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Chapter 1

Preliminaries

1.1 History and overview

The purpose of this section is to motivate the historical development of Leavitt algebras,

Leavitt path algebras and their various generalizations and thus provide a context for

this thesis. There are two historical threads which resulted in the definition of Leavitt

path algebras. The first one is about the realization problem for von Neumann regular

rings and the second one is about studying algebraic analogs of graph C∗-algebras. In

what follows we briefly survey these threads and also introduce important concepts and

terminology which will recur throughout.

1.1.1 The first historical thread: Leavitt algebras and graph monoids

1.1.1.1 Invariant basis number and Leavitt algebras

Let R be a unital ring and M a left R-module with minimal generating set X. If X is

infinite, then any generating set of M has at least |X| elements. In particular any two

minimal generating sets of M have the same cardinality. However if X is finite, this need

not be the case. Therefore a free module on a finite generating set may have minimal

generating sets of different sizes. For a positive integer n, we say the left R-module Rn

has unique rank n if it is not isomorphic to Rm for any positive integer m 6= n. Most of

the examples that are encountered in a first course on ring theory such as Z, K, K[X],

K[X,X−1], Mn(K) all have invariant basis number :

1



2 Chapter 1. Preliminaries

Definition 1.1.1. A unital ring R is said to have the Invariant Basis Number (IBN)

if every free left (or right) R-module has a unique rank.

A wide class of unital rings have IBN; examples are commutative rings and Noetherian

rings. But there are also examples of rings which do not have IBN.

Example 1.1.2. Let V be a countably infinite dimensional vector space over a field

K, and let R denote EndK(V ), the K-algebra of all linear transformations from V to

itself. Then the left modules R and R2 are isomorphic (and hence Ri ∼= Rj for any pair

i, j ∈ N).

Let R be any unital ring and suppose that Rn has a generating set consisting of m

elements, for some m,n ∈ N. Then we have a surjection Rm → Rn, giving rise to an

exact sequence

0→M → Rm → Rn → 0.

Since Rn is free, the sequence splits and so Rm ∼= Rn ⊕M . Hence IBN property can be

stated as follows:

For any m,n ∈ N, Rm ∼= Rn implies m = n.

By describing the change of basis, we can also express IBN property in matrix form:

For any A ∈Mm×n(R), B ∈Mn×m(R), if AB = Im and BA = In, then m = n.

It is direct that for a non-zero unital ring R without IBN there exist h, k ∈ N such that

Rh ∼= Rh+k. The first pair of positive integers (m,n) with m < n in the lexicographic

ordering such that Rm ∼= Rn is called the module type of the ring R.

Lemma 1.1.3. Let R,S be two non-zero unital rings, m,n ∈ N and m < n.

1. If R has module type (m,n), then Rh ∼= Rk holds if and only if h = k or h, k ≥ m

and h ≡ k mod n.

2. Let f : R→ S be a ring homomorphism (which preserves unit). If S has IBN then

R also has IBN.
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Proof. 1. Follows from the definition of module type.

2. We show that if R does not have IBN, then S does not have IBN. Let R be of

module type (m,n). Then there exists A ∈ Mm×n(R), B ∈ Mn×m(R) satisfying

AB = Im, BA = In. Applying f entry wise we get such matrices over S, whence

it follows that Sm ∼= Sn, so S cannot have IBN. In particular this means that if

the module type of S is (m′, n′) then m′ ≤ m and n′ −m′ | n−m.

In a series of papers [47, 48, 49, 50], Leavitt constructed and studied ‘canonical’

examples of non-zero unital rings that do not have Invariant Basis Number. For a field

K and m,n ∈ N with m < n, he constructed K-algebras (which we now call) Leavitt

algebras LK(m,n) of module type (m,n). Also LK(m,n) is universal K-algebra with

this property in the sense that if T is any K-algebra having module type (m,n), then

there exists a non-zero K-algebra homomorphism ϕ : LK(m,n) → T such that the

isomorphism f : Tm → Tn is equal to g ⊗ϕ idT where g : (LK(m,n))m
∼−→ (LK(m,n))n.

LK(m,n) is explicitly presented as K-algebra with 2mn generators xij , x
∗
ij where

1 ≤ i ≤ m, 1 ≤ j ≤ n, and relations

n∑
j=1

xljx
∗
jk = δlk and

m∑
j=1

x∗ljxjk = δlk.

Leavitt also proved that LK(m,n) is simple if m = 1 and that LK(m,n) is domain for

all m > 1.

LK(m,n) can be equivalently viewed as the the quotient of associative free K-algebra

generated by xij , x
∗
ij where 1 ≤ i ≤ m, 1 ≤ j ≤ n modulo the matrix relations given by

AA∗ = Im and A∗A = In,

where A ∈Mm×n(R), (A)ij = xij and A∗ ∈Mn×m(R), (A∗)ij = x∗ij .

1.1.1.2 V-monoid and Bergman’s universal ring constructions

Let R be a unital ring; a left (or right) R-module P is called projective module

over R if it is isomorphic to a direct summand of a free R-module. If P is a finitely
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generated projective module, generated by n elements, then we have P ⊕ P ′ ∼= Rn for

some (projective) module P ′. The projection of Rn on P is given by an idempotent

n×n matrix E and we may write P = RnE. We note the conditions for two idempotent

matrices to define isomorphic projective modules.

Proposition 1.1.4. [29, Proposition 0.3.1] Let R be a unital ring and let E ∈Mn×n(R),

F ∈ Mm×m(R) be idempotent matrices. Then E = XY , F = Y X for some X ∈

Mn×m(R), Y ∈Mm×n(R) if and only if the projective left (or right) R-modules defined

by E and F are isomorphic: RnE ∼= RmF .

Definition 1.1.5. For a unital ring R, let V(R) denote the set of isomorphism classes

of finitely generated projective left R-modules, and define a binary operation ⊕ on V(R)

by setting [P ]⊕ [Q] = [P ⊕Q]. Then (V(R),⊕) is an abelian monoid with zero element

[0].

The monoid V(R) can equivalently defined in terms of idempotent matrices. For

any unital ring R, a finitely generated projective left R-module P is generated by the

rows of an n × n idempotent matrix E. Let the idempotent matrices E ∈ Mn×n(R)

and F ∈ Mm×m(R) correspond to P and Q respectively. In view of Proposition 1.1.4,

define E and F are isomorphic if there exists matrices X ∈ Mn×m(R), Y ∈ Mm×n(R)

such that XY = E and Y X = F . Define the diagonal sum E ⊕ F to be the matrixE 0

0 F

. Then E ⊕ F corresponds to P ⊕ Q. Hence V(R) may be defined as the set

of isomorphism classes of idempotent matrices with the operation ⊕. This also helps us

to extend the definition of V-monoid to a non-unital ring as follows.

Definition 1.1.6. Let R be a ring, and let M∞(R) denote the set of all ω×ω matrices

over R with finitely many nonzero entries, where ω varies over N. For idempotents

e, f ∈ M∞(R), the Murray-von Neumann equivalence ∼ is defined as follows:

e ∼ f if and only if there exists x, y ∈M∞(R) such that xy = e and yx = f .

Let V(R) denote the set of all equivalence classes [e], for idempotents e ∈ M∞(R).

Define [e] + [f ] = [e⊕ f ], where e⊕ f denotes the block diagonal matrix

e 0

0 f

.

Under this operation, V(R) is an abelian monoid, and it is conical, that is, a+ b = 0

in V(R) implies a = b = 0. An abelian monoid M is said to have a distinguished
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element d if for any x ∈ M , there exists y ∈ M such that x + y = nd for some

n ∈ N. Moreover, if R is unital then [R] ∈ V(R), which is also a distinguished element.

Also V( ) :Rings→AbMon is a continuous functor. That is, it maps direct limits to

direct limits. Thus if unital rings R and S are isomorphic then there exists a monoid

isomorphism V(R) → V(S) for which [R] 7→ [S]. We denote such an isomorphism by

(V(R), [R]) ∼= (V(S), [S]).

Theorem 1.1.7. [67, Theorem 1.1.3] Let S be a commutative semigroup (not necessarily

having zero). There is a unique abelian group G(S), called the Grothendieck group of

S, together with a semigroup homomorphism ϕ : S → G(S), such that for any group G

and homomorphism ψ : S → G , there is a unique group homomorphism θ : G(S)→ G

with ψ = θ ◦ ϕ.

Definition 1.1.8. For a unital ring R, the Grothendieck group of V(R) is called the

Grothendieck group of R and denoted by K0(R). In other words K0(R) := G(V(R)).

We note that K0( ) :Rings→AbGroups is a continuous functor. For, if ϕ : R→ S

is homomorphism, then it induces a monoid homomorphism V(R) → V(S) defined by

[P ] 7→ [S ⊗ϕ P ]. To see that this map is well defined let P ⊕Q ∼= Rn, then

(S ⊗ϕ P )⊕ (S ⊗ϕ Q) ∼= S ⊗ϕ (P ⊕Q) ∼= S ⊗ϕ Rn = Sn.

Since tensor product commutes with direct sums, the map is well defined. Now from

the definition of K0, it can be verified that the map K0(ϕ) : K0(R)→ K0(S) is a group

homomorphism which satisfies the usual functorial conditions.

Definition 1.1.9. Let R,S be a unital rings. If the module categories R-Mod and

S-Mod are equivalent, then R and S are said to be Morita equivalent.

For example, any unital ring R is Morita equivalent to the matrix ring Mn×n(R), for

any n ∈ N. If R,S are Morita equivalent, then there exists an isomorphism ϕ : V(R)→

V(S). However, ϕ([R]) need not be equal to [S].

In [28], Cohn studied properties that are successively stronger than IBN which are

given here. Let R be a unital ring. In the following discussion by an R-module we mean

an one sided R-module.
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I. Every free R-module has a unique rank.

II. A free R-module of rank n cannot be generated by less than n elements.

III. In a free R-module of any rank n, any generating set of n elements is free.

Reformulating we get the following equivalent properties.

I′. For every m,n ∈ N, Rm ∼= Rn implies m = n.

II′. For every m,n ∈ N, Rm ∼= Rn ⊕ P implies m ≥ n.

III′. For every n ∈ N, Rn ∼= Rn ⊕ P implies P = 0.

Rewriting again in terms of matrices we get

IBN: For any A ∈Mm×n(R), B ∈Mn×m(R), if AB = Im and BA = In then m = n.

UGN: For any A ∈Mm×n(R), B ∈Mn×m(R), if AB = Im then n ≥ m.

WF: For any A,B ∈Mn×n(R), if AB = In, then BA = In.

Clearly

WF⇒ UGN⇒ IBN.

Definition 1.1.10. A unital ring R is said to have Unbounded Generating Number

(UGN ) if the above condition UGN is satisfied. R is called weakly finite if the condition

WF is satisfied. We say R is weakly n-finite if condition WF holds only for n. Thus

R is weakly finite if and only if it is weakly n-finite for every n ∈ N. A weakly 1-finite

ring is called directly finite.

Cohn constructed and studied ‘canonical’ examples of non-zero unital rings that do

not have IGN, UGN and WF properties. For a field K and m,n ∈ N with m ≤ n define

VK(m,n) as the K-algebra generated by the 2mn symbols aij , a
∗
ij with defining relations

n∑
k=1

aika
∗
kj = δij (1 ≤ i, j ≤ m), (1.1.1)

n∑
k=1

a∗ikakj = δij (1 ≤ i, j ≤ n). (1.1.2)
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In matrix notation the defining relations of VK(m,n) are

AA∗ = Im and A∗A = In

where A ∈Mm×n(R) with Aij = aij and A∗ ∈Mn×n(R) with A∗ij = a∗ij .

Define the Cohn K-algebra of type (m,n), CK(m,n), to be the K-algebra on the

same generators but with only defining relations 1.1.1. Clearly, VK(m,n) is a quotient

of CK(m,n). For m < n, VK(m,n) = LK(m,n), Thus Cohn’s constructions extend

Leavitt algebras.

It will be useful to consider the negations of IBN, UGN and WF:

αm,n: There exists A ∈Mm×n(R) and B ∈Mn×m(R) such that AB = Im and BA = In.

βm,n: There exists A ∈Mm×n(R) and B ∈Mn×m(R) such that AB = Im.

γn: There exists A,B ∈Mn×n(R) such that AB = In and BA 6= In.

VK(m,n) is universal for the K-algebra satisfying αm,n and CK(m,n) is universal

for K-algebras satisfying βm,n. Cohn described the normal forms (see Section 3.4) for

VK(m,n) and CK(m,n) and using normal forms he showed that VK(m,n) and CK(m,n)

are domains for m > 1.

Cohn proved that for m < n, CK(m,n) satisfies βn,m but not βk,h with h < m, k < n

and therefore CK(m,n) does not have UGN but has IBN. He also proved that for

CK(n, n) satisfies γn but not γm for m < n. Thus CK(n, n) is not WF, but satisfies

UGN.

Later in [68], Skornyakov studied K-algebras WK(n) with a universal idempotent

n × n matrix. In other words WK(n) is presented by n2 generators xij and relations

obtained from the matrix relation A2 = A, where (Aij) = xij .

In [24], Bergman generalized Cohn’s constructions by considering the rings obtained

from a given K-algebra R by ‘adjoining to R’ universal homomorphisms, isomorphisms,

left-invertible maps, and idempotent endomorphisms between finitely generated projec-

tive R-modules.
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Given any K-algebra R, a K-algebra S is called an R-ringK if there is a K-algebra

homomorphism R → S. If S is an R-ringK and M an R-module, then the S-module

M ⊗R S is denoted by M . If f : M → N is a R-module homomorphism then f ⊗ S

is denoted by f : M → N . Bergman described the following universal module map

constructions:

Theorem 1.1.11. [24, Theorem 3.1 - 3.2]

1. Adjoining maps: Let R be a K-algebra, M be any R-module, and P be a pro-

jective R-module. Then there exists an R-ringK S, having a universal module

homomorphism f : M ⊗ S → P ⊗ S. We denote S by R〈f : M → P 〉.

2. Imposing relations: Let R be a K-algebra, M be any R-module, and P be a

projective R-module. If f : M → P is any module homomorphism then there

exists an R-ringK S such that f ⊗ S = 0, and universal with that property. We

denote S by R〈f = 0〉.

In the theorem, universal means the following: Given any R-ringK T with the prop-

erty given in the theorem there exists a unique homomorphism of R-rings, S → T .

Moreover, in the construction of adjoining maps, S can be obtained by adjoining to R

a family of generators subject to certain relations, and in the construction of imposing

relations, S is obtained as a quotient of R. More generally, given a family of such pairs

Mi, Pi (i ∈ I an indexing set), there exists an R-ringK S having a universal family of

homomorphisms fi : Mi ⊗ S → Pi ⊗ S with the same universal property and given a

family of maps fi : Mi → Pi, there exists an R-ringK S, universal for the property that

fi ⊗ S = 0 for all i ∈ I.

Using these constructions Bergman then described more complicated constructions.

Let R be a K-algebra and P,Q be a two non-zero finitely generated projective R-

modules. We can also adjoin a universal isomorphism between P and Q by first adjoining

maps i : P → Q and i−1 : Q → P and then imposing the relations ii−1 = idQ and

i−1i = idP . We denote such a ring by R〈i, i−1 : P ∼= Q〉. We can adjoin a map P → Q

and a one-sided inverse only getting a ring R〈i : P → Q, j : Q → P ; ji = idP 〉. We can

adjoin a universal idempotent e : P → P by first adjoining a map e : P → P and then

imposing the relation e2 = e to obtain R〈e : P → P ; e2 = e〉.
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Homological algebra classifies rings (resp. algebras) according to their global dimen-

sion, i.e. the length of projective resolutions of modules. The case of zero dimension

(semisimple rings) is fairly well known. The ring has global dimension 1 precisely when

all submodules of projective modules are projective but the ring is not semisimple. It

is well known that this holds for left modules if all left ideals are projective. A ring R

is called left hereditary (resp. left semi-hereditary if every left ideal (resp. finitely

generated left ideal) of R is projective. Corresponding definitions apply for the right

ideals as well.

Now it is direct that

VK(m,n) = K〈i, i−1 : Kn ∼= Km〉,

CK(m,n) = K〈i : Kn → Km, j : Km → Kn; ji = idKn〉.

WK(n) = K〈e : Kn → Kn; e2 = e〉.

Theorem 1.1.12. [24, Theorem 5.1 - 5.4] Let R be a K-algebra, P and Q be a non-zero

finitely generated projective R-modules.

1. Let S = R〈e : P → P ; e2 = e〉. Then V(S) is obtained from V(R) by adjoining

two new generators [P1] and [P2] and one relation [P1] + [P2] = [P ].

2. Let S = R〈i, i−1 : P ∼= Q〉. Then V(S) is obtained from V(R) by imposing one

relation [P ] = [Q].

3. Let S = R〈f : P → Q〉. Then V(S) ∼= V(R) and under the map [M ] 7→ [M ].

4. Let S = R〈i : P → Q, j : Q → P ; ji = 1P 〉. Then V(S) is obtained from V(R) by

adjoining a generator [Q′] and one relation, [P ] + [Q′] = [Q].

Corollary 1.1.13. [24, Theorem 6.1] Let K be a field and m,n ∈ N. Then we have the

following presentations

V(CK(m,n)) = 〈I, J | mI = nI + J〉

V(VK(m,n)) = 〈I | mI = nI〉

V(WK(n)) = 〈I, P,Q | nI = P +Q〉

where I ∈ V(R) denotes the isomorphic class [R].
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Bergman established the following remarkable theorem.

Theorem 1.1.14. [24, Theorem 6.2] Let M be a finitely generated abelian conical

monoid with distinguished element d 6= 0, and let K be any field. Then there exists

a hereditary K-algebra B = BK(M,d) such that (V(B), [B]) ∼= (M,d). Moreover, B has

the weak universal property that for any K-algebra S and any homomorphism ϕ : M →

V(S) such that d 7→ [S], there is a (generally nonunique) K-algebra homomorphism

Φ : B → S such that ϕ is equal to the induced map Φ : S ⊗B : V(B) ∼= M → V(S).

The construction of BK(M,d) depends on the specific presentation of M as F/〈R〉,

where F is a finitely generated free abelian monoid, and R is a finite set of relations in

F . Given F and R, B(F/〈R〉, d) is constructed explicitly in a finite sequence of steps

consisting of adjoining maps and relations. We refer to B = BK(M,d) = BK(F/〈R〉, d)

as the Bergman algebra of (F/〈R〉, d). We note that R could be a multi-set (see

Example 1.1.15). We often refer to the process of obtaining the Bergman algebra from

conical monoids (and vice versa) as Bergman machinery.

Example 1.1.15. 1. If (M,d) = (Z+/〈∅〉, 1), then BK(M,d) = K.

2. If (M,d) = (Z+/〈1 = 1〉, 1), then BK(M,d) = K[X,X−1].

3. If (M,d) = (Z+/〈1 = 1, 1 = 1〉, 1), then BK(M,d) is the free product K[X,X−1]∗

K[Y, Y −1].

4. Let m,n ∈ N. If (M,d) = (Z+/〈m = n〉, 1), then BK(M,d) = VK(m,n).

Bergman’s theorem thus solves the realization problem for hereditary algebras(see

below) in positive when the V-monoid is finitely generated.

Problem 1.1.16 (Realization problem for hereditary rings). Is every conical

abelian monoid with a order-unit realizable by a unital hereditary ring?

Later in [26], Bergman and Dicks completely solved the problem in positive.

1.1.1.3 The realization problem for von Neumann regular rings and graph

monoids

Now, we focus our attention on von Neumann regular rings. A good reference for von

Neumann regular rings is [35].
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Definition 1.1.17. A unital ring R is said to be von Neumann regular if for any

x ∈ R there exists y ∈ R such that xyx = x.

Theorem 1.1.18. The following are equivalent for a von Neumann regular ring.

1. R is von Neumann regular.

2. Every principal left ideal is generated by an idempotent element.

3. Every principal left ideal is a direct summand of the left R-module R.

4. Every finitely generated submodule of a projective left R-module P is a direct sum-

mand of P .

5. R being absolutely flat. That is, every left R-module is flat.

A monoid M is said to be a refinement monoid in case any equality x1+x2 = y1+y2

admits a refinement, that is, there are zij , 1 ≤ i, j ≤ 2 such that xi = zi1 + zi2 and

yj = z1j + z2j for all i, j. If R is a von Neumann regular ring, then the monoid V(R) is a

refinement monoid by [35, Theorem 2.8]. In [36], Goodearl posed the following problem:

Fundemental open problem: Which monoids arise as V(R)’s for a von Neumann

regular ring R?

It was shown by Wehrung in [71] that there exist conical refinement monoids of size

ℵ2 which cannot be realized as von Neumann regular rings. Thus we have the following

problem.

Problem 1.1.19 (Realization problem for von Neumann regular rings). Is every

countable conical abelian refinement monoid realizable by a von Neumann regular ring?

Now, we discuss about a natural monoid associated to a graph. For terminology used

here, the reader is refered to section 1.2.

Let E = (E0, E1, s, r) be a row-finite graph (i.e. each vertex emits only finitely many

edges) and AE be the adjacency matrix of E. Then the graph monoid ME of E is the

abelian monoid presented by generating set E0 and the following relations.

for every non-sink v ∈ E0, v =
∑
w∈E0

AE(v, w)w
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where AE(v, w) = |{e ∈ E1 | s(e) = v, r(e) = w}|.

It was shown in [18] that for every finite graph E, ME is conical refinement monoid

with the order-unit
∑
v∈E0

v. Hence the authors considered addressing the realization

problem 1.1.19 for graph monoids. Using Bergman’s machinery they obtained a K-

algebra LK(E), called Leavitt path algebra of the graph E, for any finite graph E such

that V(LK(E)) ∼= ME . It was understood immediately that Leavitt algebras of type

(1,m) for any m ∈ N is an example of Leavitt path algebra for a class of graphs Rm

called rose with m petals.

In [14], it was shown that LK(E) is von Neuman regular if and only if the underlying

graph is acylic. However, in [18] for any row-finite graph E, a von Neuman regular

K-algebra QK(E) is constructed by universal localization of LK(E) such that LK(E)

can be embedded in QK(E) and V(LK(E)) ∼= V(QK(E)). Thus an attempt to solve the

realization problem in the case of finitely generated refinement monoid has been made

in the positive direction.

This raised the question whether every finitely generated conical refinement monoids

can be represented as graph monoids. The answer to this question is negative as it was

shown in [21] that even the basic example such as M = 〈p, a, b | p = a+ p = b+ p〉 does

not occur as a graph monoid. To rectify this issue, in [20], Ara and Goodearl defined

graphs with additional structure, called separated graphs, so that any conical monoid can

be represented as (separated) graph moniods. Thus Leavitt path algebras of separated

graphs were the promising candidates towards the positive solution of the realization

problem. Recently, in [19], it was announced that the realization problem is solved in

the case of finitely generated refinement monoids in positive by considering Leavitt path

algebras of a class of separated graph called adaptable separated graphs.

1.1.2 The second historical thread: Graph C∗-algebras

For undefined terminology used here the reader may consult any graduate level books

on C∗-algebras such as [33], [54] or [70].

In [30], for any natural number n > 1, Cuntz constructed the C∗-algebras On. His

original motivation was to study ‘simple separable C∗-algebras with unit infinites’. Later

in [31], he also computed K-theory of these algebras. Now these algebras are called Cuntz
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algebras. From the definition of Cuntz algebras one can easily realize that On are, in

fact, C∗-algebra analogs of Leavitt algebras LC(1, n) of type (1, n).

In [27], Brown introduced two classes of C∗-algebras with an intention to generalize

Atiyah’s proof of the Künneth theorem of K-theory to non-commutative C∗-algebras.

First of these is the non-commutative Grassmanian Gncn where n is any natural number.

Gncn is presented by an identity and elements Pij , i, j = 1, . . . , n, subject to the relations

that makes the n × n matrix [Pij ] a projection. In other words P ∗ij = Pji and Pij =∑
k

PikPkj . It can be seen that Gncn are actually C∗-algebra analogs of the Bergman

algebra WC(n). The second class of examples are as follows: For any n ∈ N, let Uncn be

the C∗-algebra generated by an identity and elements Uij , i, j = 1, . . . , n subject to the

relations that make the matrix [Uij ] unitary. In other words, Uncn are C∗-algebra analogs

of Bergman algebras VC(n, n). Later McClanahan studied K-theory of Gncn and Uncn in

[51]. In [52], McClanahan introduced the notion of rectangular unitary C∗-algebras Uncm,n

and studied their Ext and K-theory. For any natural numbers m < n it can be seen that

Uncm,n are C∗-algebra analogs of Leavitt algebras LC(m,n) of type (m,n).

In the early 1980s Cuntz and Krieger considered a class of C∗-algebras that arose

in the study of topological Markov chains ([32]). These Cuntz-Krieger algebras OA

are generated by partial isometries whose relations are determined by a finite matrix

A with entries {0, 1}. In order for these C∗-algebras to be unique, the author further

assumed a non-degeneracy condition called Condition (I) on A. Since their introduction,

Cuntz-Krieger algebras are generalized in various ways and considered in the study of

classification of C∗-algebras.

In [69], Watatani noted that OA can be viewed as the C∗-algebra associated to a

finite directed graph with adjacency matrix A and the condition (I) corresponds to the

property that the graph has no sinks or sources. In the late 1990s, the generalization

of these C∗-algebras were considered for possibly infinite graphs that were allowed to

contain sources and sinks. Originally, a definition was given only for graphs that are

row-finite ([45, 44, 23]), and later generalized to arbitrary graphs ([34]).

Definition 1.1.20 (Graph C∗-algebras). For a graph E, the graph C∗-algebra C∗(E)

is the universal C∗-algebra generated by mutually orthogonal projections {pv | v ∈ E0}

and partial isometries with mutually orthogonal ranges {se | e ∈ E1} satisfying
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1. s∗ese = pr(e) for all e ∈ E1,

2. ses
∗
e ≤ ps(e) for all e ∈ E1,

3. pv =
∑

e∈s−1(v) ses
∗
e for all v ∈ E0 and 0 < |s−1(v)| <∞.

The interested reader is refered to [64] or [58] to learn more about graph C∗-algebras.

Though it is direct to see that the Cuntz algebras On are C∗-algebra analogs of

Leavitt algebras LC(1, n), this realization came only in early 2000s during an NSF-

CBMS conference on “Graph algebras: Operator Algebras We Can See” when a group

of ring theorists attended the conference (cf. [5, p. 68-69]). This led to the consideration

of study of algebraic analogs of graph C∗-algebras, which are now termed as ‘Leavitt path

algebras’. In [7], Abrams and Pino defined Leavitt path algebras of row-finite graphs and

characterized simplicity of these algebras in terms of underlying graphs. Later in [2], the

definition of Leavitt path algebras was extended to arbitrary graphs. Initially the focus

was to study if the dictionary between graph properties which translate to C∗-algebra

properties also translate to purely algebraic properties. Though many of such properties

exist, not all properties directly translate. However, then the focus turned into algebraic

study of Leavitt path algebras such as multiplicative ideal theory(cf. [66]), module theory

(cf. [65]), chain conditions ([10]), finiteness conditions ([3, 4]), representation theory in

terms of underlying quiver represenatations ([41, 40]), etc.

1.2 Graph theory preliminaries

A graph E is a 4-tuple (E0, E1, s, r) where E0, E1 are sets and r, s : E1 → E0 are

functions. The elements of E0 are called vertices of E and the elements of E1 are

called edges of E. We place no restriction on the cardinalities of E0 and E1. For each

edge e, s(e) is called the source of e and r(e) is called the range of e; if s(e) = v and

r(e) = w we also say that v emits e and that w receives e or that e is an edge from v

to w. We represent this visually as follows:

s(e) r(e)
e
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A graph is also called ‘oriented multi-graph’ in graph theory, a ‘diagram’ in category

theory, and a ‘quiver’ in representation theory. If there is more than one graph, we write

sE and rE to emphasize that they are the range and source maps of E.

We say a graph E is called finite (or countable) if both E0 and E1 are finite

(or countable). E is simple if both s and r are injective. E is called row-finite (or

column-finite) if the set s−1(v) is finite for every v ∈ E0 (respectively if r−1(v) is finite

for every v ∈ E0). An edge e for which s(e) = r(e) = v is called a loop based at

v. A vertex which does not receive any edges is called a source (not to be confused

with source map). A vertex which emits no edges is called a sink. A graph E is called

sink-free (resp. source-free) if it has no sinks (resp. no sources).

We set

E1(v, w) := {e ∈ E1 | s(e) = v, r(e) = w}.

Hence for v, w ∈ E0, we have s−1(v) =
⊔

w∈E0

E1(v, w) and r−1(v) =
⊔

w∈E0

E1(v, w). A

vertex v ∈ E0 is called row-regular (resp. column regular) if 0 < |s−1(v)| <∞ (resp.

if 0 < |r−1(v)| < ∞). The set of all row-regular (resp. column-regular) vertices of E is

denoted by RReg(E) (resp. CReg(E)).

The adjacency matrix AE of the graph E is the |E0| × |E0| matrix defined by

AE(v, w) = |E1(v, w)|.

Thus the graph is row-finite if and only if each row sum of AE is finite.

A subgraph F = (F 0, F 1, rF , sF ) of E = (E0, E1, rE , sE) is a graph such that

F 0 ⊆ E0, F 1 ⊆ E1, rF is the restriction of rE on F 1 and sF is the restriction of

sE on F 1. Let V be a subset of E0. The induced subgraph on V is the subgraph

EV = (V,E1
V , rV , sV ) such that E1

V := s−1(V ) ∩ r−1(V ), rV and sV are restrictions of

rE and sE on E1
V respectively. A subgraph is full if it is induced on its set of vertices.

A graph morphism φ : F = (F 0, F 1, rF , sF ) → E = (E0, E1, rE , sE) is a pair

of maps φ0 : F 0 → E0 and φ1 : F 1 → E1 such that rE(φ1(e)) = φ0(rF (e)) and

sE(φ1(e)) = φ0(sF (e)), for every e ∈ F 1. That is the following diagrams commute.
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F 1 E1

F 0 E0

φ1

φ0

rF rE

F 1 E1

F 0 E0

φ1

φ0

sF sE

We denote the category of graphs along with graph morphisms by Gra. Given a

family of graphs {Ei}i∈I in Gra, we define their disjoint union
⊔
i∈I

Ei to be the graph

whose vertex set is
⊔
i∈I

E0
i , edge set is

⊔
i∈I

E1
i , and the source and range maps are trivial

extensions of si and ri respectively for all i ∈ I.

A path µ in a graph E is either a vertex v ∈ E0 or a finite sequence of edges

µ = e1e2 . . . en such that r(ei) = s(ei+1), for i = 1, . . . , n− 1. The set of all paths in E

is denoted by E?. We define the length function l( ) : E? → Z+ by

l(µ) =


0, if µ = v ∈ E0,

n, if µ = e1e2 . . . en.

We denote the set of all paths in E of length n by En, and hence E? =
⋃
n≥0E

n. The

source and range functions s, r can be extended to E? as follows:

for v ∈ E0, s(v) := v and r(v) := v,

if µ = e1e2 . . . en, s(µ) := s(e1) and r(µ) := r(en).

For a path µ ∈ E? the set {s(e1), r(e1), r(e2), . . . , r(en)} is called the support of µ.

Let µ = e1e2 . . . en ∈ E? (that is |µ| ≥ 1). If v = s(µ) = r(µ), then µ is called a closed

path based at v. A closed path µ = e1 . . . en based at v such that s(ei) 6= s(ej) for

every i 6= j is called a cycle based at v. E is called acyclic if it does not have any

cycles based at any vertex of E. An edge e ∈ E1 is called an exit of µ (resp. entry of

µ) if there exists an i (1 ≤ i ≤ n) such that s(e) = s(ei) and e 6= ei (resp. r(e) = r(ei)
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and e 6= ei). For any v, w ∈ E0 and n ∈ N we set

En(v, w) := {µ ∈ En | s(µ) = v, r(µ) = w}

Note that if E is finite then |En(v, w)| = AnE(v, w), where AE is the adjacency matrix

of E. Hence a finite graph E is acyclic if and only if AE is nilpotent.

A graph E is strongly connected if for any v, w ∈ E0, there exists µ ∈ E? such

that s(µ) = v and r(µ) = w.

The (free) path category CE generated by a graph E is the small category with

Ob(CE) = E0 and for v, w ∈ E0, Mor(v, w) = E?(v, w) := {µ ∈ E? | s(µ) = v, r(µ) =

w}. In other words, the elements of CE are paths in E and the partial multiplication is

defined by path concatenation.

We remark that the path category of a graph is a natural generalization of the free

monoid of words of a set as follows: If X is a set, we denote the set of all words with

letters in X along with an ‘empty word’ is denoted by X?. It is direct that X? becomes

a monoid with respect to multiplication defined by word concatenation (say on right).

Then ( )? : Sets → Mon is a functor such that X
i
↪−→ X? and satisfies the following

universal property: for any monoid M and any set map f : X → M , there exists a

unique monoid morphism f : X? →M such that f ◦ i = f . Let Cat denote the category

of small categories. Then C( ) :Gra→Cat is a functor such that E embeds into CE as

a subgraph and satisfies the following universal property: for any small category D, the

graph morphism φ : E → D factors through the embedding.

Let X be a set and F (X) denote the free group generated by X. Let X := {x∗ | x ∈

X} and X? := (X)?. Then the following diagram commutes.

X X?

X? F (X)

In fact, F (X) has the following monoid presentation: the generating set is X? tX? and

the relations are xx∗ = 1 and x∗x = 1, where 1 = 1∗ denotes the empty word over X.
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For a graph E = (E0, E1, r, s), the double graph Ê of E is a new graph (E0, E1 t

E1, ŝ, ŝ), where E1 := {e∗ | e ∈ E1} and

ŝ(e) = s(e) if e ∈ E1 and ŝ(e∗) = r(e) if e∗ ∈ E1

r̂(e) = r(e) if e ∈ E1 and r̂(e∗) = s(e) if e∗ ∈ E1

For visual representation of the double of a graph E, for each edge e in E we add a

new dotted edge e∗ in the reverse orientation.

s(e) r(e)

e

e∗

A path µ in Ê is called a generalized path. A graph E is connected if Ê is strongly

connected. That is, for any v, w ∈ E0, there is a generalized path µ ∈ Ê? such that

s(µ) = v and r(µ) = w. The connected components of E are the graphs {Ej}j∈J such

that E =
⊔
j∈J

Ej , where every Ej is connected.

A natural generalization of free group on a set is the notion of free groupoid on

a graph, which we define here: Given a graph E the free groupoid on E, denoted by

F(E) is obtained by imposing the following relations on C
Ê

:

1. v∗ = v for every v ∈ E0.

2. s(e)e = e = er(e) for every e ∈ E1.

3. r(e)e∗ = e∗ = e∗s(e) for every e ∈ E1.

4. e∗e = r(e) and ee∗ = s(e) for every e ∈ E1.

Given a set X the free 0-monoid X?
0 is the set X? t {0} such that multiplication is

extended from that of word concatenation by defining 0 · x = x · 0 = 0 for every x ∈ X.

Similarly one can define the free 0-group on X. An important generalization of free

0-groups is the concept of the polycyclic inverse monoids introduced by Nivat and

Perrot in [57].. The following definition is taken from [46]: For any n ≥ 2 the polycyclic
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monoid Pn is a 0-monoid presented by

Pn = 〈x1 . . . , xn, x
∗
1, . . . , x

∗
n | x∗ixj = δij〉

This construction can be easily generalized to any set X as follows: For a set X, first

consider the free 0-monoid on X? t X? and then impose the relations x∗y = δxy. We

denote the polycyclic monoid on X by PX .

Recall that a semigroup S is said to be von Neumann regular if for every x ∈ S

there exists y ∈ S, called an inverse of x such that xyx = x. A regular semigroup S is

called an inverse semigroup if every element has unique inverse. Note that polycyclic

monoids are inverse semigroups.

A generalization of polycyclic monoids to the case of graph was considered by Ash

and Hall in [22]. They defined a notion of inverse semigroups associated to graphs. For

any small category C we associate a 0-semigroup S0(C) as follows: As a set S0(C) is

C? t {0}, where C? is the set of all morphisms in C and multiplication is defined by

extension of partial multiplication in C as follows: µν = 0 if cod(µ) 6= dom(ν). Given

a graph E the graph inverse semigroup on E is presented by S0(C
Ê

) modulo the

following relations

1. s(µ)µ = µ = µr(µ) for any µ ∈ E?.

2. r(µ)µ∗ = µ∗ = µ∗r(µ) for any µ ∈ E?.

3. µ∗ν = δµνr(µ).

1.3 Algebra preliminaries

For a field K a K-algebra is an associative (not necessarily unital) ring R given with

a homomorphism of K into its center Z(R). A K-category is a category in which every

morphism set Mor(v, w) is given a structure of K-module, such that the composition

maps Mor(v, w)×Mor(u, v)→ Mor(u,w) are K-bilinear. A K-linear functor will mean a

functor between K-categories that maps morphism sets by K-module homomorphisms.

An associative ring R is said to have a set of local units U if U is a set of idempotents

in R having the property that, for each finite subset r1, . . . , rn of R, there exists a u ∈ U
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for which uriu = ri, for 1 ≤ i ≤ n. Also, an associative ring R is said to have enough

idempotents if there exists a set of nonzero orthogonal idempotents I in R for which

the set F of finite sums of distinct elements of I is a set of local units for R. By K-Alg,

we mean the category whose objects are K-algebras with enough idempotents and whose

morphisms are K-algebra morphisms which map local units to local units. If R is a ring

with enough idempotents, then we have

R =
⊕
e∈I

eR =
⊕
f∈I

Rf =
⊕
e,f∈I

eRf

as additive groups.

Let E be a graph. The Path K-algebra of E, denoted by K(E), is defined to be

the quotient of the free associative K-algebra generated by E? modulo the following

relations:

vw = δvwv, for all v, w ∈ E0, (V)

s(µ)µ = µr(µ) = µ, for all µ ∈ E?. (U)

In other words, K(E) is obtained as the contracted K-algebra of the graph 0-

semigroup S0(E). (That is, zero element of K(E) is identified with 0 of S0(E).

Proposition 1.3.1. For a graph E, the path K-algebra K(E) has enough idempotents,

where the set of nonzero orthogonal idempotents is E0. Moreover, K(E) is unital if and

only if E0 is finite, in which case
∑

v∈E0 v is the unit.

Proof. By V,
∑
v∈V

v, where V ⊆ E0 is a finite subset, is an idempotent. Let A be a finite

subset of K(E). Then each element a ∈ A is of the form
m∑
i=1

kai µ
a
i , where kai ∈ K and

µai ∈ E?. Let the support of A, supp(A), be the union of supports of µai over A. Then

supp(A) is finite and by U, uA =
∑

v∈supp(A)

v satisfies uAauA = a for any a ∈ A. Thus

E0 is the set of enough idempotents of K(E).

For E0 finite, the sum of all vertices is finite and it is direct to check that
∑
v∈E0

v is

the unit of K(E). If E0 is infinite, then since the vertices form the set of orthogonal

idempotents, there is no element of K(E) which acts as an identity on each vertex.
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By K-Alg we mean the category whose objects are K-algebras with enough idem-

potents and whose morphisms are K-algebra morphisms which map local units to local

units. We note that K( ) is not a functor from Gra to K-Alg. This is because a graph

morphism φ : F → E can map two distinct vertices v, w ∈ F 0 to a same vertex in E, in

which case K(φ)(vw) 6= 0 in K(E), but vw = 0 in K(F ). However, let Gr denote the

category whose objects are graphs and morphisms are graph morphisms φ = (φ0, φ1)

such that φ0 is injective. Then it is easy to verify that K( ) is a continuous functor

from Gr to K-Alg. For any graph E, it is easy to see that K(E) =
⊕
j∈J

K(Ej), where

{Ej}j∈J are connected components of E.

We introduce an important tool called ‘Bergman’s diamond lemma for rings’ to com-

pute K-linear basis of a K-algebra which is presented by generators and relations. Given

a set W , let 〈W 〉 denote the semigroup of all nonempty words over W (with juxtapo-

sition) and 〈W 〉 denote 〈W 〉 ∪ {empty word}. Further, let K 〈W 〉 denote the free

K-algebra generated by W .

Let Σ be a set of pairs of the form σ = (wσ, fσ), where wσ ∈ 〈W 〉 and fσ ∈ K 〈W 〉.

Then Σ is called a reduction system for K 〈W 〉. For any σ ∈ Σ and A,B ∈ 〈W 〉, let

rAσB denote the endomorphism of K 〈W 〉 that maps AwσB to AfσB and fixes all other

elements of 〈W 〉. The maps rAσB : K 〈W 〉 → K 〈W 〉 are called reductions.

We shall say a reduction rAσB acts trivially on an element a ∈ K 〈W 〉 if the co-

efficient of AwσB in a is zero, and we shall call a irreducible (under Σ) if every

reduction is trivial on a. The K linear subspace of all irreducible elements of K 〈W 〉

will be denoted by K 〈W 〉irr. A finite sequence of reductions r1, . . . , rn will be said to

be final on a ∈ K 〈W 〉 if rn . . . r1(a) ∈ K 〈W 〉irr.

An element a ∈ K 〈W 〉 will be called reduction-finite if for every infinite sequence

r1, r2, . . . of reductions, ri acts trivially on ri−1 . . . r1(a), for all sufficiently large i. If a

is reduction-finite, then any maximal sequence of reductions ri, such that each ri acts

nontrivially on ri−1 . . . r1(a), will be finite, and hence a final sequence. It follows from

their definition that the reduction-finite elements form a K linear subspace of K 〈W 〉.

We shall call an element a ∈ K 〈W 〉 reduction-unique if it is reduction-finite, and

if its images under all finite sequences of reductions are the same This common value

will be denoted rΣ(a). The set of reduction-unique elements of K 〈W 〉 forms a K linear

subspace, and rΣ is a bilinear map of this subspace into K 〈W 〉irr.
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A 5-tuple (σ,Θ, A,B,C) with σ,Θ ∈ Σ and A,B,C ∈ 〈W 〉, such that wσ = AB and

wΘ = BC is called an overlap ambiguity of Σ. We shall say the overlap ambiguity

(σ,Θ, A,B,C) is resolvable if there exist compositions of reductions r and r′, such that

r(fσC) = r′(AfΘ). Similarly, a 5-tuple (σ,Θ, A,B,C) with σ 6= Θ and A,B,C ∈ 〈W 〉

will be called an inclusion ambiguity if wσ = B,wΘ = ABC and such an ambiguity

will be called resolvable if AfσC and fΘ can be reduced to a common expression.

By a semigroup partial ordering on 〈W 〉, we shall mean a partial order ≤ such

that

B < B′ ⇒ ABC < AB′C,

for any B,B′ ∈ 〈W 〉 , A,C ∈ 〈W 〉. We call ≤ compatible with Σ if for all σ ∈ Σ, fσ is

a linear combination of monomials < wσ.

We now state the Bergman’s diamond lemma which will be used to find a basis for

Cohn-Leavitt path algebras of A-graphs.

Theorem 1.3.2 (Bergman’s diamond lemma). [25, Theorem 1.2] Let ≤ be a semi-

group partial ordering on 〈W 〉 compatible with Σ and having descending chain condition.

Then the following conditions are equivalent:

1. All ambiguities of Σ are resolvable.

2. All ambiguities of K 〈W 〉 are reduction-unique under Σ.

3. K 〈W 〉irr is a set of representatives for the elements of the K-algebra K 〈W 〉 /I,

where I is the ideal of K 〈W 〉 generated by the elements wσ − fσ(σ ∈ Σ).

When these conditions hold, K 〈W 〉 /I may be identified with the K-linear space K 〈W 〉irr,

made a K-algebra by the multiplication a · b = rΣ(ab).

Proposition 1.3.3. For a graph E, E? forms a K-linear basis for K(E).

Proof. In order to apply Theorem 1.3.2, we replace the defining relations by the follow-

ing:

1′: For any v, w ∈ E0,

vw = δv,wv.
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2′: For any v ∈ E0, e ∈ E1,

ve = δv,s(e)e,

ev = δv,r(e)e,

3′: For any e, f ∈ E1,

ef = 0 if r(e) 6= s(f)

Denote by Σ the reduction system consisting of all pairs σ = (wσ, fσ), where wσ

equals the LHS of an equation above and fσ the corresponding RHS. Let 〈P̄ 〉 be the

monoid consisting of all words formed by letters in E0∪E1. Define a partial order ≤ on

〈P 〉 by A ≤ B if A = B or l(A) < l(B). Then clearly ≤ is a semigroup partial order on

〈P 〉 compatible with Σ and also the descending chain condition is satisfied. It remains

to show that all ambiguities of Σ are resolvable.

In the following table we list all types of ambiguities which may occur:

Ambiguities

1′ 2′ 3′

1′ uvw vwe −

2′ evw vew vef

3′ − efv efg

We note that there are no inclusion ambiguities. We only show how to resolve ambiguity

of type 2′ − 3′ leaving other similar cases to the reader.

[
δv,s(e)e

]
f

[
δr(e),s(f)ef

]
vef δv,s(e)δs(e),r(f)ef

2′

3′

3′

2′

This proves the confluence condition and hence the reduction finiteness as well.

A right R-module M over a K-algebra R is called unital if MR = R. That is

for any m ∈ M we can find r1, r2, . . . , rn ∈ R and m1,m2, . . . ,mn ∈ M so that m =

m1r1 + m2r2 + · · · + mnrn. Note that this condition is equivalent to the standard



24 Chapter 1. Preliminaries

definition of unital module (when R has a 1) since m1 = (m1r1 +m2r2 + · · ·+mnrn)1 =

m1r11 + m2r21 + · · · + mnrn1 = m1r1 + m2r2 + · · · + mnrn = m. Let MR denote

the category of unital right R-modules with R-module homomorphisms. Note that the

category MR has a natural K-linear structure, hence so do the full subcategories Mfg
R

of finitely generated right unital R-modules, and Mproj
R of finitely generated projective

right unital R-modules.

Note that for a graph E the right unital module vK(E) generated by v ∈ E0 is

projective and also that V(K(E)) is free abelian monoid generated by E0.

Let E be a graph. The category of unital rightK(E)-modules is denoted by ME (since

K is fixed). Note that ME is equivalent to the category of quiver representations

of E, whose objects are the functors from the path category CE of E to the category of

K-vector spaces, and morphisms are natural transformations between two such functors.

That is, a quiver representation ρ assigns a (possibly infinite dimensional) vector space

ρ(v) to each vertex and a linear transformation ρ(µ) : ρ(s(µ))→ ρ(r(µ)) to each path µ ∈

E?. A morphism of quiver representations ϕ : ρ→ ρ′ is a family of linear transformations

{ϕv : ρ(v)→ ρ′(v)}v∈E0 such that for each µ ∈ E? the following diagram commutes.

ρ(s(µ)) ρ(r(µ))

ρ′(s(µ) ρ′(r(µ))

ρ(µ)

φs(µ) φr(µ)

ρ′(µ)

For a unital right K(E)-module M , observe that M =
⊕
v∈E0

Mv. The support

subgraph of M is the full subgraph of E induced on VM := {v ∈ E0 |Mv 6= 0}.

A ∗-ring is an associative unital ring R with an anti-automorphism ∗ : R→ R that

is also an involution. That is, ∗ satisfies the following properties: for every x, y ∈ R,

(x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, (x∗)∗ = x and 1∗ = 1. Let K be a ∗-field with

involution : K → K. A ∗-algebra is a K-algebra R that is also a ∗-algebra such that

(kr)∗ = kr∗ for every k ∈ K and r ∈ R.

A K-algebra R is called a G-graded algebra if R =
⊕
g∈G

Rg, where G is a group and

each Rg is a K-subspace of R and RgRh ⊆ Rgh for all g, h ∈ G. The set Rh =
⋃
g∈GRg

is called the set of homogeneous elements of R. Rg is called the g-component of

R and the nonzero elements of Rg are called homogeneous of degree g. We write
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deg(r) = g if r ∈ Ag − {0}. We call the set GR = {g ∈ G | Rg 6= 0}, the support of R.

We say the G-graded ring R has a trivial grading if GR = {e}, where e is the identity

of G. i.e, Re = A. For G-graded algebras R and S, a G-graded algebra homomophism

f : R→ S is a K-algebra homomorphism such that f(Rg) ⊆ Sg for all g ∈ G. A graded

homomorphism f is called a graded isomorphism if f is bijective, in which case we write

R ∼=gr S. It is easy to see that if f is a graded isomorphism, f−1 is also a graded

homomorphism.

Let R be a G-graded ring. A graded unital right R-module M is defined to be

a right R-module M with a direct sum decomposition M =
⊕

g∈GMg, where each Mg,

is an additive subgroup of M such that MgRh ⊆ Mgh for all g, h ∈ G. For G-graded

unital right R-modules M and N , a G-graded module homomorphism f : M → N is a

module homomorphism such that f(Mg) ⊆ Ng for all g ∈ G. A graded homomorphism

f is called a graded module isomorphism if f is bijective and, when such a graded

isomorphism exists, we write M ∼=gr N .

Recall that for a graph E, Ê denotes the double of E. Let K be a field with an

involution. Then there is a Z-grading on K(Ê) given by

deg(µ) :=


l(µ), if µ ∈ E?,

−|l(µ), if µ ∈ E?.

Note that the linear extension of ∗ induces a grade-reversing involutive anti-automorphism.

That is, deg(µ)∗ = −deg(µ) and (µν)∗ = ν∗µ∗. Hence K(Ê) is Z-graded ∗-algebra. Also

the (graded) categories of left unital K(Ê)-modules and right unital K(Ê)-modules are

equivalent.

1.4 Leavitt path algebras

This section can be considered as a brief survey on Leavitt path algebras. Throughout

this section we fix K to be a field.

Definition 1.4.1. Let E be a graph, S ⊆ RReg(E) and K be a field. The Cohn-

Leavitt path algebra of E relative to S with coefficients from K, denoted by CSK(E),
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is defined as the quotient of K(Ê) modulo the the following relations:

∀ e, f ∈ E1, e∗f = δefr(e), (CK 1)

∀ v ∈ S, v =
∑

e∈s−1(v)

ee∗. (CK 2)

The algebra CK(E) := C∅K(E) is called the Cohn path algebra of E and the algebra

LK(E) := C
RReg(E)
K (E) is called the Leavitt path algebra of E.

From definition it is clear that for a graph E, the Cohn path algebra CK(E) is

the contracted K-algebra of the graph inverse semigroup of E. Also note that for an

S ⊆ RReg(E), CSK(E) is a quotient of CK(E). In particular, LK(E) is also a quotient

of CK(E). However, it was shown in [6, Theorem 1.5.18] that for any graph E and

S ⊆ RReg(E) there exists a graph E(S) such that CSK(E) ∼= LK(E(S)) as K-algebras.

Example 1.4.2 (Leavitt algebras of type (1,m)). For m ∈ Z+ let Rm denote the rose

with m petals - a graph having one vertex and m loops:

e1

e2

e3

e4

e5

em

Rm =

Then from the defining relations it is direct that LK(R0) ∼= K, LK(R1) ∼= K[X,X−1],

and LK(Rm) ∼= LK(1,m) for m ≥ 2. Also CK(Rm) ∼= CK(1,m) for any m ∈ N.

Example 1.4.3 (Matrix algebras). For n ∈ N let An denote the oriented n-line graph

having n vertices and n− 1 edges:

. . .
v1 v2 v3 vn−1 vn

e1 e2 e3 en−1
An =

Then it can be shown that LK(An) ∼= Mn(K) (cf. [6, Proposition 1.3.4]).
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Example 1.4.4 (Leavitt path algebra of a circle). For n ∈ N let Cn denote the n-circle

graph having n vertices and n edges:

vn

v1

v2

vn−1

vn−2

Cn =

Then from [4, Theorem 3.3], it follows that LK(Cn) ∼= Mn(K[X,X−1]).

As we mentioned earlier, an important motivation to study Leavitt path algebras was

the realization problem for von Neumann regular rings. For a row-regular graph E, let

ME denote the graph monoid of E. Then it was shown in [18] that V(LK(E)) ∼= ME as

monoids. More generally we have

Theorem 1.4.5. [20, Theorem 4.3] Let E be any graph and S ⊆ RReg(E). Then the V-

monoid of Cohn-Leavitt path algebra is generated by the set St{qv | v ∈ RReg(E)−S}t

{qXv | v is an infinite emitter and X is a finite subset of s−1(v)} modulo the following

relations

1. for every v ∈ S,

v =
∑

e∈s−1(v)

r(e),

2. for every v ∈ RReg(E)− S,

v =
∑

e∈s−1(v)

r(e) + qv,

3. for every infinite emitter v ∈ E0 and finite subset X of s−1(v),

v =
∑
w∈X

w + qXv .

Note that the defining relations of Cohn-Leavitt path algebra of a graph E are of

homogeneous degree 0 and hence K(Ê)→ CSK(E) is a Z-graded algebra homomorphism.
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To find a K-basis for CSK(E), we can use Bergman’s diamond lemma and can check that

there are no inclusion ambiguities and all ambiguities are resolvable. We have

Proposition 1.4.6 (cf. [6]). Let E be a graph and S ⊆ RReg(E). Then

1. CSK(E) is a Z-graded ∗-algebra with enough idempotents E0. Moreover, LK(E) is

unital if and only if E0 is finite in which case
∑

v∈E0 v is the unit.

2. For each v ∈ S choose an edge ev ∈ s−1(v). Then a K-basis of CSK(E) is given by

the set

{µν∗ ∈ Ê? | µ, ν ∈ E?, r(µ) = r(ν)}−{λeve∗vκ∗ ∈ Ê? | λ, κ ∈ E?, r(λ) = r(κ) = v, v ∈ S}.

From part 2 of Proposotion 1.4.6, it is clear thatK(E) embeds into LK(E). Hence any

right unital LK(E)-module can also be viewed as a module overK(E) and it is interesting

to study representations of Leavitt path algebras in terms of quiver representations of

E. This question was taken up in [41] and it was shown that when E is row-finite,

the category of LK(E)-modules is equivalent to a full subcategory and also a retract of

quiver representations of E.

A major theme in the area focus on passing structural information from the directed

graph E to the Leavitt path algebra LK(E), and vice-versa:

E has graph property P ⇔ LK(E) has algebraic property Q.

We list some theorems which illustrate this point.

Theorem 1.4.7. For a graph E the following are equivalent.

1. E is acyclic.

2. LK(E) is right (or left) Artinian [10, Theorem 2.6].

3. LK(E) is von Neumann regular [14, Theorem 1].

4. LK(E) is finite dimensional [3, Corollaries 3.6, 3.7].

5. LK(E) is isomorphic to direct sum of matrix algebras over K.

Moreover, we have
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Theorem 1.4.8 (Structure theorem for finite acyclic graphs). [5, Theorem 9] Let E be

a finite acyclic graph. Let w1, . . . , wt denote the sinks of E. For each wi, let Ni denote

the number of elements of E? having range vertex wi. Then

LK(E) ∼=
t⊕
i=1

MNi(K).

Theorem 1.4.9. For a graph E the following are equivalent

1. The cycles of E have no exits.

2. LK(E) is right (or left) Noetherian [10, Theorem 3.8].

3. LK(E) is locally finite dimensional (each homogeneous summand is finite dimensional)[4,

Theorem 1.8].

4. LK(E) is principal ideal ring [13, Proposition 23].

5. LK(E) is isomorphic to direct sum of matrix algebras over K and matrix algebras

over K[X,X−1]. [4, Theorems 3.8, 3.10].

Definition 1.4.10. Let E be a graph and H ⊆ E0.

1. H is hereditary if whenever v ∈ H and w ∈ E0 for which there exists a path µ

such that s(µ) = v and r(µ) = w, then w ∈ H.

2. H is saturated if whenever v ∈ E0 is regular such that {r(e) | e ∈ E1, s(e) =

v} ⊆ H, then v ∈ H.

3. E satisfies condition (L) if every cycle in E has an exit.

Clearly the sets ∅ and E0 are hereditary and saturated subsets of E0 and intersection

of any family of hereditary and saturated subsets of E0 is also hereditary and saturated.

For H ⊆ E0 let H denote the hereditary saturated closure of H. In fact, the set of

all hereditary and saturated subsets of E0 forms a complete lattice with respect to set

inclusion, supremum given by
∨
i
Hi =

⋃
i
Hi and

∧
i
Hi =

⋂
i
Hi. By the defining relations

of Leavitt path algebra, we can verify easily that for any ideal I of LK(E), I ∩ E0 is

hereditary and saturated subset of E0.
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Theorem 1.4.11. [6, Theorem 2.5.9] Let E be a row-finite graph. Then the map I 7→

I ∩ E0 is a lattice isomorphism from the lattice of graded ideals of LK(E) to the lattice

of hereditary and saturated subsets of E0.

One of the first theorems proved in the area of Leavitt path algebras is the simplicity

theorem.

Theorem 1.4.12. [6, Theorem 2.9.1] For any graph E, the Leavitt path algebra LK(E)

is simple if and only if E satisfies Condition (L) and only hereditary and saturated

subsets of E0 are ∅ and E0

Definition 1.4.13. A unital K-algebra A is called purely infinite simple if A is not a

division ring, and A has the property that for every nonzero element x of A there exists

b, c ∈ A for which bxc = 1A.

The finite graphs E for which the Leavitt path algebra L(E) is purely infinite simple

have been explicitly described in [8].

Theorem 1.4.14. L(E) is purely infinite simple if and only if E is sink-free, satisfies

Condition (L), and only hereditary and saturated subsets of E0 are ∅ and E0.

In other words, the graph E satisfies the following properties: every vertex in E

connects to every cycle of E; every cycle in E has an exit; and E contains at least one

cycle.

It is shown in [17, Corollary 2.2], that if A is a unital purely infinite simple K-algebra,

then the semigroup (V(A)∗,⊕) is in fact a group, and moreover, that V(A)∗ ∼= K0(A),

the Grothendieck group of A. For unital Leavitt path algebras, the converse is true as

well: if V(L(E))∗ is a group, then L(E) is purely infinite simple. (This converse is not

true for general K-algebras.)

Theorem 1.4.15. If L(E) is unital purely infinite simple, then

K0(L(E)) ∼= V(L(E))∗ ∼= M∗E .
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1.5 Chapter-wise summary

In chapter 2, we introduce the notion of weighted Cayley graph Cay(G,S,w) of a group

G with respect to a generating set S and a weight function w : S → N. Then we

study Leavitt path algebras LK(Cn(S,w)), where Cn(S,w) denotes the weighted Cayley

graph of Zn with respect to a generating set S of Zn and weight function w : S → N.

The algebras LK(Cn(S,w)) satisfy a useful algebraic property known as purely infinite

simpleness and due to an important theorem called algebraic Kirchberg-Philips theorem

such algebras can be classified by computing their Grothendieck groups under mild

hypothesis. We present a method to compute the Grothendieck group. Specifically, we

find conditions under which the hypothesis of algebraic KP theorem is satisfied and also

provide a method to reduce the computation of the Grothendieck group. Finally, we

illustrate the method by considering some simple cases when |S| = 1, 2 or n.

In chapter 3, we define bi-separated graphs Ė and their Cohn-Leavitt path algebras

AK(Ė) and state some very basic results that follow from the definitions. We also

show how the generalizations introduced in previous section are special cases of AK(Ė).

In section 3.3, we define the category BSG of bi-separated graphs and approrpiate

morphisms such that AK( ) is a continuous functor from BSG to K-Alg. Also we show

that every object in this category is a direct limit of countable complete sub-objects (see

Proposition 3.3.7). However, this statement does not hold true if we replace countable by

finite. We then define a new sub-category of BSG, which we call “tame category tBSG”

and show that this category characterizes all objects of BSG which are direct limits of

finite ‘complete’ sub-objects. Thus if Ė is a tame bi-separated graph then AK(Ė) is a

direct limits of unital sub Cohn-Leavitt path algebras (of corresponding finite complete

sub bi-separated graphs). Section 3.4 deals with computation of normal forms of AK(Ė)

using Bergman’s diamond lemma and some of it’s applications. In particular, we find

bi-separated graph theoretic conditions to study algebraic properties of Cohn-Leavitt

path algebras such as simplicity, semiprimitivity, von Neumann regularity, growth and

finiteness and also characterize the algebras which are domains.

In chapter 4, we focus our attention to the study of B-hypergraphs. In section

??, we define B-hypergraphs (Ė,Λ) and their H-monoids and show that H-monoids

are isomorphic to the V-monoids of the corresponding Cohn-Leavitt path algebras. In

section 4.2, we introduce the partially ordered set of admissible triples AT(Ė,Λ) for
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each B-hypergraph (Ė,Λ) and show that this poset is a lattice. We further show that

the lattice of order-ideals of H-monoid of (Ė,Λ) is isomorphic to the lattice AT(Ė,Λ),

which establishes that AT(Ė,Λ) is isomorphic to the complete lattice of trace ideals of

Cohn-Leavitt path algebra of (Ė,Λ). In section 4.3, we study the representations of

Leavitt path algebras of regular hypergraphs and show that the category of unital right

modules of these algebras is a full subcategory and a retract of quiver representations of

underlying graphs of the hypergraphs. Also, we give a characterization of Leavitt path

algebras of regular hypergraphs to have a finite dimensional representation in terms of

their H-monoids. Finally, in section 4.4, we provide a matrix criteria for a Leavitt path

algebra of a finite hypergraph to have invariant basis number.



Chapter 2

Leavitt path algebras of weighted

Cayley graphs Cn(S,w)

2.1 Introduction

For a finite group G and a subset S ⊆ G, let the associated Cayley graph be denoted

by Cay(G,S). When the given group is Zn we write Cn(S) = Cay(Zn, S). Leavitt

path algebras of Cayley graphs of the finite cyclic group Zn with respect to the subset

S = {1, n − 1} were initially studied in [15]. It was shown that there are exactly four

isomorphism classes represented by the collection {L(Cn(1, n− 1)) | n ∈ N}.

Subsequently, in [9], the authors computed the important integers |K0(L(Cn(1, j)))|

and det(In − AtCn(1,j)), where A(−) denotes the adjacency matrix of a directed graph,

and K0(−) denotes the Grothendieck group of a ring. Also in [9], the collections of

K-algebras {L(Cn(1, j)) | n ∈ N} for j = 0, 1, 2 were described upto isomorphism.

The descriptions of all these algebras follow from an application of the powerful tool

known as the (Restricted) Algebraic Kirchberg-Philips Theorem.

In [11], the study was extended and a method to compute the Grothendieck group

of the Leavitt path algebra L(Cn(1, j)) to the case where 0 ≤ j ≤ n − 1 and n ≥ 3

was derived. Specifically, a method was given to reduce the computation of the Smith

Normal Form of the n× n matrix In −AtCn(1,j) to that of calculating the Smith Normal

Form of a j × j matrix (Mn
j )t − Ij . Further a description of K0(L(Cn(1, j)) was also

given.

33
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In this chapter we generalize the work done in [11] to study L(Cn(S,w)), where S

is any nonempty generating subset of Zn, w : S → N is a map and Cn(S,w) is the

weighted Cayley graph. In section 2.2, we recall the background information required.

In Section 2.3, we present a method to compute the Grothendieck group. Specifically we

find the conditions to determine the sign of det(In − AtCn(S,w)) and also the cardinality

of K0(L(Cn(S,w))). Also we find a method to reduce the computation of the Smith

Normal form of the n× n matrix In−AtCn(S,w) to that of calculating the Smith Normal

form of a square matrix of smaller size if 0 /∈ S (Theorem 2.3.9). In Section 2.4, we use

the method developed in Section 2.3 to study the following simple cases when 〈S〉 = Zn:

Case 1 : |S| = 1,

Case 2 : |S| = 2,

Case 3 : |S| = n.

Moreover, we recover the results studied in [15],[9], and [11] as special cases and get some

new results. Among these new results, in particular, we show that L(Kn) ∼= L(1, n)

where Kn is the unweighted complete n-graph (See 2.4.1 for definition) and L(1, n) is

the Leavitt algebra. We also show that the main result of [15] holds true if Cn(1, n−1) is

replaced by Dn for every n ∈ N, where Dn denotes the Cayley graph of Dihedral group

with respect to the usual generating set.

2.2 Background information

2.2.1 The Algebraic KP theorem

The following important theorem will be used to yield a number of key results in the

subsequent sections:

Theorem 2.2.1 ((Restricted) Algebraic KP Theorem). [12, Corollary 2.7]

Suppose E and F are finite graphs for which the Leavitt path algebras L(E) and L(F ) are

purely infinite simple. Suppose that there is an isomorphism ϕ : K0(L(E))→ K0(L(F ))

for which ϕ([L(E)]) = [L(F )], and suppose also that the two integers det(I|E0| − AtE)

and det(I|F 0| −AtF ) have the same sign. Then L(E) ∼= L(F ) as K-algebras.



2.2. Background information 35

Example 2.2.2 (Leavitt algebras). For any integer m ≥ 2, L(1,m) denote the Leavitt

algebra of type (1,m). It is easy to see that for m > 2, if Rm is the graph having one

vertex and m loops, then L(Rm) ∼= L(1,m). From Theorem 1.4.14 it follows that L(Rm)

is unital purely infinite simple and hence K0(L(Rm)) ∼= M∗Rm is the cyclic group Zm−1,

where the regular module [L(Rm)] in K0(L(Rm)) corresponds to 1 in Zm−1.

Unital purely infinite simple Leavitt path algebras L(E) whose corresponding K0

groups are cyclic and for which det(I|E0| − AtE) ≤ 0 are relatively well-understood, and

arise as matrix rings over the Leavitt algebras L(1,m), as follows: Assume d ≥ 2, and

consider the graph Rdm having two vertices v1, v2; d− 1 edges from v1 to v2; and m loops

at v2.

v1 v2

(d− 1)

(m)Rdm =

It is shown in [1] that L(Rdm) is isomorphic to the matrix algebra Md(L(1,m)).

By standard Morita equivalence theory, we have that K0(Md(L(1,m))) ∼= K0(L(1,m)).

Moreover, the element [Md(L(1,m))] ofK0(Md(L(1,m))) corresponds to the element d in

Zm−1. In particular, the element [Mm−1(L(1,m))] of K0(Mm−1(L(1,m))) corresponds

to m − 1 ≡ 0 in Zm−1. Finally, an easy computation yields that det(I2 − At
Rdm

) =

−(m − 1) ≤ 0 for all m, d. Therefore, by invoking the Algebraic KP Theorem, the

previous discussion immediately yields the following.

Proposition 2.2.3. Suppose that E is a graph for which L(E) is unital purely infinite

simple. Let M∗E be isomorphic to the cyclic group Zm−1, via an isomorphism which

takes the element
∑

v∈E0 [v] of M∗E to the element d of Zm−1. Finally, suppose that

det(I|E0| −AtE) ≤ 0. Then L(E) ∼= Md(L(1,m)).

2.2.1.1 Computation of Grothendieck group

Let E be a finite directed graph for which |E0| = n. We view In−AtE both as a matrix,

and as a linear transformation In − AtE : Zn → Zn, via left multiplication (viewing

elements of Zn as column vectors). As discussed in [1, Section 3], we have
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Proposition 2.2.4. If L(E) is purely infinite simple, then

M∗E
∼= K0(L(E)) ∼= Zn/Im(In −AtE) = Coker(In −AtE).

Under this isomorphism [vi] 7→ ~bi + Im(In−AtE), where ~bi is the element of Zn which is

1 in the ith coordinate and 0 elsewhere.

Let M ∈ Mn(Z) and view M as a linear transformation M : Zn → Zn via left

multiplication on columns. The cokernel of M is a finitely generated abelian group,

having at most n summands; as such, by the invariant factors version of the Fundamental

Theorem of Finitely Generated Abelian Groups, we have

Coker(M) ∼= Zsl ⊕ Zsl+1
⊕ · · · ⊕ Zsn ,

for some 1 ≤ l ≤ n, where either n = l and sn = 1 (i.e., Coker(M) is trivial group), or

there are (necessarily unique) nonnegative integers sl, sl+1, . . . , sn, for which the nonzero

values sl, sl+1, . . . , sr satisfy sj ≥ 2 for 1 ≤ j ≤ r and si|si+1 for l ≤ i ≤ r − 1, and

sr+1 = · · · = sn = 0. Coker(M) is a finite group if and only if r = n. In case l > 1, we

define s1 = s2 = · · · = sl−1 = 1. Clearly then we have

Coker(M) ∼= Zs1 ⊕ Zs2 ⊕ · · · ⊕ Zsl ⊕ · · · ⊕ Zsn ,

since any additional direct summands are isomorphic to the trivial group Z1.

We note that if P,Q are invertible in Mn(Z) (hence their determinant is ±1), then

Coker(M) ∼= Coker(PMQ). In other words, if N ∈ Mn(Z) is a matrix which is con-

structed by performing any sequence of Z-elementary row (or column) operations start-

ing with M , then Coker(M) ∼= Coker(N) as abelian groups.

Definition 2.2.5. Let M ∈Mn(Z), and suppose Coker(M) ∼= Zs1 ⊕ Zs2 ⊕ · · · ⊕ Zsn as

described above. The Smith Normal Form of M (SNF(M) in short), is the n × n

diagonal matrix diag(s1, s2, . . . , sr, 0, . . . , 0).

For any matrix M ∈ Mn(Z), the Smith Normal Form of M exists and is unique. If

D ∈ Mn(Z) is a diagonal matrix with entries d1, d2, . . . , dn, then clearly Coker(D) ∼=

Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zdn . We also note the following:
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Proposition 2.2.6. Let M ∈ Mn(Z), and let S denote the Smith Normal Form of M .

Suppose the diagonal entries of S are s1, s2, . . . , sn. Then

Coker(M) ∼= Zs1 ⊕ Zs2 ⊕ · · · ⊕ Zsn .

In particular, if there are no zero entries in the Smith Normal Form of M , then |Coker(M)| =

s1s2 . . . sn = |det(S)| = |det(M)|.

Proposition 2.2.6 yields the following:

Proposition 2.2.7. Let E be a finite graph with |E0| = n and adjacency matrix AE.

Suppose that L(E) is purely infinite simple. Let S be the Smith Normal Form of the

matrix In −AtE, with diagonal entries s1, s2, . . . , sn. Then

K0(L(E)) ∼= Zs1 ⊕ Zs2 ⊕ · · · ⊕ Zsn .

Moreover, if K0(L(E)) is finite, then an analysis of the Smith Normal Form of the

matrix In −AtE yields

|K0(L(E))| =
∣∣det(In −AtE)

∣∣ ,
Conversely, K0(L(E)) is infinite if and only if det(In − AtE) = 0 and in this case

rank(K0(L(E)) = nullity(In −AtE).

We record the following theorem which will be used in computations of Smith Normal

Forms in later sections:

Theorem 2.2.8 (Determinant Divisors Theorem). [56, Theorem II.9]

Let M ∈ Mn(Z). Define α0 = 1, and for each 1 ≤ i ≤ n, define the ith determinant

divisor of M to be the integer

αi = the greatest common divisor of the set of all i× i minors of M .

Let s1, s2, . . . , sn denote the diagonal entries of the Smith Normal Form of M , and

assume that each si is nonzero. Then

si =
αi
αi−1

,

for each 1 ≤ i ≤ n.
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2.2.2 Weighted Cayley graphs and circulant matrices

Recall that given a group G, and a subset S ⊆ G, the associated Cayley graph Cay(G,S)

is the directed graph E(G,S) with vertex set {vg | g ∈ G}, and in which there is an edge

e(g, h) from vg to vh if there exists (a necessarily unique) s ∈ S with h = gs in G. Thus,

in Cay(G,S), at every vertex vg, the number of edges emitted is |S|. The identity of G

is in S if and only Cay(G,S) contains a loop at every vertex.

Definition 2.2.9. Let G be a group, S ⊆ G and w : S → N be a map. Then w induces

a map (also denoted by w) from the set of edges of Cay(G,S) to N by e(g, h) 7→ w(s)

whenever h = gs. The weighted graph of Cay(G,S) associated to the map w is called

the weighted Cayley graph (or w-Cayley graph) and is denoted by Cay(G,S,w).

In particular, Cay(G,S) is a special case of Cay(G,S,w) when w is the constant map

w(e) = 1 for every edge e. In this case we say Cay(G,S) is unweighted.

Remark 2.2.10. Cay(G,S,w) is strongly connected if and only if 〈S〉 = G. In particu-

lar, Cay(〈S〉, S, w) is a connected component of Cay(G,S,w), where 〈S〉 is the subgroup

generated by S.

Notation 2.2.11. For a positive integer n, let G = Zn, and S be any non-empty subset

of G. We denote the w-Cayley graph Cay(G,S,w) simply by Cn(S,w).

In other words, if S = {s1, s2, . . . sk} then the w-Cayley graph Cn(S,w) is the directed

graph with the vertex set {v0, v1, v2, . . . , vn−1} and the edge set {el(i, sj) | 0 ≤ i ≤

n − 1, 1 ≤ j ≤ k, 1 ≤ l ≤ w(sj)} for which s(el(i, sj)) = vi, and r(el(i, sj)) = vi+sj ,

where the indices are interpreted modulo n. Therefore Cn(S,w) is a finite graph.

Definition 2.2.12. For a positive integer n, let c = (c0, c1, . . . , cn−1) ∈ Qn. Consider

the shift operator T : Qn → Qn, defined by T (c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2).

The circulant matrix circ(c), associated with c is the n× n matrix C whose kth row is

T k−1(c), for k = 1, 2, . . . .n. Thus C is of the form

C =


c0 c1 c2 . . . cn−1

cn−1 c0 c1 . . . cn−2

...
...

... . . .
...

c1 c2 c3 . . . c0


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In other words, a circulant matrix is obtained by taking an arbitrary first row, and

shifting it cyclically one position to the right in order to obtain successive rows. The

(i, j) element of C is cj−i, where subscripts are taken modulo n.

Note that ACn(S,w) is the n × n matrix with the (i, j)th entry as w(s) if i + s = j

modulo n, for some s ∈ S, and 0, otherwise. Hence ACn(S,w) is a circulant matrix

with non-negative integer entries. In the case of unweighted Cayley graph Cn(S), the

adjacency matrix is binary circulant matrix.

Definition 2.2.13. For c ∈ Qn, let C = circ(c). The representer polynomial of C

is defined to be the polynomial PC(x) = c0 + c1x+ · · ·+ cn−1x
n−1 ∈ Q[x].

Lemma 2.2.14. Let C = circ(c) be a circulant matrix. Then the eigenvalues of C

equal PC(ζkn) = c0 + c1ζ
k
n + · · ·+ cn−1ζ

k(n−1)
n for k = 0, 1, . . . , n− 1, where ζn = e

2πi
n , the

primitive nth root of unity. Further

det(C) =
n−1∏
l=0

(
n−1∑
k=0

cjζ
lk
n

)
.

For a proof of Lemma 2.2.14, we refer the reader to [42, Theorem 6].

Note that the nth cyclotomic polynomial, denoted by

Φn(x) =
∏

1≤a<n
gcd(a,n)=1

(x− ζan),

is an element of Z[x]. Also, xn − 1 =
∏
d|n

Φd(x). Since Φn(x) is the minimal polynomial

of ζn, f(ζn) = 0 for some f(x) ∈ Z[x] implies Φn(x) divides f(x). By applying Lemma

2.2.14 we get

Lemma 2.2.15. Let C = circ(c). Then the following are equivalent.

(a) C is singular.

(b) PC(ζkn) = 0 for some k ∈ Z.

(c) The polynomials PC(x) and xn − 1 are not relatively prime.
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2.3 Leavitt path algebras of Cn(S,w)

Theorem 2.3.1. Let G be a finite group, S its generating set and w : S → N a weight

function. Let W =
∑
s∈S

w(s). Then the following are equivalent:

1. L(Cay(G,S,w)) is purely infinite simple.

2. W ≥ 2.

3. L(Cay(G,S,w)) does not have Invariant Basis Number.

Proof. (1)⇒ (2)⇐ (3). Let |G| = n. If W = 1, then |S| = 1. Setting S = {g}, we have

G is cyclic group generated by g. Hence Cay(G,S,w) is the graph Cn, which is cycle of

length n and which does not satisfy condition L. This contradicts (1). By [4, Theorem

3.8 and 3.10] L(Cn) ∼= Mn(K[x, x−1]) which has Invariant Basis Number.

(2)⇒ (1). Let W ≥ 2. In Cay(G,S,w), the number of edges emitted at each vertex

vg is W . So there are at least two edges emitted from each vertex. This also implies

condition (L). Since 〈S〉 = G, Cay(G,S,w) is strongly connected. Hence for any vertex

vg there is a non-trivial path connecting vg to v1 and vice versa. Therefore Cay(G,S,w)

contains a cycle and there is no non-trivial hereditary subset of vertices.

(2)⇒ (3). For a finite graph E, L(E) has Invariant Basis Number if and only if for

each pair of positive integers m and n,

m
∑
v∈E0

[v] = n
∑
v∈E0

[v] in ME ⇒ m = n.

In MCay(G,S,w), for each vg we have [vg] =
∑
s∈S

w(s)[vgs] and hence,

∑
g∈G

[vg] =
∑
g∈G

∑
s∈S

w(s)[vgs] =
∑
s∈S

∑
g∈G

w(s)[vgs] =
∑
s∈S

w(s)
∑
g∈G

[vgs] = W
∑
g∈G

[vgs].

Since G is a finite group we have G = {gs | g ∈ G} and hence
∑
g∈G

[vgs] =
∑
g∈G

[vg]. Hence

we have
∑
g∈G

[vg] = W
∑
g∈G

[vg]. If W ≥ 2 then L(Cay(G,S,w)) does not have Invariant

Basis Number.

Corollary 2.3.2. [55, Proposition 4.1, Theorem 4.2] Let G be a finite group, S its

generating set. Then the following are equivalent:
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1. L(Cay(G,S)) is purely infinite simple.

2. L(Cay(G,S)) does not have Invariant Basis Number.

3. |S| ≥ 2.

Proof. In this case W = |S|.

From now on, we work with the following assumption:

Assumption 2.3.3. Let n ∈ N, S = {s1, s2, . . . sk} ⊆ Zn. s1 < s2 < · · · < sk. Further

set W =
∑
sj∈S

w(sj).

Theorem 2.3.4. Let 〈S〉 = Zn and W ≥ 2. Then in the group M∗Cn(S,w), the order of∑n−1
i=0 [vi] divides W − 1. Further, if gcd(W − 1, n) = 1 then order of

∑n−1
i=0 [vi] is W − 1.

Proof. Let S = {s1, s2, . . . , sk}. Then in M∗Cn(S,w), we have the following relations

[vi] =
∑
sj∈S

w(sj)[vi+sj ].

Let σ =
∑n−1

i=0 [vi]. Then using the defining relations in M∗Cn(S),w, we have

σ =
n−1∑
i=0

[vi] =
n−1∑
i=0

( ∑
sj∈S

w(sj)[vi+sj ]

)
=
∑
sj∈S

w(sj)

(
n−1∑
i=0

[vi+sj ]

)
=
∑
sj∈S

w(sj)

(
n−1∑
i=0

[vi]

)
=

( ∑
sj∈S

w(sj)

)
σ = Wσ.

Thus, in the group M∗Cn(S,w), we have (W − 1)σ = 0. This proves the first part of the

theorem.

By Theorem 2.2.4, M∗Cn(S,w)
∼= Coker(In − AtCn(S,w)), and under the isomorphism

[vi] 7→ ~bi + Im(In − AtCn(S,w)), where ~bi is the element of Zn which has 1 in the ith

coordinate and 0 elsewhere.

Hence for a natural number d, dσ = 0 in M∗Cn(S,w) if and only if d~v ∈ Im(In −

AtCn(S,w)) where ~v = (1, 1, . . . , 1)t. This is equivalent to ~u − At~u = d~v for some ~u =

(u0, u1, . . . , un−1) ∈ Zn, which in turn is equivalent to

ul −
∑
sj∈S

w(sj)un−sj+l = d 0 ≤ l ≤ n− 1.
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Adding all the above equations, we get

n−1∑
l=0

ul −
n−1∑
l=0

∑
sj∈S

w(sj)un−sj+l = nd.

LHS =
n−1∑
l=0

ul −
∑
sj∈S

n−1∑
l=0

w(sj)un−sj+l

=
n−1∑
l=0

ul −
∑
sj∈S

w(sj)
n−1∑
l=0

un−sj+l

=

1−
∑
sj∈S

w(sj)

 n−1∑
l=0

ul

= (1−W )

n−1∑
l=0

ul.

Thus W − 1 divides nd. If gcd(W − 1, n) = 1, then W − 1 divies d. In particular,

when gcd(W − 1, n) = 1 order of
n−1∑
i=0

[vi] is W − 1.

Assumption 2.3.5. In what follows, we always assume that 〈S〉 = Zn and W ≥ 2.

As we noted in 2.2.14, for a circulant matrix C,

det(C) =

n−1∏
l=0

n−1∑
j=0

cjζ
lj
n

 ,

where ζn = e
2πi
n , the primitive nth root of unity. For Cn(S,w), the adjacency matrix

ACn(S,w) is circulant. Also In − AtCn(S,w) is circulant (with integer entries). Let S =

{s1, s2, . . . , sk}. Then,

det(In −AtCn(S)) = det(In −ACn(S)) =

n−1∏
l=0

1−
∑
sj∈S

w(sj)ζ
lsj
n

 .

Proposition 2.3.6. Let S0 := {j ∈ S | j ≡ 0 (mod 2)}, S1 := {j ∈ S | j ≡ 1 (mod 2)},

W0 :=
∑

sj∈S0
w(sj), and W1 :=

∑
sj∈S1

w(sj). Then det(In−AtCn(S,w)) > 0 if and only

if n is even and 1 +W1 < W0.
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Proof. Let P (x) = 1−
∑

sj
w(sj)x

sj be the representer polynomial of In−AtCn(S,w). Let

zl = P (ζ ln) = 1−
∑

sj
w(sj)ζ

lsj . It is easy to see that z0 = 1−
∑

sj∈S w(sj) = 1−W < 0

and zn−l = zl for all l. Thus det(In − AtCn(S)) > 0 if and only if n is even and zn
2
< 0.

Since

zn
2

= 1−
∑

j even

w(sj) +
∑

j odd

w(sj),

Thus zn
2
< 0 iff 1 +W1 < W0.

Proposition 2.3.7. Let P (x) ∈ Z[x] be the representer polynomial associated with the

circulant matrix In−AtCn(S,w). Then K0(L(Cn(S,w))) is infinite if and only if P (x) and

xn − 1 are relatively prime.

Proof. Follows from Lemma 2.2.15 and Proposition 2.2.7

In order to compute the Grothendieck group of the Leavitt path algebra of Cn(S,w),

we look at the generating relations for M∗Cn(S,w)

[vi] =
∑
sj∈S

w(sj)[vi+sj ].

where 0 ≤ i ≤ n − 1, (subscripts are modulo n) and S = {s1, s2, . . . , sk}, (sl < sm for

l < m). Any statement about [v0] in M∗Cn(S,w), has an analogous statement for [vk] for

0 ≤ k ≤ n− 1, by symmetry of relations.

Definition 2.3.8. The companion matrix of the monic polynomial p(t) = c0 + c1t+

· · ·+ cn−1t
n−1 + tn, is a n× n matrix defined as

T (p) =



0 0 . . . 0 −c0

1 0 . . . 0 −c1

0 1 . . . 0 −c2

...
...

. . .
...

...

0 0 . . . 1 −cn−1



Let a linear recursive sequence be of the form

un+k − cn−1un+k−1 − · · · − c0un = 0 (n ≥ 0),
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where c0, c1, . . . , cn−1 are constants. The characteristic polynomial of the above

linear recursive sequence is defined as p(t) = tn − cn−1t
n−1 − · · · − c1t − c0 whose

companion matrix is

T (p) =



0 0 . . . 0 c0

1 0 . . . 0 c1

0 1 . . . 0 c2

...
...

. . .
...

...

0 0 . . . 1 cn−1


This matrix generates the sequence in the sense that,

(
ak ak+1 . . . ak+n−1

)
T (p) =

(
ak+1 ak+2 . . . ak+n

)

In particular, the (n, n)th entry of T (p)k is un+k−2.

When 0 /∈ S, from the linear recursive relation in M∗Cn(S,w), we have the characteristic

polynomial p(S,w, t) = tsk −
∑

sj∈S w(sj)t
sk−sj . The companion matrix of p(S,w, t) is

denoted by TCn(S,w), is then the sk × sk matrix

TCn(S,w) =



0 0 . . . 0

1 0 . . . 0

0 1 . . . 0
...

...
. . .

... c

0 0 . . . 1


where c is the last column of TCn(S,w) which contains entry w(sj) at positions sk−sj +1

and 0 elsewhere.

In M∗Cn(S,w), we observe that by writing the generating relations and then expanding

the equation such that the subscripts are kept in increasing order, at ith step we get the

coefficients to be the last column of T iCn(S,w).

The computation of the Smith Normal Form of In−AtCn(S,w) is the key tool for deter-

mining the K0 of the Leavitt path algebra of Cn(S,w). We show that this computation

reduces to calculating the Smith Normal Form of an sk × sk matrix.
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Theorem 2.3.9. Let n ∈ N, S = {s1, s2, . . . , sk} ( Zn such that 〈S〉 = Zn, 0 /∈ S, and

W ≥ 2. Then Coker(In −AtCn(S,w))
∼= Coker(TnCn(S,w) − In).

Proof. Since the Smith normal form of In−AtCn(S,w) and ACn(S,w)−In are the same, their

cokernels are same and we only show that Coker(ACn(S,w)− In) ∼= Coker(TnCn(S,w)− In).

For simplicity, we write B = ACn(S,w) − In and T = TCn(S,w). First we observe that

Bpq =


−1, if q = p,

w(sj), if q = p+ sj ,

0, otherwise.

Let P be a (sk × sk) lower triangular matrix given by

Ppq =


0, if q > p,

w(sj), if p− q = sk − sj ,

0, otherwise.

and let Q be a (sk × sk) upper triangular matrix given by

Qpq =



0, if q < p,

−1, if q = p,

w(sj), if q − p = sj ,

0, otherwise.

It is direct that P and Q are invertible. Let R = −Q−1. Then a direct computation

yields PR = T sk , and also QR = −Isk . Let P ′ be the block matrix
[
P | 0sk×(n−sk)

]
and

Q′ be the block matrix
[
0sk×(n−sk) | Q

]
. The (sk × (n− sk)) submatrix of B consisting

of bottom s− k rows can be written as P ′ +Q′.
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The first (n − sk) reduction steps of the Smith normal form will result in an (n −

sk)× (n− sk) identity submatrix in the upper left corner. On the bottom sk rows, the

ith reduction step adds the ith column to the sum of w(sj) times (i+sk)
th columns, then

zeros out the ith column. The matrix that accomplishes this reduction step is

P−1TP =



r

1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0


where r is the first row contains entry w(sj) at positions sk and 0 elsewhere. After i

reduction steps, the first (sk×sk) submatrix with nonzero column vectors on the bottom

sk rows will be

P · (P−1TP )i = T iP.

Therefore the first (n− sk) reduction steps of the Smith Normal Form will result in

the following form.

B ∼

 I(n−sk) 0(n−sk)×sk

0sk×(n−sk) Tn−skP +Q


Since (Tn−skP +Q)R = Tn − Isk ,

B ∼

 I(n−sk) 0(n−sk)×sk

0k×(n−sk) Tn − Isk


Hence Coker(B) ∼=Coker(Tn − Isk).

2.4 Illustrations

As illustrations of the above discussion we consider some simple cases when W ≥ 2 and
n−1∑
i=0

[vi] is the identity in M∗Cn(S,w), which recovers the examples obtained in [15],[9],and

[11].
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2.4.1 S = Zn

In this subsection, we only look at the following two simple cases when
n−1∑
i=0

[vi] is the

identity in M∗Cn(Zn,w)

Definition 2.4.1. Let n, l be two positive integers. We define K
(l)
n to be the graph

with n vertices v0, v1, . . . vn−1, in which there is exactly one edge from vi to vj for each

0 ≤ i 6= j ≤ n−1 and l loops at each vertex. We call K
(l)
n the complete n-graph with

l loops.

Theorem 2.4.2. Let n ≥ 2 be a positive integer.

1. L(K
(1)
n ) ∼= L(1, n).

2. Let E be a finite graph such that L(E) is purely infinite simple. If K0(L(E)) ∼= Zn

and [L(E)] is identity in K0(L(E)), then L(E) ∼= L(K
(2)
n+1).

Proof. Let wl : S → N be the weight function defined by wl(0) = l and wl(i) = 1 for

1 ≤ i ≤ n− 1. Then it is direct that Cn(Zn, wl) ∼= K
(l)
n .

1. We note that

det(In −At
K

(1)
n

) =

n−1∏
l=0

(−1)(

n−1∑
j=1

ζ lj) = −(n− 1) < 0.

Also we have W − 1 = |S| − 1 = n − 1. So gcd(W − 1, n) = 1 and hence
n−1∑
i=0

[vi] is the

identity in M∗
K

(1)
n

. Also determinant divisors theorem yields that

SNF(In −At
K

(1)
n

) = diag(1, 1, . . . , 1, n− 1).

Hence, K0(L(K
(1)
n )) ∼= Zn−1. By Proposition 2.2.3, the result follows.

2. We note that (In − At
K

(2)
n

) is the n × n matrix with every entry −1. Hence

det(In −At
K

(2)
n

) = 0 and rank(In −At
K

(2)
n

) = 1. Therefore if n ≥ 2, then

K0(L(K(2)
n )) ∼= Zn−1.
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Also in K0(L(K
(2)
n )),

σ =

n−1∑
i=0

[vi] = [v0] +

n−1∑
i=1

[vi] =

(
2[v0] +

n−1∑
i=1

[vi]

)
+

n−1∑
i=1

[vi] = 2

n−1∑
i=0

[vi] = 2σ.

Hence
n−1∑
i=0

[vi] is the identity in K0(L(K
(2)
n )). Applying Algebraic KP Theorem, we have

the result.

2.4.2 |S| = 1

Let S = {i}. Since 〈S〉 = Zn, gcd(i, n) = 1 and the weight function w : S → N is given

by w(i) = W . Let Dk
n be the graph with n vertices v0, v1, . . . , vn and kn edges such that

every vertex vi emit k edges to vi+1. We call Dk
n an k-cycle of length n.

v0

v1

v2

vn−1

vn−2

Dk
n =

(k)

(k)(k)

(k)

(k)

(k)

It is easy to see that Cn(S,w) ∼= DW
n .

The generating relations for M∗
DWn

are given by

[vi] = W [vi+1]

for 0 ≤ i ≤ n, where the subscripts are interpreted mod n. So for each 0 ≤ i ≤ n we

have that

[vi] = W [vi+1] = W 2[vi+2] = · · · = Wn−i[vn−1] = Wn+1−i[v0].

In particular, each [vi] is in the subgroup of M∗
DWn

generated by [v0]. Since the set

{[vi] | 0 ≤ i ≤ n − 1} generates M∗
DWn

, we conclude that M∗
DWn

is cyclic, and [v0] is a

generator.
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We also observe that

det(In −AtDWn ) =

n−1∏
l=0

(1−Wζ l) = 1−Wn < 0.

We conclude that |K0(L(DW
n ))| = Wn − 1. Thus we have

K0(L(Cn(S,w)) ∼= M∗DWn
∼= ZWn−1.

Proposition 2.4.3. Let S = {i}, gcd(i, n) = 1, and gcd(W − 1, n) = 1. Then

L(Cn(S,w)) ∼= MWn−1(L(1,Wn)).

Proof.
∑n−1

i=0 [vi] is the identity in the group M∗Cn(S,w). Hence by Proposition 2.2.3 the

result follows.

Corollary 2.4.4. ([9], Proposition 3.4) Assume the hypothesis of Proposition 2.4.3 and

W = 2. Then L(Cn(S,w)) ∼= M2n−1(L(1, 2n))

2.4.3 |S| = 2

Let S = {s1, s2} with s1 < s2. Let a, b ∈ N. We define w(s1) = a and w(s2) = b. Thus,

W = a+ b ≥ 2. Since 〈S〉 = Zn, it is sufficient to consider only the following subcases:

1. s1 = 0 and s2 = 1.

2. s1 = 1.

3. s1 and s2 divide n with 1 < s1 < s2, and gcd(s1, s2) = 1.

In what follows we consider these subcases separately.

Lemma 2.4.5. In each of the above subcases if a = b = 1, then
n−1∑
i=0

[vi] is the identity

in M∗Cn(S,w).

Proof. Since W − 1 = |S| − 1 = 1 in these subcases we have gcd(W − 1, n) = 1 and the

result follows from Theorem 2.3.4.
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Proposition 2.4.6. Let n, a, b ∈ N be fixed. Let 0 ≤ s1 < s2 ≤ n − 1. Consider

the w-Cayley graph Cn(S,w), where S = {s1, s2} and w(s1) = a,w(s2) = b. Then

det(In −AtCn(S,w)) = 0 if and only if exactly one of the following occurs:

1. a = b = 1, n ≡ 0 (mod 6), s2 ≡ 5s1 (mod 6).

2. a = b+ 1, n is even, s1 is even, s2 is odd.

3. b = a+ 1, n is even, s1 is odd, s2 is even.

Proof. Let ∆ = det(In −AtCn(S,w)) and zl = aζ ls1 + bζ ls2 . Since

∆ =
n−1∏
l=0

(
1− aζ ls1 − bζ ls2

)
,

We see that ∆ = 0 if and only if zl = 1 for some l. We observe that z0 = a+ b > 1 and

zn−l = zl. So we can write

∆ =


(1− z0)

n−1
2∏
l=1

(1− zl)(1− zl), if n is odd,

(1− z0)(1− a(−1)s1 − b(−1)s2)

n
2
−1∏
l=1

(1− zl)(1− zl), if n is even.

Hence we can assume 1 ≤ l ≤ [n2 ], where [n2 ] is the integer part of n
2 . Further, zl = 1

implies
∣∣aζ ls1 + bζ ls2

∣∣ = 1. So 1 =
∣∣aζ ls1 + bζ ls2

∣∣ ≥ ||a| − |b|| = |a− b| ≥ 0. Since

a, b ∈ N, only possiblities are a = b, a = b+ 1, or b = a+ 1.

Case 1: a = b

Let θ = 2πl
n . Then zl = 1 if and only if

a (cos s1θ + cos s2θ) = 1 and a (sin s1θ + sin s2θ) = 0.

The second equation implies that s1θ ≡ −s2θ (mod 2)π. Substituting back in first

equation we get,

1 = a (cos(−s2θ) + cos s2θ) = 2a cos s2θ
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⇒ cos s2θ =
1

2a
⇒ 2πl

n
s2 = arccos

(
1

2a

)
.

Thus n ∈ N only if a = 1. Assuming a = 1, we have arccos 1
2 = π

3 or 5π
3 . Substituting

back, we see that

2πls2

n
=
π

3
⇒ n = 6s2l, or

2πls2

n
=

5π

3
⇒ 5n = 6s2l.

In either case, n ≡ 0 (mod 6). Also, s2θ ≡ −s1θ (mod 2)π implies that for some integer

m,

(s2 + s1)
π

3
= 2πm⇒ s2 + s1 = 6m or (s2 + s1)

5π

3
= 2πm⇒ 5(s2 + s1) = 6m.

In either case, s2 + s1 ≡ 0 (mod 6), or s2 ≡ 5s1 (mod 6).

Conversely, when a = 1, n ≡ 0 (mod 6) and s2 ≡ 5s1 (mod 6), then letting l = 6

implies that

zl = ωls1 + ωls2 =
(
e

2πi
6

)s1
+
(
e

2πi
6

)−s1
= 1

Case 2: a = b+ 1

As in case 1, let θ = 2πl
n . Then zl = 1 if and only if

(b+ 1) cos s1θ + b cos s2θ = 1 and (b+ 1) sin s1θ + b sin s2θ = 0.

The second equation implies that s1θ = arcsin
(
−b
b+1 sin s2θ

)
. Substituting back in the

first equation we get,

(b+ 1) cos

(
arcsin

(
−b
b+ 1

sin s2θ

))
+ b cos s2θ = 1.

Since cos(arcsinx) =
√

1− x2, we have

(b+ 1)

√
1−

(
b

b+ 1
sin s2θ

)2

+ b cos s2θ = 1.

Hence, √
b2 + 2b+ 1− b2 sin2 s2θ = 1− b cos s2θ.



52 Chapter 2. Leavitt path algebras of weighted Cayley graphs Cn(S,w)

Squaring both sides,

b2 cos2 s2θ + 2b+ 1 = b2 cos2 s2θ − 2b cos s2θ + 1⇒ cos s2θ = −1.

Therefore, s2θ ≡ π (mod 2)π. Substituting θ = 2πl
n , we see that n is even. Also, s2θ ≡ π

(mod 2)π implies that (s2−1)π = 2πm for some integer m. So, s2 = 2m+1 or s2 is odd.

Also since, s1θ = arcsin
(
−b
b+1 sin s2θ

)
= arcsin(0), s1π = 0 or π. (b + 1) cos s1π − b =

1⇒ s1π ≡ 0 (mod 2)π. Hence s1 is even.

Conversely, let n, s1 be even and s2 be odd then by taking l = n
2 , we get

zl = (b+)ωs1l + bωs2l = (b+ 1)(−1)s1 + b(−1)s2 = b+ 1− b = 1.

Case 3: b = a+ 1

The proof is similar to that of case 2.

Corollary 2.4.7. Assume the hypothesis of Proposition 2.4.6. Further assume that

L(Cn(S,w)) is unital purely infinite simple. Then K0(L(Cn(S,w))) is infinite abelian

group if and only if one of the following holds:

1. a = b = 1, n ≡ 0 (mod 6), s2 ≡ 5s1 (mod 6).

2. a = b+ 1, n is even, s1 is even, s2 is odd.

3. b = a+ 1, n is even, s1 is odd, s2 is even.

In which case rank(K0(L(Cn(S,w)))) = n− rank(In −ACn(S,w)).

2.4.3.1 Subcase 2.1: S = {0, 1}

Let F
(a,b)
n be the graph with n vertices v0, v1, . . . , vn−1 and ak + bk edges such that at

every vertex vl, there are a loops and b edges getting emitted into vl+1 (subscripts are

mod n).
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v0

v1

v2

vn−1

vn−2

F
(a,b)
n = (b)

(b)(b)

(b)

(b)

(b)

(a)

(a)(a)

(a)

(a)

Then Cn(S,w) ∼= F
(a,b)
n when S = {0, 1}. We note that

det(In −At
F

(a,b)
n

) =

n−1∏
l=0

(1− a− bζ l) = (1− a)n − bn.

Lemma 2.4.8. Let n, a, b ∈ N. Then

det(In −At
F

(a,b)
n

) ≥ 0 if and only if n is even and a ≥ b+ 1.

Moreover, det(In −At
F

(a,b)
n

) = 0 if and only if n is even and a = b+ 1.

Proof. We refer to the proof of Proposition 2.4.6. We need to substitute s1 = 0, and

s2 = 1. Since,

∆ =


(1− z0)

n−1
2∏
l=1

(1− zl)(1− zl), if n is odd,

(1− z0)(1− a(−1)j − b(−1)k)

n
2
−1∏
l=1

(1− zl)(1− zl), if n is even,

We see that ∆ ≥ 0 if and only if n is even and a ≥ b+1, in which case 1−zn
2

= 1−a+b ≤ 0.

Also, it follows that, det(In −At
F

(a,b)
n

) = 0 if and only if n is even and a = b+ 1.

We describe the Smith Normal Form of In −At
F

(a,b)
n

.
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Lemma 2.4.9. Suppose n ∈ N. Let T be the n × n circulant matrix whose first row is

~t = ((1− a),−b, 0, . . . , 0). Let gcd(1− a, b) = d. Then the Smith Normal Form

SNF(T ) = diag

(
d, d, . . . , d,

|(1− a)n − bn|
dn−1

)
.

Proof. In order to compute Smith Normal Form of T , we use the determinant divisors

theorem and look at i × i minors of T for each 1 ≤ i ≤ n. Let αi be the gcd of the set

of all i× i minors of T and α0 = 1. Then

SNF(T ) = diag

(
α1

α0
,
α2

α1
, . . . ,

| det(T )|
αn−1

)
.

By the definition of T , it is easy to observe that αi = gcd
(
(a− 1)i, bi

)
= gcd(a, b)i =

di for 1 ≤ i ≤ n− 1 and |det(T )| = |(1− a)n − bn|. Therefore

SNF(T ) = diag

(
d

1
,
d2

d
,
d3

d
, . . . ,

|(1− a)n − bn|
dn−1

)
= diag

(
d, d, d, . . . ,

|(1− a)n − bn|
dn−1

)

Theorem 2.4.10. Let n, a, b ∈ N be fixed. Suppose S = {0, 1} ⊂ Zn, w : S → N is

defined by w(0) = a and w(1) = b. Let d = gcd(a− 1, b). Then

K0(L(Cn(S,w))) ∼=

 (Zd)n−1 ⊕ Z, if a = b+ 1 and n is even,

(Zd)n−1 ⊕ Z |(1−a)n−bn|
dn−1

, otherwise.

Proof. Follows from the above lemmas 2.4.8 and 2.4.9.

Example 2.4.11. L(Cn(0, 1)) ∼= L(1, 2).

Proof. In Theorem 2.4.10 we take a = b = 1. Then gcd(a − 1, b) = 1. Hence det(In −

AtCn(0,1)) = −1 < 0 and K0(L(Cn(0, 1))) is trivial. By Proposition 2.2.3 we have

L(Cn(0, 1)) ∼= L(1, 2).
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The above example was observed in [9], Proposition 3.3.

2.4.3.2 Subcase 2.2: S = {1, j} with j > 1

We note that by Proposition 2.3.6 det(In − AtCn(S,w)) > 0 if and only if n, j are even

and b > a+ 1. Also by Proposition 2.4.6 det(In−AtCn(S,w)) = 0 if and only if one of the

following occurs:

1. a = b = 1, n ≡ 0 (mod 6), j ≡ 5 (mod 6)

2. b = a+ 1, n, j are even.

In order to compute K0(L(Cn(S,w))), we apply Theorem 2.3.9 and compute the Smith

normal form of TnCn(S,w)− In. This procedure is performed for unweighted Cayley graph

in [11]. However, we record an interesting example here.

2.4.3.3 Leavitt Path algebras of Cayley graphs of Dihedral groups

Let D̃n be the dihedral group of order 2n. i.e. D̃n =
〈
r, s | rn = s2 = e, rsr = s

〉
. Let

Dn denote the Cayley graph of D̃n with respect to the generating subset S = {r, s}.

The following discussion is taken from [12]. A graph transformation is called standard

if it is one of the following types: in-splitting, in-amalgamation, out-splitting, out-

amalgamation, expansion, or contraction. For definitions the reader is referred to [6]. If

E and F are graphs having no sources and no sinks, a flow equivalence from E to F is a

sequence E = E0 → E1 → · · · → En = F of graphs and standard graph transformations

which starts at E and ends at F .

Proposition 2.4.12. [6, Corollary 6.3.13] Suppose E and F are finite graphs with no

sources whose corresponding Leavitt path algebras are purely infinite simple. Then E is

flow equivalent to F if and only if det(I|E|−AE) = det(I|F |−AF ) and Coker(I|E|−AE) ∼=

Coker(I|F | −AF ).

Definition 2.4.13 (In-splitting). Let E = (E0, E1, r, s) be a directed graph. For each

r−1(v) 6= φ, partition the set r−1(v) into disjoint nonempty subsets Ev1 , . . . , Evm(v) where

m(v) ≥ 1. If v is a source then set m(v) = 0. Let P denote the resulting partition of

E1. We form the in-split graph Er(P) from E using the partition P as follows:
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Er(P)0 = {vi | v ∈ E0, 1 ≤ i ≤ m(v)} ∪ {v | m(v) = 0},

Er(P)1 = {ej | e ∈ E1, 1 ≤ j ≤ m(s(e))} ∪ {e | m(s(e)) = 0},

and define rEr(P), sEr(P) : Er(P)1 → Er(P)0 by

sEr(P)(ej) = s(e)j and sEr(P)(e) = s(e)

rEr(P)(ej) = r(e)i and sEr(P)(e) = s(e)i where e ∈ Er(e)i .

We observe that Dn can be obtained from Cn−1
n by the standard operation in-splitting

with respect to the partition P of the edge set of Cn−1
n that places each edge in its own

singleton partition class. In [15] the collection of Leavitt path algebras {L(Cn−1
n ) | n ∈

N} is completely described and by Proposition 2.4.12 we have that the same description

holds true if we replace Cn−1
n with Dn for every n ∈ N. Hence we have

Theorem 2.4.14. For each n ∈ N, det(In −AtDn) ≤ 0. And

1. If n ≡ 1 or 5 (mod 6) then K0(L(Dn)) ∼= {0} and L(Dn) ∼= L(1, 2).

2. If n ≡ 2 or 4 (mod 6) then K0(L(Dn)) ∼= Z/3Z and L(Dn) ∼= M3(L(1, 4)).

3. If n ≡ 3 (mod 6) then K0(L(Dn)) ∼= (Z/2Z)2

4. If n ≡ 0 (mod 6) then K0(L(Dn)) ∼= Z2 and L(Dn) ∼= L(K
(2)
3 )

2.4.3.4 Subcase 2.3: S = {s1, s2} where s1, s2 divide n, 1 < s1 < s2 and

gcd(s1, s2) = 1

By Proposition 2.4.6 and by Proposition 2.3.6, we have that det(In − AtCn(S,w)) = 0 if

and only if one of the following occurs:

1. a = b = 1, n ≡ 0 (mod 6), d2 ≡ 5d1 (mod 6).

2. a = b+ 1, n, d1 are even, d2 is odd.

3. b = a+ 1, n, d2 are even, d1 is odd.

and det(In −AtCn(S,w)) > 0 if and only if one of the following occurs:
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1. a > b+ 1, n, d1 are even, d2 is odd.

2. b > a+ 1, n, d2 are even, d1 is odd.

In order to compute K0(L(Cn(S,w))), we apply Theorem 2.3.9 and compute the Smith

Normal form of TnCn(S,w) − In.

We illustrate this when S = {d1, d2}, where d1, d2 divides n, gcd(d1, d2) = 1 and

a = b = 1. In this special case we have det(In − AtCn(d1,d2)) = 0 if and only if n ≡

0 (mod 6) and d2 ≡ 5d1 (mod 6). In all other cases, we have det(In − At
Ckn

) < 0.

Define H(d1,d2)(n) := | det(In−AtCkn)|. In order to compute K0(L(Cn(d1, d2))), we apply

Theorem 2.3.9 and compute the Smith normal form of TnCn(d1,d2) − In.

For 1 ≤ j, k ∈ N let us define a sequence F(j,k) recursively as follows:

F(j,k)(n) =



0, if 1 ≤ n ≤ k − 2,

1, if n = k − 1,

0, if n = k,

F(j,k)(n− j) + F(j,k)(n− k), if n ≥ k + 1.

In M∗Cn(d1,d2), we have

[v0] = [vj ] + [vk]

= [v2j ] + [vk] + [vj+k]

= [v3j ] + [vk] + [vj+k] + [v2j+k]

= . . .

The coefficients appearing in the above equations are terms in the sequence F(d1,d2) and

corresponding TCn(d1,d2) is given by the following:



58 Chapter 2. Leavitt path algebras of weighted Cayley graphs Cn(S,w)

Lemma 2.4.15. For fixed d1, d2, let d2 − d1 = k. Let T = TCn(d1,d2). Suppose G(n) :=

F(d1,d2)(n) is the sequence defined above. Then for each n ∈ N,

Tn =



G(n− 1) G(n) . . . G(n+ d2 − 2)

G(n− 2) G(n− 1) . . . G(n+ d2 − 3)
...

... . . .
...

G(n+ d1 − 1) G(n+ d1) . . . G(n+ d2 + d1 − 2)
...

... . . .
...

G(n) G(n+ 1) . . . G(n+ d2 − 1)


where the highlighted row is (k + 1)th row.

Proof. We prove the lemma by induction on n. We extend the definition of G to the

negative integers as well. Then,

T =



0 0 . . . 0 . . . 0 1

1 0 . . . 0 . . . 0 0
...

...
...

...
...

0 0 . . . 1 . . . 0 1
...

...
...

...
...

0 0 . . . 0 . . . 0 0

0 0 . . . 0 . . . 1 0



=



G(0) G(1) . . . G(k − 1) . . . G(d2 − 2) G(d2 − 1)

G(−1) G(0) . . . G(k − 2) . . . G(d2 − 3) G(d2 − 2)
...

...
...

...
...

G(d1) G(d1 + 1) . . . G(d2 − 1) . . . G(d2 + d1 − 2) G(d2 + d1 − 1)
...

...
...

...
...

G(2) G(3) . . . G(k + 1) . . . G(d2) G(d2 + 1)

G(1) G(2) . . . G(k) . . . G(d2 − 1) G(d2)


where highlighted column is kth column.



2.4. Illustrations 59

Thus we have the statement true for n = 1. Now suppose

Tn−1 =



G(n− 2) G(n− 1) . . . G(n+ d2 − 3)

G(n− 3) G(n− 2) . . . G(n+ d2 − 4)
...

... . . .
...

G(n+ d1 − 2) G(n+ d1 − 1) . . . G(n+ d2 + d1 − 3)
...

... . . .
...

G(n− 1) G(n) . . . G(n+ d2 − 2)


Then,

Tn = Tn−1T

=



G(n− 2) . . . G(n+ k − 2) . . . G(n+ d2 − 3)

G(n− 3) . . . G(n+ k − 3) . . . G(n+ d2 − 4)
...

...
...

G(n+ d1 − 2) . . . G(n+ d2 − 2) . . . G(n+ d2 + d1 − 3)
...

...
...

G(n− 1) . . . G(n+ k − 2) . . . G(n+ d2 − 2)





0 0 . . . 1

1 0 . . . 0
...

... . . .
...

0 0 . . . 1
...

... . . .
...

0 0 . . . 0



=



G(n− 1) G(n) . . . G(n− 2) +G(n+ k − 2)

G(n− 2) G(n− 1) . . . G(n− 3) +G(n+ k − 3)
...

... . . .
...

G(n+ d1 − 1) G(n+ d1) . . . G(n+ d1 − 2) +G(n+ d2 − 2)
...

... . . .
...

G(n) G(n+ 1) . . . G(n− 1) +G(n+ k − 2)



=



G(n− 1) G(n) . . . G(n+ d2 − 2)

G(n− 2) G(n− 1) . . . G(n+ d2 − 3)
...

... . . .
...

G(n+ d1 − 1) G(n+ d1) . . . G(n+ d2 + d1 − 2)
...

... . . .
...

G(n) G(n+ 1) . . . G(n+ d2 − 1)





60 Chapter 2. Leavitt path algebras of weighted Cayley graphs Cn(S,w)

Using the determinant divisors theorem, the Smith normal form of TnCn(d1,d2)−Ik can

be reduced to

SNF (TnCn(d1,d2) − Ik) =


α1(n)

α2(n)
α1(n)

. . .

αd2 (n)

αd2−1(n)


where αi is the greatest common divisor of the set of all i× i minors of TnCn(d1,d2).

Example 2.4.16. Let n = 6, d1 = 2, d2 = 3. The corresponding Cayley graph is

v0

v1

v2v3

v4

v5

C6(2, 3) =

The corresponding companion matrix is given by

T =


0 0 1

1 0 1

0 1 0


and,

T 6 − I3 =


0 1 2

2 1 3

1 2 1


whose Smith normal form is given by

SNF (T 6 − I3) =


1 0 0

0 1 0

0 0 7


Hence, K0(L(C6(2, 3))) ∼= Z7 and L(C6(2, 3)) ∼= L(1, 8).



Chapter 3

Cohn-Leavitt path algebras of

bi-separated graphs

3.1 Various generalizations of Leavitt path algebras

In this section, we introduce various generalizations of Leavitt path algebras such as

weighted Leavitt path algebras of weighted graphs, Cohn-Leavitt path algebras of sep-

arated graphs and Leavitt path algebras of hypergraphs.

3.1.1 Weighted Leavitt path algebras

Leavitt algebras of module type (m,n) for any m,n ∈ N with 1 < m < n are not

examples of Leavitt path algebras of any graphs. This is because the former is a domain

[28, Theorem 6.1], whereas, the latter is a domain if and only if the graph is either a

single vertex or a single loop. In [37], Hazrat introduced the concept of weighted graphs

and the associated weighted Leavitt path algebras to be able to express any Leavitt

algebras as examples of graph algebras.

Definition 3.1.1. Let E be a row-finite graph and w : E1 → N be a (weight) function.

The graph Ew = (E0, E1
w, rEw , sEw) where (Ew)1 := {e1, . . . , ew(e) | e ∈ E1}, rEw(ei) =

r(e) and sEw(ei) = r(e) for each ei ∈ (Ew)1, is called the weighted graph of E with

respect to w.
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In other words, Ew is obtained from (E,w) by replacing an edge e ∈ E1 which has

weight w(e) with w(e) number of edges e1, . . . , ew(e) from s(e) to r(e).

For each e ∈ E1, w(e) is called the weight of e. Define w(v) = max{w(e) | e ∈ s−1(v)}.

The graph (E,w) is vertex weighted if w(e) = w(v) for every e ∈ s−1(v).

We represent the weighted graph Ew visually as follows:

s(e) r(e)
e, w(e)

(E,w) :

s(e) r(e)...

e1

e2

ew(e)

Ew:

Definition 3.1.2. Let E be a row-finite graph and w : E1 → N be a weight func-

tion. The weighted Leavitt path algebra LwK(E,w) of the weighted graph Ew is the

quotient of K(Êw) modulo the following relations:

∀e, f ∈ E1 if s(e) = s(f) = v ∈ E0 then
∑

1≤i≤w(v)

e∗i fi = δefr(e) (wCK1)

∀v ∈ E0 and 1 ≤ i, j ≤ w(v)
∑

e∈s−1(v)

eie
∗
j = δijv (wCK2)

where we set ei and e∗i to be zero whenever i > w(e).

First of all, note that LwK(E,w) is not the same as LK(Ew). Let Rn be a rose with n

petals and let wm be a weight function on Rn such that wm(e) = m ∈ N for every edge

e. Then it is direct that LwK(Rn, wm) ∼= LK(m,n). In [38], the normal forms of weighted

Leavitt path algebras were computed. As an application, it was shown that weighted

Leavitt path algebra is simple if and only if it is isomorphic to a simple Leavitt path

algebra of a unweighted graph. The authors also defined the notion of local valuation and

characterized weighted Leavitt path algebras which are domains in terms of underlying

graphs and weight functions.

Preusser took up the study of weighted Leavitt path algebras in a series of articles. In

[60], weighted Leavitt path algebras of finite Gelfand-Kirillov dimensions were studied

and as an application it was shown that weighted Leavitt path algebras are finite dimen-

sional if and only if they contains no quasi-cycles. In [59], locally finite weighted Leavitt
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path algebras were shown to be Noetherian and also that LwK(E,w) being locally finite is

equivalent to their GK dimension being either 0 or 1. In [62], the V-monoid of weighted

Leavitt path algebras were computed using Bergman’s machinery. In [63], weighted

Leavitt path algebras which are isomorphic to Leavitt path algebras were characterized.

In particular, it was shown that if a weighted Leavitt path algebra satisfies finiteness

properties (such as locally finite or Noetheiran or Artinian or finite GK dimension) or

regularity then it is isomorphic to a Leavitt path algebra of an undirected graph.

3.1.2 Cohn-Leavitt path algebras of separated graphs

As mentioned previously, the notion of separated graphs arise in the study of realization

problem of von Neumann regular rings (see 1.1.19).

Definition 3.1.3. A separated graph is a pair (E,C), where E is a graph and C =⊔
v∈E0 Cv, where Cv is a partition of s−1(v), for each vertex v ∈ E0.

We note that in case v ∈ E0 is a sink, Cv can be taken to be empty family of subsets

of s−1(v). If all the sets in C are finite, we say that (E,C) is finitely separated. In

case Cv = {s−1(v)} for each non-sink v ∈ E0, we say (E,C) is trivially separated.

We also define Cfin = {X ∈ C | |X| < ∞}. In the visual representation of (E,C) we

use different colors for each element of C. For example in the following graph we have

Cv = {X1, X2, X3} which are represented by colors green, red and purple.

v
··
·

···

···
X1

X2

X3

Definition 3.1.4. Let K be a field, (E,C) be a separated graph and S ⊆ Cfin. Then

the Cohn-Leavitt path algebra CLK(E,C, S) of (E,C) relative to S is defined as

the quotient of K(Ê) obtained by imposing the following relations:

∀e, f ∈ X, X ∈ C e∗f = δefr(e), (SCK1)

∀X ∈ S, v ∈ E0 v =
∑
e∈X

ee∗. (SCK2)
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The Cohn-Leavitt path algebra is called Leavitt path algebra if S = Cfin and in this

case, we simply write LK(E,C) in place of CLK(E,C, S). It is direct that if (E,C) is

trivially separated and S = Cfin then LK(E,C) is the usual Leavitt path algebra LK(E).

The following remarkable theorem was also established:

Theorem 3.1.5. [20, Proposition 4.4] For any conical abelian monoid M , there exists

a finitely separated graph (E,C) such that M ∼= V(LK(E,C)).

We list a few important examples.

Example 3.1.6. For any m,n ∈ N consider the separated graph (E(m,n), C(m,n)),

where

1. E(m,n)0 := {v, w},

2. E(m,n)1 := {e1, . . . , en, f1, . . . , fm},

3. s(ei) = s(fj) = v and r(ei) = r(fj) = w for all i, j and

4. C(m,n) := {{e1, . . . , en}, {f1, . . . , fm}}.

Let Am,n := LK(E(m,n), C(m,n)). Then we have by [20, Proposition 2.12] that

Am,n ∼= Mn+1(LK(m,n)) ∼= Mm+1(LK(m,n)), vAm,nv ∼= Mm(LK(m,n)) ∼= Mn(LK(m,n))

and wAm,nw ∼= LK(m,n). As the authors mentioned there, Am,n are Leavitt path alge-

bra versions of LK(m,n) which are generated by ‘partial isometries’.

Example 3.1.7. [20, Proposition 2.10] Let (E,C) be a separated graph with |E0| = 1.

Then LK(E,C) is the free product of Leavitt path algebras of type (1, |X|), for X ∈ C.

In particular, for any set A the K-algebra of the free group F (A) on A is an example

of Leavitt path algebra of a separated graph (Take X ∈ C to be singletons {a} for each

a ∈ A).

Later in [16], the C∗-algebra analogs of Leavitt path algebras of separated graphs were

considered and in particular, K-theory of these algebras were computed and proved a

conjecture posed in [52].
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3.1.3 Leavitt path algebras of hypergraphs

Recently in [61], Preusser initiated a unified approach to study Leavitt path algebras

of separated graphs and weighted Leavitt path algebras of vertex weighted graphs by

introducing the notion of hypergraphs.

Definition 3.1.8 (Leavitt path algebras of Hypergraphs). Let I and X be sets.

Recall that a function x : I → X, given by i 7→ xi = x(i) is called a family of elements

in X indexed by I. We denote a family x of elements in X indexed by I by (xi)i∈I .

A hypergraph is a quadruple H = (H0,H1, s, r) where H0 and H1 are sets called

the set of vertices and the set of hyperedges respectively. For each h ∈ H1 there exists

a pair of non-empty indexing sets Ih, Jh such that s(h) : Ih → H0, and r(h) : Jh → H0

are families of vertices.

Let H be a hypergraph. A hyperedge h ∈ H1 is called source regular (resp. range

regular) if Ih is finite (resp. Jh is finite). The set of all source regular hyperedges of H

is denoted by H1
sreg and the set of all range regular hyperedges of H is denoted by H1

rreg.

The hypergraph H is said to be regular if H1 = H1
sreg = H1

sreg.

Visualization become a little tricky in the case of hypergraphs. We give a simple

example below to illustrate the last statement.

Example 3.1.9. Consider the hypergraphH = (H0, H1, r, s) whereH0 = {v1, v2, w1, w2},

H1 = {h}, s(h) = {v1, 2 · v2} and r(h) = {w1, w2}. We might visualize H as follows:

v1

v2

v2

w1

w2

h
H:

The Leavitt path algebra LK(H) of the hypergraph H is the K-algebra pre-

sented by the generating set {v, hij , h∗ij | v ∈ H0, h ∈ H1, i ∈ Ih, j ∈ Jh} and the

relations

1. uv = δu,vu, for every u, v ∈ H0,
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2. s(h)ihij = hij = hijr(h)j and r(h)jh
∗
ij = h∗ij = h∗ijs(h)i, for every h ∈ H1, i ∈ Ih,

and j ∈ Jh,

3.
∑
j∈Jh

hijh
∗
kj = δiks(h)i, for every h ∈ H1

rreg and i, k ∈ Ih,

4.
∑
i∈Ih

h∗ijhik = δjkr(h)j , for every h ∈ H1
sreg and j, k ∈ Jh.

Preusser investigated Leavitt path algebras of hypergraphs in terms of linear bases,

Gelfand-Kirillov dimension, ring theoretic properties such as simplicity, von Neumann

regularity and Noetherianess, and non-stable (graded) K-theory.

Remark 3.1.10. Let L denote any one of the K-algebras appearing in the subsections

3.1.1, 3.1.2 and 3.1.3. Then note that L satisties the following properties.

1. The algebra L is unital if and only if the set of vertices V in the underlying graph is

finite. In this case, the unit is the sum of vertices. In general (L, V ) is a K-algebra

with enough idempotents.

2. If : K → K is an involution on the field K, then L is a ∗-algebra (with respect

to the involution ∗ : L→ L).

3. L is a graded quotient algebra of K(Ê) with respect to standard Z-grading given

by length of paths.

In the following sections we provide a common framework for studying various gen-

eralizations of Leavitt path algebras. We first define Cohn-Leavitt path algebras of

graphs with an additional structure called bi-separated graphs. We then define and

study the category BSG of bi-separated graphs with appropriate morphisms so that

the functor which associates bi-separated graphs to their Cohn-Leavitt path algebras is

continuous. Next, we define two sub-categories of BSG, compute basis for the algebras

corresponding to one of those subcategories and study some algebraic properties in terms

of bi-separated graph-theoretic properties.

3.2 The algebras AK(Ė)

In this section, we introduce the notions of bi-separated graphs and their Cohn-Leavitt

path algebras. The aim is to provide a unified framework for studying various general-

izations introduced in the previous section.
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Definition 3.2.1. A bi-separated graph is a triple Ė = (E,C,D) such that

1. E = (E0, E1, r, s) is a graph,

2. C =
⊔
v∈E0 Cv, where Cv is a partition of s−1(v) for every non-sink v ∈ E0,

3. D =
⊔
v∈E0 Dv, where Dv is a partition of r−1(v) for every non-source v ∈ E0,

4. |X ∩ Y | ≤ 1, for every X ∈ C and Y ∈ D.

In the above definition, C is called row-separation of E, D is called column-separation

of E and (C,D) is called bi-separation of E. The elements of C are called rows and

the elements of D are called columns. Let Cfin := {X ∈ C | |X| < ∞} and Dfin :=

{Y ∈ D | |Y | < ∞}. A bi-separated graph Ė is called finitely row-separated (resp.

finitely column-separated) if C = Cfin (resp. if D = Dfin) and is called finitely

bi-separated if both C = Cfin and D = Dfin.

In the above definition we follow the convention that if S is a set, by a partition P

of S we mean a family of pairwise disjoint nonempty subsets of A, whose union is S.

For any non-empty set S there always exist two trivial partitions: the partition P1 on S

called the discrete partition, if each element of P1 is singleton and the partition PS

called full partition, if S is the only element of PS .

Example 3.2.2. (Standard bi-separation of a simple graph) Let E be a simple

graph. That is, if e, f ∈ E1 such that s(e) = s(f) and r(e) = r(f) then e = f . (In

other words, there are no multiedges allowed between any two vertices). We can obtain

a canonical bi-separation on E by considering both Cv and Dv to be full partitions. In

other words, Cv = {s−1(v)} for every non-sink v ∈ E0 and Dv = {r−1(v)} for every

non-source v ∈ E0. This bi-separation is called standard.

In the following examples E denotes an arbitrary graph.

Example 3.2.3. (Trivial bi-separation of a graph) By trivial bi-separation on a

graph E, we mean both Cv and Dv are discrete partitions. i.e. Cv = {{e} | e ∈ s−1(v)}

for every non-sink v ∈ E0 and Dv = {{e} | e ∈ r−1(v)} for every non-source v ∈ E0.

Example 3.2.4. (Cuntz-Krieger bi-separation of a graph) We can obtain another

canonical bi-separation on E by combining full row-separation and discrete column-

separation on E as follows: Consider Cv = {s−1(v)} for every non-sink v ∈ E0 and

Dv = {{e} | e ∈ r−1(v)} for every non-source v ∈ E0.
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Example 3.2.5. (Separated graphs) A bi-separated graph (E,C,D) in which the

column-separation is discrete is called a row-separated graph or simply separated

graph (cf. Definition 3.1.4). Separated graphs are denoted by (E,C).

Example 3.2.6. (Weighted graphs) Let E be a row-finite graph and w : E1 → N be

a weight map on E. Consider the weighted graph Ew = (E0
w, E

1
w, rw, sw). We associate

a bi-separation on Ew as follows: For every v ∈ RReg(E) and 1 ≤ i ≤ w(v) define

Xi
v := {ei | e ∈ s−1(v), w(e) ≥ i}. For every e ∈ E1 define Y e := {ei | 1 ≤ i ≤ w(e)}.

Now consider Cv := {Xi
v | 1 ≤ i ≤ w(v)} and Dv := {Y e | e ∈ r−1(v)}. Here C = Cfin,

since E is row-finite and D = Dfin, since w takes natural numbers as values.

Example 3.2.7. (Hypergraphs) We show that any hypergraph H can be associated

to a bi-separated graph Ė = (E,C,D) as follows: Define E = (H0, E1, s′, r′), where

E1 = {hij | h ∈ H1, i ∈ Ih, j ∈ Jh}, s′(hij) = s(h)i and r′(hij) = r(h)j . For an arbitrary

h ∈ H1, if i ∈ Ih then Xi
h := {hij | j ∈ Jh} and if j ∈ Jh then Y j

h := {hij | i ∈ Ih}.

For v ∈ E0, define Cv = {Xi
h | h ∈ H1, i ∈ Ih, v = s(h)i} and Dv = {Y j

h | h ∈ H
1, j ∈

Jh, v = r(h)j}. By construction, C = Cfin and D = Dfin.

Notation 3.2.8. Given a bi-separated graph Ė = (E,C,D), the maps s and r can be

extended to C and D respectively in well-defined manner as follows: For X ∈ C, define

s(X) := s(e) where e ∈ X and for Y ∈ D, define r(Y ) := r(e) where e ∈ Y .

Also, for each X ∈ C and Y ∈ D we set

XY = Y X =


e, if X ∩ Y = {e},

0, otherwise.

We interchangeably use XY and X ∩ Y , wherever there is no cause for confusion.

Definition 3.2.9. Let Ė = (E,C,D) be a bi-separated graph. The Leavitt path

algebra of Ė with coefficients over K, denoted by LK(Ė), is the quotient of K(Ê)

obtained by imposing the following relations:

L1: for every X,X ′ ∈ Cfin,

∑
Y ∈D

(XY )(Y X ′)∗ = δXX′s(X),
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L2: for every Y, Y ′ ∈ Dfin,

∑
X∈C

(Y X)∗(XY ′) = δY Y ′r(Y ),

Example 3.2.10. (Leavitt path algebra of a standard bi-separated simple

graph)

Let E be a simple graph and consider the standard bi-separation (C,D) on E. Let the

set of all non-sinks of E be denoted by Eα and the set of all non-sources be denoted by

Eω. Then |C| = |Eα| and |D| = |Eω|. Recall that a vertex v ∈ E0 is called row-regular

if 0 < |s−1(v)| < ∞ and w ∈ E0 is called column-regular if 0 < |r−1(w)| < ∞. The

set of all row-regular vertices is denoted by RReg(E) and the set of all column regular

vertices is denoted by CReg(E). Note that |Cfin| = |RReg(E)| and |Dfin| = |CReg(E)|.

Let A be a |Cfin| × |D| matrix over K(Ê) with entries

A(v, w) =


e, if e ∈ E1 such that s(e) = v, r(e) = w,

0, otherwise,

where v ∈ RReg(E) and w ∈ Eω. Let A∗ denote the ‘adjoint transpose’ of A. Similiarly,

let B be a |C| × |Dfin| matrix over K(Ê) with entries

B(v, w) =


e, if e ∈ E1 such that s(e) = v, r(e) = w,

0, otherwise,

where v ∈ Eα and w ∈ CReg(E). Let B∗ denote the ‘adjoint transpose’ of B.

Then the defining relations L1 and L2 of Leavitt path algebras are obtained by

imposing the following matrix relations:

(L1) : AA∗ = V,

(L2) : B∗B = U.

where V is the |RReg(E)|×|RReg(E)| diagonal matrix with diagonal entries V (v, v) =

s(v) and and U is the |CReg(E)| × |CReg(E)| diagonal matrix with diagonal entries

U(w,w) = r(w).
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In particular, if E is finite simple graph, then the matrix A (resp. the matrix B)

is obtained from the adjacency matrix of E by removing the zero rows (resp. zero

columns) and replacing 1’s with corresponding edges. We illustrate this with a few

examples below.

(1) For n ≥ 1, let Σn be the following line graph with n vertices and n− 1 edges:

. . .
v1 v2 v3 vn−1 vn

e1 e2 e3 en−1
Σn =

Then

A =


e1 0 . . . 0

0 e2 . . . 0
...

... . . .
...

0 0 . . . en−1

 ,

and the relations obtained are

eie
∗
i = vi and e∗i ei = vi+1,

where 1 ≤ i ≤ n− 1. In this case, it is easy to see that

LK(Σ̇n) ∼= LK(Σn) ∼= Mn(K).

(2) For n ≥ 3, let Γn denote the following graph with n vertices:

. . .
v1 v2 v3 vn−1 vn

Γn =

Then the adjacency matrix of Γn has at least two entries and at most three entries

in both rows and columns, i.e.,

A =



∗ ∗ 0 0 0 . . . 0 0

∗ ∗ ∗ 0 0 . . . 0 0

0 ∗ ∗ ∗ 0 . . . 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 . . . ∗ ∗


,
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where ∗’s are nonzero entries filled by the corresponding edges. In this case, though,

the explicit description of the Leavitt path algebra LK(Γ̇n) is not known.

Example 3.2.11. (Groupoid algebra of a free groupoid) Let E be a graph and

consider the trivial bi-separation (C,D) on E. The defining relations of Leavitt path

algebra of (E,C,D) turns the free path category of Ê into a free groupoid and hence

LK(E,C,D) is the groupoid algebra of this free groupoid. In particular if E has only

one vertex then with respect to trivial bi-separation, the Leavitt path algebra is the

group algebra of the free group with generators as elements of E1 (Here we identified

the vertex with the group identity).

Example 3.2.12. (Leavitt path algebra of a graph) Let E be any graph and Ė

be the associated bi-separated graph with respect to Cuntz-Kreiger bi-separation on E.

Then we have LK(Ė) ∼= LK(E).

Example 3.2.13. (Leavitt path algebra of a separated graph) Let Ė = (E,C)

be a (row) separated graph. Then it is direct that LK(Ė) ∼= LK(E,C).

Example 3.2.14. (Weighted Leavitt path algebra of a weighted graph) Let E

be a row-finite graph and w : E1 → N be a weight map. Consider Ė = (E,C,D) where

(C,D) is the weighted bi-separation on E as in example 3.2.6. Then it is immediate

that LK(Ė) ∼= WLK(Ew).

It has been noted in [20, page 171] that neither weighted Leavitt path algebras nor

Leavitt path algebras of separated graphs are particular cases of the each other. One

can mix the above two examples and construct new algebras as follows:

Example 3.2.15 (Weighted Cohn-Leavitt path algebras of finitely separated

graphs). Let (E,C) be a finitely row-separated graph (i.e. a separated graph in which

C = Cfin). Let w : E1 → N be a function and Ew be the associated weighted graph.

For X ∈ C, set w(X) = max{w(e) | e ∈ X}. The weighted Cohn-Leavitt path algebra

CLK(Ew, C) of (Ew, C) can be defined as the quotient of PK(Êw) by factoring out the

following relations:

wSCK1:
∑

1≤i≤w(X)

e∗i fi = δe,fr(e), for every e, f ∈ X and X ∈ C,

wSCK2:
∑
e∈X

eie
∗
j = δi,js(e), for each X ∈ C, 1 ≤ i, j ≤ w(X),
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where we set ei and e∗i to be zero whenever i > w(e).

Given a weighted finitely separated graph (Ew, C), we get a canonical bi-separated

graph as follows: For X ∈ C and 1 ≤ i ≤ w(X), define X̃i = {ei | e ∈ X} and set

C̃v = {X̃i | X ∈ Cv and 1 ≤ i ≤ w(X)}. Here C̃ = C̃fin, since E is finitely separated.

Now, for e ∈ X, define Ỹ e
X = {ei | 1 ≤ i ≤ w(e)} and D̃vw = {Ỹ e

X | e ∈ X}. Observe

that D̃ = D̃fin, since w is natural number valued. Now setting Ė = (E, C̃, D̃), we

immediately get

LK(E, C̃, D̃) ∼= LK(Ew, C).

Example 3.2.16 (Leavitt path algebra of a hypergraph). Given any hypergraph

H, consider the associated bi-separated graph ĖH as in example 3.2.7. Then we have

LK(Ė) ∼= LK(H).

Definition 3.2.17. Let Ė = (E,C,D) be bi-separated graph. Let S ⊆ Cfin and T ⊆ Dfin

be two distinguished sets. The Cohn-Leavitt path algebra of Ė with coefficients over

K relative to (S, T ), denoted by AK(E, (C, S), (D,T )), is the quotient of K(Ê) obtained

by imposing the following relations:

A1: for every X,X ′ ∈ S, ∑
Y ∈D

(XY )(Y X ′)∗ = δXX′s(X),

A2: for every Y, Y ′ ∈ T , ∑
X∈C

(Y X)∗(XY ′) = δY Y ′r(Y ).

For notational convenience we denote the bi-separated graph with given distinguished

subsets as in the above definition as a 5-tuple Ė = (E, (C, S), (D,T )) and again call it

bi-separated graph if there is no confusion and denote the Cohn-Leavitt path algebra

also as AK(Ė). Whenever we want to distinguish the case that S = Cfin and T = Dfin

we simply call the Cohn-Leavitt path algebra as Leavitt path algebra.

Proposition 3.2.18 (Universal property of AK(Ė)). Let Ė = (E, (C, S), (D,T ))

be a bi-separated graph. Suppose A is a K-algebra which contains a set of pairwise

orthogonal idempotents {Av | v ∈ E0}, two sets {Ae | e ∈ E1}, {Be | e ∈ E1} for which

the following hold.

1. As(e)Ae = AeAr(e) = Ae, and Ar(e)Be = BeAs(e) = Be for all e ∈ E1.
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2. for every X,X ′ ∈ S,
∑
Y ∈D

AXYBY X′ = δXX′As(X),

3. for every Y, Y ′ ∈ T ,
∑
X∈C

BY XAXY ′ = δY Y ′Ar(X).

Then there exists a unique map ψ : AK(Ė) → A such that ψ(v) = Av, ψ(e) = Ae,

and ψ(e∗) = Be for all v ∈ E0 and e ∈ E1.

Example 3.2.19 (Cohn-Leavitt path algebra of a graph). Let E be a graph and

let S ⊆ RReg(E). Then the Cohn-Leavitt path algebra CLSK(E) of E can be realized

as Cohn-Leavitt path algebra AK(Ė) of the bi-separated graph Ė = (E, (C, S), (D,T )),

where (C,D) is the Cuntz-Krieger bi-separation on E, RReg(E) = Cfin and T = D.

Example 3.2.20. (Cohn-Leavitt path algebra of a separated graph) Let (E,C)

be a separated graph and S ⊆ Cfin. Set Ė = (E, (C, S), (D,T )), where T = Dfin = D.

Then from definition it is clear that AK(Ė) ∼= CLK(E,C, S).

We say a bi-separated graph Ė = (E, (C, S), (D,T )) is connected if the underlying

graph E is connected. Because of the following proposition we assume that every bi-

separated graph is connected henceforth.

Proposition 3.2.21. Let Ė be a bi-separated graph. Suppose Ė =
⊔
j∈J

Ej is a decompo-

sition of Ė into its connected components. Then AK(Ė) ∼=
⊕
j∈J
AK(Ėj), where Ėj is the

bi-separated graph structure on Ej induced by the bi-separated graph structure on E.

Proof. Follows from universal property of AK(Ė).

Lemma 3.2.22. Let Ė be a bi-separated graph.

1. The algebra AK(Ė) is unital if and only if E0 is finite. In this case,

1AK(Ė) =
∑
v∈E0

v.

2. For each α ∈ AK(Ė), there exists a finite set of distinct vertices V (α) for which

α = fαf , where f =
∑

v∈V (α)

v. Moreover, the algebra (AK(Ė), E0) is a ring with

enough idempotents.

3. Let : K → K be an involution on the field K. Then with respect to the involution

∗ : AK(Ė)→ AK(Ė), AK(Ė) is a ∗-algebra.
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4. AK(Ė) is a graded quotient algebra of K(Ê) with respect to the standard Z-grading

given by length of paths.

Proof. The proof follows on similiar lines of [6, Lemma 1.2.12].

3.3 The categories BSG and tBSG

In this section, we introduce two categories BSG of bi-separated graphs and the category

tBSG of tame bi-separated graphs. We study the functoriality and continuity of the

functor AK( ) from BSG to K-Alg. We also show that each object of tBSG is a direct

limit of sub-objects based on finite graphs, from which we obtain every Cohn-Leavitt

path algebra of tame bi-separated graph as a direct limit of unital Cohn-Leavitt path

algebras.

Definition 3.3.1. We define a category BSG of bi-separated graphs as follows: The ob-

jects of BSG are bi-separated graphs (with distinguished subsets) Ė = (E, (C, S), (D,T )).

A morphism φ : Ė → ˙̃
E in BSG is a graph morphism φ : E → Ẽ is a triple

φ = (φ0, φ1, φ2) satisfying the following conditions:

1. φ0 : E → Ẽ is a graph morphism such that φ0
0 is injective.

2. For each X ∈ C there is a (unique) X̃ ∈ C̃ such that φ1
0 restricts to an injective

map X → X̃. The map φ1 : C → C̃ assigns X 7→ X̃ such that for all v ∈ E0 and

X ∈ Cv, we have φ1(X) ∈ Cφ0
0(v).

3. φ1(S) ⊂ S̃. Moreover φ1
0

∣∣
X

: X → X̃ is a bijection, for every X ∈ S.

4. For each Y ∈ D there is a (unique) Ỹ ∈ D̃ such that φ1
0 restricts to an injective

map Y → Ỹ . The map φ2 : D → D̃ assigns Y 7→ Ỹ such that for all v ∈ E0 and

Y ∈ Dv, we have φ1(Y ) ∈ Dφ0
0(v).

5. φ2(T ) ⊂ T̃ . Moreover φ1
0

∣∣
Y

: Y → Ỹ is a bijection, for every Y ∈ T .

6. If X ∈ S, Y ∈ D and X ∩ Y = ∅, then X̃ ∩ Ỹ = ∅.

7. If X ∈ C, Y ∈ T and X ∩ Y = ∅, then X̃ ∩ Ỹ = ∅.

Proposition 3.3.2. The category BSG admits arbitrary direct limits.
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Proof. The proof is similar to [20, Proposition 3.3]. The only addition is that we have

to define D and T analogous to the way we define C and S.

Recall that a functor is continuous if it preserves direct limits.

Proposition 3.3.3. The assignment Ė  AK(Ė) extends to a continuous covariant

functor AK from BSG to K-Alg.

Proof. The proof is similar to [20, Proposition 3.6].

Definition 3.3.4. We say a morphism φ : Ė → ˙̃
E in BSG is complete if φ−1

1 (S̃) = S

and φ−1
2 (T̃ ) = T .

Definition 3.3.5. Let Ė be an object in BSG. A sub-object of Ė is an object Ė′ =

(E′, (C ′, S′), (D′, T ′)) such that E′ is a sub-graph of E and the following conditions hold:

C ′ = {X ∩ (E′)1 | X ∈ C \ S, X ∩ (E′)1 6= ∅} t

{X ∈ S | X ∩ (E′)1 6= ∅}.

S′ = {X ∈ S | X ∩ (E′)1 6= ∅}.

D′ = {Y ∩ (E′)1 | Y ∈ D \ T, D ∩ (E′)1 6= ∅} t

{D ∈ T | D ∩ (E′)1 6= ∅}.

T ′ = {Y ∈ T | Y ∩ (E′)1 6= ∅}.

Definition 3.3.6. Let Ė be an object in BSG. A complete sub-object of Ė is a sub-

object Ė′ such that the inclusion morphism is complete.

Proposition 3.3.7. Any object in BSG is a direct limit of countable complete sub-

objects.

Proof. Let Ė be an object in BSG. For a non-empty finite subset A ⊂ E0 tE1, let EA

be the graph generated by A, i.e.,

E1
A = A ∩ E1 and E0

A = (A ∩ E0) ∪ sE(E1
A) ∪ rE(E1

A).

Take v ∈ E0
A and set
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E0v = s−1
EA

(v) ∪ r−1
EA

(v)
⋃

X∈S∩Cv
X∩A 6=∅

X ∪
⋃

Y ∈T∩Dv
Y ∩A 6=∅

Y , where sEA := s|
E1
A

and rEA := r|
E1
A

.

Let E0 be the graph generated by E0
A t

⊔
v∈E0

A

E0v. Let

C0 = {X ∩A | X ∈ C\S,X ∩A 6= ∅} t

{X ∈ S | X ∩A 6= ∅}.

S0 = {X ∈ S | X ∩A 6= ∅}.

D0 = {Y ∩A | Y ∈ D\T, Y ∩A 6= ∅} t

{Y ∈ T | Y ∩A 6= ∅}.

T0 = {Y ∈ T | Y ∩A 6= ∅}.

If Ė0 is a complete sub-object of Ė, we are done. If not, then for each v ∈ Ė0, define

E1v to be E0v ∪
⋃

X∈S∩Cv
X∩E0v 6=∅

X ∪
⋃

Y ∈T∩Dv
Y ∩E0v 6=∅

Y .

Now let E1 be the graph generated by E0
0 t

⊔
v∈E0

0
E0v. Let

C1 = {X ∩ E1
0 | X ∈ C\S,X ∩ E1

0 6= ∅} t

{X ∈ S | X ∩ E1
0 6= ∅}.

S1 = {X ∈ S | X ∩ E1
0 6= ∅}.

D1 = {Y ∩ E1
0 | Y ∈ D\T, Y ∩ E1

0 6= ∅} t

{Y ∈ T | Y ∩ E1
0 6= ∅}.

T1 = {Y ∈ T | Y ∩ E1
0 6= ∅}.

If E1 is a complete sub-object of Ė, we are done. If not, define E2v similarly and continue

this process.

This gives us a chain E0 → E1 → E2 → . . . , there by giving a directed system

{Ėi}i∈N∪{0}. We claim that for each i ≥ 0, the inclusion morphism Ėi
Ψi−→ ˙Ei+1 is

complete.

Suppose X ∈ Ψ−1
i (Si+1). We want to prove X ∈ Si. If X ∈ Ci\Si, then by definition

of Ci\Si, there exists X1 ∈ C\S such that X = X1 ∩ E1
i−1 6= ∅. So X1 ∩ E1

i 6= ∅.

Since X1 ∈ C\S, we have X ⊆ X1 ∩ E1
i ∈ Ci+1\Si+1 which contradicts the fact that
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X ∈ Ψ−1
i (Si+1). Similar argument holds for Ti → Ti+1. This proves that Ψi is a complete

morphism.

Let Ė = (E , (C,S), (D, T )) be the direct limit of the directed system {Ėi = (Ei, (Ci,Si), (Di, Ti))}.

We claim that Ė is a complete sub-object of Ė. Let Φ = (Φ0,Φ1,Φ2) be the natural

morphism from Ė to Ė. If X ∈ S such that X ∩E1 6= ∅, then X ∩E1
i 6= ∅ for some i ≥ 0.

So X ∈ Si+1. This implies X ∈ S (by the definition of direct limit). If X ∈ C\S and

X ∩ E1 6= ∅, then again X ∩ E1
i 6= ∅ for some i ≥ 0 and so X ∩ Ei ∈ Ci+1\Si+1. Since the

morphism Ėi
Ψi−→ ˙Ei+1 is complete for each i ≥ 0, we can conclude that the morphism

Ėi → Ė is also complete and so X ∩ E1 ∈ C\S. Similarly one can argue for Y ∈ T or

Y ∈ D\T with Y ∩E1 6= ∅. This proves that Ė is a sub-object of Ė . The completeness of

Φ can be seen in exactly the same way as that of Ψi. This proves that Ė is a complete

sub-object of Ė.

Since the vertex set and edge set of E are countable union of finite sets, it is a

countable sub-graph of E. So, for each finite non-empty subset A ⊂ E0 t E1, there

exists a countable complete sub-object Ė of Ė. Now by keeping the set of all finite

subsets of E0 t E1 as the indexing set, we get a directed system of countable complete

sub-objects whose direct limit is Ė.

We note that a general object in BSG cannot be written as a direct limit of finite

complete sub-objects as the following example illustrates:

Example 3.3.8. Consider the following simple graph Γ∞ on countably infinite vertices.

. . .. . .

v−1 v0 v1

Γ∞ =

Observe that Γ∞ is a simple graph. Consider the standard bi-separation (C,D) on Γ∞

and let S = Cfin = C and T = Dfin = D. Then C∞ cannot be written as direct limit

of finite complete sub-objects. For, if there is a complete sub-object of Γ∞ then by

definition we are forced to include all the edges and so, it will no more be finite.
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3.3.1 The category of tame bi-separated graphs

Notation 3.3.9. Let Ė be an object in BSG. Set

S1 := {X ∈ S | X ∩ Y 6= ∅, for some Y ∈ T},

S2 := S − S1,

T1 := {Y ∈ T | X ∩ Y 6= ∅, for some X ∈ S},

T2 := T − T1.

We define a relation ∼T on S1 as follows: For X,X ′ ∈ S1, define X ∼T X ′ if there

exists a finite sequence X0, Y1, X1, Y2, X2, . . . , Yn−1, Xn−1, Yn, Xn such that for each

0 ≤ i ≤ n, Xi ∈ S, Yi ∈ T , with X0 = X, Xn = X ′, and Xi ∩ Yi+1 6= ∅ Yi ∩ Xi 6= ∅.

It is not hard to see that ∼T is an equivalence relation on S1. Let S1 =
⊔
λ∈Λ

Xλ be the

partition of S1 induced by ∼T .

Define ∼S on T1 similarly and let T1 =
⊔

λ′∈Λ′
Yλ′ be the partition induced by ∼S .

We claim that the indexing sets Λ and Λ′ are in bijection. To see this, start with

λ ∈ Λ. Let X ∈ Xλ be an arbitrarily fixed element. This means, there exists a λ′ ∈ Λ′

and Y ∈ Yλ′ such that X ∩ Y 6= ∅. If X ′ 6= X is another element of Xλ, and if there

is a Y ′ ∈ T such that X ′ ∩ Y ′ 6= ∅, then Y ′ ∼S Y because X ′ ∼T X. So Y ′ belongs

to the same Yλ′ as Y . Also if there is another element Y1 ∈ T such that X ∩ Y1 6= ∅,

then clearly Y1 ∼S Y and so Y1 also lies in same Yλ′ . This implies that the map Λ→ Λ′

defined by λ 7→ λ′ is well-defined. Similarly one can define a map Λ′ → Λ. It is not hard

to see that these maps are inverses of each other which proves the claim. Therefore, we

have the following proposition:

Proposition 3.3.10. Let Ė be an object in BSG and let S1, T1 be as defined in notation

3.3.9. Then there exist canonical partitions S1 =
⊔
λ∈Λ

Xλ and T1 =
⊔

λ′∈Λ′
Yλ′ of S1 and

T1 respectively such that the indexing sets Λ and Λ′ are bijective.

Remark 3.3.11. Because of the above proposition, we will denote the indexing sets of

the canonical partitions of both S1 and T1 by Λ.

Definition 3.3.12. A bi-separated graph Ė is called tame if |Xλ| <∞ and |Yλ| <∞,

for each λ ∈ Λ. The tame bi-separated graphs along with complete morphisms form a
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category which we call a tame (sub)category of bi-separated graphs. It will be

denoted by tBSG.

Note that any finite bi-separated graph is tame. Also, the classes of bi-separated

graphs in examples 3.2.4, 3.2.5, 3.2.6, and 3.2.7 are all tame.

Proposition 3.3.13. Let Ė be a tame bi-separated graph such that S = Cfin = C,

T = Dfin = D and |E0| = 1. For λ ∈ Λ, let Eλ be the subgraph of E with edge set⋃
e∈X
X∈Xλ

{e} and consider the bi-separation Cλ = {X ∈ Xλ}, and Dλ = {Y ∈ Yλ} . Then

AK(Ė) is isomorphic to the free-product of algebras AK(Ėλ), where λ varies over the

indexing set Λ.

Corollary 3.3.14 ([20] Proposition 2.10). Let (E,C) be a separated graph with |E0| =

1. Then LK(E,C) is isomorphic to the free-product of algebras LK(1, |X|), where

LK(1, |X|) is the Leavitt algebra of type (1, |X|) and X varies over C.

Theorem 3.3.15. Every object Ė in tBSG is a direct limit of finite (complete) sub-

objects. Conversely, if Ė in BSG is a direct limit of finite complete sub-objects then it

belongs to tBSG.

Proof. Let Ė be an object in tBSG. By exactly same arguments as in Proposition 3.3.7,

Ė is a direct limit of the directed system

{
(
ĖA = (E , (C,S), (D, T ))A, ↪→

)
| A is a finite subset of E0 t E1}.

It follows from the definition of tame bi-separated graphs that ĖA is finite, for each finite

subset A of E0 t E1.

Conversely, let Ė be a direct limit of the directed system

{
(
Ėi = (Ei, (Ci,Si), (Di, Ti)), ↪→

)
| i ∈ I}

of finite complete sub-objects. We know that S and T can be partitioned as S1tS2 and

T1 t T2 respectively (see equations 1 to 4 in 3.3.9). If S1 = ∅, then T1 = ∅ and clearly Ė

is tame.

Suppose S1 6= ∅. Then we have S1 =
⊔
λ∈Λ

Xλ and T1 =
⊔
λ∈Λ

Yλ. We claim that |Xλ|

and |Yλ| are finite for every λ.
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Suppose X ∈ Xλ for some λ. This means that X ∈ S. So there exists i ∈ I such that

X ∈ Si. We claim Xλ ⊆ Si and Yλ ⊆ Ti. If we assume this claim, then since Ėi is a finite

sub-object, we can conclude that |Xλ| and |Yλ| are both finite. So suppose X ′ ∈ Xλ.

Then X ′ ∼T X. So there exists a sequence X = X0, Y1, X1, Y2, . . . , Yn, Xn = X ′ such

that for i ≥ 0, Xi ∩ Yi+1 6= ∅ and for i ≥ 1, Yi ∩Xi 6= ∅, where Xi ∈ S and Yi ∈ T . Now

since X ∈ Si and X ∩ Y1 6= ∅, we have Y1 ∩ E1
i 6= ∅, which means Y1 ∈ Ti (because Ėi

sub-object of Ė). For the same reason, we can conclude that Xi ∈ Si for each 1 ≤ i ≤ n.

This implies in particular that X ′ ∈ Si which proves Xλ ⊆ Si. Similarly one can show

that Yλ ⊆ Ti. This completes the proof.

Corollary 3.3.16. Let Ė be an object in tBSG. Then the Cohn-Leavitt path algebra

AK(Ė) is the direct limit of the directed system of unital algebras {AK(Ėi)}i∈I such that

whenever j ≥ i, the map AK(Ėi) → AK(Ėj) is a monomorphism, where {Ėi}i∈I is a

directed system of finite complete sub-objects of Ė whose direct limit is Ė.

Proof. By the previous theorem, Ė is a direct limit of a directed system {Ėi}i∈I con-

sisting of its finite complete sub-objects. Therefore, by proposition 3.3.3 and Theorem

3.4.5, AK(Ė) is the direct limit of the directed system of algebras {AK(Ėi)}i∈I .

By corollary 3.3.16 (Cohn-)Leavitt path algebras of the classes of bi-separated graphs

in examples 3.2.4-3.2.7 are direct limits of unital sub-(Cohn-)Leavitt path algebras of

same type.

3.4 Normal forms and their applications

Definition 3.4.1. (i) Let Ė be an object in tBSG such that S1 6= ∅ (which auto-

matically means T1 6= ∅). Suppose that for each λ ∈ Λ, there exists Xλ ∈ Xλ and

Yλ ∈ Yλ such that Xλ ∩ Y 6= ∅ for each Y ∈ Yλ and X ∩ Yλ 6= ∅ for each X ∈ Xλ.

Then we call Xλ (resp. Yλ) a distinguished element of Xλ (resp. Yλ).

(ii) An object Ė in tBSG is called a docile object if either S1 = ∅ = T1, or, for each

λ ∈ Λ, there exist distinguished elements Xλ ∈ Xλ and Yλ ∈ Yλ.

Remark 3.4.2. (a) The docile objects in tBSG along with morphisms form a sub-

category of tBSG which we call docile category. If we further insist that a
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morphism should map a distinguished element Xλ to a distinguished element X ′λ,

then we need to assume it to be a complete morphism.

(b) It is not hard to see that the bi-separated graphs in examples refCuntz-Krieger

bi-separation, 3.2.5-3.2.7 are all objects in docile category.

Definition 3.4.3. Let Ė be an object in docile category. If S1 6= ∅, then for every

λ ∈ Λ, we fix a distinguished element Xλ ∈ Xλ and Yλ ∈ Yλ.

1. For each pair X,X ′ ∈ Xλ, we call the word (XYλ)(YλX
′)∗ a forbidden word of

type I.

2. For each Y, Y ′ ∈ Yλ, we call the word (Y Xλ)∗(XλY
′) a forbidden word of type

II.

3. Suppose S2 6= ∅. For each pair X,X ′ ∈ S2, if there exists Y ∈ D such that

X ∩ Y 6= ∅ and X ′ ∩ Y 6= ∅, then we fix one such Y (this may vary with X,X ′)

and call (XY )(Y X ′)∗ a forbidden word of type III.

4. Suppose T2 6= ∅. For each pair Y, Y ′ ∈ T2, if there existsX ∈ C such that Y ∩X 6= ∅

and Y ′∩X 6= ∅, then we fix one such X and call (Y X)∗(XY ′) a forbidden word

of type IV.

Definition 3.4.4. A generalized path µ ∈ Ê? is called normal if it does not contain

any forbidden sub-word of the types mentioned above. An element of K(Ê) is called

normal if it lies in the K-linear span of generalized normal paths.

From now on throughout this section, we will work in the docile category . We

show that given any such object Ė, every element of AK(Ė) has precisely one normal

representative in K(Ê). For this, we need to use Bergman’s diamond lemma. We refer

the reader to subsection 1.3 or [25, pp. 180-182] for the statement of the lemma and

basic terminologies.

Theorem 3.4.5. Let Ė be an docile object in tBSG . Then AK(Ė) has a basis consisting

of normal generalized paths.

Proof. In order to apply Bergman’s diamond lemma, we replace the defining relations

by the following:
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1′: For any v, w ∈ E0,

vw = δv,wv.

2′: For any v ∈ E0, e ∈ E1,

ve = δv,s(e)e,

ev = δv,r(e)e,

ve∗ = δv,r(e)e
∗,

e∗v = δv,s(e)e
∗.

3′: For any e, f ∈ E1,

ef = 0, if r(e) 6= s(f),

e∗f = 0, if s(e) 6= s(f),

ef∗ = 0, if r(e) 6= r(f),

e∗f∗ = 0, if s(e) 6= r(f).

A′1 : For each X,X ′ ∈ S for which there exists Y ∈ D such that X ∩ Y 6= ∅ and

X ′ ∩ Y 6= ∅,

eXe
∗
X′ := (XY )(Y X ′)∗ = δX,X′s(X)−

∑
Y1∈D
Y1 6=Y

(XY1)(Y1X
′)∗.

A′2 : For each Y, Y ′ ∈ T for which there exists X ∈ C such that X ∩ Y 6= ∅ and

X ∩ Y ′ 6= ∅,

e∗Y eY ′ := (Y X)(XY ′)∗ = δY,Y ′r(Y )−
∑
X1∈C
X1 6=X

(Y X1)∗(X1Y
′).

(i.e. In A′1, LHS contains forbidden words of types I and III. In A′2, LHS has forbidden

words of types II and IV).

Denote by Σ the reduction system consisting of all pairs σ = (wσ, fσ), where wσ

equals the LHS of an equation above and fσ the corresponding RHS. Let 〈P̄ 〉 be the
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monoid consisting of all words formed by letters in E0 ∪ E1 ∪ E1 and 〈P 〉 be the semi-

group obtained by removing the identity element of 〈P̄ 〉. We define a partial order on

〈P 〉 as follows:

Let A = x1x2 . . . xn ∈ 〈P 〉. Set l(A) = n and

m(A) = |{i ∈ {1, 2, . . . , (n− 1)} | xixi+1is of type I or type II}|.

Define a partial order ≤ on 〈P 〉 by A ≤ B if and only if one of the following holds:

1. A = B,

2. l(A) < l(B) or

3. l(A) = l(B), and for each G,H ∈ 〈P̄ 〉, m(GAH) < m(GBH).

Clearly ≤ is a semigroup partial order on 〈P 〉 compatible with Σ and also the de-

scending chain condition is satisfied. It remains to show that all ambiguities of Σ are

resolvable. Recall from Proposition 1.3.3 that Ê? is a linear K-basis for K(Ê). Hence

it is sufficient to show that the following ambiguities are resolvable:

eXe
∗
X′eY = (XY ′)(Y ′X ′)∗(X ′Y ) (A′1−A′2)

e∗Y eY ′e
∗
X = (Y X ′)∗(X ′Y ′)(Y ′X ′)∗. (A′2−A′1)

We note that there are no inclusion ambiguities. We only show how to resolve

ambiguity of type A′1−A′2 and the other case follows similarly. Also suppose X,X1 ∈

S2, Y1 ∈ D and (XY1)(Y1X1)∗ is a forbidden word of type III. Then any word of the

form (XY1)(Y1X1)∗(X1Y ), where Y ∈ D will not result in an overlap ambiguity. This

is because, X,X1, being elements of S2 will not intersect with elements of T and so

(Y1X1)∗(X1Y ) will not be a forbidden word. The same argument is true for forbidden

words of type IV. So we only have to resolve those overlap ambiguities which involve

forbidden words of types I and II which we exhibit in the diagram below. Here, we

assume X,X1 ∈ Xλ, Y, Y1 ∈ Yλ and X1 and Y1 to be the fixed distinguished elements

of Xλ and Yλ respectively, where λ is an arbitrarily fixed element of Λ, the indexing set

(see remark 3.3.11).
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A′1 A′2

=

=

A′2

A′1

=

=

=

=

(XY1)(Y1X1)∗(X1Y )

[
δX,X1s(X1)−

∑
Y2∈D
Y2 6=Y1

(XY2)(Y2X1)∗
]
(X1Y )

(XY1)

[
δY,Y1r(Y1)−

∑
X2∈C
X2 6=X1

(Y1X2)∗(X2Y )

]

δX,X1(X1Y )−
∑
Y2∈D
Y2 6=Y1

(XY2)(Y2X1)∗(X1Y )

δY,Y1(XY1)−
∑

X2∈C
X2 6=X1

(XY1)(Y1X2)∗(X2Y )

δX,X1(X1Y )−
∑
Y2∈D
Y2 6=Y1

(XY2)

[
δY,Y2r(Y )−

∑
X2∈C
X2 6=X1

(Y2X2)∗(X2Y )

]

δY,Y1(XY1)−
∑

X2∈C
X2 6=X1

[
δX,X2s(X)−

∑
Y2∈D
Y2 6=Y1

(XY2)(Y2X2)∗
]
(X2Y )

δX,X1(X1Y )− δY,Y2(XY2) +
∑
Y2∈D
Y2 6=Y1

∑
X2∈C
X2 6=X1

(XY2)(Y2X2)∗(X2Y )

δY,Y1(XY1)− δX,X2(X2Y ) +
∑

X2∈C
X2 6=X1

∑
Y2∈D
Y2 6=Y1

(XY2)(Y2X2)∗(X2Y )

∑
X2∈C
X2 6=X1

∑
Y2∈D
Y2 6=Y1

(XY2)(Y2X2)∗(X2Y )

This proves the confluence condition. The final expression written above is a finite

sum as X ∈ S and Y ∈ T . Also the final expression clearly does not involve X1 and Y1

which are the distinguished elements of Xλ and Yλ respectively and so does not contain

any forbidden word. The result now follows from Bergman’s diamond lemma.

Corollary 3.4.6. Let Ė be a docile object in tBSG. Then the natural homomorphism

from the path algebra K(E) to the algebra AK(Ė) is an inclusion.
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Proof. From the theorem, it follows that each path µ ∈ E? is a part of a basis of AK(Ė)

as µ does not contain any forbidden word.

Remark 3.4.7. (a) The advantage of restricting our attention to the docile category

is that the presence of distinguished elements in Xλ and Yλ will help us in defining

forbidden words in a ‘canonical way‘. With this definition of forbidden words, it is

very easy to check the compatibility of the semigroup partial ordering ≤ defined

in the theorem with Σ. Also, as mentioned in the remark 3.4.2(b), the graph-

theoretic objects corresponding to various generalizations of Leavitt-path algebras

are all objects in docile category. Therefore, the docile category itself provides a

common platform for studying various generalizations of Leavitt-path algebras.

(b) One might compute the normal forms of algebras corresponding to some non-docile

objects in tBSG. However, for an arbitrary object in tBSG there is no canonical

way of defining forbidden words and this might make it very hard to check the

compatibility of the partial ordering ≤ with Σ.

In the following subsections we give some applications of normal forms of Cohn-

Leavitt path algebras. That is, we find ‘bi-separated graph theoretic properties’ that

correspond to algebraic properties. We start by recalling some definitions and proposi-

tions from the theory of rings with enough idempotents. Then we give their applications

to the case of Cohn-Leavitt path algebras. We note that the reasoning is very similar to

that of [61]. Wherever some care is required we provide complete proofs, else the reader

is refered to [61] for proofs.

3.4.1 Local valuations and their applications

Definition 3.4.8. Let (R, I) be a ring with enough idempotents. A local valuation

on (R, I) is a map nu : R→ Z+ ∪ {−∞} such that

1. ν(x) = −∞ if and only if x = 0

2. ν(x− y) ≤ max{ν(x), ν(y)} for any x, y ∈ R and

3. ν(xy) = ν(x) + ν(y) for any e ∈ I, x ∈ Re and y ∈ eR.

A local valuation ν on (R, I) is called trivial if ν(x) = 0 for each x ∈ R− {0}.
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Let R be a ring. A left ideal a of R is called essential if a ∩ b = 0 ⇒ b = 0

for any left ideal b of R. For any x ∈ R, recall that the left annihilator ideal of x is

Ann(x) := {y ∈ R | yx = 0}. A ring R is called left non-singular if for any x ∈ R,

Ann(x) is essential ⇔ x = 0. A right non-singular ring is defined similarly. A ring is

non-singular is if it is both left and right non-singular.

Proposition 3.4.9. [61, Proposition 37] Let (R, I) be a ring with enough idempotents

which admits a local valuation. Then R is non-singular.

A non-zero ring R is called a prime ring if ab = 0⇒ a = 0 or b = 0 for any ideals

a and b of R. A ring with enough idempotents (R, I) is connected if eRf 6= 0 for any

e, f ∈ I.

Proposition 3.4.10. [61, Proposition 38] Let (R, I) be a nonzero, connected ring with

enough idempotents which admits a local valuation. Then R is a prime ring.

A ring R is said to be von Neumann regular if for any x ∈ R there exists y ∈ R

such that xyx = x.

Proposition 3.4.11. [61, Proposition 39] Let (R, I) be a ring with enough idempotents

that has a nontrivial local valuation. Then R is not von Neumann regular.

Recall that the Jacobson radical of a ring R is the ideal consisting of those elements

in R that annihilate all simple (right or left) R-modules. A ring is called semiprimitive

if its Jacobson radical is the zero ideal.

Proposition 3.4.12. [61, Proposition 40] Let (R, I) be a connected K-algebra with

enough idempotents which admits a local valuation ν such that ν(x) = 0 if and only if x

is a nonzero K-linear combination of elements in I. Then R is semiprimitive.

Now we find conditions on a bi-separated graph Ė for which the corresponding Cohn-

Leavitt path algebra admits a local valuation.

Definition 3.4.13. A docile onject Ė = (E, (C, S), (D,T )) in tBSG is said to satisfy

Condition LV if X ∈ S (resp. Y ∈ T ) implies |X| > 1 (resp. |Y | > 1) and one of the

following holds:

(LV 1) : |S| ≤ 1 , |T | ≤ 1.
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(LV 2) : |S| > 1 or |T | > 1, and the following two conditions are satisfied:

(a) For any distinct pair X1, X2 ∈ S, either there is no Y ∈ D such that X1∩Y 6=

∅ and X2 ∩Y 6= ∅ or there are at least two distinct elements Y1, Y2 ∈ D, such

that Xi ∩ Yj 6= ∅ for each 1 ≤ i, j ≤ 2.

(b) For any distinct pair Y1, Y2 ∈ T , either there is no X ∈ C such that Y1∩X 6= ∅

and Y2 ∩X 6= ∅ or there are at least two distinct elements X1, X2 ∈ C such

that Xi ∩ Yj 6= ∅ for each 1 ≤ i, j ≤ 2.

We say Ė satisfies Domain condition if |E0| = 1 and either (LV 1) or (LV 2) holds.

Remark 3.4.14. We emphasize the fact that if Ė satisfies domain condition, then |X|

(resp. |Y |) could be equal to 1 also for X ∈ S (resp. for Y ∈ T ) unlike the (LV )

condition where for X ∈ S (resp. for Y ∈ T ), |X| (resp. |Y |) has to be strictly greater

than 1.

Proposition 3.4.15. Let Ė be a docile object in tBSG and for any a ∈ AK(Ė), let

supp(a) denote the set of all normal generalized paths occuring in NF(a) with nonzero co-

efficients, where NF(a) is the unique normal representative of a. If Ė satisfies condition

LV, then the map ν : AK(Ė)→ Z+ ∪ {−∞} defined by

0 6= a 7→ max{|p| | p ∈ supp(a)}

0 7→ −∞

is a local valuation on AK(Ė), where by |p|, we mean the length of the path p.

Proof. The first two conditions of a local valuation are obvious. It remains to show

ν(ab) = ν(a) + ν(b), for any v ∈ E0, a ∈ AK(Ė)v and b ∈ vAK(Ė). If one of ν(a)

and ν(b) is 0 or −∞, then the result is clear. Suppose now ν(a), ν(b) ≥ 1. Since

any reduction preserves or decreases the length of a generalized path, it follows that

ν(ab) ≤ ν(a) + ν(b). So it remains to show that ν(ab) ≥ ν(a) + ν(b). Let

pk = xk1 . . . x
k
ν(a) (1 ≤ k ≤ r)

be the elements of supp(a) with length ν(a) and

ql = yl1 . . . y
l
ν(b) (1 ≤ l ≤ s)
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be the elements of supp(b) with length ν(b). We assume that the pk’s are pairwise distinct

and so are ql’s. Since NF is a linear map, we can make the following conclusions:

1. If xkν(a)y
l
1 is not a forbidden word of any type mentioned above, then

NF(pkql) = pkql.

2. If xkν(a)y
l
1 is a forbidden word of type I or III, then there are X,X ′ ∈ S and Y ∈ D

such that xkν(a)y
l
1 = (XY )(X ′Y )∗ and (XY )(X ′Y )∗ is forbidden. So

NF(pkql) =
[
δXX′x

k
1 . . . x

k
ν(a)−1y

l
2 . . . y

l
ν(b)

]
−

∑
Y ∈D

(XY )(X′Y )∗ 6=xk
ν(a)

yl1

xk1 . . . x
k
ν(a)−1(XY )(X ′Y )∗yl2 . . . y

l
ν(b).

3. If xkν(a)y
l
ν(b) is a forbidden word of type II or IV, then there are Y, Y ′ ∈ T and

X ∈ C such that xkν(a)y
l
ν(b) = (XY )∗(XY ′) and (XY )∗(XY ′) is forbidden. So

NF(pkql) =
[
δY Y ′x

k
1 . . . x

k
ν(a)−1y

l
2 . . . y

l
ν(b)

]
−

∑
X∈C

(XY )∗(XY ′)6=xk
ν(a)

yl1

xk1 . . . x
k
ν(a)−1(XY )∗(XY ′)yl2 . . . y

l
ν(b).

Case 1 : Assume that xkν(a)y
l
1 is not a forbidden word of any type for any k, l.

Then pkql ∈ supp(a), for any k, l. So ν(ab) ≥ |pkql| = ν(a) + ν(b).

Case 2 : Assume that there are k and l such that xkν(a)y
l
ν(b) is a forbidden word of type

I or III.

Then there areX,X ′ ∈ S and Y ∈ D such that xkν(a)y
l
1 = (XY )(X ′Y )∗ and (XY )(X ′Y )∗

is forbidden. Since Ė is an LV-object, there is at least one more element Ỹ ∈ D other

than Y such that XỸ 6= 0 and X ′Ỹ 6= 0.

Case 2.1 : Assume pk′ql′ 6= xk1 . . . x
k
ν(a)−1(XỸ )(X ′Ỹ )∗yl2 . . . y

l
ν(b), for any k′, l′.

Then xk1 . . . x
k
ν(a)−1(XỸ )(X ′Ỹ )∗yl2 . . . y

l
ν(b) ∈ supp(ab), since it does not cancel with any

other term. So we are done.

Case 2.2 : Assume pk′ql′ = xk1 . . . x
k
ν(a)−1(XỸ )(X ′Ỹ )∗yl2 . . . y

l
ν(b), for some k′, l′. In this
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case, pkql′ = xk1 . . . x
k
ν(a)−1(XY )(X ′Ỹ )∗yl2 . . . y

l
ν(b) ∈ supp(ab) and so we are done.

Case 3 : Assume that there are k and l such that xkν(a)y
l
1 is a forbidden word of type II

or IV.

Then there are Y, Y ′ ∈ T and X ∈ C such that xkν(a)y
l
1 = (XY )∗(XY ′) and (XY )∗(XY ′)

is forbidden. Again since Ė is an LV-object, there is at least one more element X̃ ∈ C

other than X such that X̃Y 6= 0 and X̃Y ′ 6= 0. The proof now follows in exactly the

same way as in Cases 2.1 and 2.2.

Corollary 3.4.16. Let Ė be a docile object in tBSG satifying condition LV. Then

1. AK(Ė) is nonsingular.

2. Ė is connected implies AK(Ė) is semiprimitive and prime.

3. |E1| ≥ 1 implies AK(Ė) is not von Neumann regular.

Theorem 3.4.17. Let Ė be a docile object in tBSG. Then AK(Ė) is a domain if and

only if Ė satisfies domain condition.

Proof. If Ė satisfies domain condition, then we consider the two following cases:

Case 1 : Assume that X ∈ S ⇒ |X| > 1 and Y ∈ T ⇒ |Y | > 1. If both S and T

are empty, then AK(Ė) is a free unital K-algebra and hence a domain (since K is a

field). Otherwise, by the proposition 3.4.15, there is a local valuation on AK(Ė). So if

ab = 0 in AK(Ė), then ν(ab) = −∞, which implies ν(a) + ν(b) = −∞. This means

that ν(a) = −∞ or ν(b) = −∞. Hence a = 0 or b = 0. Therefore AK(Ė) is a domain.

Case 2 : The only remaining cases to be considered are when S = {X} with X = {e}

or T = {Y } with Y = {f}. In both these cases the relations imposed on K(Ê) are not

of the form ab = 0.

For converse, if |E0| > 1, then obviously AK(Ė) is not a domain. Otherwise, we

consider the following cases separately:



90 Chapter 3. Cohn-Leavitt path algebras of bi-separated graphs

Case 1 : Assume that there are two distinct elements X,X ′ ∈ S which have only one

common Y ∈ D such that XY 6= 0, X ′Y 6= 0. Then (XY )(X ′Y )∗ = δXX′s(X) = 0.

So we are done.

Case 2 : Assume that there are two distinct elements Y, Y ′ ∈ T which have only one

common X ∈ C such that XY 6= 0, XY ′ 6= 0. Then (XY )∗(XY ′) = δY Y ′r(Y ) = 0.

This completes the proof.

3.4.2 The Gelfand-Kirillov dimension

We first recall some basic facts on the growth of algebras from [43]. Suppose B is a

finitely generated K-algebra. Choose a finite generating set of B and let V be the K-

subspace of B spanned by this chosen generating set. For each positive integer n, let

V n denote the K-subspace of B spanned by all words in V of length less than or equal

to n. In particular, V 1 = V . Then we have an ascending chain

K ⊆ V 1 ⊆ V 2 ⊆ . . . ⊆ V n ⊆ . . .

of finite dimensional K-subspaces of B such that B =
⋃
n∈N0

V n, where, by convention,

V 0 = K. Clearly, the sequence {dimK(V n)} is a montonically increasing sequence

and the asymptotic behaviour (see the definition 3.4.18) of this sequence provides an

invariant of the algebra B, called the Gelfand-Kirillov dimension of B, which is defined

to be

GKdim B = lim
log dimK(V n)

log n
. (3.4.1)

Definition 3.4.18. Given two eventually monotonically increasing functions φ, ψ : N→

R+, we say φ � ψ if there are natural numbers a and b such that φ(n) ≤ aψ(bn), for

almost all n ∈ N. We say φ is asymptotically equivalent to ψ, if both φ � ψ and ψ � φ.

If φ and ψ are asymptotically equivalent, we write φ ∼ ψ.

Coming back to GK dimension of algebras, if a K-algebra B has two distinct finite

generating sets, and if V and W are the finite dimensional subspaces of B spanned by

these sets, then setting φ(n) = dimK(V n) and ψ(n) = dimK(Wn), one can show that

φ ∼ ψ [43, Lemma 1.1]. In this notation, if φ � nm for some m ∈ N, then B is said to
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have polynomial growth and in this case GKdim(B)≤ m. If on the other hand, φ ∼ an

for some a ∈ R such that a > 1, then B is said to have exponential growth and in this

case GKdim(B)=∞.

Definition 3.4.19. A docile object Ė in tBSG is said to satisfy Condition (A′) if

(A′1): S = T = ∅ implies either |E1| > 0 or |E0| =∞.

(A′2): S 6= ∅ or T 6= ∅ implies at least one of the following holds:

(a) ∃X1, X2 ∈ S, X1 6= X2, s(X1) = s(X2) and Y ∈ D such that for i ∈ {1, 2},

Xi ∩ Y 6= ∅ and (XiY ), (XiY )∗ are not part of any forbidden word.

(b) ∃Y1, Y2 ∈ T, Y1 6= Y2, r(Y1) = r(Y2) and X ∈ C such that for i ∈ {1, 2},

Yi ∩X 6= ∅ and (YiX), (YiX)∗ are not part of any forbidden word.

(c) ∃X ∈ S, Y ∈ D such that X ∩ Y 6= ∅, s(X) = r(Y ) and (XY ),(XY )∗ are

not part of any forbidden word.

(d) ∃Y ∈ T, X ∈ C such that X ∩Y 6= ∅, s(X) = r(Y ) and (XY ),(XY )∗ are not

part of any forbidden word.

Proposition 3.4.20. If Ė is a finite docile object in tBSG and satisfies condition A′

then AK(Ė) has exponential growth.

Definition 3.4.21. [61, Definition 20,21] Let Ė be any docile object in tBSG. A quasi-

cycle is a normal generalized path p in Ê such that p2 is normal and none of the sub-

words of p2 of length less than |p| is normal. A quasi-cycle p is called self-connected

if there is a normal path o in Ê such that p is not a prefix of o and pop is normal.

Theorem 3.4.22. Let Ė be a finite docile object in tBSG. Then AK(Ė) has exponential

growth if and only if there is a self-connected quasi-cycle.

Remark 3.4.23. Let Ė be any docile object in tBSG and suppose that {Ėi | i ∈ I} is

a directed system of all finite complete sub-objects of Ė. By results of [53, Section 3],

we have GKdim(AK(Ė)) = sup
i∈I

GKdim(AK(Ėi)).

3.4.3 Additional applications of Linear bases

In this subsection we fix the following notations. Let (R, I) be a K-algebra with enough

idempotents. An element a ∈ R is called homogeneous if a ∈ vRw for some v, w ∈ I.
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Let B denote a K-basis for R which consists of homogeneous elements and contains I.

Let l : B → Z+ be a map such that l(b) = 0⇔ b ∈ I.

Definition 3.4.24. An element b ∈ B ∩ vRw is called left adhesive if ab ∈ B for

any a ∈ B ∩ Rv and right adhesive if bc ∈ B for any c ∈ B ∩ wR. A left valuative

basis element is a left adhesive element b ∈ B ∩ eR such that l(ab) = l(a) + l(b) for any

a ∈ B∩Rv. A right valuative basis element is defined similarly. A valuative basis

element is an adhesive element b ∈ B ∩ vRw such that l(abc) = l(a) + l(b) + l(c) for

any a ∈ B ∩Rv and c ∈ B ∩ wR.

Proposition 3.4.25. [61, Proposition 53] Suppose there exists a valuative basis element

b ∈ (B− I)∩ vRv. Then dimK(R) =∞, R is not simple, neither left nor right Artinian

and not von Newmann regular.

Definition 3.4.26. A docile object Ė in tBSG is said to satisfy Condition (A) if

(A1): S = T = ∅ implies |E0| =∞ or |E1| > 0.

(A2): S 6= ∅ or T 6= ∅ implies at least one of the following holds:

(a) ∃ X ∈ S, Y ∈ D such that X ∩Y 6= ∅, (XY )(XY )∗ and (XY )∗(XY ) are not

forbidden words.

(b) ∃ Y ∈ T, X ∈ C such that X ∩Y 6= ∅, (XY )(XY )∗ and (XY )∗(XY ) are not

forbidden words.

Let B denote the set of all normal generalized paths of AK(Ė). Let l : B → Z+

denote the map which maps a path to its length. If Ė satisfies Condition (A2) then we

can choose either X ∈ S, Y ∈ D or Y ∈ T, X ∈ C such that X∩Y 6= ∅ and (XY )(XY )∗

is not forbidden. Set b = (XY )(XY )∗, then b is a valuative basis element. Hence we

have the following corollary:

Corollary 3.4.27. Let Ė be a docile object in tBSG that satisfies Condition (A). Then

dimK(AK(Ė)) = ∞, AK(Ė) is not simple, neither left nor right Artinian and not von

Neumann regular.

Definition 3.4.28. Let b ∈ B ∩ vRw and b′ ∈ B ∩ v′Rw′. We say that b and b′ have no

common left multiple if there is no a ∈ B ∩Rv and a′ ∈ B ∩Rv′ such that ab = a′b′.
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We say that b and b′ have no common right multiple if there is no c ∈ B ∩ wR and

c′ ∈ B ∩ w′R such that bc = b′c′.

An element b ∈ B ∩ vRw is called right cancellative if ab = cb ⇒ a = c for any

a, c ∈ B ∩Rv and left cancellative if ba′ = bc′ ⇒ a′ = c′ for any a′, c′ ∈ B ∩ wR.

Proposition 3.4.29. [61, Proposition 56] If there are elements b, b′ ∈ B ∩ vRv such

that b is adhesive and right cancellative, b′ is left adhesive and b and b′ have no common

left multiple, then R is not left Noetherian.

If there are elements c, c′ ∈ B∩vRv such that c is adhesive and left cancellative, c′ is

right adhesive and c and c′ have no common left multiple, then R is not right Noetherian.

We have the following corollary which gives a necessary condition for AK(Ė) to be

a left or right Noetherian in terms of Ė.

Corollary 3.4.30. Let Ė be a docile object in tBSG that satisfies Condition (A′). Then

AK(Ė) is neither left nor right Noetherian.

Proof. We prove the statement only for conditions (A′2)(a) and (A′2)(c) leaving the

other simple cases to the reader.

Suppose there exist X1, X2 ∈ S, X1 6= X2, s(X1) = s(X2) = v and Y ∈ D such that

for i ∈ {1, 2}, Xi ∩ Y 6= ∅ and (XiY ), (XiY )∗ are part of forbidden words. Then set

b1 = (X1Y )(X1Y )∗, b2 = (X1Y )(X2Y )∗ and b3 = (X2Y )(X1Y )∗. Then b1, b2, b3 ∈ (B −

E0)∩vAK(Ė)v. It is easy to check that b1 is adhesive and both left and right cancellative,

b2 is left adhesive, b3 is right adhesive, b1, b2 have no common left multiple and b1, b3

have no common right multiple. Thus AK(Ė) is neither left nor right Noetherian.

Now suppose that there exist X ∈ S and Y ∈ D such that X∩Y 6= ∅, s(X) = r(Y ) =

v and (XY ), (XY )∗ are not part of any forbidden word. Then both (XY ), (XY )∗

are in (B − E0) ∩ vAK(Ė)v, they are adhesive, both left and right cancellative and

have neither left nor right common multiple. Therefore AK(Ė) is neither left nor right

Noetherian.





Chapter 4

Cohn-Leavitt path algebras of

semi-regular hypergraphs

In this chapter we specialize our attention to hypergraphs and study their Cohn-Leavitt

path algebras.

4.1 Semi-regular hypergraphs and their H-monoids

We begin by recalling the definition of hypergraphs introduced in [61] (See Definition

3.1.8).

Definition 4.1.1. A hypergraph is a quadruple H = (H0,H1, s, r) where H0 and H1

are sets called the set of vertices and the set of hyperedges respectively. For each h ∈ H1

there exists a pair of non-empty indexing sets Ih, Jh such that s(h) : Ih → H0, and

r(h) : Jh → H0 are families of vertices.

Let H be a hypergraph. A hyperedge h ∈ H1 is called source regular (resp. range

regular) if Ih is finite (resp. Jh is finite). The set of all source regular hyperedges of H

is denoted by H1
sreg and the set of all range regular hyperedges of H is denoted by H1

rreg.

The hypergraph H is said to be regular if H1 = H1
sreg = H1

sreg.

The Leavitt path algebra LK(H) of the hypergraph H is the K-algebra pre-

sented by the generating set {v, hij , h∗ij | v ∈ H0, h ∈ H1, i ∈ Ih, j ∈ Jh} and the

relations

95
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1. uv = δu,vu, for every u, v ∈ H0,

2. s(h)ihij = hij = hijr(h)j and r(h)jh
∗
ij = h∗ij = h∗ijs(h)i, for every h ∈ H1, i ∈ Ih,

and j ∈ Jh,

3.
∑
j∈Jh

hijh
∗
kj = δiks(h)i, for every h ∈ H1

rreg and i, k ∈ Ih,

4.
∑
i∈Ih

h∗ijhik = δjkr(h)j , for every h ∈ H1
sreg and j, k ∈ Jh.

In the above definition, a hyperedge h gives rise to a matrix [h] of order |Ih| × |Jh|,

whose (i, j)th entry is hij . Thus relation (3) and (4) can be re written as follows:

3. For every h ∈ H1
rreg, the matrix equation [h][h]∗ = Ds

h holds, where Ds
h is the

diagonal matrix of order |Ih| × |Ih| whose (i, i)th entry is s(h)i.

4. For every h ∈ H1
sreg, the matrix equation [h]∗[h] = Dr

h holds, where Dr
h is the

diagonal matrix of order |Jh| × |Jh| whose (j, j)th entry is r(h)j .

First note that a hyperedge h, which is neither source regular nor range regular

(that is both Ih and Jh are infinite), does not contribute to the defining relations of the

Leavitt path algebras. Thus we could consider the class of ‘semi-regular’ hypergraphs:

A hypergraph H in which for each h ∈ H1, either Ih is finite or Jh is finite. In other

words, its only hyperedges are either source regular or range regular.

We would like to recast the definition of semi-regular hypergraphs in terms of bi-

separated graphs (with distinguished subsets) so that we can study their Cohn-Leavitt

path algebras.

Definition 4.1.2. A semi-regular hypergraph is a pair (Ė,Λ), where Ė = (E, (C, S), (D,T ))

is a bi-separated graph and Λ is a nonempty indexing set, called the hyperedges, such

that for each λ ∈ Λ there exists Xλ ⊆ C and Yλ ⊆ D which further satisfy the following

conditions:
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1. Λ = ΛST t ΛSfin t ΛS∞ t Λfin
T t Λ∞T , and

S =
⊔
λ∈ΛS

Xλ, where ΛS = ΛST t ΛSfin t ΛS∞,

T =
⊔
λ∈ΛT

Yλ, where ΛT = ΛST t Λfin
T t Λ∞T ,

Cfin − S =
⊔

λ∈Λfin
T

Xλ,

Dfin − T =
⊔

λ∈ΛSfin

Yλ,

C − Cfin =
⊔

λ∈Λ∞T

Xλ,

D −Dfin =
⊔

λ∈ΛS∞

Yλ.

2. X /∈ S and Y /∈ T =⇒ X ∩ Y = ∅,

3. for any α, β ∈ Λ with α 6= β, X ∈ Xα and Y ∈ Yβ =⇒ X ∩ Y = ∅,

4. for any λ ∈ Λ, X ∈ Xλ and Y ∈ Yλ =⇒ X ∩ Y 6= ∅,

In order to make the above definition more transparent, let us make a few remarks.

Remark 4.1.3. First note that the hyperedge λ ∈ Λ corresponds to the matrix [λ],

whose set of rows is Xλ and the set of columns is Yλ. Further, for X ∈ Xλ and Y ∈ Yλ,

the (X,Y )th entry is X ∩ Y . Thus the condition (1) in the above definition says that

set of all hyperedges can be partitioned according to their corresponding matrices in the

following way:

i. ΛST is the set of all hyperedges whose rows and columns are in S and T respectively.

ii. ΛSfin is the set of all hyperedges whose the rows are in S and columns finite.

iii. ΛS∞ is the set of all hyperedges whose rows are in S and columns infinite.

iv. Λfin
T is the set of all hyperedges whose rows are finite and columns are in T .

v. Λ∞T is the set of all hyperedges whose rows are infinite and columns are in T .

It is easy to see that we have avoided those hyperedges whose rows finite but not in

S and columns finite but not in T . This is because, in the definition of Cohn-Leavitt
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path algebras the relations are contributed from rows and columns belonging to the

distinguished sets S and T respectively.

Remark 4.1.4. 1. It is easy to check that semi-regular hypergraphs are tame, docile

and that semi-regular hypergraphs, along with complete morphisms, form a cate-

gory. This category will be denoted by BHG.

2. Note that given a semi-regular hypergraph (Ė,Λ) with S = Cfin and T = Dfin we

can identify (Ė,Λ) with a hypergraph H as follows: H0 = E0, H1 = Λ, and for

each λ ∈ Λ s(λ) = (s(X))X∈Xλ and r(λ) = (r(Y ))Y ∈Yλ .

Notation 4.1.5. For λ ∈ ΛT , set

Qλ = {qZ | Z ⊆ Yλ, 0 < |Z| <∞} and

Q =
⊔
λ∈ΛT

Qλ.

For λ ∈ ΛS , set

Pλ = {pW |W ⊆ Xλ, 0 < |W | <∞} and

P =
⊔
λ∈ΛS

Pλ.

Definition 4.1.6. Given a semi-regular hypergraph (Ė,Λ), its H-monoid H(Ė,Λ) is

defined as the abelian monoid generated by E0 tQ t P modulo the following relations:

1. For λ ∈ ΛT and qZ ∈ Qλ,

∑
X∈Xλ

s(X) =
∑
Y ∈Z

r(Y ) + qZ ,

2. For λ ∈ ΛS and pW ∈ Pλ,

∑
Y ∈Yλ

r(Y ) =
∑
X∈W

s(X) + pW ,

3. For λ ∈ ΛT and qZ1 , qZ2 ∈ Qλ with Z1 ( Z2

qZ1 = qZ2 +
∑

Y ∈Z2−Z1

r(Y ),
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4. For λ ∈ ΛS and pW1 , pW2 ∈ Pλ with W1 (W2

pW1 = pW2 +
∑

X∈W2−W1

s(X),

5. for λ ∈ ΛST ,

qYλ = 0 = pXλ .

If (Ė,Λ) is semi-regular hypergraph then H(Ė,Λ) is a conical monoid. This is easy

to see from the relations defining H(Ė,Λ) because these relations ensure that (x+y) 6= 0

whenever x 6= 0 or y 6= 0, for x, y ∈ H(Ė,Λ).

Definition 4.1.7. Let R be a ring, and let M∞(R) denote the set of all ω×ω matrices

over R with finitely many nonzero entries, where ω varies over N. For idempotents

e, f ∈ M∞(R), the Murray-von Neumann equivalence ∼ is defined as follows:

e ∼ f if and only if there exists x, y ∈M∞(R) such that xy = e and yx = f .

Let V(R) denote the set of all equivalence classes [e], for idempotents e ∈ M∞(R).

Define [e]+[f ] = [e⊕f ], where e⊕f denotes the block diagonal matrix

e 0

0 f

. Under

this operation, V(R) is an abelian monoid, and it is conical, that is, a + b = 0 in V(R)

implies a = b = 0. Also V( ) :Rings→Mon is a continuous functor.

Let R be a unital ring and let U(R) be the set of all isomorphic classes of finitely

generated projective left R-modules, endowed with direct sum as binary operation. Then

(U(R),⊕) is an abelian monoid. We also have U(R) ∼= V(R).

Theorem 4.1.8. There is an isomorphism Γ : H → V ◦AK of funtors BHG→Mon.

Proof. We first define the map Γ as follows: For each object Ė in BHG,

Γ(Ė,Λ) : H(Ė,Λ)→ V ◦ AK(Ė,Λ)

is the monoid homomorphism sending

v 7→ [v],

qZ 7→ [diag(s(X))−BB∗]
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and

pW 7→ [diag(r(Y ))−N∗N ],

where v ∈ E0, Z is any non-empty finite subset of Yλ, diag(s(X)) is the diagonal matrix

of order |Xλ| with diagonal entries coming from the set s(Xλ) in any order (without

repetition), diag(r(Y )) is the diagonal matrix of order |Yλ| with diagonal entries coming

from the set r(Yλ) in any order (without repetition), B is the |Xλ| × |Z| matrix whose

columns are precisely the ones in Z and whose ith row consists elements of X if and

only if the diagonal entry in the ith row of diag(s(X)) is s(X), and N is the |W | × |Yλ|

matrix whose rows are precisely the ones in W and whose jth column has elements from

Y if and only if the diagonal entry in the jth column of diag(r(Y )) is r(Y ).

It is not hard to see that the above map is well defined. Also the fact that every

element in BHG is a direct sum of its finite complete sub-objects and the continuity of

the functors involved will suggest that it is enough to prove the results for finite sub-

objects. For the finite case, we use induction on |Λ|. For Λ = ∅, the result is trivial. So,

suppose that the result holds for all finite objects (Ḟ ,ΛḞ ) in BHG with |ΛḞ | ≤ (n− 1),

for some n ≥ 1. Let (Ė,ΛĖ) be a finite object with |ΛĖ | = n. Fix an element λ ∈ ΛĖ .

We can now apply induction to the object Ḟ obtained from the Ė by deleting all the

edges in λ and leaving the remaining structure as it is, keeping F 0 = E0.

First suppose that λ ∈ ΛST . Then H(Ė,ΛĖ) is obtained from H(Ḟ ,ΛḞ ) by going mod-

ulo the relation
∑

X∈Xλ
s(X) =

∑
Y ∈Yλ

r(Y ). Also, the algebra AK(Ė,ΛĖ) is the Bergman

algebra obtained from AK(Ḟ ,ΛḞ ) by adjoining a universal isomorphism between the

finitely generated projective modules
⊕

X∈Xλ
AK(Ḟ ,ΛḞ )s(X) and

⊕
Y ∈Yλ

AK(Ḟ ,ΛḞ )r(Y ).

So by [24, Theorem 5.2], V(AK(Ė,ΛĖ)) is the quotient of V(AK(Ḟ ,ΛḞ )) modulo the

relation

[diag(s(X))] = [diag(r(Y ))].

Since the map

Γ(Ḟ ,ΛḞ ) : H(Ḟ ,ΛḞ )→ V ◦ AK(Ḟ ,ΛḞ )

is an isomorphism by induction hypothesis, the desired result follows.

Now suppose λ does not belong to ΛST . Then it is either in Λ∞T or in ΛS∞. Let us first

assume that λ ∈ Λ∞T . In this case, H(Ė,ΛĖ) is obtained from H(Ḟ ,ΛḞ ) by adjoining a
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new generator qYλ and going modulo the relation

∑
X∈Xλ

s(X) =
∑
Y ∈Yλ

r(Y ) + qYλ .

On the algebra side, AK(Ė,ΛĖ) is obtained from AK(Ḟ ,ΛḞ ) in two steps by

1. first adjoining the mutually perpendicular idempotents diag(s(X))−BB∗ and q′Yλ ,

and going modulo the relation

[diag(s(X))] = [BB∗] + q′Yλ ,

thereby, getting a new algebra R and then

2. adjoining a universal isomorphism between the left module corresponding to [BB∗]

and the left module
⊕
Y ∈Yλ

Rr(Y ).

So, by [24, Theorems 5.1, 5.2], V(AK(Ė,ΛĖ)) is obtained from V(AK(Ḟ ,ΛḞ )) by ad-

joining a new generator q′′Yλ and going modulo the relation

[diag(s(X))] = [diag(r(Y ))] + q′′Yλ .

This, along with the induction hypothesis, proves the theorem for the considered case.

Finally suppose λ ∈ ΛS∞. Again H(Ė,ΛĖ) is obtained from H(Ḟ ,ΛḞ ) by adjoining

a new generator pXλ and going modulo the relation

∑
Y ∈Yλ

r(Y ) =
∑
X∈Xλ

s(X) + pXλ .

On the other hand, analogous to the previous case, the algebra AK(Ė,ΛĖ) is obtained

from AK(Ḟ ,ΛḞ ) in two steps by

1. first adjoining the mutually perpendicular idempotents diag(r(Y ))−N∗N and p′Xλ ,

and going modulo the relation

[diag(r(Y ))] = [N∗N ] + p′Xλ ,

thereby, getting a new algebra R′ and then
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2. adjoining a universal isomorphism between the left module corresponding to [N∗N ]

and the left module
⊕

X∈Xλ
R′s(X).

So, by [24, Theorems 5.1, 5.2], V(AK(Ė,ΛĖ)) is obtained from V(AK(Ḟ ,ΛḞ )) by ad-

joining a new generator p′′Xλ and going modulo the relation

[diag(r(Y ))] = [diag(s(X))] + p′′Xλ ,

thereby completing the proof (using induction hypothesis).

Remark 4.1.9. We note that if M is any conical abelian monoid then there exists a

semi-regular hypergraph (Ė,ΛĖ) such that M ∼= H(Ė,Λ) ∼= V(AK(Ė,ΛĖ)). For two

different proofs of this fact, we refer the reader to [20, Proposition 4.4] or [61, Proposition

62].

4.2 Ideal lattices and Simplicity

In this section, (Ė,Λ) always denotes a semi-regular hypergraph. Throughout this sec-

tion, we use the following notation: For λ ∈ Λ,

s(λ) :=
⋃

X∈Xλ

s(X) and r(λ) :=
⋃
Y ∈Yλ

r(X).

4.2.1 The lattice of admissible triples in (Ė,Λ)

Definition 4.2.1. A subset V of E0 is called bisaturated if for each λ ∈ ΛST ,

s(λ) ⊆ V ⇐⇒ r(λ) ⊆ V.

The set of all bisaturated subsets of E0 is denoted by BS(Ė,Λ).

Note that empty set and E0 are always elements of BS(Ė,Λ). It is easy to check that

BS(Ė,Λ) is closed under arbitrary intersections.
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If V is a subset of E0, the bisaturated closure of V , denoted V , is the smallest

bisaturated subset of E0 containing V . Since the intersection of bisaturated subsets of

E0 is again bisaturated, V is well defined.

For V ⊆ E0, V can be explicitly constructed as follows: Define V0 = V . If n is an

odd positive integer, define

Vn = Vn−1 ∪ {r(Y ) | Y ∈ Yλ, λ ∈ ΛST , and s(λ) ⊆ Vn−1},

and if n is an even positive integer, define

Vn = Vn−1 ∪ {s(X) | X ∈ Xλ, λ ∈ ΛST , and r(λ) ⊆ Vn−1}.

Then V =
⋃
n≥0 Vn.

Definition 4.2.2. Let V ⊆ E0 be bisaturated and for any λ ∈ Λ, set

Xλ/V = {X ∈ Xλ | s(X) /∈ V } and Yλ/V = {Y ∈ Yλ | r(Y ) /∈ V }.

Then set

Λ/V = ΛST /V t ΛSfin/V t ΛS∞/V t Λfin
T /V t Λ∞T /V,

where

ΛST /V := {λ ∈ ΛST | 0 < |Xλ/V |} = {λ ∈ ΛST | 0 < |Yλ/V |},

ΛSfin/V := {λ ∈ ΛSfin, | 0 < |Xλ/V |},

ΛS∞/V := {λ ∈ ΛS∞ | 0 < |Xλ/V | <∞},

Λfin
T /V := {λ ∈ Λfin

T | 0 < |Yλ/V |},

Λ∞T /V := {λ ∈ Λ∞T | 0 < |Yλ/V | <∞}.

Let V ⊆ E0 be a bisaturated set, Σ ⊆ ΛSfin/V t ΛS∞/V and Θ ⊆ Λfin
T /V t Λ∞T /V . A

triple (V,Σ,Θ) is called an admissible triple and the set of all admissible triples in

(Ė,Λ) is denoted by AT(Ė,Λ).

We define a relation ≤ in AT(Ė,Λ) as follows: (V1,Σ1,Θ1) ≤ (V2,Σ2,Θ2) if

V1 ⊆ V2,
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Σ1 ⊆ Σ2 t ΛS(V ), where ΛS(V ) = ΛS − Λ/V,

Θ1 ⊆ Θ2 t ΛT (V ), where ΛT (V ) = ΛT − Λ/V.

We note that (E0, ∅, ∅) is the maximum and (∅, ∅, ∅) is the minimum in AT(Ė,Λ).

Definition 4.2.3. Let V be a bisaturated subset of E0, Σ ⊆ ΛS(V ) t ΛSfin/V t ΛS∞/V ,

and Θ ⊆ ΛT (V ) t Λfin
T /V t Λ∞T /V . The (Σ,Θ)-bisaturation of V is defined as the

smallest bisaturated subset V (Σ,Θ) of E0 containing H such that

1. If λ ∈ Σ and s(λ) ⊆ V (Σ,Θ), then r(λ) ⊆ V (Σ,Θ) and

2. If λ ∈ Θ and r(λ) ⊆ V (Σ,Θ), then s(λ) ⊆ V (Σ,Θ).

We can construct (Σ,Θ)-bisaturation of V as follows- Define V 0(Σ,Θ) = V . If n is

odd positive integer, define

V n(Σ,Θ) = V n−1(Σ,Θ)∪{r(Y ) ∈ E0−V n−1(Σ,Θ) | Y ∈ Yλ, λ ∈ ΛSfin∪Σ and s(λ) ⊆ V n−1(Σ,Θ)},

and if n is an even positive integer, define

V n(Σ,Θ) = V n−1(Σ,Θ)∪{s(X) ∈ E0−V n−1(Σ,Θ) | X ∈ Xλ, λ ∈ Λfin
T ∪Θ and r(λ) ⊆ V n−1(Σ,Θ)}.

Then V (Σ,Θ) =
⋃
n≥0 V n(Σ,Θ).

Proposition 4.2.4. (AT(Ė,Λ),≤) is a lattice, with supremum ∨ and infimum ∧ given

by

(V1,Σ1,Θ1) ∨ (V2,Σ2,Θ2) = (Ṽ , Σ̃, Θ̃),

where

Ṽ = V1 ∪ V2(Σ1 ∪ Σ2,Θ1 ∪Θ2),

Σ̃ = (Σ1 ∪ Σ2)− ΛS(Ṽ ),

Θ̃ = (Θ1 ∪Θ2)− ΛT (Ṽ ),

and

(V1,Σ1,Θ1) ∧ (V2,Σ2,Θ2) = (V̂ , Σ̂, Θ̂),
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where

V̂ = (V1 ∩ V2),

Σ̂ = (Σ1 ∪ ΛS(V )) ∩ (Σ2 ∪ ΛS(V )) ∩ (ΛSfin/V t ΛS∞/V ),

Θ̂ = (Θ1 ∪ ΛT (V )) ∩ (Θ2 ∪ ΛT (V )) ∩ (Λfin
T /V t Λ∞T /V ).

Proof. Clearly, (Ṽ , Σ̃, Θ̃) ∈ AT(Ė,Λ) and is greater than (Vi,Σi,Θi) for i = 1, 2. Now

let (V,Σ,Θ) ∈ AT(Ė,Λ) such that (Vi,Σi,Θi) ≤ (V,Σ,Θ) for i = 1, 2. It is enough to

prove that Ṽ ⊆ V for all n ∈ Z+. We do this inductively. Define Ṽn = (V1 ∪ V2)n(Σ1 ∪

Σ2,Θ1 ∪Θ1). For n = 0 the claim is clear by assumption. Now assume that n ≥ 1 and

that Ṽn−1 ⊆ V . Let v ∈ Ṽn. If v ∈ s(λ) or v ∈ r(λ) for λ ∈ ΛST , then v ∈ V because V

is bisaturated. Now suppose v ∈ s(λ) for λ ∈ Θ1 ∪Θ2. By definition and the induction

hypothesis, we have r(λ) ⊆ Ṽm ⊆ V , where m is largest even integer less than n. In

particular, this implies that λ /∈ Θ. Since λ ∈ Θ1 ∪ Θ2 ⊆ ΛT (V ) ∪ Θ we conclude that

v ∈ H, which completes the induction step. The inclusion (Θ1 ∪ Θ2) − ΛT (Ṽ ) ⊆ Θ

follows. Similar arguments shows that if v ∈ r(λ) for λ ∈ Σ1 ∪ Σ2, then v ∈ V and

(Θ1 ∪Θ2)− ΛT (Ṽ ) ⊆ Θ.

It is clear that (V̂ , Σ̂, T̂ ) ∈ AT(Ė,Λ) and (V̂ , Σ̂, T̂ ) ≤ (Vi,Σi,Θi) for i = 1, 2. If

(V,Σ,Θ) ∈ AT(Ė,Λ) such that (V,Σ,Θ) ≤ (Vi,Σi,Θi) for i = 1, 2, then clearly V ⊆ V̂ .

Consider λ ∈ Θ−ΛT (V̂ ). Then there exists v ∈ s(λ)− V̂ , so v /∈ Vj for some j ∈ {1, 2},

and λ /∈ ΛT (Vj). Let us fix j = 1. Since (V,Σ,Θ) ≤ (V1,Σ1,Θ1), it follows that

λ ∈ Θ1. Hence, Yλ/V1
is nonempty and Y

λ/V̂
is nonempty. On the other hand, λ ∈ Θ

implies that Yλ/V is finite, hence Y
λ/V̂

is finite. Thus λ ∈ Λfin
T /V̂ tΛ∞T /V̂ . We also have

λ ∈ ΘitΛT (Vi) for i = 1, 2, because (V,Σ,Θ) ≤ (Vi,Σi,Θi) for i = 1, 2, and consequently

λ ∈ Θ̂. This shows Θ ⊆ Θ̂tΛT (V ). Similarly we can show that Σ ⊆ Σ̂tΛS(V ) proving

that (V,Σ,Θ) ≤ (V̂ , Σ̂, Θ̂). This shows that (V̂ , Σ̂, Θ̂) is the infimum required.

Hence AT(ĖΛ) is a lattice.

4.2.2 The lattice of order-ideals in H(Ė,Λ)

Definition 4.2.5. An order-ideal of a monoid M is a submonoid I of M such that

x+ y ∈ I for some x, y ∈M implies that both x and y belong to I.
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Every monoid M is equipped with a pre-order ≤ as follows: for x, y ∈ M , x ≤ y if

and only if there exists z ∈M such that x+ z = y. Hence an equivalent definition of an

order-ideal I is as follows: For each x, y ∈M , if x ≤ y and y ∈ I then x ∈ I.

Let L(M) denote the set of all order-ideals of M . We note that L(M) is closed under

arbitrary intersections. For a submonoid J of M , let 〈J〉 consists of those elements

x ∈ M such that x ≤ y for some y ∈ J . Then 〈J〉 denotes the order-ideal generated by

J . Then L(M) can be shown to be a complete lattice with respect to inclusion. For,

given an arbitrary family {Ii} of order-ideals of M , the supremum is given by 〈
∑
Ii〉.

We want to study the lattice of order-ideals of H(Ė,Λ). For convenience, we modify

some notations of the previous section as follows:

Notation 4.2.6.

For λ ∈ ΛT , s(λ) :=
∑
X∈Xλ

s(X).

For λ ∈ ΛS , r(λ) :=
∑
Y ∈Yλ

r(Y ).

Note that the above sums are finite.

For λ ∈ Λfin
T , qλ := qYλ .

For λ ∈ ΛSfin, pλ := pXλ .

Also,

for λ ∈ Λ∞T , set Zλ = {Z | Z ⊆ Yλ, 0 < |Z| <∞},

for λ ∈ ΛS∞, set Wλ = {W |W ⊆ Xλ, 0 < |W | <∞}.

Z :=
⊔

λ∈Λ∞T

Zλ and W :=
⊔

λ∈ΛS∞

Wλ.

Finally set

Q0 = {qλ | λ ∈ Λfin
T } t {qZ | Z ∈ Z},

P 0 = {pλ | λ ∈ ΛSfin} t {pW |W ∈ W}.
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Definition 4.2.7. Let F be the free abelian monoid on E0 t Q0 t P 0. We identify

H(Ė,Λ) with F/ ∼, where ∼ is the congruence on F generated by the relations

s(λ) ∼


r(λ) if λ ∈ ΛST ,

r(λ) + qλ if λ ∈ Λfin
T , and

r(λ) + qZ if λ ∈ Λ∞T and Z ∈ Zλ,

and

r(λ) ∼


s(λ) + pλ if λ ∈ ΛSfin,

s(λ) + pW if λ ∈ ΛS∞ and W ∈ Wλ,

for Z1, Z2 ∈ Z with Z1 ( Z2, and qZ1 ∼ qZ2 + r(Z2 − Z1), and for W1,W2 ∈ W with

W1 (W2, and pW1 ∼ pW2 + s(W2 −W1).

Lemma 4.2.8. If I is an oder-ideal of H(Ė,Λ), then the set V = I ∩E0 is bisaturated.

Proof. Let λ ∈ ΛST and r(λ) ⊆ V , then r(λ) = s(λ) ∈ I. Since I is order-ideal, and

s(X) ≤ s(λ) for each X ∈ Xλ, we have s(X) ∈ I for each X ∈ Xλ, and hence s(λ) ⊆ V .

Converse follows similarly.

Definition 4.2.9. Let V be a bisaturated subset of E0.

For λ ∈ Λ∞T /V, if 0 < |Yλ/V | <∞, qλ/V := qXλ/V .

For λ ∈ ΛS∞/V, if 0 < |Xλ/V | <∞, pλ/V := pXλ/V

If I is an order-ideal of V (Ė,Λ), set ψ(I) = (V,Σ,Θ), where

V := I ∩ E0,

Σ := {λ ∈ ΛSfin/V | pλ ∈ I} t {λ ∈ ΛS∞/V | pλ/V ∈ I}, and

Θ := {λ ∈ Λfin
T /V | qλ ∈ I} t {λ ∈ Λ∞T /V | qλ/V ∈ I}.
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Conversely, for any (V,Σ,Θ) ∈ AT (Ė,Λ), let I(V,Σ,Θ) denote the submonoid of

H(Ė,Λ) generated by the set V tQ(Θ) t P (Σ), where

Q(Θ) = {qλ | λ ∈ Λfin
T /V ∩Θ} t {qλ/V | λ ∈ Λ∞T /V ∩Θ},

P (Σ) = {pλ | λ ∈ ΛSfin/V ∩ Σ} t {pλ/V | λ ∈ ΛS∞/V ∩ Σ},

and 〈I(V,Σ,Θ)〉 be the order-ideal generated by I(V,Σ,Θ). Set φ(V,Σ,Θ) = 〈I(V,Σ,Θ)〉.

Lemma 4.2.10. If I is any order-ideal of H(Ė,Λ), then I = φψ(I).

Proof. Let ψ(I) = (V,Σ,Θ) and I(V,Σ,Θ) = J so that φψ(I) = 〈J〉. It is clear that

J ⊆ I and therefore 〈J〉 ⊆ I. For converse, consider a nonzero element x ∈ I. Then

x =
∑

i vi +
∑

j qαj +
∑

k pβk +
∑

l qZl +
∑

m pWm for some vi ∈ E0, αj ∈ Λfin
T , βk ∈ ΛSfin,

Zl ∈ Z, and Wm ∈ W. Since I is an order ideal, vi, qαj , pβk , qZl , pWm ∈ I, and so to

prove that x ∈ 〈J〉, it is enough to show that v, qα, pβ, qZ , pW for all v ∈ E0, α ∈ Λfin
T , β ∈

ΛSfin, Z ∈ Z and W ∈ W.

Case 1 If v ∈ E0 ∩ I, then v ∈ V by definition of H, hence v ∈ J .

Case 2 Let α ∈ Λfin
T such that qα ∈ I.

Subcase 2.1 If r(α) ⊆ V , then r(α) ∈ I and so s(α) = r(α) + qα ∈ I. Hence

s(X) ∈ V for each X ∈ Xα, and so s(α) ∈ J . Since qα ≤ s(α), it follows that qα ∈ 〈J〉.

Subcase 2.2 If r(α) 6⊆ V , then by definition α ∈ Θ ∩ Λfin
T /V . Hence qα ∈ J .

Case 3 Let λ ∈ Λ∞T and Z ∈ Zλ such that qZ ∈ I.

Subcase 3.1 Yλ/V = ∅. This is equivalent to r(λ) ⊆ V and the argument follows

similar to subcase 2.1.

Subcase 3.2 0 < |Yλ/V | <∞. In this case, we have

r(Yλ/V − Z) = r([Yλ/V ∪ Z]− Z) ≤ q(Yλ/V ∪Z) + r([Yλ/V ∪ Z]− Z) = qZ ∈ I.

It follows that r(Yλ/V − Z) ∈ I and so r(Yλ/V − Z) ⊆ H. Hence Yλ/V ⊆ Z. Since

r(Z−Yλ/V ) ⊆ H, we get qλ/V = r(Z−Yλ/V ) + qZ ∈ I, so that λ ∈ Θ by definition, and

since qZ ≤ qλ/V , we get qZ ∈ 〈J〉.
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Subcase 3.3 |Yλ/V | =∞. Then there exists Y ∈ Yλ/V − Z, and we have

r(Y ) ≤ r(Z t {Y } − Z) + q{Y } = qZ ∈ I.

But this implies that r(Y ) ∈ I and so r(Y ) ∈ V , which contradicts Y ∈ Yλ/H . Thus

qZ ∈ 〈J〉.

The remaining cases are proved analogously.

Construction 4.2.11. Let (Ė,Λ) be a semi-regular hypergraph and (V,Σ,Θ) ∈ AT (Ė,Λ).

For A ⊆ E1, define

Ar(V ) = A ∩ r−1(V ) and As(V ) = A ∩ s−1(V ).

We define the quotient semi-regular hypergraph (
˙̃
E, Λ̃) as follows:

˙̃
E is given by

Ẽ0 = E0 − V and Ẽ1 = E1
r (V ) ∪ E1

s (V ).

r
Ẽ

and s
Ẽ

are restriction maps of rE and sE respectively.

For v ∈ Ẽ0, set

C̃v = {Xr(V ) | X ∈ Cv and Xr(V ) 6= ∅} and C̃ =
⊔
v∈Ẽ0

C̃v,

D̃v = {Ys(V ) | Y ∈ Dv and Ys(V ) 6= ∅} and D̃ =
⊔
v∈Ẽ0

D̃v,

S̃ = {Xr(V ) | X ∈ S and Xr(V ) 6= ∅} t {Xr(V ) | X ∈ Xλ, λ ∈ Σ}, and

T̃ = {Ys(V ) | Y ∈ S and Ys(V ) 6= ∅} t {Ys(V ) | Y ∈ Yλ, λ ∈ Θ}.

Let Λ̃ be defined as follows:

Λ̃S̃
T̃

= {λ̃ | λ ∈ ΛST /V t Σ tΘ},

Λ̃S̃fin = {λ̃ | λ ∈ ΛSfin/V − Σ},

Λ̃S̃∞ = {λ̃ | λ ∈ ΛS∞/V − Σ},

Λ̃fin
T̃

= {λ̃ | λ ∈ Λfin
T /V −Θ}, and

Λ̃∞
T̃

= {λ̃ | λ ∈ Λ∞T /V −Θ}.
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We note that if π : M1 → M2 is a monoid homomorphism and M2 is conical, then

ker π := π−1(0) is an order-ideal of M1.

Theorem 4.2.12. Let (Ė,Λ) be a semi-regular hypergraph, (V,Σ,Θ) ∈ AT(Ė,Λ) and

(
˙̃
E, Λ̃) is the corresponding quotient semi-regular hypergraph. Suppose that I := 〈I(V,Σ,Θ)〉

is the order ideal in M := H(Ė,Λ). Then there exists a monoid homomorphism

π : M → M̃ := M(
˙̃
E) such that I = ker π.

Proof. We begin by defining ṽ, q̃α, p̃β, q̃Z , p̃W ∈ M̃ for v ∈ E0, α ∈ Λfin
T , β ∈ ΛSfin, Z ∈ Z,

and W ∈ W. For v ∈ E0, set

ṽ =


v if v /∈ V and

0 if v ∈ V.

For α ∈ Λfin
T , we define q̃α as follows:

1. If s(α) ⊆ V or r(α) ⊆ V , q̃α = 0.

2. If s(α) 6⊆ V and r(α) 6⊆ V , q̃α =


0 if α ∈ Θ and

qα̃ if α /∈ Θ.

For β ∈ ΛSfin, we define p̃β as follows:

1. If s(β) ⊆ V or r(β) ⊆ V , p̃β = 0.

2. If s(β) 6⊆ V and r(β) 6⊆ V , p̃β =


0 if β ∈ Σ and

p
β̃

if β /∈ Σ.

For λ ∈ Λ∞T , and Z ∈ Zλ, we define q̃Z as follows:

1. If s(λ) ⊆ V , q̃Z = 0.

2. If s(λ) 6⊆ V , set Z̃ = {Ys(V ) ∈ Y
λ̃
| Y ∈ Z}.

(a) If λ ∈ Θ q̃Z = r(Y
λ̃
− Z̃).

(b) If λ /∈ Θ and r(Z) ⊆ H, q̃Z = s(λ).

(c) If λ /∈ Θ, r(Z) 6⊆ V and λ /∈ Λ∞T /V , q̃Z = q
Z̃

.
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(d) If λ /∈ Θ, r(Z) 6⊆ V , and λ ∈ Λ∞T /V . q̃Z = q
λ̃

+ r(Y
λ̃
− Z̃).

For λ ∈ ΛS∞, and W ∈ Wλ, we define p̃W as follows:

1. If r(λ) ⊆ V , p̃W = 0.

2. If r(λ) 6⊆ V set W̃ = {Xr(V ) ∈ X
λ̃
| X ∈W}.

(a) If λ ∈ Σ, p̃W = s(X
λ̃
− W̃ ).

(b) If r(λ) 6⊆ V , λ /∈ Σ and s(W ) ⊆ V , p̃W = r(λ).

(c) If r(λ) 6⊆ V , λ /∈ Σ, s(W ) 6⊆ V and λ /∈ ΛS∞/V , p̃W = p
W̃

.

(d) If r(λ) 6⊆ V , λ /∈ Σ, s(W ) 6⊆ V , and λ ∈ ΛS∞/V , p̃W = p
λ̃

+ s(X
λ̃
− W̃ ).

We define π : M → M̃ by mapping generators v 7→ ṽ, for all v ∈ E0, qα 7→ q̃α, for

all α ∈ Λfin
T , pβ 7→ p̃β for all β ∈ ΛSfin, qZ 7→ q̃Z for all Z ∈ Z, and pW 7→ p̃W for all

W ∈ W. To show that π defines a homomorphism we need to verify that images of

the generators satisfy all the defining relations. Here we only show for λ ∈ ΛT and the

argument follows analogously for λ ∈ ΛS .

Let λ ∈ ΛT . We introduce a new notation

s̃(W ) :=
∑
X∈W

s̃(X) for subsets W ⊆ Xλ and

r̃(Z) :=
∑
Y ∈Z

r̃(Y ) for subsets Z ⊆ Yλ.

Suppose that λ ∈ ΛST . If s(λ) ⊆ V , then r(λ) ⊆ V , and we get

s̃(λ) = 0 = r̃(λ).

If s(λ) 6⊆ V then r(λ) 6⊆ V , and we get

s̃(λ) = s(Xλ/V ) = s(λ̃) = r(λ̃) = r(Yλ/V ) = r̃(λ).

Suppose that λ ∈ Λfin
T . If s(λ) ⊆ V , then Yλ/V = ∅. If s(λ) 6⊆ V , and r(λ) ⊆ V , then

Xλ/V = ∅. In both of the above cases we have

s̃(λ) = 0 = r̃(λ) + q̃λ.
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So let s(λ) 6⊆ V and r(λ) 6⊆ V . If λ ∈ Θ then

s̃(λ) = s(Xλ/V ) = s(λ̃) = r(λ̃) = r(Yλ/V ) + 0 = r̃(λ) + q̃λ.

If λ /∈ Θ then

s̃(λ) = s(Xλ/V ) = s(λ̃) = r(λ̃) = r(Yλ/V ) + qYλ/V = r̃(λ) + q̃λ.

Now suppose that λ ∈ Λ∞T , and Z ∈ Zλ. If s(λ) ⊆ V , then Yλ/V = ∅, and hence

r(Z) = ∅. Then we have

s̃(λ) = 0 = r̃(Z) + q̃Z .

Hence we assume that s(λ) 6⊆ V for rest of the step. If λ ∈ Θ then λ̃ ∈ Λ̃S̃
T̃

and we have

s̃(λ) = s(λ̃) = r(λ̃) = r(Y
λ̃
) = r(Z̃) + r(Y

λ̃
− Z̃) = r(Z̃) + q̃Z = r̃(Z) + q̃Z .

If λ /∈ Θ and r(Z) ⊆ V then we have

s̃(λ) = s(λ̃) = q̃Z = r̃(Z) + q̃Z .

If λ /∈ Θ, r(Z) 6⊆ V and λ /∈ Λ∞T /V then we have

s̃(λ) = s(λ̃) = r(Z̃) + q
Z̃

= r̃(Z) + q̃Z .

If λ /∈ Θ, r(Z) 6⊆ V and λ ∈ Λ∞T /V then we have

s̃(λ) = s(λ̃) = r(λ̃) + q
λ̃

= r(Y
λ̃
− Z̃) + r(Z̃) + q

λ̃
= r̃(Z) + q̃Z .

Now assume that for λ ∈ Λ∞T let Z1, Z2 ∈ Zλ and Z1 ( Z2. If s(λ) ⊆ V then we have

q̃Z1 = 0 = r̃(Z2 − Z1) + q̃Z2 .

So we may assume that s(λ) 6⊆ V . If λ ∈ Θ,

q̃Z1 = r(Y
λ̃
)− Z̃1 = r(Z̃2 − Z̃1) + r(Y

λ̃
) = r̃(Z2 − Z1) + q̃Z2 .
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Only remaining case is when λ /∈ Θ. If λ ∈ Λ∞T /V −Θ, then

q̃Z1 = q
λ̃

+ r(Y
λ̃
− Z1) = q

λ̃
+ r(Y

λ̃
− Z2) + r(Z̃2 − Z̃1) = q̃Z2 + r̃(Z2 − Z1).

Hence, we may assume that λ /∈ Λ∞T /V . If r(Z2) ⊆ V then we have

q̃Z1 = s(λ) = r(Z̃2 − Z̃1) + s(λ) = r̃(Z2 − Z1) + q̃Z2 .

If r(Z1) ⊆ V but r(Z2) 6⊆ V , we have

q̃Z1 = s(λ) = r(Z̃2) + q
Z̃

= r̃(Z2 − Z1) + q̃Z2 .

Finally, if r(Z1) 6⊆ V , then we have

q̃Z1 = q
Z̃1

= r(Z̃2 − Z̃1) + q
Z̃2

= r̃(Z2 − Z1) + q̃Z2 .

Thus we have shown that π is a monoid homomorphism.

Now we show that I ⊆ kerπ. Since ker π is an order-ideal, it suffices to show that

I(V,Σ,Θ) ⊆ kerπ. For v ∈ H we have π(v) = ṽ = 0. For λ ∈ Θ ∩ Λfin
T , we have

π(qλ) = q̃λ = 0. If λ ∈ Θ ∩ Λ∞T , then π(qλ/V ) = q̃λ/V = 0. Similarly we can verify that

if λ ∈ Σ ∩ ΛSfin then π(qλ) = 0 and if λ ∈ Σ ∩ ΛS∞ then π(qλ/V ) = 0.

We claim that ψ(ker π) = (V,Σ,Θ). For, let ψ(ker π) = (Ṽ , Σ̃, Θ̃). It follows from

definition that Ṽ = I ∩ E0 = V and by the previous paragraph Σ ⊆ Σ̃ and Θ ⊆ Θ̃.

Consider λ ∈ Λfin
T /V t Λ∞T /V . If Yλ is finite and λ /∈ Θ, then π(qλ) = q̃λ 6= 0. Hence

qλ /∈ ker π and so λ /∈ Θ̃. If Yλ is infinite and λ /∈ Θ, then π(qYλ/V ) = q̃Yλ/V 6= 0. Thus

λ /∈ Θ̃. Hence Θ = Θ̃. Similarly Σ = Σ̃.

Finally, since ψ(ker π) = (V,Σ,Θ) and I = φ◦ψ(I), we have that ker π = 〈I(V,Σ,Θ)〉 =

I.

Corollary 4.2.13. If (V,Σ,Θ) ∈ AT(Ė,Λ), then (V,Σ,Θ) = ψ ◦ φ(V,Σ,Θ).

Theorem 4.2.14. Let Ė be a semi-regular hypergraph. Then there are mutually inverse

lattice isomorphisms

φ : AT(Ė,Λ)→ L(H(Ė,Λ)) and ψ : L(H(Ė,Λ))→ AT(Ė,Λ),
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where φ(V,Σ,Θ) = 〈I(V,Σ,Θ)〉 for (V,Σ,Θ) ∈ AT(Ė,Λ) and ψ is defined as in defini-

tion 4.2.9.

Proof. The maps ψ and φ are well defined by definition. By Lemma 4.2.10, φ ◦ ψ is

the identity map on L(H(Ė,Λ)), and by Corollary 4.2.13 ψ ◦ φ is the identity map on

AT(Ė,Λ). We only to have to show that ψ and φ are order-preserving.

Suppose I1 ⊆ I2 are order-ideals of H(Ė,Λ) and (Vj ,Σj ,Θj) = ψ(Ij) for j = 1, 2.

Clearly V1 ⊆ V2. We only show that Θ1 ⊆ Θ2 t ΛT (V2). Let λ ∈ Θ1. First suppose

that λ ∈ Λfin
T /V1 and qλ ∈ I1. If λ ∈ Λfin

T /V2, then λ ∈ Θ2. Otherwise, r(λ) ⊆ V2 and so

s(λ) ∈ I2, which implies s(λ) ∈ V2 and λ ∈ ΛT (V2). Now suppose that λ ∈ Λ∞Y /V2 and

qλ/V1
∈ I1. If λ ∈ Λ∞T /V2, then qλ/V2

is defined and also

qλ/V2
= r({Y ∈ Yλ | r(Y ) ∈ V2 − V1}) + qλ/V1

∈ I2.

So λ ∈ Θ2. Otherwise, r(λ) ⊆ V2 and so r(λ/V1) ∈ I2, hence s(λ) ∈ I2, again giving

λ ∈ ΛT (V2). Σ1 ⊆ Σ2 t ΛS(V2) follows on similar lines.

Finally, let (V1,Σ1,Θ1) and (V2,Σ2,Θ2) be elements of AT(Ė,Λ) such that (V1,Σ1,Θ1) ≤

(V2,Σ2,Θ2). Clearly V1 ⊆ I(V2,Σ2,Θ2). Consider λ ∈ Θ1 ∩ Λfin
T . If λ ∈ Θ2, then

qλ ∈ I(V2,Σ2,Θ2) by definition of I(V2,Σ2,Θ2). If λ ∈ ΛT (V ), then

qλ ≤ qλ + r(λ) = s(λ) ∈ I(V2,Σ2,Θ2)

and so qλ ∈ 〈I(V2,Σ2,Θ2)〉. Now consider λ ∈ Θ1 ∩ Λ∞T . If λ ∈ Θ2, then qλ/V2
∈

I(V2,Σ2,Θ2) and since

qλ/V1
≤ qλ/V1

+ r(Yλ/V2
− Yλ/V1

) = qλ/V2
,

it follows that qλ/V1
∈ 〈I(V2,Σ2,Θ2)〉. If λ ∈ Λ(V ), then

qλ/V1
≤ qλ/V1

+ r(Yλ/V1
) = s(λ) ∈ I(V2,Σ2,Θ2),

and again qλ/V1
∈ 〈I(V2,Σ2,Θ2)〉. A similar arguments shows that Σ1 ⊆ Σ2 t ΛS(V ).

Therefore all the generators of I(V1,Σ1,Θ1 lie in φ(V2,Σ2,Θ2), and we conclude that

φ(V1,Σ1,Θ1) ⊆ φ(V2,Σ2,Θ2). Hence φ is order-preserving.
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4.2.3 The lattice of trace-ideals in AK(Ė,Λ)

Definition 4.2.15. Let R be an arbitrary ring and Idem(M∞(R)) denote the set of

idempotents in M∞(R)). An ideal I of R is called a trace-ideal provided I can be

generated by the entries of the matrices in some subset of Idem(M∞(R)). We denote by

Tr(R) the set of all trace ideals of R. Since Tr(R) is closed under arbitrary sums and

arbitrary intersections, it forms a complete lattice with respect to inclusion.

Proposition 4.2.16. [20, Proposition 10.10] For any ring R there are mutually inverse

lattice isomorphisms

Φ : L(V(R))→ Tr(R) and Ψ : Tr(R)→ L(V(R))

given by

Φ(I) = 〈entries of e | e ∈ Idem(M∞(R)) and [e] ∈ I〉 and

Ψ(J) = {[e] ∈ V(R) | e ∈ Idem(M∞(J))}.

Lemma 4.2.17. Let (Ė,Λ) be a semi-regular hypergraph. Then the trace ideals of

A := AK(Ė,Λ) are precisely the idempotent generated ideals and the lattice isomorphism

Φ : L(V(A))→ Tr(A) is expressed as

Φ(I) = 〈idempotents e ∈ A | [e] ∈ I〉.

Proof. The proof goes exactly similar to [20, Proposition 6.2], except that in the present

case, the V-monoid V(AK(Ė)) is generated by

{[v] | v ∈ E0} ∪ {[q′Z ] | Z ⊆ Yλ, 0 < |Z| <∞ and λ /∈ ΛS}

∪ {[p′W ] | W ⊆ Xλ, 0 < |W | <∞ and λ /∈ ΛT }.

(Here, because of Theorem 4.1.8, we are using the notation [q′Z ] and [p′W ] for the gen-

erators of V(AK(Ė)). Strictly speaking, [q′z] and [p′W ] stand for images of qZ and pW

respectively under the map Γ defined in Theorem 4.1.8).
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Theorem 4.2.18. Let (Ė.Λ) be a semi-regular hypergraph and A = AK(Ė,Λ). Then

there exist mutually inverse lattice isomorphisms

ξ : AT(Ė,Λ)→ Tr(A) and ζ : Tr(A)→ AT(Ė,Λ).

Proof. Set M := H(Ė,Λ). Let Γ : M → V(A) be the monoid isomorphism. By abuse

of notation, we also use Γ to denote the induced lattice isomorphism L(M)→ L(V(A)).

Due to Theorem 4.2.14 and Proposition 4.2.16, we have mutually inverse lattice isomor-

phisms

ΦΓφ : AT(Ė,Λ)→ Tr(A) and ψΓ−1Ψ : Tr(A)→ AT(Ė,Λ).

More explicitly, if J ∈ Tr(A), then ζ(J) = (H,Σ,Θ), where

H = E0 ∩ J,

Σ = {λ ∈ ΛSfin/H | pλ ∈ J} t {λ ∈ ΛS∞/H | pλ/H ∈ J},

Θ = {λ ∈ Λfin
T /H | qλ ∈ J} t {λ ∈ Λ∞T /H | qλ/H ∈ J}.

For converse, let (H,Σ,Θ) ∈ AT(Ė,Λ). First define ξ(H,Σ,Θ) = 〈HtP (Σ)tQ(Θ)〉,

where P (Σ) and Q(Θ) are defined as in Definition 4.2.9. Then define J(H,Σ,Θ) to be

the order-ideal of V(A) generated by the set H ′ t P ′(Σ) tQ′(Σ), where

H ′ = {[v] | v ∈ H},

P ′(Σ) = {[p′λ] | λ ∈ Σ ∩ ΛSfin/H} t {[p′λ/H ] | λ ∈ Σ ∩ ΛS∞},

Q′(Θ) = {[q′λ] | λ ∈ Θ ∩ Λfin
T /H} t {[q′λ/H ] |λ∈ Θ ∩ Λ∞T }.

By Lemma 4.2.17, it follows that

ΦΓφ(H,Σ,Θ) = 〈idempotents e ∈ A | [e] ∈ J(H,Σ,Θ)〉.

It is clear that ξ(H,Σ,Θ) ⊆ ΦΓφ(H,Σ,Θ).
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If e is an idempotent in A such that [e] ∈ J(H,Σ,Θ), then

[e] ≤
n1∑
i=1

[vi] +

n2∑
j=1

[p′αj ] +

n3∑
k=1

[p′βk/H ] +

n4∑
l=1

[q′γl ] +

n5∑
m=1

[q′δm/H ]

where vi ∈ H, αj ∈ Σ ∩ ΛSfin, βk ∈ Σ ∩ ΛS∞, γl ∈ Θ ∩ Λfin
T and δm ∈ Θ ∩ Λ∞T . Therefore

e is equivalent to some idempotent e′ ≤ D where D is a diagonal matrix with entries

vi, pαj , pβk/H , qγl , and qδm/H .Thus it follows that e lies in these vi, pαj , pβk/H , qγl , and

qδm/H . Hence ΦΓφ = ξ.

4.2.4 Simplicity

A non-zero conical monoid M is simple if its only order-ideals are {0} and M .

Theorem 4.2.19. Let (Ė,Λ) be a semi-regular hypergraph. Then the following condi-

tions are equivalent

1. The only trace ideals of AK(Ė,Λ) are 0 and AK(Ė,Λ).

2. H(Ė,Λ) is a simple monoid.

3. S = Cfin, T = Dfin and the only bisaturated subsets of E0 are ∅ and E0.

Proof. From Proposition 4.2.16 it follows that (1)⇔ (2).

(2) ⇒ (3) : Observe that (ΛSfin/∅) t (ΛS∞/∅) = Cfin − S and (Λfin
T /∅) t (Λ∞T /∅) =

Dfin − T . Similarly, (ΛSfin/E
0) t (ΛS∞/E

0) = ∅ and (Λfin
T /E

0) t (Λ∞T /E
0) = ∅. By

Theorem 4.2.14, the only members of AT(Ė,Λ) are (∅, ∅, ∅) and (E0, ∅, ∅). If λ ∈ ΛSfin,

then (∅, {λ}, ∅) ∈ AT(Ė,Λ). This proves that S = Cfin. Similarly T = Dfin. If H is

any bisaturated subset of E0, then (H, ∅, ∅) ∈ AT(Ė,Λ) and hence the only bisaturated

subsets of E0 are E0 and ∅.

(3) ⇒ (2) : In this case AT(Ė,Λ) = {(E0, ∅, ∅), (∅, ∅, ∅)}. The result follows at once

from Theorem 4.2.14.
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4.3 Representations of Leavitt path algebras of regular hy-

pergraphs

Given a graph E, the category of quiver representations of E is the category of

functors from the path category CE to the category of K-vector spaces. A morphism of

quiver representations is a natural transformation between two such functors. In other

words, a quiver representation ρ assigns a (possibly infinite dimensional) K-vector space

ρ(v) to each v ∈ E0 and a linear transformation ρ(e) : ρ(s(e))→ ρ(r(e)) to each e ∈ E1.

A morphism of quiver representations φ : ρ → ρ′ is a family of linear transformations

{φv | ρ(v)→ ρ′(v)}v∈E0 such that for each e ∈ E1 the following diagram commutes:

ρ(s(e)) ρ(r(e))

ρ′(s(e)) ρ′(r(e))

ρ(e)

φs(e) φr(e)

ρ′(e)

This section generalizes the results of [41]. Throughout this section by a hypergraph

we always mean a regular hypergraph. In this section, we will work in the category

ML of unital (right) modules over L := LK(Ė,Λ) where (Ė,Λ) is a hypergraph. The

category ML is closed under taking quotients, submodules, extensions and arbitrary

sums and hence it is an abelian category with sums. Note however that its is not closed

under infinite product if E0 is infinite.

Lemma 4.3.1. Let M be a right L-module. Then
⊕

X∈Xλ
Ms(X) is isomorphic (as vector

space) to
⊕
Y ∈Yλ

Mr(Y ) for every λ ∈ Λ.

Proof. For each λ ∈ Λ, let [λ] be the rectangular matrix of size |Yλ| × |Xλ| whose entry

in Y th row and Xth column is the edge Y X. Then [λ] :
⊕

X∈Xλ
Ms(X) →

⊕
Y ∈Yλ

Mr(Y ),

given by

(mX)X∈Xλ [λ] =

 ∑
X′∈Xλ

mXµ(X′Y )


Y ∈Yλ

,

is a well defined linear map, where µ(XY ) is right multiplication by the edge XY . We

show that [λ] is an isomorphism with the inverse [λ]∗, which is the adjoint transpose
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matrix of [λ]. Note that [λ]∗ :
⊕
Y ∈Yλ

Mr(Y )→
⊕

X∈Xλ
Ms(X) is given by

(mY )Y ∈Yλ [λ]∗ =

 ∑
Y ′∈Yλ

mY µ(Y ′X)∗


X∈Xλ

.

We check their compositions:

(mY )Y ∈Yλ [λ]∗[λ] =

 ∑
Y ′∈Yλ

mY µ(Y ′X)∗


X∈Xλ

[λ]

=

 ∑
X∈Xλ

 ∑
Y ′∈Yλ

mY µ(Y ′X)∗

µ(XY )


Y ∈Yλ

=

 ∑
X∈Xλ

 ∑
Y ′∈Yλ

mY µ(Y ′X)∗µ(XY )


Y ∈Yλ

=

 ∑
X∈Xλ

∑
Y ′∈Yλ

mY µ(Y ′X)∗(XY )


Y ∈Yλ

=

 ∑
Y ′∈Yλ

∑
X∈Xλ

mY µ(Y ′X)∗(XY )


Y ∈Yλ

=

 ∑
Y ′∈Yλ

mY µ ∑
X∈Xλ

(Y ′X)∗(XY )


Y ∈Yλ

=

 ∑
Y ′∈Yλ

mY µδY ′Y r(Y ′)


Y ∈Yλ

(by L2)

= (mY )Y ∈Yλ .

Similarly by L1, we get

(mX)X∈Xλ [λ][λ]∗ = (mX)X∈Xλ

which establishes the result.

Remark 4.3.2. If M is unital, then for any m ∈M , we have m =
∑l

k=1mkvk for some

vertices vk ∈ E0. Hence M =
∑
v∈E0

Mv. When considered as paths, the vertices of E

form a set of orthogonal idempotents, hence the above sum is direct. Therefore we have

M =
⊕
v∈E0

Mv.
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Theorem 4.3.3. The category ML is equivalent to the full subcategory of quiver repre-

sentations ρ of E satisfying:

For all λ ∈ Λ, [ρ(λ)] :
⊕
X∈Xλ

ρ(s(X))→
⊕
Y ∈Yλ

ρ(r(Y )) is an isomorphism. (H)

Proof. Let M be a right L-module. We define a quiver representation ρM as follows:

ρM (v) = Mv for each v ∈ E0 and for the map ρM (e) : Ms(e)→Mr(e), ms(e)ρM (e) =

ms(e)e = me = mr(e). By Lemma 4.3.1, (H) is satisfied. If ϕ : M → N is an

L-module homomorphism then ϕv is the linear transformation making the following

diagram commutative:

ρM (v) = Mv M

ρN (v) = Nv N

ϕv ϕ

Since right multiplication by an edge e commutes with ϕ, this defines a homomorphism

of quiver representations.

Given a quiver representation ρ, we define the correspoding module Mρ :=
⊕
v∈E0

ρ(v).

To get an L-module structure on Mρ, we define the following projections and inclusions:

For each v ∈ E0, define

pv : Mρ � ρ(v) ; iv : ρ(v) ↪→Mρ,

and for each λ ∈ Λ, X ∈ Xλ and Y ∈ Yλ, define

pX :
⊕
X∈Xλ

ρ(s(X))� ρ(s(X)) ; iX : ρ(s(X)) ↪→
⊕
X∈Xλ

ρ(s(X)).

pY :
⊕
Y ∈Yλ

ρ(r(Y ))� ρ(r(Y )) ; iY : ρ(r(Y )) ↪→
⊕
Y ∈Yλ

ρ(r(Y )).

Now letmv := mpviv, m(XY ) := mps(X)iX [ρ(λ)]pY ir(Y ), andm(Y X)∗ := mpr(Y )iY [ρ(λ)]∗pXis(X).

To keep track of the last defining relations, we draw the following diagram:
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[λ]

[λ]∗

⊕
X∈Xλ

ρ(s(X))

⊕
X∈Xλ

ρ(s(X))

⊕
Y ∈Yλ

ρ(r(Y ))

⊕
Y ∈Yλ

ρ(r(Y ))

⊕
w∈E0

ρ(w)
⊕
w∈E0

ρ(w)

ρ(s(X))

ρ(s(X))

ρ(r(Y ))

ρ(r(Y ))

ps(X)

is(X)

ir(Y )

pr(Y )

iX

pX

pY

iY

Here the composition of the upper arrows correspond to right multiplication by (XY )

and the composition by lower arrows correspond to right multiplication by (Y X)∗. Veri-

fying that the above defining relations satisfy defining relations of L is left to the reader.

Now we show that the above constructions give equivalance of categories. By Remark

4.3.2, we have MρM =
⊕
v∈E0

Mv = M and their L-module structures also match. Given

a module homomorphism ϕ : M → N , we have ϕ =
⊕
v∈E0

ϕv :
⊕
v∈E0

Mv →
⊕
v∈E0

N .

For the composition in the other order ρMρ(v) = Mρv =

( ⊕
w∈E0

ρ(w)

)
v = ρ(v) and

ρ(e) = ρMρ(e) : Mρs(e) → Mρr(e). For, let e = (XY ) for some X ∈ Xλ and Y ∈ Yλ,

then the following diagram commutes.

Mρs(e) = ρ(s(e)) Mρ =
⊕
w∈E0

ρ(w)

Mρr(e) = ρ(r(e)) Mρ =
⊕
w∈E0

ρ(w)

is(e)

ρ(e) ps(e)iX [ρ(λ)]pY ir(e)

ir(e)

Finally, for any homomorphism {ϕv : ρ(v) → σ(v)}v∈E0 from ρ to σ, the v-component

of
⊕
w∈E0

ϕw is ϕv : ρMρ(v) = ρ(v)→ σMσ(v) = σ(v).

Remark 4.3.4. We note that the full subcategory of graded quiver representations with

respect to standard Z-grading satisfying condition (H) is equivalent to the category of

graded unital L-modules. The proof follows on similar lines of the proof of Theorem

4.3.3.

Theorem 4.3.5. The composition of the forgetful functor from ML to ME with ⊗K(E)

L from ME to ML is naturally equivalent to the identity functor on ML.

Proof. We note that both forgetful functor and ⊗K(E)L send unital modules to unital

modules. Let the composition of forgetful functor with ⊗K(E) L be denoted by F
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and the identity functor on ML be denoted by I. If M is an L-module, the L-module

homomorphism M⊗K(E)L→M given by m⊗a 7→ ma defines an natural transformation

from F to I. To see that this is an isomorphism, we define its inverse M →M ⊗K(E) L

by m 7→
∑
v∈E0

mv 6=0

m⊗ v. Observe that this sum is finite since M is unital.

To check that the above inverse defines an L-linear map, we need to check on gener-

ators. For every w ∈ E0 and m ∈M , we have
∑
mu⊗ v = m⊗ u = (

∑
m⊗ v)u, since

E0 is a set of orthogonal idempotents. For all λ ∈ Λ, X ∈ Xλ, Y ∈ Yλ and m ∈ M we

have

∑
m(XY )⊗ v = m(XY )⊗ r(Y ), since ev = 0 iff r(e) 6= v

= m(XY )⊗

 ∑
X′∈Xλ

(Y X ′)∗(X ′Y )

 by (L2)

=
∑

X′∈Xλ

m(XY )(Y X ′)∗ ⊗ (X ′Y )

= ms(X)⊗ (XY ) by (L1)

= m⊗ (XY )

=
(∑

m⊗ v
)

(XY ).

Similarly
∑
m(Y X)∗ ⊗ v = (

∑
m⊗ v)(Y X)∗.

The composition m 7→
∑
m ⊗ v 7→

∑
mv = m. Since elements of the form m ⊗ v

with m ∈Mv generate M ⊗ L as an L-module and for such elements we have m⊗ v 7→

mv 7→ mv ⊗ v = m⊗ v, the other composition is also identity.

Recall that the universal localization Σ−1A of an algebra A with respect to a

set Σ = {σ : Pσ → Qσ} of homomorphisms between finitely generated projective A-

modules, is an initial object among algebra homomorphisms f : A → B such that

σ ⊗ idB : Pσ ⊗A B → Qσ ⊗A B is an isomorphism for every σ ∈ Σ.

Theorem 4.3.6. L is the universal localization of K(E) with respect to

{
σλ :

⊕
Y ∈Yλ

(r(Y ))K(E) −→
⊕
X∈Xλ

(s(X))K(E)
}
λ∈Λ

,



4.3. Representations of Leavitt path algebras of regular hypergraphs 123

(aY )Y ∈Yλ
σλ7−→

∑
Y ∈Yλ

(XY )aY


X∈Xλ

.

Proof. Since v ∈ E0 is an idempotent, the cyclic module vK(E) is projective. For each

λ ∈ Λ, σλ⊗idL is an isomorphism with inverse σ∗λ, where (aX)X∈Xλ
σ∗λ7−→

( ∑
X∈Xλ

(Y X)∗aX

)
Y ∈Yλ

.

If f : K(E)→ B is an algebra homomorphism, then f(v)2 = f(v) and vK(E)⊗K(E)B ∼=

f(v)B by a⊗ b 7→ f(a)b and b 7→ v ⊗ b.

Let f : K(E) → B be an algebra homomorphism such that σλ ⊗ idB is an isomor-

phism for all λ ∈ Λ. Then the composition f(s(X))B ∼= (s(X))K(E)⊗K(E)B
is(X)⊗idB
↪−−−−−−→( ⊕

X∈Xλ
s(X)K(E)

)
⊗K(E)B

σ∗λ⊗ idB−−−−−→

( ⊕
Y ∈Yλ

r(Y )K(E)

)
⊗K(E)B

pr(Y )⊗idB−−−−−−→ r(Y )K(E)⊗K(E)

B ∼= f(r(Y ))B is uniquely and completely determined, which we call f((Y X)∗). Now

f̃(v) := f(v) for all v ∈ E0, f̃((XY )) = f((XY )) for all λ ∈ Λ, X ∈ Xλ and Y ∈ Yλ
defines the unique homomorphism f̃ : L→ B factoring f through K(E)→ L.

Proposition 4.3.7. Let (Ė,Λ) be hypergraph. If d : E0 → N ∪ {∞} satisfies

∑
X∈Xλ

d(s(X)) =
∑
Y ∈Yλ

d(r(Y )) for all λ ∈ Λ,

then there is an L-module M with dimK(Mv) = d(v).

Proof. Define the quiver representation ρ by ρ(v) = Kd(v) if d(v) <∞ and ρ(v) := K(N)

otherwise. Then by definition of d we can find isomorphism θλ :
⊕

X∈Xλ
ρ(s(X)) →⊕

Y ∈Y−λ
ρ(r(Y )) for all λ ∈ Λ. Let ρ(XY ) := is(X)θλpr(Y ) for all λ ∈ Λ, X ∈ Xλ and

Y ∈ Yλ. Condition (H) is satisfied by construction and the corresponding L-module M

of Theorem 4.3.3 has dimK(Mv) = dimKρ(v) = d(v).

Definition 4.3.8. A dimension function of a hypergraph (Ė,Λ) is a function d :

E0 → N satisfying
∑

X∈Xλ
s(X) =

∑
Y ∈Yλ

r(Y ) for all λ ∈ Λ.

Remark 4.3.9. If the L-module M is finitary, i.e, dim(Mv) < ∞ for all v ∈ E0

then by Lemma 4.3.1, d(v) := dim(Mv) is a dimension function. By Proposition 4.3.7,

the converse also holds. That is, every dimension function is realizable. Moreover, since

dim(M) =
∑
v∈E0

dim(Mv), d(v) := dim(Mv) has finite support if M is finite dimensional.
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4.3.1 Support subgraphs and the hypergraph monoid

Let H = (Ė,Λ) be a hypergraph and E′ be a full subgraph of E. Then there is a natural

(hyper) biseparation induced on E′ from H as follows: For each X ∈ C, if s(X) ∈ (E′)0,

define X ′ := X
⋂

(E′)1 and similarly for each Y ∈ D, if r(Y ) ∈ (E′)0, define Y ′ :=

Y
⋂

(E′)0. Also for each λ ∈ Λ, define λ′ using the following data: Xλ′ := {X ′ | X ∈ Xλ}

and Yλ′ := {Y ′ | Y ∈ Yλ}. Finally define Λ′ = {λ′ | λ ∈ Λ,Xλ 6= ∅ and λ 6= ∅}. We call

H′ = (Ė′,Λ′) a full sub-hypergraph of H (hyper-induced from E′).

Definition 4.3.10. Let H = (Ė,Λ) be a hypergraph. A full sub-hypergraph H′ =

(Ė′,Λ′) is called co-bisaturated if the following conditions are satisfied: For every

λ′ ∈ Λ′,

1. if s(X) ∈ (E′)0, then X ∩ (E′)1 6= ∅, where X ∈ Xλ′

2. if r(Y ) ∈ (E′)0, then Y ∩ (E′)1 6= ∅, where Y ∈ Yλ′ .

We note that a full sub-hypergraph Ė′ of Ė is co-bisaturated if and only if E0− (E′)0

is bisaturated subset of E0.

Let H = (Ė,Λ) be a hypergraph and M be a right L(H)-module. The support

subgraph of M , denoted by EM , is the full subgraph of E induced on VM := {v ∈ E0 |

Mv 6= 0} and the hypergraph HM = (ĖM ,ΛM ), which is the full sub-hypergraph of H

hyper-induced from EM , is called the support sub-hypergraph of M .

Lemma 4.3.11. Let H = (Ė,Λ) be a hypergraph and H′ = (Ė′,Λ′) be a full sub-

hypergraph of H. Then the following are equivalent.

1. H′ = HM , is the support sub-hypergraph of a unital L(H)-module M .

2. H′ is co-bisaturated.

3. The map θ : L(H)→ L(H′) defined (on generators) by

θ(x) :=


x, if x ∈ (E′)0 t (E′)1 t (E′)1,

0, otherwise,

extends to an onto algebra homomorphism.
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Proof. (1)⇒ (2): Let λ′ ∈ Λ′ and X ∈ Xλ′ . Assume s(X) ∈ (EM )0, then 0 6= Ms(X) ↪→⊕
X∈Xλ

Ms(X) ∼=
⊕
Y ∈Yλ

Mr(Y ) implies that there exists Y ∈ Yλ such that X ∩ Y 6= ∅

which is equivalent to X ∩ (E′)1 6= ∅. Similarly, if Y ∈ Yλ′ and r(Y ) ∈ (EM )0, then

Y ∩ (E′)1 6= ∅.

(2) ⇒ (3): We check that θ preserves the defining relations of L(H). It is direct

that path algebra relations are satisfied. Let λ′ ∈ Λ′, X1, X2 ∈ Xλ′ and Y1, Y2 ∈ Yλ′ .

If s(Xi), r(Yi) ∈ (E′)0 then Xi ∩ (E′)1 6= ∅ and Y1 ∩ (E′)1 6= ∅. Hence the image of∑
X∈Xλ

(Y1X)∗(XY2) = δY1Y2r(Y ) is
∑

X∈Xλ′
(Y1X)∗(XY2) = δY1Y2r(Y ). Similarly, the image

of
∑

Y ∈Yλ
(X1Y )(Y X2)∗ = δX1X2s(X) is

∑
Y ∈Yλ′

(X1Y )(Y X2)∗ = δX1X2s(X).

(3)⇒ (1): Let M := L(H′) ∼= L(H)/Kerθ. Now v ∈ (E′)0 if and only if θ(v) 6= 0 and

Mv = L(H′)v 6= 0. Hence the vertex set of EM is (E′)0. It is routine to check that H′

is full sub-hypergraph and hence HM = H′.

Proposition 4.3.12. If M is a unital L(H)-module then M also has the structure of a

unital L(HM )-module induced through the epimorphism θ : L(H)→ L(HM ). Moreover,

Kerθ is generated by E0 − VM = {v ∈ E0 |Mv = 0} and Kerθ ⊆ AnnM .

Proof. Let ρM be the quiver representation of E corresponding to M as defined in the

proof of Theorem 4.3.3. We claim that the restriction of ρM to EM satisfies (H). That

is, if ρ′ := ρM |EM , then for all λ′ ∈ ΛM ,

[ρ′] :
⊕
X∈Xλ′

ρ′(s(X))→
⊕
Y ∈Yλ′

ρ′(r(Y )) is an isomorphism.

For,

⊕
X∈Xλ′

ρ′(s(X)) =
⊕
X∈Xλ′

Ms(X)

=
⊕
X∈Xλ

Ms(X) since Ms(X) = 0 for X 6∈ Xλ′

∼=
⊕
Y ∈Yλ

Mr(Y )

=
⊕
Y ∈Yλ′

Mr(Y ) since Mr(Y ) = 0 for Y 6∈ Yλ′

=
⊕
Y ∈Yλ′

ρ′(r(Y )).
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Let M ′ be the unital L(HM )-module corresponding to ρ′. Now M ′ is also an L(H)-

module via θ : L(H)→ L(HM ). As vector spaces M ′ =
⊕
v∈VM

Mv ∼=
⊕
v ∈ E0Mv = M .

We can define an L(HM )-module structure on M via this isomorphism. The action of

the generators on M and M ′ is compatible with this isomorphism, so M ∼= M ′ as L(H)-

modules. Thus the L(H)-module structure of M is induced from the L(HM )-module

structure via θ.

For the second part, Let IM be the ideal generated by E0 − VM . We show that

L(HM ) ∼= L(H)/Kerθ and L(H)/IM are isomorphic. Since, E0−VM ⊆ Kerθ, we have a

surjection from L(H)/IM to L(HM ). Let ϕ : L(HM )→ L(H)/I be defined on generators

by x 7→ x+I, where x ∈ E0tE1tE1. It is not hard to show that ϕ is a homomorphism

and the inverse of the above surjection.

Recall that given a hypergraph H = (Ė,Λ), its hypergraph monoid H(H) is defined

as the additive monoid generated by E0 modulo the following relations:

∑
X∈Xλ

s(X) =
∑
Y ∈Yλ

r(Y ) for all λ ∈ Λ.

Therefore, dimension functions of H correspond exactly to monoid homomorphisms

from H(H) to N.

Since H(H) is isomorphic to the monoid V(L(H)) the generator v of H(H) cor-

responds to the (right) projective L(H)-module vL(H). The corresponding relations

among the isomorphism class of the cyclic projective modules was shown to hold in

the proof of Theorem 4.3.6. We can now reinterpret the existence of a nonzero finite

dimensional represenatation in terms of the nonstable K-theory of L(H).

Theorem 4.3.13. L(H) has a nonzero finite dimensional representation if and only if Ė

has a finite, full co-bisaturated sub-hypergraph G with a nonzero monoid homomorphism

from V(L(G)) to N.

Proof. By Remark 4.3.9, L(H) has a nonzero finite dimensional representation if and

only if H has a nonzero dimension function of finite support. The support of such dimen-

sion function defines a finite, full, co-bisaturated sub-hypergraph G and its restriction

gives a nonzero dimension function on G and thus a nonzero monoid homomorphism
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from V(L(G)) to N as well. Conversely, since G is co-bisaturated, any nonzero dimension

function on G can be extended by 0 to a dimension function on H and this gives a

nonzero dimension function of finite support on H.

4.4 Some remarks on Cohn-Leavitt path algebras of semi-

regular hypergraphs with Invariant Basis Number

Let H = (Ė,Λ) be a finite semi-regular hypergraph and let H := H(H) be the H-

monoid of H. Let the Cohn-Leavitt path algebra AK(H) be denoted simply by L and

its Grothendieck group by K0(L). Let U(L) denote the submonoid of the V-monoid

V(L) generated by the element [L] ∈ V(L). Then L has IBN property if and only if

U(L) has infinite order. Now suppose G(U(L)) denotes the Grothendieck group of U(L).

Then one can show that the natural map G(U(L)) → K0(L) induced by the inclusion

U(L) ↪→ V(L) is an embedding (see [39, Proposition 7]). So [L], treated as an element in

the group K0(L), has infinite order. This means that the element [L]⊗1 in K0(L)⊗Q is

nonzero. We know that [L] ∈ V(L) corresponds to the element [
∑

v∈E0 v] ∈ H under the

isomorphism of functors proved in Theorem 4.1.8. So, if G(H) denotes the Grothendieck

group of H, from the above arguments we can conclude that L has IBN if and only if∑
v∈E0 v is nonzero in G(H)⊗Q, which is equivalent saying that

∑
v∈E0 v is not in the

Q− linear span of the elements of R in QΩ (cf. [39, Theorem 13]), where Ω is the set

E0 tQ t P (Q and P are as in the Definition 4.1.6), and

R :=
⋃
λ∈ΛTS

 ∑
X∈Xλ

s(X)−
∑
Y ∈Yλ

r(Y )


⊔ ⋃

λ∈Λfin
T

 ∑
X∈Xλ

s(X)−
∑
Y ∈Yλ

r(Y )− qYλ


⊔ ⋃

λ∈Λfin
S

 ∑
Y ∈Yλ

r(Y )−
∑
X∈Xλ

s(X)− pXλ

 .
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4.4.1 Matrix criteria for Leavitt path algebra of a finite hypergraph

having IBN

In this subsection, we generalize the main result of [55, Section 3]. Let (Ė,Λ) be a finite

hypergraph such that |Λ| = h and E0 = n. Then by theorem 4.1.8, the V-monoid of

LK(Ė) is generated by the set E0 modulo h relations of the form

m∑
t=1

s(Xt) =
l∑

u=1

r(Yu), (4.4.1)

one corresponding to each element of Λ. Let A and B be the coefficient matrices corre-

sponding to the LHS and RHS respectively of the h relations (4.4.1). Then it is clear

that both A and B are h × n matrices with entries as non-negative integers. Let T be

a free abelian monoid on the set of all vertices. For each element x ∈ T , and for each i

such that 1 ≤ i ≤ h, let Mi(x) denote the element of T which results by applying to x

the relation (4.4.1) corresponding to the element λi ∈ Λ. For any sequence σ taken from

the set {1, 2, . . . , h}, and any x ∈ T , let ∆σ(x) ∈ T be the element obtained by applying

Mi operations in the order specified by σ.

Definition 4.4.1. Suppose for each pair x, y ∈ T , [x] = [y] in the V-monoid if and

only if there are two sequences σ and σ′ taken from the set {1, 2, . . . , h} such that

∆σ(x) = ∆σ′(y) in T . Then we say that the confluence condition holds in T .

Theorem 4.4.2. Let (Ė,Λ) be a finite hypergraph such that |Λ| = h and E0 = n.

Suppose A and B are the coefficient matrices corresponding to LHS and RHS respectively

of the h relations of the V-monoid of LK(Ė). Also suppose that the confluence condition

holds in T , the free abelian monoid on E0. Then LK(Ė) has Invariant Basis Number

if and only if rank(Bt −At) < rank([Bt −At c]), where c is the column matrix of order

n× 1 with all its entries equal to 1.

Proof. Suppose that rank(Bt − At) < rank(Bt − At c). We prove that if m and p are

positive integers such that

m[
n∑
i=1

vi] = p[
n∑
i=1

vi] (4.4.2)

in the V-monoid, then m = p. So let us assume that the equation (4.4.2) holds for

some positive integers m and p. Since the confluence condition holds in T , there are two
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sequences σ and σ′ taken from {1, 2, . . . , h} such that ∆σ(m
∑n

i=1 vi) = ∆σ′(p
∑n

i=1 vi) =

γ(say) in T . Now suppose Mj is invoked kj times in ∆σ and k′j times in ∆σ′ . Then we

have

γ = ∆σ(m
n∑
i=1

vi)

= [m+ k1(b11 − a11) + · · ·+ kh(bh1 − ah1)]v1

+ [m+ k1(b12 − a12) + · · ·+ kh(bh2 − ah2)]v2

+ . . . . . . . . .

+ [m+ k1(b1z − a1z) + · · ·+ kh(bhz − ahz)]vz

+ [m+ k1(b1(z+1)) + · · ·+ kh(bh(z+1))]vz+1

+ . . . . . . . . .

+ [m+ k1(b1n) + · · ·+ kh(bhn)]vn.

Also

γ = ∆σ′(p
n∑
i=1

vi)

= [p+ k′1(b11 − a11) + · · ·+ k′h(bh1 − ah1)]v1

+ [p+ k′1(b12 − a12) + · · ·+ k′h(bh2 − ah2)]v2

+ . . . . . . . . .

+ [p+ k′1(b1z − a1z) + · · ·+ k′h(bhz − ahz)]vz

+ [p+ k′1(b1(z+1)) + · · ·+ k′h(bh(z+1))]vz+1

+ . . . . . . . . .

+ [p+ k′1(b1n) + · · ·+ k′h(bhn)]vn.
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Let mi = (k′i−ki) for i = 1, . . . , h. From the above two equations, we have the following

system of equations-

(m− p) = m1(b11 − a11) + · · ·+mh(bh1 − ah1)

(m− p) = m1(b12 − a12) + · · ·+mh(bh2 − ah2)

...

(m− p) = m1(b1z − a1z) + · · ·+mh(bhz − ahz)
...

(m− p) = m1(b1n − a1n) + · · ·+mh(bhn − ahn).

So (m1, . . . ,mh) ∈ Zh is a solution of the linear system (Bt − At)x = (m − p)c, where

x = (x1, . . . , xh)t and c is the column matrix mentioned in the statement of the theorem.

This means rank(Bt − At) = rank(Bt − At (m − p)c). We know that if m 6= p, then

rank(Bt − At (m − p)c) = rank(Bt − At c). This would mean that rank(Bt − At) =

rank(Bt − At c) whenever m 6= p, contrary to our initial assumption. This proves the

first part.

Conversely, assume that rank(Bt−At) = rank(Bt−At c) := r. We will prove that there

exists a pair of distinct positive integers m and p such that m[
∑n

i=1 vi] = p[
∑n

i=1 vi] in

the V-monoid of AK(Ė).

The fact that rank(Bt − At c) = r means that after finite number of elementary row

operations, (Bt −At c) can be brought to the form



0 . . . d1j1 . . . d1j2−1 0 d1j2+1 . . . d1jr−1 0 . . . c1

0 . . . 0 . . . 0 d2j2 d2j2+1 . . . d2jr−1 0 . . . c2

...
...

...
...

...
... . . .

...
...

... . . .
...

0 . . . . . . . . . 0 . . . . . . 0 0 drjr . . . cr

0 . . . . . . . . . 0 . . . . . . 0 0 0 . . . 0
...

...
...

...
...

... . . .
...

...
... . . .

...

0 . . . . . . . . . 0 . . . . . . 0 0 0 . . . 0


where the entries are integers, d1j1d2j2 . . . drjr 6= 0 and

∑r
i=1 c

2
i 6= 0. So it is clear

that one particular solution for the linear system (Bt−At)x = c is the column vector

( c1
d1j1

, c2
d2j2

, . . . , cr
drjr

, 0, . . . , 0)t.
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Now let

mj :=


ci|d1j1

d2j2
...drjr |

diji
, if j = ji (1 ≤ i ≤ r)

0, otherwise,

p := max{|mj | | j = 1, . . . , h}, m := |d1j1d2j2 . . . drjr |+p and

(k′j , kj) :=


(0, 0), if mj = 0,

(mj , 0), if mj > 0,

(0,−mj), if mj < 0.

From the above definitions, it is clear that (m−p) > 0. So the h-tuple (m1,m2, . . . ,mh)

is a solution for the linear system (Bt−At)x = (m−p)c. This, from the first part of the

proof, is equivalent to showing that m[
∑n

i=1 vi] = p[
∑n

i=1 vi]. This means that AK(Ė)

does not have Invariant Basis Number, thereby completing the proof.
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Cayley graphs Cjn. Mediterr. J. Math., 15(5):Art. 197, 23, 2018.

[12] Gene Abrams, Adel Louly, Enrique Pardo, and Christopher Smith. Flow invariants

in the classification of Leavitt path algebras. J. Algebra, 333:202–231, 2011.

[13] Gene Abrams, Francesca Mantese, and Alberto Tonolo. Leavitt path algebras are
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