shows that the order of such a root must be strictly less than d:

Proposition 3.3.1. Let A be a finite dimensional von Neumann algebra of dimension d.
Let τ be a UNCP map on A. Then the following are equivalent:

(i) τn = φ = ϕ(·)1 for some state ϕ on A and for some n ∈ N.
(ii) τ = φ + α for some nilpotent map α and φ = ϕ(·)1 for some state ϕ with α ◦ φ =

0 = φ ◦ α.
(iii) 0 is an eigenvalue of τ with algebraic multiplicity d− 1.
(iv) Tr τ k = 1 for all k ≥ 1. (Tr denotes the trace of a matrix)

In any of these equivalent cases, τ is a root of order at most d− 1.

Proof. The idea of the proof is to treat φ and τ as linear maps on Cd.

(i) ⇔ (ii) follows from Lemma 3.3.2.

(i) ⇒ (iii). As τn = φ has rank 1, 0 is an eigenvalue of τn of multiplicity d− 1, hence
0 is an eigenvalue of τ of multiplicity d− 1.

(iii) ⇒ (i). Looking at the Jordan normal form of τ it is clear that τn has rank 1 for
some n ∈ N. Since τn is unital, there is a state ϕ on A such that τn(x) = ϕ(x)1 for all
x ∈ A.
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Chapter 3. Roots of Completely Positive Maps

(iii) ⇒ (iv) is obvious as τ(1) = 1.

(iv) ⇒ (iii). Let λ1 = 1, λ2, λ3, ..., λm be the distinct eigenvalues of τ with algebraic
multiplicity a1, a2, ..., am, respectively. From (iv) we have (a1−1)λk1 +a2λ

k
2 +· · ·+amλkm = 0

for all k ≥ 1. Consider the Vandermonde matrix V = (λj−1
i )1≤i,j≤n ∈ Mm . Then as the λi’s

are mutually distinct, we have detV 6= 0. Also note that V ((a1−1)λ1, a2λ2, ..., amλm)′ = 0.
This implies that ((a1 − 1)λ1, a2λ2, ..., amλm) = 0. Hence a1 = 1,m = 2 and λ2 = 0. That
means 0 is an eigenvalue of τ with algebraic multiplicity d− 1.

Now regarding our final statement, let τ be a proper n-th discrete root of φ = ϕ(·)1 on
A. It is clear from (iii) ⇔ (i) that n is the maximal possible size of all Jordan blocks of τ .
Hence n ≤ d− 1.

Remark 3.3.1. It is worth pointing out that a proper n-th discrete root τ for a state ϕ
is “absorbing”, namely ψ ◦ τ k = ϕ, for all k ≥ n and all other states ψ. So in this case τ is
also an asymptotic discrete root. The same is true for proper versus asymptotic continuous
roots, as shall become clear from the following section, cf. Proposition 3.4.2. In general
though, there is no clear relationship between proper and asymptotic roots.

Here are some examples regarding existence and non-existence of roots of UNCP maps
in finite dimensions. We start with a map which has no nontrivial proper discrete roots at
all.

Example 3.3.1. Let φ : M2 → M2 be the UNCP map defined by φ
a b

c d

 =
d 0

0 a

. We

claim that φ has no proper discrete root. Suppose for contradiction there exists a proper
n-th discrete root τ for φ, then τn = φ and τ ◦ φ = τ ◦ τn = τn+1 = τn ◦ τ = φ ◦ τ . Let

τ

1 0
0 0

 =
a11 a12

a21 a22

 , τ

0 1
0 0

 =
b11 b12

b21 b22

 ,
τ

0 0
1 0

 =
c11 c12

c21 c22

 , τ

0 0
0 1

 =
d11 d12

d21 d22

 .
Since τ ◦ φ = φ ◦ τ and τ(1) = 1, we have a12 = a21 = d12 = d21 = 0 and a11 = d22 and
d11 = a22 6= 0. It follows that0 0

0 1

 = τn

1 0
0 0

 =
an11 + ∗ 0

0 ∗


1 0

0 0

 = τn

0 0
0 1

 =
∗ 0

0 dn22 + ∗

 ,
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where all ∗’s are nonnegative terms depending on a11 and a22 only. In particular we see
from these equalities that a11 = d22 = 0 and the only possible solution is

τ

1 0
0 0

 =
0 0

0 1

 , τ

0 0
0 1

 =
1 0

0 0

 ,
i.e., τ = φ. Thus φ has no proper n-th discrete root.

The following map has only a proper square root.

Example 3.3.2. Let φ : M2 → M2 be the idempotent UNCP map defined by φ
a b

c d

 =a 0
0 d

. Then φ has a proper square root τ
a b

c d

 =
d 0

0 a

 but φ has no other proper

discrete roots, which can be proved in the same style as Example 3.3.1.

Finally, a map with proper discrete roots of all orders:

Example 3.3.3. Let φ : M2 → M2 be the UNCP map defined by

φ

a b

c d

 =
a b

2
c
2 d

 .
For every n ∈ N, define

τ1/n : M2 → M2, τ1/n

a b

c d

 =
 a b

2
1
n

c

2
1
n

d

 .
Then τ1/n is a UNCP map and τn1/n = φ, so τ1/n is a proper n-th discrete root of φ.

Example 3.3.4. Let φ : M2 → M2 be the UNCP map defined by

φ

a b

c d

 =
d c

2
b
2 a

 .
Then φ has an n-th root for every odd n ∈ N\{1} but not for even n. This is again proved
in the same way as Example 3.3.1.

So we are led to the following problem:

Problem. Suppose A = Md or B(H) and φ is a UNCP map on A. Then for which n ∈ N
is there a proper n-th discrete root of φ?
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Though we have got some illustrative examples here, a general characterization of
existence and non-existence of proper discrete roots is expected to be complicated and
does involve more details about the map φ, as the following subsection indicates. Similar
facts have been pointed out in [BC16] and it matches the findings in [HL11, Section 4].

3.3.2 Proper discrete roots for states on Md and B(H)

We can say much more by specializing the results of the preceding subsection to the setting
of normal states on B(H) or Md, which we are going to do now.

Theorem 3.3.1. Suppose d < ∞ and ϕ is a state on Md of support dimension r =
dim(pφCd). Then φ = ϕ(·)1 has a proper n-th discrete root on Md if and only if 1 < n ≤
d+ r2 − r − 1.

Proof. We split the proof into two steps, depending on r. First of all, we may choose
and fix a basis (ek)k=1,...,d such that ϕ is in diagonal form, so ϕ = ∑d

k=1 λk〈ek, ·ek〉 and
λ1 ≥ . . . ≥ λr > λr+1 = 0 = . . . = λd.

(Step 1) Suppose r = d, so ϕ is faithful. We have to prove that φ has a proper n-th
discrete root if and only if 1 < n ≤ d2 − 1. First we see from Lemma 3.3.1 that if τ is a
proper n-th discrete root of φ then n ≤ d2 − 1. We write

α = τ − φ,

which is nilpotent of order n with α(1) = 0 = φ ◦ α owing to Lemma 3.3.2.

Let us introduce the scalar product

〈·, ·〉ϕ : (x, y) ∈ Md×Md 7→ ϕ(x∗y).

Then α restricts to a linear nilpotent map from Md	C1 into itself, and this subspace has
dimension d2 − 1. The maximal order of nilpotency is therefore d2 − 1, so n ≤ d2 − 1.

Next we would like show that we can actually attain this maximal order. To this
end, consider an orthonormal basis (1, Y1, . . . Yd2−1) of Md with respect to 〈·, ·〉ϕ such that
Y ∗i = Yi and φ(Yi) = 0, for all i, which can always be achieved. Then define

α(1) = α(Yd2−1) = 0, α(Yi) = εYi+1, i = 1, . . . , d2 − 2,

with suitable ε > 0 still to be determined, and

τ = φ+ α.
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Then it is clear that α is nilpotent of order d2−1 and so τ d2−1 = φ because φ◦α = α◦φ but
τ k 6= φ for k < d2 − 1. Moreover, α is self-adjoint, namely α(x∗) = α(x)∗ for all x ∈ Md,
thus is τ . In order to show that τ is a proper discrete root, it remains to show that τ is
CP. To this end, we compute the Choi matrix Cτ ∈ Md(Md) of τ , cf. [Stø13], and find

Cτ =


τ(e11) . . . τ(e1d)

... ...
τ(ed1) . . . τ(edd)

 =


τ(e∗11) . . . τ(e∗d1)

... ...
τ(e∗1d) . . . τ(e∗dd)

 =


τ(e11)∗ . . . τ(ed1)∗

... ...
τ(e1d)∗ . . . τ(edd)∗

 = C∗τ

so Cτ is self-adjoint for all ε. We notice that Cτ depends continuously on ε and that for
ε = 0, we get 

λ11 0 . . . 0
... ...
0 . . . 0 λd1

 .
This matrix lies in the interior of the convex cone of positive matrices because all λi > 0.
Choosing ε > 0 small enough, we therefore find that Cτ must still be inside this cone. By
Choi’s theorem, cf. [Stø13], this implies that τ is CP, hence it is a proper discrete root of
order d2 − 1.

In order to get a proper discrete root of order n < d2 − 1, all we have to do is change
the map α accordingly, e.g

α(1) = α(Yn) = . . . = α(Yd2−1) = 0, α(Yi) = εYi+1, i = 1, . . . , n− 1,

and proceed in the same way as above.

(Step 2) Next we examine the case r < d and write Mr for pφ Md pφ. Suppose τ is a
root of φ. Then by Lemma 3.3.1(iv),

τ ′ = pφτ(·)pφ : Mr → Mr

defines a proper discrete root of the faithful state ϕ|Mr on Mr, hence its maximal order is
r2 − 1 according to (Step 1) above. As shown in Lemma 3.3.1(iii), we have the following
action in block decomposition:

τ

w x

y z

 =
τ ′(w) ∗
∗ ∗

 ,
in particular

τ r
2−1

w x

y z

 =
ϕ|Mr(w)1 ∗

∗ ∗

 .
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Chapter 3. Roots of Completely Positive Maps

We therefore have to find the minimal number n′ such that

τn
′

1 x

y z

 =
1 0

0 1

 , (3.3.2)

for all x, y, z, and we claim that it is at most d− r.

To this end, let us write

τ =
N∑
i=1

L∗i (·)Li, Li =
Ai Bi

Ci Di

 .
Since

0 = ϕ ◦ τ

0 0
0 1

 =
N∑
i=1

ϕ

C∗i Ci C∗iDi

D∗iCi D∗iDi

 =
N∑
i=1

ϕ|Mr(C∗i Ci)

and ϕ|Mr is faithful, we obtain Ci = 0 for all i. Moreover, it follows from Lemma 3.3.1 that
τ |p′

φ
Md p

′
φ
is nilpotent and CP, and it follows from [BM14, Corollary 2.5] that the order of

nilpotency is at most dim(p′φH) = d− r =: r′. Therefore

0 = τ r
′

0 0
0 1

 =
N∑

i1,...,ir′=1

0 0
0 D∗ir′ · · ·D

∗
i1Di1 · · ·Dir′

 ,
so

Di1 · · ·Dir′
= 0, (3.3.3)

for all i1, . . . , ir′ ∈ {1, . . . , N}. Moreover, unitality of τ ′ implies that

N∑
i=1

A∗iAi = 1. (3.3.4)

We have Li1 · · ·Lik−1Lik =
Ai1 · · ·Aik Mi1,i2,...,ik

0 Di1Di2 · · ·Dik

 for every k ∈ N, where

Mi1,i2,...,ik =Ai1 · · ·Aik−1Bik + Ai1 · · ·Aik−2Bik−1Dik + . . .

+ Ai1Bi2Di3 · · ·Dik +Bi1Di2 · · ·Dik .

Now it follows from (3.3.3) and (3.3.4) that

τ r
′

1 x

y z

 =
N∑

i1,...,ir′=1

A∗ir′ · · ·A∗i1Ai1 · · ·Air′ A∗ir′ · · ·A
∗
i1Mi1,i2,...,ir′

M∗
i1,i2,...,ir′

Ai1 · · ·Air′ M∗
i1,i2,...,ir′

Mi1,i2,...,ir′

 .
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Furthermore,

N∑
i0,i1,...,ir′=1

M∗
i0,i1,i2,...,ir′

Mi0,i1,i2,...,ir′ =
N∑

i0,i1,...,ir′=1
M∗

i1,i2,...,ir′
A∗i0Ai0Mi1,i2,...,ir′

=
N∑

i1,...,ir′=1
M∗

i1,i2,...,ir′
Mi1,i2,...,ir′ .

Similarly

N∑
i0,i1,...,ir′=1

M∗
i0,i1,i2,...,ir′

Ai0Ai1 · · ·Air′ =
N∑

i0,i1,...,ir′=1
M∗

i1,i2,...,ir′
A∗i0Ai0Ai1 · · ·Air′

=
N∑

i1,...,ir′=1
M∗

i1,i2,...,ir′
Ai1 · · ·Air′ .

By induction we find that

τ r
′+k

1 x

y z

 = τ r
′

1 x

y z

 =
1 0

0 1

 , ∀k ∈ N.

and together with (3.3.2) we see that n′ can be at most r′, so the order of τ on Md can be
at most r2 − 1 + r′ = r2 − 1 + d− r.

It remains to show that all orders n = 2, . . . , r2 − 1 + d − r can be attained. First of
all, following the ideas in (Step 1) and given a root of order n = 1, . . . , r2− 1 on Mr, there
is l = 1, . . . , r and w ∈ Mr such that

( N∑
i1,...,in−2=1

A∗in−2 · · ·A
∗
i1wAi1 · · ·Ain−2

)
ll
6=
( N∑
i1,...,in−1=1

A∗in−1 · · ·A
∗
i1wAi1 · · ·Ain−1

)
ll
.

Then setting all Di = 0 and Bi = el,i for i = 1, . . . r′, we can obtain roots of orders
n+ 1 = 2, . . . , r2 on Md. In order to get order n = r2 +n′, we keep Bi = el,i for i = 1, . . . r′

and choose for D1 any contractive nilpotent matrix of order n′ + 1 and all other Di = 0.
This way we achieve

N∑
i1,...,in′+1=1

M∗
i1,i2,...,in′+1

Mi1,i2,...,in′+1 =
N∑

i1,...,in′=1
M∗

i1,i2,...,in′
Mi1,i2,...,in′

6=
N∑

i1,...,in′−1=1
M∗

i1,i2,...,in′−1
Mi1,i2,...,in′−1 ,

so in total we have a root τ of order r2 + n′, completing the proof of the theorem.
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We can adapt the construction in the preceding proof to obtain the corresponding
statement in B(H) as follows:

Theorem 3.3.2. Suppose H is infinite-dimensional separable and ϕ is a normal state on
B(H). Then φ = ϕ(·)1 has a proper n-th discrete root on B(H), for every n ∈ N.

Proof. Let r = dim(pφH) and r′ = dim(p′φH). We distinguish two cases.

Case r′ = ∞. Here we choose α as a contractive nilpotent CP map of order n on
B(p′φH). We define

τ

w x

y z

 =
ϕ|B(pφH)(w)1 0

0 α(z) + ϕ|B(pφH)(w)(1− α(1))


Then τ is a proper n-th discrete root.

Case r′ <∞. Then r =∞ and we may assume as in the proof of Theorem 3.3.1 that
the density matrix is in diagonal form with respect to a fixed orthonormal basis (ei) of H
and with entries λ1 ≥ λ2 ≥ . . .. Consider the projection pn onto span{e1, . . . , en}. Then

ϕn = 1
ϕ(pn)ϕ|B(pnH)

defines a faithful state on B(pnH). We may then proceed as in (Step 1) of the proof
of Theorem 3.3.1 to find a nilpotent map αn : B(pnH) → B(pnH) of order n such that
αn(pn) = 0 = ϕn ◦ αn. We rescale αn by ϕ(pn) and extend it trivially to B(H)	 B(pnH)
and denote the resulting normal nilpotent map by α. Then

τ = φ+ α

is a proper n-th discrete root of φ.

3.3.3 Classical probability theory – proper discrete roots of states on
finite-dimensional commutative von Neumann algebras

We would like to briefly specialize our general findings to the case of finite classical probabil-
ity spaces because also here we get some interesting results. Note that a map τ : Cd → Cd

is UCP if and only if τ is a stochastic matrix1 and a map ϕ : Cd → C is a state if and
1Look at Subsection 2.1.1 for the details about stochastic matrices.
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only if there is a probability vector p = (p1, p2, ..., pd)′ ∈ Cd such that ϕ(x) = 〈p, x〉, for all
x ∈ Cd.

In this subsection, we will use the following special notation. For x ∈ Cn, y ∈ Cm

we define |x〉〈y| = xy∗ ∈ Mn,m (See the notations defined in Subsection 2.1.3). For any
x = (x1, ..., xd)′ ∈ Cd and m < d, we write x(m) = (x1, ..., xm)′ ∈ Cm. We write 1 for the
unit matrix but also for the unit vector (1, . . . , 1)′ ∈ Cd. Sometimes we will add subscripts
or superscripts to 0 and 1 in order to indicate the space on which it is acting but we try
to avoid this when it is obvious from the context.

As according to Lemma 3.3.1, a state on Cd can have proper discrete roots only up to
order d− 1, the states on C and C2 will not have any proper discrete roots. The following
example is a construction of proper n-th discrete roots of states on Cd, for all 2 ≤ n ≤ d−1
and d > 2.

Example 3.3.5. Let d > 2 and ϕ be a state on Cd given by a probability vector p =
(p1, p2, ..., pd)′. Let φ = ϕ(·)1. Then φ is the stochastic matrix φ = |1〉〈p| .

First let us consider the case when ϕ is faithful, i.e., p = (p1, p2, ..., pd)′ with pi > 0, for
all i. Let 2 ≤ n ≤ d− 1. Note that φ = |1〉〈p| is diagonalizable and of rank one, so we can

write φ = S

1 0
0 0

S−1, with a suitable invertible matrix S. Consider a nilpotent matrix

α0 ∈ Md−1 of order n and let α = εS

0 0
0 α0

S−1. If ε > 0 is small enough then all entries

of φ+ α are non-negative because ϕ was assumed to be faithful. By construction we have
got φ ◦ α = 0 = α ◦ φ and hence by Lemma 3.3.2, τ = φ+ α is a proper n-th discrete root
of φ.

Now let us assume that ϕ is not faithful. Without loss of generality we can assume that
p = (p1, p2, ..., pr, 0, ..., 0)′, pi > 0 for all i = 1, 2, ..., r < d. Let us consider two separate
cases, namely r ≤ 2 and 2 < r < d, because our construction of n-th roots work differently
in these two cases.

Case r ≤ 2. Given r ≤ n ≤ d− 1, let

τ =
 ∣∣∣1(r)

〉〈
p(r)

∣∣∣ 0∣∣∣y(d− n)
〉〈
e

(r)
1

∣∣∣ Sn



where y(d − n) =
1(d−n)

0(n−r)

 ∈ Cd−r, Sn ∈ Md−r is the operator defined by Sn(e(d−r)
i ) = 0
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for i = d− r, 1, 2, , ..., d− n− 1 and Sn(e(d−r)
i ) = e

(d−r)
i+1 for i = d− n, d− n+ 1, ..., d− r− 1

and e(d−r)
i is the i-th canonical basis vector in Cd−r. Then τ is a proper n-th discrete root

of φ. (Note that when n = r, we have y(d− n) = 1(d−r) and Sn = 0.)

Case r > 2. Given 2 ≤ n ≤ d− 1, decompose n = n1 +n2, with suitable 1 ≤ n1 ≤ r− 1
and 1 ≤ n2 ≤ d − r. Let τ[r,n1] be an n1-th root of

∣∣∣1(r)
〉〈
p(r)

∣∣∣ as in the case of faithful ϕ
above. Then we define

τ =
 τ[r,n1] 0∣∣∣y(d− n2)

〉〈
e

(r)
j

∣∣∣ Sn2


where y(d − n2) and Sn2 are as in the previous case and j is chosen as follows: if n1 ≥ 2
then choose j such that the j-th row of τn1−1

[r,n1] is different from p(r)′ , while for n1 = 1 we
choose j = 1. Then τ is a proper n-th discrete root of φ.

We summarize the result of the preceding example as follows:

Theorem 3.3.3. A state ϕ on Cd has a proper n-th discrete root if and only if 2 ≤ n ≤
d − 1. Or in more probabilistic terms: given a probability distribution p on a probability
space with d elements, there is a stochastic map S that leaves p invariant and such that
Sn = |1〉〈p| and Sk 6= |1〉〈p| for k < n if and only if 2 ≤ n ≤ d− 1.

Example 3.3.6. Let τ = 1
24


5 5 14
11 11 2
8 8 8

 . Then τ is a stochastic matrix such that

τ k =


1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 for all k ≥ 2.

In Theorem 3.3.3, ϕ may be regarded as a stochastic matrix of rank 1. For stochastic
matrices of rank > 1, we have no complete and simple characterization though some partial
characterizations with necessary or sufficient conditions are known, e.g. in [HL11]. The
case of rank d is closely related to Elfving’s embedding problem [Dan10,G37].

3.4 Proper continuous roots

We continue to use the notation from Section 3.3.

Definition 3.4.1. Given a von Neumann algebra A and a UNCP map φ : A → A, a
proper continuous root of φ is a strongly-continuous one-parameter semigroup (τt)t≥0 of
UNCP maps on A such that τ1 = φ and τt 6= φ, for all 0 < t < 1.
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In this definition one might also consider seemingly more general semigroups with
τt0 = φ for some t0 > 0. However, since we can always reduce the situation to the case
t0 = 1 by rescaling, we decided to keep things simple and consider only the case t0 = 1. For
more information on strongly continuous one-parameter semigroups in general, we refer the
reader to [Arv03,Dav80].

Proposition 3.4.1. Let A be a finite-dimensional von Neumann algebra and φ : A → A
a UNCP map. Then the following are equivalent:

(i) φ has a proper continuous root;
(ii) φ is bijective and has a proper n-th discrete root, for every n ∈ N \ {1}.

Proof. (i) ⇒ (ii). If (τt)t≥0 is a proper continuous root, then it must be a uniformly
continuous UNCP semigroup, hence of the form τt = etL with some (bounded) conditionally
completely positive generator L, cf. [EK98, Section 4.5], so e−L is an inverse of φ (in the
sense of linear maps on A) and τ1/n is a proper n-th discrete root of φ, for every n ∈ N.

(ii) ⇒ (i). If φ has a proper n-th discrete root for every n ∈ N (this is called infinitely
divisible in [Den88]) then according to [Den88, Corollary 4] there are a conditional expec-
tation E : A → A and a conditionally completely positive generator L such that φ = eLE.
Since φ is invertible, so is E and hence E must be the identity map because A is finite-
dimensional. Thus we may choose τt = etL, for all t ≥ 0, to obtain a proper continuous
root of φ.

Remark 3.4.1. In the classical case, namely if A is commutative, φ is automatically
bijective if it has a proper n-th discrete root for every n ∈ N. This is one of the character-
izations of Markovianity in the context of Elfving’s embedding problem due to Kingman
[Kin62, Proposition 7]. On the other hand, in the non-commutative case, bijectivity is not
automatic. E.g. consider

φ : M3 → M3, φ(x) =


x11 0 0
0 x22 x23

0 x32 x33

 .
This has proper n-th roots for all n but is clearly not bijective. Similarly, we see that the
map

φ : M2 → M2, φ

a b

c d

 =
 d c/2
b/2 a


from Example 3.3.4 is bijective but has proper n-th roots only for odd n ∈ N \ {1}, hence
it has no proper continuous root.
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The following example provides a bijective UNCP map in finite dimensions where the
conditions in the proposition are verified. In fact, it is a simple “interpolation" of the
construction in Example 3.3.3:

Example 3.4.1. Let φ : M2 → M2 be the UNCP map defined by

φ

a b

c d

 =
a b

2
c
2 d

 .
For every t ∈ [0,∞), define

τt : M2 → M2, τt

a b

c d

 =
 a b

2t
c
2t d

 .
Then (τt)t≥0 is a proper continuous root of φ, namely τ1 = φ and the semigroup property
and continuity are a straight-forward verification.

Embedding this example into a higher (possibly infinite) dimensional space, we can get
continuous roots for certain UNCP maps in higher dimensions as well. A more complete
criterion as to when such continuous roots exist seems out of reach. Notice that this might
be even more difficult than Problem 3.3.1.

Yet if φ arises from a state, we can say a little bit more:

Proposition 3.4.2. Let A be a von Neumann algebra, ϕ a state on A and φ = ϕ(·)1. If
(τt)t≥0 is a proper continuous root of φ then

(i) ϕ ◦ τt = ϕ, for every t ≥ 0, i.e., ϕ is τ -invariant;
(ii) ψ ◦ τt = φ, for every t ≥ 1 and every UNCP map ψ, i.e., all UNCP maps converge

to φ in finite time: τt = φ, for all t ≥ 1.

Proof. (i) Since φ = τ1, for all t ≥ 1, we get from the linearity and the semigroup properties
of τ :

1ϕ ◦ τt(x) = τ1 ◦ τt(x) = τt+1(x) = τt ◦ τ1(x) = τt(ϕ(x)1) = ϕ(x)τt(1) = ϕ(x)1, x ∈ A.

(ii) For all t ≥ 1 and x ∈ A, we have, using the unitality and the semigroup property
of τ :

ψ ◦ τt(x) = ψ ◦ τt−1(τ1(x)) = ψ ◦ τt−1(ϕ(x)1) = ϕ(x)ψ ◦ τt−1(1) = ϕ(x)ψ(1) = φ(x).
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The property that (τt)t≥0 stabilizes after time t = 1 is very particular to states, cf.
Example 3.4.1 for a counter-example. In the special case where φ arises from a state and
moreover A = B(H), we can provide a partial classification of proper continuous roots:

Theorem 3.4.1. Let A = B(H) with H infinite-dimensional, ϕ a normal state on A and
φ = ϕ(·)1.

(i) If dim(pφH) = 1, i.e., ϕ is a pure state, then φ has a proper continuous root.
(ii) If 1 < dim(pφH) < ∞, i.e., ϕ is a finite convex combination of (at least two) pure

states, then φ has no proper continuous root.
(iii) If dim(pφH) = ∞, i.e., ϕ is an infinite convex combination of pure states, and

moreover 0 < dim(p′φH) <∞ then φ has no proper continuous root.

Proof. (i). This is taken from [Bha12, Ex.1.3]. Since ϕ is pure, we can write ϕ = 〈ξ, ·ξ〉,
where ξ is a suitable vector in H. We decompose H = Cξ⊕L2[0, 1], so pφ is the projection
onto the first, p′φ the projection onto the second component. Let (St)t≥0 be the standard
nilpotent right-shift semigroup on L2[0, 1] defined as follows: for f ∈ L2[0, 1], t ∈ [0,∞)
and s ∈ [0, 1], set

St(f)(s) =

 f(s− t) : s− t ∈ [0, 1]
0 : otherwise.

(3.4.1)

Then with respect to the decomposition H = Cξ ⊕ L2[0, 1], define

τt : B(H)→ B(H),
x11 x12

x21 x22

 7→
 x11 x12S

∗
t

Stx21 Stx22S
∗
t + x11(1− StS∗t )

 .
This can be written as

τt

x11 x12

x21 x22

 = τt(x) = (1⊕ St)x(1⊕ St)∗ + ϕ(x)
(
1− (1⊕ St)(1⊕ St)∗

)
,

and it is straight-forward to verify that (τt)t≥0 is a strongly continuous semigroup, every
τt is UNCP and τ1(x) = ϕ(x)1 = φ(x). Thus (τt)t≥0 forms a proper continuous root of φ.

(ii) Suppose a proper continuous root (τt)t≥0 of φ exists. As in Lemma 3.3.1(4) we see
that (pφτt(·)pφ)t≥0 restricts to a continuous root of pφφ(·)pφ on pφApφ. However, we know
from Proposition 3.4.1 that such a continuous root cannot exist because pφφ(·)pφ is not
bijective on pφApφ, so we reach a contradiction. Thus φ cannot have a proper continuous
root.
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Chapter 3. Roots of Completely Positive Maps

(iii) Suppose for contradiction a proper continuous root (τt)t≥0 of φ exists. Since
τt(p′φ) ≤ p′φ according to Lemma 3.3.1(i), we see that (τt|p′

φ
Ap′

φ
)t≥0 forms an NCP semigroup,

and according to Lemma 3.3.1(ii), it is nilpotent with τ1|p′
φ
Ap′

φ
= 0. If 0 < dim(p′φ) <∞, a

CP semigroup must be of the form (etL)t≥0 with bounded conditionally CP map L. Then
e−L is the inverse of eL (as a linear map), so we get 0 = τ1|p′

φ
Ap′

φ
= eL 6= 0, which is a

contradiction, so φ cannot have a proper continuous root.

Problem. In the setting of Theorem 3.4.1, does φ have a proper continuous root in the
following two missing cases

(iv) dim pφ =∞ with dim p′φ = 0;
(v) dim pφ =∞ with dim p′φ =∞?

We wish to point out that the two cases are equivalent, so it suffices to study (iv).

Remark 3.4.2. In [Bha12], the roots in case (i) of Theorem 3.4.1 have been completely
classified in terms of E0-semigroups in standard form, cf. [Arv03] and [Pow99, Definition
2.12].

Remark 3.4.3. A similar construction can be used in order to get a proper continuous
root (Tt)t≥0 of a pure state on an uncountable classical probability space C([0, 1]), namely
consider

Tt : C([0, 1])→ C([0, 1]), Ttf(s) =

 f(s− t) : s− t ≥ 0
f(0) : otherwise.

A pure state on C([0, 1]) corresponds to an evaluation functional evx, with some x ∈ [0, 1].
Then evx ◦Tt equals a pure state at all times t ∈ [0, 1], in particular evx ◦T1 = ev0. In
contrast, in the non-commutative case of A = B(H) as in Theorem 3.4.1(i) suppose ψ 6= ϕ

is another pure state. Then ψ ◦ τt equals the pure states ψ at time t = 0 and ϕ at t = 1
but in between it is a convex combination of two pure states depending on t. Moreover,
for countable classical states space, we expect that no proper continuous root exists at
all. This indicates a stark difference between the commutative and the non-commutative
setting.
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Structure of Block Quantum Dynamical Semigroups

and their Product Systems

4.1 Introduction

It is well-known that a block matrix
 A B

B∗ D

 of operators on a direct sum of Hilbert

spaces (H ⊕ K) is positive if and only if A,D are positive and there exists a contraction
K : K → H such that B = A

1
2KD

1
2 . This says that the positivity of a block matrix is

determined up to a contraction by the positive diagonals. We want to look at the structure
of block completely positive (CP) maps, that is, completely positive maps which send 2×2
block operators as above to 2 × 2 block operators. Such maps have already appeared
in many different contexts. For example, Paulsen uses the block CP maps in [Pau84] to
prove that every completely polynomially bounded operator is similar to a contraction.
The structure of completely bounded (CB) maps are understood using the 2× 2 block CP
maps (See [Pau84,PS85,Sue85],[Pau02, Chapter 8]). The usual way to study the structure
of CP maps into B(H) is via Stinespring dilation theorem [Sti55] (See Theorem 2.1.8 ). If

Φ =
φ1 ψ

ψ∗ φ2

 : M2(A)→M2(B(H)) is a block CP map, then the diagonals φi, i = 1, 2 are

also CP maps on A. Also the Stinespring representation of Φ gives us natural Stinespring
representations for φi by the appropriate compressions. In [PS85, Corollary 2.7], Paulsen

and Suen proved that: if Φ =
 φ ψ

ψ∗ φ

 : M2(A) → M2(B(H)) is CP and if φ has the

minimal Stinespring representation (K, π, V ) then there exists a contraction T ∈ π(A)′

such that ψ(·) = V ∗π(·)TV. While studying units of E0-semigroups of B(H) Powers was
led into considering block CP semigroups (See [Pow03] and [BLS08], [Ske10]). In [BM10],
Bhat and Mukherjee proved a structure theorem for block quantum Markov semigroups on
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B(H⊕K). These results show the importance of studying block CP maps. In this chapter,
our interest is to study the structure of one-parameter semigroups of block CP maps on
general von Neumann algebras.

In [Bha96] Bhat proved that any QMS on B(H) admits a unique E0-dilation, and in
[Bha99], extended the result to QMS to unital C∗-subalgebras of B(H). Later in [BS00]
Bhat and Skeide constructed the E0-dilation for arbitrary quantum Markov semigroups
(QMS) on abstract unital C∗-algebras, using the technology of Hilbert C∗-modules. Here
one sees for the first time subproduct systems and product systems of Hilbert C∗-modules.
Muhly and Solel [MS07] took a dual approach to achieve this, where they have called these
Hilbert C∗-modules as C∗-correspondences. Subproduct systems and inclusion systems
are synonyms. The word ‘subproduct systems’ seems to be better established now. Since
we are mostly following the ideas and notations of [BM10], we will continue to call these
objects as inclusion systems.

Here is an outline for this chapter. We prove in Theorem 4.2.1 that if A is a unital
C∗-algebra, B is a von Neumann algebra and Φ : M2(A)→M2(B) is a block CP map then
the CB map in the off diagonal corner can be determined by the GNS-representations of
the diagonal CP maps up to an adjointable bilinear contraction. Also we give an example
to indicate that the von Neumann algebra B in Theorem 4.2.1 can not be replaced by
arbitrary C∗-algebras. We show in Theorem 4.3.1, that if B is a von Neumann algebra
and if we have a block quantum dynamical semigroup on M2(B) then the CB semigroup
sitting in the off-diagonal corner can be described by a unique morphism between the
inclusion systems associated to the CP semigroups in the diagonals. We prove in Theorem
4.4.1 that if B is a von Neumann algebra, Then any morphism between inclusion systems
of von Neumann B-B-modules can be lifted as a morphism between the product systems
generated by these inclusion systems. We notice in Theorem 4.3.2 that the E0-dilation of a
block QMS constructed by Bhat and Skeide in [BS00] is again a semigroup of block maps.

4.2 Block CP maps

Let A be a unital C∗-algebra. Let p ∈ A be a projection. Set p′ = 1 − p. Then for every
x ∈ A we have the following block decomposition:

x =
pxp pxp′

p′xp p′xp′

 ∈
pAp pAp′

p′Ap p′Ap′

 . (4.2.1)

Definition 4.2.1. Let A and B be unital C∗-algebras. Let p ∈ A and q ∈ B be projections.
We say that a map Φ : A → B is a block map (with respect to p and q) if Φ respects the
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4.2. Block CP maps

above block decomposition. i.e., for all x ∈ A we have

Φ(x) =
Φ(pxp) Φ(pxp′)

Φ(p′xp) Φ(p′xp′)

 ∈
qBq qBq′

q′Bq q′Bq′

 . (4.2.2)

If Φ : A → B is a block map, we get the following four maps: φ11 : pAp → qBq,
φ12 : pAp′ → qBq′, φ21 : p′Ap→ q′Bq, and φ22 : p′Ap′ → q′Bq′. So we write Φ as

Φ =
φ11 φ12

φ21 φ22

 .
Lemma 4.2.1. Let A and B be unital C∗-algebras. For i = 1, 2, let φi : A → B be
a CP map with a GNS-representation (Ei, xi). Suppose T : E2 → E1 is an adjointable
bilinear contraction and ψ : A → B is given by ψ(a) = 〈x1, Tax2〉. Then the block map

Φ =
φ1 ψ

ψ∗ φ2

 : M2(A)→M2(B) is CP.

Proof. Set y = Tx2 ∈ E1. Then

Φ
a b

c d

 =
〈x1, ax1〉 〈x1, by〉
〈y, cx1〉 〈y, dy〉

+
0 0

0 〈x2, d(idE2 −T ∗T )x2〉

 .
Clearly

a b

c d

 7→
〈x1, ax1〉 〈x1, by〉
〈y, cx1〉 〈y, dy〉

 is CP. Since T is an adjointable bilinear contrac-

tion, (idE2 −T ∗T ) is bilinear and positive. Hence
a b

c d

 7→
0 0

0 〈x2, d(idE2 −T ∗T )x2〉


is CP. Therefore Φ is CP.

Let F be a Hilbert M2(B)-module. Define a right B-module action and a B-valued
semi-inner product 〈·, ·〉Σ on F by

xb := x

b 0
0 b

 and 〈x, y〉Σ :=
2∑

i,j=1
〈x, y〉i,j for x, y ∈ F, b ∈ B.

where 〈x, y〉i,j denotes the (i, j)th entry of 〈x, y〉 ∈M2(B).

Let F (B) denote the quotient space F/N where N = {x : 〈x, x〉Σ = 0}. (We denote the
coset x + N of x ∈ F by [x]F or just by [x]). Then F (B) is a pre-Hilbert B-module with
right B-action and inner product given by

[x]b = [x
b 0

0 b

] and 〈[x], [y]〉 = 〈x, y〉Σ =
2∑

i,j=1
〈x, y〉i,j for x, y ∈ F, b ∈ B. (4.2.3)
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Chapter 4. Structure of Block Quantum Dynamical Semigroups and their Product Systems

Proposition 4.2.1. If F is a Hilbert (von Neumann)M2(B)-module, then F (B) is a Hilbert
(von Neumann) B-module.

Proof. Let F be a Hilbert M2(B)-module. For each x ∈ F, we have [x] = [x
1/2 1/2

1/2 1/2

]

and

‖[x]‖ =

∥∥∥∥∥∥
2∑

i,j=1
〈x, x〉i,j

∥∥∥∥∥∥
1
2

=

∥∥∥∥∥∥x
1 1

1 1

∥∥∥∥∥∥. (4.2.4)

Consider a Cauchy sequence ([xn])n≥1 in F (B). Set yn = xn

1 1
1 1

 ∈ F. Then by (4.2.4),

(yn)n≥1 is a Cauchy sequence in F. Let y = limn→∞ yn in F. Then y = y

1/2 1/2
1/2 1/2

 . Take
x = y

2 . Then, again by using (4.2.4), we see that ([xn])n≥1 converges to [x] in F (B). Thus
F (B) is complete.

Now assume that F is von Neumann M2(B)-module. Let B ⊆ B(G). So F (B) ⊆
B(G, F (B) � G) and F ⊆ B(G2, F � G2) where G2 = G ⊕ G. We have for x ∈ F, g1, g2 ∈ G,

‖[x]� (g1 + g2)‖ =
〈
g1 + g2,

2∑
i,j=1
〈x, x〉i,j(g1 + g2)

〉 1
2

=

∥∥∥∥∥∥x
1 1

1 1

�
g1

g2

∥∥∥∥∥∥. (4.2.5)

Using (4.2.5), we can prove as in the above case, that F (B) is SOT closed in B(G, F (B)�G)
and hence F (B) is a von Neumann B-module.

Let F be a Hilbert M2(B)-module. Suppose F has a nondegenerate left action of A,
then (4.2.4) implies that the natural left action of A on F (B) given by

a[x] := [ax] for a ∈ A, x ∈ F (4.2.6)

is a well defined nondegenerate action.

Proposition 4.2.2. If F is a Hilbert (von Neumann) A-M2(B)-module, then F (B) is a
Hilbert (von Neumann) A-B-module with the left action defined in (4.2.6).

Proof. If F is a Hilbert A-M2(B)-module, then clearly F (B) is a Hilbert A-B-module. We
shall prove that if F is a von Neumann A-M2(B)-module, then F (B) is a von Neumann
A-B-module. Let B ⊆ B(G). So F (B) ⊆ B(G, F (B) � G) and F ⊆ B(G2, F � G2) where
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G2 = G ⊕ G. We must show that the Stinespring representation ρ : A → B(F (B) � G) of A
given by ρ(a)([x] � g) = a[x] � g is normal. For any x ∈ F, g ∈ G, a computation similar
to (4.2.5) implies that

‖[x]� g‖ =

∥∥∥∥∥∥x�
g
g

∥∥∥∥∥∥. (4.2.7)

As the Stinespring representation ρ̂ : A → B(F � G2) given by ρ̃(a)(x � g) = ax � g
for a ∈ A, g ∈ G2 is normal, using (4.2.7), we can see that ρ is normal.

Remark 4.2.1. Suppose F is a Hilbert (von Neumann) M2(A)-M2(B)-module, then we
can consider F as a Hilbert (von Neumann) A-M2(B)-module by considering the left action
of A given by

ax :=
a 0

0 a

x for x ∈ F, a ∈ A. (4.2.8)

Therefore, Proposition 4.2.2 shows that, if F is a Hilbert (von Neumann) M2(A)-M2(B)-
module, then F (B) is a Hilbert (von Neumann) A-B-module.

Remark 4.2.2. Let E ⊆ F be a M2(B)-submodule of a M2(B)-module F. Then

E(B) ' {[x]F : x ∈ E} ⊆ F (B).

Theorem 4.2.1. Let A be a unital C∗-algebra and B be a von Neumann algebra on a
Hilbert space G. For i = 1, 2, let φi : A → B be a CP map with a GNS-representation

(Fi, yi). Suppose Φ =
φ1 ψ

ψ∗ φ2

 : M2(A) → M2(B) is a block CP map1 for some CB

map ψ : A → B then, there is an adjointable bilinear contraction T : F2 → F1 such that
ψ(a) = 〈y1, Tay2〉 for all a ∈ A.

Proof. Let (E, x) be the (minimal) GNS-construction for Φ. So, E is a von Neumann
M2(B)-module and Hilbert M2(A)-M2(B)-module. Let Eij := 1 ⊗ Eij in A ⊗ M2, or
B ⊗ M2, depending upon the context, where {Eij}’s are the matrix units in M2. Set
Êi := EiiE ⊆ E, i = 1, 2. Then Êi’s are SOT closed (as Eii’s are projections) M2(B)-
submodules of E such that E = Ê1 ⊕ Ê2.

Let xi := EiixEii ∈ Êi, i = 1, 2. Clearly 〈x1, x2〉 = 0. Also for i, j = 1, 2 and i 6= j,

‖xi − Eiix‖2 = ‖EiixEjj‖2 = ‖〈EiixEjj,EiixEjj〉‖ = ‖EjjΦ(Eii)Ejj‖ = 0,
1By block CP map, we mean a CP map which acts block-wise.
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and
‖xi − xEii‖2 = ‖EjjxEii‖2 = ‖〈EjjxEii,EjjxEii〉‖ = ‖EiiΦ(Ejj)Eii‖ = 0.

Thus

xi = Eiix = xEii, i = 1, 2 and hence x = (E11 + E22)x = x1 + x2. (4.2.9)

As Φ is a block map, for A ∈M2(A), using (4.2.9) we have

Φ(A) = 〈x,Ax〉 =
2∑

i,j=1
〈xi, Axj〉 =

〈x1, Ax1〉11 〈x1, Ax2〉12

〈x2, Ax1〉21 〈x2, Ax2〉22

 ,
where 〈a, b〉ij denotes the (i, j)th entry of 〈a, b〉 ∈M2(B).

Consider the Hilbert A-B-module and von Neumann B-module E(B) (as described in
Remark2 4.2.1), and consider the von Neumann B-modules Ê(B)

i , i = 1, 2. Observe that Êi
has a non-degenerate left action of A given by

ax :=
a 0

0 a

x for a ∈ A, x ∈ Êi. (4.2.10)

Therefore, Proposition 4.2.2 shows that Ê(B)
i is also a Hilbert A-B-module for i = 1, 2.

We have E(B) ' Ê
(B)
1 ⊕ Ê(B)

2 (via [y]E 7→ [E11y]Ê1
+ [E22y]Ê2

for y ∈ E). For a ∈ B and
i = 1, 2 see that,

〈[xi], a[xi]〉 =
2∑

r,s=1

〈
Eiix,

a 0
0 a

Eiix
〉
r,s

=
2∑

r,s=1
Φ
Eii

a 0
0 a

Eii


r,s

= φi(a).

This shows that (Ê(B)
i , [xi]) is a GNS-representation (not necessarily minimal) for φi, i =

1, 2. Define U : Ê(B)
2 → Ê

(B)
1 by U [w] = [E12w] for all w ∈ Ê2. Then, for all z, w ∈ Ê2,

〈U [z], U [w]〉 =
2∑

i,j=1
〈E12z,E12w〉i,j =

2∑
i,j=1
〈z,E21E12w〉i,j =

2∑
i,j=1
〈z, w〉i,j = 〈[z], [w]〉,

also for y ∈ Ê1 we have E21y ∈ Ê2 such that

U [E21y] = [E12E21y] = [E11y] = [y].

Therefore U is a unitary from the von Neumann B-module Ê(B)
2 to the von Neumann

B-module Ê(B)
1 . Now for a ∈ A, w ∈ Ê2,

Ua[w] = U [
a 0

0 a

w] = [E12

a 0
0 a

w] = [
a 0

0 a

E12w] = a[E12w] = aU [w].

2See also Propositions 4.2.1,4.2.2.
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Thus U : Ê(B)
2 → Ê

(B)
1 is a bilinear (adjointable) unitary between the Hilbert A-B modules.

Let F̃i := spansAyiB ⊆ Fi and Ẽi = spansA[xi]B ⊆ Ê
(B)
1 , so that (F̃i, yi) and (Ẽi, [xi])

are minimal GNS-representations for φi, i = 1, 2. Therefore, Ṽi : F̃i → Ẽi given by

Ṽi(ayib) = a[xi]b, a ∈ A, b ∈ B,

extends to a bilinear (adjointable) unitary. Let Vi : Fi → Ê
(B)
i be the extension of Ṽi,

by defining it to be zero on the complement F̃i
⊥ of F̃i. Note that Vi is a bilinear partial

isometry with initial space F̃i and final space Ẽi for i = 1, 2. Take T := V ∗1 UV2.

Now consider, for a ∈ A,

〈y1, Tay2〉 = 〈y1, V
∗

1 UV2ay2〉 = 〈V1y1, UV2ay2〉 = 〈Ṽ1y1, UṼ2ay2〉

= 〈[x1], Ua[x2]〉 =
2∑

i,j=1

〈
E11x,E12

a 0
0 a

E22x

〉
i,j

=
2∑

i,j=1

〈
x,

0 a

0 0

x〉
i,j

=
2∑

i,j=1
Φ
0 a

0 0


i,j

=
2∑

i,j=1

0 ψ(a)
0 0


i,j

= ψ(a).

This completes the proof.

Remark 4.2.3 (Uniqueness). With the same hypothesis and notations of Theorem 4.2.1 let
T, T ′ : F2 → F1 be any two adjointable bilinear contractions such that ψ(a) = 〈y1, Tay2〉 =
〈y1, T

′ay2〉 for all a ∈ A, then

〈a1y1b1, T (a2y2b2)〉 = b∗1〈y1, T ((a∗1a2)y2)〉b2

= b∗1〈y1, T
′((a∗1a2)y2)〉b2

= 〈a1y1b1, T
′(a2y2b2)〉

for a1, a2 ∈ A, b1, b2 ∈ B and hence PF̃1
TPF̃2

= PF̃1
T ′PF̃2

where PF̃i : Fi → Fi is the
projection onto F̃i. This in particular shows that the contraction T in Theorem 4.2.1 is
unique if Fi’s are minimal GNS-modules.

Corollary 4.2.1. Let A be a unital C∗-algebra. For i = 1, 2, let ϕi : A → B(H) be a
completely positive map with the minimal Stinespring representation (Ki, πi, Vi). Suppose

Φ : M2(A) → M2(B(H)), defined by Φ =
φ1 ψ

ψ∗ φ2

 is block CP for some CB map ψ :

A → B(H), then there is a unique contraction T : K2 → K1 with π1(a)T = Tπ2(a) for all
a ∈ A such that ψ(a) = V ∗1 Tπ2(a)V2 for all a ∈ A.
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Proof. Given that (Ki, πi, Vi) is a minimal Stinespring representation for φi, i = 1, 2. Let
(Ei, Vi) be the minimal GNS-representation for φi, i = 1, 2 as explained in Remark 2.2.4,
where Ei = spansπi(A)ViB(H) ⊆ B(H,Ki). By Theorem 4.2.1, there exists an adjointable
bilinear contraction T̂ : E2 → E1 such that

ψ(a) = 〈V1, T̂ π2(a)V2〉 = V ∗1 T̂ π2(a)V2 for all a ∈ A. (4.2.11)

As (Ki, πi, Vi) is the minimal Stinespring representation for φ, we have Ki = πi(A)ViH.
Define T : K2 → K1 by

T (π2(a)V2h) = (T̂ (π2(a)V2))h for all a ∈ A, h ∈ H. (4.2.12)

Let h be a non-zero vector in H. As T̂ is right B(H)-linear and contraction, we have for
a ∈ A, h ∈ H, (In the following, we use the bra-ket notations, defined in Subsection 2.1.3)∥∥∥∣∣∣(T̂ (π2(a)V2))h

〉〈
h
∣∣∣∥∥∥ =

∥∥∥T̂ (π2(a)V2) |h〉〈h|
∥∥∥ =

∥∥∥T̂ (π2(a)V2 |h〉〈h|)
∥∥∥

≤ ‖π2(a)V2 |h〉〈h|‖ = ‖|(π2(a)V2)h〉〈h|‖.

This implies ∥∥∥(T̂ (π2(a)V2))h
∥∥∥ ≤ ‖π2(a)V2h‖ for all a ∈ A, h ∈ H. (4.2.13)

Therefore T is a well-defined contraction. Now as T̂ is left A-linear, for all a, b ∈ A and
h ∈ H, we have

Tπ2(a)(π2(b)V2h) = T (π2(ab)V2h) = T̂ (π2(ab)V2)h = T̂ (π2(a)π2(b)V2)h
= π1(a)T̂ (π2(b)V2)h = π1(a)T (π2(b)V2h).

Thus Tπ2(a) = π1(a)T, for all a ∈ A. Now (4.2.11) shows that ψ(a)h = V ∗1 Tπ2(a)V2h for all
h ∈ H. For the uniqueness of T, let T ′ be another contraction such that T ′π2(a) = π1(a)T ′

and ψ(a) = V ∗1 T
′π2(a)V2 for all a ∈ A. Consider for a, b ∈ A and h, g ∈ H,

〈Tπ2(b)V2g, π1(a)V1h〉 = 〈V ∗1 Tπ2(a∗b)V2g, h〉
= 〈ψ(a∗b)g, h〉 = 〈V ∗1 T ′π2(a∗b)V2g, h〉
= 〈T ′π2(b)V2g, π1(a)V1h〉.

This proves the uniqueness of T.

Remark 4.2.4. (i). Corollary 4.2.1 can be proved directly (without deducing from Theo-
rem 4.2.1).
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(ii). Given two CP maps φi : A → B(H), i = 1, 2. Let (Ki, πi, Vi) be the minimal Stine-

spring representation for φi, i = 1, 2. Suppose the block map Φ =
φ1 ψ

ψ∗ φ2

 is CP for

some CB map ψ : A → B(H). Then Furuta in [Fur94, Proposition 6.1] proved that: ψ
is non-trivial (non-zero) if and only if there exists a non-zero operator T : K2 → K1 such
that Tπ1(a) = π2(a)T for all a ∈ A. On the other hand, Corollary 4.2.1 explicitly tells us
the structure of ψ from the minimal Stinespring representations of φi’s.

(iii). Corollary 4.2.1 is a generalization of [PS85, Corollary 2.7] (namely, when φ1 = φ2 in
Corollary 4.2.1, we get the result of Paulsen and Suen [PS85, Corollary 2.7]).

The following example shows that we cannot replace the von Neumann algebra B in
Theorem 4.2.1 by an arbitrary C∗-algebra.

Example 4.2.1. Let A = B = C([0, 1]), the commutative unital C∗-algebra of continuous
functions on [0, 1]. Let E = C([0, 1]). It is a Hilbert A-B-module with the natural actions
and standard inner product: 〈f, g〉 = f ∗g. Let

h1(t) = t, h2(t) = 1 for t ∈ [0, 1].

Consider the CP map Φ : M2(A)→M2(B) defined by

Φ
f11 f12

f21 f22

 =
h∗1 0

0 h∗2

f11 f12

f21 f22

h1 0
0 h2

 =
h∗1f11h1 h∗1f12h2

h∗2f21h1 h∗2f22h2

 .

Note that Φ is the block CP map
φ1 ψ

ψ∗ φ2

 , where φi, ψ : A → B are given by

ψ(f) = 〈h1, fh2〉 and φi(f) = 〈hi, fhi〉 for f ∈ A, i = 1, 2. (4.2.14)

Therefore, (E, hi) is a GNS-representation for φi, i = 1, 2. Let Ei = span AhiB ⊆ E.

Then (Ei, hi) is the minimal GNS-representation for φi, i = 1, 2. Note that

E1 = {f ∈ C([0, 1]) : f(0) = 0} and E2 = A.

Now suppose that there exists a bilinear contraction T : E2 → E1 such that ψ(f) =
〈h1, T fh2〉 for all f ∈ A. Then ψ(h2) = h1 = h1T (h2). That is, t = tT (h2)(t) for all
t ∈ [0, 1]. This implies that T (h2)(t) = 1 for all t 6= 0. This is a contradiction to T (h2) ∈ E1.
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Remark 4.2.5. Let A and B be unital C∗-algebras and let Φ : M2(A) → M2(B) be a

block CP map Φ =
φ1 ψ

ψ∗ φ2

 . Suppose B is a unital subalgebra of B(H) for some Hilbert

space H. Let C be the von Neumann algebra Bs. Now enlarge the codomain of Φ to M2(C).
That is, consider the block CP map Φ̃ : M2(A)→M2(C), such that Φ̃(A) = Φ(A).

Let Φ̃ =
φ̃1 ψ̃

ψ̃∗ φ̃2

 . Then, by Theorem 4.2.1 we get a bilinear contraction T̃ : Ẽ2 → Ẽ1

such that ψ(a) = ψ̃(a) = 〈x1, T̃ ax2〉 for all a ∈ A, where (Ẽi, xi) is the GNS-construction
for φ̃i, i = 1, 2. Note that (Ẽi, xi) is not a GNS-representation for φi, i = 1, 2 as Ẽi is an
Hilbert A-C-module which need not be an Hilbert A-B module.

In particular, in Example 4.2.1 if we enlarge the codomain B to C = Bs = L∞([0, 1]),
then with the above notations, we have Ẽi = span AhiC = L∞([0, 1]), i = 1, 2. Note also
that there exists a bilinear contraction T̃ : Ẽ2 → Ẽ1 given by T̃ f = f, f ∈ E2 such that
ψ(f) = ψ̃(f) = 〈h1, T fh2〉 for all f ∈ A.

The following example is a modification of Example 4.2.1 to get an example of a unital
block CP map Φ : M2(B)→M2(B).

Example 4.2.2. LetA be the unital C∗-algebra C([0, 1]). Let B = A⊕A and let F = A⊕A
be the Hilbert B-A-module with the module actions and inner product given byf1

f2

 k =
f1k

f2k

 ,
k1

k2

f1

f2

 =
k1f1

k2f2

 and
〈f1

f2

 ,
g1

g2

〉 = f ∗1 g1 + f ∗2 g2

for k ∈ A,
k1

k2

 ∈ B,
f1

f2

 ,
g1

g2

 ∈ F. Consider E = F ⊕ F as a Hilbert B-B-module

with right action x
y

 f =
xf1

yf2

 where f =
f1

f2

 ∈ B,
x
y

 ∈ E,
inner product 〈x1

x2

 ,
y1

y2

〉 =
〈x1, y1〉
〈x2, y2〉

 ,
and the left action

f

x
y

 =
fx
fy

 for f ∈ B,
x
y

 ∈ E.
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Let h11(t) = t, h12(t) =
√

1− t2, h21(t) = 1, h22(t) = 0 for t ∈ [0, 1]. Let

h1 =
h11

h12

⊕
h11

h12

 , h2 =
h21

h22

⊕
h21

h22

 ∈ E = F ⊕ F

Let Φ : M2(B) → M2(B) be the block CP map Φ =
φ1 ψ

ψ∗ φ2

 , where φi, ψ : B → B

are defined by

φi(f) = 〈hi, fhi〉 and ψ(f) = 〈h1, fh2〉 for f ∈ B, i = 1, 2.

Let Ei = spanBhiB ⊆ E, i = 1, 2. Then E1 = F1 ⊕ F1 with F1 = C0([0, 1])⊕ C1([0, 1])
where Cj([0, 1]) = {f ∈ C([0, 1]) : f(j) = 0} for j = 0, 1, and E2 = F2 ⊕ F2 with
F2 = C([0, 1])⊕ 0. Now suppose there exists a bilinear contraction T : E2 → E1 such that

ψ(f) = 〈h1, T fh2〉 for all f ∈ B. Then for f =
h21

h22

 ∈ B,
h11

h22

 = 〈h1, fh2〉 = ψ(f) = 〈h1, fTh2〉 =
〈h11

h12

⊕
h11

h12

 ,
 l11

h22

⊕
 l21

h22

〉

where Th2 =
l11

l12

 ⊕
l21

l22

 ∈ E1. Therefore h11 = h11l11 + h12h22. Hence t = tl11(t) for

all t ∈ [0, 1]. Hence l11(t) = 1 for t 6= 0. This is a contradiction to the assumption that
Th2 ∈ E1. So no such T exists.

We could not get any reasonable answer to the following question.

Problem. Let A,B be unital C∗-algebras and let p ∈ A, q ∈ B be projections. Let

Φ =
φ1 ψ

ψ∗ φ2

 be a block CP map from A to B with respect to p and q. Let (Ei, ξi) be

GNS-representation of φi, i = 1, 2. Can we prove a theorem similar to Theorem 4.2.1? In
other words what is the structure of ψ in terms of (Ei, ξi)?

4.3 Semigroups of block CP maps

4.3.1 Structure of block quantum dynamical semigroups

In this subsection, we shall prove a structure theorem similar to (or using) Theorem 4.2.1
for semigroup of block CP maps. We shall start with a few basic examples of semigroups
of block CP maps, which are of interest.
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Example 4.3.1. Let H be a Hilbert space. Let (θt)t≥0 be an E0-semigroup on B(H). Let
(Ut)t≥0 be a family of unitaries in B(H) forming left cocycle for θ, that is, U0 = I, Us+t =
Usθs(Ut), t 7→ Ut continuous in SOT. Let ψt(X) = Utθt(X)U∗t for X ∈ B(H). Then (ψt)t≥0

is an E0-semigroup, cocycle conjugate to (θt)t≥0. Define τt : B(H⊕H)→ B(H⊕H) by

τt

X Y

Z W

 =
I 0

0 Ut

θt(X) θt(Y )
θt(Z) θt(W )

I 0
0 U∗t

 =
 θt(X) θt(Y )U∗t
Utθt(Z) Utθt(W )U∗t

 .
Then clearly (θt)t≥0 is a block E0-semigroup.

Example 4.3.2. Let (at)t≥0 and (bt)t≥0 be semigroups on a C∗-algebra B and let (φit)t≥0, i =
1, 2, be two QDSs on B such that φ1

t (·)− at(·)a∗t and φ2
t (·)− bt(·)b∗t are CP maps (cf. Defi-

nition 2.1.18). Define τt : M2(B)→M2(B) by

τt

a b

c d

 =
φ1

t (a) atbb
∗
t

btca
∗
t φ2

t (d)

 .
Then τt is CP, for all t ≥ 0, as

τt

a b

c d

 =
at 0

0 bt

a b

c d

a∗t 0
0 b∗t

+
φ1

t (a)− ataa∗t 0
0 φ2

t (d)− btdb∗t

 .
Clearly (τt)t≥0 is a block QDS.

Recall the following from Subsection 2.3.3 (Example 2.3.1 and Definition 2.3.12): Let
φ = (φt)t≥0 be a QDS on a C∗-algebra/von Neumann algebra B and let (Et, ξt) be the
GNS-construction for φt. For t, s ≥ 0 define βs,t : Es+t → Es � Et by

ξt+s 7→ ξs � ξt. (4.3.1)

(Note that Et = Et
s = spansBξtB and Es�Et = Es�̄sEs if B is a von Neumann algebra).

Then βs,t’s are two-sided isometries such that

(βr,s � IEt)βr+s,t = (IEr � βs,t)βr,s+t. (4.3.2)

That is, (E = (Et)t≥0, β = (βt,s)t,s≥0) is an inclusion system of von Neumann B-B-
modules with generating unit ξ� = (ξt)t≥0 for (E, β). The triple (E, β, ξ�) or just the pair
(E, ξ�) (when β is clear from the context) is called the inclusion system (or subproduct
system) associated to the QDS φ.
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Lemma 4.3.1. Let B be a unital C∗-algebra. Given two inclusion systems (Ei, βi, ξ�i)
associated to a pair of CP semigroups φi = (φit)t≥0, i = 1, 2 on B and a contractive mor-
phism3 T = (Tt) : E2 → E1, there is a block CP semigroup4 Φ = (Φt)t≥0 on M2(B) such

that Φt =
φ1

t ψt
ψ∗t φ2

t

 and ψt(a) = 〈ξ1
t , Tt(aξ2

t )〉.

Proof. Define Φt : M2(B) → M2(B) as the block maps Φt =
φ1

t ψt
ψ∗t φ2

t

 , where ψt(b) =

〈ξ1
t , Tt(bξ2

t )〉. Then, as Tt : E2
t → E1

t is an adjointable bilinear contraction, Φt is CP for all
t ≥ 0 (see the proof of Lemma 4.2.1).

Now we shall show that Φ = (Φt)t≥0 is a semigroup on M2(B). We have

Φs ◦ Φt

a b

c d

 = Φs

φ1
t (a) ψt(b)
ψ∗t (c) φ2

t (d)

 =
 φ1

s+t(a) ψs(ψt(b))
ψ∗s(ψ∗t (c)) φ2

s+t(d)

 .
It is clear from this, that to show Φ is a semigroup, it is enough to show that (ψt)t≥0 is a
semigroup. Now as T is a morphism it is easy to see that (ψt)t≥0 is a semigroup.

When B is a von Neumann algebra, we have the converse of Lemma 4.3.1. Example
4.2.1 says that we cannot take B as an arbitrary C∗-algebra.

Theorem 4.3.1. Let B be a von Neumann algebra. Let Φ = (Φt)t≥0 be a semigroup

of block normal CP maps on M2(B) with Φt =
φ1

t ψt
ψ∗t φ2

t

 . Then, there are inclusion

systems (Ei, βi, ξ�i), i = 1, 2 associated to φi (canonically arising from the inclusion system
associated to Φ) and a unique contractive (weak) morphism T = (Tt) : E2 → E1 such that
ψt(a) = 〈ξ1

t , Ttaξ
2
t 〉 for all a ∈ B, t ≥ 0.

Proof. We shall prove this extending the same ideas of the proof of Theorem 4.2.1 to the
semigroup level. Let (E = (Et), β = (βt,s), η� = (ηt)) be the inclusion system associated to
Φ. Note that Et’s are von Neumann M2(B)-M2(B)-modules. Let Eij := 1⊗Eij ∈ B ⊗M2,

where Eij’s are the matrix units in M2. Let Êi
t := EiiEt ⊆ Et, i = 1, 2. Then Êi

t ’s are SOT
closedM2(B)-submodules of Et such that Et = Ê1

t⊕Ê2
t for all t ≥ 0. Let ηit := EiiηtEii ∈ Êi

t ,

i = 1, 2. Then we have (as in the proof of Theorem 4.2.1)

ηt = η1
t + η2

t with 〈η1
t , η

2
t 〉 = 0 and ηit = Eiiηt = ηtEii for all t ≥ 0, i = 1, 2. (4.3.3)

3Note that, Tt’s are bilinear (cf. Definition 2.3.13).
4By a block CP semigroup, we mean, a semigroup of block CP maps.
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As βt,s : Et+s → Et � Es are the canonical maps: ηt+s 7→ ηt � ηs, using (4.3.3) we have,

βt,s(ηit+s) = βt,s(Eiiηt+sEii) = Eiiηt � ηsEii = ηit � ηis for t, s ≥ 0, i = 1, 2. (4.3.4)

Consider the von Neumann B-B-modules E(B)
t (as described in Remark 4.2.1) and the

von Neumann B-modules Êi(B)
t (see Proposition 4.2.1). Notice that Êi(B)

t is also a von
Neumann B-B-module for i = 1, 2 with the left action of B given by

a[x] := [
a 0

0 a

x] for a ∈ B, x ∈ Êi
t . (4.3.5)

Then, we have E(B)
t ' Ê

1(B)
t ⊕ Ê2(B)

t (as two-sided von Neumann modules) for all t ≥ 0 (as
in the proof of Theorem 4.2.1). Let ξit = [ηit] ∈ Ê

i(B)
t , i = 1, 2. Then for a ∈ B, i = 1, 2, we

have

〈ξit, aξit〉 =
2∑

r,s=1

〈
Eiiηt,

a 0
0 a

Eiiηt
〉
r,s

=
2∑

r,s=1
Φt

Eii
a 0

0 a

Eii


r,s

= φit(a).

Therefore, (Êi(B)
t , ξit) is a GNS-representation (not necessarily minimal) for φit, i = 1, 2. Let

Ei
t = spansBξitB ⊆ Ê

i(B)
t be the minimal GNS-module for φit for i = 1, 2. Let βit,s : Ei

t+s →
Ei
t � Ei

s be the canonical maps (as in Remark 2.3.1) given by

ξit+s 7→ ξit � ξis for t, s ≥ 0, i = 1, 2,

so that (Ei = (Ei
t), βi = (βit,s), ξ�i = (ξit)) is the inclusion system associated to φi, i = 1, 2.

(Equation (4.3.4) shows that, we get the inclusion systems associated to φi’s in a canonical
way from the inclusion system associated to Φ.)

Let V i
t : Ei

t → Ê
i(B)
t be the inclusion maps and let Ut : Ê2(B)

t → Ê
1(B)
t be defined by

Ut[w] = [E12w] for w ∈ Ê2
t .

Then V i
t ’s are adjointable, bilinear isometries and Ut’s are bilinear unitaries (as in the proof

of Theorem 4.2.1). Take Tt := V 1∗
t UtV

2
t . Then Tt : E2

t → E1
t is an adjointable, bilinear

contraction such that for a ∈ B,

〈ξ1
t , Ttaξ

2
t 〉 = 〈ξ1

t , V
1∗
t UtV

2
t aξ

2
t 〉 = 〈V 1

t [η1
t ], UtV 2

t a[η2
t ]〉 =

〈
[η1
t ], Ut[

a 0
0 a

 η2
t ]
〉

=
〈

[η1
t ], [

0 a

0 0

 η2
t ]
〉

=
2∑

i,j=1

〈
η1
t ,

0 a

0 0

 η2
t

〉
i,j
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=
2∑

i,j=1

E11Φt

0 a

0 0

E22


i,j

=
2∑

i,j=1

0 ψt(a)
0 0


i,j

= ψt(a).

For a, b, c, d ∈ B,

〈aξ1
t+sb, Tt+s(cξ2

t+sd)〉 = b∗ψt+s(a∗c)d
= b∗ψs(ψt(a∗c))d
= b∗ψs(〈ξ1

t , a
∗cTtξ

2
t 〉)d

= b∗〈ξ1
s , Ts(〈ξ1

t , a
∗cTtξ

2
t 〉ξ2

s )〉d
= b∗〈ξ1

s , 〈ξ1
t , a
∗cTtξ

2
t 〉Tsξ2

s〉d
= b∗〈ξ1

t � ξ1
s , a
∗c(Tt � Ts)(ξ2

t � ξ2
s )〉d

= 〈β1
t,s(aξ1

t+sb), (Tt � Ts)β2
t,s(cξ2

t+sd)〉
= 〈aξ1

t+sb, β
1∗
t,s(Tt � Ts)β2

t,s(cξ2
t+sd)〉,

shows that T := (Tt)t≥0 is a morphism of inclusion systems from (E2, β2) to (E1, β1).

To prove the uniqueness of T , let T ′ = (T ′t)t≥0 be another morphism of inclusion systems
from (E2, β2, ξ�2) to (E1, β1, ξ�1) such that ψt(a) = 〈ξ1

t , T
′
t(aξ2

t )〉 for all a ∈ B, t ≥ 0, then

〈a1ξ
1
t b1, T (a2ξ

2
t b2)〉 = b∗1ψt(a∗1a2)b2 = 〈a1ξ

1
t b1, T

′(a2ξ
2
t b2)〉

for a1, a2, b1, b2 ∈ B and hence Tt = T ′t for all t ≥ 0.

Example 4.3.3. Let B be a von Neumann algebra. Let E be a von Neumann M2(B)-

M2(B)-module. Take β =
β1 0

0 β2

 inM2(B) and ζ ∈ E such that ζ = E11ζE11 +E22ζE22,

where Eij = 1⊗ Eij ∈ B ⊗M2 and {Eij}2
i,j=1 are the matrix units in M2.

Let ξ�(β, ζ) = (ξt(β, ζ))t∈R+ ∈ IΓ�(E), the product system of time ordered Fock mod-
ule5 over E, where the component ξnt of ξt(β, ζ) ∈ IΓt(E) in the n-particle (n > 0) sector is
defined as

ξnt (tn, . . . , t1) = e(t−tn)βζ � e(tn−tn−1)βζ � · · · � e(t2−t1)βζet1β. (4.3.6)

and ξ0
t = etβ. Then it follows from [LS01, Theorem 3] that, ξ�(β, ζ) is a unit for the product

system IΓ�(E). Further if Φ(β,ζ)
t : M2(B)→M2(B) is defined by

Φ(β,ζ)
t (A) = 〈ξt(β, ζ), Aξt(β, ζ)〉 for A ∈M2(B), (4.3.7)

5See Subsection 2.3.5 for the details about the time ordered Fock module.

81



Chapter 4. Structure of Block Quantum Dynamical Semigroups and their Product Systems

then Φ := (Φt)t≥0 is a uniformly continuous CP-semigroup on M2(B), with bounded gen-
erator

L(A) = L(β,ζ)(A) = Aβ + β∗A+ 〈ζ, Aζ〉 for A ∈M2(B). (4.3.8)

Let ζi = EiiζEii, i = 1, 2, then ζ = ζ1 + ζ2, 〈ζ1, ζ2〉 = 0. Let τ : M2(B) → M2(B) be

defined by τ(A) = 〈ζ, Aζ〉, A ∈M2(B), then τ is a block CP map, say τ =
τ11 τ12

τ ∗12 τ22

 .
Note that (E(B), [ζi]) is a GNS-representation for τii, i = 1, 2, where E(B) is the von

Neumann B-B-module as described6 in Remark 4.2.1.

Let Ei = spansB[ζi]B ⊆ E(B) be the minimal GNS-representation for τii, i = 1, 2 and let
T : E2 → E1 be the unique bilinear, adjointable contraction such that τ12(a) = 〈[ζ1], Ta[ζ2]〉
as given in Theorem 4.2.1. Therefore, we have

τ(A) = 〈ζ, Aζ〉 =
 〈[ζ1], a11[ζ1]〉 〈[ζ1], Ta12[ζ2]〉
〈[ζ2], T ∗a21[ζ1]〉 〈[ζ2], a22[ζ2]〉

 , for A =
a11 a12

a21 a22

 ∈M2(B)

and hence

L(A) = Aβ + β∗A+ 〈ζ, Aζ〉

=
 a11β1 + β∗1a11 + 〈[ζ1], a11[ζ1]〉 a12β2 + β∗1a12 + 〈[ζ1], Ta12[ζ2]〉
a21β1 + β∗2a21 + 〈[ζ2], T ∗a21[ζ1]〉 a22β2 + β∗2a22 + 〈[ζ2], a22[ζ2]〉


=
 L

(β1,[ζ1])
11 (a11) L

(β1,β2,[ζ1],[ζ2],T )
12 (a12)

L
(β1,β2,[ζ1],[ζ2],T )
21 (a21) L

(β2,[ζ2])
22 (a22)

 ,
where

Lii(a) = L
(βi,[ζi])
ii (a) = aβi + β∗i a+ 〈[ζi], a[ζi]〉, i = 1, 2,

and

L12(a) = L
(β1,β2,[ζ1],[ζ2],T )
12 (a) = aβ2 + β∗1a+ 〈[ζ1], Ta[ζ2]〉B, (4.3.9)

L21(a) = L12(a∗)∗,

for a ∈ B. Therefore, for A =
a11 a12

a21 a22

 ∈M2(B),

Φt(A) = etL(A) =
 etL

(β1,[ζ1])
11 (a11) etL

(β1,β2,[ζ1],[ζ2],T )
12 (a12)

etL
(β1,β2,[ζ1],[ζ2],T )
21 (a21) etL

(β2,[ζ2])
22 (a22)

 .
6See also Propositions 4.2.1,4.2.2.
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Now note that the inclusion system (Ei = (Ei
t), ξi = (ξit(βi, [ζi]))) associated to φi =

(etL
(βi,[ζi])
ii )t≥0 is a subsystem of the product system of time-ordered Fock module IΓ�(Ei)

over Ei, i = 1, 2.

Let w = (wt)t≥0 be the contractive morphism from (E2, ξ2) to (E1, ξ1) such that

etL12(a) = 〈ξ1
t (β1, [ζ1]), awt(ξ2

t (β2, [ζ2]))〉, for all a ∈ B. (4.3.10)

As any morphism maps a unit to a unit we have

wt(ξ2
t (β2, [ζ2])) = ξ1

t (γw(β2, [ζ2]), ηw(β2, [ζ2])) (4.3.11)

for some γw, ηw : B × E2 → B × E1. Hence from (4.3.10) and (4.3.11) we have

etL12(a) = 〈ξ1
t (β1, [ζ1]), ξ1

t (γw(β2, [ζ2]), ηw(β2, [ζ2]))〉.

Now by differentiating (4.3.10), we get

L12(a) = 〈ζ1, aηw(β2, [ζ2])〉+ aγw(β2, [ζ2]) + β∗1a. (4.3.12)

Therefore as (4.3.9)=(4.3.12) we have γw(β2, [ζ2]) = β2 and ηw(β2, [ζ2]) = T [ζ2]. Thus, the
unique morphism (wt) is given by

wtξ
2
t (β2, [ζ2]) = ξ1

t (β2, T [ζ2]).

4.3.2 E0-dilation of block quantum Markov semigroups

In this subsection we shall prove that if we have a block QMS on a unital C∗-algebra then
the E0-dilation constructed in [BS00] is also a semigroup of block maps.

Let B be a unital C∗-algebra. Let p ∈ B be a projection. Denote p′ = 1 − p. Let
Φ = (Φt)t≥0 be a block QMS7 on B with respect to p.

Let (E = (Et), ξ� = (ξt)) be the inclusion system associated to Φ. Recall from Subsec-
tion 2.3.4 (cf. [BS00, Sections 4, 5]) that

(Et, ξt)

(Et, ξt)

(E , ξ)

first inductive limit

second inductive limit

7a block QMS, is a QMS of block maps.

83



Chapter 4. Structure of Block Quantum Dynamical Semigroups and their Product Systems

That is, we have a B-module E with E ' E � Et, a representation j0 : B → Ba(E)
(b 7→ |ξ〉 b 〈ξ|) and endomorphisms ϑt : Ba(E) → Ba(E) defined by ϑt(a) = a � idEt such
that (ϑt)t≥0 is an E0-dilation of (Φt)t≥0. Moreover, we have the Markov property

j0(1)ϑt(j0(x))j0(1) = j0(Φt(x)), x ∈ B. (4.3.13)

This implies that j0(1)ϑt(j0(1))j0(1) = j0(Φt(1)) = j0(1). Since j0(1) is a projection,
we have j0(1) ≤ ϑt(j0(1)) and hence (ϑt(j0(1)))t≥0 is an increasing family of projections.
Hence it converges in SOT. Now if ks : Es → E are the canonical maps (xs 7→ ξ � xs) then

span ks(Es) = E . (4.3.14)

Hence ϑt(j0(1))(Et) = ϑt(j0(1))(ξ � Et) = (|ξ〉〈ξ| � idEt)(ξ � Et) = ξ � Et shows that
ϑt(j0(1))t≥0 is converging in SOT to idE , the identity on E .

Now for q = p or p′, consider ϑt(j0(q)) = ϑt(|ξ〉q〈ξ|). Note that since Φ is a unital block
semigroup Φt(q) = q for q = p, p′. Hence by the Markov property (4.3.13) we have

j0(1)ϑt(j0(q))j0(1) = j0(Φt(q)) = j0(q), for q = p, p′. (4.3.15)

Note that j0(1) = j0(p) + j0(p′) and j0(p)j0(p′) = j0(p′)j0(p) = 0. Hence multiplying by
j0(q) on both sides of Equation (4.3.15) we get

j0(q)ϑt(j0(q))j0(q) = j0(q), for q = p, p′.

Since j0(q) is a projection, we have j0(q) ≤ ϑt(j0(q)) for all t, hence ϑs(j0(q)) ≤ ϑt(j0(q))
for s ≤ t. Therefore (ϑt(j0(q)))t≥0 is an increasing family of projections in Ba(E). Say
(ϑt(j0(p)))t≥0 converges to P. Then as (ϑt(j0(1))t≥0 converges to idE , (ϑt(j0(p′)))t≥0 will
converge to P ′ = idE −P. Note that we have PP ′ = 0 and

spansϑt(j0(p))(E) = P (E) and spansϑt(j0(p′))(E) = P ′(E). (4.3.16)

Thus, we have E = E (1) ⊕ E (2) where E (1) = P (E) and E (2) = P ′(E).

Lemma 4.3.2. P (Et) = ϑt(j0(p))(Et) and P ′(Et) = ϑt(j0(p′))(Et) for all t ≥ 0.

Proof. Fix t ≥ 0. It is enough to prove for q = p, p′ that ϑs(j0(q))(x) = ϑt(j0(q))(x) if
x ∈ Et, s ≥ t. Note that (since 〈ξt, qξt〉 = Φt(q) = q for q = p or p′) we have∥∥∥pξt − pξtp∥∥∥2

=
∥∥∥pξtp′∥∥∥2

= ‖p′Φt(p)p′‖ = 0 = ‖pΦt(p′)p‖ =
∥∥∥p′ξtp∥∥∥2

=
∥∥∥ξtp− pξtp∥∥∥2

.

This implies that pξt = ξtp = pξtp. Similarly we have p′ξt = ξtp′ = p′ξtp′.
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Let q = p or p′ and let s ≥ t. If x ∈ Et, then ξs−t � x ∈ Es and

ϑs(j0(q))(x) = (|ξ〉 q 〈ξ| � idEs)(ξ � ξs−t � x) = ξ � qξs−t � x = ξ � ξs−tq � x
= ξ � ξs−t � qx = ξ � qx = ϑt(j0(q))(x).

We have from [BS00, Theorem 5.4] that

E ' E � Et, for all t ≥ 0. (4.3.17)

Now we shall prove a similar result for E (i)’s by recalling the proof of this result. It is
important to note that we are not getting something like E (i) = E (i) � E (i)

t , and we have
not even bothered to define E (i)

t .

Lemma 4.3.3. E (i) ' E (i) � Et, for i = 1, 2, t ≥ 0.

Proof. Let kt : Et → E be the canonical maps (isometries). Then ut : E � Et → E defined
by

ut(ks(xs)� yt) = ks+t(xs � yt) (4.3.18)

for xs ∈ Es, yt ∈ Et, is a unitary ([BS00, Theorem 5.4]). Hence, we have E ' E � Et. Since
E = E (1) ⊕ E (2), we have, E ' E (1) � Et ⊕ E (2) � Et.

We shall prove that, the restriction of this unitary ut to E (i)�Et is a unitary from E (i)�Et
onto E (i). It is enough to prove that ut(E (i) � Et) ⊆ E (i). To prove this, (from (4.3.14),
(4.3.16) and Lemma 4.3.2) it is sufficient to prove that ut(ϑs(j0(p))ks(Es)� Et) ⊆ E (1) and
ut(ϑs(j0(p′))ks(Es)� Et) ⊆ E (2). To prove this consider for q = p or p′ and xs ∈ Es

ut(ϑs(j0(q))ks(xs)� yt) = ut((ξq � xs)� yt) = ut((ξ � qxs)� yt)
= ut(ks(qxs)� yt)
= ks+t(qxs � yt)
= ξ � qxs � yt = ξq � xs � yt
= ϑs+t(j0(q))ks+t(xs � yt),

which is in E (1) if q = p and is in E (2) if q = p′.

Theorem 4.3.2. The E0-dilation ϑ = (ϑt)t≥0 of Φ is a semigroup of block maps with
respect to the projection P defined above.
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Proof. As E = E (1) ⊕ E (2), we have

Ba(E) =
 Ba(E (1)) Ba(E (2), E (1))
Ba(E (1), E (2)) Ba(E (2))

 .

For any i, j ∈ {1, 2}, let a ∈ Ba(E (i), E (j)), then

ϑt(a) = a� idEt ∈ Ba(E (i) � Et, E (j) � Et) = Ba(E (i), E (j)).

Therefore ϑt acts block-wise.

4.4 Lifting of morphisms

In this section we will show that any (weak) morphism between two inclusion systems
of von Neumann B-B-modules can be always lifted as a morphism between the product
systems generated by them.

We shall recall some notations and results from Subsection 2.3.4 (cf. [BS00] and [BM10]).
For all t > 0 we define

Jt = {t = (tn, . . . , t1) ∈ Tn : ti > 0, |t| = t, n ∈ N} (4.4.1)

and for s = (sm, . . . , s1) ∈ Js and t = (tn, . . . , t1) ∈ Jt we define the joint tuple s^ t ∈ Js+t
by

s^ t = ((sm, . . . , s1), (tn, . . . , t1)) = (sm, . . . , s1, tn, . . . , t1).

We have a partial order “ ≥ ” on Jt as follows: t ≥ s = (sm, . . . , s1), if for each j

(1 ≤ j ≤ m) there are (unique) sj ∈ Jsj such that t = sm ^ · · ·^ s1 (In this case we also
write s ≤ t to mean t ≥ s).

For t = 0 we extend the definition of Jt as J0 = {()}, where () is the empty tuple. Also
for t ∈ Jt we put t^ () = t = () ^ t.

Now we will describe the construction of product system generated by an inclusion
system of von Neumann B-B-modules using the inductive limits. (This construction holds
also for Hilbert B-B-modules along the same lines, but as we are going to prove the lift-
ing theorem only for von Neumann B-B-modules, we confine ourselves to von Neumann
modules.)
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Let (E = (Et)t≥0, β = (βs,t)s,t≥0) be an inclusion system of von Neumann B-B-modules.
Fix t ∈ T. Let Et = Etn � · · · �Et1 for t = (tn, . . . , t1) ∈ Jt. For all t = (tn, . . . , t1) ∈ Jt we
define βt(t) : Et → Et by

βt(t) = (βtn,tn−1 � id)(βtn+tn−1,tn−2 � id) . . . (βtn+···+t3,t2 � id)βtn+···+t2,t1 ,

and for t = (tn, . . . , t1) = sm ^ · · · ^ s1 ≥ s = (sm, . . . , s1) with |sj| = sj, we define
βts : Es → Et by

βts = βsm(sm) � · · · � βs1(s1).

Then it is clear from the definitions that βts, t ≥ s are bilinear isometries and βtsβsr = βtr
for t ≥ s ≥ r. This says that, the family (Et)t∈Jt with (βts)s≤t is an inductive system of von
Neumann B-B-modules. Hence the inductive limit Et = lim ind

t∈Jt
Et is also a von Neumann

B-B-module and the canonical mappings it : Et → Et are bilinear isometries.

For s ∈ Js, t ∈ Jt it is clear that Es � Et = Es^t. Using this observation we define
Bst : Es � Et → Es+t by

Bst(isxs � ityt) = is^t(xs � yt) for xs ∈ Es, yt ∈ Et, s ∈ Js, t ∈ Jt.

Then (E = (Et)t∈T, B = (Bst)s,t∈T) forms a product system (Bhat and Skeide [BS00]).

Definition 4.4.1. Given an inclusion system (E, β), the product system (E , B) described
above is called the product system generated by the inclusion system (E, β).

We also recall the following from Subsection 2.2.5: Let B be a von Neumann algebra
on a Hilbert space G. Let E be a von Neumann B-module. Then H = E � G is a Hilbert
space such that E ⊆ B(G,H) via E 3 x 7→ Lx ∈ B(G,H), where Lx : G → H is defined by
Lx(g) = x � g for g ∈ G. Note that E is strongly closed in B(G,H). Sometimes we write
xg instead of x� g with the above identification in mind.

Lemma 4.4.1. Let (E , B) be the product system generated by the inclusion system (E, β)
on a von Neumann algebra B ⊆ B(G). Let it : Et → Et, t ∈ Jt be the canonical two-sided
isometries. Then iti∗t increases to identity in strong operator topology, that is, for all x ∈ Et
and g ∈ G we have

lim
t∈Jt
‖xg − iti∗t (x)g‖ = 0. (4.4.2)

Proof. Note that we have Et ⊆ B(G, Ht) and Et ⊆ B(G,Ht) where Ht = Et � G and
Ht = Et�G. Let vt = it� id : Ht → Ht. Then vt’s are isometries. Note that for s ≤ t ∈ Jt,
as iti∗t isi∗s = isi

∗
s = isi

∗
s iti
∗
t we have

vtv
∗
t vsv

∗
s = vsv

∗
s = vsv

∗
svtv

∗
t for s ≤ t ∈ Jt. (4.4.3)
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Also note that as spans{it(Et) : t ∈ Jt} = Et we have

span {vt(Ht) : t ∈ Jt} = Ht. (4.4.4)

Now (4.4.3) and (4.4.4) implies that lim
t∈Jt

vtv
∗
t h = h for all h ∈ Ht. Observe that for x ∈

Et, t ∈ Jt and g ∈ G we have

vtv
∗
t (xg) = (iti∗t � id)(x� g) = iti

∗
t (x)� g = iti

∗
t (x)g.

Thus
lim
t∈Jt
‖xg − iti∗t (x)g‖ = lim

t∈Jt
‖xg − vtv∗t (xg)‖ = 0.

Now we shall prove the lifting theorem along the same lines of the proof of [BM10,
Thorem 11]

Theorem 4.4.1. Let B be a von Neumann algebra on a Hilbert space G. Let (E, β)
and (F, γ) be two inclusion systems of von Neumann B-B-modules generating two prod-
uct systems (E , B), (F , C) respectively. Let i, j be their respective inclusion maps. Sup-
pose T : (E, β) → (F, γ) is a (weak) morphism then there exists a unique morphism
T̂ : (E , B)→ (F , C) such that Ts = j∗s T̂sis for all s ∈ T.

Proof. Given that T : (E, β)→ (F, γ) is a morphism. Let k be such that ‖Ts‖ ≤ eks for all
s ∈ T. For s = (sn, ..., s1) ∈ Js, define Ts : Es → Fs by Ts = Tsn�· · ·�Ts1 . Let is : Es → Es
and js : Fs → Fs be the canonical two-sided isometries. Then for s ≤ t in Js we have

γ∗tsTtβts = Ts. (4.4.5)

Consider for s ∈ Js,Φs = jsTsi
∗
s . Set Ps = jsj

∗
s and Qs = isi

∗
s . Then by Lemma 4.4.1

(Ps)s∈Js and (Qs)s∈Js are families of increasing projections. Now for r ≤ s, ir = isβsr,

jr = jsγsr implies that βsr = i∗s ir, γsr = j∗s jr, hence it follows from (4.4.5) that PrΦsQr = Φr.

For all s ≥ 0, Es ⊆ B(G, Es � G) and Fs ⊆ B(G,Fs � G). Fix s ∈ T. Let x ∈ Es, g ∈ G
and let ε > 0. Using (4.4.2) choose r0 ∈ Js such that

eks‖Qr0(x)g − xg‖ < ε

3 . (4.4.6)

Then, for any s ∈ Js, we have

‖Φs(x)g − ΦsQr0(x)g‖ = ‖Φs(x)� g − ΦsQr0(x)� g‖
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= ‖(Φs � idG)(x� g −Qr0(x)� g)‖
≤ ‖Φs � idG‖‖xg −Qr0(x)g‖

≤ eks ‖xg −Qr0(x)g‖ < ε

3 . (by (4.4.6)) (4.4.7)

Let t ≥ s ≥ r0 ∈ Js. As (Ps)s∈Js and (Qs)s∈Js are increasing families of projections, we
have

‖ΦtQr0(x)g‖2 = ‖PtΦtQr0(x)g‖2

= ‖PsΦtQr0(x)g + (Pt − Ps)ΦtQr0(x)g‖2

= ‖PsΦtQr0(x)g‖2 + ‖(Pt − Ps)ΦtQr0(x)g‖2

= ‖PsΦtQsQr0(x)g‖2 + ‖ΦtQr0(x)g − PsΦtQsQr0(x)g‖2

= ‖ΦsQr0(x)g‖2 + ‖ΦtQr0(x)g − ΦsQr0(x)g‖2. (4.4.8)

Hence for t ≥ s ≥ r0 ∈ Js, we have ‖ΦtQr0(x)g‖2 ≥ ‖ΦsQr0(x)g‖2. Also

‖ΦsQr0(x)g‖2 ≤ ‖ΦsQr0‖
2‖x‖2‖g‖2 ≤ e2ks‖x‖2‖g‖2

for all s ∈ Js. Thus (‖ΦsQr0(x)g‖2)s∈Js is a Cauchy net, hence choose r1 ∈ Js, r1 ≥ r0 such
that

|‖ΦtQr0(x)g‖2 − ‖ΦsQr0(x)g‖2| <
(
ε

3

)2
for t ≥ s ≥ r1 ≥ r0 ∈ Js. (4.4.9)

Therefore for t ≥ s ≥ r1 in Js, from (4.4.8) and (4.4.9) we have

‖ΦtQr0(x)g − ΦsQr0(x)g‖ = |‖ΦtQr0(x)g‖2 − ‖ΦsQr0(x)g‖2|
1
2 <

ε

3 . (4.4.10)

Now for t ≥ s ≥ r1 in Js, from (4.4.7) and (4.4.10) we have

‖(Φt − Φs)(x)g‖
≤ ‖Φt(x)g − ΦtQr0(x)g‖+ ‖ΦtQr0(x)g − ΦsQr0(x)g‖+ ‖ΦsQr0(x)g − Φs(x)g‖ < ε.

Thus lim
s∈Js

Φs(x)g exists. Define T̂s(x)g = lim
s∈Js

Φs(x)g for s > 0. This defines a bounded

bilinear map T̂s : Es → Fs for all s ∈ T.

Now for s ∈ Js and for all xs ∈ Es, g ∈ G, we have

j∗s T̂sis(xs)g = lim
r∈Js

j∗s Φris(xs)g = lim
r∈Js

j∗s jrTri
∗
r is(xs)g = lim

r∈Js
γ∗rsTrβrs(xs)g = Ts(xs)g.
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Thus Ts = j∗s T̂sis for all s ∈ Js and s ∈ T. In particular Ts = j∗s T̂sis for all s ∈ T.

Now we shall prove that (T̂t)t≥0 is a morphism of product systems. For t ∈ Jt, s ∈ Js
and xt ∈ Et, xs ∈ Es, yt ∈ Ft, ys ∈ Fs consider,

〈C∗s,t(T̂s � T̂t)Bs,tis^t(xs � xt), js^t(ys � yt)〉 = 〈(T̂s � T̂t)(is � it)(xs � xt), js � jt(ys � yt)〉
= 〈T̂sisxs � T̂titxt, jsys � yt)〉
= 〈j∗t T̂titxt, 〈j∗s T̂sisxs, ys〉yt〉
= 〈Tsxs � Ttxt, (ys � yt)〉
= 〈(Ts � Tt)(xs � xt), ys � yt〉
= 〈Ts^t(xs � xt), (ys � yt)〉
= 〈T̂s+tis^t(xs � xt), js^t(ys � yt)〉

Thus T̂s+t = C∗s,t(T̂s � T̂t)Bs,t for all s, t > 0.
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