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Introducion

This thesis comprises of six chapters related to random social choice theory. We provide a brief

introduction of the chapters below.

1.1 AN EXTREME POINT CHARACTERIZATION OF STRATEGY-PROOF AND UNANIMOUS

PROBABILISTIC RULES OVER BINARY RESTRICTED DOMAINS

In this chapter, we show that every strategy-proof and unanimous probabilistic rule on a binary restricted
domain has binary support, and is a probabilistic mixture of strategy-proof and unanimous deterministic
rules. Examples of binary restricted domains are single-dipped domains, which are of interest when

considering the location of public bads. We also provide an extension to infinitely many alternatives.

1.2 A CHARACTERIZATION OF RANDOM MIN-MAX DOMAINS AND ITS APPLICATIONS

In this chapter, we show that a random rule on a top-connected single-peaked domain is unanimous and
strategy-proof if and only if it is a random min-max rule. As a by-product of this result, it follows that a
top-connected single-peaked domain is tops-only for random rules. We further provide a characterization

of the random min-max domains.



1.3 FormMATION OF COMMITIEES THROUGH RANDOM VOTING RULES

In this chapter, we consider the problem of choosing a committee from a set of finite candidates based on
the preferences of the agents in a society. The preference of an agent over a candidate is binary in the sense
that either she wants the candidate to be included in a(ny) committee or she does not - she is never
indifferent. A collection of preferences of an agent, one for each candidate, is extended to a preference
over all subsets of candidates (i.e., potential committees) in a separable manner. Separability means if an

agents wants a particular candidate to be in some committee, then she wants her to be in every committee.

1.4 A UNIFIED CHARACTERIZATION OF THE RANDOMIZED STRATEGY-PROOF RULES

In this chapter, we show that a large class of restricted domains such as single-peaked, single-crossing,
single-dipped, tree-single-peaked with top-set along a path, Euclidean, multi-peaked, intermediate ([58]),
etc., can be characterized by using betweenness property, and we present a unified characterization of
unanimous and strategy-proof random rules on these domains. We do separate analysis for both the cases
where the number of alternatives is finite or infinite. As corollaries of our result, we show that the domains

we consider in this paper satisfy tops-onlyness and deterministic extreme point property.

1.5 RESTRICTED PROBABILISTIC FIXED BALLOT RULES AND HYBRID DOMAINS

In this chapter, we study Random Social Choice Functions (or RSCFs) in a standard ordinal mechanism
design model. We introduce a new preference domain called a hybrid domain which includes as special
cases as the complete domain and the single-peaked domain. We characterize the class of unanimous and
strategy-proof RSCFs on these domains and refer to them as Restricted Probabilistic Fixed Ballot Rules
(or RPFBRs). These RSCFs are not necessarily decomposable, i.e., cannot be written as a convex
combination of their deterministic counterparts. We identify a necessary and sufficient condition under
which decomposability holds for anonymous RPFBRs. Finally, we provide an axiomatic justification of
hybrid domains and show that every connected domain satisfying some mild conditions is a hybrid

domain where the RPFBR characterization still prevails.

1.6 UNANIMOUS AND STRATEGY-PROOF PROBABILISTIC RULES FOR SINGLE-PEAKED PREF-

ERENCE PROFILES ON GRAPHS

In this chapter, we consider the problem where finitely many agents have preferences on a finite set of

alternatives, single-peaked with respect to a connected graph with these alternatives as vertices. A



probabilistic rule assigns to each preference profile a probability distribution over the alternatives. First,
all unanimous and strategy-proof probabilistic rules are characterized when the graph is a tree. These rules
are uniquely determined by their outcomes at those preference profiles where all peaks are on leafs of the
tree, and thus extend the known case of a line graph. Second, it is shown that every unanimous and
strategy-proof probabilistic rule is random dictatorial if and only if the graph has no leafs. Finally, the two

results are combined to obtain a general characterization for every connected graph by using its block tree

representation.



An Extreme Point Characterization of Strategy-proof
and Unanimous Probabilistic Rules over Binary

Restricted Domains

2.1 INTRODUCTION

Suppose that in choosing between red and white wine, half of the dinner party is in favor of red wine while
the other half prefers white wine. In this situation a deterministic (social choice) rule has to choose one of
the two alternatives, where a fifty-fifty lottery seems to be more fair. In general, for every preference
profile a probabilistic rule selects a lottery over the set of alternatives. [ 57] provides a characterization of
all strategy-proof probabilistic rules over the complete domain of preferences (see also [98]). In
particular, if in addition a rule is unanimous, then it is a probabilistic mixture of deterministic rules. This
result implies that in order to analyze probabilistic rules it is sufficient to study deterministic rules only.

In [81] it is shown that if preferences are single-peaked over a finite set of alternatives then every

strategy-proof and unanimous probabilistic rule is a mixture of strategy-proof and unanimous



deterministic rules.' The same is true for the multi-dimensional domain with lexicographic preferences
([33])- But it is not necessarily true for all dictatorial domains ([35]), in particular, there are domains
where all strategy-proof and unanimous deterministic rules are dictatorial but not all strategy-proof and
unanimous probabilistic rules are random dictatorships.

A binary restricted domain over two alternatives x and y is a domain of preferences where the top
alternative(s) of each preference belong(s) to the set {x, y} (we allow for indifferences); and moreover,
for every preference with top x there is a preference with top y such that the only alternatives weakly
preferred to y in the former and x in the latter preference, are x and y.

Outstanding examples of binary restricted domains are domains of single-dipped preferences with
respect to a given ordering of the alternatives. Single-dipped preferences are of central interest in
situations where the location of an obnoxious facility (public bad) has to be determined by voting: think
of deciding on the location of a garbage dump along a road, such that every inhabitant has a single dip (his
house, or the school of his children, etc.) and prefers a location for the garbage dump as far away as
possible from this dip. [79] have shown the equivalence between individual and group strategy-proofness
in subdomains of single-dipped preferences. They characterize a general class of strategy-proof
deterministic rules. In [68] the problem of locating a single public bad along a line segment when agents’
preferences are single-dipped, is studied. In particular, all strategy-proof and unanimous deterministic
rules are characterized. In [15] it is shown that, when all single-dipped preferences are admissible, the
range of a strategy-proof and unanimous deterministic rule contains at most two alternatives. The paper
also provides examples of sub-domains admitting strategy-proof rules with larger ranges. [7] consider
group strategy-proofness under single-dipped preferences when agents become satiated: above a certain
distance from their dips they become indifferent, and thus they go beyond the binary restricted domain.
Further works on strategy-proofness under single-dipped preferences include [77], [78] [65], and [28].
For strong Nash implementation under single-dipped preferences see [ 105 ]. There is also a literature on
this topic when side payments are allowed, e.g., [67] or [92].

In the present paper we show that every strategy-proof and unanimous probabilistic rule over a binary
restricted domain with top alternatives x and y has binary support, i.e., for every preference profile
probability 1 is assigned to {x, y}. We also show that if a strategy-proof and unanimous probabilistic rule
has binary support then it can be written as a convex combination of deterministic rules. Moreover, we
present a complete characterization of such rules, by using so-called admissible collections of committees.

Closely related papers are [66] and [84]. [66] include a characterization of all strategy-proof surjective
deterministic rules for the case of two alternatives with indifferences allowed. Their Theorem 3 is close to

our Theorem 2.3.5 — our theorem is slightly more general since we allow for more than two alternatives.

'[46] characterize such probabilistic rules for single-peaked preferences where the set of alternatives is the real line.



[84] show that every probabilistic rule is a convex combination of deterministic rules if there are only two
alternatives and no indifferences are allowed.

The paper is organized as follows. The next section introduces the model and definitions. Section 2.3
contains the main results, Section 2.4 contains an application to single-dipped preference domains, and

Section 2.5 presents an extension to the case where the number of alternatives may be infinite.

2.2  PRELIMINARIES

Let A be a finite set of at least two alternatives and let N = {1, ..., n} be a finite set of at least two agents.
Subsets of N are called coalitions. Let W(A) be the set of (weak) preferences over A.> By P and I we denote
the asymmetric and symmetric parts of R € W(A). For R € W(A) by 7(R) we denote set of the first
ranked alternative(s) in R, i.e., 7(R) = {x € A : xRy forally € A}. In general, the notation D will be
used for a set of admissible preferences for an agent i € N. As is clear from the notation, we assume the
same set of admissible preferences for every agent. A preference profile, denoted by Ry = (R,, ..., R,),is
an element of D", the Cartesian product of n copies of D. For a coalition S, Rg denotes the restriction of

Ry to S. For notational convenience we often denote a singleton set {z} by z.

Definition 2.2.1 A deterministic rule (DR) is a function f : D" — A.

Definition 2.2.2 A DR fis unanimous if f(Ry) € N 7(R;) for all Ry € D" such that N!_ t(R;) # (.
Agenti € N manipulates DR fat Ry € D" via R} if f(R], Rx\;) Pif(Ry).

Definition 2.2.3 A DR fis strategy-proof if for alli € N, Ry € D", and R, € D, i does not manipulate f at
RN via R{

Definition 2.2.4 A probabilistic rule (PR) is a function ® : D" — AA where AA is the set of probability
distributions over A. A strict PR is a PR that is not a DR.

Observe that a deterministic rule can be identified with a probabilistic rule by assigning probability 1 to
the chosen alternative.

Fora € Aand Ry € D", ®,(Ry) denotes the probability assigned to a by ®(Ry). For B C A, we
denote Op(Ry) = > . Pu(Ry).

Definition 2.2.5 A PR @ is unanimous if ®ry_(r)(Ry) = 1for all Ry € D" such that "_ 7(R;) # 0.

’Le., forallR € W(A) and x,y, z € A, we have xRy or yRx (completeness), and xRy and yRz imply xRz (transitivity). Note
that reflexivity (xRx for all x € A) is implied.



Definition 2.2.6 For R € D and x € A, the upper contour set of x at R is the set U(x,R) = {y € X : yRx}.
In particular, x € U(x, R).

Agenti € N manipulates PR ® at Ry € D" via R} if Dy r) (R, Rw\i) > Duar,) (Ri, Ryni) for some
x € A

Definition 2.2.7 A PR @ is strategy-proof if for alli € N, Ry € D", and R] € D, i does not manipulate ® at
RyviaR.

In other words, strategy-proofness of a PR means that a deviation results in a (first order) stochastically
dominated lottery for the deviating agent.

ForPRs®,j =1,. .., kand nonnegative numbers V,j = 1, . . ., k, summing to 1, we define the PR
o= Z]I.;l ® by O, (Ry) = Z]I.;l V@ (Ry) forall Ry € D" and x € A. We call @ a convex combination of
the PRs @'.

Definition 2.2.8 A domain D is said to be a deterministic extreme point domain if every strategy-proof and

unanimous PR on D" can be written as a convex combination of strategy-proof and unanimous DRs on D".
Fora € A/letD* = {R€ D : 7(R) = a}.

Definition 2.2.9 Letx,y € A, x # y. A domain D is a binary restricted domain over {x,y} if

(i) forallR € D, 7(R) € {{x}, {y}, {x.7}},

(ii) foralla,b € {x,y} witha # b, and for each R € D", there exists R’ € D" such that
U(b,R) NU(a,R’) = {a,b}.

Condition (ii) in the definition of a binary restricted domain is used in the proof of Proposition 2.3.1
below. There, we also provide an example (see Remark 2.3.4) to show that this condition cannot be
dispensed with.

We conclude this section with the following definition.

Definition 2.2.10 Letx,y € A, x # y. A domain D is a binary support domain over {x, y} if
Oxy1 (Ry) = 1for every Ry € D" and every strategy-proof and unanimous PR ® on D"

*Note that this domain is identified with the type of strategy-proof and unanimous PRs that it admits.



2.3 RESuULTS

In this section we present the main results of this paper. First we show that every binary support domain is
a deterministic extreme point domain (Corollary 2.3.1). Next we show that every binary restricted
domain is a binary support domain (Theorem 2.3.3). Consequently, every binary restricted domain is a
deterministic extreme point domain (Corollary 2.3.2). Next, we characterize the set of all strategy-proof

and unanimous probabilistic rules on such binary restricted domains.

2.3.1 BINARY SUPPORT DOMAINS ARE DETERMINISTIC EXTREME POINT DOMAINS

First we establish a necessary and sufficient condition for a domain to be a deterministic extreme point

domain.

Theorem 2.3.1 A domain D is a deterministic extreme point domain if and only if every strategy-proof and

unanimous strict PR on D" is a convex combination of two other distinct strategy-proof and unanimous PRs.

Proof:

First, let D be an arbitrary domain. Observe that every PR @ can be identified with a vector in R,
where p is the number of different preference profiles, i.e., the number of elements of D", and m is the
number of elements of A. Compactness and convexity of a set of PRs are equivalent to convexity and
compactness of the associated subset of RF".

We show that the set of all strategy-proof and unanimous probabilistic rules S over D" is compact and
convex.

For convexity, let @', ®” € Sand o < a < 1,and let the PR @ be defined by
®(Ry) = a®'(Ry) + (1 — a)®"(Ry) forall Ry € D". Clearly, ® is unanimous. For strategy-proofness,
leti € N,Ry € D"andR] € D. Then, forallb € A, by strategy-proofness of ®’ and ®” we have
Do) (R Rii) < Durr) (Ry) and @, ) (RE Ryyi) < Py (Rw), so that

a®y gy (R, Ryi) + (1 — @) O, ) (R, Ri) < a®ly zy (Ry) + (1 — a) @y r,) (Ru),

hence Oy r) (R, Rn\i) < Dyp,r,) (Ry). Thus, @ is strategy-proof, and S is convex.

For closedness, consider a sequence ®* k € N, in S such that lim;_, o, ®* = @, i.e., forallx € A and
Ry € D limy_y oo (I)i (Ry) = @, (Ry). Itis easy to see that ® is unanimous. Suppose that ® were not
strategy-proof. Then there existi € N, Ry € D" and R] € D such that forsome b € A,

Ouyep,r) (R}, Rai) > Duy(p,r)(Ry). This means there exists k € N such that
(D’(‘](h’ R (R Ri) > CD’{](,,’RJ (Ry). This contradicts strategy-proofness of ®. So, S is closed. Clearly, S is

bounded. Thus, it is compact.



Since S is compact and convex, by the Theorem of Krein-Milman (e.g., [90]) it is the convex hull of its
(non-empty set of ) extreme points. Now, for the if-part of the theorem, for a domain D satisfying the
premise, no strict PR is an extreme point. Thus, D is a deterministic extreme point domain. In fact, it is

also easy to see that every strategy-proof and unanimous deterministic rule is an extreme point of S.

For the only-if part, let D be a deterministic extreme point domain and let @ be a strategy-proof and
unanimous strict PR on D". Then thereare ', ..., A5, k > 2, with A’ > oforalli =1,...,kand
Z:;I A" = 1, and strategy-proof and unanimous DRs {1, . . ., f on D" with f # f for i # j, such that
O = Zf;l V'f. We define @' = Zk X f. Then® = (1 — 1)@’ + 1'f, and @’ and f* are distinct

i=2 1—A\

strategy-proof and unanimous PRs different from ©. |

In the following theorem we show that if a strategy-proof and unanimous strict PR has binary support,

then it can be written as a convex combination of two other strategy-proof and unanimous PRs.

Theorem 2.3.2 Let @ : D" — A(A) be a strategy-proof and unanimous strict PR and let x,y € A such that
Oy, p1 (Ry) = 1for all Ry € D" Then there exist strategy-proof and unanimous PRs @', ®" with @' # @
such that ®(Ry) = 1@'(Ry) + :®"(Ry) forall Ry € D"

Proof: Note that @y, 3 (Ry) = 1forall Ry € D" implies that O (Ry) is completely determined by @, (Ry)
forall Ry € D". Since @ is a strict PR, there exists Ry, € D" such that ®,(Ry) = p € (o,1). Let
C={Ry € D": ®,(Ry) # p}. Since Cis finite set, there isan ¢ € (o, p) such thatforall Ry € C,

O, (Ry) & [p — &,p + ¢£]. We define @’ and @” with support {x, y} by

O, (Ry)ifRy € C
®,(Ry) — ¢ otherwise.

X

O’ (Ry) = O, (Ry)ifRy € C
N ®,(Ry) + ¢ otherwise

and @ (Ry) = {

Clearly, @' # ®" and ®(Ry) = :®'(Ry) + 2@"(Ry) forall Ry € D". Unanimity of @ and @" follows
from unanimity of ®. We show that ®’ and ®” are strategy-proof. We consider only @', the proof for ®” is
analogous. Leti € N, Ry € D" and Q; € D. Write Quy = (Q;, Ry\;). We consider the following cases.
Case 1 Ry, Qn ¢ C. Then O (Ry) = p + ¢ = @/(Qy). So i does not manipulate @’ at Ry via Q.

Case 2 Ry, Qy € C. Then @’ (Ry) = ®,(Ry) and ®,(Qy) = ®.(Qu). Since i does not manipulate @ at
Ry via Q,, this implies that i does not manipulate @’ at Ry via Q;.

Case 3 Ry ¢ C,Qy € C. Then @ (Ry) = ®,(Ry) + eand

@’ (Qn) = D.(Qn) ¢ [D.(Ry) — &, D.(Ry) + €] If P,y (where P, is the asymmetric part of R;), then by
strategy-proofness of @, @’ (Qy) = 0,(Qn) < ®,(Ry) = ®.(Ry) — ¢ < O/ (Ry), so that i does not
manipulate @’ at Ry via Q;. If yP;x, then by strategy-proofness of @,

@’ (Qn) = 0.(Qn) > D, (Ry) + ¢ = D (Ry), so that i does not manipulate @’ at Ry via Q;.



Case 4 Ry € C, Qu ¢ C. If xP;y then by strategy-proofness of @ and the choice of ,

O (Qn) = 0.(Qn) + & < (O(Ry) — &) + ¢ = D, (Ry) = D (Ry), so that i does not manipulate @’ at
Ry via Q;. If yP;x, then by strategy-proofness of @,

(D;(QN) =0,(Qv) —e < O)(Ry) — e = @;(RN) —e< @;(RN), so that i does not manipulate @’ at Ry

via Q;. [

Theorems 2.3.2 and 2.3.1 imply the following result.

Corollary 2.3.1 Every binary support domain is a deterministic extreme point domain.

2.3.2 BINARY RESTRICTED DOMAINS ARE BINARY SUPPORT DOMAINS

The main result of this subsection is the following theorem.
Theorem 2.3.3 Every binary restricted domain is a binary support domain.

We first prove the result for two agents and then use induction to prove it for an arbitrary number of

agents.

Proposition 2.3.1 Let D be a binary restricted domain over {x, y}, and let ® : D> — AAbea
strategy-proof and unanimous PR. Then @y, 3 (Ry) = 1forall Ry € D>

Proof: By unanimity of @ it is sufficient to consider the case where Ry = (R,, R,) with R, € D* and
R, e D.

First assume that U(y, R,) N U(x, R,) = {«, y}. Suppose that ®3(Ry) > ofor B= A\ U(y,R,). Then
agent 1 manipulates at Ry via some R] € D, since by unanimity ®,(R!, R,) = 1and y is strictly preferred
to (every element of ) A \ U(y, R,) at the preference R, of agent 1. Hence, we must have ®3(Ry) = o for
B = A\ U(y,R,). Similarly one shows that @y (Ry) = o for B" = A\ U(x, R,). Since
U(y,R,) N U(x,R,) = {«,y}, we have Oy, 1 (Ry) = 1.

Next, suppose that U(y, R,) N U(x, R,) # {x, y}. This, by the definition of a binary restricted domain,
means that there exist R, € D*and R, € D’ such that U(y,R,) N U(x,R]) = {x,y} and
U(y,R)) N U(x,R,) = {x,y}. By the first part of the proof we have @, 1 (R,,R]) = 1and
Oy (R, R,) = 1. Let (R, R)) = eand ®,(R],R,) = ¢'. Since R, R] € D*andR,,R] € T’,
strategy-proofness implies @, (R, R]) = ®,(R,,R]) = eand ®,(R,R}) = ®,(R|,R,) =1 — ¢'. This
means @y, 3 (R, R,) = ¢ +1 — ¢, which implies ¢ < ¢'. By a similar argument it follows that ¢’ < e.
Hence, ¢ = ¢'. Finally, again since R, R € D*and R,, R, € D’, we have by strategy-proofness that
O.(R,,R,) = O.(R},R,) = eand ®,(R,,R,) = ®,(R,,R]) =1 — ¢, and hence Dy, 1 (R,,R,) = 1,
completing the proof. |
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REMARK 2.3.4 Condition (ii) in Definition 2.2.9 of a binary restricted domain cannot be omitted. Let
A={x,y,2}, N={1,2},and let D = {R,R'} C W(A) with xPzPy and yP'zP'x (P and P’ are the
asymmetric parts of R and R, respectively). Hence, D is not a binary restricted domain over {x, y}, since (ii) in
Definition 2.2.9 is not fulfilled. Let (a, B,7) € A(A) be the lottery with probabilities on x, y, and z, respectively.
Define the PR ® by: ®(Ry) = (1,0,0) if Ry = (R, R), ®(Ry) = (0,1,0) if Ry = (R',R'), and

O(Ry) = (i, 3 i) in the two other cases. Then clearly @ is unanimous and strategy-proof. Hence, D is not a

binary support domain.
The following proposition treats the case with more than two agents.

Proposition 2.3.2 Letn > 3, let D be binary restricted domain over {x, y}, andlet ® : D" — AAbea
strategy-proof and unanimous PR. Then O, 1 (Ry) = 1for all Ry € D".

Proof: As before, N = {1, ..., n} is the set of agents. We prove the result by induction. Assume that the
proposition holds for all sets with k < n agents.

Let N* = {1,3,...,n} and define the PR g : D"* — AA for the set of agents N* as follows: For all
Ry« = (R,R,,...,R,) € D",

g(R,R;,...,R,) = ®(R,R,R,,...,R,).

Claim 1 gg, (Ry+) = 1forall Ry~ € D",
To prove this claim, first observe that g inherits unanimity from ®. We show that g also inherits

strategy-proofness. It is easy to see that agents other than 1 do not manipulate g since @ is strategy-proof.
Let (R,R,,...,R,) € D" "and Q, € D. Forallb € A, we have

gur) (R Ry, ... Ry) = Oypor) (R, R, Ry, ... R,)
> Our)(Qs R, Ry, ..., Ry)
> Oypr)(Q, Q,R;; .-, Ry)
= gU(h,Rl)(QuRy s 7Rn)7

where the inequalities follow from strategy-proofness of @. The proof of Claim 1 is now complete by the

induction hypothesis.4

Thus, by Claim 1, we have @y, ,} (Ry) = 1forall Ry € D" with R, = R,. Our next claim shows that the
same holdsif 7(R,) = 7(R,).

*We have included the proof of Claim 1 for completeness. It can also be found in [98].
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Claim 2 Let Ry be a preference profile such that 7(R,) = 7(R,). Then @y, ;3 (Ry) = 1.

To prove this claim, first suppose that 7(R,) = 7(R,) = {«,y}. Then, if O, ,} (Ry) < 1, player 1
manipulates at Ry via R, since by Claim 1, Oy, ,} (R, R,, RN\{M}) = 1. Now consider the case
7(R,) = 7(R,) € {x,y},say 7(R,) = 7(R,) = x. By Claim 1 we have
Oiyy (R, R, R (10)) = Pyt (Re, Ry, Ry fu5)) = 1. Moreover, since 7(R,) = 7(R,) = x we have by
strategy-proofness @, (R, R,, RN\{M}) = O, (R, R,, RN\{M}) = @,(R,,R,, RN\{M}) = ¢ (say).

Since D is a binary restricted domain, if 7(R;) # yforalli € N \ {1, 2}, then by unanimity
1 (Ry) = @.(Ry) = 1, and we are done. Now suppose thereisi € N\ {1,2} such that 7(R;) = y.
LetR € D be such that 7(R) = yand U(x, R) N U(y, R,) = {x, y}. Such an R exists since D is a binary

restricted domain. Consider the preference profile RN\{MZ} of the agentsin N \ {1,2} defined as follows:
foralli € N\ {1,2}

2 — { Rif7(R) =y
l R, otherwise.

By Claim 1, @y, ,} (R,,R,, RN\{W}) = DQyyy) (R,,R,, RN\{1,2}> = 1. Since 7(R,) = 7(R,) = x, we have
by strategy-proofness ®.(R,, R, RN\{I,Z}) = O.(R,,R,, RN\{l,z}) = O,(R,,R,, RN\{I,Z}). We show
®.(R,,R,, Ry\(1,}) = e. First we claim that ®,(R,, R,, R\ [1.,1) = Dy (R,, R,, Ry 11,3 )- To see this,
consider a playeri € N \ {1, 2} such that R; # R,. Then 7(R;) = 7(R;) = y, hence by strategy-proofness
we have @, (R,,R,, R, RN\{IM-}) =0, (R,,R,,R;, R\ (10,1} ). By repeating this argument,
®,(R,, R, R\ 1,,}) = @,(R,, R,, Ry [1.,})- Hence, since O, 1 (R,, Ry, R 11,,}) = 1, we obtain
D, (Rl, R,, RN\{l,z}) =&

Using similar logic it follows that @, (R, R,, RN\{M}) =0, (R, R,, RN\{I’Z}). We complete the proof by
showing ®,(R,, R,, Rx\{1,,}) = 1 — &. For this, since O, (R,, R,, R\ [1.,}) = &, it suffices to show that
®.y3 (Ri, Ry, Ry f1,2}) = 1. Suppose that @5 (R,, R,, Ry 1,}) > ofor B= A\ U(y,R,). Then agent 1
manipulates at (R, R,, RN\{M}) via R, since O, 1 (R,,R,, RN\{I,Z}) = 1. Thus,

Oy(yr,) (Ris Ryy R\ fu,2)) = 1. Next we show that Oy, r) (R, R, Ry (1,,}) = 1. If not, consider

i € N\ {1,2} such that R, = R. Let R be such that 7(R/) = «. Then by strategy-proofness

Ou(e,r) (Ri, Ry, Ran (12}) = Duer) (Ri, Roy R, Ry f1,0,11)- By sequentially changing the preferences of the
players in N\ {1, 2} with y at the top in this manner we construct a preference profile R such that

7(R;) = xforalli € Nand Ou(e,r) (R, Ry, Ranf121) = Duep) (R) = 1. Hence

(DU(x,R) (Rl, R,, RN\{1,2}> =1

Since (DU(%RI)(RI,RZ,RN\{W}) =1, Oy(r) (RURZ,RN\{I,Z}) =1and U(y,R,) N U(x,R) = {x,y}, we
have @y, 3 (R, R,, RN\{IJ}) = 1. This completes the proof of Claim 2.

We can now complete the proof of the proposition. Let Ry € D" be an arbitrary preference profile. We
show that @y, 1 (Ry) = 1. In view of Claim 2, we may assume 7(R,) # 7(R,). Note that if 7(R;) = {x,y}
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forsomei € {1,2} and @\ (., (Ry) > o, then agent i manipulates at Ry via R;, wherej € {1,2},j # i,
since by Claim 1 we have @y, 3 (R;, R, R\ (1,,}) = 1. So we may assume without loss of generality that
7(R,) = xand 7(R,) = y.

Suppose U(y, R,) N U(x, R,) = {x,y}. If O\ y(x,r,) (Ry) > o, then agent 2 manipulates at Ry via R,
since, by Claim 1, @y, 3 (R,, R,, Ry f1,,}) = 1. Thus, @y, r,) (Ry) = 1, and similarly one proves
Qy(y,r,)(Ry) = 1. Together with U(y, R,) N U(x, R,) = {«, y}, this implies O, 1 (Ry) = 1.

Finally, suppose U(y, R,) N U(x, R,) # {x,y}. Since D is a binary restricted domain there exist
R € D*and R, € D’ suchthat U(y,R,) N U(x,R)) = {x,y} and U(y,R)) N U(x, R,) = {x, y}. Since
7(R,) = 7(R)) = xand 7(R,) = 7(R) = y, by strategy-proofness we have
D, (Rl, R,, RN\{l,z}) = q)x(Ri, R,, RN\{I,Z}) and (Dy<Rl, R,, RN\{I,Z}) = (Dy(Rl, R/Z, RN\{l,Z})‘ By a similar
argument as in the last paragraph of proof of Proposition 2.3.1 we have O, (R, R}, Ry (1,}) =
O, (R}, R,, Ry\ 1.} )- Hence, @y, 13 (Ry, Ry, Ry (1,2}) = DPiayy (Ri, R, Ry 11,03 ). However,

Q1 (R, R, Ry 1,,3) = 1since U(y, R,) N U(x, R]) = {«, y}, which completes the proof of the
proposition. |

Theorem 2.3.3 now follows from Propositions 2.3.1 and 2.3.2. Moreover, we have the following

consequence of Theorem 2.3.3 and Corollary 2.3.1.

Corollary 2.3.2 Every binary restricted domain is a deterministic extreme point domain.

2.3.3 CHARACTERIZATION OF STRATEGY-PROOF AND UNANIMOUS RULES

In this subsection we give a characterization of all strategy-proof and unanimous PRs on a binary
restricted domain. In view of Corollary 2.3.2, it will be sufficient to give a characterization of
strategy-proof and unanimous DRs on a binary restricted domain.

Throughout this subsection let D be a binary restricted domain over {x, y}. For Ry € D", by N*(Ry)
we denote the set of agents i € N such that 7(R;) = x; by N¥(Ry) the set of agents i € N such that
7(R;) = {x,y}; and we define

Z(Ry) = {Qn € D" : N?(Qn) = N?(Ry) and R; = Q; foreveryi € N¥(Ry)}.

Thus, Z(Ry) is the (equivalence) class of all preference profiles that share with Ry the set of agents who
are indifferent between x and y and have the same preference as in Ry.

For Ry € DN a committee VV(Ry) is a set of subsets of N such that:
(1) IfNY(Ry) = Nthen W(Ry) = 0 or W(Ry) = {0}.

(2) IfNY(Ry) # Nthen W(Ry) C 2N\W”(RY) gatisfies
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(i) 0 € W(Ry)and N\ N¥(Ry) € W(Ry),
(ii) forallS, T C N\ NY(Ry),ifS C TandS € W(Ry), then T € W(Ry).

In case (2) in the above definition, a committee is a simple game, elements of YW (Ry) are called
winning coalitions, and other subsets of N \ N*”(Ry) are called losing coalitions.

A collection of committees YW = {W(Ry) : Ry € D"} is an admissible collection of committees (ACC)
if the following three conditions hold:

a) ForallRy, Qu € D", if Qv € Z(Ry) then W(Qn) = W(Ry).

b) ForallRy € D", i € N\ N?(Ry), R, € Dsuchthat 7(R)) = {x,y},and C € W(Ry), ifi ¢ C,
then C € W(Ry;, R).

c) ForallRy € D",i € N\ N?(Ry), R, € Dsuchthat7(R)) = {x,y},and C ¢ W(Ry), ifi € C,
then C\ {i} ¢ W(Rn;, R)).

Thus, a collection of committees is admissible if a) each committee depends only on the set of
indifferent agents and their preferences; b) if a coalition is winning and an agent not belonging to it
becomes indifferent, then the coalition stays winning; and c) if a coalition is losing and an agent belonging
to it becomes indifferent, then the coalition without that agent stays losing. Observe that a), b), and c) are
trivially fulfilled if NV (Ry) = N, i.e,, if all agents are indifferent. In particular, in that case Z(Ry) = {Ry}.

With an ACC W we associate a DR fyy as follows: for every Ry € D",

x if N*(Ry) € W(Ry)

FvlRe) = { y EN*(Ry) € W(Ry).

We now show that every strategy-proof and unanimous DR is of the form f),). We just outline the proof
since it is rather standard, and, moreover, the theorem is almost equivalent to Theorem 3 in [66]. A
(nonessential) difference is that the last mentioned result is formulated for the case where A = {x, y}, so

that all preference profiles with the same indifferent agents are equivalent, making our condition a) on an
ACC redundant.

Theorem 2.3.5 Let D be a binary restricted domain. A DR f on D" is strategy-proof and unanimous if and
only if there is an ACC WV such that f = fyy.

Proof: For the only-if part, let f be a strategy-proof and unanimous DR. For each Ry € D" we define the
set WH(Ry) of coalitions as follows. If N¥(Ry) = N then Wx(Ry) = {0} if f(Ry) = xand W/(Ry) = 0
otherwise. If N (Ry) # N then for every C C N \ N¥(Ry), C € Wx(Ry) ifand only if there is a
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Qv € Z(Ry) such that f(Qy) = xand C = N*(Qy). Then W/(Ry) is a committee for each Ry € D" by
unanimity and strategy-proofness of f. Also, the collection Wy = {W/(Ry) : Ry € D"} isan ACC: a)
follows directly by definition of the committees WW/(Ry); and b) and c) follow from unanimity and
strategy-proofness of f. Finally, it is straightforward to check that f = f,.

For the if-part, let )V be an ACC. Then it is easy to check that f = fyy is strategy-proof and unanimous.
n

By Corollary 2.3.2 and Theorem 2.3.5 we obtain the following result.

Corollary 2.3.3 Let D be a binary restricted domain. A PR f on D" is strategy-proof and unanimous if and
only if it is a convex combination of DRs of the form f = fyy for ACCs W.

REMARK 2.3.6 The set of winning coalitions YW (Ry) may indeed depend on the preference profile of the
indifferent agents, i.e,, the agents in Z(Ry). Here is an example. Let N = {1,2,3}, A = {x,y, v, w} and define:
W(Rn) = {{1,3}, N} N (Ry) = 0, W(Ry) = {{1,31} N (Re) = {2}, W(RY) = {{2.3}}
N?(Ry) = {1}; W(Ry) = {{1,2}} fN?(Ry) = {3} and vRyw; W(Ry) = {{1}, {1,2}} if

NY(Ry) = {3} and wP,v; and W (Ry) = {0} if N?(Ry) = N. Then it is straightforward to verify that f,y is

strategy-proof and unanimous.

2.4 APPLICATION TO SINGLE-DIPPED PREFERENCES

In this section we apply our results to single-dipped domains and characterize all strategy-proof and

unanimous PRs on such a domain.

Definition 2.4.1 A preference of agenti € N, R; € W(A), is single-dipped on A relative to a linear ordering
= of the set of alternatives if

(i) R; has a unique minimal element d(R;), the dip of R; and
(ii) forally,z € A [d(R) =y > zorz >y = d(R;)] = zPy.

Let D, denote the set of all single-dipped preferences relative to the ordering >, andlet R, C D,..
Clearly D;_is a binary restricted domain. Moreover, R is a binary restricted domain if it satisfies
condition (ii) in Definition 2.2.9, the definition of a binary restricted domain. Hence, by Corollary 2.3.2

and Theorem 2.3.5 we obtain the following result.

Corollary 2.4.1 Let - be a linear ordering over A and let R.. C D._ satisfy (ii) in Definition 2.2.9. Then a
PR on R is strategy-proof and unanimous if and only if it it is a convex combination of DRs on 'R of the form
f=fw for ACCs W.
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Consider a single-dipped domain where the alternatives are assumed to be equidistant from each other
and preference is consistent with the distance from the dip. More precisely, when the distance of an
alternative from the dip of an agent is higher than that of another alternative, the agent prefers the former
alternative to the latter. Call such a domain a ‘distance single-dipped domain’ If ties between equidistant
alternatives are broken in both ways, then such a domain is again a binary restricted domain, and
Corollary 2.4.1 applies. However, if ties are broken in favor of the left side (or of the right side) only, then
the domain is no longer a binary restricted domain. Indeed, in Example 2.4.2 we show that there exists a

strategy-proof and unanimous PR that does not have binary support.

Example 2.4.2 Consider the distance single-dipped domain presented in the table below. There are two agents
and four alternatives: think of the alternatives as located on a line in the ordering x, < x, < x;, < x, with equal
distances. Ties are always broken in favor of the left alternative. It is not hard to verify that the PR given in the
table (probabilities in the order x,, x,, x,, x,, and o < f < a < 1,0 < y < & < 1arbitrary) is strategy-proof

and unanimous, but does not have binary support.

1/2 X,%,X,X, 2, %0,00,, X,%,X,X, X,%,%, X,
X, X, X, (1,0,0,0) (a — B,B,0,1—a) | (a,0,0,1—a) (1,0,0,0)
x, %0, | (e—7,7,0,1—¢) (0,0,0,1) (0,0,0,1) (e—1v,7,0,1—¢)
X, 5,05, (e,0,0,1 —¢) (0,0,0,1) (0,0,0,1) (e,0,0,1— ¢)
X, %, 0, (1,0,0,0) (a — B,B,0,1—a) | (a,0,0,1—a) (1,0,0,0)

REMARK 2.4.3 Other examples of binary restricted domains are single-peaked domains where each peak
can only be one of two fixed adjacent alternatives, or certain single-crossing domains with only two
alternatives that can serve as top alternative. These domains, however, are of limited interest within the
single-peaked and single-crossing domains, respectively.

Of course, there are binary restricted domains which are much larger than and considerably different
from single-dipped domains — an obvious example is the domain of all preferences with x or y or both on
top, or any subdomain including a preference with x on top and y second and a preference with y on top

and x second.

2.5 INFINITELY MANY ALTERNATIVES

In this section we assume that the set of alternatives A may be an infinite set, for instance a closed interval
in R. We assume A to be endowed with a o-algebra of measurable sets; only preferences in W(A) for

which the upper contour sets U(x, R), x € A, are measurable, are considered. A PR O assigns to an
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admissible preference profile a probability distribution over the measurable space A, hence a probability
to every measurable set. The set of all such probability distributions will still be denoted as A(A). Fora
measurable set B C A, ®p(Ry) denotes the probability assigned to B if the preference profile is Ry. All
the introduced concepts and definitions extend in a straightforward manner to this setting. In particular,
Definitions 2.2.1-2.2.7, 2.2.9, and 2.2.10 are literally the same. Also Propositions 2.3.1 and 2.3.2 are still
valid, and therefore Theorem 2.3.3 still holds: a binary restricted domain over {x,y} (x,y € A) is a binary
support domain. The purpose of this section is to provide a characterization of all strategy-proof and
unanimous PRs on a binary restricted domain.

Let D be a binary restricted domain over {x, y} for some x, y € A. We use some of the notations
introduced in Section 2.3.3. For Ry € D" with N (Ry) = Nwe let h(Ry) = h(Ry) (D) € [o, 1] and for
Ry € D" with N¥(Ry) # Nwelet h(Ry) : 2NWRY) s (o 4] satisfy h(Ry)(0) = o,
h(Ry)(N\ N¥(Ry)) = 1,and h(Ry)(C) < h(Ry)(C') forall C,C’' € N\ N?(Ry) with C C C’; we
assume, moreover, that h(Qy) = h(Ry) whenever Qy € Z(Ry) and that

h(Ry)(C\ i) < h(Ry)(C\ i) < h(Ry)(C)

wheneveri € N\ N?(Ry), Ry = (Rw\;, R) for some R} with 7(R]) = {x,y},and C C N\ N¥(Ry) with
i € C. Observe that such an h generalizes the concept of an admissible collection of committees: we call h
a probabilistic admissible collection of committees (PACC). For Ry € D" with N¥(Ry) # N, the number
h(Ry)(C) can be interpreted as the probability that a coalition C is winning given a profile with N¥'(Ry)
as the set of agents who are indifferent between x and y and having Ry (g, ) as preference profile;
specifically, if C is the set of agents with x on top, then this probability will be assigned to x. If
NY(Ry) = N, then h(Ry) = h(Ry)(0) is the probability assigned to x.

We say that a PR ® on D" is associated with a PACC hif (i) @y, 3 (Ry) = 1forall Ry € D"; (ii)
®,(Ry) = h(Ry)(N*(Ry)) forall Ry € D".

We have the following result.

Theorem 2.5.1 Let D be a binary restricted domain over {x, y}. A PR ® on D" is strategy-proof and
unanimous if and only if it is associated with a PACC.

Proof: For the if-part, let PR @ be a associated with a PACC h. We show that @ is unanimous and
strategy-proof.

We first show that @ is unanimous. Consider a profile Ry € D" such that Nient(R;) # (. If
7(R;) = {x,y} foralli € N then unanimity holds by definition. Suppose N;cn7(R;) = x. Then
N*(Ry) = N\ NY(Ry). Since h(Ry)(N \ N¥(Ry)) = 1, we have ®,(Ry) = 1. If Nien7(R;) = y then
N*(Ry) = 0 which implies ®,(Ry) = h(Ry)(0) = o. So, ®,(Ry) = 1.
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Next we show that @ is strategy-proof. Consider a profile Ry € D". We only need to consider

i € N\ N”(Ry). LetR] € D and write Ry = (Rn\;, R). We distinguish four cases and each time show

that i cannot improve by R. (i) If 7(R;) = xand 7(R}) = y then

0.(Ry) = (Ry) (NV(Rn)) = h(R)(N*(Ra) \ i) = (R (N¥(RY)) = Dy (Rl by defimition of . (i)

If7(R;) = yand 7(R]) = x then

O, (Ry) = h(Ry)(N*(Ry)) < h(Ry)(N*(Ry))

®,(Ry) > @, (Ry). (iii) If 7(R;) = xand 7(R})

. (Ry) = h(Ry)(N" )
(

h(Ry)(N*(Ry)) = ®.(R}). This implies

{x,y}, then, since N*(Ry) \ i = N*(R/, RN\,-),we have
@, (Ry). (iv) Finally, if 7(R;) = yand 7(R]) = {x,y},

RY)) = O.(RY), which implies ®,(Ry) < @,(Ry). This

«(Ry) = h(Ry)(N*(Ry)) = h(Ry)(N*(Ry)
then @, (Ry) = h(Ry)(N*(Ry)) < h(Ry)(N*
completes the proof that @ is strategy-proof.

For the only-if part, consider a unanimous and strategy-proof PR @ on D". Then @y, 1 (Ry) = 1forall
Ry € D" by (the modified version of ) Theorem 2.3.3. We show that @ is associated with a PACC h. If
Ry € D" with N¥(Ry) = N, then we define h(Ry) = h(Ry)(0)) = ®,(Ry). Now let Ry € D" with
N¥(Ry) # N. By strategy-proofness, ®(Qy) = ®(Ry) forall Qy € D" with Qy € Z(Ry) and
N*(Qn) = N*(Ry). Therefore, we can define h(Ry)(C) = ®,(Qy) forany Qy € Z(Ry) such that
C = N*(Qy)- By unanimity of ®, h(Ry)(?)) = o and h(Ry)(N \ N¥(Ry)) = 1. By strategy-proofness,
h(Ry)(C) < h(Ry)(C') forall C,C' C N\ N¥(Ry) with C C C'.

Clearly, h(Qy) = h(Ry) whenever Ry € D" and Qy € Z(Ry).

LetRy € D",i € N\ N?(Ry), Ry = (Rw\;; R)) for some R] with 7(R}) = {,y}, and
C C N\ NY(Ry) withi € C. Consider Qy € Z(Ry) with N*(Qy) = C. Then by strategy-proofness we
have h(Ry)(C) = 0,(Qn) > 0.(Qw\i»R}) = h(Rw\i, R})(C \ i) = h(RY)(C \ i). Finally, consider
Vy € Z(Ry) with N*(Vy) = C\ i. Again by strategy-proofness we obtain
h(Ry)(C\ i) = Ox(Viv) < Bu(Vivy, R) = B(Ranis R)(C\ i) = h(Ry)(C\ ). n

We conclude the paper with some thoughts about extending Theorem 2.3.1 and Corollary 2.3.1 to the
case of infinitely many alternatives. As to extending Theorem 2.3.1, which states that a domain is a
deterministic extreme point domain if and only if each strategy-proof and unanimous strict probabilistic
rule can be written as a convex combination of two other strategy-proof and unanimous probabilistic rules,
for the infinite case one may try and find a suitable topology on the set of all such rules so that it becomes
a convex and compact subset of a topological vector space. Then, one could apply a topological version of
the Krein-Milman Theorem (e.g., Theorem I1L.4.1 in [ 16]) and conclude that each strategy-proof and
unanimous probabilistic rule is in the closure of the convex hull of the strategy-proof and unanimous
deterministic rules. This, however, does not seem a straightforward exercise, and also does not deliver the
exact analogue of Theorem 2.3.1. Next, Corollary 2.3.1 states that for the case of finitely many alternatives

every binary support domain is a deterministic extreme point domain. This is a direct consequence of
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Theorem 2.3.1 and Theorem 2.3.2, where the latter theorem states that every strategy-proof and
unanimous strict probabilistic rule assigning positive probability to only two alternatives x and y, can be
written as a convex combination of two other such rules. Again, extending this theorem to the case of
infinitely many alternatives does not seem to be a sinecure: the proof for the finite case heavily uses the
fact that if a probability p € (o, 1) is assigned to x at some preference profile, then we can find an interval
around p such that at each other profile either probability p is assigned to x or some probability outside

this interval. A proof along this line seems to break down if there are infinitely many alternatives.
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A Chara&erization of Random Min-max Domains and

Its Applications

3.1 INTRODUCTION

3.1.1 BACKGROUND OF THE PROBLEM

We analyze the classical social choice problem of choosing an alternative from a set of feasible alternatives
based on the preferences of individuals in a society. Such a procedure is known as a deterministic social
choice function (DSCF). Arrow, Gibbard, and Satterthwaite have identified some desirable properties of
such a DSCF such as unanimity and strategy-proofness. A DSCF is strategy-proof if a strategic individual
cannot change its outcome in her favor by misreporting her preferences, and it is unanimous if, whenever
all the individuals have the same most preferred alternative, that alternative is chosen. The classic
[56]-[96] impossibility theorem states that if there are at least three alternatives and the preferences of the
individuals are unrestricted, then the only DSCFs that are unanimous and strategy-proof are dictatorial. A
DSCF is called dictatorial if there exists an individual, called the dictator, whose most preferred alternative
is always chosen by the DSCF.

Although unanimity and strategy-proofness are desirable properties of a DSCEF, the assumption of an
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unrestricted domain made in the Gibbard-Satterthwaite Theorem is quite strong. Not only do their exist
many political and economic scenarios where preferences of individuals satisfy natural restrictions such as
single-peakedness, but also the conclusion of the Gibbard-Satterthwaite Theorem does not apply to such
restricted domains. Consequently, domain restrictions turn out to be an obvious and useful way of
evading the dictatorship result in social choice theory.

The single-peaked property is commonly used in a public good location problem. Such a domain
restriction occurs in an environment where strictly quasi-concave utility functions are maximized over a
linear budget set. The study of single-peaked domains can be traced back to [20] where he shows that a
Condorcet winner exists on such domains. Later, [72] and [103] show that a DSCF on a single-peaked
domain is unanimous and strategy-proof if and only if it is a min-max rule. In a recent paper, [2]
characterize all domains on which a DSCF is unanimous and strategy-proof if and only if it is a min-max
rule. They call such domains min-max domains.

The horizon of social choice theory have been expanded by the concept of random social choice functions
(RSCF). An RSCEF assigns a probability distribution over the alternatives at every preference profile.
Thus, RSCFs are generalization of DSCFs. The importance of RSCFs over DSCFs has been
well-established in the literature (see, for example, [46], [81]).

The study of RSCFs dates back to [ 57] where he shows that an RSCF on the unrestricted domain is
unanimous and strategy-proof if and only if it is a random dictatorial rule. A random dictatorial rule is a
convex combination of dictatorial rules. [46] characterize the unanimous and strategy-proof random
rules on maximal single-peaked domains, and [81] show that such a rule is a convex combination of
min-max rules. [87] establish a similar result by using the theory of totally unimodular matrices from

combinatorial integer programming,.

3.1.2 OUR MOTIVATION

Our motivations behind this work are as follows:

« As we have discussed earlier, single-peaked domains are very useful in modeling preferences in
many practical situations. However, to the best of our knowledge, there is no characterization
available in the literature of the unanimous and strategy-proof RSCFs on single-peaked domains
other than the maximal single-peaked domain and minimally rich single-peaked domains. The
maximal single-peaked domain requires that every single-peaked preference is present in the
domain. On the other hand, minimally rich single-peaked domains require presence of ‘extreme’
single-peaked preferences such as the ones in which all the alternatives on the left (right) side of the

top-ranked alternative are preferred to all those on the right (left) side of the same. Both these
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domains are quite demanding for practical purposes. This motivates us to investigate the structure

of the unanimous and strategy-proof RSCFs on other single-peaked domains.

« Min-max rules are quite simple to understand, intuitively appealing, and easy to work with. They
also have desirable properties like tops-onliness and anonymity (a class of min-max rules called
median rules). This motivates us to find all domains on which a rule (RSCF or DSCF) is

unanimous and strategy-proof if and only if it is a min-max rule.

« A domain satisfies the deterministic extreme point (DEP) property if every unanimous and
strategy-proof RSCF on it can be written as a convex combination of the unanimous and
strategy-proof DSCFs on that domain. Such a property of a domain is very useful in finding socially
optimal strategy-proof RSCFs."! This is because, if a domain satisfies the DEP property, then the
maximum expected social welfare will always be achieved by some strategy-proof DSCE. This
reduces the problem of finding socially optimal strategy-proof RSCFs to that of finding socially
optimal strategy-proof DSCFs. [ 55] characterize socially optimal strategy-proof DSCFs on regular
single-crossing domains. It is worth noting that a regular single-crossing domain is single-peaked.
Therefore, if such single-peaked domains satisfy the DEP property, then the same rules as found in
[55] will continue to be optimal amongst the strategy-proof RSCFs. This motivates us to
characterize all single-peaked domains that satisfy the DEP property.

3.1.3 OUR CONTRIBUTION

We provide a characterization of the unanimous and strategy-proof RSCFs on top-connected
single-peaked domains. For such domains, there is a prior ordering over the alternatives. The top-set of a
domain consists of those alternatives that appear as a top-ranked alternative in some preference in the
domain. Two alternatives 4, and a; are called consecutive in the top-set of a domain if both of them
belong to the top-set and no alternative in-between (with respect to the given prior order) them belongs

to the same set. A domain is called top-connected if, for every two alternatives a, and a,.,; that are

consecutive in the top-set, there are two preferences P and P’ such that the alternatives a,, a,.,, . . ., d,+,
appear successively from the top in P, and the alternatives a,, a,4,_,, . . . , 4, appear successively from
the top in P’. For example, if the set of alternativesis {a,, . . . , a,, } and the top-set of a domain is

{a,, a,, as, a, }, then, for instance, alternatives a, and ag are consecutive in the top-set of that domain.
Top-connectedness for such a domain requires the presence of preferences such as P = agasa.az . . . and

P’ = aga,aq4a . . ., where by abc . . . we denote a preference in which a is ranked first, b is ranked second, ¢

'An RSCF is socially optimal if it maximizes the sum of the expected utilities (ordinal or cardinal, depending on the model)
of the individuals with respect to some prior distribution over the preferences of the individuals of the society.
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is ranked third, and the other alternatives are arbitrarily ranked in the remaining positions. Note that if the
top-set of a domain consists of all alternatives (such a domain is called regular in the literature), then
top-connectedness requires that for every two alternatives of the form a, and 4, ,, there are two
preferences P and P’ such that a, is ranked first and a,.,, is ranked second in P, and 4,1, is ranked first and
a, is ranked second in P'. Clearly, top-connectedness is a mild condition for a single-peaked domain. For
instance, single-peaked domains that arise from situations where alternatives are equidistant from each
other and preferences are based on Euclidean distances are top-connected. Thus, our result applies to a
large class of single-peaked domains of practical importance. It is worth noting that [2] provide the
deterministic analogue of our results.

Owing to the importance of the min-max rules and the DEP property, we characterize all random
min-max domains. An RSCF is called random min-max if it can be written as a convex combination of the
min-max rules, and a domain is called random min-max if an RSCF on it is unanimous and strategy-proof
if and only if it is a random min-max rule. Thus, our result shows that a large class of domains of practical
importance satisfies the DEP property.

As a by-product of our result, it follows that every top-connected single-peaked domain is tops-only for
random rules. [30] provide a sufficient condition for a domain to be tops-only for DSCFs, and later [31]
provide the same for RSCFs. However, top-connected single-peaked domains do not satisfy any of these
conditions.

As applications of our result, we obtain a characterization of the unanimous and strategy-proof RSCFs
on minimally rich single-peaked domains, regular single-crossing domains, and Euclidean domains.
Minimally rich single-peaked domains are introduced in [81]. Such domains arise in the problem of
locating a public good where agents are ‘single-minded’ in the sense that either they prefer the left
direction or the right direction. Thus, for such a domain, either all the alternatives on the left side of the
peak are preferred to those on the right side or vice versa. Single-crossing domains are well known for
their frequent applications in models of income taxation and redistribution ([89], [69]), local public
goods and stratification ([102], [48], [51]), and coalition formation ([41], [64]).> [94] provide a
characterization of the unanimous and strategy-proof deterministic rules on such domains. Here, we
provide the same for random rules under regularity. Euclidean domains arise in public good location
problems where agents derive their preferences based on the Euclidean distances of the alternatives from
their own location (which is the peak of the preference). The practical importance of such domains is
well-established in the literature. [78] consider the problem of locating a public bad over

two-dimensional Euclidean space and show that under some mild condition, every unanimous and

*Moreover, models that study the selection of policies in the market for higher education ([52]) and the choice of constitu-
tional and voting rules ([9]) also use single-crossing domains. [93] has a detailed exposition on various applications, interpre-
tations, and scopes of single-crossing domains.
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strategy-proof SCF on such domains is dictatorial.

3.1.4 ORGANIZATION OF THE PAPER

The paper is organized as follows. In Section 3.2, we introduce the basic model. Section 3.3 provides a
characterization of the unanimous and strategy-proof random rules on top-connected single-peaked
domains and Section 3.4 provides a characterization of the random min-max domains. We provide some

applications of our results in Section 3.5. Finally, Section 3.6 concludes the paper.

3.2 PRELIMINARIES

Let N = {1,...,n} be afinite set of agents. Except where otherwise mentioned, n > 2. Let

A ={a,,...,a,} beafinite set of alternatives with a prior ordering < givenby a, < - -+ < a,,.
Whenever we write minimum or maximum of a subset of A, we mean it w.r.t. the ordering < over A. By
a = b,wemeana = bora < b.Fora, b € A, we define [a,b] = {c | eithera <c<borb < ¢ < a}.
By (a, b), we define [a, b] \ {a, b}. For notational convenience, whenever it is clear from the context, we

do not use braces for singleton sets, i.e., we denote the set {i} by i.

3.2.1 DOMAIN OF PREFERENCES AND THEIR PROPERTIES

A complete, antisymmetric, and transitive binary relation over A (also called a linear order) is called a
preference. We denote by IL(A) the set of all preferences over A. For P € IL(A) and a,b € A, aPb s
interpreted as “a is strictly preferred to b according to P”. For P € LL(A), by P(k) we mean the k-th ranked
alternative in P, i.e, P(k) = aifand onlyif |[{b € A | bPa}| = k — 1. For P € L(A) and a € A, the upper
contour set of a at P, denoted by U(a, P), is defined as the set of alternatives that are as good as a in P, i.e.,
U(a,P) = {b € A | bPa} U a. We denote by D C LL(A) a set of admissible preferences. Fora € A, let
D* = {P € D | P(1) = a}. The top-set of a domain D is defined as 7(D) = UpepP(1). A domain D is
called regular if 7(D) = A.

Definition 3.2.1 A preference P is called single-peaked if for alla,b € A, [P(1) <a < borb < a < P(1)]
implies aPb. A domain is called single-peaked if each preference in the domain is single-peaked, and is called

maximal single-peaked if it contains all single-peaked preferences.

A preference profile, denoted by Py = (P,, ..., P,),isanelementof D" =D X --- x D.
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3.2.2 SOCIAL CHOICE FUNCTIONS AND THEIR PROPERTIES

A Random Social Choice Function (RSCF) is a function ¢ : D" — AA, where AA denotes the set of
probability distributions on A.

For B C Aand Py € D", we define ¢, (Py) = > . ¢.(Pn), where ¢_(Py) is the probability of a at
¢(Py).

For later reference, we include the following observation.

REMARK 3.2.2 ForallL,L' € AAandallP € IL(A), if Ly(xp) > L/U(x,P) and L’U(&P) > Ly(a,p) for all
x €A thenL =L,

Definition 3.2.3 An RSCF ¢ : D" — AA s called unanimous if for alla € A and all Py € D",
[P;(1) = aforalli € N| = [¢,(Py) = 1].

Definition 3.2.4 AnRSCF ¢ : D" — AA s called strategy-proof if for alli € N, all Py € D", all P, € D,
andallx € A,

Z ¢,(Pi,P_;) > Z ¢, (P, P_).

y€U(x,P;) y€U(x,P;)

REMARK 3.2.5 An RSCF is called a deterministic social choice function (DSCF) if it selects a degenerate
probability distribution at every preference profile. More formally, an RSCF ¢ : D" — AA s called a DSCF if
¢,(Pxn) € {o,1} foralla € Aand all Py € D". The concepts of unanimity and strategy-proofness for DSCFs
are special cases of the corresponding definitions for RSCFs.

Definition 3.2.6 AnRSCF ¢ : D" — AA is called tops-only if ¢(Py) = ¢(P)) for all Py, Py, € D" such
that P;(1) = P/(1) foralli € N.

Next, we define the concept of uncompromisingness for an RSCF. Loosely put, it says that

exaggerating behavior of an agent does not influence the outcome.

Definition 3.2.7 AnRSCF ¢ : D" — AAis called uncompromising if ¢ ,(Px) = ¢ (P}, P_;) foralli € N,
all Py € D", all P, € D, and all B C A such that BN [P;(1), P(1)] = 0.

Note that uncompromisingness implies tops-onliness. It says that if an agent moves his/her top-ranked
alternative closer to or farther from an alternative x in a way so that both the initial and the final positions
of his/her top-ranked alternative are different from x, then the probability assigned to x by an RSCF

cannot change.
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RANDOM MIN-MAX RULES

In this section, we introduce a class of random social choice functions called random min-max rules. [72]
and [103] introduce the concept of min-max rules. Random min-max rules are convex combinations of

these rules. Formal definitions are as follows.

Definition 3.2.8 A DSCF fon D" is called a min-max rule if for all S C N, there exists B € A satisfying
By = am; By = @, and B X B forallS C T

such that for each Py € D"

fex) = min [ mas{0), 65

SCN
Note that min-max rules are tops-only by definition. In what follows, we provide an example of a

min-max rule.

Example 3.2.9 LetA = {a,,...,a,,} and N = {1, 2, 3}. Consider the min-max rule, say f, with parameters

as given in Table 3.2.1.

Table 3.2.1: Parameters of the min-max rule f

ﬁ ‘ ﬁl ﬂz ﬁg, ﬂ{l,z} ﬂ{1,3} 5{2,3}
a a a a

‘aS g 7 4 3 2

The outcome of the min-max rule at the profile (as, a,, as), where ag, a,, and ag are the top ranked alternatives

of agents 1, 2, and 3, respectively, is determined as follows.

f(PN) = Sgrl{lli,f.l,_%} [%%X{Pi(l)v ﬁs}]
= min [max{ﬁ@}, max{P,(1), B,}, max{P,(1), B, }, max{P,(1), 183}7
max{P, (1), P,(1), 18{172}}, max{P, (1), P,(1), ﬁ{m}}’ max{P, (1), P,(1), ,8{2,3}},
max{Pl(l),Pz(l), P, (1)ﬁ{1,z,3}}]
= min [alo, as, dg, ds, ds, dg, ds, ag]

= a,.

For RSCFs ¢,j = 1, ..., kand non-negative numbers ¥/, j = 1, . . . , k, summing to 1, we define the
RSCF ¢ = Z}il V¢ as¢ (Py) = Z}I.C:l V¢ (Py)forall Py € D" andalla € A. We call ¢ a convex
combination of the RSCFs ¢/.
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Definition 3.2.10 An RSCF ¢ : D" — AA is called a random min-max rule if ¢ can be written as a convex

combination of some min-max rules.

3.3 A CHARACTERIZATION OF THE UNANIMOUS AND STRATEGY-PROOF RSCFs oN TOP-

CONNECTED SINGLE-PEAKED DOMAINS

Two alternatives are called consecutive in the top-set of a domain if there is no alternative from the top-set
that appears in-between (with respect to the prior order <) those two alternatives. More formally, two
alternatives a, and a, are called consecutive in 7(D) if (a,, a;) N 7(D) = (). For a domain D, define the

top-interval I(D) as the set of alternatives [min(7(D)), max(z(D))].

Definition 3.3.1 A single-peaked domain D is called top-connected if for every two consecutive alternatives a,
and ag in (D) with min(7(D)) < a, < a;, < max(7(D)), there exist P € D* and P’ € D" such that
aPa,_,ifa,_, € I(D)and a,Pag,, ifa., € I(D).

REMARK 3.3.2 Note that top-connectedness does not impose any restriction (except from single-peakedness) on
any preference with the top-ranked alternative as min(7(D)) or max(7(D)). To see this, take, for instance,
min(7(D)) = a, < a, < max(7(D)). Definition 3.3.1 says there must exist a single-peaked preference

P € D% such that a,Pa,_, if a,_, € 1(D). However, since a, = min(t(D)), it must be that a,_, ¢ I(D).
Therefore, this condition does not apply to P. Similar logic applies to any preference with the top-ranked

alternative as max(z(D)).

For a sequence of alternatives b,, . . ., by, denote by (b, ..., b) . . . a preference where P(I) = b; for all
I =1,..., k. Then, the top-connectedness property of a domain D assures that for every two consecutive
alternatives g, and g; in 7(D) with min(7(D)) < a, < a, < max(7(D)), there are two single-peaked
preferences Pand P’ such that P = (a,,a,4,,..., 4., 4a;) .. .ifa,_, € I(D) and
P = (a,a5,...,04.,4,)...ifa., € I(D). Forexample,ifA = {a,,...,a,} and
T(D) = {“37 a,, ds, ag, am} , then top-connectedness ensures, for instance, that preferences such as
(as, as, a,,ag) .. .and (ag, a,, ag, a,) . . . are present in the domain. Note that as we mention in Remark
3.3.2, top-connectedness does not impose any restriction (except from single-peakedness) on the
preferences with top-ranked alternatives a, or a,,. Thus, the top-connectedness property of a domain D
guarantees that for every two consecutive alternatives 4, and 4; in ‘L'(D) with

min(7(D)) < a, < a, < max(7(D)), there are two single-peaked preferences P and P’ such that

Plypy = (ar, gy - - -, As—ys ag) - .. and P'|ypy = (ag, d—yy .., Grprs ay) -0

*For P € IL(A) and B C A, P|p € L(B) is defined as follows: foralla, b € B, aP|b if and only if aPb.
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We provide an example of a top-connected single-peaked domain in Example 3.3.3.

Example 3.3.3 LetA = {a,,...,a,} bethe set of alternatives. Consider the top-connected single-peaked
domainD = {P,, ..., Py} given in Table 3.3.1. Here, 1(D) = {a,, a,, a,, a, }.

Table 3.3.1

It is worth noting that the number of preferences in a top-connected single-peaked domain can range
from 2|7(D)| — 1to 2" *. Thus, the class of such domains is quite large. It should be further noted that
any single-peaked domain D with |7(D)| = 2 is a top-connected single-peaked domain. This is because
top-connectedness does not impose any condition on the preferences with top-ranked alternatives
min(7(D)) or max(z(D)).

Our next theorem provides a characterization of the unanimous and strategy-proof RSCFs on

top-connected single-peaked domains.

Theorem 3.3.4 An RSCF on a top-connected single-peaked domain is unanimous and strategy-proof if and

only if it is a random min-max rule.

The proof of this theorem is relegated to Appendix 3.7. We provide a brief sketch of it here. First note that
the if part of the theorem follows as a consequence of [ 72]. This is because, since every top-connected
single-peaked domain is a subset of the maximal single-peaked domain, every min-max rule on such a
domain is unanimous and strategy-proof. Because every random min-max rule is a convex combination of
min-max rules, such rules will also be unanimous and strategy-proof on top-connected single-peaked
domains.

For the only-if part of the theorem, we first prove a proposition which states that every unanimous and

strategy-proof RSCF on a top-connected single-peaked domain is uncompromising. We use the method
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of induction on the number of agents in proving this. We start with the base case comprising of one agent.
The proposition follows trivially for this case. Assuming that the proposition is true for n — 1 agents, we
proceed to prove it for n agents. First, we consider all preference profiles where two particular agents, say
agents 1 and 2, have the same preferences. Since the restriction of an RSCEF, say ¢, on such profiles can be
thought of an RSCF on a domain with n — 1 agents, it follows from the induction hypothesis that the
restriction of ¢ on these profiles satisfy uncompromisingness (in a suitable sense). Next, we vary the
preferences of agents 1 and 2 in two steps. In the first step, we consider preferences of those agents such
that they have the same top-ranked alternative and show that ¢ satisfies uncompromisingness over these
profiles (in a suitable sense). In the second step, we consider arbitrary preferences of agents 1 and 2 and
complete the proof of the proposition. Finally, we complete the proof of the theorem by showing that

every uncompromising RSCF is a random min-max rule. In proving this, we use results from [46] and

[81].

REMARK 3.3.5 Itis worth noting that we do not assume tops-onlyness in addition to unanimity and
strategy-proofness for the RSCFs on top-connected single-peaked domains. However, since every random
min-max rule is tops-only, it follows that unanimity and strategy-proofness together guarantee tops-onlyness on
such domains. [31] provide a sufficient condition for a domain to be tops-only for RSCFs.* However,

top-connected single-peaked domains do not satisfy their condition.

REMARK 3.3.6 [81] show that every unanimous and strategy-proof RSCF on a minimally rich single-peaked
domain is a random min-max rule. A domain is called minimally rich if for every alternative, there are two
preferences with that alternative at the top such that in one of them all the alternatives on the left side of the
top-ranked alternative are preferred to those on the right side, and in the other one, the converse happens. To the
contrary, a regular top-connected single-peaked domain requires for every alternative, two preferences with it at
the top such that in one of them the alternative that is to the immediate left of the top is preferred to that on the
immediate right, and in the other, the converse happens. Thus, our result improves the result in [81] in a

considerable manner.

REMARK 3.3.7 A domain D is said to satisfy deterministic extreme point (DEP) property if every unanimous
and strategy-proof RSCF on D" can be written as a convex combination of unanimous and strategy-proof

DSCFs on D". It follows from Theorem 3.3.4 that top-connected single-peaked domains satisfy DEP property.

REMARK 3.3.8 [2] provide a characterization of the domains on which a DSCF is unanimous and
strategy-proof if and only if it is a min-max rule. They call these domains min-max domains. It is worth

mentioning that (i) they consider DSCFs, whereas we consider RSCFs, (ii) they assume the domains to be

*A domain is called tops-only if every unanimous and strategy-proof RSCF on it is tops-only.
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regular, whereas we allow the domains to be arbitrary, and (iii) they allow the set of admissible preferences to be
different for different individuals, whereas we assume that all the individuals have the same set of admissible
preferences. Thus, under the assumption that all the individuals have the same set of admissible preferences, a

generalized version (to the case of non-regular domains) of the result in [2] follows as a corollary of our result.

34 RANDOM MIN-MAX DOMAINS AND THEIR CHARACTERIZATION

In this section, we introduce the concept of random min-max domains and provide a characterization of them. A
domain is called random min-max if an RSCF on it is unanimous and strategy-proof if and only if it is a random

min-max rule. Below, we provide a formal definition.

Definition 3.4.1 A domain D is called a random min-max domain if,
« every random min-max rule on D" is strategy-proof, and

« every unanimous and strategy-proof RSCF on D" is a random min-max rule.

Note that Definition 3.4.1 in particular implies that on a random min-max domain, every min-max rule is
strategy-proof and every unanimous and strategy-proof DSCF is a min-max rule.

Now, we present a characterization of the random min-max domains.

Theorem 3.4.2 A domain is a random min-max domain if and only if it is a top-connected single-peaked

domain.

It follows from Theorem 3.4.2 that if we consider a single-peaked domain that is not top-connected, then there
must be some unanimous and strategy-proof RSCF that is not a min-max rule, and on the other hand, if we
consider a non-single-peaked domain, then some random min-max rule must be manipulable on that domain.
Thus, this theorem provides the full applicability of random min-max rules as unanimous and strategy-proof
random rules.

The proof of this theorem is relegated to Appendix 5.8. We provide a sketch of it here. The if part of the
theorem follows from Theorem 3.3.4. For the only-if part, we consider an arbitrary non-top-connected domain
and construct a unanimous and strategy-proof RSCF (in fact, a DSCF) that is not a random min-max rule.

In the following, we provide an example to show that our assumption (which is imposed from the outset) of
strict preferences is crucial for our result. In particular, we show that if a top-connected single-peaked domain
allows some preferences with indifferences, then there are unanimous and strategy-proof RSCFs that are not

random min-max rules.
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Example 3.4.3 Consider the following domain:

D = {aa,a,a,,a,a,a,a,,a,a,4,4,, 4,0,0,0,, 4,d,0,d,, 4;0,0,4,, 4,4,d,4, }. Here, we put an overline to
indicate indifferences, for instance, the preference a,a,a,a, implies that a, is strictly preferred to a,, a, is strictly
preferred to both a, and a,, and a, and a, are indifferent. Note that D is a top-connected single-peaked domain
with an additional preference a,a,a,a, (ie, D \ {a,a,a,a, } is a top-connected single-peaked domain). Consider
the DSCF presented in Table 3.4.1. It is left to the reader to check that it is unanimous and strategy-proof.
However, since f(a,a,a,a,, a,a,a,a,) = a, and f(a,a,a,a,, a,a,a,a,) = a,, f is not tops-only. This, in particular,

implies that f is not a min-max rule.

Table 3.4.1
1\2 a,a,a,a, | a,4,4,a, | 4,4,4,4, | 4,4,0,4, | 4,4,4,4, | 4;4,0,4, | 4,4,0,4,
4,0,0,a, a, a, a, a, a, a, a,
a,4,0,0, a, a, a, a, a, a, a,
a,a,a,a, a, a, a, a, a, a, a,
a,a,a,a, a, a, a, a, a, a, a,
a,a,a,a, a, a, a, a, a, a, a,
a,a,a,a, a, a, a, a, a, a, a,
a,a,a,4d, a, a, a, a, a, a, a,

3.5 APPLICATIONS

As we have explained, top-connected single-peaked domains are very general in nature and many single-peaked
domains of practical importance fall in this category. Here, we present a few such domains. A characterization of

the unanimous and strategy-proof RSCFs on these domains follows from Theorem 3.3.4.

3.5.1 MINIMALLY RICH SINGLE-PEAKED DOMAINS

A single-peaked preference P is called left single-peaked if a; < P(1) < ay implies a;Pay. Similarly, a
single-peaked preference P is called right single-peaked if a; < P(1) < ai implies axPa;. A domain D is
minimally rich if it contains all left and right single-peaked preferences. In other words, every alternative a; is the
top of at least two preferences P, P’ € D where ajPa;_, - - - a,Paj,, - - - Pa,, and a;P'a;, - - - a,,P'a;_, - - - Pa,

This concept was first introduced in [81].
Lemma 3.5.1 A minimally rich single-peaked domain is a top-connected single-peaked domain.
The proof of this lemma is left to the reader.
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3.5.2 REGULAR SINGLE-CROSSING DOMAINS

Definition 3.5.1 A domain D is called a single-crossing domain w.r.t. an ordering < over D if for all
a,b € AandallP,P € D,
l[a < b,P <P, andbPa] = bPa.

A domain is called single-crossing if it is single-crossing w.r.t. some ordering over the domain.

Definition 3.5.2 A single-crossing domain D is called maximal if there does not exist a single-crossing domain

D such that D C D.

Note that a maximal single-crossing domain with m alternatives contains m(m — 1) /2 + 1 preferences.®
Lemma 3.5.2 A regular maximal single-crossing domain is a top-connected single-peaked domain.

The proof of this lemma is left to the reader.

3.5.3 EUCLIDEAN SINGLE-PEAKED DOMAINS

For ease of presentation, we assume that the set of alternatives are (finitely many) elements of the interval [0, 1].°

Leto = a, < --- < a,, = 1bethe alternatives. Assume that the individuals are located at arbitrary locations
in [0, 1] and derive their preferences using Euclidean distances of the alternatives from their own location. We call

such preferences Euclidean. Below, we provide formal definitions of these terms.

Definition 3.5.3 A preference P is called Euclidean if there is x € [0, 1], called the location of P, such that for all
alternatives a, b € A, |x — a| < |x — b| implies aPb. A domain is called Euclidean if it contains all Euclidean

preferences.
Lemma 3.5.3 Every Euclidean domain is a top-connected single-peaked domain.

Proof: Single-peakedness of a Euclidean domain is straight-forward. We show that such a domain is
top-connected. Let D be a Euclidean domain. Then, it is regular by definition. Since D is regular, it is enough to
show that for all a, withr € {1,...,m — 1}, there exist P and P’ in D such that P(1) = P/(2) = a, and

ar+a .
Trib Since a, and

P(2) = P'(1) = a,4,. Consider two preferences such that both of them have locations at
a,4, are at equal distance from their locations, a Euclidean domain does not put any restriction on the relative
preference of a, and a,, for those preferences. So, we can have P(1) = P'(2) = a, and P(2) = P'(1) = a,,.

This completes the proof of the lemma. |

SFor details see [93 ].
*With abuse of notation, we denote by [o, 1] the set of real numbers in-between o and 1.
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Figure 3.5.1: A graphic illustration of Example 3.5.4

[ ]
r 1
a, a, a, a, as

o 0.2 0.3 0.5 0.65 0.75 1

Note that the Euclidean domains we consider are regular by definition. However, there can be
Euclidean domains such that some particular alternative cannot appear as a top-ranked alternative in any
preference. Such situations can occur when no individual resides in the close vicinity of that location. In
the following example, we consider such a Euclidean domain and show that it admits unanimous and

strategy-proof rules other than random min-max rules.

Example 3.5.4 Suppose that the locations a,, . . ., a5 are arranged on a line as given in Figure 3.5.1. Suppose
further that the individuals reside only in the region marked with blue. Note that this means the location a, will
never be the best choice for any agent to locate a public good. The Euclidean preferences that can arise in such
situation are as follows: {a,a,a,a,a, a,a,a,a,4,, a,a,a,a,a,, a,a,a,a,4,, 4,a,4,0,4,, A;a,d,d,d, }. In Table
3.5.1, we provide a DSCF that is unanimous and strategy-proof but not a min-max rule. To see this, assume to
the contrary that it is a min-max rule. Because f(asa,a,a,a,, a,a,a,a,a,) = ag, it must be that By = a5 Then,
by the definition of min-max rule, it follows that f(a,a,a,a,4;, a,a,a,a,a,) = a,, which contradicts

f<a7-a1a3a4a5> a1a2a3a4as) = a,.

Table 3.5.1
1\2 4,a,0,0,4; | 4,0,0,a,0, | 4,0,0,4,0; | 4,0,4,0,a, | 4,0,0,0,d, | G,0,0,0,0,
a,a,0,a,d, a, a, a, a, a, a,
a,a,a,d,d a, a, a, a, a, a,
a,a,a,a,d, a, a, a, a, a, a,
a,0,a,a,4d, a, a, a, a, . a,
a,4:a,a,4, a, 4 a, a, 4 a,
a,a,0a,0,4d, as a; a; ag a; as

3.6 CONCLUSION

In this paper, we have characterized the unanimous and strategy-proof random rules on a large class of
single-peaked domains that we call top-connected single-peaked domains. We have shown that many
single-peaked domains of practical importance fall in this class. Next, we have provided a characterization
of the random min-max domains. These are the domains on which a random rule is unanimous and

strategy-proof if and only if it is a random min-max rule.
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An interesting problem for future work would be a characterization of unanimous and strategy-proof
random rules on single-peaked domains that are not even top-connected. Tops-only property may not

hold on such domains, and consequently such a characterization might turn out to be a hard problem.

APPENDIX

3.7 PROOF OF THEOREM 3.3.4

Proof: (If part) Let D be a top-connected single-peaked domain and let ¢ be a random min-max rule. By
definition ¢ is unanimous. We need to show ¢ is strategy-proof. Since D is a single-peaked domain, every
min-max rule is strategy-proof on D" ([72]). It follows by using standard arguments that every convex
combination of strategy-proof deterministic rules is a strategy-proof random rule. Since ¢ is a convex

combination of some min-max rules, the proof of the if part follows.

(Only-if part) Let D be a top-connected single-peaked domain and let ¢ : D" — AA be a unanimous and

strategy-proof RSCEF. First we prove a technical lemma which we repeatedly use in our proof.

Lemma 3.7.1 Let D be a domain and let ¢ : D" — AA be a strategy-proof RSCFE. Let Py € D", P, € D,
and B, C C A be such that BP;C, BP,C, and P;|c = P;|c. Suppose ¢ -(Px) = ¢ (P}, P_;) and
¢, (Pn) = ¢, (P}, P_;) foralla ¢ BU C. Then, ¢ (Py) = ¢_(P;,P_;) foralla € C.

Proof: First note that since ¢ .(Py) = ¢.(P;,P_;) and ¢ _(Py) = ¢ (P/,P_;) foralla ¢ BUC,

¢3(Pxn) = ¢,(Pi,P_;). Suppose b € Cis such that ¢,(Py) # ¢,(P;,P_;) and ¢ _(Py) = ¢ (P}, P_;) for
alla € Cwith aP;b. In other words, b is the maximal element of C according to P; that violates the
assertion of the lemma. Without loss of generality, assume that ¢, (Py) < ¢, (P}, P_;). However, since
BP,C, ¢,(Pn) = ¢5(P;,P_;),and ¢ _(Py) = ¢ (P;,P_;) foralla ¢ B with aP;b, we have

Puiw.p) (PN) < @y py (Pi, P—i). This means agent i manipulates at Py via P}, which is a contradiction. M

Now we proceed to prove the only-if part. We start with a proposition.
Proposition 3.7.1 The RSCF ¢ : D" — AA is uncompromising.

Proof: Let |N| = 1andlet ¢ : D — /AA be a unanimous and strategy-proof RSCF. Then, unanimity
implies uncompromisingness.

Assume that the theorem holds for all sets with k < 1 agents. We prove it for n agents. Let |N| = nand
let ¢ : D" — AAbe a unanimous and strategy-proof RSCF. Suppose N* = N \ {1}. Define the RSCF
g: D" — AAfor the set of voters N* as follows: forall Py« = (P,, P,,...,P,) € D",

¢(P,,P,,...,P,) = ¢(P,,P,,P,,P,, ... P,).
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Evidently, g is a well-defined RSCF satisfying unanimity and strategy-proofness (See Lemma 3 in [98]
for a detailed argument). Hence, by the induction hypothesis, g satisfies uncompromisingness. The proof
of Proposition 3.7.1 is completed using a series of lemmas. In the next lemma, we show that ¢ is tops-only

over all profiles Py where agents 1 and 2 have the same top alternative.

Lemma 3.7.2 Let Py, Py, € D" be two tops-equivalent profiles such that P,, P, € D% for some a, € A. Then,
$(Pn) = ¢(Py)

Proof: Note that since g is uncompromising, g satisfies tops-onlyness. Because g is tops-only and

P,, P, € D%, wehave g(P,, P_{l’z}) =g(P,, P_{I’Z}), and hence ¢(P,, P,, P—{l,z}) = ¢(P,, P,, P_{m}).
We show that ¢(P,, P,, P,{m}) = ¢(P,, P, P,{l’z}). Using strategy-proofness of ¢ for agent 2, we have
Puie.p) (P,,P,,P_g,,)) > Pue.p) (P,,P,,P_y, 1) forallx € A, and using that for agent 1, we have
(PU(x,Pl) (P, P,, P—{u}) > ‘PU(x,Pl) (P,, P,, P_{m}) forall x € A. Since

¢(P,,P,,P_(, 1) = ¢(P,, P,, P_y, ,1), it follows from Remark 5.2.3 that

¢(P,,P,,P_y,,3) = ¢(P,,P,, P_y, ,1). Using a similar logic, we have

¢(P, P, P, .1) = ¢(P,,P,, P, ). Because gis tops-only and Py, P}, are tops-equivalent, we have

g(P,,P_q,,)) = g(P, P.y, ). This implies that ¢(P,, P,, P_(,.}) = ¢(P}, P, P’ , 1), and hence

17 17 —

(P(Pnpzvpf{l,Z}) = (P(P:?P;.’PL{l,z}) u

Lemma 3.7.3 Let1 < r < s < mand let Py, Py, € D" be such that P,, P, € D* and P, P, € D%, and
P,(1) = Pi(1) for alli # 1,2. Then, ¢ (Pn) = ¢ (Py) foralla & |a,,ay].

Proof: By uncompromisingness of g, we have g, (P,, P,{u}) = g,(P,, P,{m}) foralla ¢ [a,, ay).
Moreover, since g is tops-only and P;(1) = P}(1) foralli € {3,4,...,n}, we have

(P, P_(,23) = g(P, P_y, ,,). By the definition of g, g(P,, P_y,,}) = ¢(P,, P,, P_y,,3) and

g(P,P_,y) = ¢(P,,P,,P_y,,3). AsP,(1) = P,(1) and P;(1) = P,(1), Lemma 5.7.3 implies

¢(Py, Py, P_pin}) = ¢(Py, Py, P_yiny) and ¢(P, P, PL o, y) = ¢(P), P, P", ). Combining all these
observations, we have ¢ (P,, P,, P_(,.}) = ¢,(P,, P,, P, ) foralla ¢ [a,, a]. [

17 27 —

Lemma 3.7.4 Leta, < aand let Py, P\, € D" be such that P,, P,, P, € D* and P, € D%, and
P,(1) = Pi(1) for alli # 1, 2. Then, ¢ (Pn) = ¢_(Py) foralla & |a,,ay].

Proof: By Lemma 5.7.3, §(P,, P,, P_,,1) = ¢(P;, P}, P_, ). Hence, it suffices to show that
¢, (P PLP (1) =¢,(P,P,P ) foralla ¢ [a,,a]. Note that [a,, a;| = U(as, P}) N U(a,, P,).

Therefore, we prove the above mentioned assertion for a ¢ U(as, P!) as the proof of the same when

a ¢ U(a,, P.) follows from symmetric arguments.
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Take a ¢ U(as, P!). By strategy-proofness of ¢,

‘PU(a,P{) (Pi7 Pi’ P/f{1,2}> > ¢U(a,P{) (Piv P;_, Pi{l,z}) = ‘Pu(a,p;) (Piv Piv PL{I,Z})‘

Moreover, by Lemma 5.7.4, ¢, (P}, P,, P", ) = ¢ (P, P,,P"  ,)foralla ¢ [a, a], and hence

¢p(P, PPy, ) = ¢y(P,, P, P, ) forall BC Asuchthat[a,, a] C B. Sincea ¢ U(aj, P;) and

P/(1) = a,, by the definition of single-peakedness, we have [a,, a,] C U(a, P.), and hence

(Pu(a,p;) (Piv Pi? Pl—{l,z}) = (Pu(a,p;) (Piv P;7 P,—{l,z})‘ (3'1)

Let b € Abe such that bP/a and there is there is no ¢ € A such that bP!c and cP/a. Then,
la,, a] C U(b, P!), and hence

SbU(b,P{) (Pia Pi? Pl—{1,z}) = SbU(b,P{) (Pia P;: P,—{l,z})' (3-2)
Subtracting (5.2) from (s.1), we have ¢_(P}, P, P"_ {1’2}) =¢ (P, P, P,—{u})’ which completes the proof
of the lemma. [

Lemma 3.7.5 ¢ satisﬁes uncompromsingness.

Proof: First, we show ¢ satisfies uncompromising for agent i € {1,2}. Itis sufficient to show this for agent
1. Consider Py and P! such that P,(1) = a, and P/(1) = a, where a, < a,and (a,, a,) N 7(D) = (). We
show that ¢_(Py) = ¢, (P/,P_,) foralla ¢ [a,,a,]. Consider P, € D* and P, € D where

Plypy = (ay,...,a5) ...and 13|I(D) = (a5, ...,a,) . ... Without loss of generality, we assume that

P,(1) = a; where a; < a,.
Claim 3.7.1 A ¢(Py) = ¢(P,,P_,).

Note that by Lemma 5.7.3, ¢(P,, P,, P_¢, ,}) = ¢(P,, P,, P_¢,,}), and by Lemma §.7.5,
8P PP 1)) = §,(Po Po P gy) Foralla & [, and 9, (Pu Py Py) = (B Puy P 1)for
alla ¢ [a,, a;]. This implies (Pu<P1; P,, P—{u}) = ¢a(131,P2,P_{172}) foralla ¢ [a,, a;]. By
(ar,a] = 4 (a.,a)» and therefore by applying Lemma 5.7.2 with B = () and
C = [a,, a;], we have ¢(P,, P,, P_{,,}) = ¢(P,, P,, P_y, .3 ). This completes the proof of Claim 3.7.1.

single-peakedness, we have P,

Using a similar argument as for Claim 3.7.1, we can show that ¢(P/, P_,) = ¢(l31, P_,). Thus, to show
that ¢ (Py) = ¢ (P.,P_,) foralla ¢ [a,, a/, it is enough to show ¢_(P,,P_,) = ¢_ (P,,P_,) forall
a ¢ [a,,a]. Note that by Lemma §.7.4, ¢_(P,, P,, P_{,,3) = ¢, (P, P, P_y,,y) foralla ¢ [a,, a],and by
Lemma 5.7.5, 4)“(}_’1, P, P_{m}) = </>a(}_71, P,, P_{l,z}) foralla ¢ [a,, a;| and
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|. Combining all these observations,
]. Consider b ¢ [t(D)]. Thenb ¢ [a,, a;] since
this implies that

(pa(lsl,f’l,P,{l,Z}) = ¢a(151,P2,P,{172}) foralla ¢ |a;, a;
¢ (P, P,,P_(,.}) = ¢ (P, P,,P_y,y) foralla ¢ [a,,a
la,, a;] C I(D). AsPlypy = (ar, ..., 4) - ..
Pay.ag (P> Pay P—fi2})
applying Lemma 5.7.2 with B = [a,, a,] and C =

andf’|1(p) = (Agy ..y a,) .
= Pla.a] (151, P,,P_y,,}). Again by single-peakedness, P, | (5, o] = 151|(as,at]. Thus, by
(asa at]) we have ‘Pa<P17 p,, P—{l,z}) = ¢u(P17 b, P—{x,z})
foralla ¢ [a,, ;). This shows that ¢ is uncompromising for agents 1 and 2.

Now, we proceed to prove uncompromisingness for the other agents. It is sufficient to show this for
agent 3. Consider Py and P, such that P;(1) = a, and P(1) = a,, where a, < a,and (a,, a,) N (D) = 0.
We show that ¢_(Py) = ¢, (P,, P_;) foralla ¢ [a,, a]. Consider P; € D* and P, € D*, where
Plypy = (ay,...,a5) ...and 13|I(D) = (as,...,a,)....Assume P,(1) = a, and P,(1) = a,. We

distinguish two cases.

Case 1. Suppose a,, a, = a,ora; = a,, a,.
Without loss of generality, we assume that a,, a; < a,. First we show that ¢(Py) = ¢(P;, P_;). Note

that by the induction hypothesis, ¢(P,, P,, P,,P_y, , 1) = ¢(P,, P,, P, P_y,, .} ). By Lemma 5.7.,

(Pa(PU Pl? P37 P—{1,273})
‘Pa(Pn P17 P37 P*{l,?.,_’,})

get ¢a(P” sz P37 P—{17273})
single-peakedness, P,|[,,

P17P27P37P {1,2,3}

$.( ) =
( Pn 5 P {1,273})
¢,(P, ) =
¢, (P, ) =

¢, (P, PPy, Py, 5y
, P, P {123}
¢,(P,, P, 37P (125}) =

4]

Using a similar logic, we can show ¢(P,, P,, P;, P—{1,2,3})
(/) (P p, P P_{IH}) =

= ¢ (P,,P,,P,,P_y,, ) foralla ¢ [a,, a;] and
=¢ (P,,P,,P,,P_y,, ) foralla ¢ [a,, a,]. Combining all these observations, we

= ¢ (P,P,,P,,P_y,, ) foralla ¢ [a,, a,]. Since a,, a; < a,, by
= P,|{s,.q,- This implies that ¢(P,, P,, P;, P_y,, 51) = ¢(P,, P,, Py, P_y,, ).
= ¢(P,, P,, p,, P_{,,}). Thus to show that
¢,(P,,P,, P\, P_y,, ) foralla ¢ [a,, a, it is enough to show that
pP,P,, P37 P_(,,,)foralla ¢ [a,, a. By the induction hypothesis,

P, P, P_ (23}) foralla ¢ [a,, a;]. Again by Lemma 5.7.5,

)
)
5 P_f,5y) foralla € [a,,a,] and
)
)

"U> "UI

9.
¢a(
¢ (P,
¢ (P, »P_{1.,)) foralla ¢ [a,, a;]. Combining all these observations,

a

, P,
, P,
(pa(Pl,Pz,IA’wP_{l’z’s} foralla ¢ [a,,a;] U [a,, a]. Consider b ¢ [(D)]. Then

b ¢ la, aq] U [a,, a;), and hence ¢, (P,, P,, P,, P_{,,;}) = (/)b(Pl,PZ,PyP,{IM}). Since

Plypy = (a,...,a;)...and Pl[('p (ag,...,a,) ... thisimplies that

(P[ar,as] (Pl’ PZ’ P3’ P_{11273})

PS‘[“p’aq}\“Y
have (Pa(PUPuPy P—{1,273})

Case 1.

= (P, P,,P,, P_{,.;})- Since a,, a; = a,, by single-peakedness
ay, ag) \ a,, we

=¢ (P, P,,P,,P_y,, ) foralla ¢ [a,, a;]. This completes the proof for

= 153|[ap,aq]\a,' Therefore, by applying Lemma 5.7.2 with B = [a,, a,] and C =

Case 2. Suppose a, = a, < a; =X agora; = a, < a; X a,. Without loss of generality, we assume that
a, = a, < a; = a,. First we show </>(P1,P2,P3,P_{172,3}) = ¢(P1,P2,P3,P—{1,2,3})- By using

uncompromisingness for agent 2, we have foralla ¢ [a,, a,),
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(Pa(Pn Pza P37 P7{1,2,3}) = ¢a(P1a P37P37 P*{l,?.,_’,}) and (Pa(Pn P27 P37 P*{l,z,s}) = (Pa(Pl) P3a p3a P7{1,2,3})-
Since a, < a,, by Case 1, ¢(P,, P;, Py, P_y,, 1) = ¢,(P,, P;, Py, P_y, , ;1 ). Combining all these
observations, ¢_(P,, P,, Py, P_y,, ) = ¢ (P, P,, Py, P_y,, 1) foralla & [a,, a,]. Asa, < a,, by

single-peakedness, P,

larag) = Ps
¢(P,,P,,P,,P_(,,53) = ¢(P,, P, P,, P_y, , 3 ). Similarly, we can show that

¢(P,,P,, P\, P_,, 1) = ¢(P,, Py, Py, P_{,, 1. Thus, to show

¢,(P,,P,,P,,P_y,, 1) = ¢ (P,P,,P,,P_y,, ) foralla ¢ [a,, a, it is enough to show that

¢ (P,P,,P,,P_ 1, 1) =¢ (P, P, P,,P_(,,,;)foralla ¢ [a, a]. Using an argument similar to the
above and the fact that ¢ (P,, P, Py, P_y,, ;1) = ¢ (P,, P, p,, P_{,,)) foralla ¢ [a,, a], we get
¢.(P,,P,,P,,P_y,, 1) = (/)a(Pl,Pz,IA)wP_{I’Z’a}) foralla ¢ [a,,a,)|. Consider b ¢ [7(D)]. Then,

b ¢ (a,,a,],and hence ¢, (P,,P,, P,,P_y,, 1) = ¢,(P., P,, p,, P_q.3) -AsPlyp) = (a,,...,a) ...and
Plyp) = (d, ..., a,) ..., this implies that P a) (Prs P P,,P_y,3) = Py 0 (Prs P P,,P_{,,})- Since
P (az,a,)- Thus by Lemma 5.7.2 with B = [a,, a;] and

(a.,a,]» and hence by strategy-proofness,

a,, a; X ag, by single-peakedness, P, (5, .,] = P,
C = (as, a,), wehave ¢_(P,,P,,P,,P_y,, 1) = ¢_(P,, P,, p,, P_y,3)foralla ¢ [a,,a). This completes
the proof for Case 2.

Since Cases 1 and 2 are exhaustive, this shows uncompromisingness for agent 3, and hence completes

the proof of Lemma 3.7.5. [ |
The proof of Proposition 3.7.1 follows from Lemma 3.7.5. [ |

Now we complete the proof the theorem. Let a, < a, be such that 4, = min 7(D) and a, = max 7(D).
For S C N define B, = ¢(Py) where P;(1) = a,ifi € Sand P;(1) = a;ifi ¢ S. Note that by the
uncompromisingness of ¢, B is a probability distribution on A and B4(a) = oforalla ¢ [a,, a, and all
SCN.

First, we show that B ([ar, am]) > B p([ak, am]) forall S, T C Nand all a; € A. Suppose
Bs(lak, am]) < By r([ak, am]) for some S, T C N and some a; € A. Without loss of generality, we can
assume that T = ifor some i € N. Let P_; € D" ' be such that P;(1) = a,ifj € Sand P;(1) = a,ifj ¢ S.
Further, let P;, P] be such that P;(1) = 4, and P}(1) = a,. By uncompromisingness, ﬂs(a) = ﬁSUi(a) =o0
foralla ¢ [a,, ;). Therefore, B, ([ak, am]) < By ,([ak; am]) implies a, < ax < a,and

ﬁs([ab%]) < ﬂsu([ak’aS])' (3-3)

Since P;(1) = a,and P/(1) = a,, (3.3) together with the fact that fo(a) = B .(a) = oforalla ¢ [a,, a
implies ¢, 5y (Pn) < @y, p (Pis P—;). However, then agent i manipulates at Py via P/, a
contradiction. This shows that B¢ ([ar, a,]) > Bg r([ak, am]) forall S, T € Nandall g, € A.

Define Bs € Ala,, a]] forall S C N such that [}S(a) = Bs(a)foralla € [a,,a]. Let D be the maximal
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single-peaked domain over the alternatives in the interval [a,, 4. For Py € D" and ar € la,, a,], we
define S(ay, Py) = {i € N | P,(1) € [a,, a]}. Consider the RSCF ¢ : D" — Ala,, a,] such that for all
Py € D" and all a € la,, a,

SY’[a”ak} (Py) = ﬁs(%pN)([ara ar).

Since ¢_(Py) = ¢, (Py) foralla € [a,, a] and Py with P,(1) € {a,,a,} foralli € N, by Proposition 1
in [81], we have ¢_(Py) = ¢_(Py) foralla € [a,, a] and all Py € D". By Theorem 4.1in [46], ¢ is
unanimous and strategy-proof as Disa single-peaked domain. Hence, by Theorem 3(b) in [81], ¢ can be
written as a convex combination of unanimous and strategy-proof DSCFs f : D" — A. Again by [103],
every unanimous and strategy-proof DSCFs f : D" — A is a min-max rule. By definition 3.2.10, this

implies that ¢ is a random min-max rule, and hence ¢ is a random min-max rule.

3.8 PROOF OF THEOREM 3.4.2

(If part) Let D be a top-connected single-peaked domain. By Theorem 3.3.4, an RSCF ¢ is unanimous
and strategy-proof if and only if it is a random min-max rule. Therefore, D is a random min-max domain,

which completes the proof of the if part.

(Only-if part) Let D be a random min-max domain. We prove that D is a top-connected single-peaked
domain. First we show that D is a single-peaked domain. Assume for contradiction that there exists

Q € D such that Q is not single-peaked. Without loss of generality, assume that there exist a,, a; with

a, < a; < Q(1) such that a,Qa;,. Consider the min-max rule f on D" such that 8 = a, for all non-empty
S C N. Consider the profile Py € D" such that P, = Q and P;(1) = a; foralli # 1. Then, by the
definition of f, f(Py) = a,. Let P, € D be such that P/(1) = a,. Again, by the definition of f,

f(P/,P_,) = a,. Because a,Qa,, this means agent 1 manipulates at Py via P, which contradicts that D is a
single-peaked domain.

Now, we show that for a,, a, € 7(D) with the property that min(7(D)) < a, < a, < max(7(D)) and
(a,,a;) N 7(D) = (), there exist P € D* and P’ € D* such that a,Pa,_, and a,Pa,,. Suppose not and
without loss of generality assume that there exist a,, a; € 7(D) with a, < a, < max(7(D)) and
(a,,a,) N 7(D) = O such that a,,,Pa, forall P € D*. Consider the DSCF f on D" as follows:

P,(1)ifP,(1) # a,,
f(Py) = § a,ifP,(1) = a,and a,P,a,,,

a,y, otherwise.

It can be verified that fis unanimous and strategy-proof. We show that fis not a min-max rule. In

39



particular, we show that fis not uncompromising. This is sufficient as every min-max rule is
uncompromising. Let Py € D" be such that P,(1) = max(z(D)). Then, by the definition of f,
f(Py) = a.., when P,(1) = a,,and f(P/, P_,) = a, when P/(1) = a,. This clearly violates

uncompromisingness for agent 1. This completes the proof of the only-if part.
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Formation of Committees through Random Voting

Rules

4.1 INTRODUCTION

A classic paper in the theory of mechanism design is [60]. It considered an exchange economy with at
least two agents and demonstrated the impossibility of constructing an allocation rule that satisfied
strategy-proofness, efficiency and individual rationality. The paper inspired an enormous and rapidly
expanding literature that analyzes socially desirable goals that can be achieved in the presence of private
information and strategic agents, in a wide variety of models. The present paper contributes to that
literature by investigating the structure of rules that permit randomization in the well-known model of
committee formation.

The committee formation model is due to [ 11]. The problem is one of choosing a committee from a set
of available candidates based on the preferences of agents who have the responsibility of selecting the
committee. The preferences of each agent are assumed to be separable, i.e. if the agent “likes” a candidate,
she strictly prefers a committee where this candidate is included to one where she is excluded, the status

of all other candidates remaining unchanged. A committee formation rule or a social choice function is a
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map that associates every collection of (separable) agent preferences with a committee. Agent preferences
are private information - a fact that necessitates the elicitation of these preferences via voting. A social
choice function is strategy-proof if truth-telling is an optimal strategy for each agent irrespective of her
beliefs about how other agents may vote. The main result of [ 11] is that strategy-proof social choice
functions (that additionally satisfy a weak efficiency property called unanimity) must be decomposable.
In other words, the decision on each candidate’s inclusion must be taken independently of the decisions
on others and must be based only on preferences that agents have over the candidate (called marginal
preferences). The decomposability condition on social choice function rules out many plausible rules.
For instance, if there are two candidates, we could start with candidate 1 and consider candidate 2 only if 1
is not selected. [26] show that the decomposability property of strategy-proof social choice functions is
very general - it holds for all multi-dimensional models with separable preferences.

In our paper we consider the same model as in [ 11] but analyzes committee formation rules that
permit randomization. A random social choice functions is a map that associates a collection of
(separable) agent preferences with a probability distribution over committees. Randomization is a natural
way to resolve conflicts of interest amongst agents especially in models where compensation via monetary
transfers is not feasible. The analysis of randomized mechanisms in voting models was initiated in [ 57].
Once randomization is allowed, the evaluation of truth-telling versus misrepresentation involves the
comparison of lotteries. This evaluation typically involves domain restrictions on preferences over
lotteries (i.e. all preferences over lotteries are not allowed) as a result of which the class of strategy-proof
social choice functions expands (see [35]). *

According to our characterization result, a random social choice function is strategy proof and satisfies
unanimity * if and only if it satisfies the properties of monotonicity and marginal decomposability.
Monotonicity is a familiar property in mechanism design theory. In our model, it requires the probability
of the inclusion of a candidate in every possible committee to be non-decreasing as more agents approve
the candidate. Furthermore, if no agent approves a candidate, the candidate is never selected; on the other
hand, if all agents approve a candidate, she is always selected.

Consider an arbitrary subset of candidates and two preference profiles where all agents agree in their
opinions over this subset of candidates (they may differ in their opinion of other candidates). Marginal
decomposability is satisfied if the marginal probability distribution over the subset of candidates is the
same in the two profiles. Suppose there are three agents and five candidates. Consider the set of the first

three candidates and two preference profiles where all agents agree in their opinions over the first three

""There are several ways in which this can be done. Here we follow the standard stochastic dominance approach developed
in [57].

?A random social choice function satisfies unanimity if it picks a committee that is first-ranked by all agents, with probability
one.
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candidates. Pick any subset of the first three candidates, say candidates one and three. If marginal
decomposability is satisfies, the probability of candidates one and three being selected in the committee at
the two profiles, must be the same. Note that marginal decomposability only guarantees that marginal
probabilities will be uniquely determined by marginal preferences, but does not say anything about the
joint probability distribution. Thus decomposability in the sense of [26] is not guaranteed. However,
marginal decomposability is equivalent to decomposability when we restrict attention to deterministic
social choice functions thus getting back the decomposability result of [26] in our model.

Finally we consider the special problem of forming a committee with a number of members. A random
social choice function is onto if every committee of the required size s selected with probability one at
some preference profile. We show that every onto and strategy-proof RSCF in this case is a random
dictatorship in an appropriate sense. This result follows from an application of the applying the main

result of [57].

4.2 THE MODEL

Let M = {1,...,m} be afinite set of m components. For each component k, A* = {0, 1} is the set of
alternatives available in component k. For any K C M, AX = [], ;. A", denotes the set of alternatives
available in components in K. The set of (multi-dimensional) alternatives is given by A™. For ease of
presentation, we write A instead of A™. Note that the number of alternatives in A is 2. Throughout this
paper, we do not use braces for singleton sets.

In the model M denotes the set of possible candidates from which a committee has to be formed. Thus
each component refers to a possible candidate for a committee, where the numbers o and 1 for a
component refer to the social states where the corresponding member is excluded and included in the
committee, respectively. Similarly, every alternative a = (a', ..., a") € A refers to a committee in which
the member k is present if and only if a* = 1.

Let N = {1,...,n} be aset of finite set of n agents. Each agent i has a strict preference ordering P; over
the elements of A. We assume that all P;’s are separable, i.e. foralla %, b=F € AM~*and all #*, y* € AF,
(x*,a7*)P,(y*, a=*) holds if and only if (x*, b=F)P,(y*, b~*). We denote by P* the marginal preference
induced by P; over component k. The existence of marginal preference orderings is guaranteed by
separability. We let 7(P;) and 7(P¥) denote the top-ranked alternative in P; and the top-ranked alternative
in the k" component according to the marginal ordering P;. In general, r,(P;) the t-th ranked alternative in
P;wheret € {1,2,...,2"}. The upper contour set of an alternative a at preference P; denoted by U(a, P;)
is defined as follows: U(a, P;) = {b | bPia} U a. Let D denote the set of all separable preferences over A.
An element Py of D" is called a (preference) profile.
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A random social choice function (RSCF) ¢ is a mapping ¢ : D" — AA where AA denotes the set of
probability distributions over A. We define some important properties of an RSCF most of which are

familiar from the literature.

Definition 4.2.1 An RSCF ¢ : D" — AA is unanimous if for all Py and all a € A,
[t(P;) = aforallic N| = [¢ (Py) =1].

If all agents have a common top-ranked committee at a profile, a unanimous RCSF picks that

committee at that profile. It is clearly a weak form of efficiency.

Definition 4.2.2 AnRSCF ¢ : D" — AA is strategy-proof if for alli € N, all P;, P} € D, and all
P_, € D", ¢(P;, P_,) first order stochastically dominates (P, P_;) according to P,, that is,

j j
Z $,.py (Pi P—i) = Z $,.p) (Pl,P_,) forallj =1,...,2".
t=1 t=1

Our notion of strategy-proofness for RSCFs is the standard one of first-order stochastic dominance
introduced in [57]. No agent can strictly increase the aggregate probability over any upper contour set
according to her true preferences. If it were possible to do, there would exist a utility representation of her
true preferences with the property that the expected utility from misrepresentation strictly exceeds that

from truth-telling.

4.3 FORMATION OF ARBITRARY COMMITITEES

In this section, we consider the problem of forming a committee by random voting rules. We assume that
there are no restrictions on the committee that is to be formed. * A few additional concepts are required
for the analysis.

Let V denote the set of all subsets (power set) of N. For any K C M, S¥ denotes a collection (Sk) ek
where S* C Nforall k € K. Also A/ denotes the set of all such collections. Note that the cardinality of

N¥is (2m)IK, We illustrate these notions by means of an example.

Example 4.3.1 Suppose N = {1,2,3,4}, M = {1,2,3} and K = {2,3}. An example of S>3} is (8>, §?)
where S* = {1,2, 4} and $ = {2,3}. Also, N'*3} is the collection of all (S*, $*) where S* and S* are arbitrary
subsets of {1, 2,3, 4}

3We will consider one such problem in the next section.
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Consider an arbitrary K C M and profile Py € D". Then SX(Py) denotes an element (S)cx of N
such that for all k € K, we have i € S* if and only if 7(P¥) = 1. In other words S* consists of the agents
who have 1 as the top-ranked element in component k at the profile Py. Hence S* consists of exactly those

agents who approve candidate k for the committee at the profile Py.

Example 4.3.2 Suppose N = {1,2,3,4} and M = {1, 2, 3}. Consider the profile Py where the top-ranked
alternatives of the agents are as follows: ((1,0,1), (0,0,1), (1,1,0)). Let K = {1,3} or {1, 2,3} Then,

8{1’3}(PN) = ({1,3},{1,2}) and gli2a} (Pn) = ({1,3}, {3}, {1, 2}).

ForK C M, a* € AXand Py € D", we define ¢ _«(Py) = > (beafpi—a<y $p(Pn). Thus ¢ «(Py) is the
total probability of realizing outcomes whose k component agrees with the k" component of a* for all

k € K, in the probability distribution ¢ (Py).

4.3.1 CHARACTERIZATION

In this section, we identify properties that characterize unanimous and strategy-proof RSCFs in our
model. The first property is marginal decomposability. Roughly speaking, it says that the marginal
probability distribution generated by the RSCF over an arbitrary set of components depends only on the
preferences of the agents over those components. In particular, it does not change if agents change their

preferences over the other components.

Definition 4.3.3 An RSCF ¢ : D" — AA is marginally decomposable if for all K C M, Py, Py € D" with
SX(Py) = SX(Py), and all a* € AX, we have

¢ (Pn) = ¢, (Pn).

Marginal decomposability is weaker than decomposability as defined in [26]. As mentioned earlier,
marginal decomposability requires the marginal probability distribution over a set of components at a
profile to be completely determined by the marginal preference profile over those components.
Importantly, it does not say anything about the joint probability distribution. Clearly, a marginally
decomposable RSCF is decomposable if the joint probability distribution is given by the product of
marginal probability distributions, i.e. if the joint probability distribution is independent over
components. In our model, unanimity and strategy-proofness imply marginal decomposability; however
they do not imply independence over components.

We illustrate the notion of marginal decomposability by means of the following example.
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Example 4.3.4 Let N = {1,2} and M = {1, 2}. Consider the RSCF ¢ : D" — AA given in Table 4.3.1.
Here, rows are indexed by the S'(Py) and columns are by S*(Py). The matrix, say X, corresponding to row S'
and column S gives the value of ¢(Py), where S'(Py) = S, $*(Py) = S, and ¢ (0.0)(PN) = X

LT (Py) = X, P(10) (Py) = X,,, and b (Py) = X,,. For instance, ‘P(o,l)((O’ 1), (1,0)) = o0.55, where
((0,1), (1,0)) denotes the profile Py with r,(P,) = (0,1) and r,(P,) = (1,0).

We argue that ¢ satisfies marginal decomposability. Consider for instance, the row corresponding to the set
{2}. Note that for each matrix X in this row, X,, + X,, = 0.3, that is, the marginal probability that candidate 1
is elected is 0.3, as required by marginal decomposability. It can be readily verified that ¢ satisfies this constant
marginal property for other rows and columns. Consequently the RSCF is marginally decomposable.

1\2 0 {1} {2} {1,2}
] (22) (7)) (%) (3))
(] (s9)  (ered) (srsm) (23)
| (872)  (owes)  (sxed)  (s01)
(o | (59 (&8)  (&8)  (89)

Table 4.3.1: Outcomes of ¢

We now argue that the ¢ is not decomposable in the sense of [26]. Fork € {1,2}, let ¢* be the marginal
RSCEF on the k-th component that is induced by ¢ by means of marginal decomposability. In Tables 4.3.2 and
4.3.3, we present ¢* and ¢, respectively.

L | ¢

0 | o
{1} | 0.6
{2} | o3
{1,2} | 1

Table 4.3.2: Outcomes of ¢!

2 |0 {1} {2} {12}

¢ o 07 o5 1

Table 4.3.3: Outcomes of ¢?

1
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Consider a profile Py with r,(P,) = (o,1) and r,(P,) = (1,0), thatis, S'(Py) = {2} and $*(Px) = {1}. If
¢ were decomposable, then (P(I,O) (Py) must be 0.3 X 0.3 = 0.09. However, as given in Table 4.3.1,

Pr0) (Py) = o.15, which means ¢ is not decomposable.

Next, we define a monotonicity property for an RSCF. This is a standard property in the literature on
strategy-proof social choice functions which says that the likelihood of an outcome increases as agents

become more “favourable” to that outcome.

Definition 4.3.5 An RSCF ¢ : D" — AA satisfies the monotonicity property if for allk € M, all
a * € AM~* and all Py, Py € D" such that S'(Py) = S'(Py) foralll € M \ kand S¥(Py) C S*(Py), we

have
(l) Sb(x,a*k) (PN) S (P(l,a*") (PN)) and

(ii) if S*(Py) = () and S¥(Py) = N, then ooty (Pn) = 0 and <p(17a_k)(13N) =1

Suppose that some agents change preferences in favour of some candidate while maintaining their
position on all other candidates. According to (i) of the monotonicity property, the probability of each
committee including that candidate, must increase. According to (ii) a candidate not approved by any
agent is not selected with certainty a candidate approved by all agents is selected with probability one.

The monotonicity property is illustrated below.

Example 4.3.6 Consider the RSCF ¢ given in Table 4.3.1. We argue that it satisfies monotonicity properties.
To see this, take, for instance, the profiles indexed by ({1}, {2}) and ({1, 2}, {2}). Note that agent 2 has joined
agent 1 in approving candidate 1 from the former profile to the latter, while keeping his/her stand unchanged for
candidate 2. By monotonicity, the probability of each committee that includes candidate 1 must increase
(weakly). This is indeed the case here since ¢, ({1}, {2}) = 0.2 < ¢ ,({1,2},{2}) = 0.5and

b ({1}, {2}) =0 < P ({1,2},{2}) = o.s. It can be directly verifies that ¢ satisfies this conditions for

other relevant cases,. Hence it is monotonic.

Now, we present our characterization result for unanimous and strategy-proof RSCFs. It is shown in

[32] that unanimity and strategy-proofness imply tops-onlyness. We use this fact in our proof.

Theorem 4.3.7 An RSCF ¢ : D" — AA is unanimous and strategy-proof if and only if it is monotone and

marginally decomposable.
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Proof: (If part) Let ¢ : D" — AA be monotone and marginally decomposable. We show ¢ is unanimous
and strategy-proof. Unanimity follows from (ii) in Definition 4.3.5. We proceed to show that ¢ is
strategy-proof.

Take b € A and let P; and P; be two arbitrary preferences of some agent i. It is enough to show that

‘PU(b,p,-)(PN) 2 SbU(b,Pi)(Pi?P—i)' (4.1)

We assume without loss of generality that there exists 7 < m such that r,(P¥) = 1and r,(P¥) = o for

allk € {1,...,m}andr,(P) = r,(P*) forallk € {m +1,...,m}. Fort =o,1,...,m,let P,(t) € Dbe
such that r,(P!(t)) = 1if] < t,1,(Pi(t)) = oift < I < m,and r,(P}(t)) = r,(P;) = r,(P;) if m < L. Note
thatP,(rh) = P,‘ andPi(o) - Pi-

Claim 4.3.1 ¢, y(Pi(k), P—i) = ¢y, p) (Pilk — 1), P_;) forallk =1,... . m.

Foralla * € A7, marginal decomposability implies

¢, (Pi(k), P—) = ¢, (Pi(k —1),P_y), (42)

while monotonicity implies

P ooty (Pi(k), Pi) = ¢, -1y (Pi(k — 1), P—y). (4.3)

Pickk € {1,...,m}. Sincer,(P!) = 1foralll € {1,...,m}, it must be true that (1,a *)P,(0, a*) for
alla™* € A, This means (0,a ) € U(b, P;) implies (1,a~*) € U(b, P;). In view of this, we can write
U(b, P;) = B U C, where B consists of a collection of pairs of alternatives of the form (1,a ), (0, a™*) for
some a* € A~Fand C consists of alternatives of the form (1, %) for some a=* € A=* such that (0, a™¥)
is not in U(b, P;). More formally, B = {(0,a %), (1,a™*) | (0,a*) € U(b, P;)} and
C={(1,a*) e U,P)| (o,a*) & U, P)}.

By (4.2),

¢5(Pi(k), P—i) = ¢5(Pi(k —1), Py).
Further, by (4.3),
$c(Pi(k), Pi) > ¢ (Pi(k — 1), Py).
Combining, we have

(PU(b,Pl)(Pi(k)vP*i) > (Pu(h,p,)(Pi(k - 1)7 Pfi)-

This completes the proof of Claim 4.3.1.
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By applying Claim 4.3.1 sequentially fork = m,m — 1, ..., 1, we get

~

Puapy (Pilrin), P—i) = ¢y py (Pili — 1), Pi) > ... = ¢y py (Pi0), P—i),

which shows (4.1).

(Only-if part) Let ¢ : D" — AA be a unanimous and strategy-proof RSCF. It follows from Proposition
2in [32] that ¢ is tops-only, that is, ¢ (Py) = ¢(Py) for all Py, Py € D" withr,(P;) = r,(P;) foralli € N.

The following claim establishes a crucial property of ¢.
Claim 4.3.2 Letk € {1,...,m} and let Py, Py € D" be such that S'(Py) = S'(Py) foralll € M\ k and
Sk(PN) - Sk(l_’N). Then, for all a k€ AM7K e have

(i) ¢,_(Px) = ¢__(Px), and

(i) ¢ 41y (P) = b, 4ty (Pr)-
Proof: Letk € {1,...,m}. Take Py, Py € D" such that §'(Py) = S'(Py) foralll € M \ kand
Sk(Py) C S¥(Py). It is enough to prove the claim for the case where S*(Py) = S*(Py) U ifor somei € N.
Since ¢ is tops-only, we can further assume that

(i)P_; = P_; and

(ii) forall b=% € AM~K,

(a) (1,b7%) and (o0, b™*) are consecutively ranked in both P;, P, and

(b) (0, b7 %)P;(1,b7) and (1, b%)P,(0, bF).*

It is easy to verify that P; and P; satisfy separability. Take a—* € A~F. By our assumption on P; and P,

U((o,a ), P)\ (o) = U((1,a¥), P\ (1,07,
By applying strategy-proofness at (P;, P_;) via P; and at (P;, P_;) via P;, this means

PU((oa5).20\ o) (Pis P=1) = Pu1a0) o\ 1) (Pis P (4-4)

Using a similar argument, we have

Pu((1a-).p) (P, Py) = ¢U((o,a—k),13,-)(Pia P_)). (4-5)
Subtracting (5.1) from (5.2), we get

qba,k (PN) - (Pafk(Pi’ P—i);

*To see that it is possible to construct such a preference ordering, consider a lexicographic (and hence separable) preference
over A where k is the lexicographic worst component (details may be found in [33]).
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which proves (i) of Claim 4.3.2.

Since ¢, ,-) (Pn) + ¢ oty (Pr) = o, a,k)(}_’i, P_)+ ¢ ,k)(f’,-, P_,)and (1,a *)P;(0,a¥),it
follows by an application of strategy-proofness that ¢, , (PN) =X (PN) , which proves (ii) of
Claim 4.3.2. [ |

We return to the proof that ¢ satisfies monotonicity and marginally decomposability. Condition (i) in
the definition of monotonicity (Definition 4.3.5) follows from Claim 4.3.2. In what follows, we prove
condition (ii) in Definition 4.3.5.

It suffices to show ) ., + 9 (o (Pn) = oforall Py € D" with Sk(Py) = 0. Take Py such that
Sk(Py) = (). Without loss of generahty, assume k = 1. Let Py be the profile such that $*(Py) = () and
S'(Py) = S'(Py) foralll # 2. By Claim 4.3.2, ¢ _.(Py) = ¢__.(Py) foralla™* € A* Note that

Z Ploa—) (Pn) = Z Plo0a—11:1) (PN) @ (o, a1y (Pr)- (4.6)

aTlEAT! a—{2rea—{2}

Take a~* = (0,a {"*}) € A% By applying Claim 4.3.2, we have

o0y (Pn) + ¢y (Pr) = ¢, 1y (Pn) + ¢,y (Pr), (4.7)

Combining (s.5) and (4.7), wehave ) ., P o) (Pn) = D prcas Ploa) (Py). Continuing in this

manner, it follows that
Z (POE‘ PN Z (Poa‘ PN (4-8)

aTEAT a"rEAT
where §'(Py) = () foralll € {1, ..., m}. By unanimity, (P(o,a_l)(ﬁN) = oforalla™ € A" This, together
with (5.3), implies Zu,leAﬂ ‘P(o,aﬂ) (Py) = o, which shows (ii) in Definition 4.3.5.

Finally we show that ¢ is marginally decomposable. Let K C M and let Py and Py be such that

S¥(Py) = S¥(Py). Assume without loss of generality that K = {k + 1, ..., m} for some k < m. Take
ak € AX. Consider a sequence of profiles { P\ }5__ such that P, = Py, P, = Py, and forall1 < I < k,
stol(PL) = st (Py) and STH-mH (PL) = S{l+1’ "} (Py). By (i) of Claim 4.3.2, forall1 < [ <k,
¢, (P = <pb,l(P§V) forallb™' € A7, Sincel ¢ K = {k, ..., m}, an argument similar to the one used
in the derivation of (5.5), implies ¢ (Py") = ¢_«(Py). Therefore, ¢ «(Py) = ¢_«(Py), completing the
proof of the only-if part. |

Theorem 4.3.7 suggests a procedure for constructing all unanimous and strategy-proof RSCF on D".
We can start with marginal probability distributions over all subsets of components that satisfy
monotonicity. We can then arbitrarily specify the appropriate joint probabilities of each alternative that

generate the chosen marginal distributions.
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4.4 FORMATION OF COMMITIEES OF FIXED S1ZE

In this section, we consider the problem of forming a committee with a predetermined number of
members. The size of a committee is defined as the number of members in it. Formally, the size of an
alternative a € Ais |a| = |[{k | @ = 1}|. Forl < m, A(]) is the set of all committees with size |, i.e.
A(l) = {a € A | |a| = I}. In this section, we consider RSCFs ¢ : D" — AA(!) for some | < m. By
definition, these RSCFs give positive probabilities only to the elements of A(1).

Clearly unanimity is incompatible with this range restriction. We therefore need to replace unanimity

by the onto property.

Definition 4.4.1 AnRSCF ¢ : D" — AA(l) is onto if for all a € A(]), there is Py € D" such that
(Pa(PN) = 1.

Our next theorem characterizes the set of onto strategy-proof RSCFs for selecting a committee with a

predetermined size. It says that every such rule is random dictatorial restricted to A(1).

Definition 4.4.2 ADSCEf: D" — A(l) is A(l)-restricted dictatorial if there exists i € N such that f(Py)
chooses the most preferred alternative of agent i from the set A(l). An RSCEF is called random A(])-restricted
dictatorial if it is a convex combination of A(l)-restricted dictatorial DSCFs.

Theorem 4.4.3 Let! < m. Then, an RSCF ¢ : D" — AA(]) is onto and strategy-proof if and only if it is

random A(])-restricted dictatorial.

Proof: First we prove a claim.
Claim 4.4.1 Let Py, Py be such that P;|sq) = Pi|a) for alli € N. Then ¢(Py) = ¢(Py).

Proof: We show that ¢(Py) = ¢(P;, P_;) where P;| 4y = P;|a). Suppose not. Let b € A(]) be such that
¢,(Px) # ¢,(P;,P_;) and ¢_(Py) = ¢, (P;,P_;) foralla € A(l) with aPb. In other words, b is the
maximal element of A(I) according to P, that violates the assertion of the claim. Without loss of generality,
assume that ¢, (Py) < ¢, (P;, P—;). However, since ¢_(Py) = ¢ (P;, P_;) foralla ¢ A(l) with aP;b, we
have Pu.p) (Py) < Pu.p) (P;, P_;). This means agent i manipulates at Py via P;, which is a contradiction.

This completes the proof of the claim. |

Consider an RSCF ¢ : D" — AA(I). For P € D, define P|,() € LL(A(])) as follows: foralla, b € A(l),
aP|abif and only if aPb. Let D]y = {P|a@ | P € D}. Construct the RSCF ¢ : (D|4())" — AA(I) as
follows: for all Py € D\A(l), <Z>(1A)N) = ¢(Py) where Py € D" is such that P,-|A(1) — P, foralli € N. This is
well-defined by Claim 4.4.1. Because ¢ is strategy-proof, (Z) is also strategy-proof. Moreover, since ¢ is
onto with range A(1), strategy-proofness of ¢ implies ¢ is unanimous. In what follows, we show D| AQ) is

an unrestricted domain.
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Claim 4.4.2 The domain D\ is unrestricted.

Proof: Take P € D such that r,(P') = 1foralll € M. Consider arbitrary a, b € A(l) such thata # b. For
x € {a,b},letI(x) = {k € M | x* = 1}. By definition, |I(x)| = Iforallx € {a, b}. Moreover, since a
and b are distinct, it must be that I(a) and I(b) are also distinct. This, together with the fact that

1(a)| = |I(b)| = I, implies there must be k, k € M such that k € I(a) \ I(b) and k € I(b) \ I(a). This
means a* = r,(P*) but a=r, (P’A‘) and b* = r,(P*) but bk =1, (Pi‘). Therefore, responsive does not put
any restriction on the relative ordering of a and b at P, and consequently, every preference in D|4(;) can be
achieved by considering a suitable preference with the alternative (1, . . ., 1) as the top-ranked element.

This completes the proof of the claim. |

Since D |4 is unrestricted and (Z) is unanimous and strategy-proof it follows from [ 57] that (Z) is
random dictatorial. By the construction of ¢, this means ¢ is random dictatorial restricted to A([). This

completes the proof of Theorem 4.4.3. [ |

It is known that strategy-proof and onto DSCFs on A(!)-restricted domains are dictatorial (for a general
version of this result, see [ 14] and [5]). Unfortunately, there is no escape from this negative result is we

consider random rather than deterministic rules.

4.5 CONCLUSION

In this paper, we have provided a characterization of random unanimous and strategy-proof rules in the
well-known committee formation model in terms of two properties: marginal decomposability and
monotonicity. We also show that if committees of a predetermined size have to be chosen, an onto and

strategy-proof rule must be an appropriate random dictatorship.
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A unified chara&erization of the randomized

strategy-proof rules

5.1 INTRODUCTION

5.1.1 BACKGROUND OF THE PROBLEM

We analyze the classical social choice problem of choosing an alternative from a set of feasible alternatives
based on preferences of individuals in a society. Such a procedure is known as a deterministic social choice

function (DSCF). Some desirable properties of a DSCF are unanimity and strategy-proofness. The classic
[56]-[96] impossibility theorem states that if there are at least three alternatives and the preferences of the
individuals are unrestricted, then every unanimous and strategy-proof DSCF is dictatorial.

Although unanimity and strategy-proofness are desirable properties of a DSCEF, the assumption of an
unrestricted domain made in Gibbard-Satterthwaite Theorem is quite strong. Not only do there exist
many political and economic scenarios where preferences of individuals satisfy natural restrictions such as
single-peakedness, single-dippedness, single-crossingness, Euclidean, etc., but also the conclusion of
Gibbard-Satterthwaite Theorem does not apply to such restricted domains.

The study of single-peaked domains can be traced back to [20] where he shows that a Condorcet winner
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exists on such domains. Later, [ 72] shows that a DSCF on a single-peaked domain is unanimous and
strategy-proof if and only if it is a min-max rule. [79] show that a DSCF on such a domain is unanimous
and strategy-proof if and only if it is a monotone rule between the left-most and the right-most alternatives.
[94] shows that a DSCF on a single-crossing domain is unanimous and strategy-proof if and only if it is an
augmented representative voter scheme. A domain is Euclidean if its alternatives are elements of Euclidean
space and its preferences are based on Euclidean distances. [65] and [78] characterize the unanimous and
strategy-proof DSCFs on Euclidean domains.

The horizon of social choice theory has been expanded by the concept of random social choice functions
(RSCF). An RSCEF assigns a probability distribution over the alternatives at every preference profile. The
importance of RSCFs over DSCFs is well-established in the literature (see, for example, [46], [81]).

The study of RSCFs dates back to [ 57] where he shows that an RSCF on the unrestricted domain is
unanimous and strategy-proof if and only if it is a random dictatorial rule. For the case of continuous
alternatives, [46] characterise unanimous and strategy-proof RSCFs on maximal single-peaked domains,
and [24] and [43] characterise unanimous and strategy-proof DSCFs and RSCFs, respectively, on
multi-dimensional single-peaked domains. [8] characterise efficient and strategy-proof DSCFs on
multi-dimensional single-peaked domains with cardinal preferences when the range is one-dimensional.
Later, [81] show that every unanimous and strategy-proof RSCF on maximal single-peaked domain is a
convex combination of min-max rules. [87] establish a similar result by using the theory of totally
unimodular matrices from combinatorial integer programming. Recently, [82] and [91] characterize
unanimous and strategy-proof RSCFs on single-dipped domains and Euclidean domains, respectively.
However, to the best of our knowledge, unanimous and strategy-proof RSCFs on domains such as
single-crossing, multi-peaked, intermediate ([58]), and single-peaked on trees with top-set along a path

have not yet been characterized in the literature.

§5.1.2 OUR MOTIVATION AND CONTRIBUTION

Our main motivation of this paper is to present one unified characterization of unanimous and
strategy-proof RSCFs that summarizes all existing results for both DSCFs and RSCFs and allows for new
ones. We intend to do this under minimal assumption on the domains.

We show that a large class of restricted domains can be modelled by using the concept of betweenness
([74], [75])- Given a prior order over the alternatives, a preference satisfies the betweenness property
with respect to an alternative a if, whenever a lies in-between (with respect to the prior order) the
top-ranked alternative of the preference and some other alternative b, a is preferred to b. A domain
satisfies the betweenness property with respect to an alternative if each preference in it satisfies the

property with respect to that alternative. Consider the set of alternatives that appear as top-ranked for
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some preference in the domain. Assume the betweenness property is satisfied for each such alternatives.
Then, the domain is called generalized intermediate.

We show that in case of finitely many alternatives, an RSCF is unanimous and strategy-proof on a
minimally rich generalized intermediate domain if and only if it is a convex combination of the
tops-restricted min-max rules. A min-max rule is tops-restricted if all its parameters belong to the top-set
of the domain. We also consider the case of infinitely many alternatives and provide a direct
characterization of unanimous and strategy-proof RSCFs on the generalized intermediate domains. It is
worth mentioning that both the formulation of generalized intermediate domains and the proof
techniques required to characterize the RSCFs on those are completely different in the case of infinite
number of alternatives. Finally, we establish that all restricted domains that we have discussed so far,
namely single-peaked, single-crossing, single-dipped, tree-single-peaked with top-set along a path,
Euclidean, multi-peaked, and intermediate are special cases of generalized intermediate domains.

Our result strengthens existing results for DSCFs by dropping the maximality assumption to minimal
richness. Note that in a social choice problem with m alternatives, the number of preferences in the
maximal single-peaked or single-dipped domain is 2™ and in a maximal single-crossing domain is
(m(m —1)/2) + 1, whereas that number can range from 2m — 2 to 2" in a minimally rich single-peaked
domain, from 2 to 2" in a minimally rich single-dipped domain, and from 2m* — 2 to (m(m — 1) /2) +1
in a minimally rich single-crossing domain, where m* is the cardinality of the top-set of the domain.

It follows from our results that minimally-rich generalized intermediate domains satisfy both tops-only
property and deterministic extreme point property. [31] provide a sufficient condition on a domain that
guarantees tops-onlyness for the unanimous and strategy-proof RSCFs on it, however minimally-rich
generalized intermediate domains do not satisfy their condition. A domain is said to satisfy the
deterministic extreme point (DEP) property if every unanimous and strategy-proof RSCF on the domain is
a convex combination of unanimous and strategy-proof DSCFs on it. This property can be utilized in
finding the optimal RSCFs for a society. [ 55] characterize the optimal DSCFs on single-crossing domains.
Therefore, by means of the DEP property of single-crossing domains, one can extend their result to the
case of RSCFs.

5.1.3 ORGANIZATION OF THE PAPER

The rest of the paper is organized as follows: Section 7.2 introduces the model and basic definitions.
Section 7.3 presents our main result for finitely many alternatives characterizing unanimous and
strategy-proof RSCFs on minimally rich generalized intermediate domains. Section 7.6 introduces the
concept of generalized intermediate domains for infinitely many alternatives and presents a

characterization of unanimous and strategy-proof RSCFs on those. Section 7.5 contains some
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applications of our results. Finally, Section 5.6 concludes the paper. The Appendix gathers all omitted

proofs.

5.2 PRELIMINARIES

Let N = {1,...,n} be afinite set of agents. Except where otherwise mentioned, n > 2. Let

A ={a,,...,a,} beafinite set of alternatives with a prior ordering < givenby a, < - - - < a.
Whenever we write minimum or maximum of a subset of A, we mean it with respect to the ordering <. By
a =< bywemeana = bora < b. Fora, b € A, we define [a,b] = {c| eithera <c¢ <borb <c=<a}as
the set of alternatives that lie in-between a and b, and for B C A, we define [a, b]p = [a, b] N Bas the
alternatives in B that lie in the interval [a, b]. For notational convenience, whenever it is clear from the

context, we do not use braces for singleton sets, for instance we denote a set {i} by i.

5.2.1 DOMAIN OF PREFERENCES

A complete, antisymmetric, and transitive binary relation over A (also called a linear order) is called a
preference. We denote by L(A) the set of all preferences over A. For P € L(A) and a, b € A, aPbis
interpreted as “a is strictly preferred to b according to P”. For P € LL(A) and1 < k < m, by r(P) we
denote the k-th ranked alternative in P, i.e., r(P) = aifand onlyif |[{b € A | bPa}| = k — 1. Since we
refer to the top-ranked alternative of a preference P very frequently, we use a simpler notation, 7(P), for
that. For P € D and a € A, the upper contour set of a at P, denoted by U(a, P), is defined as the set of
alternatives that are as good as ain P, i.e., U(a, P) = {b € A | bPa} U a. By P*, we denote a preference
with a as the top-ranked alternative, that is, P is such that 7(P*) = a. Similarly, by P**, we denote a
preference with a as the top-ranked and b as the second-top-ranked alternatives, that is, P*? is such that
7(P*?) = gandr,(P**) = b. For ease of presentation, sometimes we write P = P*" to mean 7(P) = a
andr,(P) = b.

We denote by D C IL(A) a set of admissible preferences (henceforth, will be called a domain). For
a € A let D* = {P € D | 7(P) = a} denote the preferences in D that have a as the top-ranked
alternative. For a domain D, the top-set of D, denoted by 7(D), is the set of alternatives that appear as a
top-ranked alternative in some preference in D, that is, 7(D) = Upep7(P). Whenever we write
(D) = {b,, ..., b}, we assume without loss of generality that the indexation is such that b, < - - - < by.
A domain D is regular if 1(D) = A.

A preference profile, denoted by Py = (P,, ..., P,),isan elementof D" = D X --- x D that
represents a collection of preferences one for each agent.

For P € IL(A) and B C A, the restriction of P to B, P|3 € IL(B) is defined as follows: foralla,b € B,
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aP|gb if and only if aPb. For D C LL(A), Py € D" and B C A, we define the restriction of the domain D
toBas D|g = {P| | P € D}, and the restriction of the profile Py to Bas Py|s = (P,|3, - - - , Pu|5)-

PROPERTIES OF A DOMAIN

In this section, we introduce a few properties of a domain. First, we introduce the concept of a
single-peaked domain. A preference is single-peaked if it decreases as one goes far away (with respect to
the ordering <) in any particular direction from its peak (top-ranked alternative). More formally, a
preference P is single-peaked if foralla, b € A, [t(P) < a < borb < a < 7(P)] implies aPb. A domain is
single-peaked if each preference in it is single-peaked, and is maximal single-peaked if it contains all
single-peaked preferences. For B C A, a domain D of preferences is a single-peaked domain restricted to
Bif D|jp is a single-peaked domain.

A preference P satisfies the betweenness property with respect to an alternative a if forallb € A \ 4,
a € [t(P), b] implies aPb. A domain D satisfies the betweenness property with respect to an alternative a
if each preference P € D satisfies the property with respect to a.

Note that the betweenness property of a preference with respect to an alternative a does not put any
restriction on the relative ordering of two alternatives if both of them are different from a, or if one of
them lies in-between the top-ranked alternative of that preference and 4, and the other one is a itself. A
domain D is generalized intermediate if it satisfies the betweenness property with respect to each

alternative in 7(D).

REMARK §.2.1 Note that the generalized intermediate property does not impose any restriction on the relative
ordering of the alternatives outside the top-set of a domain. Furthermore, if a domain D satisfies this property,
then D|.(p) is single-peaked, which in particular implies that a regular domain is single-peaked if and only if it is

generalized intermediate.

Note that a maximal generalized intermediate domain requires quite a few preferences to be present in
the domain. In view of this, we require a minimal set of preferences to be present in a generalized
intermediate domain. Our minimal requirement ensures that for two alternatives that are consecutive in
the top-set of a domain,’ there are two different preferences which (i) rank those two alternatives in the
top-two positions, and (ii) agree on the ranking of the other alternatives.>

To ease our presentation, for two preferences P and P’ in D, we write P ~ P’ if 7(P) = r,(P'),

r,(P) = 7(P'),and r/(P) = r;(P’) forall ] > 3, that is, P and P’ differ only on the ranking of the top two

"We say two alternatives are “consecutive in the top-set” if (i) they are in the top-set of the domain, and (ii) there is no
alternative in the top-set of the domain that lies strictly in-between (with respect to the prior order <) those two alternatives.
*This property is known as top-connectedness in the literature ([71], [95], [38]).
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Figure 5.2.1: A graphic illustration of the preference P, given in Table 5.2.1

alternatives. Recall that throughout this paper, whenever we write 7(D) = {b,, ..., b} for a domain D,
weassume b, < - -+ < by.

A domain D with (D) = {b,, ..., b;} satisfies the minimal richness property if for all
bj, b+, € 7(D), there are P € D% and P’ € DY+ such that P ~ P’. Below, we provide an example of a

generalized intermediate domain satisfying the minimal richness property.

Example §.2.2 Let the set of alternatives be A = {a,, . . ., a,, } with prior order a, < - - - < a,,. Consider the
domainD = {P,, ..., Py} given in Table 5.2.1.

Table 5.2.1

Note that (D) = {a,, a,, a,, a, }. To see that D is a generalized intermediate domain, consider, for
instance, the preference P,. We show that P, satisfies the betweenness property with respect to each alternative in
{a;,a,,a,,a,}. Consider a,. Observe that t(P,) = a, and a,P,a; for allj € {8,9,10}. So, P, satisfies the
betweenness property with respect to a,. Similarly, it can be checked that P, satisfies the betweenness property
with respect to a, and a,. It is left to the reader to verify that the other preferences in D satisfy the betweenness
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property with respect to {a,, a,, a,, a, } and that it is minimally rich. In Figure 6.3.1, we present a pictorial

description of the preference P, € D. U

§5.2.2 SOCIAL CHOICE FUNCTIONS AND THEIR PROPERTIES

In this section, we define social choice functions and discuss a few properties of those. By AA, we denote
the set of probability distributions over A. A random social choice function (RSCF) is a function
¢ : D" — AA that assigns a probability distribution over A at every preference profile. For a € A and
Py € D", we denote by ¢_(Py) the probability of a at the outcome ¢(Py), and for B C A, we define
¢5(Pn) = e ¢,(Pn) as the total probability of the alternatives in B at ¢(Py).

An RSCF is a deterministic social choice function (DSCF) if it selects a degenerate probability
distribution at every preference profile. More formally, an RSCF ¢ : D" — AAis a DSCF if
¢, (Py) € {o,1} foralla € AandallPy € D".

For later reference we include the following (trivial) observation.

REMARK §.2.3 ForallL,L' € AAandallP € IL(A), if Ly(.p) > L’U(x’P) and L’U(x’P) > Ly(s,p) for all
x €A thenL =L

We now introduce some properties of an RSCF that are standard in the literature. An RSCF
¢ : D" — AAisunanimousifforalla € Aandall Py € D", [1(P;) = aforalli € N] = [¢_(Py) = 1].
AnRSCF ¢ : D" — AA s strategy-proof if foralli € N, all Py € D" all P, € D,andallx € A,
Puepy (Pi P—i) 2 by py (P> P—i) .2 The concepts of unanimity and strategy-proofness for DSCFs are
special cases of the corresponding ones for RSCFs. Two profiles Py, Py, € D" are tops-equivalent if each
agent has the same top-ranked alternative in those two profiles, thatis, 7(P;) = 7(P;) foralli € N. An
RSCF ¢ : D" — AAis tops-only if ¢(Py) = ¢(Py) for all tops-equivalent Py, Py, € D". An RSCF
¢ : D" — AAis uncompromising if ¢, (Py) = ¢,(P;,P_;) foralli € N,all Py € D", all P, € D, and all
B C Asuchthat BN [t(P;), 7(P})] = (). In words, uncompromisingness says that if an agent moves his
peak (top-ranked alternative) from an alternative a to another alternative b, then the probability assigned
by an RSCF to each alternative outside the interval [a, b] will remain unchanged. Note that an

uncompromising RSCF is tops-only by definition.

A CLASS OF SOCIAL CHOICE FUNCTIONS

[72] introduces the concept of min-max rules with respect to a collection of parameters. Tops-restricted

*Our notion of strategy-proofness (which is introduced in [57]) is based on first order stochastic dominance. Informally
speaking, strategy-proofness ensures that if an agent misreports his/her preference, he/she cannot obtain an outcome that first
order stochastically dominates the original one.
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min-max rules are special cases of these rules where the parameters must come from the top-set of the
domain.

ADSCFf: D" — Aisa tops-restricted min-max (TM) rule if for all S C N, there exists f, € 7(D)
satisfying the conditions that B, = max(z(D)), By = min(7(D)), and B,. = B forall S C T such that

fen) = min [mas(s(p). ).

SCN | ies

If (D) = A, then a TM rule is called a min-max rule. In what follows, we present an example of a TM

rule.

Example 5.2.4 Let A = {a,,...,a,,} and N = {1,2,3}. Consider a domain D with
(D) = {a,, a;, a,, as, a,, ag, a, }. Consider the TM rule, say f, with respect to the parameters given in Table

§.2.2.

Bl B B By By Bua

‘ag a, a, a, a, a,

Table 5.2.2

Let (as, a,, ag) denote a profile where ag, a, and ag are the top-ranked alternatives of agents 1, 2 and 3,

respectively. The outcome of f at this profile is determined as follows.

f(Py) = min [max{T(Pi),[SS}]

SC{1,2,3} ~ i€S
= min [max{ﬂw}, max{z(P,), ,81}, max{(P,), ﬁz}, max{z(P,), ﬁs}’
maX{T<P1)7 T(P2>> 18{1,2}}7 maX{T(PI>7 T(Ps)v ﬁ{m}}? maX{T(P2>7 T(Ps)v 3{2,3}}7
max{z(P,), 7(P,), T(P3)ﬂ{172,3}}]
= min [alo, as, g, dg, ds, dg, dg, ag]

= 4.

Note that the outcome of a TM rule f always lies in the top-set of the corresponding domain, i.e.,
f(Py) € (D) forall Py € D". Our next remark says that a TM rule on a domain can be seen as a
min-max rule on the domain obtained by restricting it to its top-set. It further says that the former is

strategy-proof if and only if latter is.
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REMARK 5.2.5 Letf: D" — Abea TM rule. Deﬁne}: (D|:(p))" = (D) such thatf(PN|T(p)) = f(Py).*
Then, f is strategy-proof if and only y‘} is strategy-proof.

For DSCFsf,j = 1,.. ., k and nonnegative numbers /,j = 1, . . ., k, summing to 1, we define the
RSCF ¢ = Z;;l Vfas¢ (Py) = le;l Vf (Py) forall Py € D"andalla € A. We call ¢ a convex
combination of the DSCFs f. So, at every profile, ¢ assigns probability Y to the outcome of f for all
j=1,...,k

AnRSCF ¢ : D" — AA s a tops-restricted random min-max (TRM) rule if ¢ can be written as a
convex combination of some TM rules on D". If 7(D) = A, thena TRM rule ¢ : D" — AAis arandom

min-max rule.

5.3 REesuLTs

5.3.1  UNANIMOUS AND STRATEGY-PROOF RSCFS ON GENERALIZED INTERMEDIATE DOMAINS

In this subsection, we present our main result characterizing the unanimous and strategy-proof RSCFs on

the minimally rich generalized intermediate domains.

Theorem 5.3.1 Let D be a minimally rich generalized intermediate domain. Then, an RSCF ¢ : D" — AAis
unanimous and strategy-proof if and only if it is a TRM rule.

The proof of this theorem is relegated to Appendix 5.7. We provide a brief sketch of it here. The if part
of the theorem follows from [72]. To see this, first note the following two facts: (i) every minimally rich
generalized intermediate domain D restricted to its top-set 7(D) is a subset of the maximal single-peaked
domain over 7(D), and (ii) every TRM rule on D" is a random min-max rule on D"|(p). In view of these
observations, it is enough to show that every random min-max rule is unanimous and strategy-proof on
D|.(p). From [72], every min-max rule on D|,(p) is unanimous and strategy-proof, and since every
random min-max rule is a convex combination of min-max rules, such rules are also unanimous and
strategy-proof on D|(p).

We prove the only-if part of the theorem in the following two steps. In the first step, we prove a
proposition that states that every unanimous and strategy-proof RSCF on a minimally rich generalized
intermediate domain is uncompromising and assigns probability 1 to the top-set of the domain. We prove
this proposition by using the method of induction on the number of agents. We start with the base case
n = 1. The proposition follows trivially for this case. Assuming that the proposition holds for all cases

where the number of agents is less than n, we proceed to prove it for n agents. First, we consider the set of

*This is well-defined since by the definition of a TM rule, fis tops-only and f(Py) € (D) forall Py € D".
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profiles where agents 1 and 2 have the same preferences. We show that the restriction of ¢ to this set
induces a unanimous and strategy-proof RSCF on D", and claim by means of the induction hypothesis
that the proposition holds (in a suitable sense) on this set of profiles. Next, we show that the same holds
for the profiles where agents 1 and 2 have the same top-ranked alternatives (instead of having the same
preferences). Finally, in order to prove the proposition for profiles where agents 1 and 2 have arbitrary
top-ranked alternatives, we use another level of induction on the “distance” between the top-ranked
alternatives of agents 1 and 2. The distance between two alternatives b;, b;; € 7(D) is defined as L.
Assuming that the proposition holds for the profiles where the said distance is less than some 1, we prove
the proposition for the profiles where it is 1. By induction, this completes the proof of the proposition.

For a clearer picture, we explain the first step of the proof by means of an example. Suppose that
N={1,2,3}andA = {a,,...,a,}. Let D be a minimally rich generalized intermediate domain with
(D) = {a,, a,, as, as, a, }. Note that if we had one agent, then trivially every unanimous and
strategy-proof RSCF on D would be uncompromising and would assign probability 1 to the alternatives
in{a,,a,, a,, as, a,, } at every profile. Suppose (as the induction hypothesis) that the same holds if we had
two agents. Consider all the preference profiles Py, where agents 1 and 2 have the same preferences. We
look at the restriction of a unanimous and strategy-proof RSCF ¢ on these profiles. Since agents 1and 2
have the same preferences for all these profiles, they can be treated as one agent and ¢ can be seen as an
RSCEF for two agents. By some elementary arguments, one can show that ¢, when seen as a two-agent
RSCEF, is unanimous and strategy-proof. So, by the induction hypothesis, ¢ satisfies uncompromisingness
and assigns probability 1 to the set {a,, a,, a5, as, a, } for all these profiles. Next, we let the preferences of
agents 1 and 2 differ beyond their top-ranked alternatives and extend our proposition to those profiles. We
use Remark 5.2.3 to complete this step. Finally, we proceed to prove the proposition when agents 1 and 2
have arbitrary preferences. Here, we use another level of induction. Suppose (as the induction
hypothesis) that the proposition holds over the profiles for which the top-ranked alternatives of agents 1
and 2 are at distance 1, that is, over the profiles of the form (a,, a,, -) or (a,, as, -) or (a, ag, -) or (ag, ag, *).
Here, by (a,, a,, ) we mean the profiles at which agent 1’s top-ranked alternative is a,, 2’s top-ranked
alternative is a,, and 3’s top-ranked alternative is arbitrary. We show as the induction step that the same
holds over the profiles of the form (a,, as, -) or (a,, as, -) or (as, g, - ). We prove this as a general step of
the induction, and thereby cover all profiles in D?. The details of the arguments needed to show this step
is quite technical, so we do not discuss it here.

In the second step, we show that every uncompromising RSCF on D" is a random min-max rule. We
use results from [46] and [81] to prove this. Finally, we argue that if a random min-max rule assigns
positive probability only to the alternatives in the top-set of the domain, then it is a TRM rule. This
completes the proof of the only-if part of the theorem.
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REMARK 5.3.2 Since every TRM rule is tops-only, it follows from our result that unanimity and
strategy-proofness together guarantee tops-onlyness for the RSCFs on minimally rich generalized intermediate
domains. [ 31] provide a sufficient condition for a domain to be tops-only for RSCFs.> However, minimally rich

generalized intermediate domains do not satisfy their condition.

REMARK 5.3.3 A domain D satisfies the deterministic extreme point (DEP) property if every unanimous and
strategy-proof RSCF on D" can be written as a convex combination of unanimous and strategy-proof DSCFs on
D" 1t follows from Theorem 5.3.1 that minimally rich generalized intermediate domains satisfy deterministic

extreme point property.

REMARK 5.3.4 [10] introduce the notion of top-monotonicity. It can be verified that if every preference in a
domain satisfies the betweenness property, then the corresponding preference profile will satisfy the
top-monotonicity property. Therefore, it follows from [ 10] that generalized intermediateness guarantees the
existence of voting equilibria, not only under the majority rule but also for the wide class of voting rules analyzed

by [6]. Moreover, these equilibria are closely connected to an extended notion of the median voter.

REMARK §.3.5 It can be verified that minimally rich generalized intermediate domains are semilattice
single-peaked, and hence by Proposition 3 of [29], it follows that they admit unanimous, anonymous, tops-only,
and strategy-proof DSCFs.

54 THE CASE OF INFINITE ALTERNATIVES

In this section, we assume that the set of alternatives A is an infinite set, for instance, a subset of R.® As it is
mentioned in [ 10], such a scenario arises in modelling the decision problem to choose a tax rate to
finance a public good ([101]) or a tax rate to finance public schooling in the presence of an option to buy
private schooling [49].

A (weak) preference is defined as a weak order (i.e., complete and transitive binary relations) and is
denoted by R. The strict part of R is denoted by P. We denote the set of all preferences by W(A). We
assume A to be endowed with a o-algebra of measurable sets. Only preferences for which the upper
contour sets U(x, R), for all x € A, are measurable are considered in W(A). An RSCF ¢ assigns to an
admissible preference profile a probability distribution over the measurable space A, hence a probability
to every measurable set. The set of all such probability distributions will still be denoted by AA. For a
measurable set B C A, ¢,(Ry) denotes the probability assigned to B at the preference profile Ry. All the

introduced properties of an RSCF extend in a straightforward manner to this setting.

*A domain is tops-only if every unanimous and strategy-proof RSCF on it is tops-only.
Throughout this paper, R denotes the set of real numbers.
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For all the domains D we consider in this section, we assume that 7(D) comprises of a finite union of
disjoint closed intervals I,, . . ., I of R. Here, an interval can also be a singleton set. We further assume
that for all R € D, there exists a unique top-ranked alternative 7(R) at R, and two alternatives on the same
side of 7(R) cannot be indifferent, that is, forallx,y € Awithx < y < 7(R) or 7(R) < y < x, we have
either xPy or yPx.

We now introduce the concept of generalized intermediate domains in this setting. A domain D is
generalized intermediate if it contains all preferences satisfying the following condition: for all
%,y € 7(D)andallR € D*ifz < y < xorx < y < zforsome z € A, then yPz. In other words, it says
that if an alternative in the top-set of the domain lies in-between the top-ranked alternative of a preference
and another (arbitrary) alternative, then the former alternative is preferred to the latter. Note that (i) the
domain restricted to its top-set is a single-peaked domain, and (ii) there is no restriction on the relative
ordering of two alternatives outside the top-set of the domain.

For a profile Ry € D" and x € R, we define S(x, Ry) = {i € N | 7(R;) < «x} as the set of agents
whose top-ranked alternatives at Ry are on the (weak) left of x. In what follows, we define the TRM rules
in this context.

AnRSCF ¢ : D" — AA s a tops-restricted random min-max (TRM) rule if for each S C N, there
exists a probabilistic ballot f; € A(7(D)) such that the following three conditions are satisfied:

(1) By = emaxi=(p)} and By = eminfx(D)}”

(ii) Forall T, T C N, we have

B ([min{z(D)}, x]) > B, (Imin{z(D)},«]) forallx € [min{7(D)}, max{7(D)}].

(iii) Forall Ry € D" and allx € [min{z(D)}, max{7(D)}], we have

¢(Ry)([min{z(D)}, x]) = By, n, ([min{z(D)}, «]).

The intuition of the tops-restricted random min-max rules for the case of infinite alternatives is quite
similar to that of the tops-restricted min-max rules for the case of finite alternatives. As in the case of
finitely many alternatives, here too these are based on their outcomes at boundary profiles. Following our
earlier notations, we denote the outcome of a boundary profile, where agents in S are at the left most
alternative and the others are at the right most, by . Condition (i) ensures that the rule is unanimous
over the boundary profiles. Condition (ii) captures the monotonicity property of the outcomes over the
boundary profiles. This monotonicity is a straightforward implication of strategy-proofness. Finally,
Condition (iii) presents how the rule works as a function of f’s. First note that to find the probabilities of
arbitrary intervals at a profile, it is sufficient to find the probabilities of the intervals of the form

[min{7(D)}, x|. Now, to find the probability of such an interval at a profile Ry, construct the boundary

"For x € R, by e, we denote the degenerate probability distribution at x.
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Figure 5.4.1: A graphic illustration of a generalized intermediate preference

profile as follows: move all the agents, whose top-ranked alternatives are on the left of x (that is, less than
or equal to x) at Ry, to the left most alternative in (D) (thus, these agents constitute the set S), and move
all other agents to the right most alternative in (D). Finally, find the probability of the interval
[min{z(D)}, x| at Ry by equating it to the probability of the same interval at the boundary profile
constructed above, that is, by equating it to the probability f¢([min{z(D)}, x]).

Note that there is a basic difference between how we define the tops-restricted random min-max
(TRM) rules for the case of finitely many alternatives and the case of infinitely many alternatives. For the
former case, we present them as convex combinations (or, probability mixtures) of top-restricted
min-max rules. However, for the latter, we provide a direct description of these rules. We do this for the
sake of simplicity as we explain in the following. Observe that there are infinitely many tops-restricted
min-max rules in the case of infinitely many alternatives. So, a convex combination has to be presented
using integration in place of summation. Furthermore, such a presentation will require us to define a
continuous probability distribution over the tops-restricted min-max rules. Such a presentation looks

quite technical, as well as makes it hard to comprehend.

Theorem §.4.1 Let D be a generalized intermediate domain. Then, an RSCF ¢ : D" — AA is unanimous
and strategy-proof if and only if it is a TRM rule.

The proof of this theorem is relegated to Appendix 5.8. The main challenge in moving from a finite to
infinite/continuous set of alternatives is that for the latter case we allow for indifferences, and
consequently our earlier proof technique fails. In what follows, we provide a brief sketch of the proof.

First, we prove that a unanimous and strategy-proof RSCF on a generalized intermediate domain (i)
assigns total probability 1 at every profile to the alternatives that lie in-between the minimum and the
maximum peaks at that profile, that is, at every profile Ry, the interval [min(7(Ry)), max(7(Ry))] gets
probability 1, and (ii) the alternatives in the top-set of the domain gets probability 1, that is, the probability

of 7(D) is 1 at every profile. To show this, we use induction on the number of different peaks at a profile.
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We consider the case of two different peaks as the base case. For this case, the proof of (i) is more or less
straightforward, whereas that of (ii) is somewhat involved. Next, we prove the induction step. Here, we
assume that (i) and (ii) hold for all profiles having at most [ different peaks for some I < 1, and continue
to prove the same for profiles having I + 1 different peaks. To complete this induction step, we use another
level of induction on the number of agents whose peaks are the minimum and that whose peaks are the
maximum at a profile. Let us call a profile (k,, k,)-(min, max) profile if at this profile, there are k, agents
whose peaks are the minimum of that profile and k, agents whose peaks are the maximum of that profile.
We treat the case of (1, 1)-(min, max) profiles as the base case. As the induction step, we assume that (i)
and (i) hold for all (k, — 1, k, )-(min, max) and all (k,, k, — 1)-(min, max) profiles and proceed to show
that the same holds for all (k,, k, )-(min, max) profiles. Let us explain that the induction step is
compatible with our base case. Suppose that we have shown (i) and (ii) for all (1, 1)-(min, max) profiles
and we want to show it for (2, 1)-(min, max) profiles. Note that (i) and (ii) trivially hold for all

(2, 0)-(min, max) profiles. So, by taking k, = 2 and k, = 1in the induction step, we obtain (i) and (ii) for

all (2,1)-(min, max) profiles.

5.5 APPLICATIONS

In this section, we demonstrate the applicability of our results by showing that a class of domains of

practical importance are generalized intermediate.

5.5.1 SINGLE-PEAKED DOMAINS

[46] characterize the unanimous and strategy-proof RSCFs on the maximal single-peaked domain as
fixed-probabilistic-ballots rules, and [81] show that such an RSCF is a convex combination of the
min-max rules. Theorem §.3.1 improves these results by relaxing the maximality assumption. Note that
the number of preferences in the maximal single-peaked domain is 2™, whereas that in a minimally rich

m—1

single-peaked domain can range from 2m — 2 to 2

5.5.2 SINGLE-CROSSING DOMAINS

In this subsection, we introduce the concept of single-crossing domains and show that every
single-crossing domain is generalized intermediate. [94] characterizes all unanimous and strategy-proof
DSCFs on maximal single-crossing domains. [27] considers a slightly more general class of single-crossing
domains called successive single-crossing domains in the context of local strategy-proofness with transfers.

We show that all these domains are special cases of minimally rich generalized intermediate domains.
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A domain D is single-crossing if there is an ordering < over D such that foralla,b € Aandall P, P’ € D,
l[a < b,P< P, and bPa] = bPa. In words, a single-crossing domain is one for which the preferences
can be ordered in a way such that every pair of alternatives switches their relative ranking at most once
along that ordering. A single-crossing domain D is maximal if there does not exist another single-crossing
domain that is a strict superset of D. Note that a maximal single-crossing domain with m alternatives
contains m(m — 1) /2 + 1 preferences.® A domain D is successive single-crossing if there is a maximal
single-crossing domain D with respect to some ordering < and two preferences P', P € D with P’ < P’
suchthat D ={PeD|P dPIP"}?

In the following example, we present a maximal single-crossing domain and a successive single-crossing

domain with 5 alternatives.

Example s.5.1 Let the set of alternatives be A = {a,, a,, a,, a,, a, } with the prior order a, < - - - < a,. The
domain D = {a,a,a,a,a5, a,a,0,a,04;, 0,0,0,0,0, 0,0,0,0,d5, A,0,0,0,d5, A,0,0,0,ds, O,0,0,d40,,
A,0,0,040,, A,0,050,0,, A,00,0,0,, Asa,0,d,d,} is a maximal single-crossing domain with respect to the
ordering < given by a,a,a,a,a, < a,a,d,a,d, < 4,4,4,a,0, < 4,0,0,0,ds < A,0,4,4,d, < 4,0,0,0,d; <\ 4,d,0,0,d, <
a,0,4,a,a, < a,d,a,0,4, < a,d,a,0,a, < a,a,a,a,4d, since every pair of alternatives change their relative ordering
at most once along this ordering. Note that the cardinality of A is 5 and that of Dis 5(s — 1) /2 + 1 = 11. The
domain D = {a,a,a,a,a,, a,a,4,a,4;, 4,0,0,0,0,, 4,0,0,0,d5, A,0,0,d,ds, A,0,0,d,ds} is A Successive
single-crossing domain since it contains all the preferences in-between a,a,a,a,a; and a,a,a,a,a in the maximal

single-crossing domain D. U

In the following lemmas, we show that every single-crossing domain is a generalized intermediate

domain, and every successive single-crossing domain is a minimally rich general intermediate domain.
Lemma §.5.1 Every single-crossing domain is a generalized intermediate domain.

Proof: Let D be a single-crossing domain with an ordering < over the preferences. We show that Dis a
generalized intermediate domain. Suppose not and assume without loss of generality that there exist

a € Ab, b, € 1(D)and P' € D such thatb, < b, < aand aP”b,. Consider P € D. Since b,P"b,,
b,P¥b, and b, < b,, it follows from the definition of a single-crossing domain that PP < P%, By means of
our assumption that b, < a and aP¥b,, P’ < P implies aP%b,. However, this is a contradiction since

7(P*) = b,. This completes the proof. |

Lemma §.5.2 Every successive single-crossing domain is a minimally rich single-crossing domain.

8For details see [93].
By P < P/, we mean either P = P’ or P< P'.
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Proof: It is enough to show that every successive single-crossing domain is minimally rich. Let D be a
successive single-crossing domain. Then, by the definition of a successive single-crossing domain, there is
a maximal single-crossing domain D with respect to some ordering < such that

D={PcD|PIPJ 13} for some P, p € DwithP < p. Suppose (D) = {b,, ..., by }. We show
thatforallj =1,2,...,k — 1, thereare P € DY% and P’ € Db+ such that P ~ P’. Consider

bj, bj+, € 7(D) and consider P € Db and P € DY+ Since biPb;,, b}-+113b]-, and b; < b;,, it follows from
the definition of a single-crossing domain that P < P. Using a similar argument, we obtain P < P for all

| < j,and P" > Pforalll > j 4 1. Therefore, there must be P € D% and P’ € D'+ that are consecutive
in the ordering <, thatis, P € D% and P’ € D"+ are such that there is no P’ € D with P<P” < P'. We
show P ~ P'. Suppose not. Let a be the alternative which is ranked just above b, in P, that is, aPb;, and
there is no x € A with aPxPb;,. Consider the preference P” that is obtained by switching the alternatives
aand bj, in P. We show P” ¢ D. In particular, we show that both P < P and P’ < P” are impossible. This
is sufficient since P and P’ are consecutive in the ordering <. Suppose P” <t P. Since aPb;,, P < P’, and
bj+1P/a, by the single-crossing property of D, it must be that a < b1,. However, because bj+1P' 'a and
aPb;,, this contradicts P < P. Now, suppose P’ < P”. Since P < P/, there must be a pair of alternatives c, d
with ¢ < d such that cPd and dP’c. Moreover, because P and P’ are not top-connected, it must be that
{c,d} # {a, bj11}. Since ¢ < d, dP'c,and P’ < P”, by the single-crossing property of D, we have dP”c.
However, by the construction of P, we have cP”d, which is a contradiction. Thus, we have P” ¢ D. This
implies D U P” is a single-crossing domain with respect to the ordering < over D U P”, where <’ is
obtained by placing P” in-between P and P’ in the ordering < i.e., <’ coincides with < over D and

P < P’ < P'. This contradicts the fact that D is a maximal single-crossing domain. Therefore, P ~ P’ and

D is minimally rich. This completes the proof of the lemma. |

5.5.3 SINGLE-DIPPED DOMAINS

In this subsection, we introduce the concept of single-dipped domains and show that they are generalized
intermediate. A preference P is single-dipped if it has a unique minimal element d(P), the dip of P, such
thatforalla,b € A, [d(P) <a < borb < a < d(P)] = bPa. A domain is single-dipped if each
preference in it is single-dipped.

It is straightforward that a minimally rich single-dipped domain is a minimally rich generalized

1

intermediate domain. Note that the number of preferences in the maximal single-dipped domain is 2™,
while that in a minimally rich single-dipped domain can range from 2 to 2™
It is worth mentioning that any unanimous and strategy-proof RSCF on a minimally rich single-dipped

domain can give positive probability to two particular (the boundary ones) alternatives.
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Figure 5.5.1: A graphic illustration of a tree

5.5.4 SINGLE-PEAKED DOMAINS ON TREES WITH TOP-SET ALONG A PATH

A domain is tree-single-peaked if the alternatives are located on a tree and agents’ preferences fall as one
moves away from his/her top-ranked alternative along any path. [97] characterize the tops-only,
unanimous and strategy-proof DSCFs on tree-single-peaked domains. Under the additional restriction
that the top-set of the domain lie along a path, our result improves their one in two ways: first, by allowing
for random rules, and second, by relaxing tops-onlyness.

We introduce a graph structure over the set of alternatives. A collection
G C {{a,b} | a,b € A, a # b} is an undirected graph over A. The elements of G are edges. A pathin G
from a node a, to another a; is a sequence of distinct nodes (a,, . . . , a;) such that {a;, a;;,} € Gforall
i=1,...,k— 1. Note that a path cannot have a cycle by definition.

A graph over A is a tree, denoted by T, if for all a, b € A, there exists a unique path from a to b. Since
such a path is unique in a tree, for ease of presentation we denote it by [a, b]. A preference P is
single-peaked on T if for all distinct x,y € Awithy # 7(P),x € [t(P),y] = «Py. A domain s
single-peaked on T if each preference in it is single-peaked on T.

Let T be a tree over A and let D be a single-peaked domain on T. Suppose 7(D) = {b,, ..., b }. We
call D a single-peaked domain with top-set along a path if (b, . . ., by) is a path in T. In Figure 5.5.1, we
present a tree in which a path is marked with red. A single-peaked domain with respect to this tree with
top-set along the red path can be constructed by taking those single-peaked preferences that have
top-ranked alternatives in that path.

The following lemma says that a single-peaked domain on a tree with top-set along a path is a minimally
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rich generalized intermediate domain.

Lemma 5.5.3 Let D be a single-peaked domain on a tree T with top-set along a path in T. Then, D is a

minimally rich generalized intermediate domain.

Proof: Let Tbe atreeandletw = (b,, ..., b;) be a pathinit. Let D be a single-peaked domain on T with
(D) = {b,, ..., b }. Consider alinear order < on A such that

e b, < -+ < byand
o foralla € A\ {b,,..., b}, a < bjifand only if the projection of a on 7 is b; for some j < 1.1

Note that the linear order < defined above is not unique since it does not specify the relative ordering
of two alternatives that are outside the path « but have the same projection. We show that Dis a
minimally rich generalized intermediate domain with respect to <. Since D is single-peaked on T and
{by, by, }isanedgein Tforalll € {1,...,k — 1}, we can always find two preferences P and P’ such that
7(P) = r,(P') = by, r,(P) = 7(P') = byy,,and ry(P) = r;(P’) forall ! > 3. Therefore, D is minimally rich.

Now, we show that D is generalized intermediate. Consider b, and b, with b, < b,. To show D is
generalized intermediate, it is enough to show that for all P with 7(P) = b,, we have b,Pa for all a with
b, < a. Assume for contradiction that there exist P € D and a € A with 7(P) = b, and b, < a such that
aPb,. Ifa € {b,y,, ..., bi}, then by means of the fact that T'is a tree, we have b, € [b,, a]. However, by
single-peakedness of P, this implies b,Pa, which is a contradiction to aPb,. Now, suppose
a € A\ {bes,,...,b}. Since b, < a, by the definition of <, there exists b; € {b,,, . .., by} such that the
projection of a on 7 is b;. By the definition of projection, this implies b; € [b,, b,], and hence by
single-peakedness of P, we have b;Pa. Using a similar argument, it follows that b,Pb;, which in turn implies
b,Pa. However, this is a contradiction to aPb,. Thus, for all P with 7(P) = b,, we have b,Pa for all a with

by < a. This proves D is a generalized intermediate domain. |

5.5.5 MULTI-PEAKED DOMAINS

In many practical scenarios in Economics and Political Science, preferences of individuals often exhibit
multi-peakedness as opposed to single-peakedness. As the name suggests, multi-peaked preferences admit
multiple (local) ideal points in a unidimensional policy space. We discuss a few settings where it is

plausible to assume that individuals have multi-peaked preferences.

1By the projection of an alternative a € A on a path 7 in a tree T, we mean the alternative b € 7 that is closest (with respect
to graph distance) to g, i.e, b € wissuch that |z(a, b)| < |7(a,c)|forallc € x. Here, by n(a, c), we mean the unique pathin T
fromatoc.
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« Preference for “Do Something” in Politics: [39] and [45] consider policy (decision) problems such as
choosing alternate tax regimes, lowering health care costs, responding to foreign competition,
reducing national debt, etc. They show that such a problem is perceived to be poorly addressed by
the status-quo policy, and consequently some individuals prefer both liberal and conservative
policies to the moderate status quo one. Clearly, such a preference will have two peaks, one on the

left of the status quo and another one on the right of it.

o Multi-stage Voting System: [99], [42], [47] deal with multi-stage voting system where individuals
vote on a set of issues where each issue can be thought of as a unidimensional spectrum and voting
is distributed over several stages considering one issue at a time. In such a model, preference of an
individual over the present issue can be affected by his/her prediction of the outcome of future
issues. In other words, such a preference is not separable across issues. They show that preferences

of individuals in such scenarios exhibit multi-peaked property.

« Provision of Public Goods with Outside Options: [17], [101], and [18] consider the problem of
setting the level of tax rates to provide public funding in the education sector, and [63] and [50]
consider the same problem in the health insurance market. They show that preferences of
individuals exhibit multi-peaked property due to the presence of outside options (i.e., the public

good is also available in a competitive market as a private good).

« Provision of Excludable Public Goods: [ 53] and [4] consider public good provision models such as
health insurance, educational subsidies, pensions, etc., where a government provides the public
good to a particular section of individuals and show that individuals’ preferences in such scenarios

exhibit multi-peaked property.

We now present a formal definition of multi-peaked domains and show that they are special cases of
generalized intermediate domains. To ease our presentation, for two alternatives a and b, we denote by
(a,b) the set [a, b] \ {a, b}.

Letb, < -+ < by be such that (b, bjy,) # 0 forall1 < I < k. Then, a preference P is multi-peaked
with peak-set {b,, ..., b} if (i) P
(i) forall1 < 1 < k, P,
A domain D is multi-peaked if it contains all multi-peaked preferences with peak-set (D).

(a,,b,] and P|p, 4.1 are single-dipped with dips at 4, and a,,, respectively,

is single-dipped with a dip in (by, by, ), and (iii) P|y,,... 5, is single-peaked.

bl+1}

'''''

In words, for a multi-peaked preference there are several (local) peaks such that the preference behaves
like a single-dipped one between every two consecutive peaks and like a single-peaked one over the peaks.

In Figure 5.5.2, we present a pictorial description of a multi-peaked preference.
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Figure 5.5.2: A graphic illustration of a multi-peaked preference

Lemma §.5.4 Every multi-peaked domain is a minimally rich generalized intermediate domain.

Proof: Let D be a multi-peaked domain. Suppose 7(D) = {b,, ..., b} withb, < ... < b;. By the
definition of D, for all by, by, € 7(D), there are preferences P, P € D such that 7(P) = bj, 7(P') = by,
and P ~ P’. This shows D is minimally rich. Now, we prove D is a generalized intermediate domain.
Consider b, and b, where b, < b,. We show that for all P with 7(P) = b,, we have bPa foralla € A with
b, < a. Consider P € D with 7(P) = b, and considera € A with b, < a. Ifa € [b,, b,,], then by the
definition of multi-peaked preferences, we have b,Pa. Suppose a € [by, by, | for some b; with b, < b;. By
the definition of multi-peaked domains, we have b,Pb; and b;Pa, which implies b,Pa. This proves that D is

a generalized intermediate domain. |

REMARK s.5.2 Note that for both applications 5.5.4 and 5.5.5, the top-set of the domain is (exogenously)
known to the designer. Domains with exogenously given characteristics are not new to the literature, for instance
[3] consider domains where the top-ranked alternative of each agent is known to the designer and [ 85 ] consider

domains where the indifference classes are known to the designer.

5.5.6 EUCLIDEAN DOMAINS

[91] consider Euclidean domains and show that every unanimous and strategy-proof RSCF on such
domains is a random minmax rule.

For ease of presentation, we assume that the set of alternatives are (finitely many) elements of the
interval [0, 1]."" In particular, we assume 0 = a, < - - < a,, = 1. Suppose that the individuals are located
at arbitrary locations in [0, 1] and they derive their preferences using Euclidean distances of the
alternatives from their own locations. We call such preferences Euclidean. Below, we provide formal

definitions of these preferences.

'With abuse of notation, we denote by [o, 1] the set of all real numbers in-between o and 1.
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Definition s.5.3 A preference P is Euclidean if there is x € [0, 1], called the location of P, such that for all
alternatives a, b € A, |x — a| < |x — b| implies aPb. A domain is Euclidean if it contains all Euclidean

preferences.
Lemma s.5.5 Every Euclidean domain is a minimally rich generalized intermediate domain.

Proof: Let D be a Euclidean domain. Then, by definition, it is regular single-peaked, and by Remark 5.2.1,

it is generalized intermediate. It remains to show that D is minimally rich. Consider 4, and a,, for some

r € {1,...,m — 1}. By the definition of Euclidean domain, there are two preferences P and P’ in D with
location “*%% such that 7(P) = r,(P') = a,,1,(P) = 7(P') = a,4,,and r(P) = r/(P') for | > 3. This
completes the proof of the lemma. |

5.5.7 INTERMEDIATE DOMAIN

[58] introduces the concept of intermediate domains and shows that under some conditions on the
distribution of voters over preferences, majority rule is transitive on these domains. However, to the best
of our knowledge, no characterization of unanimous and strategy-proof RSCFs on these domains is
available in the literature. Under a mild condition on these domains (mainly to avoid non-transitive
preferences), we show that these domains are special cases of generalized intermediate domains, and
consequently, we provide a characterization of unanimous and strategy-proof RSCFs on those.
Throughout this section, we denote by X an open convex subset of the Euclidean space E?, and
whenever we refer to a line, we mean a line in X (that is, a collection of points in X that constitute a line).
A preference P is between two preferences P, and P,, denoted by P € (P,, P, ), ifforalla, b € A,
aP,b and aP,b imply aPb. A domain {P, } ,cx satisfies the intermediate property if for every x’ and x” € X,
x € («,«") implies P, € (P, Pyr).*?
[58] provides a characterization of the intermediate domains where preferences are allowed to be weak
(i.e., can have indifferences) and non-transitive. In the following lemma, we modify his result for the

situation where preferences are strict and transitive (i.e., linear orders).

Lemma 5.5.6 Let a domain {P, }.cx satisfy the intermediate property. Then, for every pair of alternatives
(a,b), exactly one of the following statements must hold:

(i) aP.bforallx € X.

(i) bP.aforallx € X.

>With slight abuse of notation, by x € («’, "), we meanx = Ax" + (1 — 1)«”’ for some real number A € (o,1).
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(iii) There existq = (q,,4,) € E* (q1,q,) # (0,0) and x € R such that for all (x,,x,) € X, aP,b implies
q:%, + q.%, > Kk and bP.a implies g,x, + ¢,x, < x.

Proof: Suppose that both (i) and (ii) do not hold. We show that then (iii) must hold. Consider a, b € A.
LetA, = {x € X | aP,b} and A, = {x € X | bP,a}. By our assumption that both (i) and (ii) do not hold,
it follows that both A, and A, are non-empty. Moreover, by definition, A, and A, are disjoint, and by the
intermediate property, both A, and A, are convex. Therefore, by Hyperplane separation theorem ([90],
Theorem 11.3), there exist g = (q,, q.) € E* (q:,9.) # (0,0) and « € R such that forall (x,, x,) € X,
aP.bimplies q,x, + q,x, > k and bP,a implies q,x, + ¢,x, < . This completes the proof of the lemma. Il

Note that for a domain satisfying the intermediate property and for a pair of alternatives (a, b) that
satisfies (iii) in Lemma s5.5.6, the object ((g,, q.), x) identifies the line: g,x, + g,x, = x. We denote such a
line by I(a, b). Lemma 5.5.6 implies that a is preferred to b on one side of this line, and b is preferred to a
on the other side.'® Since such a line separates the preferences with respect to a and b, we call it the

separating line for a and b. In what follows, we introduce the concept of strict intermediate property.

Definition s5.5.4 A domain {P, }.cx satisfies the strict intermediate property if

(i) there are no three distinct separating lines of the domain that pass through a common point, that is, for all
three distinct (unordered) pairs (x,,,), (x,, y.), and (x,, y,), we have
(%0, ) N (o, y2) N 1y, y,) = 0,* and

(ii) there exists a line | that intersects with all the separating lines of the domain, that is, for all pairs x,y € A
satisfying (iii) in Lemma §.5.6, we have [ N (x, y) # (.

We provide an example of a domain that satisfies the strict intermediate property. It is worth noting
from this example that (i) strictness is indeed a mild condition, and (ii) the strict intermediate property

does not imply the single-crossing property.

3There is no restriction on the relative preference over a and b for the preferences P, when x lies on this line.
By distinct (unordered pairs), we mean that {x;,y;} 7# {«;,;} foralli,j € {1,2,3} withi 7 j.
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(a,b) (d,e) (a,c) (a,e) (b,¢)(a,d)

X
Figure 5.5.3: A graphic illustration of the separating lines for each pair of alternatives

p, P, P, P, P, P P, Py P,
a a b b b b b ¢ ¢
b b a a ¢ ¢ ¢ b b
c ¢ ¢ ¢ a e e e e
d e d e e a d a d
e d e d d d a d a

Table 5.5.1

Example 5.5.5 Let X be the open set in Figure 5.5.3 and let
{P,}xex = {abcde, abced, bacde, baced, beaed, beead, beeda, cbead, cbeda} be a domain satisfying
intermediate property. For each pair of alternatives, the separating line is indicated in the figure. Note that for the
pairs (b, d), (b, ¢), etc, there are no separating lines. Further note that P, is constant over all points x that are
enclosed by some separating lines of the domain (this follows from Lemma 5.5.6). Such P,s are mentioned in the
respective region in Figure §.5.3.

Clearly, the domain { P, } .cx satisfies strict intermediate property since no three separating lines pass through

a common point and the line | (marked with red) intersects with all these lines. It is left to the reader to verify that
O

the domain {P, } .cx is not a single-crossing domain.
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It is worth noting that the domain in Example s.5.5 is a minimally rich generalized intermediate

domain. Our next lemma shows that this fact is true in general.

Lemma s.5.7 Every domain {P, } .cx satisfying strict intermediate property is a generalized intermediate

domain.

The proof of this lemma is relegated to Appendix 5.9.

5.6 CONCLUSION

In this paper, we have shown that in case of finitely many alternatives, an RSCF on a minimally rich
generalized intermediate domain is unanimous and strategy-proof if and only if it can be written as a
convex combination of the tops-restricted min-max rules. We have further demonstrated by means of
examples that one cannot go too far from the minimally rich generalized intermediate domains ensuring
that the unanimous and strategy-proof RSCFs on it are convex combinations of the tops-restricted
min-max rules. We have also provided a characterization of the unanimous and strategy-proof RSCFs in
the setting with infinite number of alternatives. However, we do not assume any type of minimal richness
in that case. In fact, minimal richness cannot be defined in this setting as there is no notion of
“consecutive alternatives” here. As applications of our result, we have obtained a characterization of the
unanimous and strategy-proof RSCFs on restricted domains such as single-peaked, single-crossing,
single-dipped, single-peaked on a tree with top-set along a path, Euclidean, multi-peaked, and
intermediate domain ([58]).

To our understanding, our results apply to all well-known restricted domains in one dimension. An
interesting problem would be to see to what extent one can enlarge a generalized intermediate domain
ensuring the existence of a non-random-dictatorial, unanimous, and strategy-proof (not necessarily
tops-restricted random min-max) random rule. This will give some idea of the robustness of the
generalized intermediate domains as possibility domains. Another interesting problem would be to
explore the generalized intermediate domains for multiple dimensions. We leave all these problems for

future research.

APPENDIX

5.7 PROOF OF THEOREM §.3.1

First, we prove a proposition that constitutes a major step in this proof.
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Proposition §.7.1 Let D be a minimally rich generalized intermediate domain and let ¢ : D" — AAbea
unanimous and strategy-proof RSCFE. Then,

(i) ¢.(p) (Py) = 1forall Py € D", and
(ii) ¢ is uncompromising.

We prove a sequence of lemmas which we will use in the proof of Proposition 5.7.1. The following

lemma establishes that a generalized intermediate domain restricted to its top-set is single-peaked.
Lemma §.7.1 Let D be a generalized intermediate domain. Then, D|T(D) is single-peaked.

Proof: Let D be a generalized intermediate domain with 7(D) = {b,, ..., bc}. We show that D|(py is
single-peaked. Without loss of generality, assume by contradiction that there exists P € D such that
7(P) = bjand by Pb; for some [, ' with I < I < j. This means P violates the betweenness property with
respect to bj, which is a contradiction since D is a generalized intermediate domain and b; € (D). This

completes the proof of the lemma. |

In what follows, we prove a technical lemma that we use repeatedly in the proof of Proposition 5.7.1.
We use the following notation in this lemma: for X, Y C A and a preference P, XPY means xPy for all
x € Xandy € Y.

Lemma 5.7.2 Let D be a domain and let ¢ : D" — AA be a strategy-proof RSCE. Let Py € D", P, € D,
and B, C C A be such that BP;C, BP,C, and P;|c = Pi|c. Suppose ¢ .(Pxn) = ¢ (P}, P_;) and
¢, (Pn) = ¢, (P, P_;) foralla ¢ BU C. Then, ¢ (Py) = ¢ (P;,P_;) foralla € C.

Proof: First note that since ¢.(Py) = ¢ (P, P_;) and ¢_(Py) = ¢_(P;,P_;) foralla ¢ BUC,

¢3(Px) = ¢,(Pi, P_;). Suppose b € Cis such that ¢,(Py) # ¢,(P;,P_;) and ¢ _(Py) = ¢ (P}, P_;) for
alla € Cwith aP;b. In other words, b is the maximal element of C according to P; that violates the
assertion of the lemma. Without loss of generality, assume that ¢, (Py) < ¢, (P, P_;). Since BP,C,
¢5(Pn) = ¢5(Pi,P_;),and ¢ _(Py) = ¢, (P}, P_;) forall a ¢ Bwith aP;b, it follows that

bu.p) (Py) < ) (P}, P_;). This implies agent i manipulates at Py via P}, which is a contradiction.
This completes the proof of the lemma. |

Proof of Proposition §.7.1

Now, we are ready to complete the proof of Proposition 5.7.1.
Proof:
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We prove this proposition by using induction on the number of agents. Let D be a generalized
intermediate domain with 7(D) = {b,, ..., b.}.

Let |[N| = 1andlet ¢ : D — AA be a unanimous and strategy-proof RSCF. Then, by unanimity,
¢.p) (Py) = 1forall Py € D, and hence ¢ satisfies uncompromisingness.

Assume that the proposition holds for all sets with k < n agents. We prove it for n agents. Let [N| = n
andlet ¢ : D" — AA be a unanimous and strategy-proof RSCF. Suppose N* = N\ {1}. Define the
RSCFEg: D"* — AA for the set of voters N* as follows: for all Py« = (P,,P,,...,P,) € D",

¢(P,,P,,...,P,) = ¢(P,,P,,P,,P,,... P,).

Evidently, g is a well-defined RSCF satisfying unanimity and strategy-proofness (See Lemma 3 in [98]
for a detailed argument). Hence, by the induction hypothesis, &(D) (Py+«) = 1forall Py« € D" 'andg
satisfies uncompromisingness. In terms of ¢, this implies ¢.(p) (Py) = 1forall Py € D" with P, = P,.

We complete the proof of Proposition 5.7.1 by using the following lemmas. In the next lemma, we
show that ¢_ 1) (Py) = 1and ¢ is tops-only over all profiles Py where agents 1 and 2 have the same top

alternative.

Lemma s5.7.3 Let Py, Py, € D" be two tops-equivalent profiles such that P,, P, € Db for some b; € (D).
Then, ¢ () (Pn) = 1and $(Py) = ¢(Py).

Proof: Note that since g is uncompromising, g satisfies tops-onlyness. Because g is tops-only and
P,,P, € DY, wehave g(P,,P_y,,1) = g(P,, P_{,,}),and hence ¢(P,, P,, P_(,,}) = ¢(P,, P,, P_g, ).
We show ¢(P,, P,, P_y,,1) = ¢(P,, P,, P_y, ,}). Using strategy-proofness of ¢ for agent 2, we have
(/)U(&Pl) (P, P, P_{m}) > (/)U(x’Pl) (P,P,, P_{m}) forall x € A, and using that for agent 1, we have
Puie.p) (P,,P,,P_(,,y) > Puie.p) (P,,P,,P_y,,3) forallx € A. Since

¢(P,,P,,P_(,,3) = ¢(P,,P,, P_y, ), it follows from Remark 5.2.3 that

¢(P,, P, P_{l’z}) = ¢(P,, P,, P_() ). Using a similar logic, we have

¢(P, PP, 1) = ¢(P,P,, P, ). Because gis tops-only and Py, Py are tops-equivalent, we have
g(P,,P_1,,}) = g(P, P_y, ). This implies ¢(P,, P, P_y,,}) = ¢(P,, P, P"(, ), and hence

_{172}
P,P,,P_; ) =¢(P, P, P . Moreover, as P,,P,,P_; ,1) = 1,it follows that
¢ (2}) = QPP Py ) {12}
¢.(p) (P,,P,,P_y,,1) = 1. This completes the proof of the lemma. [ |

Lemma §.7.4 Let1 < j <j+1< kandlet Py, P\, € D" be such that P,, P, € D% and P, P, € D"+, and
1(P;) = 1(P)) foralli # 1,2. Then, ¢, (Px) = ¢, (Py) forallb & [b;, b;i]:(p)

Proof: By uncompromisingness of g and the fact that g;(p)(Py+) = 1forall Py- € D", we have
(P, P_q15)) = g(P,, P_q,,y) forallb & [b;, bj1i]:(p). Moreover, since g is tops-only and 7(P;) = 7(P;)
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foralli € {3,4,...,n},wehave g(P/,P_y, ;) = g(P,, PL{172}). By the definition of g,
g(P,P_f,)) = ¢(P,, P, P_y,,y) and g(P,, P_y,,1) = ¢(P,, P, P_y,,1). As7(P,) = 7(P,) and
7(P)) = 7(P,), Lemma 5.7.3 implies ¢(P,, P,,P_(, ,3) = ¢(P,,P,,P_¢,,}) and

(P, P, P {172}) = ¢(P,,P,P_ {172}). Combining all these observations, we have

P,P,,P_;\)=¢,(P,P, P forallb ¢ |b;, b;1i]+(p). This completes the proof of the lemma.
b {10}) = €, (P Py Py, > bj+1l+(D) p P

Lemma §.7.5 Let1 < j < j+1< kandlet Py, P\, € D" be such that P,, P,, P. € D" and P, € D"+, and
1(P;) = 1(P)) foralli # 1,2. Then, ¢ (Py) = ¢.(Py) forall ¢ ¢ U(bj1, P;) N U(b;, P,).

Proof: By Lemma 5.7.3, §(P,, P,, P_y,,}) = ¢(P;, P}, P', ). Hence, it suffices to show that
¢ (P, PLP g 1) = ¢.(P, P, Py, ) forc & U(by, Py) N U(by, P,). We prove this for ¢ ¢ U(bj11, P)),

} SR B 1072 Jr" 2

the proof of the same when ¢ ¢ U(b;, P,) follows from symmetric argument.

Consider ¢ & U(b;, P,). By strategy-proofness of ¢,
(PU(C,Pf) (Pi7 Pi’ PL{I,Z}) 2 (PU(C,Pf) (Pi7 Pi’ PL{172}) 2 (PU(C,Pf) (P;’ Pi’ PL{172})_

1?7 1?7

¢p(P, PP, ) = ¢y(P,, Py, Py, ) forall B C Asuchthat [b), bjyi]-p) C B. Sincec ¢ U(by, P))

Moreover, by Lemma 5.7.4, ¢, (P}, P, P" , ) = ¢, (P,, P,,P" ) forallb ¢ [b;, bj1i](p), and hence

and 7(P]) = b, by the definition of a generalized intermediate domain, we have [b;, bj1](p) C U(c, P}),
and hence Puer (P, P, PL{W}) = Puier) (P, P, PL{172}). Thus, we have

(PU P! (P17P17PL{1,1}) ¢U ¢,p! (Pi,P;,PL{m})_ (5-1)
(c,P}) (c.P)
Suppose that d € A is ranked just above cin P.. Then, [b;, b;y].(py C U(d, P), and hence
PP ) 1 j» Ojl(D) = 1
oy d,p’ (P17P17PL{1,2}) = ¢y d,p! <P17P;>PL{1,2})' (5-2)
(d.P)) (d.P))

Subtracting (5.2) from (5.1), we have ¢ _(P], P, PL{I’Z}) =¢.(P, P, Pl—{;,z})’ which completes the proof
of the lemma. [

Recall that for two preferences P and P/, we write P ~ P’ to mean 7(P) = r,(P’), r,(P) = 7(P’), and
r(P) = r(P) foralll > 2.

Lemma §.7.6 Let Pbbin Pb+obi € D be such that Pbibit ~ Phitobi, Then, foralli € Nand allP_; € D",

[‘PT(D) (P P) =1 = [4’7(1)) (P, P_y) =1].
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Proof: As Pti+t ~ Phitbi by strategy-proofness, ¢ _(PUbi+ P_;) = ¢ (Ph+b P_,)foralla ¢ {b;, b1, }.
Thus ¢.(p) (Pbb+ P_) = 1implies ¢.(p) (PY+vbi P_,) = 1. This completes the proof of the lemma. W

To simplify notations for the following lemma, for j < I, we define the distance from b; to b;, denoted

by by — bj,asl —j.
Lemma §.7.7 The RSCF ¢ is tops-only and ‘PT(D) (Py) = 1forallPy € D".1°

Proof: We prove this lemma by using induction on the distance between the top-ranked alternatives of
agents1and 2.

Consider I such that o < I < k — 1. Suppose ¢_ ) (Py) = 1and ¢(Py) = ¢(Py) forall
tops-equivalent profiles Py, Py € D" with |7(P,) — 7(P,)| < L. We show ¢.(p) (Py) = 1and
¢(Py) = ¢(Py) for all tops-equivalent profiles Py, Py, € D" with |7(P,) — 7(P))| =+ 1.

Let Py and Pj; be such that P,, P/ € D%, P, € D%+, P, € D%+, and 7(P;) = 7(P}) foralli # 1, 2.
Further, let P, = Pbitits p, = phbitobi p, = pbitibitis and P, = Pbi+i+Y+ be such that P, ~ P, for all
u = 1, 2. Note that such preferences exist by the definition of a minimally rich generalized intermediate

domain. By the induction hypothesis, ¢(Py) = ¢(P/, P,, P (1..})- We prove the following claims.

Claim 1. (PT(D)(PI’ P27 P/_{lyz}) =1 and (P(/\pl, PZ? Pl—{l,z}) - (P(Pi, p2, Pl_{172}) - (P(P17 P;, P/_{172}>‘
By the induction hypothesis, ¢ ) (P;, P,, P_, ;) = 1and

¢(Py) = ¢>(P“132,P’_{1 2}) = </)(PI,152,P’_{1 ) LetP € {P/,P,}. By Lemma 5.7.5,

ﬂbc(P;/?Pi/?P,—{l,z}) = (PC(P1/71327P/_{172}) forallc ¢ U(bj+l,Pi,) N U(b],pz), (53)
and
¢C(P1/,P1/,Pi{172}) = ¢C(Pi/,132,P’7{1’2}) forallc ¢ U(bjy14,, P)) N U(Y;, P,). (5-4)

As 7(P,) — 7(P") <, it follows from the induction hypothesis that
¢my (P PP g, 3) = ¢ (P, Py, Py, 3) = 1. Since
U(bj-i-l’ P//) N U(b], 152) N T(D) = [b], bj+l]T(D)) (53) 1mp11es

1

(Pb(Pi/’Pil’PL{l’z}) = (pb(Pi/,f)Z,P’f{u}) forallb ¢ [bj, ijrl}r(D)- (5.5)

Moreover, since P, = Pbi+ibi+i+ P, = Ptk and ¢.(p) (P, p,,P_ 0 2}) = 1,by Lemma 5.7.6,
¢.(p) (P’ P, P, ;) = 1. This, in particular, implies ¢.(p) (P, P,, Pl—{x,z}) = 1. Because

13[31] provide a sufficient condition for a domain to be tops-only for RSCFs. However, generalized intermediate domains
do not satisfy their condition.
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U(bj114,, P) N U(b;, P,) N 2(D) = [bj, bjy114)x(p), (5.4) implies

1

‘Pb<Pi/’Pi/’PL{"2}> = ¢h<Pi/7PZJPL{1,2}) forallb & [bj, by 111] (D). (5.6)

Combining (s.5) and (5.6), ¢, (P, P,, P ) = ¢,(P, P, P ,y) forallb ¢ [b;, bjit]x(p). Since
P, = Phittbitit and P, = Phi++5+ we have by strategy-proofness that
(P{bj+zvb;+z+1}(Pi/’ P, PL{172}) - ¢{b;+17bi+z+1}(Pi/’ P, P/f{l,z})' LetB' = [bf’ bi+l+1]T(D) \ {bj-Hv bj+l+1}' Then,

¢ (P!, P,, P ) = ¢u(P, P,, P’ ;) Note thatby Lemma 5.7.1, P,|p = P,|p. Therefore, by

applying Lemma s.7.2 with B = {b;,, b1, } and C = B/, we have
(Pb (Pi/’ PZ, P,—{1,7_}) = (/)b (Pi/’ 1_32’ P/—{l,z}) forallb 7£ bj'H? bj+l+1' (57)

By the induction hypothesis, ¢ (P,, P, P {172}) = ¢(P,, P, P {1’2}). Again, by Lemma §.7.1, b4 (P, bj 1.1,
anc_l bjj_lPi bj 4141, which irnplies ¢(P,,P,, P’ {172}) = ¢(P,,P,, P {172}). Using a similar logic,
¢(Py, P,, Py 1) = ¢(P,, P,,P_y, ). This completes the proof of Claim 1. O

Claim 2. ¢ (P}, P,, P, ) = ¢ (Py) forallc & U(bjti, Py) N U(b;, P)).
By (5.6), ¢, (P, P, P, 1) = ¢,(P, P,, Py, ) forallb & [by, b1 11, )(p). Since
[b]’ bj+l+1]T(D) g U<bj+l+17 i) N U(b]7 Pi)’ we have ¢5(Pi7 Pi’ Pl—{l,z}) = ¢C<Pi7 PZ’ P/—{l,z}) for all
¢ ¢ U(bjj1441, P)) N U(b;, P,,). Moreover, by Lemma 5.7.5, ¢_(P,, P,, P,—{u}) = ¢_.(Py) forall
¢ & U(bjti41, P)) N U(b;, P,). Hence, ¢C(P1,P2,P’7{172}) = ¢.(Py) forallc & U(bjyiy,, P;) N U(b;, P,).

This completes the proof of Claim 2. O

Claim 3. ¢, (P}, P,, Py, ) = ¢,(Py) forallb € b5, b i) e(D)-

First, we shovir ¢y, (P, P, P’_{m}) = ¢, (Py). By Claim 1, ?(Pi, P,, P/_{l’z}) = ¢(P, P, ’_{1,2}).
Moreover, as 7(P,) = 7(P]) = bj, by strategy-proofness, ¢, (P,P., P {1’2}) =9, (P} ). Combining, we

/D / _ /

have ¢y, (P, P, P*{m}) = ¢, (Py)-

Now, we complete the proof of Claim 3 by induction. Consider s < [ + 1. Suppose
¢y, (P, P,, P/_{l,z}) = (/)bj+r(P§\,) forallo < r <'s. We show P, (P, P, Pl—{l,z}) = by, (Py). We
show this in two steps. In Step 1, we show that if an alternative outside 7(D) appears above b4, in the

preference P/, then it receives zero probability at ¢(P}). In Step 2, we use this fact to complete the proof

of the claim.

STEP 1. Consider ¢ € A \ 7(D) such that cP,b;,;,. We show ¢_(Py) = o. Assume for contradiction that
¢_(Py) > o. Since cP,b;,,, by the definition of a generalized intermediate domain, we have b;, ., P,c.

Lett € {2, ceey k —] — Z} be such that U(b}'+5+1, ;) N T(D) - [bj+s+17 bj+l+1]‘r(D) U [bj+1+2, bj+[+t]1(p).
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By Claim 1, ¢, ) (P}, P,, P, .,;) = 1and hence
/5 _ ) )
(PU(b}-_H_,_,,pi) (PU b,, P_{x,z}) - ¢[bi+s+l’bj+l+1]f(f)) (Pn p,, P_{l,z}) + ¢[bj+l+“b}-+l+t]r(p) (PU P, P_{1,2}>

i /5 /5

=1- (P[bnhj-!—s]r(D) (P17 p,, PI—{l,z}) - (P[thHJr“hk]T(D) (P17 p,, P’—{I,Z})' (58)
By Claim 2, ¢, (lii, P, P ) = ¢, (Py)foralli € [1,j — 1] U[j + 1+ t+1,k|, and by the assumption of
Claim 3, ¢, (P}, P,, P_, 1) = ¢, (Py) foralli € [j,j + s]. Combining all these observations, we have

/D / _ / / D / P
(P[bubi-s-s]f(p) <P1’P"’P—{1»2}) - (P[bhbj-H]r(D) (Py) and (P[bj+l+t+nbk]r(D) (P, P, P—{I:Z}) - ¢[bj+l+t+nbk}f(z>) (Py)-
Note that the sets [b,, bj1i]«(D), U(bj1s41: Ph), [Bjsi4415 bl z(p), and {c} are pairwise disjoint. Therefore,

Pty PN T Ouu oy (PN) + 8oy (P) + 6(PY) < 1, and hence

¢U(bj+s+upi) (P/N) S1- (P[bubﬁs]f(v) (PEV) - (P[bj+z+t+ubkh(v> (PE\’) o (PC(P;V)

Pi’PZ’P/—{Ivl}) - ¢[b'+l+z+ubkh(D> (Pi’Pl’Pl—{lvl}) - (PC(P;\’) (s:9)

-1 (P[bubﬁs]f(m( j

As ¢ (Py) > o, (5.8) and (5.9) imply ¢U(hj+s+1,P;)(Pi’ P,, P> Pubysenn?)) (P} ), which implies agent

2 manipulates at P}, via P,, a contradiction. This completes Step 1.

STEP 2. In this step, we complete the proof of Claim 3. By Claim 1, it is sufhicient to show that
(Ph;'+s+1 (P,, P, P/*{lzl_}) - ¢b]+s+1 (Py)-

Suppose ¢ (P, P, Py ) > P, (Py). Considerd € U(bjy,, P,) \ (D). By Step 1,
¢,(P.,P,, P .1) = ¢,(Py), and by Claim 1, ¢,(P], P, Ply)= ¢,(P,, P, P, ;). Now, consider
d € U(bjys14, P)) N 7(D) such that d # bj;y,. This implies d = by for some j’ < j 4 s. By Claim 2 and
the assumption of Claim 3, ¢ ,(P., P,, P (1) = ¢,(Py). By Claim 1,
¢(P.,P,, P (o)) = ¢(P,,P., P {1..})- Combining all these observations, we have
(Pd(p” Pg, Pl_{l,z}) = (Pd(P;\T) foralld € U(b}'+5+1, i) \ bj+s+1' Therefore,
Pryes (P, P, P/*{lal}) > Pu, (Py) implies PU(tyo1.P) (P, P, Plf{l»z}) Z Uty ) (Py), which
implies agent 1 manipulates at P}, via P,.

Now, suppose ¢, (P, PP )< . (Py)- By Claim 1, ¢_ 5, (PP, P ) =1Letu<j

be such that U(bj+s+1, P,)N1(D) = [b,, bj+s+1],(p). Then, by the assumption of Claim 3,
¢,(P., P, P ) = ¢,(Py) forallb € [by, b, ](p), and by Claim 2, ¢, (P, P, P 1) = ¢,(Py) forall
b € [by, bj_,] (D). Therefore, . (P, P,, P, ) < . (Py) implies

¢U(b;+s+1,f’1) (P,P.,P_ {172}) < uhyrp) (Py), which implies agent 1 manipulates at (P,, P, P’ {172}) via P.
This completes the proof of Claim 3. U

We are now ready to complete the proof of Lemma 5.7.7. First, we show ¢_ ., (Py) = 1. By Claim 3,
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¢,(P., P,, Pl{u}) = ¢,(Py) forallb € [b;, bj111,](p). By Claim 2, ¢, (P, P, Plf{l,z}) = ¢,(Py) forall
b € [b, bj_l]f(p) U [bj+l+2, bk},(p). Combining all these observations, we have
¢ (p) (P, P, P/—{1,2}> = ¢.(p) (Py). Moreover, by Claim 1, ¢.(p) (P, P, P'_{u}) = 1,and hence
‘Pf(D) (Py) = 1.
Now, we show ¢(P};) = ¢(P)) for all tops-equivalent profiles Py, Py, € D". By claims 1, 2, and 3, we
have ¢(P,, P,, P’ (1.}) = ¢(Py). Moreover, as P! € D% and P, € Db++, applying claims 1, 2, and 3 to P},

we have ¢(P,, P,, P_ (2)) = ¢(Py). Hence, to show ¢(Py) = ¢(Py), it is enough to show
¢(P, P, P, 1) = ¢(P,, P, 13'7{172}). Recall that P, = PY+-bi+t+:, Since 7(P,) — 7(P!) = land
7(P}) = 7(P}) forall i # 1, 2, by the assumption of Lemma 5.7.7, we have
(P(PU 1327 Pl_{hz}) = (/)(131, 1327 IN)/_{I,Z})- AlSO, bY (57)) (Pb(Pl) 1327 Pl_{172}) = (Pb(PU pz; Pl_{lﬂ_}) fOI‘ aH
b # by, bjyy,, which implies ¢, (P,, P, PL{I’Z}) = ¢,(P,,P,, 13’7{172}) forallb # bjy, bjyy,. Using
similar arguments as for the proof of (5.7), it follows that ¢(P,, P,, P’ = 131, b, P for all

g p (P {1,2} 4) {1,2}
b # b;,b;1,, and hence ¢(P,, P, P’_{m}) = ¢(P,, P,, 13’_{1’2}) forallb # b;, b;,. Note that if | > 1, then
¢,(P., P,, PL{W}) = ¢,(P,,P,, PL{I’Z}) forall b € A. Now suppose | = o. We show

(/f)(PI,PZ,P’_{1 2}) = <p(131,132,f~”_{1 2}) for 7(P,) = bjand 7(P,) = b;,. Because
¢,(P,, P,, P,j{lvi}) = ¢,(P,, P, f)/i{l’z,}> f~0r all b # b;, bj1, and all tops-equivalent Pl—{l,i}’fy—{l,z} € D2,
we have ¢, (P, P,, P ) = ¢, (P, P,, P, P ,)forallb # b;, bj,,. As 7(P)) = 7(P;), by Lemma
§.7.1, biP.b;y, ifand only_iflijf); - Theref?re, if(ij_(Pl,_PziP’,{lyl}) +# ‘Pb}- (P, P,, 13;, P’i{l,m}), then agent
3 manipulates either at (P,, P, 7~P’_ {172}) via P, orat (P,, P,, P, P’ {17273}) via P|. Hence,

¢(P,,P,, P,—{l,z}) = ¢(P,,P,, P, P’_{IM}). Continuing in this manner, we have

¢(P,P,, P () = ¢(P,,P,, P (1..})- Therefore, ¢(Py) = ¢ (P),) for all tops-equivalent profiles

P}, P}y € D". This completes the proof of the lemma. |

Lemma 5.7.8 The RSCF ¢ satisfies uncompromisingness.

Proof: We prove this in two steps. In Step 1, we provide a sufficient condition for uncompromisingness,

and in Step 2, we use that to prove the lemma.

STEP 1. In this step, we show that ¢ is uncompromising if the following happens: for all j < k, all
P, = PbY+ € D,all P, = PY+b € D,andallP_; € D",

¢ (Pi, i) = ¢,(P, P—;) Vb & [(P,), 7(P)]. (5-10)

Suppose (5.10) holds. Since ¢ is tops-only, (5.10) implies that for all P, € DY, all P, € Db+, all P_,,
andallb ¢ [7(P,), T(P))],
¢, (P, P_;) = ¢,(P;,P_;). (s.11)
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Similarly, for all P; € DY+, all P, € D%+, all P_;, and all b ¢ [7(P;), 7(P})], we have

¢, (Pi, P_i) = ¢, (P}, P_y). (5.12)

Combining (5.11) and (5.12), we have ¢, (P, P_;) = ¢, (P, P_;)forall P, € Db, all P e Db+, all P_,,
andallb ¢ [z(P;), 7(P})]. Continuing in this manner, we have ¢, (P;, P_;) = ¢, (P/,P_;) forall P;, P, € D,
allP_;,and allb ¢ [7(P;), 7(P})], which implies ¢ is uncompromising.

STEP 2. In this step, we show that ¢ satisfies (5.10). We do this in two further steps. In Step 2.a., we show
(5.10) for agents 1and 2, and in Step 2.b., we show this for other agents.

STEP 2.a. It is enough to show (5.10) for agent 1, the proof of the same for agent 2 follows from symmetric
argument. Without loss of generality, assume 7(P,) = b;.;. Note that by Lemma 5.7.7, ¢, ) (Pn) = 1.
Therefore, by Lemma 5.7.5, (pb(Pl, P,, P_{m}) = ¢, (P,, P, P_{u}) forallb ¢ [b]—, bj+1]7(p) and

¢, (P, P, P_y,,) = ¢, (P, P,, P_y,,y) forall b & [byy,, biyi]-(p). This implies

¢,(P,, P, P_y,5y) = ¢, (P, P,,P_y,,3) forall b & [b;, bjyi|-(p). By strategy-proofness,

‘/f’{b,,bj+,}(P17 P,,P_q,) = </>{bj’bj+l}(Pi, P,,P_1). Let B = [b}, bii]:(p) \ {b), bj4.}. Since

P,|p = P||p, by applying Lemma 5.7.2 with B = {b;, b;;, } and C = B', we have

¢,(P,, P,,P_,,y) = ¢,(P., P,,P_y,,y) forall b # b;, bj,. This proves (5.10) for agent 1. Therefore, by
Step 1, we have foralli € {1,2},all P, € D,all P, € D,andallP_; € D",

¢ (Pi, i) = ¢,(P, P—;) Vb & [x(P,), 7(P)]. (5.13)

This completes Step 2.a.

STEP 2.b. In this step, we show (s5.10) foragentsi € {3, ..., n}. Itis enough to show this fori = 3. If

P, = P,, then by the induction hypothesis,

¢,(Py, P_;) = g (P, Py, P_y,,5) = &(P, P, P_yyayy) = ¢, (P, P_y) forall Py, P, € Dandall

b ¢ [t(P,),7(P,)]. Let 7(P,) = b, and 7(P,) = b,. Since ¢.(p) (Py) = 1forall Py € D", it follows from
Lemma §.7.5 that ¢, (P,, P,, Py, P_1,, ) = ¢, (P, P,, Py, P_y, , 5y) forall b & [b,, b,].(p) and

¢, (P, P, P, P_t,51) = ¢, (P, Py, P, P_y,, 1) forall b ¢ [by, by:(p). Combining all these

observations, we have

¢b(P1’ P, P37 P—{1,2,3}) = (P;,(Pn P, P;7 P—{1,273}) forall b ¢ [bp7 bq]‘r('D) U [bp bj+l]T(D)‘ (514)

Also, by strategy-proofness,

¢{bj,bj+1}<P1’ P, P37 P—{1,2,3}) = ¢{bj7bj+1}(P” b, Pgu P—{1,2,3})- (515)
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Now, we distinguish two cases.

Case 1. Supposep,q <j—+1o0rp,q > j.

Let B' = [b,, byl:(p) \ [b, bja)<(p)- Then, by (5.14) and (5.15),
¢y (P, Py, Py, Py, 5)) = ¢y (P, Py, P, Py, 51). Since Py|p = P, |, by applying Lemma 5.7.2 with
B = {bj,bj.} and C = B, ¢, (P, P,, P;,P_y,,5}) = ¢, (P, P,, P, P_y, , ,)) forall b € B'. Therefore,

¢,(P,,P,, Py, Py, y) = ¢, (P, P, P, Py, 1) forallb & {b;, b, }. (5.16)

This completes Step 2.b. for Case 1.
Case 2. Supposep <j<j+1<qorg<j<j+1<p.

We prove the lemma for the case p < j < j + 1 < g, the proof of the same for the case
q <j <j+1 < pfollows from symmetric arguments. By (5.13), forall b ¢ [b;, b,](p), we have
(Pb(Pn P,, P, P—{%%s}) = ‘Pb(Plv Py, Py, P—{1,2,3}) and ‘Pb(Pn P,, P;a P—{l,z,s}) = (Pb(Pn Py, P;7 P—{1,2,3})-
Moreover, since 7(P,) < bjy,, 7(P;) = bjand 7(P,) = bj,, it follows from (5.16) that
¢, (P, Py, Py Py, ) = ¢, (P, Py, P P_y,, ) forall b & [by, bjy,)-(p). Combining all these
observations, ¢, (P,, P,, Py, P_y,, 1) = ¢, (P,, P,, P, P_y, . 5y) forall b & [b;, by]-(p). By
strategy-proofness, ‘P{bj,b,-Jrl}(P” P,,P,P_,3) = ‘P{b,,bj+l}(Pl7 P,,P,,P_y,, ). Let
B' = [bj, by]:(p) \ {b;, bj.}- Since P;|p = P,|w, by applying Lemma 5.7.2 with B = {b;, bj;, } and
C = B/,wehave ¢, (P,, P,, P;,P_y,, 1) = ¢,(P,, P,, P, P_y,, 1) forall b € B'. Hence,

¢b(P17P27P37P7{1,2,3}) = gbb(Pl?PZ?P;’P*{l,Z,_%}) forall b ¢ {b}a bj-i—l}a

which completes Step 2.b. for Case 2.
Since cases 1 and 2 are exhaustive, this completes Step 2, and consequently the proof of Lemma 5.7.8.

B Proposition 5.7.1 now follows from Lemma 5.7.7 and Lemma 5.7.8. |

Now, we come back to the proof of Theorem s.3.1. Our proof uses the following theorem which is

taken from [81].

Theorem 5.7.1 (Theorem 3(a) in [81]) Let D be the maximal single-peaked domain. Then, every tops-only
and strategy-proof RSCF ¢ : D" — AA is a convex combination of some tops-only and strategy-proof DSCFs
f: D" — A

Our next lemma presents the structure of an uncompromising and strategy-proof RSCF on a regular

single-peaked domain.
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Lemma 5.7.9 Let D be a regular single-peaked domain and let ¢ : D" — AA be uncompromising and

strategy-proof. Then, ¢ is a convex combination of the generalized min-max rules on D".*¢

Proof: Note that since ¢ is uncompromising, ¢ is tops-only. Let D be the maximal single-peaked domain.
Let ¢ : D" — AA be the tops-only extension of ¢ on D. More formally, for all Py € D", (Py) = ¢(Py),
where Py € D" is such that Py and Py are tops-equivalent. This is well-defined as ¢ is tops-only and D is
regular. Since Dis single-peaked and ¢ is strategy-proof, ¢ is also strategy-proof. Hence, by Theorem
5.7.1, <2) is a convex combination of the generalized min-max rules on D, By the definition of gZ), this

implies ¢ is a convex combination of the generalized min-max rules on D", which completes the proof. ll

Finally, we are ready to complete the proof of Theorem s.3.1. Proof: (If Part) Let D be a generalized
intermediate domain with 7(D) = {b,, ..., b;} andlet ¢ : D" — AAbe a TRM rule. Since ¢ isa TRM
rule, it is unanimous by definition. We show that ¢ is strategy-proof. Let ¢ = >, Af;, where A;s are
non-negative numbers summing to 1 and f;s are TM rules. To show ¢ is strategy-proof, it is enough to
show that fjs are strategy-proof. Foralll € {1,...,t}, deﬁneﬁ : (Dlep))" = (D) as
}I(PN|T(D)) = fi(Py). Note that by Lemma 5.7.1, D|T(D) is a single-peaked domain. Therefore, it follows
from [72] thatﬁ is strategy-proof forall [ = 1, . . ., t. By Remark 5.2.5, this implies f; is strategy-proof for
alll = 1,.. ., t. This completes the proof of the if part.

(Only-if Part) Let D be a generalized intermediate domain with 7(D) = {b,, ..., b;} and let
¢ : D" — AAbe a unanimous and strategy-proof RSCFE. Define ¢ : (D|,(p))" — A7(D) as
(Z)b(PN\T(D)) = ¢,(Py) forall b € 7(D). This is well-defined as by Proposition 5.7.1, ¢.(p) (Py) = 1forall
Py € D"and ¢ is tops-only. Because ¢ satisfies uncompromisingness, ¢ also satisfies
uncompromisingness. Hence, by Lemma 5.7.9, (]) is convex combination of generalized min-max rules on
(D|+(p))". Moreover, since ¢ is unanimous, ¢ is a also unanimous. This implies ¢ is a convex combination
of the min-max rules on (D|;(p))". By the definition of ¢, this implies ¢ is a TRM rule. This completes
the proof of the only-if part. |

5.8 PROOF OF THEOREM §.4.1

Proof:

Let D be a generalized intermediate domain and let ¢ be a unanimous and strategy-proof RSCF. We
introduce a piece of notation to facilitate the presentation of our next lemma. For Ry € D", by I(Ry) we
denote the interval [min;cy 7(R;), max;en 7(R;)], and by p(Ry) we denote the number of different peaks
at Ry, thatis, p(Ry) = [{7(R;) | i € N}|. Further, for a preference R and an alternative x € A, the lower

16f the set of alternatives is an interval of real numbers, then every uncompromising RSCF on the maximal single-peaked
domain is strategy-proof (see Lemma 3.2 in [46]). However, the same does not hold for the case of finitely many alternatives.
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contour set of x at Ris defined as L(x, R) = {y € A | xRy}. Our next proposition says that at every
profile Ry, the interval I(Ry) will receive the full probability (i.e., probability 1) at ¢(Ry). It further says
that the top-set of the domain D will always (i.e., at any profile) receive probability 1 by ¢.

Proposition §.8.1 Forall Ry € D", $(Ry)(I(Ry)) = 1and ¢(Ry)(7(D)) = 1.

Proof: Consider Ry € D". We prove the proposition on the basis of the number of different peaks p(Ry)
at Ry. The proposition follows trivially by unanimity when p(Ry) = 1. To prove the proposition for the
cases where p(Ry) > 1, we use induction on p(Ry). Here, we consider the case p(Ry) = 2 as the base

case.

Base case for the proof of Proposition 5.8.1: Suppose p(Ry) = 2.

Let {t(R)) | i € N} = {a, b}, where a < b. We use induction on the number of agents having a as the
top-ranked alternative.

Base case for the proof of the base case of Proposition 5.8.1: We first prove this for the case 7(R,) = a
and 7(R,) = - - - 7(R,) = b.

Proof of ¢(Ry)([a, b]) = 1:

We claim ¢(Ry)((b, 00)) = o. Suppose to the contrary that ¢(Ry)((b,c0)) > o. Let R" € D*. By
unanimity, ¢(R’, R_,)({b}) = 1, and hence agent 1 manipulates at Ry by misreporting his/her preference
as R', a contradiction. Since ¢(Ry)((b, 00)) = o, to show ¢(Ry)([a, b]) = 1, it is enough to show
¢(Ry)((—00,a)) = o. Assume to the contrary ¢(Ry)((—00,a)) > o. Let R, € D“ be a strict
preference with the property that (i) there exist x,y € A such that U(x,R)) = U(a, R,) N [a, b] and
L(y,R]) = (b,00), and (ii) forallw, z ¢ U(x, R.) U L(y, R.), we have wR.z if and only if wR,z. In other
words, the strict preference R’ satisfies the following conditions: (i) the alternatives that lie in the interval
a, b] and are preferred to a according to R, form an upper contour set at R/, and the alternatives in the
interval (b, 00) form a lower contour set, and (ii) all the remaining alternatives maintain the same relative
ordering in R} as in R,. Since the interval (b, 00) forms a lower contour set at R}, by strategy-proofness,
¢(R,,R_,)((b,00)) = o. This, together with the construction of R, and strategy-proofness, implies
¢(Ry)(U(a,R,)) = ¢(R, R—,)(U(a, R,)). As Ry|(—o0 b)n(a\U(a,R.)) = Ri|(—00 b)n(a\U(a,R.)) BY
straightforward application of strategy-proofness for all Borel set D C (—00,b) N (A \ U(a, R,)), we

have

¢(Ry)(D) = ¢(R,, R_.)(D). (5.17)

This, in particular, means ¢(R.,R_,)((—00, a)) > o. We can repeatedly use this argument to move all
the agentsi = 2, ..., ntoapreference R, € D*and conclude ¢(R,, R_,)((—00, a)) > o. However, by
unanimity, ¢(R,, R_,)({a}) = 1, a contradiction. This proves ¢(Ry)([a, b]) = 1.
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Proof of ¢(Ry)(7(D)) = 1: Suppose that1 < s < s’ < karesuchthata € I;and b € I;. Consider the
profile Ry € D such that R, = Rwhere R € D*is a single-peaked preference and R; = R, where

R € Dlisa single-peaked preference foralli € {2,...,n}. In Claim 1, we show that ¢(RN) (7(D)) =1,
and in Claim 2, we show that gb(RN) = ¢(Ry), which will complete the proof of ¢(Ry)(7(D)) = 1.

Claim 1. ¢(Ry)(7(D)) = 1.

Proof of Claim 1. Let r(I) and I(I) denote the right end point and the left end point of an interval I.
Define X; = (r(;), 1(I;1,)) forallj € {1, ...,k — 1}. Since ¢(Ry)([a, b]) = 1, to prove Claim 1, it is
sufficient to show that ¢(Ry) (X;) = oforallj € {s,...,s" —1}. Assume for contradiction that there
existst € {s,...,s — 1} such that ¢(ﬁN) (X;) > o. Without loss of generality assume that
¢(Ry)(X;) = oforallj € {s,...,t—1}. LetR € D*and R € D" be such that forall x,y € A with
x € Ufi/:slq andy € [a,b] \ Uf;:slq, we have xRy and xlziy. Further let Ry, Ry, € D" be such that

« R =RandR — R;foralli € {2,...,n},and
. R/ = Rforalli € {2,...,n}and R’ =R,

Claim 1.1. ¢(R})(7(D)) = ¢(RY)(7(D)) = 1.

Proof of Claim 1.1. We show this only for R} For R, the similar arguments hold. Let R, = R. Note that
since ¢(RY)([a, b]) = 1forall Ry, € D" suchthat {z(R)) | i € N} = {a, b}, we have
o(R,,R_,)([a, b]) = 1. Again, since R’ = Rand R, = R, by strategy-proofness it follows that
o(Ry)([a,b] N 7(D)) = ¢(R,,R"_)([a,b] N 7(D)). Since 7(R,) = 7(R}) = bforalli € {2,...,n},by
unanimity, ¢(R,, R"_,)({b}) = 1. Combining all these observations, we get ¢(R})([a, b] N 7(D)) = 1.
This completes the proof of the Claim 1.1. U
Claim 1.2. ¢(R}) = ¢(RY)).

Proof of Claim 1.2. Let Ry € D"besuchthatR, = Rand R, = Rforalli € {2,...,n}. Note that by
Claim 1.1, $(Ry) ([a,b] N 2(D)) = ¢(RY)([a, b] N (D)) = ¢(Ry)([a, b] N 7(D)). Since
R.|(ajre(D) = Ry|(ap)e(D), by strategy-proofness, ¢(Ry) = ¢(R,, R_,). Continuing in the manner, we
can show that ¢(R}) = ¢(Ry). Using similar arguments we can show that ¢(R%) = ¢(Ry), and
complete the proof of Claim 1.2. O
Claim 3. 9(Ry)[a, (1)) = $(RS) (o, (1)) and p(R) () = $(RY)(L) Forall € {s-+1,...., £}

Proof of Claim 1.3. Consider the preference profile (R, R_, ). Note that since p(Ry) = p(R/,R_,) = 2,
wehave ¢, (Ry) = Doy (R,R_,) = 1. Furthermore, because R,, R, € D" and R, |(a (1] = R!|{ar(1), by
strategy-proofness, we have ¢ (ﬁN) ([a,r(L,)]) = ¢(R., IALl) ([a, (I,)]). By our assumption,
¢(Ry)(X,) = o. We show ¢(R/, R_,)(X,) = o. Assume to the contrary, ¢(R, R_,)(X,) > o. This,
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together with the fact that ¢(Ry)([a, r(L)]) = ¢(R’,R_,)([a, r(L)]), implies

¢(Ru) ([, 1(11)]) < $(R], R-)([a, 1(Tta)])- (5.18)

Since R, is a single-peaked preference and ¢(Ry)([a, b)]) = ¢(R/,R_,)([a, b]) = 1, (5.18) implies

¢(Ry) (U(I(I,4,), R,)) < ¢(R',R_,)(U(I(I1,), R,)), which in turn means agent 1 manipulates at R, via R'.

Therefore, we have ¢(R!, R_,)(X;) = o. By strategy-proofness, this implies

o(Ry)(Iy,) = ¢(R,R_) (I1y). Using similar arguments, we can show ¢ (Ry) (I) = ¢(R,R R.) (I;) forall

j€ {s+2,...,t}. Since Ry, = (R/,R_,) this completes the proof of Claim 1.3. O
Now, we complete the proof of Claim 1, that is, ¢(Ry) (7(D)) = 1. By Claim 1.2, we have

#(Ry) = ¢(RY). On the other hand, by Claim 1.3, we have ¢(Ry)([a, 7(L,)]) = ¢(Ry)([a, r(L)]), and

¢(Ry) (L) = ¢(Ry) (L) forallj € {s +1,...,t}. Combining these two observations, we get

(8) (o, (1)) = $(RE) (o, (1)), and (R (L) = $(RL)(1) forallj € {s-+1,..., . Note thatas

p(RY) = 2, we have ¢(RY)([a, b]) = 1, and hence by Claim 1.1, ¢(R};)(X;) = o. This, together with our

assumption that ¢ (Ry)(X;) > o, implies

$(R)(U((I), R)) > ¢(R) (U(I(I14.), R')). (5.19)

Since R; = R/ foralli € {2, ..., n}, by strategy-proofness, we have

~

$(Rw)(U((I4), R) = (R, Ry (U(I(Li), R)) = -+ = (RE)(U((I4a), R')).

However, this contradicts (5.19). Hence, ¢(ﬁN) (7(D)) = 1, which completes the proof of Claim 1. [J

Claim 2. ¢(Ry) = ¢(Ry).

We first show that ¢(Ry) = ¢(R,,R_,). Since p(Ry) = p(R,,R_,) = 2, we have
$(Ra)([a,b]) = (R, R )
¢(Ry)([a, 7(I,)]) = ¢(R,, R_,)([a, (L,)]). We claim ¢(R,, R_,)(X;) = o. Assume to the contrary,
¢(R,,R_,)(X,) > o. Since R, is a single-peaked preference and </)(RN)( ;) = o, this means
o(Ry)(U(I(I,4,), R,)) < (R, R_,)(U(I(I1,), R,)). However, then agent 1 manipulates at Ry via R,, a
contradiction. So, ¢(R,, R_,)(X;) = o. Using similar arguments, we can show
¢(Ry) (L) = (R, R_,)(Iy,), and thereafter ¢ (Ry)(X,1,) = ¢(R,, R_,)(X.4,). Continuing in this

~

manner, it follows that ¢(Ry) (I,) = ¢(R,,R_,)(I;) and ¢(Ry)( X)) = ¢(R,, R_)( X;) forall

j€{s,...,s —1}. Finally, using similar arguments as for the proof of

([a, b]) = 1. By strategy-proofness, this implies

~

¢(Ru)([a, r(L)]) = ¢(R,, R.)([a, r(L)]), we can show ¢(Ry) ([I(Iy ), b]) = $(R,, R—)([I(Iy), b]).
Combining all these observations, we conclude ¢(Ry) = ¢(R,, R_).
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Now, we proceed to complete the proof of Claim 2. By replicating symmetric arguments as for the
same proof, i.e., the proof of $(Ry) = ¢(R,, R_,), we can show ¢(Ry) = ¢(R,, R,, Ry, .)). Here, by
symmetric arguments, we mean by using b in place of g, s in place of s, and by following the sequence
s',s' —1,...,sinplace of s,s +1,...,s". As before, we can now sequentially move the agents i in

{3,...,n} from the preference R, to the preference R; and conclude that ¢(Ry) = ¢(Ry). This completes

the proof of Claim 2. U
Induction step for the proof of the base case of Proposition 5.8.1: Suppose the proposition holds for
the case p(Ry) = 2and 7(R,) = --- = 1(R—,) = aand 7(R,) = - - - = 7(R,) = b forsome r < n. We
proceed to show that the proposition holds for the case 7(R,) = - - - = 7(R,) = aand

T(Ry,) =---=1(R,) =b

Proof of ¢(Ry)([a, b]) = 1:

We claim ¢(Ry)((b, 00)) = o. Suppose to the contrary that ¢(Ry)((b, 00)) > o. This means
¢(Ry)(U(b,R,)) < 1. Let R" € D*. By the base case, ¢(R', R_,)([a, b)) N 7(D)) = 1. Since b € 7(D) by
the definition of generalized intermediate domains ¢(R’, R_,)(U(b, R,)) = 1, and hence agent 1
manipulates at Ry by misreporting his/her preference as R’, a contradiction. Since ¢(Ry)((b, >0)) = o,
to show ¢(Ry)([a, b]) = 1, it is enough to show ¢(Ry)((—00, a)) = o. The proof of this follows by using
arguments similar to the proof of ¢(Ry)([a, b]) = 1 under “base case for the proof of the base case of

Proposition 5.8.1".

Proof of $(Ry)(7(D)) = 1: The proof of this follows by using arguments similar to the proof of
¢(Ry)(7(D)) = 1under “base case for the proof of the base case of Proposition 5.8.1”.
Induction step for the proof of Proposition 5.8.1: Suppose that the proposition holds when p(Ry) < I
for some | < n. We show that the same holds when p(Ry) = I+ 1.

Let x,(Ry) and x,(Ry) denote the numbers of agents whose top-ranked alternatives are the minimum
and the maximum, respectively, at the profile Ry. More formally,
k(Ry) = [{i | 7(R;)) < 7(R)) forallj € N'\ i}|and x,(Ry) = |{i | 7(R;) > 7(R;) forallj € N \ i}|. We
prove the proposition for this induction step by using another level of induction on the basis of the

numbers «,(Ry) and «, (Ry). We treat the case x,(Ry) = «,(Ry) = 1as the base case.

Base case for the proof of the induction step of Proposition 5.8.1: Suppose «,(Ry) = «,(Ry) = 1.
Without loss of generality assume that agent 1is the (unique) agent whose top-ranked alternative is the
minimum at Ry and agent 2 is the (unique) one whose top-ranked alternative is the maximum at Ry

Suppose 7(R,) = aand 7(R,) = b.
Proof of ¢(Ry)([a, b]) = 1:

We only show that ¢(Ry)((b, 00)) = o, using a similar argument it can be shown that
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¢(Ry)((—00, a)) = o, which will complete the proof of ¢(Ry)([a, b]) = 1 for the case at hand. Assume
for contradiction that ¢(Ry)((b, 00)) > o. Let R, be such that the top-ranked alternative at R/ is the
second minimum among the top-ranked alternatives at Ry, thatis, 7(R]) = min;« {7(R;)}. Since
p(R,R_,) = I, by means of the induction hypothesis, we have ¢(R/,R_,)([r(R!), b]) = 1and
¢(R,R_,)(7(D)) = 1. This, together with the fact that [t(R]), b] N 7(D) C U(b, R,), implies
¢(R,R_,)(U(b,R,)) = 1. On the other hand, because ¢(Ry)((b, o0)) > o, we have

¢(Ry)(U(b,R,)) < 1. Combining all these observations, it follows that agent 1 manipulates at Ry via R, a

contradiction.

Proof of ¢(Ry)(7(D)) = 1:

Let R be such that 7(R)) = min,.,{7(R;)}, U(a,R)) = U(z(R)),R,) N [a, 7(R])], and there exists
x € Asuchthat L(x,R)) = (—00, a). In other words, the top-ranked alternative at R/ is the second
minimum among the top-ranked alternatives at Ry, an alternative is (weakly) preferred to a at R if and
only if it lies in-between a and 7(R!) as well as is (weakly) preferred to 7(R!) at R,, and finally the
alternatives in the interval (—00, a) come at the bottom of the preference R.. By strategy-proofness,
¢(Ry)(D) = ¢(R/,R_,)(D) for all Borel sets D such that D N [a, (R])] = ().

Now, consider the preference R] of agent 2 such that 7(R}) = max;.,{r(R;)},

U(b,R)) = U(7(R)),R,) N [t(R.), b], and there exists y € A such that L(y,R) = (b, 00). Using
symmetric arguments as for agent 1 (in the last paragraph), we can show that (p(RN) (D) = ¢(R,,R_,)(D)
for all Borel sets D such that D N [z(R)), b] = (. Since p(R/,R_,) = p(R,,R_,) =],
hypothesis, ¢(R/,R_,)(7(D)) = ¢(R,,R_,)(7(D)) = 1. If p(Ry) = 3, then a < 1(R)=1(R) <b,
and hence [a, 7(R))] N [7(R)), b] = {r(R))}. On the other hand, if p(Ry) > 3, then

7(R)) < 7(R.) < b,and hence [a, 7(R))] N [r(R]), b] = 0. This, together with the fact that

p(Ry) = 1> 3,implies [a, 7(R)] N [7(R]), b] C 7(D). Combining all these observations, we obtain
$(Ru)(=(D)) =1

This completes the proof of the base case for the induction step of Proposition 5.8.1.

by the induction

Induction step for the proof of the induction step of Proposition 5.8.1: Suppose that the proposition
holds for all pairs of values of (k,(Ry), k,(Ry)) of the form (k,, k, + 1) and (k, + 1, k,) for some

k,, k, € Nsuch thatk, + k, + 1 < n. We proceed to show that the proposition holds when

(k,(Rn), x.(Ry)) = (k, +1,k, +1).

First, we explain how the induction hypothesis is compatible with our base case and how our induction
step completes the proof of Proposition 5.8.1. Suppose we want prove the proposition for the case
(k,(Ry), k,(Ry)) = (2,1). Then, our induction hypothesis requires that the proposition is already proved
for the cases (k,(Ry), k,(Ry)) = (1,1) and (x,(Ry), ,(Ry)) = (2,1). We have already proved the
proposition when (k,(Ry), ,(Ry)) = (1,1). Technically speaking, the case (x,(Ry), k,(Ry)) = (2, 0) is
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not defined since it means that there is no agent whose top-ranked alternative is the (hypothetical)
maximum of Ry, however practically this case boils down to the case where the number of different peaks
at Ry is I. Therefore, the proof of the proposition for this case follows from the induction hypothesis for
the proof of Proposition 5.8.1. So, we have the proposition for the case (x,(Ry), x,(Ry)) = (2,1). By
similar arguments, it can be proved for the case («,(Ry), x,(Ry)) = (2,1). Now, to prove it for the case
(k,(Rn), k,(Ry)) = (2,2), we require it to be proved for the cases (x,(Ry), x,(Ry)) = (2,1) and
(x,(Ry), x,(Ry)) = (1, 2), which are already proved in the previous step. Continuing in this manner, our
induction step proves the proposition for all values of (x,(Ry), x,(Ry))-

Let minien{7(R;)} = a and maxien{7(R;)} = b. Assume without loss of generality that 7(R,) = a
and 7(R,) = b.

Proof of ¢(Ry)([a, b]) = 1:

We only show ¢(Ry)((b, 00)) = o. This is sufficient since by a similar argument, we can show that
¢(Ry)((—00,a)) = o and conclude that ¢(Ry)([a, b]) = 1. Assume for contradiction that
¢(Ry)((b, 00)) > o. Let R/ be such that 7(R/) = min{z(R,), ..., 7(R,)}. Combining our induction
hypothesis with the facts that p(R/,R_,) = |, x,(R/,R_,) = k,,and «,(R/,R_,) = k, + 1, we obtain
¢(R,R_,)([a,b]) = 1and ¢(R],R_,)(7(D)) = 1. This, together with the fact that
[7(R),b] N 7(D) C U(b,R,), implies ¢(R/,R_,)(U(b, R,)) = 1. On the other hand, because
¢(Ry)((b, 00)) > o, we have ¢(Ry)(U(b,R,)) < 1. Combining all these observations, it follows that

agent 1 manipulates at Ry via R, a contradiction.

Proof of ¢(Ry)(7(D)) = 1:

Consider a preference R} of agent 1 satisfying the following conditions:
7(R)) = min{z(R,,...,7(R,))}, U(a,R)) = U(z(R)),R,) N [a,7(R)],and L(x, R)) = (—00, a) for
some x € A. By strategy-proofness, ¢(Ry)(D) = ¢(R/, R_,)(D) for all Borel sets D such that
DN [a,7(R)] = 0.

Now, consider a preference R. of agent 2 satisfying the following conditions:
7(R)) = max{7(R,), 7(R,), ..., 7(R,) }, U(b,R.) = U(z(R)),R,) N [t(R.), b],and L(y, R]) = (b, 00)
for some y € A. Using symmetric arguments as for agent 1, we can show that ¢(Ry)(D) = ¢(R.,R_,)(D)
for all Borel sets D such that D N [z(R)), b] = 0. Since «,(R/,R_,) = k,and «,(R/,R_,) = k, + 1, by the
induction hypothesis, (R, R_,)(7(D)) = 1. Similarly, since x,(R,,R_,) = k, + 1and x,(R/,R_,) = k,,
by the induction hypothesis ¢(R,, R_,)(7(D)) = 1. If p(Ry) = 3,thena < 7(R)) = 7(R)) < b, and
hence [a, 7(R))] N [r(R)), b] = {=(R!)}. On the other hand, if p(Ry) > 3,thena < 7(R!) < 7(R)) < b,
and hence [a, 7(R))] N [7(R)), b] = (). This, together with the fact that p(Ry) = I > 3, implies
[a,7(R))] N [(R)), b] C 7(D). Combining all these observations, we obtain ¢(Ry)(7(D)) = 1. This
completes the proof of Proposition §.8.1. |
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Now, we complete the proof of the theorem. Define ¢ : (D|(p))" = A1(D) as
(Z)B (Rn|:(p)) = ¢5(Ry) for all Borel sets B € (D). This is well-defined as by Proposition s.8.1,
¢.(p) (Ry) = 1forall Ry € D" and ¢ is tops-only. Since D|,(p) is a single-peaked domain, and hence
Theorem 5.4.1 follows from Theorem 4.1 in [46]. |

5.9 PROOF OF LEMMA §5.5.7
First we prove a lemma which we repeatedly use in the proof of Lemma s.5.7.

Lemma §.9.1 Let {P, }.cx be a strict intermediate domain. Then for all distinct a, b, c € A, the separating
lines of the pairs (a, b) and (b, ¢) do not intersect.

Proof: Let { P, },cx be a strict intermediate domain. Assume for contradiction that there exist distinct

a, b, c € A such that the separating lines of (a, b) and (b, c) intersect. Since {P, }cx is strict, no three
separating lines of { P, } .cx intersect at a common point. Therefore, we can choose an open (see Figure
5.9.1) ball such that no separating line other than those of the pairs (a, b) and (b, c) passes through that
open ball. Consider the regions X, and X, in Figure 5.9.1. Consider x € X,. Since aP,b and bP,c, by
transitivity, we have aP,c. Now, consider y € X,. Again, since bPa and cPb, by transitivity, we have cPa.
Since the relative preference over a and c is changing from X, to X,, it must be that the separating line of
(a, c) intersects at least one of these regions. However, this is a contradiction to our assumption that no
separating line other than those of (a, b) and (b, c) intersects this open ball. This completes the proof of

the lemma.
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Figure 5.9.1: A graphic illustration

Now we prove Lemma s.5.7. Proof: Let { P, } ,cx be a domain satisfying strict intermediate property.
Since the number of alternatives is finite, there are finitely many preferences in the domain {P, } ,cx.
Consider a preference P € {P, },cx. Let Xp = {x € X|P, = P}. Since there are finitely many preferences
in the domain {P, } .cx, we can find a finite collection of parallel lines {1, . . ., [ } such that for each
P € {P,}.ex thereexists € {I,, ..., I} such that Xp N1 # (). This implies that {P, }.cx = U {P, }.ci.-
Since {P, }cx satisfies strict intermediate property, there exists a line [ that intersects all the separating
lines (as defined in Lemma 5.5.6). We assume that (i) le {l,, ..., I}, and (ii) no /; passes through the
point of intersection of any two separating lines. This assumption is without of loss of generality because
for (i), we can start with  and can consider a collection of parallel lines satisfying the required properties,
and for (ii), since we have finitely many separating lines and hence finitely many points of intersection of
those, we can always choose the lines {1, . . ., I } by avoiding those points.

Now we show that U¥_ {P, } ¢ is a generalized intermediate domain satisfying minimal richness. We

show this using the following three claims.

Claim 1. Foreach! € {l,, ..., .}, the family of preferences { P, } ¢ is a generalized intermediate domain
satisfying minimal richness.

Consider! € {I,,...,L}. Letx,, ..., x, be the points of intersection of the line ] with the separating
lines of { P, } ,cx. Note thats < k since there can be separating lines of { P, } ,cx that do not intersect with 1.
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Assume without loss of generality that x; € (x;_,, x;4,) forallj € {2, ... s — 1}, thatis, the points
{x,,...,x} are ordered in a particular direction. Consider x € I'such thatx, € (x,x,). Such a point x
can always be chosen as Xis open and x, € X. Let P, = P,. By Lemma 5.5.6, P, = P, forally € [x,,). By
our assumption of x;, there exists a separating line, say for the pair of alternatives (a, b), that intersects  at
x,. This implies there exists P, € {P, } ) such that P, =P, forally € (x,,%,). By Lemma 5.5.6, P, and P,
differ only over the ordering of the pair (a, b). Again, by Lemma s.5.6, the preference P, is either P, or P,.
Continuing in this manner, we can get hold of a sequence of preferences {Pj}j€{17.,.75+1} such that (i)
{P.}eer ={P,,... Py, },and (ii) forallj = {2, ..., s}, P;and P;,, differ only over the ordering of a
particular pair of alternatives. This implies that { P, } .¢; is minimally rich.

Next, we show {P,, ..., P, } is a generalized intermediate domain with respect to the ordering given
by P,. Assume for contradiction that there exist ¢, d, e € A with cP,dP,esuch thatd,e € 7({P,,...,P.,})
and cPd forsome P € {P,,...,P,;,} with 7(P) = e. Let x, € Xbe such that P,, = P. Since
de€ r({P,...,P.,})and cPd, it follows that the separating line of the pair (c, d) intersects with I. Let x;
be this point of intersection. Since cPd by our assumption, x, € (x,, x;). Consider x; € X such that
7(P,,) = d. Such a point x; must exist since d € 7({P,, ..., P.;,}) Then, it must be that x; € (x,,x,).
Also, dP,e and ePd together imply x; € (x,, x,). But this contradicts the fact that x, € (x,, x;). This implies
that {P,, ..., P, } is a generalized intermediate domain completing the proof of Claim 1. ]

Recall that by our assumption,i € {l,,...,It}. Therefore, by applying Claim 1 for | = 1, it follows that
{P.} i is a minimally rich generalized intermediate domain with respect to some ordering, say <.

Suppose T({Px}xei) ={b,,...,b},whereb, < b, < ... <b,.

Claim 2. Foralll € {I,,..., [}, there exist sand t with1 < s < t < rsuch that {P, },¢ is a generalized
intermediate domain with 7({P, },c;) = {bs, ..., b}
Consider! € {I,,..., L} \ I Let Y15 - - - »¥q De the points of intersection of [ with the separating lines

such thaty; € (yj—,, yj4.) forallj € {2,...,q — 1}. Similarly, letx,, . . ., x, be the points of intersection
of | with the separating lines such that x; € (x;_,, x;1,) forallj € {2,...,p — 1}. Assume without loss of
generality that x,x, = y,y,, that is, the direction along which the points x,, . . . , x, are counted is the same
as that along which the points y,, . . . , y, are counted (see Figure 5.9.2).
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Figure 5.9.3: A graphic illustration
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Figure 5.9.2: A graphic illustration

First, we show 7({Py }xe1) € 7({Px},cj)- Consider b € T({P,}.ci). Assume for contradiction that
b & T({Ps},ci)- Since min_ 7({P,} ;) = b, this implies b, < b. Suppose b, < b. Then, it must be that

for all preferencesin {P, } ;, b, is ranked above b, and hence the separating line of the pair (b,, b) does

xel
not intersect with I. However, since b € 7({P, } 1), there must be a separating line of the pair (b,, b). This
is a contradiction to our assumption that Tintersects with all separating lines. This shows b < b,. Now,

suppose b, < b < b, where b, and b, are two consecutive alternatives (with respect to the ordering <) in
the top-set 7({P, },;)."” Since b, < b < b,and b ¢ 7({P,},.;), by Lemma s.5.6, there must be x,, x;and

xg with x; € (., xg) such that the separating lines of the pairs (b, b,), (b,, b,), and (b,, b) intersect [ at x,,

x€l A
x5, and x,, respectively. By Lemma §.9.1, no two of these separating lines intersect. Note that b = 7(P,)
for some z € X implies that z must be on the left side of the separating line of (b, b,) and on the right side
of the separating line of (b,, b) (see Figure 5.9.3). However, as it is evident from Figure 5.9.3, there cannot
be any such z. Moreover, this is true in general since the separating lines of (b, b,) and (b,, b) do not
intersect. This shows b € 7({P,}, ), and hence 7({P, }.ci) € t({P.}, o)

'"By consecutive in 7({P,} ), we mean (b, b,) N 7({Ps} 3) = 0.
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Next, we show that for all b, b,, b, such that b, b, € 7({P, },c;) and b, < b < b,, we have
b € 7({P,}+c1). Suppose not. Assume without loss of generality that b, and b, are consecutive in
T({P, }e1), thatis, (b, b,) N 7({P, }re1) = 0. Recall that by our assumption, all the separating lines of
{P, }xcx intersect 1. Suppose that the separating lines of the pairs (b,, b), (b,, b,), and (b, b,) intersect Tat
X, X5, and x,, respectively, where x; € (., xg). By Lemma §.9.1, no two of those three separating lines
intersect each other. This, together with the fact that b,, b, € 7({P, } /), implies that the separating lines
of the pairs (b,, b), (b, b,), and (b, b,) intersect [ at y, y;, and y;, respectively, where y; € (y1, ;) (see
Figure 5.9.4). By Lemma §.9.1, b, = 7(P,,) = b,. However, since bP,, b, and bP,,b,, it must be that

i

7(P,,) # by, b,. This is a contradiction since (b,, b,) N 7({P,},;) = 0. This completes the proof of

Claim 2. [l
(b,b,)  (bu,b,) (by,b)
i Xe xf / \xg
l Vh Vi Ji

X
Figure 5.9.4: A graphic illustration

Claim 3. Foralll € {I,,... It },allP € {P,},c;,and allb, € {b,, ..., b,}, P satisfies the betweenness
property with respect to b,.

Ifb, € 7({P,}.c1), then Claim 3 follows from Claim 2. Suppose b, ¢ 7({P, }.c1). Without loss of
generality, assume b, < b, where b, = min 7({P, } ;). Leta < b,. It is enough to show that b,Pa. Since
b, < b;and bPb, forall P € {P,},c, it must be that the separating line of (b,, b;) does not intersect I. Let
b, = max 7({P, }+c1). Suppose that the points of intersection of I with the separating lines of (a, b,),

(by, b), and (bs, by) are x,, x4, and x,, respectively. Because a < b, < b;and b, € 7({P,} ), we have
x4 € (x.,x,). By Lemma 5.9.1, separating lines of (a, b,) and (b,, b;) cannot intersect each other. This,
together with the fact that the separating line of (b,, b,) does not intersect /, implies that the separating

line of (a, b,) too does not intersect ! (see Figure 5.9.5). This, in particular, implies b,Pa, which completes

the proof of Claim 3. OJ
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Figure 5.9.5: A graphic illustration

Now, the proof of Lemma 5.5.7 follows from Claim 2 and Claim 3.

98



Restricted Probabilistic Fixed Ballot Rules and Hybrid

Domains

6.1 INTRODUCTION

Two familiar preference domains in the literature on mechanism design in voting environments are the
complete domain and the domain of single-peaked preferences. The complete domain arises naturally
when there are no a priori restrictions on preferences. The classic results of [ 56], [96] and [57] apply here.
According to them, requiring strategy-proofness forces the mechanism to be a dictatorship in the
deterministic case and to be a random dictatorship in the probabilistic case. Single-peaked preferences on
the other hand, require more structure on the set of alternatives. However, they arise naturally in a variety
of situations such as preference aggregation [ 19], strategic voting [72], public facility allocation [21], fair
division [100] and assignment [? ]. The single-peaked domain also admits well-behaved strategy-proof
social choice functions. In this paper, we propose a flexible preference domain that admits both the
complete domain and the single-peaked domain as special cases. We call them hybrid domains and
completely characterize unanimous and strategy-proof random social choice functions (or RSCFs) over the

hybrid domains. We refer to these random social choice functions as Restricted Probabilistic Fixed Ballots
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Rules (or RPFBRs) and analyze their salient properties. Finally, we provide an axiomatic justification of
hybrid domains and show that all domains that satisfy some richness properties must be hybrid.

We briefly recall the definition of single-peaked preferences. The set of alternatives is a finite set
A ={a,a,,...,a,} whichis endowed with the prior ordera, < a, < - - - < a,,. A preference ordering
over A is single-peaked if there exists a unique top-ranked alternative, say a;, such that preferences decline
when alternatives move “farther away” from a;. For instance, if “a, < a; < a; ora; < a, < a,”, then a; is
strictly preferred to a,. A preference is hybrid if there exist threshold alternatives a; and a; with a; < ag
such that preferences over the alternatives in the interval between a; and ay are “unrestricted” relative to
each other, while preferences over other alternatives retain features of single-peakedness. Thus, the set A
can be decomposed into three parts: left interval L = {a,, ..., a;}, rightinterval R = {ay, ..., a,} and
middle interval M = {ay, . . . , a}. Formally, a preference is (k, k)-hybrid if the following holds: (i) for a
voter whose best alternative lies in L (respectively in R), preferences over alternatives in the set L U R are
conventionally single-peaked, while preferences over alternatives in M are arbitrary subject to the
restriction that the best alternative in M is the left threshold a; (respectively, right threshold at), and (ii)
for a voter whose peak lies in M, preferences restricted to L U R are single-peaked but arbitrary over M.
Observe thatifk = 1and k = m, then preferences are unrestricted, while the case where k—k=1
coincides with the case of single-peaked preferences.

A (k, k)-hybrid preference is a preference ordering which is single-peaked everywhere except over the
alternatives in the middle interval. Consider the location of candidates in the forthcoming Democratic
party primary elections in the USA, in the usual political left-right spectrum. It is clear that candidates
such as Sanders and Warren belong to the left, while others such as Biden (perhaps) belong to the right.
However, there are several candidates who cannot easily be ordered in this manner. The typical reason is
that they are left on some issues and right on others. Hybrid preferences treat these candidates as ones
belonging to the middle part, and the hybrid domain reflects the reversals in the relative rankings of these
alternatives that arise from the underlying multidimensional issues. A more general way to model
departures from single-peaked preferences would be to consider several intervals of alternatives where
single-peakedness fails. However, as suggested by Theorem 6.7.2, this complicates the analysis
significantly without adding substantial new insights.

We study unanimous and strategy-proof RSCFs on hybrid domains. A RSCF associates a lottery over
alternatives to each profile of preferences. Randomization is a way to resolve conflicts of interest by
ensuring a measure of ex-ante fairness in the collective decision process. More importantly, it has recently
been shown that randomization significantly enlarges the scope of designing well-behaved mechanisms,
e.g., the compromise RSCF of [35] and the maximal-lottery mechanism of [25].

In order to define the notion of strategy-proofness, we follow the standard approach of [ 57]. For every
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voter, truthfully revealing her preference ordering must yield a lottery that stochastically dominates the
lottery arising from any unilateral misrepresentation of preferences according to the sincere preference.
Unanimity is a weak efficiency requirement which says that the alternative that is unanimously best at a
preference profile is selected with probability one.

The main theorem of the paper shows that a RSCF defined on the (k, k)-hybrid domain is unanimous
and strategy-proof if and only if it is a RPFBR (see Theorem 6.5.1). A RPFBR s a special case of a
Probabilistic Fixed Ballot Rule (or PFBR) introduced by [46]. A PFBR is specified by a collection of
probability distributions B, where S is a coalition of voters, over the set of alternatives. We formally call
B a probabilistic ballot. If k — k = 1, then a RPFBR reduces to a PFBR. However, if k — k > 1, thena
RPFBR requires an additional restriction on the probabilistic ballots: each voter i has a fixed probability
weight ¢; such that the probability of the right interval R according to B, is the total weight ) ¢ &; of the
voters in S and that of the left interval L is the total weight Zigs g; of the voters outside S.

We use our characterization result to investigate the the following classical decomposability question
on these domains: Can every unanimous and strategy-proof RSCF be decomposed as a mixture of finitely
many deterministic unanimous and strategy-proof social choice functions? Decomposability holds on
several well-known domains, for instance the complete domain [ 57] and the single-peaked domains
[81, 87]. Thus, decomposability holds for the cases whenk — k = 10ork — k = m — 1. Surprisingly, it
does not hold for any intermediate values of k and k. In other words, randomization non-trivially expands
the scope for designing strategy-proof mechanisms. We identify a necessary and sufficient condition for
decomposability under an additional assumption of anonymity, which requires the RSCF be
non-sensitive to the identities of voters (see Theorem 6.5.3). We further observe that non-decomposable
RPFBRs dominate almost all decomposable RPFBRs in recognizing social compromises.

Finally, we formally demonstrate the salience of hybrid domains. We consider connected domains,
where connectedness is a property of a graph that is induced by the domain. Essentially, connectedness
ensures the existence of a path from one preference to another by a sequence of specific preference
switches. Connected domains have been used extensively in the literature on strategic social choice [e.g.
71, 86, 95]. According to Theorem 6.7.2, every connected domain that satisfies the weak no-restoration
property of [95] and includes two completely reversed preferences must be a hybrid domain over which
the RPFBR characterization still holds. An important feature of this result is that the condition on the
domain does not specify an underlying structure of single-peakedness or threshold alternatives. These are
derived endogenously from our hypotheses.

The paper is organized as follows. Section 6.1.1 reviews the literature, while Section 6.2 sets out the
model and definitions. Section 6.3 and 6.4 introduce hybrid preferences and RPFBRs, respectively.

Section 6.5 presents the main characterization result as well as the result on decomposability. Section 6.7
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provides an axiomatic justification for hybrid domains.

6.1.1 RELATIONSHIP WITH THE LITERATURE

The analysis of strategy-proof deterministic social choice functions on single-peaked domains was
initiated by [72] and developed further by [12], [37] and [ 103 ]. In the deterministic setting, [75], [34],
[88], [29], [1] and [23] analyze the structure of unanimous and strategy-proof social choice functions on
domains closely related to single-peakedness.

The structure of unanimous and strategy-proof RSCFs on single-peaked domains was first studied by
[46]. They considered the case where the set of alternatives is an interval in the real line and characterized
the unanimous and strategy-proof RSCFs in terms of probabilistic fixed ballot rules. Recently, [91]
strengthen the characterization result on a single-peaked domain which does not require maximal
cardinality. Characterizations of unanimous and strategy-proof RSCFs as convex combinations of
counterpart deterministic social choice functions were provided by [81] and [87].

Recently, [83] have considered the case where the set of alternatives is endowed with a graph structure.
Single-peakedness is defined w.r.t. such graphs as in [40] and [34]. [83] investigate the structure of
unanimous and strategy-proof RSCFs. Their characterization result (Theorem 5.6 of [83]) implies our
Theorem 6.5.1 for a special graph structure. However, the extension of our result in Theorem 6.7.2 is more
general than their result since we do not assume a prespecified graph over the set of alternatives. In
particular, our result covers many domains that are excluded by theirs. Finally, we emphasize that the

motivation, formulation, and proof techniques in the two papers are completely different.

6.2 PRELIMINARIES

LetA = {a,,a,,...,a,} beafinite set of alternatives with m > 3. Let N = {1,2, ..., n} be a finite set of
voters with n > 2. Each voter i has a preference ordering P; (ie,a complete, transitive and antisymmetric
binary relation) over the alternatives. We interpret a,P;a; as “a; is strictly preferred to a; according to P;”.
For each1 < k < m, r(P;) denotes the kth ranked alternative in P;. We use the following notational
convention: P; = (aj a, a; - - - ) refers to a preference ordering where ay is first-ranked, 4 is
second-ranked, and 4, is third-ranked, while the rest of the rankings in P; are arbitrary.

We denote the set of all preference orderings by P, which we call the complete domain. A domain D
is a subset of P. We say that two distinct preferences P;, P, € D are adjacent, denoted P; ~ P, if there
exist a,, a; € A such that (i) ri(P;) = iy, (P)) = a;and r.(P)) = 14, (P;) = a;forsome1 <k <m —1,
and (ii) r;(P;) = ry(P)) foralll ¢ {k, k + 1}. In other words, alternatives a, and a; are consecutively

ranked in both P; and P/ and are swapped between the two preferences, while the ordering of all
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remaining alternatives is unchanged. In this case, we say alternatives a, and a; are locally switched between
P, and P.. Given distinct P;, P, € D, a sequence of preferences {P*}._ C D is called a path connecting P
and P/if P! = P, P' = Pland P* ~ P forallk = 1,...,t — 1. Two preferences P;, P, are completely
reversed if for all a, a; € A, we have [a,P,a;] < [a;Pja,].

A domain D is minimally rich if for each a; € A, there exists a preference P; € D such thatr,(P;) = a.
Throughout the paper, we assume the domain in question is minimally rich. A preference profile is an
n-tuple of preferences, ie, P = (P,,P,,...,P,) = (P, P_;) € D".

Let A(A) denote the space of all lotteries over A. An element 1 € A(A) is a lottery or a probability
distribution over A, where 1(a;) denotes the probability received by alternative a;. For notational
convenience, we let e, denote the degenerate lottery where alternative a; receives probability one. A
Random Social Choice Function (or RSCF) is a map ¢ : D" — A(A) which associates each preference
profile to alottery. Let ¢ (P) denote the probability assigned to a; by ¢ at the preference profile P. If a
RSCF selects a degenerate lottery at every preference profile, it is called a Deterministic Social Choice
Function (or DSCF). More formally, a DSCF is a mapping f : D" — A.

In this paper, we impose two basic axioms on RSCFs: unanimity and strategy-proofness. A RSCF
¢ : D" — A(A) isunanimous if forall P € D" and a; € A, [r,(P;) = a; foralli € N| = [¢(P) = e,,].
We adopt the first-order stochastic dominance notion of strategy-proofness proposed by [57]. This
requires the lottery from truthtelling stochastically dominate the lottery obtained by any
misrepresentation by any voter at any possible profile of other voters’ preferences. Formally, a RSCF
¢ : D" — A(A) is strategy-proof if foralli € N, P;, P, € Dand P_; € D", ¢(P;, P_;) stochastically
dominates ¢ (P}, P_;) according to P, i.e., qu ¢, by (Pi P—i) = Zf:l $,,(p, (Pi, P—;) forall
k =1,...,m.Inaddition,a RSCF ¢ : D" — A(A) satisfies the tops-only property if for all P, P’ € D",
we have [r,(P;) = r,(P]) forall i € N] = [¢(P) = ¢(P’)]. In other words, the tops-only property ensures
that the social outcome at each preference profile depends only on the first-ranked alternatives at that
preference profile.

An important class of unanimous and strategy-proof RSCFs is the class of random dictatorships.
Formally,a RSCF ¢ : D" — A(A) is a random dictatorship if there exists a “dictatorial coefficient”

;> oforeachi € Nwith) |, & = 1suchthat p(P) = > . €;e,(p) forall P € D" In particular, if
¢; = 1forsome i € N, the random dictatorship degenerates to a dictatorship. It is evident that every
random dictatorship is a mixture (equivalently, a convex combination) of dictatorships. [57] showed that
every unanimous and strategy-proof RSCF on the complete domain [P is a random dictatorship.

An important restricted domain is the domain of single-peaked preferences [19, 72]. A preference P; is
single-peaked w.r.t. a prior order < over A if for all a;, a; € A, we have

la, < a; < 1, (P;) or r,(P;) < a; < a;] = [a;P;a;]. Let D denote the single-peaked domain which
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contains all single-peaked preferences w.r.t. <. Whenever we do not mention the prior order <, we
assume that it is the natural order, a,_, < ai forallk = 2, ..., m. For notational convenience, let a; < a,
denote either a, < a; or a; = a;, and [a,, a;] = {a; € A : a, < ar =X a;} denote the set of alternatives
between g; and a; on <, provided a; < a;. Note that the single-peaked domain ID_, contains a pair of

completely reversed preferences P, = (a, - -+ ar_,ar - - a,)and P, = (a,, -+ axap_, -+ a,).!

6.3 HyBRID DOMAINS

Hybrid domains are supersets of single-peaked domains where single-peakedness may be violated over a
subset of alternatives that lie in the “middle” of the alternative set. We use the term “hybrid” to emphasize
the coexistence of such violations, with other features of single-peakedness.

Consider the natural order < over A. Fix two alternatives a; and a; with a; < ag, which we refer to as
the left threshold and the right threshold, respectively. We define three subsets of A using these two
thresholds: Left Interval L = [a,, a;/, Right Interval R = [ay, a,,] and Middle Interval M = [a;, af].> In
what follows, we present the structure of preference orderings in a hybrid domain.

Consider a preference ordering whose peak belongs to M (see the first diagram of Figure 6.3.1). The
ranking of the alternatives in M is completely arbitrary, while the ranking of the alternatives in L and R
follows the conventional single-peakedness restriction w.r.t. <. In other words, the only restriction that
the preference ordering satisfies is that preference declines as one moves from a; towards a,, or from ag
towards a,,. Note that this allows some alternatives in L or R be ranked above some alternatives in M.

Next, consider a preference ordering whose peak belongs to L (see the second diagram of Figure 6.3.1).
The ranking of the alternatives in L and R follows single-peakedness w.r.t. <. In other words, preference
declines as one moves from the peak towards a, or a;, or moves from a; towards a,,. Furthermore, all
alternatives in M are ranked below g, in an arbitrary manner. Notice that an alternative in R may be
ranked above some alternative in M, but can never be ranked above a;. For a preference ordering with the

peak in R, the restriction is analogous.

"The notation P, = (a, - - ag_,a -~ a,) and P; = (a, -+- arar_, - - - a,) denote the preferences P, and P, where
ar—,P,ag and a;P;ay_, forallk = 2,... m.
*Note that LN M = {a},RNM = {ag} and LN R = ().
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Figure 6.3.1: A graphic illustration of hybrid preference orderings

The formal definition of hybrid domains is given below.

Definition 6.3.1 Let < be the natural order over A and let 1 < k < k < m. A preference P; is called
(k, k)-hybrid if the following two conditions are satisfied:

(i) Foralla,, a, € Lora,,a, € R, [a, < a; < r,(P;) or r,(P;) < a, < a,] = [aPia,].

(ii) [r.(P:) € L] = [aPia, for alla, € M witha, # a; | and
[r.(P;) € R| = [agP;a; for all a, € M with a; # ag|.

Let Dy (k, k) denote the (k, k)-hybrid domain which contains all (k, k)-hybrid preference orderings.
Note that D C Dy(k, E) forall1 < k < k < m,and Dy (K, El) C Dy(k, E) forallk < k' < £ <k
Now, we explain the relation of hybrid domains with five important preference domains studied in the

literature.

The single-peaked domain: Consider a hybrid domain D (k, k) with k — k = 1. This means
M = {ay, a;} and L UR = A. Then, conditions (i) and (ii) of Definition 6.3.1 boil down to the
single-peakedness restriction (see the first diagram of Figure 6.3.2), and consequently, Dy (k, k) coincides

with the single-peaked domain D .

The complete domain: Consider the hybrid domain D(k, k) with k — k = m — 1 (equivalently, k = 1
and k = m). This means L = {a;}, R = {a;},and M = A. Then, both the conditions of Definition 6.3.1
become vacuous. In other words, no restriction is imposed on the preference orderings (see the second

diagram of Figure 6.3.2) in Dy(1, m), and consequently, Dy (1, m) becomes the complete domain PP.
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Figure 6.3.2: Two hybrid preferences with k —k=1and k —k =m —1

Multiple single-peaked domains: Hybrid domains generalize the notion of multiple single-peaked
domains introduced by [88]. Let Q = {<,}’_, s > 2 be a collection of linear orders over A. For each
order <, in Q, let the single-peaked domain w.r.t. <, be denoted by D_, . Then, the union Do = U;_ D_,
is called the multiple single-peaked domain w.rt. Q.3

One can first identify the maximum common left part Lq, of all orders { <, }5_, over A, and relabel all
alternatives of Lo = {a,,...,a;} (if Lo # 0), i.e, for all orders <, in Q, after relabeling, either
a, =, - =, ag <, a,foralla, € A\Lg,ora, <, ay <, -+ <, a,foralla, € A\Lg holds. Second, one
can symmetrically identify and relabel the maximum common right part Ry = {ag, ..., a,} C A\Lq of
all orders { <, }5_, over A (if Rg # ()) and finally arbitrarily relabel all remaining alternatives as
ktss - - - G5, We correspondingly relabel all alternatives in the preferences of D. Then, after setting a
and a as two thresholds, it is clear that each preference ordering in D is (k, k)-hybrid.* Usually, D, is
“strictly” contained in D (k, k). This will be illustrated in the following example.

Note that by definition, a multiple single-peaked domain cannot be a single-peaked domain, whereas a

hybrid domain can be single-peaked for a suitable choice of thresholds (when k — k = 1).

Multidimensional single-peaked domains in voting under constraints: We provide an example to
show that hybrid preferences arise from a model of voting under constraints studied in [13].

LetX =X, X X,, X, = {1,2,3,4,5} and X, = {1, 2,3}, where both X, and X, are ordered according to
the natural order, denoted by <, and <,. A preference P;, with r,(P;) = x, is multidimensional
single-peaked over X w.rt. <, and <, ifforall y, z € X, we have
[z <t yi <k xr or xp <p yr <; z; forboth k = 1,2] = [yP;z]. Meanwhile, let
A ={a,, a,,a,a,,as as} C Xbe the set of feasible alternatives, which are depicted by the black nodes in

Figure 6.3.3 below.

*If two orders <, and <, are completely reversed, the two single-peaked domains D, and D, become identical. Therefore,

we assume that there is no pair of orders in Q that are completely reversed.
*As Q contains at least two orders and no pair of orders are completely reversed, it must be the case that k — k > 1when

Lo # 0andRg # (. If Lg = (and Ry, # (), then Dy is (1, k)-hybrid, while ifLo # (and Rg = 0), then Dg is (k, m)-hybrid.
Ifboth Lg and R, are empty sets, then Do C P = Dy (1,m) and Do € Dy(k, k) for any other kand k.
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Figure 6.3.3: The Cartesian product of <, and <,

Note that in a multidimensional single-peaked preference, (i) if 4, is first-ranked, then a, must be
second-ranked within A, and a, is preferred to ag; if a, is first-ranked, then a is preferred to a4, and (ii) if
a, is first-ranked, then a, is better than a,, and 45 is better than as. Analogous preference restrictions over
the ranking of feasible alternatives are observed for multidimensional single-peaked preferences with
peaks ag, a; and a,. These two observations coincide with the two preference restrictions in the definition
of the (2, 5)-hybrid domain Dy (2, 5) if we rearrange all feasible alternatives according to the natural order
<. In conclusion, when we restrict attention to all multidimensional single-peaked preferences whose
peaks are feasible, the domain of induced preferences over the feasible alternatives is identical to Dy (2, 5).

We may alternatively extract the two linear orders <,= (a,4,a,a,a,a¢) and <,= (a,a,a,a,a,a5) over
feasible alternatives from Figure 6.3.3, and induce the multiple single-peaked domain D, U D_ . Notice
that D U DD_, is strictly contained in Dg(2, 5). For instance, a, and a, are always ranked above a, and a4
in every preference of D, U D, that has peak a,, whereas we can identify a particular multidimensional
single-peaked preference with peak g, that induces the preference ordering over feasible alternatives as
(a,a,a,a6a5a,).

This illustrates the additional flexibility that a hybrid domain affords, and may be useful for
formulations (for example, political economy or public goods location models) that seek to reduce a
model where the underlying issues are multidimensional, to one where the preference restriction is

generated via a one dimensional order over alternatives.

Semi-single-peaked domains: The notion of semi-single-peaked domains was introduced by [34].
Consider the natural order < and fix one threshold alternative. The semi-single-peakedness restriction on
a preference requires that (i) the usual single-peakedness restriction prevail in the interval between the
peak and the threshold, and (ii) each alternative located beyond the threshold be ranked below the
threshold.

One can extend the semi-single-peakedness notion by adding more thresholds and requiring
preferences to be semi-single-peaked w.r.t. each threshold alternative. In particular, suppose that there are
two distinct thresholds a; and ag with a; < ag. Consider a preference P; with a; < r,(P;) < ag. If P; is

(k, k)-hybrid, then the usual single-peakedness restriction prevails on the left and right intervals, and no
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restriction is imposed on the ranking of the alternatives in the middle interval (see the first diagram of
Figure 6.3.4). On the contrary, if P; is semi-single-peaked w.r.t. both a; and aj, then the single-peakedness
restriction prevails on the middle interval but fails on the left and right intervals (see the second diagram
of Figure 6.3.4). Thus, the notions of hybrid preferences and semi-single-peaked preferences are not
entirely compatible with each other.

[34] show that under a mild domain richness condition, semi-single-peakedness is necessary and

sufficient for the existence of a unanimous, anonymous, tops-only and strategy-proof DSCE.” This, in

particular, implies that when k — k > 1, the (k, k)-hybrid domain cannot admit such a well-behaved
strategy-proof DSCF.
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Figure 6.3.4: A hybrid preference v.s. a semi-single-peaked preference

6.4 RESTRICTED PROBABILISTIC FIXED BALLOT RULES

In this section, we introduce the notion of Restricted Probabilistic Fixed Ballot Rules (or RPFBRs). [46]

introduce the notion of Probabilistic Fixed Ballot Rules (or PEBR); RPFBRs are special cases of these
rules.

A PFBR ¢ is based on a collection of parameters (f)scn, called probabilistic ballots. Each

probabilistic ballot 3, which is associated to the coalition S C N, is a probability distribution on A
satisfying the following two properties.

« Ballot unanimity: 8, assigns probability 1 to a,, and f, assigns probability 1 to a,.

+ Monotonicity: probabilities according to ¢ move towards right as S gets bigger, i.e.,
Bs([ax, am)) < Br([ax, am)) forall S C Tandalla, € A

Recently, [29] introduce the semilattice single-peaked domain which significantly generalizes semi-single-peakedness, and

[23] characterize all unanimous, anonymous, tops-only and strategy-proof DSCFs on the semilattice single-peaked domain.
®For a subset B of A, we denote the probability of B according to B by B(B).
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For an example, suppose that there are two agents {1, 2} and four alternatives {a,, a,, a,, a, }. Then, a
choice of probabilistic ballots could be §, = (1,0,0,0), [3{1} = (0.5,0.2,0.1,0.2),

By = (0.4,0.3,0.2,0.1) and B, = (0,0, 0,1). Here, we denote by (x, y, w, z) a probability distribution
where a,, a,, a, and a, receive probabilities x, y, w and z, respectively.

APFBR ¢ w.rt. a collection of probabilistic ballots () scn works as follows. For each1 < k < m, let
S(k,P) = {i € N : ai < r,(P;)} be the set of agents whose peaks are not to the left of a;. Consider an
arbitrary preference profile P and an arbitrary alternative a;. We induce the probabilities f, ., ([ak, am))
and By, ) ([@k41; am]). I a = a,, thenset Bo . o ([@nr1, an]) = 0. The probability of the alternative
ay. selected at the preference profile P is defined as the difference between these two probabilities, i.e.,
¢, (P) = IBS(k,P) ([ak, am]) — ﬂS(HLP) ([ak41; am)).” For an example, consider the PFBR ¢ w.rt. the
parameters presented in the predecessor paragraph. Consider a preference profile P = (P,, P,) where

r.(P,) = a, and r,(P,) = a,. Then, we calculate

o (P) = Boipy @ a,]) = By, py (@ a]) = By([an a,)) — By([a, a,]) = o,

(P) = Bsipy ([, au]) — B py (a5, au]) = By(lan, a,]) — By ([ay,a]) =1 — 0.3 =07,

o (P) = By, py (a5, au]) = B, py (a0, au]) = B,y (a3, a,]) — By ([ay,a4]) =03 —01=o0.2, and
(P) (

Clearly, the PFBR satisfies the tops-only property.

It is worth mentioning that the probabilistic ballot 8¢ for a coalition S C N represents the outcome of ¢
at the “boundary profile” where agents in S have the preference P, = (a,, - - - aya;_, - - - a,), while the
others have the preference P, = (a, - - - ar_, a - -+ a,,). For ease of presentation, we call such a
preference profile a S-boundary profile.® If a PFBR ¢ is unanimous, then it follows that f; assigns
probability 1 to a, and B, assigns probability 1 to a,,, which in turn implies ballot unanimity. In what
follows, we argue that if ¢ is strategy-proof, then (B )scy must be monotonic. Consider a proper subset
S C Nandi € N\ S. Let Pand P’ be the S-boundary and S U {i}-boundary profiles, respectively. In
other words, only agent i changes her preference P; in the S U {i}-boundary profile to P,.
Strategy-proofness of ¢ implies that the probability of each upper contour set of P; is weakly increased
from ¢(P) to ¢(P’). Since the interval [a, a,,] coincides with the upper contour set of a; at P,, it follows
that B¢ ([ax, am]) < By, 0 ([ax, a,]). Monotonicity of (B;)scn follows from the repeated application of

this argument.

"Since S(k + 1,P) < S(k,P) and [axy.,an] C  [ar, ], monotonicity ensures ¢, (P) = By p ([ak, an]) —

:BS(k+1,P) ([ak41,am]) > o. Moreover, note that » , ¢, (P) = Y., lgs(k’l,)([a;c7 a,)) — :Bs(k+1,P) ([aktrs am]) =
Bs.p) ([ am]) = 1. Therefore, ¢(P) € A(A) and ¢ is a well defined RSCE.
8Note that for every S C N, there is a unique S-boundary profile.
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Note that the outcome of a PFBR at any preference profile is uniquely determined by its outcomes at
boundary profiles. It is shown in [46] that every PFBR is unanimous and strategy-proof on the
single-peaked domain. Thus, unanimity and strategy-proofness of a PFBR at every preference profile can
be ensured by imposing those only on the boundary profiles.

The deterministic versions of PFBRs can be obtained by additionally requiring the probabilistic ballots
be degenerate, i.e., fs(ar) € {o,1} forall S C Nand a; € A. These DSCFs were introduced by [72]; we
refer to these as Fixed Ballot Rules (or FBRs).” [72] showed that a DSCF is unanimous, tops-only and
strategy-proof on the single-peaked domain if and only if it is an FBR. It can be easily verified that an
arbitrary mixture of FBRs is unanimous and strategy-proof on the single-peaked domain, and is a PFBR.
Theorem 3 of [81] and Theorem 5 of [87] prove that the converse is also true.

Below, we present the formal definition of PFBRs.

Definition 6.4.1 ARSCF ¢ : D" — A(A) is called a Probabilistic Fixed Ballot Rule (or PFBR) if there
exists a collection of probabilistic ballots (B)sc satisfying ballot unanimity and monotonicity such that for all
P € D" and a; € A, we have

<Pak (P> = rgs(k,P)([akv am]) - BS(k+1,P)([ak+17 am])a

where ﬂs(mﬂ,P)([amﬂ, an)) = o.

We are now ready to present the notion of RPFBRs. The structure of a (k, k)-RPFBR depends on the
values of kand k. If k — k = 1, then the (k, k)-RPEBR is the same as a PFBR. However, if k — k > 1, then
the (k, k)-RPFBR is a PFBR whose probabilistic ballots satisfy the following additional restriction: for
each agent i € N, there is a “conditional dictatorial coefficient” £; > o with EiEN €; = 1such that for all
S C N, B([ag, am]) = D ics€iand B([a,, ai]) = ZieN\S ¢;. Note that this, in particular, means that no
B, assigns positive probability to an alternative that lies (strictly) between a; and ag, i.e., Bs(ar) = o forall

S C Nand a; € [ag4,, a;_,]- In what follows, we present an example of a RPFBR.

Example 6.4.2 LetN = {1,2,3} and A = {a,, a,,4,, a,, a,}. Take k = 2 and k = 4, and consider the
(2, 4)-hybrid domain Dy (2, 4). Lete, = ¢, = ¢, = i Consider the 8 probabilistic ballots in Table 6.4.1,
where both ballot unanimity and monotonicity can be easily verified. Note that they also satisfy the
property that B([a,, a;]) = > cs€iand Bo([a,, a,]) = ZiEN\S g;iforall § C N. Therefore, the PEBR
w.r.t. these probabilistic ballots is a (2, 4)-RPFBR. ]

°[72] called these Augmented Median Voter Rules, while [12] called these Generalized Median Voter Schemes. For an
FBR ¢, the subtraction form in Definition 6.4.1 can be simplified to a max-min form [see Definition 10.3 in 76]. [72] originally
defined an augmented median voter rule in the min-max form which can be equivalently translated to a max-min form.



Bo | By | By | Py | Broy | Prusy | Prosy | P
a, | 1 | 1/3 | 1/3 | 1/3 | 1/3 1/3 1/3 | o
a, | o | 1/3 | 1/3 | 1/3 o o o 0
a, | o | o o o 0o o 0o 0o
a, | o | o o o 1/3 | 1/3 1/3 | o
a, | o | 1/3 | 1/3 | 1/3 | 1/3 | 1/3 1/3 | 1

Table 6.4.1: The probabilistic ballots (8)scn

Below, we present a formal definition of RPFBRs.

Definition 6.4.3 Let1 < k < k < m. APFBR ¢ w.rt. probabilistic ballots (ﬁs)SQN is called a
(k, k)-Restricted Probabilistic Fixed Ballots Rule (or (k, k)-RPFBR) ifk — k > 1 implies that for each
i € N, there exists ¢; > owith ) ._ €; = 1such that for all S C N, B([ag, am]) = >

ﬁS([a” ak]) - ZiGN\S Ei.

ies Eiand

It is worth mentioning that when k — k > 1, at the preference profiles where all peaks are in the middle
interval M = [a, ag], a (k, k)-RPFBR behaves like a random dictatorship where each agent i's dictatorial
coefficient is ;. More formally, if ¢ is a (k, k)-RPFBR, then ¢(P) = > ien Ei €n(p,) for all preference
profile P such thatr,(P;) € [ay, af] foralli € N. Therefore, in the extreme case where k = 1and k=m,
the (1, m)-RPFBR reduces to a random dictatorship. For ease of presentation, we call the condition
satisfied by the probabilistic ballots ()scy in Definition 6.4.3 the constrained random-dictatorship

condition.

6.5 A CHARACTERIZATION OF UNANIMOUS AND STRATEGY-PROOF RSCFs oN HYBRID

DomMAINS

In this section, we provide a characterization of unanimous and strategy-proof RSCFs on hybrid domains.
Theorem 6.5.1 says that a RSCF ¢ is unanimous and strategy-proof on the (k, k)-hybrid domain if and
onlyifitisa (k, E) -RPFBR. [46] consider the case of continuum of alternatives (for instance, the interval
[0, 1]) and show that a RSCF is unanimous and strategy-proof on the single-peaked domain if and only if
it is a PFBR. Since when k — k = 1, the (k, k)-hybrid domain boils down to the single-peaked domain and
the (k, k)-RPFBR becomes a PFBR, Theorem 6.5.1 implies their result in the case of finite alternatives.

Theorem 6.5.1 Let1 <k < k < m ARSCF ¢ : []D)H(lg, E)] " — A(A) is unanimous and strategy-proof if
and only if it is a (k, k)-RPFBR.



We present a formal proof of Theorem 6.5.1 in Appendix 6.8. Here, we provide an intuitive explanation.
The “if part” of the theorem, i.e., the fact that every RPFBR on a hybrid domain is unanimous and
strategy-proof, intuitively follows from the observations: (i) the (k, k)-hybrid domain satisfies
single-peakedness on the intervals [a,, a;] and [ag, a,,], and (ii) the RPFBR behaves like a PFBR over these
intervals. For the “only-if part”, we first show how in a two-voter setting a PFBR fails to satisfy
strategy-proofness on the (k, k)-hybrid domain if any of its probabilistic ballots assigns a positive
probability to some alternative in the interval [a;,, a_|.

Consider the model with two agents. Suppose that some probabilistic ballot of ¢, say B, ,,, assigns a
strictly positive probability to some alternative a; € [ai,, a;_,|. First, by the definition of the
(k, k)-hybrid domain, there is a preference where a, is the first-ranked alternative and az is preferred to a.
Correspondingly, consider a preference profile where agent 1 has such a preference and the first-ranked
alternative of agent 2 is a. By the definition of PFBR, the probability of a at this profile equals (ar),
which is strictly positive by our assumption. However, using unanimity agent 1 can manipulate by
misreporting a preference that has a as the first-ranked alternative.'

An important point to note is that the aforementioned argument only indicates that a PEBR which is
strategy-proof on the (k, k)-hybrid domain is a (k, k)-RPFBR. In order to complete the verification of the
“only-if part”, a crucial step in the proof of Theorem 6.5.1 is to show that every unanimous and

strategy-proof RSCF on the hybrid domain is some PFBR.

6.5.1 DECOMPOSABILITY OF ANONYMOUS RPFBRS

In this section, we investigate the decomposability property of RSCFs. We say that a unanimous and
strategy-proof RSCF is decomposable if it can be expressed as a mixture (equivalently, a convex
combination) of finitely many unanimous and strategy-proof DSCFs. Formally, a unanimous and
strategy-proof RSCF ¢ : D" — A(A) is decomposable if there exist finitely many unanimous and
strategy-proof DSCFs f* : D" — A,k =1,...,qand weights &', ..., a? > owith > 1 a* = 1, such that
¢(P) = Y[ a“ex(p) forallP € D"

Decomposability is an important property of RSCFs and has been widely investigated in a large class of
domains [e.g., 54, 57, 81, 87]. As mentioned earlier, when k — k =1, the (k, E) -hybrid domain coincides
with the single-peaked domain, and the (k, k)-RPFBR becomes a PRBR. It is shown in [81] and [87] that
every PFBR is a mixture of their deterministic counterparts. In the other extreme case where
k — k = m — 1, every (k, k)-RPFBR becomes a random dictatorship, which is, by definition, a mixture of
dictatorships. Thus, a (k, k)-RPFBR is decomposable when k — k = 10rk — k = m — 1. However, for the

%Note that the strength of unanimity reduces considerably as the number of agents increases. So, the argument presented
above does not extend straightforwardly to the case of arbitrary number of agents. We provide these details in our formal proof.



remaining cases 1 < k — k < m — 1, we observe that decomposability fails in some RPFBRs (see
Example 6.6.1 below). A complete characterization of decomposable RPFBRs in the general case, appears
to be difficult.In this section, we investigate the decomposition of anonymous RPFBRs for the remaining
cases1 < k —k < m — 1.1

Formally,a RSCF ¢ : D" — A(A) is anonymous if for all permutations ¢ : N — N and profile
(P,,...,P,) € D", wehave ¢(P,,...,P,) = (/)(PU(I), .. ,P(,(,,)). More specifically, one can easily verify
that a (k, k)-RPFBR ¢ : []D)H (k, E)] " — A(A) is anonymous if and only if all probabilistic ballots are
invariant to the size of coalitions, i.e., for all nonempty S, §" C N with |S| = |S'|, we have ; = f,. For
instance, recall the probabilistic ballots in Table 6.4.1. The corresponding RPFBR is anonymous.

We next provide a necessary and sufficient condition, per-capita monotonicity, for the decomposition of
all anonymous RPFBRs. Consider a (k, k)-RPFBR ¢ w.r.t. the probabilistic ballots (3 s)scn- Recall the
left interval L = [a,, a;] and the right interval R = [ag, a,,]. This condition imposes two restrictions that
strengthen the monotonicity requirement between the probabilistic ballots of two nonempty coalitions
S,S" C NwithS C §'. The first restriction says that the average probability, \%II
R for the coalition §' is at least as much as the counterpart for the coalition S, i.e., forall a; € R,

By lavan)) < By(lavan])
T2

, of any interval [a;, a,,] in

. The second restriction is the analogue of the first one. Here, we consider any
interval [a,, ;] in L and the respective complements of §’ and S. Recall from the constrained
random-dictatorship condition that the probabilities f, ,([a, a,]) and sl [a,, a;]) are related to the

conditional dictatorial coeflicients of voters in S’ and S respectively. We require here that the average
,BN\s’ ([a1,a5]) ﬁN\S([al,as])

probability 57 §

be weakly higher than
Definition 6.5.2 ARPFBR ¢ : [Dy(k,k)|" — A(A) satisfies per-capita monotonicity if, for all nonempty

SCS CN,a, € Rand a, € L, we have

ﬂs/([at? ap)) > ﬁ]([at’ ) and IBN\S’([‘ZU“S]) > ﬂN\S([al,as])
£ BN |S'] B N

Our main theorem of this section says that per-capita monotonicity is both necessary and sufficient for

the decomposability of anonymous RPFBRs. The proof of Theorem 6.5.3 is contained in Appendix 6.9.

Theorem 6.5.3 Let1 < k — k < m — 1. Then, an anonymous (k, k)-RPFBR ¢ : []D)H(l_c, E)} " A(A)is
decomposable if and only if it satisfies per-capita monotonicity.

To conclude this section, we observe using an example that a non-decomposable RPFBR may

dominate a decomposable one in terms of admitting “social compromises”. This indicates that

1t is important to mention that in the case1 < k—k < m—1, Theorem 6.5.1 implies that there exists no anonymous, unan-
imous and strategy-proof DSCFs on the (k, k)-hybrid domain. Therefore, the decomposition of an anonymous (k, k)-RPFBR
(if it exists) is a mixture of finitely many unanimous and strategy-proof DSCFs, all of which violate anonymity.
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randomization enhances possibilities for economic design in a meaningful way, since the
non-decomposable RPFBRs we characterize may allow for more flexibility in assigning probabilities to

compromise alternatives.

Example 6.5.4 Let N = {1,2,3} and A = {a,, a,, a;, a,, a, }. Recall the (2, 4)-hybrid domain Dy(2, 4)

and the probabilistic ballots ()scy in Table 6.4.1. It is easy to verify that () sc satisfy ballot unanimity,

monotonicity and the constrained random-dictatorship condition when the conditional dictatorial

coeflicientsaree, = ¢, = ¢, = § , and are invariant to the size of coalitions. Therefore, the PFBR

¢ : [Du(2,4)]” = A(A) wrt. (Bg)sc is an anonymous (2, 4)-RPFBR. Furthermore, it can be verified
Pon(@) _ 1 1 _ @) 4

that ¢ is not decomposable as it fails to satisfy per-capita monotonicity, i.e., Bl =6 <5 = 1

6.6 OTHER RESULTS ON DECOMPOSABILITY

Throughout this section, we restrict attention to the (k, k)-hybrid domain Dy (k, k) where

1 < k — k < m — 1,and establish three main results related to the decomposition of (k, k)-RPFBRs. First,
we show that every two-voter (k, k)-RPFBR is unconditionally decomposable (see Proposition 6.6.1).
Second, we provide an example of a non-decomposable (k, k)-RPFBR in the case of more than two
voters, and furthermore identify a necessary condition for the decomposition of a general (k, k)-RPFBR
(see Proposition 6.6.2). Last, we develop a notion of dominance for comparing RPFBRs. A RPFBR s
said to dominate another one in admitting compromises if the former assigns to a social compromise
alternative, at least as much probability as the latter at every preference profile, and a strictly higher
probability at some preference profile. Accordingly, we characterize all RPFBRs that are dominated in
admitting compromises, and investigate the salience of non-decomposability by identifying a condition
under which each anonymous decomposable (k, k)-RPFBR is dominated by another anonymous

non-decomposable (k, k)-RPFBR in admitting compromises (see Proposition 6.6.3).

The proposition below shows by construction that every two-voter RPFBR is decomposable.
Proposition 6.6.1 Every two-voter strategy-proof (k, k)-RPFBR ¢ : [Du(k,k)|* — A(A) is decomposable.

For the case of more than two voters, the unconditional decomposition result of Proposition 6.6.1 fails.

We first provide an example to illustrate the existence of a non-decomposable (k, k)-RPFBR.

Example 6.6.1 Letn > 3andA = {a,,...,a,}. Consider the (1,m — 1)-hybrid domain Dy (1, m — 1).

We assign voters 1, 2 and 3 the conditional dictatorial coefficients €, = 0.3, &, = 0.3 and €; = 0.4, make

114



all other voters dummies, i.e., £; = o foralli ¢ {1, 2,3}, and specify the probabilistic ballots below:

; { 0.4€,, + 0.3, , + 0.3e, if {1,2,3} NS ={1,3} or {2,3}, and
S =

Zies €ieq, T ZjeN\S €j g, otherwise.

It is easy to verify that the probabilistic ballots (B )sc satisfy ballot unanimity, monotonicity and the
constrained random-dictatorship condition. Therefore, the corresponding PFBR
¢ []D)H(1, m — 1)}’1 — A(A)isa (1,m —1)-RPFBR.

We show that ¢ is not decomposable by contradiction. Suppose not, i.e., there are (1,m — 1)-RFBRs
£ Du(,m—1)]" = A k=1,...,q and weights a', ... ,a? > owith Y 1_ a* = 1such that
o(P) =S} akeﬁ(p) forall P € [Dy(1,m — 1)]". According to the coalitions {1}, {3} and {1,3}, we

induce the following contradiction:

q
0.4 = By, y(an) = Y a1(bf, ) = an)

k=

=

q
— akl(ik =1and bIEl,S} = am) + Z ak1 (ik —3 and b§1,3} _ am)

k= k=1
q q
k k _

=2 ah(y = +Z‘“b{s} an)

k=1 =1
= By (an) + By (an)
= o0.7.

Therefore, ¢ is not decomposable. O

In what follows, we generalize the inequality B, ., (an) > By,)(am) + By} () in Example 6.6.1, and
establish a necessary condition, the scale-effect condition, for the decomposition of RPFBRs. Consider a
(k, k)-RPFBR ¢ with the probabilistic ballots (3 s)scn- Recall that L and R denote the intervals [a,, ai]
and [ag, a,,), respectively. The scale-effect condition imposes two restrictions on the probabilistic ballots.
Firstly, the probability of any right interval towards a,, in a probabilistic ballot, which is associated to the
union of two disjoint nonempty coalitions S, T C N, is at least as much as the sum of these two coalitions’
counterpart probabilities, i.e., for all a, € R, ﬁSUT([at, Am]) > ﬂs([at, am)) + ﬁT([at, a,,)). The second
restriction is, in some sense, the complement of the first one. Here we consider left intervals towards a,,

and take the sum of probabilities over the complement of S and the complement of T. Technically, it says

that for all a; € L, we have B, ;g y([a1, a]) = By s([a1, a]) + By o([a, a]).-
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Definition 6.6.2 A (k, k)-RPFBR ¢ : [Du(k,k)]" — A(A), n > 3, satisfies the scale-effect condition if
for all nonempty S, T C NwithSN T = (), a; € Rand a, € L, we have

ﬂSUT([ah am]) 2 ﬂs([at’ am]) + ﬂT([ab arn]) and ﬁN\[SUT]([aU aS]) > ﬂN\s([an aSD + ﬁN\T([aU ‘JS])'

Proposition 6.6.2 below shows that the scale-effect condition is necessary for the decomposition of a
(k, k)-RPFBR.

Proposition 6.6.2 A (k,k)-RPFBR ¢ : [Du(k,k)|" — A(A) is decomposable only if it satisfies the

scale-effect condition.

Last, we analyze the entire class of RPFBRs from the perspective of admitting social compromises.
Given a preference profile P, we recognize an alternative a; as a social compromise alternative if some voters
disagree on the peaks while all voters agree on 4y as the second best. Formally, given a preference domain
D,letC(D") = {P € D" : r,(P;) # r,(P;) forsome i,j € N, and r,(P,) = - - - = r,(P,) } denote the set
of preference profiles which have the social compromise alternatives. Moreover, given P € C(ID"), let the
common second best alternative c(P) = r,(P,) = - - - = r,(P,) denote the social compromise alternative.

We compare RPFBRs according to the probabilities they assign to social compromise alternatives.

Definition 6.6.3 A RSCF ¢ : D" — A dominates another RSCF ¢ : D" — A in admitting compromises
if we have ¢ p) (P) > () (P) forallP € C(D") and b.(p) (P) > () (P) for some P € C(D").

The proposition below characterizes all RPFBRs that are dominated in admitting compromises, and
identify a condition under which an anonymous decomposable RPFBR is dominated by an anonymous

non-decomposable one.

Proposition 6.6.3 Let1 < k < k < mandk — k > 1. Fixing a (k, k)-RPFBR ¢ : [DH(k, E)}n — A(A),

n > 3, let (B;)scn be the corresponding probabilistic ballots. RPFBR ¢ is dominated in admitting compromises
if and only if there exists S C N with |S| = n — 1 such that fg(a,,) > o or ﬁN\S(al) > o. Furthermore, let ¢ be
anonymous and decomposable. If there exists S C N with |S| = n — 2 such that B(a,,) > o or IBN\S(al) > o,

then @ is dominated in admitting compromises by an anonymous non-decomposable (k, k)-RPEBR.

6.7 THE SALIENCE OF HYBRID DoMAINS AND RPFBRS

Our purpose in this section is two-fold. We first propose an axiomatic justification of hybrid domains.
Specifically, we show that any domain that satisfies certain “connectedness” and “richness” properties

must be contained in a hybrid domain (say the (k, k)-hybrid domain). Secondly, and more importantly,
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the set of unanimous and strategy-proof RSCFs on this domain is precisely the set of unanimous and
strategy-proof RSCFs on the (k, k)-hybrid domain, i.e., (k, k)-RPFBRs. Thus, the set of unanimous and
strategy-proof RSCFs on such a domain is the set of RPFBRs associated with the minimal hybrid domain
in which it is embedded.

Recall the notions of adjacency and path introduced in the beginning of Section 6.2. A domain is said
connected if every pair of two distinct preferences is connected by a path in the domain. We restrict

attention to a class of connected domains which in addition satisfies the weak no-restoration property of

[95].

Definition 6.7.1 A domain D satisfies the weak no-restoration property if for all distinct P;, P, € D and
ay, a, € A, there exists a path {Pf};_, C I connecting P; and P/ such that we have

[apr.C* a, and aqu*ﬂap forsome 1 < k" < ]

= [a,Pfa, forallk =1,....k*, and a,Pa, forall | = k* +1,... 1.

Evidently, the weak no-restoration property implies connectedness, and suggests that according to each
pair of alternatives a, and a,, one path can be constructed in the domain to reconcile the difference of P;
and P; shortly in the manner that the relative ranking of a, and a,, is switched for at most once on the path.
In particular, if a, and a, are identically ranked in P; and P;, then their relative ranking does not change
along the path.

Proposition 3.2 of [95] shows that the weak no-restoration property is necessary for all DSCFs which
only forbid misrepresentations of preferences that are adjacent to the sincere one, to retain
strategy-proofness. The weak no-restoration property is satisfied by many important voting domains in
the literature, e.g., the complete domain, the single-peaked domain and some multiple single-peaked
domains, and also covers our hybrid domains (see the proof of Fact 6.8 in Appendix 6.14,).

Our last result establishes two features of domains that satisfy the weak no-restoration property and
include two completely reversed preferences. The first is that every such domain is a subset of some
hybrid domain. The second is that every unanimous and strategy-proof RSCF on such a domain is a

RPFBR. The proof Theorem 6.7.2 is available in Appendix 6.13.
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Theorem 6.7.2 Let domain I satisfy the weak no-restoration property and contain two completely reversed
preferences. Then, there exist1 < k < k < m such that D C Dy(k, k) and D 7 Dy(K, E/) where k' > k or
K < k. Moreover, a RSCF ¢ : D" — A(A) is unanimous and strategy-proof if and only if it is a (k, k)-RPFBR,

where k and k are as described above.

APPENDIX

6.8 PROOF OF THEOREM 6.5.1

When k — k = 1, Dy (k, k) = D, and then Theorem 6.5.1 follows from Theorem 4.1 and Proposition s.2
of [46]. Henceforth, we assume k — k > 1.

(Sufficiency part) Let¢ : []D)H (k, E)] " — A(A) be a (k, k)-RPFBR. First, ballot unanimity implies
that ¢ is unanimous. We next show strategy-proofness of ¢ in two steps. In the first step, we introduce a
notion weaker than strategy-proofness, local strategy-proofness, which only requires a RSCF be immune to
the misrepresentation of preferences that are adjacent to the sincere one.'* Fact 6.8 below shows that
every locally strategy-proof RSCF on Dy (k, k) is strategy-proof. In the second step, we show that ¢ is
locally strategy-proof.

Every locally strategy-proof RSCF on Dy (k, k) is strategy-proof.

By Theorem 1 of [38], to prove Fact 6.8, it suffices to show that Dy (k, k) satisfies the no-restoration
property of [95 ]. Therefore, the verification of Fact 6.8 is independent of RPFBR ¢, and for ease of
presentation, is delegated to Appendix 6.14.

Now, to complete the verification, we show that ¢ is locally strategy-proof. Fixing i € N,

P, P, € Dy(k, E) with P, ~ Pland P_; € []D)H (k, E)} "' we show that ¢(P;, P_;) stochastically
dominates ¢(P}, P_;) according to P;. Let r,(P;) = a,and r,(P,) = a,. Evidently, if a, = a;, the tops-only
property implies ¢(P;, P_;) = ¢ (P}, P_;). Next, assume a, 7 a;. Then, P; ~ P, implies

r(P;) = r,(P)) = a,r(P)) = r.,(P;) = a;and r(P;) = ri(P]) forall k ¢ {1,2}. Thus, to show local

strategy-proofness, it suffices to show the following condition:

o (P

)= 4, (PLP_) or ¢, (PuP_) < 4, (PP, and
o (P =¢

7P G\ i
P (#)

¢
¢ ak(P;,P,,-) forall a; ¢ {a;,a:}.

By the definition of Dy (k, k), P; ~ P! implies one of the following three cases: (i) a;, a; € L and
a; € {a,_,, a1, }, (ii) a5, a; € Rand a; € {a,_,, a.,,}, and (iii) a;, a; € M. Note that the first two cases

?Formally, a RSCF ¢ : D" — A(A) is locally strategy-proof if foralli € N, P;, P/ € Dwith P; ~ Pl and P_; € D",
¢(P;, P_;) stochastically dominates ¢ (P}, P_;) according to P;.
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are symmetric. Therefore, we focus on cases (i) and (ii).
CLAIM 1: In case (i), condition (#) holds.

Ifa; = a,_,, then we know S(s, (P;, P_;)) D S(s, (P, P_;)) and S(k, (P;, P_;)) = S(k, (P}, P_;)) forall
ar € A\{a,}, and derive

¢, (Pi, P—y) = ﬁs(s,(p,.,p_,-))([aw an]) — ﬁS(s+1,(P,v,P_,-))<[a5+l7 )
> [38(%(},{,},4))([615, am)) — ,Bs(s_s_h(P{,Pii))([asﬂ, a,]) by monotonicity

= Sbas(Pl{’P_i)7

and forall a; ¢ {a,_,,a},

(Pak(Pi’P_i) = lgs(k,(Pi,Pfi

= ﬁs(k,(P{,P_i))([ak7 an]) — ﬁs(k+1,(P{,P_i))([ak+17 an]) = (Puk(Pf,P,,-).

))([aka am]) - ﬁs(k+1,(pi,p,i)) ([ak-i-n am])

Ifa; = a,,, then we know S(s + 1, (P;, P_;)) C S(s + 1, (P}, P_;)) and
S(k, (P;,P_;)) = S(k, (P}, P_;)) forall a, € A\{a,4,}, and derive

¢as+, (Pia P*i) = ﬂs(s+1,(pi,p_i))9([as+1> arH]) - ﬂs(5+2,(p,-,p_i))([as+2a am])
S IBS(S+1,(P;,P7i)) ([as+1, am]) - ﬁs(s+27(P{,P7i)) ([as+2, am]) by monotonicity

= ¢a5+1 (Pj’ P_i)'
and forall a; ¢ {a;, a.+,},
(Pak (Pi7 P—i) = ﬁS(k,(P,’,Pﬂ-))qak’ am]) - lBS(k—i-l,(Pi,Pfi)) ([ak—i-u am])
= Bt -y (a0 n]) = By 1,0 (3101 3n]) = ¢, (P, P

This completes the verification of the claim.
CrAIM 2: In case (iii), condition (#) holds.

We assume a; < a;. The verification related to the situation a; < g, is symmetric, and we hence omit it.

First, note that S(ay, (P;, P_;)) = S(ax, (P}, P_;)) forall a; € A witha; < a;ora, < a;. Then, for each
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ar € Awith g, < a;ora, < ai, we have

(Pak (P, P—y) = ﬂs(k,(pi,p_i))<[aka an)) — ﬂs(kﬂ,(php_[))([ak—i-u an))
= ﬁs(k,(p{,p_i))([ak> am|) — ﬁs(k+1,(P{,P_i))([ak+la an)) = ¢ak (P;> P_j).

Next, given a; < a; < a, we know a; < a; < agand a; < a4, = ag. Then, Definition 6.4.3 implies
that forall S C N, B, ([ax, a,]) = Z]‘es €; = Bg([@k11, am)). Moreover, note that
S(k, (P P )\S(k -+ 1, (B ) = §j € N\{i} : 1(B)) = a} = S(k, (P, P_)\S(k + 1, (P}, P_.).

Therefore, we have

(Pak (Pi? P*i) = ﬂs(k,(pi,p_[))qak? am}) - ﬂs(kﬂ,(p,»,p_i))([akﬂa QM])

jes(ka(Pivpfi))\S(k+17(Pi7P*i))

= gj
GES (ks (P, P—i))\S(k+1,(P},P—))

= ﬁs(k,(p;,p,,.))([aka an]) — ﬂs(k+1,(p;,p,,.))([ak+u ay)) = Sbak(P;’P—i)-

Overall, we have ¢, (P,P_;) = ¢ _(P],P_;)foralla; ¢ {a, a;}. Last, since a; < a, implies

K

S(s, (P;,P_;)) D S(s, (P}, P_;)) and S(ast., (P;, P—;)) = S(asts, (P, P—;)), we have

¢, (Pi, P—;) = ﬂs(s,(pi,p_,-))([asv an]) — ﬁS(SJrl,(Pi,P_i))([aS‘FU @n))
> l;S(s,(P{,P_,-))([as’ a)) — [35(5+1,(P{,P_i))([a5+1, a,]) by monotonicity

= (Pas(Pl{aP—i)'

This completes the verification of the claim.

Therefore, ¢ is locally strategy-proof, as required. This hence completes the verification of the

sufficiency part of Theorem 6.5.1.

(Necessitypart) Let¢ : [Dy(k, k)] " — A(A) be a unanimous and strategy-proof RSCE. Since

D C Dy(k, k), we can elicit a unanimous and strategy-proof RSCF ¢ : [D<]" — A(A) such that

¢(P) = ¢(P) forall P € [D.]". First, Theorem 3 of [81] or Theorem 5 of [87] and Proposition 3 of [72]
together imply that ¢ is a mixture of finitely many FBRs. Then, it follows immediately that ¢ is a PFBR.
Let (B;)scn be the probabilistic ballots of ¢. Evidently, (B)scy satisfies ballot unanimity and
monotonicity. Next, by the proof of Fact 6.8 and Proposition 1 of [31], we know that ¢ satisfies the
tops-only property. Last, since both D, and D (k, k) are minimally rich, the tops-only property of ¢
implies that ¢ is also a PEBR and inherits ¢’s probabilistic ballots (B )scn. Therefore, for all
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Pe []D)H(I_c, E)}n and g, € A, we have ¢, (P) = ﬁS(k,P)([ak’ ap)) — ,BS(HI’P)([akJH, a,)), where
Bstmis.p) ([amt; an]) = 0. To complete the proof, we show that ¢ is a (k, k)-RPFBR.

LetD = {P,— € Du(k, k) : r(P;) € M } denote the subdomain of hybrid preferences whose peaks are
in M. Since [M| > 3 and ID has no restriction on the ranking of alternatives in M, according to the random
dictatorship characterization theorem of [ 57], we easily infer that there exists a “conditional dictatorial
coefficient” £; > o foreachi € Nwith ) ,_y & = 1suchthat $(P) = > .\ &, (p,) forall
Pe [DH(I_C, E)} " with r.(P;) € Mforalli € N.

Fix an arbitrary coalition § C N. We first show B ([ag, a..]) = g €;- We construct a profile
Pe []D)H (k, E)} " where every voter of S has the preference with the peak ar and all other voters have the

preference with the peak a;. Thus, S = S(k, P) and ¢(P) = Z;es Ej €ar + Z;‘eN\s £j €q,- We then have

ﬁs([‘ﬁv ay]) = ﬂs(ﬁp)([aﬂ ay]) = ZZ:E [:Bs(k,P)([afw am]—ﬂs(k—f—l,P)([ak-i-lv am])] = ZZ:E (Pak(P> =
(PaE(P*) - ZjGS &j-

Last, we show B([a,, ar]) = E].GN\S g;. Since
Bs(la, a]) = 1 = Bs(lag an]) — Bsllaerss ap]) = D iems &5 — Bsl[aet, g ]), it suffices to show
Bs(ar) = oforallay € [ag;,, a;_,]. Givenay < a; < ag, since S(k,P) = S = S(k + 1, P), we have
Bs(ar) = Bs(lae, anl) = By([acss an)) = By (86 @n)) = Bogrnry (3611 @n]) = ¢, (P) = o, s

required. This completes the verification of the necessity part of Theorem 6.5.1.

6.9 PROOF OF THEOREM 6.5.3

We first show the sufficiency part of Theorem 6.5.3, and then turn to proving the necessity part. Before
proceeding the proof, we formally introduce the deterministic version of a (k, k)-RPEBR, which we call a
(k, k)-Restricted Fixed Ballot Rule (or (k, k)-RFBR).

Definition 6.9.1 ADSCFf: [Dy(k, k)] " — A(A) is called a (k, k)-Restricted Fixed Ballot Rule (or
(k, k)-RFBR) if it is an FBR, i.e, there exists a collection of deterministic ballots (bs)sc y satisfying ballot
unanimity, i.e, by = a,, and by = a,, and monotonicity, i, [S C T C N| = [bs = br|, such that for all
P € [Du(k,k)]", we have f(P) = max™ (min< (rn(P), bs)>, and in addition, (bs)scy satisfy the

SCN jes
constrained dictatorship condition, i.e, k — k > 1implies that there exists i € N such that

i€ S| = [bs€R]and]i ¢ S] = [bs € L].

(Sufficiency part) Fixing an anonymous (k, k)-RPFBR ¢ : [Dg(k, k)] — A(A), assume that ¢ satisfy
per-capita monotonicity. Let () scn be the corresponding probabilistic ballots. By anonymity and the
constrained random-dictatorship condition, f; = B, for all nonempty S, & C N with |S| = [§'|, and

each voter has the conditional dictatorial coefficient ~. We are going to decompose ¢ as a mixture of
finitely many (k, k)-RFBRs.
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We provide some new notation which will be repeatedly used in the proof. Given S C N, let
supp(Bs) = {ar € A : By(ar) > o} denote the support of B;. Given S C Nwith S # () and N\S # 0, the
constrained random-dictatorship condition implies supp(B;) N R # 0 and supp(B,) N L # . Hence, we
define

bX = min~ (supp(Bg) NR) and b = max™ (supp(Bs) NL).

Evidently, i)g < i)? Moreover, let i)ﬁ = a,, and let l}o = a,. ltis evident that (i) ,BN(l;ﬁ) =1and

By(bj) = 1,and (ii) for all nonempty S C N, By (b5) > o, Bs(b5) > o and g(ar) = oforall a, € Awith
1;§ < ap < B? Note that anonymity of ¢ implies l;fé = 1;1;, and l;é = l;IS“/ for all nonempty S, S’ C N with
S| = 15"I-

Lemma 6.9.1 For all nonempty S C S’ C N, we have l;§ = i)?,

Proof: If S’ = N, it is evident that I;ISz =a, = I;}S,. Next, let S C N. Suppose i)g > 1;};. We then have

By () _ By lopan) By (8) S 4 Bllagan)) _ By(lifan)
IS ST < == =

monotonicity. |

, which contradicts per-capita

Lemma 6.9.2 Forall S C §' C N, we have I;IS“ = I;IS‘,

Proof: If S = (), it is evident that i)lg =a, = l;é, Next, let S # (). Suppose l;é - l;jg, For notational
convenience, let S = N\Sand S = N\S'. Thus, S # 0,8 # 0,8 O § and Ei{\s = l% - lAaé/ = l;1L\r\S" We
gN\g([a,,;};\g,]) ﬂN\S([a,,uj)—ﬂN\g(l;i’\g) Sl 1 Bew(aad) ﬁN\g/([ul,%\g,]) )

S g BT R T @y o which
contradicts per-capita monotonicity. |

then have

Given an arbitrary i € N, we construct deterministic ballots (b)scn:

by = l;}sz and ij\s = i)ﬁ\s forall S C Nwithi € S.

L
N\N

monotonicity is satisfied. FixS C &' C N.Ifi € S, theni € §, and Lemma 6.9.1 implies
b, = bR < bR = by, Ifi ¢ §',theni ¢ S,and Lemma 6.9.2 implies

bfg = b;\T\[N\S} = blﬁ\[N\S] = bé = bé/ = bi{\[N\S’} = b;\l\[N\S’] = bfg/ Ifi € S/\S, then bls € Land bzs/ € R,
and hence b < bf,. Overall, b§ < by, as required. Correspondingly, let f be the FBR w.r.t. the

Since b, = l;l% = a,and by = bL . = % = a,, ballot unanimity is satisfied. Next, we show

deterministic ballots (b5 )scy. Moreover, given S C N, we have [i € §] = [b = l;g € R|,and
[i € N\S| = [b’s = bj\,\[N\S] = l;i,\[N\S] € L} which meet the constrained dictatorship condition.
Therefore, f is a (k, k)-RFBR which is strategy-proof on Dy (k, k) by Theorem 6.5.1.
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Next, we mix all (k, k)-RFBRs (f),cy with the equal weight %, and construct the (k, k)-RPFBR:

o(P) = Z %ef(p) forall P € [DH(I_C, E)}n

iEN
Let (74)scn denote the corresponding probabilistic ballots, which obviously satisfies ballot unanimity,
monotonicity and the constrained random-dictatorship condition. We make two observations on
s s .
(7s)sen: (1) 74 =D ien > ey = 2 s e + . Z,QN\S e = %egig + = n‘ Iel;g forall S C N,and (2) ¢is

anonymous. Given distinct S, § C N with |§| = |§'|, anonymity of ¢ implies e = e, and ¢j; = €1,
n=I8]

We then have y, = —ebR + n‘ ‘ehL = a6 + = GL, = Vs required.

Furthermore, we identify the real number

. (Bs(BY) B (BY)
a = min <mm<W’n——|8|>>'

SCN:S#0

(b§)

Evidently,0 < a < ﬁ5|5|

for all nonempty S C N. Moreover, given a nonempty S C N, the constrained
Bs(b§) < 2iesu _ 1

ISl — sl

random-dictatorship condition implies a <

Lemma 6.9.3 We havea = * ifand only if |supp(B)| = 2 for all nonempty S C N. Moreover, if a = *, then
¢(P) = @(P) forall P € [Dy(k,k)|", and hence ¢ is decomposable.

Proof: First, assume |supp(f)| = 2 for all nonempty S C N. Thus, for all nonempty S C N, we know
supp(B;) = {b bL} B S(bR) |S‘ and ﬁs(bL )= nIS\ by the constrained random-dictatorship condition.
Consequently, a = * by deﬁnltlon.

. . o bR
Next, assume a = 7. Fix an arbitrary nonempty S C N. By definition, S(S‘S ) > a=+and
b . . . . NS P
% > a = >. Meanwhile, the constrained random-dictatorship condition implies ( N < 5 |

ﬁs(l;]g) < ”—T|S\ Therefore, ,BS(lAJR) |S‘ and ﬁs(bL) = ‘Sl ,and hence [supp(f,)| =
Furthermore, note that (i) B, = e,, = 7y and B, = e,, = 7, and (ii) for all nonemptyS C N,
Bs = gezg + nISI e = Y oien ~ey, = 7. Therefore, ¢(P) = ¢(P) forall P € [DH(I_C, E)}", and hence, ¢

is decomposable. |

Henceforth, we assume o < a < %, and define the following

. - Bs — a|S|ejr — a(n — [S])ej
Bs :ﬁs s — & % forall S C N, and

1—an 1—an

v(P) _$(P) — anp(P) forall P € [Dyu(k,k)]".

1—an
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It is easy to show that [3 s € A(A) foreach S C N. Hence, (B ¢)scn are probabilistic ballots. It is evident
that ( [3 s)scn satisfy ballot unanimity. Since both ¢ and ¢ are anonymous, ¥ is also anonymous by
construction. Next, let each voter have the conditional dictatorial coefficient *. We show that ( ﬁ §$)SCN

satisfy the constrained random-dictatorship condition. Given nonempty S C N, we have

)

S ar,am])—a m—aS - ay,ar])—a(n— ";lsl—a n—|S n—
ﬁs([“E> a,]) = Bs(lapan))—als| _ 7 —alS| _ ‘%Iandﬂs([al,a&]) _ Bs(laa])—a(n—IS]) S —a(n=|S]) _ n—]s|

1—an 1—an 1—an 1—an n

=

as required. Next, we show that y is a PEFBR w.r.t. (/ABS) scn- Given P € [Dy(k, k)]" and a; € A, we have

‘p (P) _ ‘pak(P)*“"‘Pak(P) _ (ﬂs(k,p)([“kv“m])_lgs(k+1,p)([“k-‘ru“WI]))_“”(75(1(,13)([“kv“m})_')’s(kﬂ,p)([“k+1v“m])) _
ar 1—an 1—an

l; P ([a ’“m})_"my‘ P ([“ 7“"1]) ﬂ 1,P ([“ 17“"1])_“"7‘ 1,P ([“ 17“M]) P 3

s(k.p) ULk i s(k,p) Uk _ Ps(eta,py Ukt i S(k-+1,p) k4 = ﬁS(k,P)([ak’ an)) — l[gs(k+1,P)<[ak+“ aml),

as required.

The next two lemmas show that ( /AB s)sc satisfy monotonicity and  satisfies per-capita monotonicity
respectively. Hence, we conclude that  is an anonymous (k, k)-RPFBR and satisfies per-capita

monotonicity.
Lemma 6.9.4 Probabilistic ballots (.Bs) scn satisfy monotonicity.

Proof: GivenS C §' C N,if S = () or ' = N, monotonicity holds evidently. We hence assume S # () and
S' # N. We first identify @Ig = @Ig, S <ap = l;§ = i)zsz/ by Lemmas 6.9.1 and 6.9.2. We assume w.l.o.g.
that |S'| = |S| + 1. Given a; € A, we have five cases: (1) by < ay, (2) by < a; < by, (3) bl < a; < b,

(4) l% < a; = l;é/, and (5) a; =< lAJE We showﬁs,([at, an)) > ﬁs([at, a,,]) in each case.

]) — ﬁsl([“tvﬂm])—ﬂs([ﬂt,ﬂm]) 2 o.

1—an

First, in either case (1) or case (5), .Z;S/([at, am]) - Bs([at, am
“ - —alS' | —B.([ar.a 'L (18— [ B (% am]) — B (B
In case (2), By ([ar, an]) — By([ar a,)) = Eelload=alSI=pllna) . - ~e(¥) [fi(ff D—8(9)]
iR
%*“(|5\+1)7%+ps(51§) _ (ﬁ_“)+\5|(ﬂs‘<35>—a)

and the constrained random dictatorship condition of ¢, and the last inequality follows from the

> o, where the first inequality follows from l;{; <a = i)’s“/

hypothesis a < i and the definition of a.
In case (3),

b y 7 ([at,am]) —alS'|— as,am)) —a M—at §|— (18l _g|s L g
B (s an]) — B an]) = Bl S B(laa) o) _ 5 oals=(Bas) _ sma

1—an 1—an 1—an

Last i case (4) we have By (a1,) — iyl ) = 2ol e o]
’ . R o AL,
IS 18, (lana)) —a(n—18) — | Sl 4By(fana) | 24y (1) —a(n—I5'+) _ GaHels) (1% )0

>

1—an - 1—an 1—an

first inequality follows from l;}; <a = l;fé, and the constrained random dictatorship condition of ¢, and

> o, where the

the last inequality follows from the hypothesis a < * and the definition of a.
In conclusion, [} o(lae am]) > Bs( la, a,,)) forall a; € A. |

Lemma 6.9.5 RPFBR V satisfies per-capita monotonicity.
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Proof: Fixing S C S’ C N, we have b = b and bN\S’ = bN\S

S’ = N, per-capita monotonicity holds evidently. We hence assume S # () and S’ # N.

by Lemmas 6.9.1 and 6.9.2. If S = () or

Given a; € R, either one of the three cases occurs: (1) ZJS, < a, (2) lAJIS{ <a = l;fé,, and (3) a; < E?

55/ at, “m}) — ;ﬂs/([“tvam}) > 1 ﬁs([“f “M]) ﬂ5 [“ham})
[S7] 1—an [S7] — 1—an S| S|

per-capita monotonicity of ¢.

In case (1), , where the inequality follows from

bylaan) _ 1 pylacad—als| _ , Bleas) (2 —a) > (2 B0

In case (2') [S7] T 1—an 1S/ T or—an |9 = an'\n ¢ 2 1—an \n N
N R — ] )— bR az,a 8 ag,am . .
— —ET@ D ——= bsllopanD—fs(b5) m|]s)| ALY > jﬁs([w] m) ﬂs([|s7‘ D,where the first inequality follows from
the definition of a and the second inequality follows from l;g < ay.
. Bor ([at,am L 7 ([ag,am]) —alS’ 1 7 ([at,am 1 at,am
Last, in case (3), Bs (|[s'\ D _ mﬂs ( |s’]\) ISl _ — |:.Bs (|[s'\ D a} > — [ﬂS([IS\ D a}

= 1 D (o] where the inequality follows from per-capita monotonicity of ¢.

[8] 1]

Symmetrically, given a, € L, either one of the three cases occurs: (i) a, < l;i\s/ , (ii) i’ir\s/ < a, < l%\s,

and (iii) bN\S =< a,.

In case (i), W = l_lanw > ﬂN\s(‘LT’aS]) = ﬂN\S(lgl’as]),where the inequality follows
from per-capita monotonicity of ¢.

o Bag(@al) By (al)—al—(—ISD L1 BasCRe)y

In‘jase (ll?, 1S/ T 1—an A [S7] o 1fan(n a) 2 171111(;1 nf(nf\SD) o

L Bas(tR) L Brys(laaid) =By s (b o) L Bas(anad)  Bas(aad) . .
— m% =L N\ : mstns) - N\SIS\ — N\S|S| , where the first inequality
follows from the definition of a and the second inequality follows from a, < bN\S

7 (|a1,as s (|a1,as aln— s 7 (|a1,as
Last, in case (i), ﬂN\S‘(S[/| D _ j/3N\s (L D|s'\[ (1D _ - [ﬁn\s‘g| D a] >
1 { e } s e B e , where the inequality follows from per-capita
s I S R B s §

monotonicity of ¢.

In conclusion, ¥ satisfies per-capita monotonicity. |

The next lemma shows that the support of every ¢’s probabilistic ballot is refined by that of ¥, and the
support of some ¢’s probabilistic ballot is strictly refined.

Lemma 6.9.6 For all nonempty S C N, supp(ﬁs) C supp(B;), and for some nonempty S* C N,
supp(Bs.) C supp(s. ).

ﬂs*als\ebk a(n—IS|)ey

Proof: Given nonempty S C N, since [25 *, itis true that supp(ﬁ ) C supp(Ps). Next,

by the definition of a, there exists a nonempty S* C N such thata = ﬁs*| s(*| ) ora = & (‘ SS**|) Hence,
either ﬁ o (l;ﬁ*) =oor Bs* (i)é*) = o holds. Therefore, supp(ﬁ o) C supp(Pg.). |

By spirit of Lemma 6.9.6, we call ¥ the refined (k, k)-RPFBR of ¢. Now, we have (k, k)-RFBRs (f);cxn
and an anonymous (k, k)-RPFBR y which satisfies per-capita monotonicity. More importantly, the
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original (k, k)-RPFBR ¢ can be specified as a mixture of (f');cy and ¥, i.e.,
¢(P) = anp(P) + (1 — an)y(P) = a ZieN ef(p) + (1 — an)y(P) forall P € []D)H(l_c, 12)}"

Note that if we repeat the procedure above on the anonymous (k, E)-RPFBR ¥, we can further
decompose ¢. Therefore, by repeatedly applying the procedure, we eventually can decompose ¢ as a
mixture of finitely many (k, k)-RFBRs, provided that the procedure can terminate in finite steps. In each step
of the procedure, Lemma 6.9.6 implies that the support of the refined (k, k)-RPFBR’s probabilistic ballots
strictly shrinks. Since the alternative set A is finite, it must be the case that after finite steps, the support of
the refined (k, k)-RPFBR’s every probabilistic ballot becomes a binary set. Furthermore, by Lemma 6.9.3,
the refined (k, k)-RPEBR becomes a mixture of n (k, k)-REBRs. Hence, the procedure terminates, and we
finish the decomposition of ¢. This completes the verification of the sufficiency part of Theorem 6.5.3.

(Necessity part) Fix an anonymous decomposable (k, k)-RPFBR ¢ : [Dy(k, k)|" — A(A). Let (B,)scy

be the corresponding probabilistic ballots. By Theorem 6.5.1, we know that (B )sc satisfy ballot

unanimity, monotonicity and the constrained random-dictatorship condition. Moreover, anonymity of ¢

implies that every voter has the conditional dictatorial coefficient %, and B = B, forall S, S’ C Nwith

|S| = |§'|. By decomposability and Theorem 6.5.1, we have finitely many (k, k)-RFBRs

£ [Du(k,k)]" — A(A),k=1...,q,and weights a',...,a? > owith ) {_ a* = 1such that
o(P)=>"1 o ej(p) forall P € []DH (k, E)} " Foreach1 < k < g, let (b%)scn denote the deterministic

ballots of . Evidently, for each 1 < k < g, (b%)scy satisfy ballot unanimity, monotonicity and the

constrained-dictatorship condition. For ease of presentation, we call the voter specified in the constrained

dictatorship condition of f* the constrained dictator, denoted by i*. Moreover, let

I = {k ef{,....q}: " =i } collect the indexes of RFBRs where i is the constrained dictator. Last, by

monotonicity of both (8,)scy and (b§)scn, k =1,.. ., g, itistrue that Bg = D | akebé forall S C N.

Lemma 6.9.7 Foralli € N, Ekel,- at =1

Proof: Suppose that it is not true. Then, there exist i,j € N'such that ) ak £ Zkelj a*. Then, by the
constrained random dictatorship condition, we have
ﬁ{;}([“ﬁa ) = i “kl(b]@} € R) = 2 ke a* # Zkezj =30 “kl(b%} < R) = ﬁ{;}([% ),
which contradicts the fact 8, = {j}.13 |
Foreachi € N,let ¢'(P) = > ., aknefk(P) forallP € []D)H (k, E)} ". By Lemma 6.9.7, ¢' is a mixture of
REBRs (f)1e;, according to the weights (a*n)yer, and hence is a (k, k)-RPFBR. Let (B.)sc denote the
corresponding probabilistic ballots. Evidently, (f;)scy satisfy ballot unanimity and monotonicity, and ¢’
satisfies the constrained random-dictatorship condition. Note that voter i has the conditional dictatorial

coefficient 1 in </>i.

*The notation 1(-) denotes an indicator function.
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Lemma 6.9.8 ForallS C N, B, = > ..\ 1B

Proof: By the definition RPFBRs (¢'),cn, we can rewrite ¢ as follows:

¢(P) = >, “kef*(P) =D ieN 2oker, “kef*(P) =D iens ( ket “k”ef*(l’)) =D ien 5¢'(P) forall
P € [Dy(k,k)|". Therefore, B = >, 1B forall S C N. |

Now, for each i € N, we construct another collection of probabilistic ballots (B s) scn by equally mixing
probabilistic ballots {(ﬂjs) scn : j € N} ina particular way. Specifically, given S C N, say |S| = k, we
construct Bls in two steps. In the first step, we refer to each coalition S’ C N that has the same size as S, the
k corresponding probabilistic ballots ( [313, )jes and the n — k corresponding probabilistic ballots

(ﬁ’s, )ien\s'- We then make two equal mixtures Z;es’ Z ﬁJS, and ) kﬁS’ In the second step, we

JEN\S' n

check whether i is included in S or not. If i € S, we refer to Z;es/ : ]s, for all C¥ ( o subsets §' of N
that have the same size as S, and make their equal mixture as [3 gie,
—i 1
B= > () =ar X Ths
S'CN:|S'|=k G jes’ G S'CN:|S |=k jeS’
otherwise we refer to » JEN\S kﬂ] forall Ck = (n"ik)! subsets S’ of N that have the same size as S, and

make their equal mixture as ﬂ gie,

D ST D) B S S o)

S'CN:|S'|=k JEN\S' " S'CN:[S'|=k JEN\S'

We are going to show that ([_SIS) sc satisfy ballot unanimity, monotonicity and the constrained

random-dictatorship condition. First, it is easy to verify the following four statements:
(i) ,[_315 € A(A)forall§ C Nandi € N.

(ii) EﬂS)SCN satisfy ballot unan1m1ty, ie, [3@ D SN =0 DS’ B, =1+ 2D ieN [3® e,, and
ﬂN = :l ZS’QI\HS/ :n Z[GS’ =1 ZIGN ﬂ] am.

(iii) (/_ZIS) scn satisfy the constrained random dictatorship condition, i.e., given S C N, say |S| = k, if
i € S, we have B([ar, a,]) = ES’QN:|S’\:I< é ( Z . / o (lag, am])) = 1; otherwise, we have

Bls([an a]) = Es/gms'\:k CLﬁ(ZjEN\S’ ﬁ(ﬂ]s'([“n ak])) =L
(iv) Forallnonempty S C N and distincti,j € Sori,j ¢ S, we have B; = Bls
Next, we focus on showing monotonicity of (B;) SCN-

Lemma 6.9.9 Given nonempty S C N, B¢ = > .-y iBls
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Proof: Let |S| = k. Thus, 0 < k < n. We then have

1
Bs=— Z By (by anonymity)

" §ICN:|S! |=k

:ik Z Z iﬁ’s, (by Lemma 6.9.8)

"SI CN:|S!|=k iEN

= 3 (R e)

n SO S | =k ies! iEN\S

-G > SR (G S )

S CN:|S! | =kies! S/ CN:|S' | =kiEN\S’

. e _ .
:;ﬂ; + 2 - B forsomei € Sandsome; € N\S (by the definition of B and By)
= Z lﬁ’s + Z 1[}’5 (by statement (iv) above)
ies " jems "
1
SR
ien "

This completes the verification of the lemma.

Lemma 6.9.10 Probabilistic ballots (Bls) s Satisfy monotonicity.

Proof: FixS C §' C N.IfS = () or S’ = N, the condition of monotonicity holds evidently. Henceforth,
let S # (and S’ # N. We assume w.lo.g. that |S| = kand |§'| = k + 1. If '\ S = {i}, we have

/_3;, ([ag, am)) = 1and Bls [a,, ai] = 1by the constrained random-dictatorship condition, which
immediately imply the condition of monotonicity.

Next, assume i € S. Then, i € S'. Now, given a; € A, we have

olansan)) = Billananl) =iy >0 Dhsllwand = g 3o DAl an)

SCN:|S|=k+1 j€S SCN:|S|=k jeS

Ciﬁk;;[ > <’<Zﬂ’5([anam])>— > <("—k)2ﬂg([ﬂt,am])>:|

SCN:|S|=k+1 j€ES SCN:|S|=k j€S

céwili[ > (F Shume) - ¥ (<n—k>zﬂz<[a~amn)]

SCN:[S|=k \vEN\S j€§ SCN:[5|=k j€S

“EF e, 2 2 S (B oy (e an)) = By(lasan))

SCN:|S|=kvEN\S j€S

>o. (bymonotonicity of (ﬂ;)]g\;,j €9S)

Last, assume i ¢ S'. Then, i ¢ S. Now, given a; € A, we have
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By ([at, an]) — By(lar, an])
:ﬁm > > Billanan]) - Ci{gn l Z > Bullanan)

SCN:|S|=k+1jEN\S SCN:|S|=kjEN\S
:C‘kjk_;[ > <(k+1)2ﬁ’g([anam})>— > ([n—<k+1>12ﬁg<[at,am}>>]
nn—kn—(k+1) SCN:[S|=k+1 JEN\S SCN:[5|=k JEN\S

%}fu@g[ > <(k+1)2ﬂ’g([at,am})) > <ZZﬁ’;\{V}([anamD>}

SCN:|S|=k+1 JEN\S SCN:|S|=k+1 \ vES jEN\S

a2 [l and) B ()]

SCN:|S|=k+1 vE€S jJEN\S

>o0. (by monotonicity of (ﬂ/})}gNJ € N\S)

This completes the verification of the lemma. |

Now, we are ready to show per-capita monotonicity of ¢. Given nonempty S C §' C N, 4, € Rand

a, € L, we have

By ([acsan))  Bo(lav,an)) _ Tien 2Ps ([ an]) — Sien 2Bs([a an))

= — (by Lemma 6.9.9)

|S/| |S\ |S’| |S|
_ Zies pfylnond) _ esyfollan an) (by statement (ii))
_ IS’ ' ||
:Bxs'([“tv an]) — Bs([at; an])

(select i € Sand apply statement (iv))

n

>0 (byLemma 6.9.10), and

ﬁN\s/ ([“1: “S]) _ ﬁN\s([“lv “SD . ZiEN iﬁé;\]\s’ ([“17 “SD ZiGN iﬁ;\]\s([“h “S])

— (by Lemma 6.9.9)

Is'] Is| a Is'] Is|
ieql 16! 1[G, Gs i ip ay, s
= Lies n’B|I\9|S ( D — Lies "ﬁT;\‘S([ ) (by statement (iii))
B ANSTR - B ay, as
= Ps ( D BN\S([ ) (selecti € Jand apply statement (iv))
n
. Biv\s([“s+1’ “M]) - E;\}\s/ ([aern am])
n

>o0. (byLemma 6.9.10)

This completes the verification of the necessity part of Theorem 6.5.3.
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6.10 PROOF OF PROPOSITION 6.6.1

Proof: We first recall the deterministic version of a (k, k)-RPEBR, which we call a (k, k)-Restricted Fixed
Ballot Rule (or (k, k)-RFBR). Formally,a DSCEf : [Dy(k, k)] " — A(A) s called a (k, k)-Restricted
Fixed Ballot Rule (or (k, k)-RFBR) if it is an Fixed Ballot Rule (or FBR), i.e., there exists a collection of
deterministic ballots (bs)scy satisfying ballot unanimity, i.e., by = a,, and by = a,, and monotonicity, i.e.,
[SC T C N| = [bs < by],such thatforall P € [Dy(k, 12)}", we have

f(P) = rsncal\}lﬁ ( misn< (n.(P)), bs) ) , and in addition, (bs)scy satisfy the constrained dictatorship
- j€ -

condition, i.e, k — k > 1implies that there exists i € N such that [i € S| = [bs € R] and
li ¢S] = [bs € L].

Now, let N = {i, j} and fix a two-voter (k, k)-RPFBR ¢ : [Dy(k, k)] * — A(A). Let
(Bs)sen = (ﬁ(Z) =e,, P e B e By = eum) be the corresponding probabilistic ballots. We are going to
decompose ¢ as a mixture of finitely many (k, k)-RFBRs.

Since (f s) sc satisfies the constrained random-dictatorship condition, let € be the dictatorial
coeflicient of voter i, and 1 — ¢ be the dictatorial coefficient of voter j. Thus, ¢ behaves like a random
dictatorship at all preference profiles where both voters’ peaks are in M, i.e.,
¢(P;, P;) = ce,p) + (1 —€) e, p) forall P, P; € Dy(k, k) with r,(P;), r(P;) € M.

By the proof of the necessity part of Theorem 1 of our paper, we know that ¢ can be written as a
mixture of several FBRs, i.e., there exist FBRs f* : []DH (k, I_c)] " Ak=1,..., g, and weights
a',...,a® > owith > }_ a* = 1such that ¢(P,, P)=>1, akefk(pi’p}.) forall P;, P; € Dy(k, k).
However, we only know that all FBRs f, . . ., fI are strategy-proof on the single-peaked domain D, and
cannot ensure their strategy-proofness on the (k, k)-hybrid domain D (k, k). Foreachk =1, . .., g, let
(b%)scn denote the deterministic ballots of f*. For notational convenience, we slightly simplify the
max-min form of each FBR f* as follows: for all P, P; € Dy(k, k),

fk(Pi,P]-) = max " (blé = g,, min"~ (rl(Pi), b’;i}),min< (rl(Pj), b%}),min< (rl(P,v), rl(Pj), blk\, = am)>
— max™ (mnﬁ (r(P,), By ) min™ (1, (), b, ), min™ (r(P,), rl(pj))) .
Note that by Theorem 1 of our paper, f* is strategy-proof if and only if (b%)scy satisfies the constrained
dictatorship condition, i.e., either b’;i} € Rand b’gj} €L, or b’;}.} € Rand b’;i} € Lhold.
CLAIM 1: Foreachk = 1,..., g, we have b’ii}, b’%} € LUR.
Given P, P; € Dy(k, k) with r,(P,) = a, and r,(P;) = ag, we have

S a* ek (p,p) = ¢(P;, P;) = geq + (1 — 5)6%. This implies that foreachk =1, ..., g,
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max ™ <min< (., b?i}) ,min~ (ag, b’}u.}) : “k) = f(P;, P;) € {a, ag}. Consequently, it must be the
case that b’i.}, bk. € LURforallk =1, ..., q. This completes the verification of the claim.

By Claim 1, we know that an FBR f is manipulable on Dy (k, k) if and only if b (i} bt gy € Lor
b’E 1) bk € R. Accordingly, we separate all FBRs f, . . ., I into three groups:

A ={f: either b’f} € Rand b’%} €L, or bI}J} € Rand b’%i} €L},

If A¥ = () and A® = (), then ¢ is decomposable. Henceforth, assume either A" # () or A® # (). We are
going to reshuffle the deterministic ballots of all FBRs in A* U A to “cure” all FBRs of A* U A, The next
claim shows that the total weights of FBRs in A" equals that in A®.

CLAIM 2: ) e pt @ = D ucpndt

Fix P;, P; € Dyl(k, k) with r,(P;) = a; and r(P;) = ag and P}, P]'. € Dyu(k, k) with r,(P]) = agand

r(P}) = a. We first know that

(i) ¢ behaves like a random dictatorship at both (P;, P;) and (P}, P)),

iy ] i’ j

(ii) eachf* € A behaves like a dictatorship at both (P

corresponding constrained dictator,

P;) and (P, P)), and let i* denote the

iy ] i’ J

(iii) for eachf* € AL,

jk(P,,P]) = max " (min< (ak, b{}) n~ (“E7 b’%})7min< (ak, aﬂ) = a, and
fk(Pl,P]) = max " (min< (g, lo'%}),min< (a, b{}}) n~ (ag, ak)>
(iv) foreachf € AR,

f (P By) = max” (mm (ax, byy), min™ (ap, bl ), min™ (“kaak)> = ag, and
fk(Pl,P]) max " (min< (“Ev b?i}),min< (“&v bl‘b}),min< (az, ak))

First, item (i) implies ¢, (P,, P)=c=¢. (Pf, P}). Next, by items (i), (iii) and (iv), we have
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q

9, (P, P)) = S PR =a) = > =0+ D P P) =q)

k=1 kffen kiff€ ALUAR
= Z a (i =) + Z a*, and
kffen kiffEAL
‘paz(‘pt’ ] Za 1(jk i’ ] ) = Z akl(ik = l) + Z ukl(fk(Pi’Pj) = aE)
k=1 kffen kiff € ALUAR
= Zakl(lk:i>+ Z a*
ke kiffEAR

Therefore, ) _, FenL at=>", FeAR a¥. This completes the verification of the claim.

By Claim 2, the hypothesis that either A” # () or A® # () implies A” # () and A® # (). Fixing f € A"
and f € AR, according to their deterministic ballots (bz) =a, by, € Lbj, €L,by = am) and
(bt = a,, bf{ 3 , bt{]} ER b = am) , We swap bs{j} and bf{j} , and create two new sets of deterministic
ballots

(bs)sen = (by = @, by = by € L, by = by € R by = a,) and
(bs)scn = (b = an, by = by € R, by = by € L by = ay).

Note that both (b%)scn and (b%)sc y satisfy ballot unanimity, monotonicity and the constrained
dictatorship condition. Correspondingly, we generate two (k, k)-REBRs f : [ID)H (k, E)] * — A(A) and
f: [Du(k,k)]” — A(A) which are strategy-proof by Theorem 1 of our paper. More importantly, since
e, + e, = o, + e, and e, + e, = e, + e it_is true that

e p,p) T Ei(pp) = ef(p”p)) + ep(p, p)) forall P;, P; € Dy (k, k). Assume w.l.o.g. that a* > a’. We then
reformulate ¢ by using £, f and (). for all P,, P; € Dy (k, k), we have

o(PP) = Y depinr +

kiff€A

[“Sef‘(PnP,) + a%ﬂa,a)} + D “kej*(Pf,P,-)]
ke {s,t}:fEALUAR

Z akeﬁ(PnP;) + (as - at)ef‘(PfaPJ)‘| .

ke {s,t}:ff€EALUAR

- [ > depn) ta [ef‘(P,,P,) +67’(P1,P,)]

ke
In the reformulation, two new (k, k)-RFBRs are added, the manipulable FBR f is eliminated, and the

weight of the manipulable FBR f reduces to a; — a;. Since A" and A® are finite and
Zszk AL a =3, AR a* by Claim 2, by repeatedly reshuffling deterministic ballots and reformulating ¢,
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we eventually are able to write ¢ as a mixture of finitely many (k, k)-RFBRs. Therefore, we assert that ¢ is

decomposable. |

6.11 PROOF OF PROPOSITION 6.6.2

Proof: Fixa (k, k)-RPFBR ¢ : []D)H (k, E)} " — A(A). Let (Bs)scn denote the probabilistic ballots of ¢.
Thus, (B s) sc satisfies ballot unanimity, monotonicity and the constrained random-dictatorship
condition. Let €; > o be the dictatorial coefficient of voter i and ZEN = 1. Thus, forall S C N,
Bs(lag, am]) = D icsciand By([ar, ai) = Z,EN\S €;. Next, since ¢ is decomposable, there are
(k, k)-PFBR f* : []D)H (k, k)] — A k=1,...,qandweightsa', ..., a? > owith Y 1 a* = 1such that

o(P)=>"1 o ej(p) forall P € []D)H(lg, E)] " Foreachk = 1,...,q,let (b%)scy denote the deterministic
ballots of . Thus, (b%)scy satisfies ballot unanimity, monotonicity and the constrained dictatorship
condition. Correspondingly, let i* denote the constrained dictator in f*.

Fixing a nonempty S, T C Nwith SN T = (), a; € Rand a, € L, we have

q

b €| at,am +Zak1 b €| at,am)

=1

Bs(lat; an]) + Br([ar, an))

q
1(ik € Sand b{é € [as, am]) + Zakl(ik € T and ka € las am])
k=1
q
a“1(* € S and b 1 € [ar, an]) + Z d“1(i* € T and b1 € [ar, a,))
k=1

-7 M@

k=

IN
o~
Il =
- -

|
MQ

a“1(* € SU T and b 1 € [a;,a,))

I
‘ma-

suT([at’ ay)), and

q
akl(blk\,\s € [a,a)) + Z akl(blk\,\T € la,a))

=1

,BN\s([ala a) + ﬁN\T([an a)) =

q
kl(ik € Sand blk\,\s al,as + Zakl € T and b;c\,\T S [al,as])
k=1

q
kl(ik € S and bf\]\[SUT] € [al,as]) + Zakl(ik € T and bil\[SUT] € [a,, as])

1 k=1

IN

Il

k

= Z a“1(* € SUT and bzk\r\[suT] € [a,,a])
k=1

= |

= .BN\[SUT] ([, a).

Therefore, ¢ satisfies the scale-effect condition. |
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6.12 PROOF OF PROPOSITION 6.6.3

Proof: We first provide a lemma which will be repeated adopted.

Lemma 6.12.1 Fixing a (k, k)-RPFBR ¢ : [DH (k, E)} " A(A), let ([A%S)SQN be the corresponding
probabilistic ballots. RPFBR ¢ dominates ¢ in admitting compromises if and only if for all S C N with
1< |S|<n—1anday € [a,,...,a) Ulag, an_.), ﬁs(ak) > Bg(ax), and there exist S C N with
1< S| <n—1anda; € [a,,...,a] VU |ag, a,_,] such thatﬁs(ak) > B(ax).

Proof: We first show the necessity part of Lemma 6.12.1. Given S C Nwith1 < |S| < n —1and

a € [ay, ..., a) U [ag, am—,|, we consider the preference profile P where every voter of S has the
preference peak a;,, every voter of N\ has the preference peak a;_,, and all voters share the common
second best alternative a;. Such a preference profile is admissible in []DH (k, I_c)] ", Thus,

P € C( [Du(k, k)] n) and ¢(P) = a;. Note that S(k, P) = S(k +1,P) = S. Then, we have

Bo(ar) — Bolae) = |Bollaes an]) = Byllaers, an)) | = [Bellacs an]) = By(lacss, an))]

~

= [ﬁs(ky)([“ka ) — ﬂs(k+1,P)<[ak+17 arrI])] - [ﬁs(k,p)([akv an)) — ﬁs(k+1,P)([ak+17 am])}
=¢,(P) — ¢, (P) = o.

Next, by definition, there exists a profile P € C( []D)H (k, E)} " ) such that ¢ (P) > e(p) (P).
Evidently, ¢, (P) > o. Let ¢(P) = a. W first show that a; € s, . .., a] U [ag, a—,]. Suppose not, i.e.,
either a € {a,,a,} ora; € [axi,, ar_,]. If ap = a,, by the definition of Dy (k, k), c(P) = a, implies
r.(P;) = a, foralli € N which contradicts the hypothesis that P € C( []DH (k, E)} " ) The similar
contradiction arises if a; = a,,. Next, if a; € [a1,, a;_,], by the definition of Dy (k, k), ¢(P) = a; implies
r.(P;) € Mforalli € N. Consequently, the constrained random-dictatorship condition implies
¢, (P) = o. Contradiction! Therefore, a, € [a,, . .., ar] U [ag, an_,).

Now, we consider three cases: (1) ax € [a,, ..., @) U [ag,,, au_i), (2) ax = arand (3) a = ag. In
case (1), by the definition of Dy (k, k), P € C( [Du(k, k)] " ) implies that there exists ' C N with
1 < |S| < n —1suchthatr,(P;) = a4, foralli € Sandr,(P;) = a;_, forallj € N\S. We then have
ﬁs(ak) = ¢, (P) > ¢, (P) = By(ar). In case (2), by the definition of Dy (k, k),P € C( [Du(k,k)] )
implies that there exists $ C Nwith1 < |S| < n — 1suchthatr,(P;) € M\{a;} foralli € Sand
r(P;) = a_, forallj € N\S. Then, similar to case (1), we have [Ss(ak) > Bg(ax). Last, in case (3), by the
definition of Dy (k, k), P € C( []D)H (k, E)] ! ) implies that there exists S C Nwith1 < |S| < n — 1such
thatr,(P;) = ag,, foralli € Sandr,(P;) € M\{ag} forallj € N\S. Then, similar to case (1), we have
[A?S(ak) > Bg(ax). This completes the verification of the necessity part.
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Next, we turn to showing the sufficiency part of Lemma 6.12.1. Given a profile P € C ( [DH (k, E)] " ),
let c(P) = a;.. We first show ¢, (P) > ¢, (P). One of the following four cases must occur:

(i) ar € [agts, ap_,] and r,(P;) € Mforalli € M,

(i) ax € [as,. .., 4] U [ag,,, am—], and there exists S C Nwith1 < |S| < n — 1such that
r(P;) = a4, foralli € Sandr,(P;) = ar_, forallj € N\S,

(iii) ax = ay, and there exists S C Nwith1 < [§| < n — 1such thatr,(P;) € M\{a;} foralli € Sand
r(P;) = ai_, forallj € N\S, and

(iv) ar = ag and there exists S C Nwith1 < |§'| < n — 1suchthatr,(P;) = ag,, foralli € §' and
r(P;) € M\{ag} forallj € N\S.

In case (i), the constrained random-dictatorship condition implies ¢, (P) = u (P) = o. Inall cases
(ii) - (iv), first note that S(k, P) = S(k + 1, P) = S. Then, we have

8 (P) = 0, (P) = By (ks n]) = By ([at1s an]) | = (B (a1 and) = By (k1 )]
— |Bllaw. an)) = Byllaesssanl)| — [B(lak, anl) = Byllaxsa, an])]
=Bs(ar) — Bs(ar) = o.
Last, note that there exist S C Nwith1 < |§| <n —1anda; € [a,,...,a] U [ag, an_,] such that
ﬁs(ak) > Bg(ax). According to the coalition S, we construct a preference profile P € []D)H (k, E)] " where
every voter of S has the preference peak a;,, every voter of N\ S has the preference peak a;_,, and all

voters share the common second best alternative a;. Thus, P € C ( [ID)H (k, E)] n) and ¢(P) = a;. Since
S(k,P) = S(k + 1, P) = S, we have

(Pak (P) — P (P) = [Bs(lgp)([ak’ am]) - BS(k-ﬁ-x,P)([akJrn am])] - [ﬂs(k,p)([ab am}) - ﬁS(k+1,P)([ak+17 am])]
— |Bollak, an]) = Byllaerss an]) | — [Bollaes an]) = By(lacss, an))]
:ﬁs(ak) — Bs(a) > o.

Therefore, ¢ dominates ¢ in admitting compromises. This completes the verification of the sufficiency

part, and hence proves Lemma 6.12.1. |

Now, we start to prove Proposition 6.6.3. Let (k, k)-RPEBR ¢ : []D)H (k, E)] " — A(A) dominate ¢ in
admitting compromises. Let ( [3 s)scn denote the probabilistic ballots of ¢. We show that there exists
§ C Nwith S| = n — 1such that f¢(a,,) > o or By ((a,) > o. Suppose not, i.e, forall S C N with
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S| =n —1,Bg(a,) = oand ﬁN\s(“x) = o. First, monotonicity implies B¢, (a,,) < Bs(an) = oand

Bais (@) < Bpg(a) = oforall§' C Nwith1 < [S'| < n — 1. Hence, forall S C N with

1 < |S| < n —1,wehave f(a,,) = oand ﬁN\S(al) = o. By Lemma 6.12.1, there exists a coalition S C N
with1 < [S| <'n — 1such that f(ar) > By(ax) forallay € [a,, ..., a U [ag, a,—,) and g(a,) > Pg(a,)
forsomea, € [a,,...,a] U [ag, a,—,]. Note that (i) f(a,,) = o and fg(a,) = Py (@) = o,and (ii)
Bs(ar) = oforall ay € [ag,, a;_,| by the constrained random-dictatorship condition. Hence,

Bs([a., a]) + Bg([ag, am—.]) = 1. Consequently, we induce the following contradiction:

> Bla) =By(a) + Blan) + Byllags az]) + [Bo(las, @) + By(lag, an-]) |

~ ~

>Bs<a1) + ﬁs(am) + ﬂs([ak-i-u aﬁﬂ]) + [ﬁs([am ak]) + .Bs([aﬁv am—l])} > 1

Next, let f(a,,) > oor B(a,) > oforsome S C Nwith [S| = n — 1. We construct a (k, k)-RPFBR
¢ []D)H (k, E)} " — A(A), and show that ¢ dominates ¢ in admitting compromises. For notational
convenience, let S = {1,...,n — 2,n — 1}. We construct the following probabilistic ballots: for all

S C Nwith1 < |§] <n—1y,

o ifak € {alaam}7
ﬁs/(arn) + .Bs(am—l) if ap = a,_,,
Bs (a,) + ,38((12) if a = a,, and

B (ar) otherwise.

.Bs/(ak) =

In other words, we construct f% ¢ by transferring the probability of a,, in B, to a,,_,, transferring the
probability of a, in B, to a,, and keeping the probability of every other alternative in , unchanged.
Meanwhile, let /AZ N = €a, and fS@ = e, . It is easy to verify that ( /§ &) satisfy ballot unanimity,
monotonicity and the constrained random-dictatorship condition. Therefore, the corresponding PFBR
¢ []D)H (k, E)} " — A(A) is a (k, k)-RPFBR. Furthermore, by construction, we know that

Bs/(“k) > By (ar) forall S € Nwith1 < |§'| <n—1anda € [a,,...,a U [ag, am—,], and

Bs(am—) = Bs(am—s) + By(am) > Bs(am_,) or By(a,) = By(a) + Bg(a,) > B(a,). Then, Lemma 6.12.1
implies that ¢ dominates ¢ in admitting compromises. This completes the verification of the first part of

Proposition 6.6.3.

Last, let ¢ be anonymous and decomposable, and S C N be such that [S| = n — 2, and (a,,) > o or
ﬁN\S(al) > 0. We assume w.l.o.g. that B(a,,) > o. We construct an anonymous non-decomposable
(k, k)-RPFBR ¢ : []D)H (k, E)} " — A(A), and show that ¢ dominates ¢ in admitting compromises. For

notational convenience, let S = {1,...,n —2}andS = {1,...,n — 2,n — 1}. Given an arbitrary S C N
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with |S| = n — 1, by anonymity and monotonicity, we know Bi(am) = Bs(am) > Bg(am) > o. Moreover,
Ba(an)

since ¢ is decomposable, by anonymity and Theorem 2 of our paper, we have 3('1':‘ — Bslan) ~ fslan)

n—1 — n—2 °

Thus, Bs(a,) > Bg(an). Now, we construct new probabilistic ballots: for all S C Nwith1 < [§] < n —1,

[27 ,Bs if|§|<n—1,
T | Bs— [Bs(an) — Bglan)lea, + [Bs(an) — By(an)les, , otherwise.

In other word, when coalition Shasless thann — 1 voters, we fix ﬁs to 5, and when coalition Shasn —1
voters, we lower the probability of a,, to that in , and transfer the remaining probability of a,, to a,,_,.
Moreover, let [SN =e,, and B(Z) = e, Itis easy to verify that ([35) sc satisfy ballot unanimity,
monotonicity and the constrained random-dictatorship condition. Therefore, the corresponding PFBR
¢ []D)H (k, E)} " — A(A)isa (k, k)-RPFBR. Moreover, it is easy to show that (ﬁs) scn is invariant to the

size of coalitions. Therefore, ¢ is anonymous. However, (f s) scn Violate per-capita monotonicity, i.e.,
Bs(an) _ PBs(an)

n—i n—i

construction, we know that ﬁg(ak) > B(ay) for all S C Nwith1 < [S| <n —1and
a € [ay, ..., a) U lag, am_,), and ﬁg(am_l) = Bs(am—.) + Bs(am) — Ps(am) > Ps(am—.). Then, Lemma

6.12.1 implies that ¢ dominates ¢ in admitting compromises. This completes the verification of the

< ﬂfff’:). Therefore, ¢ is not decomposable by Theorem 2 of our paper. Last, by

second part of Proposition 6.6.3. |

6.13 PROOF OF THEOREM 6.7.2

Let domain [ satisfy the weak no-restoration property and contain two completely reversed preferences.
Thus, D is connected. Note that ID is minimally richness. We first show that I is (k, k)-hybrid for some
unique k and k. The proof consists of Lemmas 6.13.1 - 6.13.7.

We first introduce an important new notion. A pair of distinct alternatives a,, a; € A is said adjacent in
D, denoted a; ~ ay, if there exist P;, P, € D with r,(P;) = a;and r,(P}) = a; such that P; ~ P/. Then, we
induce a graph, denoted by Gp, such that the set of vertex is A, and in the set of edges, every pair of
alternatives forms an edge if and only if they are adjacent in ID. An alternative-path, denoted by P,
connecting a, and 4, is a sequence of (non-repeated) vertices {ka(:l C Asuchthatx, = a,,x; = a,and
x ~ x4, forallk =1, ..., ] — 1. For notational convenience, let I1(ay, a;) denote the set of all

alternative-paths connecting a, and a,,'* and (a;, a;) denote one alternative-path connecting 4, and 4.

Lemma 6.13.1 Every pair of distinct alternatives ag, a; € A is connected via an alternative-path,

ie, I(a, a;) # .

“In particular, if a, = a;, then I1(ay, a;) = {{as}} is a singleton set of a null alternative-path.
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Proof: Given P; € D withr,(P;) = a,and P, € D with r,(P,) = a; by minimal richness, since D is
connected, we have a path {P*}!_ C ID connecting P; and P,. We partition {P*}¢_ according to the

peaks of preferences (without rearranging preferences in the path), and elicit all preference peaks:

k, k,+1 k, kg1 "
P,... P pt P PEt P
the same peak x,’ the same peak x,” ~ the same peak Xq

} — Elicit peaks{x,,x,, ..., %, },

where x; # x4, and x ~ x4, forallk = 1,...,q — 1. Note that {x,, x,, . . . ,xq} may contain
repetitions. Whenever a repetition appears, we remove all alternatives strictly between the repetition and
one alternative of the repetition. For instance, if x; = x; where1 < k < [ < g, we remove

Xpy Xt tr, - - -, Xy, and refine the sequence to {x,, . .., %, &7, . . . ,xq}. By repeatedly eliminating

repetitions, we finally elicit an alternative-path {x; }LI connecting a, and a;. |

Let P, and P, be the pair of completely reversed preferences contained in ). Assume w.l.o.g. that
P.=(a, - a_,ac--a,)and P, = (a,, - - - arar_, - - - a,). Note that the way we specify P, and P;

determines the labeling of all alternatives.

Lemma 6.13.2 Given distinct a,, a, a; € A, let a, be included in every alternative-path of H(ap, a,). Given
P, € D, we have [r,(P;) = a,] = [aPia] and [r,(P;) = a] = [a,Pa,|.

Proof: Suppose that r,(P;) = a, and a,P;a,. Pick an arbitrary preference P; € D withr,(P;) = a, by
minimal richness. By the weak no-restoration property, there exists a path {P*}._ C ID connecting P,
and P! such that a,Pfa, forallk = 1,. .., . Thus, r,(P¥) # a,forallk = 1,.. ., I. According to path
{Pf}fcil, we elicit an alternative-path (a,, a,) which excludes a;. This contradicts the hypothesis of the

lemma. Therefore, a,P;a,. Symmetrically, if r, (P;) = a,, then aPia,. [ |

Lemma 6.13.3 Givenag, a; € A\{a,, a,, } with a; ~ ay, If one alternative-path of 11(a,, a,,) includes a,, there

exists an alternative-path of I1(a,, a,,) including a;.

Proof: Let {x; } _, €Aand g, = x, forsome1 < n < p.Ifa, € {xk}i:ﬂ the lemma holds evidently.
Henceforth, assume a, ¢ {x;};_,. Note the alternative-path {a, = x,,x,, ..., %, = a,,a,} € I1(a,, a;),
and the alternative-path {a;, a; = Xy ooy Xy, Xy = an} € (ag, ay,).

Since P and P; are completely reversed, either a,P,a; or a,P;a, holds. Assume w.l.o.g. that a,P,a;. The
verification related to a,P;a, is symmetric and we hence omit it. Pick an arbitrary preference P; € D with
r,(P;) = a, by minimal richness. By the weak no-restoration property, we have a path {P‘};_ C D
connecting P, and P; such that a,P*a, forallk = 1, . .., v. Thus, r,(P¥) # a,forallk =1, ..., v. According
to {P¥};_,, we elicit an alternative-path {y, }!_ € I1(a,, a,) such thata, & {y.}i_,.
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Evidently, {y: }/_, N {x }o_, 2 {a.}. U {y}i_ N {x}_, = {a.}, then the concatenated
alternative-path {a, = y,, .. ., Vg = G5 G = Xy oo, Xp = an} € I(a,, a,,) includes a,. Next, we assume
3 N {x_, D {a}. We identify the alternative in {y; }!_ that has the maximum index and is also
included in {x; }{_, i.e,, y; = xp for some 1 < k< gand1 < k* < pand {yp ...,y N {x}t, = 0.
Note that a; = x,,1 < 7 < p and a, # y;. Therefore, either1 < k* < forn < k* < p must hold. If
1 < k* < 1, the concatenated alternative-path
{a,=x, ..., 0 = Vis Vi -2 Yqg = G5 Qg = Xyy ooy Xp = a,} € Il(a,, a,) includes a;. If
n < k* < p, the concatenated alternative-path

{a,=«x,... Xy = A5 As =Ygy Vi Vi = Xy ey Xp = a,} € I(a,, a,,) includes a,. [ |

Lemma 6.13.4 Givena, € A\{a,, a,, }, there exists an alternative-path of I1(a,, a,,) including as.

Proof: Pick an arbitrary preference P; € D with r,(P;) = a, by minimal richness. Note that a,P,a,, and
a.P,a,,. By the weak no-restoration property, we have a path {P*}!_ C D connecting P, and P; such that
a;Pra,, forallk = 1,..., 1 Thus, r,(P¥) # a, forallk =1, ...l According to { P*}}_ , we elicit an
alternative-path {x; }}_, € II(a,, a,) that excludes a,,. Symmetrically, we have an alternative-path

{m}l, € I(a,, a,,) that excludes a,. Thus, {x }r_ N {ym}i, 2 {a.}. U {x}_ N {n}l_, = {a.}, then
the concatenated alternative-path {a, = «, . .. Ky = A =Yy Vg = a,} € I(a,, a,) includes a;. If
{x i, N {m o, D {a.}, we identify the alternative a; included in both {x; };_, and {y; }}_, with the
maximum index in {xk}i:1 and the minimum index in {J’k}zzu ie,a; = x; = yp forsome1 < k< pand
1 < k* < gsuchthat {x,,...,x;_ } N {yk=1u, .., yq} = 0. Thus, the concatenated alternative-path
{0, % % = @ = Y= Ve, - - -5 gt € I(ay, a,,) includes ay, and excludes a,. Furthermore, we
refer to the sub-alternative-path {a; = x;, ..., x, = a,}, by repeatedly applying Lemma 6.13.3 step by
step from a; to a; along the sub-alternative-path, we eventually find an alternative-path of I1(a,, a,,) that

includes a.. u

Note that I1(a,, a,,) is a finite nonempty set. Hence, we label I1(a,, a,,) = {P,, . . ., P,}, and make
sure that each alternative-path of I1(a,, a,,) starts from a, and ends at a,,. Given P; € I1(a,, a,,) and

a,, a; € Py, let (a, at>7jl denote the interval between g, and a; on P,.
Lemma 6.13.5 IfT1(a,, a,,) is a singleton set, D is (k, k)-hybrid for all1 < k < k < mwithk — k = 1.

Proof: Since I(a,, a,,) is a singleton set, Lemma 6.13.4 implies that all alternatives must be included in a
unique alternative-path. Thus, Gp must be a line and include all alternatives. More importantly, Lemma
6.13.2 implies that all preferences of ID must be single-peaked w.r.t. G. Since P, and P; are single-peaked

w.rt. Gp, it must be the case that Gp isaline of {a,, a,, . . ., ax, dr1,, - - . , a,, } which coincides to the
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natural order <. Hence, D C D = Dy/(k, k) forall1 < k < k < mwith k — k = 1. Evidently, as
Dy (K, k), where k' > kork < k is not well defined, D ¢ Dy (K, k). ]

Henceforth, we assume that I1(a,, a,,) is not a singleton set. Since all alternative-paths of I1(a,, a,,)
start from g, and end at a,,, we can identify the left maximum common part and the right maximum

common part of all alternative-paths of I1(a,, a,,), i.e., there exist two alternatives a;, a; € A (eitherk < k

or k > kso far) such that the following three conditions are satisfied:
(i) a, ar € Piforall P, € I1(ay, a,),
(i) (a,, a)” = (a,,ar)™, and {ag, a,)”" = {(ag, a,)”* forall P, P, € I1(a,, a,,), and

(iii) there exist no ay, ay € Asuchthatay,ay € Piforall P € I1(a,, a,), and (a,, ak>7)l C {(a,, “E>PI
or {ag, a,)"" C (ag, )" forall Py € T1(a,, ay,).

We claim that a; # ag. Otherwise, I1(a,, a,,) degenerates to a singleton set. Note that condition (iii)
implies that a; and ag are unique. Fix an arbitrary P; € I1(a,, a,,). We first claim
(a,, a)™' O {ag, a,)™' = (. Suppose not, i.e., there exists a, € (a,, a;)”" N {ag, a,,)”" such that
(a,, a)”" N (a, a,)™ = {a,}. Since a, # ag, we know either a; # a; or a, # ag. Consequently, the
concatenated alternative-path {(a,, a5>73’ , {a, am>7)l} € I(a,, a,,) excludes either a; or a;, which
contradicts condition (i). Therefore, (a,, ar)™ N (ag, a,)™ = 0. Next, we claim that
(a,, a)”" U {ag, an)™" # A. Otherwise, condition (ii) implies (a,, ar)™ U (ag, a,,)”* = A forall

P, € I1(a,, a,), and consequently, I1(a,, a,,) degenerates to a singleton set.

Lemma 6.13.6 The following two statements hold:
(i) I(a,, ay) is a singleton set of the unique alternative-path {a,, . . ., ar, ari,, - . ., a}-
(ii) IT(ag, a,) is a singleton set of the unique alternative-path {ag, ..., a, G, - . ., Gy}

Proof: By symmetry, we show the first statement, and omit the verification of the second statement.

First, let I1(a,, a;) be a singleton set. We show that I1(a,, a;) {{al, ey Ay Ay - e ey ak}}, which
coincides to the nature order < from a, to a. Since I(a,, a;) is a singleton set, Lemma 6.13.2 implies that
all preferences of D must be single-peaked w.r.t. the unique alternative-path of I1(a,, a;). Moreover, since
the completely reversed preferences P, = (a, - - - axgt, - - - a - - - ag - - - ) and
P, = (@ -~ ag---ag- - apy.ac - - - a,) are contained in I, this implies that the unique alternative-path of
I1(a,, ay) mustbe {a,, ..., a, app, . - ., ar}

Next, we show that I1(a,, a;) is a singleton set. If a, = ay, statement (i) holds by the definition of

I1(a,, a;). We next assume a, 7# a;. Pick an arbitrary alternative-path
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Pr={a=x,...,0, =ag,...,x5 = a,} €Il(a, a,). Given an arbitrary alternative-path

(ay,ar) = {a, =y, ..., yu = ar}, we show (a,, a;) = (a,, a@P’. Since a; = x, = y,, we can identify the
alternative y; = x~ for some1 < k < uandv < k* < tsuch that ooy N {eeg, o x = 0.
Then, we have a concatenated alternative-path P, = {y,, ..., yi_,yi = %, Xpeps, - - -, ¢} € (ay, ap).
By condition (i) above, we know a; € P,. Since a & {y,,...,y;_,}anda; & {xp-4,, ..., %}, it mustbe
the case y; = a; and x- = a;. Hence, (a,, a) = (a,,a)””. Last, by condition (ii) above, we have

(a,,ap) = {(a,, a)" = (a,, a)™. Since both Py and (a,, a;) are arbitrarily selected, (a,, a) = (a,, ar)”"

implies that IT(a,, a;) is a singleton set. [
Henceforth,let L = {a,, ..., a, detrs- - - a;, R={ag, ..., a, @, - . ., a,} and
M= {a...,a, a,...,a;}. As mentioned before, we know k — k > 1.

Lemma 6.13.7 Domain D C Dy(k, E), and D SZ ID)H(I_C/,EI) where k' > I_corEl < k.

Proof: By Lemma 6.13.2, we know that all preferences of [D are single-peaked w.r.t. the natural order < on
both L and R. Therefore, the first restriction of Definition 6.3.1 is satisfied. We focus on showing the
second restriction of Definition 6.3.1.
Fix P; € D withr,(P;) = a, € Landa, € M\{a,}. If a, = a;, a;P;a, holds evidently. We next assume
a, 7 ar. By Lemma 6.13.2, to prove a;P;a,, it suffices to show that gy is included in every alternative-path
of I1(a,, a,). Suppose not, i.e,, there exists an alternative-path (a,, a,) such that a; ¢ (a,, a,). Since
a, 7 ar, we have the alternative-path (a,, ap) ={a,...,a, a0, -, ap} which excludes a;. Next, if
a, = ag, we have the alternative-path (a,, a,,) = {ay, ..., a,} which excludes a;. If a, € M\{ay, a;}, by
Lemma 6.13.4, we have an alternative-path P, € I1(a,, a,,) that includes a,. Moreover, by condition (i)
above and Lemma 6.13.6, we write P, = {a,, ..., a, %,, ..., X, ag, . - ., a,, } where
a, = x, € {x,,...,x} C M\{ay, a} forsome1 < v < t. Then, we have an alternative-path
{a, =x,,...,x,ag, ...,a,} which excludes a;. Overall, we have an alternative-path (a,, a,,) that
excludes a;. Now, we have three alternative-paths (a,, a,), (4,, a,) and (a,, a,,) which all exclude a;. By
combining them and removing repeated alternatives, we can construct an alternative-path of Il (a,, 4,,)
that excludes a;. This contradicts condition (i) above. Therefore, a; is included in every alternative-path
of I1(a,, a,), as required. Symmetrically, given P; € D withr,(P;) € Rand a, € M\ {az}, we have a;Pa;.
Last, recall condition (iii) above. Since a; and ag are uniquely identified, D ¢ Dy (K, E/) where k' > k
ork < k. This completes the verification of the lemma, and hence proves the first part of Theorem 6.7.2.

Now, we turn to the second part of Theorem 6.7.2. By the first part of Theorem 6.7.2, we know that
D C Dy(k, E) forsome1 < k < k < mand D Q Dy (K, El) where k' > kand K<k By the sufficiency
part of Theorem 6.5.1, it is evident that every (k, k)-RPFBR is unanimous and strategy-proof on ID.
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Therefore, we focus on showing that every unanimous and strategy-proof on D is a (k, k)-RPFBR. We
provides four independent lemmas which show some important properties on all unanimous and
strategy-proof RSCFs defined on ID. Then, these four lemmas together enable us to complete the
characterization of (k, k)-RPFBRs.

Lemma 6.13.8 Every unanimous and strategy-proof RSCF ¢ : D" — A(A) satisfies the tops-only property.

Proof: Fix a unanimous and strategy-proof RSCF ¢ : D" — A(A). To prove the tops-only property, it
suffices to show that foralli € N, P, P, € Dand P_; € D",
n(P) = r(P)] = [§(PuP_) = p(P D),

We prove this in two steps. In the first step, by the proof of Theorem 1 of [3 1], we know that ¢ satisfies
the following property: foralli € N, P;, P, € Dwith P, ~ P/and P_; € D",

[r.(P;) = r.(P))] = [¢(Pi, P_;) = ¢(P},P_;)]." In the second step, we consider P;, P, € D such that
r.(P;) = r,(P}) = a,, but P, is not adjacent to P..

First, strategy-proofness implies ¢ (P,P_;) = ¢, (P}, P_;). Next, pick an arbitrary a; € A\{a,}, we
show ¢_ (P;, P;) = ¢, (P}, P_;). By the weak no-restoration property, there exists a path {PF}]_ CD
connecting P; and P! such that a,P*q, forallk = 1, . . ., q. Start from P>, If r,(P*) = r,(P}), the result in the
first step implies ¢, (P}, P—;) = ¢_ (P}, P_;). Ifr,(P}) = a, # a, = r,(P}), then P; ~ P} implies
r(P) = r,(P?) = a, r,(P}) =r,(P}) = a,and ry(P}) = ry(P?) foralll = 3, ..., m. Hence, it must be the
case that a; = r/(P}) = r;(P?) for some 3 < I < m, and then strategy-proofness implies
¢, (Pi,P_;) = ¢, (P}, P_;). Overall, we have ¢_ (P}, P_;) = ¢, (P}, P_;). By repeatedly applying this
argument along the path from P? to P!, we eventually have ¢, (Pk,p_) = ¢, (P p_,) for all
k=1,...,q — 1. Hence, (Pat(Pi’ P = ¢at(Pf, P_,). Therefore, ¢(P;, P_;) = ¢(P,, P_;), asrequired. W

Since ID is minimally rich, the tops-only property implies that every unanimous and strategy-proof
¢ : D" — A(A) degenerates to a random voting scheme ¢ : A" — A(A). Given an arbitrary random voting
scheme ¢ : A" — A(A), we say that (i) ¢ is unanimous on Dy (k, k) if forall (P,, ..., Py) € [ID)H (k, E)] y

[r(P) = =r(P,) = a] = [p(a, ... ,ar) = e,), and (ii) ¢ is strategy-proof (respectively, locally
strategy-proof ) on ]D)H( k) ifforalli € N, P;, P, € Dy(k, k) (respectively, P; ~ P!) and
P_; € [Dul(k, k)] r,(P;),r.(P_;)) stochastically dominates ¢ (r,(P}), r,(P_;)) according to P,

where r,(P_;) = (rl(Pl), ooy i(Pisy)y 1 (Pigy),s - ,rl(Pn)).
To show a unanimous and strategy-proof ¢ : D" — A(A) is a (k, k)-RPFBR, by Lemma 6.13.8, Fact

6.8 and the necessity part of Theorem 6.5.1, it suffices to show that the corresponding random voting

13[31] introduce the interior and exterior properties on a domain and show that they together are sufficient for endogeniz-
ing the tops-only property on all unanimous and strategy-proof RSCFs. The weak no-restoration property implies the exterior
property, but may not be compatible with the interior property. However, the proof of their Theorem 1 can be directly applied
to show the first-step result here.
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scheme ¢ : A" — A(A) is unanimous and locally strategy-proof on Dy (k, k). Note that both ID and
Dy (k, k) are minimally rich. Consequently, since RSCF ¢ is unanimous and satisfies the tops-only
property, it follows immediately that the random voting scheme ¢ : A" — A(A) is unanimous on

Dy (k, k). In the rest of the proof, we show that every random voting scheme, which is induced from a
unanimous and strategy-proof RSCF ¢ : D" — A(A), is locally strategy-proof on Dy (k, k).

For notational convenience, with a little notational abuse, we write (g, a;) as a two-voter preference
profile where the first voter presents a preference with peak a, while the second reports a preference with
peak a;. We also write (a,, P_;) as an n-voter preference profile where voter i presents a preference with
peaka;andP_; = (P,,..., P, ,,Piy,,...,P,).

Lemma 6.13.9 (The uncompromising property) Let ¢ : D" — A(A) be a unanimous and strategy-proof
RSCE. Given an alternative-path {x }i_,,i € Iand P_; € D", we have ¢_ (x,,P_;) = ¢_ (x, P_;) for all

a, & faniy andhence i 9, (5, P) = i, 6, (30 P)

Proof: We start with ¢ (x,, P_;) and ¢(x,, P_;). Since x, ~ x,, we have P; € D™ and P; € D™ such that
P; ~ Pi. Then, the tops-only property and strategy-proofness imply
¢, (%, P)) = ¢, (P,P;) = ¢, (P,P;) = ¢, (%, P)foralla, & {x,,x,}.

We next introduce an induction hypothesis: Given2 < k < t,forall2 < k' < k,
(pas(xl,P,,') = (pas(xk/,P,i) forall a, ¢ {x;};‘; We show (pas(xl,P,i) =¢, (xk, ;) foralla, ¢ {x;};‘q.
Since x; ~ xy_,, we have P; € D% and P, € D"~ such that P; ~ P!. Then, the tops-only property and
strategy-proofness imply ¢_ (xk, ) = ¢, (P,P_;) = ¢, (P( P)=¢ S(xk_l, P_;) forall

a; & {x1, % }. Moreover, since ¢_ (x,, P_;) = ¢, (xx—,, P—;) forall a, ¢ {x/}=" by the induction
hypothesis, it is true that ¢, (x,, P—;) = ¢, (xx, P_;) foralla, ¢ {x;}F_,. This completes the verification of
the induction hypothe31s Therefore, ¢ (xl, i (xt, P_;)foralla, ¢ {x;};_, . Then, we have

)
D 9, (0, Py) = — Dy, a0 P) =1 =20 iy ¢, (w1, Po) = > $y, (2, P;). W

Now, we can show that if k — k = 1, every unanimous and strategy-proof ¢ : D" — A(A) is a PFBR.

Recall that k — k = 1implies D C Dy (k, k) = D. Correspondingly, Lemma 6.13.9 degenerates to the
uncompromising property of [46], and the random voting scheme ¢ : A" — A(A) satisfies the
uncompromising property on D. Furthermore, Lemma 3.2 of [ 46] implies that the random voting
scheme ¢ is strategy-proof on D, as required. This completes the verification of the second part of
Theorem 6.7.2 in the case k — k = 1. Henceforth, we assume k — k > 1. We first make two observations
on graph Gp, which will be repeatedly used in the following-up proof. Given a, € M\{ay, at}, there
exists an alternative-path (a;, ar) C M thatincludes a,. O There existsacycle C, = {x; }i_, C M,p > 3,

ie,xr ~ xpq, forallk =1,... pwherex,,, = x, suchthata; € C.."¢ There exists a cycle

'6By the identification of ai, we know that there exist at least two distinct alternatives of M that are adjacent to a; in ID. Then,
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C.={m}i_, CM,q>3ie,y ~ ypp forallk =1,...,p —1wherey,,, = y, suchthata; € C,. O

Lemma 6.13.10 Every unanimous and strategy-proof RSCF ¢ : D" — A(A) behaves like a random
dictatorship on the subdomain D = {P; € D : r,(P;) € M}, i.e, there exists a conditional dictatorial
coefficient £; > o for eachi € Nwith ) € = 1such that §(P) = .\ €ie,(p,) forall P € D"

Proof: We verify this lemma in two steps. In the first step, we restrict attention to the case n = 2, i.e,
N = {1, 2}, and show by Claims 1 - 4 below that every two-voter unanimous and strategy-proof RSCF on
DD behaves like a random dictatorship on subdomain ID. In the second step, we extend the result to the
case n > 2 by adopting the Ramification Theorem of [35].

Fix a unanimous and strategy-proof RSCF ¢ : D* — A(A). By Lemma 6.13.8, ¢ satisfies the tops-only

property.

CrAIM 1: The following two statements hold:

(i) Given an alternative-path {Zk}gczv' we have ZL:I ¢ (z,z1) =1

Zk

(ii) Givena circle {z;}!_ , we have ¢, (zg,2¢) + ¢, (z,,2:) = 1foralls # ¢.

The first statement follows immediately from unanimity and the uncompromising property. Next,
consider the circle {zk}iq. Fixing z; and z,, assume w.l.o.g. that s < t. There are two alternative-paths
connecting z, and z;: the clockwise alternative-path P = {z, z.1,, . . ., z:} and the counter clockwise
alternative-path P’ = {z,,z,_,,...,2,21, 21, - - - , 2t} It follows immediately from statement (i) that
Y owep ¢.(z,2) =1and Y 5 ¢, (2, 2) = 1. Last, since P NP’ = {z,z},itis true that
¢, (2, z1) + ¢, (2, z:) = 1. This completes the verification of the claim.

CraM 2: According to the cycle C, = {x;}}_ of Observation 6.13, ¢ behaves like a random dictatorship
on the subdomain D% = {P, € D : r,(P;) € C,}, i.e, there exists 0 < & < 1such that

¢(x, xp) = ey + (1 — €)ey, forall g, x € C..

Claim 1(ii) first implies ¢, (2, 2,) + ¢, (%,,%,) = 1. Lete = ¢ (x,,x,)and1 — € = ¢, (%,, x,). Fix
another profile (xy, ). If x; = X/, unanimity implies ¢ (x;, %) = cey, + (1 — €)e,,. We next assume
x;. 7 xp . There are four possible cases: (i) x, # x; and x, = ay, (ii) x, = a; and x, # xp, (iii) x, # xt,
x, # xp and (xy, xp ) # (x5, %,), and (iv) (ap, a0 ) = (x5, %,).

Since cases (i) and (ii) are symmetric, we focus on the verification of case (i), and omit the
consideration of case (ii). We first have ¢ (x¢, x,) + ¢, (%, %) = 1by Claim 1(ii). We next show

o, (21, x,) = 1 — £. Note that there exists an alternative-path in C, that connects x, and «;, and excludes

we can identify two distinct alternative-paths in M which connect a; and az. From these two alternative-paths, we can elicit a
cycle in M that includes ay.
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x,. Then, according to this alternative-path, the uncompromising property implies
¢, (x, %) = ¢, (x,,%,) =1 — ¢, as required.

In case (iii), we first know either x; & {x,, x,} orap ¢ {x,,x,}. Assume wlo.g. thatx; & {x,,x,}.
Then, by the verification of cases (i), from (x,, x,) to (x, x,), we have ¢ (xi, x,) = ey, + (1 — €)e,,.
Furthermore, by case (ii), from (x;, x,) to (xg, ), we eventually have ¢ (x;, x) = ey, + (1 — €)ey, .

Last, in case (iv), since the cycle C, contains at least three alternatives, we first consider the profile
(x,,x,) and have ¢(x,, x,) = e, + (1 — €)e,, by the verification of case (i). Next, according to the
verification of case (iii), from (x,, x,) to (x,, x,), we induce ¢(x,, x,) = ce,, + (1 — £)e,,. This completes

the verification of the claim.

Symmetrically, according to the circle C, of Observation 6.13, ¢ also mimics a random dictatorship on
the subdomain D% = {P, € D : r,(P;) € C,}, i.e, there exists 0 < &’ < 1such that
(P(ykayk’) - gleyk + (1 - gl)eyk/ for all)’kv)’k’ S Cz-
Cram 3: We have (i) ¢ = &/, (ii) ¢(ar, ap) = € eq, + (1 — €)eq, and (iii) ¢(ag, ar) = € e, + (1 — €)ey

According to the graph Gp and the two cycles C, and C,, we can construct an alternative-path
P ={z,z,,...,z1-,z1} C Msuchthat (i) | > 3, (ii) z,,z, € C,and a; € {z,,2,}, and (iii) z1_,, 21 € C,
and ag € {2, }. First, Claim 2 and the uncompromising property imply € = ¢_ (2,,2,) = ¢, (2, 21)
and1— € = ¢_(2,,2) = ¢, (2,2). Symmetrically, we have1 — &' = ¢_(z1-,,21) = ¢_ (2,,21) and
e =¢, (z,2,) = ¢,_(21,2) Thus,e +1— &' = ¢_(2,,z1) + ¢, (2, z1) < 1whichimpliese < ¢’,and
1—e+¢e =¢,(z1,2) + ¢,(z1,2) < 1whichimpliese > ¢’. Therefore, & = ¢’. This completes the
verification of statement (i).

Since statements (ii) and (iii) are symmetric, we focus on showing statement (ii) and omit the
consideration of statement (iii). First, by the verification of statement (i), we have
#(z,,21) = €e, + (1 — €)e,,. Second, according to P, the uncompromising property implies
¢.(z,,21) = ¢, (z,,21) =1—cand ¢_ (z,,21) = ¢, (2,,z1) = oforall2 < k < I. Moreover, since
S, ¢, (2.,21) = 1by Claim 1(i), we have ¢_ (z,,2z1) =1 — ¢_ (2., 21) = €, and hence
¢(z.,z1) = €e,, + (1 — €)e,,. Symmetrically, we also have ¢(z,,zi_,) = e, + (1 — €)e,,_,. Recall that
a; € {z,,z,} and a; € {z;_,, z1}. We hence conclude that when a; = z, or a; = z,
¢(ar, ap) = € e, + (1 — €)e,.. Last, we show that when a; = z, and a = 2z,
¢(ar, ag) = € eq, + (1 — €)e,.. According to P, the uncompromising property implies
(Pak(akv aE) = ‘Pzz (szzl—l) = (le (Zzazl) = cand (Paz(ab aE) = (le_l(zzazl—l) = ‘le_l (anl—l) =1—¢gas

required. This completes the verification of statement (ii), and hence proves the claim.
CrAM 4: Given distinct ag, a; € M, ¢p(a,, a;) = e, + (1 — €)e,,

First, consider the situation that there exists P, € I1(a,, a,,) such that a;, a; € P,. Since a;, a; € M, the
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interval [ay, ag]”" = {x:}._, € M must include a, and . By Claim 3, we have

¢(x,x1) = ey, + (1 — €)ey, and ¢p(x1, x,) = e, + (1 — €)ey,. Then, according to the alternative-path
{x¢}i_,, by repeatedly applying Claim 1(i) and the uncompromising property, we have

O(xp,xp) =ce + (1— €)exk, forall distinct1 < k, kK < I. Hence, ¢(as, a;) = e, + (1 — €)eg,-

Next, consider the situation that there exists no P; € Il(a,, a,,) that includes both a; and a,. According
to Observation 6.13, it must be the case that a, ¢ {a, a;} and a; ¢ {ay, a;}. Moreover, by Observation
6.13,let {b}_, C Mbe an alternative-path that connects a; and ag, and includes a, and let {¢; }{_, C M
be an alternative-path that connects a; and ag, and includes a;. Evidently, a, ¢ {c¢;}{_, and a; ¢ {b.}|_,.
Leta, = b, and a; = ¢, forsome1 < p < land1 < g < u. According to the sub-alternative-paths
{b,,b,,...,b,}and {c,,c,, ..., ¢, },sinceb, = ¢, = a, b, ¢ {c}¥_ and ¢, ¢ {bi};_,, weidentify
1<n<pand1 <v < gsuchthatb, = ¢, and {b,,+1, e bp} N{cyuss - - ,cq} = (). Then, we have the

concatenated alternative-path P = {a, = by, ...,by=cp,...,cq= a;} C Mwhich connects a, and a;.

11 pu—
By the verification in the first situation, we have s, (by, b,) = € and ¢, (¢y,¢4) = 1 — €. Furthermore,
according to P, the uncompromising property implies

(If’as(asa a) = ‘/’bp(bpa ¢) = (Php(bw &) = Sbbp(bpv b,) = € and

8, (00) = 9, () = 8, (byscy) = 9, (6€)) = 1 — = Therefore, ¢(a, ) = e, + (1 — e,

This completes the verification of the claim.

In conclusion, every two-voter unanimous and strategy-proof RSCF behaves like a random

dictatorship on the subdomain ID. For the general case n > 2, we adopt an induction argument.

INpUcTION HYPOTHESIS: Givenn > 3,forall2 < n’ < n, every unanimous and strategy-proof

v : D" — A(A) behaves like a random dictatorship on the subdomain D.

Given a unanimous and strategy-proof RSCF ¢ : D" — A(A), n > 2, we show that it behaves like a
random dictatorship on the subdomain D. Ifn > 4, the verification follows exactly from Propositions s
and 6 of [35]. Therefore, we focus on the case n = 3,i.e, N = {1, 2, 3}. Analogous to Propositions 4 and
6 of [35], we split the verification into the following two parts:

1. Thereexists ¢,, €,,6, > owithe, + €, + &, = 1such thatforall P € D’ , we have
[P,— = P; for some distinct i, j € N} = [(/)(P) =é&ie,p) T Eenp,) T 6 e,l(p3)}.

2. Forall P € D’, we have ¢(P) = e, e,(p) + €€ (p) T €5 €0,

The second part follows exactly from Proposition 6 of [35]. Therefore, we focus on showing the first

part.17

Proposition 4 of [3 5] is not applicable for the verification of the first part since they impose an additional domain condition
(see their Definition 18) which cannot be confirmed on domain ID.

146



According to ¢, we first induce three two-voter RSCFs by merging two voters respectively: For all
P, P,,P, € D,let y*(P,, P,) = ¢(P,, P,, P,), v*(P., P,) = ¢(P,, P, P,) and ¥*(P,, P,) = ¢(P,, P,, P,). It
is easy to verify that all y*, ¥* and y? are unanimous and strategy-proof on ID. Therefore, the induction
hypothesis implies that there existo < ¢, ¢,,¢, < 1such thatforall P, P,, P, € D,
V'(P,,P,) = €, e,p) + (1 — €)en ), V2 (P, Py) = (1= €,)en(p,) + €, €,p,) and
V3 (P, P,) = (1 —€,)e,(p,) + €; €,,(p,)- Note that to show the first part holds, it suffices to prove
&te t+e =1

Recall the cycle C, = {xk}p _, € Min Observation 6.13. First, according to the three alternative-paths
{%,, %, }, {%,, %, } and {x,, %,, . . ., %,, %, } in C,, the uncompromising property implies respectively that (i)
B (5 32) = B (5 2] = 1, (51, 3) = £, 2, (30, 2) = b (0, 2) = V2, (5 5) = o
foralla, ¢ {x,,x,,x,}, (ii) ¢, (20,2, %) = ¢, (2, %,,%;) = Vi (x,,%,) = &,,and (iii)
¢, (%, 2, %) = ¢ (x5,%,,%,) = V2 (x,,%,) = €,. Then, we havee, + ¢, + &, =
.. (2, 22, 25) + ‘sz(xn Xy, %5) + ¢, (00, 202, 25) + Za5¢{x‘,x2,x3} ¢, CRENENES EuseA ¢, (0, 22, 2,) =1,
as required. This completes the verification of the induction hypothesis, and hence proves Lemma

6.13.10. [ |

Lemma 6.13.11 Let ¢ : D" — A(A) be a unanimous and strategy-proof RSCE. Given distinct a;, a; € M
and P_; € D", we have </)ak(a5,P_i) = ¢ak(at,P_,-)f0r all a, ¢ {as, a;}.

Proof: First, Lemma 6.13.8 implies that ¢ satisfies the tops-only property, and Lemma 6.13.10 implies that
¢ mimics a random dictatorship on the subdomain D = {P, € D : 1,(P;) € M}.
CrAmM 1: The two statements hold: (i) [a; & {a,, a;}| = [(p%(as, P, = (p%(at, P_;)],and (ii)
g ¢ {asai}] = |9, (4 P-0) = ¢, (@, P

By symmetry, we focus on showing statement (i) and omit the consideration of statement (ii). Note
that if there exists an alternative-path that connects a, and a; and excludes a;, then the uncompromising
property implies ¢, (a;,P_;) = ¢, (a;, P_;). Therefore, to complete the verification, we will construct
such an alternative-path.

If a, # ag, we pick an alternative-path (ay, a;) that includes a, by Observation 6.13, and elicit the
sub-alternative-path (a;, ag). If a, = ag, we refer to (a;, az) = {a,}. Thus, a; ¢ (aj, ag). Similarly, we have
an alternative-path (ag, a;) which excludes a;. According to (a;, ag) and (ag, a;), we construct an

alternative-path which connects a; and 4, and excludes g, as required. This completes the verification of

the claim.

Since a;, a; € M, by the verification of Claim 4 in the proof of Lemma 6.13.10, there exists an

alternative-path {x; }¥_, C M connecting a, and a;. The uncompromising property first implies
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¢, (a,, P_;) = ¢, (as, P_;) forall a; ¢ {x;};_,. Therefore, to complete the proof of the lemma, it suffices
toshow that ¢ (a,,P—;) = ¢, (ar, P—;) forallk =2,...,p — 1. Ifx; € {ay, at}, it follows immediately
from Claim 1 that ¢, (a;,P_;) = ‘ka<“t7 P_;). Hence, welet® = {x,,...,x,,}\{a, a;} and show

¢, (a,, P_;) = ¢_(a,, P_;) forallz € ©.

For notational convenience, let i = n. We partition {1, ...,n — 1} into three parts: I = {1,...,j},
I={j+1,....0}andI = {I+1,...,n—1},and assume wlo.g that ,(P,), . .. ,1(Py) € L\{a},
r(Piy)s - - 1(P) € R\{ag} andr,(Pry,), . .., 7 (Py—,) € M. Note thatif] = o, Lemma 6.13.10 implies
¢_(a;,P_,) = ¢_(a,P_,) forallz € @ Next, assume | > o. We construct the following preference

ag .
profiles: P = (Pl, oy Py m, ; ,PI, as), N =o0,1,...,j,and )
p) = (Pb P, ...,P, {VJH l},PI, as) =j+1,...,L Note that P©) = ( T fk , Ps, as) and

P = (a5, P_,).

Given an arbitrary o < 7 < j, consider P'") and P+

. Note that voter 7 + 1 has the preference peak a;
at P, and has the preference peak r, (Pyys) = ar < agat P, By Lemma 6.13.6,
{ar, a4, - . ., a} C Lis the unique alternative-path that connects a; and a;, and hence excludes all
alternatives of ©. Then, the uncompromising property implies ¢_(P")) = ¢_(PU)) forallz € ©.
Therefore, we have ¢Z(P(°)) =...= ¢Z(P(j)) forall z € ©. Next, given an arbitrary j < v < ], consider
P™ and P, Note that voter v + 1 has the preference peak a; at P(*), and has the preference peak
n(P,y,) = a = agat PU*). By Lemma 6.13.6, {ay, . . . , ar_,, &} C Ris the unique alternative-path that
connects a; and a;, and hence excludes all alternatives of ©. Then, the uncompromising property implies
¢_(PY)) = ¢ (P (VJ”)) forallz € ©. Therefore, we have ¢_ (P(j)) = =¢ (PV)forallz € ©.In
conclusion, ¢_ (= T3 £ Pa) =¢ (PO)=-..=¢_(PV) = ¢_(a,P_,) forallz € ©.

Symmetrically, we also derive ¢, (“—f, =+, Py, at) ¢ (a, P _,) forallz € ©. Last, since Lemma
6.13.10 implies ¢, ( T “E Py, as) :;/)Z(Tk, Tk ) forallz € ©, we have ¢_(a;, P_,) = ¢_(ar, P_,)
forall z € ©, as required. 7 |

Now, fixing a unanimous and strategy-proof RSCF ¢ : D" — A(A), we are ready to show that the
corresponding random voting scheme ¢ : A" — A(A) is locally strategy-proof on Dy (k, k).

Fixi € N, P, P € Dy(k, k) with P, ~ P,and P_; € []D)H (k, E)} "™, For notational convenience, let
r(P;) = a,r(P;) = a;andr,(P;) = «; forallj # i. Letx_; = (%, ..., %y, Xips, - - - , X, ). We show that
¢(as, x_;) stochastically dominates ¢(a;, x_;) according to P;. If a, = a, ¢(a,,x_;) = ¢(a;,x_;), as
required. Next, assume a, # a;. Then, P; ~ P, implies r,(P;) = r,(P}) = a, r,(P}) = r,(P;) = a,and
re(P;) = r(P)) forallk = 3, ..., m. To complete the verification, it suffices to show
¢, (as, x_i) > ¢, (at, ~) and ¢ (ag,x_;) = qf)ak(at,x_i) forall a; ¢ {a;, a;}. Sincer,(P;) = a,

r (Pi) = a;and P; ~ P, we know a, ~ a;in Dy (k, k). Then, there are three possible cases: (i) a;,a; € L

and |s — t| = 1, (ii) a,, a; € Rand |s — t| = 1, and (iii) a,, a; € M. The first two cases are symmetric, and
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hence we focus on the verification of the first case and omit the consideration of the second case. In the
first case, since |s — t| = 1, it is also true that a; ~ a, in D. Hence, we have P;, P, € D such that

r(P;) = a, r,(P)) = a;and P; ~ P.. Then, the tops-only property and strategy-proofness of ¢ on D imply
¢, (aex_) = ¢, (Px_;) > ¢, (P, x) = ¢, (ar,x_;),and

(/’ak(asvx—i) =9, (P, x_;) = . (Pl,x_;) = ‘/’ak(ahx—i) forall a; ¢ {a, a;}, as required. Last, assume
a,,a; € M. Fixing P;, P, € D with r,(P;) = a,and r,(P,) = a; by minimal richness, we have

(PaS(aS’ x_;) = ¢, (Py,x_;) > ¢.. (Plx_y) = ‘/’as(“t’ x_;) by the tops-only property and strategy-proofness
of¢ponD,and ¢, (ag,2_;) = ¢, (a, x_;) forall a; ¢ {a,, a;} by Lemma 6.13.11, as required. Therefore,
¢ is locally strategy-proof on Dy (k, k). This completes the verification of the second part of Theorem

6.7.2 in the case k — k > 1, and hence completely proves Theorem 6.7.2.

6.14 PROOF OF FACT 6.8

We first introduce some new notation and the formal definition of the no-restoration property of [95].
Let aP;!b denote that a is contiguously preferred to b in P,, i.e., aP;b and there exists no ¢ € A such that aP;c
and cP;b. Recall the notions of adjacency and path in the beginning of Section 6.2. A domain D satisfies
the no-restoration property if for all distinct P;, P, € I, there exists a path {P*}!_ C ID connecting P;
and P; such that for all a,, a, € A, we have

[a,P a, and a,P¥ Ta, forsome 1 < k* < f] = [a,Prq, forallk =1,...,k*, and a,Pla, forall | = k* +1,...

By Theorem 1 of [38], to prove Fact 6.8, it suffices to show that Dy (k, E) satisfies the no-restoration
property. Before proceeding the proof, we introduce an important observation on Dy (k, k). Given
P; € Dy(k, k), let r,(P;) = a,and a,P;la, (itis possible that a; = a,). Let P/ be a preference such that
P; ~ P! and a,P}'\a,. If one of the three conditions is satisfied: (i) r,(P;) = r,(P),and a, < a, < a, or
ag < a; < ay, (ii) r,(P;) = r,(P{") € M and neither both a,, a;, € L norboth a,, a, € R, and (iii)
r.(P;) # r,(P/), and eithera,, a, € Land [p — q| = 1,0ra,,a, € Rand |p — q| = 1,0ra,,a, € M, then
P! € Dy(k, k). m
To show that Dy (k, k) satisfies the no-restoration property, it suffices to show that for every pair of
distinct preferences P;, P € Dy (k, k), there exist a,, a, € Aand P!’ € Dy(k, k) such that P, ~ P/,
a,P;lag, a,P!\a, and a,Pja,. Henceforth, we fix distinct P;, P} € Dy(k, k), andlet r,(P;) = a; and
r.(P)) = a;.

We first assume a, = a;. We identify 1 < k < msuch thatr(P;) = r(P}) foralll =1,...,k —1,and
r(P;) # re(P)). Letri(P) = agand a; = r,(P;) for some k < v < m. Meanwhile, let r,_,(P;) = a,. We

generate a preference P/ by locally switching a, and a, in P;. Thus, P; ~ P/, a,P}la,, a,P'\a, and a,P}a,.
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Note that 7,(P;) = r,(P’) = r,(P!). We next show P/ € Dy(k, k). Suppose not, i.e., P! ¢ Dy(k, k). On
the one hand, since P; and P/ share the same peak and differ exactly on the relative rankings of a, and a,,
P; € Dyu(k, k) and P ¢ Dy(k, k) imply that a,P/'a, must violate Definition 6.3.1. On the other hand,
since P/ and P/ share the same peak and the same relative ranking of a, and a,, P, € Dy (k, k) implies that
a,P!a, does not violate Definition 6.3.1. Contradiction! Therefore, P! € Dy/(k, k).

Next, we assume a, < da;. The verification related to the situation a; < a; is symmetric, and we hence
omit it. We consider the four possible cases: (1) a, < ai, (2) a; < a,, (3) ap = a, < af = a;and (4)
ap = a; < a; < ag.

In case (1), we notice a; < a,;, = agand a, < a.y, < a. Letag,, = r(P;) forsome1 < k < mand
re—(P;) = a,. Thus, apP,»!aSJH. Sincer,(P;) = a, € L, a,Pa,, implies a, < a, by Definition 6.3.1. Hence,
we know a, =< a; < a,y, = arand a, = a; < a4, < a, which imply as+1Pfap by Definition 6.3.1. By
locally switching a, and a,, in P;, we generate a preference P;’. Thus, P; ~ P/, a,P}la,, a.,P;'\a, and
as.Pa,. Welast show P! € Dy(k, k). Ifr,(P!) = r,(P,) = ag,itis true that a, < ag < dg,,and
Observation 6.14(i) then implies P! € Dy (k, k). If r,(P”) # r,(P;), it is true that r,(P;) = a, = a, and
r.(P/) = a,,,, and Observation 6.14(iii) then implies P/ € Dy (k, k).

The verification of case (2) is similar to that of case (1), and we hence omit it.

In case (3), let ap = r.(P;) forsome1 < k < mand r_,(P;) = a,. Thus, a,P;lag. Since a; = a, < ag,
a,Paz implies a, < ag by Definition 6.3.1. Thus, we know either a, < a; < a; = a, which implies azPja;
and a;Pja, by Definition 6.3.1, or a; = a, < a; = a, which implies a;P,a, by Definition 6.3.1. Overall,
agPia,. By locally switching a, and ag in P;, we generate a preference P;'. Thus, P; ~ P/, a,P;la, azP{'\a,
and a;Pja,. We last show P;" € Dy(k, l_c) Ifr,(P/) = r,(P;) = a,, Observation 6.14(ii) implies
P! € Dyu(k, k). Ifr,(P/) # r,(P), itis true that r,(P;) = a, = a, and r,(P/') = ag, and Observation
6.14(jii) then implies P! € Dy (k, k).

In case (4), let a, = ri(P;) forsome1 < k < mand r,_,(P;) = a,. By locally switching a, and a; in P;,
we generate a preference P;'. Thus, P; ~ P/, a,P;la;, a,P!'!a, and a;Pa, (recall r,(P) = a;). We last show
P! € Dy(k, k). Ifr,(P’) = r,(P,) = a,, Observation 6.14(ii) implies P/ € Dy (k, k). Ifr,(P!) # r,(P,), it
is true that r,(P;) = a, = a, and r,(P/) = a,, and Observation 6.14(iii) implies P;' € Dy(k, k).

In conclusion, domain Dy (k, k) satisfies the no-restoration condition of [95], as required. a
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Unanimous and strategy-proof probabilistic rules for

single-peaked preference profiles on graphs

7.1  INTRODUCTION

Finitely many agents have preferences over a finite set of alternatives. The alternatives are the vertices in a
connected graph, and the preferences of an agent are linear orderings which are single-peaked with
respect to some spanning tree of the graph: there is a single top alternative, the peak, and preference
decreases along the paths in this tree away from the peak. The objective is to choose an alternative based
on these preferences, or rather — in this paper — a probability distribution over the alternatives.

An example of such a situation is a road or railroad network, where the vertices (junctions) are also the
locations of villages or cities. The objective is to locate a public good (shopping mall, museum, hospital,
school, etc.) based on the preferences of the agents over these junctions. Distance from one’s home or
from a nearby bus stop may determine preference, but also the path one has to take. Single-peakedness is
then a plausible assumption. Alternatively, the graph may represent a network of personal relations
between the agents, and the objective is to distribute a public good - e.g,, disperse information — over the

vertices in this network. Also here, both the length of a path and the nodes (e.g, friends) to be visited may
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be important determinants for preference, and single-peakedness along a specific spanning tree captures
this. More generally, the graph structure and single-peakedness condition are formal ways to describe
restrictions on the set of all preference profiles that enable to avoid (random) dictatorship as in [57] - see
below. This is comparable to (e.g.) the domain restriction in [75]; we briefly comment on this in the
concluding section of the paper.

We consider probabilistic rules: these assign a probability distribution over the alternatives to every
preference profile of single-peaked preferences. An important reason for considering probabilistic rather
than deterministic rules is that even a random dictatorship, for instance each agent’s peak having an equal
chance of being chosen, seems better than a deterministic dictatorship, where one and the same agent’s
peak is always chosen.

The conditions we impose are unanimity and strategy-proofness. Unanimity means that if all agents
have the same peak then probability one is assigned to that alternative. Strategy-proofness means that no
agent, by misrepresenting its true preference, can increase the probability on any upper contour set, i.e.,
any set of alternatives (weakly) preferred to some given alternative. Put differently, the probability
distribution attained by reporting truthfully stochastically dominates any probability distribution
achievable by misreporting.

We first consider the case where the graph has no cycles, i.e., is a tree (and thus its own unique
spanning tree). For this case, our main result (Theorem 7.3.9) is that a probabilistic rule is unanimous and
strategy-proof if and only if it is a ‘leaf-peak rule’ In a nutshell, this means that such a rule is uniquely
determined by the probability distributions it assigns to the preference profiles with all peaks at the leafs
of the tree (i.e., the alternatives with degree one). We show that such a collection of probability
distributions has the following properties: (i) a leaf is assigned probability one if all peaks are at this leaf;
(ii) if an agent changes its peak from one leaf to another, then (a) probability does not decrease along the
path from the former to the latter and (b) probability does not change off this path. These collections of
probability distributions are called ‘monotonic’ They play a role similar to the collections of ‘fixed
probabilistic ballots’ in [46] — see also below.

Second, for the case where the graph is arbitrary (but connected), we show that every unanimous and
strategy-proof probabilistic rule is random dictatorial if and only if the graph has no leafs. In fact, we show
this for the case of two agents and then extend the result to more than two agents by using a result of [35]
— this is Theorem 7.4.2. Random dictatorship means that each agent is assigned a fixed probability
(weight) and every alternative is chosen with probability equal to the sum of the probabilities of the
agents having this alternative as their peak. If the graph is not a tree but has a leaf, then indeed unanimous
and strategy-proof probabilistic rules exist which are not random dictatorial, as we show by an example,

and as follows from the main result of the paper later on (Theorem 7.5.2). In order to prove Theorem
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7.4.2 we first consider 2-connected graphs, i.e., graphs in which for every pair of distinct alternatives there
is a cycle containing them, and next extend to arbitrary leafless graphs by decomposing the graph in a way
analogous to the concept of a ‘block tree’ ([70]; [104]; or, e.g,, [22]).

Third, for the general case, where the graph is not necessarily a tree, can have leafs, but is still
connected, we show that every unanimous and strategy-proof probabilistic rule behaves like a leaf-peak
rule on the branches of the graph and as a random dictatorial rule on the maximal leafless subgraph of the
graph, such that the total probability on each branch is equal to the total weight of the agents who have
their peaks on this branch. This is Theorem 7.5.2, which generalizes both Theorems 7.3.9 and 7.4.2.

As a simple example of a unanimous and strategy-proof rule ¢ characterized in Theorem 7.5.2, suppose
there are three agents called 1, 2, and 3, and four alternatives called g, b, ¢, and d, structured by the

following graph:

d

Let the agents have equal weights, R each. The maximal leafless subgraph is the triangle with vertices b,
¢, and d. If every agent has one of these points as its peak, then ¢ is just random dictatorship. For instance,
if b is the peak of 1 and ¢ the peak of both 2 and 3, then b is assigned : and c is assigned . If all agents have
a as their peak, then a is assigned probability 1. In all other cases, the total weight of the agents with peak
a is distributed equally between a and b (a and b together with their connecting edge form the unique
‘branch’ in this graph), but on the triangle we have random dictatorship. For instance, if the peak of agent

1is a, the peak of 2 is b, and the peak of 3 is d, then a is assigned probability * - 1= %, bis assigned

probability (% - i) + | = } and dis assigned probability 3.

Our first main result, Theorem 7.3.9 on trees, generalizes the case where the alternatives are ordered on
a straight line and agents have single-peaked preferences. The latter case has been dealt with in [46]: they
consider the whole real line, but their characterization remains valid on a finite or discrete set of
alternatives. In [81] it is shown that, for the version with finitely many alternatives, all probabilistic rules
are convex combinations of deterministic rules. In the tree case it turns out that this no longer holds — see
the concluding Section 7.6.1 for an example of a unanimous and strategy-proof probabilistic rule which is
not a convex combination of deterministic rules with these properties. This supports the fact that the
general tree case is not a straightforward generalization of the straight line case.

A consequence of Theorem 7.3.9 is a characterization of all unanimous and strategy-proof deterministic

rules if agents have single-peaked preferences on a tree, which to the best of our knowledge is new as well

(see Section 7.6.1). [97] also consider this issue but their setting is different: a graph is a subset of some
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Euclidean space (each of its points is an alternative, not only the vertices, and so there are infinitely many
alternatives), and preferences are uniquely determined by their peaks by considering Euclidean distance
along the paths in the graph. Nevertheless, their results are roughly in line with ours: if the graph is a tree,
then strategy-proof and onto deterministic rules (unanimity is implied) are characterized by so-called
extended generalized median voter schemes ([72]); for other graphs, there is dictatorship on cycles but if
a graph has a leaf then other rules are possible. For earlier work concerning social choice for single-peaked
preferences on trees see [ 59] and [40]. More recently, see [75] — cf. Section 7.6.2.

Our results show that unanimity and strategy-proofness of probabilistic rules for single-peaked
preferences on graphs imply that these rules are tops-only — they depend only on the peaks of the
preferences. In fact, we start out by deriving this result using Theorem 1 in [31], see Lemma 7.2.1. From
this lemma we then easily obtain that our rules are uncompromising on trees (cf.[24]): if an agent
changes its peak, then probabilities assigned to alternatives off the path between the old peak and the new
peak remain unaltered (Lemma 7.3.1).!

The literature on strategy-proof probabilistic social choice functions or rules started with the paper of
[57], who showed that without restrictions on preferences the conditions of unanimity and
strategy-proofness result in random dictatorship. The single-peaked domain restriction (which dates back
at least to [20]) allows for other rules, which can be seen as probabilistic extensions of the generalized
median rules ([72]; [12]; and others): as already mentioned see [46] and [81] for the case with finitely
many agents who have single-peaked preferences on the real line or a finite subset of the real line. [43]
show that even under single-peaked preferences, every unanimous and strategy-proof probabilistic rule is
arandom dictatorship if the dimension is higher than one.? [36] show a kind of converse to (among
others) our results: a domain has to be single-peaked in order to allow for the existence of unanimous and
strategy-proof probabilistic rules satisfying two additional conditions.> See also [29] for a similar result in
the deterministic case. For unanimous and strategy-proof probabilistic rules when preferences are
cardinal see the seminal work of [61], and further [44] and [73].

The paper is organized as follows. After preliminaries in Section 7.2, including the result that a
unanimous and strategy-proof rule is tops-only, we consider the tree case in Section 7.3 and the leafless
graph case in Section 7.4. Our main and most general result is derived in Section 7.5. In the concluding
Section 7.6 we show that in this context a probabilistic rule on a tree is not necessarily a convex

combination of deterministic rules; we also briefly discuss possible domain variations. An appendix

'In an earlier version of the paper ([80]) uncompromisingness on trees was derived independently for a smaller set of single-
peaked preferences.

*In spirit, this result is in line with our result on leafless graphs (Theorem 7.4.2).

*Namely, tops-onliness and a ‘compromise’ property. Under the assumptions in our paper tops-onliness follows from the
other conditions. The ‘compromise’ property is not necessarily satisfied by a leaf-peak probabilistic rule.
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presents the proof of Lemma 7.2.1 on tops-onliness.

7.2 PRELIMINARIES

Let A be a finite set of at least two alternatives andlet N = {1, ...,n} withn > 2 be a finite set of agents. A
complete, reflexive, antisymmetric, and transitive binary relation on A is called a preference. For a
preference Pand a, b € A, we write aPb instead of (a,b) € P. For distincta, b € A, aPb is interpreted as a
being strictly preferred to b by an agent with preference P. A tuple of preferences Py = (P,, ..., P,) is
called a preference profile.

We denote the top-ranked alternative of a preference P by t(P), i.e.,, t(P) = aif and only if aPx for all
x € A. The upper contour set of an alternative a at a preference P is the set U(a, P) = {x € A: xPa}.*

For a preference profile Py and an agent i € N, P_; denotes the restriction of Py to N \ {i}, that s,
P_,=(P,...,Pr,Pi,...,Px).

7.2.1 SINGLE-PEAKED PREFERENCES

The notion of a single-peaked preference was introduced in [20] and [62]. Here, we consider a
generalization.

First, we introduce a graph structure on the set of alternatives. A pair G = (A, E), where
EC {{a,b} :a,b €A, a# b},isa(nundirected) graph. The elements of E are called edges. The degree of
an alternative a € A is the number |{{x,y} € E: a € {x,y}}|, that is, the number of edges containing a.
A leaf is an alternative with degree one. We denote the set of all leafs by L(G).

Fora,b € Awitha # b, a path from ato b in G is a sequence of distinct alternatives a,, . . . , a; such
thata, = a,a, = b,and {a;, a;,} € Eforalli =1,...,k — 1. Ifitis clear which path is meant, we also
denote it by [a, b]. In this case, by (a, b] we denote the sequence a,, . . . , a;, and by (a, b) the sequence
d,,...,a,. Whenever it is clear from the context, the notations [a, b}, (a, b], and (a, b) will also be used
to denote the sets of alternatives (instead of the sequences) that appear in the corresponding path. When
a = b, the notation [a, b] simply denotes the alternative a, x € [a, b] means x = a,and x ¢ [a, b| means
x # a.

Throughout this paper we assume that G is connected, i.e., there is a path from a to b for all distinct
a,b € A. If this path is unique for all a, b € A, then G is called a tree. A spanning tree of G is a tree
T = (A, Er) where Er C E. In other words, spanning tree of G is a tree that can be obtained by deleting

some edges of G.

*Observe that a € U(a, P) by reflexivity.

1S5S



For a path [x,, x¢| with sequence x,, . . . , x7, we write P = [x,, x| - - - to denote a preference P such that
x,Px,P...Px;Pxforallx € A\ [x,, x¢]. For instance, if the path is [x,, x,] with sequence x,, x,, x;, then
P = [x,,x,] - - - means that the top-ranked, second-ranked, and the third-ranked alternatives of P are x,,
x,, and x,, respectively. Note that this notation does not impose any restriction on the ordering of
alternatives that lie outside the path, except that they are all less preferred to the alternatives on the path.
Similarly, we use the notation P = - - - [x,, x¢] - - - to mean that the alternatives x,, . . . , xy are
consecutively ranked in P with x,Px, . . . Px,. Again, as before, this notation does not put any restriction
on the ordering of the alternatives that do not lie on the path [«,, x|, except that they cannot be ranked
in-between the alternatives on the path. Combinations of these notations have similar meanings. Also,
brackets are sometimes left out if confusion is unlikely.

We are now ready to introduce the notion of single-peaked preferences. A preference is single-peaked if
there is a spanning tree of G so that as one moves away from the top-ranked alternative of the preference

in any particular direction along the tree, preference decreases.

Definition 7.2.1 A preference P is single-peaked if there is a spanning tree T of G such that for all distinct
x,y € Awith t(P) # y,
x € [(P),y] = xPy,

where [t(P), y| is the path from (P) to y in T.

We denote the set of all single-peaked preferences by . For a single-peaked preference, the top
alternative is also called the peak.

In Section 7.6.2 we briefly further discuss this preference domain choice.

7.2.2  PROBABILISTIC RULES

By AA, we denote the set of all probability distributions on A. A probabilistic rule (PR) is a function
¢ N— AA.Fora € Aand Py €V, we denote the probability of a at ¢(Py) by ¢_(Py), and for B C A, we
denote the total probability of the alternatives in B by ¢, (Py), i.e, ¢5(Pn) = > o5 ¢, (Pn)-

We proceed by defining the main properties of PRs that are of interest in this paper. The first property
is unanimity. It says that if all the agents have the same top-ranked alternative, then that alternative is

chosen with probability 1.

Definition 7.2.2 A PR ¢ is unanimous if ¢ _(Py) = 1foralla € Aandall Py € with #(P;) = a forall
i € N.

The second property is strategy-proofness, introduced in Gibbard (1977). It says that reporting a

preference different from the sincere (true) one cannot increase the probability on any sincere upper
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contour set. In other words, the probability distribution over the alternatives induced by reporting

truthfully stochastically dominates any probability distribution induced by reporting differently.

Definition 7.2.3 A PR ¢ is strategy-proof if foralli € N, all Py €Y, all P, €,and allx € A,

Buery (PrP) = Py (PP,

It is not hard to see that under strategy-proofness the unanimity condition could be weakened to
requiring ¢_(Py) = 1foralla € Aand all Py €" with P, = P;and t(P;) = aforalli,j € N. For later

reference we include the following (straightforward) observation.

REMARK 7.2.4 LetL,L’ € AAandletP € L(A). Suppose Ly(,p) = L’U(x’P) forall x € A, where Ly, p)
denotes the total probability on the upper contour set U(x, P). Then L = L.

Two profiles Py, Py, €Y are tops-equivalent if t(P;) = t(P}) foralli € N. A PRis called tops-only if its
outcomes do not change over top-equivalent profiles. In other words, the outcome of such a PR depends

only on the top-ranked alternatives at a preference profile.
Definition 7.2.5 A PR ¢ is tops-only if ¢ (Py) = ¢(P)) for all tops-equivalent Py, Py, €V.

In our model, unanimity and strategy-proofness of a PR imply tops-onliness. This can be proved by

using the main result in Chatterji and Zeng (2018), as we show in the Appendix.

Lemma 7.2.1 Let G = (A, E) be a connected graph and let a PR ¢ :N— AA be unanimous and
strategy-proof. Then, ¢ is tops-only.

Proof: See Appendix 7.7. |

7.3 TREES

Throughout this section the graph G = (A, E) is a tree. We will characterize all unanimous and
strategy-proof probabilistic rules for this case. First, we define the notion of uncompromisingness,
introduced by [24] for deterministic rules. It says that if an agent unilaterally changes its preference from
P; to P}, then the probabilities of the alternatives off the path [£(P;), {(P})], do not change.
Uncompromisingness is closely related to strategy-proofness but often is easier to work with. Clearly, an

uncompromising PR is tops-only.
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Definition 7.3.1 Let G = (A, E) be atree. APR ¢ :N— AA is uncompromising if ¢ ,(Py) = ¢ (P}, P_;)
foralli € N, all Py €V, all P, € andalld € Asuchthatd ¢ [t(P,), t(P))].

Recall that by Lemma 7.2.1 every unanimous and strategy-proof PR is tops-only. In the following
lemma we show that, by using tops-onliness, uncompromisingness can easily be derived from unanimity

and strategy-proofness.

Lemma 7.3.1 Let G = (A, E) be a tree and let ¢ :N— AA be a unanimous and strategy-proof PR. Then ¢ is

uncompromising.

Proof: Let Py, Py €V andi € Nbesuchthat P_; = P’ . In order to prove that ¢ (Py) = ¢_(P)) forall

x & [t(P;), t(P))], it is without loss of generality to assume {¢(P;), t(P))} € E. Then, by tops-onliness
(Lemma 7.2.1), we may assume that P; = £(P;)t(P)) - - - and P, = t(P))t(P;) - - - such thatzP;z’ < zP)z/
forallz,z’ € A\ {t(P;), t(P))}. Now the lemma follows directly from strategy-proofness. [

In what follows we show that a unanimous and strategy-proof PR is completely determined by its
values at profiles where the peaks of the agents are located at the leafs of the tree. We need the following

definitions to formulate this property.

Definition 7.3.2 A leaf assignment is a function y : N — L(G). The set of all leaf assignments is denoted
by.Fora € Aand Py €V, aleaf assignment y respects (a, Py) if foralli € Nand b € L(G), u(i) = b
implies t(P;) € [a, b]. The set of leaf assignments that respect (a, Py) is denoted by (a, Py).

Thus, a leaf assignment assigns to each agent a leaf of the tree. Consider an alternative a and a
preference profile Py. A leaf assignment respecting (a, Py) is obtained as follows. If the top-ranked
alternative £(P;) of agent i is a, then assign i to an arbitrary leaf. Otherwise, assign i to some leaf b such that
t(P;) is on the path [a, b]. Clearly, if Py, P, €V are tops-equivalent, then (a, Py) = (a, Py). The following

example illustrates Definition 7.3.2.

Example 7.3.3 LetA = {a,,...,a,} and consider the following tree.
a, ds
1
a, ay as
@
2 3
a, a;
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Let N = {1,2,3}, and let Py be a preference profile with (£(P,), t{(P,), t{(P,)) = (a,, a,, a5), as
illustrated in the figure. Then

w€(aPy) < u() € {a,a5060,}, 4(2),40) € {as,a,}
€ (aPy) < ) =a, 4(),u6) € {a )
u€(aPy) & u()=a,p(2)u() € {ae,a,}
b€ (ayPy) & p() = a, u(2) € {a, a5, 06,0,}, 4(3) € {a6,a,}
we(a,Py) & p()=a, () €{a,a}, u(3) € {a, a5, 46,4,}
u€(asPy) = p()=a,p() € {a,al, 4G) € {a,a5,0,)
p€(anPy) & () =a, p(2) € {ana}, u(3) € {a, a5 a6}
describes the leaf assignments respecting (a, Py) foreacha € A. <

With each y € we associate a probability distribution , over A. We introduce the notion of

monotonicity for such a collection of probability distributions.

Definition 7.3.4 A collection of probability distributions (,,),c over A is monotonic if
(i) foreveryb € L(G)andy €,if u(i) = bforalli € N, then ,(b) =1,

(ii) forally,p €andi € Nsuch that u(j) = p(j) forallj € N\ {i},

@ o(le #0)) 2, (e w(0) foralle € [u(i), 4], and
(b) 4(c) = (c) forallc € A\, [u(i), (i)

Part (i) in this definition says that if in a leaf assignment g, all agents are assigned to the same leaf, then
that leaf obtains probability one in the corresponding probability distribution ,By. Part (ii) says that if an
agent i moves from one leaf (at ¢) to another (at ), then, roughly speaking, probability increases along
the path from the former to the latter leaf (part (a) ), whereas off this path nothing changes (part (b)).
Clearly, the conditions (i), (ii)(a), and (ii) (b) are related to unanimity, strategy-proofness, and
uncompromisingness of a PR, respectively.

The following example illustrates the notion of monotonic probability distributions.

Example 7.3.5 Consider again the tree of Example 7.3.3, replicated here for convenience.
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a, as

a, a, as

a, a;

Consider the probability distributions (,),c in the table below. In this example, we assume that the
collection () ¢ is ‘anonymous’, which means that the probabilities depend only on the numbers of agents
on the leafs. The y-assignments are to the leafs a,, a,, a, and a, consecutively. The probabilities (the
numbers in the table divided by 10) are those assigned to a,, . . . , a,, consecutively. It is straightforward to

verify that (,,),c in this table satisfies monotonicity.

U ¢ ¢ u
(3,0,0,0) | (10,0,0,0,0,0,0) (1,0,2,0) | (1,3,0,2,2,2,0)
(0,3,0,0) | (0,0,10,0,0,0,0) (0,1,2,0) | (0,2,3,2,1,2,0)
(0,0,3,0) | (0,0,0,0,0,10,0) (0,0,2,1) | (0,0,0,0,7,2,1)
(0,0,0,3) | (0,0,0,0,0,0,10) (1,0,0,2) | (1,3,0,2,2,0,2)
(2,1,0,0) | (4,3,3,0,0,0,0) (0,1,0,2) | (0,2,3,2,1,0,2)
(2,0,1,0) | (4,2,0,2,1,1,0) (0,0,1,2) | (0,0,0,0,7,1,2)
(2,0,0,1) | (4,2,0,2,1,0,1) (1,1,1,0) | (1,2,3,2,1,1,0)
(1,2,0,0) | (1,5,4,0,0,0,0) (1,1,0,1) | (1,2,3,2,1,0,1)
(0,2,1,0) (0,2,4,2,1,1,0) (,0,1,1) | (1,3,0,3,1,1,1)
(0,2,0,1) | (0,2,4,2,1,0,1) (0,1,1,1) | (0,3,1,3,1,1,1) <

In what follows, we associate a PR with each monotonic collection of probability distributions. As a
preparation we need Lemma 7.3.2 below.

In this lemma the leaf assignments y, and ji, are considered for an alternative 4, a leaf b, and a
preference profile Py. Leaf assignment y, respects (a, Py) and has the (additional) property that an agent
iis assigned to b if and only if its peak ¢(P;) lies on the path [a, b]. Leaf assignment ji, has the same
properties as g, except that an agent i is now assigned to b if its peak t(P;) lies on the path (a, b], but is not
assigned to b if its peak is a. Thus, the agents who are assigned to b by y, are those who are assigned to b by
i, plus those with peak a (i.e., g, ' (b) = 1, " (b) U {i: t(P;) = a}). Note that there is no restriction on
how g, and ji, assign agents to the leafs other than b except that they both respect (a, Py).

Lemma 7.3.2 now says that for any monotonic collection (,,),, the total probability assigned to the
alternatives in [a, b] by ,8% is at least as high as the total probability assigned to the alternatives in (a, b] by
ﬁﬁb’ that is, ,Byb la, b] — ‘Bﬁb (a,b] > o. Lemma 7.3.2 further says that this quantity 'Bf‘b la, b] — ﬁ?‘b (a,b] does
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not depend on the choice of the leaf b, nor on the exact specification of i, and , for agents with peaks not
on [a, b]. Thus, for a given monotonic collection () ¢, the quantity ﬁh [a, b] — ﬁ?‘h (a, b] depends only on
the alternative a and the profile Py. Later, we will associate a PR with a given monotonic collection (,),e

such that the probability of a at a profile Py is given by this quantity.

Lemma 7.3.2 Let (,),c be a monotonic collection of probability distributions. Leta € A, b,c € L(G),
Py eNandy,, i, u., b, € (a,Py) besuch that for eachx € {b,c} and alli € N, u_(i) = x if and only if
t(P;) € [a,x] and j (i) = xif and only ift(P;) € (a, x|. Then

w (18, b]) =g, ((a,6]) =, ([a,¢]) =4, ((a,d]) = 0. (7.1)

Proof: First, we prove that the amount ([a, b]) does not depend on the further specification of y,. That is,
ify € (a, Py) also satisfies u(i) = bifand onlyift(P;) € [a, b] foralli € N, then ,([a, b]) =, ([a, b]). To
see this, suppose that for some j € N 'we have t(P;) ¢ [a, b] and u(j) # p,(j). Hence, u(j), , (j) # b. We
prove thatd ¢ [a, b] foralld € [u(j), y, (j)]. Suppose to the contrary that there is d € A with
d € [a,b] N [u(j), u,(j)]. The path from a to g, (j) consists of the subpath [a, d| C [a, b] followed by the
path (d, y, (j)], with t(P;) € (d, g, (j)]. This implies that t(P;) ¢ [a,d] U (d, u(j)] = [a, u(j)], which
contradicts the assumption that y € (a, Py). The desired result follows from repeating this argument for
all j with p(j) # u,(j) and each time applying condition (i) (b) in Definition 7.3.4.
Similarly, one proves that the amount ; ((a, b]) does not depend on the further specification of i, i.e.,
if y € (a, Py) also satisfies (i) = bif and only if t(P;) € (a, b] foralli € N, then ,((a, b]) =,, ((a, b]).
We now prove (7.1). It is sufficient to prove this for the case where a € [b, c|. Otherwise, there is a
d € L(G) such thatboth a € [d, b] and a € [d, c|. Then, if we show (7.1) for the pairs ofleafs b, d and ¢, d,
then (7.1) for the pair b, c follows by combining the two equations. Thus, we assume a € [b, c|. Moreover,
by the first two paragraphs of the proof we may assume that y, = j_and y_ = j,. For the equality in (7.1),

it is then sufficient to show that

w ([3:6]) = ((a,8]) = ([a,d]) =, ((a,d]).

We have

Mb([bac]) i, ([b7c]) —u, ([b7 C])? (7-2)
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where the second equality follows from condition (ii) (b) in Definition 7.3.4. Therefore,

where the second equality follows from (7.2).

Finally, by condition (ii) (a) in Definition 7.3.4 we have

w (3 8]) >3, ([a,0]),

which implies the nonnegativity of the expressions in (77.1) and completes the proof of the lemma. |

With every monotonic collection of probability distributions we associate a probabilistic rule, as

follows.

Definition 7.3.6 LetB = (,),c be a monotonic collection of probability distributions over A. We define
qf)B :N_ AA as follows. Foreacha € Aand Py €y

9z (Pn) =y, ([a,b]) —, ((a,b]) (7.3)

forsome b € L(G) and y, i, € (a, Py) such that y, (i) = bifand onlyif t(P;) € [a, b] and (i) = bif
and only if t(P;) € (a, b].

Note that by Lemma 7.3.2, ¢* is well-defined: it does not depend on the particular choice of b, ,, or j,.

Moreover we have:
Lemma 7.3.3 ¢° defined by (7.3) is a PR.

Proof: Let Py €N. By Lemma 7.3.2, ¢®(Py) > o forevery a € A. We still have to prove that
ZaEA Sbf(PN) =L

Leta € A,b € L(G),andlet y € (a, Py) be such that u(i) = bifand onlyif (P;) € [a, b], foralli € N.
We claim that </)€1 ] (Pn) =, ([a, b]). To show this, let [a, b] be the sequence a,, . . ., a; witha = a4, and
b = ai. Foreveryj =2,... klet by [tj € (aj, Py) be such that foralli € N we have

yj(i) =b & t(P) € [a,bland 4(j) = b < t(P;) € (a;,b]; andlet i € (a, Py) such thatforalli € Nwe
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have ﬁj(i) =b < t(P;) € (a,b]. Then

O (Pn) = ula,b]) = ((a, b])

+u, ({0}) =5, (0)
= u(la, b))

where the second equality follows since ;((a, b]) =; ([a,, b]) =, ([a.,b]) and
17,-( (a;, b)) =, ([aj4+,b]) =i, ([aj4., b)) foreveryj = 2,. .., k — 1by condition (i) (b) in Definition
7.3.4.

We partition A into subsets A’ . . ., A, such that the alternatives in A® form a path [a’, . . . , b’] for
some a’ € Aand b’ € L(G) (possibly a® = b*). We define the leaf assignment y as follows: (i) for each
(=1,...,ku'(b')={i € N: (P, € A*},and (ii) foreach b € L(G) \ {b',..., b}, u~'(b) =0
(case (ii) occurs if b = a’ for some £). By the previous part of the proof, for each £ = 1, . . . , k, we have
¢he(Py) =, (AY) for (any) y, € (a’, Py) such that y,(i) = b° < t(P;) € A’ foralli € N. By definition
of y and condition (ii) (b) in Definition 7.3.4, ,, (AY) =, (A") forevery £ =1,. ..,k Hence,

Yea 93(Pn) = Do, (A7) = 20, (A7) =, (4) =1 u

Definition 7.3.7 A PR ¢ is a leaf-peak rule if there is a monotonic collection of probability distributions
B = (4)uc such that ¢ = ¢°.

An example of a leaf-peak rule is the following.

Example 7.3.8 Consider the tree of Example 7.3.5. Let N = {1, 2, 3}. Let ¢ be the (anonymous, i.e,,
invariant under any permutation of the agents) leaf-peak rule with respect to (,,) ¢ as in Example 7.3.5.
Consider the preference profile Py with (t(P,), t(P,), t{(P,)) = (a,, a,, a5) as in Example 7.3.3. We take
the fixed leaf g, for the computations in the following table, which provides the outcome of the leaf-peak

rule ¢ at Py.
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a | b u([a,b]) —y ((a,b]) $.(Pn)

4| | (om0 ([0 @]) —(0.05.0) (a1 @]) 1

A | G | (1,0,2,0) ([az, a]) —(1,0,2,0) (a2, a]) -3

a | 4 (170,2,0)([“37‘11]) ~(1,0,2,0) ((ay, a]) o

A | 4| (2,0,1,0) ([ay, a]) ~(1,0,2,0) (a4, a]) 4

a5 | 4 | (00000)([35:4]) —(2010) (5, ]) 2

s | @ | (3000) (36, 4]) —(5,0000) (a6, a]) 0

a, | a (3,0,0,0)([“77“1]) (3,0,0,0) ((ay,a]) o <

Our main result shows that leaf-peak rules are exactly the unanimous and strategy-proof PRs for

single-peaked preferences on trees. We prove this by means of the following two lemmas.

Lemma 7.3.4 Let B = (,,),c be a monotonic collection of probability distributions. Then ¢* is unanimous and
strategy-proof.

Proof: In this proof we write ¢ instead of ¢*. Unanimity follows directly from the definition of ¢.

We next argue that ¢ is uncompromising. Let Py €V,i € N, P, €,andd € A\ [{(P;), t(P,)]. Take
b € L(G) such that [d, b] N [£(P;), t(P])] = (). Then, by definition of ¢, in particular (7.3), we obtain
¢,(Pn) = ¢,(P_;, P}). This shows that ¢ is uncompromising.

In order to prove strategy-proofness, assume for contradiction that there exists i € N, Py €Y, and P €
such that ¢, ) (Pn) < ¢y p,) (P}, P—;) for some ¢ € A. Since ¢ is uncompromising and thus tops-only,
we may assume without loss of generality that P; = [t(P;), ..., #(P])]--- and P, = [{(P}), ..., t(P;)] - - -,
and such that zP;z’ < zP,
¢.(Pn) = ¢_(P,,P_;)forallz ¢ [t(P;), t(P})]. Therefore, ¢ € [t(P;), t(P;)) and thus

Z forallz, 2z’ ¢ [t(P;), t(P))]. By uncompromisingness we also have

‘P[t(Pi),c] (Py) < ‘P[t(p,),c} (P}, P_;). (7.4)

Let d appear just after ¢ on the path [t(P;), t(P})]. Let P° € with t(P°) = cand P! € with t(P) = d. By
uncompromisingness, ¢, | (Py) = Pri(p.d (P°,P_;) and Prp.d (Pl p_) = Ple(po). (P,,P_,). By (7.4),
this yields ¢/, 5, (P, P_;) < Prup) (P%,P_;). Since by uncompromisingness ¢_(P, P_;) = ¢_(P*, P_))
forallz ¢ {c,d}, this implies

¢.(P°,P_;) < ¢ (P!, P_)). (7.5)

Now take b, b’ € L(G) such that {c,d} C [b,b'] andd ¢ [b, c|. By (7.3),

9. (P, Pi) =y, ([e; b]) =, ((c,b]) (7.6)

where y,, i, € (c, (P°,P_;)) are such that g, (j) = bifand onlyif t(P;) € [c, b] and i, (j) = bifand only if

t(P;) € (c, b forallj € N. Let g, be such that y; (j) = g, (j) forallj € N'\ {i} and g (i) = b’; and let
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i, = i, Note that y; . i, € (c, (P, P_;)). Also, writing Py = (P%, P_;), we have u,(j) = bifand only if
t(f’,) € [c,b]and g, (j) = bifand only ift(f’j) € (c, b] forallj € N. Therefore, by (7.3),

¢C<Pd>P*i) = ([c, b]) i ((c, b]). (7.7)

By (7.5), (7.6), (7.7), and the fact that ji, = fi,, we obtain

#h([c7 b]) <y ([Ca b]) (7.8)

However, as (i) yb_l(l;) = yg_l(l;) forallb € L(G) \ {b,V'} and (ii) g, '(b) C ;' (b), this contradicts
condition (ii)(a) in Definition 7.3.4. [

Next we show the converse of Lemma 7.3.4.

Lemma 7.3.5 Let ¢ be a unanimous and strategy-proof PR. Then there is a monotonic collection of probability
distributions B = (,) . such that ¢ = ¢*.

Proof: By Lemma 7.3.1, ¢ is uncompromising. For every y € define , = ¢(Py), where Py €~ satisfies
t(P;) = p(i) foralli € N.

We first show that B = (44) uc thus defined, is a monotonic collection. Clearly, since ¢ is unanimous,
condition (i) in Definition 7.3.4 is satisfied. For condition (ii), let 4, & € and i € N be such that
u(j) = @(j) forallj € N\ {i} andlet Py, Py be such that ¢(P;) = u(k) and t(P,) = ji(k) forallk € N.
Since ¢ is uncompromising, ¢_(Py) = ‘PC(IA)N) forallc ¢ [t(P;), t(P;)], hence u«(¢) =i (c) forall
¢ & [u(i), p(i)], i-e, condition (ii) (b) is satisfied. Moreover, by strategy-proofness of ¢ we have for all
¢ € [t(P;), t(P;)] that (/)U(c,f’,-)(f)N) > ¢U(c,f’i)(PN)' Since ¢_(Py) = ¢_(Py) forallz ¢ [t(P,), t(P;)], this
implies ¢/, ), (Py) > Plet(Br)] (Py), and therefore ;([c, g(i)]) >, ([c, g(i)]) forall ¢ € [u(i), u(i)]. This
proves condition (ii)(a).

Finally, we show that ¢ = ¢°. Let Py €N anda € A. Lety/, y” € (a,Py) and b € L(G) be such that,
foralli € N, ¢/(i) = bifand onlyif t(P;) € [a, b] and y" (i) = bifand onlyif {(P;) € (a, b]. Also, let
P); €Nbe such that t(P]) = /(i) foralli € Nand Py, € be such that {(P/') = u”(i) foralli € N. Then

¢ (PY) = w([a,b]) = ((a,b])
= s (Ph) — (4 (Px)
= ¢,(Py)

where the last equality follows by uncompromisingness of ¢. We conclude that ¢ = ¢°. |

Lemmas 7.3.4 and 7.3.5 now imply the main result of this section.
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Theorem 7.3.9 Let G = (A, E) be a tree. Then a PR ¢ :N— AA is unanimous and strategy-proof if and only
if itis a leaf-peak rule.

A characterization of unanimous and strategy-proof deterministic rules follows as a corollary of
Theorem 7.3.9. In Section 7.6.1, we show that the probabilistic rules with these properties are not

necessarily convex combinations of deterministic rules satisfying the same properties.

7.4 LEAFLESS GRAPHS

In this section, G = (A, E) is a connected graph without leafs. The main result will be that every
unanimous and strategy-proof PR is random dictatorial, to be defined below. We will derive this result for
the case of two agents, and then use Theorem 5 in [35] to extend it to more than two agents.

Our notational conventions about preferences as introduced in Section 7.2 will still be used.

Additionally, for a path = = [x,, x/| with sequence x, . . . , x, we denote by 7" = [x, x,] the path in
reverse direction, i.e., with sequence xy, . . ., x,, and use this in notations for preferences such as
P=n---,P=7"---,etc, with obvious meaning.

A cyclein G is a sequence of distinct alternatives x,, . . . , x; € A for some k > 3 such that

{{xi, %02}y {2} ri=1,...,k—1} CE.

The following lemma considers unanimous and strategy-proof PRs for the case of two agents. Consider
two alternatives a and b that are contained in some cycle. In words, Lemma 7.4.1 says that in all profiles
where the peak of agent 1is a and that of agent 2 is b, a receives some fixed probability € and b receives the
rest of the probability 1 — ¢; thus, no alternative other a and b receives any positive probability. Moreover,
suppose that there is another alternative ¢ such that there is a cycle through a and ¢ and there is a path
from b to c that does not contain a. Then Lemma 7.4.1 says that the same as for a and b holds for a and c,
ie., at all profiles where the peak of agent 1 is a and that of agent 2 is ¢, a receives (the same) probability &

and c receives the rest of the probability 1 — e.

Lemma 7.4.1 Letn = 2 and let ¢ :N— A(A) be a unanimous and strategy-proof PR.

(i) Leta,b € A, a # b, be such that there is a cycle containing a and b. Then there exists ¢ € [0, 1] such that
forall P,, P, € witht(P,) = aand t(P,) = bwe have ¢ _(P,,P,) = eand ¢, (P,,P,) =1 —«.

(ii) Let, additionally, c ¢ {a, b} be such that there is a cycle containing a and ¢, and a path from b to ¢ not
containing a. Then ¢ (P,, P,) = e and ¢ (P,,P,) = 1 — eforall P,, P, € with t(P,) = a and

t(P,) = ¢, where ¢ is as in (i).
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Proof: (i) Since there is a cycle containing both a and b, there exist two paths 7 and 7 from a to b in G such
thatw N 7 = {a, b}. Hence, thereare P, Q € suchthatP=x--- andQ=7""---

Suppose that ¢ (P, Q) > oforsomex € A\ {a,b}. Since U(b,P) N U(a, Q) = {a, b}, we have
x & U(b,P) orx ¢ U(a, Q). By unanimity, in the first case agent 1 can manipulate by changing to Q and
in the second case agent 2 can manipulate by changing to P. This contradicts strategy-proofness, and
therefore we have ¢ (P, Q) = oforallx € A\ {a, b}. Thus, there exists ¢ € [o0,1] such that ¢ (P,Q) = ¢

and ¢, (P, Q) = 1 — ¢. Statement (i) now follows from tops-onliness of ¢ (Lemma 7.2.1).

(ii) Let P,, P, € with (P,) = aand t(P,) = c. Assume that ¢_(P,, P,) = ¢'. By a similar argument as in
step (i), this implies ¢ _(P,, P,) = 1 — ¢'. Thus, it is sufficient to show that ¢ = ¢'. Suppose not. Assume
without loss of generality that ¢ > ¢’. Let 7 now be a path from b to c such that a ¢ x, and consider
associated preferences P = 7+ -+, P’ = 77" -+ €. By part (i),

$uen(PuP) =1— ¢ <1—¢ = ¢y (P, P). This violates strategy-proofness and, hence, e = ¢. W

APR ¢ is random-dictatorial if there are ,, . . . ,, € [0,1] with ), _y; = 1, such that for every Py €" and
a € Awehave ¢ (Pn) = > icn(py—a i

Clearly, a random dictatorial rule is unanimous and strategy-proof. Indeed, when G is a tree, a random
dictatorial rule is a leaf-peak rule. To see this note that, if ¢ is random dictatorial with weights ,, . . . ,,,

then the collection B = () ¢ given by ,(a) = > ,iforeachy € andeverya € L(G),is

iEN:u(i)=
monotonic. It is easy to verify that ¢ = ¢®. The following example provides an illustration of this.

Example 7.4.1 Consider the following tree:

Let N = {1,2,3} and let ¢ be random dictatorial with weights (;,, ,; ) = (%, %, 2). The peaks of the

o
agents in the preference profile Py are indicated in the figure. Hence ¢ (Py) = * + * = % and

¢ d(PN) = i With the collection B defined as above, we obtain

¢:(Py) = y([c.a]) = ((c,d])
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¢a(Px) = w([d,a]) —p ((d.a])
T s 2 s
= (Pd(PN)a
where ¢/ (1) = ¢/(2) = ¢/(3) = a,i’(1) = i (3) = a,and [/ (2) = b. <

A graph G is 2-connected if for all distinct x, y € A there is a cycle in G containing x and y. We can now

state the following consequence of Lemma 7.4.1.

Lemma 7.4.2 Letn = 2 and let ¢ :N— A(A) be a unanimous and strategy-proof PR. Assume that the graph

G is 2-connected. Then ¢ is random dictatorial.

Proof: Leta € A. By Lemma 7.4.1 there isan € [o, 1] such that forallx € Aand P,, P, €N witht(P,) = a
and t(P,) = xwehave ¢ _(P,,P,) =and ¢ (P,,P,) = 1—. Nowletb € A, b # a. Then similarly one
proves that there is’ € [o, 1] such that forallx € Aand Q,, Q, €~ with t(Q,) = xand t(Q,) = b we have
¢,(Q, Q) ="and ¢_(Q,, Q,) = 1—". Since the latter holds for x = a in particular, we have 1—" =. This
implies that forallx,y € Aand Z,, Z, €N with t(Z,) = xand {(Z,) = y we have ¢ (Z,,Z,) =and

(Py(Zl, Z,) = 1—. Hence, ¢ is random dictatorial. |

The following lemma shows that random dictatorship for n = 2 still holds if the graph G has no leaf.

Lemma 7.4.3 Letn = 2, and let G have no leaf. Suppose ¢ :N— A(A) is a unanimous and strategy-proof PR.

Then ¢ is random dictatorial.

Proof: If G is 2-connected then the result follows from Lemma 7.4.2. Now assume that G is not
2-connected. Since G is connected we can decompose it into 2-connected subgraphs
(A, E,), ..., (As, Ep), the set of remaining alternatives B = A \ UZ_ A, and the set of remaining edges
E =E\ Uf:lEi.s (We visualize these subgraphs as ordered from left to right, see below.)

For any distinct1 < p, g < { thereare a, € A, and a; € A, such that all paths in G from an alternative
in A, to an alternative in A, leave A, via a, and enter A, via a,. In this case, with we use the notation
[[ap, aq]] to denote the set of alternatives containing a,, a,, and all x such that there is some path 7 in G with
x € m, starting at a, such that 7 N A, = {a,},and a, ¢ ; or there is some path 7 in G withx € =,

starting at a, such that 7 N A, = {a,},and a, ¢ 7. Similarly, [a,, a;)) = [a,,a,] \ {a4}; [, a,] denotesall

*This decomposition is close to the decomposition as a so-called block-tree. See, for instance, [22]. The formal definition of
a block-tree is slightly different, but the decomposition here is more convenient for our purposes.
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alternatives on paths starting at a, which have only a, in common with [[ap, aq]] ; [aq, ] denotes all
alternatives on paths starting at a, which have only a, in common with [a,, a,]; [, a,] denotes all
alternatives on paths starting at a, which have only a, in common with A,; and so on and so forth. See the
following diagram, which shows a possible part of the decomposition of G, and visualizes parts of rest of

the proof.

By (the proof of ) Lemma 7.4.2 there are ,, . . . ,, € [0, 1] such that, foralli =1,... ¥, (Pt(Pl)(P” P,) =
and ¢t(P2)(P1, P,) =1—;forall (P, P,) eNwitht(P,),t(P,) € A;. (Inwords, ¢ induces a random
dictatorship on every A;.) The proof proceeds in three steps.

(a) With notations as above, we first consider a preference profile (P,, P,) such that t(P,) € A, \ {a,}
and {(P,) € A, \ {a,} forsome1 < p < g < {. Since ¢, (P,,P,) =, for P, € with t(P}) = a,,

strategy-proofness (considering agent 1) implies that

4)[[7%]] (PU Pz) Zq . (79)

Similarly,
¢[ap7]] (PI,PZ) >1 —p - (7.10)

Now consider P, € with t(P,) € A, \ {t(P,)} and such that xP,t(P,) forallx € [, a,]. Lety € [, a,] be
such that xP,y forall x € [, a,]. Since buo,) (P,,P,) =, strategy-proofness (considering agent 1) requires
that Pup) (P,, P,) <, hence:

Bag PP <, (7.11)

Similarly,
(P[“pv]] (Pl,Pz) <1 —p - (7.12)

Combining (7.9) and (7.11) we obtain PLa (P,,P,) =,, and combining (7.10) and (7.12) we obtain
Pla] (P, P,) = 1—,. By adding up these two equalities it follows that Play.a] (P,,P,) =, —. Similarly
one proves q,‘)[[up ad (P,,P,) =, —,. Hence,, =; and ‘P[[u,, al (P,, P,) = o. Now writing for,, . .. s, we

obtain by (7.9) and (7.10) that Plar) (P,,P,) =and </>((uq?]] (P,P,) =1—.

We next show that ) (P,, P,) =. Consider two paths 7 and in G from ¢(P,) to a, with all alternatives
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in A, and which only have ¢(P,) and a, in common, and let P, € with P, = = - - - . By strategy-proofness®

(considering agent 1), it is sufficient to prove that

Dyey) (Pl Pa) = - (7.13)

Since ¢y, (P,,P,) =and ¢, (P,, P,) =for P, € with t(P,) = ay, by strategy-proofness we have
¢_(P,,P,) =. Suppose that thereisav € 7, v # t(P,), v # a,, such that

(/)V(Pi,PZ) > o. (7.14)

Consider P, € with (P,) € AjandwithP, = ---x--- (27" \ {a,,t(P,)})(\{a,}) - - - forallx € [a,,].
(Hence, P, orders all alternatives ‘to the right’ of a, before a,, then the alternatives on path 7 in reverse
order, next the alternatives on path up to but not including a,, and finally all remaining alternatives.) By

(7.14) and strategy-proofness,

Pluay) (P P) > 0 (7.15)
where [v, a,) denotes the part of path 7 from v up to but excluding the end point a,. Next consider P €
with P/ = - - -. Then by strategy-proofness ¢ (Pi' , P.) = (otherwise agent 1 manipulates), which again by

strategy-proofness implies ¢, ) (P, P,) = (otherwise agent 2 manipulates). In turn, by

177 2

strategy-proofness this implies ¢, (P!, P)) = (otherwise agent 1 manipulates), which contradicts (7.15).

Consequently, (7.14) does not hold, which implies (7.13).
Similarly, one proves that ¢, , | (P,, P,) = 1—.

(b) Second, all paths in G from a, to a, have a common initial part which is either (i) only a,, or (ii)
[ap, b,...,b,|forsomem > 1withb,, ..., b,_, € B. Letnow (P,, P,) be a preference profile with
t(P,) € A, \ {a,} and t(P,) = z, where z = g, in case (i), orz € [a,,b,, ..., b,) in case (ii). By
strategy-proofness (considering agent 1) and part (a), we have Pl (P,, P,) =. By strategy-proofness
(considering agent 2) and unanimity, PLy (P,, P,) = 1. Therefore, Pleaa] (P,,P,) =and
(o) (Pr: P) = 1—.

Consider P, € with P, = [z,a,]---x---y--- forallx € [,a,)) andally € ((z,]. Then as before
Plosa, (P!, P,) =, which together with part (a) and strategy-proofness (considering agent 1) implies
¢,(P;, P,) =. In turn, by strategy-proofness (considering agent 1) this implies
(Pt(Pl)(PU PZ) = (Pz(P“ PZ) =

Suppose ¢, (P,, P,) > o forsome b € ((a,, | with b # t(P,). Then consider P, € with
t(P,) € A, \ {a,} and bP,t(P,). Then agent 1 with preference P, manipulates via P,, a contradiction.

®Or by tops-onliness, Lemma 7.2.1.
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Hence, (Pt(Pz)(Pl’ P,) =1—.
Similarly one proves ¢, ,,, (P, P,) =and . (P,,P,) =1—ift(P,) € A, \ {a,} and ¢(P,) = 2/,

where 2’ is an alternative on the common initial part of all paths from a, to a,, analogously as above.

(c) Finally, let (P,, P,) be a preference profile with t(P,) = zand t(P,) = 2’ with zand 2’ as in part (b).
By unanimity and strategy-proofness, Plee (P,, P,) = 1. In order to prove that ¢_(P,, P,) = and
¢, (P,, P,) = 1— itis therefore sufficient to prove that ¢_(P,, P,) >. Consider P € asin (b), ie, P; €
with P/ = [z,a,|---x---y--- forallx € [,a,)) andally € ((z,]. By strategy-proofness (considering
agent 1) and part (b), ¢_(P;, P,) >. By strategy-proofness this implies ¢_(P,, P,) >, as was to be proved.

Theorem 5 in Chatterji et al (2014) states that if, for n = 2, every unanimous and strategy-proof PR on
a domain satisfying ‘Condition a’ is random dictatorial, then the same is true for n > 2. This Condition a
requires that there are distinct alternatives a, b, c € A and preferences P,, P,, and P, such that (i)
P=a---b---c---,P, :b---c---a---,andP3 :c---a---b---,and(ii)forevery
x € A\ {a, b, c}, either bP,x or cP,x or aP,x. It is not hard to verify that Condition a holds if G does not

have a leaf.” Hence, by Lemma 7.4.3, we have the following result.

Lemma 7.4.4 Let ¢ :N— A(A) be a unanimous and strategy-proof PR, and let the graph G have no leaf.

Then ¢ is random dictatorial.

If G has a leaf, then a unanimous and strategy-proof PR is not necessarily random dictatorial, as the

following lemma shows.

Lemma 7.4.5 Let G have a leaf. Then there exists a unanimous and strategy-proof PR which is not random

dictatorial.

Proof: Letx € Abealeafandlety € Awith {x,y} € E.Let,,...,, € [0,1] with ) ; = 1. For every
Py €N such that t(P;) # x forsomei € Nand everya € A \ {x, y} define o, (Py) = ZieN:t(P,-)
define ¢, (Py) = ZiENzt(Pi) €{xy) i- For every Py €N such that t(P;) = x for everyi € N define

_,ivand

¢.(Py) = 1. Clearly, ¢ is not random dictatorial, and it is straightforward to verify that it is unanimous

and strategy-proof.® |

In fact, in the next section, for general connected graphs, all unanimous and strategy-proof PRs are

characterized. For now, combining Lemmas 7.4.4 and 7.4.5, we obtain the main result of this section.

7If G does not have a leaf, it has a cycle. Take three adjacent alternatives a, b, ¢ on this cycle and take a spanning tree T =
(A, Er) with {a, b}, {b, c} € Er. Take preferences P, = abc- - - and P, = bca - - - . Take another spanning tree including a path
from c to a that does not contain b, and take a preference P, = c---a---b---. Thena, b, cand P,, P,, P, €N satisfy Condition
a.

8As to strategy-proofness, an agent with peak unequal to x clearly cannot manipulate. An agent with peak x has y as second
best alternative and therefore again cannot manipulate.
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Theorem 7.4.2 Let G be a connected graph. Then every unanimous and strategy-proof PR ¢ :N— AAis
random dictatorial if and only if G has no leaf.

7.5 (GENERAL CONNECTED GRAPHS

Throughout the section, G = (A, E) is an arbitrary connected graph. Let G = (A, E) denote the maximal
subgraph® of G that has no leaf.’® Observe that G is unique, and G = () (i.e, A = E = () ifand only if G
is a tree.

Let Ibe aleaf of G. Let a € A be such that there is a path from [ to a that either does not intersect A or
intersects A at exactly one point. The collection of all such alternatives a is defined as A(!). Formally, for

eachleaf ] € L(G), the set of alternatives A(I) C A is defined as
A(l) ={I} U{a € A : thereisapath [a, ] such that |[a,]] N A| < 1}.

Observe that A(/) has a unique alternative in common with A, which we denote by a(!). We also denote
A° = A\ {a(l) : 1 € L(G)}. Thus, A° together with the sets A(I) for | € L(G) form a partition of A. We
denote the set of edges containing the alternatives in A() by E(]), i.e.,

E(l) ={{a,b} € E:a,bec A(])}.

The subgraph (A(1), E(1)) is called the branch of I.

Example 7.5.1 Consider the following graph:

X6 T T T T T T T~ ~ X X1y

This graph has two branches (within the dotted circles), and the maximal leafless subgraph is the
middle part (within the dashed oval). Here, A = A \ {x,, x,, x,, x5, %,,, %5 }, A° = A\ {x,,x,},
Alx) = Alx) = {20, 55,0, ], Aly) = Alxg) = {0, 20, 20, 25} a() = ax) = x, and

a(x,,) = a(xg) = x,. <

lLe,ECEandA={a € A: {a,b} € Eforsomeb € A}.

'This maximal leafless subgraph can be obtained by removing the leafs (and the edges containing these) of G step by step as
follows. First, remove the leafs L(G) (and the edges containing these leafs) of G. Let the graph obtained after this be G \ L(G).
Then, remove all the leafs (if any) of the graph G \ L(G). Continue until the remaining graph does not have any leaf.
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In this section we characterize all unanimous and strategy-proof PRs. We start with the following

auxiliary lemma.

Lemma7.5.1 Leti € N,P; €, P_; €M% andx, y € A besuch that {x,y} € Eand t(P;) = . Let
P, = yx--- € besuch that aP}b < aPbforalla,b € A\ {x,y}. Let ¢ be a unanimous and strategy-proof
PR.Then ¢ (P;,P_;) = ¢_(P,,P_;) foralla ¢ U(y, P,).

Proof: Write P; = xb, - - - byya, - - - ag, then P, = yxb, - - - bya, - - - ay. By strategy-proofness,

Pua_,,p (P;, Py) > ‘PU(ae,l,p,.)(P,{a P_;)and ‘/’U(aeﬂ,p;)(Pfa pP) > (PU(ag,“P{)(P” P_;), hence
¢,,(Pi, P—;) = ¢, (P, P_;). Repeating this argument we obtain ¢, (P, P_;) = ¢, (P}, P_;) forall
j=1,...,10 [ |

The following lemma shows that a unanimous and strategy-proof PR ¢ is a random dictatorship when

restricted to profiles with all peaks in A.

Lemma 7.5.2 Let ¢ be a unanimous and strategy-proof PR. Then there exist ,, . .. ,, > owith ) " ; =1
such that ¢_(Py) = ZieN:t(P):a iforalla € A and all Py €N witht(P;) € Aforalli € N.

i

Proof: Let Py €N with t(P;) € Aforalli € N. Suppose that a0\ (a(} (Pn) > oforsomel € L(G).
Consider i € N andlet T be a spanning tree of G such that P; is single-peaked with respect to T Let
x = t(P;) and suppose that x # a(l). Take y € A such that {, y} is an edge of T'and y is on the path from
xto a(l) in T. Let P, be derived from P; as in Lemma 7.5.1,i.e, P, = yx- - -a(l) - - -,
P;=x---y---a(l)---,and P; and P} order all alternatives different from x and y equally. Then
Lemma 7.5.1 implies that ¢ (P,,P_;) = ¢, (P;, P_;) in particular for all a € A(I). By repeatedly applying
this argument for player i and for all other players we arrive at a preference profile Py with ¢(P;) = a(l) for
everyj € Nandstill ¢, ;) (a()} (Px) > o, which contradicts unanimity of ¢. Hence, ¢;(Py) = 1.

Next, for all a(l) € A, let P' be a single-peaked preference on A([) with graph (tree) (A(1), E(1)) and
peak a(1). For any single-peaked preference P on (A, E), construct the single-peaked preference P* on G
by substituting, in P, each a(l) by P'. Now define the PR ¢ on (A, E) by

$(Pn) = ¢(Py) (7.16)

for each Py on A which is single-peaked with respect to (A, E). By the first part of the proof, ¢ is
well-defined, i.e., ¢, (Py) = 1forall Py. Also, it inherits unanimity and strategy-proofness from ¢. By

Theorem 7.4.2 it follows that there are ,, ..., > owith ) " ; = 1suchthat¢ (Py) = for

iEN:t(P;)=a i
alla € A and each Py consisting of preferences that are single-peaked with respect to (A, E). By (7.16),
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the proof of the lemma is complete by observing that, due to tops-onliness (Lemma 7.2.1), ¢ does not

depend on the particular extension P° of P. |

Our next lemma extends the previous one by additionally including the branches of G.

Lemma 7.5.3 Let ¢ be a unanimous and strategy-proof PR. Then there exist , . . . ,, > o with Z:’ZI ;=1
such that foralla € A° and alll € L(G)

¢,(Pn) = Z i

iEN:t(P;)=a

and

b= D

iEN:t(P;)€A(l)

for every Py €.

Proof: Let Py €V and suppose thati € Nand ¢(P;) = x € A(I) \ {a(l)} for some | € L(G). Consider P,
with t(P]) = y such that {x,y} € E and y is on the path from x to a([), as in Lemma 7.5.1. By this lemma,
we obtain that ¢_(P/,P_;) = ¢, (Py) foralla ¢ A(l) \ {a(l)}. The proof is complete by repeating this

argument for agent i and all other agents, and next applying Lemma 7.5.2. |

We now fix a spanning tree T = (A, Er) of the graph G = (A, E). Clearly, L(G) C L(T), i.e., each leaf
of Gisstillaleaf of T. For ! € L(T) \ L(G) define A(I) = {I}. The set of preferences on A that are
single-peaked with respect to T'is denoted by 1. Let denote the set of leaf assignments with respect to T
(cf. Section 7.3).

The next lemma says that the restriction of a unanimous and strategy-proof PR ¢ to profiles that are
single-peaked with respect to T, can be written as a leaf-peak rule ¢* (cf. Section 7.4), where the
monotonic collection of probability distributions B = (,,),c associated with T satisfies the following
condition: there are non-negative weights a,, . . ., a, of the agents summing to 1 such that foralll € L(G)
and all y €, the total probability of the alternatives in A(I) according to [3{4 is the total weight of the agents
who are assigned to [ by p.

Lemma 7.5.4 Let ¢ :N— AA be a unanimous and strategy-proof PR, and let ¢ denote the restriction of ¢ to .

Then thereare ,, . .., > owith ) . ; = 1and a monotonic collection of probability distributions B = () .
with
JA() = Z iforeveryl € L(T) and y € (7.17)
iEN:u(i)€A(I)

such that ¢ = c/)B.
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Proof: Let the numbers ,, . . . ,, be as in Lemma 7.5.2. Clearly, ¢ defined on ¥ is unanimous and
strategy-proof, and thus by Lemma 7.3.5 there is a monotonic collection of probability distributions

B = (4)uc such that ¢ = ¢°. We are left to show (7.17). Let 4 € and Py € be such that t(P;) = u(i) for
everyi € N.

(i) First consider I € L(G), and consider g € such that (i) = u(i) foralli € Nwith u(i) # I, and with
i(i) # lforalli € Nwith u(i) = 1. Then g, g € (I, Py) and by (7.3) we obtain

¢ (Pn) =, ({1}) = (0) =, ({1}). (7.18)

Again by (7.3), fora € A(l) \ L(G),

¢, (Pn) = ([a,1) =3 ((a,1]) =, ({a}), (7.19)

where [a, ] and (a, I] are paths in T. By (7.18) and (77.19) we obtain for each ! € L(G)

La0)= Y0 W+ Y uad) = ¢ (), (7.20)

VeA()NL(G) a€A()\L(G)

hence by the definition of ¢ = <pB and Lemma 7.5.3

w(AQD) = ‘/’A(z)(PN) = Z i- (7.21)

iEN:u(i)€A(l)

(ii) Second consider I € L(T) \ L(G). In a similar way as in (i), we obtain ,(A(I)) =, ({I}) = ¢/ (Px),
which by Lemma 7.5.3 implies

y(A(l)): Z i (7.22)

iENp(i)=l
Now (7.17) follows from (7.21) and (7.22). [ |

We can now state and prove the main and most general result of this paper. It characterizes all

unanimous and strategy-proof PRs on V.

Theorem 7.5.2 Let G = (A, E) be a connected graph and let T be a spanning tree of G. APR ¢ :N— AAis
unanimous and strategy-proof if and only if there are ,, . . . ,, > owith y ,_ ; = 1and a monotonic collection of

probability distributions B = (,,) ,c with

A(D) = Z iforeveryl € L(T) (7.23)

i€EN:u(i)€A(l)
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such that ¢(Py) = ¢®(Py) for all tops-equivalent Py €N and Py €X.

Proof: The only-if direction follows from Lemmas 7.5.4 and 7.2.1. For the if direction, with (;);cy and B as
in the statement of the theorem, define the PR ¢ on ™ by ¢(Py) = ¢°(Py) for every Py €V, where Py €Y
is arbitrary but tops-equivalent to Py. Clearly, since ¢® is tops-only by Lemma 7.2.1 and Theorem 7.3.9, ¢
is well-defined. It is straightforward to check that ¢ is unanimous and strategy-proof. [

Theorem 7.5.2 indeed generalizes Theorems 7.3.9 and 7.4.2, as we show in the following remark.
REMARK 7.5.3 (i) If Gisatree, then T = Gand A(l) = Aforalll € L(G). In this case one can take
1y - - - yy arbitrary and (7.23) is trivially satisfied. Thus, Theorem 7.5.2 reduces to Theorem 7.3.9. (ii) If G

has no leaf, then A(l) = {I} for every ! € L(T). Now (7.23) and the definition of ¢” imply that ¢ is a

random dictatorship with weights ,, . . . ,,. Thus, Theorem 7.5.2 reduces to Theorem 7.4.2.
We conclude the section with a few examples illustrating Theorem 7.5.2.

Example 7.5.4 Consider the graph in Example 7.5.1. We take an arbitrary spanning tree (leaving out the
edges {x,,x} and {x,,, x,, }):

Now every unanimous and strategy-proof probabilistic rule is of the form ¢, where B = (,),c isa

monotonic collection of probability distributions for this spanning tree satisfying, for every y €,

W) = Z iforx € {x, x,

iEN:u(i)=x

and

X x}) = Z jand ,({xy, ..., w5}) = Z i

iEN:pu(i) E{x1,%, } IEN:p(i) € {21y 05

for weights ,, .. . ,,. <

Example 7.5.5 Consider the following graph and (on the right) a spanning tree:
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C c
e </6
a b< > a b
d d

LetN = {1,2,3},, =,=,= Y and let each , assign equal probabilities to a and b if the number of
agents assigned to a is below 3. Then, for instance, if Py € satisfies t(P,) = a, t(P,) = ¢,and t(P,) = d,

then ¢ assigns (é, = i, i,o) to (a,b,c,d,e). <

We finally reconsider the example given in the Introduction.

Example 7.5.6 Asin the previous example, let N = {1,2,3},, =,=,= >, and let each , assign equal
probabilities to a and b if the number of agents assigned to a is below 3. Consider the following graph and

two possible spanning trees:

4 ¢ 4
d d d
For the left spanning tree, let each , be defined by ,(a) =, (b) = ! ZieN:H(i):a ;and
H(d) = ZiGN:y(i):d it
For the right spanning tree, let each , be defined by ,(a) =, (b) = ! ZieNzy(i):a pulc) = ZieNzy(i):C ir
and ,(d) = ZiEN:y(i):di'

It is straightforward to verify that both choices result in the probabilistic rule described in the

Introduction. <

7.6 CONCLUDING REMARKS

The main result in this paper (Theorem 7.5.2) characterizes all unanimous and strategy-proof
probabilistic rules for single-peaked preference profiles on a connected but otherwise arbitrary graph of
which the nodes are the alternatives. Such a rule is a random dictatorship on the maximal leafless
subgraph, and on each branch it is a leaf-peak rule — extending the median-like rules in [72] and the
probabilistic rules in [46] on the line graph — such that the total probability on each branch equals the
sum of the random dictatorship weights of the agents who have their peaks on this branch.

We conclude with, first, a consideration of probabilistic versus deterministic rules and, second, a few

reflections on our domain of single-peaked preferences.
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7.6.1 PROBABILISTIC AND DETERMINISTIC RULES

Contrary to the line graph case [81] not every probabilistic rule is a convex combination of deterministic
rules, as we will show now.

Let G = (A, E) be a tree. The collection of leaf-peak rules characterized in Theorem 7.3.9 contains
deterministic rules, i.e., rules that assign probability one to some alternative. It is not difficult to verify that
these deterministic rules correspond to monotonic collections B = (), which are deterministic, that is,
forevery y €, ,(x) = 1for some x € A.

The following example shows that, in contrast to the case where the graph is a line graph ([81]), not

every leaf-peak rule can be written as a convex combination of deterministic leaf-peak rules.

Example 7.6.1 Let N = {1,2,3} and A = {a, b, ¢, d}, and let G = (A, E) be the tree below. We
consider the anonymous leaf-peak rule with monotonic collection of leaf assignments as in the following

table, in which (; ;. ;) denotes the probabilities assigned by the leaf assignment where j agents are assigned

to a, k agents to b, and [ agents to c.

a|b|c|d

(o) | S| 3] 2] 0

a (ao) | 7| 3]0 ] 0
(o) | S| 4|0

(200) | 7] O | 2] 1

d

(o) | -S| o |3]2

(o) | ©| 4] 2] .4

(on2) | O | 3] 3] .4

c b

Additionally, (5 6.6), (0,3,0), a0d (0,0,3) assign probability 1 to a, b, and ¢, respectively. The associated PR is
denoted by v/, and we will show that ¥ cannot be written as a convex combination of unanimous and
strategy-proof deterministic rules.

Let F be the set of all unanimous and strategy-proof deterministic rules for preference profiles that are
single-peaked with respect to the given tree. Further, for an alternative x and a preference profile Py, let
F(x, Py) be the set of all deterministic rules fsuch that f(Py) = «. By (S,, S,, S,), where S,, S,, S, are
disjoint with union N, we denote a preference profile where the top-alternatives of the agentsin S,, S,, and
S, are a, b, and ¢, respectively. Let F, = F(a, ({1,2}, {3},0)), F. = E(b, ({1,3}, {2}, 0)),

Fy = F(c, ({1}, {2}, {3})), F, = F(b, ({1,2}, {3}, 0)), and F; = F(b, ({1}, {2,3},0)). Then, by
Theorem 7.3.9, or more directly by uncompromisingness (Lemma 7.3.1), it follows that F, N F, = () and
F, N'F, = (). Combining, we have

(F,UFE,)NF, = (. (7.24)
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Assume for contradiction that ¥ can be written as ) | feF , where > oforall f € Fand > ferf = 1. For

G C Fletg = Zfecf' Then p,ur, =f, +r, —Fr together with (7.24), yields g, +5, —rnETF < 1 Since
‘P = ZfeFﬂ[’ we have F — ‘//a<{1> 2}7 {3}7 Q))) F, — \Db({17 3}7 {2}7 (Z))) F, — ‘//c<{1}7 {2}7 {3}) USing the
values given in the table we obtain

FNF, = 0.2. (7.25)

Since the rules in F, and F, give different outcomes (a and b, respectively) at the same preference profile
({1,2}, {3}, 0), we have F, N F, = (). Moreover, by uncompromisingness, F, C F, and F, C F;, and
hence F, UF, C F. Because F, N F, = (), we have

(F,NF,)NF, =. (7.26)

Also, because F, UF, C F,,
(F,NF,)UF, CF,. (7.27)

Combining (7.26) and (7.27), we have g, np, +5, <p. By (7.25) and the table, r,r,+r, > 0.5, and hence
r, = 0.5. However, from the table it follows that . = 0.4. This is a contradiction. Thus, ¥ cannot be

written as a convex combination of deterministic rules. <

7.6.2 THE DOMAIN

An earlier version of the paper ([80]) shows that at least the results in the case where the graph is a tree
can be derived for a smaller set of single-peaked preferences.

In the opposite direction, enlarging the set of allowed single-peaked preferences, one could weaken the
single-peakedness requirement by demanding that an alternative x is preferred to an alternative y if x is on
every path from the peak of the preference to y. Then, logically, the collection of all unanimous and
probabilistic rules must be a subset of the collection characterized in Theorem 7.5.2, but it can actually be
shown that the two are equal.

Finally, if we would require that all preferences are single-peaked with respect to one fixed spanning
tree, then our domain would satisfy the ‘generalized single-peakedness’ condition in [75 ], who consider
deterministic rules. Since we allow that preferences are single-peaked with respect to different spanning

trees, our domain for general connected graphs is larger.
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APPENDIX

7.7 PROOF OF LEMMA 7.2.1

The proof of Lemma 7.2.1 will be based on Theorem 1 in [31]. We need to introduce two concepts used
there, namely the Interior Property and the Exterior Property.

We say that preferences P, P’ are adjacent if there are distinct x, y € A with xPy, yP'x, aPb < aP’b for
alla, b € Awith {a, b} # {x,y}, and xPzPy, yP'zP'y for no z # «, y. A set of preferences has the Interior
Propertyifforalla € Aandall P, P’ € with t(P) = t(P') = athereare P!, ..., P* € withk > 1and
t(P)) = aforeveryj =1,...,ksuchthatP = P',P' = P* and foreachj = 1,. ..,k — 1 the preferences

P/, P are adjacent.
Lemma 7.7.1 Let G = (A, E) be a connected graph. Then has the Interior Property.

Proof: Let1 < k < |A| — 2andleta,, . .., a;, a4, be distinct alternatives. Consider a preference P,
single-peaked with respect to a spanning tree T of G, such that {(P) = a, and a;PxPay, such that
xPzPay, for no z # x, a;.,; and a preference P’ single-peaked with respect to a spanning tree T’, such
that {(P') = a, and a;Pay., such that a;PzPay , for no z # ay, ar4,. (Thus, a,, . . . , a; are ranked above all
other alternatives at P,and a,, . . . , a, are ranked above all other alternatives at P’.) It is sufficient to
prove that there is a spanning tree T with respect to which the preference P obtained by switching x and

dr4, in P, is single-peaked. If x is not on the path 7 = [a,, a;+,] in T, then we can simply take T = T.

Otherwise, we have 7 = [a,, ..., x, a4, ). Let#’ = [a,, ..., as, ar4,] be the pathin T’ from 4, to a;.,;
observe that the alternatives in 7" are a subset of {a,, . . ., a4, }. Construct T from T as follows. First,
delete the edge {x, a1, } from T. This results in two disconnected subtrees with a,, . . ., a; and x in one

subtree and a;, in the other: this follows from single-peakedness of P with respect to T (if a; for some

2 < i < k'would be in the same subtree as g, then a;,, would be on the path in T from g4, to a; and thus

ar+.Pa; by single-peakedness, a contradiction). Therefore, by adding the edge {ay, ar, } we obtain a

spanning tree T. The proof of the lemma is complete if we show that P is single-peaked with respect to T.
Suppose this were not the case. Then there are distinct z, 2’ € A such that zis on the path 7 = [a,Z/] in

T, but z’Pz. If 7 is also a path in T, then we have zPZ’, hence z = x and 2/ = a;,, and in particular

{«, a1, } is an edge in T, which is a contradiction. Hence,  is not a path in T, and we can write

7 = |a,,a0] - {a¢, ar.} - [ar1., 2], where [a,, a¢] and [a;.,, 2] are also paths in T. If z € [ar,, 2] thenzis

on the path [a,, x| - {x, a4, } - [a+., 2] in T, hence zPZ’ and therefore zPZ/, a contradiction. Therefore, we

have that z is on the path [a,, a¢] in Tand T, thus z € {a,, ..., a;}, and again zPZ/, a contradiction. [ |
p ) ) ) g

For a preference Pand anumber ¢ € {1,...,|A|},let B/(P) C A denote the set of the £ highest ranked

alternatives according to P, i.e., if a,Pa, . . . agPasy,Pay, . . . Pajy then By (P)={a,,...,ar}. Asetof
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preferences has the Exterior Property if for all P, P’ € with t(P) # t(P’) and all distinct x, y € A with xPy
and xP'y, there are P, . .., P* €,k > 2, such that P = P', P’ = P* and for everyj =1,...,k — 1thereis
an/ € {1,...,]A|} suchthatx € By(P)) = By(P™*)andy ¢ By(P).

Lemma 7.7.2 Let G = (A, E) be a connected graph. Then has the Exterior Property.

Proof: Let P, P’ € with {(P) = a # b = #(P') and distinct x, y € A with xPy and xP'y. Let Tbe a
spanning tree of G with respect to which P is single-peaked.

(i) First suppose that bPy. Let the path [a, b] in T consist of the sequence a, z,, . . ., 2, b, hence
aPz,P...PzPb. Define P” by bP"z;P" .. . P"z,P"a. . .such that zP"7 < zPZ forall
z,Z € A\{a,z,...,z, b},andlet { = max{|U(b, P)|, |U(«, P)|}.

We show that P” is single-peaked with respect to T. To thisend, let [b- - - z - - - Z'| be a path in T. We

show that zP"2'. If z, 2 € {a,z,,...,z,b},sayz = z;and 2’ = 2, then we have i > jand z;P"z;, hence
ZP'? Mz € {a,z,...,zi,b}and 2 ¢ {a,z,...,z,b} thenzP"Z . Ifz ¢ {a,z,,...,z,b} and

Z €{a,z,...,z,b} then[b---z---2/] - [ - - - b] contains a cycle, a contradiction. If, finally,

z,Z ¢{a,z,...,z, b} thenthereisapath[a---z---Z/] in T, hence zPZ’' and therefore zP"Z’. This

completes the proof of single-peakedness of P with respect to T.

Also, t(P") = b,x € By(P) = By(P"),and y ¢ By(P). The proof for this case is then complete by
constructing a sequence of adjacent preferences starting from P” and ending in P’ by using the Interior
Property (Lemma 7.7.1).

(ii) Second suppose that yPb and y is not on the path [a, b] in T. Construct the preference P as follows.
Let C = {z € A: yisonthe path [a,z]in T}. Thenletz/Pzforallz € Candz’ € A\ C,and
zPZ < zPZ forallz,z’ € Candallz,z’ € A\ C. Then Pis still single-peaked with respect to T, and for
¢ = |U(x,P)| we have x € B;(P) = By(P) andy ¢ B,(P). Since b ¢ C and therefore bPy we can
complete the proof by applying the arguments in (i) now starting from P.

(iii) Third suppose that yPb and y is on the path [a, b] in T. Let the path [a, b] in T be the sequence
a,...,d,y,...,b. Let, similarly as above, C = {z € A : yis on the path [a, z] in T}. Since P’ € thereisa
pathw = [b, x| in Gwithy ¢ [b, x|. On this path let {c, d} be the first edge withc € Candd € A\ C.
Now first delete the edge {a’, y} from T; next add the part 7’ = [b - - - cd] of #; and finally delete edges
{v,w} withv,w € Cbut {v, w} not in 7’ such that a spanning tree T of G is obtained. Next construct a
preference P, single-peaked with respect to T, with zPz' forallz € A\ Cand z € C,zPZ’ < zPZ’ forall
z,Z € A\ C,x € B,(P) = B,(P),and y ¢ B,(P), wherep = |U(x, P)| = |U(x, P)|. Then either bPy,
and we are back in case (i), or yPb. In the latter case, since the path [a, b] in T is of the form [a - - - dc - - - b]
where [dc - - - b] is the converse path of 7/, y (€ C) is not on this path, and we are back in case (ii). |

Lemma 7.2.1 now follows by applying Theorem 1 in [31].
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