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Chapter 1

Preliminaries

1.1 History and overview

The purpose of this section is to motivate the historical development of Leavitt algebras,
Leavitt path algebras and their various generalizations and thus provide a context for
this thesis. There are two historical threads which resulted in the definition of Leavitt
path algebras. The first one is about the realization problem for von Neumann regular
rings and the second one is about studying algebraic analogs of graph C*-algebras. In
what follows we briefly survey these threads and also introduce important concepts and

terminology which will recur throughout.

1.1.1 The first historical thread: Leavitt algebras and graph monoids
1.1.1.1 Invariant basis number and Leavitt algebras

Let R be a unital ring and M a left R-module with minimal generating set X. If X is
infinite, then any generating set of M has at least | X| elements. In particular any two
minimal generating sets of M have the same cardinality. However if X is finite, this need
not be the case. Therefore a free module on a finite generating set may have minimal
generating sets of different sizes. For a positive integer n, we say the left R-module R"
has unique rank n if it is not isomorphic to R™ for any positive integer m % n. Most of
the examples that are encountered in a first course on ring theory such as Z, K, K[X],

KX, X1, M, (K) all have invariant basis number:
1
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Definition 1.1.1. A unital ring R is said to have the Invariant Basis Number (IBN)

if every free left (or right) R-module has a unique rank.

A wide class of unital rings have IBN; examples are commutative rings and Noetherian

rings. But there are also examples of rings which do not have IBN.

Example 1.1.2. Let V be a countably infinite dimensional vector space over a field
K, and let R denote Endg(V), the K-algebra of all linear transformations from V' to
itself. Then the left modules R and R? are isomorphic (and hence R' = R/ for any pair
i,j € N).

Let R be any unital ring and suppose that R" has a generating set consisting of m
elements, for some m,n € N. Then we have a surjection R™ — R", giving rise to an
exact sequence

0—-M-—-R" = R"—=0.

Since R" is free, the sequence splits and so R™ =2 R™ & M. Hence IBN property can be

stated as follows:
For any m,n € N, R™ = R" implies m = n.
By describing the change of basis, we can also express IBN property in matrix form:

For any A € My, xn(R), B € Mypxm(R), if AB = I,, and BA = I,,, then m = n.

It is direct that for a non-zero unital ring R without IBN there exist h, k € N such that
R = RhF_ The first pair of positive integers (m,n) with m < n in the lexicographic

ordering such that R™ = R" is called the module type of the ring R.
Lemma 1.1.3. Let R, S be two non-zero unital rings, m,n € N and m < n.
1. If R has module type (m,n), then R" = R* holds if and only if h =k or h,k >m
and h = k mod n.

2. Let f: R — S be a ring homomorphism (which preserves unit). If S has IBN then
R also has IBN.
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Proof. 1. Follows from the definition of module type.

2. We show that if R does not have IBN, then S does not have IBN. Let R be of
module type (m,n). Then there exists A € My,xn(R), B € Mpxm(R) satisfying
AB = 1,,, BA = I,. Applying f entry wise we get such matrices over S, whence
it follows that S™ = S§", so S cannot have IBN. In particular this means that if

the module type of S is (m/,n’) then m’ < m and n' —m/' | n — m.

In a series of papers [47, 48, 49, 50], Leavitt constructed and studied ‘canonical’
examples of non-zero unital rings that do not have Invariant Basis Number. For a field
K and m,n € N with m < n, he constructed K-algebras (which we now call) Leavitt
algebras Lx(m,n) of module type (m,n). Also Lx(m,n) is universal K-algebra with
this property in the sense that if 7" is any K-algebra having module type (m,n), then
there exists a non-zero K-algebra homomorphism ¢ : Li(m,n) — T such that the

isomorphism f : 7™ — T™ is equal to g ®, idy where g : (Lg(m,n))™ = (Lx(m,n))".

Lg(m,n) is explicitly presented as K-algebra with 2mn generators xij,mjj where

1<i<m,1<j<n,and relations
n m
Z xljw;k = 5114: and Z .%'ijx’jk = 5lk'
j=1 j=1

Leavitt also proved that Lg(m,n) is simple if m = 1 and that Lx(m,n) is domain for

all m > 1.

Li(m,n) can be equivalently viewed as the the quotient of associative free K-algebra

generated by x;;, x;‘j where 1 <17 <m, 1 < j <n modulo the matrix relations given by
AA* =1, and A*A=1,,

where A € My, xn(R), (A)ij = zi; and A* € My xm(R), (A%)ij = x};

g
1.1.1.2 V-monoid and Bergman’s universal ring constructions

Let R be a unital ring; a left (or right) R-module P is called projective module

over R if it is isomorphic to a direct summand of a free R-module. If P is a finitely
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generated projective module, generated by n elements, then we have P @ P’ = R"™ for
some (projective) module P’. The projection of R™ on P is given by an idempotent
n xXn matrix E and we may write P = R"FE. We note the conditions for two idempotent

matrices to define isomorphic projective modules.

Proposition 1.1.4. [29, Proposition 0.3.1] Let R be a unital ring and let E € Mpxn(R),
F € Myxm(R) be idempotent matrices. Then E = XY, F = YX for some X €
Mysm(R), Y € Mpy,xn(R) if and only if the projective left (or right) R-modules defined
by E and F are isomorphic: R"E = R™F.

Definition 1.1.5. For a unital ring R, let V(R) denote the set of isomorphism classes
of finitely generated projective left R-modules, and define a binary operation & on V(R)
by setting [P] ® [Q] = [P ® Q]. Then (V(R),®) is an abelian monoid with zero element

[0].

The monoid V(R) can equivalently defined in terms of idempotent matrices. For
any unital ring R, a finitely generated projective left R-module P is generated by the
rows of an n X n idempotent matrix E. Let the idempotent matrices E € M, x,(R)
and F' € M, xm(R) correspond to P and @ respectively. In view of Proposition 1.1.4,
define F and F are isomorphic if there exists matrices X € M, xm(R),Y € Myxn(R)

such that XY = F and YX = F. Define the diagonal sum E & F' to be the matrix
E

0 F
of isomorphism classes of idempotent matrices with the operation @. This also helps us

. Then E & F corresponds to P & . Hence V(R) may be defined as the set

to extend the definition of V-monoid to a non-unital ring as follows.

Definition 1.1.6. Let R be a ring, and let M (R) denote the set of all w x w matrices
over R with finitely many nonzero entries, where w varies over N. For idempotents
e,f € My(R), the Murray-von Neumann equivalence ~ is defined as follows:

e ~ f if and only if there exists z,y € My (R) such that xy = e and yz = f.

Let V(R) denote the set of all equivalence classes [e], for idempotents e € My (R).
e 0

0 f

Define [e] + [f] = [e @ f], where e @ f denotes the block diagonal matrix

Under this operation, V(R) is an abelian monoid, and it is conical, that is, a +b =0

in V(R) implies a = b = 0. An abelian monoid M is said to have a distinguished
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element d if for any * € M, there exists y € M such that x + y = nd for some
n € N. Moreover, if R is unital then [R] € V(R), which is also a distinguished element.
Also V(_) :Rings—AbMon is a continuous functor. That is, it maps direct limits to
direct limits. Thus if unital rings R and S are isomorphic then there exists a monoid
isomorphism V(R) — V(S) for which [R] — [S]. We denote such an isomorphism by
(V(R), [R]) = (V(S), [S).

Theorem 1.1.7. [67, Theorem 1.1.3] Let S be a commutative semigroup (not necessarily
having zero). There is a unique abelian group G(S), called the Grothendieck group of
S, together with a semigroup homomorphism ¢ : S — G(S), such that for any group G
and homomorphism 1 : S — G , there is a unique group homomorphism 60 : G(S) — G
with ¥ = 6 o .

Definition 1.1.8. For a unital ring R, the Grothendieck group of V(R) is called the
Grothendieck group of R and denoted by Ko(R). In other words Ko(R) := G(V(R)).

We note that Ko(_) :Rings—AbGroups is a continuous functor. For, if p: R — S
is homomorphism, then it induces a monoid homomorphism V(R) — V(S) defined by

[P] — [S ®, P]. To see that this map is well defined let P & @ = R", then

(S®eP)D(S®,Q)=®y, (PHQ)=S®, R" = 85",

Since tensor product commutes with direct sums, the map is well defined. Now from
the definition of Ky, it can be verified that the map Ky(p) : Ko(R) — Ko(S) is a group

homomorphism which satisfies the usual functorial conditions.

Definition 1.1.9. Let R, S be a unital rings. If the module categories R-Mod and

S-Mod are equivalent, then R and S are said to be Morita equivalent.

For example, any unital ring R is Morita equivalent to the matrix ring M, x,(R), for
any n € N. If R, S are Morita equivalent, then there exists an isomorphism ¢ : V(R) —

V(S). However, ¢([R]) need not be equal to [S].

In [28], Cohn studied properties that are successively stronger than IBN which are
given here. Let R be a unital ring. In the following discussion by an R-module we mean

an one sided R-module.
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I. Every free R-module has a unique rank.
II. A free R-module of rank n cannot be generated by less than n elements.

III. In a free R-module of any rank n, any generating set of n elements is free.
Reformulating we get the following equivalent properties.

I'. For every m,n € N, R™ = R™ implies m = n.
IT'. For every m,n € N, R™ = R™ & P implies m > n.

III'. For every n € N, R" = R" @ P implies P = 0.
Rewriting again in terms of matrices we get

IBN: For any A € M,,xn(R), B € Myxm(R), if AB = I,, and BA = I,, then m = n.
UGN: For any A € M,,xn(R), B € Myxm(R), if AB = I, then n > m.

WEF: For any A, B € My xn(R), if AB = I,,, then BA = I,,.

Clearly
WF = UGN = IBN.

Definition 1.1.10. A unital ring R is said to have Unbounded Generating Number
(UGN) if the above condition UGN is satisfied. R is called weakly finite if the condition
WEF is satisfied. We say R is weakly n-finite if condition WF holds only for n. Thus
R is weakly finite if and only if it is weakly n-finite for every n € N. A weakly 1-finite
ring is called directly finite.

Cohn constructed and studied ‘canonical’ examples of non-zero unital rings that do
not have IGN, UGN and WF properties. For a field K and m,n € N with m < n define

Vi (m,n) as the K-algebra generated by the 2mn symbols a;;, afj with defining relations

> aimak; =06 (1<i,j<m), (1.1.1)
k=1

n

Za%“kakj =6y (1<4,5<n). (1.1.2)
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In matrix notation the defining relations of Vi (m,n) are
AA* =1, and A"A=1,
where A € My, «n(R) with A;; = a;; and A* € My, (R) with Aj; = aj;.
Define the Cohn K-algebra of type (m,n), Cx(m,n), to be the K-algebra on the
same generators but with only defining relations 1.1.1. Clearly, Vi (m,n) is a quotient

of Cx(m,n). For m < n, Vg(m,n) = Lg(m,n), Thus Cohn’s constructions extend

Leavitt algebras.

It will be useful to consider the negations of IBN, UGN and WF:

amn: There exists A € My, xn(R) and B € M, xm(R) such that AB = I,,, and BA = I,,.
Bmn: There exists A € My, xn(R) and B € My xm(R) such that AB = I,,.

Yn: There exists A, B € M, xn,(R) such that AB = I,, and BA # I,,.

Vic(m,n) is universal for the K-algebra satisfying o, , and Ck(m,n) is universal
for K-algebras satisfying [, ,. Cohn described the normal forms (see Section 3.4) for
Vi (m,n) and Ck(m,n) and using normal forms he showed that Vi (m,n) and Ck(m,n)

are domains for m > 1.

Cohn proved that for m < n, Cx(m,n) satisfies By, but not fi p, with h <m,k <n
and therefore Ci(m,n) does not have UGN but has IBN. He also proved that for
Ck(n,n) satisfies v, but not ~,, for m < n. Thus Ck(n,n) is not WF, but satisfies
UGN.

Later in [68], Skornyakov studied K-algebras Wi (n) with a universal idempotent
n X n matrix. In other words Wg(n) is presented by n? generators z;; and relations

obtained from the matrix relation A?> = A, where (Aij) = x4j.

In [24], Bergman generalized Cohn’s constructions by considering the rings obtained
from a given K-algebra R by ‘adjoining to R’ universal homomorphisms, isomorphisms,
left-invertible maps, and idempotent endomorphisms between finitely generated projec-

tive R-modules.
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Given any K-algebra R, a K-algebra S is called an R-ringy if there is a K-algebra
homomorphism R — S. If S is an R-ringg and M an R-module, then the S-module
M ®gr S is denoted by M. If f : M — N is a R-module homomorphism then f ® S
is denoted by f : M — N. Bergman described the following universal module map

constructions:

Theorem 1.1.11. [2/, Theorem 3.1 - 3.2]

1. Adjoining maps: Let R be a K-algebra, M be any R-module, and P be a pro-
jective R-module. Then there exists an R-ringx S, having a universal module

homomorphism f: M ® S — P® S. We denote S by R(f : M — P).

2. Imposing relations: Let R be a K-algebra, M be any R-module, and P be a
projective R-module. If f : M — P is any module homomorphism then there
exists an R-ringg S such that f ® S = 0, and universal with that property. We

denote S by R(f = 0).

In the theorem, universal means the following: Given any R-ringyx T with the prop-
erty given in the theorem there exists a unique homomorphism of R-rings, S — T.
Moreover, in the construction of adjoining maps, S can be obtained by adjoining to R
a family of generators subject to certain relations, and in the construction of imposing
relations, S is obtained as a quotient of R. More generally, given a family of such pairs
M;, P; (i € I an indexing set), there exists an R-ringgx S having a universal family of
homomorphisms f; : M; ® S — P; ® S with the same universal property and given a
family of maps f; : M; — P;, there exists an R-ringgx S, universal for the property that
fieS=0foralliel.

Using these constructions Bergman then described more complicated constructions.
Let R be a K-algebra and P, be a two non-zero finitely generated projective R-
modules. We can also adjoin a universal isomorphism between P and @ by first adjoining
maps i : P — @ and i~! : Q — P and then imposing the relations ii~! = idé and
i~'i = idp. We denote such a ring by R(i,i" ' : P = Q). We can adjoin a map P — Q
and a one-sided inverse only getting a ring R(i : P — Q,j : Q — P;ji = idp). We can
adjoin a universal idempotent e : P — P by first adjoining a map e : P — P and then

imposing the relation e? = e to obtain R{e: P — P; e = ¢).
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Homological algebra classifies rings (resp. algebras) according to their global dimen-
sion, i.e. the length of projective resolutions of modules. The case of zero dimension
(semisimple rings) is fairly well known. The ring has global dimension 1 precisely when
all submodules of projective modules are projective but the ring is not semisimple. It
is well known that this holds for left modules if all left ideals are projective. A ring R
is called left hereditary (resp. left semi-hereditary if every left ideal (resp. finitely
generated left ideal) of R is projective. Corresponding definitions apply for the right

ideals as well.

Now it is direct that

Vi(m,n) = K(i,i~' : Kn = Km),
Cr(m,n) =K(i: K" — K™, j: K™ — K" ji = idzz).
Wi(n) = K(e: K" — K" e =e).

Theorem 1.1.12. [24, Theorem 5.1 - 5.4] Let R be a K -algebra, P and Q be a non-zero

finitely generated projective R-modules.
1. Let S = Rle : P — P; €2 = ¢). Then V(S) is obtained from V(R) by adjoining
two new generators [Py] and [Ps] and one relation [Py] + [P2] = [P].

2. Let S = R(i,i~t : P = Q). Then V(S) is obtained from V(R) by imposing one
relation [P] = [Q].

3. Let S=R(f : P — Q). Then V(S) 2 V(R) and under the map [M] — [M].

4. Let S=R(i: P — Q,j: Q — P;ji=1p). Then V(S) is obtained from V(R) by
adjoining a generator [Q'] and one relation, [P] + [Q'] = [Q)].

Corollary 1.1.13. [24, Theorem 6.1] Let K be a field and m,n € N. Then we have the

following presentations
V(Ck(m,n))=(I,J | mI=nl+J)

V(Vik(m,n)) = (I | mI =nl)
V(Wk(n)) =(I,P,Q |nl =P+Q)

where I € V(R) denotes the isomorphic class [R].
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Bergman established the following remarkable theorem.

Theorem 1.1.14. [2/, Theorem 6.2] Let M be a finitely generated abelian conical
monoid with distinguished element d # 0, and let K be any field. Then there exists
a hereditary K -algebra B = B (M, d) such that (V(B),[B]) = (M,d). Moreover, B has
the weak universal property that for any K-algebra S and any homomorphism ¢ : M —
V(S) such that d — [S], there is a (generally nonunique) K-algebra homomorphism
® : B — S such that ¢ is equal to the induced map ® : S®@p _ : V(B) = M — V(9).

The construction of Bg (M, d) depends on the specific presentation of M as F/(R),
where F is a finitely generated free abelian monoid, and R is a finite set of relations in
F. Given F and R, B(F/(R),d) is constructed explicitly in a finite sequence of steps
consisting of adjoining maps and relations. We refer to B = Bi (M, d) = Bg(F/(R),d)
as the Bergman algebra of (F/(R),d). We note that R could be a multi-set (see
Example 1.1.15). We often refer to the process of obtaining the Bergman algebra from

conical monoids (and vice versa) as Bergman machinery.
Example 1.1.15. 1. If (M,d) = (Z*/{0),1), then Bg(M,d) = K.
2. If (M,d) = (Z* /(1 = 1),1), then Bg(M,d) = K[X, X 1].

3. If (M,d) = (Z* /{1 =1, 1 = 1),1), then By (M, d) is the free product K[X, X 1]«
Ky, Y1

4. Let myn € N. If (M,d) = (Z"/{m =n), 1), then Bx(M,d) = Vi (m,n).

Bergman’s theorem thus solves the realization problem for hereditary algebras(see

below) in positive when the V-monoid is finitely generated.

Problem 1.1.16 (Realization problem for hereditary rings). Is every conical

abelian monoid with a order-unit realizable by a unital hereditary ring?

Later in [26], Bergman and Dicks completely solved the problem in positive.

1.1.1.3 The realization problem for von Neumann regular rings and graph

monoids

Now, we focus our attention on von Neumann regular rings. A good reference for von

Neumann regular rings is [35].
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Definition 1.1.17. A unital ring R is said to be von Neumann regular if for any

z € R there exists y € R such that zyz = x.

Theorem 1.1.18. The following are equivalent for a von Neumann regular ring.

1. R is von Neumann reqular.
2. Every principal left ideal is generated by an idempotent element.
3. Every principal left ideal is a direct summand of the left R-module R.

4. Every finitely generated submodule of a projective left R-module P is a direct sum-

mand of P.

5. R being absolutely flat. That is, every left R-module is flat.

A monoid M is said to be a refinement monoid in case any equality x1+z2 = y1+yo
admits a refinement, that is, there are z;;,1 < 4,7 < 2 such that z; = 2;1 + 22 and
yj = 21+ 22j for all ¢, j. If R is a von Neumann regular ring, then the monoid V(R) is a

refinement monoid by [35, Theorem 2.8]. In [36], Goodearl posed the following problem:

Fundemental open problem: Which monoids arise as V(R)’s for a von Neumann

regular ring R?

It was shown by Wehrung in [71] that there exist conical refinement monoids of size
No which cannot be realized as von Neumann regular rings. Thus we have the following

problem.

Problem 1.1.19 (Realization problem for von Neumann regular rings). Is every

countable conical abelian refinement monoid realizable by a von Neumann regular ring?

Now, we discuss about a natural monoid associated to a graph. For terminology used

here, the reader is refered to section 1.2.

Let E = (E°, E', s,7) be a row-finite graph (i.e. each vertex emits only finitely many
edges) and Ap be the adjacency matrix of . Then the graph monoid Mg of E is the

abelian monoid presented by generating set E° and the following relations.

for every non-sink v € E°, v = Z Ag(v,w)w
weEO
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where Ap(v,w) = |{e € E' | s(e) = v, r(e) = w}|.

It was shown in [18] that for every finite graph E, Mg is conical refinement monoid
with the order-unit > wv. Hence the authors considered addressing the realization
problem 1.1.19 for g?rigfl monoids. Using Bergman’s machinery they obtained a K-
algebra Li (F), called Leavitt path algebra of the graph E, for any finite graph E such
that V(Li(E)) =2 Mpg. It was understood immediately that Leavitt algebras of type

(1,m) for any m € N is an example of Leavitt path algebra for a class of graphs R,,

called rose with m petals.

In [14], it was shown that Lx (E) is von Neuman regular if and only if the underlying
graph is acylic. However, in [18] for any row-finite graph F, a von Neuman regular
K-algebra Qg (F) is constructed by universal localization of Li(FE) such that Ly (E)
can be embedded in Qg (E) and V(Lk(F)) = V(Qk(F)). Thus an attempt to solve the
realization problem in the case of finitely generated refinement monoid has been made

in the positive direction.

This raised the question whether every finitely generated conical refinement monoids
can be represented as graph monoids. The answer to this question is negative as it was
shown in [21] that even the basic example such as M = (p,a,b|p=a+p = b+ p) does
not occur as a graph monoid. To rectify this issue, in [20], Ara and Goodear] defined
graphs with additional structure, called separated graphs, so that any conical monoid can
be represented as (separated) graph moniods. Thus Leavitt path algebras of separated
graphs were the promising candidates towards the positive solution of the realization
problem. Recently, in [19], it was announced that the realization problem is solved in
the case of finitely generated refinement monoids in positive by considering Leavitt path

algebras of a class of separated graph called adaptable separated graphs.

1.1.2 The second historical thread: Graph C*-algebras

For undefined terminology used here the reader may consult any graduate level books

on C*-algebras such as [33], [54] or [70].

In [30], for any natural number n > 1, Cuntz constructed the C*-algebras O,,. His
original motivation was to study ‘simple separable C*-algebras with unit infinites’. Later

in [31], he also computed K-theory of these algebras. Now these algebras are called Cuntz
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algebras. From the definition of Cuntz algebras one can easily realize that O, are, in

fact, C*-algebra analogs of Leavitt algebras L¢(1,n) of type (1,n).

In [27], Brown introduced two classes of C*-algebras with an intention to generalize
Atiyah’s proof of the Kiinneth theorem of K-theory to non-commutative C*-algebras.
First of these is the non-commutative Grassmanian G}¢ where n is any natural number.
G¢ is presented by an identity and elements P;;, i, 5 = 1,...,n, subject to the relations

that makes the n x n matrix [P;;] a projection. In other words P;; = Pji and P;; =

]
> PixPyj. It can be seen that GJ.¢ are actually C*-algebra analogs of the Bergman
a]igebra We(n). The second class of examples are as follows: For any n € N, let U"¢ be
the C*-algebra generated by an identity and elements U;;, i,j = 1,...,n subject to the
relations that make the matrix [U;;] unitary. In other words, U}}¢ are C*-algebra analogs
of Bergman algebras Vg(n,n). Later McClanahan studied K-theory of GJ¢ and U}¢ in
[51]. In [52], McClanahan introduced the notion of rectangular unitary C*-algebras U},

and studied their Ext and K-theory. For any natural numbers m < n it can be seen that

Upt, are C*-algebra analogs of Leavitt algebras Lc(m,n) of type (m,n).

In the early 1980s Cuntz and Krieger considered a class of C*-algebras that arose
in the study of topological Markov chains ([32]). These Cuntz-Krieger algebras Oz
are generated by partial isometries whose relations are determined by a finite matrix
A with entries {0,1}. In order for these C*-algebras to be unique, the author further
assumed a non-degeneracy condition called Condition (I) on A. Since their introduction,
Cuntz-Krieger algebras are generalized in various ways and considered in the study of

classification of C*-algebras.

In [69], Watatani noted that O4 can be viewed as the C*-algebra associated to a
finite directed graph with adjacency matrix A and the condition (I) corresponds to the
property that the graph has no sinks or sources. In the late 1990s, the generalization
of these C*-algebras were considered for possibly infinite graphs that were allowed to
contain sources and sinks. Originally, a definition was given only for graphs that are

row-finite ([45, 44, 23]), and later generalized to arbitrary graphs ([34]).

Definition 1.1.20 (Graph C*-algebras). For a graph FE, the graph C*-algebra C*(E)
is the universal C*-algebra generated by mutually orthogonal projections {p, | v € E%}

and partial isometries with mutually orthogonal ranges {s. | e € E'} satisfying
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1. sgse = pp(e) for all e € EY
2. Sesg < py(e) for all e € E',

3. Do =D ees1(v) Sese for all v € EY and 0 < |[s71(v)] < o0.

The interested reader is refered to [64] or [58] to learn more about graph C*-algebras.

Though it is direct to see that the Cuntz algebras O, are C*-algebra analogs of
Leavitt algebras L¢(1,n), this realization came only in early 2000s during an NSF-
CBMS conference on “Graph algebras: Operator Algebras We Can See” when a group
of ring theorists attended the conference (cf. [5, p. 68-69]). This led to the consideration
of study of algebraic analogs of graph C*-algebras, which are now termed as ‘Leavitt path
algebras’. In [7], Abrams and Pino defined Leavitt path algebras of row-finite graphs and
characterized simplicity of these algebras in terms of underlying graphs. Later in [2], the
definition of Leavitt path algebras was extended to arbitrary graphs. Initially the focus
was to study if the dictionary between graph properties which translate to C*-algebra
properties also translate to purely algebraic properties. Though many of such properties
exist, not all properties directly translate. However, then the focus turned into algebraic
study of Leavitt path algebras such as multiplicative ideal theory(cf. [66]), module theory
(cf. [65]), chain conditions (][10]), finiteness conditions ([3, 4]), representation theory in

terms of underlying quiver represenatations ([41, 40]), etc.

1.2 Graph theory preliminaries

A graph E is a 4-tuple (E°, E',s,r) where E°, E' are sets and r,s : E! — E° are
functions. The elements of E° are called vertices of F and the elements of E! are
called edges of E. We place no restriction on the cardinalities of E° and E'. For each
edge e, s(e) is called the source of e and r(e) is called the range of e; if s(e) = v and
r(e) = w we also say that v emits e and that w receives e or that e is an edge from v

to w. We represent this visually as follows:

s(e) o—e> e 1r(e)
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A graph is also called ‘oriented multi-graph’ in graph theory, a ‘diagram’ in category
theory, and a ‘quiver’ in representation theory. If there is more than one graph, we write

sg and rg to emphasize that they are the range and source maps of E.

We say a graph E is called finite (or countable) if both E° and E' are finite
(or countable). E' is simple if both s and r are injective. E is called row-finite (or
column-finite) if the set s~ (v) is finite for every v € EY (respectively if r~1(v) is finite
for every v € E°). An edge e for which s(e) = r(e) = v is called a loop based at
v. A vertex which does not receive any edges is called a source (not to be confused
with source map). A vertex which emits no edges is called a sink. A graph E is called

sink-free (resp. source-free) if it has no sinks (resp. no sources).

We set
E'(v,w) :={e € E' | 5(e) = v,r(e) = w}.
Hence for v,w € E°, we have s~ '(v) = || E'(v,w) and r~*(v) = || E'(v,w). A
weE0 weEO
vertex v € E? is called row-regular (resp. column regular) if 0 < [s71(v)| < oo (resp.

if 0 < |r~!(v)] < 00). The set of all row-regular (resp. column-regular) vertices of E is

denoted by RReg(E) (resp. CReg(E)).

The adjacency matrix Ag of the graph E is the |EY| x |E°| matrix defined by
AE(’U,’LU) = |E1(’U,’LU)|.

Thus the graph is row-finite if and only if each row sum of Ag is finite.

A subgraph F = (F°, F! rp,sp) of E = (E°,E',rg,sg) is a graph such that
FO C EO F' C E' rp is the restriction of rg on F! and sp is the restriction of
sp on F'. Let V be a subset of E°. The induced subgraph on V is the subgraph
By = (V,El,ry,sy) such that E}, := s71(V)Nnr~1(V), ry and sy are restrictions of

rg and sg on E‘l/ respectively. A subgraph is full if it is induced on its set of vertices.

A graph morphism ¢ : F = (F,Fl rp,sp) - E = (E°,E',rg,sg) is a pair
of maps ¢ : F* — E® and ¢! : F! — E! such that rg(¢'(e)) = ¢°(rr(e)) and

sp(¢l(e)) = ¢°(sr(e)), for every e € F'. That is the following diagrams commute.
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¢! ¢!
F1—>E1 F1—>E1
Tr TE SF SE
FOTEO FOTEO

We denote the category of graphs along with graph morphisms by Gra. Given a
family of graphs {F;};c; in Gra, we define their disjoint union | | E; to be the graph
whose vertex set is | | EZQ7 edge set is | | EZ»I, and the source and lrealnge maps are trivial
extensions of s; andzerli respectively forZ 6a]H 1€ 1.

A path p in a graph F is either a vertex v € EY or a finite sequence of edges
= ejey...e, such that r(e;) = s(ej+1), for i = 1,...,n — 1. The set of all paths in F

is denoted by E*. We define the length function I(_) : E* — Z* by

0, if p=wvekEY,

n, if pw=eles...ey.

We denote the set of all paths in E of length n by E", and hence E* = UnZO E™. The

source and range functions s,r can be extended to E* as follows:
for v € E°, s(v) := v and r(v) := v,
if u=erea...en, s(u):=s(er) and r(u) :=r(ey,).

For a path p € E* the set {s(e1),r(e1),7(e2),...,r(en)} is called the support of pu.
Let = ejes...e, € E* (that is |u| > 1). If v = s(u) = r(u), then p is called a closed
path based at v. A closed path u = e1...e, based at v such that s(e;) # s(e;) for
every i # j is called a cycle based at v. E is called acyclic if it does not have any
cycles based at any vertex of E. An edge e € E! is called an exit of u (resp. entry of

w) if there exists an ¢ (1 < i < n) such that s(e) = s(e;) and e # ¢; (resp. r(e) = r(e;)
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and e # ¢;). For any v,w € E° and n € N we set

E"v,w) = {p € E" | s(u) = v,r(1) = w}

Note that if E is finite then |E™(v, w)| = A% (v, w), where Ag is the adjacency matrix

of E. Hence a finite graph FE is acyclic if and only if Ag is nilpotent.

A graph E is strongly connected if for any v,w € E°, there exists 1 € E* such

that s(u) = v and r(p) = w.

The (free) path category Cg generated by a graph E is the small category with
Ob(Cg) = EY and for v,w € E°, Mor(v,w) = E*(v,w) := {u € E* | s(p) = v,r(n) =
w}. In other words, the elements of Cr are paths in F and the partial multiplication is

defined by path concatenation.

We remark that the path category of a graph is a natural generalization of the free
monoid of words of a set as follows: If X is a set, we denote the set of all words with
letters in X along with an ‘empty word’ is denoted by X*. It is direct that X* becomes
a monoid with respect to multiplication defined by word concatenation (say on right).
Then (_)* : Sets — Mon is a functor such that X <y X* and satisfies the following
universal property: for any monoid M and any set map f : X — M, there exists a
unique monoid morphism f : X* — M such that foi = f. Let Cat denote the category
of small categories. Then C( ) :Gra—Cat is a functor such that £ embeds into Cg as
a subgraph and satisfies the following universal property: for any small category D, the

graph morphism ¢ : £ — D factors through the embedding.

Let X be a set and F(X) denote the free group generated by X. Let X := {z* |z €
X} and X* := (X)*. Then the following diagram commutes.

In fact, F'(X) has the following monoid presentation: the generating set is X* LI X* and

the relations are za* = 1 and z*x = 1, where 1 = 1* denotes the empty word over X.
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For a graph E = (E°, E',r, s), the double graph E of E is a new graph (E°, B! L
E1,5,5), where EL := {¢* | e € E'} and

5(e) = s(e) if e € E' and 5(e*) = r(e) if e* € Bt
7(e) =7(e) if e € E' and 7(e*) = s(e) if e* € ET

For visual representation of the double of a graph F, for each edge e in E we add a

new dotted edge e* in the reverse orientation.

2
s(e) 1 e (e)

A path p in E is called a generalized path. A graph E is connected if E is strongly
connected. That is, for any v,w € E°, there is a generalized path pu € E* such that
s(pu) = v and r(p) = w. The connected components of E are the graphs {FE;};cs such

that £ = | | E;, where every F; is connected.
JjeJ

A natural generalization of free group on a set is the notion of free groupoid on
a graph, which we define here: Given a graph E the free groupoid on F, denoted by
F(E) is obtained by imposing the following relations on C :

1. v* = v for every v € E°.

2. s(e)e = e = er(e) for every e € EL.

3. r(e)e* = e* = e*s(e) for every e € EL.

4. e*e =r(e) and ee* = s(e) for every e € E'L.

Given a set X the free 0-monoid Xy is the set X* LU {0} such that multiplication is
extended from that of word concatenation by defining 0.z =z -0 = 0 for every z € X.
Similarly one can define the free 0-group on X. An important generalization of free

0-groups is the concept of the polycyclic inverse monoids introduced by Nivat and

Perrot in [57].. The following definition is taken from [46]: For any n > 2 the polycyclic
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monoid P, is a 0-monoid presented by
* * *
P,=(x1...,zp,2%,..., 2, | xjz; = ;j)

This construction can be easily generalized to any set X as follows: For a set X, first
consider the free 0-monoid on X* LI X* and then impose the relations z*y = &,,. We

denote the polycyclic monoid on X by Px.

Recall that a semigroup S is said to be von Neumann regular if for every x € S
there exists y € S, called an inverse of = such that zyx = x. A regular semigroup S is
called an inverse semigroup if every element has unique inverse. Note that polycyclic

monoids are inverse semigroups.

A generalization of polycyclic monoids to the case of graph was considered by Ash
and Hall in [22]. They defined a notion of inverse semigroups associated to graphs. For
any small category C we associate a 0-semigroup SY(C) as follows: As a set SY(C) is
C* U {0}, where C* is the set of all morphisms in C and multiplication is defined by
extension of partial multiplication in C as follows: pv = 0 if cod(u) # dom(v). Given
a graph E the graph inverse semigroup on E is presented by S°(C 7) modulo the

following relations
1. s(p)p = p = pr(p) for any p € E*.

2. r(p)p* = p* = p*r(p) for any p € E*.

3. W =0r(p).

1.3 Algebra preliminaries

For a field K a K-algebra is an associative (not necessarily unital) ring R given with
a homomorphism of K into its center Z(R). A K-category is a category in which every
morphism set Mor(v,w) is given a structure of K-module, such that the composition
maps Mor (v, w) x Mor(u,v) — Mor(u,w) are K-bilinear. A K-linear functor will mean a

functor between K-categories that maps morphism sets by K-module homomorphisms.

An associative ring R is said to have a set of local units U if U is a set of idempotents

in R having the property that, for each finite subset r1,...,7, of R, there exists a u € U
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for which ur;u = r;, for 1 < i < n. Also, an associative ring R is said to have enough
idempotents if there exists a set of nonzero orthogonal idempotents Z in R for which
the set F' of finite sums of distinct elements of 7 is a set of local units for R. By K-Alg,
we mean the category whose objects are K-algebras with enough idempotents and whose
morphisms are K-algebra morphisms which map local units to local units. If R is a ring

with enough idempotents, then we have

R=@er=EPRf= P cRf

ecl fel e, fel
as additive groups.

Let E be a graph. The Path K-algebra of E, denoted by K(FE), is defined to be
the quotient of the free associative K-algebra generated by E* modulo the following
relations:

VW = By, for all v,w € EY, (V)

s(u)p = pr(p) = p, for all p € £ (U)

In other words, K(F) is obtained as the contracted K-algebra of the graph 0-
semigroup S°(E). (That is, zero element of K (F) is identified with 0 of S°(E).

Proposition 1.3.1. For a graph E, the path K-algebra K(E) has enough idempotents,
where the set of nonzero orthogonal idempotents is E°. Moreover, K(E) is unital if and

only if E° is finite, in which case Y vepo U is the unit.

Proof. By V, Y v, where V C EY is a finite subset, is an idempotent. Let A be a finite
veV

m
subset of K(E). Then each element a € A is of the form ) ku?, where kf € K and
=1

7

¢ € E*. Let the support of A, supp(A), be the union of supports of uf over A. Then

supp(A) is finite and by U, ug = >, v satisfies ugaus = a for any a € A. Thus
vEsupp(A)
EY is the set of enough idempotents of K(E).

For EY finite, the sum of all vertices is finite and it is direct to check that > w is
veED
the unit of K(FE). If EY is infinite, then since the vertices form the set of orthogonal

idempotents, there is no element of K (E) which acts as an identity on each vertex. [J
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By K-Alg we mean the category whose objects are K-algebras with enough idem-
potents and whose morphisms are K-algebra morphisms which map local units to local
units. We note that K(_) is not a functor from Gra to K-Alg. This is because a graph
morphism ¢ : F — E can map two distinct vertices v, w € F? to a same vertex in F, in
which case K(¢)(vw) # 0 in K(E), but vw = 0 in K(F'). However, let Gr denote the
category whose objects are graphs and morphisms are graph morphisms ¢ = (¢°, ¢!)
such that ¢° is injective. Then it is easy to verify that K(_) is a continuous functor
from Gr to K-Alg. For any graph E, it is easy to see that K(E) = @ K(Ej), where
{E;} e are connected components of E. <

We introduce an important tool called ‘Bergman’s diamond lemma for rings’ to com-
pute K-linear basis of a K-algebra which is presented by generators and relations. Given
a set W, let (W) denote the semigroup of all nonempty words over W (with juxtapo-
sition) and (W) denote (W) U {empty word}. Further, let K (W) denote the free

K-algebra generated by .

Let 3 be a set of pairs of the form o = (w,, f,), where w, € (W) and f, € K (W).
Then ¥ is called a reduction system for K (W). For any 0 € ¥ and A, B € (W), let
7 4o5 denote the endomorphism of K (W) that maps Aw,B to Af,B and fixes all other

elements of (W). The maps ra,p : K (W) — K (W) are called reductions.

We shall say a reduction r4,p acts trivially on an element a € K (W) if the co-
efficient of Aw,B in a is zero, and we shall call a irreducible (under X)) if every
reduction is trivial on a. The K linear subspace of all irreducible elements of K (W)
will be denoted by K (W),
be final on a € K (W) if rp, ... 71(a) € K (W)

A finite sequence of reductions rq,...,7, will be said to
irr®

An element a € K (W) will be called reduction-finite if for every infinite sequence
r1,72,... of reductions, r; acts trivially on r;_...71(a), for all sufficiently large i. If a
is reduction-finite, then any maximal sequence of reductions r;, such that each r; acts
nontrivially on r;_1...71(a), will be finite, and hence a final sequence. It follows from
their definition that the reduction-finite elements form a K linear subspace of K (V).
We shall call an element a € K (W) reduction-unique if it is reduction-finite, and
if its images under all finite sequences of reductions are the same This common value
will be denoted rx(a). The set of reduction-unique elements of K (W) forms a K linear

subspace, and ry, is a bilinear map of this subspace into K (W), ...
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A 5-tuple (0,0, A, B,C) with 0,0 € ¥ and A, B,C € (W), such that w, = AB and
wg = BC' is called an overlap ambiguity of ¥X. We shall say the overlap ambiguity
(0,0, A, B,C) is resolvable if there exist compositions of reductions r and ', such that
r(f,C) = r'(Afe). Similarly, a 5-tuple (0,0, A, B,C) with o # © and A, B,C € (W)

will be called an inclusion ambiguity if w, = B,wg = ABC and such an ambiguity

will be called resolvable if Af,C' and fg can be reduced to a common expression.

By a semigroup partial ordering on (W), we shall mean a partial order < such

that

B < B'= ABC < AB'C,

for any B, B’ € (W), A,C € (W). We call < compatible with X if for all 0 € X, f,, is

a linear combination of monomials < w,.

We now state the Bergman’s diamond lemma which will be used to find a basis for

Cohn-Leavitt path algebras of A-graphs.

Theorem 1.3.2 (Bergman’s diamond lemma). [25, Theorem 1.2] Let < be a semi-
group partial ordering on (W) compatible with ¥ and having descending chain condition.

Then the following conditions are equivalent:
1. All ambiguities of 3 are resolvable.

2. All ambiguities of K (W) are reduction-unique under X.

where I is the ideal of K (W) generated by the elements w, — fy(o € X).

is a set of representatives for the elements of the K-algebra K (W) /I,

irr

When these conditions hold, K (W) /I may be identified with the K -linear space K (W)

irr’

made a K-algebra by the multiplication a - b = rx(ab).

Proposition 1.3.3. For a graph E, E* forms a K-linear basis for K(E).

Proof. In order to apply Theorem 1.3.2, we replace the defining relations by the follow-

ing:

1’: For any v, w € E°,

VW = Oy V-
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2': For any v € E°, e € E',

3': For any e, f € E!,

ef =0if r(e) # s(f)

Denote by ¥ the reduction system consisting of all pairs 0 = (we, f,), where w,
equals the LHS of an equation above and f, the corresponding RHS. Let (P) be the
monoid consisting of all words formed by letters in E°U E'. Define a partial order < on
(P) by A< Bif A= Borl(A) <l(B). Then clearly < is a semigroup partial order on
(P) compatible with ¥ and also the descending chain condition is satisfied. It remains

to show that all ambiguities of 3 are resolvable.

In the following table we list all types of ambiguities which may occur:

Ambiguities

v 2/ 3

1 | wow | vwe | —

2" | evw | vew | vef

3|1 — |efv|efyg

We note that there are no inclusion ambiguities. We only show how to resolve ambiguity

of type 2’ — 3’ leaving other similar cases to the reader.

%’ [0u,s(eye] f \3"
vef du,5(e)0s(e)r(f) €S
\3’\> [0r(e)s(pyef] —2

This proves the confluence condition and hence the reduction finiteness as well. O

A right R-module M over a K-algebra R is called unital if MR = R. That is
for any m € M we can find ri,7ro,...,7, € R and mq1,mo,...,m, € M so that m =

miry + mare + - -+ + myry,. Note that this condition is equivalent to the standard
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definition of unital module (when R has a 1) since m1 = (myry +maore+- -+ +my,r,)1l =
miril + maorsl 4+ -+ + mprpl = myry + mores + - + mpr, = m. Let MMy denote
the category of unital right R-modules with R-module homomorphisms. Note that the
category 9Mp has a natural K-linear structure, hence so do the full subcategories i)ﬁég
of finitely generated right unital R-modules, and 9t} % of finitely generated projective

right unital R-modules.

Note that for a graph E the right unital module vK(E) generated by v € EY is

projective and also that V(K (E)) is free abelian monoid generated by E°.

Let E be a graph. The category of unital right K (F)-modules is denoted by M g (since
K is fixed). Note that Mg is equivalent to the category of quiver representations
of E, whose objects are the functors from the path category Cr of E to the category of
K-vector spaces, and morphisms are natural transformations between two such functors.
That is, a quiver representation p assigns a (possibly infinite dimensional) vector space
p(v) to each vertex and a linear transformation p(u) : p(s(p)) — p(r(u)) to each path p €
E*. A morphism of quiver representations ¢ : p — p’ is a family of linear transformations

{pv : p(v) = p'(v) }yepo such that for each p € E* the following diagram commutes.

p(s(1) 215 p(r(p))

¢s<u>l l‘br(u)

P (s() 21 ol (r(u)

For a unital right K(E)-module M, observe that M = € Mwv. The support
veED
subgraph of M is the full subgraph of E induced on Vi, := {v € E° | Mv # 0}.

A x-ring is an associative unital ring R with an anti-automorphism * : R — R that
is also an involution. That is, * satisfies the following properties: for every z,y € R,
(x +y)* = 2" +y*, (xy)* = y*z*, (2¥)* = z and 1* = 1. Let K be a x-field with
involution : K — K. A x-algebra is a K-algebra R that is also a x-algebra such that
(kr)* = kr* for every k € K and r € R.

A K-algebra R is called a G-graded algebra if R = @ R,, where G is a group and
geG

each R, is a K-subspace of R and RyR;, C Ry, for all g,h € G. The set RM = UgeG R,

is called the set of homogeneous elements of R. R, is called the g-component of

R and the nonzero elements of R, are called homogeneous of degree g. We write
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deg(r) =g if r € A; — {0}. We call the set Gr = {g € G | Ry # 0}, the support of R.
We say the G-graded ring R has a trivial grading if Gr = {e}, where e is the identity
of G. i.e, R. = A. For G-graded algebras R and S, a G-graded algebra homomophism
f: R — S is a K-algebra homomorphism such that f(R,) C S, for all g € G. A graded
homomorphism f is called a graded isomorphism if f is bijective, in which case we write
R =, S. It is easy to see that if f is a graded isomorphism, f~1is also a graded

homomorphism.

Let R be a G-graded ring. A graded unital right R-module M is defined to be

a right R-module M with a direct sum decomposition M = € Mg, where each My,

geCG
is an additive subgroup of M such that M R, C M, for all g,h € G. For G-graded
unital right R-modules M and N, a G-graded module homomorphism f: M — N is a
module homomorphism such that f(M,) C N, for all g € G. A graded homomorphism
f is called a graded module isomorphism if f is bijective and, when such a graded
isomorphism exists, we write M =, N.

Recall that for a graph F, E denotes the double of E. Let K be a field with an

~

involution. Then there is a Z-grading on K(F) given by

(), if ue P,
deg(p) := -
—l(p), if pe kb

Note that the linear extension of * induces a grade-reversing involutive anti-automorphism.
That is, deg(u)* = —deg(u) and (uv)* = v*p*. Hence K(E) is Z-graded *-algebra. Also

the (graded) categories of left unital K (E)-modules and right unital K (FE)-modules are

equivalent.

1.4 Leavitt path algebras

This section can be considered as a brief survey on Leavitt path algebras. Throughout

this section we fix K to be a field.

Definition 1.4.1. Let E be a graph, S C RReg(F) and K be a field. The Cohn-
Leavitt path algebra of E relative to S with coefficients from K, denoted by C3-(E),
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is defined as the quotient of K (F) modulo the the following relations:

Ve, feEY, e f=0dr(e), (CK 1)
Vvels, v= Z ee”. (CK 2)
e€s—1(v)

The algebra Cx(E) := C?((E) is called the Cohn path algebra of E and the algebra
Lk(E) = C’gReg(E)(E) is called the Leavitt path algebra of E.

From definition it is clear that for a graph F, the Cohn path algebra Cx(FE) is
the contracted K-algebra of the graph inverse semigroup of E. Also note that for an
S C RReg(E), CZ(E) is a quotient of C(F). In particular, L (F) is also a quotient
of Cx(E). However, it was shown in [6, Theorem 1.5.18] that for any graph E and
S C RReg(E) there exists a graph E(S) such that C3-(E) = Lx(E(S)) as K-algebras.

Example 1.4.2 (Leavitt algebras of type (1,m)). For m € Z" let R,, denote the rose

with m petals - a graph having one vertex and m loops:

Then from the defining relations it is direct that Ly (Ry) 2 K, Lx(R1) = K[X, X 1],
and Lx(Ry,) = Li(1,m) for m > 2. Also Ck(R,,) = Ck (1, m) for any m € N.

Example 1.4.3 (Matrix algebras). For n € N let A,, denote the oriented n-line graph

having n vertices and n — 1 edges:

Then it can be shown that Lx(A,) = M, (K) (cf. [6, Proposition 1.3.4]).
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Example 1.4.4 (Leavitt path algebra of a circle). For n € N let C,, denote the n-circle

graph having n vertices and n edges:

Then from [4, Theorem 3.3], it follows that L (Cy) = M, (K[X, X 1]).

As we mentioned earlier, an important motivation to study Leavitt path algebras was

the realization problem for von Neumann regular rings. For a row-regular graph FE, let

MFg denote the graph monoid of E. Then it was shown in [18] that V(Lk(E)) = Mg as

monoids. More generally we have

Theorem 1.4.5. [20, Theorem 4.3] Let E be any graph and S C RReg(E).

Then the V-

monoid of Cohn-Leavitt path algebra is generated by the set SU{q, | v € RReg(E)—S}U

{qX | v is an infinite emitter and X is a finite subset of s~'(v)} modulo the following

relations

1. for everyv € S,

2. for every v € RReg(E) — S,

v = Z r(e) + qu,

e€s~1(v)

3. for every infinite emitter v € E° and finite subset X of s71(v),

v = Zw—kqff.

weX

Note that the defining relations of Cohn-Leavitt path algebra of a graph E are of

homogeneous degree 0 and hence K (E) — C%(E) is a Z-graded algebra homomorphism.
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To find a K-basis for C3-(E), we can use Bergman’s diamond lemma and can check that

there are no inclusion ambiguities and all ambiguities are resolvable. We have
Proposition 1.4.6 (cf. [6]). Let E be a graph and S C RReg(E). Then
1. CZ(E) is a Z-graded -algebra with enough idempotents E°. Moreover, L (E) is
unital if and only if EV is finite in which case Y vepo U is the unit.
2. For each v € S choose an edge e, € s~ (v). Then a K-basis of C3-(E) is given by

the set

{w* € E* | pv € E*r(p) = r(v)}—{Aevein* € E* | A,k € E*,r(\) = r(k) = v,v

From part 2 of Proposotion 1.4.6, it is clear that K (F) embeds into Lx (F). Hence any
right unital L (E)-module can also be viewed as a module over K (F) and it is interesting
to study representations of Leavitt path algebras in terms of quiver representations of
E. This question was taken up in [41] and it was shown that when F is row-finite,
the category of Lx (F)-modules is equivalent to a full subcategory and also a retract of

quiver representations of F.

A major theme in the area focus on passing structural information from the directed

graph F to the Leavitt path algebra L (E), and vice-versa:
E has graph property P < Li(F) has algebraic property Q.

We list some theorems which illustrate this point.

Theorem 1.4.7. For a graph E the following are equivalent.

1. FE is acyclic.

2. Li(E) is right (or left) Artinian [10, Theorem 2.6].
3. Li(E) is von Neumann regular [1/, Theorem 1].

4. Lg(E) is finite dimensional [3, Corollaries 3.6, 3.7].

5. Lk (F) is isomorphic to direct sum of matriz algebras over K.

Moreover, we have

€ St
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Theorem 1.4.8 (Structure theorem for finite acyclic graphs). [5, Theorem 9] Let E be
a finite acyclic graph. Let w1, ..., ws denote the sinks of E£. For each w;, let N; denote

the number of elements of E* having range vertex w;. Then
t
Lk(E) = @5 My, (K).
i=1
Theorem 1.4.9. For a graph E the following are equivalent

1. The cycles of E have no exits.

2. Lk (E) is right (or left) Noetherian [10, Theorem 3.8].

3. Lk (E) is locally finite dimensional (each homogeneous summand is finite dimensional)[4,

Theorem 1.8].
4. Lg(FE) is principal ideal ring [13, Proposition 23].

5. Lk (F) is isomorphic to direct sum of matriz algebras over K and matriz algebras

over K[X, X~ Y. [4, Theorems 3.8, 3.10).

Definition 1.4.10. Let E be a graph and H C E°.

1. H is hereditary if whenever v € H and w € E° for which there exists a path p

such that s(u) = v and r(u) = w, then w € H.

2. H is saturated if whenever v € E? is regular such that {r(e) | e € E! s(e) =

v} C H, then v € H.

3. E satisfies condition (L) if every cycle in F has an exit.

Clearly the sets () and E° are hereditary and saturated subsets of E° and intersection
of any family of hereditary and saturated subsets of EV is also hereditary and saturated.
For H C E° let H denote the hereditary saturated closure of H. In fact, the set of
all hereditary and saturated subsets of E° forms a complete lattice with respect to set
inclusion, supremum given by \/ H; = [J H; and A\ H; = () H;. By the defining relations
of Leavitt path algebra, we ca; Verifyleasily thalt for anzy ideal I of Ly (E), INEY is

hereditary and saturated subset of E°.
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Theorem 1.4.11. [6, Theorem 2.5.9] Let E be a row-finite graph. Then the map I —
INE° is a lattice isomorphism from the lattice of graded ideals of L (E) to the lattice

of hereditary and saturated subsets of E°.

One of the first theorems proved in the area of Leavitt path algebras is the simplicity

theorem.

Theorem 1.4.12. [6, Theorem 2.9.1] For any graph E, the Leavitt path algebra Ly (E)
is simple if and only if E satisfies Condition (L) and only hereditary and saturated
subsets of E° are () and E°

Definition 1.4.13. A unital K-algebra A is called purely infinite simple if A is not a
division ring, and A has the property that for every nonzero element x of A there exists

b,c € A for which bxc=14.

The finite graphs F for which the Leavitt path algebra L(FE) is purely infinite simple

have been explicitly described in [8].

Theorem 1.4.14. L(E) is purely infinite simple if and only if E is sink-free, satisfies
Condition (L), and only hereditary and saturated subsets of E° are () and E°.

In other words, the graph F satisfies the following properties: every vertex in F
connects to every cycle of E; every cycle in F has an exit; and E contains at least one

cycle.

It is shown in [17, Corollary 2.2], that if A is a unital purely infinite simple K-algebra,
then the semigroup (V(A4)*, @) is in fact a group, and moreover, that V(A)* = Ky(A),
the Grothendieck group of A. For unital Leavitt path algebras, the converse is true as
well: if V(L(E))* is a group, then L(F) is purely infinite simple. (This converse is not

true for general K-algebras.)

Theorem 1.4.15. If L(E) is unital purely infinite simple, then

Ko(L(E)) = V(L(E))" = M.
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1.5 Chapter-wise summary

In chapter 2, we introduce the notion of weighted Cayley graph Cay(G, S, w) of a group
G with respect to a generating set S and a weight function w : S — N. Then we
study Leavitt path algebras Lx (C),(S,w)), where C,, (S, w) denotes the weighted Cayley
graph of Z, with respect to a generating set S of Z,, and weight function w : S — N.
The algebras Lg(C,(S,w)) satisfy a useful algebraic property known as purely infinite
simpleness and due to an important theorem called algebraic Kirchberg-Philips theorem
such algebras can be classified by computing their Grothendieck groups under mild
hypothesis. We present a method to compute the Grothendieck group. Specifically, we
find conditions under which the hypothesis of algebraic KP theorem is satisfied and also
provide a method to reduce the computation of the Grothendieck group. Finally, we

illustrate the method by considering some simple cases when |S| = 1,2 or n.

In chapter 3, we define bi-separated graphs E and their Cohn-Leavitt path algebras
Ak (F) and state some very basic results that follow from the definitions. We also
show how the generalizations introduced in previous section are special cases of Ag (E).
In section 3.3, we define the category BSG of bi-separated graphs and approrpiate
morphisms such that A (_) is a continuous functor from BSG to K-Alg. Also we show
that every object in this category is a direct limit of countable complete sub-objects (see
Proposition 3.3.7). However, this statement does not hold true if we replace countable by
finite. We then define a new sub-category of BSG, which we call “tame category tBSG”
and show that this category characterizes all objects of BSG which are direct limits of
finite ‘complete’ sub-objects. Thus if E is a tame bi-separated graph then AK(E) is a
direct limits of unital sub Cohn-Leavitt path algebras (of corresponding finite complete
sub bi-separated graphs). Section 3.4 deals with computation of normal forms of A (E)
using Bergman’s diamond lemma and some of it’s applications. In particular, we find
bi-separated graph theoretic conditions to study algebraic properties of Cohn-Leavitt
path algebras such as simplicity, semiprimitivity, von Neumann regularity, growth and

finiteness and also characterize the algebras which are domains.

In chapter 4, we focus our attention to the study of B-hypergraphs. In section
7?7, we define B-hypergraphs (E', A) and their H-monoids and show that H-monoids
are isomorphic to the V-monoids of the corresponding Cohn-Leavitt path algebras. In

section 4.2, we introduce the partially ordered set of admissible triples AT(E,A) for
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each B-hypergraph (F, A) and show that this poset is a lattice. We further show that
the lattice of order-ideals of H-monoid of (E, A) is isomorphic to the lattice AT(E, A),
which establishes that AT(E,A) is isomorphic to the complete lattice of trace ideals of
Cohn-Leavitt path algebra of (E,A). In section 4.3, we study the representations of
Leavitt path algebras of regular hypergraphs and show that the category of unital right
modules of these algebras is a full subcategory and a retract of quiver representations of
underlying graphs of the hypergraphs. Also, we give a characterization of Leavitt path
algebras of regular hypergraphs to have a finite dimensional representation in terms of
their H-monoids. Finally, in section 4.4, we provide a matrix criteria for a Leavitt path

algebra of a finite hypergraph to have invariant basis number.



Chapter 2

Leavitt path algebras of weighted
Cayley graphs Cy (5, w)

2.1 Introduction

For a finite group G and a subset S C G, let the associated Cayley graph be denoted
by Cay(G,S). When the given group is Z, we write C,(S) = Cay(Z,,S). Leavitt
path algebras of Cayley graphs of the finite cyclic group Z, with respect to the subset
S = {1,n — 1} were initially studied in [15]. It was shown that there are exactly four

isomorphism classes represented by the collection {L(C,(1,n — 1)) | n € N}.

Subsequently, in [9], the authors computed the important integers |Ko(L(Cy(1,7)))|
and det(I,, — AtCn(l,j))’ where A_y denotes the adjacency matrix of a directed graph,
and Ko(—) denotes the Grothendieck group of a ring. Also in [9], the collections of
K-algebras {L(Cy(1,7)) | n € N} for j = 0,1,2 were described upto isomorphism.

The descriptions of all these algebras follow from an application of the powerful tool

known as the (Restricted) Algebraic Kirchberg-Philips Theorem.

In [11], the study was extended and a method to compute the Grothendieck group
of the Leavitt path algebra L(Cy(1,7)) to the case where 0 < j < n—1and n > 3
was derived. Specifically, a method was given to reduce the computation of the Smith
Normal Form of the n x n matrix I, — Atcn (1.5) to that of calculating the Smith Normal
Form of a j x j matrix (M}')" — I;. Further a description of Ko(L(Cn(1,j)) was also
given.

33
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In this chapter we generalize the work done in [11] to study L(Cy(S,w)), where S
is any nonempty generating subset of Z,, w : S — N is a map and C,(S,w) is the
weighted Cayley graph. In section 2.2, we recall the background information required.
In Section 2.3, we present a method to compute the Grothendieck group. Specifically we
find the conditions to determine the sign of det(I, — Atcn ( S,w)) and also the cardinality
of Ko(L(Cp(S,w))). Also we find a method to reduce the computation of the Smith
Normal form of the n x n matrix I,, — Atcn (Sw) to that of calculating the Smith Normal
form of a square matrix of smaller size if 0 ¢ S (Theorem 2.3.9). In Section 2.4, we use

the method developed in Section 2.3 to study the following simple cases when (S) = Z,,:

Case 1 : [5] =1,
Case 2 : |S] =2,

Case 3 : |S| =n.

Moreover, we recover the results studied in [15],[9], and [11] as special cases and get some
new results. Among these new results, in particular, we show that L(K,) = L(1,n)
where K, is the unweighted complete n-graph (See 2.4.1 for definition) and L(1,n) is
the Leavitt algebra. We also show that the main result of [15] holds true if C,,(1,n—1) is
replaced by D, for every n € N, where D,, denotes the Cayley graph of Dihedral group

with respect to the usual generating set.

2.2 Background information

2.2.1 The Algebraic KP theorem

The following important theorem will be used to yield a number of key results in the

subsequent sections:

Theorem 2.2.1 ((Restricted) Algebraic KP Theorem). [12, Corollary 2.7]
Suppose E and F' are finite graphs for which the Leavitt path algebras L(E) and L(F') are
purely infinite simple. Suppose that there is an isomorphism ¢ : Ko(L(E)) — Ko(L(F))
for which o([L(E)]) = [L(F)], and suppose also that the two integers det(I o — A%)
and det(Ijpo| — Al) have the same sign. Then L(E) = L(F) as K-algebras.
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Example 2.2.2 (Leavitt algebras). For any integer m > 2, L(1, m) denote the Leavitt
algebra of type (1,m). It is easy to see that for m > 2, if R, is the graph having one
vertex and m loops, then L(R,,) = L(1,m). From Theorem 1.4.14 it follows that L(R,,)
is unital purely infinite simple and hence Ko(L(R;,)) & My is the cyclic group Zy,—1,
where the regular module [L(R,,;)] in Ko(L(R,,)) corresponds to 1 in Z,,_.

Unital purely infinite simple Leavitt path algebras L(E) whose corresponding K
groups are cyclic and for which det(|zo| — AL) <0 are relatively well-understood, and
arise as matrix rings over the Leavitt algebras L(1,m), as follows: Assume d > 2, and
consider the graph an having two vertices v, v9;d — 1 edges from vy to vg; and m loops

at vo.

(d-1)
Rl = e— e O (m)
V1 (%)

It is shown in [1] that L(R%) is isomorphic to the matrix algebra My(L(1,m)).
By standard Morita equivalence theory, we have that Ko(Mi(L(1,m))) = Ko(L(1,m)).
Moreover, the element [My(L(1,m))] of Ko(My(L(1,m))) corresponds to the element d in
Zm—1. In particular, the element [M,y,—1(L(1,m))] of Ko(My—1(L(1,m))) corresponds
tom—1= 0 in Zy,—1. Finally, an easy computation yields that det(lo — A’;i.% ) =
—(m — 1) < 0 for all m,d. Therefore, by invoking the Algebraic KP Theorem, the

previous discussion immediately yields the following.

Proposition 2.2.3. Suppose that E is a graph for which L(E) is unital purely infinite
simple. Let My, be isomorphic to the cyclic group Zp,—1, via an isomorphism which
takes the element ) _po[v] of My to the element d of Zy,—1. Finally, suppose that
det(Ijgo| — Af) < 0. Then L(E) = My(L(1,m)).

2.2.1.1 Computation of Grothendieck group

Let E be a finite directed graph for which |E°| = n. We view I, — A%, both as a matrix,
and as a linear transformation I, — A% : Z™ — Z", via left multiplication (viewing

elements of Z" as column vectors). As discussed in [1, Section 3|, we have
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Proposition 2.2.4. If L(E) is purely infinite simple, then
M}, = Ko(L(E)) = 7" /Tm(I,, — AY;) = Coker(I,, — A%).

Under this isomorphism [v;] — b; + Im(I,, — AL, where b; is the element of Z" which is

1 in the it" coordinate and 0 elsewhere.

Let M € M,(Z) and view M as a linear transformation M : Z" — Z" via left
multiplication on columns. The cokernel of M is a finitely generated abelian group,
having at most n summands; as such, by the invariant factors version of the Fundamental

Theorem of Finitely Generated Abelian Groups, we have
Coker(M) = Zg, © L., © -+ ® Ls,,

for some 1 <1 < n, where either n = [ and s, = 1 (i.e., Coker(M) is trivial group), or

there are (necessarily unique) nonnegative integers s, S;11, - - . , Sp, for which the nonzero
values sy, S141,...,5, satisfy s; > 2 for 1 < j < r and s;|s;41 for [ < i <r —1, and
Spp1 = -+ = 8, = 0. Coker(M) is a finite group if and only if r = n. In case [ > 1, we
define s1 = 59 = --- = 5;_1 = 1. Clearly then we have

Coker(M) =2 Zg, ®Zsy @ -+ ®ZLg, @ -+ B Ls,,

since any additional direct summands are isomorphic to the trivial group Z;.

We note that if P,@Q are invertible in M,,(Z) (hence their determinant is 1), then
Coker(M) = Coker(PMQ@). In other words, if N € M,(Z) is a matrix which is con-
structed by performing any sequence of Z-elementary row (or column) operations start-

ing with M, then Coker(M) = Coker(N) as abelian groups.

Definition 2.2.5. Let M € M,,(Z), and suppose Coker(M) = Zs, @ Zs, ® --- D Zs, as
described above. The Smith Normal Form of M (SNF(M) in short), is the n x n

diagonal matrix diag(si, s2,...,Sr,0,...,0).

For any matrix M € M, (Z), the Smith Normal Form of M exists and is unique. If
D € My,(Z) is a diagonal matrix with entries di,ds, ..., d,, then clearly Coker(D) =
ZLg, ® Lq, ® ---® Zg,. We also note the following:



2.2. Background information 37

Proposition 2.2.6. Let M € M,(Z), and let S denote the Smith Normal Form of M.

Suppose the diagonal entries of S are s1,S2,...,8,. Then
Coker(M) = Zs, ®ZLs, ® --- B Ls,,.

In particular, if there are no zero entries in the Smith Normal Form of M, then |Coker(M)| =

5182 ... 8, = |det(S)| = |det(M)].

Proposition 2.2.6 yields the following;:

Proposition 2.2.7. Let E be a finite graph with |E°| = n and adjacency matriz Ag.
Suppose that L(E) is purely infinite simple. Let S be the Smith Normal Form of the

matriz I, — A’};, with diagonal entries s1,82,...,58,. Then
KO(L(E)) = Zsl @ ng @ T EB an.

Moreover, if Ko(L(E)) is finite, then an analysis of the Smith Normal Form of the
matriz I, — A, yields

|Ko(L(E))| = |det(I, — Af)],

Conversely, Ko(L(E)) is infinite if and only if det(I, — A%) = 0 and in this case
rank(Ko(L(E)) = nullity(Z,, — A%).

We record the following theorem which will be used in computations of Smith Normal

Forms in later sections:

Theorem 2.2.8 (Determinant Divisors Theorem). [56, Theorem II.9]
Let M € My(Z). Define ag = 1, and for each 1 < i < n, define the i'" determinant

divisor of M to be the integer
a; = the greatest common divisor of the set of all i X © minors of M.

Let s1,892,...,8, denote the diagonal entries of the Smith Normal Form of M, and

assume that each s; is nonzero. Then

for each 1 <i<mn.
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2.2.2 Weighted Cayley graphs and circulant matrices

Recall that given a group G, and a subset S C G, the associated Cayley graph Cay(G,S)
is the directed graph E(G, S) with vertex set {v,y | g € G}, and in which there is an edge
e(g, h) from vy to vy, if there exists (a necessarily unique) s € S with h = gs in G. Thus,
in Cay(G, S), at every vertex vy, the number of edges emitted is |S|. The identity of G

is in S if and only Cay(G, S) contains a loop at every vertex.

Definition 2.2.9. Let G be a group, S C G and w : S — N be a map. Then w induces
a map (also denoted by w) from the set of edges of Cay(G,S) to N by e(g,h) — w(s)
whenever h = gs. The weighted graph of Cay(G,S) associated to the map w is called
the weighted Cayley graph (or w-Cayley graph) and is denoted by Cay(G, S, w).

In particular, Cay(G, S) is a special case of Cay(G, S, w) when w is the constant map

w(e) =1 for every edge e. In this case we say Cay(G, S) is unweighted.

Remark 2.2.10. Cay(G, S, w) is strongly connected if and only if (S) = G. In particu-
lar, Cay((S), S,w) is a connected component of Cay(G, S, w), where (S) is the subgroup
generated by S.

Notation 2.2.11. For a positive integer n, let G = Z,,, and S be any non-empty subset
of G. We denote the w-Cayley graph Cay(G, S, w) simply by C,,(S,w).

In other words, if S = {s1, s2, ... sk} then the w-Cayley graph C,, (S, w) is the directed
graph with the vertex set {vg,v1,v2,...,vp—1} and the edge set {e;(i,s;) | 0 < i <
n—1,1<j <k 1<1 < wsy)} for which s(ei(i,s5)) = vi, and r(ei(4,55)) = vits;,

where the indices are interpreted modulo n. Therefore C,,(S,w) is a finite graph.

Definition 2.2.12. For a positive integer n, let ¢ = (¢o,c1,...,ch—1) € Q™. Consider
the shift operator 7' : Q" — Q", defined by T'(co,c1,..-,¢n-1) = (Cn—1,C0y---,Cn—2)-
The circulant matriz circ(c), associated with ¢ is the n x n matrix C' whose kth row is

T+ 1(c), for k=1,2,....n. Thus C is of the form

Co ciT C ... Cp-1

Ch—1 € €C1 ... Cp—2

C1 Cy €3 ... Co
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In other words, a circulant matrix is obtained by taking an arbitrary first row, and
shifting it cyclically one position to the right in order to obtain successive rows. The

(4,7) element of C'is ¢j_;, where subscripts are taken modulo n.

Note that A, (s, is the n x n matrix with the (i, )" entry as w(s) if i +s = j
modulo n, for some s € S, and 0, otherwise. Hence Ag, (s, is a circulant matrix
with non-negative integer entries. In the case of unweighted Cayley graph C,(S), the

adjacency matrix is binary circulant matrix.

Definition 2.2.13. For ¢ € Q", let C = circ(c). The representer polynomial of C
is defined to be the polynomial Po(z) = co + c12 + - - - + cp_12" 1 € Q[z].

Lemma 2.2.14. Let C = circ(c) be a circulant matriz. Then the eigenvalues of C

equal Po(CF) = co+c1¢F 4+ - —i—cn_ldf(n_l) fork=0,1,...,n—1, where (, = e%, the

primitive n*" root of unity. Further

n—1 /n—1
det(C) = H <Z qd[’“) .

=0 \k=0

For a proof of Lemma 2.2.14, we refer the reader to [42, Theorem 6].

Note that the n*" cyclotomic polynomial, denoted by

e(0)= [[ @-¢.
1<a<n
ged(a,n)=1

is an element of Z[z]. Also, " — 1 = [[ ®4(z). Since ®,(z) is the minimal polynomial
dn

of ¢n, f(¢n) = 0 for some f(z) € Z[x] implies ®,,(x) divides f(z). By applying Lemma

2.2.14 we get

Lemma 2.2.15. Let C = circ(c). Then the following are equivalent.

(a) C is singular.
(b) Po(CF) =0 for some k € Z.

(¢) The polynomials Po(x) and x™ — 1 are not relatively prime.
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2.3 Leavitt path algebras of C,(S,w)

Theorem 2.3.1. Let G be a finite group, S its generating set and w : S — N a weight

function. Let W = > w(s). Then the following are equivalent:
seS

1. L(Cay(G, S,w)) is purely infinite simple.
2. W > 2.

3. L(Cay(G, S,w)) does not have Invariant Basis Number.

Proof. (1) = (2) < (3). Let |G| =n. If W =1, then |S| = 1. Setting S = {g}, we have
G is cyclic group generated by g. Hence Cay(G, S,w) is the graph C,,, which is cycle of
length n and which does not satisfy condition L. This contradicts (1). By [4, Theorem
3.8 and 3.10] L(Cy,) = M, (K [z,z~!]) which has Invariant Basis Number.

(2) = (1). Let W > 2. In Cay(G, S,w), the number of edges emitted at each vertex
vg is W. So there are at least two edges emitted from each vertex. This also implies
condition (L). Since (S) = G, Cay(G, S, w) is strongly connected. Hence for any vertex
vy there is a non-trivial path connecting v, to vy and vice versa. Therefore Cay(G, S, w)

contains a cycle and there is no non-trivial hereditary subset of vertices.

(2) = (3). For a finite graph E, L(E) has Invariant Basis Number if and only if for

each pair of positive integers m and n,

mZ[U]:nZ[v]inMEém:n.

veEEY veERD

In Mcay(a,s,w), for each vy we have [v,] = Z:Sw(s)[vgs] and hence,
se

Zh’g] = Z Zw(s)[UQS] = Z Z w(s)[vgs] = Zw(s) Z[Ugs} =W Z[UQS]'

geG geG seS seS geG seS geG geG

Since G is a finite group we have G = {gs | g € G} and hence ) [vgs] = ) [v4]. Hence

geG geG
we have ) [vg] = W 3 [vg]. If W > 2 then L(Cay(G,S,w)) does not have Invariant
geG geqG
Basis Number. O

Corollary 2.3.2. [55, Proposition 4.1, Theorem 4.2] Let G be a finite group, S its

generating set. Then the following are equivalent:
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1. L(Cay(G,S)) is purely infinite simple.
2. L(Cay(G,S)) does not have Invariant Basis Number.

3. 8| > 2.
Proof. In this case W = |S|. O

From now on, we work with the following assumption:

Assumption 2.3.3. Let n € N, S = {s1,82,...5:} C Zy. $1 < 82 < -+ < 8. Further
set W= > w(sj).

S]'ES
Theorem 2.3.4. Let (S) = Z,, and W > 2. Then in the group Mén(s w)? the order of
S0 [vi] divides W — 1. Further, if ged(W —1,n) = 1 then order of Y0~ [vi] is W —1.

Proof. Let S = {s1,s2,...,5;}. Then in M(*Jn(s w) e have the following relations

il = Y w(s))[virs;]-

S]'GS

Let o0 = .7 [v;]. Then using the defining relations in M, () WE have

o= Sl = % ( > w(sj>[vz-+sj1> = % wlsy) (S o)
= S

=0 i=0 \s;€ s;€8 =0
n—1
= SESU}(SJ‘) <z;) [Uz']> = (szesw(sj)> o=Wo.

Thus, in the group Mé,n(s w)r Ve have (W — 1) o = 0. This proves the first part of the

theorem.

By Theorem 2.2.4, Mgn(s,w) =~ Coker (I, — Atcn( S,w))’ and under the isomorphism
[vi] — b; 4+ Im(I,, — Atcn(&w)), where b; is the element of Z" which has 1 in the "

coordinate and 0 elsewhere.

Hence for a natural number d, do = 0 in Mén(s,w) if and only if dv € Im(I,, —
Atcn(sw)) where ¥ = (1,1,...,1)!. This is equivalent to @ — AW = dv for some @ =

(ug,ut,...,up—1) € Z", which in turn is equivalent to

u; — Z w(sj)un—s; 41 =d 0<i<n-—1.
SjGS
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Adding all the above equations, we get

Zul ZZ 5] Up— s+l—nd

[=0 s;€S

n—1 n—1
LHS = Zul — Z Zw(sj)un,sﬁl
1=0

5;€58 1=0
n—1 n—1
= w = Y wls) Y
=0 s;€8 =0

n—1
=|1- Zw(sj) Zul
1=0

S]'ES

n—1
=(1-W)> .
=0

Thus W — 1 divides nd. If ged(W — 1,n) = 1, then W — 1 divies d. In particular,
n—1
when ged(W — 1,n) = 1 order of Y [v;] is W — 1.
=0

Assumption 2.3.5. In what follows, we always assume that (S) = Z,, and W > 2.

As we noted in 2.2.14, for a circulant matrix C,

n—1 [n—1

det H Z C]C ’

=0 \j=0

where (¢, = e , the primitive n'® root of unity. For C,(S,w), the adjacency matrix
Ac, (sw) 1s circulant. Also I, — Acn(s w) 18 circulant (with integer entries). Let S =

{s1,82,...,8k}. Then,

n—1
ls;
det(I, — A, () = det(I, — Ac,s)) = [ | 1= D ws))én” | -
=0 s;€S8

Proposition 2.3.6. Let Sy :={j € S|j=0 (mod 2)}, S1:={j€S5|j=1 (mod 2)},
Wy = ZS]'GSO w(sj), and Wy := Zsjesl w(sj). Then det(l, — AtCn(S,w)) > 0 if and only
if n is even and 1 + W1 < Wy.
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Proof. Let P(x) =1— Zsj w(s;j)z* be the representer polynomial of I,, — Atcn(s’w). Let
z=P()=1- Zsj w(s;)¢%. Tt is easy to see that 29 = 1 — Zsjesw(sj) =1-W<0
and z,_; = 7z for all [. Thus det(I,, — AtCn(S)) > 0 if and only if n is even and zz <0.
Since

z

=1= > wis)+ Y w(sy),

j even j odd

|3

Thusz%<01ff1+W1<Wo. ]

Proposition 2.3.7. Let P(x) € Z[z] be the representer polynomial associated with the
circulant matriz I, —Atcn(s’w). Then Ko(L(Cy,(S,w))) is infinite if and only if P(x) and

" — 1 are relatively prime.
Proof. Follows from Lemma 2.2.15 and Proposition 2.2.7 0

In order to compute the Grothendieck group of the Leavitt path algebra of C,, (S, w),

we look at the generating relations for M(*)n (Sw)

[oi] = > wlsy)[vits;]:
S]'GS
where 0 < i < n — 1, (subscripts are modulo n) and S = {s1,s2,...,sk}, (51 < S, for
[ < m). Any statement about [vg] in Mén(s w)? has an analogous statement for [vg] for

0 <k <n—1, by symmetry of relations.

Definition 2.3.8. The companion matrix of the monic polynomial p(t) = c¢o + 1t +

s F ept" L+ 17 is a n x n matrix defined as

0 0 0 —co

1 0 ... 0 —C1
Tp)=|0 1 0 —c

00 ... 1 —Cp—1

Let a linear recursive sequence be of the form

Untk — Cp—1Unptk—1 — *** — CoUp =0 (n > 0)7
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where cg,c1,...,c,—1 are constants. The characteristic polynomial of the above
linear recursive sequence is defined as p(t) = t" — ¢, 1t" ! — .-+ — ¢t — ¢o whose

companion matrix is

00 0 ¢

1 0 0 C1
T(p)=10 1 0 e

00 ... 1 Cp—1

This matrix generates the sequence in the sense that,
(ak Af4+1 - -- ak+n—1) T(p) = (ak+1 k42 - .- ak-i—n)

In particular, the (n,n)™ entry of T'(p)* is uy,r—o.

When 0 ¢ S, from the linear recursive relation in M, (*}n( Sy We have the characteristic
polynomial p(S,w,t) =% — 37 gw(s;)t**~*. The companion matrix of p(S,w,?) is

denoted by T, (s.w), is then the si X s, matrix

0o 0 . 0
1 0 0
0 1 0
Te,(sw) =
C
0 0 1

where c is the last column of T, (g,,) Which contains entry w(s;) at positions s, —s;+1

and 0 elsewhere.

In M(*Jn (Sw) We observe that by writing the generating relations and then expanding
the equation such that the subscripts are kept in increasing order, at it step we get the

coefficients to be the last column of Té,n (S:w)°

The computation of the Smith Normal Form of I, — Atcn( Sw) is the key tool for deter-
mining the K of the Leavitt path algebra of C, (S, w). We show that this computation

reduces to calculating the Smith Normal Form of an s; X s, matrix.
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Theorem 2.3.9. Letn € N, S = {s1,s9,...,8x} € Zy, such that (S) = Z,,0 ¢ S, and

W > 2. Then Coker(I — Af, (g.,) = Coker(T; (5., — In)-

Proof. Since the Smith normal form of In—AtCn(S,w) and Ac,, (5,w)—In are the same, their
cokernels are same and we only show that Coker(Ac,, (s,w) — In) & Coker(T7 (Saw) ~ I,).

For simplicity, we write B = Ag, (5w) — In and T'= T, (5.4 First we observe that

_17 lf q=Dp,
Bpg = qw(sj), if g=p+sj,

0, otherwise.

Let P be a (s X sg) lower triangular matrix given by

0, it q>p,
Ppg = w(s;), it p—q=s;—sj,

0, otherwise.

and let @ be a (s x sg) upper triangular matrix given by

0, if g<np,

_17 if q =D,

qu
w(sj), if ¢—p=sj,

0, otherwise.

It is direct that P and Q are invertible. Let R = —Q~!. Then a direct computation
yields PR = T, and also QR = —I;,. Let P’ be the block matrix [P | Oskx(n—sk)] and
Q' be the block matrix [0y, x(n—s,) | @] The (sk x (n — si)) submatrix of B consisting

of bottom s — k rows can be written as P’ + Q.
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The first (n — s) reduction steps of the Smith normal form will result in an (n —
sk) X (n — sg) identity submatrix in the upper left corner. On the bottom sj rows, the
ith reduction step adds the i*" column to the sum of w(s;) times (i + sx)t" columns, then

zeros out the i column. The matrix that accomplishes this reduction step is

r
100 0 0
PlTP=|0 10 ... 00
000 10

where r is the first row contains entry w(s;) at positions s; and 0 elsewhere. After i
reduction steps, the first (s X sx) submatrix with nonzero column vectors on the bottom
s rows will be

P.(P7lTP) =T'P.

Therefore the first (n — si) reduction steps of the Smith Normal Form will result in

the following form.
I

n—s) O(n—si)xs

Oskx(n—sk) TP +Q

B ~

Since (T"**P+ Q)R=T" — I,

I(n—sk) O(n—sk)xsk
ka(n—sk) T —1

Sk

B~

Hence Coker(B) =Coker(T™ — I, ).

2.4 Illustrations

As illustrations of the above discussion we consider some simple cases when W > 2 and
n—1

> [vi] is the identity in Mg (8,w)> Which recovers the examples obtained in [15],[9],and
i=0 ’

11].
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241 S=2,
n—1

In this subsection, we only look at the following two simple cases when > [v;] is the
i=0

identity in M(’Sn (o)

Definition 2.4.1. Let n,l be two positive integers. We define Kr(f) to be the graph
with n vertices vg,v1,...v,—1, in which there is exactly one edge from v; to v; for each
0<i#j<n-—1and! loops at each vertex. We call Kg) the complete n-graph with
[ loops.

Theorem 2.4.2. Let n > 2 be a positive integer.

1. L(EMY 2 L(1,n).
2. Let E be a finite graph such that L(E) is purely infinite simple. If Ko(L(E)) = 7™
and [L(E)] is identity in Ko(L(E)), then L(E) = L(K),).
Proof. Let w; : S — N be the weight function defined by w;(0) = [ and w;(i) = 1 for
1 <i<n-—1. Then it is direct that Cy(Z,,w;) = Kg).

1. We note that

n—1 n—1
det(I,, — A;w) =[O ) =-mn-1) <.
1=0 j=1
n—1
Also we have W —1 = [S|—1=n—1. So gcd(W — 1,n) = 1 and hence ) [v;] is the
i=0

identity in M;{(D. Also determinant divisors theorem yields that
SNF(I,, — Ath) = diag(1,1,...,1,n — 1).

Hence, KO(L(KS))) = Zn—1. By Proposition 2.2.3, the result follows.

2. We note that (I, — AtK(Q)
det(I,, — A';((Q)) = 0 and rank([,, — A;@)) = 1. Therefore if n > 2, then

) is the m x n matrix with every entry —1. Hence

Ko(L(K®)) =z L.

n
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Also in KO(L(KT(LQ)))7

n—1 n—1 n—1 n—1 n—1
o= Z[vi] = [vg] + Z[vi] — <2[v0] + Z[vﬂ) D i =2 [vi] = 20

=0 i—1 i=1 i=1 =0
n—1
Hence ) [v;] is the identity in KO(L(K7(12))). Applying Algebraic KP Theorem, we have
i=0
the result. O
2.4.2 |S]=1

Let S = {i}. Since (S) = Z,, gcd(i,n) = 1 and the weight function w : S — N is given
by w(i) = W. Let DF be the graph with n vertices vg,v1,. .., v, and kn edges such that

every vertex v; emit k edges to v;11. We call DF an k-cycle of length n.

DF = (k;)/' * * \Ek)
Un—2 @ ® Ui
(k;\ ] /(k)
.. - )
(k) 2

It is easy to see that C,,(S,w) = DWV.

The generating relations for M7, are given by
[vi] = Wlvig]

for 0 < ¢ < n, where the subscripts are interpreted mod n. So for each 0 < i < n we

have that
[vi] = Woisa] = W2{viga] = - = W [u,q] = W]

In particular, each [v;] is in the subgroup of M}, generated by [vp]. Since the set

{[vi] | 0 < i < n — 1} generates M7

pws We conclude that Ml*)x’ is cyclic, and [vg] is a

generator.
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We also observe that

n—1
det(I, — Apw) = [[a-w¢) =1-w" <0
=0

We conclude that |Ko(L(D)Y))| = W™ — 1. Thus we have
Ko(L(Cn(S,w)) = Mpw = Zyn 1.

Proposition 2.4.3. Let S = {i},ged(i,n) = 1, and gcd(W — 1,n) = 1. Then
L(C,(S,w)) & Myn_1(L(1,W™)).

Proof. Z?;Ol [v;] is the identity in the group Mg, (Sw)" Hence by Proposition 2.2.3 the

result follows. O

Corollary 2.4.4. (/9], Proposition 3.4) Assume the hypothesis of Proposition 2.4.3 and
W =2. Then L(Cp(S,w)) = Maon_1(L(1,2"))

2.4.3 || =2

Let S = {s1,s2} with s; < s2. Let a,b € N. We define w(s;) = a and w(s2) = b. Thus,

W =a+b> 2. Since (S) = Z,, it is sufficient to consider only the following subcases:

1. sy =0 and so = 1.
2. 81:1.

3. s1 and s divide n with 1 < s1 < s9, and ged(sy, s2) = 1.

In what follows we consider these subcases separately.
n—1

Lemma 2.4.5. In each of the above subcases if a = b =1, then > [v;] is the identity
i=0

in Mén(S,w)‘

Proof. Since W —1 = |S| —1 =1 in these subcases we have gcd(W — 1,n) = 1 and the

result follows from Theorem 2.3.4. O]
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Proposition 2.4.6. Let n,a,b € N be fized. Let 0 < s1 < s < n — 1. Consider
the w-Cayley graph Cy(S,w), where S = {s1,s2} and w(s1) = a,w(s2) = b. Then
det(I,, — AtCn(S,w)) = 0 if and only if exactly one of the following occurs:

1. a=b=1,n=0 (mod 6),s2 = 5s; (mod 6).
2. a=b+1, n is even, s1 is even, Sg is odd.

3. b=a+1, n is even, s1 is odd, so is even.
Proof. Let A = det(I,, — Aén(&w)) and z; = a’®t + b¢!*2. Since

n—1
— | | o Alst g ls
. =0 <1 aC 1 bC 2>’

We see that A = 0 if and only if z; = 1 for some [. We observe that zo =a+ b > 1 and

Zn—1 = Zj. SO we can write

-1
2
=1

(1—20) [T (1= 2)(1—2), if n is odd,
A= l -
n_

(1—20)(1 —a(—1)%* —b(—1)%2) 11;11 (1—2)(1—2), ifn iseven.

Hence we can assume 1 < [ < [§], where [5] is the integer part of 5. Further, z; =1

implies }a(lsl +b§l52} =1 Sol= ’aClSl +bCl‘92’ > ||la| — |b]| = |a—b] > 0. Since
a,b € N, only possiblities are a = b,a =b+1,or b =a + 1.

Case 1: a=b

Let 0 = % Then z; =1 if and only if
a(coss1f 4 cossaf) =1 and a(sinsif + sinsqef) = 0.

The second equation implies that s10 = —s90 (mod 2)w. Substituting back in first

equation we get,

1 = a(cos(—s20) + cos s20) = 2a cos s96
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1 27l 1
= cossl = — = —s9 = arccos [ — | .
2a n 2a

Thus n € N only if @ = 1. Assuming a = 1, we have arccos% =35 or 5{ Substituting

back, we see that
2mwlsy  w 2mwlsy  Bw

= — = n =068yl = — = bn = 6ssl.
" 3 n Sal, oOr n 3 n S9

In either case, n =0 (mod 6). Also, s26 = —s160 (mod 2)7 implies that for some integer

m7
5
(s2 + Sl)g =2mm = sy + s =6m or (s2+ 51)% = 2mm = 5(sy + s1) = 6m.

In either case, s + s1 =0 (mod 6), or sy = 5s1 (mod 6).

Conversely, when a = 1,n = 0 (mod 6) and s; = 5s1 (mod 6), then letting [ = 6

implies that
27\ S1 2mi\ —S1
zl:wl51+wl52:<e6) +<66) =1

Case 2: a=b+1

As in case 1, let @ = 2%L. Then 7 = 1 if and only if

(b+1)coss10 +bcossaf =1 and (b+ 1)sinsi0 + bsinsaf = 0.

The second equation implies that s;0 = arcsin (b:Tbl sin 329>. Substituting back in the

first equation we get,

(b+1)cos (arcsin (b 1 sin 820>> + bcos sof = 1.

Since cos(arcsinz) = v/ 1 — 22, we have

2
(b+ 1)\/1— (bilsinsﬁ) + bcos sof = 1.

Hence,

VB2 4+ 20+ 1 — b2sin 590 = 1 — bcos so0.
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Squaring both sides,

b2 cos? 90 + 2b + 1 = b? cos? 590 — 2bcos 590 + 1 = cos s90 = —1.

Therefore, sof = 7w (mod 2)7. Substituting 6 = 277{1, we see that n is even. Also, s96 = 7

(mod 2)7 implies that (s9 —1)m = 2mm for some integer m. So, so = 2m+1 or sg is odd.

Also since, s10 = arcsin (l;—bl sin 326) = arcsin(0), sym =0 or w. (b+ 1)cossym —b =

1= 517 =0 (mod 2)7. Hence s; is even.

Conversely, let n, s1 be even and s be odd then by taking [ = 3, we get

2= (bH)wt +bw? = (b+1)(=1)" +b(-1)2 =b+1-b=1.

Case 3: b=a+1
The proof is similar to that of case 2.
O

Corollary 2.4.7. Assume the hypothesis of Proposition 2.4.6. Further assume that
L(C,(S,w)) is unital purely infinite simple. Then Ko(L(Cy(S,w))) is infinite abelian
group if and only if one of the following holds:

1. a=b=1,n=0 (mod 6),s2 = 5s; (mod 6).

2. a=b+1, n is even, s is even, s is odd.

3. b=a+1, n is even, s1 is odd, s is even.

In which case rank(Ko(L(Cp(S,w)))) = n —rank(l, — Ac, (s,w))-

2.4.3.1 Subcase 2.1: S ={0,1}

Let FT(La’b) be the graph with n vertices vy, v1,...,v,—1 and ak + bk edges such that at

every vertex vy, there are a loops and b edges getting emitted into v (subscripts are

mod n).
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a (a

(a) )
Ry = Q (b) Q
( )

b) Un—-1 o (b

@( ez v @

NN A0
(

58

(a)

Then C, (S, w) = ™ when S = {0,1}. We note that

n—1

det(I,, — A;ga,b)) =T —a—bh=(1—a) b
=0

Lemma 2.4.8. Let n,a,b € N. Then
det(Z,, — A;(a’b)) > 0 if and only if n is even and a > b+ 1.

Moreover, det(I,, — AtF(am) =0 if and only if n is even and a = b+ 1.
Proof. We refer to the proof of Proposition 2.4.6. We need to substitute s; = 0, and
s = 1. Since,

n—1
2
=1

(1—20) [T (1= 2)(1—2), if n is odd,

~

A:

2
(1 —20)(1 —a(—1)7 —b(—1)%) ll;[1 (1—-2)(1—2), ifn iseven,

We see that A > 0if and only if n is even and a > b+1, in which case 1—z% =1-a+b<0.

Also, it follows that, det(l,, — A;@,b)) =0 if and only if n is even and a = b + 1.

We describe the Smith Normal Form of I,, — A;@,b)-
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Lemma 2.4.9. Suppose n € N. Let T be the n X n circulant matrix whose first row is
t=((1—-a),=b,0,...,0). Let gcd(1 — a,b) = d. Then the Smith Normal Form
: (1 —a)" —b"|
SNF(T') = diag (d, d,...,d, BT —
Proof. In order to compute Smith Normal Form of 7', we use the determinant divisors

theorem and look at i x ¢ minors of T" for each 1 < i < n. Let «; be the gcd of the set

of all 4 x ¢ minors of T" and oy = 1. Then

SNF(T) = diag (O‘l, @ Met(T)') .
Qp Q1 Qn—1

By the definition of T', it is easy to observe that a; = ged ((a — 1), %) = ged(a, b)’ =
d' for 1 <i<n—1and |det(T)| = |(1 — a)" — b"|. Therefore

O]

Theorem 2.4.10. Let n,a,b € N be fized. Suppose S = {0,1} C Zy, w : S — N is
defined by w(0) = a and w(l) =b. Let d = ged(a — 1,b). Then

(Zg)" ' ® 2, ifa=b+1 and n is even,
Ko(L(Cn(S,w))) =

(Za)" @ Zw, otherwise.
an—

Proof. Follows from the above lemmas 2.4.8 and 2.4.9. O
Example 2.4.11. L(C,(0,1)) = L(1,2).
Proof. In Theorem 2.4.10 we take a = b = 1. Then ged(a — 1,b) = 1. Hence det(I,, —

At 01) = —1 < 0 and Ko(L(Cy(0,1))) is trivial. By Proposition 2.2.3 we have
L(C,(0,1)) = L(1,2). 0
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The above example was observed in [9], Proposition 3.3.

2.4.3.2 Subcase 2.2: S={1,j} with j > 1

We note that by Proposition 2.3.6 det(I, — Az‘n(S,w)) > 0 if and only if n,j are even
and b > a+ 1. Also by Proposition 2.4.6 det(I,, — Atcn(&w)) = 0 if and only if one of the

following occurs:

l.a=b=1,n=0 (mod 6),j =5 (mod 6)

2. b=a+1,n,j are even.

In order to compute Ko(L(C,(S,w))), we apply Theorem 2.3.9 and compute the Smith
normal form of Te (Sw) ~ I,,. This procedure is performed for unweighted Cayley graph

in [11]. However, we record an interesting example here.

2.4.3.3 Leavitt Path algebras of Cayley graphs of Dihedral groups

Let D,, be the dihedral group of order 2n. i.e. D, = <7’, s|rm=s2=e rsr= s>. Let

D,, denote the Cayley graph of D,, with respect to the generating subset S = {r,s}.

The following discussion is taken from [12]. A graph transformation is called standard
if it is one of the following types: in-splitting, in-amalgamation, out-splitting, out-
amalgamation, expansion, or contraction. For definitions the reader is referred to [6]. If
E and F are graphs having no sources and no sinks, a flow equivalence from F to F'is a
sequence K = Fy — Fy — .-+ — E, = F of graphs and standard graph transformations

which starts at £ and ends at F.

Proposition 2.4.12. [6, Corollary 6.3.13] Suppose E and F are finite graphs with no
sources whose corresponding Leavitt path algebras are purely infinite simple. Then E is
flow equivalent to F if and only if det(l|g— Ag) = det(I|p|— AF) and Coker(I|g — Ap) =
Coker(I|p| — AFp).

Definition 2.4.13 (In-splitting). Let E = (EY, E',r, s) be a directed graph. For each
r~1(v) # ¢, partition the set r~!(v) into disjoint nonempty subsets £V, ..., Eﬁl(v) where
m(v) > 1. If v is a source then set m(v) = 0. Let P denote the resulting partition of

E!'. We form the in-split graph E,.(P) from E using the partition P as follows:
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E.(P)° ={v; |ve E%1<i<m()}U{v|m)=0},
E(P) ={ejle€ EL 1< j<m(s(e)} U{e | m(s(e)) = 0},

and define rg, (p), Sg,(p) E.(P)! = E.(P)° by

sg,(p)(ej) = s(e); and sg, (py(e) = s(e)
()

g, ) (ej) = r(e)i and sg, (py(e) = s(e); where e € £

We observe that D,, can be obtained from C”~! by the standard operation in-splitting
with respect to the partition P of the edge set of C"~! that places each edge in its own
singleton partition class. In [15] the collection of Leavitt path algebras {L(C?~1) | n €
N} is completely described and by Proposition 2.4.12 we have that the same description

holds true if we replace C?~! with D,, for every n € N. Hence we have

Theorem 2.4.14. For each n € N, det(I, — A}, ) <0. And

1. If n=1 or5 (mod 6) then Ko(L(D,)) = {0} and L(D,) = L(1,2).
2. If n=2 or4 (mod 6) then Ko(L(Dy)) = Z/3Z and L(D,,) = M3(L(1,4)).
3. Ifn=3 (mod 6) then Ko(L(D,)) = (Z/2Z)*

4. Ifn=0 (mod 6) then Ko(L(Dy)) = Z2 and L(D,) = LK)

2.4.3.4 Subcase 2.3: S = {si,s2} where s;,s2 divide n, 1 < s; < s2 and

ged(sy, s9) =1

By Proposition 2.4.6 and by Proposition 2.3.6, we have that det(I, — Atcn(&w)) =0 if

and only if one of the following occurs:

l.a=b=1,n=0 (mod 6),d2 = 5d; (mod 6).
2. a=b+1, n,dy are even, do is odd.

3. b=a+1, n,ds are even, d; is odd.

and det(l,, — Atcn ( S,w)) > 0 if and only if one of the following occurs:
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1. a > b+ 1, n,d; are even, ds is odd.

2. b>a+1, n,dy are even, d; is odd.

In order to compute Ko(L(C,(S,w))), we apply Theorem 2.3.9 and compute the Smith

Normal form of Tgn( Sw) I,.

We illustrate this when S = {di,da}, where di,ds divides n, ged(dy,d2) = 1 and
a = b = 1. In this special case we have det([, — Atcn(dl,dz)) = 0 if and only if n =
0 (mod 6) and dy = 5d; (mod 6). In all other cases, we have det(l, — Af,) < 0.
Define H (g, 4,)(n) := |det(I, — Atcg)" In order to compute Ky(L(Cy(d1,d2))), we apply

Theorem 2.3.9 and compute the Smith normal form of s ( I,.

di,d2)

For 1 < j, k € N let us define a sequence F{; ;) recursively as follows:

0, if 1<n<k-2

1, if n=k-1,
Fijp(n) =

0, if n=k,

| Fum(n =)+ Fpn—k), if n=k+1

*
In MCn(d1,d2)7 we have

[vo] = [v;] + [vk]
= [v2)] + [vr] + [vj4]

= [vgs] + [vk] + [vj4k] + [vj1k]

The coefficients appearing in the above equations are terms in the sequence Fl4, 4,y and

corresponding T, (4,,d,) 1S given by the following:
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Lemma 2.4.15. For fized dy,dy, let dy —dy = k. Let T =T, (4, dp)- Suppose G(n) :=

F(dlde)(n) 1s the sequence defined above. Then for each n € N,

G(n—1) G(n) G(n+dy —2)
G(n—2) Gn—-1) ... G(n+dy —3)
™ = .
G(n—l—d1—1) G(n+d1) G(n+d2+d1—2)
G(n) Gn+1) ... Gn+dy—1)

where the highlighted row is (k 4+ 1) row.

Proof. We prove the lemma by induction on n. We extend the definition of G to the

negative integers as well. Then,

0 0 0 0 1
10 0 0 0
T = 0 O 1 0 1
0 0 0 0 0
0 0 0 10
Go)  G() ... Glki—=1) ... Gld—2) Gldy — 1)
G(-1)  GO) ... Gk-2) ... Gldr—3) Gldy —2)
= G(d) G(di+1) ... G(d2—1) ... G(da+di—2) G(d2+d; —1)
G2 GB) ... Gk+1) ...  G(d) G(ds + 1)
Gy G2 ... Gk ... CGlda—1) G(d)

where highlighted column is k** column.
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S

Thus we have the statement true for n = 1. Now suppose

G(n —2) G(n—1) G(n+ds —3)
G(n —3) G(n —2) G(n+dy —4)
Tnflz :
Gn+di—2) Gn+di—1) ... Gn+dy+d—3)
G(n—1) G(n) G(n+dy —2)
Then,
Tn:Tn—lT
G(n—2) .. Gn+k-2) ... G(n+dy —3) 0 0
G(n—3) .. Gn+k-3) ... G(n+ds —4) 10
- G(n+d1—2) G(n+d2—2) G(n+d2+d1—3) 0 0
Gn—-1) .. Gn+k-2) ... G(n+dy —2) 0 0
G(n—1) G(n) Gn—-2)+G(n+k—-2)
G(n—2) Gn—-1) ... Gn—3)+G(n+k—3)
B G(n+d1—1) G(n+d1) G(n+d1—2)+G(n+d2—2)
G(n) Gn+1) ... Gin—1)+G(n+k—-2)
G(n—1) G(n) G(n+da — 2)
G(n —2) Gn—1) ... G(n+dy —3)
- Gn+di—1) Gn+di) ... Gn+da+di —2)

G(n) Gn+1) ... G(n+dy—1)
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Using the determinant divisors theorem, the Smith normal form of T, (dr,da) I, can

be reduced to

ai(n)
SNF(Tgn(dl,dg) — Ik) f— Otl(n)

Ady (’I’L)
Qdy—1 (n)

where «; is the greatest common divisor of the set of all i x 4 minors of T} (droda)*

Example 2.4.16. Let n = 6,d; = 2,dy = 3. The corresponding Cayley graph is

(%3 Vo
C6(2,3) = X
V4 &= —» U1
N
VU3 (%)

The corresponding companion matrix is given by

0 01
T'=11 01
010
and,
01 2
T°-L=|2 1 3
1 21
whose Smith normal form is given by
1 00

SNF(T®-I)=|0 1 0

Hence, K()(L(C%(Q, 3))) = Z7 and L(CG(2,3)) = L(l, 8)



Chapter 3

Cohn-Leavitt path algebras of
bi-separated graphs

3.1 Various generalizations of Leavitt path algebras

In this section, we introduce various generalizations of Leavitt path algebras such as
weighted Leavitt path algebras of weighted graphs, Cohn-Leavitt path algebras of sep-
arated graphs and Leavitt path algebras of hypergraphs.

3.1.1 Weighted Leavitt path algebras

Leavitt algebras of module type (m,n) for any m,n € N with 1 < m < n are not
examples of Leavitt path algebras of any graphs. This is because the former is a domain
[28, Theorem 6.1], whereas, the latter is a domain if and only if the graph is either a
single vertex or a single loop. In [37], Hazrat introduced the concept of weighted graphs
and the associated weighted Leavitt path algebras to be able to express any Leavitt

algebras as examples of graph algebras.

Definition 3.1.1. Let E be a row-finite graph and w : E' — N be a (weight) function.
The graph E, = (E°,EL rg,,sg,) where (E,)! = {e1,.. Sl | €€ B} re, (e) =
r(e) and sg, (e;) = r(e) for each e; € (E,)?!, is called the weighted graph of E with

respect to w.

61
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In other words, E* is obtained from (E,w) by replacing an edge e € E' which has

weight w(e) with w(e) number of edges e, ..., e, from s(e) to r(e).

For each e € E', w(e) is called the weight of e. Define w(v) = max{w(e) | e € s7(v)}.

The graph (E,w) is vertex weighted if w(e) = w(v) for every e € s~ (v).

We represent the weighted graph E,, visually as follows:

(E,w) : E: “
€2
s(e) o e, wle) >e 1(€) s(e) o/\mo r(e)
\'_/
Cuw(e)

Definition 3.1.2. Let E be a row-finite graph and w : E' — N be a weight func-
tion. The weighted Leavitt path algebra L} (F,w) of the weighted graph E,, is the

quotient of K (E\U) modulo the following relations:

Ve, f € E'if s(e) = s(f) = v € EY then Z e; fi = bepr(e) (wCK1)
1<i<w(v)

Vo€ E®and 1 <i,j < w(v) Z eie; = ;v (wCK2)
e€s—1(v)

where we set e; and e} to be zero whenever i > w(e).

First of all, note that LY (E,w) is not the same as Ly (FE,). Let R,, be a rose with n
petals and let w,, be a weight function on R,, such that wy,(e) = m € N for every edge
e. Then it is direct that L (R, wy,) = Lg(m,n). In [38], the normal forms of weighted
Leavitt path algebras were computed. As an application, it was shown that weighted
Leavitt path algebra is simple if and only if it is isomorphic to a simple Leavitt path
algebra of a unweighted graph. The authors also defined the notion of local valuation and
characterized weighted Leavitt path algebras which are domains in terms of underlying

graphs and weight functions.

Preusser took up the study of weighted Leavitt path algebras in a series of articles. In
[60], weighted Leavitt path algebras of finite Gelfand-Kirillov dimensions were studied
and as an application it was shown that weighted Leavitt path algebras are finite dimen-

sional if and only if they contains no quasi-cycles. In [59], locally finite weighted Leavitt
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path algebras were shown to be Noetherian and also that L'} (E,w) being locally finite is
equivalent to their GK dimension being either 0 or 1. In [62], the V-monoid of weighted
Leavitt path algebras were computed using Bergman’s machinery. In [63], weighted
Leavitt path algebras which are isomorphic to Leavitt path algebras were characterized.
In particular, it was shown that if a weighted Leavitt path algebra satisfies finiteness
properties (such as locally finite or Noetheiran or Artinian or finite GK dimension) or

regularity then it is isomorphic to a Leavitt path algebra of an undirected graph.

3.1.2 Cohn-Leavitt path algebras of separated graphs

As mentioned previously, the notion of separated graphs arise in the study of realization

problem of von Neumann regular rings (see 1.1.19).

Definition 3.1.3. A separated graph is a pair (E,C), where E is a graph and C' =

L,ego Co, where C, is a partition of s7(v), for each vertex v € EV.

We note that in case v € EY is a sink, C,, can be taken to be empty family of subsets
of s71(v). If all the sets in C are finite, we say that (F,C) is finitely separated. In
case C, = {s7!(v)} for each non-sink v € E°, we say (E,C) is trivially separated.
We also define C, = {X € C | |X| < oo}. In the visual representation of (E,C) we
use different colors for each element of C. For example in the following graph we have

Cy, = {X1, X2, X3} which are represented by colors green, red and purple.

A

Definition 3.1.4. Let K be a field, (E,C) be a separated graph and S C Cfg,. Then
the Cohn-Leavitt path algebra CLk(E,C,S) of (E,C) relative to S is defined as

~

the quotient of K(F) obtained by imposing the following relations:
Ve,fe X, XeC e€f=dcyr(e), (SCK1)

VX €S veE’ v=) e (SCK2)
eeX
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The Cohn-Leavitt path algebra is called Leavitt path algebra if S = Chy, and in this
case, we simply write Lg (F,C) in place of CLg(E,C,S). It is direct that if (E,C) is
trivially separated and S = Cfqy, then Li (E, C) is the usual Leavitt path algebra L (FE).

The following remarkable theorem was also established:
Theorem 3.1.5. [20, Proposition 4.4] For any conical abelian monoid M, there ezists
a finitely separated graph (E,C') such that M = V(Lk(E,C)).

We list a few important examples.

Example 3.1.6. For any m,n € N consider the separated graph (E(m,n),C(m,n)),

where

1. E(m,n)? = {v,w},
2. E(m,n)l = {61;‘--7€n7f17”'7fm}7

3. s(e;) = s(fj) =vand r(e;) = r(f;) =w for all 4, j and

4. C(m,n) ={{e1,...,en}, {f1, -, [m}}

Let Ay p = Lig(E(m,n),C(m,n)). Then we have by [20, Proposition 2.12] that
Amn = Mpg1(Lg(m,n)) = Mpy1 (L (m,n)), vAmnv = My (L (m,n)) = My(Lk(m,n))
and wA;, ,w = Lg(m,n). As the authors mentioned there, A, ,, are Leavitt path alge-

bra versions of Lx (m,n) which are generated by ‘partial isometries’.

Example 3.1.7. [20, Proposition 2.10] Let (E, C) be a separated graph with |E?| = 1.
Then Li(E,C) is the free product of Leavitt path algebras of type (1,|X]), for X € C.

In particular, for any set A the K-algebra of the free group F(A) on A is an example
of Leavitt path algebra of a separated graph (Take X € C to be singletons {a} for each
acA).

Later in [16], the C*-algebra analogs of Leavitt path algebras of separated graphs were
considered and in particular, K-theory of these algebras were computed and proved a

conjecture posed in [52].
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3.1.3 Leavitt path algebras of hypergraphs

Recently in [61], Preusser initiated a unified approach to study Leavitt path algebras
of separated graphs and weighted Leavitt path algebras of vertex weighted graphs by
introducing the notion of hypergraphs.

Definition 3.1.8 (Leavitt path algebras of Hypergraphs). Let I and X be sets.
Recall that a function x : I — X, given by i — x; = (i) is called a family of elements

in X indexed by I. We denote a family = of elements in X indexed by I by (x;)cr.

A hypergraph is a quadruple H = (H?, H', s,7) where H" and H! are sets called
the set of vertices and the set of hyperedges respectively. For each h € H! there exists
a pair of non-empty indexing sets I, J, such that s(h) : I, — H°, and 7(h) : Jj, — H°

are families of vertices.

Let H be a hypergraph. A hyperedge h € H! is called source regular (resp. range

regular) if I, is finite (resp. Jj is finite). The set of all source regular hyperedges of H

1
rreg*

is denoted by H.! .. and the set of all range regular hyperedges of # is denoted by H

sreg

The hypergraph # is said to be regular if H' = H! ., = H}.,.

Visualization become a little tricky in the case of hypergraphs. We give a simple

example below to illustrate the last statement.

Example 3.1.9. Consider the hypergraph H = (H°, H',r, s) where H® = {vy,vo, w1, w2},
H' = {h}, s(h) = {v1,2 - vo} and r(h) = {w1, w2}. We might visualize H as follows:

U1
w1
h
H: V2
w2
(2]

The Leavitt path algebra Ly (H) of the hypergraph # is the K-algebra pre-

sented by the generating set {v,h;;,hf; | v € H' h € H'i € Ij,j € Ju} and the

ij

relations

1. wv = dyu, for every u,v € HO,
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2. S(h)lhw = hij = hijr(h)j and T(h)]h;’} = h;kj = h:}s(h)l, for every h € Hl, 1 € Ip,

and j € Jp,

3. > hijhi; = digs(h)i, for every h € Hireg and i, k € I,
J€Jn

4. > hijhi = 0k (h);, for every h € H;reg and j,k € J,.
iely

Preusser investigated Leavitt path algebras of hypergraphs in terms of linear bases,
Gelfand-Kirillov dimension, ring theoretic properties such as simplicity, von Neumann

regularity and Noetherianess, and non-stable (graded) K-theory.

Remark 3.1.10. Let L denote any one of the K-algebras appearing in the subsections
3.1.1, 3.1.2 and 3.1.3. Then note that L satisties the following properties.

1. The algebra L is unital if and only if the set of vertices V' in the underlying graph is
finite. In this case, the unit is the sum of vertices. In general (L, V) is a K-algebra

with enough idempotents.

2. If :K — K is an involution on the field K, then L is a x-algebra (with respect

to the involution * : L — L).

3. L is a graded quotient algebra of K (E) with respect to standard Z-grading given
by length of paths.

In the following sections we provide a common framework for studying various gen-
eralizations of Leavitt path algebras. We first define Cohn-Leavitt path algebras of
graphs with an additional structure called bi-separated graphs. We then define and
study the category BSG of bi-separated graphs with appropriate morphisms so that
the functor which associates bi-separated graphs to their Cohn-Leavitt path algebras is
continuous. Next, we define two sub-categories of BSG, compute basis for the algebras
corresponding to one of those subcategories and study some algebraic properties in terms

of bi-separated graph-theoretic properties.

3.2 The algebras Ay (E)

In this section, we introduce the notions of bi-separated graphs and their Cohn-Leavitt
path algebras. The aim is to provide a unified framework for studying various general-

izations introduced in the previous section.
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Definition 3.2.1. A bi-separated graph is a triple £ = (E, C, D) such that

1. E=(E° E' r s)is a graph,
2. C =|],epo Cv, where C, is a partition of s7!(v) for every non-sink v € E°,
3. D =|],cpo Dy, where D, is a partition of r~*(v) for every non-source v € EY,

4. 1 XNY| <1, forevery X € Cand Y € D.

In the above definition, C' is called row-separation of F, D is called column-separation
of E and (C, D) is called bi-separation of E. The elements of C are called rows and
the elements of D are called columns. Let Ch, := {X € C | |X]| < oo} and Dgy, :=
{Y € D||Y]| < o}. A bi-separated graph E is called finitely row-separated (resp.
finitely column-separated) if C = Ch, (resp. if D = Dg,) and is called finitely
bi-separated if both C = Cg, and D = Dyg,,.

In the above definition we follow the convention that if S is a set, by a partition P
of S we mean a family of pairwise disjoint nonempty subsets of A, whose union is S.
For any non-empty set S there always exist two trivial partitions: the partition P; on S
called the discrete partition, if each element of P; is singleton and the partition Pg

called full partition, if S is the only element of Pgs.

Example 3.2.2. (Standard bi-separation of a simple graph) Let E be a simple
graph. That is, if e, f € E' such that s(e) = s(f) and r(e) = r(f) then e = f. (In
other words, there are no multiedges allowed between any two vertices). We can obtain
a canonical bi-separation on E by considering both C),, and D, to be full partitions. In
other words, C, = {s71(v)} for every non-sink v € E® and D, = {r~!(v)} for every

non-source v € EY. This bi-separation is called standard.

In the following examples E denotes an arbitrary graph.

Example 3.2.3. (Trivial bi-separation of a graph) By trivial bi-separation on a
graph E, we mean both C, and D, are discrete partitions. i.e. C, = {{e} | e € s71(v)}

for every non-sink v € E° and D, = {{e} | e € r~1(v)} for every non-source v € EV.

Example 3.2.4. (Cuntz-Krieger bi-separation of a graph) We can obtain another
canonical bi-separation on E by combining full row-separation and discrete column-
separation on E as follows: Consider C, = {s7!(v)} for every non-sink v € E° and

D, = {{e} | e € r~1(v)} for every non-source v € E°.
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Example 3.2.5. (Separated graphs) A bi-separated graph (E,C, D) in which the
column-separation is discrete is called a row-separated graph or simply separated

graph (cf. Definition 3.1.4). Separated graphs are denoted by (E, C).

Example 3.2.6. (Weighted graphs) Let E be a row-finite graph and w : B! — N be

a weight map on E. Consider the weighted graph E, = (EY, EL r,, s,). We associate

a bi-separation on E,, as follows: For every v € RReg(E) and 1 < i < w(v) define
Xi = {e;| e € s t(v),w(e) >i}. Forevery e € B! define Y¢:= {e; | 1 < i < w(e)}.
Now consider C,, := {X! |1 <i < w(v)} and D, := {Y®| e € r~L(v)}. Here C = Cgy,

since F is row-finite and D = Dy, since w takes natural numbers as values.

Example 3.2.7. (Hypergraphs) We show that any hypergraph H can be associated
to a bi-separated graph E = (E,C, D) as follows: Define E = (H°, E', s, '), where
E'={hi |heH i€ Iy, j €y}, s'(hij) = s(h); and r'(h;j) = r(h);. For an arbitrary
heH', ifi €I then X} := {hy; | j € Jo} and if j € J, then Y] := {hy; | i € I,}.
For v € E°, define C, = {X} | h € H',i € I,v = s(h);} and D, = {Y] | h € H',j €
Jp,v =r(h);}. By construction, C = Cx, and D = Dygy,.

Notation 3.2.8. Given a bi-separated graph E = (E,C, D), the maps s and r can be
extended to C and D respectively in well-defined manner as follows: For X € C, define
s(X) := s(e) where e € X and for Y € D, define 7(Y') := r(e) where e € Y.

Also, for each X € C and Y € D we set

e, if XNY = {e},
XY =YX =

0, otherwise.

We interchangeably use XY and X NY, wherever there is no cause for confusion.

Definition 3.2.9. Let £ = (E,C, D) be a bi-separated graph. The Leavitt path
algebra of E with cocfficients over K, denoted by Lx(E), is the quotient of K(E)

obtained by imposing the following relations:

L1: for every X, X’ € Cyy,

> (XY)(YX')* = 6xx8(X),
YeD
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L2: for every Y,Y' € Dgp,

Z (YX)"(XY') = dyyr(Y),
XeC

Example 3.2.10. (Leavitt path algebra of a standard bi-separated simple

graph)

Let E be a simple graph and consider the standard bi-separation (C, D) on E. Let the
set of all non-sinks of F be denoted by F, and the set of all non-sources be denoted by
E,. Then |C| = |E,| and |D| = |E,,|. Recall that a vertex v € E is called row-regular
if 0 < |s71(v)] < o0 and w € EY is called column-regular if 0 < |r~(w)| < oco. The
set of all row-regular vertices is denoted by RReg(FE) and the set of all column regular

vertices is denoted by CReg(FE). Note that |Cs,| = |[RReg(E)| and |Dgy| = |CReg(E)|.

~

Let A be a |Cgyn| x |D| matrix over K(FE) with entries

e, if e € B! such that s(e) = v,7(e) = w,
A(v,w) =

0, otherwise,

where v € RReg(F) and w € E,,. Let A* denote the ‘adjoint transpose’ of A. Similiarly,

~

let B be a |C| x | Dgy| matrix over K(FE) with entries

e, if e € E!such that s(e) = v,7(e) = w,
B(v,w) =

0, otherwise,

where v € E, and w € CReg(E). Let B* denote the ‘adjoint transpose’ of B.

Then the defining relations L1 and L2 of Leavitt path algebras are obtained by

imposing the following matrix relations:

(L1): AA* =

(L2): B*B = U.

where V is the [RReg(E)|x|RReg(E)| diagonal matrix with diagonal entries V (v, v) =
s(v) and and U is the |[CReg(E)| x |CReg(FE)| diagonal matrix with diagonal entries
U(w,w) = r(w).
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In particular, if F is finite simple graph, then the matrix A (resp. the matrix B)
is obtained from the adjacency matrix of E by removing the zero rows (resp. zero
columns) and replacing 1’s with corresponding edges. We illustrate this with a few

examples below.

(1) For n > 1, let ¥,, be the following line graph with n vertices and n — 1 edges:

€1 €2 €3 En—1
Yn = e— >0———>0—> --- e——>e@
U1 V2 U3 Un—1 Un
Then
€1 0 0
0 €9 0
A= ,
0 0 €n—1

and the relations obtained are
eie; =v; and eje; = vy,
where 1 <7 < n — 1. In this case, it is easy to see that

(2) For n > 3, let I';, denote the following graph with n vertices:

K_/
Un—1 Un

Fo= Cuil3 20O

Then the adjacency matrix of I';, has at least two entries and at most three entries

in both rows and columns, i.e.,

* x 0 0 0 0 0
* x *x 0 0 0 O
A=10 * * x 0 0 0},
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where *’s are nonzero entries filled by the corresponding edges. In this case, though,

the explicit description of the Leavitt path algebra L K(Fn) is not known.

Example 3.2.11. (Groupoid algebra of a free groupoid) Let E be a graph and
consider the trivial bi-separation (C, D) on E. The defining relations of Leavitt path
algebra of (E,C, D) turns the free path category of E into a free groupoid and hence
Lk (FE,C,D) is the groupoid algebra of this free groupoid. In particular if E has only
one vertex then with respect to trivial bi-separation, the Leavitt path algebra is the
group algebra of the free group with generators as elements of E' (Here we identified

the vertex with the group identity).

Example 3.2.12. (Leavitt path algebra of a graph) Let E be any graph and E
be the associated bi-separated graph with respect to Cuntz-Kreiger bi-separation on E.

Then we have L (E) = Li(E).

Example 3.2.13. (Leavitt path algebra of a separated graph) Let £ = (E,C)

be a (row) separated graph. Then it is direct that Lg(E) = Li(E,C).

Example 3.2.14. (Weighted Leavitt path algebra of a weighted graph) Let
be a row-finite graph and w : E' — N be a weight map. Consider E = (E, C, D) where
(C, D) is the weighted bi-separation on E as in example 3.2.6. Then it is immediate

that LK(E) = WLK(Ew).

It has been noted in [20, page 171] that neither weighted Leavitt path algebras nor
Leavitt path algebras of separated graphs are particular cases of the each other. One

can mix the above two examples and construct new algebras as follows:

Example 3.2.15 (Weighted Cohn-Leavitt path algebras of finitely separated
graphs). Let (E,C) be a finitely row-separated graph (i.e. a separated graph in which
C = Cgn). Let w: E' — N be a function and E,, be the associated weighted graph.
For X € C, set w(X) = max{w(e) | e € X}. The weighted Cohn-Leavitt path algebra

CLk(Ey,C) of (Ey,C) can be defined as the quotient of Pk (E,,) by factoring out the

following relations:

wSCK1: Y. € fi=20eyr(e), for every e, f € X and X € C,
1<i<w(X)

wSCK2: > ejef = d;;s(e), for each X € C,1 <i,j < w(X),
ecX
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where we set e; and e to be zero whenever i > w(e).

Given a weighted finitely separated graph (E,,C), we get a canonical bi-separated
graph as follows: For X € C' and 1 < i < w(X), define X’ = {¢; | ¢ € X} and set
C, = {)?Z | X € Cyand 1 <i <w(X)}. Here C = Chy, since E is finitely separated.
Now, for e € X, define 57)‘; ={e; | 1 <i<wle)} and Dy, = {17)6( | e € X}. Observe
that D = ﬁﬁn, since w is natural number valued. Now setting F = (E, 5’, 5), we
immediately get

LK(Evéa 15) = LK(EUMC)

Example 3.2.16 (Leavitt path algebra of a hypergraph). Given any hypergraph
H, consider the associated bi-separated graph Ep as in example 3.2.7. Then we have

Lig(F)= Lig(H).

Definition 3.2.17. Let E = (E, C, D) be bi-separated graph. Let S C Cgy, and T' C Dgy
be two distinguished sets. The Cohn-Leavitt path algebra of E with coefficients over

K relative to (S,T), denoted by Ax (E, (C,S), (D, T)), is the quotient of K (E) obtained

by imposing the following relations:

Al: for every X, X' € S,

D (XY)(YX')" = xxrs(X),
YeD

A2: for every Y Y' €T,
Y (YX)(XY') = byymr(Y).
XeC
For notational convenience we denote the bi-separated graph with given distinguished
subsets as in the above definition as a 5-tuple £ = (E, (C,S), (D, T)) and again call it
bi-separated graph if there is no confusion and denote the Cohn-Leavitt path algebra
also as Ag (E). Whenever we want to distinguish the case that S = Cg, and T = Dgy

we simply call the Cohn-Leavitt path algebra as Leavitt path algebra.

Proposition 3.2.18 (Universal property of Ax(E)). Let E = (E,(C,S),(D,T))
be a bi-separated graph. Suppose 2 is a K-algebra which contains a set of pairwise
orthogonal idempotents {A, | v € E°}, two sets {A. | e € E'}, {B. | e € E} for which
the following hold.

1. As(e)Ae = AeAr(e) = A., and Ar(e)Be = BeAs(e) = B, fOT‘ alle € EL.
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2. for every X, X" € S, Y AxyByx = dxx'Ayx)
YeD

3. for every Y,Y' €T, > ByxAxy = dyy Ar(x)-
XeC

Then there exists a unique map ¥ : Ax(E) — 2 such that ¥(v) = Ay, ¥(e) = A,
and (e*) = B, for allv € E° and e € E*.

Example 3.2.19 (Cohn-Leavitt path algebra of a graph). Let £ be a graph and
let S C RReg(E). Then the Cohn-Leavitt path algebra CL3-(E) of E can be realized
as Cohn-Leavitt path algebra A (F) of the bi-separated graph E = (E, (C, S), (D, T)),
where (C, D) is the Cuntz-Krieger bi-separation on E, RReg(E) = Cg, and T = D.

Example 3.2.20. (Cohn-Leavitt path algebra of a separated graph) Let (E, C)
be a separated graph and S C Cgy. Set F = (E,(C,S),(D,T)), where T = Dg, = D.
Then from definition it is clear that Ax(F) = CLg(E,C,S).

We say a bi-separated graph E = (E,(C,S),(D,T)) is connected if the underlying
graph FE is connected. Because of the following proposition we assume that every bi-

separated graph is connected henceforth.

Proposition 3.2.21. Let F be a bi-separated graph. Suppose E = L] E; is a decompo-
j€J
sition of E into its connected components. Then Ax(E) = @ Ak(FE;), where E; is the
Jje€J

bi-separated graph structure on Ej; induced by the bi-separated graph structure on E.

Proof. Follows from universal property of A (E). O

Lemma 3.2.22. Let E be a bi-separated graph.

1. The algebra A (E) is unital if and only if E° is finite. In this case,

L) = D v

veEO

2. For each o € Ak (E), there exists a finite set of distinct vertices V() for which
o = faf, where f = S wv. Moreover, the algebra (Ag(E), E°) is a ring with
veV(a)
enough idempotents.

3. Let : K — K be an involution on the field K. Then with respect to the involution
w: Ag(E) = Ak (E), Ax(E) is a *-algebra.
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4. Ag(E) is a graded quotient algebra of K(E) with respect to the standard Z-grading

given by length of paths.

Proof. The proof follows on similiar lines of [6, Lemma 1.2.12]. O

3.3 The categories BSG and tBSG

In this section, we introduce two categories BSG of bi-separated graphs and the category
tBSG of tame bi-separated graphs. We study the functoriality and continuity of the
functor Ax(_) from BSG to K-Alg. We also show that each object of tBSG is a direct
limit of sub-objects based on finite graphs, from which we obtain every Cohn-Leavitt
path algebra of tame bi-separated graph as a direct limit of unital Cohn-Leavitt path

algebras.

Definition 3.3.1. We define a category BSG of bi-separated graphs as follows: The ob-
jects of BSG are bi-separated graphs (with distinguished subsets) £ = (E, (C, S), (D, T)).
A morphism ¢ : E — E’ in BSG is a graph morphism ¢ : E — E is a triple
o = (¢o, ¢1, P2) satisfying the following conditions:

1. ¢o: E — Eisa graph morphism such that ¢8 is injective.

2. For each X € C there is a (unique) X € C such that @} restricts to an injective
map X — X. The map ¢ : C' — C assigns X — X such that for all v € E° and
X € Cy, we have ¢1(X) € Cg0(v)-

3. ¢1(S) C S. Moreover Bl X — X is a bijection, for every X € S.

[x

4. For each Y € D there is a (unique) Y € D such that gb(l) restricts to an injective
map Y — Y. The map ¢o : D — D assigns Y — Y such that for all v € E° and
Y € Dy, we have ¢1(Y) € Dy (-

5. ¢o(T) C T. Moreover Hly Y — Y is a bijection, for every Y € T.

ly
6. fXeS,YeDand XNY =0, then XNY = 0.
7.6XeC,YeTand XNY =0, then X NY = 0.

Proposition 3.3.2. The category BSG admits arbitrary direct limits.
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Proof. The proof is similar to [20, Proposition 3.3]. The only addition is that we have
to define D and T analogous to the way we define C' and S.

Recall that a functor is continuous if it preserves direct limits.

Proposition 3.3.3. The assignment E ~ Ag(E) extends to a continuous covariant

functor Ag from BSG to K-Alg.

Proof. The proof is similar to [20, Proposition 3.6]. O

Definition 3.3.4. We say a morphism ¢ : £ — E in BSG is complete if gbl_l(g) =5
and gb;l(f) =T.

Definition 3.3.5. Let E be an object in BSG. A sub-object of E is an object E/ =
(E',(C",S"), (D', T")) such that E’ is a sub-graph of E and the following conditions hold:

C' = {XnENY|XeC\S, Xn(E) £0} U
(X eS| Xn(EN +#0}.

S = {XeS|Xn(E)N £}

D' = {Yn(EN'|YeD\T, Dn(E"' #0} U
{DeT|Dn(E) #0}.

T = {YeT|Yn(E) +#0}.

Definition 3.3.6. Let E be an object in BSG. A complete sub-object of E is a sub-

object E’ such that the inclusion morphism is complete.

Proposition 3.3.7. Any object in BSG is a direct limit of countable complete sub-

objects.

Proof. Let E be an object in BSG. For a non-empty finite subset A ¢ EC LI E', let E»

be the graph generated by A, i.e.,
EYi=ANE!' and EY = (AN E°) Usg(EY) Urg(EY).

Take v € E% and set



76 Chapter 3. Cohn-Leavitt path algebras of bi-separated graphs

-1 1 — =

Eow =5p,(V)Urg,(v) U XU U VY, wheresg, =5 , andrg, =7, .
XesnCy, YeTnD, A A
XNA£D YNAZD

Let & be the graph generated by E% U ] Eov. Let
vEE%

Co = {XNA|XeC\S, XNnA#£D}U
(X eS| XNA#0}.

So = {XeS|XnA#(}.

Dy = {YNA|YeD\T,YNA#0}U
(YeT|YNA#0D}

To = {YeT|YNA#0D}.
If & is a complete sub-object of F, we are done. If not, then for each v € &, define

&1y to be &y, U U XU U Y.
XeSsSnCy YeTNnD,
Xﬁ&)u;«é(b Yﬁgmﬁé@

Now let & be the graph generated by 58 U e € Eov. Let

Ci = {XNn&|XeO\S,XN& A0} U
{(X eS| Xn& +#0).

S = {XeS|Xn& #0}.

Dy = {YN&|YeED\T,YN&E #0}U
{YeT|Yné& #0).

Ti = {YeT|Yné& #0}.

If & is a complete sub-object of F, we are done. If not, define &y, similarly and continue

this process.

This gives us a chain & — & — & — ..., there by giving a directed system
{gi}iGNU{O}' We claim that for each 4 > 0, the inclusion morphism & L, Eiy1 is

complete.

Suppose X € \II;I(SiH). We want to prove X € S;. If X € C;\S;, then by definition
of C;\S;, there exists X; € C\S such that X = X; N 5}_1 # 0. So X1 N Eil # 0.
Since X; € C\S, we have X C X1 N 52-1 € Ci+1\Si+1 which contradicts the fact that
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X e \I’i_l (Sit+1). Similar argument holds for 7; — 7T;+1. This proves that ¥; is a complete

morphism.

Let £ = (€, (C,S), (D, T)) be the direct limit of the directed system {&; = (&, (Cs, Si), (Ds, o))}
We claim that & is a complete sub-object of E. Let & = (®g, D1, P2) be the natural
morphism from & to E. If X € S such that X NEL # (), then XNEL# O for some i > 0.

So X € S;11. This implies X € S (by the definition of direct limit). If X € C\S and
X NEL#0, then again X NE! # O for some i > 0 and so X NE; € Ci1\Si+1. Since the
morphism &; i, &;1 is complete for each 7 > 0, we can conclude that the morphism
& — & is also complete and so X N& € C\S. Similarly one can argue for Y € T or
Y € D\T with Y NE! # (). This proves that & is a sub-object of £. The completeness of
® can be seen in exactly the same way as that of ¥;. This proves that £ is a complete

sub-object of E.

Since the vertex set and edge set of £ are countable union of finite sets, it is a
countable sub-graph of E. So, for each finite non-empty subset A ¢ E° U E', there
exists a countable complete sub-object £ of E. Now by keeping the set of all finite
subsets of E° L E' as the indexing set, we get a directed system of countable complete

sub-objects whose direct limit is F. O

We note that a general object in BSG cannot be written as a direct limit of finite

complete sub-objects as the following example illustrates:

Example 3.3.8. Consider the following simple graph ', on countably infinite vertices.

To= o T2 S 2>
V-1 Vo U1

Observe that ' is a simple graph. Consider the standard bi-separation (C, D) on I's
and let S = Cg, = C and T = Dg, = D. Then Cy cannot be written as direct limit
of finite complete sub-objects. For, if there is a complete sub-object of 'y, then by

definition we are forced to include all the edges and so, it will no more be finite.
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3.3.1 The category of tame bi-separated graphs

Notation 3.3.9. Let E be an object in BSG. Set

S = {XeS|XNY#D, forsome Y €T},
Sy = S-S
Ty = {YeT|XNY #0, forsome X €S},
T = T -"1T.

We define a relation ~7 on S; as follows: For X, X' € S1, define X ~p X’ if there
exists a finite sequence Xg, Y7, X1,Y9, Xo, ...,Y,_1,X,_1,Y,, X, such that for each
0<i<n, X;€8Y,eT,withXog=X, X, =X, and X;NY; .1 #0Y;NX; #0.
It is not hard to see that ~p is an equivalence relation on S;. Let S; = || &)\ be the

AEA
partition of 57 induced by ~.

Define ~g on T} similarly and let T} = )\|_|A Yy be the partition induced by ~g.
=Y

We claim that the indexing sets A and A’ are in bijection. To see this, start with
A € A. Let X € Xy be an arbitrarily fixed element. This means, there exists a X' € A’
and Y € Yy such that X NY # (. If X’ # X is another element of Xy, and if there
isa Y’ € T such that X’ NY’ # ), then Y’ ~g Y because X’ ~r X. So Y’ belongs
to the same )Yy as Y. Also if there is another element Y7 € T such that X NY; # 0,
then clearly Y1 ~g Y and so Y; also lies in same ))y. This implies that the map A — A’
defined by A — ) is well-defined. Similarly one can define a map A’ — A. It is not hard
to see that these maps are inverses of each other which proves the claim. Therefore, we

have the following proposition:

Proposition 3.3.10. Let E be an object in BSG and let Sy, T} be as defined in notation

3.3.9. Then there exist canonical partitions S1 = || X\ and T1 = || Yy of S1 and
AEA NeN

T respectively such that the indexing sets A and A’ are bijective.

Remark 3.3.11. Because of the above proposition, we will denote the indexing sets of

the canonical partitions of both S; and 77 by A.

Definition 3.3.12. A bi-separated graph F is called tame if |Xy| < co and | V)| < oo,

for each A € A. The tame bi-separated graphs along with complete morphisms form a
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category which we call a tame (sub)category of bi-separated graphs. It will be

denoted by tBSG.

Note that any finite bi-separated graph is tame. Also, the classes of bi-separated
graphs in examples 3.2.4, 3.2.5, 3.2.6, and 3.2.7 are all tame.

Proposition 3.3.13. Let E be a tame bi-separated graph such that S = Cgn = C,
T = Dgy, = D and |E°| = 1. For A € A, let Ey\ be the subgraph of E with edge set

U {e} and consider the bi-separation Cy = {X € X\}, and Dy = {Y € Y} . Then
£EX,
Ak (E) is isomorphic to the free-product of algebras Ax(E)), where X varies over the

indexing set A.

Corollary 3.3.14 ([20] Proposition 2.10). Let (E,C) be a separated graph with |E°| =
1. Then Lg(E,C) is isomorphic to the free-product of algebras Li(1,|X]), where
L (1,]|X]) is the Leavitt algebra of type (1,|X]) and X varies over C.

Theorem 3.3.15. Every object E in tBSG is a direct limit of finite (complete) sub-
objects. Conversely, if E in BSG is a direct limit of finite complete sub-objects then it
belongs to tBSG.

Proof. Let E be an object in tBSG. By exactly same arguments as in Proposition 3.3.7,

E is a direct limit of the directed system
{<5A = (&,(C,S), (D,T))A,%) | A is a finite subset of E° L E'}.
It follows from the definition of tame bi-separated graphs that &4 is finite, for each finite

subset A of EY L EL.

Conversely, let E be a direct limit of the directed system

of finite complete sub-objects. We know that S and T' can be partitioned as 51U S2 and
T1 UT, respectively (see equations 1 to 4 in 3.3.9). If S; = ), then T} = §) and clearly E
is tame.

Suppose S # (). Then we have S; = || Xy and T1 = || V\. We claim that | X} ]

A€A AEA
and |V, | are finite for every A.
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Suppose X € &), for some A. This means that X € S. So there exists ¢ € I such that
X € 8;. We claim X\, C S; and Yy, C 7;. If we assume this claim, then since &; is a finite
sub-object, we can conclude that |Xy| and |))| are both finite. So suppose X’ € X).
Then X' ~r X. So there exists a sequence X = Xg,Y7,X1,Ys,...,Y,, X,, = X’ such
that for 1 > 0, X; NY;11 # 0 and for : > 1, Y; N X; # (), where X; € S and Y; € T. Now
since X € S; and X NY; # (), we have Y1 N 5} # (), which means Y; € 7; (because 5,
sub-object of E) For the same reason, we can conclude that X; € §; for each 1 <i < n.
This implies in particular that X’ € S; which proves X\ C S;. Similarly one can show

that Y\ C 7;. This completes the proof. O

Corollary 3.3.16. Let E be an object in tBSG. Then the Cohn-Leavitt path algebra
Ag (E) is the direct limit of the directed system of unital algebras { Ag (F;)Yier such that
whenever j > i, the map A (F;) — A (E;) is a monomorphism, where {E;}icr is a

directed system of finite complete sub-objects of E whose direct limit is .

Proof. By the previous theorem, E is a direct limit of a directed system {Ei}ie 7 con-
sisting of its finite complete sub-objects. Therefore, by proposition 3.3.3 and Theorem

3.4.5, Ag(F) is the direct limit of the directed system of algebras {Ax (F;)}icr. O

By corollary 3.3.16 (Cohn-)Leavitt path algebras of the classes of bi-separated graphs
in examples 3.2.4-3.2.7 are direct limits of unital sub-(Cohn-)Leavitt path algebras of

same type.

3.4 Normal forms and their applications

Definition 3.4.1. (i) Let E be an object in tBSG such that S; # @ (which auto-
matically means T} # (). Suppose that for each A € A, there exists X) € X and
Y\ € V) such that X, NY # () for each Y € ), and X NY) # () for each X € X).

Then we call X (resp. Y)) a distinguished element of X, (resp. V).

(ii) An object E in tBSG is called a docile object if either S; = () = T, or, for each

A € A, there exist distinguished elements X € X and Y) € ).

Remark 3.4.2. (a) The docile objects in tBSG along with morphisms form a sub-
category of tBSG which we call docile category. If we further insist that a
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morphism should map a distinguished element X to a distinguished element X},

then we need to assume it to be a complete morphism.

(b) It is not hard to see that the bi-separated graphs in examples refCuntz-Krieger

bi-separation, 3.2.5-3.2.7 are all objects in docile category.

Definition 3.4.3. Let F be an object in docile category. If S; # 0, then for every

A € A, we fix a distinguished element X € Xy and Y) € V.

1. For each pair X, X’ € X, we call the word (XY))(Y,X’')* a forbidden word of

type 1.

2. For each Y, Y’ € Y, we call the word (Y X))*(X,Y”) a forbidden word of type
1I.

3. Suppose Sy # (). For each pair X, X’ € S, if there exists Y € D such that
XNY #0and X' NY # (0, then we fix one such Y (this may vary with X, X’)
and call (XY)(YX’)* a forbidden word of type III.

4. Suppose Ts # (). For each pair Y, Y’ € Ty, if there exists X € C such that YNX # ()
and Y'NX # (), then we fix one such X and call (Y X)*(XY”) a forbidden word
of type IV.

Definition 3.4.4. A generalized path u € E* is called normal if it does not contain

any forbidden sub-word of the types mentioned above. An element of K(FE) is called

normal if it lies in the K-linear span of generalized normal paths.

From now on throughout this section, we will work in the docile category . We
show that given any such object E, every element of A (E) has precisely one normal
representative in K (E) For this, we need to use Bergman’s diamond lemma. We refer
the reader to subsection 1.3 or [25, pp. 180-182] for the statement of the lemma and

basic terminologies.

Theorem 3.4.5. Let E be an docile object in tBSG . Then A (E) has a basis consisting

of normal generalized paths.

Proof. In order to apply Bergman’s diamond lemma, we replace the defining relations

by the following:
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1": For any v, w € E°,

VW = Oy V-

2': For any v € EY, e € B!,

3': For any e, f € E!,

ef=0, if s(e) #s(f),
eft =0, if r(e) #r(f),
efr=0, if s(e) #r(f).

A'l: For each X, X’ € S for which there exists Y € D such that X N'Y # () and
X'nYy #0,
exey = (XY)(YX')" =dxxs(X) - > (X¥1)(V1X')",

YieD
Y1#Y

A'2: For each Y,Y’ € T for which there exists X € C such that X NY # () and
XNY' #£0,
eyeyr = (YX)(XY')* = dyyr(Y)— Y (YX1)"(XY7).
X,eC
X1£X
(i.e. In A’1, LHS contains forbidden words of types I and III. In .A’2, LHS has forbidden

words of types II and IV).

Denote by ¥ the reduction system consisting of all pairs 0 = (we, f5), where w,

equals the LHS of an equation above and f, the corresponding RHS. Let (P) be the
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monoid consisting of all words formed by letters in E°U E' U ET and (P) be the semi-
group obtained by removing the identity element of (P). We define a partial order on
(P) as follows:

Let A=z122...2, € (P). Set [(A) =n and
m(A)={ie{1,2,...,(n— 1)} | x;x;41is of type I or type I1}|.
Define a partial order < on (P) by A < B if and only if one of the following holds:

1. A=B

)

2. 1(A) < I(B) or

3. l(A)=1(B), andforeach G,H € (P), m(GAH) < m(GBH).

Clearly < is a semigroup partial order on (P) compatible with ¥ and also the de-
scending chain condition is satisfied. It remains to show that all ambiguities of 3 are
resolvable. Recall from Proposition 1.3.3 that E* is a linear K-basis for K(E). Hence

it is sufficient to show that the following ambiguities are resolvable:

exeyxey = (XY)(Y'X)*(X'Y) (A1 - A'2)

eheyrey = (YX) (XY)(Y'X')". (A2 — A'T)

We note that there are no inclusion ambiguities. We only show how to resolve
ambiguity of type A’1 — A’2 and the other case follows similarly. Also suppose X, X; €
Sa, Y1 € D and (XY7)(Y1X;)* is a forbidden word of type III. Then any word of the
form (XY7)(Y1.X1)*(X1Y), where Y € D will not result in an overlap ambiguity. This
is because, X, X1, being elements of So will not intersect with elements of 7" and so
(Y1X1)*(X1Y) will not be a forbidden word. The same argument is true for forbidden
words of type IV. So we only have to resolve those overlap ambiguities which involve
forbidden words of types I and II which we exhibit in the diagram below. Here, we
assume X, X1 € X\, Y, Y1 € V) and X; and Y; to be the fixed distinguished elements
of X and )Y respectively, where A is an arbitrarily fixed element of A, the indexing set

(see remark 3.3.11).
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/ (XY1)(Y1 X1)*(X1Y) 9

(XY2)(YaX1) ]le)

|:5X,X1 (X1)
YQED
Yo#Y1

= (X)) [6y,y1r<yl> LY (X (XaY)

XoeCl
Xo#X1
ox.x, (X1Y) — > (XY2)(Y2X1)"(X1Y) =
Yo€D
Yoty
A2 dyy; (XY1) — >0 (X)) (Y1X2)"(X2Y)
XoeC
Xo#X1
S (0Y) = T (X)) - $ (X C6y)| | A1
Yo€eD Xqel
YadY: XoA X,

I I S [6x,x2s<X>— 5 <XY2><Y2X2>*]<X2Y>
XQEC YQED
Xok Xy VoY

Ox,x, (X1Y) =y (XY2) + 30 30 (XY2)(YaXp)"(X2Y) =
YoeD XoeC
Ya£Y1 Xo# X1

Oy (XY1) = 0x x, (XoY) + >0 >0 (XY2)(YaXa)"(X2Y)
XoeC YseD
Xo#£ X1 Yo#£Y]

> > (XY)(Y2Xa)*(X2Y)
XoeC YseD
Xo£ X1 Ya# Y

This proves the confluence condition. The final expression written above is a finite
sum as X € S and Y € T. Also the final expression clearly does not involve X; and Y;
which are the distinguished elements of X and ), respectively and so does not contain

any forbidden word. The result now follows from Bergman’s diamond lemma. O

Corollary 3.4.6. Let E be a docile object in tBSG. Then the natural homomorphism
from the path algebra K(E) to the algebra A (E) is an inclusion.
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Proof. From the theorem, it follows that each path € E* is a part of a basis of Ag (F)

as u does not contain any forbidden word. O

Remark 3.4.7. (a) The advantage of restricting our attention to the docile category
is that the presence of distinguished elements in X and ), will help us in defining
forbidden words in a ‘canonical way‘. With this definition of forbidden words, it is
very easy to check the compatibility of the semigroup partial ordering < defined
in the theorem with ¥. Also, as mentioned in the remark 3.4.2(b), the graph-
theoretic objects corresponding to various generalizations of Leavitt-path algebras
are all objects in docile category. Therefore, the docile category itself provides a

common platform for studying various generalizations of Leavitt-path algebras.

(b) One might compute the normal forms of algebras corresponding to some non-docile
objects in tBSG. However, for an arbitrary object in tBSG there is no canonical
way of defining forbidden words and this might make it very hard to check the

compatibility of the partial ordering < with .

In the following subsections we give some applications of normal forms of Cohn-
Leavitt path algebras. That is, we find ‘bi-separated graph theoretic properties’ that
correspond to algebraic properties. We start by recalling some definitions and proposi-
tions from the theory of rings with enough idempotents. Then we give their applications
to the case of Cohn-Leavitt path algebras. We note that the reasoning is very similar to
that of [61]. Wherever some care is required we provide complete proofs, else the reader

is refered to [61] for proofs.

3.4.1 Local valuations and their applications

Definition 3.4.8. Let (R, I) be a ring with enough idempotents. A local valuation
on (R,I)is a map nu: R — Z" U {—o00} such that

1. v(z) = —oco if and only if z =0
2. v(x —y) <max{v(z),v(y)} for any z,y € R and

3. v(zy) =v(z)+v(y) for any e € I, x € Re and y € eR.

A local valuation v on (R, 1) is called trivial if v(z) = 0 for each x € R — {0}.
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Let R be a ring. A left ideal a of R is called essential if aNnb =0 = b6 =0
for any left ideal b of R. For any x € R, recall that the left annihilator ideal of z is
Ann(z) := {y € R | yxr = 0}. A ring R is called left non-singular if for any =z € R,
Ann(x) is essential & = = 0. A right non-singular ring is defined similarly. A ring is

non-singular is if it is both left and right non-singular.

Proposition 3.4.9. [61, Proposition 37| Let (R,I) be a ring with enough idempotents

which admits a local valuation. Then R is non-singular.

A non-zero ring R is called a prime ring if ab =0 = a =0 or b = 0 for any ideals
a and b of R. A ring with enough idempotents (R, I) is connected if eRf # 0 for any
e,fel.

Proposition 3.4.10. [61, Proposition 38/ Let (R,I) be a nonzero, connected ring with

enough tdempotents which admits a local valuation. Then R is a prime ring.

A ring R is said to be von Neumann regular if for any x € R there exists y € R

such that zyr = x.

Proposition 3.4.11. [61, Proposition 39] Let (R, I) be a ring with enough idempotents

that has a nontrivial local valuation. Then R is not von Neumann regular.

Recall that the Jacobson radical of a ring R is the ideal consisting of those elements
in R that annihilate all simple (right or left) R-modules. A ring is called semiprimitive

if its Jacobson radical is the zero ideal.

Proposition 3.4.12. [61, Proposition 40] Let (R,I) be a connected K-algebra with
enough idempotents which admits a local valuation v such that v(x) = 0 if and only if x

is a nonzero K-linear combination of elements in I. Then R is semiprimitive.

Now we find conditions on a bi-separated graph E for which the corresponding Cohn-

Leavitt path algebra admits a local valuation.

Definition 3.4.13. A docile onject E = (E, (C,S),(D,T)) in tBSG is said to satisfy
Condition LV if X € S (resp. Y € T') implies |X| > 1 (resp. |Y| > 1) and one of the

following holds:

(LV1): |S|<1,|T| <1
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(LV2): |S|>1or |T| > 1, and the following two conditions are satisfied:

(a) For any distinct pair X1, Xo € S, either there isno Y € D such that X;NY #
() and XoNY # 0 or there are at least two distinct elements Y7,Ys € D, such
that X; NY; # 0 for each 1 <i,j < 2.

(b) For any distinct pair Y7, Ys € T, either there is no X € C such that Y1NX # ()
and Yo N X # () or there are at least two distinct elements X7, Xy € C such
that X; NY; # 0 for each 1 <1i,j < 2.

We say E satisfies Domain condition if |[E°| = 1 and either (LV1) or (LV2) holds.

Remark 3.4.14. We emphasize the fact that if £ satisfies domain condition, then |X]|
(resp. [|Y|) could be equal to 1 also for X € S (resp. for Y € T) unlike the (LV)
condition where for X € S (resp. for Y € T'), | X| (resp. |Y]) has to be strictly greater
than 1.

Proposition 3.4.15. Let E be a docile object in tBSG and for any a € Ag(E), let
supp(a) denote the set of all normal generalized paths occuring in NF (a) with nonzero co-

efficients, where NF(a) is the unique normal representative of a. If E satisfies condition

LV, then the map v : Ax(E) — 77 U {—oc} defined by

0 # a + max{[p| | p € supp(a)}

0~ —o0

is a local valuation on A (E), where by |p|, we mean the length of the path p.

Proof. The first two conditions of a local valuation are obvious. It remains to show
v(ab) = v(a) + v(b), for any v € E° a € Ax(F)v and b € vAg(E). If one of v(a)
and v(b) is 0 or —oo, then the result is clear. Suppose now v(a),v(b) > 1. Since
any reduction preserves or decreases the length of a generalized path, it follows that

v(ab) < v(a)+ v(b). So it remains to show that v(ab) > v(a) + v(b). Let
Dk ::L'If...acllf(a) (1<Ek<r)
be the elements of supp(a) with length v(a) and

W=y Yy (L<S1<5)
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be the elements of supp(b) with length v(b). We assume that the py’s are pairwise distinct

and so are ¢;’s. Since NF is a linear map, we can make the following conclusions:

1. If x’;(a)yi is not a forbidden word of any type mentioned above, then

NF(prq) = prai-

2. If xff(a)yll is a forbidden word of type I or III, then there are X, X’ € Sand Y € D
such that :L"Ij(a)yll = (XY)(X'Y)* and (XY)(X'Y)* is forbidden. So

NF(prq)) = [5XX’$If o .xlj(a)flyé o 'yzl/(b):|

- Z ko xl]f(a)fl(XY)(X’Y)*yé .. .yll/(b).
YeD
(XY)(X'Y) #af vt

v

3. If x’lj(a)yly(b) is a forbidden word of type II or IV, then there are Y)Y’ € T and
X € C such that x’j(a)yly(b) = (XY)*(XY’) and (XY)*(XY’) is forbidden. So

NF(prq)) = [(5yy/:c’f . xﬁ(a)_lylz . ?/f/(b)
- Z ko xl;(a)_l(XY)*(XY')yé . .yly(b).
XeC
(XY)* (XY ")y, v

Case 1 : Assume that xl]f(a)yll is not a forbidden word of any type for any k, [.

Then prq; € supp(a), for any k, I. So v(ab) > |prq| = v(a) + v(b).

Case 2 : Assume that there are k and [ such that xff(a)yllj(b) is a forbidden word of type
I or III.

Then there are X, X’ € Sand Y € D such that 2% .y} = (XY)(X'Y)* and (XY )(X'Y)*

(a)
is forbidden. Since E is an LV-object, there is at least one more element Y € D other
than Y such that XY # 0 and X'Y # 0.

Case 2.1 : Assume ppqy # o% . .. xl’f(a)_l(XXN/)(X’iN/)*yé .. .yly(b), for any £/, 1.

Then 2} .. .x];(a)_l(Xf/)(X’?)*yé e yf,(b) € supp(ab), since it does not cancel with any
other term. So we are done.

Case 2.2 : Assume ppqy = z} .. .x’lj(a)_l(XEN/)(X’XN/)”‘yl2 .. y,l/(b), for some k’,1’. In this
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k

case, prqr = % ... Ty )_I(XY)(X’Y/)*yé e yf,(b) € supp(ab) and so we are done.

a

Case 3 : Assume that there are k£ and [ such that :rlj(a)yll is a forbidden word of type 11
or IV.

Then there are Y, Y’ € T'and X € C such that a:];(a)yﬁ = (XY)*(XY’) and (XY)*(XY")
is forbidden. Again since E is an LV-object, there is at least one more element XecC
other than X such that XY # 0 and Xy’ # 0. The proof now follows in exactly the

same way as in Cases 2.1 and 2.2. O

Corollary 3.4.16. Let E be a docile object in tBSG satifying condition LV. Then

1. Ag(E) is nonsingular.
2. E is connected implies A (E) is semiprimitive and prime.
3. |EY| > 1 implies Ag(F) is not von Neumann regular.

Theorem 3.4.17. Let E be a docile object in tBSG. Then Ax(E) is a domain if and

only if E satisfies domain condition.

Proof. It E satisfies domain condition, then we consider the two following cases:

Case 1: Assume that X € S = |X| >1land Y € T = |Y| > 1. If both S and T
are empty, then AK(E) is a free unital K-algebra and hence a domain (since K is a

field). Otherwise, by the proposition 3.4.15, there is a local valuation on Ag(E). So if

ab = 0 in Ag(F), then v(ab) = —oo, which implies v(a) + v(b) = —oo. This means

that v(a) = —oo or v(b) = —co. Hence a = 0 or b = 0. Therefore Ax(F) is a domain.

Case 2 : The only remaining cases to be considered are when S = {X} with X = {e}
or T ={Y} with Y = {f}. In both these cases the relations imposed on K (E) are not
of the form ab = 0.

For converse, if |[EY| > 1, then obviously Ag(E) is not a domain. Otherwise, we

consider the following cases separately:
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Case 1 : Assume that there are two distinct elements X, X’ € S which have only one
common Y € D such that XY # 0, X'Y # 0. Then (XY )(X'Y)* = dxxs(X) = 0.
So we are done.

Case 2 : Assume that there are two distinct elements Y,Y’ € T which have only one

common X € C such that XY # 0, XY’ # 0. Then (XY )*(XY’) = dyyr(Y) = 0.

This completes the proof. O

3.4.2 The Gelfand-Kirillov dimension

We first recall some basic facts on the growth of algebras from [43]. Suppose B is a
finitely generated K-algebra. Choose a finite generating set of B and let V be the K-
subspace of B spanned by this chosen generating set. For each positive integer n, let
V™ denote the K-subspace of B spanned by all words in V' of length less than or equal

to n. In particular, V! = V. Then we have an ascending chain
Kcvicvic...cvrc...

of finite dimensional K-subspaces of B such that B = J V™, where, by convention,

ne€Np
VY = K. Clearly, the sequence {dimg(V™)} is a montonically increasing sequence
and the asymptotic behaviour (see the definition 3.4.18) of this sequence provides an
invariant of the algebra B, called the Gelfand-Kirillov dimension of B, which is defined
to be

—log dimg (V™)

GKdim B = lim (3.4.1)

log n
Definition 3.4.18. Given two eventually monotonically increasing functions ¢,y : N —
RT, we say ¢ =< 4 if there are natural numbers a and b such that ¢(n) < a(bn), for
almost all n € N. We say ¢ is asymptotically equivalent to v, if both ¢ < 1 and ¢ < ¢.

If ¢ and ¢ are asymptotically equivalent, we write ¢ ~ .

Coming back to GK dimension of algebras, if a K-algebra B has two distinct finite
generating sets, and if V and W are the finite dimensional subspaces of B spanned by
these sets, then setting ¢(n) = dimg (V") and ¥(n) = dimg(W™), one can show that

¢ ~ 1) [43, Lemma 1.1]. In this notation, if ¢ < n" for some m € N, then B is said to
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have polynomial growth and in this case GKdim(B)< m. If on the other hand, ¢ ~ a"
for some a € R such that a > 1, then B is said to have exponential growth and in this

case GKdim(B)= cc.

Definition 3.4.19. A docile object F in tBSG is said to satisfy Condition (A4’) if

(A’'1): S =T = () implies either |E!| > 0 or |E°| = oco.
(A’2): S # 0 or T # 0 implies at least one of the following holds:

(a) 3X1,X2 € S, X5 # Xo, s(X1) = s(X2) and Y € D such that for i € {1, 2},
X;NY # 0 and (X;Y), (X;Y)* are not part of any forbidden word.

(b) IV, Y2 € T, Y1 # Yo, (Y1) = r(Y2) and X € C such that for i € {1,2},
YiNX # 0 and (V;X), (Y;X)* are not part of any forbidden word.

(c) 3X € S, Y € D such that X NY # 0, s(X) = r(Y) and (XY),(XY)* are
not part of any forbidden word.

(d) Y € T, X € C such that XNY # 0, s(X) =r(Y) and (XY),(XY)* are not

part of any forbidden word.

Proposition 3.4.20. If E is a finite docile object in tBSG and satisfies condition A’

then A (E) has exponential growth.

Definition 3.4.21. [61, Definition 20,21] Let E be any docile object in tBSG. A quasi-
cycle is a normal generalized path p in E such that p? is normal and none of the sub-
words of p? of length less than |p| is normal. A quasi-cycle p is called self-connected

if there is a normal path o in E such that p is not a prefix of 0o and pop is normal.

Theorem 3.4.22. Let E be a finite docile object in tBSG. Then A (E) has exponential

growth if and only if there is a self-connected quasi-cycle.

Remark 3.4.23. Let £ be any docile object in tBSG and suppose that {E; | i € I} is
a directed system of all finite complete sub-objects of E. By results of [53, Section 3],

we have GKdim(Ag (F)) = sup GKdim(Ag (E;)).
i€l

3.4.3 Additional applications of Linear bases

In this subsection we fix the following notations. Let (R, I) be a K-algebra with enough

idempotents. An element a € R is called homogeneous if ¢ € vRw for some v, w € I.
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Let B denote a K-basis for R which consists of homogeneous elements and contains I.

Let [ : B — Z" be a map such that [(b)) =0 < b e I.

Definition 3.4.24. An element b € B N vRw is called left adhesive if ab € B for
any a € BN Rv and right adhesive if bc € B for any ¢ € BNwR. A left valuative
basis element is a left adhesive element b € B N eR such that [(ab) = l(a) + I(b) for any
a € BN Rv. A right valuative basis element is defined similarly. A valuative basis
element is an adhesive element b € B N vRw such that [(abc) = l(a) + 1(b) + I(c) for
any a € BN Rv and ¢ € BNwR.

Proposition 3.4.25. [61, Proposition 53] Suppose there exists a valuative basis element
be (B—I)NvRv. Then dimg(R) = 0o, R is not simple, neither left nor right Artinian

and not von Newmann regular.

Definition 3.4.26. A docile object £ in tBSG is said to satisfy Condition (A) if

(A1): S =T = implies |E°| = oo or |El| > 0.
(A2): S # 0 or T # () implies at least one of the following holds:

(a) 3X €S, Y € Dsuchthat XNY # 0, (XY)(XY)* and (XY )*(XY) are not
forbidden words.

(b) 3Y €T, X € C such that XNY # 0, (XY )(XY)* and (XY)*(XY) are not

forbidden words.

Let B denote the set of all normal generalized paths of Ay (F). Let [ : B — Z*
denote the map which maps a path to its length. If E satisfies Condition (A2) then we
can choose either X € S, Y € DorY € T, X € C such that XNY # 0 and (XY )(XY)*
is not forbidden. Set b = (XY)(XY)*, then b is a valuative basis element. Hence we

have the following corollary:

Corollary 3.4.27. Let E be a docile object in tBSG that satisfies Condition (A). Then
dimg (Ax (E)) = oo, Ag(E) is not simple, neither left nor right Artinian and not von

Neumann regular.

Definition 3.4.28. Let b € BNvRw and ¥’ € BNv' Rw'. We say that b and b’ have no

common left multiple if there is no a € BN Rv and o’ € BN Ry such that ab = a'V'.
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We say that b and b’ have no common right multiple if there is no ¢ € BN wR and
¢ € BNw'R such that be = b'c.

An element b € B NwvRw is called right cancellative if ab = ¢b = a = ¢ for any

a,c € BN Rv and left cancellative if ba’ = bd’ = o/ = ¢ for any o/, € BN wR.

Proposition 3.4.29. [61, Proposition 56] If there are elements b,b' € B NvRv such
that b is adhesive and right cancellative, b is left adhesive and b and V' have no common

left multiple, then R is not left Noetherian.

If there are elements ¢, € BNvRv such that ¢ is adhesive and left cancellative, ¢ is

right adhesive and ¢ and ¢ have no common left multiple, then R is not right Noetherian.

We have the following corollary which gives a necessary condition for Ag(F) to be

a left or right Noetherian in terms of E.

Corollary 3.4.30. Let E be a docile object in tBSG that satisfies Condition (A’). Then
A (E) is neither left nor right Noetherian.

Proof. We prove the statement only for conditions (A4’2)(a) and (A’2)(c) leaving the

other simple cases to the reader.

Suppose there exist X1, Xo € S, Xj # Xo, s(X1) = s(X2) =v and Y € D such that
for i € {1,2}, X;NY # 0 and (X;Y), (X;Y)* are part of forbidden words. Then set
b = (X1Y)(X1Y)%, by = (X1Y)(XoY)* and by = (XoV)(X1Y)*. Then by, by, by € (B —
E%)NwAg (E)v. It is easy to check that by is adhesive and both left and right cancellative,
by is left adhesive, bs is right adhesive, b1, by have no common left multiple and by, b3

have no common right multiple. Thus Ag (F) is neither left nor right Noetherian.

Now suppose that there exist X € S and Y € D such that XNY # 0, s(X) =r(Y) =
v and (XY), (XY)* are not part of any forbidden word. Then both (XY), (XY)*
are in (B — E°) NvAg(E)v, they are adhesive, both left and right cancellative and
have neither left nor right common multiple. Therefore .AK(E) is neither left nor right

Noetherian. 0






Chapter 4

Cohn-Leavitt path algebras of

semi-regular hypergraphs

In this chapter we specialize our attention to hypergraphs and study their Cohn-Leavitt

path algebras.

4.1 Semi-regular hypergraphs and their H-monoids

We begin by recalling the definition of hypergraphs introduced in [61] (See Definition
3.1.8).

Definition 4.1.1. A hypergraph is a quadruple H = (H°, H!,s,r) where H® and H!
are sets called the set of vertices and the set of hyperedges respectively. For each h € H!
there exists a pair of non-empty indexing sets I,J; such that s(h) : I, — H°, and

r(h) : J, — HO are families of vertices.

Let H be a hypergraph. A hyperedge h € H! is called source regular (resp. range

regular) if I, is finite (resp. Jy is finite). The set of all source regular hyperedges of H

is denoted by HL.., and the set of all range regular hyperedges of H is denoted by ’Hrlreg.

sreg

The hypergraph # is said to be regular if H! = Hslreg = Hslreg.

The Leavitt path algebra Li(H) of the hypergraph H is the K-algebra pre-

sented by the generating set {v,h;;,hf; | v € HO,h € HYi € I,j € Ju} and the

ij
relations

95
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1. wv = dyu, for every u,v € HO,

2. S(h)zhw = hij = hijr(h)j and T(h)]h;k] = hfj = h:]s(h)l, for every h € Hl, 1 € Ip,
and j € Jp,

3. Z hithj = iks(h)i, for every h € Hrlreg and i,k € I,
J€Jn

4. > hijhi = 0k (h);, for every h € H;reg and j,k € Jp.
i€ly

In the above definition, a hyperedge h gives rise to a matrix [h] of order |I5| X |J3],

whose (i, )" entry is h;;. Thus relation (3) and (4) can be re written as follows:

3. For every h € H}.,, the matrix equation [h][h]* = D; holds, where D; is the

rreg’

diagonal matrix of order |Ij| x |I,| whose (i,4)™ entry is s(h);.

4. For every h € HL.., the matrix equation [h]*[h] = D7 holds, where D} is the

sreg’
diagonal matrix of order |Jj,| x |.J,| whose (4, j)™ entry is r(h);.
First note that a hyperedge h, which is neither source regular nor range regular
(that is both Ij, and J,, are infinite), does not contribute to the defining relations of the
Leavitt path algebras. Thus we could consider the class of ‘semi-regular’ hypergraphs:

A hypergraph H in which for each h € H!, either I, is finite or Jj is finite. In other

words, its only hyperedges are either source regular or range regular.

We would like to recast the definition of semi-regular hypergraphs in terms of bi-
separated graphs (with distinguished subsets) so that we can study their Cohn-Leavitt
path algebras.

Definition 4.1.2. A semi-regular hypergraph is a pair (£, A), where E = (E, (C, S), (D, T))
is a bi-separated graph and A is a nonempty indexing set, called the hyperedges, such
that for each A € A there exists Xy C C and Y\ C D which further satisfy the following

conditions:
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L A=AJUAL UAS UAB AR, and

S = || A where A% =AFUAZ LAY,
AEAS
T = || ¥, where Ap=A7UAPUAF,
AEAT
Cin—95 = || .
AeAfin
Dﬁn—T = |_| y)u
AEAR,
C—Cwm = | ] &
AEAS?
D-Ds = || I
AEAS

2. X¢SandY ¢T = XNY =0,
3. forany a,f € Awitha# 3, X € XyandY € Vg = X NY =10,

4. forany \e A, X e Xy andY € Y, = X NY # 0,

In order to make the above definition more transparent, let us make a few remarks.

Remark 4.1.3. First note that the hyperedge A € A corresponds to the matrix [)],
whose set of rows is X and the set of columns is V). Further, for X € X, and Y € )},
the (X,Y)™ entry is X NY. Thus the condition (1) in the above definition says that
set of all hyperedges can be partitioned according to their corresponding matrices in the
following way:
i A:Sp is the set of all hyperedges whose rows and columns are in S and 7T respectively.
ii. Agn is the set of all hyperedges whose the rows are in S and columns finite.
iii. AS is the set of all hyperedges whose rows are in S and columns infinite.
iv. A%n is the set of all hyperedges whose rows are finite and columns are in 7.
v. A% is the set of all hyperedges whose rows are infinite and columns are in 7'.

It is easy to see that we have avoided those hyperedges whose rows finite but not in

S and columns finite but not in 7". This is because, in the definition of Cohn-Leavitt
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path algebras the relations are contributed from rows and columns belonging to the

distinguished sets S and T respectively.

Remark 4.1.4. 1. Tt is easy to check that semi-regular hypergraphs are tame, docile
and that semi-regular hypergraphs, along with complete morphisms, form a cate-

gory. This category will be denoted by BHG.

2. Note that given a semi-regular hypergraph (E, A) with S = Cj, and T = Dy, we
can identify (E’, A) with a hypergraph H as follows: H? = E°, H! = A, and for
each A € A s(A) = (s(X))xex, and 7(N) = (r(Y))yey, -

Notation 4.1.5. For A € Ap, set

Qr = {qz]1ZC YV, 0<|Z| < oo} and
Q = ||
AEAT
For A € A, set
Py = {pw | W CAX), 0<|W|< oo} and
P = || P
AEAS

Definition 4.1.6. Given a semi-regular hypergraph (E, A), its H-monoid H(E,A) is

defined as the abelian monoid generated by E° LI Q LI P modulo the following relations:

1. For A € Ar and gz € Qa,

Yo s(X) = r(Y) +az

XEeXy Yez

2. For A € A and py € Py,

S r¥) = 3 s(X) +pw,

Yeyy Xew

3. For A € Ar and qz,,qz, € Q) with Z; C Z,

in=am+ Yy, r),
Yez—7y
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4. For A € A® and pyw,, pw, € Py with W, C W,

pw =pwe+ Y s(X),
XeWs—Wh

5. for \ € A*%,

qy, = 0 =Dx,-

If (E,A) is semi-regular hypergraph then H(E, A) is a conical monoid. This is easy
to see from the relations defining H (E , \) because these relations ensure that (z+y) # 0
whenever z # 0 or y # 0, for z,y € H(E, A).

Definition 4.1.7. Let R be a ring, and let M (R) denote the set of all w X w matrices
over R with finitely many nonzero entries, where w varies over N. For idempotents
e,f € Mx(R), the Murray-von Neumann equivalence ~ is defined as follows:

e ~ f if and only if there exists x,y € My (R) such that xy = e and yz = f.

Let V(R) denote the set of all equivalence classes [e], for idempotents e € My (R).

e 0O
Define [e] 4 [f] = [e® f], where e® f denotes the block diagonal matrix . Under
0 f

this operation, V(R) is an abelian monoid, and it is conical, that is, a + b = 0 in V(R)

implies @ = b = 0. Also V() :Rings—Mon is a continuous functor.

Let R be a unital ring and let U(R) be the set of all isomorphic classes of finitely
generated projective left R-modules, endowed with direct sum as binary operation. Then

(U(R),®) is an abelian monoid. We also have U(R) = V(R).

Theorem 4.1.8. There is an isomorphism I' : H — V o Ak of funtors BHG — Mon.

Proof. We first define the map T as follows: For each object E in BHG,
D(E,A): HE,A) = Vo Ax(E,A)
is the monoid homomorphism sending
v = [v],

qz + [diag(s(X)) — BB]
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and

pw +— [diag(r(Y)) — N*NJ,

where v € E?, Z is any non-empty finite subset of V), diag(s(X)) is the diagonal matrix
of order |X)| with diagonal entries coming from the set s(X)) in any order (without
repetition), diag(r(Y)) is the diagonal matrix of order |))| with diagonal entries coming
from the set 7())\) in any order (without repetition), B is the |X)\| X |Z| matrix whose

b row consists elements of X if and

columns are precisely the ones in Z and whose i
only if the diagonal entry in the i row of diag(s(X)) is s(X), and N is the |W| x ||
matrix whose rows are precisely the ones in W and whose j** column has elements from

Y if and only if the diagonal entry in the j* column of diag(r(Y)) is r(Y).

It is not hard to see that the above map is well defined. Also the fact that every
element in BHG is a direct sum of its finite complete sub-objects and the continuity of
the functors involved will suggest that it is enough to prove the results for finite sub-
objects. For the finite case, we use induction on |A|. For A = (), the result is trivial. So,
suppose that the result holds for all finite objects (F, Ap) in BHG with [Ag| < (n—1),
for some n > 1. Let (E, A},) be a finite object with |A ;| = n. Fix an element A € Ay,
We can now apply induction to the object F obtained from the E by deleting all the

edges in A and leaving the remaining structure as it is, keeping F° = E°.

First suppose that A € A3.. Then H(E, A};) is obtained from H(F, A ) by going mod-

ulo the relation > s(X) = > r(Y). Also, the algebra AK(E,AE) is the Bergman
XGX)\ YGyA

algebra obtained from .AK(F ,A;) by adjoining a universal isomorphism between the

finitely generated projective modules P AK(F,AF)S(X) and P .AK(F,AF)T(Y).
. XeXy Ye.;)&

So by [24, Theorem 5.2], V(Ax(E,A)) is the quotient of V(Ag(F,A)) modulo the

relation

[diag(s(X))] = [diag(r(Y))].

Since the map

D(F,Ap): H(F,Ap) — Vo Ar(F,Ap)
is an isomorphism by induction hypothesis, the desired result follows.

Now suppose A does not belong to A%:. Then it is either in AF or in Afo. Let us first

assume that A € A%, In this case, H(E, A};) is obtained from H(F, A ;) by adjoining a
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new generator gy, and going modulo the relation

Do s(X)= ) r(Y) +ay,

XGXA YGyA

On the algebra side, Ax (F, A},) is obtained from Ag (F, A}) in two steps by

1. first adjoining the mutually perpendicular idempotents diag(s(X)) — BB* and gy, ,

and going modulo the relation
[diag(s(X))] = [BB"] + ay,

thereby, getting a new algebra R and then

2. adjoining a universal isomorphism between the left module corresponding to [BB*]
and the left module @ Rr(Y).
YeYy
So, by [24, Theorems 5.1, 5.2], V(Ag (E,Ay)) is obtained from V(Ag(F,A)) by ad-

joining a new generator q;’)’;A and going modulo the relation

[diag(s(X))] = [diag(r(Y))] + gy,

This, along with the induction hypothesis, proves the theorem for the considered case.

Finally suppose A € AS.. Again H(E,AE) is obtained from H(F,AF) by adjoining

a new generator py, and going modulo the relation

Z r(Y) = Z s(X) +px,-

YEYN XeX)

On the other hand, analogous to the previous case, the algebra AK(E ,A ;) is obtained

from A (F,Ap) in two steps by

1. first adjoining the mutually perpendicular idempotents diag(r(Y))—N*N and p’XA,

and going modulo the relation
[diag(r(Y))] = [N*N] + ply, ,

thereby, getting a new algebra R’ and then
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2. adjoining a universal isomorphism between the left module corresponding to [N*N]
and the left module @ R's(X).
Xex,

So, by [24, Theorems 5.1, 5.2], V(Ag (E,Aj)) is obtained from V(Ag(F,A;)) by ad-

joining a new generator p’/’\',A and going modulo the relation

[diag(r(Y))] = [diag(s(X))] + plx,

thereby completing the proof (using induction hypothesis).
O

Remark 4.1.9. We note that if M is any conical abelian monoid then there exists a
semi-regular hypergraph (E, A ) such that M = H(E,A) = V(A (E,Ap)). For two
different proofs of this fact, we refer the reader to [20, Proposition 4.4] or [61, Proposition
62].

4.2 Ideal lattices and Simplicity

In this section, (E ,\) always denotes a semi-regular hypergraph. Throughout this sec-

tion, we use the following notation: For A € A,

sV = J s(X)and r()) == ] r(X).

XeX, Yelx

4.2.1 The lattice of admissible triples in (F,A)
Definition 4.2.1. A subset V of EY is called bisaturated if for each \ € A%
sAN) CV <= r(\) CW

The set of all bisaturated subsets of E is denoted by BS(E, A).

Note that empty set and E° are always elements of BS(E , ). It is easy to check that

BS(E, A) is closed under arbitrary intersections.
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If V is a subset of E°, the bisaturated closure of V, denoted V, is the smallest
bisaturated subset of EY containing V. Since the intersection of bisaturated subsets of

EV is again bisaturated, V is well defined.

For V C E° V can be explicitly constructed as follows: Define V5 = V. If n is an

odd positive integer, define

Vo=V U{r(Y) | Y € Y, A € Af, and s(\) C V1),
and if n is an even positive integer, define

Vi =Vuo1t U{s(X)| X € Xy, A€ AZ, and r(\) C V1 }.

Then V = Upso Vo

Definition 4.2.2. Let V C E° be bisaturated and for any A € A, set
Xyv ={X eX[s(X)¢V}and Yy ={Y e [r(Y) ¢V}

Then set
AV =AJ/VUAS JVUAS )V UAR/VLAR)Y,

where

AV = {AeAR0<|Xyr}={A et | 0< Dy}
ALV = {NE AL 0 < Xy v},
AV = {Ae AL [0 <Xy < oo},
APV = (A AP0 < Dyvl}
T/V = {AAEAT[0< Vv < oo}

Let V C E° be a bisaturated set, ¥ C A2 /V LUAS /V and © C AlR/V LUAF/V. A
triple (V,X,0) is called an admissible triple and the set of all admissible triples in
(E,A) is denoted by AT(E, A).

We define a relation < in AT(E, A) as follows: (V1,%1,01) < (Va, X9, 029) if

Vi C Vs,
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%1 C Bo UAS(V), where A(V) = A% — AV,

0, C O, L AT(V), where AT(V) =Ap — A/V

We note that (E°, 0, () is the maximum and (,, §) is the minimum in AT(E, A).

Definition 4.2.3. Let V be a bisaturated subset of E°, ¥ C AS(V)UAg /V UAL/V,
and © C Ar(V) U AIR/V UAP/V. The (%, 0)-bisaturation of V is defined as the
smallest bisaturated subset V (X, ©) of E° containing H such that

1. If A€ ¥ and s(\) C V(X%,0), then 7(\) C V(X%,0) and

2. If A€ © and 7()\) C V(%,0), then s(\) C V(%,0).

We can construct (3, ©)-bisaturation of V as follows- Define V(2,0) = V. If n is

odd positive integer, define

Va(2,0) =V, 1(Z,0Uu{r(Y) e E°-V, 1(%,0) | Y € Yy, A € Af US and s(\) C V,,_1(%,0)},
and if n is an even positive integer, define

Va(2,0) =V, 1(2,0)U{s(X) € E°-V,_1(2,0) | X € X\, A € AlMUB and r(\) CV,,_1(2,0)}.

Then V(X,0) = Unso Va(%,0).

Proposition 4.2.4. (AT(E,A), <) is a lattice, with supremum V and infimum A given

by
(thl,@l) V (V27227@2) = (‘77276)7
where
‘7 =WV uJ VQ(El UXo, 61U @2),
Y= (2 US,) — AS(V),
0 = (0, UBy) — Ap(V),
and

(V17217®1) A (V27 22762) = (‘772763)7
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where

~

V=(VinW),
S = (S UAN V)N (S UAS(V)) N (AS/V LAS V),

O = (01 UAr(V)) N (O UAr(V)) N (AR /v LA /V).

Proof. Clearly, (V,%,0) € AT(E,A) and is greater than (V;,%;,0;) for i = 1,2. Now
let (V,%,0) € AT(F, A) such that (V;,%;,0;) < (V,%,0) for i = 1,2. It is enough to
prove that V C V for all n € Z*. We do this inductively. Define V,, = (ViuWa), (21U
¥9,01 UBq). For n = 0 the claim is clear by assumption. Now assume that n > 1 and
that V,,_1 C V. Let v € V,,. If v € s(A) or v € r()) for A € A, then v € V because V
is bisaturated. Now suppose v € s(\) for A € ©1 U O2. By definition and the induction
hypothesis, we have r(\) C Vi C V', where m is largest even integer less than n. In
particular, this implies that A ¢ ©. Since A € ©1 U Oz C Ar(V) U O we conclude that
v € H, which completes the induction step. The inclusion (01 U ©3) — Ap(V) C ©
follows. Similar arguments shows that if v € r(\) for A € ¥; U Xy, then v € V and

(©1U6O2) —Ap(V) C ©.

It is clear that (V,%,7) € AT(E,A) and (V,5,7) < (V;,%;,0;) for i = 1,2. If
(V,%,0) € AT(E, A) such that (V,%,0) < (V;,%;,0;) for i = 1,2, then clearly V C V.
Consider A € © — Ap(V). Then there exists v € s(A) — V, so v ¢ Vj for some j € {1,2},
and A ¢ Ap(V;). Let us fix j = 1. Since (V,%,0) < (V4,%1,01), it follows that
A € ©1. Hence, Y, y; is nonempty and ), % is nonempty. On the other hand, A € ©
implies that ) - is finite, hence Yy is finite. Thus A € A%n/‘/} L A%o/\/} We also have
A € ©;UAp(V;) fori = 1,2, because (V, 3,0) < (V;, %;,0;) for i = 1,2, and consequently
A € ©. This shows © C © UAp(V). Similarly we can show that X C %L AS(V) proving
that (V,%,0) < (V, 3, 0). This shows that (V, 3, ©) is the infimum required.

Hence AT(EA) is a lattice. O
4.2.2 The lattice of order-ideals in H(E,A)

Definition 4.2.5. An order-ideal of a monoid M is a submonoid I of M such that

x +y € I for some z,y € M implies that both z and y belong to I.
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Every monoid M is equipped with a pre-order < as follows: for z,y € M, z < y if
and only if there exists z € M such that z + z = y. Hence an equivalent definition of an

order-ideal [ is as follows: For each x,y € M, if x <y and y € I then x € I.

Let £(M) denote the set of all order-ideals of M. We note that £(M) is closed under
arbitrary intersections. For a submonoid J of M, let (J) consists of those elements
x € M such that z <y for some y € J. Then (J) denotes the order-ideal generated by
J. Then L(M) can be shown to be a complete lattice with respect to inclusion. For,

given an arbitrary family {I;} of order-ideals of M, the supremum is given by (> I;).

We want to study the lattice of order-ideals of H (E ,\). For convenience, we modify

some notations of the previous section as follows:

Notation 4.2.6.
For A€ Ay, s()):= ) s(X).

For A€ A%, r(A):= ) r(Y).
Note that the above sums are finite.
For Ae A" ¢, = qy, -
For A\ € Agn, DA 1= DX, -
Also,

for N € AT, set 2\ ={Z | Z CV\,0<|Z| < o0},

for A € A

[oop)

set Wy ={W | W C X,,0 < |W| < co}.

Z:= || ZvandW:= | | Wi

AEAF AEAS,

Finally set
Q" ={ax | X e APYU{gz | Z € 2},

PO = {pr | A€ AL} U {pw | W € W
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Definition 4.2.7. Let F be the free abelian monoid on E° U Q° L P°. We identify

H (E, A) with F'/ ~, where ~ is the congruence on F' generated by the relations

r(\) if A € A7,
S(A) ~ Sr(\) + ¢ if A € AP and
r()\)+qz if/\GA%O and Z € 2,

and

s(\) +pr ifAeAT
r(\) ~ i
s(\) +pw if A€ AS and W € W,

for Z1,Z9 € Z with Zy C Zy, and qz, ~ qz, + v(Z2 — Z1), and for Wi, Wy € W with
Wy - Ws, and Pwy ~ Pw, + S(W2 — Wl).

Lemma 4.2.8. If I is an oder-ideal of H(E, A), then the set V = I N E is bisaturated.
Proof. Let A € A3 and r(\) C V, then r(\) = s(\) € I. Since I is order-ideal, and

s(X) < s(\) for each X € X, we have s(X) € I for each X € X, and hence s(\) C V.

Converse follows similarly. O

Definition 4.2.9. Let V be a bisaturated subset of E°.

For A € A7 /V, if 0 < [Vyv| <oo,  anyv = qa,,y-

For A € AS /V, if 0 < Xy v <00, pajv = Dpa
If I is an order-ideal of V(E,A), set (1) = (V,%,0), where
V = INE°

= {A€AZ/V [preJU{A€AL/V [ pyy €1}, and

O = {MeA/V]gpellu{NeAF/V gy €T}
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Conversely, for any (V,%,0) € AT(E,A), let I(V,%,0) denote the submonoid of
H(E,A) generated by the set V U Q(©) U P(X), where

QO) = {m|xeAP/Vnoluigyw|XeAF/VNe},

P(E) = {pp|Xe A/ VnShu{pyv | A€ AL/VNE},

and (I(V, X, ©)) be the order-ideal generated by I(V, %, 0). Set ¢(V,%,0) = (I(V, %, 9)).
Lemma 4.2.10. If I is any order-ideal of H(E, ), then I = ¢ap(I).
Proof. Let ¢(I) = (V,%,0) and I(V,%,0) = J so that ¢pyo(I) = (J). It is clear that

J C I and therefore (J) C I. For converse, consider a nonzero element x € I. Then
T =30+ day D Py + 22142+ D PW,, for some v; € E% aj e AIn B e A2
Zy € Z, and Wy, € W. Since [ is an order ideal, v;, qa;,Pg, 92, Pw,, € I, and so to
prove that @ € (J), it is enough to show that v, g, pg, gz, pw for allv € E% o € Ali* 3 €
AR, Z € Zand WeW.

Case 1 If v € E9N I, then v € V by definition of H, hence v € J.
Case 2 Let a € Af}n such that g, € I.

Subcase 2.1 If r(a) C V, then r(a) € I and so s(a) = r(a) + g, € I. Hence
s(X) € V for each X € A,,, and so s(«) € J. Since g, < s(a), it follows that g, € (J).

Subcase 2.2 If 7(a) € V, then by definition o € © N AR /V. Hence g, € J.
Case 3 Let A € AP and Z € Z), such that ¢z € I.

Subcase 3.1 Y,y = (). This is equivalent to 7(\) C V and the argument follows

similar to subcase 2.1.

Subcase 3.2 0 < [, /1| < co. In this case, we have

(Vv = Z2)=r(M\wUZ]l=2) < qu,,yuz + (v UZ] - Z)=qz €1

It follows that r(Vy/vy — Z) € I and so 7(Vyy — Z) € H. Hence ),y C Z. Since
r(Z—=Y\v) C H, weget gy =1(Z—Vy\v)+qz €I, s0 that A € © by definition, and

since gz < gy, we get gz € (J).
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Subcase 3.3 |V, /1| = co. Then there exists Y € Yy — Z, and we have
r(Y)<r(ZU{Y} - Z)+qvy=aqz el

But this implies that r(Y') € I and so r(Y) € V, which contradicts Y € Y . Thus
qaz € (J).

The remaining cases are proved analogously. O

Construction 4.2.11. Let (E, A) be a semi-regular hypergraph and (V, X, 0) € AT(E, A).
For A C E', define

A(V)=Anr Y (V) and A,(V) = Ans L(V).

We define the quotient semi-regular hypergraph (E, K) as follows: E’ is given by
E°=E’—V and E'=ENV)UELNV).

ri and sg are restriction maps of rg and sg respectively.

For v € EO, set

Co = {X, (V)| X€Cyand X, (V) # 0} and C = | | C,,
veED

D, = {Y{V)|Y €Dy,and Yy(V)# 0} and D= | | D,
veEED
S = {X,(V)| XeSand X, (V) # 0} U{X, (V)| X € X\,A € £}, and

T = {Yi(V)|Y € Sand Yo(V) # D} U{Ys(V) [ Y € Y, A € O}.

Let A be defined as follows:

AZ = [(|reAd/vusuel,
A, = (reag/v-sb,
A = A|aeAdv-x,
A — (X | xeAr/v -6}, and
® = {A[XeAF/V -6}
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We note that if 7 : M; — Ms is a monoid homomorphism and M5 is conical, then

ker 7 := 7~ 1(0) is an order-ideal of Mj.

Theorem 4.2.12. Let (E,A) be a semi-regular hypergraph, (V,%,0) € AT(E,A) and
(E, K) is the corresponding quotient semi-reqular hypergraph. Suppose that I := (I(V,%,0))

is the order ideal in M := H(E,N). Then there exists a monoid homomorphism

W:M%M::M(E) such that I = ker 7.

Proof. We begin by defining v, ¢, Dg, ¢z, dw € M for v € EY o€ A%n, b€ Agn, Z e Z,
and W € W. For v € EY, set

v ifv ¢V and

0 ifveV.

For o € A%n, we define g, as follows:

1. If s(a) CVorr(a) CV, g, =0.

_ 0 ifave®and
2. If s(a) €V and r(a) ZV, Go =

gz ifa¢O.
For B € Agn, we define pg as follows:

L. If s(B) CVorr(B) CV,pg=0.

0 iffe€X and
2. Ifs(B) €V and 7(B) Z V, ps =

P if 8¢ 3.

For A € AF, and Z € Z,, we define gz as follows:

1. If s(A) C V, gz = 0.
2. If s(\) Z V, set Z = {Y5(V) € V5 | Y € Z}.

(a) A €Oy =r()5 — 2).
(b) If A\ ¢ © and r(Z) C H, qz = s(A).

(c) fAEO,7(Z) LV and A ¢ AF/V, Gz = q5.
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(d) EAEO,7(Z2) ZV,and A€ AF/V. Gz = g5 + (V5 — 2).
For A € AS, and W € W), we define py as follows:

1. It r(\) CV, pw = 0.

2. Ifr(\) € V set W = {X,(V) € X5 | X € W}.

a) If A € X, pw =s(X; —W).

(a) by
(b) If r(N) LV, A ¢ ¥ and s(W) CV, pw =r()\).

() Er(AN)ZV,A¢%, s(W)ZV and XA ¢ A3 /V, pw = pypr-

(d) Er(\) ZV, A¢E, s(W) ZV,and A € AS/V, pw = p; +s(X; — W).

We define 7 : M — M by mapping generators v — v, for all v € EY g, — §u, for
all a € A%n, pg — pp for all 5 € Agn, qz — qz for all Z € Z, and pw — pw for all
W € W. To show that 7 defines a homomorphism we need to verify that images of
the generators satisfy all the defining relations. Here we only show for A € A and the

argument follows analogously for A € Ag.

Let A € Ap. We introduce a new notation

—~—

s(W) = Z s(X) for subsets W C X and
Xew

r(Z) = Z r(Y) for subsets Z C ).
YeZ

Suppose that A € A%. If s(A) CV, then r(A\) CV, and we get
s(A) =0=7r(\).

If s(A) € V then r(A\) € V, and we get

S(A) = s(Xyv) =s(\) =r(X) = r(Vy ) = F(\).

Suppose that A € A", If s(\) C V, then Vv =0. If s(A) € V, and () €V, then

Xy = (). In both of the above cases we have

s(A\) =0=r(A\) + qx.
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So let s(A) Z V and r(\) € V. If A € © then

S(A) =s(Xy ) =s(A) =r(A) = (V) + 0 =F(\) + G

If A ¢ © then

s(A) =s(Xyv) =s(A) =r(A) =r(Vv) + av,,p =T(A) + -

Now suppose that A € AP, and Z € Z,. If s(A\) C V, then V) )y = (), and hence
r(Z) = (. Then we have
sA\)=0=71(2)+qz.

Hence we assume that s(\) € V for rest of the step. If A € © then \€ K; and we have

5\ =s(\) =r(\) =r(¥5) =r(2) +r(V5 — Z) =r(Z) + 4z = ¥(Z) + Gz

If A ¢ © and r(Z) C V then we have

SO =s(\) =@z = ¥(2) + @z
fAXLO,r(Z)ZV and A ¢ AP /V then we have

5(\) =s(\) =1(2) + ¢z =F(2) + dz.
IfA¢ O, r(Z)ZV and A € A®/V then we have

5N =s(\) =r(\) + gz =r(V5s — Z) +1(Z) + 45 = T(Z) + @z

Now assume that for A € A let Z1,Z5 € Z) and Z; € Zp. If s(A\) C V then we have
qzl =0= ?(Zg — Zl) + 532.
So we may assume that s(A) Z V. If A € O,

7z, =v(Y5) — Zy =v(Z2 — Z1) +x(V5) = T(Zo — Z1) + Qzs-
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Only remaining case is when A ¢ ©. If A € A /V — O, then
Gz =4y + (V5 = 21) = a5 + (V5 — Z2) +2(Z2 = 21) = Gz, + X 22— ).

Hence, we may assume that A ¢ AF/V. If r(Z3) C V then we have

iz, =s\\) =v(Zy — Z1) + s(\) = ¥(Za — Z1) + Qz,.
If r(Z1) CV but r(Z3) € V, we have

Gz, =s(\) =1(Z2) + a3 =¥(Za — Z1) + Gz,

Finally, if 7(Z;) € V, then we have

iz, =az, =1(Za — 21) + a3, =¥(Za — Z1) + Gz,

Thus we have shown that 7 is a monoid homomorphism.

Now we show that I C kerw. Since ker 7 is an order-ideal, it suffices to show that
I(V,%,0) C kerr. For v € H we have m(v) = o = 0. For A € © N All* we have
m(gx) = @ = 0. If A € © N A, then 7(g)/v) = ¢)yy = 0. Similarly we can verify that
if \ € XN A2 then 7(gy) = 0 and if A € ¥ N AZ then m(qrv) = 0.

We claim that ¢(ker 7) = (V,%,0). For, let th(ker 7) = (V,%,0). It follows from
definition that V = I'N E° = V and by the previous paragraph > C > and © - o.
Consider A € AP /V U AR /V. If Y is finite and A ¢ O, then 7(gy) = gy # 0. Hence
qr ¢ ker m and so A ¢ ©. If Y, is infinite and A ¢ ©, then m(qy, ) = @y, # 0. Thus
A ¢ O. Hence © = O. Similarly ¥ = 3.

Finally, since ¢ (ker 7) = (V, £, 0) and I = ¢ot)(I), we have that ker 7 = (I(V, X, 0)) =
I O

Corollary 4.2.13. If (V,%,0) € AT(E,A), then (V,%,0) = o ¢(V,%,0).

Theorem 4.2.14. Let F be a semi-regqular hypergraph. Then there are mutually inverse

lattice isomorphisms

¢: AT(E,A) — L(H(E,A)) and v : L(H(E,A)) — AT(E, A),
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where $(V,%,0) = (I(V,%,0)) for (V,%,0) € AT(F,A) and 1 is defined as in defini-
tion 4.2.9.

Proof. The maps ¢ and ¢ are well defined by definition. By Lemma 4.2.10, ¢ o 1 is
the identity map on L(H(E, A)), and by Corollary 4.2.13 ) o ¢ is the identity map on
AT(E ,A). We only to have to show that 1) and ¢ are order-preserving.

Suppose I} C Iy are order-ideals of H(E,A) and (V},%;,0;) = ¢(I;) for j = 1,2.
Clearly Vi C V. We only show that ©1 C ©9 LI Ap(V2). Let A € O;. First suppose
that \ € A%H/Vl and gy € I;. If A e A%“/Vg, then A € ©5. Otherwise, r(\) C V5 and so
s(A) € Iz, which implies s(\) € V5 and A € Ap(V2). Now suppose that A € AJ®/V5 and

Oy € - If X € AF/Va, then gy, is defined and also
Dy, =T({Y €N | r(Y) € Va = Vi}) + qyw; € Do

So A € ©3. Otherwise, 7(\) C V5 and so r(A/Vi) € Iy, hence s()\) € Iz, again giving
AeAp(Va). ¥ C¥a AS(VQ) follows on similar lines.

Finally, let (V1, X1, 01) and (Va, X9, ©2) be elements of AT(E7 A) such that (V1,%1,01) <
(Va,%92,03). Clearly V4 C I(Va,%2,05). Consider A € ©; N A If A\ € Oy, then
gx € 1(Va, X9, 09) by definition of I(Va, 39, 02). If A € Ap(V), then

DY < qx + I'()\) = S(A) € I(‘/Qy EQ, 62)

and so gy € (I(V2,32,02)). Now consider A € ©1 NAF. If A € Oy, then gy, €
I(V3,39,02) and since

Dy < Oy T — Ivi) = Oyves
it follows that gy, € (I(V2,X2,02)). If A € A(V), then
Oy < Oyv Fr(Dayv) =s(A) € 1(Va, X2, 02),

and again g/, € (I(V2,%2,02)). A similar arguments shows that 3; C ¥ U AS (V).
Therefore all the generators of I(V7,31, 01 lie in ¢(Va, X9, 02), and we conclude that
d(V1,31,01) C ¢(Va, X2,02). Hence ¢ is order-preserving.



4.2. Ideal lattices and Simplicity 115

4.2.3 The lattice of trace-ideals in Ag(E, A)

Definition 4.2.15. Let R be an arbitrary ring and Idem(M(R)) denote the set of
idempotents in My (R)). An ideal I of R is called a trace-ideal provided I can be
generated by the entries of the matrices in some subset of Idem (M (R)). We denote by
Tr(R) the set of all trace ideals of R. Since Tr(R) is closed under arbitrary sums and

arbitrary intersections, it forms a complete lattice with respect to inclusion.

Proposition 4.2.16. [20, Proposition 10.10] For any ring R there are mutually inverse

lattice isomorphisms
®: LV(R)) = Tx(R) and ¥ :Te(R) — LOV(R))
given by
®(I) = (entries of ¢ | € € Idem(Mao(R)) and [¢] € I) and
W(J) = {[e] € V(R) | e € Idem (Moo (J))}.

Lemma 4.2.17. Let (E,A) be a semi-reqular hypergraph. Then the trace ideals of
A= Ak (E, A) are precisely the idempotent generated ideals and the lattice isomorphism

O : LV(A)) — Tr(A) is expressed as
®(I) = (idempotents e € A | [e] € I).

Proof. The proof goes exactly similar to [20, Proposition 6.2], except that in the present
case, the V-monoid V(A (E)) is generated by

{[o] lve B°} U {ldz] | ZS W, 0<|Z| <ooand A ¢ As}

U {[Piy] | WC Xy, 0<|W|<ooandA¢ Az}

(Here, because of Theorem 4.1.8, we are using the notation [¢%,] and [p}; | for the gen-
erators of V(Ag(E)). Strictly speaking, [¢.] and [p;] stand for images of ¢z and py
respectively under the map I' defined in Theorem 4.1.8). 0
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Theorem 4.2.18. Let (E.A) be a semi-regular hypergraph and A = A (E,A). Then

there exist mutually inverse lattice isomorphisms
£:AT(E,A) — Tr(A) and ¢ : Tr(A) — AT(E, A).

Proof. Set M := H(E,A). Let T : M — V(A) be the monoid isomorphism. By abuse
of notation, we also use I' to denote the induced lattice isomorphism £L(M) — L(V(A)).
Due to Theorem 4.2.14 and Proposition 4.2.16, we have mutually inverse lattice isomor-

phisms

dl'¢: AT(E,A) — Tr(A) and oI 10 : Tr(A) — AT(E,A).
More explicitly, if J € Tr(A), then ((J) = (H, X, 0), where
H=E"nJ,

S={A€ A /H |pre JIU{NE AL /H | pyy € T},

O={NeA/H |qne J}U{N€AF/H | gy € J}.

For converse, let (H, %, 0) € AT(F, A). First define £(H,%,0) = (HUP(X)UQ(O)),
where P(X) and Q(O) are defined as in Definition 4.2.9. Then define J(H, X, ©) to be
the order-ideal of V(A) generated by the set H' LI P'(X) U Q'(X), where

H' = {[v] | ve H}

P'(2) = {p\l | A € SN AZ/HY U Py ] | A€ SNALY,

Q'(©) = {ld] | A € ©NAF/HY U{ld) ] '€ ©NAF}.
By Lemma 4.2.17, it follows that
OI'¢p(H, X, 0) = (idempotents e € A | [¢] € J(H, %, 0)).

It is clear that £(H,3,0) C ®T'¢(H, X, 0).
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If e is an idempotent in A such that [e] € J(H, X, ), then

[e] < il + > b, ]+ > P al + Y )+ > (45, m]
i=1 7j=1 k=1 =1 m=1

where v; € H, aj € £¥.N Agn, BrEXNA, veON Af}n and 9, € © N AF. Therefore
e is equivalent to some idempotent ¢/ < D where D is a diagonal matrix with entries
Vis Doy DB,/ Hs Qs a0d g5, /- Thus it follows that e lies in these vi, pa;, g, /H: @y, and

4s,,/1- Hence PI'¢ = &. O

4.2.4 Simplicity

A non-zero conical monoid M is simple if its only order-ideals are {0} and M.
Theorem 4.2.19. Let (E,A) be a semi-regular hypergraph. Then the following condi-
tions are equivalent

1. The only trace ideals of A (E,A) are 0 and Ag(F,A).

2. H(E,\) is a simple monoid.

3. S = Cgn, T = Dgy, and the only bisaturated subsets of E° are () and E°.

Proof. From Proposition 4.2.16 it follows that (1) < (2).

(2) = (3) : Observe that (A2 /0) U (AS/0) = Can — S and (AIR/0) L (AF/0) =
Dgy — T. Similarly, (A2 /E%) U (AS/E®) = 0 and (AIR/E%) U (AX/E®) = 0. By
Theorem 4.2.14, the only members of AT(E, A) are (,0,0) and (E°,0,0). If A € A],
then (0, {\},0) € AT(E,A). This proves that S = Cp,. Similarly T = Dg,. If H is
any bisaturated subset of E°, then (H,{,0) € AT(E,A) and hence the only bisaturated
subsets of E¥ are E° and .

(3) = (2) : In this case AT(E,A) = {(E°,0,0),(0,0,0)}. The result follows at once
from Theorem 4.2.14. O
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4.3 Representations of Leavitt path algebras of regular hy-
pergraphs

Given a graph F, the category of quiver representations of E is the category of
functors from the path category Cg to the category of K-vector spaces. A morphism of
quiver representations is a natural transformation between two such functors. In other
words, a quiver representation p assigns a (possibly infinite dimensional) K-vector space
p(v) to each v € EY and a linear transformation p(e) : p(s(e)) — p(r(e)) to each e € E*.
A morphism of quiver representations ¢ : p — p’ is a family of linear transformations

{¢v | p(v) = p'(v)}pepo such that for each e € E! the following diagram commutes:

p(s(e)) 2L p(r(e))

(z)s(e)l \Ld)r(e)

p(s(e)) 2 g (r(e))

This section generalizes the results of [41]. Throughout this section by a hypergraph
we always mean a regular hypergraph. In this section, we will work in the category
M, of unital (right) modules over L := L (E,A) where (E,A) is a hypergraph. The
category 9y is closed under taking quotients, submodules, extensions and arbitrary
sums and hence it is an abelian category with sums. Note however that its is not closed

under infinite product if E° is infinite.

Lemma 4.3.1. Let M be a right L-module. Then @ Ms(X) is isomorphic (as vector
XeXy

space) to @ Mr(Y) for every X € A.
Yeys

Proof. For each A € A, let [A] be the rectangular matrix of size |Vy| x |Xy| whose entry

in Y row and X*" column is the edge YX. Then [A]: @ Ms(X) - @ Mr(Y),
Xex, Y ey
given by

(mx)xex N = | D> mxpcwy ;
X’EX)\ YEJ/)\

is a well defined linear map, where j(xy is right multiplication by the edge XY. We

show that [A] is an isomorphism with the inverse [A]*, which is the adjoint transpose
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matrix of [A]. Note that [A]*: @ Mr(Y) - & Ms(X) is given by

(my)yey, A" =

We check their compositions:

(my )y ey [AI"[A]

Similarly by L1, we get

XEX)\

> myhyx):
Y€V Xex,

> mypyx- [A]

/
Y€y XeX,

Z Z my [y’ x) | BH(XY)

XGX)\ Y/GJA\

Z Z my [y’ x)«H(XY)

Xedy \Y'el

Z Z my [y’ X)*(XY)

XeX,Y'eYs

Z Z my [y’ X)*(XY)

Y'ey, XeX)

YeYy
Yey,
Yey
YeYy
Yeys

> myits, ey (by L2)
Y€y Yey

(mY)YGy)\‘

(mx)xex, [A[A]" = (mx)xex,

which establishes the result.

O

Remark 4.3.2. If M is unital, then for any m € M, we have m = Zﬁc:l my v for some

vertices v, € E°. Hence M = Y. Mv. When considered as paths, the vertices of F

form a set of orthogonal idempotents, hence the above sum is direct. Therefore we have

M = @M’U.

veEED
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Theorem 4.3.3. The category My, is equivalent to the full subcategory of quiver repre-
sentations p of E satisfying:

For all A € A, [p(N)] : @ p(s(X)) — @ p(r(Y)) is an isomorphism.  (H)

Xex, Yey
Proof. Let M be a right L-module. We define a quiver representation pps as follows:
prr(v) = Mu for each v € EY and for the map pys(e) : Ms(e) — Mr(e), ms(e)par(e) =
ms(e)e = me = mr(e). By Lemma 4.3.1, (H) is satisfied. If ¢ : M — N is an
L-module homomorphism then ¢, is the linear transformation making the following

diagram commutative:
pym(v) = Mv —— M

o| P

pn(v) = Nv —— N

Since right multiplication by an edge e commutes with ¢, this defines a homomorphism

of quiver representations.

Given a quiver representation p, we define the correspoding module M, := @@ p(v).
veEEOD
To get an L-module structure on M,, we define the following projections and inclusions:

For each v € E°, define
Do My — p(v) 5 iy p(v) = M,
and for each A € A, X € X) and Y € ), define

px : @D p(s(X) = p(s(X)) 5 ix :p(s(X) = @B ps(X)).

XeXy XeX,
py i @ p(r(Y) = p(r(Y)) 5 iv:p(r(Y)) = € p(r(Y)).
YeYa Yey,
Now let mv := mpyi,, m(XY') 1= mpyx)ix[p(N)|pyir(y), and m(Y X)* := mp,yyiy [p(N)]*pxisx)-

To keep track of the last defining relations, we draw the following diagram:
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psyp@(;c))i» ® p6(0) s @ o) L p(r(v) —ire

XeX, YeYy

isx)~—p(s(X)) «— D p(s(X)) «—— D p(r(Y)) «<—— p(r(Y)) r(Y)
PX  XeXy [A]* veys iy

Here the composition of the upper arrows correspond to right multiplication by (XY)
and the composition by lower arrows correspond to right multiplication by (Y X)*. Veri-

fying that the above defining relations satisfy defining relations of L is left to the reader.

Now we show that the above constructions give equivalance of categories. By Remark
4.3.2, we have M,,, = @ Mwv = M and their L-module structures also match. Given
veED

a module homomorphism ¢ : M — N, we have o = @ ¢,: @ Mv— @ N.
vEEO vEEO vEEO

For the composition in the other order pys,(v) = Myv = ( P p(w) | v=p) and
weE?
ple) = pun,(e) : Mps(e) — Mpyr(e). For, let e = (XY) for some X € X\ and YV € ),

then the following diagram commutes.

Mys(e) = p(s(e)) = M, = @ p(w)

weED
p(e)J lps(e)iX[p()‘)]pYir(e)

ir(e)
Myr(e) = plr(e) <5 M, = @ plw)
weEO
Finally, for any homomorphism {¢, : p(v) = o(v)},cpo from p to o, the v-component

of G?go w18 0y par, (V) = p(v) = onp, (V) = o (v). O

Remark 4.3.4. We note that the full subcategory of graded quiver representations with
respect to standard Z-grading satisfying condition (H) is equivalent to the category of
graded unital L-modules. The proof follows on similar lines of the proof of Theorem

4.3.3.

Theorem 4.3.5. The composition of the forgetful functor from My, to Mg with _R ¢ (f)
L from Mg to My, is naturally equivalent to the identity functor on My,.

Proof. We note that both forgetful functor and _ ® g () L send unital modules to unital

modules. Let the composition of forgetful functor with _ ®x(g) L be denoted by F
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and the identity functor on 9y be denoted by Z. If M is an L-module, the L-module
homomorphism M ® g (g)L — M given by m®a — ma defines an natural transformation
from F to Z. To see that this is an isomorphism, we define its inverse M — M Qg L

by m+— >, m®wv. Observe that this sum is finite since M is unital.

veEL
mu7#0

To check that the above inverse defines an L-linear map, we need to check on gener-
ators. For every w € E” and m € M, we have Y mu®v=m®u = (3. m ® v)u, since
E is a set of orthogonal idempotents. For all A € A, X € Xy, Y € Y, and m € M we

have

Zm(XY) v = m(XY)rY), since ev = 0 iff r(e) # v
= m(XYV)e | > ¥X)(XY) by (L2)
X'EX
= ) mAY)(YX) ®(XY)
X'EX
= ms(X)® (XY) by (L1)
= m®((XY)

- (Zm@v) (XY).
Similarly > m(YX)*®@v=>_mev)(YX)*.

The composition m +— Y m ®@ v +— Y mv = m. Since elements of the form m ® v
with m € Mv generate M ® L as an L-module and for such elements we have m ® v —

mv — mu @ v =m Q v, the other composition is also identity. ]

Recall that the universal localization ¥ ~'A of an algebra A with respect to a
set ¥ = {0 : P, — Q,} of homomorphisms between finitely generated projective A-
modules, is an initial object among algebra homomorphisms f : A — B such that

oc®Ridg: Py ®4 B — Qs ®4 B is an isomorphism for every o € X.

Theorem 4.3.6. L is the universal localization of K(FE) with respect to

{or: @ K E) — @ ((X)K(E)}

)
AEA
YEYN Xex,



4.3. Representations of Leavitt path algebras of regular hypergraphs 123

(ay)yey, == | D (XY)ay

VeI Xex,

Proof. Since v € E° is an idempotent, the cyclic module vK (E) is projective. For each

XeXy
If f : K(E) — B is an algebra homomorphism, then f(v)? = f(v) and vK (E) Qg B =

fW)Bbya®b— f(a)band b— v ®b.

A € A, 0)\®idy, is an isomorphism with inverse o3, where (ax)xex, NEN ( > (YX)*aX) .
Yeya

Let f : K(F) — B be an algebra homomorphism such that o) ® idp is an isomor-

ig(x)®id
phism for all A € A. Then the composition f(s(X))B = (s(X))K(E) @k gy B SO

oi® id
( S5 S(X)K(E)) Q@B ( D T(Y)K(E)> R (E)B r(Y)K(E)®k k)
XeXx, Yelx
B = f(r(Y))B is uniquely and completely determined, which we call f((YX)*). Now

f(v) == f(v) for all v € E° f((XY)) = f((XY)) forall A € A, X € Xy and Y € )

Pr(y)®idp
s

defines the unique homomorphism f : L — B factoring f through K (E) — L. O

Proposition 4.3.7. Let (E,A) be hypergraph. If d : E° — NU {oco} satisfies

D d(s(X))= ) d(r(Y)) for all X € A,

XGX)\ YGyA

then there is an L-module M with dimg(Mv) = d(v).

Proof. Define the quiver representation p by p(v) = K%®) if d(v) < oo and p(v) := KM

otherwise. Then by definition of d we can find isomorphism 6y : @ p(s(X)) —
XeXy
D pr(Y)) for all X € A. Let p(XY) := iy x)0pr(v) for all A € A, X € &) and
Yey-A
Y € Y. Condition (H) is satisfied by construction and the corresponding L-module M

of Theorem 4.3.3 has dimg (Mv) = dimgp(v) = d(v). O

Definition 4.3.8. A dimension function of a hypergraph (E,A) is a function d :

EY — N satisfying > s(X)= Y 7(Y) for all A € A.
XGX)\ Yey)\

Remark 4.3.9. If the L-module M is finitary, i.e, dim(Mv) < oo for all v € E°
then by Lemma 4.3.1, d(v) := dim(Mw) is a dimension function. By Proposition 4.3.7,
the converse also holds. That is, every dimension function is realizable. Moreover, since

dim(M) = > dim(Mwv), d(v) := dim(Mw) has finite support if M is finite dimensional.
veED
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4.3.1 Support subgraphs and the hypergraph monoid

Let H = (E,A) be a hypergraph and E’ be a full subgraph of E. Then there is a natural
(hyper) biseparation induced on E’ from H as follows: For each X € C, if s(X) € (E')°,
define X’ := X ((E')! and similarly for each Y € D, if 7(Y) € (E')?, define Y’ :=
Y N(E")°. Also for each A € A, define \ using the following data: Xy := {X’ | X € Xy}
and Yy :={Y’ | Y € V»\}. Finally define A’ = {N | A € A, X\ # 0 and X # 0}. We call
H = (E’, A’) a full sub-hypergraph of H (hyper-induced from E’).

Definition 4.3.10. Let H = (E, A) be a hypergraph. A full sub-hypergraph H' =
(E',A\') is called co-bisaturated if the following conditions are satisfied: For every
NelN,

1. if s(X) € (E')?, then X N (E')! # 0, where X € Xy

2. if 7(Y) € (E")°, then Y N (E')! # (), where Y € V.

We note that a full sub-hypergraph E' of E is co-bisaturated if and only if E? — (E"°

is bisaturated subset of EY.

Let H = (E,A) be a hypergraph and M be a right L(#)-module. The support
subgraph of M, denoted by Ey, is the full subgraph of E induced on Vy; := {v € EY |
Muv # 0} and the hypergraph Hyr = (Ear, Aar), which is the full sub-hypergraph of

hyper-induced from E);, is called the support sub-hypergraph of M.
Lemma 4.3.11. Let H = (E,A) be a hypergraph and H' = (E’,A’) be a full sub-
hypergraph of H. Then the following are equivalent.

1. H' = Hy, is the support sub-hypergraph of a unital L(H)-module M.

2. H' is co-bisaturated.

3. The map 0 : L(H) — L(H') defined (on generators) by

T if 7\0 7\1 !
P foe (E) U (E) u(E),

0, otherwise,

extends to an onto algebra homomorphism.
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Proof. (1) = (2): Let ' € A’ and X € Xy,. Assume s(X) € (Epr)°, then 0 # Ms(X) —

P Ms(X) = @ Mr(Y) implies that there exists Y € ) such that X NY # 0
XEX)\ Yey)\

which is equivalent to X N (E')! # (. Similarly, if Y € Yy and 7(Y) € (Ep)°, then
Y N (E) #0.

(2) = (3): We check that 6 preserves the defining relations of L(#). It is direct
that path algebra relations are satisfied. Let X € A/, X1, Xy € Xy and Y7,Y5 € V).
If s(X;),7(Y;) € (E")° then X; N (E")! # 0 and Y1 N (E')! # . Hence the image of

Y. (MX)(XY2) =dyy,r(Y)is Y. (Y1X)*(XY2) = dyy,r(Y). Similarly, the image
XEX, XEX,,

of S (X1Y)(YXo)* = dxixys(X) is 3 (X2Y)(Y Xa)" = b, x,8(X).
Yely YeVy

(3) = (1): Let M := L(H') = L(H)/Kerf. Now v € (E')? if and only if §(v) # 0 and
Mv = L(H')v # 0. Hence the vertex set of Eys is (E')°. Tt is routine to check that H’

is full sub-hypergraph and hence Hy; = H'. O

Proposition 4.3.12. If M is a unital L(H)-module then M also has the structure of a
unital L(Hpr)-module induced through the epimorphism 6 : L(H) — L(Hyr). Moreover,
Kerf is generated by E° — Vyy = {v € E° | Mv =0} and Kerf C AnnM .

Proof. Let pps be the quiver representation of E corresponding to M as defined in the
proof of Theorem 4.3.3. We claim that the restriction of pys to E)ys satisfies (H). That

is, if p’ := pmlE,,, then for all X € Ay,

AE @ p(s(X)) — @ P (r(Y)) is an isomorphism.
XGX/\/ YG)})\/

For,

P rx) = P Ms(x)
XeX,, XEXy
= @ Ms(X) since Ms(X) =0 for X & Xy
XeXy
P Mmr(y)
YeYy

= @ Mr(Y) since Mr(Y)=0forY & Yy
YeY,,

1
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Let M’ be the unital L(Hs)-module corresponding to p/. Now M’ is also an L(H)-
module via 6 : L(H) — L(Has). As vector spaces M = @ Mv=@v € E°Mv = M.
We can define an L(Hys)-module structure on M via tﬁiesvjiwsomorphism. The action of
the generators on M and M’ is compatible with this isomorphism, so M = M’ as L(H)-
modules. Thus the L(#H)-module structure of M is induced from the L(Hjs)-module

structure via 6.

For the second part, Let Ij; be the ideal generated by E° — Vj;. We show that
L(Hy) = L(H)/Kerf and L(H)/Iy are isomorphic. Since, E° — V); C Kerf), we have a
surjection from L(H)/In to L(Has). Let ¢ : L(Har) — L(H)/I be defined on generators
by « — x+ I, where z € EOLUE'UEL. It is not hard to show that ¢ is a homomorphism

and the inverse of the above surjection. O

Recall that given a hypergraph H = (E,A), its hypergraph monoid H () is defined

as the additive monoid generated by E° modulo the following relations:

Y s(X)= > r(Y) forall AeA.

XeX, Yeyy

Therefore, dimension functions of H correspond exactly to monoid homomorphisms

from H(H) to N.

Since H(#) is isomorphic to the monoid V(L(#)) the generator v of H(#) cor-
responds to the (right) projective L(#)-module vL(H). The corresponding relations
among the isomorphism class of the cyclic projective modules was shown to hold in
the proof of Theorem 4.3.6. We can now reinterpret the existence of a nonzero finite

dimensional represenatation in terms of the nonstable K-theory of L(H).

Theorem 4.3.13. L(H) has a nonzero finite dimensional representation if and only if E
has a finite, full co-bisaturated sub-hypergraph G with a nonzero monoid homomorphism

from V(L(G)) to N.

Proof. By Remark 4.3.9, L(#) has a nonzero finite dimensional representation if and
only if H has a nonzero dimension function of finite support. The support of such dimen-
sion function defines a finite, full, co-bisaturated sub-hypergraph G and its restriction

gives a nonzero dimension function on G and thus a nonzero monoid homomorphism
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from V(L(G)) to N as well. Conversely, since G is co-bisaturated, any nonzero dimension
function on G can be extended by 0 to a dimension function on H and this gives a

nonzero dimension function of finite support on H. O

4.4 Some remarks on Cohn-Leavitt path algebras of semi-

regular hypergraphs with Invariant Basis Number

Let # = (E,A) be a finite semi-regular hypergraph and let H := H(H) be the H-
monoid of H. Let the Cohn-Leavitt path algebra A (H) be denoted simply by L and
its Grothendieck group by Ko(L). Let U(L) denote the submonoid of the V-monoid
V(L) generated by the element [L] € V(L). Then L has IBN property if and only if
U(L) has infinite order. Now suppose G(U (L)) denotes the Grothendieck group of U(L).
Then one can show that the natural map G(U(L)) — Ko(L) induced by the inclusion
U(L) — V(L) is an embedding (see [39, Proposition 7]). So [L], treated as an element in
the group Ko(L), has infinite order. This means that the element [L]®1 in Ko(L) ®Q is
nonzero. We know that [L] € V(L) corresponds to the element Y o v] € H under the
isomorphism of functors proved in Theorem 4.1.8. So, if G(H) denotes the Grothendieck
group of H, from the above arguments we can conclude that L has IBN if and only if
> wepo v is nonzero in G(H) ® Q, which is equivalent saying that ) zo v is not in the
Q- linear span of the elements of R in Q2 (cf. [39, Theorem 13]), where Q is the set
E°UQUP (Q and P are as in the Definition 4.1.6), and

R = [J|D s(xX)=> r)

AeAL [ Xedy Yely
U U | D sX)= > () —ay,
Aeafin | Xedy YeV

U U [ )= D s(X)—pa

AeAfin | YEV: Xex,
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4.4.1 Matrix criteria for Leavitt path algebra of a finite hypergraph
having IBN

In this subsection, we generalize the main result of [55, Section 3]. Let (¥, A) be a finite
hypergraph such that |[A| = h and E° = n. Then by theorem 4.1.8, the V-monoid of

Ly (E) is generated by the set E° modulo h relations of the form

D s(X) =) r(Ya), (4.4.1)

t=1 u=1

one corresponding to each element of A. Let A and B be the coefficient matrices corre-
sponding to the LHS and RHS respectively of the h relations (4.4.1). Then it is clear
that both A and B are h X n matrices with entries as non-negative integers. Let T be
a free abelian monoid on the set of all vertices. For each element x € T', and for each i
such that 1 < i < h, let M;(x) denote the element of T" which results by applying to z
the relation (4.4.1) corresponding to the element \; € A. For any sequence o taken from
the set {1,2,...,h}, and any = € T, let A,(z) € T be the element obtained by applying

M; operations in the order specified by o.

Definition 4.4.1. Suppose for each pair z,y € T, [x] = [y] in the V-monoid if and
only if there are two sequences o and ¢’ taken from the set {1,2,...,h} such that

Ay(z) = Ay (y) in T. Then we say that the confluence condition holds in 7.

Theorem 4.4.2. Let (E,A) be a finite hypergraph such that |A| = h and E° = n.
Suppose A and B are the coefficient matrices corresponding to LHS and RHS respectively
of the h relations of the V-monoid of LK(E) Also suppose that the confluence condition
holds in T, the free abelian monoid on E°. Then L (FE) has Invariant Basis Number
if and only if rank(B' — AY) < rank([Bt — At ¢]), where c is the column matriz of order

n X 1 with all its entries equal to 1.

Proof. Suppose that rank(B! — A') < rank(B! — A? ¢). We prove that if m and p are

positive integers such that
n n

m> vl =p[>_ vl (4.4.2)

i=1 i=1
in the V-monoid, then m = p. So let us assume that the equation (4.4.2) holds for

some positive integers m and p. Since the confluence condition holds in T, there are two
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sequences o and ¢’ taken from {1,2,...,h} such that Ag(m Y 1 v;) = Apr(pD i vi) =

7y(say) in T Now suppose M is invoked k; times in A, and &} times in A,/. Then we

have
vo= Ao(mZvi)
i=1
= [m+ki(bi1 —ai1) + -+ kn(bp1 — an1)]v
+ [m+ki(biz —a12) + - - + kn(bre — an2)]ve
+
+ [m + kl(blz - alz) +- kh(bhz - ahz)]vz
+ M+ k1(biqn) + o+ kn(bpagr)) V21
+
+  [m 4 Ei(bin) + - + kn(bhn)|vn-
Also
v o= Ag(p) ui)

=1
/

= [p + kl (bn — a11) + -+ k;l(bhl — ahl)]vl

+ [p+ ki (b12 — a12) + - + K, (br2 — an2)]ve

+ 4K bz —arz) + - 4 Ky (brs — apz)]v:

+ [P+ F(b1a11) + -+ B (bper1)]vz11

+ [p+ ki (bin) + -+ + Kk, (bhn)]vn-
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Let m; = (k] —k;) for i = 1,..., h. From the above two equations, we have the following

system of equations-

(m—p) = mi(bin —an) + - +mp(br — an1)

(m—p) = mi(biz —ai2) + -+ mp(bp2 — an2)

(m - p) = m (blz - alz) +F mh(bhz - ahz)

(m—p) = mi(bin — an) + - +mp(bpn — ann)-
So (my,...,my) € Z" is a solution of the linear system (B* — A')x = (m — p)c, where
x = (z1,...,7)" and ¢ is the column matrix mentioned in the statement of the theorem.

This means rank(B? — A*) = rank(B' — A" (m — p)c). We know that if m # p, then
rank(B! — A' (m — p)c) = rank(B! — A' ¢). This would mean that rank(B! — A') =
rank(B! — A! ¢) whenever m # p, contrary to our initial assumption. This proves the

first part.

Conversely, assume that rank(B! — A?) = rank(B!— A! ¢) := r. We will prove that there
exists a pair of distinct positive integers m and p such that m[> ", v;] = p[> 7, vi] in

the V-monoid of Ag (E).

The fact that rank(B' — A' ¢) = 7 means that after finite number of elementary row

operations, (B! — A! ¢) can be brought to the form

0 ... dlj1 e d1j2_1 0 d1j2+1 e dljr—l 0 ... C1
0... 0 ... 0 d2j2 d2j2+1 e d2jr—1 0o ... Co
0 0 0 0 dy ... c
0 0 0 0 0 0
0 0 0 0 0 0

where the entries are integers, dij,daj,...drj, # 0 and > ;| c? # 0. So it is clear
that one particular solution for the linear system (B'— A')z = ¢ is the column vector

(G, e e 0)

dijy 7 dajy " drgy?
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Now let

ild14, d2jo...drs [P . .
C|1J1 2J2 J'r|, 1f]:ji(1§z§r)
iJ5

mj; =
0, otherwise,

p:=max{|m;||j=1,...,h}, m := |dij,daj, . . . drj, | +p and

(0,0),  ifm;=0,
(K} kj) = q (m;,0),  if m; >0,

(0, —mj), if m; < 0.

From the above definitions, it is clear that (m—p) > 0. So the h-tuple (mi,mo, ..., mp)
is a solution for the linear system (B'— A')x = (m—p)c. This, from the first part of the
proof, is equivalent to showing that m[> 7, v;] = p[>.1~, vi]. This means that A (E)

does not have Invariant Basis Number, thereby completing the proof. ]
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