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Chapter 1

Introduction

Measures of dependence among several random vectors and associated tests of indepen-

dence play a major role in different statistical applications. Blind source separation or

independent component analysis (see, e.g., Hyvärinen et al., 2001; Shen et al., 2009), fea-

ture selection and feature extraction (see, e.g., Li et al., 2012), detection of serial correlation

in time series (see, e.g., Ghoudi et al., 2001) and finding the causal relationships among the

variables (see, e.g., Chakraborty and Zhang, 2019) are some examples of their wide-spread

applications. Tests of independence has vast applications in other areas of sciences as well.

For instance, to characterize the genetic mechanisms of a complex disease, a biologist or

a medical scientist often needs to carry out some tests of independence to investigate the

causal relationship among multiple quantitative traits and test for their association with

disease genes (see, e.g., Hsieh et al., 2014). Proper understanding of the structure of de-

pendence among several groups of variables often helps a psychologist or social scientist

to construct a meaningful structural equation model (see, e.g., De Jonge et al., 2001) for

data analysis. In order to develop a micro-economic model for health care and health in-

surance, an economist needs to study the dependence (or independence) between several

measures of health-care utilization and the insurance status of the house-hold for a variety

of socio-economic and health-status variables (see, e.g. Cameron et al., 1988).

In this thesis, we deal with this problem of testing independence among several random

vectors. This is a well-known problem in statistics and machine leaning literature, and

several methods of are available for it. But most of these existing methods deal with two

random vectors (or random variables) only. Moreover, instead of testing for independence,

many of them only test for uncorrelatedness between two vectors. Now a days, we often

deal with data sets having dimension larger than sample size. Many existing tests cannot be

used in such situations. Keeping all these in mind, in this thesis, we propose and investigate
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some methods that can be used for testing independence among several random vectors

of arbitrary dimensions. Later we shall see that these proposed tests can also be used for

testing independence among several random functions or random elements taking values in

infinite dimensional Banach or Hilbert spaces.

Consider a d-dimensional random vector X = (X(1),X(2), . . . ,X(p)) with sub-vectors

X(1),X(2), . . . ,X(p) of dimensions d1, d2, . . . , dp, respectively (d1 + d2 + . . . + dp = d).

Suppose that we have n independent observations x1,x2, . . . ,xn on X, and based on

these observations, we need to construct a test for independence among the sub-vectors

X(1),X(2), . . . ,X(p). This is a well studied problem in statistics, especially for p = 2 and

d1 = d2 = 1. Pearson’s product moment correlation coefficient is arguably the most sim-

plest and popular measure of association between two random variables, and one can easily

construct a test of independence based on this measure (see, e.g., Anderson, 2003). But

this product moment correlation coefficient only measures the degree of linear relation-

ship between two variables, and it gets severely affected by the presence of outliers in the

data. Popular rank-based measures like Spearman’s rank correlation coefficient ρ (Spear-

man, 1904), Kendall’s concordance-discordance statistic τ (Kendall, 1938) and Blomqvist’s

quadrant statistic β (Blomqvist, 1950) are robust against outliers and extreme values. The

tests based on these statistics have the distribution-free property as well, but instead of

independence, they only test for monotone relationship between two variables. Hoeffding

(1948) constructed a statistic, known as the φ-statistic, based on empirical distribution

function to measure the dependence between two random variables. The distribution-free

test constructed based on this statistic was probably the first attempt in the literature to

actually test for independence (not uncorrelatedness) between two continuous random vari-

ables. Rényi (1959) postulated seven properties for an appropriate measure of dependence

and showed that there exists a unique dependency measure, namely maximal correlation

coefficient, that satisfies all those properties. However, that dependency measure cannot

be computed in practice. Lopez-Paz et al. (2013) proposed a measure, called randomized

dependence coefficient, that can estimate maximal correlation coefficient with a given pre-

cision. But, in addition to randomness, it involves several hyper-parameters, which makes

it less attractive. Reshef et al. (2011) developed a measure of dependence based on mutual

information, but Simon and Tibshirani (2014) noted that the power of the test based on

that measure falls rapidly as noise increases.
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Several attempts have also been made for measuring dependence among several random

variables and testing for statistical significance of that measure. Joe (1990), Nelsen (1996)

and Schmid and Schmidt (2007) proposed generalizations of Spearman’s ρ and Kendall’s

τ statistics in this context. Úbeda-Flores (2005) generalized the notion of Blomqvist’s β

statistics. Gaißer et al. (2010) generalized Hoeffding’s φ-statistic for more than two vari-

ables. These rank-based generalized versions can also be viewed as copula based measures

of dependence. However, these measures are not invariant under strictly monotone trans-

formations of the variables; they are invariant only under the same type of transformation

(either strictly increasing or strictly decreasing) in all coordinates. Using the idea of copula

and kernel embedding of probability distributions, Póczos et al. (2012) proposed two de-

pendency measures and associated tests. But, their proposed choices of the cut-offs based

on probability inequalities made these tests very conservative. Motivated by the idea of

Póczos et al. (2012), in Chapter 2 of this thesis, we propose a new measure of dependence,

which is invariant under permutations and strictly monotone transformations of the vari-

ables. To construct this measure, we use the Gaussian kernel, which helps us to get a

nice closed form expression for its empirical version. So, unlike Póczos et al. (2012), one

does not need to generate observations from a uniform distribution for computing its data-

based estimate. We use this measure to construct a distribution-free test. However, for the

implementation of the test, we need to choose the bandwidth parameter associated with

the Gaussian kernel. The method commonly used for choosing the bandwidth is based on

median heuristic (see, e.g., Fukumizu et al., 2009b, Sec. 5). But, this may not always be

the best choice, and depending on the data set, sometimes other choices of the bandwidth

may lead to better results. In order to take care of this problem, we adopt a multi-scale

approach, where we look at the results for various choices of the bandwidth and then ag-

gregate them judiciously to arrive at the final decision. We propose several methods for

aggregation and prove the consistency of the resulting tests under appropriate regularity

conditions. Several simulated and real data sets are analyzed to demonstrate the utility of

these proposed methods. The contents of this chapter are taken from Roy et al. (2020b).

It is to be noted that all rank-based or copula based tests mentioned in the previous

paragraph including our proposed ones need the underlying variables to be continuous so

that ties occur with zero probability, and the ranks can be uniquely defined with probability

one. However, in practice, we often encounter data comprise of a mixture of continuous,
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discrete, ordinal and binary variables. Even the observations on a continuous variable

may have ties due to limited precision. To cope with such situations, recently Genest

et al. (2019) developed a test, which is applicable to random variables having arbitrary

probability distributions. They used checkerboard copula for generalization of Hoeffding’s

φ-statistic for more than two variables and developed a test based on it. But just like the

Hoeffding’s φ-statistic, neither this measure nor the resulting test is invariant under strictly

monotone transformations of the variables. Moreover, this test often fails to perform well in

the presence of complex non-monotone relationships among the variables. In order to take

care of this issue, in Chapter 3, we propose a new measure of association among several

random variables and develop some tests based on it. These proposed measure and the

associated tests are invariant under permutations and strictly monotone transformations

of the variables, and they can be viewed as the checkerboard copula versions of the same

proposed in Chapter 2. We establish consistency of these proposed tests and demonstrate

their usefulness using empirical study. This chapter is mainly based on Roy (2020).

The methods discussed so far deal with two or more random variables. But there

are several methods in the literature that deal with random vectors of dimensions higher

than one. If we assume normality of the underlying distribution, the likelihood ratio test

based on Wilks’ Λ statistic (see, e.g., Anderson, 2003) can be used for testing independence

between two random vectors. One can also use Roy’s largest root test, Pillai-Bartlett trace

test or Hotelling-Lawley trace test (see, e.g., Anderson, 2003) for this purpose. Other

popular tests of independence between two random vectors include the tests based on

coordinate wise signs and ranks (see, e.g., Sen and Puri, 1971), spatial signs and ranks

(see, e.g., Taskinen et al., 2003, 2005) and inter-directions (see, e.g., Gieser and Randles,

1997). However, these tests are mainly motivated by the elliptic symmetry (see. e.g., Fang

et al., 1990) of the underlying distribution, and they actually test for uncorrelatedness

between two multivariate sign or rank vectors. So, they are not very useful for detecting

complex relationships between two sub-vectors. Moreover, none of these tests can be used

if the dimension of one of the sub-vectors exceeds the sample size.

Székely et al. (2007) developed a test of independence (known as the dCov test) based

on distance covariance (dCov) or distance correlation, which can be used even for vectors

with dimensions larger than sample size. Gretton et al. (2008) constructed a test based on

the Hilbert-Schmidt norm of the covariance kernel. It test is known as the Hilbert Space
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independence criterion (HSIC) test. A test based on 2 × 2 contingency tables of pairwise

distances (known as the HHG test) was proposed by Heller et al. (2013). Some graph-based

tests of independence between two random vectors were proposed by Friedman and Rafsky

(1983); Heller et al. (2012); Biswas et al. (2016); Sarkar and Ghosh (2018).

The method based on Wilk’s Λ statistic can be generalized for testing independence

between several random vectors. Similarly, the tests based on coordinate-wise signs and

ranks or those based on spatial signs and ranks can also be generalized. Um and Randles

(2001) generalized Gieser and Randles (1997)’s test for multiple random vectors. But these

tests have the same limitations as discussed before. Bilodeau and Lafaye de Micheaux

(2005) proposed a test of independence among several normally distributed random vectors,

whose joint distribution may not be normal. A test based on half-spaces was proposed

by Beran et al. (2007), but its computing cost grows up exponentially as the dimension

increases. Bilodeau and Nangue (2017) developed some methods for testing mutual and

serial independence among several random vectors. Recently, some generalizations of the

dCov test (see Fan et al., 2017; Jin and Matteson, 2018; Chakraborty and Zhang, 2019)

and the HSIC test (see Pfister et al., 2018) have been proposed in the literature. The

distance multivariance measure proposed by Böttcher et al. (2019) can also be viewed as a

generalization of the distance correlation measure (see Székely et al., 2007), and it can be

used to construct a test of independence among several random vectors.

In Chapters 4 and 5 of this thesis, we propose and investigate some methods for testing

independence among several random vectors of arbitrary dimensions. We have seen that

there are methods for testing independence among several random variables. In Chapter

4, we propose two common recipes, one based on linear projections and the other based

on pairwise distances, for their multivariate extensions. In both cases, we transform the

observations on sub-vectors into univariate observations, and then use the existing tests on

the transformed data. Heller and Heller (2016) also used somewhat similar strategies for

constructing multivariate tests of independence, but their proposed tests were restricted to

two random vectors only. We use our recipes on the copula based tests proposed in Chapter

2, and investigate the theoretical as well as the empirical performance of the resulting tests.

Materials of this chapter are taken from Roy et al. (2020c).

Chapter 5 deals with some tests based on nearest neighbors. Researchers have observed

that dependence between two random vectors is often manifested by a strong positive or
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negative association between their respective pairwise distances (see, e.g., Friedman and

Rafsky, 1983; Heller et al., 2012; Biswas et al., 2016; Sarkar and Ghosh, 2018). Based on this

idea, Sarkar and Ghosh (2018) proposed some tests of independence between two random

vectors (X(1) and X(2), say), where they suggested to find the neighbors of an observation

based on pairwise distances in one space ( X(1)-space, say) and compute the ranks of these

neighbors based on corresponding pairwise distances in the other space (X(2)-space, say).

In Chapter 5, we propose some generalizations these tests so that one can deal with more

than two random vectors. Most of these generalizations are based on multivariate rank

functions, and some of them use the idea of maximal mean discrepancy (MMD) as well.

Empirical performance of these tests are investigated by analyzing several simulated and

real data sets. The contents of this chapter are taken from Roy et al. (2020a) and Roy and

Ghosh (2020).

In Chapters 4 and 5, we also briefly consider the problem of testing independence be-

tween two or more random functions. The branch of statistics that deals with function

valued data is referred to as Functional Data Analysis (FDA) (see, e.g. Ramsay and Sil-

verman, 2005; Ferraty and Vieu, 2006), and it is gaining momentum over the last couple of

decades. Real world applications of FDA is as diverse as hand writing recognition, speech

recognition, spectometry and meteorology to name a few. But, the literature on testing of

independence between two random functions is almost non-existent. Lyons (2013) gener-

alized the notion of the distance correlation for random functions having distribution on

metric spaces of strong negative type (e.g., the Hilbert space of square integrable functions

on [0, 1]), and hence generalized the dCov test (Székely et al., 2007) for testing indepen-

dence between two random functions. The tests we proposed in Chapters 4 and 5 can

be used for such functions as well. So, we analyze some functional data sets to evaluate

their performance. We also consider some generalizations of the joint distance covariance

(JdCov) tests (Chakraborty and Zhang, 2019) and the dHSIC test (Pfister et al., 2018) for

comparison. A generalization of the HHG test (Heller et al., 2013) based on contingency

tables is also considered.

Finally, Chapter 6 contains a brief summary of our contributions and a comparative

discussion on the performance of our proposed tests. The thesis ends with some discussions

on possible directions for future research.
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Chapter 2

Tests of Independence among

Continuous Random Variables

Here we consider all sub-vectors to be one dimensional, i.e, d1 = d2 = · · · = dp = 1

and d = p. So, instead of using vector notations X(1),X(2), . . . ,X(p) for these sub-

vectors, in this chapter, we denote these sub-vectors by X(1), X(2), . . . , X(p), respectively.

As we have mentioned before, for p = 2, Pearson’s product moment correlation coeffi-

cient (see, e.g., Anderson, 2003), Spearman’s rank correlation coefficient (Spearman, 1904),

Kendall’s concordance-discordance statistic (Kendall, 1938) or Blomqvist’s quadrant statis-

tic β (Blomqvist, 1950) can be used to measure the dependence between two random vari-

ables and to construct a test of independence. But these measures and the resulting tests

are mainly useful for detecting linear or monotone relationships between the variables. Ho-

effding (1948) also constructed a distribution-free test based on the φ-statistic. All these

measures of dependence and the associates tests have been generalized for more than two

random variables as well (see, e.g., Joe, 1990; Nelsen, 1996; Úbeda-Flores, 2005; Gaißer

et al., 2010). But none of them are invariant under strictly monotone transformations of

the variables. Using the idea of copula and MMD, Póczos et al. (2012) developed two

dependency measures and related tests. Motivated by their work, here we propose a new

measure of dependence, which has this invariance property. The description of the measure

is given below.

2.1 The proposed measure of dependence

Our measure of dependence is based on the copula distribution of a p-dimensional ran-

dom vector. A p-dimensional copula is a probability distribution on the p-dimensional unit
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hypercube [0, 1]p such that all of its one-dimensional marginals are uniform on [0, 1]. As-

sume that the X(i)’s (i = 1, 2, . . . , p) are continuous random variables, and F is the joint

distribution of X = (X(1), X(2), . . . , X(p)). The copula transformation of F or the copula

distribution of X is then given by

C(u) = F
(
F−1

1 (u(1)), F−1
2 (u(2)), . . . , F−1

p (u(p))
)
,

where u = (u(1), u(2), . . . , u(p)) ∈ [0, 1]p and F−1
i (u(i)) = inf{x : Fi(x) > u(i)} for all

i = 1, 2, . . . , p (see, e.g., Nelsen, 2007, for further discussion on copula). If C is the cumula-

tive distribution function of a uniform distribution on [0, 1]p, i.e., X(1), X(2), . . . , X(p) are

independent, it is called the uniform copula or the product copula, and it is denoted by

Π. On the other hand, if X(1), X(2), . . . , X(p) are comonotonic, i.e. there exist strictly in-

creasing functions fi’s and a random variable V such that X
D
= (f1(V ), f2(V ), . . . , fp(V )),

it is called the maximum copula and denoted by M. So, for every u ∈ [0, 1]p, we have

Π(u) =
∏p
i=1 u

(i) and M(u) = min{u(1), u(2), . . . , u(p)}.

Naturally, larger difference between C and Π indicates higher degree of dependence

among X(1), X(2), . . . , X(p). To measure the difference between two probability distribu-

tions P and Q on Rp, we use

γK(P,Q) = [EK(Y,Y∗) + EK(Z,Z∗)− 2EK(Y,Z)]
1
2 , (2.1)

where Y,Y∗
i.i.d.∼ P , Z,Z∗

i.i.d.∼ Q are independent, and K : Rp × Rp → R is a symmet-

ric, bounded, positive definite kernel. This measure is also called the maximum mean

discrepancy (MMD) between P and Q (see, e.g., Gretton et al., 2012). It is known that

γK is a pseudo-metric on the space of all probability distributions on Rp, and it is a met-

ric when K is a characteristic kernel (see, e.g., Fukumizu et al., 2009b). Gaussian kernel

Kσ(x,y) = exp
(
−‖x−y‖

2

2σ2

)
with a bandwidth parameter σ > 0 is a popular choice as a

characteristic kernel, and we shall use it throughout this thesis.

From the above discussion, it is clear that for any characteristic kernel K on [0, 1]p ×

[0, 1]p, one can use γK(C,Π) or γ2
K(C,Π) as a measure of dependence. In this thesis, we

use a scaled version of this measure given by

Iσ(X) = γKσ(C,Π)/γKσ(M,Π),

where γKσ(P,Q) denotes the MMD between two probability distributions P and Q com-

puted using the Gaussian kernel with bandwidth σ. Note that the denominator γKσ(M,Π)
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is strictly positive. So, Iσ(X) is well defined. The use of the Gaussian kernel makes the

measure Iσ(X) invariant under permutations and strictly monotone transformations of the

coordinate variables. This result is stated below.

Proposition 2.1. Iσ(X) is invariant under permutations and strictly monotone transfor-

mations of X(1), X(2), . . . , X(p).

From the definition of Iσ(X), it is clear that it takes the value 0 if and only if the

coordinates of X are independent, and its value is supposed to increase as the dependence

among X(1), X(2), . . . , X(p) increases. The following proposition shows that in case of ex-

treme dependence (i.e., when for each pair of variables, one is a strictly monotone function

of the other), it turns out to be 1.

Proposition 2.2. For all i = 2, 3, . . . , p, if X(i) is almost surely a strictly monotone

function of X(1), then Iσ(X) takes the value 1.

This desirable property of Iσ(X) helps us to properly assess the degree of dependence

among X(1), X(2), . . . , X(p). Note that many well-known dependency measures like the

copula based multivariate extensions of Spearman’s ρ, Kendall’s τ , Blomqvist’s β and

Hoeffding’s φ statistics (see, e.g., Úbeda-Flores, 2005; Nelsen, 1996; Gaißer et al., 2010)

do not have this property unless all monotone functions considered in Proposition 2.2 are

strictly increasing. We know that the distance correlation measure proposed by Székely

et al. (2007) can be expressed as a weighted squared distance between the characteristic

functions of two distributions. The following theorem shows that Iσ(X) also has a similar

property.

Theorem 2.1. Let ϕC and ϕΠ be the characteristic functions of C and Π, respectively.

Define Cσ,p = κ

(
σ
√
p

)
+ κp(σ) − 2

1∫
0

λp(u, σ) du, where κ(σ) =
√

2πσ

[
2Φ

(
1

σ

)
− 1

]
−

2σ2

[
1− exp

(
− 1

2σ2

)]
, λ(x, σ) =

√
2πσ

[
Φ
(
x
σ

)
+ Φ

(
1−x
σ

)
− 1
]

and Φ(·) is the cumulative

distribution function of the N(0,1) distribution. Then I2
σ(X) can be expressed as

I2
σ(X) = C−1

σ,p ·
(

σ√
2π

)p ∫
Rp

|ϕC(w)− ϕΠ(w)|2 exp

(
−σ

2

2
wᵀw

)
dw.

Another interesting property of Iσ(X) is its continuity. Note that if {Xn;n ≥ 1}

is a sequence of random vectors converging in distribution to X, then CXn (the copula
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distribution of Xn) converges to C weakly. So, using the dominated convergence theorem

(DCT), from Theorem 2.1 it follows that Iσ(Xn) converges to Iσ(X) as n increases. This

result is stated below.

Proposition 2.3. Let {Xn : n ≥ 1} be a sequence of p-dimensional random vectors

with continuous one-dimensional marginals. If Xn converges to X weakly, then we have

limn→∞ Iσ(Xn) = Iσ(X).

In the case of p = 2, Iσ(X) enjoys some additional properties. For instance, I2
σ(X) can

be viewed as a product moment correlation coefficient between two random quantities. If

X follows a bivariate normal distribution with correlation coefficient r, Iσ(X) turns out to

be a strictly increasing function of |r|. These results are asserted by the following theorem.

Theorem 2.2. Let X = (X(1), X(2)) be a bivariate random vector with continuous one-

dimensional marginals.

(a) Suppose that T1 = (T
(1)
1 , T

(2)
1 ) and T2 = (T

(1)
2 , T

(2)
2 ) are independent, and they follow

the distribution C, the copula distribution of X. For i = 1, 2, define

V (i) = Kσ(T
(i)
1 , T

(i)
2 )−E

[
Kσ(T

(i)
1 , T

(i)
2 )
∣∣∣T (i)

1

]
−E

[
Kσ(T

(i)
1 , T

(i)
2 )
∣∣∣T (i)

2

]
+EKσ(T

(i)
1 , T

(i)
2 ).

Then, we have I2
σ(X) = Cor(V (1), V (2)), which takes the value 1 if only if X(1) is

almost surely a strictly monotone function of X(2).

(b) If X follows a bivariate normal distribution with correlation coefficient r, then Iσ(X)

is a strictly increasing function of |r| with Iσ(X) ≤ |r|.

Another interesting property of Iσ(X) is its irreducibility. Following Schmid et al.

(2010), we call a dependency measure I irreducible if, for all p > 2, I(X(1), X(2), . . . , X(p)) is

not a function of the quantities {I(X(i1),X(i2), . . . ,X(ik)) : {i1, i2, . . . , ik} $ {1, 2, . . . , p}}.

Naturally, any reasonable multivariate measure of dependence is expected to be irreducible.

Note that if I(X(1), X(2), X(3)) gets completely determined by I(X(1), X(2)), I(X(2), X(3))

and I(X(3), X(1)), instead of mutual dependence among X(1), X(2) and X(3), it can only

detect pairwise dependence. The following theorem shows that any copula based multi-

variate dependency measure, which takes the value zero only for the uniform copula, is

irreducible.

Theorem 2.3. Let C be the copula distribution of X and I(X) =M(C) be a copula based

multivariate dependency measure. If M(C) = 0 implies C = Π, then I is irreducible.
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For any fixed bandwidth parameter σ, the irreducibility of our proposed measure Iσ(X)

follows from Theorem 2.3 as a corollary. However, this property vanishes when σ diverges

to infinity. In such a situation, the limiting value of Iσ(X) turns out to be the average of

squared Spearman’s rank correlation coefficients between
(
p
2

)
pairs of random variables as

stated in the following theorem.

Proposition 2.4. As σ diverges to infinity, I2
σ(X) converges to 1

(p2)

∑
1≤i<j≤p

Cor2(T (i), T (j)),

where T = (T (1), T (2), . . . , T (p)) ∼ C

2.2 Estimation of the proposed measure

Let x1,x2, . . . ,xn ∈ Rp be n independent observations on the random vector X. For any

fixed j = 1, 2, . . . , p and i = 1, 2, . . . , n, we define r
(j)
i as the rank of x

(j)
i (the j-th component

of xi) in the set {x(j)
1 , x

(j)
2 , . . . , x

(j)
n } to get ri = (r

(1)
i , r

(2)
i , . . . , r

(p)
i ), the coordinate-wise

rank of xi. For i = 1, 2, . . . , n, we use the normalized rank vectors yi = ri/n to define the

empirical version of the copula distribution C, which is given by

Cn(u) =
1

n

n∑
i=1

p∏
j=1

I[y(j)
i ≤ u

(j)],

where I is the indicator function. Clearly, Cn is the empirical distribution function based

on y1,y2, . . . ,yn. Similarly, we define empirical versions of the maximum copula and the

uniform copula as

Mn(u) =
1

n

n∑
i=1

p∏
j=1

I[u(j) ≥ i/n] and Πn(u) =

p∏
j=1

1

n

n∑
i=1

I[u(j) ≥ i/n],

respectively. While Mn puts the equal mass 1/n on each of the n points {(i/n, i/n, . . . , i/n) :

1 ≤ i ≤ n}, Πn assigns equal mass to np points of the form (i1/n, i2/n, . . . , ip/n) for

i1, i2, · · · , ip ∈ {1, 2, . . . , n}. We estimate Iσ(X) by its empirical analog

Îσ,n(X) = γKσ(Cn,Πn)/γKσ(Mn,Πn).

Note that Îσ,n(X) is well-defined since Mn 6= Πn for every n > 1. Unlike γKσ(M,Π),

γKσ(Mn,Πn) has a closed form expression, and this leads to a closed form expression for

Îσ,n(X) as well (see Equation (2.2)). Here one does not need to use the numerical integration

method or the statistical simulation technique for its computation. One can also check that



12 Chapter 2. Tests of Independence among Continuous Random Variables

from equation (2.1), it is easy to get the following expression for the proposed estimator

Îσ,n(X) =

√
s1 − 2s2 + v3

v1 − 2v2 + v3
, (2.2)

where s1 =
1

n2

n∑
i=1

n∑
j>i

Kσ(yi,yj) +
1

n
, s2 = 1

n

n∑
i=1

p∏
j=1

1
n

n∑
l=1

e
− 1

2

{
(l−ny(j)

i )/nσ
}2

,

v1 =
2

n2

n−1∑
i=1

(n− i)e−
p
2

(i/nσ)2

+
1

n
, v2 = 1

n

n∑
i=1

[
1
n

n∑
j=1

e−
1
2
{(i−j)/nσ}2

]p
and

v3 =

[
2

n2

n−1∑
i=1

(n− i)e−
1
2

(i/nσ)2

+
1

n

]p
.

The above formula shows that the computing cost of Îσ,n(X) is of the order O(pn2).

This estimate enjoys some nice theoretical properties similar to those of Iσ(X). Some of

these properties are mentioned below.

Proposition 2.5. Let Îσ,n(X) be the empirical version of Iσ(X) based on n independent

observations from the joint distribution of X(1), X(2), . . . , X(p).

(a) Îσ,n(X) is invariant under permutation and strictly monotone transformations of the

coordinate variables X(1), X(2), . . . , X(p).

(b) For all i = 2, 3, . . . , p, if X(i) is almost surely a strictly monotone function of X(1),

then Îσ,n(X) takes the value 1.

As we have mentioned before, other existing copula based dependency measures do not

have the property mentioned in part (b) of the above proposition. For instance, multivari-

ate extensions of Spearman’s ρ, Kendall’s τ , Blomqvist’s β and Hoeffding’s φ statistics

(see, e.g., Nelsen, 1996, 2002; Úbeda-Flores, 2005; Gaißer et al., 2010) may not take the

value 1 even when the measurement variables have monotone relationships among them.

To demonstrate this, we considered a simple example. We generated 10000 independent

observations on X = (X(1), X(2), . . . , X(p)), where X(i) = V or X(i) = −V depending on

i = 1, 2, . . . , p and V ∼ U(0, 1). Hence each pair of variables were monotonically related.

We considered three choices of p (p = 3, 4, 5), and for each value of p, results are reported in

Table 2.1 for different types of relationships shown in the orientation column. For example,

the (↑, ↑, ↓) sign in the orientation column indicates that (X(1), X(2), X(3)) = (V, V,−V ).

Table 2.1 clearly shows that all dependency measures considered here take the value 1 when

the relationships among the variables are strictly increasing. But, barring Îσ,n(X), all other

measures fail to have this property for other monotone relationships among the variables.

angsh
Highlight
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Table 2.1: Different measures of dependence for monotonically related variables.

Dimension Orientation Îσ,n(X) Spearman Kendall Blomqvist Hoeffding

3 (↑, ↑, ↑) 1.000 1.000 1.000 1.000 1.000
3 (↑, ↑, ↓) 1.000 -0.333 -0.333 -0.333 0.517
4 (↑, ↑, ↑, ↑) 1.000 1.000 1.000 1.000 1.000
4 (↑, ↑, ↑, ↓) 1.000 -0.091 -0.143 -0.143 0.382
4 (↑, ↑, ↓, ↓) 1.000 -0.212 -0.143 -0.143 0.327
5 (↑, ↑, ↑, ↑, ↑) 1.000 1.000 1.000 1.000 1.000
5 (↑, ↑, ↑, ↑, ↓) 1.000 0.016 -0.067 -0.067 0.347
5 (↑, ↑, ↑, ↓, ↓) 1.000 -0.108 -0.067 -0.067 0.236

Since Îσ,n(X) is based on coordinate-wise ranks of the observations, it is robust against

contamination and outliers generated from heavy-tailed distributions. Following the results

in Póczos et al. (2012), one can show that addition of a new observation can change its

value by at most O(n−1). Just like Iσ(X), its empirical analog Îσ,n(X) also enjoys some

additional properties for p = 2. The following theorem shows that a result analogous to

Theorem 2.2 holds for Îσ,n(X) as well.

Theorem 2.4. Suppose that y1,y2 . . . ,yn are normalized coordinate-wise ranks (as defined

in the beginning of Subsection 2.2) corresponding to bivariate observations x1,x2, . . . ,xn.

Define

v
(l)
i,j = Kσ(y

(l)
i , y

(l)
j )− 1

n

n∑
i=1

Kσ(y
(l)
i , y

(l)
j )− 1

n

n∑
j=1

Kσ(y
(l)
i , y

(l)
j ) +

1

n2

n∑
i,j=1

Kσ(y
(l)
i , y

(l)
j ).

for i, j = 1, 2, . . . , n and l = 1, 2. Then Îσ,n(X) can be expressed as

Îσ,n(X) =

n∑
i,j=1

v
(1)
i,j v

(2)
i,j√

n∑
i,j=1

(
v

(1)
i,j

)2 n∑
i,j=1

(
v

(2)
i,j

)2
.

As a consequence, we have 0 ≤ Îσ,n(X) ≤ 1, where Îσ,n(X) = 1 holds if and only if one

coordinate variable is a strictly monotone function of the other.

2.3 Test of independence based on Îσ,n(X)

We have seen that Iσ(X) serves as a measure of dependence among the coordinates of X.

It is non-negative, and takes the value 0 if and only if X(1), X(2), . . . , X(p) are independent.

So, we can use Îσ,n(X) as the test statistic and reject H0, the null hypothesis of mutual

independence, for large values of Îσ,n(X). The large sample distribution of our test statistic

is given by the following theorem.
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Theorem 2.5. Assume that the copula distribution C has continuous partial derivatives.

(a) If C = Π, then nÎ2
σ,n(X)

D−→
∞∑
i=1

λiZ
2
i , where the Zi’s are i.i.d. N(0, 1) and the λi’s

are some positive constants (see the proof in Section 2.6 for details on the λi’s).

(b) If C 6= Π, then
√
n(Îσ,n(X)− Iσ(X))

D−→ N(0, δ2); where

δ2 = γ−2
Kσ

(C,Π)

∫
[0,1]p

∫
[0,1]p

g(u)g(v) E[ dGC(u) dGC(v)], g(u) =

∫
[0,1]p

Kσ(u,v) d(C− Π)(v)

and GC is a 0 mean Gaussian process as defined in Theorem 2.9 in Section 2.6.

The histograms in Figures 2.1(a) and 2.1(b) show the empirical distributions of Îσ,n(X)

computed based on 5000 independent samples, each of size 200, generated from bivariate

normal distributions with correlation coefficient ρ0 = 0 and 0.5, respectively. For ρ0 = 0.5

(i.e., C 6= Π), while the empirical distribution looks like a normal distribution, for ρ0 = 0

(i.e., C = Π), it turns out to be positively skewed. This is consistent with the result stated

in Theorem 2.5.
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Figure 2.1: Empirical distribution of Îσ,n(X) with σ = 0.2 for standard bivariate normal
distribution with correlation coefficient 0 and 0.5 respectively.

One can notice that, the probability convergence of Îσ,n(X) follows from Theorem 2.5.

But, we also have a stronger result in this context, which is stated below.

Theorem 2.6. Îσ,n(X) converges to Iσ(X) almost surely as n tends to infinity.

From Theorem 2.6, it is clear that under the null hypothesis of independence, Îσ,n(X)

converges to 0 almost surely, while under the alternative, it converges to a positive constant.

For any fixed choice of σ, the large sample consistency of the test follows from it. However,

for practical implementation of the test, one needs to determine the cut-off. It is difficult

to find this cut-off based on the asymptotic null distribution of the test statistic mentioned

angsh
Highlight
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in Theorem 2.5. Gretton et al. (2008) proposed to approximate an infinite weighted sum

of independent chi-square random variables by a two parameter gamma distribution. In

such cases, one determines the exact mean and the exact variance of the null distribution

of nÎ2
σ,n(X) and then approximates the null distribution by a gamma distribution with the

same mean and the same variance. Exact mean and variance of nγ2
Kσ

(Cn,Πn) under H0 is

given in Appendix A, from which the exact mean and the exact variance of the null distri-

bution of nÎ2
σ,n(X) can be obtained by using a proper scaling. Instead of exact mean and

variance, sometimes asymptotic mean and variance of nÎ2
σ,n(X) are also considered. The

asymptotic mean and the asymptotic variance of nγ2
Kσ

(Cn,Πn) are also given in Appendix

A. However, instead of using gamma approximation, here we use the distribution-free prop-

erty of Îσ,n(X) to determine the cut-off. Note that under H0, for each j = 1, 2, . . . , p, we

have Pr[r
(j)
1 = i1, r

(j)
2 = i2, . . . , r

(j)
n = in] = 1/n! for any permutation (i1, i2, . . . , in) of

{1, 2, . . . , n}, and for different values of j, they are independent. So, we can easily generate

normalized coordinate-wise ranks under H0 and use them to compute the test statistic.

We repeat this procedure 10,000 times to approximate the (1 − α)-th quantile of the null

distribution of Îσ,n(X), which is then used as the cut-off. Note that this whole calculation

can be done off-line, and we can prepare a table of critical values for different choices n

and σ before handling the actual observations.

Though any fixed choice of σ leads to a consistent test (follows from Theorem 2.6), its

finite sample power may depend on this choice. The method commonly used for choosing

the bandwidth is based on “median heuristic” (see, e.g., Fukumizu et al., 2009a, Sec 5),

where one computes all pairwise distances among the observations and then the median

of those distances is used to select the bandwidth. Since we are using the kernel on the

normalized rank vectors y1,y2, . . . ,yn having the null distribution Πn, following the idea

of median heuristic, we can choose 2σ2 to be the median of ‖Z−Z∗‖2, where Z,Z∗
i.i.d.∼ Πn.

Note that the bandwidth chosen in this way is non-random function of n. We denote it by

σn. As n increases, since Πn converges to Π, 2σ2
n converges to the median of ‖Z − Z∗‖2,

where Z,Z∗
i.i.d∼ Π. The following theorem shows that our test remains consistent for a

such choice of the bandwidth.

Theorem 2.7. Consider a sequence of bandwidths {σn : n ≥ 1} converging to some

σ0 > 0. Then, under alternative hypothesis, power of the proposed test based on Îσn,n(X)

converges to 1 as the sample size n diverges to infinity.
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To evaluate the performance of our test based on this choice of bandwidth, we analyzed

some simulated data sets. For each example, we repeated our experiment 10000 times, and

the power of the test was estimated by the proportion of times it rejected H0. Powers were

also computed for the generalized versions of HSIC and dCov tests, known as the dHSIC

test (Pfister et al., 2018) and the JdCov test (Chakraborty and Zhang, 2019), respectively.

Since our proposed test is based on ranks, a rank version of the JdCov test (referred to as

the rank-JdCov test) was also used for comparison. Results are also reported for the tests

based on generalized versions of Hoeffding’s φ statistic (Gaißer et al., 2010) and Spearman’s

ρ statistic (Nelsen, 1996) (henceforth referred to as the Hoeffding test and the Spearman

test, respectively). For p = 2, we also used the HHG test proposed by Heller et al. (2013).

Brief descriptions of these tests are given in Appendix B. For the implementation of the

dHSIC test, we used the R package “dHSIC” (Pfister and Peters, 2019), where we used the

Gaussian kernel with the default bandwidth chosen using median heuristic. For JdCov and

rank-JdCov tests, we used the R codes provided by the authors. We considered the scale

invariant version of JdCov test and the U-statistics version of rank-JdCov test. Following

the suggestion of the authors, the value of the tuning parameter C was taken as 1. The

HHG test was implemented using the R package “HHG” (Brill and Kaufman, 2019). For

the Hoeffding test, the Spearman test and our proposed test, we used our own codes. For

our proposed tests, we created an R package ‘CGK’ containing all necessary codes. This

package is available at https://github.com/angshumanroycode/CGK. Throughout this

thesis, unless mentioned otherwise, all tests are considered to have 5% nominal level. In

all cases, cut-offs were computed using the permutation principle. For the permutation

method, keeping the first coordinate (variable) fixed, we randomly permuted the values

of the other coordinates (variables) to get a new set of observations x∗1,x
∗
2, . . . ,x

∗
n, where

x∗i =
(
x

(1)
i , x

(2)
π2(i), . . . , x

(p)
πp(i)

)
for i = 1, 2, . . . , n. Here π2, . . . ,πp are p − 1 independent

random permutations of {1, 2, . . . , n}. We computed the test statistic based on this new

set of observations and repeated this procedure several times (here we used 1000 repetitions)

to get an empirical distribution of the test statistic under H0. The upper α-th quantile

(we used α = 0.05) of this distribution was used as the cut-off. We computed powers of

different tests for different sample sizes and they are reported in Figure 2.2. In all examples,

these sample sizes were chosen in such a way that most of the tests had powers appreciably

different from the nominal level of 0.05 and unity.

https://github.com/angshumanroycode/CGK
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We began with two examples involving bivariate data. In the ‘Correlated Normal’

example, we generated observations from the bivariate normal distribution with correlation

coefficient 0.4 to get the two coordinate variables X(1) and X(2), respectively. In the

‘Hyperplane’ example, we took X(1) = U and X(2) = U + V , where U, V
i.i.d.∼ U(−1, 1). In

these two examples, dHSIC and HHG tests had somewhat inferior performance than their

competitors (see Figures 2.2(a) and 2.2(b)). All other tests, including our proposed test

based on Tn = Îσn,n(X) had almost similar powers.
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Figure 2.2: Powers of dHSIC ( ), JdCov ( ), rank-JdCov ( ), Hoeffding ( ), Spearman
( ), HHG ( ) tests and the proposed test based on Tn ( ), in ‘Correlated Normal’ and

‘Hyperplane’ examples.

Next we carried out our experiments with eight-dimensional versions of these data sets.

In the ‘Correlated Normal’ example, observations on X were generated from a 8-dimensional

normal distribution with the mean vector 0 and the dispersion matrix Σ = ((ai,j)), where

ai,j = 0.4|i−j| ∀ i, j = 1, 2, . . . , 8. In the ‘Hyperplane’ example, X(2), X(3), . . . , X(8) and

ε were independently generated from the U(−1, 1) distribution, and X(1) was defined as

X(1) = X(2) + X(3) + · · · + X(8) + ε. In these examples involving more than two random

vectors, the HHG test could not be used. Figures 2.2(c) and 2.2(d) show that in these two
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examples, our proposed test had the best performance, which was closely followed by the

rank-JdCov test. Unlike the two-dimensional examples, here the Spearman test could not

perform well. The dHSIC test also performed poorly in both examples. In the ‘Hyperplane’

example, the Hoeffding test and the JdCov test had somewhat inferior performance as well.

Along with these tests, we also considered the tests proposed by Póczos et al. (2012), where

the cut-offs were computed based on their suggested probability inequalities. But those

tests had much lower powers compared to all other tests considered here, and we decided

not to report those results in this thesis.

2.4 Multi-scale approach and aggregation of results

Though in the examples considered in Section 2.3, the bandwidth chosen using median

heuristic yielded good results, this may not always be the case. Our empirical experience

suggests that median heuristic performs well when the relationships among the variables

are nearly monotone (i.e., the conditional expectation of one variable given others is a non-

constant monotone functions of those variables). But in cases of complex non-monotone

relationships, the use of smaller bandwidths often yields better results. In such cases,

instead of median, one can use lower quantiles of pairwise distances.

To demonstrate this, we considered two simple examples involving bivariate data sets.

In one example, observations were generated from the ‘Two parabolas’-type distribution

mentioned in Newton (2009) (see Figure 2.5(e)) and in the other example, they were gen-

erated from a bivariate normal distribution with correlation coefficient 0.5. In each case,

we generated 25 observations and repeated the experiment 10000 times to estimate the

powers of the tests based on Îσ,n(X) for different choices of σ based on different quantiles

(0.01, 0.02, 0.05, 0.1, 0.2 and 0.5) of pairwise distances. Though the bandwidth based on

median of pairwise distances worked well in the second example, those based on smaller

quantiles had better results in the first (see Figure 2.3). Figure 2.3 clearly shows that de-

pending on the underlying distribution of X, sometimes we need to use larger bandwidth,

whereas sometimes smaller bandwidths may perform better. While larger bandwidths

successfully detect global linear or monotone relationships among the variables, smaller

bandwidths are useful for detecting non-monotone or local patterns. In order to capture

both types of dependence, borrowing the idea from computer vision (see, e.g. Lindeberg,

2013) and machine learning literature (see, e.g. Ghosh et al., 2006; Dutta et al., 2016),
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here we adopt a multi-scale approach, where we look at the results for several choices of

bandwidth and then aggregate them judiciously to come up with the final decision.
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Figure 2.3: Powers of the test based on Îσ,n(X) for bandwidths corresponding to dif-
ferent quantiles of pairwise distances.

Figures 2.4(a) and 2.4(b) show the observed p-values for different choices of the band-

width (based on quantiles of pairwise distances) when a sample of size 25 was generated from

bivariate normal distributions with correlation coefficient 0 and 0.5, respectively. Clearly,

these plots of p-values carry more information than just the final result. In the first case,

higher p-values for all choices of the bandwidth give a visual evidence in favor H0, while

smaller p-values for a long range of bandwidths in the second case indicates dependence

between the two coordinate variables. Also the pattern of p-values can reveal the structure

of dependence among the variables. For instance, smaller p-values for larger bandwidths

indicate that the relationship between the two variables is nearly monotone (like the case

here), while those for smaller bandwidths indicate complex, non-monotone relations.

One way of aggregating the results corresponding to m bandwidths σ(1), σ(2), . . . , σ(m)

is to use Tsum,n =
m∑
i=1

Îσ(i),n(X) or Tmax,n = max
1≤i≤m

Îσ(i),n(X) as the test statistic. Following

Sarkar and Ghosh (2018), one can also use another method based on false discovery rate

(FDR). Let pi be the p-value of the test based on σ(i) (for i = 1, 2, . . . ,m) and p(1) ≤

p(2) ≤ . . . ≤ p(m) be the corresponding order statistics. We reject H0 at level α if and

only if the set {i : p(i) < i α/m} is non-empty. Benjamini and Hochberg (1995) proposed

this method for controlling FDR for a set m independent tests. Later, Benjamini and

Yekutieli (2001) showed that it also controls FDR when the tests statistics are positively

regression dependent. Since we are testing the same hypothesis for different choices of the
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Figure 2.4: p-values of the test based on Îσ,n(X) for bandwidths corresponding to
different quantiles of pairwise distances.

bandwidth, this method controls the level of the test as well (see, e.g., Cuesta-Albertos

and Febrero-Bande, 2010). It is difficult to prove positive regression dependence among

the test statistics corresponding to different choices of bandwidth. However, all pairwise

correlations (computed over 10000 simulations) among these test statistics were found to be

positive in all of our numerical experiments. This gives an indication of positive regression

dependence among the test statistics and thereby provides an empirical justification for

using the above method. The following theorem shows the large sample consistency of the

multi-scale versions of our tests based on Tsum,n, Tmax,n and FDR.

Theorem 2.8. Under the alternative hypothesis, powers of the proposed tests based on

Tsum,n, Tmax,n and FDR converge to 1 as the sample size tends to infinity.

2.5 Results from the analysis of simulated and real data sets

We analyzed several simulated and real data sets to compare the performance of our pro-

posed tests based on Tsum,n, Tmax,n and FDR with some popular tests available in the

literature. In particular, we considered the tests used in Section 2.3 for comparison. For

the multi-scale versions of the proposed test, we started with the bandwidth based on

median heuristic (σn, say) and considered other bandwidths of the form (0.5)i × σn for

i = 1, 2, . . .. However, we did not consider any bandwidth smaller than one-third of the

fifth percentile of pairwise distances. The choice of this fraction ‘one-third’ was motivated

by the use of the Gaussian kernel, and following the idea of Ghosh et al. (2006), we chose
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the bandwidths at equal intervals in the logarithmic scale. Note that like the test based on

Tn, these multi-scale tests also have the distribution-free property. So, the cut-offs of all

these tests were computed based on 1000 random permutations as before.

2.5.1 Analysis of simulated data sets

We began with six examples involving six unusual bivariate distributions considered by

Newton (2009). Scatter plots of these data sets are displayed in Figure 2.5. For each

of these examples, we considered samples of different sizes, and for each sample size, the

experiment was repeated 1000 times to compute the powers of different tests. These powers

are reported in Figure 2.6.
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Figure 2.5: Observations from Newton (2009)’s six unusual bivariate distributions.

Note that in these six examples, X(1) and X(2) are uncorrelated. In ‘Four Clouds’ data,

they are independent as well. In this data set, almost all tests had powers close to the

nominal level of 0.05 (see Figure 2.6(a)). Only the test based on FDR had slightly low

powers, which is quite expected in view of the conservative nature of such tests.

In the next five examples, X(1) and X(2) are not independent. In the ‘W’ example, our

proposed test based on Tmax,n had the best overall performance followed by the test based

on FDR, the HHG test and the dHSIC test (see Figure 2.6(b)). Powers of all other tests

were much lower. JdCov, rank-JdCov, Spearman and Hoeffding tests failed to reject H0
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on almost all occasions. These four tests had zero power in the ‘Circle’ example as well

(see Figure 2.6(f)). In that example, the dHSIC test did not have satisfactory performance

either. But our proposed test based on Tmax,n and FDR had excellent performance. In cases

of ‘Parabola’ and ‘Two Parabolas’ examples, though the HHG test had the highest power,

our proposed tests also had competitive performance (see Figures 2.6(d) and 2.6(e)). Once

again, Spearman, Hoeffding, JdCov and rank-JdCov tests had much lower powers than

all other tests considered here. In the case of ‘Diamond’ example, the HHG test and the

dHSIC test outperformed all other competing methods (see Figure 2.6(c)). However, in

this example also, our proposed tests performed well. They had much higher powers than

the rest of the competitors.
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Figure 2.6: Powers of Tsum,n ( ), Tmax,n ( ), FDR ( ), dHSIC ( ), JdCov ( ), rank-JdCov ( ),
Hoeffding ( ), Spearman ( ) and HHG ( ) tests in Newton (2009)’s bivariate data sets.
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Figure 2.7: Powers of Tsum,n ( ), Tmax,n ( ), FDR ( ), dHSIC ( ), JdCov ( ), rank-JdCov
( ), Hoeffding ( ), and Spearman ( ) tests in eight-dimensional simulated data sets.

Next we carried out our experiments with some eight dimensional data sets, which

can be viewed as noisy multivariate extensions of the six bivariate data sets considered

above. For each of the six examples, we generated two independent observations from the

bivariate distribution, and then four independent N(0, 1) variables were added to them to

get a vector of dimension eight. In the case of ‘Four Clouds’ data set, again the test best

on FDR had powers slightly lower than 0.05, but those of all other tests were close to the

nominal level (see Figure 2.7(a)). Figure 2.7 clearly shows that in cases of ‘W’, ‘Parabola’
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and ‘Two Parabolas’ examples, our proposed tests and the rank-JdCov test had the best

overall performance among the tests considered here. In the ‘Circle’ example also, our

proposed tests outperformed all of their competitors. Only in the case of ‘Diamond’ data,

the dHSIC test performed better than them. Note that the dHSIC test needs the sample

size to be at least twice the dimension of the data (i.e., twice the number of coordinate

variables) for its implementation. So, it could not be used in some experiments. In such

cases, we considered its power to be zero.

In ‘Correlated Normal’ and ‘Hyperplane’ examples considered in Section 2.3, all multi-

scale methods had powers similar to that of test based on Tn. That is why they are not

reported separately. To have an overall comparison among the performance of the test

based on Tn and its multi-scale versions in these simulated data sets, we followed the idea

of Sarkar and Ghosh (2018). For a given data set and a given sample size, we defined the

efficiency score of a test as the observed power of the test divided by the power of the

best (among these four tests) test. So, the efficiency score of a test lies between 0 and 1,

where value closer to 1 indicates that the test is more efficient. These efficiency scores were

computed for the seven data sets (barring the ‘Four Clouds’ example, where the random

variables were independent) and sample sizes considered in Sections 2.3 and 2.4, and they

are presented using boxplots in Figure 2.8. This figure clearly shows us the necessity of the

multi-scale approach. Overall performance of all multi-scale methods was better than the

test based on Tn, especially in the case of p = 2. Among the multi-scale methods, the tests

based on Tmax,n had the best overall performance, followed by that based on FDR. Except

for a few cases, the test based on Tsum,n also had competitive performance, particularly in

cases of eight-dimensional data sets.

Next, we considered two interesting examples, where none of the lower dimensional

marginals have dependence among the coordinate variables. In Example E1, we generated

four independent U(−1, 1) variables U1, U2, U3, U4, and defined X(i) = Ui for i = 1, 2, . . . , 4

when
∏4
i=1 Ui ≥ 0. In Example E2, we generated U1, U2, U3, U4 independently from N(0, 1)

to define Xi = Ui sign(Ui+1) for i = 1, 2, 3 and X4 = U4 sign(U1). Note that tests based

on any dependency measure, which is not irreducible, will fail to detect the dependence

among the coordinate variables in these examples. In both of these examples, the JdCov

test had the highest power, but the rank-JdCov test performed miserably (see Figure 2.9).

Spearman and Hoeffding tests also had poor performance. The dHSIC performed well only
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Figure 2.8: Comparison between single-scale (based on Tn) and multi-scale (based on
Tsum,n, Tmax,n and FDR) tests using boxplots of efficiency scores.

in Example E1. But our proposed methods based on Tmax,n and FDR, particularly the

former one had good performance in these two examples.
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Figure 2.9: Powers of Tsum,n ( ), Tmax,n ( ), FDR ( ), dHSIC ( ), JdCov ( ), rank-
JdCov ( ), Hoeffding ( ), and Spearman ( ) tests in Examples E1 and E2.

2.5.2 Analysis of real data sets

We also analyzed two real data sets for further evaluation of our proposed methods. These

data sets, viz. the Combined Cycle Power Plant (CCPP) data and the Airfoil Self-noise

data, are available at the UCI Machine Learning Repository https://archive.ics.uci.

edu/ml/datasets/. Brief description of these data sets is given below.

https://archive.ics.uci.edu/ml/datasets/
https://archive.ics.uci.edu/ml/datasets/
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CCPP data contains 9568 observations from a combined cycle power plant over a period

of six years (2006-2011), when the plant was set to work with full load. Each observation

consists of hourly average values of ambient temperature, ambient pressure, relative hu-

midity, exhaust vacuum and electric energy output. The idea was to predict electric energy

output, which is dependent on other variables. When we used different methods to test for

the independence among these five variables, all of them rejected the null hypothesis even

for very small sample size. So, we removed the variable ‘electric energy output’ from our

analysis and carried out our experiment with the remaining four variables.

Airfoil self-noise data set comprises different size NACA 0012 airfoils at various wind

tunnel speeds and angles of attack. The span of the airfoil and the observer position were

the same in all of the experiments. Brooks et al. (1989) analyzed this data set to develop

a model for the scaled sound pressure level based on five input variables, viz. frequency,

angle of attack, chord length, free-stream velocity and suction side displacement thickness.

Here we want to know whether our tests can find dependence among these variables.
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Figure 2.10: Powers of Tn ( ), Tsum,n ( ), Tmax,n ( ), FDR ( ), dHSIC ( ), JdCov
( ), rank-JdCov ( ), Hoeffding ( ), and Spearman ( ) tests in real data sets.

In both of these examples, when we used the full data set for testing, all tests rejected

the null hypothesis. Based on that single experiment, it was not possible to compare among

different test procedure. So, following the idea of Sarkar and Ghosh (2018), for each data

set, we carried out our experiment with subsets of different sizes, and different tests were

compared based on their powers. These subsets were chosen randomly, and for each subset

size, the experiment was repeated 10000 times to compute the powers of different tests.

These powers are shown in Figure 2.10, which clearly shows that in both of these examples,
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our test based on Tn and its all three multi-scale analogs had excellent performance. The

rank-JdCov test also performed well in these examples. The JdCov test had comparable

power in CCPP data set, but not in Airfol Self-noise data set. Spearman and Hoeffding tests

did not have satisfactory powers in either of these data sets. The dHSIC test performed

better than them, but in both examples, it had lower power than our proposed tests.

2.6 Proofs and mathematical details

Proof of Proposition 2.1. For any permutation ξ on Rp, we have Kσ(ξ(x), ξ(y)) =

Kσ(x,y) and also, T ∼ Π implies ξ(T) ∼ Π. Using these, one gets

E(S,S∗)∼Cξ(X)⊗Cξ(X)
[Kσ(S,S∗)]=E(S,S∗)∼CX⊗CX

[Kσ(ξ(S), ξ(S∗))]=E(S,S∗)∼CX⊗CX
[Kσ(S,S∗)]

and E(S,T)∼Cξ(X)⊗Π[Kσ(S,T)] = E(S,T)∼CX⊗Π[Kσ(ξ(S), ξ(T))] = E(S,T)∼CX⊗Π[Kσ(S,T)].

From these, it follows that γKσ(Cξ(X),Π) = γKσ(C,Π) and hence Iσ(ξ(X)) = Iσ(X).

Now, consider any fixed set A ⊆ {1, 2, . . . , p} and a function f(x(1), x(2), . . . , x(p)) =

(f1(x(1)), f2(x(2)), . . . , fp(x
(p))) such that for each i ∈ A, fi : R 7→ R is strictly in-

creasing and for each i /∈ A, fi : R 7→ R is strictly decreasing. Also define a func-

tion g(x(1), x(2), . . . , x(p)) = (g1(x(1)), g2(x(2)), . . . , gp(x
(p))) with gi(x) = x ∀i ∈ A and

gi(x) = 1− x ∀i /∈ A. It can be easily verified that if S ∼ Cf(X) then g(S) ∼ CX. Applying

this and the fact that Kσ(S,S∗) = Kσ(g(S),g(S∗)), we get

E(S,S∗)∼Cf(X)⊗Cf(X)
[Kσ(S,S∗)] = E(S,S∗)∼Cf(X)⊗Cf(X)

[Kσ(g(S),g(S∗))]

= E(S,S∗)∼CX⊗CX
[Kσ(S,S∗)].

By similar argument and using the fact that T ∼ Π implies g(T) ∼ Π, one gets

E(S,T)∼Cf(X)⊗Π
[Kσ(S,T)] = E(S,T)∼Cf(X)⊗Π[Kσ(g(S),g(T))] = E(S,T)∼CX⊗Π[Kσ(S,T)].

Thus γKσ(Cf(X),Π) = γKσ(CX,Π), whence, Iσ(f(X)) = Iσ(X), proving the invariance of

Iσ(X) under strictly monotonic transformations of X(1), X(2), . . . , X(p).

Proof of Proposition 2.2. Let X be a random vector with continuous marginals, such

that for any j, each X(i), (i 6= j) is a strictly monotonic function of X(j). Then, by

Proposition 2.1, we have Iσ(X) = Iσ(Y) where Y = (X(j), X(j), . . . , X(j)). But then CY is

the maximum copula M. So, by definition, Iσ(Y) = 1.
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Proof of Theorem 2.1. It has two steps. At the first step, we prove Cσ,p = γ2
Kσ

(M,Π).

At the second step, we prove γ2
Kσ

(C,Π) =
(

σ√
2π

)p ∫
Rp
|ϕC(w)−ϕΠ(w)|2 exp

(
−σ2

2 wᵀw
)
dw.

Clearly, proving these two steps will complete the proof.

First step: Note that for (S,S∗,T,T∗) ∼ M⊗M⊗Π⊗Π, we have

γ2
Kσ(M,Π) = E[Kσ(S,S∗)]− 2E[Kσ(S,T)] + E[Kσ(T,T∗)]

=

1∫
0

1∫
0

e−
p(u−v)2

2σ2 du dv − 2

1∫
0

 1∫
0

e−
(u−v)2

2σ2 du

p dv +

 1∫
0

1∫
0

e−
(u−v)2

2σ2 du dv

p

= κ

(
σ
√
p

)
− 2

1∫
0

λp(u, σ) du+ κp(σ) = Cσ,p.

Second step: We use the well-known formula for Fourier transform of the d-dimensional

Gaussian density:

exp

(
− 1

2σ2
xᵀx

)
=

∫
Rp

e−
√
−1xᵀw ·

(
σ√
2π

)p
exp

(
−σ

2

2
wᵀw

)
dw, x ∈ Rp.

This gives us

Kσ(x,y) =

(
σ√
2π

)p ∫
Rp

e−
√
−1xᵀw · e

√
−1yᵀw exp

(
−σ

2

2
wᵀw

)
dw, x,y ∈ Rp.

Using the representation of γ2
K from equation (2.1) and Fubini’s theorem, one gets

γ2
Kσ(C,Π) =

(
σ√
2π

)p ∫
Rp

[
ϕC(w)ϕC(w) + ϕΠ(w)ϕΠ(w)

− 2ϕC(w)ϕΠ(w)
]

exp

(
−σ

2

2
wᵀw

)
dw,

from which the second part follows.

Lemma 2.1. Let (X,Y) and (X∗,Y∗) be independent and identically distributed random

vectors taking values in X ×Y. Given symmetric measurable functions k : X ×X → R and

k : Y × Y → R, define

V = k(X,X∗)− E
[
k(X,X∗)

∣∣∣X]− E
[
k(X,X∗)

∣∣∣X∗]+ E [k(X,X∗)]

W = k(Y,Y∗)− E
[
k(Y,Y∗)

∣∣∣Y]− E
[
k(Y,Y∗)

∣∣∣Y∗]+ E
[
k(Y,Y∗)

]
.

Then, we have E [VW ] = E
[
k(X,X∗) k(Y,Y∗)

]
−2 E

[
E
[
k(X,X∗)

∣∣∣X]E
[
k(Y,Y∗)

∣∣∣Y] ]
+ E [k(X,X∗)] E

[
k(Y,Y∗)

]
.

Proof. The proof is based on expanding the product VW and then taking term-by-term

expectations. One and only one term gives E
[
k(X,X∗) k(Y,Y∗)

]
. The seven terms,
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where at least one of E [k(X,X∗)] or E
[
k(Y,Y∗)

]
appear as a factor, and the two terms

E
[
k(X,X∗)

∣∣∣X] · E [ k(Y,Y∗)
∣∣∣Y∗] and E

[
k(X,X∗)

∣∣∣X∗] · E [ k(Y,Y∗)
∣∣∣Y], will all give

the same expectation E [k(X,X∗)] E
[
k(Y,Y∗)

]
(the last two because of independence of

(X,Y) and (X∗,Y∗)). Taking into account the signs of these nine terms with the same ex-

pectation, we would be left with just one with a positive sign. Next, the remaining six terms

will all have the same expectation, namely, E
[
E
[
k(X,X∗)

∣∣∣X]E
[
k(Y,Y∗)

∣∣∣Y]]. For two

of the terms, this is straightforward. But the other four terms need judicious use of proper-

ties of conditional expectation. For example, by independence of (X,Y) and (X∗,Y∗),

we have E
[
k(Y,Y∗)

∣∣∣Y] = E
[
k(Y,Y∗)

∣∣∣(X,Y)
]

and similarly E
[
k(X,X∗)

∣∣∣(X,Y)
]

=

E
[
k(X,X∗)

∣∣∣X]. Using these, we get

E
[
k(X,X∗)E

[
k(Y,Y∗)

∣∣∣Y] ] = E
[
k(X,X∗)E

[
k(Y,Y∗)

∣∣∣(X,Y)
] ]

= E
[

E
[
k(X,X∗)

∣∣(X,Y)
]

E
[
k(Y,Y∗)

∣∣∣(X,Y)
] ]

= E
[

E
[
k(X,X∗)

∣∣X]E
[
k(Y,Y∗)

∣∣∣Y] ] .
One can similarly handle other three terms. Considering the signs of these six terms

with the same expectation, one is left with −2E
[
E
[
k(X,X∗)

∣∣X]E
[
k(Y,Y∗)

∣∣∣Y]]. This

completes the proof.

Proof of Theorem 2.2. (a) By definition, V (1) and V (2) have zero means. Using Lemma

2.1 with kernels k = k = Kσ on X = Y = Rp, we get

Cov[V (1), V (2)] = E[V (1)V (2)]

= E
[
Kσ(T

(1)
1 , T

(1)
2 )Kσ(T

(2)
1 , T

(2)
2 )
]

+ E
[
Kσ(T

(1)
1 , T

(1)
2 )
]

E
[
Kσ(T

(2)
1 , T

(2)
2 )
]

− 2 E
[
E
[
Kσ(T

(1)
1 , T

(1)
2 )
∣∣∣T (1)

1

]
E
[
Kσ(T

(2)
1 , T

(2)
2 )
∣∣∣T (2)

1

]]
= γ2

Kσ(C(X(1),X(2)),Π).

Similarly, one can show that Var[V (1)] = Var[V (2)] = γ2
Kσ

(M,Π) and hence I2
σ(X) =

Cor[V (1), V (2)]. The inequality Iσ(X(1), X(2)) ≤ 1 follows from it. Now, from the condition

for equality in Cauchy-Schwartz inequality and the fact that V (1) and V (2) are identically

distributed, it follows that Iσ(X(1), X(2)) = 1 if and only if V (1) = V (2) almost surely.

Since T
(1)
1 and T

(1)
2 are independent and uniformly distributed random variables on [0, 1]

and so also are T
(2)
1 and T

(2)
2 , it follows that V (1) = V (2) (a.s.) if and only if g(T

(1)
1 , T

(1)
2 ) =
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g(T
(2)
1 , T

(2)
2 ) (a.s.), where g(x, y) = Kσ(x, y) − λ(x, σ) − λ(y, σ) with λ(·, σ) as defined in

Theorem 2.1.

Now, using the facts that (T
(1)
1 , T

(2)
1 ) and (T

(1)
2 , T

(2)
2 ) are independent and identically

distributed with values in [0, 1]2 and that the function g is uniformly continuous on the

compact set [0, 1]2, one can easily deduce that g(T
(1)
1 , T

(1)
2 ) = g(T

(2)
1 , T

(2)
2 ) a.s. implies

g(T
(1)
1 , T

(1)
1 ) = g(T

(2)
1 , T

(2)
1 ) a.s. But, this, in turn, implies that

Φ

(
T

(1)
1

σ

)
+ Φ

(
1− T (1)

1

σ

)
= Φ

(
T

(2)
1

σ

)
+ Φ

(
1− T (2)

1

σ

)
almost surely.

.From this, we get Pr
[
T

(2)
1 = T

(1)
1 or T

(2)
1 = 1− T (1)

1

]
= 1 and Pr

[
λ(T

(1)
1 , σ) = λ(T

(2)
1 , σ)

]
=

1. Of course, the same would be true for the pair (T
(1)
2 , T

(2)
2 ), which is moreover independent

of the pair (T
(1)
1 , T

(2)
1 ).

Using these in the equality g(T
(1)
1 , T

(1)
2 ) = g(T

(2)
1 , T

(2)
2 ) a.s., one obtainsKσ(T

(1)
1 , T

(1)
2 ) =

Kσ(T
(2)
1 , T

(2)
2 ) a.s., which implies that |T (1)

1 −T (1)
2 | = |T

(2)
1 −T (2)

2 | a.s. So, we conclude that

either T
(2)
1 = T

(1)
1 a.s. or T

(2)
1 = 1−T (1)

1 a.s. Thus the copula distribution of (X(1), X(2)) is

either the distribution of (T
(1)
1 , T

(1)
1 ) or that of (T

(1)
1 , 1−T (1)

1 ), where T
(1)
1 is uniformly dis-

tributed on [0, 1]. Therefore, X(1) and X(2) are almost surely strictly monotone functions

of each other.

(b) For |r| < 1, let φr denote the density of the standard bivariate normal distribution with

correlation coefficient r. Also, let Φ and φ denote respectively the cumulative distribution

function and the density function of the standard univariate normal distribution. It is well-

known that the copula distribution of any bivariate normal distribution with correlation

coefficient r is the same as that of the standard bivariate normal distribution with the same

correlation coefficient. Using the well-known Mehler’s representation (see Kibble (1945),

Page 1) of standard bivariate normal density with correlation r, one then gets that for

|r| < 1, the copula distribution C(r) of any bivariate normal distribution with correlation

coefficient r has density the given by

φr(Φ
−1(u),Φ−1(v))

φ(Φ−1(u))φ(Φ−1(v))
=

∞∑
i=0

ri

i!
Hi((Φ

−1(u))Hi(Φ
−1(v)), (u, v) ∈ [0, 1]2,

where {Hi(x), i ≥ 0} are the well-known Hermite polynomials. Using this, we get that if

(S,T) ∼ C(r1)⊗ C(r2) with |r1| < 1, |r2| < 1, then
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E[Kσ(S,T)] =

∫
[0,1]4

e−
(s1−t1)2+(s2−t2)2

2σ2

∞∑
i=0

ri1
i!
Hi(Φ

−1(s1))Hi(Φ
−1(s2))

×
∞∑
j=0

rj2
j!
Hj(Φ

−1(t1))Hj(Φ
−1(t2)) ds1 ds2 dt1 dt2 (2.3)

We now claim that in the above expression, the double summation and integration can

be interchanged. To justify this, we recall that the Hermite polynomials {Hi(·), i ≥ 0} form

a complete orthonormal basis for L2(R, φ(x)dx) and, in particular, for any i ≥ 0,

1∫
0

∣∣Hi(Φ
−1(s))

∣∣ ds =

∫
R

|Hi(x)|φ(x) dx ≤

∫
R

H2
i (x)φ(x) dx

 1
2

= 1.

. As a consequence, we have

∞∑
i=0

∞∑
j=0

∫
[0,1]4

∣∣∣∣e− (s1−t1)2+(s2−t2)2

2σ2

∣∣∣∣
∣∣∣∣∣ri1rj2i!j!

∣∣∣∣∣ ∣∣Hi(Φ
−1(s1))

∣∣ ∣∣Hi(Φ
−1(s2))

∣∣
×
∣∣Hj(Φ

−1(t1))
∣∣ ∣∣Hj(Φ

−1(t2))
∣∣ ds1 ds2 dt1 dt2

≤
∞∑
i=0

∞∑
j=0

1

i!j!

 1∫
0

∣∣Hi(Φ
−1(s))

∣∣ ds
2  1∫

0

∣∣Hj(Φ
−1(t))

∣∣ dt
2

≤
∞∑
i=0

∞∑
j=0

1

i!j!
<∞.

Therefore we can interchange the double summation and integration on the right-hand-

side of the equation (2.3) above to obtain that, for any r1, r2 with |r1| < 1, |r2| < 1,

E(S,T)∼C(r1)⊗C(r2)[Kσ(S,T)] =
∞∑
i=0

∞∑
j=0

ai,jr
i
1r
j
2,

where ai,j :=
1

i!j!

 ∫
[0,1]2

e−
(u−v)2

2σ2 Hi(Φ
−1(s))Hj(Φ

−1(t)) ds dt


2

=
1

i!j!

∫
R2

e−
(Φ(x)−Φ(y))2

2σ2 Hi(x)Hj(y)φ(x)φ(y) dx dy

2

. (2.4)

Observe that ai,j ≥ 0, ai,j = aj,i and also, (i!j!)ai,j ≤
[∫
R
|Hi(x)|φ(x) dx

]2

≤ 1. Note that

for any bivariate normal random vector (X(1), X(2)) with correlation coefficient r (where

|r| < 1), we have γ2
Kσ

(C(X(1),X(2)),Π) = γ2
Kσ

(C(r), C(0)), which equals

E
(S,S∗)∼C(r)⊗C(r)

[Kσ(S,S∗)]− 2E
(S,T)∼C(r)⊗C(0)

[Kσ(S,T)] + E
(T,T∗)∼C(0)⊗C(0)

[Kσ(T,T∗)]

=
∞∑
k=0

∑
i,j≥0
i+j=k

ai,jr
k − 2

∞∑
k=0

ak,0 r
k + a0,0 =

∞∑
k=1

∑
i,j≥1
i+j=k

ai,j r
k =

(a)

∞∑
k=1

∑
i,j≥1
i+j=2k

ai,j r
2k.

Equality (a) is due to the fact that the ith Hermite polynomial Hi is an even or an odd
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function according as i is even or odd, so that if exactly one of i and j is odd, then ai,j = 0,

as can easily be seen from equation (2.4). Therefore, we have

I2
σ(X(1), X(2)) = γ−2

Kσ
(M,Π)γ2

Kσ(C(X(1),X(2)),Π) = γ−2
Kσ

(M,Π)
∞∑
k=1

∑
i,j≥1,i+j=2k

ai,j r
2k.

So, I2
σ(X(1), X(2)) = r2g(r), where g(r) = γ−2

Kσ
(M,Π)

∞∑
k=1

∑
i,j≥1: i+j=2k

ai,j r
2(k−1) is a power

series in r2 with positive coefficients and hence increasing in |r|. So, I2
σ(X(1), X(2)) = r2·g(r)

is an increasing function of |r|.

Proof of Theorem 2.3. It is enough to show that for every dimension p (≥ 3), there exist

two p dimensional copulas C1 and C2 with M(C1) 6= M(C2), such that for any choice of

coordinates {i1, i2, . . . , ik} $ {1, 2, . . . , p}, if C
′
1 and C

′
2 are the associated marginal copulas

arising out of of C1 and C2, then M(C
′
1) =M(C

′
2).

Take C1 to be the p-dimensional uniform copula Π. ThenM(C1) = 0, and also for any

lower dimensional marginal copula C
′
1 of C1, M(C

′
1) = 0. We now exhibit a p-dimensional

copula C2 6= Π such that any lower dimensional marginal copula C
′
2 of C2 is uniform copula.

We would then have M(C1) = 0 6=M(C2) but M(C
′
1) =M(C

′
2) = 0, which will complete

the proof.

We take C2 to be the copula given by the copula density C2 defined as

C2(u(1), u(2), . . . , u(p)) = 2 I
[(
u(1) − 1

2

)(
u(2) − 1

2

)
· · ·
(
u(p) − 1

2

)
≥ 0

]
,

where I denotes the indicator function. To show that all lower dimensional marginal copulas

of C2 are uniform, it is enough to show that the marginal copula C
′
2 that we get from C2

discarding the p-th coordinate, is uniform. Now, note that the density of C
′
2 is given by

C′2(u(1), u(2), · · · , u(p−1)) =

1∫
0

2I
[(
u(1) − 1

2

)(
u(2) − 1

2

)
· · ·
(
u(p) − 1

2

)
≥ 0

]
du(p)

=

1
2∫

0

2I
[(
u(1) − 1

2

)(
u(2) − 1

2

)
· · ·
(
u(p−1) − 1

2

)
≤ 0

]
du(p)

+

1∫
1
2

2I
[(
u(1) − 1

2

)(
u(2) − 1

2

)
· · ·
(
u(p−1) − 1

2

)
≥ 0

]
du(p)

= I
[(
u(1) − 1

2

)(
u(2) − 1

2

)
· · ·
(
u(p−1) − 1

2

)
≤ 0

]
+ I
[(
u(1) − 1

2

)(
u(2) − 1

2

)
· · ·
(
u(p−1) − 1

2

)
≥ 0

]
= 1. �
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Proof of Proposition 2.4. We shall prove that σ4γ2
Kσ

(C,Π) →
∑

1≤i<j≤p
Cov2(T (i), T (j))

as σ →∞. It will imply that σ4γ2
Kσ

(M,Π)→
(
p
2

)
Var2(T (1)) as σ →∞, which in turn will

lead to our desired result

I2
σ(X) =

σ4γ2
Kσ

(C,Π)

σ4γ2
Kσ

(M,Π)
→ 1(

p
2

) ∑
1≤i<j≤p

Cov2(T (i), T (j))

Var2(T (1))
=

1(
p
2

) ∑
1≤i<j≤p

Cov2(T (i), T (j))

Var(T (i))Var(T (j))

=
1(
p
2

) ∑
1≤i<j≤p

Cor2(T (i), T (j)) as σ →∞.

Observe that EKσ(T,S) = 1− 1
2σ2 E‖T− S‖22 + 1

8σ4 E‖T− S‖42 +O
(

1
σ6

)
. Assume that

T,T∗,S and S∗ are four random vectors such that (T,T∗,S,S∗) ∼ C⊗C⊗Π⊗Π. Then,

γ2
Kσ(C,Π) = EKσ(T,T∗)− 2EKσ(T,S) + EKσ(S,S∗)

= − 1

2σ2
E
[
‖T−T∗‖2 + ‖S− S∗‖2 − 2‖T− S‖2

]
+

1

8σ4
E
[
‖T−T∗‖4 + ‖S− S∗‖4 − 2‖T− S‖4

]
+O

(
1

σ6

)
.

Now, E
[
‖T−T∗‖2 + ‖S− S∗‖2 − 2‖T− S‖2

]
= E

p∑
i=1

[
(T (i) − T (i)

∗ )2 + (S(i) − S(i)
∗ )2 − 2(T (i) − S(i))2

]
= 0 and

E
[
‖T−T∗‖4 + ‖S− S∗‖4 − 2‖T− S‖4

]
= E

p∑
i=1

[
(T (i) − T (i)

∗ )4 + (S(i) − S(i)
∗ )4 − 2(T (i) − S(i))4

]
+ 2E

∑
1≤i<j≤p

[
(T (i) − T (i)

∗ )2(T (j) − T (j)
∗ )2 + (S(i) − S(i)

∗ )2(S(j) − S(j)
∗ )2

− 2(T (i) − S(i))2(T (j) − S(j))2
]

= 2E
∑

1≤i<j≤p

[
(T (i) − T (i)

∗ )2(T (j) − T (j)
∗ )2 + (S(i) − S(i)

∗ )2(S(j) − S(j)
∗ )2

− 2(T (i) − S(i))2(T (j) − S(j))2
]
.

Hence, we have

γ2
Kσ(C,Π) =

1

4σ4
E

∑
1≤i<j≤p

[
(T (i) − T (i)

∗ )2(T (j) − T (j)
∗ )2 + (S(i) − S(i)

∗ )2(S(j) − S(j)
∗ )2

− 2(T (i) − S(i))2(T (j) − S(j))2
]

+O
(

1

σ6

)
.

Now, using some straight-forward but tedious calculations, it can be shown that

E
[
(T (i)− T (i)

∗ )2(T (j)− T (j)
∗ )2 + (S(i)−S(i)

∗ )2(S(j)−S(j)
∗ )2− 2(T (i)−S(i))2(T (j)−S(j))2

]
=

4Cov2(T (i), T (j)). This implies that σ4γ2
Kσ

(C,Π)→
∑

1≤i<j≤p
Cov2(T (i), T (j)) as σ →∞.
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Proof of Proposition 2.5. (a) Clearly, applying a permutation to the coordinates of the

observation vectors xi, i = 1, 2, . . . , n, changes the coordinates of the normalized rank

vectors yi’s by the same permutation. Since s1 and s2 from Equation (2.2) are both

invariant under permutation of coordinates of the yi’s, the proof is complete.

For proving invariance under monotonic transformation, it is enough to consider the

case when only one of the coordinates in the observation vectors is changed by a strictly

monotonic non-constant transformation. Therefore, assume that only the s-th coordinate

of the xi’s is changed by a strictly monotonic transformation, while the other coordinates

are kept the same. This will affect only the s-th coordinate of the yi’s. Denoting the

changed yi’s as y∗i ’s, it is clear that y
∗(s)
i will equal y

(s)
i or 1+ 1

n −y
(s)
i for all i = 1, 2, . . . , n,

according as the transformation is strictly increasing or strictly decreasing. In either case,

Kσ(y∗i ,y
∗
j ) = Kσ(yi,yj), so that s1 in Equation (2.2) remains unchanged. One can easily

see that s2 also remains unchanged as well.

(b) Without loss of generality, we may assume that the first coordinates of the xi’s are

in ascending order. Now, suppose that every other coordinate of the xi’s is in a strictly

monotonic relation with the first coordinate; then, for j = 2, 3, . . . , p, the j-th coordinates

of the xi’s will be in either ascending or descending order. By monotonic transformation

invariance property, we may assume, without loss of generality, that all the coordinates of

the xi’s are in ascending order. But then, the yi’s are clearly given by y
(j)
i = i

n , for all j

and one can then see that s1 = v1 and s2 = v2, whence it follows that Îσ,n(X) = 1.

Proof of Theorem 2.4. For independent random vectors (T
(1)
1 , T

(2)
1 ) and (T

(1)
2 , T

(2)
2 ) both

having distribution Cn, one has

γ2
Kσ(Cn,Πn) =E

[
Kσ(T

(1)
1 , T

(1)
2 )Kσ(T

(2)
1 , T

(2)
2 )
]

− 2E
[
E
[
Kσ(T

(1)
1 , T

(1)
2 )
∣∣∣T (1)

1

]
E
[
Kσ(T

(2)
1 , T

(2)
2 )
∣∣∣T (2)

1

]]
+ E

[
Kσ(T

(1)
1 , T

(1)
2 )
]

E
[
Kσ(T

(2)
1 , T

(2)
2 )
]
.

Using the above, and from Lemma 2.1, we get γ2
Kσ

(Cn,Πn) = E[V (1)V (2)], where

V (i) = Kσ(T
(i)
1 , T

(i)
2 )−E

[
Kσ(T

(i)
1 , T

(i)
2 )
∣∣∣T (i)

1

]
−E

[
Kσ(T

(i)
1 , T

(i)
2 )
∣∣∣T (i)

2

]
+ E

[
Kσ(T

(i)
1 , T

(i)
2 )
]

for i = 1, 2. Thus, we have γ2
Kσ

(Cn,Πn) = 1
n2

∑
1≤i,j≤n

v
(1)
i,j v

(2)
i,j . Similarly, one can show that

γ2
Kσ

(Mn,Πn) = 1
n2

∑
1≤i,j≤n

(
v

(1)
i,j

)2
= 1

n2

∑
1≤i,j≤n

(
v

(2)
i,j

)2
.
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Cauchy-Schwartz inequality immediately gives Îσ,n(X)2 ≤ 1. Further, by the necessary

and sufficient condition for equality in the Cauchy-Schwartz inequality and using the fact

that
∑

1≤i,j≤n

(
v

(1)
i,j

)2
=
∑

1≤i,j≤n

(
v

(2)
i,j

)2
, one gets that Îσ,n(X) = 1 if and only if v

(1)
i,j = v

(2)
i,j ∀ i, j.

Now, if one coordinate of the observation vectors is a monotone function of the other

coordinate, then either y
(2)
i = y

(1)
i ∀ i or y

(2)
i = n+1

n − y
(1)
i ∀ i. In either case, |y(1)

i − y
(1)
j | =

|y(2)
i − y

(2)
j | ∀ i, j, which will clearly imply that v

(1)
i,j = v

(2)
i,j ∀ i, j.

To prove the converse, first observe that for any i,

n∑
l=1

Kσ(y
(1)
i , y

(1)
l ) =

n∑
l=1

Kσ(y
(1)
l , y

(1)
i ) =

n∑
l=1

Kσ(y
(1)
i , l/n) and

n∑
l=1

Kσ(y
(2)
i , y

(2)
l ) =

n∑
l=1

Kσ(y
(2)
l , y

(2)
i ) =

n∑
l=1

Kσ(y
(2)
i , l/n).

Now suppose that v
(1)
i,j = v

(2)
i,j ∀ i, j. Then, taking i = j, one deduces that

n∑
l=1

Kσ(y
(1)
i , l/n) =

n∑
l=1

Kσ(y
(2)
i , l/n) ∀ i ∈ {1, 2, . . . , n}. (2.5)

Using this now in v
(1)
i,j = v

(2)
i,j , one gets

Kσ(y
(1)
i , y

(1)
j ) = Kσ(y

(2)
i , y

(2)
j ), i.e., |y(1)

i − y
(1)
j | = |y

(2)
i − y

(2)
j | ∀ i, j. (2.6)

We now claim that for i, i
′ ∈ {1, 2, . . . , n},

n∑
l=1

Kσ(i/n, l/n) =
n∑
l=1

Kσ(i
′
/n, l/n) if and only

if either i
′

= i or i
′

= n+ 1− i. The ‘if’ part is easy to see; if i
′

= n+ 1− i, the equality is

obtained by observing that Kσ(i
′
/n, j/n) = Kσ(i/n, (n+ 1− j)/n) ∀ j and then making a

change of variable (j 7→ n+1−j) in the summation. The ‘only if’ part can now be completed

by observing that whenever i < n + 1 − i,
n∑
l=1

Kσ((i + 1)/n, l/n) −
n∑
l=1

Kσ(i/n, l/n) =

e−
i2

2n2σ2 − e−
(n−i)2

2n2σ2 > 0, implying that
n∑
l=1

Kσ(i/n, l/n) is strictly increasing in i whenever

i < n+ 1− i.

Using this, (2.5) implies that for each i, we have either y
(2)
i = y

(1)
i or y

(2)
i = 1+ 1

n −y
(1)
i .

Next, let i be such that y
(1)
i = 1/n. We know that either y

(2)
i = y

(1)
i or y

(2)
i = 1+1/n−y(1)

i .

Suppose first that y
(2)
i = y

(1)
i . Now, take any j 6= i. We know y

(2)
j equals either y

(1)
j or

1+1/n−y(1)
j . But then (2.6) rules out the possibility that y

(2)
j = 1+1/n−y(1)

j . Thus we have

y
(2)
j = y

(1)
j for all j. Similarly, if y

(2)
i = 1+1/n−y(1)

i , one can show that y
(2)
j = 1+1/n−y(1)

j

for all j. Thus we conclude that either y
(2)
j = y

(1)
j ∀ j or y

(2)
j = 1 + 1/n− y(1)

j ∀ j. But this

means that one coordinate of the observation vectors is either an increasing or a decreasing

function of the other coordinate.
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The following well-known result, which can be found in Tsukahara (2005), is crucial

in our derivation of the limiting distributions of Îσ,n(X) in both under the null and the

alternative hypotheses.

Theorem 2.9 (Weak convergence of copula process). Let x1,x2, . . . ,xn be independent

observations on the random vector X with copula distribution C and let Cn be the empir-

ical copula based on x1,x2, . . . ,xn. If for all i = 1, 2, . . . , p, the i-th partial derivatives

DiC(u) of C exist and are continuous, then the process
√
n(Cn − C) converges weakly in

l∞([0, 1]p) to the process GC given by GC(u) = BC(u) −
∑p

i=1DiC(u)BC(u(i)), where BC

is a p-dimensional Brownian bridge on [0, 1]p with covariance function E[BC(u)BC(v)] =

C(u)∧C(v)−C(u)C(v), and for each i, u(i) denotes the vector obtained from u by replacing

its all coordinates, except the i-th one, by 1.

For i = 1, 2, . . . , n, define vectors zi = (z
(1)
i , z

(2)
i , . . . , z

(p)
i ) such that for j = 1, 2, . . . , p,

z
(j)
i = Fj(x

(j)
i ). Denote the empirical distribution based on z1, z2, . . . , zn by Cz,n.

Lemma 2.2. Assume that {Pn}n≥1 is a sequence of distributions over [0, 1]p. Then

1.
∣∣γ2
Kσ

(Πn, Pn)− γ2
Kσ

(Π, Pn)
∣∣ = O(n−2)

2.
∣∣γ2
Kσ

(Mn, Pn)− γ2
Kσ

(M, Pn)
∣∣ = O(n−2).

Proof. We prove the first part only. The proof of the second part is similar.∣∣γ2
Kσ(Πn, Pn)− γ2

Kσ(Π, Pn)
∣∣ ≤ ∣∣∣E(S,S∗)∼Πn⊗Πn

[Kσ(S,S∗)]− E
(S,S∗)∼Π⊗Π

[Kσ(S,S∗)]
∣∣∣

+ 2ET∼Pn

∣∣ES∼Πn
[Kσ(S,T)]− ES∼Π

[Kσ(S,T)]
∣∣ .

One can notice that the first term on the right hand side of the above inequality is

bounded above by

1

n2p

∑
µ=(i1/n,i2/n,...,ip/n)

1≤i1,i2,...,ip≤n

∑
ν=(j1/n,j2/n,...,jp/n)

1≤j1,j2,...,jp≤n

∫
[µ−1/n1,µ]

∫
[ν−1/n1,ν ]

|Kσ(µ,ν)−Kσ(ζ,η)| dζ dη,

where for any u = (u(1), u(2), . . . , u(p)) ∈ [0, 1]p and δ > 0, [u− δ1,u] denotes the rectangle

[u(1)− δ, u(1)]× [u(2)− δ, u(2)]× . . .× [u(p)− δ, u(p)]. The last expression is clearly bounded

above by

max
µ=(i1/n,i2/n,...,ip/n)

1≤i1,i2,...,ip≤n

max
ν=(j1/n,j2/n,...,jp/n)

1≤j1,j2,...,jp≤n

sup
ζ∈[µ−1/n1,µ]

sup
η∈[ν−1/n1,ν ]

|Kσ(µ,ν)−Kσ(ζ,η)| .
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Using Lemma 6 of Póczos et al. (2012), one can further deduce that the last expression

is bounded above by pn−2. Similar technique can be used for the second term to get the

upper bound

2 ET∼Pn max
µ=(i1/n,i2/n,...,ip/n)

1≤i1,i2,...,ip≤n

sup
η∈[µ−1/n1,µ]

|Kσ(µ,T)−Kσ(η,T)| ≤ 2pn−2.

Combining these two bounds, we get
∣∣γ2
Kσ

(Πn, Pn)− γ2
Kσ

(Π, Pn)
∣∣ = O(n−2).

Lemma 2.3. γKσ(Cn,Cz,n)→ 0 almost surely as n→∞.

Sketch of the proof. Since the essential idea of the proof is contained in Póczos et al.

(2012) [Appendix E], we only describe the two main steps.

First, we use the definition of Cz,n and Lemma 6 of Póczos et al. (2012) to get the

inequality γ2
Kσ

(Cn,Cz,n) ≤ 2
√
pL max

1≤j≤p
sup
x∈R
|F̂j(x) − Fj(x)|, where F̂1, F̂2, . . . , F̂p are the

empirical distributions of X(1), X(2), . . . , X(p) respectively.

Then using the above inequality and the Kiefer-Dvoretzky-Wolfowitz Theorem (see

Massart (1990), Page 1269), for any ε > 0, we get Pr
[
γ2
Kσ

(Cn,Cz,n) > ε
]
≤ 2p exp

(
− nε2

2pL2

)
.

The result now follows from the Borel-Cantelli Lemma.

The next lemma and its proof are based on the ideas in Gretton et al. (2012) [see

Appendix A2 in Gretton et al. (2012)].

Lemma 2.4. γKσ(Cz,n,C)→ 0 almost surely as n→∞.

Proof. It is enough to prove Pr [γKσ(Cz,n,C)− E[γKσ(Cz,n,C)] > ε] ≤ exp
(
−nε2

2

)
and

E [γKσ(Cz,n,C)] ≤ 2√
n

.

Denoting F to be the unit ball in the RKHS associated to the kernel Kσ on Rp, one

gets γKσ(Cz,n,C) = supf∈F

∣∣∣∣ 1
n

n∑
i=1

f(zi)− EZ∼Cf(Z)

∣∣∣∣ (See, Sriperumbudur et al., 2010).

Let z∗i (i = 1, 2, . . . , n) be independent and identically distributed with same distribu-

tion as zi (i = 1, 2, . . . , n) and δi (1, 2, . . . , n) be i.i.d. random variables taking values ±1

with equal probabilities. If the zi’s and δi’s are independent, it is easy to see that

E[γKσ(Cz,n,C)] = E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(zi)− EZ∼Cf(Z)

∣∣∣∣∣
]
≤ E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(zi)−
1

n

n∑
i=1

f(z∗i )

∣∣∣∣∣
]

= E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

δi (f(zi)− f(z∗i ))

∣∣∣∣∣
]
≤
(a)

2√
n
.
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For the last inequality (a), we used a well-known result referred to as “Bound on Rademacher

Complexity” (see Bartlett and Mendelson (2003), Page 478) .

We next calculate the upper bound of change in magnitude due to change in a particular

coordinate. Consider γKσ(Cz,n,C) as a function of zi. It is easy to verify that changing

any coordinate of zi, the change in γKσ(Cz,n,C) will be at most 2n−1. We use now the

well-known McDiarmid’s inequality (see McDiarmid (1989), Page 149) to get

Pr [γKσ(Cz,n,C)− E[γKσ(Cz,n,C)] > ε] ≤ exp

(
− 2ε2

n.(2/n)2

)
= exp

(
−nε

2

2

)
. �

Lemma 2.5. Suppose that the assumptions of Theorem 2.9 hold. Then, we have the

following results.

(a) If C 6= Π,
√
n(γ2

Kσ
(Cn,Π)− γ2

Kσ
(C,Π))

D→ N(0, δ2
0), where

δ2
0 = 4

∫
[0,1]p

∫
[0,1]p

g(u)g(v) E[ dGC(u) dGC(v)] and g(u) =

∫
[0,1]p

Kσ(u,v) d(C−Π)(v).

(b) If C = Π, nγ2
Kσ

(Cn,Π)
D→
∫

[0,1]p

∫
[0,1]p

Kσ(u,v) dGΠ(u) dGΠ(v), where GΠ is the Gaus-

sian process GC for C = Π.

Proof. When C 6= Π: Denoting D([0, 1]p) to be the space of right continuous real val-

ued uniformly bounded functions on [0, 1]p with left limits, equipped with max-sup norm,

one can easily verify that the function ψ(D) = γ2
Kσ

(D,Π) on D([0, 1]p) is Hadamard-

differentiable and the derivative at C is given by

ψ
′
C(D) = 2

∫
[0,1]p

∫
[0,1]p

Kσ(u,w) d(C−Π)(w) dD(u).

To prove this, consider a real sequence {tn} converging to 0 and a D([0, 1]p)-valued sequence

{Dn} converging to D ∈ D([0, 1]p) such that C+ tnDn ∈ D([0, 1]p). For any D ∈ D([0, 1]p),

define µD(w) =

∫
[0,1]p

K σ√
2
(u,w) dD(u) ∀w ∈ Rp. Then

ψ(C + tnDn)− ψ(C)

tn

=

(
1

σ

√
2

π

)p
1

tn

∫
Rp

(µC(w) + tnµDn(w)− µΠ(w))2 dw

−

(
1

σ

√
2

π

)p
1

tn

∫
Rp

(µC(w)− µΠ(w))2 dw
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=

(
1

σ

√
2

π

)p
1

tn

∫
Rp

tnµDn(w) (2µC(w) + tnµDn(w)− 2µΠ(w)) dw

=

(
1

σ

√
2

π

)p 2

∫
Rp

µDn(w) (µC(w)− µΠ(w)) dw + tn

∫
Rp

µ2
Dn(w) dw

 (E6)

Now, using the fact

∫
Rp

(
1

σ

√
2

π

)d
K σ√

2
(u,w)K σ√

2
(v,w) dw = Kσ(u,v), it is quite straight-

forward to check that(
1

σ

√
2

π

)p ∫
Rp

µDn(w) (µC(w)− µΠ(w)) dw =

∫
[0,1]p

∫
[0,1]p

Kσ(u,v) dDn(u) d(C−Π)(v).

From this identity and Equation (E6), we get

ψ
′
C(D) = lim

n→∞

ψ(C + tnDn)− ψ(C)

tn
= 2

∫
[0,1]p

∫
[0,1]p

(u,v) dD(u) d(C−Π)(v).

This Lemma then follows easily from Theorem 2.9 and the functional delta method.

The only thing that one needs to verify here is that ψ
′
C(GC) is normally distributed with

the mean 0 and the variance

δ2
0 = 4

∫
[0,1]p

∫
[0,1]p

g(u)g(v) E[ dGC(u) dGC(v)] where g(u) =

∫
[0,1]p

Kσ(u,w) d(C−Π)(w).

But this is straightforward from the formula for the derivative ψ
′
C.

When C = Π: Clearly the map D →

(
1

σ

√
2

π

)p ∫
Rp

 ∫
[0,1]p

K σ√
2
(u,v) dD(u)


2

dv from

D([0, 1]p) to R is continuous. So, the fact that
√
n(Cn − Π) → GΠ and the continuous

mapping theorem gives

nγ2
Kσ(Cn,Π)

D−→

(
1

σ

√
2

π

)p
.

∫
Rp

 ∫
[0,1]p

K σ√
2
(u,v) dGΠ(u)


2

dv

=

∫
[0,1]p

∫
[0,1]p

Kσ(u,v) dGΠ(u) dGΠ(v). �

Proof of Theorem 2.5

When C 6= Π: Write
√
n(Î2

σ,n(X)− I2
σ(X)) =

√
n

(
γ2
Kσ

(Cn,Πn)

γ2
Kσ

(Mn,Πn)
−
γ2
Kσ

(C,Π)

γ2
Kσ

(M,Π)

)
as

A1,n +A2,n +A3,n, where

A1,n =
√
n

(
γ2
Kσ

(Cn,Πn)

γ2
Kσ

(Mn,Πn)
−
γ2
Kσ

(Cn,Πn)

γ2
Kσ

(M,Π)

)
, A2,n =

√
n

(
γ2
Kσ

(Cn,Πn)

γ2
Kσ

(M,Π)
−
γ2
Kσ

(Cn,Π)

γ2
Kσ

(M,Π)

)

and A3,n =
√
n

(
γ2
Kσ

(Cn,Π)

γ2
Kσ

(M,Π)
−
γ2
Kσ

(C,Π)

γ2
Kσ

(M,Π)

)
.
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Clearly A2,n → 0 almost surely by Lemma 2.2. The same is true of A1,n as well, once again

by Lemma 2.2 because it is bounded above by

γ2
Kσ

(Cn,Πn)

γ2
Kσ

(Mn,Πn)γ2
Kσ

(M,Π)︸ ︷︷ ︸
bounded sequence

√n ∣∣γ2
Kσ(Mn,Πn)− γ2

Kσ(M,Πn)
∣∣︸ ︷︷ ︸

goes to 0

+
√
n
∣∣γ2
Kσ(M,Πn)− γ2

Kσ(M,Π)
∣∣︸ ︷︷ ︸

goes to 0

.
Therefore, using Lemma 2.5, we can conclude that

√
n(Î2

σ,n(X)− I2
σ(X))

D→ N(0, C−2
σ,p.δ

2
0).

Now, applying the delta method, one gets
√
n(Îσ,n(X) − Iσ(X))

D→ N(0, δ2), where δ2 =

γ−2
Kσ

(C,Π)

∫
[0,1]p

∫
[0,1]p

g(u)g(v) E[ dGC(u) dGC(v)].

When C = Π: As a consequence of the Lemma 2.5 and Lemma 2.2, under null hypothesis

and assumptions of Theorem 2.9, we have

nγ2
Kσ(Cn,Πn) = nγ2

Kσ(Cn,Π) +
(
nγ2

Kσ(Cn,Πn)− nγ2
Kσ(Cn,Π)

)
D−→

∫
[0,1]p

∫
[0,1]p

Kσ(u,v) dGΠ(u) dGΠ(v).

It is enough to show that

∫
[0,1]p

∫
[0,1]p

Kσ(u,v) dGΠ(u) dGΠ(v)
D
=

∞∑
i=1

αiZ
2
i , for some αi > 0

and Zi
i.i.d.∼ N(0, 1). Then the actual result will follow by putting λi = αiC

−1
σ,p.

To this end, we define X(w) :=

∫
[0,1]p

K σ√
2
(u,w) dGΠ(u), ∀w ∈ Rp. So, {X(w) : w ∈

Rp} is then a zero-mean continuous path Gaussian process. This implies that

∫
Rp

 ∫
[0,1]p

K σ√
2
(u,w) dGΠ(u)


2

dw =

∫
Rp

(X(w))2 dw
D
=

∞∑
i=1

βiZ
2
i ,

where the βi’s are the eigenvalues of the covariance operator associated with the Gaussian

process (see, e.g. Ferreira and Menegatto, 2012; Serfling, 1980). Now, using the fact that(
1

σ

√
2

π

)p ∫
Rp

K σ√
2
(u,w)K σ√

2
(v,w) dw = Kσ(u,v), one can easily see that the last equality

yields the desired result∫
[0,1]p

∫
[0,1]p

Kσ(u,v) dGΠ(u) dGΠ(v)
D
=

∞∑
i=1

αiZ
2
i , with αi =

(
1

σ

√
2

π

)p
βi. �

Proof of Theorem 2.6 Triangle inequality and |a− b|2 ≤ |a2 − b2| for a, b ≥ 0 give

|γKσ(Mn,Πn)− γKσ(M,Π)| ≤
∣∣γ2
Kσ(Mn,Πn)− γ2

Kσ(Mn,Π)
∣∣ 1

2 +
∣∣γ2
Kσ(Mn,Π)− γ2

Kσ(M,Π)
∣∣ 1

2 .
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Using Lemma 2.2, we get limn→∞ |γKσ(Mn,Πn)− γKσ(M,Π)| = 0 a.s.. Using again the

same inequalities and the fact that γKσ is a metric, one gets

|γKσ(Cn,Πn)− γKσ(C,Π)| ≤
∣∣γ2
Kσ(Cn,Πn)− γ2

Kσ(Cn,Π)
∣∣ 1

2 + γKσ(Cn,Cz,n) + γKσ(Cz,n,C).

Again, using Lemmas 2.2, 2.3 and 2.4, we get |γKσ(Cn,Πn)− γKσ(C,Π)| a.s.→ 0 as n → 0,

and as a consequence, we conclude that as n→∞,

Îσ,n(X) =
γKσ(Cn,Πn)

γKσ(Mn,Πn)
→ γKσ(C,Π)

γKσ(M,Π)
= Iσ(X) almost surely. �

Lemma 2.6. Let Pn and Qn be sequence of probability distribution over [0, 1]p. Let σn

be a sequence of positive real numbers that converges to σ0 > 0. Then as n → ∞,

|γ2
Kσn

(Pn, Qn)− γ2
Kσ0

(Pn, Qn)| → 0.

Proof. First we observe that

|γ2
Kσn

(Pn, Qn)− γ2
Kσ0

(Pn, Qn)| ≤ E(S,S∗)∼Pn⊗Pn |Kσn(S,S∗)−Kσ0(S,S∗)|

+ 2E(S,T)∼Pn⊗Qn |Kσn(S,T)−Kσ0(S,T)|

+ E(T,T∗)∼Qn⊗Qn |Kσn(S,T∗)−Kσ0(T,T∗)|.

Applying Lemma 6 of Póczos et al. (2012), one can get an upper bound of |Kσn(S,T)

−Kσ0(S,T)| in the following way

|Kσn(S,T)−Kσ0(S,T)| ≤ L
∥∥∥∥ S

σn
− S

σ0

∥∥∥∥+ L

∥∥∥∥ T

σn
− T

σ0

∥∥∥∥ ≤ 2L
√
p

∣∣∣∣ 1

σn
− 1

σ0

∣∣∣∣ ,
where L is a constant. Thus we can conclude that |γ2

Kσn
(Pn, Qn) − γ2

Kσ0
(Pn, Qn)| ≤

8L
√
p
∣∣∣ 1
σn
− 1

σ0

∣∣∣ . This completes the proof.

Proof of Theorem 2.7. Note that

|γ2
σn(Cn,Πn)− γ2

σ0
(C,Π)| ≤ |γ2

σn(Cn,Πn)− γ2
σ0

(Cn,Πn)|+ |γ2
σ0

(Cn,Πn)− γ2
σ0

(C,Π)|.

As n → ∞, the first term on the right hand side goes to 0 due to Lemma 2.6 and the

second term converges to 0 almost surely due to Theorem 2.6. Similarly, one can show that

|γ2
σn(Mn,Πn)− γ2

σ0
(M,Π)| → 0 as n→∞. This implies Îσn,n(X)→ Iσ0(X) almost surely.

Because of the fact that Iσ0(X) = 0 if and only if the coordinates of X are independent,

test of independence based on the statistic Îσn,n(X) is consistent.
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Proof of Theorem 2.8. From Theorem 2.7, it follows that Îσ(i),n(X)’s are consistent test

statistics for all i = 1, 2, . . . ,m. Since m is finite, by the virtue of the definition of Tmax,n and

Tsum,n, they converge to 0 almost surely if and only if the coordinates of X are independent.

Otherwise, they converge to positive quantities. This property makes the resulting tests

consistent. Again, under the alternative hypothesis, for any i, the p-value pi corresponding

to the test statistic Îσ(i),n(X) converges to zero almost surely. So, for sufficiently large n,

almost surely, there would exist at least one i such that pi is less than α/m, which makes

the set {i : p(i) < α/m} non-empty. Thus the power of the test based on FDR tends to 1

as sample size tends to infinity.
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Chapter 3

Test of Independence among

Random Variables with Arbitrary

Probability Distributions

In order to develop our copula based tests in Chapter 2, we assumed all underlying variables

X(1), X(2), . . . , X(p) to be continuous so that ties occur with zero probability, and the ranks

can be uniquely defined. Other rank based dependency measures and associated tests like

those based on generalizations of Spearman’s ρ, Kendall’s τ , Blomqvist’s β and Hoeffding’s

φ statistics (see, e.g., Joe, 1990; Nelsen, 1996; Úbeda-Flores, 2005; Gaißer et al., 2010) also

need this continuity assumption for their implementations. However, in practice, we often

have data sets consisting of a mixture of continuous, discrete, ordinal and binary variables.

To deal with such data sets, recently Genest et al. (2019) proposed a generalization of the

Hoeffding’s φ-statistic based on checkerboard copula and developed a test of independence

based on it. This measure and the resulting test can be used for random variables having

arbitrary probability distributions. But neither this measure nor the test is invariant under

strictly monotone transformations of the variables unless the same type of transformations

(either strictly increasing or strictly decreasing) are used for all variables. Moreover, they

are not very useful for detecting complex non-monotone relationships among the variables

(see Section 3.2). In order to take care of these problems, in this chapter, we propose a

new measure of dependence, which can be viewed as a checkerboard copula version of the

measure proposed in Chapter 2. This measure and the resulting tests are invariant under

permutations and strictly monotone transformations of the variables. Description of these

tests is given in the following section.
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3.1 The proposed measure and associated tests

Assume that X = (X(1), X(2), . . . , X(p)) ∼ F and X(i) ∼ Fi, for i = 1, 2, . . . , p. Sklar’s

theorem (see, e.g., Nelsen, 2007) guarantees that there exists at least one distribution

function C on [0, 1]p with uniform marginals such that

F (u(1), u(2), . . . , u(p)) = C(F1(u(1)), F2(u(2)), . . . , Fp(u
(p))), ∀ u(1), u(2), . . . , u(p) ∈ R. (3.1)

When the X(i)’s are continuous, then C is unique, and C can be shown to be the joint

distribution of F1(X(1)), F2(X(2)), . . . , Fp(X
(p)). This C is known as the copula distribution

of F . So, under the continuity assumption, the X(i)’s are independent if and only if C = Π,

the uniform distribution function on [0, 1]p. In Chapter 2, we considered a discrepancy

measure γKσ , called MMD, to measure the difference between C and Π. Recall that MMD

between two probability distributions P and Q on Rp is given by

γKσ(P,Q) = [EK(Y,Y∗)− 2EK(Y,Z) + EK(Z,Z∗)]
1
2 , (3.2)

where Y,Y∗
i.i.d.∼ P , Z,Z∗

i.i.d.∼ Q are four independent random vectors, and Kσ(x,y) =

exp
(
−‖x− y‖2/2σ2

)
is the Gaussian kernel. Since γKσ is a metric (see, e.g., Sriperumbudur

et al., 2010, for more details), we have γKσ(C,Π) ≥ 0, where the equality holds if and only

if C = Π. Therefore, γKσ(C,Π) serves as a measure of dependence among the X(i)’s.

But when the X(i)’s are not continuous, the copula distribution C in Equation (3.1) is

unique only on range(F1)×range(F2)×· · ·×range(Fp). However, for each joint distribution

function F , there exists a copula Cz, called ‘checkerboard copula’, which satisfies Equation

(3.1) and Cz = Π if and only if the X(i)’s are independent (see Genest et al., 2017). The

definition of checkerboard copula is given below.

Definition 3.1. Let X = (X(1), X(2), . . . , X(p)) be a p-dimensional random vector having

the distribution function F with uniariate marginals F1, F2, . . . , Fp, respectively. Let Λ =

(Λ(1),Λ(2), . . . ,Λ(p)) be a random vector which is independent of X and follows uniform

distribution over [0, 1]p. The checkerboard copula Cz of F is defined as the distribution

function of the random vector U = (U (1), U (2), . . . , U (p)), where

U (i) = Λ(i)Fi(X
(i)) + (1− Λ(i))Fi(X

(i)−) for each i = 1, 2, . . . , p.

Since γKσ is a metric, we have γKσ(Cz,Π) ≥ 0, where γKσ(Cz,Π) = 0 holds if and only

if the X(i)’s are independent. Like Chapter 2, here we use a scaled version of this measure
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Izσ (X) = γKσ(Cz,Π)/γKσ(M,Π),

where M is the maximum copula (defined in Section 2.1). So, Izσ (X) = 0 if and only if

X(i)’s are mutually independent, and positive otherwise. From the definition, it immedi-

ately follows that Izσ (X) coincides with Iσ(X) whenever all the X(i)’s are continuous (see,

Chapter 2). The scaling constant γKσ(M,Π) =
√
Cσ,p (see Theorem 2.1 for the definition

of Cσ,p) can be calculated easily. Note that Izσ (X) is invariant under permutation of the

variables X(1), X(2), . . . , X(p). The translation invariant property of the Gaussian kernel

also makes it invariant under strictly monotone transformations of the variables. These

results are stated below as Theorem 3.1.

Theorem 3.1. Izσ (X) is invariant under permutations and strictly monotone transforma-

tions of random variables X(1), X(2), . . . , X(p).

Like Iσ(X), the dependency measure Izσ (X) also enjoys some nice theoretical properties.

For instance, it can also be viewed as a weighted squared distance between the characteristic

functions of Cz and Π . In the case of p = 2, it can be expressed as a correlation co-efficient

between two random quantities. Here we skip the proofs of these results since they are

similar to those of Theorem 2.1 and 2.2. For getting a data driven estimate of Izσ (X),

one needs to get an empirical version of the checkerboard copula. The construction of this

empirical copula is given below.

Let x1,x2, . . . ,xn be n independent observations of the random vector X. For any

fixed j = 1, 2, . . . , p and i = 1, 2, . . . , n, we define r
(j)
i =

n∑
k=1

I
[
x

(j)
k ≤ x

(j)
i

]
to get ri =

(r
(1)
i , r

(2)
i , . . . , r

(p)
i ), the coordinate-wise rank of xi. For i = 1, 2, . . . , n, we define the nor-

malized rank vectors y1 = r1/n,y2 = r2/n, . . . ,yn = rn/n as before. For i = 1, 2, . . . , n and

j = 1, 2, . . . , p, we also define s
(j)
i as s

(j)
i =

n∑
k=1

I
[
x

(j)
k < x

(j)
i

]
to get si = (s

(1)
i , s

(2)
i , . . . , s

(p)
i )

and its normalized version zi = si/n for i = 1, 2, . . . , n. Now, for a < b, define La,b as

the distribution function of an uniform distribution on [a, b]. The empirical version of the

checkerboard copula can be defined as

Czn (u) =
1

n

n∑
i=1

p∏
j=1

L
z

(j)
i ,y

(j)
i

(u(j)) ∀ u = (u(1), u(2), . . . , u(p)) ∈ [0, 1]p.

This is equivalent to the definition of empirical checkerboard copula given in Genest et al.

(2017). An interesting property of this empirical copula Czn is that it admits a density czn

on (0, 1)p, which is given by
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czn (u) =
1

n

n∑
i=1

p∏
j=1

I
[
z

(j)
i < u(j) ≤ y(j)

i

]
(
y

(j)
i − z

(j)
i

) ∀ u = (u(1), u(2), . . . , u(p)) ∈ (0, 1)p. (3.3)

Using this density, we get the following closed form expression for γKσ(Czn ,Π).

Lemma 3.1. Define

Vσ(a1, a2, b1, b2) :=

2∑
i=1

2∑
j=1

(−1)i+j−1
√

2πσ2

(a2 − a1)(b2 − b1)

[(
ai − bj
σ

)
Φ

(
ai − bj
σ

)
+ φ

(
ai − bj
σ

)]
,

where Φ and φ are the distribution function and the density function of the standard normal

variate, respectively. Then, γ2
Kσ

(Czn ,Π) is given by

γ2
Kσ(Czn ,Π) =

1

n2

n∑
i=1

n∑
k=1

p∏
j=1

Vσ

(
z

(j)
i , y

(j)
i , z

(j)
k , y

(j)
k

)
− 2

n

n∑
i=1

p∏
j=1

Vσ

(
z

(j)
i , y

(j)
i , 0, 1

)
+ [Vσ(0, 1, 0, 1)]p.

The above result shows that the computing cost for γKσ(Czn ,Π) is of the order O(pn2).

Now we define Îzσ,n(X) = γKσ(Czn ,Π)/γKσ(M,Π) as an the estimator for Izσ (X). Like

Izσ (X), its estimate Îzσ,n(X) is also invariant under permutation and strictly monotone

transformation. This result is asserted by the following theorem.

Theorem 3.2. Îzσ,n(X) is invariant under permutations and strictly monotonic transfor-

mations of the variables X(1), X(2), . . . , X(p).

Genest et al. (2017) proved that ‖Czn − Cz‖, the L2-norm between Czn and Cz, con-

verges to 0 in probability. In fact, under quite general conditions, they showed the weak

convergence of the empirical checkerboard copula process Czn =
√
n(Czn − Cz) to a cen-

tered Gaussian process. Using their results, we can prove the consistency of our estimator

Îzσ,n(X). This result is stated below.

Theorem 3.3. Îzσ,n(X) is a consistent estimator of Izσ (X).

We can use Tzn = Îzσ,n(X) as a test statistic and reject H0, the null hypothesis of mutual

independence, for large value of Tzn . The cut-off can be computed using the permutation

principle discussed before (see Section 2.3). For any fixed parameter σ > 0, the large

sample consistency of the test based on Tzn follows from the convergence of Tzn = Îzσ,n(X)

to Izσ (X) (see Theorem 3.3) and the fact that Izσ (X) = 0 under H0, while it is positive

under the alternative hypothesis.

However, the finite sample performance of the test depends on the choice of σ. Like

Chapter 2, here also one can choose σ based on median heuristic (see, e.g., Gretton
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et al., 2008). But our empirical experience in the previous chapter suggests that the use

of smaller bandwidths sometimes leads to good performance, especially when the vari-

ables have complex non-monotone relationships. So, one can also go for the multi-scale

methods discussed before. In such cases, we consider the results for m different band-

widths σ(1), σ(2), . . . , σ(m) to come up with the test statistic Tzsum,n :=
∑m

i=1 Î
z
n,σ(i)(X) or

Tzmax,n := max1≤i≤m Î
z
n,σ(i)(X) and reject H0 when the observed value of the test statistic is

larger than the corresponding cut-off determined by the permutation method. The multi-

scale method based on FDR can be used as well. For all three aggregation methods, the

resulting tests turn out to be consistent. This consistency result is stated below.

Theorem 3.4. Powers of the tests based on Tzsum,n, Tzmax,n and FDR converge to 1 as the

sample size tends to infinity.

3.2 Results from analysis of simulated and real data sets

We analyzed several simulated and real data sets to compare the performance of our pro-

posed tests with some existing methods that can be used for testing independence among

several random variables having arbitrary distributions. In particular, we considered the

test proposed by Genest et al. (2019), the dHSIC test (see Pfister et al., 2018) and the

JdCov test (see Chakraborty and Zhang, 2019) for comparison. We also report the results

of the HHG test (see Heller et al., 2013) for bivariate data sets. Since the ranks are not

uniquely defined here, the rank-JdCov test could not be used.

For our multi-scale tests, we started with the bandwidth based on median heuristic and

choose other bandwidths following the method discussed in Chapter 2. The median of the

distribution of ‖Z−Z∗‖2, where Z,Z∗
i.i.d.∼ Π, was used for median heuristic. For all other

competing tests, we used the same set up as in Chapter 2. Throughout this chapter, cut-

offs of all tests are computed based on 1000 random permutations. In each of the simulated

examples, empirical powers of different tests are calculated based on 10000 simulations as

before.

3.2.1 Analysis of simulated data sets

We began with eight examples involving bivariate data. Figure 3.1 provides a visual rep-

resentation of these data sets. The first six examples (labeled as ‘Four Clouds’, ‘W’, ‘Dia-

mond’, ‘Parabola’, ‘Two Parabolas’, and ‘Circle’) are discretized versions of the examples
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considered by Newton (2009) and used in Section 2.5. Recall that in all these examples, X(1)

and X(2) are uncorrelated, but barring the first example, they are not independent. After

generating (X(1), X(2)) using Newton’s algorithm, we discretized them using the transfor-

mation (X(1), X(2)) 7→ (b5X(1)c, b5X(2)c), where btc denotes the largest integer not exceed-

ing t. In the ‘Hyperplane’ example, we have X(1) = b5Uc and X(2) = b5U + 5V c, where

U, V
i.i.d.∼ U(0, 1). In the ‘Correlated Normal’ example, we have X(1) = b5Uc, X(2) = b5V c,

where (U, V ) follows a bivariate normal distribution with correlation coefficient 0.4. So, in

these two examples, X(1) and X(2) have positive correlations, which is evident from 3.1.

For our proposed tests, we created an R packages ‘GCGK’ containing all necessary codes.

This package is available at https://github.com/angshumanroycode/GCGK.
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( d )  Parabola
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( h )  Correlated Normal

Figure 3.1: Scatter plots of eight bivariate data sets from distributions with discrete marginals.

Figure 3.2 shows the empirical powers of different tests on these eight data sets. In the

first example, where X(1) and X(2) are independent, almost all tests had empirical powers

close to the nominal level of 0.05 (See Figure 3.2(a)). Only the test based on FDR had

slightly lower power because of its conservative nature.

In ‘W’ and ‘Circle’ examples, the proposed test based on Tzmax,n outperformed all other

tests considered here (see Figures 3.2(b) and 3.2(f)). The test based on FDR had the

second best performance in the ‘Circle’ example. In the ‘W’ example also, it performed

well, where this test, the dHSIC test and the HHG test had comparable powers. The

HHG test had the highest power in ‘Parabola’, ‘Diamond’ and ‘Two Parabolas’ examples

(see Figures 3.2(c)- 3.2(e)). The tests based on Tzmax,n and FDR, particularly the former

one, also performed well. The dHSIC test also had excellent performance in these three

examples. Unfortunately, the test based on Tzn , the JdCov test and the test proposed

https://github.com/angshumanroycode/GCGK
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by Genest et al. (2019) did not have satisfactory performance in these five examples (see

Figures 3.2(b)- 3.2(f)). However, in the last two examples, where X(1) and X(2) have

positive correlations, they performed well (see Figures 3.2(g) and 3.2(h)). In these two

data sets, all testing procedures had reasonable performance, though the powers of HHG

and dHSIC tests were slightly lower. Among our multi-scale methods, the one based on

Tzsum,n had a slight edge.
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Figure 3.2: Powers of Tz
n ( ), Tz

sum,n ( ), Tz
max,n ( ), FDR ( ), dHSIC ( ), JdCov ( ),

Genest ( ) and HHG ( ) tests in data sets generated from discrete bivariate distributions.
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Figure 3.3: Powers of Tz
n ( ), Tz

sum,n ( ), Tz
max,n ( ), FDR ( ), dHSIC ( ), JdCov ( )

and Genest ( ) tests in data sets generated from discrete eight-dimensional distributions.

Next, we analyzed some eight-dimensional data sets, which can be viewed as noisy

multivariate extensions of the bivariate examples discussed above. For each of the first six

examples, we generated two independent observations from the discrete bivariate distribu-

tion (see Figure 3.1), and then four independent noise variables were augmented to get a
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vector of dimension eight. Each noise variable was distributed as b5Uc, where U ∼ N(0, 1).

In the ‘Hyperplane’ example, we generated seven i.i.d. U(0, 1) variables U (2), U (3), . . . , U (8)

and took U (1) = (U (2) +U (3) + · · ·+U (8))+ε, where ε ∼ U(0, 1). In the ‘Correlated Normal’

example, U = (U (1), U (2), . . . , U (8)) was generated from a eight-dimensional normal distri-

bution with the mean vector 0 and the dispersion matrix Σ = ((ai,j)), where ai,j = 0.4|i−j|

for all i, j ∈ {1, 2, . . . , 8}. In these two examples, observations on X = (X(1), X(2), . . . , X(8))

were obtained by using the transformation X(i) = b5U (i)c for i = 1, 2, . . . , 8.

Figure 3.3 shows the powers of different tests on these data sets. Recall that the dHSIC

needs the sample size to be at least twice the number of variables. So, it could not be used

for sample size smaller than 16. As expected, in the case of ‘Four Clouds’ example, all tests

barring the test based on FDR had power closed to the nominal level (See Figure 3.3(a)).

In five out of the remaining seven examples, our proposed tests clearly outperformed their

competitors. In ‘Diamond’ data set, the dHSIC test had the highest power, but the power

of the test based on Tzmax,n was higher than all other tests considered here. In the case of

‘Correlated Normal’ example, the test proposed by Genest et al. (2019) and our proposed

tests had similar powers, and their performance was much better than JdCov and dHSIC

tests. Note that unlike bivariate examples, the test based on Tzn had very good performance

in these eight-dimensional data sets. Its performance was comparable to its multi-scale

versions based on Tzsum,n, T
z
max,n and FDR.

To compare the overall performance of different tests in a comprehensive way, we used

the boxplots of efficiency scores as discussed in Section 2.5. However, here the comparison

was carried out among all competing tests. Recall that for a given data set and a given

sample size, we defined the efficiency score of a test as its observed power divided by the

maximum power obtained for that experiment. These efficiency scores were computed for

different data sets (barring the ‘Four Clouds’ example, where X and Y are independent),

and they are presented using boxplots in Figure 3.4. This figure suggests that both for

p = 2 and p = 8, the overall performance of the proposed test based on Tzmax,n was much

better than all other tests considered here. In the case of bivariate data sets, the HHG

test had the second best performance. The dHSIC test and the test based on FDR also

worked well. But the performance of all other tests including the one based on Tzn was

not satisfactory. Except for ‘Hyperplane’ and ‘Correlated Normal’ examples, this single-

scale method could not perform well. This shows the necessity of the multi-scale approach.
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However, in cases of eight dimensional data sets, this single-scale test and its all multi-

scale analogs had excellent performance, and they outperformed their competitors. This is

consistent with what we observed in Chapter 2.
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(a) Discrete bivariate data sets.
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(b) Discrete eight-dimensional data sets.

Figure 3.4: Boxplots of efficiency score for overall comparison among different tests.

3.2.2 Analysis of real data sets

For further evaluation of our proposed tests, we analyzed three real data sets taken from

the UCI machine learning repository https://archive.ics.uci.edu/ml/. Each of these

data sets contains some discrete variables with ties. Brief description of these data sets is

given below.

BUPA Liver Disorders data were collected by BUPA Medical Research Ltd. This data

set has 345 observations on seven variables. For our study, we consider the first five

variables (Mean Corpuscular Volume, Alkaline Phosphatase, Alanine Aminotransferase,

Aspartate Aminotransferase and Gamma-Glutamyl Transpeptidase) related to different

blood tests, which are thought to be sensitive to liver disorders that might arise from

excessive alcohol consumption. The natural question that arises here is whether these

variables have dependence among them.

Challenger Space Shuttle data were recorded and assessed by Draper (1995). This data

set contains information on shuttle launching temperature, leak-check pressure and number

of field joints experiencing thermal stress for the 23 NASA space shuttle flights before the

challenger disaster happened in 1986. Here one may be interested to know whether there

is any dependence among these three variables.

https://archive.ics.uci.edu/ml/
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Haberman’s Survival data set was analyzed by Haberman (1976). It contains 306

cases from a study conducted between 1958 and 1970 at the University of Chicago’s

Billings Hospital on the survival of patients, who had undergone surgery for breast can-

cer. Here we investigated whether there is any relationship among the three variables:

age of patient at the time of operation, number of positive axillary nodes detected and

whether the patient survived 5 years or longer.

In cases of BUPA Liver Disorder data and Haberman’s Survival data, when we used the

full data set for testing, all tests rejected the null hypothesis of independence. In the case of

Challenger Space Shuttle data, only the test of Genest et al. (2019) failed to do so. Based

on that single experiment in each data set, it was not possible to compare among different

test procedures. So, we carried out our experiments using randomly chosen subsets from

the full data set. For each sub-sample size, the experiment was repeated 5000 times to

compute the empirical powers of different tests, and they are shown in Figure 3.5.
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Figure 3.5: Powers of Tz
n ( ), Tz

sum,n ( ), Tz
max,n ( ), FDR ( ), dHSIC ( ), JdCov ( )

and Genest ( ) tests in real data sets.

The test proposed by Genest et al. (2019) had the highest power in BUPA Liver Disorders

data set, but it performed poorly in other two cases. Interestingly, all our proposed tests had

good overall performances in all data sets. In the case of Challenger Space Shuttle Data,

the dHSIC test had the best overall performance, but it performed poorly otherwise. In this

example, the JdCov test outperformed its competitors when larger samples were used, but

unfortunately, it could not be used for smaller sample sizes (the R codes provided by the

author returned error message). The tests based on Tzsum,n, Tzmax,n and FDR had excellent

performance in Haberman’s Survival data set. The test based on Tzn and the JdCov test

also had competitive powers.
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3.3 Proofs and mathematical details

Proof of Theorem 3.1. For any permutation ξ on Rp, we haveKσ(ξ(x), ξ(y)) = Kσ(x,y)

and also, T ∼ Π implies ξ(T) ∼ Π. Using these, one gets

E(S,S∗)∼Cz
ξ(X)
⊗Cz

ξ(X)
[Kσ(S,S∗)]=E(S,S∗)∼Cz

X⊗C
z
X

[Kσ(ξ(S), ξ(S∗))]=E(S,S∗)∼Cz
X⊗C

z
X

[Kσ(S,S∗)]

and E(S,T)∼Cz
ξ(X)
⊗Π[Kσ(S,T)] = E(S,T)∼Cz

X⊗Π[Kσ(ξ(S), ξ(T))] = E(S,T)∼Cz
X⊗Π[Kσ(S,T)].

From these, it follows that γKσ(Czξ(X),Π) = γKσ(Cz,Π) and hence Izσ (ξ(X)) = Izσ (X).

Consider any fixed set A ⊆ {1, 2, . . . , p} and a function f : Rp 7→ Rp such that

f(x(1), x(2), . . . , x(p)) = (f1(x(1)), f2(x(2)), . . . , fp(x
(p))), where for each i ∈ A, fi : R 7→ R

is strictly increasing and for each i /∈ A, fi : R 7→ R is strictly decreasing. Also define

a function g(x(1), x(2), . . . , x(p)) = (g1(x(1)), g2(x(2)), . . . , gp(x
(p))) with gi(x) = x ∀i ∈ A

and gi(x) = 1 − x ∀i /∈ A. Let Cz and Czf be the checkerboard copulas correspond-

ing to X = (X(1), X(2), . . . , X(p)) and f(X), respectively. At first, we will show that if

U = (U (1), U (2), . . . , U (p)) follows Cz, then g(U) follows Czf .

Assume that V = (V (1), V (2), . . . , V (p)) follows Czf and let G1, G2, . . . , Gp be the cu-

mulative distribution functions of f1(X(1)), f2(X(2)), . . . , fp(X
(p)), respectively. From the

definition of checkerboard copula, one can check that V (i) has the same distribution as

Ψ(i)Gi(fi(X
(i))) + (1−Ψ(i))Gi(fi(X

(i))−), where Ψ = (Ψ(1),Ψ(2), . . . ,Ψ(p)) is independent

of f(X) and follows uniform distribution over [0, 1]p (see, Definition 3.1).

Now, if i ∈ A, fi is strictly increasing. So, we have

Ψ(i)Gi(fi(x)) + (1−Ψ(i))Gi(fi(x)−)

= Ψ(i)Pr
[
fi(X

(i)) ≤ fi(x)
]

+ (1−Ψ(i))Pr
[
fi(X

(i)) < fi(x)
]

= Ψ(i)Pr
[
X(i) ≤ x

]
+ (1−Ψ(i))Pr

[
X(i) < x

]
= Ψ(i)Fi(x) + (1−Ψ(i))Fi(x

−).

Thus V (i) has the same distribution as Ψ(i)Fi(X
(i)) + (1 − Ψ(i))Fi(X

(i)−), which in turn

has the same distribution as U (i) = gi(U
(i)) (since gi(x) = x for i ∈ A).

Again, if i /∈ A, fi is strictly decreasing. So, we have

Ψ(i)Gi(fi(x)) + (1−Ψ(i))Gi(fi(x)−)

= Ψ(i)Pr
[
fi(X

(i)) ≤ fi(x)
]

+ (1−Ψ(i))Pr
[
fi(X

(i)) < fi(x)
]

= Ψ(i)Pr
[
X(i) ≥ x

]
+ (1−Ψ(i))Pr

[
X(i) > x

]
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= Ψ(i) −Ψ(i)Pr
[
X(i) < x

]
+ (1−Ψ(i))− (1−Ψ(i))Pr

[
X(i) ≤ x

]
= 1− (1−Ψ(i))Pr

[
X(i) ≤ x

]
−Ψ(i)Pr

[
X(i) < x

]
= 1− (1−Ψ(i))Fi(x)−Ψ(i)Fi(x

−).

Thus V (i) has the same distribution as 1− (1−Ψ(i))Fi(X
(i))−Ψ(i)Fi(X

(i)−), which in turn

has the same distribution as 1− U (i) = gi(U
(i)) (since gi(x) = 1− x for i /∈ A).

It shows that if U = (U (1), U (2), . . . , U (p)) follows Cz, then g(U) follows Czf . Next,

we shall show that γKσ(Czf ,Π) = γKσ(Cz,Π). Note that since the Gaussian kernel is

translation invariant, we have Kσ(g(x),g(y)) = Kσ(x,y). Also note that if Y ∼ Π, then

g(Y) ∼ Π. The rest of the proof follows from the facts that

E(Y,Y∗)∼Cz
f ⊗C

z
f
Kσ(Y,Y∗) = E(Y,Y∗)∼Cz⊗CzKσ (g(Y),g(Y∗)) = E(Y,Y∗)∼Cz⊗CzKσ(Y,Y∗)

and E(Y,Z)∼Cz
f ⊗ΠKσ(Y,Z) = E(Y,Z)∼Cz⊗ΠKσ (g(Y),g(Z)) = E(Y,Z)∼Cz⊗ΠKσ(Y,Z).

Proof of Lemma 3.1 Note that

a2∫
a1

b2∫
b1

e−
(x−y)2

2σ2 dx dy =
√

2πσ

a2∫
a1

 b2∫
b1

1√
2πσ

e−
(y−x)2

2σ2 dy

 dx
=
√

2πσ

a2∫
a1

[
Φ

(
b2 − x
σ

)
− Φ

(
b1 − x
σ

)]
dx.

Using the fact

∫
Φ(x) dx = xΦ(x) + φ(x) + c (where c is an integration constant), we get

a2∫
a1

b2∫
b1

e−
(x−y)2

2σ2 dx dy =
√

2πσ2
2∑
i=1

2∑
j=1

(−1)i+j−1

[(
ai − bj
σ

)
Φ

(
ai − bj
σ

)
+ φ

(
ai − bj
σ

)]

= (a2 − a1)(b2 − b1)Vσ(a1, a2, b1, b2).

Now, assume that S,S∗,T,T∗ are four independent random variables such that S,S∗ ∼

Czn and T,T∗ ∼ Π. From definition of γKσ in Equation (3.2), we obtain γ2
Kσ

(Czn ,Π) =

S1 − 2S2 + S3, where S1 = EKσ(S,S∗), S2 = EKσ(S,T) and S3 = EKσ(T,T∗). Now

we simplify S1, S2 and S3 further using the expression of empirical checkerboard copula

density czn given in Equation (3.3).

S1 = EKσ(S,S∗) =

∫
[0,1]p

∫
[0,1]p

Kσ(u,v)czn (u)czn (v) du dv

=

∫
[0,1]p

 ∫
[0,1]p

Kσ(u,v)
1

n

n∑
i=1

p∏
j=1

I
[
z

(j)
i < u(j) ≤ y(j)

i

]
(
y

(j)
i − z

(j)
i

) du

 czn (v) dv
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=

∫
[0,1]p

 1

n

n∑
i=1

p∏
j=1

1

(y
(j)
i − z

(j)
i )

y
(j)
i∫

z
(j)
i

e−
(u(j)−v(j))2

2σ2 du(j)

 1

n

n∑
k=1

p∏
j=1

I
[
z

(j)
k < v(j) ≤ y(j)

k

]
(
y

(j)
k − z

(j)
k

) dv

=
1

n2

n∑
i=1

n∑
k=1

p∏
j=1

1

(y
(j)
i − z

(j)
i )

(
y

(j)
k − z

(j)
k

) y
(j)
i∫

z
(j)
i

y
(j)
k∫

z
(j)
k

e−
(u(j)−v(j))2

2σ2 du(j) dv(j)

=
1

n2

n∑
i=1

n∑
k=1

p∏
j=1

Vσ

(
z

(j)
i , y

(j)
i , z

(j)
k , y

(j)
k

)
.

S2 = EKσ(S,T) =

∫
[0,1]p

∫
[0,1]p

Kσ(u,v)czn (u) du dv

=

∫
[0,1]p

 ∫
[0,1]p

Kσ(u,v)
1

n

n∑
i=1

p∏
j=1

I
[
z

(j)
i < u(j) ≤ y(j)

i

]
(
y

(j)
i − z

(j)
i

) du

 dv

=

∫
[0,1]p

 1

n

n∑
i=1

p∏
j=1

1

(y
(j)
i − z

(j)
i )

y
(j)
i∫

z
(j)
i

e−
(u(j)−v(j))2

2σ2 du(j)

 dv

=
1

n

n∑
i=1

p∏
j=1

1

(y
(j)
i − z

(j)
i )

y
(j)
i∫

z
(j)
i

1∫
0

e−
(u(j)−v(j))2

2σ2 du(j) dv(j) =
1

n

n∑
i=1

p∏
j=1

Vσ

(
z

(j)
i , y

(j)
i , 0, 1

)
.

S3 = EKσ(T,T∗) =

∫
[0,1]p

∫
[0,1]p

Kσ(u,v) du dv =

∫
[0,1]p

 p∏
j=1

1∫
0

e−
(u(j)−v(j))2

2σ2 du(j)

 dv
=

p∏
j=1

 1∫
0

1∫
0

e−
(u(j)−v(j))2

2σ2 du(j) dv(j)

 = [Vσ(0, 1, 0, 1)]p. �

Proof of Theorem 3.2. Permutation invariance of Îzσ,n(X) follows immediately from the

form of γ2
Kσ

(Czn ,Π) given in Lemma 3.1.

Note that if the j-th variable (for j = 1, 2, . . . , p) undergoes a strictly increasing trans-

formation, the values of y
(j)
i and z

(j)
i remain unchanged for all i = 1, 2, . . . , n. If it undergoes

a strictly decreasing transformation, then modified values of y
(j)
i and z

(j)
i turn out to be

y
∗(j)
i = 1 − z

(j)
i and z

∗(j)
i = 1 − y

(j)
i , respectively. Now, the proof follows from the ex-

pression of γ2
Kσ

(Czn ,Π) given in Lemma 3.1, and the observation that for a, b, c, d ∈ (0, 1),

Vσ(1− b, 1− a, 1− d, 1− c) = Vσ(a, b, c, d) and Vσ(1− b, 1− a, 0, 1) = Vσ(a, b, 0, 1).

Lemma 3.2. Let A and B be two non-empty subsets of {1, 2, . . . , p}. Now given u =

(u(1), u(2), . . . , u(p)) ∈ [0, 1]p and v = (v(1), v(2), . . . , v(p)) ∈ [0, 1]p, we define two vectors

uA = (u
(1)
A , u

(2)
A , . . . , u

(p)
A ) ∈ [0, 1]p and vB = (v

(1)
B , v

(2)
B , . . . , v

(p)
B ) ∈ [0, 1]p as
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u
(j)
A =


u(j) if j ∈ A

1 if j 6∈ A
and v

(j)
B =


v(j) if j ∈ B

1 if j 6∈ B.

Also define KA,B : [0, 1]p× [0, 1]p 7→ R such that KA,B(u,v) =
∏p
j=1K

(j)
A,B(u(j), v(j)), where

K
(j)
A,B(u, v) =



1 if j 6∈ A ∪B
(u−1)
σ2 e−

1
2σ2 (u−1)2

if j ∈ A \B
(v−1)
σ2 e−

1
2σ2 (v−1)2

if j ∈ B \A{
1
σ2 − (u−v)2

σ4

}
e−

1
2σ2 (u−v)2

if j ∈ A ∩B.

If we use the notation duA :=
∏
j∈A du(j) and dvB :=

∏
j∈B dv(j), then∫

[0,1]p

∫
[0,1]p

e−
‖u−v‖2

2σ2 dCzn (u) dCzn (v) =
∑
A

∑
B

∫
[0,1]|A|

∫
[0,1]|B|

KA,B(uA,vB)Czn (uA)Czn (vB) duA dvB.

Proof. Here we shall prove it for p = 2. The proof for general dimension can be obtained

similarly by repeated applications of Fubini’s theorem and integration by parts formula.

As Cz and Czn both are copula distributions, we have the following results:

Czn (0, u(2)) =
√
n
(
Czn (0, u(2))− Cz(0, u(2))

)
=
√
n(0− 0) = 0

Czn (u(1), 0) =
√
n
(
Czn (u(1), 0)− Cz(u(1), 0)

)
=
√
n(0− 0) = 0

Czn (1, u(2)) =
√
n
(
Czn (1, u(2))− Cz(1, u(2))

)
=
√
n(u(2) − u(2)) = 0

Czn (u(1), 1) =
√
n
(
Czn (u(1), 1)− Cz(u(1), 1)

)
=
√
n(u(1) − u(1)) = 0.

Since Czn is a signed measure, we can always write the differential dCzn (u(1), u(2)) =

dCzn (u(1)|u(2)) dCzn (u(2)), where Czn (u(1)|u(2)) is the conditional signed measure and Czn (u(2))

is the marginal signed measure. So, for v(1), v(2) ∈ [0, 1], using Fubini’s theorem, we get

1∫
0

1∫
0

e−
1

2σ2 {(u(1)−v(1))2+(u(2)−v(2))2} dCzn (u(1), u(2))

=

1∫
0


1∫

0

e−
1

2σ2 (u(1)−v(1))2

dCzn (u(1)|u(2))

 e−
1

2σ2 (u(2)−v(2))2

dCzn (u(2)). (3.4)

For the integral inside braces in Equation (3.4), we now use the integral by parts formula.
1∫

0

e−
1

2σ2 (u(1)−v(1))2

dCzn (u(1)|u(2))

=
[
e−

1
2σ2 (u(1)−v(1))2

Czn (u(1)|u(2))
]1

0
+

1∫
0

(u(1) − v(1))

σ2
e−

1
2σ2 (u(1)−v(1))2

Czn (u(1)|u(2)) du(1)
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= e−
1

2σ2 (1−v(1))2

Czn (1|u(2))− e−
1

2σ2 (v(1))
2

Czn (0|u(2))

+

1∫
0

(u(1) − v(1))

σ2
e−

1
2σ2 (u(1)−v(1))2

Czn (u(1)|u(2)) du(1). (3.5)

So, from (3.4) and (3.5), we get

1∫
0

1∫
0

e−
1

2σ2 {(u(1)−v(1))2+(u(2)−v(2))2} dCzn (u(1), u(2))

=

1∫
0

e−
1

2σ2 (1−v(1))2

Czn (1|u(2))e−
1

2σ2 (u(2)−v(2))2

dCzn (u(2))

−
1∫

0

e−
1

2σ2 (v(1))
2

Czn (0|u(2))e−
1

2σ2 (u(2)−v(2))2

dCzn (u(2))

+

1∫
0

1∫
0

(u(1) − v(1))

σ2
e−

1
2σ2 (u(1)−v(1))2

Czn (u(1)|u(2)) du(1)e−
1

2σ2 (u(2)−v(2))2

dCzn (u(2))

= e−
1

2σ2 (1−v(1))2

1∫
0

e−
1

2σ2 (u(2)−v(2))2

Czn (1|u(2)) dCzn (u(2))

︸ ︷︷ ︸
I1

− e−
1

2σ2 (v(1))
2

1∫
0

e−
1

2σ2 (u(2)−v(2))2

Czn (0|u(2)) dCzn (u(2))

︸ ︷︷ ︸
I2

+

1∫
0

(u(1) − v(1))

σ2
e−

1
2σ2 (u(1)−v(1))2


1∫

0

e−
1

2σ2 (u(2)−v(2))2

Czn (u(1)|u(2)) dCzn (u(2))

︸ ︷︷ ︸
I3

du(1)

(3.6)
Note that

I1 =

1∫
0

e−
1

2σ2 (u(2)−v(2))2

Czn (1|u(2)) dCzn (u(2))

=
[
e−

1
2σ2 (u(2)−v(2))2

Czn (1, u(2))
]1

0
+

1∫
0

(u(2) − v(2))

σ2
e−

1
2σ2 (u(2)−v(2))2

Czn (1, u(2)) du2 = 0.

Similarly, one can show that I2 = 0, and

I3 =

1∫
0

e−
1

2σ2 (u(2)−v(2))2

Czn (u(1)|u(2)) dCzn (u(2))

=
[
e−

1
2σ2 (u(2)−v(2))2

Czn (u(1), u(2))
]1

0
+

1∫
0

(u(2) − v(2))

σ2
e−

1
2σ2 (u(2)−v(2))2

Czn (u(1), u(2)) du2

=

1∫
0

(u(2) − v(2))

σ2
e−

1
2σ2 (u(2)−v(2))2

Czn (u(1), u(2)) du(2).
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Plugging the values of I1, I2 and I3 in Equation (3.6), we get

1∫
0

1∫
0

e−
1

2σ2 {(u(1)−v(1))2+(u(2)−v(2))2} dCzn (u(1), u(2))

=

1∫
0

1∫
0

(u(1) − v(1))

σ2

(u(2) − v(2))

σ2
e−

1
2σ2 {(u(1)−v(1))2+(u(2)−v(2))2}Czn (u(1), u(2)) du(1) du(2).

(3.7)

Now, using similar tricks, one can show that for any u(1), u(2) ∈ [0, 1],

1∫
0

1∫
0

(u(1) − v(1))

σ2

(u(2) − v(2))

σ2
e−

1
2σ2 {(u(1)−v(1))2+(u(2)−v(2))2} dCzn (v(1), v(2))

=

1∫
0

1∫
0

{
1

σ2
− (u(1) − v(1))2

σ4

}
e−

1
2σ2 (u(1)−v(1))2

×

{
1

σ2
− (u(2) − v(2))2

σ4

}
e−

1
2σ2 (u(2)−v(2))2

Czn (v(1), v(2)) dv(1) dv(2). (3.8)

Now, using (3.7) and (3.8), we finally get

1∫
0

1∫
0

1∫
0

1∫
0

e−
1

2σ2 {(u(1)−v(1))2+(u(2)−v(2))2} dCzn (u(1), u(2)) dCzn (v(1), v(2))

=

1∫
0

1∫
0

1∫
0

1∫
0

{
1

σ2
− (u(1) − v(1))2

σ4

}
e−

1
2σ2 (u(1)−v(1))2

×

{
1

σ2
− (u(2) − v(2))2

σ4

}

e−
1

2σ2 (u(2)−v(2))2

Czn (u(1), u(2))Czn (v(1), v(2)) du(1) du(2) dv(1) dv(2). �

Lemma 3.3. The sequence {nγ2
Kσ

(Czn ,C
z)}n≥1 is a tight sequence.

Proof. Form Lemma 3.2, using the same set of notations, we get that

nγ2
Kσ(Czn ,C

z) =

∫
[0,1]p

∫
[0,1]p

e−
‖u−v‖2

2σ2 dCzn (u) dCzn (v)

=
∑
A

∑
B

∫
[0,1]|A|

∫
[0,1]|B|

KA,B(uA,vB)Czn (uA)Czn (vB) duA dvB. (3.9)

It can be shown that KA,B : [0, 1]p × [0, 1]p 7→ R is bounded i.e., there exists M > 0 such

that ∀ u,v ∈ [0, 1]p, |KA,B(u,v)| ≤M . Thus for any two given subsets A and B, we have
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∣∣∣∣∣∣∣
∫

[0,1]|A|

∫
[0,1]|B|

KA,B(uA,vB)Czn (uA)Czn (vB) duA dvB

∣∣∣∣∣∣∣
≤

∫
[0,1]|A|

∫
[0,1]|B|

|KA,B(uA,vB)|
∣∣∣Czn (uA)

∣∣∣ ∣∣∣Czn (vB)
∣∣∣ duA dvB

≤M
∫

[0,1]|A|

∣∣∣Czn (uA)
∣∣∣ duA ∫

[0,1]|B|

∣∣∣Czn (vB)
∣∣∣ dvB ≤M

∥∥∥Czn (uA)
∥∥∥∥∥∥Czn (vB)

∥∥∥ .
Since ‖Czn ‖ is tight (see, e.g., Genest et al., 2017), from above equation, we get the tightness

of

∫
[0,1]|A|

∫
[0,1]|B|

KS,T (uA,vB)Czn (uA)Czn (vB) duA dvB, which in turn implies the tightness

of the sequence {nγ2
Kσ

(Czn ,C
z)}n≥1 (follows from Equation (3.9)).

Proof of Theorem 3.3. Lemma 3.3 guarantees that the sequence {nγ2
Kσ

(Czn ,C
z)}n≥1 is

tight. So, for a given ε > 0, there exists a Mε > 0 such that Pr
[
nγ2

Kσ
(Czn ,C

z) > Mε

]
< ε

for all n ≥ 1. Thus for any given ε > 0 and δ > 0, if we choose N such that Nδ > Mε,

then for all n > N , Pr
[
γ2
Kσ

(Czn ,C
z) > δ

]
< ε. Hence γ2

Kσ
(Czn ,C

z)
Pr−→ 0 and therefore

γKσ(Czn ,C
z)

Pr−→ 0.

Note that since γKσ is a metric, we have
∣∣γKσ(Czn ,Π)− γKσ(Cz,Π)

∣∣ ≤ γKσ(Czn ,C
z).

Now, since γKσ(Czn ,C
z)

Pr−→ 0, we can conclude that γKσ(Czn ,Π)
Pr−→ γKσ(Cz,Π), which

further implies that Îzσ,n(X) converges to Izσ (X) in probability.

Proof of Theorem 3.4. For any given σ, while Tzn
Pr−→ 0 under H0, under the alternative

hypothesis, it converges to a positive constant. So, under the alternative, the p-value

associated with the test based on Tzn converges to 0 as n tends to infinity.

Since m is finite, it is easy to check that under H0, both Tzsum,n and Tzmax,n converge

to 0 in probability, while they converge to some positive constants under the alternative

hypothesis. This proves the consistency of the tests based on Tzsum,n and Tzmax,n.

Now, it is clear from the above discussion that p(m) and hence all other p(i)’s (for i < m)

converge to 0 in probability. As a result, the set {i : p(i) < iα/m} becomes non-empty with

probability tending to one. This implies the consistency of the test based on FDR.
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Chapter 4

Test of Independence among

Randoms Vectors: Methods Based

on One-dimensional Projections

In Chapters 2 and 3, we proposed some copula based methods for testing mutual inde-

pendence among several random variables. We have also seen that there are several other

methods available for this purpose (see, e.g., Nelsen, 1996; Úbeda-Flores, 2005; Gaißer

et al., 2010; Póczos et al., 2012; Genest et al., 2019). But, these tests dealing with uni-

variate random variables do not have straightforward generalizations for random vectors.

In this chapter, we propose some common recipes for their multivariate generalizations so

that the resulting tests can used for testing independence among several random vectors

of arbitrary dimensions. Our strategy is very simple; we use some suitable transformations

to transform the observations on sub-vectors X(1),X(2), . . . ,X(p) into univariate observa-

tions and then use the existing univariate tests on those transformed observations. In this

chapter, we adopt this strategy for multivariate generalizations of the the copula based

tests proposed in Chapter 2. But from the description our proposed methods (given in the

following sections), it will be clear that these methods can also be used for multivariate

generalizations of other univariate tests mentioned above.

4.1 Method based on pairwise distances

This method is motivated by the result that p random vectors X(1) ∈ Rd1 ,X(2) ∈ Rd2 , . . .,

X(p) ∈ Rdp are mutually independent if and only if
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Pr
[
‖X(i) − a(i)‖ < ri, ∀ 1 ≤ i ≤ p

]
=

p∏
i=1

Pr
[
‖X(i) − a(i)‖ < ri

]
(4.1)

for every a(1) ∈ Rd1 ,a(2),∈ Rd2 . . . ,a(p) ∈ Rdp and non-negative real numbers r1, r2, . . . , rp.

This result follows from the fact that the collection of sets
{
B(a(1), r1) × B(a(2), r2) ×

· · · × B(a(p), rp) : a(1) ∈ Rd1 ,a(2) ∈ Rd2 , . . . ,a(p) ∈ Rdp , r1, r2, . . . , rp ≥ 0
}

generates

the Borel σ-field on Rd, where B(c, r) =
{
u : ‖u − c‖ < r

}
is the open ball of radius

r > 0 with center c (here we use the same notation B(·, ·) irrespective of the dimension

of the ball). Thus testing for independence among X(1),X(2), . . . ,X(p) is equivalent to

testing for independence among random variables X(a,1) = ‖X(1) − a(1)‖, X(a,2) = ‖X(2) −

a(2)‖, . . . , X(a,p) = ‖X(p) − a(p)‖ for every a = (a(1),a(2), . . . ,a(p)) ∈ Rd. Now consider a

functional T , which measures dependence among several random variables and satisfies the

following property mentioned as Assumption 4.1.

Assumption 4.1. The dependency measure T is a functional such that for any p-dimensional

(p ≥ 2) random vector Z = (Z(1), Z(2), . . . , Z(p)) ∼ G, T (G) is non-negative and it takes

the value 0 if and only if Z(1), Z(2), . . . , Z(p) are mutually independent.

So, if F a denotes the joint distribution of X(a,1), X(a,2), . . . , X(a,p), we have T (F a) ≥ 0,

where the equality holds if and only if X(a,1), X(a,2), . . . , X(a,p) are mutually independent.

Therefore, from our above discussion, it follows that X(1),X(2), . . . ,X(p) are mutually in-

dependent if and only if T (F a) = 0 for every a ∈ Rd. Now, consider a probability measure

P on Rd and define a functional

ζPT (F ) =

∫
Rd
T (F a) dP (a). (4.2)

Clearly, ζPT (F ) is non-negative, and it takes the value 0 if and only if T (F a) = 0 for P -almost

every a. If P satisfies a certain property, then this in turn implies mutual independence

among X(1),X(2), . . . ,X(p). This is shown by the following theorem.

Theorem 4.1. Let X = (X(1),X(2), . . . ,X(p)) ∼ F be a d-dimensional random vector, and

T be a measure of dependence among p random variables, which satisfies Assumption 4.1.

If P is not singular with respect to the Lebesgue measure, then ζPT (F ) = 0 if and only if

X(1),X(2), . . . ,X(p) are mutually independent.

Thus, ζPT (F ) can be viewed as a multivariate analog of T , and it measures dependence

among several random vectors. However, ζPT (F ) involves unknown distributions F a for
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a ∈ Rd. So, one needs to estimate it from the data. We address this issue in the following

subsection.

4.1.1 Estimation of ζPT (F )

From Equation 4.2, it is clear that for the estimation of ζPT (F ), one needs to estimate

T (F a) for different choices of a ∈ Rd. One can use Tn(F a), a consistent estimator based on

n independent observations x1,x2, . . . ,xn on X, for this purpose. Note that ζPT (F ) is the

expectation of T (F a) with respect to the probability measure P (see Equation 4.2). So,

one can generate N independent observations a1,a2, . . . ,aN from P and estimate ζPT (F ) by

the sample average ζPNTn (F ) = 1
N

∑N
i=1 Tn(F ai). Here PN stands for the empirical version

of P with N mass points a1,a2, . . . ,aN . If Tn(F a) is a consistent estimator of T (F a) for

any fixed a, and T (F a) is uniformly bounded over a, then under some suitable conditions,

ζPNTn (F ) converges to ζPT (F ) either in probability or almost surely. This result is given by

the following theorem.

Theorem 4.2. Assume that T is a bounded functional and {Tn : n ≥ 1} is a sequence

of consistent estimators of T . For any fixed δ > 0, define the probability p̃n(δ, F ) :=

supa∈Rd Pr [|Tn(F a)− T (F a)| > δ]. If N = N(n) is an increasing function of n such that

N(n) → ∞ and N(n)p̃n(δ, F ) → 0 as n → ∞, then ζPNTn (F ) converges to ζPT (F ) in proba-

bility. Further, if
∑∞

n=1N(n)p̃n(δ, F ) <∞, ζPNTn (F ) converges to ζPT (F ) almost surely.

If we use the copula based dependency measure Iσ(X) and its estimator Îσ,n(X) (dis-

cussed in Chapter 2) as T and Tn, respectively, irrespective of the choice of F , the condition∑∞
n=1N(n)pn(δ, F ) < ∞ holds when N is a polynomial function of n (see Lemma 4.1 in

Section 4.8). We use similar choices of T and Tn for the construction of our test statistic.

The details are given below.

4.1.2 Construction of the test statistic

Consider a p dimensional random vector Z = (Z(1), Z(2), . . . , Z(p)) following a distribution

G with continuous univariate marginals. To measure dependence among the coordinate

variables Z(1), Z(2), . . . , Z(p), in Chapter 2, we used a copula based dependency measure

Iσ(Z) and its estimator Îσ,n(Z). Since Iσ(Z) is essentially a functional, here we denote it

by Tσ(G), and its estimator Îσ,n(Z) is denoted by Tσ,n(G). Also recall that in Chapter

2, we constructed a test statistics Tn = Îσn,n(Z), where σn was chosen using “median
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heuristic”. We have also seen that σn is a non-random function of n, and as n tends to

infinity, it converges to a constant σ0. From the proof of Theorem 2.7, we also get that

Tσn,n(G) = Îσn,n(Z) converges to Tσ0(G) = Iσ0(Z) almost surely. In this chapter, we shall

use Tσ0 as T , and Tσn,n as Tn.

Recall that for the approximation of ζPT (F ), we need to generate N i.i.d. observations

from P , where N increases with n at an appropriate rate (e.g., polynomial rate of any

order). However, we already have n i.i.d. observations x1,x2, . . . ,xn from F at our disposal.

Therefore, for the practical implementation, we choose P = F , N = n and use x1,x2, . . . ,xn

as a1,a2, . . . ,aN , respectively. However, when xi is used as ai, instead of Tn(F ai) =

Tσn,n(F ai), we compute T (−i)
n−1 (F ai) = T(−i)

σn−1,n−1(F ai) based on the remaining (n − 1)

observations leaving xi. For these choices of P and T , we shall denote ζPT (F ) as ζ(F ),

which is given by

ζ(F ) =

∫
Rd
T (F a) dF (a) =

∫
Rd

Tσ0(F a) dF (a).

.
The corresponding estimator is denoted by ζn(F ), and it can be expressed as

ζn(F ) =
1

n

n∑
i=1

T (−i)
n−1 (Fxi) =

1

n

n∑
i=1

T(−i)
σn−1,n−1(Fxi).

Different steps of our algorithm is given below.

Algorithm

1. For a fixed i (1 ≤ i ≤ n), compute p-dimensional vectors z1,i, . . . , zi−1,i, zi+1,i, . . . , zn,i,

where that zj,i = (‖x(1)
j −x

(1)
i ‖, ‖x

(2)
j −x

(2)
i ‖, . . . , ‖x

(p)
j −x

(p)
i ‖) for j = 1, 2, . . . , n; j 6= i.

2. Compute T(−i)
σn−1,n−1(Fxi) based on these (n− 1) observations {zj,i; 1 ≤ j ≤ n, j 6= i}

to measure dependence among p coordinate variables.

3. Repeat Steps 1 and 2 with i = 1, 2, . . . , n to compute the test statistic

ζn(F ) =
1

n

n∑
i=1

T(−i)
σn−1,n−1(Fxi).

The null hypothesis H0 is rejected if the observed value of the test statistic ζn is larger

than the cut-off, which is computed based on the permutation principle discussed before.

Note that the statistic ζn is based on distances among the observations. So, it can be
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conveniently used for data of arbitrary dimensions. When F is absolutely continuous,

consistency of ζn can be derived from Theorems 4.1 and 4.2. Consistency of the resulting

test follows from that. This result is asserted by the following theorem.

Theorem 4.3. Suppose that X follows an absolutely continuous distribution F . Then,

under any fixed alternative, the power of the right-tailed test based on ζn converges to 1 as

n tends to infinity.

4.2 Analysis of simulated data sets

We analyzed some simulated data sets to compare the performance of our proposed test

based on ζn with the JdCov test, the rank-JdCov test (Chakraborty and Zhang, 2019)

and the dHSIC test (Pfister et al., 2018). For problems involving two sub-vectors, we

also used the HHG test (Heller et al., 2013) for comparison. For our proposed tests, we

created an R package ‘MCGK’ containing all necessary codes. This package is available at

https://github.com/angshumanroycode/MCGK. Cut-offs of all these tests were computed

based on 1000 random permutations as before.

First, we considered six examples involving two random vectors each of dimension 5.

For each of these examples, we considered samples of different sizes, and the powers of

different tests (levels, if H0 is true) were computed based on 1000 Monte Carlo simulations.

These results are reported in Figure 4.1.

To study the level properties of different tests, we began with an example, where ob-

servations were generated from the 10-dimensional standard ‘Normal’ distribution. While

the vector X(1) consisted of the first five variables, X(2) was formed by the rest. Clearly,

X(1) and X(2) are independent in this example. So, as expected, all tests rejected H0 in

nearly 5% cases (see Figure 4.1(a)).

To study the power properties of the tests, next we generated observations from the 10-

dimensional standard ‘t5’ distribution (Student’s t distribution with 5 degrees of freedom),

and split them into two sub-vectors of dimension 5 each. Note that in this example, X(1)

and X(2) are uncorrelated but not independent. So, different tests can be compared based

on their powers. Figure 4.1(b) clearly shows that in this example, the HHG test and our

proposed test performed much better than dHSIC, JdCov and rank-JdCov tests.

The next two examples deal with mixtures of 10-dimensional normal distributions. In

‘Mixture Normal-1’, we generated observations from an equal mixture of N10(0, I10) and

https://github.com/angshumanroycode/MCGK
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N10(0, 4I10) distributions, where Id denotes the d×d identity matrix. In ‘Mixture Normal-

2’, they were generated from an equal mixture of N10(0,Σ1) and N10(0,Σ2) distributions

with Σ1 = diag(I5, 4I5) and Σ2 = diag(4I5, I5). In both of these examples, our proposed

test had an edge over the HHG test (see Figures 4.1(c) and 4.1(d)). JdCov, rank-JdCov and

dHSIC tests had very poor performance in the ‘Mixture Normal-2’ example. The JdCov

test and its rank version performed poorly in the ‘Mixture Normal-1’ example as well.
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Figure 4.1: Powers of JdCov ( ), rank-JdCov ( ), dHSIC ( ), HHG ( ) tests and the proposed
test based on ζn ( ) in simulated data sets with two sub-vectors (p = 2, d1 = d2 = 5).
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We also considered two other examples, which can be viewed as multi-dimensional

versions of the examples used in Székely et al. (2007). In both of these examples, ob-

servations on X(1) were generated from the 5-dimensional standard normal distribution.

In ‘Y = log(X2)’ example, each coordinate of X(2) was obtained from the corresponding

coordinate of X(1) by using the transformation y = log(x2). In ‘Y = Xε’ example, each

coordinate of X(2) was generated by multiplying the corresponding coordinate of X(1) with

an independent N(0, 1) noise. In the ‘Y = log(X2)’ example, the dHSIC test had the best

performance closely followed by HHG and our proposed test (see Figure 4.1(e)). The JdCov

test had relatively low power. In the ‘Y = Xε’ example, the HHG test and the proposed

test outperformed their competitors (see Figure 4.1(f)). JdCov and rank-JdCov tests had

miserable performance in this example.

Next, we considered some problems involving 4 random vectors, each of dimension 5. In

each of these examples, we generated observations from a 20-dimensional distribution. The

first five variables formed the sub-vector X(1), the next five formed the sub-vector X(2), and

so on. Note that the HHG test could not be used in these examples. So, we compared the

performance of our test with JdCov, rank-JdCov and dHSIC tests. Again we considered

six examples. They are labeled as ‘Normal’, ‘t5’, ‘Mixture Normal-1’, ‘Mixture Normal-2’,

‘Hypersphere’ and ‘L1 Ball’. The first four examples can be viewed as four-component

extensions of the examples considered in Figures 4.1(a)-4.1(d).

In the ‘Normal’ example, we generated observations from the 20-dimensional standard

normal distribution. In this example, since the X(i)’s (i = 1, 2, 3, 4) are independent, one

expects all tests to have powers close to the nominal level of 0.05, and we observed the

same in our experiment (see Figure 4.2(a)). Next, we replaced the normal distribution by

20-dimensional standard t5 distribution. In this example, X(1),X(2),X(3),X(4) are uncor-

related but not independent. The proposed test and the dHSIC test could identify this

dependency well (see Figure 4.2(b)). Among them, the former one performed better.

The next two examples, ‘Mixture Normal-1’ and ‘Mixture Normal-2’, are similar to

those used before. In ‘Mixture Normal-1’, we generated 20-dimensional observations from

an equal mixture of N20(0, I20) and N20(0, 2I20) distributions. In ‘Mixture Normal-2’,

they were generated from an equal mixture of N20(0,Σ◦1) and N20(0,Σ◦2) distributions

with Σ◦1 = diag(I5, 2I5, 3I5, 4I5) and Σ◦2 = diag(4I5, 3I5, 2I5, I5). In these two examples,

our proposed test performed much better than their competitors (see Figures 4.2(c) and
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4.2(d)). JdCov and rank-JdCov tests had poor performance in both of these examples.

The dHSIC test had somewhat reasonable performance in ‘Mixture Normal-1’.
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Figure 4.2: Powers of JdCov ( ), rank-JdCov ( ), dHSIC ( ) tests and the proposed test based
on ζn ( ) in simulated data sets with four sub-vectors (p = 4, d1 = d2 = d3 = d4 = 5).

Next we considered two examples involving uniform distributions. In the ‘Hypersphere’

example, observations on X were generated from the 20-dimensional uniform distribution

on {x = (x1, x2, . . . , x20) : x2
1 +x2

2 + · · ·+x2
20 ≤ 1}, while in the ‘L1 Ball’ example, they were

generated from the uniform distribution on {x = (x1, x2, . . . , x20) : |x1|+ |x2|+ · · ·+ |x20| ≤

1}. Figures 4.2(e) and 4.2(f) show the superiority of our proposed test in these examples.
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The dHSIC test also had competitive performance in the ‘L1 Ball’ example, but JdCov and

rank-JdCov tests did not have satisfactory performance in either of these examples.
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Figure 4.3: Powers of JdCov ( ), rank-JdCov ( ), dHSIC ( ) tests and the proposed test based
on ζn ( ) in simulated data sets with 15-dimensional sub-vectors (p = 4, d1 = d2 = d3 = d4 = 15).

We observed similar results when we repeated these experiments with data of higher

dimensions. Figure 4.3 shows the powers of different tests for 15-dimensional versions (i.e.,

d1 = d2 = d3 = d4 = 15) of the six data sets considered in Figure 4.2. The superiority of

our proposed tests based on ζn is more evident in this figure.
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It is easy to see that for each ai = xi, the computing cost of T(−i)
σn−1,n−1(F ai) is of the

order O(n2p), which is the same as that of dHSIC and JdCov tests. But, for the proposed

test based on ζn, we need to repeat it n times (see Sub-section 4.1.2), and that increases its

computing cost. However, the results reported in Figures 4.1-4.3 show that in many cases,

it is worthy to go for this extra computation.

4.3 Method based on linear projections

So far, for the construction of our test, we have considered characterization of indepen-

dence among the random vectors based on independence among the pairwise distances

(see equation 4.1). Another characterization of independence is given by the Cramér-

Wold device, which says that X(1),X(2), . . . ,X(p) are independent if and only if X̃(a,1) =

〈a(1),X(1)〉, X̃(a,2) = 〈a(2),X(2)〉, . . . , X̃(a,p) = 〈a(p),X(p)〉 are independent for all a =

(a(1),a(2), . . . ,a(p)) ∈ Rd. So, instead of testing independence among Euclidean distances

X(a,1), X(a,2), . . . , X(a,p), one can also test for independence among the linear projections

X̃(a,1), X̃(a,2), . . . , X̃(a,p) and aggregate the results for several choices of a as before to come

up with a test statistic analogous to ζn. We call this test statistic ζ̃n. Consistency results

similar to Theorems 4.2 and 4.3 hold for the test based on ζ̃n as well, and they can easily

be proved using similar line of arguments. So, we are not repeating them. However, the

empirical performance of these projection-based tests was inferior to our tests based on

pairwise distances in almost all simulated examples considered in Section 4.2. In many

cases, they had poor performance like the JdCov test. That is why we did not report those

results in Section 4.2.

To understand the difference between these two methods, first note that the copula

based dependency measure Tσn,n(F a) depends on
(
x

(a,1)
i , x

(a,2)
i , . . . , x

(a,p)
i

)
only through(

r
(a,1)
i , r

(a,2)
i , . . . , r

(a,p)
i

)
(i = 1, 2, . . . , n), where r

(a,j)
i (j = 1, 2, . . . , p) is the rank of x

(a,j)
i

in the set {x(a,j)
1 , x

(a,j)
2 , . . . , x

(a,j)
n }. So, this statistic is invariant under monotone trans-

formation of coordinate variables (see Theorem 2.1 and also Roy et al., 2020b, for de-

tails) and we will get the same result if, instead of (x
(a,1)
i , x

(a,2)
i , . . . , x

(a,p)
i ) = (‖x(1)

i −

a(1)‖, ‖x(2)
i −a(2)‖, . . . , ‖x(p)

i −a(p)‖), we use (‖x(1)
i −a(1)‖2, ‖x(2)

i −a(2)‖2, . . . , ‖x(p)
i −a(p)‖2)

for i = 1, 2, . . . , n. Now, observe that ‖x(j)
i − a(j)‖2 = ‖x(j)

i ‖2 + ‖a(j)‖2 − 2x̃
(a,j)
i . So,

for any fixed j (j = 1, 2, . . . , p), the ranks y
(j)
i ’s (i = 1, 2, . . . , n) depend not only on

x̃
(a,j)
1 , x̃

(a,j)
2 , . . . , x̃

(a,j)
n but also on the values of ‖x(j)

1 ‖2, ‖x
(j)
2 ‖2, . . . , ‖x

(j)
n ‖2. When these
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norms are constant, the test based on pairwise distances and that based on linear projec-

tions lead to the same result. But in many cases, these norms carry significant information

about dependency among the random vectors. In such cases, the tests based on pairwise

distances are expected to perform better. We also observed the same in our experiments

in Section 4.2.

To demonstrate these above mentioned facts, we considered three simple examples. In

Example A, we generated n i.i.d. observations θ1, θ2, . . . , θn from the U(0, 2π) distribution

and then computed φi = (θi + εi) mod(2π) for i = 1, 2, . . . , n, where the εi’s were inde-

pendently generated from a wrapped normal distribution (see, e.g., Breitenberger, 1963;

Mardia and Jupp, 2009) with the location parameter 0 and the scale parameter 1. Ob-

servations on the two sub-vectors X(1) and X(2) were obtained using the transformations

x
(1)
i = (cos θi, sin θi) and x

(2)
i = (cosφi, sinφi) for i = 1, 2, . . . , n. This experiment was

repeated 1000 times to compute the powers of the two tests. Note that in this example, we

have ‖x(1)
i ‖ = ‖x(2)

i ‖ = 1 for all i = 1, 2 . . . , n. Therefore, as expected, the test based on

pairwise distances and that based on linear projections had the same power for all choices

of n (see Figure 4.4(a)).

In Example B, x
(1)
1 ,x

(1)
2 , . . . ,x

(1)
n were generated from the bivariate normal distribution

with zero means, unit variances and correlation coefficient 0.5. Observations on X(2) were

obtained from the corresponding observations on X(1) by using the transformation x
(2)
i =

(‖x(1)
i ‖ cos θi, ‖x(1)

i ‖ sin θi) (i = 1, 2, . . . , n), where θ1, . . . , θn are i.i.d. U(0, 2π) variables.

So, in this example, the norms of X(1) and X(2) are non-constant, but they are equal

with probability one. The tests based on ζn successfully utilized this information to come

up with much better performance than the test based on ζ̃n (see Figure 4.4(b)). Similar

phenomenon was observed in the examples considered in Section 4.2 as well.

However, the projection-based test can also have higher power than the pairwise distance-

based test in some examples. To demonstrate this, in Example C, we considered the same

setup as in Example A for generating the θi’s and φi’s for i = 1, 2, . . . , n. In addition to

that, we generated n independent observations (Ui, Vi) (i = 1, 2, . . . , n) from the uniform

distribution on [0, 10] × [0, 10]. Observations on X(1) and X(2) were obtained using the

transformations x
(1)
i = (Ui cos θi, Ui sin θi) and x

(2)
i = (Vi cosφi, Vi sinφi) for i = 1, 2, . . . , n.

In this example, ‖x(1)
i ‖ = Ui and ‖x(2)

i ‖ = Vi being independent random variables, do not

contain any information regarding dependence between X(1) and X(2). In fact, they can be
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Figure 4.4: Powers of the tests based on pairwise distances ζn ( ) and

linear projections ζ̃n ( ) in Examples A, B and C.

viewed as noise. In such a situation, the test based on linear projection performed better

than the test based on pairwise distances (see Figure 4.4(c)).

For one-dimensional problems (i.e., d1 = d2 = · · · = dp = 1), the test based on ζ̃n

usually yields similar results as obtained by the test based on Tn (considered in Chapter2).

This is quite clear from the description of the test statistics. When all sub-vectors are one-

dimensional, since a(1),a(2), . . . ,a(p) are scalars and Tσn,n(F a) is invariant under monotone

transformation of the coordinate variables, for a fixed choice of a, the test statistic based on

linear projection can be viewed as the test statistic Tn computed using n− 1 observations

(leaving out the one which is used as a). However, the statistic ζn leads to a different test

in one-dimension, and it often yields different results.

To demonstrate this, we considered two simple examples each involving four-dimensional

distributions. In these examples, each coordinate variable was used as a sub-vector (i.e.

d1 = d2 = d3 = d4 = 1). In Example D1, observations were generated from a multivari-

ate normal distribution with the mean vector 0 = (0, 0, 0, 0) and the dispersion matrix

Σ = ((σij)) with σij = 0.4|i−j| for i, j = 1, 2, 3, 4. In Example D2, they were generated

from the standard Cauchy distribution. Each experiment was repeated 1000 times as before

to compute the powers of different tests, and they are reported in Figure 4.5. This figure

clearly shows that in both of these examples, the test based on ζ̃n had powers similar to

that based on Tn, but the test based on ζn had different powers. In the second example, the

tests based on pairwise distances outperformed the tests based on linear projections (see

Figure 4.5(b)), but in the first example, the tests based on linear projections had better

performance (see Figure 4.5(a)). This can be explained using the arguments given in the
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earlier part of this section. In the example with Cauchy distribution, the average correlation

coefficient between |X(1)| and |X(2)| over the 1000 trials was found to be more than 0.75.

Since the four variables are exchangeable in this example, we observed similar correlations

for other pairs of variables as well. This clearly indicates that the absolute values of the

variables carried substantial information regarding dependence. But in the example with

normal distribution, this dependence among the absolute values of the variables was very

weak. We could not find any pattern in the scatter plots, and the maximum of the average

pairwise correlations was found to be smaller than 0.2.
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Figure 4.5: Powers of the tests based on pairwise distances ζn ( ), linear projections ζ̃n ( ) and
that based on Tn ( ) in Examples D1 and D2 involving four one-dimensional variables.

4.4 Results from the analysis of real data sets

We also analyzed three real data sets for further evaluation of our proposed methods.

Description of the ‘Combined Cycle Power Plant (CCPP) data’ has already been given in

Chapter 2. Like before, here also we did not consider the variable ‘electric energy output’ for

our analysis and carried out tests of independence among the remaining four variables. The

other two data sets, namely ‘Tecator data’ and ‘Pollution data’, are available at the CMU

Data Set Archive (http://lib.stat.cmu.edu/datasets/). Brief description of these two

data sets is given below.

Tecator data were recorded on a Tecator Infratec Food and Feed Analyzer working in

the wavelength range 850-1050 nm by the Near Infrared Transmission principle. This data

set was analyzed by Ferraty and Vieu (2006). Here each sample contains finely chopped

pure meat with different water, fat and protein contents. For each of the 215 meat samples,

the data consist of 100 channel spectrum of absorbance, the content of water, the content

of fat and that of protein. The absorbance is measured by the spectrometer, while the

http://lib. stat.cmu.edu/datasets/
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Figure 4.6: Powers of JdCov ( ), rank-JdCov ( ), dHSIC ( ), Hoeffding ( ) tests and the

proposed tests based on ζn ( ) and ζ̃n ( ) in real data sets.

three contents are determined by analytic chemistry. Now, a natural question to ask is

whether protein content, fat content or water content in the meat can be assessed based

on the absorbance spectra. So, here, we want to test whether the relationship among these

four variables is statistically significant.

Pollution data set contains measurements on four groups of variables: weather, socio-

economic status, pollution and age-adjusted mortality rate. There are several variables

under each of these groups. Data were collected from 60 different standard metropolitan

statistical areas of the USA in the year 1960, and this data set first appeared in McDon-

ald and Schwing (1973). Here one might be interested in testing whether there is any

dependence among these four groups of variables.

Like before, in these examples also, when we used the full data sets for testing (for the

CCPP data, where all random vectors are of dimension 1, test based on Hoeffding’s φ-

statistic was also used as a competitor), all tests suggested significant dependence among

the random vectors. Since it was not possible to compare among the performance of

different tests based on those results on full data sets, following Sarkar and Ghosh (2018),

we carried out our experiments with randomly chosen subsets of different sizes. For each

subset size, the experiment was performed 1000 times to compute the empirical powers of

different tests, which are shown in Figure 4.6.

In CCPP data, the test based on ζ̃n had the highest power, but the JdCov test, the

rank-JdCov test and the test based on ζn also had competitive performance. The dHSIC

test had relatively low power. The test based on Hoeffding’s φ-statistic had miserable

performance. It had power close to zero for all four choices of the sample size considered

here. In the case of Tecator data, our proposed tests based on ζn and ζ̃n had similar
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performance, and they outperformed all other tests. Note that the dHSIC test could only

be used for samples of size 8 or higher. For smaller sample sizes, its power was taken to be

zero. In the case of Pollution data, the rank-JdCov test had the best performance. The test

based on ζn and the JdCov test also performed well, and they had almost similar powers.

The test based on ζ̃n had competitive performance as well, but the power of the dHSIC

test was slightly lower.

4.5 Multi-scale versions of the proposed tests

For our proposed tests, so far, we have used the bandwidth chosen based on median heuris-

tic. However, as we have seen before, this may not always be the best choice. When

the relationships among the random vectors are nearly monotone (i.e., the conditional

expectation of a variable is a monotone function of others), median heuristic usually

yields good results. But, smaller bandwidths are often helpful for detecting complex non-

monotone relationships. To take care of this problem, we adopt the multi-scale approach

as before and aggregate the results for several choices of the bandwidth. For any fixed

ai = xi, we consider the results obtained for m bandwidths σ(1), σ(2), . . . , σ(m) and use

either T(−i)
sum (Fxi) =

∑m
j=1 T

(−i)
σ(j),n−1

(Fxi) or T(−i)
max(Fxi) = max1≤j≤m T(−i)

σ(j),n−1
(Fxi) as the

aggregated statistic. We take the average of the T(−i)
sum (Fxi)’s (respectively, T(−i)

max(Fxi)’s)

over all ai = xi to come up with the test statistic ζsum,n = 1
n

∑n
i=1 T

(−i)
sum (Fxi) (respectively,

ζmax,n = 1
n

∑n
i=1 T

(−i)
sum (Fxi)). For the multi-scale versions of the tests based on linear pro-

jections, similar test statistics can be constructed, and we denote them by ζ̃sum,n and ζ̃max,n,

respectively. For the choice of m and σ(1), σ(2), . . . , σ(m), we adopt the same strategy as in

Section 2.5. For any fixed m, large sample consistency of these tests follows from Theorems

4.1 and 4.2 using similar line of arguments as used in the proof of Theorem 4.3.

To demonstrate the utility of these multi-scale approaches, we used six examples each

involving two bivariate random vectors. For generating observations on these sub-vectors,

we considered the six unusual bivariate data sets of Newton (2009), namely, ‘Four clouds’,

‘W’, ‘Parabola’, ‘Two parabolas’, ‘Diamond’ and ‘Circle’ (see Figure 2.5 for the scatter plots

of these data sets). Recall that in each of these examples, the two variables are uncorrelated,

but barring the first example, they are not independent. We generated observations from

these bivariate distributions and considered them as the first coordinates of X(1) and X(2),

respectively. The second coordinates of these two vectors were generated independently
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Figure 4.7: Powers of the single-scale and multi-scale tests based on pairwise distances (tests
based on ζn ( ), ζsum,n ( ) and ζmax,n ( )) and those based on linear projections (tests based on

ζ̃n ( ), ζ̃sum,n ( ) and ζ̃max,n ( )) in simulated data sets with two sub-vectors.

from the N(0, 1/9) distribution. We considered samples of different sizes and for each

sample size, the experiment was repeated 1000 times to compute the powers of single-scale

and multi-scale versions of the proposed tests. These powers are reported in Figure 8.

In the case of ‘Four clouds’ data set, two random vectors were independent. So, as

expected, all tests had powers close to the nominal level of 0.05 (see Figure 4.7(a)). Figure

4.7 clearly shows that multi-scale versions of the proposed tests performed well in the other

five examples. In many cases, they outperformed their corresponding single-scale analogs.

Among the multi-scale methods based on pairwise distances, the test based on ζsum,n had

better performance. In all cases, it had higher power than its single-scale analog based on ζn

(see Figures 4.7(b)-4.7(f)). Except for the ‘Circle’ data, in all other cases, it outperformed

the test based on ζmax,n as well. While the single-scale method based on linear projections

performed poorly in four out of five examples, its multi-scale versions based on ζ̃sum,n and

ζ̃max,n worked well in all five examples. Among these two tests, the later one had an edge.
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Figure 4.8: Powers of JdCov ( ), rank-JdCov ( ), dHSIC ( ), HHG ( ) tests and the

proposed tests based on ζn ( ), ζsum,n ( ), ζ̃n ( ) and ζ̃max,n ( ) in simulated data sets
with two 2-dimensional sub-vectors (p = 2, d1 = d2 = 2).

Next we compared the performance of these tests with HHG, JdCov, rank-JdCov and

dHSIC tests. Figure 4.8 shows the powers of these tests along with those of the single-

scale and multi-scale tests based on pairwise distances and linear projections. Among

the multi-scale methods, results are reported for ζsum,n and ζ̃max,n only because of their

better performance. In all these examples, JdCov and rank-JdCov tests had miserable

performance. Performance of the dHSIC tests was also unsatisfactory in some examples,

especially in cases of ‘W’ and ‘Circle’ data. In the case of ‘W’ data, multi-scale versions of

our tests outperformed their competitors. Among the rest, the HHG test and the single-

scale test based on pairwise distances had competitive performance. Inter-point distance
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based single-scale and multi-scale tests performed well in ‘Diamond’ data as well. These

two tests and the HHG test had higher powers than the rest. In ‘Parabola’ data, projection

based tests, especially the one based on ζ̃max,n had superior performance. The dHSIC test

had the third highest power in this example. In ‘Two parabolas’ data set, the HHG test

had the best performance, but the performance of the multi-scale methods and the single-

scale method based on ζn was also satisfactory. They performed better than the rest of

their competitors. Our single-scale tests could not perform well in ‘Circle’ data, but their

multi-scale analogs outperformed all other tests considered here.

These examples clearly show the usefulness of the multi-scale approach in complex data

sets. In the examples considered in Sections 4.2 and 4.4, these multi-scale methods had

almost similar or slightly improved performance compared to their single-scale analogs.

That is why here we do not report them again.

4.6 Results from the analysis of functional data

From the description of our proposed tests based on pairwise distances, it is clear that

they can also be used for testing independence among several random functions having

distributions on infinite dimensional Banach spaces. If these Banach spaces are separable,

under appropriate regularity conditions, we can prove the large sample consistency of the

test based on ζn (see Theorems 4.4 and 4.5 in Section 4.8). Following similar line of argu-

ments, one can establish consistency for the multi-scale versions of the test based on ζsum,n

and ζmax,n as well. Similarly, the tests based on linear projections (i.e., inner products) can

be used for functions in infinite dimensional Hilbert spaces, and their consistency can be

proved under similar regularity conditions. Now, one may be curious to know how these

tests perform in practice for functional data. In this section, we analyze several simulated

data sets to address this question.

Over the last couple of decades, several nonparametric methods have been developed

in the literature for dealing with functional data (see, e.g. Ramsay and Silverman, 2005;

Ferraty and Vieu, 2006). But, unfortunately, the literature on test of independence be-

tween two or more random functions is almost non-existent. Lyons (2013) generalized the

notion of the distance correlation for random functions in metric spaces of strong negative

type (e.g., the Hilbert space of square integrable functions on [0, 1]), and hence they gen-

eralized the dCov test (Székely et al., 2007) for testing independence between two random
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functions. The underlying principle is simple. The dCov test statistic depends only on

pairwise distances among the observations. So, using an appropriate distance function,

this can be used for function valued data. Using the same idea, one can generalize the Jd-

Cov test (Chakraborty and Zhang, 2019) for testing independence among several random

functions. Interestingly, the dHSIC test (Pfister et al., 2018), when used with Gaussian

kernel, depends only on pairwise distances. The HHG test (Heller et al., 2013) based on

2×2 contingency tables also has the same property. So, these tests can also be used to test

for independence between random functions. The consistency of HHG test for functional

data can be established using the proof of Theorem 1 in Sarkar et al. (2020). In this section,

we compare the performance of our proposed tests with that of JdCov, dHSIC and HHG

tests, when they are used for testing independence between two random functions. Note

that the rank-JdCov test can not be used for such functional data.

We used six examples each involving two random functions X(1) and X(2) in L2[0, 1],

the space of square integrable functions on [0, 1]. Let {ξj(t)}j≥1 be an orthonormal basis

of L2[0, 1]. Consider two sequence {ν(1)
j }j≥1 and {ν(2)

j }j≥1 of positive real values such that∑∞
j=1

(
ν

(1)
j

)2
<∞ and

∑∞
j=1

(
ν

(2)
j

)2
<∞. Also consider a sequence of independent pairs

of random variables {(Z(1)
j , Z

(2)
j )}j≥1. Note that X(1),X(2) ∈ L2[0, 1] can be generated

as using the formulae X(1) =
∑∞

j=1 ν
(1)
j Z

(1)
j ξj(t) and X(2) =

∑∞
j=1 ν

(2)
j Z

(2)
j ξj(t) for all

t ∈ [0, 1]. For our study, we considered the Fourier basis {1,
√

2 sin(2πjt),
√

2 cos(2πjt), j =

1, 2, . . .} of L2[0, 1] and used ν
(1)
j = j−5/4,ν

(2)
j = j−3/2 for all j ≥ 1. Independent bivariate

observations on (Z
(1)
1 , Z

(2)
1 ), (Z

(1)
2 , Z

(2)
2 ), . . . , (Z

(1)
9 , Z

(2)
9 ) were generated from a bivariate

distribution to get observations on the random functions X(1)(t) =
∑9

j=1 ν
(1)
j Z

(1)
j ξj(t) and

X(2)(t) =
∑9

j=1 ν
(2)
j Z

(2)
j ξj(t). Note that because of the use of orthonormal basis, here all

pairwise L2 distances and inner products between the observations can be calculated easily.

Here, we used six examples, where the observation on the (Z
(1)
j , Z

(2)
j )’s were generated

from the six bivariate distributions considered in Newton (2009) (see Figure 2.5). For

each example, we considered samples of different sample sizes, and for each sample size,

the experiment was repeated 1000 times to compute the powers of different tests. These

powers are reported in Figure 4.9.

Note that X(1) and X(2) are independent if and only if the two variables associated

with the bivariate distribution are independent. Therefore, in the case of ‘Four Clouds’

data, all tests had powers close to 0.05 (see Figure 4.9(a)). In the other five examples,
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X(1) and X(2) are dependent. Figure 4.9 clearly shows that in these examples, multi-scale

versions of our tests performed better that their single-scale analogs. The tests based on

ζsum,n, ζmax,n and ζ̃max,n outperformed all other tests in ‘W’ and ‘Circle’ examples. In

these two examples, dHSIC, JdCov and HHG tests did not perform well. In fact, except

for the ‘Parabola’ example, dHSIC and JdCov tests performed poorly throughout. In the

‘Parabola’ example, the HHG test had the best overall performance, but all other methods

barring the test based on ζ̃n had competitive powers. In ‘Diamond’ and ‘Two Parabolas’

examples, the HHG test and our proposed tests based on ζsum,n, ζmax,n and ζ̃max,n had

almost similar powers, and they performed better than all other tests considered here.
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Figure 4.9: Powers of JdCov ( ), dHSIC ( ), HHG ( ) tests and the proposed tests based on ζn
( ), ζsum,n ( ), ζmax,n ( ), ζ̃n ( ), ζ̃sum,n ( ) and ζ̃max,n ( ) in functional data sets.

So far, for our data analysis, we assumed all functions to be fully known. But in practice,

each function is usually observed only on some grid points, and one needs to approximate
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the pairwise L2 distances or the inner products using those observed values. So, next we

considered the situation, where each function was observed on 101 equidistant grid points

{0.00, 0.01, . . . , 1.00} on the [0, 1] interval. In such cases, we estimate the pairwise L2

distance ‖f − g‖ =

(
1∫
0

(f(t)− g(t))2dt

)1/2

and the inner-product < f, g >=
1∫
0

f(t)g(t)dt

between two functions f and g by
(

1
101

∑100
i=0(f(ti)− g(ti))

2
)1/2

and 1
101

∑100
i=0 f(ti)g(ti),

respectively, where ti = 0.01i for i = 0, 1, . . . , 100. We carried out our experiment with these

estimated values of pairwise L2 distances and inner-products, but relative performance of

all tests were almost the same, and that is why we are not reporting those results again.

4.7 Application in causal discovery

In this section, we use our proposed tests of independence for discovery of causal relationship

among the sub-vectors X(1),X(2), . . . ,X(p). This type of application was considered in

Pfister et al. (2018) and Chakraborty and Zhang (2019). In order to unveil the causal

relationship among these p random vectors, we consider all possible structural equation

models with additive noise, each of which lead to a directed acyclic graph (DAG) on p

nodes. Any such structural equation model (SEM) has the following form:

X(j) = fj(PA(j)) + ε(j), j = 1, 2, . . . , p; (4.3)

where PA(j) denotes the set of all parents of X(j) according to the SEM, and the ε(j)’s are

independent additive noise vectors. If there are no parent nodes, we take fj to be zero.

Suppose that x1,x2, . . . ,xn are independent observations on X = (X(1),X(2), . . . ,X(p)).

Given an SEM, for each j = 1, 2, . . . , p, we construct f̂j , an estimate of fj by regressing X(j)

on its parent nodes PA(j) using a nonparametric method. Then, the residuals are computed

as ε̂
(j)
i := x

(j)
i − f̂j(PA

(j)
i ) for i = 1, 2, . . . , n. If the underlying SEM is correct, these

residuals are supposed to be jointly independent. So, we perform a test of independence

among the estimated residuals and compute the corresponding p-value. We do it for all

possible SEMs that can be represented using DAGs, and finally, the model with the highest

p-value (least evidence against independence) is selected. However, if this highest p-value

is smaller than 0.05, none of the SEMs is selected. This step can be viewed as the first

step used by Hochberg (1988)’s step-up method for multiple testing, which controls the

family-wise error rate strongly at 5% level.
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We considered two examples for our experiments in this context. In both cases, the true

SEM satisfies the identifiability conditions (see Peters et al., 2014, Corollary 31). First, we

considered a model involving two bivariate random vectors X(1) and X(2). Observations

on X(1) = (U (1), U (2)) were generated from the standard bivariate normal distribution, and

those on X(2) = (V (1), V (2)) were obtained from them using the model V (i) = (U (i))2 +ε(i),

where the ε(i)’s are i.i.d. N(0, 0.01) random variables. So, the actual SEM consists of two

nodes with an arrow from X(1) to X(2) indicating the dependence of X(2) on X(1).

In this example, there are three possible SEMs: (i) X(1) −→ X(2), (ii) X(1) ←− X(2)

and (iii) a graph with no edge. We generated 10 observations on (X(1),X(2)), and different

methods were used to select the true model. This experiment was repeated 100 times,

and the results are reported in Table 4.1. In this example, the HHG test, our single scale

method based on ζn and its multi-scale version based on ζsum,n outperformed all other

methods considered here. The JdCov test and its rank version did not perform well. For

the test based on linear projections, the multi-scale method based on ζ̃max,n had the best

performance, and it performed slightly better than the dHSIC test. The test based on

ζmax,n also outperformed the dHSIC test in this example.

We obtained somewhat similar results when the observations on X(1) were generated

from the standard bivariate t2 distribution (t distribution with 2 degrees of freedom). In

that example also, the single-scale method based on ζn, its multi-scale analog based on

ζsum,n and the HHG test outperformed their competitors. The test based on ζmax,n and

the dHSIC test had almost similar performance. The tests based on linear projections had

slightly lower success rates, but they performed better than JdCov and rank-JdCov tests.

Next, we considered an example involving three random variables. In this example, we

had two independent random variables X(1) and X(2) from the standard Cauchy distribu-

tion, and X(3) = (X(1)X(2))3 +ε, where ε ∼ N(0, 0.01). We generated 30 observations from

the joint distribution of (X(1), X(2), X(3)) and used different tests to identify the correct

model (depicted in Figure 4.10(a)) out of 25 possible SEMs. This experiment was repeated

Table 4.1: Proportion of times different methods selected the correct model
in the example involving two bivariate random vectors.

ζn ζsum,n ζmax,n ζ̃n ζ̃sum,n ζ̃max,n dHSIC JdCov r-JdCov HHG

Normal 0.89 0.87 0.82 0.61 0.63 0.75 0.70 0.47 0.48 0.88

t2 0.97 0.96 0.89 0.76 0.76 0.78 0.86 0.61 0.57 0.98
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100 times as before. Note that in this example, there are two other super models (see

Figures 4.10(b) and 4.10(c)), which contain the true SEM. Therefore, instead of choosing

the correct model, all these methods for causal inference sometimes selected one of these

super models. So, in this example, we counted the proportion of times a method selected

one of these three models depicted in Figure 4.10, and they are reported in Table 4.2. Since

there are more than two sub-vectors (variables), the HHG test could not be used in this

example.

X(1) X(2)

X(3)

X(1) X(2)

X(3)

X(1) X(2)

X(3)

(a) True Model (b) Super Model 1 (c) Super Model 2

1

Figure 4.10: DAGs corresponding to the true model and two super models
in the example involving three random variables.

In this example, the multi-scale versions of the proposed tests performed slightly better

than their single-scale analogs. Table 4.2 clearly shows the superiority of the tests based

on pairwise distances. In this example, the dHSIC test and the JdCov test selected one of

these three models in 26% and 34% cases only. The methods based on linear projections

had success rates varying between 40% and 50%. The rank-JdCov test also had similar

performance. But the multi-scale methods based on pairwise distances successfully selected

one of the three models in more than 60% cases. The single scale method based on ζn chose

one of the these models on 58 out of 100 occasions.

Table 4.2: Proportion of times different methods selected the true model
and two super models in the example involving three random variables.

ζn ζsum,n ζmax,n ζ̃n ζ̃sum,n ζ̃max,n dHSIC JdCov r-JdCov

True Model 0.10 0.13 0.14 0.17 0.14 0.12 0.06 0.13 0.16

Super Model 1 0.23 0.22 0.21 0.12 0.13 0.20 0.08 0.11 0.16

Super Model 2 0.25 0.28 0.27 0.12 0.19 0.17 0.12 0.10 0.14

Total 0.58 0.63 0.62 0.41 0.46 0.49 0.26 0.34 0.46
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4.8 Proofs and mathematical details

Proof of Theorem 4.1. Since T satisfies Assumption 4.1, T (F a) ≥ 0 for every a ∈ Rd.

This implies that ζPT (F ) ≥ 0. Now, ζPT (F ) = 0 holds if and only if T (F a) = 0 for P -almost

every a. So, ‖X(1) − a(1)‖, ‖X(2) − a(2)‖, . . . , ‖X(p) − a(p)‖ are mutually independent for

every a ∈ S, where S is the support of P . That is, L(X) = L(X(1)) ⊗ L(X(2)) ⊗ · · · ⊗

L(X(p)) on B(a(1), r1) × B(a(2), r2) × · · · × B(a(p), rp) for all (a(1),a(2), . . . ,a(p)) ∈ S and

r1, r2, . . . , rp ≥ 0, where L denotes the law (distribution) of a random vector. Now, for

any a ∈ S and r ≥ 0, the set B(a, r) can be written as a countable union of sets of the

form B(a(1), r1) × B(a(2), r2) × · · · × B(a(p), rp). So, this in turn implies that L(X) =

L(X(1))⊗ L(X(2))⊗ · · · ⊗ L(X(p)) on B(a, r) for all a ∈ S and r ≥ 0. Since the Lebesgue

measure of S is positive, following Rawat and Sitaram (2000), this implies that L(X) =

L(X(1))⊗L(X(2))⊗· · ·⊗L(X(p)) throughout, i.e., X(1),X(2), . . . ,X(p) are independent.

Proof of Theorem 4.2. First observe that

∣∣ζPNTn (F )− ζPT (F )
∣∣ =

∣∣∣∣∫
Rd
Tn(F a) dPN (a)−

∫
Rd
T (F a) dP (a)

∣∣∣∣
≤
∣∣∣∣∫

Rd
Tn(F a) dPN (a)−

∫
Rd
T (F a) dPN (a)

∣∣∣∣+

∣∣∣∣∫
Rd
T (F a) dPN (a)−

∫
Rd
T (F a) dP (a)

∣∣∣∣
≤ 1

N

N∑
i=1

|Tn(F ai)− T (F ai)|+

∣∣∣∣∣ 1

N

N∑
i=1

T (F ai)−
∫
Rd
T (F a) dP (a)

∣∣∣∣∣ . (4.4)

Now, as T (F ai)’s are bounded i.i.d. random variables, it follows from the strong law of

large numbers that the second term on the right side in Equation (4.4), i.e.∣∣∣∣∣ 1

N

N∑
i=1

T (F ai)−
∫
Rd
T (F a) dP (a)

∣∣∣∣∣→ 0 almost surely as N →∞.

Also, we have

Pr

[
1

N

N∑
i=1

|Tn(F ai)− T (F ai)| > δ

]
≤ Pr

[
max

1≤i≤N
|Tn(F ai)− T (F ai)| > δ

]

≤
N∑
i=1

Pr [|Tn(F ai)− T (F ai)| > δ] ≤ N(n)p̃n(δ, F ).

Since δ > 0 is arbitrary, 1
N

∑N
i=1 |Tn(F ai)− T (F ai)| converges to 0 in probability if

limn→∞N(n)p̃n(δ, F ) = 0. If
∑∞

n=1N(n)p̃n(δ, F ) < ∞, the almost sure convergence of

1
N

∑N
i=1 |Tn(F ai)− T (F ai)| to 0 follows from the Borel-Cantelli Lemma. Using these facts,

we get the probability convergence and almost sure convergence of ζPNTn (F ) to ζPT (F ) in the

respective cases.
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Lemma 4.1. For any fixed δ > 0, define pσ,n(δ, F ) = supa∈Rd Pr [|Tσ,n(F a)− Tσ(F a)| > δ].

If N(n) is a polynomial function of n, then
∑∞

n=1N(n)pσ,n(δ, F ) <∞.

Proof. Let us denote the copula distribution of F a by Ca and the empirical copula distri-

bution based on n independent observations from F a by Ca
n. Thus,

Tσ(F a) =
γKσ(Ca,Π)

γKσ(M,Π)
and Tσ,n(F a) =

γKσ(Ca
n,Πn)

γKσ(Mn,Πn)
,

where M and Π are maximum and uniform copula as defined in Section 2.1, and Mn and

Πn are their empirical analogs defined in Section 2.2.

Observe that Pr [|Tσ,n(F a)− Tσ(F a)| > δ] = Pr

[∣∣∣∣ γKσ(Ca
n,Πn)

γKσ(Mn,Πn)
− γKσ(Ca,Π)

γKσ(M,Π)

∣∣∣∣ > δ

]
≤ Pr

[∣∣∣∣ γKσ(Ca
n,Πn)

γKσ(Mn,Πn)
− γKσ(Ca

n,Πn)

γKσ(M,Π)

∣∣∣∣ > δ

2

]
+ Pr

[∣∣∣∣γKσ(Ca
n,Πn)

γKσ(M,Π)
− γKσ(Ca,Π)

γKσ(M,Π)

∣∣∣∣ > δ

2

]
(4.5)

First consider the first term of Equation (4.5)∣∣∣∣ γKσ(Ca
n,Πn)

γKσ(Mn,Πn)
− γKσ(Ca

n,Πn)

γKσ(M,Π)

∣∣∣∣ =
γKσ(Ca

n,Πn)

γKσ(Mn,Πn)γKσ(M,Π)
× |γKσ(Mn,Πn)− γKσ(M,Π)| .

Note that the term
∣∣γKσ(Ca

n,Πn)/[γKσ(Mn,Πn)γKσ(M,Π)]
∣∣ is uniformly bounded and the

term |γKσ(Mn,Πn)− γKσ(M,Π)| is a non-random quantity that converges to 0 as n tends

to infinity (see, Lemma 2.2). Therefore, there exists n0 ≥ 1 such that for all n > n0,

∣∣∣∣ γKσ(Ca
n,Πn)

γKσ(Mn,Πn)
− γKσ(Ca

n,Πn)

γKσ(M,Π)

∣∣∣∣ < δ

2
, i.e., Pr

[∣∣∣∣ γKσ(Ca
n,Πn)

γKσ(Mn,Πn)
− γKσ(Ca

n,Πn)

γKσ(M,Π)

∣∣∣∣ > δ

2

]
= 0.

Note that this n0 does not depend on a. Now consider the second term of Equation (4.5)

Pr

[∣∣∣∣γKσ(Ca
n,Πn)

γKσ(M,Π)
− γKσ(Ca,Π)

γKσ(M,Π)

∣∣∣∣ > δ

2

]
= Pr [|γKσ(Ca

n,Πn)− γKσ(C,Π)| > δ∗] ,

where δ∗ = γKσ(M,Π) δ2 is a positive constant. Now to prove this lemma, it is enough to

show the finiteness of

∞∑
n=1

N(n) sup
a∈Rd

Pr [|γKσ(Ca
n,Πn)− γKσ(Ca,Π)| > δ∗] .

For j = 1, 2, . . . , p, let F (a,j) be the distribution function of X(a,j). For i = 1, 2, . . . , n

and j = 1, 2, . . . , p, denote ‖x(j)
i −a

(j)
i ‖ as x

(a,j)
i . Also define Ca∗

n as the empirical joint dis-

tribution of
(
F (a,1)(x

(a,1)
1 ), . . . , F (a,p)(x

(a,p)
1 )

)
, . . .

(
F (a,1)(x

(a,1)
n ), . . . , F (a,p)(x

(a,p)
n )

)
. Then,

following the proof of Theorem 2.6, we get
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Pr [|γKσ(Ca
n,Πn)− γKσ(Ca,Π)| > δ∗]

≤ Pr
[∣∣γ2

Kσ(Ca
n,Πn)− γ2

Kσ(Ca
n,Π)

∣∣ 1
2 + γKσ(Ca

n,C
a∗
n ) + γKσ(Ca∗

n ,C
a) > δ∗

]
≤ Pr

[∣∣γ2
Kσ(Ca

n,Πn)− γ2
Kσ(Ca

n,Π)
∣∣ 1

2 >
δ∗

3

]
+ Pr

[
γKσ(Ca

n,C
a∗
n ) >

δ∗

3

]
+ Pr

[
γKσ(Ca∗

n ,C
a) >

δ∗

3

]
Now, using Lemma 2.2, we can show that there exists n1 ≥ 1 such that for all n > n1,

Pr
[∣∣γ2

Kσ
(Ca

n,Πn)− γ2
Kσ

(Ca
n,Π)

∣∣ 1
2 > δ∗/3

]
= 0. Note that here the choice of n1 does not

depend on a. Again from Lemmas 2.3 and 2.4, we have Pr
[
γKσ(Ca

n,C
a∗
n ) > δ∗/3

]
<

2p exp
(
− nδ∗2

18pL2

)
and Pr [γKσ(Ca∗

n ,C
a) > δ∗/3] < exp

(
−n

2

(
δ∗

3 −
2√
n

)2
)

, respectively, where

L > 0 is a constant independent of a. So, to prove the lemma, it is sufficient to show that

∞∑
n=1

N(n)

[
2p exp

(
− nδ∗2

18pL2

)
+ exp

(
−n

2

(
δ∗

3
− 2√

n

)2
)]

<∞.

Clearly, this is true since N(n) is a polynomial function of n.

Lemma 4.2. Consider a sequence {σn}n≥1, which converges to some σ0 > 0. If N(n) is a

polynomial in n, then for any fixed δ > 0, we have
∑∞

n=1N(n)pσn,n(δ, F ) <∞.

Proof. Note that for any fixed a,

Pr [|Tσn,n(F a)− Tσ0(F a)| > δ]

≤ Pr

[
|Tσn,n(F a)− Tσ0,n(F a)| > δ

2

]
+ Pr

[
|Tσ0,n(F a)− Tσ0(F a)| > δ

2

]
.

So, in view of Lemma 4.1, it is enough to show that

∞∑
n=1

N(n) sup
a∈Rd

Pr
[
|Tσn,n(F a)− Tσ0,n(F a)| > δ/2

]
is finite. Now, note that

|Tσn,n(F a)− Tσ0,n(F a)| =

∣∣∣∣∣ γKσn (Ca
n,Πn)

γKσn (Mn,Πn)
−
γKσ0

(Ca
n,Πn)

γKσ0
(Mn,Πn)

∣∣∣∣∣
≤ γKσn (Ca

n,Πn)×

∣∣∣∣∣ 1

γKσn (Mn,Πn)
− 1

γKσ0
(Mn,Πn)

∣∣∣∣∣
+
|γKσn (Ca

n,Πn)− γKσ0
(Ca

n,Πn)|
γKσ0

(Mn,Πn)
= An +Bn, (say).

While γKσn (Ca
n,Πn) is uniformly bounded,

∣∣∣ 1
γKσn (Mn,Πn) −

1
γKσ0

(Mn,Πn)

∣∣∣ is a non-random

quantity converging to 0 (follows from Lemma 2.6). So, there exists a natural number n0

(independent of a) such that for all n > n0, we have An ≤ δ/4 with probability one.
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Now, γKσ0
(Mn,Πn) is a non-random quantity converging to γKσ0

(M,Π). Also, from

Lemma 2.6, we get a non-random upper bound for the term |γKσn (Ca
n,Πn)−γKσ0

(Ca
n,Πn)|,

which converges to 0. Since this upper bound does not depend on a, we get a natural

number n1 (independent of a) such that for all n > n1, Bn ≤ δ/4 with probability one.

So, using these two facts, for all n > max{n0, n1}, we have An + Bn ≤ δ/2 with

probability one, and hence Pr
[
|Tσn,n(F a)− Tσ0,n(F a)| > δ/2

]
= 0. This implies the

finiteness of
∑∞

n=1N(n) sup
a∈Rd

Pr
[
|Tσn,n(F a)− Tσ0,n(F a)| > δ/2

]
.

Proof of Theorem 4.3. Note that while Tσ0 is a bounded functional that satisfies As-

sumption 4.1, following the proof of Theorem 2.7, we have Tσn,n → Tσ0 almost surely as

n → ∞. From Lemma 4.2, we can see that the sequence of estimators {Tσn,n}n≥1 also

satisfies the conditions of Theorem 4.2. Thus, from Theorem 4.2, we get the almost sure

convergence of ζn(F ) to ζ(F ). Now, from Theorem 4.1, the quantity ζ(F ) is non-negative,

and it takes the value 0 if and only if the sub-vectors are mutually independent. The

consistency of the right-tailed test based on ζn follows from this fact.

For the rest of this section, we shall assume that X(1),X(2), . . . ,X(p) are random func-

tions in separable Banach Spaces B1,B2, . . . ,Bp, respectively. As before, the joint distribu-

tion of X(1),X(2), . . . ,X(p) will be denoted by F , and for a(1) ∈ B1,a
(2) ∈ B2, . . . ,a

(p) ∈ Bp,

the joint distribution of ‖X(1)−a(1)‖B1 , ‖X(2)−a(2)‖B2 , . . . , ‖X(p)−a(p)‖Bp will be denoted

by F a, where a = (a(1),a(2), . . . ,a(p)). We shall assume that P is a probability measure on

the product space B = B1 × B2 × · · · × Bp and the functional T satisfies Assumption 4.1.

As before, we define ζPT (F ) =
∫
B T (F a) dP (a).

Theorem 4.4. Assume that P is a strictly positive measure on B. If T (F a) is a continuous

function of a, then ζPT (F ) = 0 if and only if X(1),X(2), . . . ,X(p) are mutually independent.

Proof of Theorem 4.4. The if part is trivial. So, we prove the only if part here. We

claim that ζPT (F ) = 0 implies T (F a) = 0 for all a ∈ B. If this is not true, then there exists

a0 ∈ B for which T (F a0) > 0. Now, from the assumption of continuity of T (F a), we get

an open neighborhood Na0 of a0 such that T (F a) > 0 for all a ∈ Na0 . As P is a strictly

positive measure, this leads to a contradiction to the fact that ζPT (F ) = 0. So, we have

mutual independence of ‖X(1) − a(1)‖B1 , ‖X(2) − a(2)‖B2 , . . . , ‖X(p) − a(p)‖Bp for all a(1) ∈

B1,a
(2) ∈ B2, . . . ,a

(p) ∈ Bp. Hence it follows that Pr
[
‖X(i) − a(i)‖Bi < ri, ∀ 1 ≤ i ≤ p

]
=∏p

i=1 Pr
[
‖X(i) − a(i)‖Bi < ri

]
, and consequently L(X) = L(X(1))⊗L(X(2))⊗· · ·⊗L(X(p))
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on B(a(1), r1) × B(a(2), r2) × · · · × B(a(p), rp) for all a(1) ∈ B1,a
(2) ∈ B2, . . . ,a

(p) ∈ Bp

and r1, r2, . . . , rp ≥ 0, where L denotes the law (distribution) of a random function. Now,

from separability of the Banach spaces B1,B2, . . . ,Bp, we conclude that L(X) = L(X(1))⊗

L(X(2))⊗· · ·⊗L(X(p)) holds for all A1×A2×. . .×Ap, where A1,A2, · · · ,Ap are measurable

sets belonging to B1,B2, . . . ,Bp, respectively. This concludes that X(1),X(2), . . . ,X(p) are

mutually independent.

Theorem 4.5. Assume that X is a random element in the Banach space B and F is a

strictly positive probability measure on B. Also assume that F a has continuous univariate

marginals for all a ∈ B and the functional T satisfies the assumption of Theorem 4.4.

Then, the power of the test based on ζn, converges to 1 as the sample size n tends to

infinity.

Proof of Theorem 4.5. Note that while Tσ0 is a bounded functional that satisfies As-

sumption 4.1, following the proof of Theorem 2.7, we have Tσn,n → Tσ0 almost surely

as n → ∞. Using the same line of reasoning as in Lemma 4.2, we can show that∑∞
n=1 n · supa∈B Pr [|Tσn,n(F a)− Tσ0(F a)| > δ] <∞. With this fact and again using sim-

ilar arguments as in Theorem 4.2, we can prove that ζn(F ) to ζ(F ) almost surely. From

Theorem 4.4, we get that the quantity ζ(F ) is non-negative and takes the value 0 if and

only if the sub-vectors are mutually independent. The consistency of the right-tailed test

based on ζn follows from this fact.
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Chapter 5

Test of Independence among

Random Vectors: Methods Based

on Ranks of Nearest Neighbors

Friedman and Rafsky (1983) developed some graph based methods for testing independence

between two random vectors of arbitrary dimensions. Following their ideas, Heller et al.

(2012) constructed a distribution-free test based on random traversal of the edges of the

minimum spanning tree (MST). Instead of random traversal, Biswas et al. (2016) used

a systematic traversal of the edges of the MST following Prim’s algorithm (Prim, 1957)

to construct some modified distribution-free tests with better power properties. Later

Sarkar and Ghosh (2018) pointed out some limitations of these distribution-free tests. In

particular, they showed that in order to possess the distribution-free property, these tests

sacrifice a lot of information and use the information contained in only (n − 1) edges of

the minimum spanning tree out of
(
n
2

)
edges present in the complete graph. In order to

take care of this problem, they developed some tests based on ranks of nearest neighbors

and demonstrated their superiority over dCov (Székely et al., 2007), HHG (Heller et al.,

2013) and HSIC (Gretton et al., 2008) tests in a large class of examples. In this chapter,

we discuss about some possible generalizations of their tests for more than two random

vectors of arbitrary dimensions.

Before describing our proposed methods, let us first revisit the tests proposed by Sarkar

and Ghosh (2018). Let x1 = (x
(1)
1 ,x

(2)
1 ),x2 = (x

(1)
2 ,x

(2)
2 ), . . . ,xn = (x

(1)
n ,x

(2)
n ) be n inde-

pendent observations on the random vector X = (X(1),X(2)), where X(1) and X(2) are

sub-vectors of dimensions d1 and d2, respectively. For testing independence between X(1)
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and X(2), Sarkar and Ghosh (2018) used the ranks of nearest neighbors in the following

way. For each i = 1, 2, . . . , n, let ‖x(1)
i − x

(1)
i1
‖ ≤ ‖x(1)

i − x
(1)
i2
‖ ≤ · · · ≤ ‖x(1)

i − x
(1)
in−1
‖

be the ordered distances of the x
(1)
j ’s (j 6= i) from x

(1)
i . For k = 1, 2, . . . , (n − 1),

Sarkar and Ghosh (2018) called xik as the k-th nearest X(1)-neighbor of xi and com-

puted the rank of the corresponding X(2)-distance ‖x(2)
i − x

(2)
ik
‖ among (n − k) distances{

‖x(2)
i − x

(2)
ik
‖, ‖x(2)

i − x
(2)
ik+1
‖, . . . , ‖x(2)

i − x
(2)
in−1
‖
}

. They called it the X(2)-rank of the k-

th nearest X(1)-neighbor of xi. We denote this rank by R(2|1)(i, k). For each i = 1, 2, . . . , n,

these ranks R(2|1)(i, 1), R(2|1)(i, 2), . . . , R(2|1)(i, n−1) are independent (see, e.g. Heller et al.,

2012). Moreover, when X(1) and X(2) are independent, R(2|1)(i, k) follows a discrete uni-

form distribution with mass points {1, 2, . . . , n−k} (note that R(2|1)(i, n− 1) is degenerate

at 1). Sarkar and Ghosh (2018) argued that the dependence between X(1) and X(2) results

in extremely small or large values of these ranks. This type of idea is quite common in the

literature (see, e.g., Friedman and Rafsky, 1983; Heller et al., 2012; Biswas et al., 2016).

Motivated by this idea, Sarkar and Ghosh (2018) proposed to use the statistic

T (2|1) = max

{
−2

n∑
i=1

n−2∑
k=1

ϕ
(R(2|1)(i, k)

n− k

)
,−2

n∑
i=1

n−2∑
k=1

ϕ
(R(2|1)

r (i, k)

n− k

)}
,

to measure the deviation from independence. Here, ϕ is a suitable monotone function on

(0, 1] and R
(2|1)
r (i, k) = (n − k + 1) − R(2|1)(i, k) is the reverse rank. They also computed

T (1|2), where the roles of X1 and X(2) are reversed, and finally they used a symmetric com-

bination (e.g., sum or maximum) of T (1|2) and T (2|1) )as the test statistic. They suggested

to reject H0, the null hypothesis of independence, for large values of this statistic.

Here, we have n independent observations x1,x2, . . . ,xn on X = (X(1),X(2), . . . ,X(p)),

where p ≥ 2, and the q-th (q = 1, 2, . . . , p) sub-vector X(q) takes values in the dq-dimensional

Euclidean space. To test for mutual independence among more than two sub-vectors,

we propose some generalizations of Sarkar and Ghosh (2018), which are described in the

following sections.

5.1 Tests based on univariate ranks of a group of sub-vectors

First note that X(1),X(2), . . . ,X(p) are jointly independent if and only if X(q) and X(−q) are

independent for every q = 1, 2, . . . , p, where X(−q) = (X(1), . . . ,X(q−1),X(q+1), . . . ,X(p))
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is the collection of (p − 1) sub-vectors excluding X(q). The proof is easy, but we add the

result and the sake for completeness.

Lemma 5.1. Let X(1),X(2), . . . ,X(p) be random vectors. For q = 1, 2, . . . , p, let X(−q)

be the collection of (p − 1) random vectors excluding X(q). Then, X(1),X(2), . . . ,X(p) are

mutually independent if and only if X(q) and X(−q) are independent for each q = 1, 2, . . . , p.

This suggests us to perform pairwise tests of independence between X(q) and X(−q) for

every q = 1, 2, . . . , p and aggregate these results. For instance, we can use test statistics

similar to those proposed by Sarkar and Ghosh (2018). In particular, for each q = 1, 2, . . . , p,

and every i = 1, 2, . . . , n, we define xik as the k-th nearest X(q)-neighbor of xi if ‖x(q)
i −

x
(q)
i1
‖ ≤ ‖x(q)

i − x
(q)
i2
‖ ≤ · · · ≤ ‖x(q)

i − x
(q)
in−1
‖, for k = 1, 2, . . . , (n − 1). Similarly, we

define R
(q)
U (i, k) = R

(−q|q)
U (i, k) as the rank of ‖x(−q)

i − x
(−q)
ik
‖ among (n − k) distances

{‖x(−q)
i − x

(−q)
ik
‖, ‖x(−q)

i − x
(−q)
ik+1
‖, . . . , ‖x(−q)

i − x
(−q)
in−1
‖}. We call it X(−q)-rank of the k-th

nearest X(q)-neighbor of xi. Note that for each q and i, R
(q)
U (i, 1), R

(q)
U (i, 2), . . . , R

(q)
U (i, n−1)

are independent, while under H0, R
(q)
U (i, k) follows a discrete uniform distribution with mass

points {1, 2, . . . , n−k} (see, e.g., Heller et al., 2012; Biswas et al., 2016). On the other hand,

following Sarkar and Ghosh (2018), under dependence, we expect R
(q)
U (i, k) to be close to its

extreme values, or in other words, the magnitude of
{

2R
(q)
U (i, k)− (n− k + 1)

}
is expected

to be large. Note that
{

2R
(q)
U (i, k)− (n− k + 1)

}
/(n − k) takes values in (−1, 1). So, if

its value is close to 1 or −1, that gives us signal against H0. To magnify this signal, we

use a transformation ϕ : (−1, 1) → (−∞,∞) which is a strictly increasing, odd function.

Partially motivated by the works of Heller et al. (2012); Biswas et al. (2016) and Sarkar

and Ghosh (2018), throughout this chapter, we use the function ϕ(t) = −sign(t) log(1−|t|).

Note that such a transformation leads to the same magnification for positive and negative

−1 −0.5 0 0.5 1
−5

0

5

t

ϕ
(
t
)

Figure 5.1: Transformation function.
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values of t, without affecting its sign (see Figure 5.1). So, without using reverse ranks, we

can simply consider the statistic

Ψ
(q)
U =

n∑
i=1

n−2∑
k=1

ϕ

(
2R

(q)
U (i, k)− (n− k + 1)

n− k

)
.

Under the null hypothesis of independence, for each i = 1, 2, . . . , n and k = 1, 2, . . . , (n−2),{
2R

(q)
U (i, k)− (n− k + 1)

}
/(n− k) is symmetric around the origin. So, |Ψ(q)

U | is expected

to be small. On the other hand, based on our previous discussions, one can expect |Ψ(q)
U | to

take large values when the sub-vectors are dependent. However, |Ψ(q)
U | is not symmetric in

X(1),X(2), . . . ,X(p), and different choices of q may lead to different results. Therefore, we

compute |Ψ(q)
U | for each q = 1, 2, . . . , p and use a symmetric function of Ψ

(1)
U ,Ψ

(2)
U , . . . ,Ψ

(p)
U

as the test statistic. In particular, we consider the test statistic

TUsum,n :=
∑

1≤q≤p
|Ψ(q)

U | or TUmax,n := max
1≤q≤p

|Ψ(q)
U |

and reject H0 for large values of it. The cut-off is computed using the permutation principle.

One can notice that for p = 2, this test is almost equivalent to the test proposed in Sarkar

and Ghosh (2018).

5.2 Tests based on multivariate ranks

Note that in the previous approach, for testing independence between X(q) and X(−q),

we considered X(−q) as a single vector and completely ignored the fact that it consists of

several sub-vectors. This may sometimes lead to loss of information regarding the mutual

dependence structure and result in loss of power. To take care of this issue, now we

adopt another approach. As before, for a fixed q and i, let xik be the k-th nearest X(q)-

neighbor of xi, i.e., ‖x(q)
i − x

(q)
i1
‖ ≤ ‖x(q)

i − x
(q)
i2
‖ ≤ · · · ≤ ‖x(q)

i − x
(q)
in−1
‖. Now, for each

k = 1, 2, . . . , (n− 1), we compute the (p− 1)-dimensional distance vector

D(q)(i, k) =
(
‖x(1)

i − x
(1)
ik
‖, . . . , ‖x(q−1)

i − x
(q−1)
ik

‖, ‖x(q+1)
i − x

(q+1)
ik

‖, . . . , ‖x(p)
i − x

(p)
ik
‖
)

and find its multivariate rank in the set
{

D(q)(i, k),D(q)(i, k + 1), . . . ,D(q)(i, n− 1)
}

of

(n− k) distance vectors. We measure the deviations of these ranks from the ones expected

under the null hypothesis. This procedure is repeated for i = 1, 2, . . . , n to get a statistic

indexed by q. We aggregate these statistics over q = 1, 2, . . . , p to get our final test statistic.
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Note that here we are looking for ranks of (p − 1)-dimensional random vectors. Such

ranks are not uniquely defined. For p > 2, there are several ways to define multivariate

ranks, and the outcome of the proposed test may depend on it. In this article, we use

two popular rank functions, viz., coordinate-wise rank (see, e.g., Sen and Puri, 1971) and

spatial rank (see, e.g., Taskinen et al., 2005) for the construction of our tests. Detailed

description of our tests based on these two choices of multivariate ranks are given below.

5.2.1 Tests based on coordinate-wise ranks

For a collection {z1, z2, . . . , zn} of d-dimensional observations, for i = 1, 2, . . . , n, the

coordinate-wise rank of zi = (z
(1)
i , z

(2)
i , . . . , z

(d)
i ) is defined as

RC(i) =
(
r(1)(i), r(2)(i), . . . , r(d)(i)

)
,

where r(j)(i) (j = 1, 2, . . . , d) is the (univariate) rank of z
(j)
i among {z(j)

1 , z
(j)
2 , . . . , z

(j)
n }. In

our present context, for a fixed q = 1, 2, . . . , p and a fixed i = 1, 2, . . . , n, we compute the

coordinate-wise rank of the (p − 1)-dimensional distance vector D(q)(i, k) with respect to

the data cloud consisting of (n− k) vectors D(q)(i, k),D(q)(i, k+ 1), . . . ,D(q)(i, n− 1), and

denote it by R
(q)
C (i, k). Note that here R

(q)
C (i, k) is given by

R
(q)
C (i, k) =

(
R(1|q)(i, k), . . . , R(q−1|q)(i, k), R(q+1|q)(i, k), . . . , R(p|q)(i, k)

)
,

where, R(s|q)(i, k) is the X(s)-rank (s = 1, 2, . . . , p, s 6= q) of the k-th nearest neighbor

of X(q), i.e., the rank of ‖x(s)
i − x

(s)
ik
‖ among (n − k) distances

{
‖x(s)

i − x
(s)
ik
‖, ‖x(s)

i −

x
(s)
ik+1
‖, . . . , ‖x(s)

i − x
(s)
in−1
‖
}

.

From our previous discussion, it follows that if X(1),X(2), . . . ,X(p) are mutually inde-

pendent, then so are R
(q)
C (i, 1),R

(q)
C (i, 2), . . . ,R

(q)
C (i, n − 1), and for k = 1, 2, . . . , (n − 2),

R
(q)
C (i, k) follows a discrete uniform distribution on {1, 2, . . . , n − k}p−1, irrespective of

the distribution of X. So, under H0,
{

2R
(q)
C (i, k)− (n− k + 1)1p−1

}
/(n − k) follows a

discrete uniform distribution with mass points symmetrically distributed around the ori-

gin and taking values in the interior of the hypercube [−1, 1]p−1 (here, 1p−1 denotes the

(p − 1)-dimensional vector having all elements equal to 1). On the other hand, under de-

pendence, we expect the magnitude of
{

2R(s|q)(i, k)− (n− k + 1)
}
/(n − k) to be large.

As before, we use the transformation ϕ(t) = −sign(t) log(1 − |t|) on the coordinates of{
2R

(q)
C (i, k)− (n− k + 1)1p−1

}
/(n−k), and define the transformed coordinate-wise ranks
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ψ
(q)
C (i, k) =

(
R̃(1|q)(i, k), . . . , R̃(q−1|q)(i, k), R̃(q+1|q)(i, k), . . . , R̃(p|q)(i, k)

)
,

where R̃(s|q)(i, k) = ϕ
(

2R(s|q)(i,k)−(n−k+1)
n−k

)
for s = 1, 2, . . . , p, s 6= q.

These transformed ranks contain information regarding departure of the actual ranks

from uniformity. To combine the information, we compute ψ
(q)
C (i, k) for i = 1, 2, . . . , n,

k = 1, 2, . . . , (n − 2), and define Ψ
(q)
C =

∑n
i=1

∑n−2
k=1 ψ

(q)
C (i, k). If X(1),X(2), . . . ,X(p) are

mutually independent, for each i = 1, 2, . . . , n and k = 1, 2, . . . , (n − 2), ψ
(q)
C (i, k) is sym-

metric about the origin. So, under H0, ‖Ψ(q)
C ‖ is expected to be small. On the other hand,

our previous discussions suggest that ‖Ψ(q)
C ‖ should take large values when the sub-vectors

are dependent. So, as before, we compute ‖Ψ(q)
C ‖ for q = 1, 2, . . . , p and finally reject H0

for large values of

TCsum,n :=
∑

1≤q≤p
‖Ψ(q)

C ‖ or TCmax,n := max
1≤q≤p

‖Ψ(q)
C ‖.

The cut-off value for this test is computed using the permutation principle as before.

5.2.2 Tests based on spatial ranks

The spatial rank of a d-dimensional observation zi, for i = 1, 2, . . . , n, with respect to the

data cloud {z1, z2, . . . , zn} is defined as

RS(i) =
1

n

n∑
j=1

Signd(zi − zj), where Signd(t) =


0 if t = 0

t
‖t‖ if t ∈ Rd \ {0}

.

Here, Signd(·) is the d-dimensional spatial sign function (see, e.g., Taskinen et al., 2005),

which coincides with the usual sign function in one dimension. To construct our tests

based on spatial ranks, for a fixed q = 1, 2, . . . , p and i = 1, 2, . . . , n, we compute the

spatial rank of the (p − 1)-dimensional vector D(q)(i, k) with respect to the data cloud{
D(q)(i, k),D(q)(i, k + 1), . . . ,D(q)(i, n− 1)

}
consisting of (n− k) observations, and call it

R
(q)
S (i, k) for k = 1, 2, . . . , (n− 2). Note that the expression for R

(q)
S (i, k) is given by

R
(q)
S (i, k) =

1

n− k

n−1∑
k′=k

Signp−1

(
D(q)(i, k)−D(q)(i, k′)

)
.

Here also, we have non-degenerate random vectors R
(q)
S (i, 1),R

(q)
S (i, 2), . . . ,R

(q)
S (i, n − 2),

which take values in B(0p−1, 1), the (p − 1)-dimensional open ball of radius one. Unlike

coordinate-wise ranks, these spatial ranks do not have the distribution-free property un-

der H0. But, when X(1),X(2), . . . ,X(p) are independent, their distributions turn out to be
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symmetric about the origin. Thus, here also, under the alternative, we expect the magni-

tudes of the R
(q)
S (i, k)’s to be large. Since these magnitudes are bounded by 1, we use a

transformation similar to that used before to get

ψ
(q)
S (i, k) = −Signp−1

(
R

(q)
S (i, k)

)
log
(

1− ‖R(q)
S (i, k)‖

)
,

for i = 1, 2, . . . , n and k = 1, 2, . . . , (n− 2). Note that this transformation does not change

the direction of the spatial rank function, and under H0, the distribution of ψ
(q)
S (i, k)

remains symmetric about the origin. Here also, we define Ψ
(q)
S =

∑n
i=1

∑n−2
k=1 ψ

(q)
S (i, ik)

and use

TSsum,n :=
∑

1≤q≤p
‖Ψ(q)

S ‖ or TSmax,n := max
1≤q≤p

‖Ψ(q)
S ‖

as the test statistic. The null hypothesis H0 is rejected when for large values of the test

statistic. As before, we determine the cut-off value using the permutation method.

5.3 Tests based on maximum mean discrepancy

In Subsection 5.2.1, we have seen that if X(1),X(2), . . . ,X(p) are independent, for any

fixed q = 1, 2, . . . , p and i = 1, 2, . . . , n, R
(q)
C (i, k) follows a discrete uniform distribution on

{1, 2, . . . , n−k}p−1, which we denote by Up−1
n−k. Non-uniform distribution of the coordinates

of R
(q)
C (i, k) or the dependence among them indicates a dependence among the sub-vectors

X(1),X(2), . . . ,X(p). In other words, if the distribution of R
(q)
C (i, k) (denote it by F(q)

k )

deviates from Up−1
n−k, we get a signal against the null hypothesis. To measure this deviation,

we considered the discrepancy measure called MMD (see, Chapter 2, for more details).

Recall that MMD between two probability distributions P and Q is given by

γKσ(P,Q) = [EK(Y,Y∗)− 2EK(Y,Z) + EK(Z,Z∗)]
1
2 ,

where Y,Y∗
i.i.d.∼ P , Z,Z∗

i.i.d.∼ Q are four independent random vectors, and Kσ(x,y) =

exp
(
−‖x− y‖2/2σ2

)
is the Gaussian kernel. Since γKσ is a metric (see, e.g., Sriperumbudur

et al., 2010, for more details), we have γKσ(P,Q) ≥ 0, where the equality holds if and only

if P = Q. Like before, here also we use median heuristic to choose the bandwidth σ (see,

e.g., Gretton et al., 2008). Putting P = F(q)
k and Q = Up−1

n−k in the expression of γKσ(P,Q),

we get the following expression for MMD given in Lemma 5.2.
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Lemma 5.2. If V = (V (1), V (2), . . . , V (p−1)) and V∗ = (V
(1)
∗ , V

(2)
∗ , . . . , V

(p−1)
∗ ) follow the

distribution F(q)
k , we have γKσ(F(q)

k ,Up−1
n−k) = (S1−2S2+S3)1/2, where S1 = EKσ(V,V∗),S2 =

E

[∏p−1
t=1

1
n−k

∑n−k
`=1 e

−(V (t)−`)
2

2σ2

]
and S3 =

[
2

(n−k)2

∑n−k−1
`=1 (n− k − `) e−

`2

2σ2 + 1
n−k

]p−1

.

For a fixed q and k, we compute R
(q)
C (i, k) for i = 1, 2, . . . , n. Clearly, R

(q)
C (1, k),

R
(q)
C (2, k), . . ., R

(q)
C (n, k) are identically distributed with the distribution F(q)

k . So, we esti-

mate S1 and S2 by

Ŝ1 =
1

n2

∑
1≤i,j≤n

Kσ

(
R

(q)
C (i, k),R

(q)
C (j, k)

)
and

Ŝ2 =
1

n

n∑
i=1

p∏
t=1
t6=q

1

n− k

n−k∑
`=1

exp

{
− 1

2σ2

(
r(t|q)(i, k)− `

)2
}
,

respectively. Thus, we get an estimate of γKσ(F(q)
k ,Up−1

n−k), which is given by M(q)(k) = (Ŝ1−

2Ŝ2 + S3)1/2. Therefore, higher values of M(q)(k) indicate dependence among X(1),X(2),

. . . ,X(p). We can compute this statistic for all values of k = 1, 2, . . . , (n − 2) (note that

R
(q)
C (i, n − 1) has a degenerate distribution, and hence we ignore it) to come up with an

aggregated measure Ψ
(q)
M =

∑n−2
k=1 M(q)(k). One can compute Ψ

(q)
M for q = 1, 2, . . . , p, and

use a suitable function of Ψ
(1)
M ,Ψ

(2)
M , . . . ,Ψ

(p)
M as the test statistic. We consider two such test

statistics TMsum,n =
∑p

q=1 Ψ
(q)
M and TMmax,n = max1≤q≤p Ψ

(q)
M in this article and reject the null

hypothesis for large values of these statistics. The cut-off is chosen using the permutation

method as before.

5.4 Results from the analysis of simulated data sets

We analyzed some simulated data sets to compare the performance of our proposed tests

(based on TUsum,n TUmax,n, TCsum,n, TCmax,n, TSsum,n, TSmax,n, TMsum,n and TMmax,n) with other

state of the art tests. In particular, we used the dHSIC test (Pfister et al., 2018), the

JdCov test (Chakraborty and Zhang, 2019) and the rank-JdCov test for comparison. De-

scription of all these tests has already been given in the previous chapters. For our pro-

posed tests, we created two R packages ‘INN’ and ‘INNMMD’ containing all necessary

codes. These packages are available at https://github.com/angshumanroycode/INN and

https://github.com/angshumanroycode/INNMMD respectively. As before, all tests are

considered to have 5% nominal level, and the cut-offs are computed based on 1000 ran-

dom permutations. We repeated each experiment 1000 times, and the power of a test was

https://github.com/angshumanroycode/INN
https://github.com/angshumanroycode/INNMMD
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estimated by the proportion of times it rejected the null hypothesis. For p = 2, since the

tests proposed in Section 5.2.1 and 5.2.2 are similar to those proposed in Sarkar and Ghosh

(2018), in this section, we did not use any example involving two sub-vectors.

We considered eight examples, each involving four random vectors X(1),X(2),X(3),X(4).

In all these examples, observations on X were generated from a 20-dimensional distribution.

The first five variables formed the sub-vector X(1), the next five formed X(2), the next five

formed X(3), and finally the last five variables formed the sub-vector X(4). Therefore, we

had p = 4 and d1 = d2 = d3 = d4 = 5. The first six of these eight examples (Normal, t5,

Mixture Normal-1, Mixture Normal-2, Hypersphere and L1 Ball) are taken from Section 4.2

(see Figure 4.2).

In the ‘Normal’ example, all sub-vectors were independent, and this example was used

to check the level properties of different tests. Figure 5.2(a) shows that all tests rejected

the null hypothesis in nearly 5% of the cases.

Recall that in the example with standard t5-distribution (t distribution with 5 degrees of

freedom) all sub-vectors were uncorrelated but not independent. Our proposed tests could

identify this dependency very well. Figure 5.2(b) clearly shows that the performances of

all proposed tests were much superior than JdCov, rank-JdCov and dHSIC tests. Among

these proposed tests, the one based on TUsum,n had an edge. The JdCov test and its rank

version did not have satisfactory performance in this example.

In ‘Mixture Normal-1’ example, for any q 6= s, pairwise X(q)-distances and pairwise

X(s)-distances are positively correlated, but in ‘Mixture Normal-2’ example, they have

negative correlation (see Biswas et al., 2016, for details). In both of these examples, powers

of our tests were much higher than dHSIC, JdCov and rank-JdCov tests (see, Figure 5.2(c)

and 5.2(d)). In ‘Mixture Normal-1’ example, our proposed tests based on univariate ranks

had the best performance closely followed by those based on MMD and coordinate-wise

ranks. Compared to them, the tests based on spatial ranks had relatively low powers. But

in ‘Mixture Normal-2’ example, we observed an opposite picture. In that example, the

tests based on spatial ranks outperformed others, though those based on coordinate-wise

ranks and MMD also had competitive performance. These six tests performed much better

than the tests based on univariate ranks. In this example, dHSIC and JdCov and rank-

JdCov tests had miserable performance. The JdCov test and its rank version had poor

performance in ‘Mixture Normal-1’ example as well.
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Figure 5.2: Powers of dHSIC ( ), JdCov ( ), rank-JdCov ( ) tests and the proposed
tests based on TUsum,n ( ), TUmax,n ( ), TCsum,n ( ), TCmax,n ( ), TSsum,n ( ), TSmax,n ( ),

TMsum,n ( ), TMmax,n ( ) tests in simulated data sets with four 5-dimensional sub-vectors.
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In ‘Hypersphere’ and ‘L1 Ball’ examples also, our proposed methods performed better

than their competitors (see Figures 5.2(e) and 5.2(f)). JdCov and rank-JdCov tests had

poor performance in both of these examples. The dHSIC test had somewhat competitive

power in the ‘L1 Ball’ example, but its performance in the ‘Hypersphere’ example was not

satisfactory. Among the proposed tests, the ones based on univariate ranks had better

performance in these examples. The test based TUsum,n had the highest power in both cases.

Next, we considered an example (referred to as the ‘AR(1)’), where we generated ob-

servations from the 20-dimensional multivariate normal distribution with mean zero and

block diagonal covariance matrix Σ of the form Σ = diag(S10,
1
10S5, 10S5), where St is the

t×t matrix representing the covariance structure of an AR(1) model (auto-regressive model

of order 1). We chose St = ((sij)), where sij = ρ|i−j| for all i, j = 1, 2, . . . , t, and carried

out our experiment for different choices of ρ. Figure 5.2(g) shows the result for ρ = 0.8,

but for other choices of ρ, the relative performance of different tests were nearly the same.

In this example, the tests based on MMD, coordinate-wise ranks and the rank-JdCov test

performed better than the rest. Tests based on spatial ranks and the dHSIC test had

almost similar performance, but the powers of the tests based univariate ranks were not

satisfactory at all. Note that in this example, we have dependence between X(1) and X(2),

but the other two sub-vectors X(3) and X(4) are independent and they can be considered

as noise. Since X(4) has high stochastic variation compared to other sub-vectors, it played

the leading role in determining the X(−q)-ranks of X(q)-neighbors for q = 1, 2, 3. This was

the main reason behind the poor performance of the tests based on univariate ranks. The

tests based on spatial ranks were also somewhat affected by this phenomenon.

In the last example, we generated observations on the two pairs of random vectors

(X(1),X(2)) and (X(3),X(4)) independently from the same distribution. Observations on

(X(1),X(2)) were generated using the model X(1) = W + ε1, X(2) = −W + ε2, where

W∼N5(0, I5), ε1, ε2∼N5(0, δ2I5), and they are independent. Observations on (X(3),X(4))

were generated similarly. We carried out our experiment for different choices of δ2 in

the range (0, 1). In all cases, our proposed tests based on multivariate ranks of nearest

neighbors outperformed their competitors. In Figure 5.2(h), we have reported the result

for δ2 = 4/9. Superiority of the tests based on coordinate-wise ranks, spatial ranks and

MMD is quite evident in this figure.
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Figure 5.3: Boxplots of efficiency scores of dHSIC, JdCov, rank-JdCov (RJdCov) tests and the
proposed tests based on TUsum,n (TUsum), TUmax,n (TUmax), TCsum,n (TCsum), TCmax,n (TCmax),

TSsum,n (TSsum), TSmax,n (TSmax), TMsum,n (TMsum), TMmax,n (TMmax) in seven simulated data sets.

To compare the overall performance of different tests in a comprehensive way, we con-

structed the boxplots of efficiency scores as before. Efficiency scores were computed for

different tests on different data sets (barring the ‘Normal’ example, where X and Y are

independent), and they are presented using boxplots in Figure 5.3. This figure clearly

suggests that the overall performance of our proposed tests was better than dHSIC, JdCov

and rank-JdCov tests. It also shows that the tests based on sum (i.e., TUsum,n, TCsum,n, TSsum,n

and TMsum,n) had better overall performance than their corresponding version based on max

(i.e., TUmax,n, TCmax,n, TSmax,n and TMmax,n). Among them the test based on TUsum,n had the

highest power in maximum number of cases, but in some cases (e.g., the ‘AR(1)’ data set),

its performance was very poor. On the other hand, the test based on TCsum,n and TMsum,n

had consistently good performance, and in that sense, they outperformed the correspond-

ing test based on spatial rank. We repeated our experiment with these eight examples for

varying choices of d1, d2, d3, d4, but our basic findings remained almost the same. That is

why, we chose not to report those results again.

5.5 Results from the analysis of real data sets

For further evaluation of our proposed tests, we analyzed four real data sets, ‘Airfoil Self-

noise data’, ‘Census 1980 data’, ‘Pollution data’ and ‘Tecator data’. Airfoil Self-noise data



5.5. Results from the analysis of real data sets 101

set is available at the UCI machine learning repository (https://archive.ics.uci.edu/

ml/). The other three data sets are taken from the CMU data archive (http://lib.stat.

cmu.edu/datasets/). Description of the Airfoil Self-noise data was given in Chapter 2

and that of Tecator data and Pollution data was given in Chapter 4. Brief description of

the Census 1980 data is given below.

‘Census 1980 data’ were collected from 50 states of USA in the year 1980. It contains

information on median age, percentage of above 65 years individuals, per capita income,

percentage of individuals having education up to 12th standard, and that having education

up to the college level. This data set and its description can also be found in Witmer

(1997). For our analysis, we divided the variables into 3 groups: age structure, income and

education. Naturally, one expects the per capita income to depend on the age structure and

the education level of the population. So, we carried out different tests to check whether

they can successfully identify the dependence among these three groups of variables.

When we performed our experiment using the full data set, both for Tecator data and

Census 1980 data, all tests rejected the null hypothesis. Based on that single experiment,

it was not possible to compare among different test procedures. So, we carried out our

experiment using randomly chosen subsets of observations from the full data set. For

each sub-sample size (reported in Figure 5.4), the experiment was repeated 1000 times to

compute the powers of different tests, and they are shown in Figure 5.4. recall that the

dHSIC test needs the sample size to be at least twice the number of sub-vectors. So, in the

case of Tecator data, this test could not be used for samples of size smaller than 8.

In the case of Airfoil Self-noise data, there are only two sub-vectors. So, the HHG

test could be used for this data set. Figure 5.4(a) shows that in this example, all tests had

similar powers. In the case of Census 1980 data also, all tests had comparable performance,

but the powers of all proposed tests were slightly higher than those of dHSIC, JdCov and

rank-JdCov tests (see Figure 5.4(b)). The rank-JdCov test had the best performance in

Pollution data (see Figure 5.4(c)). In this data set, the tests based on univariate ranks and

spatial ranks did not have satisfactory performance, but those based on coordinate-wise

ranks and MMD worked well. These tests and the JdCov test had much higher powers

than the dHSIC test. The results on Tecator data shows the superiority of our proposed

tests (see Figure 5.4(d)). All of them had much higher powers than JdCov, rank-JdCov

and dHSIC tests. The rank-JCdov test had poor performance in this example.

https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/
http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/
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Figure 5.4: Powers of dHSIC ( ), JdCov ( ), rank-JdCov ( ), HHG ( ) tests and the
proposed tests based on TUsum,n ( ), TUmax,n ( ), TCsum,n ( ), TCmax,n ( ), TSsum,n ( ), TSmax,n

( ), TMsum,n ( ), TMmax,n ( ) in real data sets.

5.6 Analysis of functional data

The tests proposed in this chapter are all based on pairwise Euclidean distances. So, they

can also be used for testing independence among several random functions in infinite dimen-

sional functional spaces (e.g., separable Banach spaces). Here, we used the six examples

considered in Section 4.6 to investigate their empirical performance for such data sets. For

each example, we considered samples of different sizes as before. For each sample size, the

experiment was repeated 1000 times to compute the powers of different tests, and they

are reported in Figure 5.5. Powers of dHSIC, JdCov and HHG tests are also reported to

facilitate the comparison. Note that all these examples deal with only two sub-vectors. In

such cases, the tests based on coordinate-wise ranks and spatial ranks coincide with the

corresponding tests based univariate ranks discussed in Section 5.1 (clear from the defini-

tion of coordinate-wise ranks and spatial ranks). So here we report the results for tests

based on univariate ranks only. Of course, the results for the proposed tests based on MMD

are also reported.
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Figure 5.5: Powers of JdCov ( ), dHSIC ( ), HHG( ) tests and the proposed tests
based on TUsum,n ( ), TUmax,n ( ), TMsum,n ( ), TMmax,n ( ) in functional data sets.

In ‘Four Clouds’ example, where the two random functions are independent, as ex-

pected, all tests had powers close to the nominal level. Our proposed tests based on MMD

had satisfactory performance in all examples though in the ‘Parabola’ example, its power

was slightly lower compared to other competitors. In cases of ‘W’, ‘Circle’ and ‘Diamond’

examples, they outperformed most of the tests considered here. Barring the ‘W’ example,

the tests based on univariate ranks performed well. They outperformed all other tests in

‘Diamond’ and ‘Two Parabolas’ examples. The HHG test had the highest power in the
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‘Parabola’ example, while in other examples, it had moderate performance. The dHSIC

test and the JdCov test had good performance in ‘W’ and ‘Parabola’ examples, but in

the other three examples (‘Diamond;, ‘Two Parabolas’ and ‘Circle’), they had much lower

power than their competitors.

5.7 Application in causal discovery

Like Section 4.7, here also we use our proposed tests to unveil the causal relationship

among p random vectors X(1),X(2), · · · ,X(p). As before, we consider all possible structural

equation models with additive noise, which lead to DAG on p nodes. Recall that such a

structural equation model (SEM) has the following form:

X(q) = fq(PA(q)) + ε(q), for q = 1, 2, · · · , p,

where PA(q) denotes the set of all parent nodes of X(q), and the ε(q)’s are independent

additive noise vectors. If there are no parent nodes, we take fq to be zero.

For any such SEM, using the observations x1,x2, . . . ,xn on X, for each q = 1, 2, . . . , p,

we construct f̂q, an estimate of fq, by regressing X(q) on its parent nodes PA(q) using a

nonparametric method, and compute the corresponding residuals ε̂
(q)
i := x

(q)
i − f̂q(PA

(q)
i )

for i = 1, 2, . . . , n. We perform a test of independence among these residual sub-vectors

to compute the corresponding p-value. Among all possible SEMs that can be represented

using DAG, the model with the highest p-value is selected. However, if this highest p-value

is smaller than 0.05, none of the SEMs is selected.

For our experiment, we considered the same examples used in Section 4.7. We repeated

each experiment 100 times as before, and the results are reported in Tables 5.1 and 5.2. Re-

call that in the examples with two sub-vectors, the proposed tests based on univariate ranks

coincide with those based on coordinate-wise ranks or spatial ranks. So, in Tables 5.1, we

have reported the results only for the tests based on univariate ranks and MMD. Of course,

results for HHG, JdCov, rank-JdCoV and dHSIC tests are also reported for comparison.

When the observations on X(1) = (U1, U2) were generated from the standard bivariate

normal distribution (recall that those on X(2) = (V1, V2) were obtained from them using

the model Vi = U2
i + εi, where the εi’s are i.i.d. N(0, 0.01) random variables), the tests

based on univariate ranks and the HHG test had better performance than their competi-

tors. Among the rest of the methods, the tests based MMD performed slightly better than
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dHSIC and much better than JdCov and rank-JdCov tests. We observed almost the same

picture, when instead of standard normal distribution, observations on X(1) were generated

from the standard bivariate t distribution with 2 degrees of freedom.

Table 5.1: Proportion of times the correct model was selected by different methods in
the example involving two random vectors.

TUsum,n TUmax,n TMsum,n TMmax,n dHSIC JdCov r-JdCov HHG

Normal 0.89 0.90 0.75 0.74 0.70 0.47 0.48 0.88

t2 0.94 0.95 0.88 0.88 0.86 0.61 0.57 0.98

In our second example involving three random variables, we used samples of size 30.

As we have mentioned before, in this example, there are two super models (see Figures

4.10(b) and 4.10(c)), which contain the true SEM. So, in this example, we counted the

number of times a method selected one of these three models depicted in Figure 4.10, and

they are reported in Table 5.2. This table clearly shows that our proposed tests performed

much better than dHSIC, JdCov and rank-JdCov tests. Among the proposed tests, the

ones based on spatial ranks and MMD had an edge.

Table 5.2: Proportion of times the true model and two super models were selected by
different methods in the example involving three random variables.

Model TUsum,n T
U
max,n T

C
sum,n T

C
max,n T

S
sum,n T

S
max,n T

M
sum,n T

M
max,n dHSIC JdCov r-JdCov

True 0.18 0.17 0.14 0.12 0.28 0.18 0.36 0.22 0.06 0.13 0.16

SM-1 0.20 0.18 0.22 0.19 0.18 0.21 0.14 0.18 0.08 0.11 0.16

SM-2 0.15 0.12 0.20 0.21 0.21 0.19 0.15 0.20 0.12 0.10 0.14

Total 0.53 0.47 0.56 0.52 0.67 0.58 0.65 0.60 0.26 0.34 0.46

5.8 Proofs and mathematical details

Proof of Lemma 5.1. If X(1),X(2), . . . ,X(p) are mutually independent, clearly X(q) and

X(−q) are independent for every q = 1, 2 . . . , p. We now prove that the converse also holds.

Let χ(X(1),X(2),...,X(p))(t
(1), t(2), . . . , t(p)) be characteristic function of the joint distribution

of (X(1),X(2), . . . ,X(p)) for all t(1) ∈ Rd1 , t(2) ∈ Rd2 , . . . , t(p) ∈ Rdp . Now,

χ(X(1),X(2),...,X(p))(t
(1), t(2), . . . , t(p)) = χ(X(1),X(−1))

(
t(1), (t(2), t(3), . . . , t(p))

)
= χX(1)(t(1))χX(−1)(t(2), t(3), . . . , t(p)),

where the second line follows because of independence between X(1) and X(−1). Now,
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χX(−1)(t(2), t(3), . . . , t(p)) = χ(X(1),X(2),X(3),...,X(p))(0d1 , t
(2), t(3), . . . , t(p))

= χ(X(2),X(−2))

(
t(2), (0d1 , t

(3), . . . , t(p))
)

= χX(2)(t(2))χX(−2)(0d1 , t
(3), . . . , t(p))

= χX(2)(t(2))χ(X(3),X(4),...,X(p))(t
(3), t(4) . . . , t(p)).

Proceeding this way, we get

χ(X(1),X(2),...,X(p))(t
(1), t(2), . . . , t(p)) = χX(1)(t(1))χX(2)(t(2)) . . . χX(p)(t(p)).

This completes the proof.

Proof of Lemma 5.2. Let W,W∗ be two independent random vectors, which follow the

distribution Up−1
n−k and independent of V,V∗. So, we have γKσ

(
F(q)
k ,Up−1

n−k

)
=[S1 − 2S2 + S3]

1
2 ,

where S1 = EKσ(V,V∗), S2 = EKσ(V,W) and S3 = EKσ(W,W∗). Now, note that

W (1),W (2), . . . ,W (p−1) and W
(1)
∗ ,W

(2)
∗ , . . . ,W

(p−1)
∗ are all independent and follow uniform

distribution on {1, 2, . . . , n− k}. So, we get

S2 = EKσ(V,W) = E

[
p−1∏
t=1

e−
(V (t)−W (t))

2

2σ2

]
= E

[
p−1∏
t=1

E

{
e−

(V (t)−W (t))
2

2σ2

∣∣∣∣∣V (t)

}]

= E

[
p−1∏
t=1

1

n− k

n−k∑
`=1

e−
(V (t)−`)

2

2σ2

]
and

S3 = EKσ(W,W∗) = E

p−1∏
t=1

e−

(
W (t)−W (t)

∗

)2

2σ2

 =

p−1∏
t=1

E

e−
(
W (t)−W (t)

∗

)2

2σ2


=

p−1∏
t=1

1

(n− k)2

n−k∑
`=1

n−k∑
`′=1

e−

(
`−`
′)2

2σ2 =

 1

(n− k)2

n−k∑
`=1

n−k∑
`′=1

e−

(
`−`
′)2

2σ2

p−1

=

[
2

(n− k)2

n−k−1∑
`=1

(n− k − `) e−
`2

2σ2 +
1

n− k

]p−1

.

This completes the proof.
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Chapter 6

Concluding Remarks

In this thesis, we have proposed and investigated some tests for independence among multi-

ple random variables and random vectors of arbitrary dimensions, and we have shown that

the tests proposed for random vectors can also be used for testing independence among

several random functions.

In Chapter 2, we developed a copula based statistic to measure dependence among

several continuous random variables and constructed a distribution-free method to test

for the statistical significance of that measure. Unlike most of the existing methods, our

proposed measure and the associated tests are invariant under permutations and strictly

monotone transformations of the variables. However, they involve a smoothing parameter

called bandwidth, which needs to be chosen appropriately. We have seen that though the

bandwidth chosen using median heuristic usually performs well, the use of smaller band-

widths sometimes yields better results. While larger bandwidths successfully detect global

linear or monotone relationships among the variables, smaller bandwidths are useful for

detecting non-monotone or local patterns. In order to capture both types of dependence,

we adopted a multi-scale approach, where the results for several choices of the bandwidths

were aggregated to arrive at the final decision. This approach also leads to distribution-free

tests. Though the computing costs of these multi-scale methods are slightly higher than

their single-scale analogs (e.g., the one based on median heuristic), they usually lead to

much better performance, especially when the variables have complex non-monotone rela-

tionships. We proposed three methods for aggregation. Based on the empirical performance

of these three methods, we recommend using the test based on Tmax,n (maximum of the

test statistics computed for different bandwidths), particularly when one deals with small

number of variables. Using the idea of checkerboard copula, in Chapter 3, we generalized

our dependency measure and the associated tests so that they can be used for handling
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random variables having arbitrary probability distributions, where the observations on a

variable may have ties and the ranks cannot be uniquely defined. In this set up also, we

observed the multi-scale methods to have an edge over their single-scale analog, especially

for detecting complex non-monotone relationships among the variables. Among the multi-

scale methods, the one based on Tzmax,n, the maximum of the test statistics, usually yields

better results.

In Chapter 4, we proposed multivariate generalizations of our tests so that they can be

used for testing independence among several random vectors of arbitrary dimensions. We

proposed two general recipes for this purpose. One of them was based on pairwise distances

(or distances of the observations from specified points) and the other one was based on linear

projections. We carried out several experiments to compare between these two methods

of generalization. When the norms of the sub-vectors carry significant information about

dependence, which is often the case, the method based on pairwise distances are preferred.

Otherwise, the method based on linear projection may yield better results. Again, we have

single-scale and multi-scale versions of these two methods, and the multi-scale versions

usually perform better in complex examples. We have seen that when the sub-vectors are

one-dimensional, the single-scale method based on linear projections is almost equivalent

to the copula based test proposed in Chapter 2. So, among the multi-scale versions of this

method, the one based on maximum of the test statistics (ζ̃max,n) usually performs better.

However, the one-dimensional version of the single-scale test based on pairwise distances

differ from the copula based test proposed in Chapter 2. Among the multi-scale versions of

this test, the one based on sum of the test statistics (ζsum,n) generally yields better results,

and we have seen that in most of our experiments.

In Chapter 5, we proposed some tests of independence based on ranks of nearest neigh-

bors. Sarkar and Ghosh (2018) used the idea of nearest neighbors to construct some tests

of independence between two random vectors. We proposed several ways for generalizing

these tests for more than two random vectors of arbitrary dimensions. A comparison among

these different methods was carried out in Section 5.4, which shows that the tests based on

TCsum,n (coordinate-wise rank) and TMsum,n (MMD) are probably the best ones in this lot.

Among the tests based on one-dimensional projections (i.e. the tests based on pairwise

distances or those based on linear projections) and those based on ranks of nearest neigh-

bors, these is no clear winner. Depending on nature of the problem, one of these two types



Chapter 6. Concluding Remarks 109

of tests come up with better performance. Using several simulated and real data sets, in

Chapters 4 and 5, we have amply demonstrated that these proposed tests can outperform

the state of the art tests like dHSIC (Pfister et al., 2018), JdCov, rank-JdCov (Chakraborty

and Zhang, 2019) and HHG (Heller et al., 2013) tests in a wide variety of examples. We

have also observed the same picture when dealing with functional data. Note that unlike

the dHSIC test, our proposed tests can be conveniently used even when the sample size is

smaller than the number of sub-vectors.

However, these proposed methods are not above all limitations. The choice of the band-

width is still an issue to be resolved. Though the bandwidth chosen using median heuristic

usually works well, in many examples, smaller bandwidths lead to better results. In order

to take care of this problem, we adopted a multi-scale approach, where the results for dif-

ferent bandwidths were aggregated. However, our choice of the number of bandwidths for

aggregation and the choices of upper and lower bounds of those bandwidths were somewhat

adhoc. The resulting tests worked well in all simulated and real data sets considered in this

thesis, but a more judicious choice of these parameters may lead to further improvement.

One can use the Bayesian multi-scale approach (Erästö and Holmström, 2005; Mukhopad-

hyay and Ghosh, 2011; Dutta et al., 2016) for this purpose, but this method needs the

prior distribution to be chosen and its computing cost is usually higher. Also, our empiri-

cal experience suggests that instead of using a multi-scale approach, sometimes it is better

to choose a suitable data driven estimate of the bandwidth, both in terms of power of the

resulting test and the computing time. But we are yet to develop an automatic data driven

method in this regard. Note that the dHSIC test (Pfister et al., 2018) also uses a kernel

(usually Gaussian kernel) with a bandwidth chosen using median heuristic. The use of the

multi-scale approach or a data driven choice of bandwidth may improve the performance

of that test as well.

For the tests based on ranks of nearest neighbors, Sarkar and Ghosh (2018) used another

type of multi-scale approach, where instead of taking the sum over all k = 1, 2, . . . , n − 2

(see the equation in the second page of Chapter 5), they took the sum over k = 1, 2, . . . , k0

for some k0 ≤ n− 2. They looked at the results for several choices of k0 ≤ n− 2 and then

aggregated them to come up with the final decision. Similar aggregation techniques can be

used for the methods proposed in Chapter 5. However, to reduce the computing cost, we

did not consider that approach in this thesis. This can be investigated in a future work.
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In Chapter 2, Theorem 2.5 shows that for any positive constant ∆, it is possible to test

a null hypothesis of the form H′0 : Iσ(X) ≥ ∆ against the alternative H′1 : Iσ(X) < ∆. But

for constructing such a test, one needs to come up with a consistent estimator of δ2 (see

Theorem 2.5). Finding such an estimator of δ2 will also enable us to find the asymptotic

power of the proposed test of independence under suitable shrinking alternatives. This can

be considered as an interesting problem for future research.

In order to prove the consistency of our proposed test based on pairwise distances, in

Theorem 4.3, we assumed the underlying joint distribution F to be absolutely continuous.

But, from the proof of this theorem, it is clear that it is enough to have continuity of the

marginal distributions F a
j ’s and non-singularity of F with respect to the Lebesgue measure.

For the implementation of our tests based on one-dimensional projections, throughout

Chapter 4, we used P = F . Our empirical experience suggests that it is a reasonably

good choice. However, one can consider other choices of P as well. It would have been

ideal to choose the probability distribution P in such a way that the power of the resulting

test gets maximized in a given problem. But, it is extremely difficult to find out such a

probability distribution. This can be considered as a problem for future investigation. If we

do not use P = F , one also needs to decide how many observations are to generated from

P for constructing the estimate of the dependency measure in Subsection 4.1.2. In this

thesis, we proposed two general recipes for multivariate generalization of the tests used in

Chapter 2. One of them is based on pairwise distances and the other one is based on linear

projections. From our numerical results, it seems to be a better idea to use the method

based on pairwise distances, but the method based on linear projections sometimes lead to

higher power. Our discussion in Section 4.3 provides some insight in this regard. But it

will be advantageous if one can develop an algorithm that can automatically decide on the

method to be used for a given data set.

Throughout this thesis, for computing MMD, we used the Gaussian kernel. Other

characteristic kernel functions (e.g., exponential kernel) may also be used for this purpose,

but we have not investigated the empirical performance of the resulting tests for those

choices of the kernel functions. Similarly, in this thesis, we used the Euclidean distance as

the distance function for the implementation of our tests in Chapter 4 and 5. But from

the description of the proposed tests it is clear that other appropriate distance functions

can also be used. For instance, if the measurement variables are not of comparable units
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and scales, one can use the tests based on Mahalanobis distance. But we have not studied

the performance of the tests based on those distance functions. For the construction of our

tests based on ranks of nearest neighbors, in Sections 5.1 and 5.2, we made a transformation

t 7→ −sign(t) log(1 − |t|) (respectively, t 7→ −Signp−1(t) log(1 − ‖t‖) in the case of tests

based on spatial rank). The choice of this transformation was motivated by the work of

Heller et al. (2012); Biswas et al. (2016); Sarkar and Ghosh (2018). It magnifies the signal

against H0 for extreme values of rank without affecting its sign (respectively, direction in

the case of spatial rank). But there are several other transformations, which also have this

property. At this moment, it is not clear to us how to find the optimal transformation

(the one leading to the maximum power) for a given data set. This can be investigated in

future. The tests based on ranks of nearest neighbors proposed in Chapter 5 performed

reasonably well in all simulated and real data sets analyzed in this thesis. In many cases,

they outperformed the popular tests available in the literature. In all of our examples, we

observed the powers of these tests to increase with the sample size. But, at this moment,

we do not have any theoretical result related to the consistency of these tests. On the other

hand, we could not construct a single counter-example to show that the power of these

tests may not converge to unity with increasing sample size. So, most probably, these tests

are consistent, but we are yet to prove it. This is an interesting and challenging theoretical

problem, which we would like to investigate in near future.

In this thesis, we used the HHG test (Heller et al., 2013) when there were two sub-

vectors. In many examples, this test performed well. But, unfortunately, we do not have

meaningful generalization of this test for the p > 2 case. Using the idea given Section 5.1,

one can go for its generalization, and the consistency of the resulting test can also be proved

using Lemma 5.1. But, as we have seen, this method of generalization has some limitations.

On the other hand, generalization using multi-way contingency table does not lead to good

results unless the number of sub-vectors is very small. So, successful generalization of this

test still remains a challenging problem.

In Chapters 4 and 5, we used different tests for discovering causal relationships among

the sub-vectors. For this purpose, we considered all structural equation models that can

be represented using DAG and found the best model in that class. However, this method

seems to be computationally feasible only when the number of sub-vectors is small. Note

that there are only three competing models for p = 2, but for p = 3, it increases to 25. So,
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finding the best structural equation model in this way becomes computationally prohibitive

when the number of sub-vectors is moderately large. One needs to properly address this

computational issue to come up with a scalable algorithm.

In order to prove the consistency result for functional data (see Theorem 4.5), we

assumed all functions to be fully observed. However, in practice, each function is usually

observed only on some grid points, from which one needs to estimate the functions (or the

pairwise L2 distances or the inner products). We did not prove large sample consistency for

those practical versions of the tests. However we implemented these versions of the tests in

Section 4.6, where we considered densely observed equispaced data on the domain of such

function. In the case of sparsely observed data, these methods may not have satisfactory

performance, and one may need to construct different test procedures to cope with such

situations. This can be considered as another interesting problem for future investigation.
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Appendix A

Exact and Asymptotic Means and

Variances of nγ2
Kσ

(Cn,Πn)

Proposition A.1. Under the null hypothesis of mutual independence, we have

E
[
nγ2

Kσ(Cn,Πn)
]

= 1 + (n− 1)

{
n

(n)2
(nu3 − 1)

}p
− nup3,
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[
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[
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Proof. First of all, from the definitions of u1, u2 and u3, one can easily verify that u1 =
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.

Next observe that nγ2
Kσ

(Cn,Πn) = ns1 − 2ns2 + nv3, where s1, s2 and v3 are as defined in

Equation (2.2). So, for deriving the expectation of nγ2
Kσ

(Cn,Πn), we need to find E(ns1)



114 Appendix A. Exact and Asymptotic Means and Variances of nγ2
Kσ

(Cn,Πn)

and E(ns2) first. Under the null hypothesis of mutual independence,
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So, from Equations (A.1) and (A.2), we get

E[nγ2
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Similarly, under the null hypothesis, we have
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where c1, c2 and c3 are further evaluated in Equations (A.4),(A.5) and (A.6) below.
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Kσ(y

(1)
1 , y

(2)
1 )Kσ(y

(3)
1 , y

(4)
1 )
}]p

=

 1

(n)4

∑
1≤i1,i2,i3,i4≤n

all ij ’s are distinct

Kσ

(
i1
n
,
i2
n

)
Kσ

(
i3
n
,
i4
n

)
p

=

[
1

(n)4

{ ∑
1≤i1,i2,i3,i4≤n

−2
∑
i1=i2

−4
∑
i1=i3

+12
∑

i1=i2,i2=i3

+
∑

i1=i2,i3=i4

+2
∑

i1=i3,i2=i4

− 4
∑

i1=i2,i2=i3
i3=i1

−(16−
(

6

4

)
+

(
6

5

)
−
(

6

6

)
)

∑
all ij ’s are equal

}
Kσ

(
i1
n
,
i2
n

)
Kσ

(
i3
n
,
i4
n

)]p

=

[
1

(n)4

{
n4u2

3 − 2n3u3 − 4n3u2 + 12n2u3 + n2 + 2n2u1 − 4n2u3 − 6n

}]p

=

[
n

(n)4

{
n3u2

3 − 2n2(u3 + 2u2) + n(8u3 + 2u1 + 1)− 6

}]p
(A.6)

Also we have,

Cov(ns1, ns2) = n2Cov

 1

n2

∑
1≤i,j≤n

Kσ(yi,yj),
1

n

n∑
i=1

p∏
j=1

1

n

n∑
l=1

Kσ

(
y

(j)
i ,

l

n

)
= n2Cov

 1

n2

∑
1≤i 6=j≤n

Kσ(yi,yj),
1

n

n∑
i=1

p∏
j=1

1

n

n∑
l=1

Kσ

(
y

(j)
i ,

l

n

)
= n2E

 1

n2

∑
1≤i 6=j≤n

Kσ(yi,yj)×
1

n

n∑
i=1

p∏
j=1

1

n

n∑
l=1

Kσ

(
y

(j)
i ,

l

n

)
− n2E

 1

n2

∑
1≤i 6=j≤n

Kσ(yi,yj)

E

 1

n

n∑
i=1

p∏
j=1

1

n

n∑
l=1

Kσ

(
y

(j)
i ,

l

n

)
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=
1

n

[
2(n)2 E

{
Kσ(y1,y2)

p∏
j=1

1

n

n∑
l=1

Kσ

(
y

(j)
2 ,

l

n

)}
︸ ︷︷ ︸

c4

+ (n)3 E

{
Kσ(y1,y2)

p∏
j=1

1

n

n∑
l=1

Kσ

(
y

(j)
3 ,

l

n

)}
︸ ︷︷ ︸

c5

]
− n(n− 1)

{
n

(n)2
(nu3 − 1)

}p
up3, (A.7)

where c4 and c5 are further evaluated in Equations (A.8) and (A.9) below.

c4 = E

Kσ(y1,y2)

p∏
j=1

1

n

n∑
l=1

Kσ

(
y

(j)
2 ,

l

n

) =

[
E

{
Kσ(y

(1)
1 , y

(1)
2 )

1

n

n∑
l=1

Kσ

(
y

(1)
2 ,

l

n

)}]p

=

 1

n(n)2

∑
1≤i 6=j≤n

n∑
l=1

Kσ

(
i

n
,
j

n

)
Kσ

(
j

n
,
l

n

)p

=

 1

n(n)2

 ∑
1≤i,j≤n

n∑
l=1

−
∑

1≤i=j≤n

n∑
l=1

Kσ

(
i

n
,
j

n

)
Kσ

(
j

n
,
l

n

)p

=

{
1

n(n)2
(n3u2 − n2u3)

}p
=

{
n

(n)2
(nu2 − 2u3)

}p
(A.8)

c5 = E

Kσ(y1,y2)

p∏
j=1

1

n

n∑
l=1

Kσ

(
y

(j)
3 ,

l

n

) =

[
E

{
Kσ(y

(1)
1 , y

(2)
1 )

1

n

n∑
l=1

Kσ

(
y

(1)
3 ,

l

n

)}]p

=

 1

(n)3

∑
1≤i1 6=i2 6=i3≤n

n∑
l=1

Kσ

(
i1
n
,
i2
n

)
Kσ

(
i3
n
,
l

n

)p

=

 1

(n)3

 ∑
1≤i1,i2,i3≤n

n∑
l=1

−
∑
i1=i2

n∑
l=1

−2
∑
i1=i3

n∑
l=1

+(

(
3

2

)
−
(

3

3

)
)

∑
all ij ’s are equal

n∑
l=1

Kσ

(
i1
n
,
i2
n

)
Kσ

(
i3
n
,
l

n

)p

=

{
1

(n)3

(
n4u2

3 − n2u3 − 2n2u2 + 2nu3

)}p
=

{
n

(n)3

(
n3u2

3 − n2(2u2 + u3) + 2u3

)}p
(A.9)

Again, under the null hypothesis of mutual independence,

Var(ns2) = E

 n∑
i=1

p∏
j=1

1

n

n∑
l=1

Kσ

(
y

(j)
i ,

l

n

)2

− E2

 n∑
i=1

p∏
j=1

1

n

n∑
l=1

Kσ

(
y

(j)
i ,

l

n

)
= nE

 p∏
j=1

1

n

n∑
l=1

Kσ

(
y

(1)
j ,

l

n

)2

+ (n)2E

 p∏
j=1

1

n

n∑
l=1

Kσ

(
y

(j)
1 ,

l

n

) p∏
j=1

1

n

n∑
l=1

Kσ

(
y

(j)
2 ,

l

n

)
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[
E

{
1

n

n∑
l=1

Kσ

(
y

(1)
1 ,

l

n

)}]2p
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= nEp

{
1

n

n∑
l=1

Kσ

(
y

(1)
1 ,

l

n

)}2

+ (n)2Ep

{
1

n

n∑
l=1

Kσ

(
y

(j)
1 ,

l

n

)
1

n

n∑
l=1

Kσ

(
y

(j)
2 ,

l

n

)}
− n2u2p

3

= nup2 + (n)2

 1

n2(n)2

∑
1≤i1,i2≤n

∑
1≤j1 6=j2≤n

Kσ

(
i1
n
,
j1
n

)
Kσ

(
i2
n
,
j2
n

)p − n2u2p
3

= nup2 + (n)2

 1

n2(n)2

 ∑
i1,i2,j1,j2

−
∑

i1,i2,j1=j2

Kσ

(
i1
n
,
j1
n

)
Kσ

(
i2
n
,
j2
n

)p − n2u2p
3

= nup2 + (n)2

{
1

n2(n)2
(n4u2

3 − n3u2)

}p
− n2u2p

3

= nup2 + (n)2

{
n

(n)2
(nu2

3 − u2)

}p
− n2u2p

3 (A.10)

From (A.3), (A.7) and (A.10), we get

Var(nγ2
Kσ(Cn,Πn)) = Var(ns1 − 2ns2 + nv3) = Var(ns1)− 4Cov(ns1, ns2) + 4Var(ns2)

=
1

n2

[
2(n)2c1 + 4(n)3c2 + (n)4c3

]
− (n− 1)2

{
n

(n)2
(nu3 − 1)

}2p

− 4

n

[
2(n)2c4 + (n)3c5

]
+ 4n(n− 1)

{
n

(n)2
(nu3 − 1)

}d
up3 + 4

[
nup2 + (n)2

{
n

(n)2
(nu2

3 − u2)

}p]
− 4n2u2p

3

=
1

n2

[
2(n)2c1 + 4(n)3c2 + (n)4c3

]
− 4

n

[
2(n)2c4 + (n)3c5

]
+ 4

[
nup2 + (n)2

{
n

(n)2
(nu2

3 − u2)

}p]
−
[
(n− 1)

{
n

(n)2
(nu3 − 1)

}p
− 2nup3

]2

. �

Proposition A.2. Under the null hypothesis of mutual independence,

lim
n→∞

E[nγ2
Kσ(Cn,Πn)] = 1 + (p− 1)wp3 − dw

p−1
3 ,

lim
n→∞

Var[nγ2
Kσ(Cn,Πn)] = 2

[
wp1 + 2(p− 1)wp2 − 2pwp−1

2 w1 + pw2p−2
3 w1

−(p− 1)w2p
3 + p(p− 1)w2p−4

3 (w2
3 − w2)2

]
,

where w1 = κ

(
σ√
2

)
, w2 =

1∫
0

λ2(u, σ) du, and w3 = κ(σ), for κ(·) and λ(·) being defined

in Theorem 2.1.

Proof. From definition of w1, w2 and w3, it is easy to check that w1 = limn→∞ u1, w2 =

limn→∞ u2 and w3 = limn→∞ u3. Then observe that for a natural number k ≤ n and real

numbers a0, a1, · · · , ak−1, we can define function g : Rk 7→ R such that

g(a0, a1, · · · , ak−1) := (n)k

{
n

(n)k

(
a0n

k−1 + a1n
k−2 + · · ·+ ak−1

)}p
.

Using basic algebra, it can be verified that for k = 2,

g(a0, a1) = ap0n
2 +

{
(p− 1)ap0 + pap−1

0 a1

}
n+

p(p− 1)

2
ap−2

0 (a0 + a1)2 +O
(

1

n

)
.
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Similarly, for k = 3 and k = 4, we have

g(a0, a1, a2) = ap0n
3 +

{
3(p− 1)ap0 + pap−1

0 a1

}
n2

+

{
pap−1

0 a2 − 2(p− 1)ap0 +
p(p− 1)

2
ap−2

0 (3a0 + a1)2

}
n+O(1), and

g(a0, a1, a2, a4) = ap0n
4 +

{
6(p− 1)ap0 + pap−1

0 a1

}
n3

+

{
pap−1

0 a2 − 11(p− 1)ap0 +
p(p− 1)

2
ap−2

0 (6a0 + a1)2

}
n2 +O(n).

Now, E[nγ2
Kσ(Cn,Πn)] = 1 + (n− 1)

{
n

(n)2
(nu3 − 1)

}p
− nup3 = 1 +

1

n
g(u3,−1)− nup3.

Taking limit at both sides of this equation, we get

lim
n→∞

E[nγ2
Kσ(Cn,Πn)] = 1 + (p− 1)wp3 − dw

p−1
3 .

Again, from Proposition A.1, we have

Var[nγ2
Kσ(Cn,Πn)] =

1

n2

[
2(n)2c1 + 4(n)3c2 + (n)4c3

]
− 4

n
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n
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]2

=
1

n2

[
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n
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+ 4
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=
1

n2
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{
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}
+ n4u2p
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{

6(p− 1)u2p
3

−2pu2p−2
3 (u3 + 2u2)

}
+ n2

{
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3 (8u3 + 2u1 + 1)− 11(p− 1)u2p
3

+
p(p− 1)

2
u2p−4

3

(
6u2

3 + 6(p− 1)u2p
3 − 2pu2p−2

3 (u3 + 2u2)
)2
}]

− 4

n

[
2n2up2 + n

{
(p− 1)up2 − pu

p−1
2 u3
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+ 4

[
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{
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2p−2
3 u2
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p(p− 1)

2
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3 (u2
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]
−
[
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3
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+O

(
1
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)
= 2

[
up1 + 2(p− 1)up2 − 2pup−1

2 u1 + pu2p−2
3 u1 − (p− 1)u2p

3 + p(p− 1)u2p−4
3 (u2

3 − u2)2
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+O
(

1
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)

Taking limit at both sides of the above equation, we get

lim
n→∞

Var[nγ2
Kσ(Cn,Πn)] = 2

[
wp1 + 2(p− 1)wp2 − 2pwp−1

2 w1 + pw2p−2
3 w1

−(p− 1)w2p
3 + p(p− 1)w2p−4

3 (w2
3 − w2)2

]
. �
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Appendix B

Brief Descriptions of the Existing

Tests Used in Different Chapters

Let x1,x2, . . . ,xn be n independent observations on a d-dimensional random vector X =

(X(1),X(2), . . . ,X(p)) with sub-vectors X(1),X(2), . . . ,X(p) of dimensions d1, d2, . . . , dp, re-

spectively (d1 + d2 + · · · + dp = d). Based on these observations, we want to test the

null hypothesis H0, which states that X(1),X(2), . . . ,X(p) are mutually independent. Here

we describe some of the existing methods that we have used for this purpose in different

chapters of this thesis.

Tests based on generalized versions of Spearman’s ρ, Kendall’s

τ , Blomqvist’s β and Hoeffding’s φ statistics

Here we consider all sub-vectors to be continuous and one-dimensional (i.e., d1 = d2 = . . . =

dp = 1). For any fixed j = 1, 2, . . . , p and for i = 1, 2, . . . , n, define r
(j)
i as the rank of x

(j)
i

(the j-th component of xi) in the set {x(j)
1 , x

(j)
2 , . . . , x

(j)
n } to get ri = (r

(1)
i , r

(2)
i , . . . , r

(p)
i ),

the coordinate-wise rank of xi. Now, consider the normalized rank vectors y1,y2, . . . ,yn,

where yi = ri/n for i = 1, 2, . . . , n.

The generalized versions of Spearman’s ρ (Schmid and Schmidt, 2007), Kendall’s τ

(Nelsen, 2002) and Blomqvist’s β (Úbeda-Flores, 2005) statistics are given by

TSpearman =
p+ 1

2p − p− 1

2p

n

n∑
i=1

p∏
j=1

(1− y(j)
i )− 1

 ,

TKendall =
1

2p−1 − 1

 2p

n2

n∑
i,k=1

p∏
j=1

I[x(j)
i ≤ x

(j)
k ]− 1

 and
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TBlomqvist =
1

2p−1 − 1

2p−1

n

n∑
i=1

p∏
j=1

I
[
y

(j)
i ≤

1

2

]
+

2p−1

n

n∑
i=1

p∏
j=1

I
[
y

(j)
i >

1

2

]
− 1

 ,

respectively. For each of the above tests, we reject H0 if the observed values of the test

statistic is too large or too small.

The generalized versions of Hoeffding’s φ statistic (Gaißer et al., 2010) is given by

T 2
Hoeffding = h(p, n)

[
1

n2

n∑
i,k=1

p∏
j=1

(1−max{y(j)
i , y

(j)
k }) +

{
(n− 1)(2n− 1)

6n2

}p

− 2

2pn

n∑
i=1

p∏
j=1

{
1− (y

(j)
i )2 −

1− y(j)
i

n

}]
,

where h(p, n)−1 =
1

n2

n∑
i,k=1

p∏
j=1

(
1−max

{
i

n
,
k

n

})
+

{
(n− 1)(2n− 1)

6n2

}p
− 2

n

n∑
i=1

{
n(n− 1)− i(i− 1)

2n2

}p
.

The null hypothesis is rejected for large values of the test statistic T 2
Hoeffding.

These four tests have the distribution-free property. If the sample size is large, cut-offs

can also be computed based on the large sample distributions of the test statistics.

Genest test (Genest et al., 2019)

This test also deals with one-dimensional sub-vectors (variables), but it does not need them

to be continuous. For i, k ∈ {1, 2, . . . , n} and for j = 1, 2, . . . , p, define

I
(j)
i,k =

1

6

n∑
l=1

{
2I[x(j)

i ≤ x
(j)
l ]I[x(j)

k ≤ x
(j)
l ] + I[x(j)

i ≤ x
(j)
l ]I[x(j)

k < x
(j)
l ]

+ I[x(j)
i < x

(j)
l ]I[x(j)

k ≤ x
(j)
l ] + 2I[x(j)

i < x
(j)
l ]I[x(j)

k < x
(j)
l ]
}
.

The null hypothesis H0 is rejected for large values of

TGenest =
1

n

n∑
i,k=1

p∏
j=1

I
(j)
i,k +

n

3p
− 2

np

n∑
i=1

p∏
j=1

n∑
k=1

I
(j)
i,k .

dHSIC test (Pfister et al., 2018)

This test can be used for testing independence among p (p ≥ 2) random vectors of arbitrary

dimensions when the sample size is greater than or equal to 2p. For j = 1, 2, . . . , p, let
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k(j) : Rdj ×Rdj 7→ R be a continuous, bounded, positive semi-definite kernel. Assume that

the tensor products of these kernels k(1)⊗k(2)⊗· · ·⊗k(p) is a characteristic kernel (for more

details, see Sriperumbudur et al., 2010). In our experiments, we used the Gaussian kernel

k(j)(u(j),v(j)) = exp

(
−‖u

(j)−v(j)‖2
2σ2
j

)
, for 2σ2

j being the median of all pairwise distances of

the form ‖x(j)
s − x

(j)
t ‖2, where s 6= t ∈ {1, 2, . . . , n}. The null hypothesis is rejected for

large values of the test statistic

TdHSIC =
1

n2

∑
1≤i1,i2≤n

p∏
j=1

k(j)(x
(j)
i1
, x

(j)
i2

) +
1

n2p

∑
1≤i1,i2,...,i2p≤n

p∏
j=1

k(j)(x
(j)
i2j−1

, x
(j)
i2j

)

− 2

np+1

∑
1≤i1,i2,...,ip+1≤n

p∏
j=1

k(j)(x
(j)
i1
, x

(j)
ij+1

).

Here also, the cut-off can be chosen based on the asymptotic null distribution of the test

statistic. In the case of small sample size, conditional test based on the permutation

principle can be used.

JdCov and rank-JdCov tests (Chakraborty and Zhang, 2019)

These tests can be used for testing independence among several random vectors of arbitrary

dimensions. For j = 1, 2, . . . , p and k, l ∈ {1, 2, . . . , n}, define U
(j)
k,l = 1

n

∑n
s=1 ‖x

(j)
k −x

(j)
s ‖+

1
n

∑n
t=1 ‖x

(j)
l − x

(j)
t ‖ − ‖x

(j)
k − x

(j)
l ‖ −

1
n2

∑n
s,t=1 ‖x

(j)
s − x

(j)
t ‖. For any constant c > 0 (we

used c = 1), the JdCov statistic and its scaled version are given by

TJdCov =
1

n2

n∑
k,l=1

p∏
j=1

(
U

(j)
k,l + c

)
− cp and

TJdCovs =
1

n2

n∑
k,l=1

p∏
j=1

 n2U
(j)
k,l∑n

s,t=1

(
U

(j)
s,t

)2 + c

− cp,
respectively. In this thesis, we used the scaled version of the statistic for the JdCov test.

Replacing x1,x2, . . . ,xn by their corresponding normalized coordinate-wise rank vectors

y1,y2, . . . ,yn (defined earlier in this Chapter), one gets rank versions of the U
(j)
k,l s. Using

them in the definition of TJdCov, one gets the test statistic for the rank-JdCov test.

Both, JdCov and rank-JdCov tests, reject H0 for large values of the test statistics.

Cut-offs can be computed either using the large sample distributions of the test statistics

or using the permutation principle.
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HHG test (Heller et al., 2013)

This test can be used for testing independence between two random vectors X(1) and X(2)

of arbitrary dimensions. For each i 6= j ∈ {1, 2, . . . , n} and each k ∈ {1, 2, . . . , n} \ {i, j},

depending whether ‖x(1)
i −x

(1)
k ‖ ≤ ‖x

(1)
i −x

(1)
j ‖ and ‖x(2)

i −x
(2)
k ‖ ≤ ‖x

(2)
i −x

(2)
j ‖, put xk in

one of the four cells of a 2 × 2 contingency table and compute the Pearson’s Chi Squared

statistics Si,j based on those cell frequencies. This test rejects H0 for large values of the

test statistic

THHG =
∑

1≤i 6=j≤n
Si,j .

The cut-off can be computed using permutation method.
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