
Mathematical Formulations

for
Complex Resource Scheduling Problems

T R Lalita

Indian Statistical Institute

January 18, 2021

http://www.isical.ac.in

Indian Statistical Institute

Doctoral Thesis

Mathematical Formulations

for
Complex Resource Scheduling Problems

Author:

T R Lalita

Supervisors:

Dr G S R Murthy

A thesis submitted to the Indian Statistical Institute

in partial fulfilment of the requirements for

the degree of

Doctor of Philosophy (in Quality, Reliability and Operations Research)

Statistical Quality Control & Operations Research Unit

Indian Statistical Institute, Hyderabad

January 18, 2021

http://www.isical.ac.in
http://WEBPAGE-OF-SUPERVISOR"
https://www.isical.ac.in/units/sqc-and-or-unit-kolkata
http://www.isibang.ac.in

Dedicated to My Parents and Teachers

Acknowledgements

I would like to express my heartfelt thanks and gratitude to my supervisor, Dr. G S

R Murthy for his guidance, patience and stimulating discussions throughout the period

of my research and for his ideas and time without which this thesis wouldn’t have

materialized. I would also like to thank Dr Amitava Bandyopadhyaya, ISI-Kolkata,

for bringing to us a unique opportunity for research in scheduling. He played a very

important part in the development of this thesis. I am also thankful to Dr D K Manna

for his ideas and discussions during the initial work on this thesis and for permitting

me to include our joint work in this thesis. I would also like to thank Dr Amit Biswas,

ISI-Chennai Center, and Dr G Ravindran, ISI-Chennai Center, for various discussions

and ideas.

I am also grateful to all my teachers at masters and graduate level, especially, Late

Dr Archana Bansal, for teaching me how to code, Dr Debasree Goswami for the most

amazing classes in computer science, and Late Dr Nanda for teaching mathematics

creatively.

I am grateful to the staff and teachers at the SQC and OR Unit, ISI- Hyderabad for

providing me facilities for research at the institute. I am grateful to Mr K V Ramana,

Mr Sirivardhan, Mr O.Shiva Kumar, Mrs Lalita and other staff for all the administrative

support.

My family has supported me throughout the duration of my research. Most of all

I am grateful to my grandfather Mr T S Ramachandra Rao who has inspired me from

childhood to appreciate excellence and to achieve it. I am grateful to my parents, for

their wise counsel and unwavering support through the years and my sisters, for all their

love. I thank my in-laws for all their support. Lastly, I am grateful to my partner and

husband, V V S Ravindra who continues to be my constant source of encouragement.

T R Lalita

29-08-2020

Contents

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xiii

1 Thesis Overview 1

1.1 Introduction . 1

1.1.1 Types of Resource Scheduling Problems 4

1.1.1.1 Resource Constrained Project Scheduling Problem 4

1.1.2 Adjacent Resource Scheduling Problem 5

1.1.3 Strip Packing Problem . 7

1.1.4 Interval Scheduling Problem . 8

1.1.5 Multiprocessor Scheduling . 9

1.2 Overview of Chapters . 10

1.2.1 Integrated Staff and Task Scheduling Problem 10

1.2.2 The Check-in Counter Allocation Problem 12

1.2.3 Berth Allocation and Crane Assignment and Scheduling Problem . 15

1.2.4 The Windmill Problem . 18

1.2.5 Contributing Papers . 20

2 The Integrated Staff And Task Scheduling Problem 21

2.1 Introduction . 21

2.2 Motivation and Literature Review . 23

2.3 Problem description and Formulation . 33

2.3.1 Shift Pattern Subproblem - Stage 1 36

2.3.2 Staff Assignment Problem - Stage 2 38

2.3.3 The Split Technique . 40

2.4 Real-Life Instances and Numerical Experiments 42

2.4.1 The Software Industry Problem . 44

2.4.2 Airport Check-in Counter Requirement Problem 44

2.4.3 Call Center Data . 47

2.4.4 Instances for ISTSP . 48

2.5 Summary of Experimental Results . 50

vii

viii Contents

2.5.1 Results for stage 1 model . 51

2.5.2 Results of problem instances with given demand vector 52

2.5.3 Results of ISTSP problem instances 54

2.6 Summary . 57

3 Planning Airport Check-in Counter Allocation 59

3.1 Introduction . 59

3.2 The Check-in Counter Allocation Problem 60

3.3 Literature . 62

3.4 Notation . 66

3.5 New Formulations . 68

3.5.1 Stage 1: Determining Number of Counters 68

3.5.2 Stage 2: Scheduling Tasks with Adjacency Constraint 74

3.6 Solving Real-World Problems . 79

3.6.1 The One-Day Problem . 80

3.6.2 One-Week Problem . 81

3.7 Additional methods for Check-in Counter Planning 82

3.8 Summary . 89

4 Berth Assignment and Crane Scheduling at Ports 91

4.1 Introduction . 91

4.2 Literature . 93

4.3 Port Operations . 95

4.4 Problem Description . 97

4.5 Formulations . 98

4.5.1 Berthing Profiles . 99

4.5.2 Formulation for Heterogeneous Cranes 103

4.5.3 Formulation for Homogeneous Cranes 105

4.5.4 Expanding the BCI Class . 108

4.6 Numerical Experiments . 110

4.6.1 Results for Instances with Heterogeneous Cranes 110

4.6.2 Results for Instances with Homogeneous Cranes 112

4.7 Summary . 114

5 Extension of Resource Scheduling Models to Wind Power Scheduling117

5.1 Introduction . 117

5.2 Literature Review . 120

5.3 Problem Description and Formulation . 122

5.4 Analysis . 128

5.4.1 The Spell Subproblems Px̃i(s̃i, αi, yi, ũi, β̄i) 131

5.5 Solving the Windmill Problem . 133

5.6 Application . 136

5.7 Summary . 140

6 Conclusions and Future Work 141

6.1 The Integrated Staff and Task Scheduling Problem 141

Contents ix

6.2 Check-in Counters Problem . 144

6.3 The Berth and Crane Assignment (Specific) Problem 147

6.4 Windmill problem . 149

A The check-in counter allocation problem: A Detailed literature survey151

A.1 Introduction . 151

A.2 The Check-In Counter Allocation Problem 153

A.3 Determining Optimal Number of Check-in Counters 157

A.4 Adjacent Counter Allocation . 164

A.5 Some Real-world Airport Applications 169

A.6 Different Approaches to Counter Allocation 171

A.6.1 Simulation for Counter Allocation 171

A.6.2 Network Model for Counter Allocation 173

A.6.3 Evolutionary Algorithms and Counter Allocation 174

A.6.4 Queuing Theory and Counter Allocation 177

A.7 Related Scheduling Problems . 177

B Datasets and Computer Programs associated with the Thesis 181

Bibliography 183

List of Figures

1.1 Assignment of check-in counters under ARS-R and ARS-V. Numbers in the

coloured boxes are the departure ids. Number of boxes for each departure in

each time period is the number of counters required for that departure in that

time period. Number k in cell (i, j) means counter i is assigned to departure k

during time period j. 7

1.2 Check-in counters . 13

1.3 Gantry Cranes at a seaport . 16

2.1 SIP demand for every 30-minute over one week (336 TPs). No demand
during 10 pm to 8 am. Total demand 1258 worker-hours. 24

2.2 Agent requirements for JAW domestic and international departures 45

2.3 Parameters of instances P7 to P10 . 47

2.4 Agent requirements for call center problems 48

2.5 Staff requirements for medical emergency problem 49

2.6 Performance of stage 1 model . 52

2.7 Performance metrics of two stage method for P1 to P17 54

2.8 A comparison of solution times . 54

2.9 Performance metrics of two stage method for P23 to P41 55

2.10 Comparison of solution times of two stage method (TSM) with Volland
et al. (2017b) (VF) method. 56

3.1 Number of counters as per SOL3 and SOL2 74

3.2 Four different ways of assigning counters to a task. 75

3.3 Two different ways of assigning counters to 3 tasks 76

3.4 Two more ways of assigning counters to the 3 tasks 76

3.5 Distributions of arrivals percentages over TPs for domestic and interna-
tional departures. 80

3.6 Two different ways of assigning counters to 3 tasks 82

3.7 A portion of assignment of counters to one-day planning horizon problem. 84

3.8 Physical assignment of counters to the 360 departures of the one-day
planning horizon problem. 84

3.9 Physical assignment of counters to the one-week planning horizon problem
involving 2539 departures and 687 time windows. 85

4.1 Quay at a cargo port . 95

4.2 Quay cranes. 96

xi

xii LIST OF FIGURES

4.3 A solution for a BACASP instance with 10 ships. Data: τ = (7, 8, 9, 9, 6, 8, 7, 9, 7, 6),

q = 100(46, 77, 86, 68, 77, 75, 50, 74, 35, 70) (in tons), a = (4, 3, 19, 8, 26, 19, 14, 25, 15, 17).

From the figure, it means the ship 1 start time is TP 4 and end time is TP 8; for

ship 2 start time is TP 3 and end time is TP 12 and so on (starting time period

is the TP corresponding to the respective color and service end time is the last

TP corresponding to the respective color). The optimal solution was obtained

in 48 seconds but took 97 minutes to confirm optimality. Formulation has 464

variables and 1360 constraints. 98

4.4 A comparison of an optimal solution with BCI solution for a problem instance

with three ships. The assigned crane numbers are shown in each time period. . . 106

4.5 Solution to first subproblem with 21 ships. The red solid line is time period 73. . 108

4.6 Final solution for the 40 ship problem . 109

4.7 One-shot solution for the 40 ship problem 109

4.8 Time in seconds to reach optimal or near optimal solutions. The data
labels in the figure indicate the minimum optimality percentages. 112

4.9 Results with crane capacities 219, 219, 263, 263, 263, 319 and 319. Time (sec-

onds) is to reach optimal or near optimal solutions. The data labels in the figure

indicate the minimum optimality percentages. 112

4.10 Solution to the 60-ship problem solved using split technique. 114

5.1 Historic Development of Global Installation Capacity 119

5.2 Forecasts for selected five days . 138

5.3 Data and solution to an instance of the windmill problem. 138

A.1 Departure Hall in an Airport . 154

A.2 Polyominoes in counter allocation. The x-axis stands for time periods
and the y-axis for counter numbers. 154

A.3 Desired need for airlines as compared to real need 154

A.4 Arrival Distribution Observed at Kai Tak Airport, Hong Kong 155

A.5 Minimum Counters Required in constant and variable case 156

A.6 Dynamic Counter Allocation saves counter time 156

A.7 . 158

A.8 Possible variations of the 2-4-6 Counter Profile 164

A.9 Blocking by Yan et al. (2004) . 165

A.10 Task Structure for a given Counter Allocation 168

A.11 Networks for Counter Allocation by Tang (2010) 174

A.12 Crossover of two solutions . 176

List of Tables

2.1 Notation . 33

2.2 Parameters for simulation of instances for ISTSP 50

2.3 Results for staff scheduling problem instances 53

2.4 Results for ISTSP instances . 55

2.5 Comparison with VF w.r. to time wise performance 56

3.1 Problem of three departures with common counters 72

3.2 Waiting time metric for SOL2 and SOL3 72

3.3 Summary of simulation results for comparison 74

3.4 A Comparison Between Results of YTK- and DS-Formulations 79

3.5 This table provides a comparison of the formulations in terms of number
of variables and constraints in the worst case scenario for 2500 departures 89

4.1 Notation . 100

4.3 Crane infrastructure at a bulk terminal 101

4.4 Berthing Profiles for Example 4.5.1 . 102

4.5 Data for 40-ship instance . 108

4.6 Results for first set of instances . 111

4.7 Objective values of best feasible solution with at least 95% optimal 112

4.8 Results for first set of instances with homogeneous cranes 113

4.9 Results for second set of instances with homogeneous cranes 114

5.1 Notation . 123

5.2 Example of a spell subproblem: sj values for two different α1s 132

5.3 Demand Load of Units at the Paper Mill 137

5.4 Results from solving 20 real-life instances of the windmill problem 139

xiii

Chapter 1

Thesis Overview

1.1 Introduction

This thesis deals with development of effective models for large scale real-world resource

scheduling problems. Efficient utilization of resources is crucial for any organization or

industry as resources are often scarce. Scheduling them in an optimal way can not only

take care of the scarcity but has potential economic benefits. Optimal utilization of

resources reduces costs and thereby provides a competitive edge in the business world.

Resources can be of different types such as human (personnel-skilled and unskilled),

financial(budgets), materials, infrastructures(airports and seaports with designed facil-

ities, windmills, warehouses’ area, hotel rooms etc) and equipment (microprocessors,

cranes, machinery, aircraft simulators for training), etc. Typically, scheduling of re-

sources is done over a period of time (planning horizon), but in many cases there are

other dimensions to the problem induced by limited resources.

In one class of resource scheduling where resources are facilities, there is a special

requirement that the limited resources are assigned to tasks in an adjacent manner.

This class is known as adjacent resource scheduling (ARS) (see Duin and Sluis (2006)).

There are numerous applications to this model but in this thesis we are concerned with

two important applications of this class of problems. The first one is assigning check-in

counters to flight departures at airports. Here the counters assigned to each departure

must be adjacent (physically). Because the number of counters is limited in any given

1

2 Chapter 1. Thesis Overview

airport, counter number (or its id) becomes a second dimension in this assignment and

scheduling problem. The second application is in the cargo ship management. In cargo

ship terminals, ships are moored to the quay for loading and unloading operations. For

modelling purposes, the quay is discretised into berth sections of unit length. A ship of

length k units requires a space of k contiguous (adjacent) berth sections in the quay. The

limited quay space has to be reused to accommodate multiple ships over the planning

horizon. Thus, quay space becomes a second dimension in this problem. In addition,

the loading and unloading operations are performed by cranes which are fixed on rails.

This restricts the free movement of cranes and they cannot bypass their adjacent ones.

This adds a third dimension to the berth and crane allocation and scheduling problem.

The cranes serving a ship in this set-up, therefore, must be adjacent. Thus, a third

dimension to the problem is induced by limited number of movement-restricted cranes.

There are a number of other applications of ARS. Some other applications include: (i)

private warehouses let out adjacent storage spaces to customers requiring temporary

storage spaces, (ii) hotel room reservations for different customers requiring multiple

adjacent rooms, (iii) gate allocation to flight arrivals requiring adjacent or nearby gates

for connecting flights, etc.

Another class of resource scheduling problems to which this thesis makes an impor-

tant contribution is the integrated staff and task scheduling problem (ISTSP). In this

problem, the resources are staff or workers who work in shifts. Given a set of tasks to be

performed over a given period of time, the problem seeks minimum number of workers

to complete the tasks. Each task comes with the specification of (i) a time interval

during which the task must commence and (ii) duration of the task and the number of

workers required for it during each time period. Further, the tasks have precedence re-

lationships like in a project management problem. On the other hand the workers work

in shifts according to conditions stipulated and governed by organizational rules and

labour laws. This problem is generic to a variety of industries and organizations. The

current burning problem of hospital staff management for treating corona patients will

be a classic application of ISTSP. In the same context, carrying out lockdown operations

round the clock with limited police staff badly requires the application of ISTSP. Call

centers, software industries, medical emergency services, airports, etc., are other areas

which require the application of ISTSP.

1.1. Introduction 3

Finally, we look at a scheduling problem that interlinks two scheduling problems of

a windmill and a paper mill, both owned by the same organization. The organization

trades the green power generated by its windmill with power consumed from the grid at

its paper mill. This trading of power at the two mills is governed by a certain scheme

offered by the government to promote green power generation. According to this scheme,

the organization has to declare, on a daily basis, a power supply schedule at the windmill

and draw up a plan (a schedule) to consume power from grid at its paper mill. The

two schedules are declared on the planning horizon of 96 time periods of a day, each

of 15 minutes duration. The decisions for the schedule at paper mill require dividing

the planning horizon into at most four spells, a spell being a group of contiguous time

periods of the planning horizon, and determining the amount of power to be drawn from

the grid during each spell. This one is a challenging combinatorial optimization problem

with a quadratic objective function and intricate relationships among decision variables.

It is different from the usual decision making problems that are encountered in the

literature. The determination of spells requires dividing the time periods into groups of

contiguous time periods. This is a form of adjacency requirement. We have come up

with a novel formulation and solution approach for solving this problem. The novelty of

our solution approach is in adapting a technique for solving a seemingly unrelated staff

scheduling problem ISTSP mentioned above.

This thesis has evolved from our attempt to provide effective solutions to real-life

problems from industry. We shall briefly outline the genesis of our contributions in this

paragraph. More details are given in the next section. In case of check-in counters

problem (Chapter 3), the request for a solution had come from a large international

airport which was facing the problem of managing a huge number of flight departures

with a limited number of check-in counters. While solving the problem, we found that the

solutions offered in the existing literature could not handle the size the of the problem at

hand. Further, we could not find a solution in the literature to address a particular aspect

of the problem, namely, implementing the first-in-first-out queue discipline in modelling.

The next contribution to berth and crane allocation and scheduling problem (Chapter 4)

is an off-shoot of extending our ideas used in solving check-in counter problem. In this

contribution, we have come up with formulations that are amenable for commercial

solvers to find solutions in reasonable times. The main difficulty with the formulations

4 Chapter 1. Thesis Overview

in the existing literature is that the problem sizes (number of variables and constraints)

are too large for the commercial solvers to handle. The origin of our third contribution to

ISTSP (Chapter 2) is a request from a software company that needs to prepare weekly

schedule for their staff. Starting with this and exploring the literature, we extended

the scope to address the more general problem, the ISTSP. The result is that we have

come up with a methodology that reduces the solution times drastically compared to the

solutions offered in the literature. Our contribution to the windmill problem (Chapter 5)

was initiated by a request from a large paper manufacturing company in India.

1.1.1 Types of Resource Scheduling Problems

There are different types of resource scheduling problems. For a detailed discussion of

various types of resource scheduling problems see Blazewicz et al. (2013), Pinedo (2002),

Brucker and Knust (2000) etc. In this section we will present some important ones and

other problems that have close relation with them.

1.1.1.1 Resource Constrained Project Scheduling Problem

In project management problems, various activities of the project are to be scheduled

over a planning horizon. The activities require different types of resources. In the

resource constrained project scheduling problem (RCPSP), one has to schedule activities

with the renewable resources taking into account various restrictions on the activities

and the limited resources. Since most real-world problems have limited resources, there

is a need for managing them optimally. In the literature, project scheduling problems

are known as “time/cost tradeoff problems.” Cost reduction often results in increased

activity durations and time reduction in increased cost of resources (for a survey on

project scheduling problems see Icmeli et al. (1993)). The activities may have precedence

relationships and time line specifications. RCPSP is applicable to a wide variety of areas

such as construction activities, timetabling, production and manufacturing processes,

service industries such as airways, railways, shipping, hospitals, etc (Brucker and Knust

(2000)). To address variants of RCPSP, different models have been developed (see the

survey by Hartmann and Briskorn (2010)). Thus, RCPSP is the problem of scheduling

1.1. Introduction 5

activities or jobs over a planning horizon with the available resources and satisfying

in-built constraints.

Mathematically, RCPSP may be stated as follows. A project consists of a set A =

{0, 1, ..., n} of n + 1 activities which are to be processed without interruption, and Rk

renewable resources of type k, k = 1, 2, . . . ,K. Activity i ∈ A, i 6= 0, n, requires rik

resources of type k and pi units of processing time. The activities 0 and n are dummy

activities denoting the start and end of the project. They require 0 resources and 0

processing time. There is a (strict) partial order on A, i.e., an irreflexive and transitive

relation, which represents precedence constraints among the activities. A solution for

the RCPSP is a schedule that specifies the start times of the activities and can be

represented by a vector S = (s0, s1, . . . , sn) where si is the starting time of activity

i ∈ A. The starting times sis must satisfy all constraints with respect to both time

and resources. Constraints with respect to time are formulated as si + pi ≤ sj for all

i, j ∈ A with i ≺ j (that is, i precedes j). Constraints with respect to resources can

be formulated as follows. For each k and each time period t in the planning horizon,∑
i∈A(t) rik ≤ Rk, where A(t) is the set of all activities which are under process during

time period t. The most common goal of an RCPSP is to minimize the duration of the

project. RCPSP is NP-hard in the strong sense (see Blazewicz et al. (1983)). A host of

exact and heuristic solution procedures are available for RCPSP (see Vanhoucke et al.

(2002), Kolisch and Padman (2001), Neumann et al. (2012)).

1.1.2 Adjacent Resource Scheduling Problem

Adjacent resource scheduling (ARS) problem deals with determination of minimum num-

ber of resources required to complete a set of jobs or activities over a planning horizon.

The check-in counter problem is a typical application of ARS. For a given set of depar-

tures over a day, the question is: What is the minimum number of counters required

to serve the departures? The ‘adjacency’ in this problem refers to and arises from the

requirement that the counters assigned to each departure must be adjacent. Another

important application of ARS is the determination of the minimum number of quay

cranes required to serve cargo ships whose arrival and departure times are fixed over a

planning horizon of, say, one week. Two important variants of ARS are: (i) constant

6 Chapter 1. Thesis Overview

resource allocation (ARS-R) and (ii) variable resource allocation (ARS-V). In ARS-R,

each activity requires the same number of resources during its processing time window,

whereas in ARS-V the number of resources required varies from one time period to

another within the processing time window.

ARS was formally introduced in Duin and Sluis (2006) in the context of check-in

counter allocation problem. The initialisms ARS-R and ARS-V were introduced by

them.

Mathematically, the problems can be described as follows. Consider a planning hori-

zon of T time periods denoted in the chronological order as 1, 2, . . . , T . Let the resources,

C in number, be denoted by 1, 2, . . . , C. Let A = {1, ..., N} be the set of N activities to

be scheduled during the planning horizon. We shall assume that activity i ∈ A starts in

time period si and ends in time period fi, 1 ≤ si ≤ fi ≤ T , and requires ri(t) resources

in time period t for si ≤ t ≤ fi. Further, we assume that si, fi and ri(t) are given inputs

for each i ∈ A and each 1 ≤ t ≤ T . With these definitions and inputs, the ARS problem

is to determine, for each i ∈ A, a set of feasible vectors Si = (Sisi , S
i
si+1, . . . , S

i
fi

),

where each Sij is a contiguous subset of the resource set C = {1, 2, . . . , C}. Say that B

is a contiguous subset of C if the elements of B are successive numbers when ordered in

the ascending order (it is assumed that resources j and j′ are adjacent if |j − j′| = 1).

The vectors Si, i ∈ A are defined to be feasible if, and only if, Sit ∩Si
′
t = ∅ for any time

period t and any pair of activities (i, i′), i 6= i′.

ARS-R: ARS is said to be ARS-R (R for rectangular) if ri(t) is invariant of t, that

is, ri(t) = ri for all t ∈ [si, fi]. This means, the number of resources required for any

activity is constant throughout its processing time window.

ARS-V: ARS is said to be ARS-V (V for variable) if ri(t) varies with t. In other words,

we must have an i ∈ A and si ≤ t 6= t′ ≤ fi such that ri(t) 6= ri(t
′). This means

that there is at least one activity which requires different number of resources during its

processing time window.

ARS assignment can be presented in a time-counter space diagram. Figure 1.1

presents examples ARS-R and ARS-V in the context of check-in counter assignment.

Duin and Sluis (2006) explore the nature of ARS and observe that they are strongly

1.1. Introduction 7

Figure 1.1: Assignment of check-in counters under ARS-R and ARS-V. Numbers in
the coloured boxes are the departure ids. Number of boxes for each departure in each
time period is the number of counters required for that departure in that time period.
Number k in cell (i, j) means counter i is assigned to departure k during time period j.

NP-complete. Further, they determine a number of special cases of ARS-R that are

solvable in polynomial time. Dijk and Sluis (2006) proposed an integer linear program-

ming formulation for check-in counter problem under ARS-V assumptions.

1.1.3 Strip Packing Problem

The strip packing problem, also known as 2-dimensional cut ting stock problem, is the

problem of cutting rectangular pieces of given widths and lengths from a sheet of a given

width and infinite length. The sheet of infinite length from which the rectangular pieces

are cut is called the master sheet. The objective in this problem is to cut the rectangular

pieces using minimum length of the master sheet. This problem is an NP-hard problem.

An important application of the strip packing problem occurs in paper industry where

paper sheets are cut from a jumbo reel of the paper (Murthy (2016)). Strip packing

problem has numerous other applications. In wood or glass industries, rectangular

components have to be cut from large sheets of material. In warehousing contexts,

goods have to be placed on shelves. In newspapers paging, articles and advertisements

have to be arranged in pages. See Lodi et al. (2002) for a survey article on the subject.

8 Chapter 1. Thesis Overview

1.1.4 Interval Scheduling Problem

The basic interval scheduling problem consists of scheduling a given set of time inter-

vals over a planning horizon. The problem is to determine maximum number of non-

overlapping intervals. Typically, each interval stands for an uninterruptible job. This

problem has numerous applications. Kolen et al. (2007) provides a brief description of

some selected applications in crew scheduling, satellite photography, cottage renting, a

channel assignment problem in VLSI-layout, maintenance problem in the aviation in-

dustry, a problem in computational biology that determines a maximal subset of a given

set of segments of amino-acids that match a given sequence of amino-acids, etc.

A mathematical description of the problem is as follows. Given n time intervals

Ij = [sj , fj), j = 1, 2, . . . , n, and m machines indexed by i = 1, 2, . . . ,m, the basic

interval scheduling problem is to find an assignment matrix X = (xij), where xij is the

indicator variable which is 1 if machine i is assigned to interval Ij , so that
∑

ij xij is

maximum subject to the constraints: (i)
∑

i xij ≤ 1 for all j, and (ii) Ij ∩ Ij′ = ∅ for

all j and j′ if
∑

i xij =
∑

i xij′ . Here, each interval stands for a job whose start time is

sj and finish time is fj . In the discretised version of the problem, the time intervals are

replaced by the contiguous subsets of the planning horizon, that is, each interval is of

the form Ij = {k, k+ 1, k+ 2, . . . , k+ pj} for some integers k and pj with k ≥ 1, pj ≥ 0

and k + pj ≤ T , where T is the number of time periods in the planning horizon. Here,

pj is the processing time of job j.

There are a number of variants of the basic interval scheduling problem. Some are

listed below.

• All jobs must be completed (that is,
∑

i xij = 1), job j must start at sj , and

finishing time of job j is sj + cij if machine i processes job j, for all i, j. In

this case, one may consider different objective functions. For example,
∑

ij cijxij

stands for the cost of completing all jobs where cij is the cost of processing job j on

machine i. If cij stands for processing time of job j with machine i, then one might

be interested in minimizing max{sj + cijxij : over all i, j}. This objective

function is known as makespan. In the context of berth allocation problems at

cargo terminals, this refers to completion time.

1.1. Introduction 9

• Limited resources: In this case, the number of machines is fixed. Here, the objec-

tive is to maximize the number of jobs to be completed. In the check-in counter

allocation problem, this means accommodating as many departures as possible

with the available number of counters in the airport.

• Flexible start times: In this case, the start times sjs are allowed to belong to an

interval. This case arises in the problem of task scheduling.

1.1.5 Multiprocessor Scheduling

In multiprocessor scheduling, the problem is to assign unrelated jobs to multiple pro-

cessors so that the jobs are processed simultaneously. It is widely applied in parallel

computing and manufacturing processes. This is an NP-hard problem and has a num-

ber of variants. Two basic versions, Pm|sizej |Cmax and Pm|fixj |Cmax, are described

below. The first parameter Pm states that there are m processors in the system; the

second parameter describes the nature of the processors - sizej meaning identical pro-

cessors and fixj meaning dedicated processors; and the third parameter Cmax stands

for the makespan, the completion time of the last job to finish. In Pm|sizej |Cmax, job j

requires mj(≤ m) processors during its processing time of duration pj , j = 1, 2, . . . , n.

In Pm|fixj |Cmax, job j requires a specified subset Sj of the m processors during its

processing time of duration pj , j = 1, 2, . . . , n. Both versions assume that jobs cannot

be preempted. This means no processor can process two jobs if the jobs’ processing

intervals are overlapping.

The problems described above have relations to the problems considered in this thesis.

Clearly the two dimensional strip packing problem (denoted by 2SP) and the ARS are

closely related to the check-in counter and berth and crane allocation problems. Adjacent

resource scheduling is a sequencing problem within the class of fixed-interval scheduling

problems. Duin and Sluis (2006) observe that ARS-R is a special case of Pm|sizej |Cmax.

Similarly, the RCPSP has close parallels with ISTSP (see Volland et al. (2017b)).

All the problems studied in chapters 2 to 5 are known to be NP-hard problems.

Different authors have used a variety of solution approaches to address these problems.

These approaches include mathematical programming formulation, branch and bound,

10 Chapter 1. Thesis Overview

branch and price (column generation), set partitioning, Lagrangian relaxation, simula-

tion, adoptive search methods, heuristics, meta-heuristics, genetic algorithms and so on.

Our focus has been on formulation strategies that help obtain practical solutions. In

case of check-in counters, the focus was on solving large scale problems; in case of staff

scheduling and berth and crane allocation problems, the focus was on reducing prob-

lem sizes so that they can be solved using commercial solvers; and in case of windmill

problem, the focus is on developing an innovative formulation to convert the nonlinear

constraints into linear ones and providing a solution approach.

1.2 Overview of Chapters

This thesis has seven chapters including this introductory chapter and the concluding

chapter. This section provides an over view of the next five chapters. Based on the

extensive literature study on check-in counters, a survey article is prepared and this

is included as chapter A. Chapters 2 to 5 relate to our contributions to the resource

scheduling problems. Of these, we consider our solution to ISTSP as the most significant

contribution as it demonstrates substantial reduction in solution times compared to the

existing solutions from the literature. Therefore, we start the presentation with this as

the second chapter. This is followed by the chapter on the check-in counters problem

(Chapter 3) which in turn is followed by the chapter on berth and crane allocation and

scheduling problem. The windmill problem and its solution are presented in Chapter 5.

The thesis is concluded in Chapter 7 with concluding remarks and scope for future

research.

1.2.1 Integrated Staff and Task Scheduling Problem

Staff scheduling is a part and parcel of every organization. In many organizations,

there is a requirement of staff scheduling on a periodic basis. This is due to various

factors such as varying work loads, availability of workers, nature of workers (regular

and temporary), labour laws, payment structures and so on. In organizations which work

round the clock (such as hospitals, police, medical emergency services, paper industry,

call centers, cab services in a city, etc.), workers may work according to flexible shifts

1.2. Overview of Chapters 11

which vary in duration as well as work timings within a day. Scheduling staff in such cases

is a complex problem as there are many constraints imposed by various factors. Staff

scheduling in which the planning horizon extends beyond a day with days-off constraints

is known as tour scheduling problem. Scheduling problems in which shifts do not extend

across two consecutive days are referred to as discontinuous staff scheduling problems

(see Stolletz (2010), Brunner and Stolletz (2014)). Staff scheduling is often driven by

tasks with time varying workforce requirements. Tasks usually come with time lines and

precedence relationships. Once tasks are scheduled, they fix the workforce requirements

over different time periods of the planning horizon, and one has to choose a suitable staff

schedule that is optimal in some way. However, it is possible to derive better solutions

by making a combined decision of scheduling tasks and staff together. This problem is

referred to as the integrated staff and task scheduling problem, the ISTSP. In Chapter

2, we deal with ISTSP and a special case of it, namely, the staff scheduling problem. In

staff scheduling problem, the task schedule is fixed and its staff requirements are taken

as given inputs.

The work of Chapter 2 started with a problem addressed to us by a software company.

A division of the company works for a client. The company receives workforce plan from

the client every week. The plan specifies the number of staff required in each of the 336

thirty-minute periods of the week. The company’s problem is to determine the staff

schedule to meet the specified plan. According to the company’s rules, workers can be

assigned work in shifts subject to the following conditions: (i) shift has two tea breaks

each of 15 minutes duration and one lunch break of 60 minutes, (ii) no break in the first

90 minutes, (iii) at least 90 minutes gap between any two successive breaks, and (iv) the

duration of the shift including breaks is 9 hours. Further, the work demand exists only

during 8 am to 10 pm. The problem is to determine a feasible staff schedule for a given

plan with minimum number of workers. This problem is similar to the one addressed

by Stolletz (2010) and Brunner and Stolletz (2014) using column generation approaches

for workforce planning at check-in systems at airports. In 2017, observing that there is

limited literature on ISTSP, Volland et al. (2017b) propose a solution approach using

an iterative solution procedure using column generation approach. Following this study,

we extended our solution approach for the software company’s problem to the ISTSP.

This has lead to interesting contributions of the chapter.

12 Chapter 1. Thesis Overview

Providing relief breaks in shifts is an important aspect of scheduling (see Jacobs and

Bechtold (1993), Aykin (1996), Su et al. (2014)). The size of staff scheduling problem

increases dramatically with the introduction of breaks in the shifts (see Stolletz (2010)

and Brunner and Stolletz (2014)). Combining this with flexibility in task scheduling,

the size of ISTSP will blow up exponentially. Furthermore, with respect to problem

size there is a huge difference between the problems with continuous work demand case

and the discontinuous one. Among the three papers cited in the previous paragraph,

only Brunner and Stolletz (2014) allows breaks, that too just one break. In contrast,

our models consider both continuous and discontinuous staff scheduling problems with

multiple flexible lunch and rest breaks. Comprehensively, the following features are

incorporated in our models.

• With regard to staff scheduling restrictions, allow: flexible shift lengths, flexible

start times, maintaining the time gap between consecutive shifts, limiting the

number of shifts per worker in the planning horizon and flexible days-off.

• With regard to task scheduling restrictions, allow: flexible start times within spec-

ified time windows, flexible task durations, flexible manpower requirements and

precedence relationships.

The objective function is either cost of workers or the number of workers. We use a two-

stage approach to solve the problems. Using integer linear programming formulations,

we obtain near optimal solutions. When the cost depends only on the shift characteristics

(duration and the timings), our method yields optimal solutions. We test the efficacy

of the solutions of method with a large number of problem instances and compare them

with relevant results from the literature. To handle large scale problems, we introduced

the split technique. This has resulted in heavy reductions in processing times.

1.2.2 The Check-in Counter Allocation Problem

Check-in counters are a critical resource for airport operators. Passengers of each flight

first go to the check-in counters assigned for their flight to drop their luggage and obtain

boarding passes. Check-in counters are intertwined with an automated system that takes

1.2. Overview of Chapters 13

care of printing and issuing boarding passes and luggage handling (printing luggage tags,

ensuring that the luggage goes to the correct flight, etc). Check-in counters are built

according to a well planned layout (depending on design and size of the airport) and

hence are physically static resources. In large airports, they are typically organized in

rows within islands - each island containing two rows of contiguous counters in opposing

directions (see Figure 1.2).

Figure 1.2: Check-in counters

Check-in counters are the property of the airport operator and it is the job of the

operator to assign counters to different airlines for the departing flights of the airlines.

The number of counters assigned to a departure (the departing flight) depends upon

factors such as the aircraft features (number and classes of seats) and category (domestic

or international flight), airline category (national or private carrier), etc. Counters

assigned to a particular departure typically operate for the departure in a time window

of 3 to 4 hours prior to the flight’s departure time excluding the last 45 minutes to one

hour. If the number of counters is constant throughout this time window, then it is

known as fixed counter allocation. Otherwise it is known as variable counter allocation.

As the number of passengers arriving for check-in during the time window varies, variable

counter allocation leads to better utilization of the counters. While the fixed counter

allocation is convenient from passenger perspective, the variable counter allocation may

become inevitable if the airport has to accommodate a large number of departures. In

the check-in counter allocation problem, we are concerned with the variable counter

allocation. A large international airport in India approached us for a solution to this

problem. The airport inaugurated in 2010 and built for handling 34 million passengers

14 Chapter 1. Thesis Overview

per annum had to handle 57.7 million passengers in the financial year 2016-17. The

airport was handling about 2500 departures per week when they approached us for a

solution. The solution sought is meant for tactical planning. The airport’s requirement

is to prepare seasonal plans for two seasons in a year. The seasonal plans are based on

weekly roster. That is, the same departures of a week are repeated every week during

the season. Taking requests for departures from different airlines, the airport operator

has to decide which departures have to be accepted. While making this decision, the

operator must ensure that it will be feasible to assign the limited number of check-in

counters available in the airport to the accepted departures.

There are two concerns in this problem: (i) to determine the assignment of counters

to the requested departures and (ii) the solution must meet the standard norms which

mainly refer to passenger waiting times assessed under rational assumptions. A number

of authors have addressed (i) in the literature. However, the solutions offered by them

are not suitable for large scale problems (details are presented in the literature section

of Chapter 3). Regarding (ii), one of the rational assumptions is serving the passengers

according to first-in-first-out queue discipline. This aspect has not been addressed in

the literature and we are the first to include this constraint in modelling the problem.

We addressed the two concerns using a two-stage optimization approach. In the first

stage, we determine the variable number of counters required for each departure through

an integer linear programming formulation that ensures first-in-first-out principle. The

problem of the second stage requires assignment of adjacent counters for departures

and thus comes under ARS. Using a special strategy to handle large scale problems, we

propose an integer linear programming formulation. The passenger waiting time aspects

are related to the solution of the first stage problem. Our results are compared with

the corresponding solutions from the literature and the benefits are discussed. Through

the application of our formulation for the second stage problem to large scale problem

instances, we demonstrate the effectiveness of our solution.

Our solution to check-in counter allocation problem is applicable to all airports and

will be essential for airports with large number of departures. World air traffic is ex-

periencing phenomenal growth. Several countries are increasing number of airports

extending the air travel even to small cities and towns. In 2017, India topped the air

traffic growth chart with a 20.3% rise in passenger traffic in one year and announced the

1.2. Overview of Chapters 15

UDAN (Ude Desh Ka Aam Nagrik) scheme to double the number of airports. China

has announced to double its number of airports by 2037. Under this scenario, solution

methodologies like ours will be very essential for planning infrastructural development

as well as operational requirements.

1.2.3 Berth Allocation and Crane Assignment and Scheduling Prob-

lem

Container shipping is a major mode of transportation of goods and commodities across

the world. Around 80 per cent of the volume of international trade in goods is carried

by sea, and the percentage is even higher for most developing countries (Review of

Maritime Transport, UNCTAD, 2019). Ships are technically sophisticated, high value

assets (larger hi-tech vessels can cost over US $200 million to build), and the operation

of merchant ships generates an estimated annual income of over half a trillion US Dollars

in freight rates (International Chamber of Shipping (2020)). In terms of value, global

seaborne container trade is believed to account for approximately 60 percent of all world

seaborne trade, which was valued at around 12 trillion U.S. dollars in 2017. While the

quantity of goods carried by containers has risen from around 102 million metric tons

in 1980 to about 1.83 billion metric tons in 2017, vessels have likewise increased their

capacity. Between 1980 and 2019, the deadweight tonnage of container ships has grown

from about 11 million metric tons to around 266 million metric tons (see Statista (2020)).

This huge amount of container/ quantity of goods carried by ships around the world has

necessitated operational efficiency at ports.

In Chapter 4, we are concerned with an important operational problem at cargo

terminals of seaports, namely, the berth and crane allocation and scheduling problem.

There are different types of cargo terminals at seaports, and we are concerned with

seaports with quay equipped with Gantry cranes fixed on rails along the quay (see

Figure 1.3).

Ships are moored along the quay for loading and unloading operations. The cranes

on the rails, also known as quay cranes, perform the unloading and loading operations

from the ships by transferring the cargo from ships (sea side) to trucks (land side) and

16 Chapter 1. Thesis Overview

Figure 1.3: Gantry Cranes at a seaport

vice versa. Depending on the length of the quay, multiple ships are moored to the quay

and are served parallelly. Due to limited quay length and limited number of cranes,

ships are served in a particular sequence. Ships arrive at different times with different

loads. The port operator is responsible for serving the ships (performing the loading

and unloading operations) under various contractual agreements, penalty structures for

delays, and so on. The decision making problem we are concerned with is scheduling the

service times of the ships, their positions on the quay and the cranes that serve them.

Depending upon the modelling assumptions, this problem has several variants.

We shall present the variant that is relevant to our study. If there are no restrictions

on positioning the ships along the quay, the problem comes under continuous berth

allocation. For the purpose of modelling, the quay is discretised into berth sections of

unit lengths so that ships are moored at contiguous berth sections adequate in number

to accommodate the lengths of the ships. Thus, in the scheduling problem, ships are

assigned contiguous berth sections for a specified period of time during the planning

horizon. This problem is known as the berth allocation problem (BAP). On the other

hand the available cranes are distributed to ships moored at the quay and are scheduled

to serve the ships. The specification of which crane(s) will serve which ships and during

what periods is known as the quay crane assignment problem (QCAP) (see Bierwirth

and Meisel (2010) for details). When the scheduling is planned taking into account all

possible options of the two problems, BAP and QCAP, the problem is known as berth

and crane assignment (specific) problem (BACASP) (Türkoğulları et al. (2014) and Agra

and Oliveira (2018)).

1.2. Overview of Chapters 17

BAP, QCAP and BACASP have been studied by several authors (see the survey

articles Bierwirth and Meisel (2010) and Bierwirth and Meisel (2015)). Most of the so-

lution methods using integer linear programming formulations have a very large number

of variables and constraints. A number of nonlinear constraints arise in the process of

ensuring assignment of adjacent berth sections to ships and non-crossing constraints of

cranes. To convert the nonlinear constraints to linear constraints, big-M restrictions

are introduced in the formulations. The huge spike in the size of the problem is trig-

gered by the requirement of adjacency constraints. As a result of this, the problems

using these formulations cannot be solved directly using commercial solvers. One way

to handle the size of the problem is to use column generation approach (see Wang et al.

(2018)). Presenting a mathematical model based on the relative position formulation

for the problem, Agra and Oliveira (2018) propose enhancements to the formulation and

bounds on the objective function derived from a rolling horizon heuristic.

The formulations and solution approaches discussed in the above paragraph are aimed

at finding global optimal solutions. Further, the solutions obtained in this fashion may

be difficult to implement. For example, if the cranes are to be shifted from one ship

to another back and forth, it will not only result in operational inconvenience but also

in time losses due to frequent changes - an aspect that is usually not considered in

the formulations. To avoid such undesirable solutions, one would often compromise on

the optimality by confining to a class of near optimal solutions that are operationally

convenient and easy to find. For instance some authors have considered time-invariant

crane assignment models in which cranes assigned to a ship cannot serve other ships

until the service of the ship is completed (see Park and Ahn (2003), Bierwirth and Meisel

(2010), Türkoğulları et al. (2014)). In Chapter 4, we introduce a new class of solutions

in which both berths and cranes remain invariant during the entire planning horizon.

We call these solutions as berth and crane invariant (BCI) solutions. Operationally BCI

solutions are very convenient. We present an integer linear programming formulation to

find BCI solutions. This formulation has a great advantage over the existing formulations

in terms of problem size and its suitability to commercial solvers. To cite an example, for

one small instance with only 10 ships and 7 cranes over one week planning horizon (with

168 one-hour time periods), the number of variables, n and constraints, c are as follows:

(i) for DRPF formulation n = 4968 and c = 2, 37, 286, (ii) for DRPF++ formulation

18 Chapter 1. Thesis Overview

n = 7130 and c = 3, 52, 751, and (iii) for BCI formulation n = 464 and c = 1, 350.

The DRPF and DRPF++ are the formulations presented in Agra and Oliveira (2018).

We establish the performance of our formulation for BCI solutions through a number

of numerical experiments using real-life data. The results are compared with existing

solutions with respect to objective values and processing times. One dimension that adds

to the complexity of the problem is with respect to crane capacities. If all cranes have

the same capacity of loading and unloading speeds, it is referred to as the homogeneous

case. We consider both homogeneous and heterogeneous cases as in Agra and Oliveira

(2018) and propose two different formulations for the two cases. Finally, we propose an

extension to our formulation to expand the class of solutions to reduce the optimality

gap.

1.2.4 The Windmill Problem

Globally, the power sector is shifting from the traditional use of fossil fuels to renew-

able sources of energy. Renewable energy can supply two-thirds of the total global

energy demand, and can contribute to the bulk of the greenhouse gas emissions re-

duction that is required by 2050 (see Gielen et al. (2019)). Wind power is totally

pollution free and does not call for maintenance systems such as air or water cooling

(https://www.eia.gov/energyexplained/wind/wind-energy- and-the-environment.php).

Most countries in the world are now transitioning to renewable sources of energy.

With increasing industrial energy consumption growth in 2010-17 (3.9% annual growth)

(International Energy Agency, Paris (2019)), India has also made changes to its Elec-

tricity Policy to allow growth of wind power generation by offering private organizations

attractive schemes to produce wind power. The government’s Inter State Transmission

System(ISTS) is one such scheme which allows companies to generate wind power at any

place and in lieu of that utilize power drawn from grid (government source) at another

place. This exchange happens under stipulated conditions of the ISTS scheme, and is

beneficial for the organizations that come forward to generate wind power.

In Chapter 5, the problem deals with scheduling activities of a paper mill that owns a

windmill and exchanges power under ISTS scheme. The reason for opting for the scheme

1.2. Overview of Chapters 19

is that the paper mill and the windmill are far apart (situated in two different states and

are 800 km apart). The scheduling decisions to be made are as follows. The company

has to declare, on a daily basis, a power supply schedule at the windmill and draw up a

plan (a schedule) to consume power from grid at its paper mill. The two schedules are

made on a planning horizon of 96 time periods of a day, each of 15 minutes duration.

The declared power supply schedule at the wind mill is known as the commitment at

the windmill. The deviations from this commitment are subject to penalties/rewards

according to a pre-defined piece-wise linear cost function. Shortages are penalized more

severely than the rewards paid for power supplied in excess of what is committed in each

time period of the planning horizon. According to the ISTS scheme, the company can

draw power from the grid at the paper mill but the amount of power drawn in any of

the 96 time periods of the planning horizon cannot exceed what has been declared at

the windmill for that time period.

The paper mill has its own power generating unit, a boiler plant, generating power

from the unused wood portion (lignin) as a byproduct of its paper production process.

This power is much more expensive than what it gets from the grid in the exchange

scheme. The paper mill has a number of power consuming units with known power

requirements whose source of power can be switched between the boiler plant power

and the grid power during the planning horizon. Due to operational restrictions, the

number of switches in a day cannot exceed 3. The company has to decide which units,

during what time periods should be connected to the grid. This requires dividing the

planning horizon into at most four spells, a spell being a group of contiguous time periods

of the planning horizon, and determining the amount of power to be drawn from the

grid during each spell. Since the power draw in each time period is limited to what

is declared at the windmill, the decisions at the two mills are interlinked. This is a

challenging combinatorial optimization problem. The objective function is the overall

cost and includes the penalties and rewards at the windmill and the cost of power at

the paper mill. It is a quadratic function of the decision variables. This problem is

different from the usual decision making problems that are encountered in the literature

in the context of windmill power generation problems. The determination of spells

requires dividing the time periods into groups of contiguous time periods. This is a

form of adjacency requirement. We have come up with a novel formulation and solution

20 Chapter 1. Thesis Overview

approach for solving this problem. An important part of this solution approach is in

adapting an idea from the seemingly unrelated staff scheduling problem, the ISTSP.

The possible power generation at the windmill depends upon the wind speeds which

are subject to natural variations. The company has a statistical expert system for

forecasting the possible wind power that can be generated during each of the 96 time

periods of the planning horizon. Our model takes these forecasts as deterministic inputs

in our formulation for computing deviations and penalties/rewards. Due to complexities

involved in the model, our model produces ε-optimal solutions. That is, given any

positive number ε, our formulation yields a solution with an optimality gap of at most ε.

The performance of our solution method is tested with a number of numerical instances

and the results are presented.

1.2.5 Contributing Papers

1. Mathematical formulations for large scale check-in counter allocation problem, T

R Lalita, D K Manna, G S R Murthy, Journal of Air Transport Management, 85

(2020): 101796.

2. An Efficient Algorithm to the Integrated Shift and Task Scheduling Problem, T R

Lalita, G S R Murthy, Journal of Scheduling (under review)

3. The Check-in Counter Allocation Problem: A Literature Review, T R Lalita, G S

R Murthy, International Journal of Aviation Management (under review).

4. The Wind Power Scheduling Problem, T R Lalita, G S R Murthy, OPSEARCH

(accepted for publication).

5. Compact ILP Formulations For a Class Of Solutions To Berth Allocation and

Quay Crane Scheduling Problems, T R Lalita, G S R Murthy, EJOR (submitted

to journal).

For data sets used in different chapters and code associated with this thesis, refer to

Appendix B.

Chapter 2

The Integrated Staff And Task

Scheduling Problem

2.1 Introduction

Personnel scheduling problems arise in a variety of applications and deal with assignment

of shifts to workforce over a planning horizon. A large number of applications involve

flexible work schedules. Workforce requirements over the planning horizon are induced

by task characteristics such as duration, number of workers required to perform the

task, deadlines, etc. Demand, the number of workers required, in each time period

of the planning horizon, may be known exactly or assumed according to a predictable

pattern, is necessary for the purpose of planning. The flexibility in staff (or work)

schedules has two components: (i) type of shift which specifies duration, breaks and

their positioning within shift, etc., (ii) time gap between successive shifts, bounds on

the number of shifts in the planning horizon, bounds on the total number of worker-

hours, days-off, etc. The constraints in the latter component, part of the tour scheduling

process, are imposed due to labour laws, company regulations, employees preferences and

so on. The complexities and challenges are aggravated by the flexibilities of staff and

task schedules. One of the factors that is ignored in much of the existing literature is

not including breaks within shifts (see Thompson and Pullman (2007)). Breaks can be

included using implicit formulations (see Sungur et al. (2017),Aykin (1996)), but this

21

22 Chapter 2. The Integrated Staff And Task Scheduling Problem

would dramatically increase the size of the problem.

In this chapter, we are concerned with two versions of personnel scheduling problem

over a discrete planning horizon. In the first version, staff schedules are flexible but the

tasks are fixed and the demand of resources (number of personnel required) for each time

period of the planning horizon is specified. The second version is an extension of the

first and it allows tasks to be scheduled within specified time periods and the tasks may

have precedence relationships. The workforce demand is a result of task scheduling. The

objective in both versions is to minimize the number of workers or an associated cost.

The second version is referred to as integrated shift and task scheduling problem (ISTSP).

The problem is so complex that it calls for special formulations and methods for solving

it. Stolletz (2010) computes the possible tours in a further restricted case of first version

of the problem (shifts without breaks, shifts restricted to 4 am to 9 pm) to the tune

of 1019. ISTSP is intractable for exact solution approaches. A common mathematical

programming approach to solving ISTSP uses set covering formulation or its variants

(Dantzig (1954)). Solution approaches presented in Maenhout and Vanhoucke (2016)

and Volland et al. (2017b) are some of the recent contributions in this direction.

To the best of our knowledge, the methods for staff scheduling or ISTSP in the

existing literature have not considered a wide range of problems. For example, Stolletz

(2010) and Brunner and Stolletz (2014) have considered discontinuous tour scheduling

problems and not the problems with continuous demand. While the former considers

shifts without breaks, the latter considers shifts with only one break. Similarly, Volland

et al. (2017b) does not consider breaks within shifts. Moreover, these articles implicitly

express that problems with larger demands (by classifying them under small, medium

and large) are harder to solve. Against this backdrop, we believe that this chapter makes

an important and significant contribution. The main contribution of this chapter is that

we provide a new method for ISTSP that can

• reduce solution times drastically,

• solve problems with large demands in approximately the same time taken for

problems with small demands, and

• handle wide flexibility in shifts resulting from multiple breaks and days-off.

2.2. Motivation and Literature Review 23

The organisation of the rest of this chapter is as follows. In the next section, we start

with the genesis of this work and present a brief discussion on the extensions of the

model assumptions and their consequences. This will be followed by a brief literature

review with focus on recent contributions relevant to this paper. In Section 2.3, we

present the problem description, our formulations, solution approach and a discussion

on their applications. Section 2.4 describes our numerical experiments with data from

real-life problems and simulation. The simulation exercises are carefully planned so as

to compare our approach with existing methods. Section 2.5 presents the summary of

the experimental results. The chapter is concluded in Section 2.6, with a summary and

possible scope for future research.

2.2 Motivation and Literature Review

This work is an extension of a problem that we received from a software company. For

ease of cross referencing, we shall call this the Software Industry Problem (SIP) in this

chapter. The requirement was to develop a method for determining staff schedules with

flexible shifts to meet workforce demand specified for every 30-minute time period (TP)

over one week planning horizon (336 TPs) with an objective of minimizing the number

of workers. Demand for a selected week is shown in Fig. 2.1. The admissible shifts in this

problem should satisfy four conditions: (i) shift has two tea breaks each of 15 minutes

duration and one lunch break of 60 minutes, (ii) no break in the first 90 minutes, (iii) at

least 90 minutes gap between any two successive breaks, and (iv) the duration of the

shift including breaks is 9 hours.

This work is the outcome of our effort to solve the SIP in its full flexibility. Encour-

aged by the results and the nature of our approach, we noticed that it can be extended

to ISTSP.

There is a vast literature on personnel scheduling problem. The problem has been

classified into different categories depending upon the areas of applications, models

and solution approaches. For a detailed review on personnel scheduling problems, see

Ernst et al. (2004b) and Van den Bergh et al. (2013), and references therein. Differ-

ent approaches are pursued for solving staff scheduling problems (see Alfares (2004),

24 Chapter 2. The Integrated Staff And Task Scheduling Problem

Figure 2.1: SIP demand for every 30-minute over one week (336 TPs). No demand
during 10 pm to 8 am. Total demand 1258 worker-hours.

Bellenguez-Morineau and Néron (2007) and Brunner et al. (2010)). The main hurdle

in solving staff scheduling problems is their size. In SIP, there are 260 different shifts

satisfying the stated conditions. Since a shift can commence at the beginning of any

of the TPs, there are 12480(= 48 × 260) possible shift schedules within a day. High

scheduling flexibility results in a huge number of personnel schedules. Mathematical

programming formulations for solving the staff scheduling problem are mostly based on

the set-covering formulation of Dantzig (1954). As the set covering formulation requires

the all personnel schedules, decomposition and column generation techniques through

implicit formulations are commonly used to handle the situation. Implicit formulations

are developed for several applications (see Thompson and Pullman (2007), Thompson

(1995), Jarrah et al. (1994), Jacobs and Brusco (1996),Aykin (1996), Jacobs and Br-

usco (1996) and Brunner et al. (2009), and Sungur et al. (2017)). Yet, the problem

remains complex as the implicit formulations often result in large number of constraints

(see Bellenguez-Morineau and Néron (2007) and Brunner et al. (2009)). Decomposition

technique is used to breakdown the problem into stages so as to reduce the size of the

problem (see Jarrah et al. (1994), Alfares (2004), Stolletz (2010) and Brunner and Stol-

letz (2014)). Also see Brucker et al. (2011) for a discussion on models and complexities

in personnel scheduling problems.

Geibinger et al. (2019) have proposed constraint programming methods for solving

a problem similar to RCPSP with heterogeneous resources and restrictions on availabil-

ity of resources. Another feature is of linked activities, all of which require identical

assignment on the same subset of resources. The objective function is to minimize the

2.2. Motivation and Literature Review 25

total time taken from the start of the first job to the end of the last job. The objective

function also differs from the objective of minimizing the number of workers / shifts

considered in this article. The authors use constraint programming to solve the prob-

lem. In constraint programming, users declaratively state the constraints on the feasible

solutions for a set of decision variables. Constraints differ from the common primitives

of imperative programming languages in that they do not specify a step or sequence of

steps to execute, but rather the properties of a solution to be found. In additions to

constraints, users also need to specify a method to solve these constraints. Geibinger

et al. (2019) give various strategies for formulating resource constraints, the reduction

of search space and search procedures based on heuristics.

The work in this chapter is closely related to three articles: (i) Stolletz (2010),

(ii) Brunner and Stolletz (2014) and (iii) Volland et al. (2017b). The first two of these

deal with staff scheduling with given resource input, and the the third one deals with

ISTSP. First, we shall brief the contributions of these articles and other works related

to them.

Stolletz (2010) introduced a reduced set covering formulation to solve a personnel

touring problem for check-in systems at airports. His model considers a fortnightly

planning horizon comprising 30-minute TPs. The staff requirements are needed only

in the TPs confined to time between 4 am to 9 pm. The restrictions on the shifts

are that they must start and end between 4 am and 9 pm, no breaks are allowed and

their durations must be between 6 TPs to 20 TPs (i.e., between 3 hours to 10 hours).

With these restrictions, there are 330 staff schedules; and using these, the problem

was solved through a binary integer programming formulation. Brunner and Stolletz

(2014) expanded the scope of the problem by incorporating one period lunch break

in the shifts. They report poor convergence of the column generation subroutine and

introduce stabilized column generation procedure.SIP is similar to the one considered by

Brunner and Stolletz (2014) but with higher complexity as it involves multiple and more

flexible breaks in the shifts (12480 personnel schedules per day). Though SIP is also

discontinuous (i.e., workforce is required only between 8 am to 10 pm), we considered

the more general problem of continuous case, that is, staff requirements may be there in

all TPs. Therefore, our model is more general and more complex, in terms of the size of

the problem, compared to that of Brunner and Stolletz (2014). Stolletz and Zamorano

26 Chapter 2. The Integrated Staff And Task Scheduling Problem

(2014) develop a rolling planning horizon-based heuristic for the tour scheduling problem

for agents with multiple skills and flexible contracts in check-in counters at airports.

When supply vector is fixed, ISTSP reduces to the well known resource constrained

project scheduling problem (RCPSP) with personnel as resources. See Hartmann and

Briskorn (2010) for a survey on RCPSP and its extensions. The published literature

on ISTSP is limited. For applications of the problem see Beliën and Demeulemeester

(2008), Maenhout and Vanhoucke (2013), Di Martinelly et al. (2014), Kim and Mehrotra

(2015), Volland et al. (2017b) in health sector; Beliën et al. (2013) for scheduling prob-

lem in an aircraft maintenance company; and Bassett (2000) for a scheduling problem

in an agro-based industry. On the solution methods for the problem, see Alfares and

Bailey (1997), Bailey et al. (1995), Bassett (2000), Beliën and Demeulemeester (2008)

and Beliën et al. (2013) for some early papers on the subject. Maenhout and Vanhoucke

(2016) decompose the problem into a master problem and a personnel scheduling sub-

problem. The personnel schedules used in the restricted master problem are generated

iteratively through the personnel scheduling subproblems. Thus, the approach comprises

decomposition and column generation techniques. In their model, the TPs are days, and

therefore, shifts within days are not considered.

Volland et al. (2017b) propose an ILP formulation (referred to as MIP in their article)

for ISTSP with a weekly planning horizon and develop a column generation method to

derive a good starting feasible solution with a lower bound for solving the MIP. The

method uses implicit formulations for two subproblems - the shift scheduling subproblem

(S-SP) and the task scheduling subproblem (T-SP). The two subproblems are linked to

a restricted LP relaxation of the MIP to generate personnel and task schedules. The

process is continued iteratively by augmenting the restricted master problem with newly

generated personnel and task schedules until the optimum objective value of the LP

relaxation is attained. Let FLPR stand for the final LP relaxation. After building

the (personnel and task schedule) columns of FLPR, they drop a set of task columns

(by retaining only a selected set of high quality task columns) from FLPR, and add

additional personnel schedule columns to it if possible, and solve it as an ILP. Taking

the optimal solution of this ILP as a warm start, they solve the MIP. Given below is a

review of the existing literature on different variants of the problem.

2.2. Motivation and Literature Review 27

Staff scheduling is like creating a time table for each employee of a company subject

to workplace regulations and labour laws. Considering all the constraints on employee

breaks, days-off and maximum allowed man hours in a week with the objective of reduc-

ing cost for the organization make this problem complicated. Lau (1996) and Brucker

et al. (2011) discusses the complexity of assigning shifts to workers subject to demand

and shift change constraints. Brucker et al. (2011) in addition discusses cases of the of

the general personnel scheduling problems, both NP-hard and polynomially solvable.

Generally, project scheduling problems involve both staff scheduling and task schedul-

ing. Such problems are split into two subproblems and solved for a cost-effective and

labour saving project schedule. Shift scheduling reduces workers’ idle time whereas task

scheduling optimizes the requirement vector to ensure a minimum gap between worker

availability and worker requirement. Shift scheduling for workers in the planning horizon

and task scheduling of various activities in a project are integrated to achieve effective

solutions. The general staff scheduling problem is addressed in this paper. The meth-

ods discussed can be applied for effectively solving problems in staff scheduling such as

assigning breaks and days-off to staff.

Many different approaches have been used to solve staff scheduling problems (see

Alvarez-Valdes et al. (1999) and Castillo-Salazar et al. (2016)). Alvarez-Valdes et al.

(1999) developed an assignment system using tabu search for labour scheduling at airport

refuelling installation. Different workers are subject to different conditions on work hours

and terms of contract. Tabu search algorithm is used to find the best shifts and then

workers are assigned to these shifts. Parisio and Jones (2015) describes a constraint

based system using forecasts and stochastic techniques to generate schedules for sales

personnel. Soukour et al. (2013) present a staff scheduling problem in airport security

service. The problem is solved in three steps, first days off for the staff are scheduled,

next, shifts are scheduled and finally a memetic algorithm is used to assign staff to the

shifts. Bhulai et al. (2008) present an algorithm for shift scheduling in a call center for

multiskilled workers. The objective is to meet the service level constraints with minimal

cost. To achieve this, the authors propose a two step approach. First, the minimum

staffing level is determined and then, the workers are assigned to different predefined

shifts. Each shift is defined by a subset of working hours and a subset of the skillset.

A worker with a better skillset is allowed to fulfill a lower skillset requirement. This

28 Chapter 2. The Integrated Staff And Task Scheduling Problem

results in sub-optimality as the algorithm schedules more shifts than necessary in cases

with large number of possible groupings of skills. This results in idle time. Ernst et al.

(2004c) review rostering and scheduling problems in different industries.

The basic model for the staff scheduling problem requires a matrix of all possible

schedules as input (Brunner and Stolletz (2014)). Including breaks and days-off in

the schedules leads to a significantly larger solution space. Modelling and solving such

problems as ILPs takes a long time and many cases an optimal solution cannot be

attained (for example see the crew scheduling problem in Barnhart et al. (1998) and the

physician scheduling problem in Huele (2015)). Decomposition approaches (introduced

by Dantzig and Wolfe (1960)) and column generation are popular in finding a solution

to large scheduling problems (see Volland et al. (2017a) and Barnhart et al. (1998)).

Most of the models for staff scheduling, therefore, use Dantzig-Wolfe decomposition

and column generation methods (see Dantzig and Wolfe (1960), Dantzig and Wolfe

(1961)). Column generation is an iterative procedure that considers a subset of feasible

columns in each iteration and generates new columns by solving a subproblem of the

original problem. Though column generation methods are supposed to help solve ILPs

faster than traditional methods, a drawback of these models is that they have an ex-

ponential number of decision variables. As it is not practical to enumerate all decision

variables, and they easily result in intractable models. There are fundamental difficulties

in applying column generation techniques for linear programming in integer program-

ming solution methods (Appelgren (1969), Barnhart et al. (1998)). Column generation

methods has been used in scheduling in different industries. For applications of column

generation in physician scheduling see Maenhout and Vanhoucke (2013), Beliën and

Demeulemeester (2008), in ship scheduling see Appelgren (1969), in network flows see

Lübbecke and Desrosiers (2005), vehicle routing see Liberatore et al. (2011), call centers

see Bhulai et al. (2008), Avramidis et al. (2010)). After solving an LP relaxation of

the original (master) problem, branch and price algorithms along with master problem

variable branching lead to the optimal integer solution (see Dantzig and Wolfe (1961),

Lübbecke and Desrosiers (2005) and Vanderbeck and Wolsey (1996). Column generation

methods combined with branch and price algorithms are popular for solving schedul-

ing problems (see Vanderbeck (2000), Vanderbeck (2011)). Branch and price algorithms

consider all possible schedules and evaluate their costs to determine the optimal solution.

2.2. Motivation and Literature Review 29

Different ways in which column generation can be combined with branch and bound has

been discussed by Barnhart et al. (1998), Desrochers and Soumis (1989), Vanderbeck

and Wolsey (1996). For a discussion on suitable models for column generation, see

Barnhart et al. (1998). For a review of column generation in integer programming (see

Wilhelm (2001)).

Branch and price algorithms in addition to column generation methods add further

computational complexity. The algorithms and solution methods discussed above take

a long time to converge. We aim at developing a simplified algorithm which reduces the

computational burden and can be easily used to obtain exact solutions to the integrated

staff and task scheduling problems.

Only a few publications exist that integrate shift and task scheduling problems (Vol-

land et al. (2017a)). Maenhout and Vanhoucke (2016) also present an integrated project

staffing and task scheduling problem. Maenhout and Vanhoucke (2016) consider only

precedence relation among tasks, while Volland et al. (2017a) incorporates time win-

dows. Maenhout and Vanhoucke (2016) include task scheduling in the master problem

and have only one subproblem to generate shifts whereas Volland et al. (2017a) have two

subproblems to generate shifts and task schedules. Volland et al. (2017a) computes lower

bounds for the integrated problem and compares both the models. Scheduling problems

in hospitals and healthcare have incorporated integrated approaches to scheduling staff

and surgeries. Di Martinelly et al. (2014) integrate nurse scheduling with scheduling

surgeries. Beliën and Demeulemeester (2008) present an integrated model for surgery

and nurse scheduling. The scheduling problem is decomposed into two subproblems and

the shift scheduling problem is solved by using a shortest path formulation. Brunner

et al. (2009), Maenhout and Vanhoucke (2013), Huele (2015) also present integrated

approaches for physician scheduling, the state-of-art in physician scheduling has been

summarized by Erhard and Vanhoucke (2018).

Some related papers are discussed below: Bhulai et al. (2008) present a staffing

and shift scheduling problem at a call center for multiskilled workers. For determining

the minimum staffing requirement the authors use the model by pot et al and et al.

For determining the set of shifts with least cost, the problem is modelled as a linear

assignment problem. Their model has rigid tasks (with no scope for change in the task

30 Chapter 2. The Integrated Staff And Task Scheduling Problem

vector). A major difference in the model proposed and our model is the added complexity

in our model due to all possible shift types considered in the shift scheduling.

Zamorano et al. (2018) present a task assignment problem observed at check-in coun-

ters at airports. The problem is to assign multiskilled workers to tasks such as check-in,

boarding operations etc. The objective is to obtain daily schedules of task assignments

for each worker. The authors propose an MIP and a branch and price algorithm to

determine task assignment, route assignment and arrival time of workers for each task

optimally. The model is decomposed into master problem and pricing subproblems us-

ing Dantzig-Wolfe decomposition principle (see Dantzig and Wolfe (1960), Dantzig and

Wolfe (1961)) and is solved by generic column generation. The main drawback is that

a task may be assigned to a worker more than once. To overcome this drawback, a dy-

namic programming algorithm is used to model the program as a shortest path problem

with resource constraints.

Maenhout and Vanhoucke (2016) present an exact algorithm for project staffing with

resource scheduling constraints. Maenhout and Vanhoucke (2016) combine resource

scheduling and project scheduling problems together to minimize the overall cost. An

exact algorithm is proposed to staffing with resource constraints. The algorithm is based

on the decomposition method by Dantzig and Wolfe (1960). Different branching and

pruning strategies are explored to compare the proposed procedure with other opti-

mization methods. A branching hierarchy is determined that gives the order of types

of variables to be branched. Branching schemes by Barnhart et al. (1998), Raghavan

and Stanojević (2011), Vanderbeck and Wolsey (1996), Vanderbeck (2011) and Beliën

and Demeulemeester (2008) are used to branch on total number of assigned staff (work-

load) or subsets thereof. Start time branching strategy for every activity, activity set

branching per time period, activity processing branching per time period and prece-

dence relations branching are discussed. Different ways to select the branching variables

are also provided. The algorithm proposed has a larger computational time than the

algorithm proposed by Volland et al. (2017a).

Volland et al. (2017a) present a column generation approach for integrated shift

and task scheduling problem of assistants at hospitals. The objective is to minimize the

number of logistics assistants employed by a hospital, given the tasks to be performed and

2.2. Motivation and Literature Review 31

workforce requirements. A lower bound is used to speed up the solution search procedure

for the minimization problem (with an unknown number of workers), the bound is similar

to that by Vanderbeck and Wolsey (1996). Alternative problem decompositions with one

subproblem (as suggested by Maenhout and Vanhoucke (2016)) and two subproblems

are presented and their performance compared. Though the run time of the algorithm is

comparatively lower than the algorithm proposed by Maenhout and Vanhoucke (2013),

it is still very high and requires solving ILPs iteratively to calculate lower bound for

the original MIP. The authors find an initial solution and a lower bound for the original

MIP.

Brunner and Stolletz (2014) address the problem of staff scheduling at airport check-

in counters with time-varying demand. Their objective is to minimize a cost function

based on assigned shifts to a given workforce subject to labour regulations and assign-

ment of lunch breaks. Since the problem could not be solved by standard MIP software,

they extend the formulation by Stolletz (2010) using a branch and price algorithm and

apply stabilized column generation techniques presented in Du Merle et al. (1999) and

Oukil et al. (2007).

Huele (2015) present heuristics to solve the integrated surgery scheduling and physi-

cian rostering problem. Operating room scheduling considers physician availability, skills

and workload and surgery scheduling depends on the daily bed availability and the length

of hospital stay required for the surgery. Priority- rule based scheduling heuristics are

used to find feasible solutions. The heuristics have two components, a priority rule and

schedule generation scheme. The priority rule signifies an ordering of the activities and

schedule generation assigns to a location based on the precedence and other constraints.

The drawback of these methods is that only feasible solutions to the problem can be

found.

Table 1 gives a brief summary of the papers published on staff scheduling and type

of problems addressed.

Additionally, some review papers published on column generation, staff scheduling

problems are Van den Bergh et al. (2013), Ernst et al. (2004a), Barnhart et al. (1998),

Van den Bergh et al. (2013) discusses different classification methods used in previously

32 Chapter 2. The Integrated Staff And Task Scheduling Problem

References Problem Type

Zamorano et al. (2018), Brunner and Stolletz
(2014), Stolletz (2010)

Task assignment and staff scheduling at air-
port check-in counters

Zamorano et al. (2018), Bhulai et al. (2008), Assigning multiskilled personnel to tasks

Maenhout and Vanhoucke (2016), Volland
et al. (2017a), Beliën and Demeulemeester
(2008)

Integrated project scheduling and staffing
problem.

Brunner and Stolletz (2014), Flexible assignment of lunch breaks

Van den Bergh et al. (2013),Ernst et al.
(2004a),

Ernst et al. (2004c), Alfares (2004),
Castillo-Salazar et al. (2016), Lübbecke and
Desrosiers (2005)

Staff Scheduling Problem Review

Maenhout and Vanhoucke (2017) Non-cyclic scheduling of employees

Ernst et al. (2004a) To assign specific tasks to staff

Alvarez-Valdes et al. (1999), Lau (1996) Staffing and optimally rostering employees

Beliën and Demeulemeester (2008), Maen-
hout and Vanhoucke (2013), Brunner and
Edenharter (2011), Brunner et al. (2009)
Huele (2015), Erhard and Vanhoucke (2018),
Di Martinelly et al. (2014)

Integrated surgery and staff (physi-
cian/nurse) scheduling in healthcare
sector

published review papers on scheduling and provides classification of papers based on the

type of labour contract, type of decisions taken such as assignment of tasks and shift

sequence, overlapping of shifts and demand coverage constraints. Ernst et al. (2004a)

provide a detailed review of staff scheduling models and rostering methods published

prior to 2004.

Our model for ISTSP and the approach to solve it differ from those of Volland et al.

(2017b) in three ways: (i) breaks within shifts are more flexible (Volland et al. (2017b)

does not incorporate breaks), (ii) we do not use column generation approach, and (iii) we

do not solve the MIP which is more complex. To get a solution for ISTSP, we decompose

it into two ILP subproblems. Solving the two subproblems produces an optimal solution

if the objective function depends only on the shift patterns and their positioning, and

near optimal solutions if the objective is to minimize the number of workers. The de-

composition scheme in our model is based on shift patterns. All shift patterns (allowing

full admissible flexibility) can be listed using a simple computer program instead of de-

riving them through a complex traditional approach of using implicit ILP formulations.

Further, we provide a lower bound for the number of workers when there is an upper

limit on the number shifts per worker.

2.3. Problem description and Formulation 33

2.3 Problem description and Formulation

In this paper, we consider ISTSP over a cyclic planning horizon of one week split into T

TPs of equal duration of length ω minutes (ω = 15 or 30 are considered for the instances

of this paper). In staff scheduling, a personnel schedule assigns shifts to a worker over the

planning horizon fulfilling work schedule restrictions. Each personnel schedule will yield

a binary vector in RT with 1s representing availability of the worker, who is assigned

the schedule, in the respective TPs. Sum of all assigned personnel schedule vectors is

a nonnegative integer vector (the supply vector), and its jth coordinate specifies the

number of available workers in TP j. On the other hand, task scheduling involves

determining start TP of each task satisfying precedence relationships. This will yield a

non-negative integer vector in RT (the demand vector) specifying the number of workers

required in each TP. Under the considered ISTSP, the problem is to determine the

personnel schedules (to be assigned to workers) and a task schedule so that the resulting

supply vector is greater than or equal to the resulting demand vector. The objective is

to minimize the number of assigned personnel schedules or sum of their given associated

costs. See Table 2.1 for notation and input parameters.

The planning horizon is T = [1, 2, . . . , T]. Given K tasks, numbered 1 through

K, task k has the following inputs: (i) start window [lk, uk] in which the task must

start, where lk, uk ∈ T with lk ≤ uk, (ii) dk, duration of the task specified as the

number of TPs, and (iii) the resource vector rk = (rk1, rk2, . . . , rkdk), where rkj is the

number of workers required in the jth TP of task k, j = 1, 2, . . . , dk. For the precedence

relationships among tasks, the input is a set of task pairs P. If (k, k′) ∈ P, it means

task k should precede task k′. We use the notation k ≺ k′ to imply that (k, k′) ∈ P.

Table 2.1: Notation

Indices

k task number

j time period (TP) number in the planning horizon

i shift pattern index, i = 1, 2, . . . , q

v shift schedule index, v = 1, 2, . . . , τ

u worker index, u = 1, 2, . . . , w, where w is maximum number

of workers

34 Chapter 2. The Integrated Staff And Task Scheduling Problem

Parameters

T number of time periods in the planning horizon

K Number of tasks

q number of shift patterns

lk earliest start period of task k

uk latest start period of task k

dk duration of task k in number of TPs

τ number of shift schedules from stage 1, =
∑
ij xij

rk = (rk1, rk2, . . . , rkdk) demand vector of task k, where rkj is the number of workers

required in the jth TP of task k

SLmin/SLmax minimum/maximum limits on the length of a shift

SGmin minimum gap (in number of TPs) to be maintained between

two successive shifts

s = (s1, s2, . . . , sm) shift pattern of length m TPs, s1, . . . , sm are worker availabil-

ities in the appropriate TPs

(si, j) shift schedule, shift pattern si starting at TP j

Sets and vectors

T = [1, 2, . . . , T] T is the planning horizon and T is the number of TPs

[lk, uk] start time window of task k

S = {s1, . . . , sq} set of shift patterns

P set of task pairs, (k, k′) ∈ P means k ≺ k′, that is, task k

must be completed before starting task k′

R = (R1, R2, . . . , RT)t the demand vector, Rj = the number of workers required in

TP j

S = (S1, S2, . . . , ST)t the supply vector, Sj = the number of workers available in

TP j

U1, U2, . . . , Uτ assigned shift schedules from stage 1 arranged in the ascending

order of their start TPs

Variables

ykj indicator variable which is one if task k is assigned to TP j

xij number of shift schedules (si, j) (to be assigned to xij workers

in stage 2)

zuv indicator variable, = 1 if Uv is assigned to worker u

For the staff scheduling, the following inputs/flexibility types are considered: (i) shifts

2.3. Problem description and Formulation 35

with or without breaks (as specified) having length between a specified minimum (SLmin)

and a maximum (SLmax), (ii) shift start window is the range of TPs within a day during

which a shift can start, (iii) gap between any two successive shifts assigned to a worker

in terms of number of TPs must be greater than or equal to a specified lower limit

SGmin, and (iv) an upper limit either on the number of shifts or total hours assigned to

any worker in the week. Note that (ii) above is pertinent to certain specific instances.

For example, the 330 shifts referred to in Stolletz (2010) must start between 4 am and

6:30 pm but it depends on the shift length as well; the start window for a 3-hour shift

is 4 am to 6:30 pm, and start window for a 3.5 hour length shift is 4 am to 6 pm, and

so on. Even in the case of SIP, no shift can start from 10 pm to 8 am (from Fig. 2.1 it

can be observed that there is no demand during this period).

The traditional approach to handle ISTSP with flexible schedules is to use implicit

formulations and iterative methods using column generation techniques. In Volland

et al. (2017b), a staff schedule is implicitly formulated for the entire planning horizon

combining shifts and their assignment. In order to mitigate the complexity, Stolletz

(2010) used a reduced set covering formulation where predetermined daily shifts are

implicitly embedded in the planning horizon. In this paper, we reduce the complexity

further. We present a two-stage approach to solve this problem directly without using

implicit formulations for shift patterns, iterative procedures and the column generation

techniques. We achieve this by using shift patterns as the key to the entire planning.

We first define a shift pattern formally.

What is a shift Pattern?

A shift pattern of length m is a binary m-vector that satisfies all the shift constraints

such as SLmin ≤ m ≤ SLmax and the shift break period rules. We shall denote a shift

pattern by s = (s1, s2, . . . , sm).

What is a shift schedule?

A shift schedule, denoted by (s, t), is a combination of a shift pattern s and a TP t. A

shift schedule is used to specify that a worker who is assigned (s, t) must start a fresh

shift at TP t and work according to shift pattern s. The t in (s, t) may be specified

relative to a day (in this case, t ranges from 1 to 48 with ω = 30) or relative to the entire

planning horizon (in this case, t ranges from 1 to 336 with ω = 30). In our models in

36 Chapter 2. The Integrated Staff And Task Scheduling Problem

this paper, t is relative to the entire planning horizon.

Stolletz (2010) used shift schedules relative to day and he has 330 of them. The

shift patterns (embedded in his shift schedules) have only 1s as their coordinates (as

no break periods are considered) and their lengths vary from 6 to 20. Similarly, in the

model used by Volland et al. (2017b), there are 25 underlying shift patterns containing

only 1s as their coordinates (as no break periods are considered). For SIP, we have 260

shifts patterns because we consider tea and lunch breaks. Each of these patterns can

be described using shift patterns of length 18 with exactly fourteen 1s, two consecutive

0s and two 0.5s. For example, s = (1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0.5, 1, 1, 0.5, 1, 1, 1, 1). The

two 0s (s5 and s6) stand for a lunch break and the two 0.5s (s11 and s14) stand for the

two tea breaks1. The numbers 0, 0.5 and 1 are the proportions of a TP that a worker

is available. It must be noted that these shift patterns can be generated implicitly

through ILP formulations but that becomes very complicated. Instead, we can use a

simple computer program to generate all the shift patterns effortlessly as we did for this

problem.

We are now ready to present our two-stage solution method for ISTSP. The basic idea

is that we first determine the shift schedules in stage 1, and assign them to workers in

stage 2. The stage 1 problem is described in Section 2.3.1. and stage 2 in Section 2.3.2.

2.3.1 Shift Pattern Subproblem - Stage 1

In this stage we consider two sets of decision variables. The first set of decision variables

assigns the TPs to task starting times. The second set of variables decide the number

of shift patterns assigned to TPs so as to meet the required workforce demands. These

decisions yield the supply of workforce in each TP, and the two sets of decision variables

are linked through supply-demand constraints. The objective function of the problem

will be taken as the cost of shifts.

1Firstly, we are abusing the definition of shift pattern by allowing the fraction 0.5. This is only done
to handle breaks of half TP. This will not cause any hinderance in solving the problems using methods
of this paper. Next, it might appear to violate the condition that the gap between two successive breaks
must be at least 90 minutes. Note that this can still be upheld by allowing the first tea break in the
first 15 minutes of the corresponding TP and allowing the 2nd tea break in the last 15 minutes of the
corresponding TP.

2.3. Problem description and Formulation 37

Let S = {si : i = 1, 2, . . . , q} be the set of all shift patterns and let mi be the length

of si, i = 1, 2, . . . , q. Let ykj be 1 if task k starts in TP j, and equal to 0 otherwise. Let

xij be the number of shift schedules (si, j), i = 1, 2, . . . , q and j ∈ T .

The task assignment Y = (ykj) induces a demand vector R = (R1, R2, . . . , RT)t,

where Rj is the number of workers required in TP j. The expression for Rj is given by

Rj =
K∑
k=1

dk∑
i=1

rkiykθ(j−i+1), (2.3.1)

where θ(·) is the wrap function for the cyclic time horizon, that is, θ(0) = T, θ(−1) =

T − 1, . . . , and θ(T + 1) = 1, θ(T + 2) = 2,

Similarly, X = (xij) induces a supply vector S = (S1, S2, . . . , ST)t, where Sj is the

number of workers available in TP j. The expression for Sj is given by

Sj =

q∑
i=1

mi∑
t=1

sitxiθ(j−t+1), (2.3.2)

where si = (si1, . . . , s
i
mi) and θ(·) is the wrap function defined above.

Let cij be the cost of shift schedule (si, j). Then our stage 1 problem for ISTSP, is

given by

Minimize

q∑
i=1

T∑
j=1

cijxij (2.3.3)

subject to

q∑
i=1

mi∑
t=1

sitxiθ(j−t+1) ≥
K∑
k=1

dk∑
i=1

rkiykθ(j−i+1), for j = 1, 2, . . . , T, (2.3.4)

T∑
j=1

(j + dk − 1)ykj ≤
T∑
j=1

jyk′j for all (k, k′) ∈ P, (2.3.5)

T∑
j=1

ykj = 1 for k = 1, 2, . . . ,K, (2.3.6)

lk−1∑
j=1

ykj +

T∑
j=uk+1

ykj = 0, for all k (2.3.7)

ykj ∈ {0, 1} for all i, j, (2.3.8)

xijs are nonnegative integers for all i, j. (2.3.9)

38 Chapter 2. The Integrated Staff And Task Scheduling Problem

Above, (2.3.4) is the supply-demand constraints, (2.3.5) takes care of the precedence

relationships, (2.3.6) and (2.3.7) ensure that all tasks start in their designated start

windows [lk, uk]
2. The objective function is the total cost of assigned shifts.

2.3.2 Staff Assignment Problem - Stage 2

From stage 1 solution, we have the shift schedules that will meet the staff demand

requirements satisfying the shift constraints. We now assign these shift schedules to

workers, maintaining staff scheduling constraints involving minimum/maximum number

of shifts/hours per worker, days-off per worker, etc. The stage 2 formulation requires

preparation of inputs. This process will be described first.

From stage 1 output, collect all shift schedules (si, j) for which xij > 0 and sort them

according to the ascending order of j. The number of such shift schedules is τ =
∑

ij xij .

Let U1 = (si1 , j1), U2 = (si2 , j2), . . . , Uτ = (siτ , jτ) be the τ shift schedules. Note that

j1 ≤ j2 ≤ . . . ≤ jτ , and a shift schedule (si, j) with corresponding xij is repeated xij

times in the list.

Choose a large positive integer w representing maximum number of workers available

for scheduling during the planning horizon. Label the workers as 1, 2, . . . , w. Define the

decision variables of stage 2 as follows: zuv = 1 if worker u is assigned shift schedule Uv,

zuv = 0 otherwise, u = 1, 2, . . . , w, v = 1, 2, . . . , τ .

In order to meet the supply-demand constraints, we must assign each of the τ shift

schedules to workers. Note that f(v) =
∑w

u=1 uzuv is worker label to which shift schedule

v is assigned to. Therefore, stage 2 objective function is maxv f(v) which we minimize

to minimize the number of workers. This objective function is linearized by introducing

a dummy variable ξ and a constraint as follows.

Minimize ξ (2.3.10)

subject to

w∑
u=1

uzuv ≤ ξ, v = 1, 2, . . . , τ. (2.3.11)

2In the actual implementation of the model for solving the problem, ykjs were defined only for
lk ≤ j ≤ uk.

2.3. Problem description and Formulation 39

Next, we formulate the constraints of stage 2 problem.

Assignment Constraints: Each of U1 to Uτ must be assigned to workers. This trans-

lates to
w∑
u=1

zuv = 1 for v = 1, 2, . . . , τ. (2.3.12)

Maximum number of shifts: Suppose a worker can have at most b shifts in the plan-

ning horizon. This translates to

τ∑
v=1

zuv ≤ b, for u = 1, 2, . . . , w. (2.3.13)

Rest period: Rest period, the gap between any two successive shifts assigned to a

worker, must be at least g TPs. For this, we first define a overlapping pair of

shift schedules Uv and Uv′ . For v < v′, say that Uv and Uv′ are overlapping if

jv′ ≤ jv+miv−1+g. Call (v, v′) an overlapping pair if Uv and Uv′ are overlapping,

1 ≤ v < v′ ≤ τ . To ensure rest period, any worker can be assigned at most one of

Uv and Uv′ if (v, v′) is a overlapping pair. This translates to

zuv + zuv′ ≤ 1 for every u and every overlapping pair (v, v′). (2.3.14)

Total Hours: The total time of any worker must not exceed H TPs. Note that∑τ
v=1mivzuv is the total duration (miv =number of TPs in shift iv), in num-

ber of TPs, of worker u over the planning horizon. Therefore, the constraints

are
τ∑
v=1

mivzuv ≤ H, u = 1, 2, . . . , w. (2.3.15)

Days-Off: We shall assume that day-off must start from the first TP of a day. In a

5-day week, a worker must get two consecutive days off. We shall formulate the

constraints taking ω = 30 and one week planning horizon (we can imitate the

same for other values of ω). Constraints for a 6-day week can be derived in a

similar fashion. A two-day period can be represented by the shift pattern s̄ with

s̄i = 1 for i = 1, 2, . . . , 96. Introduce dummy shift schedules Uv = (s̄, jv), v =

τ +1, . . . , τ +7, where j1, j2, . . . , j7 are the starting TPs of days 1 to 7 respectively

(i.e., j1 = 1, j2 = 49, j3 = 97, and so on). With an abuse of convention, we

40 Chapter 2. The Integrated Staff And Task Scheduling Problem

shall interpret the dummy shift schedules as days-off. That is, zu(τ+1) = 1 will be

interpreted as worker u having first two days of the week off. Interpret zu(τ+2) = 1

as 2nd and 3rd days of the week off, and so on. With this, the two-days-off

constraints for worker u, u = 1, 2, . . . , w, can be written as

τ+7∑
v=τ+1

zuv = 1, and for every overlapping pair(v, v′) (2.3.16)

zuv + zuv′ ≤ 1, where 1 ≤ v ≤ τ, τ + 1 ≤ v′ ≤ τ + 7. (2.3.17)

Thus, constraints for stage 2 problem can be picked from (2.3.12) to (2.3.17) depending

upon the context, and perhaps can be augmented with some more if necessary.

Optimality of solutions obtained by the two-stage method (TSM) depends upon

the nature of objective function. The following theorems are useful in this regard.

Theorem 2.3.1. If the objective function of ISTSP is a function of shift schedules, then

the two-stage method produces an optimal solution.

Theorem 2.3.2. If the objective of ISTSP is to minimize the number of workers with

one of the constraints as (2.3.13), then dBb e is a lower bound for the number of workers,

where B is any lower bound for stage 1 objective function, the number of shift schedules

assigned.

One of the factors that appears to have a significant bearing on the solution time

of ISTSP is the total demand
∑

j Rj . In the existing literature, the problem instances

are classified as small, medium and large based on this factor. We introduce a split

technique to handle problems with large demands. It has a cascading effect on reducing

the solution time of ISTSPs with large demands.

2.3.3 The Split Technique

Consider an ISTSP and suppose that R is a demand vector that is optimal or near

optimal. We split the demand vector R into sum of two new demand vectors R1 and R2

so that R = R1 + R2. Then, we solve two new subproblems with fixed demand vectors

R1 and R2 separately using the two-stage approach and combine the solution to get a

2.3. Problem description and Formulation 41

solution to the original problem. If w1 and w2 are optimal (or near optimal) objective

values of the two subproblems, then we have a solution for the ISTSP with w1 + w2

workers. We shall explain this approach with the help of some examples.

One of the problem instances (corresponds to P4 in Table 2.3) is a problem with

fixed R (no task scheduling) and has a total demand 3736 worker-hours. Solving this

using two-stage method, stage 1 was solved to near optimality in 32 seconds with a lower

bound of 499; but stage 2 got abandoned due to insufficient memory. Then, we solved the

two subproblems taking R1
j = bRj2 c and R2

j = Rj −R1
j , j = 1, 2, . . . , 336. The resulting

subproblems have demands 1836 (for R1) and 1900 (for R2). Solving these two problems

using two-stage method yielded the following results. The R1-subproblem resulted in a

near optimal solution (in 201 seconds) with 52 workers, and the R2-subproblem resulted

in a near optimal solution (in 198 seconds) with 54 workers. Combining the solutions of

the two subproblems, we have a solution to the original problem with 106 workers. From

Theorem 2.3.2, 100 (= d499
5 e) is a lower bound for the problem. Therefore, the solution

with 106 workers is at least 94% (= 100 − 106−100
100 × 100) optimal, and the problem is

solved in less than 7 minutes.

How to solve faster?

Consider a case where the total demand is so large that even after splitting the demand

vector, we still have a problem. Even for such cases, we solve only two subproblems to get

a solution. Consider the problem with a total demand of 5136 worker-hours (see P20 in

Table 2.3). For this problem, we take R1
j = bRj3 c and R2

j = Rj −
2R1

j

3 , j = 1, 2, . . . , 336.

With this, the demands for R1 and R2 subproblems are 1669 and 1798 worker-hours

respectively. Note that R = 2R1 + R2. Solving the two subproblems, we found a

solution for R1-subproblem with 57 workers, and for R2-subproblem with 58 workers.

To obtain a solution for the original problem, we apply the solution of R1-subproblem

to two sets of 57 workers each, and apply the solution of R2-subproblem to another set

of 58 workers. The resulting allocation is a solution to the original problem with 172

(= 2×57+58) workers. To find the optimality percentage, we use the lower bound of the

stage 1 problem with original demand vector. For the instance in question, the stage 1

problem with the original demand vector with demand of 5136 worker-hours produced

an optimal solution (in 2 seconds) with 852 shift schedules. From Theorem 2.3.2, the

42 Chapter 2. The Integrated Staff And Task Scheduling Problem

number of workers is at least 171, and hence the solution obtained using split technique

is at least 98.8% optimal. The whole process took 6 minutes and 22 seconds.

Consider another instance with a total demand of 5615 worker-hours (P21 in Ta-

ble 2.3). Splitting R = 2R1 + R2 with R1 = bR3 c and solving this problem took 10

minutes 18 seconds. The number of workers in this case is 183 and the lower bound

from stage 1 solution is 181 (stage 1 took 2 seconds). Taking R = 3R1 + R2 with

R1 = bR4 c and solving this problem (P22) took only 4 minutes 2 seconds. The number

of workers in the resulting solution is 182. In general, we can use R1 = bRρ c, where the

splitting factor ρ > 1. Choosing large ρ will reduce the solution time but will affect

the optimality. Therefore, we should choose ρ judiciously.

Remark 2.3.1. Under the split technique, we solve only two subproblems with demand

vectors R1 and R2 and use the solutions to derive a solution to the original problem.

Remark 2.3.2. The split technique is found to be very effective in solving problems

with large demands. However, this method requires the demand vector R. For problems

of ISTSP, the optimal demand vector is to be obtained first in order to apply the split

technique. It must be noted that stage 1 of our approach produces optimal or near optimal

demand vector R very efficiently even for the cases where the demand is very high (see

Table 2.3). Thus, our two stage approach clubbed with the split technique (if needed) can

solve ISTSPs even with large demands very efficiently.

Based our empirical experience, we make the following hypothesis and wish to ex-

plore it in future.

Hypothesis: The total demand does not appear to be a factor that affects the com-

plexity of ISTSP.

2.4 Real-Life Instances and Numerical Experiments

In this section we assess the performance of the two-stage approach clubbed with split

technique (where necessary) with a number of live and simulated instances. For this,

we consider two categories of problems. The first one corresponds to the type of prob-

lems considered in Stolletz (2010) and Brunner and Stolletz (2014) where the tasks are

2.4. Real-Life Instances and Numerical Experiments 43

already scheduled and we have a demand vector R as input to the problem. The second

category of problems corresponds to the type of problems dealt with in Volland et al.

(2017b) where both tasks and shifts have to be scheduled, that is, proper ISTSPs. The

real-life instances for the first category are taken from requirements from software in-

dustry, airport check-in counter staff requirements and call center data. For the second

category of problems, we use simulated data. For the purpose of comparison, the data

are simulated using the distributions specified in Volland et al. (2017b) as well as some

new distributions. We also have real-life data from emergency medical services (108 ser-

vice in India) for this category. For the first category of problems, we consider ω = 30

and T = 336, and for the second category, ω = 15 and T = 672. All problems are

treated with cyclic planning horizon.

Types of shift patterns

For our numerical experiments, we considered four types of shift patterns described

below. The first three of them are used in problems with ω = 30 and T = 336. The

fourth one, FX29, is used in problems with ω = 15 and T = 672.

FX260 Under this, all shifts have fixed duration of 9 hours (18 TPs of length ω = 30)

with breaks satisfying conditions (i) to (iv) stated at the beginning of Section 2.2.

The number 260 is the number of shift patterns under FX260.

FL15 There are 15 patterns under this with durations varying from 3 hours to 10 hours.

Relief breaks are incorporated at appropriate positions depending on duration of

the shift (3-5h: no break, 5.5-6h: one 15-minute break, 6.5-8h: one 30-minute

break, 8.5-10h: two 15-minute and one 30-minute breaks).

FL135 Brunner and Stolletz (2014) considered lunch breaks in the shift patterns. The

duration of the shifts varies from 3 to 10 hours with exactly one 30-minute break

with the condition that no break in the first one hour and in the last one hour of

the shift. There are 135 such shift patterns.

FX29 These are shift patterns with durations varying from 3 hours to 10 hours without

breaks. These are the 29 patterns considered in Volland et al. (2017b) for their

numerical experiments.

44 Chapter 2. The Integrated Staff And Task Scheduling Problem

In all, we solved 40 instances (see tables 2.3 and 2.4). All problems are solved using

the LINGO professional solver Version 13.0 on an i7 64-bit processor with 2.80GHz

clock speed and 16 GB RAM running on a Windows 10 platform. Unless specified

otherwise, the objective for all the problems is taken as minimizing the number of

workers. The instances are described in the following subsections. Their results are

discussed in Section 2.5.

2.4.1 The Software Industry Problem

The background of this problem was described at the beginning of Section 2.2. For this

problem, ω = 30, T = 336, q = 260, mi = m = 18 for i = 1, 2, . . . , q. This problem

is similar to the discontinuous tour scheduling problem of Stolletz (2010). There is no

demand during the periods 10pm to 8am on all days. For an instance of this problem,

the total demand is 1258 worker-hours (see P1 in Table 2.3), and the number of workers

required over TPs varies from 0 to 25 (see Fig. 2.1) with an average of 6.4 workers per

TP. The problem is solved using FX260 shift patterns without imposing any restriction

on the start times of shift patterns. Additional restrictions imposed on the problem are:

(i) at most 5 shifts per worker and (ii) at least 12 hours gap between any two successive

shifts of any worker. For simplicity, we have not imposed the day-offs to be consecutive.

The stage 1 problem was solved in 11 seconds with an optimum objective value of 220

shift schedules. Stage 2 problem was solved in 77 seconds with the optimum objective

value of 44 workers. Since this objective value is equal to the lower bound (44 = d220
5 e),

the solution is optimal for the problem.

2.4.2 Airport Check-in Counter Requirement Problem

In this problem, we consider agent requirements to man the check-in counters. Airline

departures over a season (spanning about 6 months) are planned in advance based

on weekly roster. The number of counters allocated to each airline varies over time

depending on the departures of that airline. In Lalita et al. (2020), these requirements

were worked out for various airlines’ schedules from a major international airport in

India. The weekly departures of an airline gives rise to agent requirements over the

2.4. Real-Life Instances and Numerical Experiments 45

week. Taking domestic and international departures separately of three airlines, coded

as JAW, AAW and BAW, we formed five demand vectors for JAW-I, JAW-D, BAW-I,

BAW-D and AAW-D. From these, we derived 10 instances by combining them with

the three shift pattern types FX260, FL15 and FL135, objective function type and the

type of constraint on the worker load. These 10 instances correspond to P2 to P15 in

Table 2.3. For example, P2 instance is formed by taking the departures of BAW-I, FX260

shift patterns, worker-load constraint as the maximum number of shifts per worker in the

week and the objective function as the number of workers. For details of other instances,

see the note under Table 2.3. P7 to P10 correspond to the instance but solved under

different constraints and different objective functions (see Fig 2.3). The demands vary

from 608 to 3752 agent-hours (see Table 2.3). Unlike the discontinuous tour scheduling

problem considered in Stolletz (2010), P2 to P15 have continuous requirements over the

planning horizon.

We shall discuss the results of our approach of solving two instances - P4 and P5

with demands 3736 and 1467 agent-hours respectively. Assuming that the agents can

start their shifts at the beginning of every half hour, the requirements were computed

based on 30-minute TPs for weekly planned departures. Fig 2.2 presents the demand

patterns for the two problems.

Figure 2.2: Agent requirements for JAW domestic and international departures

Note that Stolletz (2010) starts with 330 shift schedules (per day) and uses them in

his model to obtain staff schedules over the entire planning horizon. For problems with

46 Chapter 2. The Integrated Staff And Task Scheduling Problem

FX260, ω = 30 and T = 336, there are 12480(= 260×48) shift schedules per day. Brun-

ner and Stolletz (2014) observed that with one flexible lunch break, the number of shift

schedules (per day) rises to 2690 and point out that they were not able to solve the prob-

lem with their model using standard MIP software. The major difference between the

two problems (P4 and P5) and the discontinuous tour scheduling problem considered in

Stolletz (2010) is the continuous requirement of agents over the planning horizon. With

FX260 patterns and continuous requirements over one week cyclic planning horizon, the

number of possible shifts combinations per worker is approximately 1019. The results of

solving the two problems, P4 and P5, are summarized below.

Instance P5

The total demand for this problem is 1467 agent-hours. The stage 1 model for this

problem produced a solution with 227 shift schedules in 59 seconds with a lower bound

of 224 on the objective function. The best objective value remained at 227 even after

five minutes CPU running time. We aborted the solver and took the solution with 227

shift schedules and solved stage 2 problem. This produced an optimal solution in 78

seconds with 46 agents. Applying Theorem 2.3.2 on the lower bound 224, the number of

agents must be at least 45. Therefore, solution obtained for this problem with 46 agents

is at least 97.7% optimal.

Instance P4

Recall the discussion about this problem under the introduction of split technique. While

solving stage 2 model for this problem, the solver aborted the solution process reporting

insufficient memory. We observed this phenomenon whenever we tried to solve stage 2

problem with huge demand. The reason is that high demand requires large number of

shift schedules which in turn results in large number of overlapping shift schedule pairs.

As a result, the number of constraints under (2.3.14) increases dramatically (for this

problem the number of constraints is 5054445 and the number of variables is 87041).

Applying the split technique, this problem was solved in less than 7 minutes and the

optimality gap is at most 6%.

2.4. Real-Life Instances and Numerical Experiments 47

Instances with cost objective and work load constraints

Since there are shifts with short lengths, we solved stage 2 problem once with the con-

straint on the number of shifts per week per worker (maximum 5 shifts) and once with

the constraint on maximum number of worker-hours per week per worker (maximum

50 hours). Again, with respect to objective function, we have two options, number of

workers and cost. Thus, we have four combinations which are represented by instances

P7 to P10 (see Fig 2.3). For simplicity, cost is taken as a function of shift duration

alone. We took the costs as shown in Fig 2.3.

Figure 2.3: Parameters of instances P7 to P10

2.4.3 Call Center Data

We have data on number of agents worked, hour-wise, for 36 weeks from a call center.

Like in check-in counters problem, the requirement of agents is round the clock. We

combined two weeks (14 days) data to form an instance. For simplicity, we treat the

hourly requirements as requirements for 30 minute periods. Data are taken from two

different streams with total demand varying from large to very large. There are six

instances, P16 to P21 in Table 2.3. The variation in the demand pattern is shown

in Figure 2.4. The total demands vary from 2155 to 5615 agent-hours. As demands

are high, all the six instances had to be solved using split technique. The results are

summarized in Table 2.3. The solutions to these instances demonstrate the efficacy of

the split technique. Since P21 took a long time (10 minutes and 18 seconds), we solved

this problem again (P22) with R = 3R1 + R2 and R1 = bR4 c (see Section 2.3.3). As a

result, the problem could be solved in less than 5 minutes.

48 Chapter 2. The Integrated Staff And Task Scheduling Problem

Figure 2.4: Agent requirements for call center problems

2.4.4 Instances for ISTSP

In this section we describe the data for instances on ISTSP which requires task scheduling

as well. We have one real-life data set from emergency medical services (108 service).

For the other instances, P23 to P40 of Table 2.4, data are simulated following Volland

et al. (2017b). All instances under this case are solved assuming FX29 patterns.

Medical emergency data (P41)

We have historical data on the 108 service pertaining to a province in Andhra Pradesh,

India. The service brings patients needing emergency medical care to a hospital. The

most commonly reported emergencies (about 70% of the cases) are related to pregnancy,

acute abdomen, trauma (vehicular), fevers (infections) and cardiac/cardio vascular is-

sues. Of these, pregnancy cases alone accounted for 23%. Therefore, we took data

(number of patients arriving in every 15 minutes) on pregnancy cases for one week (7

consecutive days) of a month. There were 588 such cases. We took the duration of

redressal of these cases (tasks) to the nearest 15 minutes, and used the seriousness of

the cases to set the start windows and the precedence relations. We took the earliest

start time of a task as the arrival TP of the patient, and set the latest start time based

on the seriousness of the case. The resulting instance has the following characteristics:

K = 588, T = 672, ω = 15, maximum width of start window of task that is not involved

in precedence relationships is 4ω, total demand is 1151 worker-hours (
∑672

j=1Rj = 4603);

number of tasks involved in precedence relationships is 116 with a total of 113 prece-

dence relationships. The demand pattern is shown in Fig. 2.5.

2.4. Real-Life Instances and Numerical Experiments 49

Figure 2.5: Staff requirements for medical emergency problem

The stage 1 model for this problem produced a near optimal solution with objective

value of 118 shift schedules in 119 seconds with a lower bound of 116. We terminated

stage 1 at this time and solved stage 2 problem which produced an optimal solution

in 235 seconds with optimum objective value of 37 workers. Applying Theorem 2.3.2

on the lower bound 116, the minimum number of workers is at least 24. In order

to find a better lower bound, we took the stage 1 objective function as maxj Rj and

minimized it. The optimum objective value for this was 26. Therefore, the number

of workers for this problem cannot be less than 26. We then solved stage 1 problem

once again with the original objective function but this time by adding an additional

constraint maxj Rj ≤ 26. This resulted in the same objective value and lower bound as

before (118/116) but the solution was different. The resulting solution was used to solve

stage 2 problem, and that produced a global optimum objective value of 36 workers.

Thus, the final solution was at least 62% (= 100− 36−26
26 × 100) optimal.

Simulated data

We simulated data for ISTSP following the procedure described in Section 5.2.2 of Vol-

land et al. (2017b). Under this procedure, three types of tasks (day long, peak and

precedence) and three problem sizes (small (600 hours), medium (1000 hours) and large

(1400 hours)) are considered. For each size, three different distributions of task types

(S1, S2 and S3) were used. The parameters for simulation are summarized in Table 2.2.

Thus, there are nine scenarios under this situation. We simulated nine instances, P23

to P31 of Table 2.4, following the procedure for these nine parameter settings. The

50 Chapter 2. The Integrated Staff And Task Scheduling Problem

corresponding instances from Volland et al. (2017b) are listed in Table 2.5. We ignored

the additional instances considered by Volland et al. (2017b) (presented in Table 5 of

their paper) because those instances are more restricted (either shift patterns are limited

to two or start window lengths are reduced by 50%). We simulated the nine instances

using the same shift patterns used in Volland et al. (2017b), namely FL29 shift patterns.

Table 2.2: Parameters for simulation of instances for ISTSP

Additionally, we created nine more instances by considering three more distributions

for the three types of tasks, say S4, S5 and S6. These distributions are (81, 17, 2),

(79, 17, 4) and (72, 16, 12). These are the resulting distributions if we apply the S1,

S2, S3 distributions to number of tasks instead of applying them to number of hours.

These additional 9 instances are P32 to P40 in Table 2.4. Besides the differences in the

distributions, one major difference between the two sets, P23 to P31 and P32 to P40, is

that in the latter the task start time windows of all tasks have been chosen uniformly

throughout the days. However, we have not changed the characteristics of the start

window widths and task durations.

2.5 Summary of Experimental Results

In this section we shall present the results of our numerical experiments. We have solved

39 problem instances and the results are summarised in Tables 2.3 and 2.4. Table 2.3

presents the results of problems with fixed demand vector where task scheduling is not

required. These problems are similar to the ones considered in Stolletz (2010) and

Brunner and Stolletz (2014). Table 2.4 presents the results for problems with task

scheduling requirements involving precedence relationships. These problems are similar

2.5. Summary of Experimental Results 51

to the ones considered in Volland et al. (2017b). The parameters affecting the complexity

of ISTSP are: (i) the length of planning horizon T , (ii) number of tasks, K, (iii) demand

and its pattern (dis, riks), (iv) number of precedence relationships and (v) number of

shift patterns. The range of these parameters in our instances are such that the results

can be compared with the results of the respective papers mentioned above.

To assess the merit of any solution, we consider four parameters: the total demand,

solution time, optimality metric and utilization metric. For problems where task schedul-

ing is involved, one should also look at the number of tasks involved in the precedence

relationships and the number of precedence relations. Total demand, expressed as total

number of worker-hours required, is equal to (
∑

j Rj)ω/60. For any solution with objec-

tive value Os and lower bound OL, the percentage optimality gap is at most OS−OL
OL

×100.

Therefore, we take µ = 100 − OS−OL
OL

× 100 as the measure of optimality. Utilization

metric is taken as 100 times the ratio of total demand to total supply. Stage 1 model

plays a crucial role in our solution approach. We shall first discuss the results with

respect to stage 1 problems.

2.5.1 Results for stage 1 model

In order to apply split technique for large demands in the case of ISTSP, solving stage l

model efficiently is crucial (see Remark 2.3.2). Fortunately, our experiments show that

stage 1 model is solved very efficiently despite the fact that it is more complex in the

case of problems involving task scheduling with precedence relationships compared to

those for which the demand vector is an input. Fig.2.6 presents the stage 1 model per-

formance. All solutions are at least 96% optimal (65% are 100% optimal), and found in

less than two minutes (with one exception which took 228 seconds). Average demand

is 2117 worker-hours. It should be noted that the high demand instances took smaller

times (see tables 2.3 and 2.4).

52 Chapter 2. The Integrated Staff And Task Scheduling Problem

Figure 2.6: Performance of stage 1 model

2.5.2 Results of problem instances with given demand vector

Instances of P1 to P22 are under this category. For each of these instances, ω = 30, T =

336 and the demand varies from 608 to 5615 worker-hours. For all instances with de-

mand (number of worker-hours) less than 1500, we could get solution directly. For the

other instances, minimum demand is above 2000. For these instances, the problems had

to be solved using the spit technique (see the discussion under Instance P4 on page 46).

The method used (‘Direct’ or ‘Split(ρ)’) is specified in Table 2.3. Instance P11 is solved

twice with ρ = 3, 4. In both cases, the solutions are near optimal (95% and 98%), and

the solution times are also close (75 and 81 seconds). Similarly, P21 was solved twice

with ρ = 3, 4. Split(3) took 618 seconds and split(4) took 242 seconds. In both cases,

the solutions are at least 99% optimal. The necessity for splitting is arising from large

demand. To highlight this, the number of variables and constraints of stage 2 model

with the original demand vector are presented in Table 2.3. From the table, it can be

seen that for the instances solved with split technique, the number of constraints ranges

from 1.7 millions to 16.8 millions. The performance metrics of two stage method (with

split technique where needed) as applied to instances of P1 to P22 are presented in

the last three columns of Table 2.3 and in Fig.2.7. In all but two of the instances, the

optimality was at least 94%. In one case, P7, it is 86% and in the other case, P8, it is

63%. The optimality metric µ for P8 is computed using a poor lower bound, namely

total demand by the maximum number of hours that a worker can be assigned (recall

that P8 constraints are based on maximum number of hours and not the number of

shifts, see Fig.2.3). The average solution time is 2 minutes 40 seconds and the average

utilization is 79%.

2.5. Summary of Experimental Results 53

Table 2.3: Results for staff scheduling problem instances

Note: P1 is SIP, P2 to P15 are check-in counter problems and P16 to P21

are call center problems. For all problems, P1 to P21, with the exception of

P8 and P10, the worker load constraint is on the number of shifts, that is,

each worker is assigned a maximum of 5 shifts; for P8 and P10, it is on the

number of hours, a maximum of 50 hours per week. Similarly, for all patterns

other than P9 and P10, the objective function is number of workers, and for P9

and P10, it is the cost. P11 and P12 are same instance but solved differently.

Likewise, P20 and P21 are same instance but solved differently. The columns

under Stage 2 present the size of the problem for the stage 2 problem with the

original demand vector.

Stolletz (2010) reports the solution times for three different cases. Though our case

(continuous demand) is more complex, a comparison is presented in Fig.2.8 with respect

to solution times.

54 Chapter 2. The Integrated Staff And Task Scheduling Problem

Figure 2.7: Performance metrics of two stage method for P1 to P17

Figure 2.8: A comparison of solution times

2.5.3 Results of ISTSP problem instances

Instances P23 to P41 are under this category. Task scheduling is a part of the problem.

Results are presented in Table 2.4. For these problems, ω = 15 and T = 672, number

of tasks K varies from 100 to 588, and the demand varies from 450 to 3032 with an

average of 1266 worker-hours. Instances P23 to P40 are simulated, and P41 is based

on a real-life problem. All simulated instances with the exception of P30 have been

solved to optimality by the two stage method (without the need for split technique).

The solution to P30 is at least 95% optimal. Utilization in the solutions varied from

75% to 98% with an average of 85%. Solution times varied from 13 to 427 seconds with

an average of 111 seconds. The solution for the instance with real-life data (P41) is

at least 58% optimal but the utilization is 98%. The demand for this problem is 1151

2.5. Summary of Experimental Results 55

Table 2.4: Results for ISTSP instances

Figure 2.9: Performance metrics of two stage method for P23 to P41

worker-hours and it took 354 seconds to solve. Fig.2.9 presents the performance of two

stage method.

We shall compare the performance of the two stage method with that of Volland

et al. (2017b). For this, we use the results of instances P23 to P31. Since we do not have

the data used in Volland et al. (2017b), we use the simulation approach. Recall that in-

stances P23 to P31 are simulated following the procedure stated in Volland et al. (2017b)

in toto. It must be pointed out that the comparison is not based on exact instances but

56 Chapter 2. The Integrated Staff And Task Scheduling Problem

Table 2.5: Comparison with VF w.r. to time wise performance

Correspondence Time (seconds) Reduction

Size Demand VF TSM tV F tTSM Percent

595 SMA-S1-LW-FL P23 240 15 93

Small 592 SMA-S2-LW-FL P26 360 24 93

588 SMA-S3-LW-FL P29 900 51 94

990 MED-S1-LW-FL P24 10800 26 99

Medium 990 MED-S2-LW-FL P27 600 111 81

994 MED-S3-LW-FL P30 3180 101 96

1384 LAR-S1-LW-FL P19 10800 26 99

Large 1393 LAR-S2-LW-FL P28 300 74 75

1388 LAR-S3-LW-FL P31 2760 231 99

Note: ttotal is the total time extracted Table 5 of Volland et al. (2017b); tTSM is the
total solution time by two stage method (TSM) taken from Table 4. Comparison is made
based on similar but not the same instances.

Figure 2.10: Comparison of solution times of two stage method (TSM) with Volland
et al. (2017b) (VF) method.

on similar instances. Table 2.5 presents the one-to-one correspondence between the two

sets of problem instances along with respective solution times. The solution times for

Volland et al. (2017b) are taken from their article. Both methods produced optimal

solutions for all the nine instances. The last column of the table presents the reduction

percentages in the solution times. The solution times are also shown in Fig.2.10

2.6. Summary 57

2.6 Summary

In this chapter, we considered the integrated staff and task scheduling problem. The

problem is hard to solve even for a predetermined task schedule. Several authors have

considered the problem and proposed column generation methods to solve. In this chap-

ter, we propose a two stage approach to the problem and introduce the split technique

to handle problems with large demand. We have demonstrated the efficacy of the two

stage method with split technique through a number of numerical experiments in reduc-

ing solution times dramatically. In the existing literature, solution methods are assessed

at different demand sizes such as small, medium and large. Through the split technique

introduced in this chapter, we are able to handle problems with large demands efficiently.

This raises a question that whether demand size has any influence on the complexity of

the problem. This point needs to be explored theoretically. Another direction for future

research is extending the methods introduced in this chapter to multi-skill personnel

staff scheduling problems.

Chapter 3

Planning Airport Check-in

Counter Allocation

3.1 Introduction

Check-in counter allocation is an important problem, particularly at large airports. Air-

lines plan flight departures on a seasonal basis using weekly rosters, each season compris-

ing about six months, and submit their plans to the airport operator for facilities. The

airport operator explores the possibility of accommodating airlines’ requests considering

available resources at the airport and makes commitments to the airlines for the entire

season. In order to make seasonal commitments, the airport operator studies optimal

utilization of resources at macro level. One of the important resources is check-in coun-

ters. This chapter is concerned with finding solutions to the check-in counter allocation

problem primarily at the planning stage. Modelling this problem to find implementable

solutions is difficult and challenging. A number of authors have studied this problem

using Operations Research (OR) and Simulation tools [Chun and Mak (1999), Atkins

et al. (2003), Dijk and Sluis (2006), Bruno and Genovese (2010), Araujo and Repolho

(2015), Trakoonsanti (2016), Bruno et al. (2018), etc].

At present, there are no exact formulations available for controlling waiting time the-

oretically and implementing queue disciplines. Further, the existing exact formulations

59

60 Chapter 3. Planning Airport Check-in Counter Allocation

for check-in counter allocation maintaining adjacency constraints (Duin and Sluis (2006)

and Dijk and Sluis (2006)) are not suitable for large scale real-world problems. The main

contribution of this chapter is to provide effective solutions to these problems through

exact formulations. We present real-life examples to demonstrate the application of

these formulations.

The organization of this chapter is as follows. Section 3.2 introduces the CAP in gen-

eral and the specific problem instance at the international airport for which a solution

is sought. Section 3.3 presents the literature survey. Section 3.4 introduces the notation

and the basic framework required to formulate the problem. Section 3.5 presents new

formulations and approaches used in solving the problem. Numerical comparisons are

also presented here. Section 3.5.1 deals with stage 1 optimization problem. New formu-

lation is proposed to address some issues in the existing formulation. Section 3.5.2 deals

with stage 2 problem and addresses scheduling large scale CAPs. Section 3.6 is devoted

to solving real-life problems. The chapter is concluded in Section 3.8.

3.2 The Check-in Counter Allocation Problem

The counter allocation problem is important in planning resource usage in an airport.

Different airlines (also referred to as carriers) operate their flights to various destinations

from a given airport. Passengers of each flight undergo the mandatory check-in process

in which they check in their baggage, if any, and obtain boarding passes from the check-in

counters. The time period for which planning is required is called the planning horizon

which may be a day, a week, a month or a season. For the sake of convenience, the

planning horizon is discretized into N contiguous time-periods (TPs) of equal length,

say, ω minutes each. The TPs are labelled 1 through N with 1 being the earliest and

N being the latest. Each flight to be scheduled in the planning horizon has a unique

identification number (ID) with the particulars of carrier, number of seats and scheduled

time of departure (STD).

Each flight requires check-in counters for a certain period (call it the check-in period)

for checking in the passengers of that flight. It is customary in the literature to identify

3.2. The Check-in Counter Allocation Problem 61

the check-in period for a flight with a set of contiguous TPs, from four hours before STD

to 45 minutes or one hour before STD.

The number of arrivals in each TP, written in chronological order as a vector, is

referred to as the arrival pattern for a flight. Also, a two dimensional space is used

as a representation of the counters in the planning horizon (see Chun (1996) and Dijk

and Sluis (2006)). The length of the TP has to be chosen for modelling. Too small

TPs mean less time for staff to handle operations and large TPs can consist of large

variations in passenger arrivals. If (r1, r2, . . . , rk) is the arrival pattern of a flight with

number of seats S, then L =
100

∑
i ri

S is called the load factor. Here, k is the number

of time periods in the check-in period of the flight.

Check-in counters are owned by the airport operator and suitably leased to airlines.

The arrangement of check-in counters varies from airport to airport. For the purpose

of this study, it is assumed that the counters are relabelled such that counters j and

j + 1 are adjacent. The airport considered has 168 counters arranged in 12 rows within

six islands. The airport operator assigns the counters to airlines based on requirements.

If a counter is assigned to check in passengers of a single flight, it is called dedicated

counter. If a counter is assigned to check in passengers of a group of flights of a

carrier during their common check-in periods, it is called a common counter. All the

168 counters at the airport have the facility of being utilized as dedicated or common

counters depending on the requirements. If the number of counters assigned to a flight

(or a group of flights) remains same over all TPs of the check-in period, then it is known

as constant or fixed counter allocation; otherwise it is known as variable counter

allocation.

The CAP is concerned with the allocation of counters to departure(s) of any carrier

within the planning horizon so that counters assigned to departures are adjacent. The

airport schedules various airline departures on a weekly basis. The weekly schedule is

repeated over a season (one season is from April to October and the other from November

to March). At present, there are about 2500 departures of about 60 airlines in a week.

The airlines are categorized into two classes, domestic (country based) and international.

Under the current practice, each of the Indian carriers is assigned common counters.

62 Chapter 3. Planning Airport Check-in Counter Allocation

Despite having many check-in counters, the airport is unable to meet airline demand.

Therefore, this study was initiated to answer the following questions:

1. Whether the existing counters can accommodate all of the presently committed

departures?

2. Does the current method of constant counter allocation provide sufficient counters

to airlines?

3. Whether there is scope for scheduling more departures?

The airport operator provided necessary input data and restrictions for modelling

the problem: (a) deterministic inputs for computing arrival patterns of passengers and

service (check-in) times, (b) to control passenger waiting time as per (IATA-ADRM

(2014)) norms, and (c) to consider a single class (i.e., no priority lines for business class).

We, therefore, address the management objectives outlined above with formulations

that can handle large size CAPs with deterministic inputs and control waiting times as

desired.

3.3 Literature

A multitude of models exist in literature because of variations in the optimization crite-

ria, modelling, airport requirements and airport layouts. We discuss relevant mathemat-

ical models, approximation algorithms, heuristic and exact approaches from literature.

After reviewing literature, we find that most articles do not consider check-in area space

restrictions, queue lengths and FIFO queue discipline. Initial attempts to solve the

counter allocation problem were made by simulation of resource requirement and alloca-

tion at airports. Constraint satisfaction algorithms were presented by Chun (1996) and

Chun and Mak (1999). Simulation was also used by Brunetta et al. (1999) and Snowdon

et al. (2000).Wibowo and Fadilah (2018). Subsequently, simulation was used to study

terminal planning by Wong and Liu (1998) and Kiran et al. (2000) and analyse check-in

and delays by Appelt et al. (2007), Felix and Reis (2017) and Bevilacqua and Ciarapica

(2010).

3.3. Literature 63

Mathematical Models for Counter Determination:

There are many mathematical models for predicting counter requirement: Park and

Ahn (2003) aim to assign counters based on passenger arrival distribution at the air-

port. Cumulative arrival distribution (based on time before departure) is estimated by

a regression model. The authors then allocate counters to airlines directly in proportion

to the regression estimates. Due to this, the counter requirement for each departure is

large when arrivals peak. Our model generates flatter counter assignments and avoids

schedules with peak demands. This ensures lower personnel (and counter) changes and

better utilization of counters. Waiting time of passengers is also limited, which indirectly

limits queue length. Park and Ahn (2003) do not consider the number of counters in

the airport, FIFO queue discipline and queue length.

OR formulations to the stage 1 problem with deterministic inputs were first pro-

posed by Bruno and Genovese (2010). Models are presented for both static and dynamic

counter allocation. Araujo and Repolho (2015) extend their model by adding a service

level constraint. This formulation was further extended by Bruno et al. (2018) to sched-

ule staff at check-in counters. The service level constraint imposed in these formulations

does not limit waiting time directly. It ensures that a small percentage of passengers

remain in queue at the end of a TP. The choice of service level and width of TPs effect

waiting time. In accordance with IATA guidelines for check-in, airports need to ensure

that airport space is optimally utilized and queue lengths are minimized. Due to this,

models are expected to limit queue lengths, and simultaneously maximize the level of

service. The formulations discussed above maximize the service level but fail to limit

queue lengths and guarantee FIFO queue discipline.

Hsu et al. (2012) propose an ILP (based on the dynamic model by Nikolaev et al.

(2007)) for dynamic allocation of different check-in facilities and dynamic assignment

of passengers at airports to minimize the number of check-in facilities and passenger

waiting time. Their model assigns the nth passenger a check-in facility (counters, kiosks

etc) based on service requirement and assignment of the (n−1)th passenger. Due to this

dynamic assignment of passengers by the model takes more than 3 hours for 15 passenger

arrivals. In view of this the authors use clustering algorithms. The main drawback is

at airports where passengers have strong preferences and ignore assignments. This may

64 Chapter 3. Planning Airport Check-in Counter Allocation

cause some check-in facilities operating at the airport to be insufficient.

Hwang et al. (2012) present a mathematical model for optimizing check-in counters,

kiosks, part-time staff and full-time staff required during each shift in a week. Their

model assumes static counter allocation. The authors compute the ratio of counters to

kiosks that would be best suited for serving a flight. The authors conclude that usage

of kiosks reduces operational costs.

Parlar and Sharafali (2008) propose a stochastic dynamic model to determine optimal

counters for a single flight. Parlar et al. (2013) propose static counter allocation policy

for a single flight. Their objective is to minimize the expected total cost. The models

presented are complex and have long computational times.

Models for Adjacent Counter Allocation: For allocating adjacent counters dif-

ferent models have been used:

Simulation Approaches: Chun (1996) allocated adjacent counters by defining struc-

tures called counter profiles, two dimensional shapes that define check-in counter re-

quirement and allocation for a flight. The shape of a counter profile is changed to fit

in the counter-TP space. If the order of flight allocation does not have a feasible so-

lution, the algorithm backtracks. This results in a time consuming process for counter

allocation.

ILPs for Adjacency: In the static counter allocation problem considered by Yan

et al. (2004) and variable counter allocation considered by Yan et al. (2005), each counter

has one or two service lines to provide check-in service. To allocate adjacent counters

to flights, the authors define a block as a set of service lines and then allocate flights

to these blocks. Tang (2010) defines each block as a set of adjacent counters and uses

a network model for the same. This means more blocks added as input may result in

better flight assignments, but increase complexity of the problem. The objectives of

Yan et al. (2004) are to allocate counters to minimize passenger walking distance and

reduce inconsistency in counter location. For 490 flights in a week, 140 counters and

260 service lines, allocating five service lines to each flight results in 80000 variables and

70000 constraints. Due to the complexity involved in computing, the authors propose a

heuristic algorithm. These models involve a lot of preprocessing to remove redundant

constraints. Due to this, running time varies exponentially with input size.

3.3. Literature 65

Dijk and Sluis (2006) model counter allocation problem by combining simulation and

integer programming. The problem is solved in two stages. In the first stage terminating

simulations are run to determine counter requirement till the solutions satisfy service

level requirements. In the second stage, an ILP is solved for adjacent allocation of

counters. An increase in number of flights and planning horizon results in increased

problem size.

Some authors have proposed genetic and evolutionary algorithms for the check-in

counter allocation problem (Yeung and Chun (1995), Mota (2015), Mota and Zuniga

(2013)). The efficiency of these techniques relies highly on parameters that drive the

selection procedure (see Mota (2015) and Affenzeller et al. (2009)). GAs search from a

set of points called a population and various biologically inspired operators like selection,

crossover and mutation are applied to obtain better solutions (Bandyopadhyay and Pal

(2007)). In Mota (2015), flights are allocated sequentially to the Gantt chart, taking

into account all the constraints in flight allocation such as no overlap etc. In order to

generate the population, the flight order is changed. Crossover operations are performed

to improve the existing solutions. The resulting solutions with a high measure of fitness

are then retained and again crossed over. The objective function is computed as a fitness

measure for each generation and checked for improvement. In the algorithm proposed,

the solutions are improved till a stop condition is reached. In the study by Yeung

and Chun (1995), each individual represents a check-in counter allocation plan for one

day. Fitness measure is the number of overlaps found in an allocation plan. The fittest

individual is the best allocation plan for that day. These techniques are expected to

provide good solutions, i.e. solutions that are close to optimal but may not be optimal

(see Goldberg (1989) and Mota (2015)).

Problem Complexity: The complexity of the problem has been studied in detail

by Duin and Sluis (2006). The counter allocation problem with the adjacency restriction

is NP-complete (Duin and Sluis (2006), Dijk and Sluis (2006)) and cannot be solved in

polynomial time. Duin and Sluis (2006) develop an ILP based on the models for Re-

source Constrained Project Scheduling Problem (RPSP) (see Pinedo and Chao (1998))

leveraging the similarity in the two problems. The techniques discussed in this paper

for allocating adjacent counters can be applied to other adjacent resource allocation

problems, such as: warehouse space optimization berthing problem at ship yards, (see

66 Chapter 3. Planning Airport Check-in Counter Allocation

Bierwirth and Meisel (2010)), for assignment of computer hard disk memory (if contigu-

ous allocation of memory is required (see Duin and Sluis (2006))) and other resource

scheduling problems (at call centers and hospitals) where jobs cannot be shifted in time

but resource requirements may be satisfied by any set of adjacent resources and may

vary with time. For a detailed review of existing literature, see Appendix A.

3.4 Notation

The inputs to the check-in counter allocation problem are, the flight departure partic-

ulars, the planning horizon, arrival pattern of passengers and service particulars. The

notation for these are described in this section.

Consider a planning horizon with N TPs, each of width ω minutes. Unless stated

otherwise, the unit of time is minutes throughout this chapter. Let D be the the total

number of departures of K carriers in the planning horizon. We use the index i for

the TP number, j for departure ID, and k for counter number. Let M be the number

of counters at the airport, and we assume that counters k and k + 1 are adjacent,

1 ≤ k < M . For each departure j, let io(j), io(j) + 1, . . . , ic(j) be the check-in TPs.

Two departures j and j′ of a carrier are said to be overlapping if they have at least one

common check-in TP. A subset of departures T of a carrier is called a task, provided

for any j, j′ ∈ T , there is a sequence j1, j2, . . . , jg ∈ T such that j = j1, jg = j′, and

jl and jl+1 are overlapping for each 1 ≤ l < g. It is expected that assigning common

counters to departures in a task may reduce counter requirement. For the purpose of

this chapter, we redefine a task as a set of departures of a carrier that are allocated

common counters. By definition, a single departure requiring dedicated counters is also

a task comprising only that departure. Next, each departure belongs to one of the two

categories - Indian (or domestic) and international.

The number of passengers that arrive in TP i for departure j will be denoted by

dji. Define the measure counter-window (CW) as ω minutes of one counter. Note

that there are NM CWs in the planning horizon. If fjl is the number of counters

assigned to departure j in the TP l, then the total number of CWs assigned to j is

3.4. Notation 67

∑ic(j)
l=io(j)

fjl. Therefore,
100

∑
j

∑
l fjl

NM is a performance measure, namely, the percentage

of CWs allocated against the total number of CWs available.

Let xitk be a binary variable equal to 1 if counter k serves passengers of task t in TP

i, and equal to 0 otherwise. The xitks are the decision variables which must satisfy a

number of constraints. Note that {kxitk : i = 1, 2, . . . , N, k = 1, 2, . . . ,M} is the set of

counters that serve passengers of task t, and the adjacency constraint stipulates that

this set must be a set of consecutive integers.

Next, ci =
∑

t,k xitk is the total number of counters assigned to all tasks in TP i,

and this cannot exceed M . This leads to the set of counter availability constraints:∑
t,k xitk ≤M for each TP i.

Clearly, number of counters assigned affects the number of passengers checked in as

well as waiting times of the passengers in the queue. Therefore, xitks must be chosen

to facilitate check-in of all passengers in the queue and to ensure that waiting times are

controlled as desired.

Formulations with objective function involving cost aspects have been considered in

the past. As far as this study is concerned, the main objective is to minimize the number

of counters allocated or assigned. Our approach to achieve this objective is given below:

(a) For each task t, first determine the number of counters ci(t) =
∑

k xitk in TP i to

check-in all passengers of t so that the largest of ci(t)s is as small as possible (that

is, by minimizing maxi ci(t)). Let w0(t) denote this largest ci(t).

(b) Redetermine the number of counters, ci(t)s for task t, by minimizing
∑

i ci(t)

with the additional constraints ci(t) ≤ w0(t) for all i (see Example 3.5.1 for an

illustration).

(c) After obtaining ci(t) for each t as above, assign the counters to tasks so that task

t gets the required ci(t) adjacent counters in TP i for each i.

68 Chapter 3. Planning Airport Check-in Counter Allocation

3.5 New Formulations

In stage 1 of CAP, the number of counters is determined for every task. Using the

results of stage 1 optimization as inputs, stage 2 optimization determines the physical

assignment of counters to tasks satisfying the adjacency constraints.

Further, it has been observed that while simulation is useful in analyzing the effec-

tiveness of solutions obtained and improving them, ILP formulations are key to deriving

optimal or near-optimal solutions. Irrespective of the solution methodology, the effec-

tiveness of the solutions depends on the accuracy of arrival patterns and service time

distributions provided as inputs in deriving the solutions. An important factor that

influences prediction accuracy is the width of the TP. While larger widths are expected

to have smaller prediction errors, they restrict the scope for optimization and result in

wastage of counter time.

In this section, new ILP formulations are presented for problems arising in the two

stages, and various formulations are compared. The formulation for stage 1 addresses

controlling waiting time theoretically and ensures FIFO. The formulation for stage 2

reduces the complexity in the model by Dijk and Sluis (2006), by restricting the assign-

ments to special structures (see Section 3.5.2) which are more pragmatic and amenable

to useful modifications if necessary. More importantly, the formulation helps in solving

large scale problems in reasonable time.

3.5.1 Stage 1: Determining Number of Counters

In this section, we shall deal with the problem of determining the number of counters

required for a given task.

Allocation of Counters to a Task

Consider a task with D̂ departures. Without loss of generality, assume that these de-

partures are 1, 2, . . . , D̂ with STDs in chronological order (ties, if any, are broken arbi-

trarily). Let P denote the time horizon for these departures. Then, P = {io(1), io(1) +

1, . . . , ic(D̂)}. For j = 1, 2, . . . , D̂, define Pj = {io(j), io(j) + 1, . . . , ic(j)}. Then, dji = 0

for all (j, i) such that i 6∈ Pj .

3.5. New Formulations 69

Following are the model assumptions:

1. The system has a single queue for serving passengers of all departures in a task.

There may be multiple counters for check-in. The queue discipline followed is

FIFO.

2. The service time per passenger is sD for domestic departures and sI for interna-

tional departures; the arrivals djis are estimated and given as inputs.

3. Allocation policy is to allow variable number of common check-in counters.

The uv-Formulation

The main challenge in formulating the CAP is controlling the waiting time for every

passenger. The uv-formulation proposed below ensures that no passenger waits for

more than a pre-specified limit on waiting time, say τ minutes.

For (j, i) such that i ∈ Pj , let uji of the dji passengers be checked-in in TP i and the

remaining vji = dji − uji in TP i + 1. If i = ic(j), set vji = 0, as passengers of flight

j cannot be checked in TP ic(j) + 1. Let sj denote the check-in time for departure j,

where sj = sD if departure j is domestic, sj = sI otherwise. For notational convenience,

set uji = vji = 0 for all (j, i) such that i 6∈ Pj . Recall that ci is the number of counters

used in TP i for the task in question. Therefore, maxi{ci} is the number of counters

required to check-in all the passengers of the task, and the objective is to minimize

maxi{ci}. With this, consider the uv-formulation with decision variables uji, vji and ci

given below.

The uv-Formulation:

Minimize z

subject to

uji + vji = dji,∀ i ∈ Pj , j = 1, 2, . . . , D̂, (3.5.1)

vjic(j) = 0 ∀ j = 1, 2, . . . , D̂, (3.5.2)∑
j

sj(uji + vj(i−1)) ≤ ωci ∀ i ∈ P, (3.5.3)

ci ≤ z ∀ i ∈ P, (3.5.4)

uji, vji and ci ∀ i ∈ P, are nonnegative integers.

70 Chapter 3. Planning Airport Check-in Counter Allocation

Note that the above formulation minimizes the objective function maxi{ci} (indi-

rectly) using the usual trick of introducing the dummy variable z and the constraints

(3.5.4). Constraints (3.5.1) and (3.5.2) ensure that all passengers will be checked in the

allowed TPs;
∑

j(uji + vj(i−1)) is the number of passengers checked in TP i and LHS

of constraint (3.5.3) is the time required to check in these passengers; constraint (3.5.3)

ensures that adequate number of counters (ci) are provided. Once this problem is solved

and the optimum z, say w0, is found, we solve the problem again by changing the objec-

tive function to
∑

i ci (the total number of CWs) and changing RHS of constraint (3.5.4)

to w0.

Remark 3.5.1. From the above formulation, it is clear that the maximum waiting time

for any passenger is τ = 2ω, where ω is the width of TP. Further, in the solution,

the implementation of the queue discipline, FIFO, is built-in, as in TP i,
∑

j vj(i−1)

passengers are checked in before
∑

j uji passengers, in the order of their arrivals.

Remark 3.5.2. The expression on the left-hand side of constraint (3.5.3) is the total

time required for checking in
∑

j(uji + vj(i−1)) passengers in TP i. Theoretically, the

constraint is an approximate one and may fail to yield a feasible solution sometimes.

However, empirical experience has shown that this works fairly well. This constraint

can be replaced with an exact constraint when all the departures in the task are of the

same type, either all are domestic or all are international. To see this, consider the case

where all departures are domestic. Then, the constraint
∑

j(uji + vj(i−1)) ≤ νci, where

ν is the integral part of ω
sD

will meet the exact requirement.

Remark 3.5.3. Determination of the number of counters required in each TP has a

difficulty from the point of implementation. Consider a solution to the problem in which

ci = 4, ci+1 = 5, ci+2 = 4. In this case, an additional counter is required to operate

in TP i + 1 for only ω minutes. This could be a difficult proposition to implement in

practice, particularly when ω is small. Therefore, a pragmatic approach to this problem

is to impose a constraint such as: once a counter is opened, it must remain open during

a specified number of TPs. This helps carriers as they are not interrupted too frequently.

The uv-formulation can be amended easily to incorporate this new constraint. Suppose

we wish to impose a constraint that once a counter is assigned, it should be made avail-

able for 4 consecutive TPs. To impose this, we can modify the formulation as follows.

Redefine ci as the number of TPs to be opened at the beginning of TP i, and change the

3.5. New Formulations 71

constraint (3.5.3) to

∑
j

sj(uji + vj(i−1)) ≤ ω(ci + ci−1 + ci−2 + ci−3) ∀ i ∈ P, (3.5.5)

where ch = 0 for h 6∈ P . Note that ci + ci−1 + ci−2 + ci−3 is the number of counters

available for serving passengers in TP i.

Comparison of Stage 1 Formulations

We now compare the solutions of various formulations for stage 1 problem. One of

these is the formulation (3.2) of Araujo and Repolho (2015) which we shall refer to as

AR-formulation henceforth. We pointed out earlier that AR-formulation does not follow

FIFO and that it controls waiting time implicitly. This is illustrated below.

Example 3.5.1. Consider the task comprising three departures with common counters

and check-in periods spread over 18 TPs. For details see Table 3.1. The UV-1 row

provides the solution (the ci values) of the uv-formulation. This gives the minimum z

as 8 (= w0). The problem is again solved by replacing the objective function with
∑
ci

and constraint (3.5.4) by ci ≤ 8 ∀ i. Solution (values of cis) to this problem is shown in

UV-2 row of the table. The solution of AR-formulation (as qjis and cis in the AR-row,

where qji is the number of passengers of flight j to be checked in TP i as defined in the

formulation) is also provided in the table.

Note that 3 (= d17) passengers who arrived in TP 7 are checked in TP 9 (included in

q19 = 16), but 18 (= d28) passengers of departure 2 who arrived in TP 8 are checked in

TP 8 (q28 = 18). Thus, FIFO is violated in the solution obtained from AR-formulation.

To examine the waiting time aspect, let θi(g) be the number of passengers that

arrive in TP i and are checked in TP i + g, g = 0, 1, 2, .., and let N0 =
∑

j,i dji be

the total number of arrivals of all flights. Then, θ(g) =
∑

i θi(g)/N0, is the proportion

of passengers that arrive in TP i and are checked in TP i + g for some i. Further,

η(k) =
∑

g≥k+1 θ(g) is the proportion of passengers who wait at least kω minutes,

k = 1, 2,

For uv-formulation, η(k) = 0 for all k ≥ 2, that is, no passenger has to wait more

than 2ω minutes. For Example 3.5.1, the AR-formulation yields θ(1) = 30/675 and

72 Chapter 3. Planning Airport Check-in Counter Allocation

Table 3.1: Problem of three departures with common counters

TP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

d1i 0 0 0 0 0 0 3 5 13 27 40 46 54 62 68 40 27 27

q1i 0 0 0 0 0 0 0 0 16 32 40 41 58 60 60 45 30 30

u1i 0 0 0 0 0 0 0 5 13 27 4 10 8 14 12 4 24 27

d2i 1 2 4 8 12 14 16 18 20 12 8 8 0 0 0 0 0 0

q2i 1 2 4 8 12 14 16 18 20 12 6 10 0 0 0 0 0 0

u2i 0 2 4 8 0 0 3 6 14 4 4 8 0 0 0 0 0 0

d3i 0 1 2 5 9 14 15 18 21 23 14 9 9 0 0 0 0 0

q3i 0 1 2 5 9 14 14 19 21 23 14 9 9 0 0 0 0 0

u3i 0 1 0 5 0 1 0 18 21 23 14 2 9 0 0 0 0 0

AR 1 1 1 2 3 4 4 5 8 9 8 8 9 8 8 6 4 4

UV-1 1 1 2 3 4 4 5 6 8 8 8 8 8 8 8 8 8 8

UV-2 0 1 1 2 0 3 4 8 8 8 4 8 8 8 8 8 8 4

Note: djis, are the arrivals; ω = 15, service time is 2 minutes per passenger;
qjis are the solutions from AR-formulation; ujis are the solution according to uv-
formulation (vji = dji−uji); AR row provides optimal number of counters required
as per the solution of AR-formulation; UV-1 is the solution of uv-formulation with
maximum number of counters as the objective function, and UV-2 is the solution
of uv-formulation with the objective function as the total number of CWs and with
the additional constraint that the maximum number of counters does not exceed
maximum of UV-1 row. The qjis are the decision variables in AR-formulation,
stand for number of passengers of flight j checked in TP i.

θ(2) = 9/675. This is because there is no constraint in AR-formulation that limits

the waiting time directly. To examine the effects of various solutions we use real data

of Problem 1 given below. For Problem 1, the solution by AR-formulation results in

θ(g) > 0 for g ≤ 4. The θ-values are presented in Table 3.2. Problem 1 is another

instance which indicates that AR-formulation does not control waiting time directly.

Table 3.2: Waiting time metric for SOL2 and SOL3

Solution θ(0) θ(1) θ(2) θ(3) θ(4)

SOL2 13892/17151 3259/17151 0 0 0

SOL3 15779/17151 1178/17151 168/17151 19/17151 7/17151

Problem 1. Consider the problem of determining number of counters for a task with

67 domestic and 46 international departures of one carrier on common counter basis

and with load factor of 85%. For this task, N = 111, D = 113, ω = 15. This is a

subproblem of a real-life problem (Section 3.6.1).

Problem 1 is solved using four different methods and the solutions are denoted by

SOL1 to SOL4 as follows.

3.5. New Formulations 73

SOL1. SOL1 is the solution obtained using uv-formulation. The optimal objective value

of this problem is w0 = 57. This solution uses 3739 CWs.

SOL2. Solve the modified version of uv-formulation with objective replaced by
∑

i ci,

the total number of CWs, with the additional constraint ci ≤ 57 for all i. This

solution is denoted by SOL2. SOL2 uses 2882 CWs and a maximum of 57 counters.

SOL3. This is the solution obtained using AR-formulation. According to SOL2, θ(0) =

0.87. Therefore, for a meaningful comparison between SOL2 and SOL3, we took

α = 0.87, a parameter that is used in AR-formulation.

SOL4. This is the current allocation at the airport, and it uses 42 counters in each TP

(fixed counter allocation).

For simulation, we first determined the number of arrivals of each TP using seat capacity

and the arrival patterns supplied by the airport operator obtained through a survey (see

Fig. 5 for the arrival patterns). Once the number of arrivals dji in TP i is determined, the

dji arrival times in that TP are simulated using uniform distribution. Although SOL3

violates FIFO, we used FIFO to check in passengers for all the four solutions using

respective counter allocations in our simulation program. Some performance metrics

of the solutions are listed in Table 3.3. To compare the solutions, we repeated the

simulation exercise 100 times (i.e., 100 simulation runs) so that 100 observations are

available on each of the metrics. The averages of the performance metrics are presented

in Table 3.3.

From the results presented in the table, the following inferences may be drawn (our

primary interest is in the comparison between SOL2 and SOL3).

SOL2 Vs. SOL3: AR-formulation (SOL3) requires more counters (maxi ci) compared

to modified uv-formulation (SOL2); in terms of counter-hours, the performance of

SOL2 and SOL3 is approximately the same; with respect to waiting time param-

eters, while SOL3 is slightly better, both perform well. The number of counters

required over different TPs for SOL2 and SOL3 is plotted in Fig. 3.1.

Others Vs. SOL2 and SOL3: SOL4 is best among all with respect to the main ob-

jective of minimizing the number of counters. However, with respect to other

74 Chapter 3. Planning Airport Check-in Counter Allocation

Table 3.3: Summary of simulation results for comparison

Metric \ Solution SOL1 SOL2 SOL3 SOL4

Max Counters (= maxi ci) 57 57 69 42

Counter Hours (hrs) 935 720 721 1015

Average WT (min) 1.53 2.42 1.04 10.37

Std.Dev. of WT (min) 3.21 3.22 0.75 15.68

Third Quartile of WT (min) 2.66 2.68 1.48 15.70

95-percentile point of WT (min) 10.13 10.51 2.34 49.95

Maximum WT (min) 12.73 15.83 9.77 57.19

NPMF 35.85 70.57 28.22 741.31

PPWT0 0.35 0.89 0.90 0.54

PPWT20 0.00 0.00 0.00 0.17

Note: WT = waiting time, PPWT0 = proportion of passengers with wait-
ing time equal to zero minutes, PPWT20 = proportion of passengers with
waiting time greater than 20 minutes, NPMF = number of passengers miss-
ing flights, counter-hour = 4 CWs (as ω = 15).

parameters it is poor. SOL1 performs well with respect to waiting time parame-

ters, but it uses a large number of counter-hours.

Figure 3.1: Number of counters as per SOL3 and SOL2

3.5.2 Stage 2: Scheduling Tasks with Adjacency Constraint

To assign adjacent counters for every task, task structures are defined as follows:

3.5. New Formulations 75

Assignment Structures

Stage 1 output ci(t)s are the inputs for stage 2 problem. Given ci(t)s, the number of

counters required for a task t in TP i, the physical assignment of counters to tasks

can be made in several ways satisfying the adjacency constraint. Consider a task that

has check-in period spread over 16 TPs and the required number of counters given by

c(t) = (2, 3, 5, 6, 6, 6, 6, 6, 6, 5, 4, 4, 2, 1, 1, 1). Four different ways of assigning counters 1

to 6 are exhibited in Fig. 3.2. Each of them satisfies the adjacency constraint. However,

it is natural that one would prefer either (a) or (d) to implement, as these involve least

disturbance. We refer to structures of this type as top-down Structures and structures

of the type (d) of Fig. 3.2 as bottom-up Structure.

Figure 3.2: Four different ways of assigning counters to a task.

Task Array

Consider a task t with check-in TPs i0, i0 +1, . . . , i1. Let ci(t) be the number of counters

required for task t (obtained in stage 1), i = i0, i0 + 1, . . . , i1. Define the Task Array

Qt with (k, i)th element qtki = 1 for k = 1, 2, . . . , ci(t); i = i0, i0 + 1, . . . , i1. In this

manner, the top-down structure of a task is uniquely identified with a task array. For

i0 = 1, i1 = 16 and c(t) = (2, 3, 5, 6, 6, 6, 6, 6, 6, 5, 4, 4, 2, 1, 1, 1), the task array is given

by:

Qt =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1



76 Chapter 3. Planning Airport Check-in Counter Allocation

Assignment of Counters for All Tasks

Consider the problem of assigning adjacent counters to T tasks. Label the tasks as

1, 2, . . . , T . Let io(t) and ic(t) denote the earliest and latest TPs of task t respectively.

Let ci(t) be the number of counters required for task t in TP i, i = io(t), io(t)+1, . . . , ic(t).

Let Qt be the task array of task t.

For each task-counter pair (t, k), define the decision variable ytk as: ytk = 1 if task

t starts at counter k, and ytk = 0 otherwise. This results in assignment of counters

k, k + 1, . . . , k + ci(t) − 1 to task t in TP i, i = io(t), io(t) + 1, . . . , ic(t). Fig. 3.3

illustrates assigning three tasks to counters in two different ways. The first assignment

in panel (a) corresponds to y11 = 1, y2,10 = 1 and y3,16 = 1, and the second assignment

in panel (b) corresponds to y11 = 1, y26 = 1 and y3,10 = 1. From this it is evident

that the three tasks can be managed with 16 counters (as in panel (b)). Actually, it is

Figure 3.3: Two different ways of assigning counters to 3 tasks

.

Figure 3.4: Two more ways of assigning counters to the 3 tasks

.

possible to reduce the number of counters further as shown in Fig. 3.4. Note that (a) in

3.5. New Formulations 77

Fig. 3.4 is an acceptable structure with 14 counters but uses a combination of top-down

and bottom-up structures, where as (b) is not a pragmatic structure since the airline has

to put up with more interruptions, but uses only 12 counters. In view of the practical

implementation and computational complexity, we shall restrict counter assignments to

only top-down structures. We shall now present our formulation for stage 2 problem.

Fix a counter-TP pair (k, i) and consider the variables wki and mt defined by

wki =
∑
t∈Ti

ci(t)∧k∑
h=1

yt(k−h+1), (3.5.6)

mt = max{ci(t) : io(t) ≤ i ≤ ic(t)}, (3.5.7)

where Ti is the set of all tasks t such that io(t) ≤ i ≤ ic(t). Note that wki is the

number of tasks that use counter-TP combination (k, i), and
∑

k kytk + mt − 1 is the

largest counter number used by task t. The YTK-formulation given below minimizes

the number of counters in stage 2 optimization problem by minimizing the upper bound

s (the objective function) on the largest counter number used for assignment.

The YTK-Formulation:

Minimize s

subject to

∑
t∈Ti

ci(t)∧k∑
h=1

yt(k−h+1) ≤ 1 for all (i, k), (3.5.8)

∑
k

ytk = 1 for all t, (3.5.9)

∑
k

kytk +mt − 1 ≤ s, for all t, (3.5.10)

ytk ∈ {0, 1} for all t, k, (3.5.11)

As in the case of uv-formulation, the true objective function in this formulation is

maxt
∑

k kytk+mt−1 which is handled through the introduction of the dummy variable

s and the constraints (3.5.10). The above formulation helps achieve this objective in

a linear fashion. Constraint (3.5.8) ensures that no counter is assigned to more than

78 Chapter 3. Planning Airport Check-in Counter Allocation

one task in any TP, counters assigned to tasks are contiguous in all TPs and that the

assignment of counters to tasks is made using the top-down structure; constraint (3.5.9)

ensures that all tasks are accommodated.

Remark 3.5.4. Note that the above problem is always feasible. If the optimal objective

value is more than M , it means that the existing resources are not adequate. In such

a case, the formulation can be modified to accommodate maximum number of tasks by

maximizing
∑

t,k ytk subject to constraints (3.5.8), (3.5.11), and the new constraints∑
k ytk ≤ 1 and

∑
k kytk +mt − 1 ≤M for all t.

Remark 3.5.5. Note that
∑

t ci(t) is the minimum number of counters required in TP

i. Therefore, maxi
∑

t ci(t) is a lower bound on the objective function s in the YTK-

formulation.

A Comparison with the Formulation of Dijk and Sluis

We shall refer to the formulation given in (4.3) of Dijk and Sluis (2006) as DS-formulation.

This formulation does not allow the type of undesirable task structures such as the one

shown in panel (b) of Fig. 3.4. The last two constraints of the formulation ensure max-

imum overlap among the counters assigned to a task in any two adjacent TPs. This

aspect is also built in our model through the structure of task arrays. However, DS-

formulation is more general in the sense that any feasible assignment in YTK-formulation

is a feasible assignment in DS-formulation but the converse is not true. In other words,

the set of feasible solutions of YTK-formulation is a proper subset of feasible solutions

of DS-formuation. This actually turns out to be a disadvantage in solving problems,

particularly the large ones, because of the complexity induced by the constraints in DS-

formulation. The formulation by Dijk and Sluis (2006), assuming 2500 flights in a week,

687 TPs and 168 counters, results in 17, 17, 500 variables and more than 62, 500 con-

straints (constraints for each overlapping TP have been excluded from this calculation).

In comparison, our model has 4, 20, 000 variables and 1, 20, 416 constraints.

To compare the two formulations, we considered two real-life instances I1 and I2. I1

has 82 tasks comprising 360 departures over 111 TPs (see Problem 2 in Section 3.6.1). I2

has 182 tasks comprising 782 departures over 229 TPs. The two instances are solved us-

ing both formulations (see Section 3.6.1 for more details). The results are summarized in

Table 3.4. The size of the problem (number of variables plus constraints) is significantly

3.6. Solving Real-World Problems 79

large in DS-formulation. From the results, we see a substantial computational benefit

of YTK-formulation over DS-formulation. In fact, using YTK-formulation clubbed with

judicious strategies, we have been able to solve a large problem of planning a week’s

schedule with 2539 departures over 687 TPs (see Section 3.6.2).

Table 3.4: A Comparison Between Results of YTK- and DS-Formulations

Problem Instance YTK-Formulation DS-Formulation

I1: 82 tasks
comprising 360
departures over
111 TPs. The
minimum counter
requirement for
this problem is 148
counters.

This has size 38766 (= 16401
variables plus 22365 constraints).
Solver produced first feasible so-
lution in 1 minute with objective
value of 168 counters. In 26 min-
utes the best objective was 159,
and no further improvement even
after 2 hours. On adding the lower
bound constraint s >= 148, the
best feasible solution produced in
2.5 hours had objective value s =
157 counters.

This has size 51002 (=16241 vari-
ables plus 34761 constraints). The
first feasible solution appeared in
10s with objective value 465 coun-
ters. In 1 minute objective value
reached 293, and remained there
even after 15 hours at which time
the solver was interrupted.

I2:182 tasks
comprising 782
departures over
229 TPs. The min-
imum number of
counters required
is 171.

This has size 82566 (=36401 vari-
ables plus 46165 constraints). The
first feasible solution appeared in
2 minutes with an objective value
of 189 counters. At the end of
1 hour objective value remained
189. With the introduction of
lower bound constraint s >= 171,
a feasible solution with objective
value 189 was found in one hour.

This has size 191062 (=61695
variables plus 129367 constraints).
The first feasible solution appeared
in 30s of running with objective
value of 227 counters. In 40s ob-
jective value reached 226, and re-
mained there even after 16 hours.
Upon introducing the lower bound
constraint s ≥ 171, the solver
found a feasible solution with ob-
jective value 214 in one hour.

3.6 Solving Real-World Problems

We consider two problems. In the first problem, the airport operator makes commit-

ments to the airlines for two seasons; April to October and November to march, as the

departures are scheduled using weekly rosters, our first problem aims at solving check-

in counter allocation problem over one week planning horizon. To explore execution

module, we took up problems with one day planning horizon.

For these problems, we have considered the following inputs: (i) one arrival pattern

for all domestic flights and one for all international flights (as per airport operator’s

survey), (ii) load factor is 85%, (iii) fixed service times (sD = 2, sI = 3), (iv) maximum

waiting time per passenger is 30 minutes, (v) width of the TP is 15 minutes and (vi)

80 Chapter 3. Planning Airport Check-in Counter Allocation

queue discipline is FIFO. Data is analysed using international standards for service time

in addition to deterministic inputs provided by the airport operator (based on a survey).

The arrival pattern for 15-minute TPs is shown in Fig. 3.5 (percentage values). The

passenger arrival pattern for a departure is calculated using the number of seats of that

flight departure and the load factor. Professional solver LINGO 13.0 was used on a

quad core computer with a processor speed of 3.4 GHz and 16 GB RAM to perform all

computations.

Figure 3.5: Distributions of arrivals percentages over TPs for domestic and interna-
tional departures.

3.6.1 The One-Day Problem

This instance has 360 (= D) departures of 46 (= K) carriers. Of these, 287 departures

belong to the five Indian carriers. The departures of carriers 1, 2 and 5 are taken as one

task each, departures of carrier 3 are grouped into 4 tasks, and departures of carrier 4

are grouped into two tasks. The remaining departures of non-Indian carriers form 73

tasks of which 68 are single-departure tasks. Thus, this one-day instance has 82 tasks

in all.

Problem 2. This problem is to determine the counter assignment for the one-day in-

stance explained above, taking ω = 15 minutes.

Since ω = 15, there are 96 TPs in a day. As the check-in period starts 4 hours before a

departure, we add 15 TPs prior to the first TP of the day. Thus, N = 111(= 96+15). For

each task t ∈ {1, 2, . . . , 82}, we determine the minimum number of counters ci(t) required

in the ith TP using the uv-formulation (as in SOL2). This resulted in maxi
∑

t ci(t) = 148

which is the lower bound for the one-day problem.

3.6. Solving Real-World Problems 81

The next step is to physically assign counters to all the 82 tasks ensuring adjacency.

Using YTK-formulation a feasible solution with objective value 157 was found in 2.5

hours (see Table 3.4 for more details). This solution is at least 94% optimal as the

lower bound for the objective function of this problem is 148 (= maxi
∑

t ci(t), see

Remark 3.5.5). The final counter allocation with 360 departures, with one day planning

horizon is provided as a part of section 3.7).

3.6.2 One-Week Problem

For this problem, ω = 15 minutes, N = 687 (= 96 × 7 + 15), D = 2539 and M = 168.

Of the 2539 departures, 2007 belong to the five domestic carriers and require common

counters as per the existing policy. Each of these carriers has counter requirement in

almost all TPs, consequently corresponding departures are grouped into the first five

tasks. The remaining 532 departures formed 497 tasks with 462 single-departure tasks.

The lower bound, maxi ci(t), for this problem is 171. In terms of formulation and

solution methodology, the one-week problem and the one-day problem are similar. The

major challenge in the one-week problem is in handling its size.

Strategy to tackle the Large Problem

The large tasks corresponding to domestic carriers caused infeasibility. To overcome this

problem, we first solved the problem with five tasks.

The solver produced a global optimum solution in 24 minutes. This solution used 167

counters and made the following assignment: y1,1 = y2,78 = y3,130 = y4,152 = y5,160 = 1.

We then solved the entire one-week problem using YTK-formulation by adding this

allocation as a constraint. The solver produced a global optimal solution to this problem

in 42 minutes with optimum objective value 179 counters. Comparing with the lower

bound 171, this solution is at least 95% (= (1− 179−171
171)×100) optimal for the one-week

problem. Since the airport has only 168 counters, the objective function was changed

to M ≤ 168 (see Remark 3.5.4) to fit as many tasks as possible. The solver produced

a global optimal solution to this problem in 14 minutes with the optimal objective

value of 523 tasks. We then prepared the assignment layout using an excel macro, and

using this we could accommodate 10 of the 14 leftover tasks (with a mild tampering

82 Chapter 3. Planning Airport Check-in Counter Allocation

of few task structures). In the final solution, the percentage of assigned CWs is 68,

leaving 32% of counter time free for assigning maintenance work, scheduling new flights

or for accommodating cancellations and unforeseen changes to the flight schedule. We

developed a physical layout in MS Excel to create a visual display of the solution (see

section 3.7). The resultant pictures are a powerful tool for the airport operator to

understand at a cursory glance the counter allocation status on any day of the week.

This allows the management to plan maintenance activities, make adjustments in the

allocation, incorporate new tasks and improvise the existing allocation (the final solution

with 2539 departures is provided as part of section 3.7).

3.7 Additional methods for Check-in Counter Planning

The excel solution layout of the check-in counter allocation problem and a heuristic

suggested for solving large instances of the problem are presented below. We present

the assignment layout and consider the one day and one week problems presented in

chapter 3.

Assignment Layout

The problem of assigning tasks/departures to counters can be presented using an As-

signment Layout as shown in Fig.3.6.

Figure 3.6: Two different ways of assigning counters to 3 tasks

.

3.7. Additional methods for Check-in Counter Planning 83

In the assignment layout x-axis denotes the time windows and the y-axis denotes the

physical counter numbers. It is assumed that counters numbered k and k+1 are adjacent

for all k. The layout is an array whose (k, i)th cell represents the kth counter during

ith time window. Tasks and departures appear as their structures and are colored. The

uncolored (white) cells in the layout are free counters in the respective time windows.

The white cells in the array remain vacant and may be used for accommodating new

departures (provided there is sufficient space), maybe allocated to airlines for further

easing congestion at the airport or may be used for maintenance activities. The layout

can be presented in an excel spread sheet, and with the help of excel viewing tools for

magnification and compression, one can have detailed views of large layouts such as the

ones that represent even weekly planning.

One-Day Problem

For the one-day planning horizon problem discussed in chapter 3, the total number

of tasks is 82. Of these, 14 are with two or more departures, and the remaining 68 are

with one departure each. Minimum number of counters is determined for the 82 tasks

using the uv-formulation and minimizing the total number of counters as done for SOL2.

The next step is to make the physical assignment to all the 82 tasks ensuring adjacency

and using minimum number of counters.

The one-day planning horizon problem is solved using the second stage optimization

formulation with the inputs from the first stage solution SOL2. The solution required

163 counters. To understand the solution, consider Fig.3.7. This figure shows a portion

of the assignment array which covers counters 92 to 123 and time windows between 32

and 53. Departure IDs are shown in the structures. It can be seen from this figure that

departure with ID 46 is assigned counters 104 to 106 during the time windows 35 to

42. Note that counter 106 is not assigned to the departure during the time windows

35, 36, 38 and 42 (white spaces). Further, no two structures overlap. The complete

assignment of 360 departures is shown in Fig.3.8. For this solution, the ratio of assigned

counter-windows to total number of counter-windows is 49.6% (= 9254
168×111 × 100).

One-Week Problem

84 Chapter 3. Planning Airport Check-in Counter Allocation

Figure 3.7: A portion of assignment of counters to one-day planning horizon problem.

Figure 3.8: Physical assignment of counters to the 360 departures of the one-day
planning horizon problem.

In terms of formulation and solution methodology, the one-week problem and one-day

planning problems are same. The only issue with one week problem is that it is too

large compared to one-day problem. The one-week problem addressed to us has a total

of 2539 departures. For solving this, the same time window (ω = 15 minutes) length

is used. With this the total number of time windows is 687 (= 96 × 7 + 15). The

number of counters in the first stage optimization were determined for each departure

3.7. Additional methods for Check-in Counter Planning 85

(for simplicity). Using these first stage outputs, the second stage optimization problem

was solved. When the program was run on a quad core computer with a processor

speed of 3.4 GHz and 16 GB RAM, the solver took nearly two hours and stopped

with a message that memory was insufficient. To overcome this hurdle, we propose

a rolling horizon heuristic. The main purpose of this heuristic is to divide the entire

planning horizon of the original problem into subproblems with smaller problem size

(lesser departures) and much lower computation times. For the one week problem, the

planning horizon was divided into three subproblems and each subproblem was solved

separately. In each iteration of the heuristic, time horizon may be fixed or the number

of vessels to be included may be fixed. Since, in this case, the flight departures were

evenly distributed, we chose to fix the planning horizon for each subproblem, this also

resulted in an even distribution of the flight departures in each subproblem. In each

iteration all the variables (ytks) obtained in the previous subproblems were fixed. The

solution to the original problem was obtained by pooling the solutions of the three

subproblems (described as a heuristic below). The assignment layout of the problem is

shown in Fig.3.9. Upon minimizing the number of counters utilized, the solution could

accommodate 2535 out of the 2539 departures. Thereafter, using the assignment layout

it was possible to accommodate the left over 4 departures as well by slight tampering of

the task structures. In the optimal solution, the percentage of assigned counter-windows

is 67.9% (= 78385
687×168 × 100).

Figure 3.9: Physical assignment of counters to the one-week planning horizon problem
involving 2539 departures and 687 time windows.

86 Chapter 3. Planning Airport Check-in Counter Allocation

Algorithm 1: Rolling Horizon Heuristic for large problems

Result: Rolling Horizon Heuristic
1. t: Number of time windows to consider in each subproblem.
2. di: Number of flight departures before i ∗ t considered in subproblem i.
3. nc < − Number of counters available for assignment in the planning horizon
for the ith subproblem.

4. it ≤ − time windows 1 to it are considered in the ith iteration.
5. Itn < − Number of iterations to cover the planning horizon.
6. Solve the problem for the first t time windows and d1 departures.
7. for (i = 2; i < Itn; i = i+ 1) {

8. fix variables ytk for departures in di requiring counters in time windows (1
to (i-1)t).

9. solve the ith subproblem with di−1 ytks from subproblem (i-1) as input.
}

Comparison of ILP models for adjacent resource scheduling of Dijk and

Sluis (2006) and of Lalita et al. (2020)

In this section, we compare the ILP formulation for adjacent resource scheduling

proposed by Dijk and Sluis (2006) and the Ytk formulation presented in 3.5.2, under the

assumption that all tasks have rectangular structure (i.e. the ARS-R variant of adjacent

resource scheduling problem). In the adjacent resource scheduling problems, we have

as input a set of tasks and also renewable resources. Each task t has to be assigned a

constant set of adjacent resources between the task starting time and ending time. For

convenience to the reader, we present both the formulations below.

Formulation (DS) proposed by Dijk and Sluis (2006)

minimize D (3.7.1)

subject to (3.7.2)

nf <= df and df <= D ∀f (3.7.3)

df + ng <= dg or dg + nf <= df (3.7.4)

∀f, g ∈ 1, 2, .., T with If ∩ Ig 6= φ, (3.7.5)

df ∈ Z+, f 6= g (3.7.6)

In this formulation, nf is the number of counters required for check-in of passengers

3.7. Additional methods for Check-in Counter Planning 87

of flight f in the check-in time interval If , df is the largest counter number assigned

to flight f and D is the total number of counters assigned to all the flight f . In this

formulation, df and D are the decision variables.

Formulation (Ytk) proposed by Lalita et al. (2020)

minimize s (3.7.7)

subject to (3.7.8)∑
t∈τi

mt∧k∑
h=1

yt(k−h+1) <= 1 ∀(i, k) (3.7.9)

∑
k

ytk = 1 ∀t (3.7.10)

∑
k

k.ytk +mt − 1 <= s ∀t, (3.7.11)

ytk ∈ {0, 1},∀ t = 1, 2, .., T and k = 1, 2..,K (3.7.12)

In this formulation, mt is the total number of counters required for check-in of pas-

sengers of flight t. τi is the set of all tasks t requiring a counter in time period i, k is

the counter number for possible allocation to a flight t, s is the total number of counters

required for assigning all the flights to counters and ytk equals 1 if task t is assigned to

counter k. In this formulation, s and ytk are decision variables.

Theorem 3.7.1. The ILP models, (DS) of Dijk and Sluis (2006) and (Ytk) of Lalita

et al. (2020) are equivalent for the ARS-R case. In particular, given an optimal solution

to the ILP (DS), we can construct a feasible solution to the ILP (Ytk) with the same

objective value, and vice-versa.

Proof. Suppose (ȳtk, s̄) (with indexed components) is an optimal solution to the (Ytk)

formulation. Below, we construct a feasible solution (d̂f , D̂) to the (DS) formulation.

• Since d̂f is the last counter occupied by task f , it is given by
∑

k k.ȳfk +mf − 1.

Therefore, d̂f =
∑

k k.ȳfk +mf − 1. Also, nt = mt, ∀t as both denote the number

of counters required for task t.

• Since D̂ is the number of counters for scheduling all the tasks, D̂ = s̄.

88 Chapter 3. Planning Airport Check-in Counter Allocation

• From the above equivalent definitions, we see that nf ≤ d̂f ≤ D̂. Hence, constraint

(3.7.3) of the (DS) formulation is satisfied.

• Let t and t′ ∈ τi. Then, from 3.7.9,∑nt∧k
h=1 ȳt(k−h+1) +

∑nt′∧k
h=1 ȳt′(k − h+ 1) ≤ 1 ∀ (i, k).

• Let ȳtk = 1, i.e. let the task t start at counter k. Then, ȳt′j = 0, for j = (k−mt′+

1, k −mt′+ 2, .., k) ∪ (k + 1, .., k +mt − 1). This implies that
∑

j j.ȳt′j ≤ k −mt′

or
∑

j j.ȳt′j ≥ k + mt. Using the equivalent definition of ∩dt in terms of ytk, we

get, d̂t = k +mt − 1, i.e., d̂t + nt′ <= d̂t′ or d̂t′+ nt <= d̂t′.

• Hence, constraint 3.7.4 is satisfied and we get a feasible solution to the (DS)

formulation.

Suppose (d̄t, D̄) (d̄ with indexed components) is an optimal solution to the (DS)

formulation. Below, we construct a feasible solution (ŷtk, ŝ) to the (Ytk) formulation.

• Let t and t′ be two tasks such that It∩It′ 6= φ, i.e. the tasks or flights have counter

requirements in overlapping time intervals. Let task t start at counter k.

• Then, d̄t =
∑

k k.ŷtk + mt − 1 = k + nt − 1, as nt is the counter requirement for

task t. This implies, nt ≤
∑

k k.∩ ytk +nt− 1 ≤ ∩s. Therefore, constraint (3.7.11)

is satisfied.

• From constraint (3.7.4), substituting, ∩dt =
∑

k ŷtk+mt−1, we get,
∑

k k.∩yt′k ≥

k+mt or
∑

k k.∩yt′k ≤ k−mt′. Therefore,
∑mt∧k

h=1 yt(k−h+1) +
∑mt′∧k

h=1 yt′(k−h+1) ≤

1∀t. This implies constraint (3.7.3) is satisfied.

•
∑

k ∩ytk = 1, as dt has one value and any task t ends at counter dt. This satisfies

constraint (3.7.10)

With the above discussion, we prove that the two formulations have the same optimal

objective function values. This suggests that in solving the two models, the difference

in solution times is primarily due to the large number of variables and constraints in

the (DS) formulation. For (DS) formulation, given T tasks, the number of variables

= T (T − 1) + T + 1 (as variables are added because of the ’or’ constraints (3.7.10))

3.8. Summary 89

Formulation Variables Constraints

(DS) Formulation 31,24,000 62,50,000

(Ytk) Formulation 4,25,000 1,20,000

Table 3.5: This table provides a comparison of the formulations in terms of number
of variables and constraints in the worst case scenario for 2500 departures

and the number of constraints = T (T − 1) (in the worst case scenario). For the (Ytk

formulation, given T tasks and C counters, the number of variables = TC and the

number of constraints = NC + 2T (where N is the number of time periods considered).

There is a general agreement among scientists today that an algorithm is a practically

useful solution to a computational problem only if its complexity grows polynomially

with respect to the size of the input (see Papadimitriou and Steiglitz (1998)). This is

because often we are interested in the the behaviour of algorithms with large inputs

sizes, which is characteristic of real-world problems. In studying the complexity of the

two models described above, the number of constraints of the (Ytk formulation for the

ARS-R case grows in proportion to the number of departures (T , whereas for the (DS)

formulation, the number of variables and constraints is O(T 2). A drastic reduction in

both the number of variables and constraints in the Ytk formulation result in smaller

computation times.

Given T departures, N time periods and C counters, for (DS) formulation the number

of variables are O(T 2+T) and the number of constraints are O(T 2). Our formulation has

O(TC) variables and O(NC+ 2T) constraints. The Ytk model has much lower variables

and constraints.

3.8 Summary

In this chapter, we address the check-in counter allocation problem with deterministic

inputs and variable counter allocation. Models from available research are suitable for

small scale problems and do not consider FIFO and waiting time explicitly. We address

these issues and provide exact solutions to large size real-world problems. As seasonal

commitments by the airport operator are based on weekly schedules, it is essential to

90 Chapter 3. Planning Airport Check-in Counter Allocation

determine check-in counter allocation for flight departures over one week. In this context

our models become important as we provide a solution to the problem in the planning

stage, where the airport operator commits to an airline schedule for a season. Scheduling

for one day also involves a large number of flight departures at big airports. To test

how well the proposed models can be applied to real-world problems, we studied two

problems at an international airport in India. The one-week planning problem involved

2539 departures in 687 time periods. We also provide a solution for the execution module

for one-day with 360 departures in 111 time periods. The solution for the one week

problem resulted in a reduction of passenger waiting time and indirectly reduced the

queue length. Also, the model solutions increased utility of the counters and resulted

in 30% free counter time as compared to the current static counter allocation at the

airport.

Chapter 4

Berth Assignment and Crane

Scheduling at Ports

4.1 Introduction

Scheduling problems are very frequently encountered in a variety of industries and are

crucial for business management. Berth and crane scheduling at cargo terminals of ship

yards is one problem that has been attracting the attention of many researchers over

the past three decades. This is evinced by numerous articles in various journals on

this subject. Due to the complexities involved in the two subproblems, the berth allo-

cation problem (BAP) and the quay crane assignment problem (QCAP), were studied

separately by several researchers. As this approach can lead to inconsistencies in the

combined solutions of the two subproblems, the research focus has drifted to solving the

integrated problem, the berth allocation and quay crane assignment (specific) problem

BACAP or BACASP. The operations involved in the problems just mentioned are re-

ferred to as seaside operations. The objectives and constraints encountered in planning

the seaside operations vary largely due to the characteristics of the problems engen-

dered by port layouts and infrastructure, business agreements with ship liners, landside

operations, etc. A large number of models and solution methods have been proposed

to address variants of seaside operational problems. The problems have been classi-

fied using selected attributes of the problems (Bierwirth and Meisel (2010)). Similarly,

91

92 Chapter 4. Berth Assignment and Crane Scheduling at Ports

the solution methods to address these problems are also classified into exact methods,

heuristic based approaches, genetic algorithms and so on.

This chapter is concerned with a specific problem classification and the solutions using

mathematical models to address it. One of the attributes for classifying BAP is the berth

positions on the quay. If berth positions are predefined and fixed, then the problem is

known as discrete, otherwise it is called continuous (see Bierwirth and Meisel (2010)).

Similarly, in the crane assignment and scheduling problems, if a set of cranes assigned to

a ship are not allowed to serve other ships while serving the assigned ship, the problem

is known as time-invariant (see Imai et al. (2008)). Most of the problems addressed

in the literature consider continuous BAP and time-variant QCAP or QCASP. These

problems are more challenging and the exact methods to address them (using integer

linear programming models) have issues in solving large scale (large number of ships

over long planning horizon) instances. One way to address this issue is to add additional

restrictions to the class of problems and evaluate the quality of solutions. Imposing these

additional restrictions not only helps solve large scale problems, but also yield solutions

that are often preferred from the implementation point of view. For example, in check-in

counter allocation problem at airports, imposing additional restrictions on the structure

of service facility has dramatically decreased the size of the problem that can be handled

efficiently (see Lalita et al. (2020)).

In this chapter, we introduce a new class of solutions and evaluate their performance

with the conservative solutions available in the current literature. More specifically,

we consider the BACASP studied in Türkoğulları et al. (2014) and Agra and Oliveira

(2018), and propose an alternative solution approach and compare the results with the

existing ones. The main contribution of this chapter is in the new compact formulations

and their ability to solve large size instances. We use an MILP model that is similar to

the one used in Imai et al. (2008). The major difference is that their model is meant for

discrete berths and due to its complexity, the model is not suitable for deriving exact

solutions using commercial solvers. Our model is simple and is suitable for finding exact

optimal solutions within the class of solutions defined by us. These solutions are simple

to implement which is important from an operational point of view.

The organisation of this chapter is as follows. Section 4.2 presents literature review

4.2. Literature 93

and Section 4.3 presents a brief introduction to cargo ports and operations. Section 4.4

describes the specific variant of BACASP relevant to this chapter. In Section 4.5, we

present our new class of solutions and discuss variants of the same. Section 4.6 presents

the results of empirical experiments. Section 4.7 concludes the chapter with summary

and remarks.

4.2 Literature

There is a vast literature on the berth allocation problem, quay crane assignment and

scheduling problems and the integrated problem. Our interest is mainly in one variant of

the integration problem. Therefore, we shall briefly mention the articles on the first two

problems and focus more on the articles on the integrated problem relevant to our work.

Firstly, there are two survey articles on this subject, Bierwirth and Meisel (2010) and

Bierwirth and Meisel (2015), which classify the seaside operation problems by various

attributes. Research on BAP started in the early 1990s (see Lai and Shih (1992); Brown

et al. (1994)). Lim (1998) showed that the problem is NP-hard. Two different versions

of BAP were considered - the operational BAP (OBAP) and the tactical BAP (TBAP).

While the former is concerned with the problem of assigning and scheduling ships to

berthing positions along the quay, usually over shorter planning horizons such as a week,

the latter is concerned with other aspects, besides assigning ships to berth positions and

scheduling their service times, such as quality of service and managerial decisions. See

Imai et al. (1997), Imai et al. (2003), Imai et al. (2007b), Imai et al. (2007a) ,Imai et al.

(2001), Imai et al. (2005), Guan and Cheung (2004), Lim (1998), Nishimura et al. (2001),

Kim and Moon (2003), Cordeau et al. (2005), Monaco and Sammarra (2007), Mauri

et al. (2016), Ursavas and Zhu (2016), Zhen (2015), Zhen et al. (2011), Wang and Lim

(2007) for work on OBAP; and see Moorthy and Teo (2007), Cordeau et al. (2007), and

Giallombardo et al. (2010) for work related to TBAC. With regard to crane operations,

the QCAP deals with decisions on the number of cranes assigned to each ship along

with time specifications. The QCASP problem, on the other hand, must determine the

complete details of the tasks to be performed by the cranes assigned to each ship. Most

of the papers dealing with QCASP specify only which cranes are operating on which

ships and during what periods. This problem is known to be NP-hard in the strong

94 Chapter 4. Berth Assignment and Crane Scheduling at Ports

sense when there are three or more cranes with no preemption allowed or with different

processing rates (see Pinedo (2002)). Unlike the job scheduling problems on machines,

the QCASP has in addition the non-crossing constraints. Giallombardo et al. (2010)

introduced the concept of QC profiles for solving the integrated problem. A QC profile

specifies the number of cranes (assumed to be identical implicitly) to be operating during

each time. This was found to be useful (tactically) and was used in models developed

subsequently, see, for instance, Wang et al. (2018). See Al-Dhaheri and Diabat (2015),

Daganzo (1989), Diabat and Theodorou (2014), Theodorou and Diabat (2015), Guan

et al. (2013), Kim and Park (2004), Lim et al. (2004), Liu et al. (2006), Moccia et al.

(2006), for work on QCASP.

In the integrated problem, BACAP and BACASP are two different problems. While

BACAP specifies only the number of cranes assigned to ships, BACASP specifies which

cranes are assigned to the ships in each time period. The integrated problem has at-

tracted many researchers. See, for instance, Kim and Moon (2003), Guan and Cheung

(2004), Ak (2008), Meisel and Bierwirth (2009), Imai et al. (2008), Meisel and Bierwirth

(2013), Iris et al. (2015), Iris et al. (2017), Agra and Oliveira (2018) and Xie et al.

(2019). For more references and brief details on the contributions, see Agra and Oliveira

(2018) and Xie et al. (2019). Two other recent articles that consider yard management

in the integration are Wang et al. (2018) and Liu et al. (2019), and the latter tabulates

various contributions over the past two decades. Much of the work is centered around

the integer programming formulations. Majority of these formulations are mixed integer

linear programming (MILP) involving large number of binary variables and constraints

making them complex and unsuitable for solving with commercial solvers. To overcome

these problems, methods such as set partitioning formulations, introduction of valid in-

equalities, column reduction and column generation techniques are deployed. Besides

exact methods, a number of heuristic and meta heuristics such as genetic algorithms

have been proposed for the integrated problem.

Correcher et al. (2019) propose an iterative procedure for the BACASP in which the

BACAP model is solved, and whenever its solution is not feasible for the BACASP, spe-

cific constraints are added until an optimal solution for the BACASP is found. Correcher

and Alvarez-Valdes (2017) address the variant of both BACAP and BACASP consisting

4.3. Port Operations 95

of a continuous quay, with dynamic arrivals and time-invariant crane-to-vessel assign-

ments. The authors propose a metaheuristic approach based on a Biased Random-key

Genetic Algorithm with memetic characteristics and several Local Search procedures.

Our problem is closely related to Agra and Oliveira (2018). Agra and Oliveira (2018)

consider BACASP with continuous version of BAP. Starting with an MILP based on

relative position formulation, they propose a new formulation by discretizing the time

and space variables to obtain exact solutions. They further enhance their model by

adding valid inequalities and upper bounds for better performance. To obtain qualitative

upper bounds, a rolling horizon heuristic is proposed. Unlike in many other models,

Agra and Oliveira (2018) work with cranes which are heterogenous with respect to their

processing rates.

4.3 Port Operations

Majority of the international transport of cargo is carried by ships. Container ships

carry goods packed in containers whereas bulk material is carried by bulk ships. In this

chapter, we are concerned with cargo ports equipped with cranes to handle the loading

and unloading operations from ships. In ports where the ships are moored to the port

for these operations, the port is equipped with quay cranes mounted on rails along the

quay. Depending upon the length of the quay and other features such as draft, multiple

ships can be moored to the quay for parallel operations (see Figure 4.1). Quay cranes

Figure 4.1: Quay at a cargo port

are mounted on rails along the quay (see Figure 4.2) and because of this their movement

is restricted to the extent that they cannot bypass their adjacent ones. The cranes have

capacities, the speed at which they can perform the loading and unloading operations.

96 Chapter 4. Berth Assignment and Crane Scheduling at Ports

For bulk material, the capacity is commonly specified as tons per hour, whereas in the

case of cranes handling containers, the capacity is measured as number of containers per

hour. As regards the containers, they come in different sizes. Their sizes are usually

referred in terms of TEU (twenty-foot equivalent unit). For operational convenience,

the quay may be divided into several berths where each berth position is fixed. In such

a scenario, the number of ships handled parallelly is restricted to maximum number of

berths. This is known as discrete berth spacing. On the other hand, depending upon

the ship lengths, it may be possible to handle variable number of ships parallelly. In

this scenario, the berths refer to the actual places occupied by the ships, and this is

known as continuous berth spacing. For modelling purposes, quay is divided into

berth sections of unit length. For instance unit length may be 25 meters. Taking this

as yardstick, ship lengths are specified in terms of number of berth sections.

Figure 4.2: Quay cranes.

On the yard side, the terminals have huge storage space for storing containers in

transit. The storage space is divided into zones, blocks within zones and subblocks

within blocks where the containers are stored. The yard cranes are used to load and

unload containers from trucks. The trucks carry the containers between yard locations

and the berths. The yard is used as temporary storage space for the transit containers.

Containers which are to be exported are first brought to the yard and from there they

are loaded onto ships. The containers unloaded from ships are shifted to yard locations

and from there they are moved to their respective destinations. Some of the containers

unloaded from a ship are to be loaded into other ships depending upon the requirements.

These containers are also first moved to yard locations and from there they are loaded

into respective ships.

4.4. Problem Description 97

4.4 Problem Description

In this section we shall describe the integrated BACASP. The acronym was introduced

in Türkoğulları et al. (2014). In the problem set up, ships arrive at a cargo port for

service (transhipment operations of unloading and loading bulk material or containers).

The service of ships is performed by quay cranes (QCs) at the quay. The QCs, numbered

as 1 to K, possibly with different processing rates (the heterogenous case), are mounted

on rails along the quay. QCs cannot bypass their adjacent ones on the rails. For the

purpose of modelling, the quay is divided into berth sections of unit length which are

numbered 1 to B. The service of ships is planned over a period of time, the planning

horizon, which is discretized into T time periods numbered 1 to T . Each ship comes

with a specification of its length (specified as the number of berth sections including

a safety margin), workload (measured as number of containers in the case of container

ships and as weight in tons in case of bulk material) and the arrival time at the port.

The BACASP is to assign, for each ship, a contiguous set of berth sections (equal in

number to the length of the ship) and a contiguous set of time periods along with

the specification of crane numbers that serve the ship during each time period. The

assignment must satisfy the following requirements: (i) crane assignments must satisfy

non-crossing constraints, (ii) service must start in arrival time period or later, (iii) the

total capacity of the assigned cranes must be adequate to complete the workload and

(iv) no berth section is shared by two or more ships at the same time. This problem

is classified under continuous berth allocation with time-invariant crane assignment. In

the time-invariant models, any crane assigned to a ship cannot serve other ships until

the service of the assigned ship is completed. Time-invariant models were introduced

by Imai et al. (2008). The description of BACASP can also be found in Türkoğulları

et al. (2014) and Agra and Oliveira (2018). One can consider different objectives for the

problem. In this chapter, we shall take it as the sum of completion times of all ships.

The assignment can be presented geometrically in the time-space diagram. This is

done in Figure 4.3 which presents a feasible assignment. In this assignment, each ship

occupies a rectangular block in the time-space diagram where the length (along berth

section axis) of the block is equal to the length of the ship and the width (along the

time axis) of the block is equal to service period of the ship. A feasible assignment must

98 Chapter 4. Berth Assignment and Crane Scheduling at Ports

Figure 4.3: A solution for a BACASP instance with 10 ships. Data: τ =
(7, 8, 9, 9, 6, 8, 7, 9, 7, 6), q = 100(46, 77, 86, 68, 77, 75, 50, 74, 35, 70) (in tons), a =
(4, 3, 19, 8, 26, 19, 14, 25, 15, 17). From the figure, it means the ship 1 start time is TP 4
and end time is TP 8; for ship 2 start time is TP 3 and end time is TP 12 and so on
(starting time period is the TP corresponding to the respective color and service end
time is the last TP corresponding to the respective color). The optimal solution was
obtained in 48 seconds but took 97 minutes to confirm optimality. Formulation has 464

variables and 1360 constraints.

satisfy the non-overlapping of the ship blocks. The service time (width of the block)

depends upon the crane schedule assigned to the ship during its service time. The

structure of the crane schedule is referred to as the quay crane (QC) profile, a concept

introduced by Giallombardo et al. (2010)(see also Wang et al. (2018) for a description

of QC profiles). It specifies the number of cranes assigned to a ship in each time period

of the ship’s service time. The QC profile is useful for the case of homogenous cranes.

For the case of heterogeneous cranes, it is not sufficient to specify the number of cranes,

but we must also specify which particular cranes are assigned. Later in this chapter, we

shall introduce the concept of berthing profiles which will take care of this aspect.

4.5 Formulations

Following models in Ak (2008), Guan and Cheung (2004), Meisel and Bierwirth (2009),

an MILP formulation for BACASP is presented in Agra and Oliveira (2018) using relative

position formulation. Their model considers continuous berth allocation with time-

variant assignment of cranes. In this chapter we consider a restricted model. In this

model, berths are formed on a continuous basis with appropriate selection of cranes for

each berth to suit the requirements of the problem instance. We consider the resulting

solutions as a new class. In other words, consider all feasible solutions to BACASP

4.5. Formulations 99

in which berth positions and the cranes assigned to them remain invariant throughout

the planning horizon. We shall call this class of solutions as the Berth and Crane

Invariant (BCI) solutions. The idea is to find the best of BCI solutions as a solution

for the original BACASP. Clearly, BCI solutions are suboptimal. It may be noted

that the problem of finding a BCI solution is different from the discrete BACASP.

Also, our concept of invariant crane assignment is different from the one considered in

Türkoğulları et al. (2014). The motivation for this approach comes from the fact that our

formulation for finding a BCI solution is relatively simpler and suitable for commercial

solvers compared to the existing MILP formulations for BACASP. More importantly,

the general solutions obtained using formulations for optimal solutions are sometimes

undesirable from practical point of view (see Example 4.5.4). We also propose a method

to expand BCI solutions to a larger class by relaxing the invariance restrictions partially.

We now present a formulation for finding a BCI solution. Refer to Table 4.1 for notation.

4.5.1 Berthing Profiles

To find a BCI solution, we first introduce the concept of berthing profiles. One of the

constraints in BACASP is the specification on the number of cranes that must serve any

ship at any given time. Let κm and κM be the limits on this number(see Table 4.1).

Since cranes are ordered on the rails, we can partition them into contiguous sets and

assign each such set to a contiguous set of berth sections (called a berth). Then, assign

cranes to each berth thus formed. We shall illustrate this with some examples.

Example 4.5.1. This example is used in Agra and Oliveira (2018), originally taken

from Oliveira et al. (2016). In this problem, there are 7 cranes and the quay is discretized

into 34 berth sections, each of length 25 meters. The crane data are summarized in

Table 4.3 (see Table 4.1 for notation).

Assuming κL = 2 and κU = 4, there can be either 2 berths or 3 berths. The capacity

of a berth is determined as the sum of the processing rates of the cranes in that berth.

For the above example, if the cranes are distributed into 3 berths, then there are three

possible distributions.

100 Chapter 4. Berth Assignment and Crane Scheduling at Ports

Table 4.1: Notation

Symbol Description

t t is index in the planning horizon T = {1, . . . , T},

B number of berth sections in the quay; the berth sections
are numbered from 1 to B,

u, v, V u, v are ship indices, V = number of ships,

N, B, η,
βη, πηb

N is the number of berthing profiles indexed by
η ∈ B = {1, 2, . . . , N} (see Subsection 4.5.1 for the defi-
nition of berthing profile); βη is the number of berths in
berthing profile η, πηb is the number of berth sections in
berth b of profile η,

b b is the berth index; the range of b depends on the
berthing profile; in berthing profile η, b = 1, 2, . . . , βη,

c c is the capacity matrix, cηb is the capacity of berth b in
berthing profile η,

k,K K = number of QCs, K = {1, 2, . . . ,K} is the crane index
set, crane k is between crane k−1 and crane k+1 on the
rails, k = 2, . . . ,K − 1,

Lk, Uk crane range, crane k can serve in berth sections
Lk, Lk + 1, . . . , Uk only,

pk processing rate of crane k,

κm, κM number of cranes assigned to any ship must be at least
κm and at most κM ,

av arrival time of ship v,

qv workload of ship v; for bulk it is by weight and for con-
tainer shipping, it is by number of containers,

τv, τM τv is the length of ship v in number of berth sections, and
τM is the maximum ship length,

yηbv berth assignment indicator, = 1 if ship v is assigned to
berth b of berthing profile η,

sηbv starting time period for loading ship v in berth b of
berthing profile η,

xηbv length of service time for ship v in berth b of berthing
profile η.

Berthing-Profile. We define a berthing-profile as a pair of vectors (c, π), where c is

the vector of berth capacities and π is the vector of berth lengths.

4.5. Formulations 101

Table 4.3: Crane infrastructure at a bulk terminal

Crane Index 1 2 3 4 5 6 7

Lk 1 1 1 1 14 14 14

Uk 26 26 26 26 34 34 34

pk (tons) 263.6 263.6 263.6 263.6 319.0 263.6 263.6

A berthing profile is the result of grouping contiguous berth sections and assigning

each group a selected set of contiguous cranes. As an example, consider the data in

Table 4.3. Suppose, we take berth sections 1 to 13 as one berth and 14 to 26 as another

berth; and assign cranes 1,2 and 3 to the first berth (berth sections 1 to 13) and the rest

to the second berth (berth sections 14 to 26). This decision results in two berths with

capacities 790.8 and 1109.8 with corresponding berth lengths as 13 and 13 respectively.

Thus, for this berthing profile (c1, π1), c1 = (790.8, 1109.8) and π1 = (13, 13). Consider

another berthing profile (c2, π2) in which berth sections 1 to 7 are in one berth and 14

to 23 are in the other berth. Assign cranes 1 to 4 to the first berth (berth sections 1 to

7) and the rest to the other berth (berth sections 14 to 23). Then, c2 = (1054.4, 846.2)

and π2 = (7, 10).

Potential Berthing Profiles

We shall call a berthing profile as potential berthing profile if the minimum length of

the corresponding berths is greater than or equal to maximum ship length. In the above

examples, (c1, π1) is potential where as (c2, π2) is not, provided maximum ship length

is 9. Say that two potential berthing profiles are similar if their capacity vectors are

equal after arranging their elements in the descending order.

Assuming κL = 2, κU = 4 and τM = 9, there are 5 berthing profiles for Example 4.5.1

to consider. All of them are potential. They are listed in Table 4.4. Note that (c4, π4)

and (c5, π5) are essentially same. Therefore, Example 4.5.1 has four berthing profiles

(cη, πη), η = 1, 2, . . . , N , where N = 4. For a berthing profile η, the berth capacities

are cη = (cη1, cη2, . . . , cηβη) and πη = (πη1, πη2, . . . , πηβη), where βη is the number of

berths in the berthing profile η.

Example 4.5.2. Consider the same data as in Example 4.5.1 with only processing rates

modified as follows: p1 = 219, p2 = 219, p3 = 319, p4 = 319, p5 = 262, p6 = 262, and

p7 = 262. Assuming κL = 2, κU = 4 and τM = 9, we have five berthing profiles, namely,

102 Chapter 4. Berth Assignment and Crane Scheduling at Ports

Table 4.4: Berthing Profiles for Example 4.5.1

Berthing Profiles Berth sections (Cranes) Assigned

c1 = (790.8, 1109.8), π1 = (13, 13) 1 - 13 (1,2,3); 14 - 26 (4,5,6,7)

c2 = (1054.4, 846.2), π2 = (13, 13) 1 - 13 (1,2,3,4); 14 - 26 (5,6,7)

c3 = (790.8, 582.6, 527.2), π3 = (13, 10, 11) 1 - 13 (1,2,3); 14 - 23 (4,5); 24 - 34 (6,7)

c4 = (527.2, 846.2, 527.2), π4 = (13, 10, 11) 1 - 13 (1,2); 14 - 23 (3,4,5); 24 - 34 (6,7)

c5 = (527.2, 527.2, 846.2), π5 = (13, 10, 11) 1 - 13 (1,2); 14 - 23 (3,4); 24 - 34 (5,6,7)

(1076, 786), (757, 1105), (438, 638, 786), (438 , 900, 524) and (757, 581, 524). All of

them can be chosen to be potential berthing profiles.

Capacity-Equivalent Berthing Profiles

Say that two berthing profiles are capacity-equivalent if their capacity vectors are equal

after arranging their elements in the descending order.

The number of berthing profiles increases with increasing number of cranes and their

heterogeneity with respect to their capacities. One way to reduce this number is to

consider only one profile from each of the capacity-equivalent classes. This reduces the

number substantially.

Example 4.5.3. Consider the same data as in Example 4.5.1 and take κL = 1 and

κU = 4. In this case, the cranes can be distributed to berths in 52 different ways. But

if we take one berthing profile from each capacity-equivalent class, then we have only 22

berthing profiles.

Without loss of generality, we shall assume that the elements in the berthing profile

vectors are in the descending order of their capacities. Further, we designate each

berthing profile with an index. Thus, we shall assume B = {1, 2, . . . , N} as the set of

distinct berth profiles, N being the number of distinct berthing profiles.

We are now ready for presenting our formulations. We present two formulations: one

for the case of heterogenous cranes and the other for the homogenous cranes. Refer to

Table 4.1 for all the notation.

4.5. Formulations 103

4.5.2 Formulation for Heterogeneous Cranes

In this model, we assume that ship arrival times are the given inputs and no commitments

on departure times. No service priorities are assumed. Berth clearance time is assumed

to be one time period, that is, if t is the last service time period for a ship, then the berth

sections occupied by the ship are available for other ships from time period t+2 onwards.

Treating t+1 as the ship’s service completion time, we take the sum of completion times

of all ships as the objective function. The formulation is an MILP. Following are the

decision variables:

• λη is 1 if berthing profile η is selected, 0 otherwise, η ∈ B = {1, 2, . . . , N},

• yηbv is the index variable which is 1 if ship v is served in berth b of berthing

profile η, b = 1, 2, . . . , βη; η = 1, 2, . . . , N , where βη is the number of berths in the

berthing profile η,

• sηbv is the service starting time period of ship v in berth b of berthing profile η,

• xηbv service duration of ship v in berth b of berthing profile η.

The main idea of our formulation is that we select an appropriate berthing profile for

an instance of the problem and serve all the ships according to the selected profile. The

model is presented below. The range of b in the formulation is not explicitly stated

for brevity. The expression ∀ η, b, v stands for η = 1, 2, . . . , N , b = 1, 2, . . . , βη and

v = 1, 2, . . . , V .

Heterogeneous Cranes Model

Minimize
V∑
v=1

N∑
η=1

βη∑
b=1

(sηbv + xηbv) (4.5.1)

subject to

N∑
η=1

λη = 1, (4.5.2)

N∑
η=1

βη∑
b=1

yηbv = 1 ∀ v, (4.5.3)

104 Chapter 4. Berth Assignment and Crane Scheduling at Ports

sηbv ≥ avyηbv ∀ η, b, v (4.5.4)

sηbv + xηbv ≤ Tyηbv ∀ η, b, v (4.5.5)

τvyηbv ≤ πηb ∀ η, b, v, (4.5.6)

N∑
η=1

βη∑
b=1

cηbxηbv ≥ qv, ∀ v, (4.5.7)

T (2− yηbu − yηbv) + sηbu ≥ 1 + sηbv + xηbv − Twuv ∀ η, u < v (4.5.8)

T (2− yηbu − yηbv) + sηbv ≥ 1 + sηbu + xηbu − T (1− wuv) ∀ η, u > v (4.5.9)

V∑
v=1

βη∑
b=1

yηbv ≥ λη ∀ η (4.5.10)

V∑
v=1

βη∑
b=1

yηbv ≤ V λη ∀ η (4.5.11)

sηbv, xηbv are nonnegative integers, and

λη, wuv, yηbv ∈ {0, 1} ∀ η, b, v.

Note that (4.5.3) and (4.5.5) ensure that sηbv + xηbv = 0 for all but one η ∈ B. Under

this condition,
∑N

η=1

∑βη
b=1(sηbv + xηbv) represents the completion time of ship v which

includes one additional time period for clearance. Therefore, the objective function is

the sum of completion times of all ships. Constraint (4.5.2) ensures that exactly one

berthing profile is used, that is, λη = 1 for exactly one η ∈ B. Constraint (4.5.3) ensures

that yηbv = 1 for exactly one pair (η, b), η ∈ B and b ≤ βη (that is, ship v is assigned

to exactly one berth). We must ensure that this η is same as the η for which λη = 1.

This is ensured by (4.5.3), (4.5.10) and (4.5.11). Constraint (4.5.4) ensures that the

ship service starts only after its arrival. Constraint (4.5.5) ensures that ship v’s start

time and service duration are accounted under the same berth in the selected profile η

(for which λη = 1 and yηbv = 1). Constraint (4.5.6) ensures that ship v’s length fits

into its assigned berth. Constraint (4.5.7) ensures that the assigned service duration

xηbv of ship v is adequate to complete the ship’s service. Constraints (4.5.8) and (4.5.9)

together ensure that service periods of any two ships assigned to the same berth are non-

overlapping. Here, the variables wuvs are auxiliary. It may be observed that it suffices

to define these variables independent of η and b. This observation helps in reducing the

number of variables. Constraints (4.5.10) and (4.5.11) are crucial in this formulation.

The idea of utilising these constraints is derived from a formulation to a scheduling

4.5. Formulations 105

problem in a windmill power application (see constraints (39) and (40) in Lalita and

Murthy (2020b)).

Figure 4.3 presents a solution to an instance of the problem with 10 ships. The

problem is solved using LINGO. The MILP has 464 variables and 1360 constraints. The

optimal solution was found in 48 seconds but it took 97 minutes to confirm optimality.

The same problem was tried using DRPF and DRPF++ formulations cited in Agra and

Oliveira (2018). The number of variables and constraints in DRPF formulation are 4968

and 2,37,286 respectively, and in DRPF++ they are 7130 and 3,52,751 respectively. At

the beginning of this section, we stated that one of the motivations for BCI solutions is

their simplicity from practical view point. Example 4.5.4 is a simple illustration of this.

Example 4.5.4. Crane particulars are as in Example 4.5.1 with only processing rates

modified as follows: p1 = 263.6, p2 = 263.6, p3 = 319, p4 = 319, p5 = 212.1, p6 = 212.1,

and p7 = 319. Vessel data are as follows: Vessel 1 - length 8, arrival 2, load 4660,

Vessel 2 - length 9, arrival 3, load 3810, Vessel 3 - length 8, arrival 9, load 3490. Take

κL = 2, κU = 4.

Figure 4.4 presents two solutions to the problem in Example 4.5.4 - a solution ob-

tained using DRP formulation (objective value 26) and the other using BCI formulation

(objective value 28). The movement of cranes in the former solution is rather undesirable

while there is a mild compromise on the objective value in going for the BCI solution.

4.5.3 Formulation for Homogeneous Cranes

Many of the cases in the literature deal with homogeneous cranes. Under homogeneous

cranes set-up, we propose a simplified formulation to find BCI solutions that avoids

the difficulty of enlisting the berthing profiles. In this formulation, we drop the term

berthing profiles and use berths instead. This means that the η variable will be dropped

completely which will result in a simplified formulation. This is elaborated further before

presenting the formulation.

Consider the case where you have K = 12 homogeneous cranes and take κm = 2 and

κM = 4. In this case, maximum number of berths that one can have is 6 (= bK/κmc).

106 Chapter 4. Berth Assignment and Crane Scheduling at Ports

DRP solution

BCI solution

Figure 4.4: A comparison of an optimal solution with BCI solution for a problem
instance with three ships. The assigned crane numbers are shown in each time period.

Assuming that it is possible to make six berths, each having two cranes, designate

these six berths by b = 1, 2, . . . , 6. Next, note that we cannot create 5 berths each

having 3 cranes as K = 12. Therefore, we can have at most 4 berths each having 3

cranes. Assuming we can make such berths, designate them by b = 7, . . . , 10. Next,

consider berths with 4 cranes each. We can have at most 3 such berths. Designate

them by b = 11, 12, 13. In our formulation below, we shall assume that the berths are

designed in this fashion. We drop the use of berthing profiles and use berths instead.

The parameter N will now be interpreted as the number of berths. We drop η from

all the decision variables and input parameters. Thus, we replace cηb and πηb with cb

and πb respectively which denote the number of cranes and number of berth sections

in berth b respectively. Unlike in the previous formulation, πbs are decision variables in

this formulation. Similarly, we replace the berthing profile selection indicator variable

λη with berth selection indicator variable λb which is 1 if berth b is selected. Similarly,

ybv is an indicator variable which is 1 if ship v is assigned to berth b; sbv and xbv stand

for the starting time period and service duration of ship v in berth b.

Homogeneous Cranes Model

Minimize
V∑
v=1

N∑
b=1

(sbv + xbv) (4.5.12)

4.5. Formulations 107

subject to

N∑
b=1

cbλb ≤ K, (4.5.13)

N∑
b=1

ybv = 1 ∀ v, (4.5.14)

sbv ≥ avybv ∀ b, v (4.5.15)

sbv + xbv ≤ Tybv ∀ b, v (4.5.16)

τvybv ≤ πb ∀ b, v, (4.5.17)

N∑
b=1

cbxbv ≥ qv, ∀ v, (4.5.18)

T (2− ybu − ybv) + sbu ≥ 1 + sbv + xbv − Twuv ∀ b, u < v (4.5.19)

T (2− ybu − ybv) + sbv ≥ 1 + sbu + xbu − T (1− wuv) ∀ b, u > v (4.5.20)

N∑
b=1

πb ≤ B, and (4.5.21)

V∑
v=1

bybv ≥ λb,∀ b, (4.5.22)

V∑
v=1

bybv ≤ NV λb,∀ b, (4.5.23)

sbv, xbv, πb are nonnegative integers,

λb, wuv, ybv ∈ {0, 1} ∀ b, v.

The objective function and constraints (4.5.14) to (4.5.20) can be interpreted as in the

previous formulation. Constraint (4.5.13) ensures that the total number of cranes used

in the selected berths does not exceed the available number of cranes, and constraint

(4.5.21) ensures that the total number of berth sections used in the selected berths does

not exceed the number of berth sections in the quay. Constraints (4.5.22) and (4.5.23)

together ensure that a berth is created if and only if at least one ship is assigned to it.

In Subsection 4.6.2 we will present results for the application of the above formulation.

108 Chapter 4. Berth Assignment and Crane Scheduling at Ports

Figure 4.5: Solution to first subproblem with 21 ships. The red solid line is time
period 73.

4.5.4 Expanding the BCI Class

While the performance of BCI solutions appears to be satisfactory (see the next section

for the results of our numerical experiments), it is desirable to enlarge the class to include

better solutions. Towards this, we propose an approach to expand the BCI class in this

section. The idea is to break the planning horizon into two or three pieces at appropriate

places and use a BCI solution for each piece. The method will be described with an

example.

Consider BACASP with 40 ships with 168 one-hour time periods over one week. The

data are presented in Table 4.5 along with a picture of arrivals. We start by breaking the

Table 4.5: Data for 40-ship instance

v τv qv av v τv qv av v τv qv av v τv qv av

1 7 35 5 11 6 58 33 21 6 74 61 31 7 74 90

2 7 45 9 12 6 57 39 22 7 32 73 32 9 67 95

3 6 87 10 13 6 58 39 23 7 51 74 33 8 34 96

4 6 64 13 14 7 83 40 24 7 69 76 34 6 41 102

5 6 84 15 15 9 52 44 25 9 68 76 35 9 46 102

6 7 86 18 16 7 76 45 26 8 84 80 36 7 36 118

7 7 51 23 17 6 36 50 27 6 30 81 37 8 62 125

8 8 61 24 18 9 84 50 28 7 35 85 38 8 83 126

9 9 31 32 19 9 66 53 29 7 35 89 39 7 46 131

10 7 59 32 20 8 57 54 30 6 81 89 40 6 62 138

problem into two subproblems. From the picture of arrivals, we see that there is a large

gap between the 21st arrival (a21 = 61) and 22nd arrival (a22 = 73). So, we consider

two subproblems. In the first subproblem we consider only ships 1 to 21 and solve it.

The solution to the first subproblem is shown in Figure 4.5. The earliest arrival time of

4.5. Formulations 109

Figure 4.6: Final solution for the 40 ship problem

Figure 4.7: One-shot solution for the 40 ship problem

the second set of ships is 73. We take the planning horizon for the second subproblem

as 74 to 168 (time period 73 is left out for clearance). Since some or all of service

periods of ships 13, 15, 16, 18, 19 and 21 are falling into the planning horizon of second

subproblem, we delete these ships from the first subproblem and include them into the

second subproblem. Before solving the second subproblem, the first problem is solved

once again by dropping the six ships just mentioned. The last service time period in

the resulting solution turned out to be 64. Leaving one time period for clearance, we

revise the planning horizon of the second subproblem as 66 to 168. Further, we change

the arrival times of the six ships to 66 for solving the second subproblem.

When the problem is solved as a whole, the solver reported infeasibility. After ex-

tending the planning horizon to 200, the solver produced a feasible solution within a

minute. Best solution after four hours had objective value 4064 with three ships (38, 40

and 12) assigned beyond time period 168. Optimal solution used two berths - one with

cranes 1, 2, 3 and 4, 5, 6, 7. Figure 4.7 presents the solution pictorially.

110 Chapter 4. Berth Assignment and Crane Scheduling at Ports

4.6 Numerical Experiments

In this section we shall find BCI solutions to a number of instances. For all the instances,

we consider a planning horizon of 168 time periods and assume that all arrivals occur

during the time periods 1 to 150 as in Agra and Oliveira (2018). As the number of ships

increase, it would be difficult to fit them in the planning horizon with limited number

of cranes and berth sections (limited quay length). It will be necessary to consider the

instances with larger number of cranes and berth sections. Wang et al. (2018) consider

BACASP along with integration of yard management. They solve instances involving

number of ships up to 60. Therefore, for larger number of ships, we have taken number

of cranes and berth sections approximately similar to the instances considered in Wang

et al. (2018). In Subsection 4.6.1, we present the results of instances with heterogeneous

cranes. The results for homogeneous cranes are presented in Subsection 4.6.2. We used

LINGO 13.0 commercial solver on a computer with a CPU Intel(R) Core i7, with 16

gigabytes RAM to solve the instances.

4.6.1 Results for Instances with Heterogeneous Cranes

In Agra and Oliveira (2018), a number of instances were simulated for BACASP with

number of ships in the range of 7 to 40. For all these instances, simulation inputs are

as follows: (i) the number of berth sections is 34 and the number of cranes used is 7

with particulars as in Table 4.3, (ii) ship lengths varied from 6 to 9 berth sections, ship

workloads (cargo) varied from 3000 tons to 8800 tons, and (iii) arrival times from 1 to

150. For our numerical experiments of this subsection, we have considered two sets of

instances. For the first set, we have used the input parameters exactly as Agra and

Oliveira (2018) described in the above three steps. For the second set of instances we

have changed only the capacities of the cranes to test BACASP instances with a higher

heterogeneity among cranes.

In the first set, we have considered the instances with cases of ship numbers 15, 20, 30

and 40 (to have correspondence with the results of Table 5 in Agra and Oliveira (2018)).

With regard to simulation of arrival times, we simulated them completely randomly.

In their case, they fixed the initial arrivals selectively (for some arrivals) to test the

4.6. Numerical Experiments 111

performance of their methods. Since we do not have the complete data for instances of

Agra and Oliveira (2018), a direct evaluation of BCI solutions is not possible. However,

a broad picture can be assessed based on repeated instances. The results for the first

set of instances are presented in Table 4.6. Comparing the results for 15, 20 and 30 ship

cases (compare the average columns in Table 4.6), the performance is reasonably good.

Figure 4.8 presents the time to reach optimal or near optimal solutions.

In case of instances with 40 or more ships, solver exhibited infeasibility or was not

producing feasible solutions in many cases. This is expected because we are trying to

accommodate 40 ships in 168 time periods with just seven cranes. We had to break the

problem into two subproblems to solve the instances. We had terminated the solver to

find near optimal solutions as the solver could not find optimal solutions. Optimality

percentage is computed using the formula 100− 100(BFS−LB)
LB where BFS is the objective

value of the best feasible solution obtained by the solver at the time of terminating the

solver, LB is the lower bound produced by the solver at termination. For the case

of 40-ship instances, the objective values reported in Table 4.6 are the best solutions

found within 6 minutes. Comparing with the lower bounds provided by the solver, these

solutions are at least 80% optimal (the actual percentages are 87, 95, 81, 80 and 88).

Table 4.6: Results for first set of instances

No. of Instances Agra (2018)

ships 1 2 3 4 5 Avg a b c Avg

15 1264 1303 992 1024 1194 1155 1295 1331 1149 1258

20 1619 1689 1662 1666 1677 1663 1680 1654 1492 1609

30 2630 2764 2634 2555 2143 2454 2408 2313 2343 2355

40 3579 3645 3516 3619 3871 3646 2931 3253 3156 3113

For the second set of instances, we have taken the crane capacities as 219, 219, 263,

263, 263, 319 and 319 in that order. For this case, when the number of ships is 40, the

solver exhibited infeasibility consistently. Once again, this is expected as the number

of cranes is inadequate and added to this, the crane capacities have also been lowered

for two of the cranes compared to the earlier situation. The solver is stopped when

the solution is at least 95% optimal. The results for other instances with ship numbers

are presented in Table 4.7. Figure 4.9 presents the times to reach at least 95% optimal

solutions.

112 Chapter 4. Berth Assignment and Crane Scheduling at Ports

Figure 4.8: Time in seconds to reach optimal or near optimal solutions. The data
labels in the figure indicate the minimum optimality percentages.

Table 4.7: Objective values of best feasible solution with at least 95% optimal

No. of ships 1 2 3 4 5 Avg

15 1354 993 1021 1196 1292 1171

20 1512 1684 1680 1832 1437 1629

25 2230 2063 1943 1917 1933 2017

30 2354 2583 2607 2622 2872 2608

Figure 4.9: Results with crane capacities 219, 219, 263, 263, 263, 319 and 319. Time
(seconds) is to reach optimal or near optimal solutions. The data labels in the figure

indicate the minimum optimality percentages.

4.6.2 Results for Instances with Homogeneous Cranes

In this section also, we present results for two sets of instances with homogeneous cranes.

The first set corresponds to results presented in Table 6 of Agra and Oliveira (2018) and

the other set corresponds to instances with large number of ships. For all these instances,

4.6. Numerical Experiments 113

the common crane capacity is taken as 263.6 tons per hour. Results for the first instance

are presented in the last two columns of Table 4.8. The other columns are extracted from

Table 6 of Agra and Oliveira (2018) and presented for broad comparison. As before,

since we do not have the data for the instances of Agra and Oliveira (2018) instances,

the results cannot be compared directly but give an approximate picture.

Table 4.8: Results for first set of instances with homogeneous cranes

RPF RHH1 DRPF++ BCI

Inst v Opt BFS Time BFS Time BFS Time BFS Time

I1 7 125 125 1571 125 6 115 10 133 30

I2 8 223 224 3600 223 4 207 8 238 1

I3 8 129 135 3600 130 17 108 172 126 20

I4 10 328 347 3600 328 7 307 29 339 16

I5 10 204 259 3600 205 24 174 2 205 15

I6 12 441 459 3600 442 20 416 144 433 3

I7 12 283 414 3600 285 27 251 702 294 6

I8 15 562 576 3600 562 25 531 234 531 14

I9 15 506 542 3600 514 27 465 1555 566 2

Note: Inst - instance code as in Agra (2018); v = number of ships; Opt is optimum objective

value; BFS is objective value at the termination the time.

In the second set of instances, we have simulated data for larger number of ships

(35,40,45, 50 and 60). As we have observed earlier, when the number of ships is large

(40 or above), we require more cranes and berth sections. Therefore, we took the

parameters similar to the ones used in Wang et al. (2018). In Wang et al. (2018),

discrete BACASP was considered along with integration of yard management. They

consider homogeneous cranes with prefixed QC profiles from which selections are made.

We have used the formulation for homogeneous cranes presented in Subsection 4.5.3 to

find BCI solutions to the BACASP problems. For our purpose, we took the number of

cranes and number of berths from their instances for given number of ships. Then, from

the number of berths we took number berth sections as 9 times the number of berths

or slightly less than that. The arrivals are simulated between 1 and 150 randomly

and the workloads between 3000 tons and 9000 tons. The solver was terminated when

near optimal solutions were obtained. Optimality percentage is calculated as explained

earlier. When the number of ships was 60, the solver was not producing feasible solution.

Therefore, for this case we adapted a split technique which is explained below. The

number of time periods in the planning horizon for all the instances is 168.

114 Chapter 4. Berth Assignment and Crane Scheduling at Ports

When the number of ships is large, split the problem into subproblems. Consider the

case of 60 ships where the quay length is also 60. Split the quay into two parts, first

part from 1 to 30 berth sections and the second part consisting of berth sections 31 to

60. Distribute the ships into two groups so that ships in each group have less number of

ships wit h closer arrival times. Then solve the two subproblems independently. Finally,

club the two solutions to get a solution to the original problem. The problem with 60

ships shown in Table 4.9 is solved in this fashion. Figure 4.10 presents the solution thus

obtained.

Table 4.9: Results for second set of instances with homogeneous cranes

v N K B BFS LB Opt %

35 5 12 40 3101 2654 83

40 14 45 3629 3486 96

45 6 16 50 4115 3966 96

50 7 18 60 4599 4425 96

60 8 21 60 4887 4551 93

v =number of ships; N = number of berths; K = number of cranes;

BS: berth sections; Opt: optimality %; BFS: objective value of best feasible

solution at termination.

Figure 4.10: Solution to the 60-ship problem solved using split technique.

4.7 Summary

Berth allocation, crane assignment and crane scheduling problem is an important prob-

lem for ship transportation and has been studied extensively from optimization perspec-

tive. A number of variants of the problem have been studied in the literature and solution

4.7. Summary 115

methodologies are explored. We have considered the continuous berth allocation with

non-crossing constraints. Existing integer programming formulations for solving the

problem are complex and are not suitable for commercial solvers to find solutions to

practical problems particularly when the number of ships is large. In this chapter, we

have introduced a new class of solutions, the BCI class, for the problem and proposed

a compact integer linear programming formulation. The size of the problem (in terms

of number of variables and constraints) is much smaller compared to the formulations

for finding the global optimal solutions. Though BCI solutions are suboptimal, their

performance appears to be satisfactory with respect to the objective value of service

completion time. We have conducted a number of numerical experiments to evaluate

this aspect. Further, the speciality of these solutions is that they are desirable from the

view point of ease of implementation.

Chapter 5

Extension of Resource Scheduling

Models to Wind Power

Scheduling

5.1 Introduction

This study deals with providing methodology for determining strategies for optimal

utilization of wind power generation by private power producers under government con-

trolled trading mechanism. It helps in promoting renewable energy generation which is

gaining importance at an exponential rate. Several nations have come together in com-

bating the global warming which is posing a serious threat to mankind (Paris Agreement

at https://treaties.un.org). Renewable energy generation is a great source for mit-

igating global warming (see https://www.ucsusa.org/resources/benefits-renewab

le-energy-use). Besides mitigating global warming, it has several other benefits such

as power supplies to rural areas and industries, new employment opportunities, etc.

Figure 5.1 exhibits the windmill growth across the world over the past two decades (see

https://ourworldindata.org/renewable-energy). As of 2018, the global wind power

capacity stood at 591 GW (9.6% higher compared to the previous year) and contributed

to 4.8% of total electric power consumption.

117

https://treaties.un.org
https://www.ucsusa.org/resources/benefits-renewab
le-energy-use
https://ourworldindata.org/renewable-energy

118 Chapter 5. Extension of Resource Scheduling Models to Wind Power Scheduling

Following a spike in industrial energy consumption (at an average annual growth of

3.9% over the period 2010 to 2017 (International Energy Agency, Paris (2019)), India

advocated aggressive measures to promote renewable energy generation to reduce its

share of carbon emissions, and made changes to its National Electricity Policy. As of

2019, 35% of India’s installed electricity generation capacity is from renewable sources,

generating 17% of total electricity in the country (International Energy Agency (2019)).

The policy provides incentives to independent power producers (IPPs) to produce and

supply power from renewable sources (Ministry of Power (2005)). This has lead to

establishment of green power industries generating clean power commercially. One of

the measures initiated, the inter state transmission system (ISTS), allows industries to

produce clean power in any state and utilize power from government grid in that state

or other states according to an exchange trade mechanism with incentives of subsidised

tariffs. This chapter deals with a decision making problem for a large paper manufac-

turing company that is involved in this exchange trade mechanism. The company has

set up windmills at ideal locations, usually hilltops, which are far from the paper mills

of the company.

As per ISTS, the company supplies power from its windmills to the local grid and

draws power from grid nearer to its paper mills. According to the trade mechanism, the

company has to announce supply schedules to the grid at windmills 48 hours in advance.

The extent of power drawn from the grid at the paper mills during the same schedule

period is regulated by the schedule announced at the windmills. The decisions to be

made on the supply schedule and the power to be drawn from the grid nearer to the

paper mills depends on varying power demands of the paper mills and the deviations in

the actual supplies from the supply schedules committed at the windmills (the details

are described in Section 5.3).

The current literature on green power supply trading deals with schedule preparation

(known as unit commitment) and its management only. It has no exchange mechanism

business. As wind power largely depends on weather conditions, it fluctuates very much

over shorter periods of time. To circumvent this and supply regulated power, power

storage systems are deployed. The decision making problems, then, revolve around

the power generation control mechanisms and appropriate schedule preparations. The

problem studied in this chapter is new. The decision variables in the problem are: (i)

5.1. Introduction 119

Figure 5.1: Historic Development of Global Installation Capacity

the 15-minute power supply schedule over one-day planning horizon and (ii) the draw

schedule at the paper mill which involves deciding on splitting the planning horizon into

unknown spell lengths and the corresponding draw rates from the grid. The problem

turns out to be a combinatorial optimization problem with non-convex quadratic objec-

tive function. We tried to formulate the problem using dynamic programming model.

But one of the constraints of the problem prevents this approach. The problem in its

original form has decision variables that are functions of other decision variables. It is

not amenable to standard models available with the professional OR packages.

The main contribution of this chapter is our innovative approach in modelling the

problem. Our formulation uses a technique that was developed recently in the context of

solving task and staff scheduling problems (Lalita and Murthy (2020a)). We study the

properties of the solution to the windmill problem and provide necessary and sufficient

conditions for optimality of the solutions. Solutions to a number of real-life instances

of the problem are presented. An interesting side benefit of this application is that we

can extend this methodology to a problem of scheduling airport check-in counters for

departures (Lalita et al. (2020)).

The organization of the chapter is as follows. Section 5.2 presents a literature review

120 Chapter 5. Extension of Resource Scheduling Models to Wind Power Scheduling

on the windmill power optimization problems. Section 5.3 presents the description and

formulation of the problem. Section 5.4 presents some properties of the solutions of

the problem. Section 5.5 presents a reformulation of the problem that is amenable for

solving it. Section 5.6 presents the results of applying our methodology to real-life data

from the company. The chapter is concluded in Section 5.7 with a brief summary.

5.2 Literature Review

Most of the studies on wind power optimization in the existing literature deal with unit

commitment (UC) scheduling and handling the fluctuations in the power generation

(see Abujarad et al. (2017)). At the receiving end, the grid needs power for its end

users’ requirements which varies over time. This in turn gives rise to a demand pattern

over time. As wind power fluctuates with weather conditions, matching the required

demand pattern with wind power alone is not possible. To overcome this problem,

the IPPs use power from other sources in combination with generated wind power to

match the grid demand pattern. The choice of alternate source for balancing the supply

depends upon factors such as installed windmill capacity, capacity of alternate sources,

availability, etc. IPPs with high windmill capacities are prone to high fluctuations and

therefore should have access to alternate sources with high balancing capacities. Some

of the studies in the literature focus on problems of using wind power with alternate

sources such as thermal power (Reddy (2017)), solar power (Liang and Liao (2007)),

pumped storage units (Khatod et al. (2013)), energy storage devices (Tanabe et al.

(2008), Korpaas et al. (2003) or all of the above (Wang et al. (2013)). Wang et al. (2013)

have modeled the problem for an IPP with generation portfolio consisting of thermal,

hydro and wind power units and applied sample average approximation to obtain optimal

biding strategies for price based unit commitment of power. Liang and Liao (2007)

propose a fuzzy optimization approach for scheduling wind power generation. Their

objective is to minimize the thermal unit fuel cost in the presence of hydro, solar and

wind energy sources. Makarov et al. (2011) consider additional sources of uncertainty

in the system and therefore take into account the capacity, ramp rate and the ramp

duration requirements. Their model calculates the uncertainty ranges of each parameter

and ensures a reliable supply of dispatch at different time horizons. In other studies,

5.2. Literature Review 121

optimal reserves to be maintained in fuel cells are computed. Fuel cells are increasingly

being used for maintaining energy reserves and in ensuring constant power supply from

the wind mills (Tanabe et al. (2008)). Su et al. (2014) schedule microgrid energy in

the presence of renewable energy sources, storage devices and plug-in electric vehicles.

Korpaas et al. (2003) focus on scheduling and operation of energy storage for wind power

plants. Venkatesh et al. (2011) propose a mixed integer linear programming model for

frequency based unit commitment for a state utility in the presence of a pumped hydro

unit. Possible hourly energy deficit and associated drop in frequency is also modelled.

Catalão et al. (2012) provides optimal offering strategy for wind power producers to offer

wind energy in the day ahead market. In all the above studies, optimization methods

are used to optimally commit wind power with the objective of minimizing variation in

wind power supply from a wind power plant. Arlitt et al. (2012) propose methods to

achieve a net zero operations at a data center, i.e., total power consumption is less than

total renewable energy supply, given storage mechanism at the data center. There are

very few studies that attempt to match renewable supply to demand in the absence of

storage facilities. Following are some studies related to intermittent power scheduling

without storage mechanisms. Goiri et al. (2011), Goiri et al. (2015) propose a job

scheduler ‘Greenslot’ for a datacenter powered by solar energy and grid power. Jobs are

scheduled to maximize green energy consumption. The advantage of this type of job

scheduling in the absence of energy storage is that green energy wastage is minimized

and cost of battery storage and energy losses due to resistance in batteries etc are not

present. The authors aim at reducing costs while meeting as many deadlines as possible.

Li et al. (2012) propose a supply switching scheduler - iSwitch. The authors discuss a

supply optimization scheme and a demand smoothing scheme on load-side. The authors

propose load matching with the energy source in operations of data centers. At times

of low wind power, power supply source switches to utility draw and when enough wind

power is available, the power supply source switches again. This is the first paper to

introduce a supply-load cooperative scheme. Moreover, these schedulers match variable

demand to intermittent supply.

From our literature study, we have not found any article that deals with the type

of problem considered in this chapter. The main distinction of our problem with those

considered in the literature is that we have the freedom of defining spells in an optimal

122 Chapter 5. Extension of Resource Scheduling Models to Wind Power Scheduling

way. This problem does not arise for the problems in the current literature. Our

methodology may be useful in the selection of alternate sources by way of determining

desirable spells in the planning horizon. We will take up this problem in a separate

study.

5.3 Problem Description and Formulation

For ease and convenience of description and presentation of the problem, the basic

terminology and notation are summarized in Table 5.1. Refer to this table for the terms

used in this chapter. Unless stated otherwise, the terms supply, demand and draw stand

for the rate of electrical power measured in megawatts (MW). The decision making

problem for the company in question involves two establishments: (i) a windmill that

generates power and supplies to the grid at the windmill location, and (ii) a paper mill

that draws power from the grid G at the paper mill location. Decisions are made for

one day planning horizon T based on forecasted power generation x̂js at the windmill.

The decisions are to be made two days ahead of time. At the windmill, the company

has to declare the power supply (s1, s2, . . . , s96) to the distribution company (DISCOM).

At the paper mill, the company is allowed to draw power from the local grid G during

the planning horizon. For this, the company divides the planning horizon into a split

h̃ = (h̃1, h̃2, . . . , h̃k). Due to operational constraints, the spell lengths must be at least 16

and the number of spells cannot exceed 4 (this essentially means that draw rate cannot

be changed more than three times a day). According to the power trade-off rules, the

paper mill can draw power from G and the draw rate αi during any spell h̃i cannot

exceed sj in time period j.

Operations at the Mills

At windmill, the company has 16 windmill turbines each with a capacity of 2 MW of

power generation. Actual power supply rate of all turbines put together, xj , in time

period j depends upon the prevailing wind forces. Using a statistical mechanism, xjs

are forecasted (as x̂js) two days ahead of time. As there is no storage facility at the

windmill, the generated power xj is supplied to the DISCOM. Since the declaration of

sjs is to be made 48 hours in advance, the decisions are made based on the assumption

5.3. Problem Description and Formulation 123

T
a
b
l
e

5
.1

:
N

o
ta

ti
o
n

N
o
ta

ti
o
n

/
te

rm
D

es
cr

ip
ti

o
n

B
a
n

d
G

B
p

a
p

er
m

il
l

p
o
w

er
p

la
n
t,
G

p
o
w

er
g
ri

d
a
t

p
a
p

er
m

il
l

U
l,
l

=
0
,1
,2
,.
..
,m

P
o
w

er
co

n
su

m
in

g
u

n
it

s
a
t

th
e

p
a
p

er
m

il
l;
U

0
is

st
a
ti

c
w

h
ic

h
ca

n
n

o
t

b
e

co
n

n
ec

te
d

to
g
ri

d
d

ir
ec

tl
y
;

o
th

er
U
ls

a
re

d
y
n

a
m

ic
w

h
ic

h
ca

n
b

e
co

n
n

ec
te

d
ei

th
er

to
B

o
r

to
G

.

T
=
{1
,2
,.
..
,9

6
}

P
la

n
n

in
g

h
o
ri

zo
n

:
1
5
-m

in
u

te
ti

m
e

p
er

io
d

s
st

a
rt

in
g

fr
o
m

0
0
:0

0
h

o
u

rs
;

j
st

a
n

d
s

fo
r
jt
h

ti
m

e
p

er
io

d
,
j

=
1
,2
,.
..
,9

6

S
p

li
t

h̃
=

(h̃
1
,h̃

2
,.
..
,h̃
k
),

sp
el

ls
(h̃
i
s)

a
n

d
sp

el
l

le
n

g
th

s
h
i
s

A
sp

li
t
h̃

is
a

b
re

a
k

u
p

o
f

p
la

n
n

in
g

h
o
ri

zo
n

in
to

b
lo

ck
s

o
f

co
n
ti

g
u

o
u

s
ti

m
e

p
er

io
d

s,
h̃

1
=

[1
,2
,.
..
,h

1
],
h̃

2
=

[h
1

+
1
,h

1
+

2
,.
..
,h

1
+
h

2
],
..
.,
h̃
k

=
[h

1
+
..
.
+
h
k
−

1
+

1
,.
..
,9

6
].

E
a
ch

b
lo

ck
h̃
i

is
ca

ll
ed

a
sp

el
l;
h
i

is
th

e
le

n
g
th

o
f

sp
el

l
h̃
i
.

E
x
a
m

p
le

:
h̃

=
(h̃

1
,h̃

2
,.
..
,h̃

4
),

h̃
1

=
[1
,.
..
,2

4
],
h̃

2
=

[2
5
,.
..
,4

4
],

h̃
3

=
[4

5
,.
..
,7

0
],
h̃

4
=

[7
1
,.
..
,9

6
].

In
d

ic
es
i,
j,
l

i
st

a
n

d
s

fo
r

sp
el

l
n
u

m
b

er
,
j

fo
r

ti
m

e
p

er
io

d
a
n

d
l

fo
r

p
o
w

er
u

n
it

s
a
t

p
a
p

er
m

il
l.

q l
j

P
o
w

er
d

em
a
n

d
(i

n
M

W
)

o
f

u
n

it
U
l

in
ti

m
e

p
er

io
d
j.

Q
j

=
∑ m l=

0
q l
j

T
o
ta

l
d

em
a
n

d
o
f

a
ll

u
n

it
s

in
ti

m
e

p
er

io
d
j.

Q
j
(α
i
)

E
ff

ec
ti

v
e

d
ra

w
fr

o
m
G

d
u

ri
n

g
sp

el
l
h̃
i
,

w
h

er
e
α
i

is
th

e
m

a
x
im

u
m

a
ll
o
w

ed
d

ra
w

fr
o
m
G

d
u

ri
n

g
sp

el
l
h̃
i
.

α
0

T
h

re
sh

o
ld

fo
r

co
n

n
ec

ti
n

g
G

a
n

d
B

;
if
α
i
>
α

0
,

th
en

co
n

n
ec

t
G

to
B

,
el

se
co

n
n

ec
t
G

to
se

le
ct

ed
d

y
n

a
m

ic
u

n
it

s
d

ir
ec

tl
y.

α
0
1
,α

0
2
,.
..
,α

0
g

P
o
ss

ib
le

d
em

a
n

d
s

fr
o
m

d
y
n

a
m

ic
u

n
it

s;
0
<
α

0
b
<
α

0
(b

+
1
)
,b

=
1
,2
,.
..
,g
−

1
,
α

0
g

=
α

0
.

η
B

C
o
st

o
f

p
a
p

er
m

il
l

p
o
w

er
in

ru
p

ee
s

p
er

m
eg

a
w

a
tt

h
o
u

r
(M

W
h

).

η
G

C
o
st

o
f

g
ri

d
p

o
w

er
in

ru
p

ee
s

p
er

m
eg

a
w

a
tt

h
o
u

r
(M

W
h

).

s̃
=

(s
1
,.
..
,s

9
6
)

s j
is

p
o
w

er
su

p
p

ly
co

m
m

it
te

d
fo

r
ti

m
e

p
er

io
d
j

a
t

w
in

d
m

il
l.

α̃
=

(α
1
,.
..
,α
k
)

α
i

is
th

e
m

a
x
im

u
m

p
o
w

er
d

ra
w

a
ll
o
w

ed
fr

o
m
G

d
u

ri
n

g
sp

el
l
i,
i

=
1
,.
..
,k

.

x̃
=

(x
1
,.
..
,x

9
6
)

x
j

is
th

e
a
ct

u
a
l

p
o
w

er
su

p
p

ly
d

u
ri

n
g

ti
m

e
p

er
io

d
j

a
t

w
in

d
m

il
l.

x̃
i
,
s̃ i

S
u

b
v
ec

to
rs

o
f
x̃
,
s̃

co
n

fi
n

ed
to
h̃
i

re
sp

ec
ti

v
el

y,
i

=
1
,.
..
,k

.

x̂
j
,
j

=
1
,2
,.
..
,9

6
F

o
re

ca
st

o
f
x
j
.

ỹ
=

(y
1
,.
..
,y
k
)

y
i

=
1

if
G

is
co

n
n

ec
te

d
to
B

d
u

ri
n

g
sp

el
l
h̃
i
,

=
0

o
th

er
w

is
e.

ũ
i

=
(u
i1
,.
..
,u
ig

)
u
ib
∈
{0
,

1
},

∑ g b=
1
u
ib
≤

1
.

124 Chapter 5. Extension of Resource Scheduling Models to Wind Power Scheduling

that xj = x̂j for all j. The deviation dj = xj − sj results in a penalty/gain to the

company during each time period j. This penalty/gain is governed by a continuous

piecewise linear function given by (5.3.1). Note that gain is treated as negative penalty.

Cp(d) =



10336− 1105(d+ 11.2), if − 32 ≤ d < −11.2,

7072− 1020(d+ 8), if − 11.2 ≤ d < −8,

4080− 935(d+ 4.8), if − 8 ≤ d < −4.8,

−850d, if − 4.8 ≤ d < 0,

−850d, if 0 ≤ d < 4.8,

−4080− 765(d− 4.8), if 4.8 ≤ d < 8,

−6528− 680(d− 8), if 8 ≤ d < 11.2,

−8704− 595(d− 11.2), if 11.2 ≤ d ≤ 32.

(5.3.1)

At the paper mill, the company has its own power plant B, known as boiler plant,

generating thermal power produced from the lignin of wood. In addition, the company

has the option to use power from the local grid G in a limited way according to the

trade-off rule (the draw rate in any time period j cannot exceed sj). Further, due to

operational constraints, the power draw αi during any spell h̃i cannot be changed. The

demand for power at the paper mill arises from its units Ul, l = 0, 1, 2, . . . ,m. The units

are classified into two categories - the static units and the dynamic units. The static

units cannot be connected to G directly, whereas the dynamic units can be connected to

either B or G but their connection cannot be interrupted during a spell. For the purpose

of this study we may assume that there is only one static unit, U0. Unit Ul requires

power at the rate of qlj MW in time period j. With regard to using grid power, the

company has the following options. During any spell h̃i of a split, G is connected to B or

a selected subset of dynamic units are connected to G directly. When G is connected to

B, B incurs an additional consumption of 2 MW to synchronize with the grid frequency.

The effective utilization of draw from G depends on the type of connection. If αi is the

draw from G during a spell h̃i, it is fully utilized when G is connected to B; otherwise

its utilization is limited only to the demand of the dynamic units connected to G during

the spell.

5.3. Problem Description and Formulation 125

Cost Trade-off and Objective

According to the existing trade-off rules under ISTS, the company can draw power from

G in lieu of the power supply at windmill. In order to avail this facility, the company

incurs a cost of ηG
4

∑96
j=1 sj at the windmill. Since ηB > ηG , by declaring higher sjs, the

company can draw more power from G at the paper mill at a lower cost. But this results

in higher payment at the windmill. At windmill, the company has to pay for
∑96

j=1 sj

plus the penalty for the deviations. The total cost to the company at windmill is given

by

φW (s̃) =
ηG
4

96∑
j=1

sj +
96∑
j=1

Cp(xj − sj). (5.3.2)

On the other hand, the cost to the company at paper mill in a spell h̃i depends on the

power generated from B which in turn depends on the power draw from G. Based on

the utilization possibilities, there is a threshold α0 for draw from G. If the draw from G

is less than or equal to α0, then some selected dynamic units are connected to G directly

to utilise as much of power from G as possible; other wise G is connected to B. In the

present problem α0 = 14.3.

Consider a spell h̃i of length hi. According to the trade rules, draw from G in the spell

cannot exceed minimum of sjs in the spell. If this minimum is less than the threshold α0,

then the effective draw from G is limited to the demand of a selected subset of dynamic

units so that their demand is closest to the minimum of sjs in the spell. The demand

from paper mill during a time period j in the spell is equal to Qj . The power generation

requirement from B during time period j is equal to Qj minus the effective draw of the

power scheduled from G. The effective draw is a function of the minimum of sjs and the

threshold α0. This function is given by (5.3.3).

Qj(αi) =


αi − 2, if αi > α0

max
V⊆{1,2,...,m}{µ =

∑
l∈V qlj : µ ≤ αi, }, otherwise.

(5.3.3)

When αi > α0, the effective draw is reduced by 2MW (lost for synchronization). For

αi ≤ α0, the effective draw is a step function of αi. To see this, let 0 = α01 < α02 < . . . <

α0g = α0−2 be the distinct possible values of {µ =
∑

l∈V qlj : µ ≤ αi, V ⊆ {1, 2, . . . ,m}}.

126 Chapter 5. Extension of Resource Scheduling Models to Wind Power Scheduling

Then, we can rewrite

Qj(αi) =


αi − 2, if αi > α0

F (αi), otherwise,

(5.3.4)

where

F (αi) = max{α0b : α0b ≤ αi, 1 ≤ b ≤ g, }

= max

{
µ : µ =

g∑
b=1

α0buib ≤ αi,
∑
b

uib = 1, uib ∈ {0, 1}

}
(5.3.5)

Using indicator variable yi which is 1 if αi > α0, we can write

Qj(αi) = yi(αi − 2) + (1− yi)F (αi) (5.3.6)

When yi = 1 we must have uib = 0 for all b. In other words, we must have yi+
∑g

b=1 uib =

1 or
∑g

b=1 uib = 1− yi for each i. Further, at the border case αi = α0, the values of the

two expressions of (5.3.4) are equal. Therefore, the effective draw in this case is same

irrespective of whether yi = 0 or yi = 1. Note that Qj(αi) is the reduction in the power

generation demand from B, and hence it should be maximized as grid power is cheaper

compared to plant power. The cost to the company at paper mill is given by

φP (h̃, s̃, α̃) =
ηB
4

k∑
i=1

∑
j∈h̃i

(Qj −Qj(αi)) (5.3.7)

The overall cost to the company in the planning horizon is given by

φW (s̃) + φP (h̃, s̃, α̃) (5.3.8)

Constraints

Note that a split can be uniquely identified with a positive integer k (the number of

spells) and an integer vector h = [h1, h2, . . . , hk] where hi is the length of ith spell h̃i.

In the current problem the number of spells cannot exceed 4 and hence we must have

k ≤ 4. We must have hi ≥ 16 and
∑k

i=1 hi = 96. From the trade-off rules, we must

have αi ≤ sj for any j in spell h̃i. The decision variables in the problem are k, his, sjs,

αis and uibs. In order to discourage large deviations, |xj − sj |s, a gaming constraint is

imposed. The gaming constraint is imposed on the overall deviations through an upper

5.3. Problem Description and Formulation 127

bound on the sum of absolute penalties as follows.

96∑
j=1

|Cp(xj − sj)| ≤ β, (5.3.9)

where β is specified by the DISCOM. At present β = 33750. There is another constraint

that arises from the power plant B. Power plant cannot be operated to produce power

below a certain threshold. This in turn limits the power drawn from G during any spell

to a maximum of 22 MW. The complete formulation of the company’s decision making

problem is presented in (5.3.10) to (5.3.24).

Constraints (5.3.18), (5.3.19) and (5.3.22) ensure that yi = 1 if, and only if, αi ≥

α0. Under the minimization of the objective function subject to constraints (5.3.18) to

(5.3.22), the expression yi(αi − 2) + (1 − yi)F (αi) will be equal to Qj(αi). Therefore,

the objective function in (5.3.10) is same as the one in (5.3.8). Constraints (5.3.16) and

(5.3.17) ensure that draws do not exceed the declared supplies at the windmill during

the respective time periods. The gaming constraint (5.3.11) can be converted to linear

constraints using the standard trick of writing a real number r as difference of two

nonnegative numbers (r = r+ − r−) and its absolute value as the sum of the numbers

(|r| = r+ + r−). Other constraints in the formulation are self explanatory. It can be

observed that the objective function is a non-convex quadratic function.

The windmill problem: Px̃(h̃, s̃, α̃, ỹ, ũ)

Minimize
ηG
4

96∑
j=1

sj +

96∑
j=1

Cp(xj − sj)

+
ηB
4

k∑
i=1

∑
j∈h̃i

{Qj − [yi(αi − 2) + (1− yi)F (αi)]} (5.3.10)

subject to

96∑
j=1

|Cp(xj − sj)| ≤ β, (5.3.11)

hi ≥ 16, i = 1, 2, . . . , k, (5.3.12)

k ≤ 4, (5.3.13)

k∑
i=1

hi = 96, (5.3.14)

128 Chapter 5. Extension of Resource Scheduling Models to Wind Power Scheduling

αi ≤ 22 for all j ∈ h̃i, i = 1, 2, . . . , k, (5.3.15)

αi ≤ sj for all j ∈ h̃i, i = 1, 2, . . . , k, (5.3.16)

g∑
b=1

α0buib ≤ sj for all j ∈ h̃i, i = 1, . . . , k, (5.3.17)

αi ≥ α0yi for all i = 1, 2, . . . , k, (5.3.18)

αi ≤ α0(1− yi) + 22yi, for all i = 1, 2, . . . , k, (5.3.19)

g∑
b=1

α0buib ≤ αi for i = 1, 2, . . . , k, (5.3.20)

g∑
b=1

uib = 1− yi for all i = 1, . . . , k, (5.3.21)

uib, yi ∈ {0, 1} for i = 1, 2, . . . , k; b = 1, . . . , g, (5.3.22)

h1, h2, . . . , hk and k are nonnegative integers, (5.3.23)

αi ≥ 0, i = 1, 2, . . . , k. (5.3.24)

Definition 5.3.1. If (h̃, s̃, α̃, ỹ, ũ) is an optimal solution to Px̃(h̃, s̃, α̃, ỹ, ũ), then call h̃

as optimal split.

5.4 Analysis

Consider the windmill problem Px̃(h̃, s̃, α̃, ỹ, ũ). We have partially reduced the complex-

ity of this problem by converting some of the nonlinear expressions to linear ones. But

the major challenge of solving the problem stems from the decision variables hk and k.

The problem here is that the decision variable k appears as an index of another decision

variable and it also appears as a limit in summation expression. There are no tem-

plates or standard models available in the professional OR packages to solve this type

of problems. The novelty of our solution approach is in our solution methodology for

this problem. Before we present this (in the next section), we observe some interesting

properties of the problem. These are presented in the following propositions.

Proposition 5.4.1. The problem Px̃(h̃, s̃, α̃, ỹ, ũ) has an optimal solution.

Proof. The arguments h̃ and ỹ are discrete and belong to a finite set, and α̃ and s̃

are continuous and belong to a compact set. Thus, the feasible region is a nonempty

5.4. Analysis 129

compact set. Since the objective function is continuous, the problem has an optimal

solution. 2

Proposition 5.4.2. Suppose (h̃, s̃, α̃, ỹ, ũ) is an optimal solution for the windmill prob-

lem. Then for each i,

(i) sj = αi for all j such that j ∈ h̃i and xj ≤ αi, and

(ii) sj ≤ xj for all j such that j ∈ h̃i and xj ≥ αi.

Proof. Let s̃? be defined by s?j = αi if j ∈ h̃i and xj ≤ αi, s
?
j = xj if j ∈ h̃i, xj ≥ αi

and sj > xj ; and s?j = sj otherwise, i = 1, . . . , k. It can be checked that (h̃, s̃?, α̃, ỹ, ũ)

is a feasible solution and its objective value is strictly less than that of (h̃, s̃, α̃, ỹ, ũ)

if {j : s?j 6= sj} 6= ∅. Assertions (i) and (ii) follow from this and the optimality of

(h̃, s̃, α̃, ỹ, ũ). 2

Proposition5.4.3 plays crucial role in the construction of our algorithm for solving

the windmill problem. For this, we need the concept of ε-optimal solutions where ε is

any positive number for the windmill problem.

Definition 5.4.1. Consider the windmill problem with optimum objective value z0. Say

that a solution to the problem with objective value z is an ε-optimal solution provided

(i) it satisfies all the constraints except the gaming constraint and the gaming con-

straint is violated by at most ε, that is,

96∑
j=1

|Cp(xj − sj)| ≤ β + ε, and

(ii) z < z0 + ε.

Proposition 5.4.3. Suppose (h̃, s̃, α̃, ỹ, ũ) is an optimal solution for the windmill prob-

lem. Then there exist s̃? and α̃? such that (h̃, s̃?, α̃?, ỹ, ũ) is an ε-optimal solution to the

windmill problem with α?i > 0 for all i.

Proof. Suppose αi = 0 for some i. Since
∑

j∈h̃i sj and
∑

j∈h̃i Cp(xj−sj) are continuous

functions of sjs, small increase in sjs will result in small changes in these two functions in

130 Chapter 5. Extension of Resource Scheduling Models to Wind Power Scheduling

a continuous fashion. Let β̄i =
∑

j∈h̃i |Cp(xj−sj)| which is the sum of gain plus penalty

of the spell h̃i. From Proposition 5.4.2, we have αi ≤ sj ≤ xj for all j ∈ h̃i. This implies

that all time periods in h̃i result in gain only and not in penalty. Therefore, if we push

sjs towards respective xjs, then the gain is non-increasing and penalty is non-decreasing

(if xj = 0 then raising sj will result in increasing penalty; and if xj > 0, then increasing

sj results in reduction in gain). Note that the third component of the objective function

involving Q(αi) is a constant (as Q(α) = 0 for all α sufficiently small) and will remain

the same for small changes in sjs of the spell. Therefore, we can increase all zero sjs to

a positive level so that the change in the objective value of (h̃, s̃, α̃, ỹ, ũ) is less than ε

and the change in the penalty plus gain of (h̃, s̃, α̃, ỹ, ũ) is less than ε. It follows that we

can increase αi to a positive level ensuring that the change in objective value and in the

sum of penalty plus gain of (h̃, s̃, α̃, ỹ, ũ) is at most ε. As this procedure can be applied

to all spells with zero αis, the conclusion of the proposition follows. 2

The application of the above proposition is that we can solve for ε-optimal solutions.

This helps us in getting near optimal solutions to the windmill problem. Note that if

(h̃, s̃, α̃, ỹ, ũ) is an optimal solution and if αi = 0 for some i, then it is possible to get

an ε-optimal solution even without violating the gaming constraint provided each spell

with αi = 0 has at least one positive xj . If xj > 0, then there is scope for reducing gain

which can be used for off setting the increasing penalty arising out of increasing zero-sjs

towards positive side. If β̄i > 0, then there must be at least one positive xj in h̃i. Also,

if there is no spell of length 16 or above in planning horizon with all x̂js zero, then we

can get ε-optimal solutions without violating the gaming constraint.

The following proposition is about the stability of the solution. If (h̃, s̃, α̃, ỹ, ũ) is an

optimal solution for an input vector x̃, then it is also optimal for the problem with any

other input vector x̃? which is obtained by permuting elements of x̃ within the spells.

Proposition 5.4.4. Suppose (h̃, s̃, α̃, ỹ, ũ) is an optimal solution for the windmill prob-

lem with input x̃. Suppose x̃? is such that {xj : j ∈ h̃i} = {x?j : j ∈ h̃i} for all i. Then,

(h̃, s̃, α̃, ỹ, ũ) is optimal for the windmill problem with input x̃?.

Proof. Follows from the fact that all the three terms of the objective function (5.3.10)

are invariant under the said permutations. 2

5.4. Analysis 131

5.4.1 The Spell Subproblems Px̃i(s̃i, αi, yi, ũi, β̄i)

For a given a spell h̃i, let x̃i, s̃i and ũi denote the subvectors of x̃, s̃ and ũ confined to

h̃i respectively. Let β̄i be a nonnegative number (an input to the subproblem). Define

the ith spell subproblem Px̃i(s̃i, αi, yi, ũi, β̄i) as:

Minimize
ηG
4

∑
j∈h̃i

sj +
∑
j∈h̃i

Cp(xj − sj)

+
ηB
4

∑
j∈h̃i

{Qj − [yi(αi − 2) + (1− yi)F (αi)] (5.4.1)

subject to

96∑
j=1

|Cp(xj − sj)| ≤ β̄i, (5.4.2)

αi ≤ 22 for all j ∈ h̃i, (5.4.3)

αi ≤ sj for all j ∈ h̃i, (5.4.4)

g∑
b=1

α0buib ≤ sj for all j ∈ h̃i, (5.4.5)

αi ≥ α0yi, (5.4.6)

αi ≤ α0(1− yi) + 22yi, (5.4.7)

g∑
b=1

uib = 1− yi, (5.4.8)

uib ∈ {0, 1} for b = 1, . . . , g, (5.4.9)

yi ∈ {0, 1}, αi ≥ 0 (5.4.10)

The speciality of the spell subproblem is that the αi value determines the rest of the

solution. Firstly, yi is fixed depending upon whether αi > α0 or not. To see that sjs are

also determined once αi is fixed, observe that the properties stated in Proposition 5.4.1

and Proposition 5.4.2 also apply to the spell subproblems. Therefore, for any solution

to be optimal for the spell subproblem, we must have αi ≤ sj ≤ xj for all j such that

xj ≥ αi, and for j such that xj ≤ αi, sj = αi. So, if αi is fixed, then all sjs that result

in penalty are fixed at αi, and the other sjs that result in gain are adjusted to maximize

the gain subject to constraint (5.4.2). Note that increasing gain results in reducing the

first two components of the objective function. The third component of the objective

132 Chapter 5. Extension of Resource Scheduling Models to Wind Power Scheduling

function is anyway the function of αi only. Therefore, fixing αi determines the objective

value in a unique way. We shall illustrate these ideas with an example. Take β̄ = 6000.

Table 5.2 presents a spell of 17 time periods, 1 to 17, with xjs and two feasible solutions.

The first solution has α1 = 6 and the corresponding sj values in the third row (against

the α1 value 6). The second solution has α1 = 6.343 and the corresponding values of

sjs are presented in the against 6.343. For α1 = 6, the penalty is 4250 and the gain is

1750. For α1 = 6.343, the penalty is 6000 and the gain is zero. Therefore, in this case,

sj = xj for all time periods resulting in gain. For the case α1 = 6, penalty is fixed at

4250. Therefore, we adjust the s7, s8 and s9 to make up for the gain 1750. Thus, for

this spell subproblem, a feasible solution must have α1 ≤ 6.343.

Table 5.2: Example of a spell subproblem: sj values for two different α1s

TP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

xj 5 5 5 5 5 6 7 7 8.00 9 10 10 11 12 13 13 14

6 α1 α1 α1 α1 α1 α1 6 6 7.94 9 10 10 11 12 13 13 14

6.343 α1 α1 α1 α1 α1 α1 7 7 8.00 9 10 10 11 12 13 13 14

Note: TP = time period; β̄ = 6000 for this problem; the first 6 time periods result in penalty

for both cases of α1.

Given a split, the spell subproblems are independent, and they can be solved using

the above formulation under two different cases: yi = 0 and yi = 1. Under these special

cases, the formulation is a mixed integer linear programming problem. A plausible solu-

tion to the main problem may be obtained by concatenating spell subproblem solutions.

However, the feasibility/optimality of solutions thus obtained may not hold good for the

main problem. The following proposition provides a sufficient condition for a solution

to be optimal for the windmill problem.

Proposition 5.4.5. Suppose h̃ is an optimal split for the windmill problem and optimal

solutions of the spell subproblem with respect to h̃ satisfy the condition that
∑k

i=1 βi ≤ β,

then the solution obtained by concatenating spell subproblem solutions is an optimal

solution for the main problem.

Proof. Follows from the fact that the objective function of the main problem is sum

of the nonnegative objective functions of the spell subproblems. If the concatenated

solution is not optimal for the main problem, then it will lead to the contradiction that

one of the solutions of the spell subproblems is not optimal. 2

5.5. Solving the Windmill Problem 133

The following proposition provides a necessary condition for optimal solutions of the

windmill problem. Suppose (h̃, s̃, α̃, ỹ, ũ) is a feasible solution to the windmill problem.

Let β̄i be the sum of penalty plus gain for the ith spell subproblem corresponding to

(h̃, s̃, α̃, ỹ, ũ).

Proposition 5.4.6. If (h̃, s̃, α̃, ỹ, ũ) is optimal for the windmill problem, then for each

i, (s̃i, αi, yi, ũi) is optimal for Px̃i(s̃i, αi, yi, ũi, β̄i).

Proof. Follows from the fact that the subproblem are independent for a given split. 2

5.5 Solving the Windmill Problem

We shall now present our approach to solve the windmill problem. We use a technique

that was developed to solve the integrated task and staff scheduling problem (ISTSP)

(see Lalita and Murthy (2020a)). We shall briefly recall the model of the problem and

the solution approach. Then, we draw a parallel to the windmill problem. We shall

restrict the description to a special case of ISTSP in which tasks scheduling is not a

part of the problem. In the problem, we are given the number of workers required in

each time period of a planning horizon. Staff (workers) work according to shifts. A

Shift is a vector of contiguous time periods in the planning horizon. Shifts may vary in

their duration (duration specified as the number of time periods). A shift schedule is a

shift starting at a specific time period of the planning horizon. For example, consider a

shift with a duration of 20 time periods. If this starts at time period 1, a worker who

is assigned this shift will be available for work during the time periods 1 to 20. This is

one shift schedule. If the same shift starts at time period 31, it will be considered as

another shift schedule. A worker who is assigned this shift schedule will be available for

work during the time periods 31 to 50. Once the shift schedules are assigned to a set of

workers, we can figure out how many workers are available during each time period. In

ISTSP, a cost is associated with each shift schedule, and one of the problems there is to

assign shift schedules to workers so that the required number of workers are available in

each time period with an objective of minimizing the associated cost. The optimization

problem here is to determine the optimal shift schedules and the number of workers

assigned to each of them.

134 Chapter 5. Extension of Resource Scheduling Models to Wind Power Scheduling

We adapt the above model to solve the windmill problem. We identify a shift with

a spell. The duration of the shift is the length of the spell. In order to reformulate the

problem we need to define new variables. Define indicator variables whj , where whj is

1 if a new spell of length h is started in time period j. Notice that the variables whj

are defined for h = 16 to 96, and j for 1 to 96 only. This is for convenience of the

formulation. Define the binary array of variables w = (whj) for h and j in the above

specified range. Any split with minimum spell length 16 can be represented by the

binary array of variables w satisfying conditions (5.5.1) to (5.5.4), and any w satisfying

the conditions yields a split with spells having length at least 16.

96∑
j=1

96∑
h=16

hwhj = 96, (5.5.1)

96∑
j=1

96∑
h=16

whj ≤ k, (5.5.2)

j∑
j′=1

96∑
h=max(16, j−j′+1)

whj′ = 1, for j = 1, 2, ..., 96 (5.5.3)

whj ∈ {0, 1} for h = 16, 17, . . . , 96, j = 1, 2, . . . , 96. (5.5.4)

Constraint (5.5.1) ensures that the sum of the spell lengths is 96, (5.5.2) ensures that

there are at most k spells and (5.5.3) ensures that every time period j is covered by

exactly one spell (and hence no overlapping). Further, (5.5.1) and (5.5.3) together

ensure that spell lengths are at least 16. The spell starting periods are the positive

jwhjs and their lengths are the positive hwhjs. Let the spell starting periods in the

ascending order, be j1(= 1), j2, . . . , jk. Let the corresponding lengths be denoted by

h1, h2, . . . , hk. Next, we define the draw decision variables. Let λhj be the power to

be drawn from G during a spell of length h that starts in time period j. Let ε be any

positive number less than α02. Consider the following constraints.

λhj ≥ εwhj , for all h, j, (5.5.5)

λhj ≤ 22whj , for all h, j, (5.5.6)

The above two constraints ensure that λhj > 0 if, and only if, whj = 1. From

(5.5.3),
∑j

j′=1

∑96
h=max(16, j−j′+1)whj′ = whiji for some i, 1 ≤ i ≤ k. Let λj =

5.5. Solving the Windmill Problem 135

∑j
j′=1

∑96
h=max(16, j−j′+1) λhj′ = λhiji for some i, 1 ≤ i ≤ k. From the definition of

λhj , λj′ = λj for all j′ that belong to the spell that starts in j 1. Thus, draw from

G remains unchanged in each spell. For the purpose of modelling, we need to define

connection status between G and B (yis) for each time period. For this, we replace the

constraints (5.3.18) and (5.3.19) with λj ≥ α0ȳj and λj ≤ α0(1− ȳj) + 22ȳj , where ȳjs

are the indicator variables which are 1 if G and B are connected in the time period j.

The windmill problem is reformulated in (5.5.7) to (5.5.20).

The main feature of the revised formulation is that it does not involve the spell

variables his, h̃is and the number of spells variable k. Constraint (5.5.17) insists that

λhj > 0. This adds additional constraints to the original problem. We solve the problem

by choosing ε positive and less than α02. In the light of Proposition 5.4.3, any optimal

solution to the revised formulation is an ε-optimal for the original problem. Note that

the we should have used the term (1 − ȳj)F (λj) in the objective function, but 1 − ȳj

is redundant here. This is because when ȳj = 1, F (λj) = 0 as all ujbs are equal to

zero under constraint (5.5.13). As λj remains unchanged during any spell, constraints

(5.5.11) and (5.5.12) force ȳjs to remain unchanged within spells.

The windmill problem (revised formulation): Px̃(h̃, s̃, α̃, ỹ, ũ)

Minimize
ηG
4

96∑
j=1

sj +
96∑
j=1

Cp(xj − sj)

+
ηB
4

96∑
j=1

{Qj − [ȳj(λj − 2) + F (λj)]} (5.5.7)

subject to

96∑
j=1

|Cp(xj − sj)| ≤ β, (5.5.8)

λj ≤ sj , for j ∈ T, (5.5.9)

g∑
b=1

α0bujb ≤ λj , for j ∈ T, (5.5.10)

λj ≥ α0ȳj for j ∈ T, (5.5.11)

1Suppose j? is in the spell of length h that starts in j. This means j? ≥ j. We have λj? =∑j?

j′=1

∑96
h′=max(16, j?−j′+1) λh′j′ ≥ λhj (λhj is one of the terms in summation). From the nonoverlap-

ping constraint, equality follows.

136 Chapter 5. Extension of Resource Scheduling Models to Wind Power Scheduling

λj ≤ α0(1− ȳj) + 22ȳj , for j ∈ T, (5.5.12)

g∑
b=1

ujb = 1− ȳj , for j ∈ T, (5.5.13)

96∑
j=1

96∑
h=16

hwhj = 96, (5.5.14)

96∑
j=1

96∑
h=16

whj ≤ 4, (5.5.15)

j∑
j′=1

96∑
h=max(16, j−j′+1)

whj′ = 1, for j ∈ T, (5.5.16)

λhj ≥ εwhj , for all h, j, (5.5.17)

λhj ≤ 22whj , for all h, j. (5.5.18)

λj =

j∑
j′=1

96∑
h=max(16, j−j′+1)

λhj′ (5.5.19)

ujb, ȳj , whj ∈ {0, 1}, λhj ≥ 0. (5.5.20)

5.6 Application

We first describe the details of the units (Uis) at the paper mill and then present the

data for the windmill problem. There are 13 units at the paper mill. These units

and their demands are presented in Table 5.3. The units require power throughout the

planning horizon at the rates of demands specified in the table. Units U9 to U13 are

static units and the remaining ones are dynamic units. The number of switches between

G and B is limited to at most 3 which means that the maximum number of spells is 4.

The threshold α0 = 14.3 (equals the sum of demands of dynamic units plus 2 MW),

and the distinct possibilities of Qj(α) (see (5.3.3)) is 228 (with [α0,1, α0,2, . . . , α0,228] =

[0, 0.19, 0.25, 0.36, 0.44, 0.47, . . . , 12.3]). The other inputs to the problem are the forecasts

x̂js. Past data on forecasts and actual supplies are available for several days. In this

chapter, we are concerned with the forecasts. The problem is solved for 20 instances (each

instance is for a day) and they are from the first 20 days of October. Figure 5.2 depicts

the variation in the forecasts for five selected instances. The results are summarized

in Table 5.4. First four columns of this table present the summary statistics of the

5.6. Application 137

Table 5.3: Demand Load of Units at the Paper Mill

Unit Code Demand (MW)

New Fiber Line U1 3.74

Paper Machine 1 U2 3.42

Paper Machines 2 and 3 U3 3.32

Old Chipper U4 0.19

IRU L-B U5 0.25

DDR U6 0.55

New Chipper U7 0.47

Colony U8 0.36

Paper Machine 4 U9 3.50

Paper Machine 5 U10 4.00

Paper Machine 7 U11 4.00

Paper Machine 8 U12 4.31

Pulp Mill U13 7.00

Total 35.11

forecasts. The mean stands for the average of the 96 observations of an instance. From

the table, it is seen that there are days with very low forecasts (instance number 13

onwards). To see how the model is deciding, we observe the metric
∑
sj/
∑
x̂j . When

this figure is above 1, we may interpret it as the model taking advantage by declaring

sj values on the higher side (on an average basis) at the windmill. For the instance

16, this ratio is 3.5. Though the forecasts vary from 0 to 1.3 MW for this instance,

the model declares 3.5 times higher compared to the average forecast of 0.2 MW. In all

the 20 cases, the solver had to be aborted without reaching the optimal solution. The

‘optimality’ is computed as the ratio of best objective value obtained to the lower bound

(as computed by the solver). To obtain

at least 90% optimal solution, it is taking about 8 minutes on an average. The number

of spells for the terminal solutions is 4 for all the 20 instances. For the instance 13, the

spell αi values are equal to 0.2 MW for the solution at the termination. The company

can treat all the four spells as one single spell with common αi = 0.2 MW and take

the advantage (of connecting only the Old Chipper to G directly throughout the day

138 Chapter 5. Extension of Resource Scheduling Models to Wind Power Scheduling

Figure 5.2: Forecasts for selected five days

without disturbing any connections). Next, look at αi values of instance 15. Though it

has only two distinct αis, one can club only spells 2 and 3 to make it a 3-spell solution.

A complete solution to instance 1 is presented graphically in Figure 5.3. The spells

are 1-17, 18-40, 41-80 and 81-96. As α3 = 4.7, G is connected directly to units Paper

machines 2 and 3, DDR, New Chipper and Colony for 10 hours. The horizontal lines in

the figure (in orange color) correspond to the αis. The blue line represents the sjs and

the grey one represents the x̂js. Out of 96 time periods, sjs differ from the corresponding

xjs in 18 time periods. Out of these 18, two time periods correspond to gain, namely,

time periods 42 and 63. From the graph it can be observed that sj < x̂j for j = 42, 63.

Figure 5.3: Data and solution to an instance of the windmill problem.

5.7. Summary 139

T
a
b
l
e

5
.4

:
R

es
u

lt
s

fr
o
m

so
lv

in
g

2
0

re
a
l-

li
fe

in
st

a
n

ce
s

o
f

th
e

w
in

d
m

il
l

p
ro

b
le

m

S
u

m
m

a
ry

st
a
ti

st
ic

s
o
f
x̂
j
s

P
a
p

er
m

il
l

d
ra

w
s

T
o
ta

l
T

im
e

In
st

a
n

ce
M

ea
n

si
g
m

a
M

in
M

a
x

k
h
i
s

α
1

α
2

α
3

α
4

G
a
in

C
o
st

O
p

ti
m

a
li
ty

(s
ec

o
n

d
s)

∑ s
j

∑ x̂
j

1
1
4
.5

7
.2

4
.6

2
9
.1

4
1
7
,2

3
,4

0
,1

6
1
9
.0

1
4
.3

4
.7

2
0
.6

1
1

2
2
6
7

9
0

7
6
2

1
.0

2
1
6
.7

5
.7

1
0
.7

2
7
.4

4
2
3
,2

4
,2

9
,2

0
2
0
.6

1
2
.3

1
1
.2

1
2
.3

6
1

2
1
1
2

9
1

6
7
6

1
.0

3
1
0
.5

5
.4

3
.4

2
2
.1

4
2
4
,2

2
,3

1
,1

9
1
2
.3

8
.3

3
.3

1
4
.3

4
2

2
3
9
1

9
0

1
0
8
0

1
.0

4
1
0
.3

5
.9

4
.9

2
3
.6

4
1
6
,4

7
,1

6
,1

7
1
2
.3

5
.6

6
.2

1
5
.0

4
6

2
3
3
8

9
2

8
4
4

1
.0

5
1
5
.7

4
.4

9
.5

2
6

4
1
8
,1

5
,4

5
,1

8
1
9
.9

1
4
.4

1
2
.3

1
3
.4

0
2
1
3
3

9
3

4
7
6

1
.0

6
1
3
.7

5
.8

6
.8

2
5
.8

4
1
6
,1

9
,4

1
,2

0
1
9
.3

1
2
.3

6
.8

1
2
.3

6
1

2
2
1
4

9
1

3
5
4

1
.0

7
9
.5

6
.6

3
2
4
.2

4
2
9
,3

5
,1

6
,1

6
1
2
.3

2
.3

4
.0

6
.9

5
7

2
5
0
6

9
0

1
0
4
0

1
.0

8
1
7

6
.2

1
0
.6

3
1

4
4
3
,2

1
,1

6
,1

6
1
4
.3

1
0
.7

1
2
.3

2
2
.0

5
4

2
1
3
5

9
4

7
9
5

1
.0

9
2
3
.3

4
.7

1
6
.8

3
1
.5

4
3
7
,1

9
,2

3
,1

7
2
1
.4

1
6
.9

1
8
.4

2
2
.0

9
8

1
9
2
3

9
3

1
1
7

1
.0

1
0

1
4
.8

7
.2

5
2
8
.5

4
2
7
,1

7
,3

3
,1

9
2
0
.0

1
2
.3

5
.2

1
2
.3

7
4

2
1
8
0

9
0

4
0
1

1
.0

1
1

8
.7

7
.5

0
.8

2
4
.2

4
1
6
,1

7
,4

7
,1

6
1
8
.9

1
2
.3

0
.8

5
.1

5
8

2
4
4
4

9
2

8
0
2

1
.0

1
2

2
.4

3
.2

0
1
1
.1

4
1
6
,4

5
,1

9
,1

6
7
.8

0
.2

0
.8

0
.1

3
3

2
6
1
3

9
2

5
4
0

1
.1

1
3

0
.8

0
.4

0
.2

1
.7

4
1
6
,1

6
,4

4
,2

0
0
.2

0
.2

0
.2

0
.2

1
0
0

2
6
0
0

9
6

7
1

0
.5

1
4

1
.1

0
.7

0
2
.4

4
2
7
,3

1
,2

0
,1

8
0
.1

0
.9

1
.5

0
.2

5
2
6
6
7

9
3

5
6

1
.3

1
5

0
.7

0
.8

0
2
.5

4
1
6
,1

7
,3

1
,3

2
0
.3

0
.1

0
.1

0
.3

7
7

2
6
2
6

9
6

1
2
4

0
.7

1
6

0
.2

0
.4

0
1
.3

4
1
7
,2

1
,1

7
,4

1
0
.4

0
.4

0
.3

0
.4

2
2
6
6
5

9
7

3
3
1

3
.5

1
7

0
.5

0
.8

0
2
.5

4
1
7
,1

6
,3

8
,2

5
0
.1

0
.2

0
.1

0
.2

1
3

2
6
8
0

9
5

1
3
8

1
.6

1
8

1
.5

2
0

6
.1

4
2
0
,2

1
,2

4
,3

1
0
.2

0
.2

0
.2

0
.9

1
2
6
9
8

9
0

2
3
8

1
.3

1
9

2
.4

2
.2

0
6
.7

4
3
0
,3

0
,2

0
,1

6
1
.8

0
.1

0
.2

5
.2

9
6

2
5
6
2

9
4

2
1
7

0
.8

2
0

2
.9

2
.6

0
8
.1

4
1
6
,1

6
,4

1
,2

3
4
.5

0
.3

0
.1

3
.9

9
5

2
5
5
0

9
3

3
1
2

0
.9

N
o
te

s:
T

h
e

so
lv

er
h

a
d

to
b

e
te

rm
in

a
te

d
in

a
ll

th
e

2
0

in
st

a
n

ce
s.

T
h

e
‘o

p
ti

m
a
li
ty

’
co

lu
m

n
p

re
se

n
ts

th
e

ra
ti

o
o
f

b
es

t
o
b

je
ct

iv
e

to
th

e
lo

w
er

b
o
u

n
d

a
t

te
rm

in
a
ti

o
n

a
s

p
er

ce
n
ta

g
e.

T
h

e
a
v
er

a
g
e

o
f

th
es

e
p

er
ce

n
ta

g
es

is
9
3
,

a
n

d
th

e
a
v
er

a
g
e

o
f

ti
m

es
is

4
6
9

se
co

n
d

s
(c

lo
se

to
8

m
in

u
te

s)
.

P
en

a
lt

y
p

lu
s

g
a
in

is
3
3
7
5
0

in
a
ll

th
e

in
st

a
n

ce
s.

‘G
a
in

’
co

lu
m

n
sh

o
w

s
th

e
g
a
in

p
er

ce
n
ta

g
e

a
g
a
in

st
3
3
7
5
0
.

C
o
st

is
sh

o
w

n
in

1
0
0
0
s.

140 Chapter 5. Extension of Resource Scheduling Models to Wind Power Scheduling

5.7 Summary

In this chapter, we have addressed a decision making problem for a large paper industry

that trades its windmill power with a distribution company under a special incentive

scheme of exchanging power promoted by the government. The problem involves declar-

ing schedules for power supply at the windmill on a one-day planning horizon basis to

take advantage of drawing power from the grid at the paper mill location. The decisions

result in costs at windmill and at paper mill. The problem is a difficult combinatorial

optimization problem involving intricate relationships among decision variables with a

quadratic cost objective function. We derive several interesting properties of the prob-

lem and the solutions. Further, we show that the solutions obtained by method are

ε-optimal. To the best of our knowledge, this is a new type of problem encountered

in windmill power trade-off optimization problems. Solving the problem needed a new

solution approach. This chapter provides a novel solution methodology. Both formu-

lation and solution methodology are innovative. The methodology uses a technique

developed recently for solving staff and task scheduling problems. A number of real-life

instances of the problem are solved and the results are presented. The novelty of the

chapter is in adapting a technique that was developed for a completely different type

of problem. We believe that the technique will be useful for many other types of job

scheduling optimization problems involving multiple tasks which can be processed on

multiple processors.

Chapter 6

Conclusions and Future Work

This chapter presents a summary of the contributions of this thesis with some supple-

mentary results and possible problems for future research. The contributions are induced

by our attempts to address real-life problems from industry. The inherent characteristic

of these problems is that they are scheduling problems with renewable resources. Either

these problems are too large in size to handle with the existing solution approaches

or need approaches that are computationally faster. We have adopted mathematical

programming formulations and developed strategic modelling techniques to provide new

solutions to these problems. The research problems and our contributions for these

problems are summarized in the following subsections.

6.1 The Integrated Staff and Task Scheduling Problem

Staff and task scheduling problems, stand alone or integrated, are hard problems to

solve. There are many applications where flexible shifts (shifts of different durations)

are indispensable. Another dimension that adds to the flexibility is the requirement of

relief breaks within shifts. Shift’s flexibility increases the problem size dramatically in

staff scheduling. Due to the complexities involved, introduction of breaks has received

cursory attention in the literature on staff scheduling problems. Considering one lunch

break in shifts, Brunner and Stolletz (2014) introduced a branch and price algorithm for

141

142 Chapter 6. Conclusions and Future Work

a staff scheduling problem at airport check-in counters. To overcome the slow conver-

gence of the column generation, they proposed a stabilization technique using a dynamic

parameter updating procedure. With all this, it still takes several hours, as reported

in the paper, to produce high quality feasible solutions. The integrated staff and task

scheduling problem (ISTSP) adds yet another dimension to the staff scheduling prob-

lem, namely, scheduling of tasks. In ISTSP, the man power requirements of each task

are specified along with their durations, and are allowed to start within respective time

windows. The choice of task start times will dictate the staff requirements. Further, the

tasks may have precedence relationships among themselves. Therefore, the problem is

much more complex than the staff scheduling problem. The latest contribution to ISTSP

is by Volland et al. (2017b). Proposing a master integer programming (MIP) formula-

tion, the authors developed an iterative procedure involving the master problem and two

subproblems, the staff scheduling subproblem and the task scheduling subproblem. With

a lower bound for MIP obtained through the iterative procedure, the authors solve the

MIP imposing the lower bound constraint. As reported in Volland et al. (2017b), there

are only few publications on ISTSP. Beliën and Demeulemeester (2008) and Maenhout

and Vanhoucke (2016) are the two other articles on ISTSP. Models in these two articles

do not consider breaks in shifts. While Volland et al. (2017b) discusses incorporation of

breaks into shifts, the formulation presented and the numerical experiments studied in

the article do not incorporate breaks.

In this thesis, we considered both staff scheduling problem and ISTSP with most

versatile features. The features include (i) variable shift durations, (ii) multiple re-

lief breaks with minimum time gap restrictions between successive breaks within shift,

(iii) minimum time gap between successive shifts, (iv) consecutive days-off constraints,

and (v) maximum number of hours per worker in the planning horizon.

We solved the problems using a decomposition principle. According to this, we split

the problem into two stages and in each stage we solve an assignment problem. Introduc-

ing the concept of shift patterns and shift schedules, the first stage solution determines

the shift schedules (a shift schedule is a shift pattern that starts at a particular time

period in the planning horizon). If the problem is ISTSP, then the first stage determines

shift schedules along with task starting times. The objective function for the first stage

is the cost of each shift schedule. Taking costs as 1, the objective function reduces to

6.1. The Integrated Staff and Task Scheduling Problem 143

number of shift schedules to meet all the demands. In the second stage, the shift sched-

ules determined in first stage are assigned to workers satisfying work assignment rules.

The objective of the second stage is to make the assignments with minimum number

of workers. The formulation of the second stage assignment is a crucial step of this

approach. If the costs in the objective function of the original problem depend only

on the shift schedules, then our two stage approach will actually produce an optimal

solution. If the objective is to minimize the number of workers, then the solution is near

optimal. To prove optimality or near optimality, we provide a useful and very effective

lower bound for the number of workers as a function of the lower bound for the first

stage objective value.

Another important contribution of our work is the development of the split technique.

With this technique, we are able to solve large problems in approximately the same time

that small problems take. We believe that this is a significant contribution to staff

scheduling and ISTSP.

The efficacy of our methodology is evaluated through a number of numerical experi-

ments. The test instances are created for staff scheduling as well as for ISTSP. The test

cases for ISTSP are specially designed so that the results can be compared to those of

Volland et al. (2017b). Also, we tested with instances with very huge demands compared

those reported in the published papers. Results are compared with respect to optimality

gap and processing time. With respect to optimality gap, out of 41 instances tested, 23

are optimal, 6 are at least 99% optimal, 37 are at least 95% optimal. Of the 41 instances,

19 are under ISTSP. Of these 18, 19 are 100% optimal. With respect to time, we find

huge reductions compared to the existing results.

Our split technique to solve large scale problems in approximately same time that

is required for problems with small demands is possibly a lead for a research problem

on the complexity analysis. In the existing literature, solution methods are assessed at

different demand sizes such as small, medium and large. Through the split technique

introduced in this chapter, we are able to handle problems with large demands efficiently.

This raises a question that whether demand size has any influence on the complexity of

the problem. This point needs to be explored theoretically. Another direction for future

research is extending the methods introduced in this chapter to multi-skill personnel

144 Chapter 6. Conclusions and Future Work

staff scheduling problems.

6.2 Check-in Counters Problem

We encountered this problem at a large airport in India. The departures from the airport

are tactically planned based on two seasons. The airport operator receives applications

from different airlines. Each airline submits an application for a number of departures

each season. The nature of departures in a season is a weekly schedule rostered over the

season. Due to limited resources, all requested departures may not be accommodated.

In the problem addressed to us, the resource is the limited number of check-in counters

in the airport. The research questions addressed are:

Problem A What is the number of counters required for a departure or a group of

departures under variable counter assignment under the standard rational assump-

tions of seat capacities, service norms and first-in-first-out queue discipline?

Problem B Determine a check-in counter assignment for a given set of departures

under adjacent variable counter allocation with minimum number of counters?

Problem A

Problem A has a direct impact on the customer waiting times. The initial solutions

provided in the literature addressed the problem using queueing models and simulation

approaches. The first exact formulation for this problem was proposed in Bruno and

Genovese (2010). This was later enhanced by Araujo and Repolho (2015) to control

number of passengers waiting in the queue. There was no mathematical model in the

literature to control waiting time directly or to implement the first-in-first-out queue

discipline. We are the first to propose an integer linear programming formulation to

control the waiting time and implement the first-in-first-out queue discipline. The uv-

model proposed for this purpose has been compared with the model proposed by Araujo

and Repolho (2015) and the airport’s solution. A theoretical comparison of these models

is as follows. In our uv-formulation, the maximum waiting time of any passenger is equal

to the duration of two time periods. That is, if the planning horizon is divided into 15-

minute time periods, then the maximum waiting time under uv-model is 30 minutes. If

6.2. Check-in Counters Problem 145

one wants to ensure, theoretically, that the maximum waiting time is 20 minutes (which

is the standard norm according to IATA), then we can model the problem using planning

horizon with 10-minute time periods. Thus, the uv-model controls waiting time directly.

The model by Araujo and Repolho (2015) also controls waiting time but implicitly. In

their model, they impose a constraint that a certain proportion of the passengers present

at the beginning of any time period is cleared (served) during that period. This model

clearly does not control the waiting time directly. The solution by the airport operator

is not backed by any mathematical model. Through the following counterexample, it

has been verified that the airport solution is not even feasible. When the three models

were applied to a particular instance of the problem to minimize the number of counters,

the optimum objective value was 57 whereas the airport solution reported 42 counters.

The performance of the models were compared using a number of simulated instances.

The uv-model used smaller number of counters compared to the other two models (the

airport solution with 42 counters is infeasible and hence not comparable). However,

with regard to waiting time of passengers, the Araujo and Repolho (2015) model had a

marginal edge over uv-model but this is at the cost of using higher number of counters.

In the uv-formulation, passengers arriving in a time period i are served either in

time period i or i + 1. This can be generalized to uk-formulation by distributing the

passengers over k time periods. That is, serve the passengers arriving in time period i

in the time periods i, i+ 1, . . . , p, where p = min(i+ k− 1, q) and q is the last check-in

time period for the departure. In the new notation, uv-formulation is u2-formulation.

The drawback with uk-formulation for k > 2 is that it looses the ability to maintain

the first-in-first-out queue discipline. But for this, the model enhances its capability to

better optimization and better planning. Application of uk-formulation can be envisaged

in priority queues. For example, consider a case where the first class passengers should

be served within one time period, the executive class passengers within two time periods

and the rest in at most three time periods. In such cases, we may use u3-formulation.

One should be cautious when applying uk models for the case of check-in counters where

common counters are being assigned to a group of departures. We intend to explore the

properties of uk model and the areas where it will be useful.

Problem B

Problem B comes under the adjacent resource scheduling problems. This fact was

146 Chapter 6. Conclusions and Future Work

pointed out by Duin and Sluis (2006) and its complexity was analysed. Dijk and Sluis

(2006) proposed integer linear programming formulations for both dynamic and vari-

able counter allocation. This formulation was the one that was used in all subsequent

publications on the problem. Dijk and Sluis (2006) observed that the formulation was

suitable for small scale problems and reported that it took more than 30 minutes on an

average for instances with 48 flights and 24 periods. To address large size problems, we

came up with a new integer linear programming formulation by introducing assignment

structures that are pragmatic and desirable. The new formulation is capable of solving

large scale problems. A problem instance with 783 departures over 229 time periods was

solved to near optimality (at least 90% optimal) in two minutes. The size (number of

variables plus constraints) of our formulation is much smaller compared to that of Dijk

and Sluis (2006). For the instance just mentioned, the size of our formulation (number

of variables and constraints) is 82566 whereas it is 191062 for the Dijk and Sluis (2006)

formulation. The main problem meant for seasonal planning involved one week planning

horizon with 687 time periods of 15-minutes duration. An instance of this problem had

2539 departures. To solve problems of large size like this instance, we developed two spe-

cial strategies. The first strategy is to fix the counters for few airlines’ departures with

common counter requirement that contribute to a major chunk of all departures, and

then use the remaining counter time to accommodate other departures. With this we

could solve the instance with 2539 departures over 687 time periods to near optimality

(at least 95% optimal) in 42 minutes. To assess the optimality percentages mentioned

above, we used a crude lower bound which is less likely to be attained by an optimal

solution. The second strategy is to divide the planning horizon into two or more parts

and then solve the problem of each part with respective departures, and finally combine

the solutions of the parts to derive a solution for the original problem. For this large

instace, the size of our formulation is 540,416 where as the size of the formulation by

Dijk and Sluis (2006) is 1,780,000.

There is yet another strategy that one may explore to handle large size problems.

To describe this we need to first look at the derivation of the crude lower bound for the

minimum number of counters mentioned in the previous paragraph. For Problem B,

the number of counters required for each departure is taken as input (this number is

obtained from the first stage optimization). From this, we can find, for each time period

6.3. The Berth and Crane Assignment (Specific) Problem 147

t, the sum of number of counters of all departures that require counters in time period

t. Suppose this number is n(t). Then, the lower bound mentioned above is taken as

maxt n(t). This bound depends on which departures are under consideration. For the

instance with 2539 departures, maxt n(t) = 171. Now suppose we have 171 counters in

the airport. Then, divide the 2539 departures into three groups so that for the first group

maxt n(t) is less than or equal to 50, for the second maxt n(t) ≤ 60 and for the third,

maxt n(t) ≤ 61. Now solve the three problems separately and combine the solution.

Note that dividing the departures into three groups is itself an optimization problem

which can be formulated as another integer linear programming problem.

An important and useful supplementary contribution of this work is our Excel pro-

gram that draws the time-counter space diagram for the solution of Problem B on Excel

spread sheet. With the help of excel tools to magnify and compress the spread sheet,

the user can carry out the sensitivity analysis of the solution. For instance, the user

can find out where new departures can be accommodated, how to modify the assign-

ment manually using cut and paste tools, when to schedule the maintenance activities of

check-in counters, etc. A detailed description of this is included in section 3.7. We also

compare our model for adjacent resource allocation with the formulation by Dijk and

Sluis (2006) and theoretically demonstrate that significant gains in performance result

from our model (see Theorem 3.7.1 in section 3.7).

6.3 The Berth and Crane Assignment (Specific) Problem

Berth allocation problems integrated with crane assignments are known to be NP-hard

problems. Exact methods for these problems involve huge number of variables and

constraints which arise from the non-overlapping of ships constraints, positioning of ships

in the time-berth space diagram and assignment of non-crossing cranes to ships. The

case of continuous berth allocation is even worse as it requires assignment of contiguous

berth sections to each ship. For instance, the problem of one-week planning horizon with

168 one-hour time periods, 7 cranes and 30 ships, the DRPF formulation of Agra and

Oliveira (2018) has 44,138 variables and 15,691,192 constraints. These formulations are

not suitable for solving the problems on commercial solvers. Therefore, one tries to use

148 Chapter 6. Conclusions and Future Work

methods such as column generation (Wang et al. (2018)). Similarly, Agra and Oliveira

(2018) proposed an enhanced formulation and a heuristic to generate upper bound so

that the enhanced formulation with the upper bound produces solutions faster. Thus,

finding optimal solutions to these problems is difficult. Another issue with the optimal

solutions is that some of them may be undesirable from an operational point of view.

For instance, frequent shifting of cranes from one ship to another will be operationally

inconvenient and time consuming. For this reason, some models impose the invariant

crane restriction which does not allow any crane serving a ship to serve another ship until

the service of the ship it is serving is completed (see Imai et al. (2008) and Türkoğulları

et al. (2014)). In the survey article Bierwirth and Meisel (2015), the authors report that

exact methods are applied in only one fourth of the approaches, ranging from MILP

formulations combined with standard solvers to highly sophisticated branching based

algorithms. Against this backdrop, we looked for solutions with simple formulations

which can be effectively solved using commercial solvers.

In this thesis, we considered the continuous berth layout and dynamic arrivals and

introduced a new class of solutions, the BCI (berth and crane invariant) solutions, for

the berth allocation and crane assignment (specific) problem (BACASP). We proposed

a formulation for finding an exact BCI solution. BACASP model was introduced in

Türkoğulları et al. (2014). Agra and Oliveira (2018) proposed an enhanced integer

linear programming formulation for an exact optimal solution for BACASP. From the

operational point of view, the BCI solutions are very convenient. Further, the formula-

tion sizes are very small and the commercial solvers can handle these formulations with

ease. As a comparison, for the problem instance mentioned in the previous paragraph

with 30 ships over 168 time periods and 7 cranes, the number of variables and constraints

in our formulation for BCI solution are 3426 and 26146 respectively. From the numerical

experiments, we found that the BCI solutions are satisfactory in terms of being close to

optimum objective values. Besides, one can use the optimum objective values of BCI

solutions as useful upper bounds in the formulations for exact optimal solutions as it

was done in Agra and Oliveira (2018) using rolling horizon heuristic. When the number

of ships become too large, finding even a BCI solution gets tougher. To address such in-

stances, we have proposed decomposition techniques. Finally, we propose a formulation

to expand the BCI class of solutions to a larger class of solutions by breaking invariance

6.4. Windmill problem 149

restriction for the entire planning horizon. In this case, the planning horizon is divided

into two or three equal (approximately) parts and we insist invariance of berths and

cranes in each part.

We have not performed a formal analysis on the extent of optimality gap between

a BCI solution and a global optimal solution. This needs proper basis for comparison.

That is, one has take into account the benefits derived from a BCI solution such as

time savings rendered by avoiding frequent shifting of cranes, to compare with a global

optimal solution. This is a possible opportunity for future research in this direction.

6.4 Windmill problem

In this work we developed a solution procedure for a complex scheduling problem under

a power exchange scheme. This is an important problem as it promotes green power

generation. A paper mill that also owns a windmill, exchanges power produced at the

windmill with the power drawn from grid at the paper mill. Under the exchange scheme,

a supply schedule is to be declared at the windmill and consumption schedule is to be

planned at the paper mill. The problem is to determine the two schedules based on a

planning horizon of a day divided into ninety-six 15-minute time periods. According to

the structure of the scheme, the shortage/excess from the schedule in each time period

attracts penalty/reward according to a piece-wise linear function. Further, the scheme

stipulates that in each time period, the power drawn from grid at the paper mill cannot

exceed the corresponding supply declared in the supply schedule at the windmill. The

company uses the grid power as complimentary to its own self generated power. The

company’s self generated power is relatively more expensive compared to the grid power.

The scheduling decisions result in a cost to the company which is nonlinear function due

to the nature of restrictions on using the power from the grid. Due to the restriction

on the connectivity issues at the paper mill, the power draw from the grid has to be a

piece-wise linear function with at most four pieces and in each piece the function has to

be nonnegative constant (that is, the power draw in each piece should be at a constant

rate). To prevent the company from declaring greedy supply schedules at the windmill,

the exchange scheme imposes a ceiling on the overall penalty/reward resulting from the

150 Chapter 6. Conclusions and Future Work

schedule. This is known as gaming constraint, and according to this, the total penalty

plus gain cannot exceed the specified ceiling.

We developed a mathematical formulation for the problem. The formulation involves

real and integer variables with a quadratic objective function and nonlinear constraints.

One of the challenges of this problem is determining the piece lengths of the piece-wise

linear function for the power draw at the paper mill. The formulation involves decision

variables that are functions of other decision variables. As a result the mathematical

model, in its original form is not suitable for solving the problem with standard models

using any of the commercial solvers. We study various properties of the problem. The

main contribution of this work is our formulation and the development of a solution

procedure to solve it. We introduce a parameter ε, an arbitrary small positive number,

and with that we reformulate the problem as a mixed integer program with linear con-

straints. We prove that by choosing ε sufficiently small, the solution of the formulation

can be made arbitrarily close to the optimal solution to the windmill problem. We be-

lieve that for ε sufficiently small, the formulation actually yields an optimal solution to

the windmill problem. It will be interesting to see if this is true. The computational

complexity for each of the problems discussed in this thesis is a possible direction for

future research.

Appendix A

The check-in counter allocation

problem: A Detailed literature

survey

A.1 Introduction

Air-travel has become the most preferred mode of travel. The total number of air

travellers was 4.1 billion in 2017, which is 7.2 per cent higher than the year 2016, while

the number of flight departures reached 36.7 million in 2017, a 3.1 per cent increase

compared to 2016 (International Civil Aviation Organization (2017)). The increase in

economic growth and the average household income has contributed to the growth of the

aviation industry. The present trends in air transport suggest that passenger numbers

could double to 8.2 billion in 2037 (IATA (2018)). The ever increasing demand for airport

resources has made careful planning and optimal use of resources a necessity. Delay due

to inadequacy or inefficient management of airport facilities may result in penalty for the

airline companies (Hsu and Chao (2005)). It has been found that 80% of the passenger

delay at airports is due to waiting for check-in (Takakuwa and Oyama (2003), Parlar

et al. (2013)). To overcome this problem, kiosks were introduced in airports. Abdelaziz

et al. (2010) study outcomes of introducing kiosks at Cairo airport. Passengers with

baggage were asked to use luggage-drop counters after check-in at kiosks. This reduced

151

152Appendix A. The check-in counter allocation problem: A Detailed literature survey

waiting time at kiosks for check-in, but resulted in waiting at luggage drop areas. Though

airlines rely on kiosks for management of queue and congestion at airports, their use

mainly depends on the convenience for check-in as well as luggage drop. With many

passengers checking into their flights online, luggage drop areas are also expected to

become congested.

Therefore, efficient usage of check-in counters will improve service levels at airports,

result in smaller queue lengths for airport operators and faster check-ins for passengers.

As most of the passenger waiting time is spent in the check-in area at an airport, a

reduction impacts public perception of the level of service and indirectly enhances the

airport revenue due to the increased stress free time in the commercial areas of the

airport (Hsu and Chao (2005), Lin and Chen (2013), Parlar et al. (2013)).

To achieve all the above objectives in counter allocation, different optimization tech-

niques have been used in the literature. This supplementary material reviews all the

methods proposed for counter allocation. The techniques discussed in here for allocating

adjacent counters can be applied to other adjacent resource allocation problems, such

as: warehouse space optimization where warehouse area has to be assigned to customers

for storage for a certain time, berthing problem at ship yards, where berthing space has

to be allocated to ships given the ship size and time for which it docks at the shipyard

(see Bierwirth and Meisel (2010)), for assignment of computer hard disk memory (if con-

tiguous allocation of memory is required (see Duin and Sluis (2006))) and other resource

scheduling problems where jobs cannot be shifted in time but resource requirements may

be satisfied by any set of adjacent resources and may vary with time.

Efforts at reviewing resource usage at airport terminals have not explicitly focused on

check-in counter utilization. Cheng et al. (2012) and Wu and Mengersen (2013) have re-

viewed models presented in literature for resource scheduling at airport terminals. Cheng

et al. (2012) reviews theory of allocating and scheduling resources by grouping existing

literature into three parts, viz., methods of integrating airport operation data, methods

of predicting passenger flow at airport terminals, and optimization of allocating and

scheduling passenger service resources at airport terminals. Wu and Mengersen (2013)

review airport passenger terminal models by classifying them based on usage scenarios.

Appendix A. The check-in counter allocation problem: A Detailed literature survey153

Wu and Mengersen (2013) review work related to capacity planning, operational plan-

ning and design, security policy and airport performance. Cheng et al. (2012) and Wu

and Mengersen (2013) do not study the check-in counter allocation problem in airport

terminals. This supplementary material reviews published literature related to plan-

ning and modelling the counter allocation problem for flight departures at an airport, it

does not consider studies concerning with real-time management of sudden/unforeseen

crisis/circumstances at the airport.

This appendix has four sections. Section A.2 describes the check-in counter allocation

problem. Section A.6 classifies different methods in the literature by the problem type

addressed and its limitations. Section A.7 discusses different approaches for modelling

the check-in counter allocation problem.

A.2 The Check-In Counter Allocation Problem

Airports are divided into airside and landside areas. Airside operations consist of

scheduling flights on the runways and other related on-air flight operations. Landside

operations consist of scheduling and organization of the processes that passengers need

to undergo before boarding a flight. It is imperative that airport landside operations

focus on timely boarding of passengers and flight departures. For ease of operation, an

airport has designated areas for different pre-boarding operations for passengers, such as

check-in, security check, immigration, etc. In most airports, the check-in area consists

of multiple structures of counters arranged around a conveyor belt in a u-shape. This

structure is referred to as an island. Many such islands make up the check-in area (see

Fig: A.1).

Though all the counters are not physically adjacent to one another, this is supposed

to be the case for simplicity in modelling the problem. Moreover, counters can be rear-

ranged according to physical layout at later stages for implementation of the solution. In

most of the literature discussed here, a two dimensional space is used as a representation

of the counters in the planning horizon (see Fig.A.2). The planning horizon is the time

period for which counter assignments are computed. To model the problem, the plan-

ning horizon is divided into smaller Time Intervals (also Time Windows(TWs)). The

154Appendix A. The check-in counter allocation problem: A Detailed literature survey

Figure A.1: Departure Hall in an Airport

Figure A.2: Polyominoes in counter allocation. The x-axis stands for time periods
and the y-axis for counter numbers.

Figure A.3: Desired need for airlines as compared to real need

length of the TW has to be chosen while modelling a problem. Too small TWs mean

less time for staff to handle operations and large TWs can consist of large variations

in passenger arrivals. Fig: A.2 shows counter allocation by Dijk and Sluis (2006) with

a TW length of 60 min, planning horizon of 10 hours with resource availability of 15

counters. Here, the numbers represent the flights, ‘d’ represents the desk number or

counter number and ‘t’ represents TWs. Since resource requirement times are fixed, it

is not possible to shift items horizontally, only vertical movement is allowed.

These counters are owned by the airport operator and suitably leased to airlines.

The airport operator has to issue the minimum number of adjacent counters required

for each flight/ group of flights. Adjacent counters are important for passenger and

Appendix A. The check-in counter allocation problem: A Detailed literature survey155

Figure A.4: Arrival Distribution Observed at Kai Tak Airport, Hong Kong

airline convenience, airline visibility and operations, and for ease in baggage manage-

ment and sorting, since baggage from adjacent counters of an island is collected at one

baggage collection center. Typically, airlines demand more counters from the airport

operator than required, for ease in providing service and visibility at the airport (see

Fig. A.3 from Chun (1996)). This creates problems for the airport operator, who has

to now simultaneously satisfy the real need for counters, ensure optimal allocation to all

airlines and minimize changeover operations. A changeover operation consists of staff

of one airline closing the counters at the end of a TW and shifting to other counters

for continuing the check-in process in subsequent TW(s). To minimize the changeover

operations, counters were traditionally allocated to a flight for its entire check-in time.

Since this type of allocation would result in a waste of counter time due to time-varying

arrival distribution, time-varying counter requirements are proposed (Dijk and Sluis

(2006), Bruno and Genovese (2010), Araujo and Repolho (2015) , Lalita et al. (2020)

etc). This results in structures known as polyominoes (see Fig.: A.2 for each flight (or

a group of flights). Actual counter requirement (for illustration see Fig. A.5, from Dijk

and Sluis (2006)) is computed using the arrival distribution of passengers (for illustra-

tion see Fig.: A.4 from Chun and Mak (1999), where arrival distribution is computed

for flights in the morning, afternoon and evening), and an appropriate load factor. Load

factor is defined as the percentage of passengers of an airplane seat capacity expected

to finally board the flight. The counter allocation problem is reduced to determining

counter requirement of flights and then placing the resulting polyominoes, that can be

moved only vertically, in the counter-TW area in an optimal way.

156Appendix A. The check-in counter allocation problem: A Detailed literature survey

Figure A.5: Minimum Counters Required in constant and variable case

(a) Static Counter Allocation (b) Dynamic Counter Allocation

Figure A.6: Dynamic Counter Allocation saves counter time

It has been observed that time-varying or dynamic counter allocation (Fig.A.6) pro-

vides on-time service and consequently results in significant savings in terms of counter

time, operation costs and reduced queue size (Joustra and Van Dijk (2001), Dijk and

Sluis (2006)). In contrast, static counter allocation assumes constant counters in the

check-in period. In both types of allocation, two or more flights of an airline can be

grouped together for assignment if the demand for counters overlaps in some TWs, i.e.,

if flights are scheduled for departure a few hours apart. It is general practice by airlines

to assign common counters to a set of flights with simultaneous demand in at least one

TW. The demand for counters is treated as demand for one departure. This enables

passengers of an airline to use the same counters irrespective of the flight boarded. Ded-

icated counters on the other hand exclusively serve passengers of a single flight. Both

allocations are used in airports based on opportunities available to group flights. This

allows the airlines to minimize the counter operating cost and changeover operations

also. In most of the models proposed for counter determination, minimizing the counter

operating cost is the objective. Counter operating cost includes the cost of operating

baggage belts, the cost of staff operating the check-in counters, queue cost and the

cost of delay. Hsu and Chao (2005) construct various cost functions related to facility

management.

Appendix A. The check-in counter allocation problem: A Detailed literature survey157

Some of the challenges to this problem, as discussed by Snowdon et al. (1998), are es-

timating the passenger arrival distribution, the complexity of determining the passenger

mix (number of passengers using different services), changes to the resources (mainly

check-in facilities) available depending on the arrival distribution, ensuring passenger

service levels are attained and evaluating flight data in order to group flights which can

benefit from common counters vis-a-vis dedicated counters. Initial attempts to solve

the problem through simulation improved the prevailing methods for counter allocation.

Atkins et al. (2003) propose simulation to compare operational strategies and to de-

termine the optimal staff levels required. Chun (1996) and Chun and Mak (1999) use

simulation for counter determination and counter allocation. Real life modelling of the

check-in process at airports has been presented by Joustra and Van Dijk (2001) and Dijk

and Sluis (2006) for check-in at Schiphol airport in Amsterdam, Atkins et al. (2003) at

Vancouver airport, Bruno and Genovese (2010) at Naples International Airport, Lous

(2011) at the Copenhagen airport, Al-Sultan (2016) at an airport in Kuwait and Felix

and Reis (2017) at the airport of Lisbon and Chun (1996), Chun and Mak (1999) at the

Hong Kong airport etc. The counter allocation problem with the adjacency restriction

is NP-complete (Dijk and Sluis (2006), Duin and Sluis (2006)) and cannot be solved in

polynomial time. The complexity of the problem has been studied in detail by Duin

and Sluis (2006). All the models proposed for counter allocation including the above

real-world applications have been classified on the basis of the problem solved. These

methods are discussed in detail below.

A.3 Determining Optimal Number of Check-in Counters

This section discusses the problem of determining counter requirement for a flight or

a set of consecutive flights of an airline. The number of counters allocated to a flight

(or group of flights) depends on the arrival pattern of passengers, the queueing area

available, queue length in an interval and restrictions on waiting time. Different authors

have modelled the problem with different constraints, different objectives and different

facilities (eg: counters and kiosks). Before studying these models, we present a basic

model for counter determination:

158Appendix A. The check-in counter allocation problem: A Detailed literature survey

(a) Allocation using Basic Formulation (b) Improved Allocation

Figure A.7

Min
∑
ij

xij (A.1)

subject to (A.2)∑
j

aijsi ≤ t
∑
j

xij (A.3)

xij ≥ 0 are nonnegative integers. (A.4)

In this formulation, xij is the number of counters assigned to the ith flight in the jth

TW, aij is the average number of arrivals for ith flight in jth TW (this is obtained from

passenger surveys conducted at the airport), si is the average service time per passenger

for the ith flight, ‘t’ is the length of each TW. This formulation provides resources exactly

in proportion to airline requirement. This results in counter allocation with peaks and

troughs exactly like the passenger arrival distribution. Since airport operators mandate

airlines to limit waiting times and counter queue lengths, the only way to improve the

solution to this model and get more rectangular polyominoes is to postpone the check-

in of some passengers while respecting the service level requirements. Note that with

even a slightly more rectangular structure of the counters allocated (see Fig.(A.7b)),

changeover operations are reduced, improving the basic solution (see Fig.(A.7a)).

Mathematical Models for Counter Determination

Published work on check-in counter determination is described briefly in the following

paragraphs. Park and Ahn (2003) published a paper for optimal assignment of check-in

counters. Their paper aims to assign counters based on passenger arrival distribution at

Appendix A. The check-in counter allocation problem: A Detailed literature survey159

the airport. Other factors considered are aircraft type (standard or chartered), aircraft

size, time allowed for check-in, passenger arrival distribution, ticket status (economy,

business, first class etc), processing time of staff at the check-in counters and load

factor assumed. A passenger survey at the airport (in Park and Ahn (2003)) determines

the variation in load factors during peak and non-peak hours and the resulting arrival

patterns. The airport arrival patterns are then used as input to a regression model to

determine the cumulative arrival pattern based on time before departure. Counters are

allocated to airlines directly in proportion to the estimated passenger arrivals. This

kind of allocation may not result in an optimal assignment of counters to airlines since

the overall cost to the airport operator or queue lengths among other things are not

considered.

Bruno and Genovese (2010) propose the following static model to determine the

optimal number of counters for flights with the objective of reducing counter cost and

queue length.

Minimize z =
∑
j

∑
t

(hj .Ijt + sj .xjt) (A.5)

subject to

Ijt = Ij(t−1) + djt − qjt, j = 1, 2, ..., J, t = 1, 2, ..., N, (A.6)

pjqjt = Ctxjt, j = 1, 2, ..., J, t = 1, 2, ..., N, (A.7)∑
j

pjqjt ≤ Ct, t = 1, 2, ..., N, (A.8)

Ijt = 0, t ∈ Tj (A.9)

qjt, Ijt ≥ 0, j = 1, 2, ..., J, t = 1, 2, ..., N, (A.10)

xjt ∈ 0, 1, j = 1, 2, ..., J, t = 1, 2, ..., N, (A.11)

The following notations are used in the above model. hj is the cost associated with

queue related to flight j, sj is the desk opening cost for flight j, T is the planning horizon

(usually one day), l is the length of the TWs considered, N is the number of TWs, J

is the number of flights scheduled in T , pj is the average desk service time for flight j,

160Appendix A. The check-in counter allocation problem: A Detailed literature survey

djt is the service demand for flight j in TW t, Ct is the available check-in time based on

counters operating in TW t, Ij0 is the number of passengers of flight j waiting before

counters open for flight j, Tj is the set of TWs in which counters for flight j do not

operate. Decision variables are: Ijt, the number of passengers in queue for flight j at

the end of TW t, qjt, the number of passengers of flight j to be accepted for service in

TW t. Even though xjt, the binary variable representing the possibility of checking-in

passengers for flight j in TW t, is defined as a decision variable, it is not, since this is fixed

in advance and cannot be restructured. Constraints (A.6) represent the change in queue

length between two successive TWs. Constraints (A.7) ensure that enough counter time

is available for passenger check-in in TWs where check-in is possible. Constraints (A.8)

ensure the overall service capacity is as required, constraints (A.9) forces all passengers

of flight j to be accepted by the closing time of check-in service for flight j.

Bruno and Genovese (2010) propose models for both static (see model (A.5)-(A.11))

and dynamic counter allocation. Both the models define the number of passengers

in queue for a flight and the passengers accepted for service in each TW as decision

variables. In the static model presented above, the total cost of counter operation and

the cost of queue is minimised (see objective function (A.5)). In the dynamic model,

counters operating in each TW and the cost associated with queue are minimized. The

authors derive mathematical formulations from the Capacitated Lot Sizing problem in

literature (see Bitran and Yanasse (1982)) and Florian et al. (1980)). The authors also

present a real-life airport management study at the Naples airport.

The model presented by Araujo and Repolho (2015) is an extension of the model

by Bruno and Genovese (2010). Araujo and Repolho (2015) present two models for

determining counter requirement for flights and aim to determine the optimal number

of counters for flights operating at an airport. ILPs are presented for dedicated and

common counter check-in. Following is the ILP for dedicated counter allocation.

Minimize z =
∑
j

∑
t

(hj .Ijt + sj .xjt) (A.12)

subject to

Appendix A. The check-in counter allocation problem: A Detailed literature survey161

Ijt = Ij(t−1) + djt − qjt, j = 1, 2, ..., J, t = 1, 2, ..., N, (A.13)∑
j

pjqjt ≤ Ct, t = 1, 2, ..., N, (A.14)

Ijt = 0, t ∈ Tj (A.15)

Ijt ≤ α.(djt + I0jt), j = 1, 2, ..., J, t = 1, 2, ..., N, (A.16)

qjt, Ijt ≥ 0, j = 1, 2, ..., J, t = 1, 2, ..., N, (A.17)

An additional service level constraint (such as constraint (A.16) for dedicated counter

allocation as above) is added to both models to ensure that only a small percentage of

passengers, α, remain in queue at the end of a TW. The service level is chosen by the

airport operator. The models predict the counter requirement for flights (or for a group

of flights). The model solutions are analysed using simulation for model validation in

different scenarios that may occur at the airport. Once the models are validated, the

corresponding solution is implemented by allocating adjacent counters to each flight

using the ILP by Dijk and Sluis (2006). Though a service level constraint is added to

the model, the waiting time of passengers and the maximum queue length allowed are

not considered. It can be easily proved that model solution does not follow FIFO and

due to this counter usage may be different than expected.

Lalita et al. (2020) propose a model ((A.18)-(A.22)) for determining the optimal num-

ber of counters with postponement of service times. The model considers the passenger

arrival distribution, where dji is the arrivals in TW i for flight j, uji is the number of

arrivals (in TW i), served in TW i and vji is the number of passengers arrivals for flight

j served in TW i+ 1. P denotes the time horizon for these departures. Let io(1) denote

the counter opening time of the first departure and ic(1) denote its closing time, then,

P = {io(1), io(1) + 1, . . . , ic(D̂)}, Pj = io(j), io(j) + 1, . . . , ic(j) and dji = 0 for all (j, i)

such that i 6∈ Pj .

Constraints (A.19) and (A.20) ensure that all passengers are served, constraint (A.21)

ensures that enough counter time is available for serving all the passengers of all the

flights. The formulation makes the resulting counter allocation more rectangular by

postponing service to the next TW for some passengers. It also limits the waiting time

by length of two TWs and follows the FIFO queue discipline. Adding a service level

162Appendix A. The check-in counter allocation problem: A Detailed literature survey

constraint to this model may improve counter allocation. Lalita et al. (2020) also propose

a model for adjacent check-in counter assignment, discussed in section A.4.

Minimize z (A.18)

subject to

uji + vji = dji,∀ i ∈ Pj , j = 1, 2, . . . , D̂, (A.19)

vjic(j) = 0 ∀ j = 1, 2, . . . , D̂, (A.20)∑
j

sj(uji + vj(i−1)) ≤ ωci ∀ i ∈ P, (A.21)

ci ≤ z ∀ i ∈ P, (A.22)

uji, vji and ci ∀ i ∈ P, are nonnegative integers. (A.23)

Hsu et al. (2012) also propose an ILP to determine the number of check-in facilities

required for a departure from the airport. Check-in facilities considered are the counters

and kiosks, online check-in, and barcode check-in. Check-in services offered by these

facilities are : ticket purchase, check-in, boarding pass and checking baggage, each offer-

ing one or more services. Each facility may offer different check-in services. The model

proposed aims to minimize the passenger waiting time, operation costs and counter re-

quirements. The authors explore dynamic allocation of different check-in facilities and

passengers at the airport. For modelling the problem only two types of check-in facilities,

counters and kiosks are considered. Passengers are assigned different facilities based on

service requirement. The model proposed is based on the dynamic model by Nikolaev

et al. (2007). The services required by passengers and their arrival times are predicted

and are an important input to the model. The assignment of the nth passenger by the

model depends on the assignment of the (n − 1)th passenger. Therefore, for dynamic

assignment of passengers, various possible scenarios are analysed. Due to this, the model

takes more than 3 hours to solve for 15 passenger arrivals. In view of this the authors

have used clustering algorithms (in heuristics) for solving the model. A real life scenario

has been presented in the study to show improved counter utilization rates on using

the model at an airport in Taiwan. A brief analysis of the modelling of the problem

suggests that the success of the model is entirely dependent on the willingness of the

Appendix A. The check-in counter allocation problem: A Detailed literature survey163

passengers to use the check-in facility assigned to them. The model may fail to generate

an effective solution at airports where passengers prefer to use other facilities, it may

cause the check-in facilities operating at the airport at certain TWs to be insufficient.

Determining the counter requirement at an airport is necessary but sometimes, the

capacity of check-in counters at an airport also needs to be assessed. It is essential

in decision making for airport expansion. Airport terminal capacity is assessed by

Brunetta et al. (1999), Fayez et al. (2008) and Pacheco and Fernandes (2003). Kıyıldı

and Karasahin (2008) present a fuzzy logic method to determine check-in capacity at

Antalya airport in Turkey.

Capacity of a check-in counter is computed as the number of passengers and luggage

that can be checked-in in one hour. In the model, possible passenger and luggage

combinations are determined. Number of passengers travelling together and the number

of bags (luggage carried by a person/group) is randomly generated and fuzzy logic is

used to predict the processing time. It was observed that the processing time is highly

correlated with volume of luggage (high R2). Fuzzy models are used to calculate the

capacity of each check-in counter in terms of the number of persons served and the

number of luggage items checked-in. This is used to calculate the check-in capacity of

the airport which is compared with the current passenger arrivals and growth rate at

the airport for adding new resources to the airport.

Hwang et al. (2012) present a mathematical model for optimizing check-in counters,

kiosks, part-time staff and full-time staff required during each shift in a week at airports.

Their model assumes static counter allocation and defines the number of passengers using

counters and kiosks in a shift as parameters. The study conducted gathers information

on counter requirements and cost of operation in the presence of various factors including

the day of the week and varying load factors. The authors compute the ratio of counters

to kiosks that would be best suited for serving a flight. Model solutions are verified for

optimizing cost in different scenarios using simulation. The authors conclude that usage

of kiosks reduces the operational costs and that services can be improved by installing

additional kiosks. Regarding the average waiting time, the study concludes that check-in

counter cost can be reduced by limiting passenger service time. Though the observation

is fact-based, it is not clear as to how this may be achieved. This recommendation

164Appendix A. The check-in counter allocation problem: A Detailed literature survey

Figure A.8: Possible variations of the 2-4-6 Counter Profile

also contradicts the existing counter planning strategies of using average service time

to determine counter allocation instead of fixing service time per passenger. Reducing

service time per passenger would definitely make the counter allocation problem easier,

but it may not be always possible to limit passenger processing time.

Simulation has been used for counter determination by Chun (1996), Chun and Mak

(1999) and Dijk and Sluis (2006).

A.4 Adjacent Counter Allocation

The most challenging problem at an airport is adjacent counter allocation for a flight

while simultaneously maximizing counter utilization. Chun (1996) first addressed this

problem by defining structures called counter profiles.

A counter profile is a two dimensional shape that defines the check-in counter resource

requirement for a flight. In the algorithm proposed by Chun (1996), different operators

are presented to change the shape of the counter profile to check for a convenient fit

for allocation in the counter-TW rectangle of fixed dimensions. All possible shapes

are considered for every counter profile (see Fig.A.8). Placing a counter profile in a

two dimensional counter TW space ensures adjacency of counters. Algorithm by Chun

(1996) starts with selecting one possible counter profile for a flight, it is assigned a

location in the counter TW space (also Gantt Chart), all the relevant constraints are

checked, if some of the constraints are violated (i.e. if the specific shape of the counter

Appendix A. The check-in counter allocation problem: A Detailed literature survey165

Figure A.9: Blocking by Yan et al. (2004)

profile cannot fit in the Gantt Chart), the algorithm backtracks by removing the previous

allocation to a flight and freeing up space. The counter profile shapes may need to be

changed in order to accommodate the remaining flights. Chun (1996) simulated different

possible shapes of the counter profile, similar to fitting pieces of a puzzle randomly

until an acceptable solution was reached. If the order in which flight counter profiles

are allocated does not have a feasible solution, the algorithm involves backtracking to

remove flight allocations. This results in a time consuming hit and trial process for

counter allocation. An ILP is presented by Dijk and Sluis (2006) for the same problem.

The ILP considers all possible arrangements of a counter profile in the counter-TW area,

till an optimal solution is obtained. Due to this, the ILP takes a long time to converge

to a feasible solution (especially for large flight departures). The formulation is effective

for small size problems compared to the real-world problems of the day. In the static

counter allocation problem considered by Yan et al. (2004) and Yan et al. (2005), each

counter has one or two service lines to provide check-in service to passengers. To allocate

adjacent counters, the authors define each block as a set of service lines. Tang (2010)

defines each block as a set of adjacent counters. Two blocks may overlap as a service

line/ counter may belong to both (see Fig. A.9).

Service lines are demanded by airlines in accordance with the passenger arrival pat-

tern and the number of passengers on the flight. Yan et al. (2004) propose a static

model to assign blocks to flights. The objectives of the study are to allocate counters

to minimize passenger walking distance and reduce inconsistency in counter location.

Allocation to different blocks of counters on different days of the week for the same

166Appendix A. The check-in counter allocation problem: A Detailed literature survey

flight is defined as an inconsistency. Inconsistency values are introduced as the airlines

prefer to have the same block of counters allocated for flights in a week.

Passenger walking distance is calculated for possible flight assignments to a block and

all possible blocks to which a flight can be assigned are considered in the model. For

a given flight and block combination, it is the average distance a passenger walks after

check-in from the block allocated till boarding. An ILP is proposed for minimizing the

passenger walking distance subject to allowable inconsistency. The constraints of the

ILP need preprocessing to exclude redundant constraints. Since the solution method

lacks scalability, three heuristic models are proposed to solve the problem. The first

model provides the assignment for a day. Based on this, inconsistency values are set and

the second model is solved for a minimum inconsistency value. Then, the third model

is solved for the final assignment of flights to blocks. A heuristic is thus provided for

solving the model for a single day. This heuristic has been used in real-life modelling

at an airport in Taiwan. The models are used for allocating 140 counters to 70 flights

departing from the airport. The number of variables exceed 80000 and constraints exceed

70000. Results from the case study conducted for Taiwan Airport show reduction in the

passenger walking distance by 4%.

Yan et al. (2005) study the dynamic counter allocation problem. Their objective is

to allocate adjacent counters to flights by minimizing the total inconsistency in blocks

allocated to a flight. Blocking plans are similar to blocking by Yan et al. (2004). Each

counter may have many service lines (as also defined by Yan et al. (2004)) and the

service line requirement for each flight in each TW is known. Since the number of

service lines differ from one block to another, additional lines need to be opened or

closed between successive TWs. This adjustment of service lines between two consecutive

TWs is considered an inconsistency. From the inconsistency values attached to blocks

pairwise, the inconsistency value in flight allocation on a day is computed. The problem

was solved by an ILP, allocating a block (possibly different) to each flight in each TW.

Due to the complexity involved in computing the inconsistency values, the problem

becomes increasingly complex with increase in number of flights, and the authors propose

a heuristic algorithm. The heuristic for the problem divides it into subproblems, each of

which is solved. Each subproblem comprises of equal counters and flight departures. An

exchange mechanism between the two parts is proposed to proceed further (similar to

Appendix A. The check-in counter allocation problem: A Detailed literature survey167

the evolutionary algorithm by Mota (2015)). The exchange of two flights, one selected

from each group, (with overlapping departure times), and then re-solving for a solution is

continued till a reduction in inconsistency is achieved. The allowable inconsistency value

is chosen as appropriate. The solution with the least inconsistency value (according to

the stopping criterion) is chosen. The order of exchanges effects the final solution, hence,

further improvements to the heuristic algorithm are suggested. For large problems,

dividing flights into two groups may be insufficient. Due to this number of groups is

increased and the solution algorithm is improved. A disadvantage is the increase in

complexity of the problem with additional subgroups, as a result of increase in the

number of flights.

Mathematical Models to ensure Adjacency

Dijk and Sluis (2006) model the problem combining both simulation and integer pro-

gramming. The objectives of the study are to determine the minimal counter require-

ment for each flight and then to allocate counters at the airport with adjacency main-

tained. The problem is solved in two stages. In the first stage terminating simulations

are run to determine counter requirement till the solutions satisfy service level require-

ments. In the second stage, an ILP is solved for adjacent allocation of counters. The

study presents ILPs for both variable and constant counter allocation. These models

ensure adjacency of the counters allocated to each flight and solve to an optimal solution.

The ILP for variable counter allocation is given below:

Minimize D (A.24)

subject to

nft ≤ dft ≤ D, ∀f and t = af , (A.25)

dft + ngt ≤ dgt or dgt + nft ≤ dft, ∀f, g and t ∈ If ∩ Ig, (A.26)

dft − dft−1 ≤ max{0, nft − nft−1}, ∀f and t ∈ (af , bf], (A.27)

dft−1 − dft ≤ max{0, nft−1 − nft}, ∀f and t ∈ (af , bf], (A.28)

where, D is the total number of counters required, If is the check-in interval of

flight f (or counter operating time), nft is the number of desks required for the check-in

168Appendix A. The check-in counter allocation problem: A Detailed literature survey

Figure A.10: Task Structure for a given Counter Allocation

process of flight f in period t (t ∈ If), and dft is the largest desk number assigned to

flight f in period t (t ∈ If). Constraint (A.25) ensures that counters assigned to flights

do not exceed D, constraint (A.26) ensures that two flights are not assigned the same

counter in a TW and also avoids overlap, constraints (A.27) and (A.28) ensure that

required counters are opened or closed at the beginning of a TW. Model inputs are the

counter requirements (nft) for flights determined using simulation. Queuing theory and

simulation methods are both evaluated, it is observed that queueing theory cannot be

applied since the arrival distribution of passengers for different flights is not homogeneous

and cannot reach a steady state. Simulation and the model ((A.24)-(A.28)) were applied

to data from a Dutch airport and it was observed that increased problem size (increase

in number of flights and planning horizon) resulted in an increase in computation time.

A similar mathematical model is presented by Duin and Sluis (2006). The model is

adapted from RPSP (see Pinedo and Chao (1998)).

Lalita et al. (2020) also present an ILP for allocating adjacent counters. The ILP

((A.31)-(A.35)) has been shown to solve problems with a large number of departures

in less time compared with formulations by Araujo and Repolho (2015) and Bruno and

Genovese (2010). Tasks are defined as time-varying counter requirement for one or more

departures (see Fig.A.10). This definition is similar to that of counter profiles by Chun

and Mak (1999). The difference being that there cannot be multiple task structures

whereas the shape of a counter profile can be changed using different operators. A

counter-TW pair, (k, i) is fixed and variables wki and mt are defined by

wki =
∑
t∈Ti

ci(t)∧k∑
h=1

yt(k−h+1), (A.29)

mt = max{ci(t) : io(t) ≤ i ≤ ic(t)}, (A.30)

Appendix A. The check-in counter allocation problem: A Detailed literature survey169

where io(t) is the counter opening time and ic(t) is the counter closing time for task

t, Ti is the set of all tasks t such that io(t) ≤ i ≤ ic(t), wki is the number of tasks that

use counter-TW combination (k, i), ytk is a binary variable, equal to 1 if task t starts

at counter k, and
∑

k kytk +mt − 1 is the largest counter number used by task t.

Minimize s (A.31)

subject to

∑
t∈Ti

ci(t)∧k∑
h=1

yt(k−h+1) ≤ 1 for all (i, k), (A.32)

∑
k

ytk = 1 for all t, (A.33)

∑
k

kytk +mt − 1 ≤ s, for all t, (A.34)

ytk ∈ {0, 1} for all t, k, (A.35)

Constraint (A.32) ensures that no counter is allocated to more than one task in

any TW. Constraint (A.33) ensures that each flight is allocated counters and constraint

(A.34) limits the total number of counters used to s.

A.5 Some Real-world Airport Applications

This section discusses models proposed for solving real-life airport problems. We focus

on the airport problem considered by the authors, inputs required for the models con-

sidered, and prominent disadvantages and advantages to using these models. Joustra

and Van Dijk (2001) present a simulation model and Dijk and Sluis (2006) present ILPs

in addition to simulation for check-in counter allocation, Atkins et al. (2003) present a

simulation model with input data on pre-board screening, shift scheduling, passenger

arrivals, and level of service for determining staff scheduling and resource requirements.

Simulations were run till the staff schedule obtained satisfied the level of service at the

airport. Operations in airports vary in type of check-in, type of queue permitted, flex-

ibility of counter usage (for business or economy class), passenger behaviour, common

170Appendix A. The check-in counter allocation problem: A Detailed literature survey

or dedicated counters, check-in periods, baggage collection centers and sorting of bag-

gage, queuing area etc. Consequently, simulation models consider different features and

requirements of the airport under consideration. Bruno and Genovese (2010) present

two models for counter determination. The model by Lous (2011) considers the baggage

belt direction, amount of baggage allowed per baggage area, the maximum number of

people allowed to queue at a counter, adjacency of counters allocated, counter location

preferences by an airline, but aiming to create a flexible model results in a complicated

model, and involves a large number of additional computations, especially in allocating

preferred counters to airlines. In the study by Al-Sultan (2016), some counters are al-

ways kept unused in each zone of the airport to cushion the airport operator against

sudden increase in traffic. The author overlooks the model objective function which

is constant, the model is thus defective and consequently, the objective of minimizing

the counters allocated may not be achieved. Felix and Reis (2017) developed a hybrid

discrete-event and agent based simulation model to assess the performance of check-in

process at the airport of Lisbon. Passenger behaviour, the sequence of tasks performed

in the check-in area and the physical layout of the check-in area are incorporated in

the model. The variations in the check-in process are attributed to variation in these

aspects. The model by Felix and Reis (2017) is comparable to the model by Lous (2011)

in that it considers almost the same set of factors effecting passenger check-in.

In Felix and Reis (2017), the simulation model proposed aims to explore various

scenarios at check-in area and enables airport operators to choose the best position

and assignment of different types of check-in facilities (counters, kiosks, etc) to airlines

(counters and kiosks differ in the services offered). However, in Lous (2011), baggage

collection centers with limited capacity and limited queueing area are incorporated in the

ILP proposed. Trakoonsanti (2016) also models the problem for an airport in Thailand.

The excel based software SimQuick is used to build the model for simulation. The arrival

distribution of passengers, check-in service time (or its distribution), type of queue, are

input to the software. Different structures at the airport such as the check-in counters,

entrances, exits, queue capacity, and other processes can be defined and average time for

passenger flow through these processes including the check-in counters can be observed.

The paper concludes with different results on the efficiency of counter allocation in terms

of passenger waiting times and queue length.

Appendix A. The check-in counter allocation problem: A Detailed literature survey171

A.6 Different Approaches to Counter Allocation

This section discusses different approaches for check-in counter assignment. The ap-

proaches used to model the problem are classified below based on the problem solved

and procedures used.

A.6.1 Simulation for Counter Allocation

Initial attempts to solve the counter allocation problem were made by simulation of

resource requirement at airports. Constraint satisfaction algorithms were presented by

Chun (1996) and Chun and Mak (1999). Subsequently, simulation of passenger flow at

the airport terminal was proposed by Wong and Liu (1998) and passenger flow from ter-

minal entrance to boarding was simulated by Kiran et al. (2000). Wong and Liu (1998)

focus on passenger traffic characteristics and their impact on terminal operations. Sim-

ulation of resources may also be done to identify delays at the check-in system and

create scenarios that will improve the efficiency (Appelt et al. (2007)). Real-time sys-

tem data was used by Ros Prat (2017) to simulate system behaviour and test different

conditions and scenarios with the objective of optimizing the check-in procedure at Bris-

bane Airport. The author presents a dynamic check-in procedure where rapid changes

in the check-in procedure are possible in real-time. Simulation was used for counter

determination by Dijk and Sluis (2006). For analysis of counter allocation and waiting

time of passengers, Bevilacqua and Ciarapica (2010) compared both waiting times and

other parameters estimated by queuing theory and simulation. Chun (1996) presents

algorithms by modelling the problem as a multidimensional placement problem. Chun

(1996) proposes a two-dimensional approximation for counter scheduling where space

(counters) and time are assumed to be part of a Gantt chart. The constraint satis-

faction algorithms presented consider all possible counter profiles (A.8) for each flight.

The final version of the algorithm aims to further improve the solution by considering

different shapes per counter profile and by imposing constraints on the minimum num-

ber of counters allocated to a flight based on the queue length restrictions. The main

drawback of this method is that final allocation depends on the order of flights chosen

by the algorithm for allocation. For the final algorithm, counter profile globs are defined

as multidimensional objects which include additional dimensions such as queue lengths,

172Appendix A. The check-in counter allocation problem: A Detailed literature survey

waiting time and baggage restrictions. Also, in case all the flights cannot be allocated

to counters, despite re-shaping the counter profile globs and minimizing the counters

allocated, the algorithm backtracks, de-assigns the most recent allocation and proceeds

to allocate for another flight. This is a major drawback for airports with a large number

of departures. There may be too many backtracks in deriving the final solution. Also,

the final allocation depends on the order of the flights chosen. Choosing the best counter

profile has not been addressed in this paper, which is very much needed for arriving at

a good decision.

Chun and Mak (1999) present an intelligent resource simulation system (IRSS). IRSS

predicts the check-in counter requirement at an airport. This is a software which takes

the airport flight data, passenger turn up data, check-in counter data, and other model

parameters as input to generate a simulation model. The IRSS proposed also has a

graphic user interface to simulate and animate the check-in counter queueing for a single

flight. Simulation parameters such as tolerable passenger waiting time, queue lengths,

service rates, check-in times for flights, the number of check-in counters, number of pas-

sengers or time of departure can be changed to match the reality at the airport and to

observe the change in counter allocation. The objective is to find a counter profile (a

counter assignment solution) which saves the maximum counter time compared to the

current counter allocation and maintains the desired service level quality. The authors

also account for the stochastic processes such as arrival rates. The Check-in Counter

Allocation System (CCAS) presented by Chun (1996) together with the IRSS are ca-

pable of addressing check-in counter allocation problem at an airport and were used

together in the Kai Tak International Airport. The solutions obtained are evaluated

by analysing the waiting times of passengers and queue lengths. Though the algorithm

tries to achieve the best possible solution, a major disadvantage is that not all possible

counter profiles can be simulated. The authors examine some counter profiles to arrive

at the best counter allocation (Chun (1996)). Due to this we cannot ensure that the

service quality level provided is the best possible. Also, for a large number of flights and

time windows, algorithms with simulation will take a large amount of time.

Bevilacqua and Ciarapica (2010) present a case study and an analysis of counter allo-

cation through simulation. Their objective is to calculate minimum counter requirement

Appendix A. The check-in counter allocation problem: A Detailed literature survey173

of each flight such that average waiting time does not exceed the maximum allowable

limit. Passenger arrivals and counter operations are simulated for a single flight or a

group of flights. Poisson distribution was used to generate arrivals. The model assumes

steady state of the system. In the case study presented, counter operations are mod-

elled as a queueing theory system and stability conditions for common check-in were

calculated. Simulation analysis shows that common check-in is better than dedicated

check-in. Simulation results are compared with standard results from queuing theory.

The effect of varying arrival time distribution and number of counters allocated to a

flight on the average waiting time is computed. It is observed that queueing theory

is more applicable for common check-in and simulation is more suited for dedicated

check-in.

Using simulation for decision making process has the main disadvantage that it ex-

plores only a small subset of the whole possible scenarios that can be reached by the

system under study, thus reducing its optimization potential (Mota (2015)). To over-

come this problem many authors have proposed mathematical models for determining

counter requirements and for ensuring adjacency in counter allocation. Some of the

models are discussed in the sections A.3 and A.4.

A.6.2 Network Model for Counter Allocation

Tang (2010) developed a network flow model for allocating blocks of counters to airlines.

The network flow model aims to optimize counter usage at a Taiwan airport. The model

uses predefined blocks of counters at the airport and opening and closing counter times

of flights. Each flight is defined using an arc, the opening time and the closing time

form connecting nodes. Arcs are used to denote sequential flight allocations in a counter

block (Fig. A.11a).

The opening time, closing time and counter requirements for a flight are inputs

to the model, as determined by airlines. An ILP meeting all the constraints at the

airport is proposed. Flights, set of nodes and arcs that can be assigned to a block are

all inputs to the model resulting in a counter block flow network for each block. A

network can also be used to represent all the possible flight assignments to a block in

174Appendix A. The check-in counter allocation problem: A Detailed literature survey

(a) Counter Block Flow

(b) Multiple Counter Block Flow Networks

Figure A.11: Networks for Counter Allocation by Tang (2010)

a day (Fig. A.11b). The main advantages of the network flow method are allocation

of adjacent counters and convenient representation of the flight sequence allocated to

a counter block. The model involves preprocessing to eliminate redundant constraints

(in the example presented by Tang (2010), about 30% of the constraints are redundant)

and computing parameters before constructing the model. Due to this preprocessing,

running time varies exponentially with input size (the number of flights scheduled and the

number of counter blocks allowed). The model is used to find near-optimal solutions at

the Taiwan Taoyuan International Airport, though implementation becomes extremely

complicated for assigning time-varying counters to flights. The main drawback of their

model is that the counters are predivided into blocks for allocating to airlines which

results in a lot of preprocessing. Since multiple blocks can be built with the same

counter, the number of possible blocks can be very large complicating the process of

counter allocation.

A.6.3 Evolutionary Algorithms and Counter Allocation

Some authors have proposed genetic and evolutionary algorithms for the check-in counter

allocation problem (Yeung and Chun (1995), Mota and Alcaraz (2015), Mota (2015),

Mota and Zuniga (2013)). Evolutionary techniques are a group of methods inspired by

common evolutionary processes. These techniques are expected to provide good solu-

tions, i.e. solutions that are close to optimal but may not be optimal(see Goldberg (1989)

and Mota (2015)). The efficiency of these techniques relies highly on parameters that

drive the selection procedure (see Mota (2015) and Affenzeller et al. (2009)). Genetic

Appendix A. The check-in counter allocation problem: A Detailed literature survey175

algorithms are a part of evolutionary techniques. Genetic algorithms (GAs) are defined

as efficient, adaptive and robust search and optimization processes that are applied in

large and complex search spaces. GAs are modelled on the principles of natural genetic

systems where the genetic information of each individual or potential solution is encoded

in structures called chromosomes. GAs compute a fitness function for directing search in

more promising areas. Each individual has an associated fitness value, which indicates

its degree of goodness with respect to the solution it represents. GAs search from a set

of points called a population and various biologically inspired operators like selection,

crossover and mutation are applied to obtain better solutions (Bandyopadhyay and Pal

(2007)).

Yeung and Chun (1995) use fitness directed scheduling to develop an airport check-in

counter allocation system based on genetic algorithms. Populations of individuals are

genetically bred according to Darwinian principles, i.e., reproduction of the fittest and

crossover operations. Each individual represents a check-in counter allocation plan for

one day (it is the allocation on a Gantt Chart). Each individual also has an associated

fitness measure. Fitness measure is in terms of the number of overlaps found in an

allocation plan. Lesser the overlaps, fitter the allocation plan. The fittest individual is

the best allocation plan for that day. A population of individuals is randomly created and

fittest individuals are selected for the crossover operation. The crossover operation is to

create offspring counter allocation plans from the selected individuals in the population.

By recombining randomly chosen assignments of the fittest allocation plans, we produce

new allocation plans. This new population replaces the previous population and the

entire process is repeated to create new generations. The best allocation plan that

appeared in any generation is the best plan for check-in counter allocation problem.

Mota (2015) presents a methodology that combines evolutionary techniques and sim-

ulation and aims to provide a solution which is better than the solution obtained by

applying these techniques independently. The algorithm uses a brute-force approach.

Flights are allocated sequentially, taking into account all the constraints in flight allo-

cation such as no overlap, counters opened three hours before departure etc. After all

the flights are allocated an initial solution is obtained. This is similar to the algorithm

first-fit. In order to get varying solutions, the flight order is changed before each allo-

cation. A population of Counter allocation plans is thus obtained. Next, the solutions

176Appendix A. The check-in counter allocation problem: A Detailed literature survey

Figure A.12: Crossover of two solutions

are converted into vectors (chromosomes) with information that will be used by the

evolutionary algorithm. Crossover operations are performed (see Fig.A.12) to improve

the existing solutions such that feasibility of the generated solution is maintained. To

perform a crossover between any two initial solutions, flights are selected randomly from

each of the two solutions and compared. For a pre-decided percentage of flights, with

matching counter opening and closing times, counter locations are interchanged. The

crossover procedure is performed on solutions with higher fitness values. The result-

ing solutions with a high measure of fitness are then retained and again crossed over.

Though feasibility of the resulting solution is ensured, the computation time to deter-

mine feasibility for crossover is very large and increases with the size of the input. For

instance, for an airport with about 2500 departures in a week, to perform a crossover,

2500*2500 flight combinations need to be checked for possibility of a crossover. The cost

function is computed for each generation and checked for improvement. Since the prob-

lem is multi-objective, an objective function is computed as a fitness measure. In the

algorithm proposed, the solutions are improved till a stop condition is reached. The stop

condition is arbitrarily determined and feasible solutions obtained this way are analysed

in real-life conditions using simulation.

A major problem with genetic and evolutionary techniques is that the solution(s)

with best fitness may not be anywhere near optimal, but is only relatively better among

the allocations generated. Larger the initial population of counter assignments higher

the possibility of improving the initial solution. For n flights, the algorithm by Yeung

Appendix A. The check-in counter allocation problem: A Detailed literature survey177

and Chun (1995) needs (1 +
(

2n

2

)
) ∗ (2n) steps, where 2n is the number of possible

recombinations of two counter allocations. This results in unnecessarily prolonged and

time consuming calculations for eliminating poor solutions, thus, the number of steps

for the algorithm increase exponentially with n.

A.6.4 Queuing Theory and Counter Allocation

Parlar and Sharafali (2008) propose a dynamic programming technique based on queuing

theory for determining the counter requirement of a flight. Queueing theory results are

used to model the problem. A pure death process is used to model the arrivals. An

exponential service time distribution is assumed (Erlang distribution is also explored).

The rate of service is observed as proportional to the queue size, hence, service rate is

assumed to be state-dependent. The exact forms of distributions of the arrival rate and

the service rate are found. These are used to calculate the expected number of passengers

in the system and the cost of passengers waiting to be served. Since the arrival rate

is time dependent and the arrival process is non-stationary, arrivals are observed and

counter operating time is divided into smaller subintervals with constant arrival rate.

The arrival rate is then estimated. A dynamic programming model is then used to

determine counters to be opened. Counter opening or closing decisions are expected

to be made every 20 minutes to minimize the total expected cost. Parlar and Sharafali

(2008) propose a model to determine optimal time varying counter allocation for a single

flight. Parlar et al. (2013) propose static counter allocation policy for a single flight.

Their objective is to minimize the expected total cost of waiting, counter operation,

and passenger delay which the authors show to be convex in the number of counters

allocated. The authors also introduce a service level constraint to ensure that a certain

percentage of passengers are served in each TW.

A.7 Related Scheduling Problems

Two problems related to ACAP, the two dimensional strip packing problem and resource

constrained project scheduling (RPSP), have been studied extensively (see Lodi et al.

(2002), Amoura et al. (2002), Blazewicz et al. (1986), Duin and Sluis (2006) for further

178Appendix A. The check-in counter allocation problem: A Detailed literature survey

details). The two dimensional strip packing problem comprises of allocating rectangular

items to a larger standard size rectangle with the objective of minimizing waste. The

problem, P |fixj |Cmax in multiprocessor scheduling, after swapping time and place is

equivalent to the adjacent resource allocation problem with rectangular units (for fur-

ther details see Duin and Sluis (2006) and Amoura et al. (1997)). The problem with

irregularly shaped units, such as polyominoes (see Fig.A.2), is similar to RPSP. Hence,

a well known integer programming formulation of RPSP (see Pinedo and Chao (1998),

Duin and Sluis (2006)) can be modified to solve ACAP (Duin and Sluis (2006)).

Duin and Sluis (2006) discusses similarities of the counter allocation problem with

other resource allocation problems in literature such as the two-dimensional strip packing

problem (see Lodi et al. (2002)) and the resource constrained project scheduling problem

(see Blazewicz et al. (1986) and Du and Leung (1989)).

Staff rostering/human resource management problems at the airport check-in coun-

ters are discussed by Lin et al. (2015), Zamorano et al. (2018), Rodič and Baggia (2017)

and Xin et al. (2014). Xin et al. (2014) discusses both counter allocation and staff

rostering.

Bruno et al. (2018) propose a model to optimize shift scheduling decisions of desk

operators and service level measured in terms of passenger waiting times at the counters.

A real-life case study has been presented for two airports in Italy.

Hsu and Chao (2005) study optimal facility purchase and replacement. Brunetta

et al. (1999) evaluates an airport terminal and estimate delays due to facilities such

as the check-in counters. Fayez et al. (2008) estimates the passenger flow through the

airport. Efficient use of airport capacity is discussed by Pacheco and Fernandes (2003).

Kim et al. (2017) propose re-assignment of space reserved for airlines on the main

conveyor belt to achieve a balanced throughput for check-in counters of different airlines

in a check-in area. This method of baggage transfer also results in lowering the maximum

check-in waiting time across all counters.

Appendix A. The check-in counter allocation problem: A Detailed literature survey179

Yan et al. (2008) and Yan et al. (2014) have worked on reassignments of counter allo-

cations in case of sudden unexpected events at the airport such as change in flight sched-

ule, baggage belt malfunction, airport closure and other disturbances to the planned

counter allocation. A mathematical formulation has been presented by Yan et al. (2014)

with the objective of reducing the impact of unforeseen circumstances at the airport.

An inconsistency for a flight is defined as the deviation between original and reassigned

counters. The model aims to reduce the inconsistencies in assignment. A heuristic is

proposed for solving the model. The model is modified into two relaxations to obtain an

upper bound and lower bound. The two relaxations of the model are repeatedly solved

till the difference between the two is lower than a predefined limit. The main advantage

of the formulation is that it helps the airport authorities with reassignment of counters

to restore normalcy and contain the impact of a disturbance to as few flights as possible.

Some numerical validation to the model is given. A major disadvantage is that all flights

may not be reassigned adjacent counters. Different counters in different TWs may result

in confusion for the customers, as it is not possible to shift passengers in a queue from

one counter to another.

Various methods of solving the counter allocation problem at airports are presented in

here. It is observed that determining counter requirements for flights and then allocating

adjacent counter space is most suitable to obtain a practical solution to the adjacent

counter allocation problem.

Appendix B

Datasets and Computer Programs

associated with the Thesis

1. For the staff scheduling problem presented in Chapter 2, the dataset used has

been published (Lalita and Murthy (2021b)) and is available at https://data.

mendeley.com/datasets/bk33vpzvkd/1. The code used for simulating instances

of ISTSP in Chapter 2 is presented in Github Repository available at https:

//github.com/trlalita/ISTSP.

2. The airline data used in Chapter 3 for developing methods for check-in counter allo-

cation is given as supplementary data to our paper, Lalita et al. (2020) on check-in

counter allocation at https://www.sciencedirect.com/science/article/abs/

pii/S0969699719300444.

3. The wind power forecast data used in Chapter 5 has been published (Lalita and

Murthy (2021a)) and is available at http://dx.doi.org/10.17632/3t5ns4x58r.

1.

4. The code used for simulating instances of the Berth Allocation Problem is available

at https://github.com/trlalita/BAP/tree/main.

181

https://data.mendeley.com/datasets/bk33vpzvkd/1
https://data.mendeley.com/datasets/bk33vpzvkd/1
https://github.com/trlalita/ISTSP
https://github.com/trlalita/ISTSP
https://www.sciencedirect.com/science/article/abs/pii/S0969699719300444
https://www.sciencedirect.com/science/article/abs/pii/S0969699719300444
http://dx.doi.org/10.17632/3t5ns4x58r.1
http://dx.doi.org/10.17632/3t5ns4x58r.1
https://github.com/trlalita/BAP/tree/main

Bibliography

Abdelaziz, S. G., A. A. Hegazy, and A. Elabbassy (2010): “Study of Airport

Self-service Technology within Experimental Research of Check-in Techniques Case

Study and Concept,” International Journal of Computer Science Issues (IJCSI), 7,

30.

Abujarad, S. Y., M. Mustafa, and J. Jamian (2017): “Recent approaches of unit

commitment in the presence of intermittent renewable energy resources: A review,”

Renewable and Sustainable Energy Reviews, 70, 215–223.

Affenzeller, M., S. Wagner, S. Winkler, and A. Beham (2009): Genetic algo-

rithms and genetic programming: modern concepts and practical applications, Chap-

man and Hall/CRC.

Agra, A. and M. Oliveira (2018): “MIP approaches for the integrated berth al-

location and quay crane assignment and scheduling problem,” European Journal of

Operational Research, 264, 138–148.

Ak, A. (2008): “Berth and quay crane scheduling: problems, models and solution

methods,” Ph.D. thesis, Georgia Institute of Technology.

Al-Dhaheri, N. and A. Diabat (2015): “The quay crane scheduling problem,” Jour-

nal of Manufacturing Systems, 36, 87–94.

Al-Sultan, A. T. (2016): “Optimization of Airport Check-In Scheduling at Passenger

Terminal,” International Journal of Applied Business and Economic Research, 14,

3233–3245.

Alfares, H. K. (2004): “Survey, categorization, and comparison of recent tour schedul-

ing literature,” Annals of Operations Research, 127, 145–175.

183

184 BIBLIOGRAPHY

Alfares, H. K. and J. E. Bailey (1997): “Integrated project task and manpower

scheduling,” IIE transactions, 29, 711–717.

Alvarez-Valdes, R., E. Crespo, and J. Tamarit (1999): “Labour scheduling at

an airport refuelling installation,” Journal of the Operational Research Society, 50,

211–218.

Amoura, A. K., E. Bampis, C. Kenyon, and Y. Manoussakis (1997): “Scheduling

independent multiprocessor tasks,” in European Symposium On Algorithms, Springer,

1–12.

——— (2002): “Scheduling independent multiprocessor tasks,” Algorithmica, 32, 247–

261.

Appelgren, L. H. (1969): “A column generation algorithm for a ship scheduling prob-

lem,” Transportation Science, 3, 53–68.

Appelt, S., R. Batta, L. Lin, and C. Drury (2007): “Simulation of passenger

check-in at a medium-sized US airport,” in Simulation Conference, 2007 Winter,

IEEE, 1252–1260.

Araujo, G. E. and H. M. Repolho (2015): “Optimizing the Airport Check-In

Counter Allocation Problem,” Journal of Transport Literature, 9, 15–19.

Arlitt, M., C. Bash, S. Blagodurov, Y. Chen, T. Christian, D. Gmach,

C. Hyser, N. Kumari, Z. Liu, M. Marwah, et al. (2012): “Towards the design

and operation of net-zero energy data centers,” in 13th InterSociety Conference on

Thermal and Thermomechanical Phenomena in Electronic Systems, IEEE, 552–561.

Atkins, D., M. Begen, B. Luczny, A. Parkinson, and M. Puterman (2003):

“Right on queue,” OR/MS Today, 30.

Avramidis, A. N., W. Chan, M. Gendreau, P. L’ecuyer, and O. Pisacane

(2010): “Optimizing daily agent scheduling in a multiskill call center,” European

Journal of Operational Research, 200, 822–832.

Aykin, T. (1996): “Optimal shift scheduling with multiple break windows,” Manage-

ment Science, 42, 591–602.

BIBLIOGRAPHY 185

Bailey, J., H. Alfares, and W. Y. Lin (1995): “Optimization and heuristic models

to integrate project task and manpower scheduling,” Computers & Industrial Engi-

neering, 29, 473–476.

Bandyopadhyay, S. and S. K. Pal (2007): Classification and learning using genetic

algorithms: applications in bioinformatics and web intelligence, Springer Science &

Business Media.

Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and

P. H. Vance (1998): “Branch-and-price: Column generation for solving huge integer

programs,” Operations research, 46, 316–329.

Bassett, M. (2000): “Assigning projects to optimize the utilization of employees’ time

and expertise,” Computers & Chemical Engineering, 24, 1013–1021.

Beliën, J. and E. Demeulemeester (2008): “A branch-and-price approach for inte-

grating nurse and surgery scheduling,” European journal of operational research, 189,

652–668.

Beliën, J., E. Demeulemeester, P. De Bruecker, J. Van den Bergh, and

B. Cardoen (2013): “Integrated staffing and scheduling for an aircraft line mainte-

nance problem,” Computers & Operations Research, 40, 1023–1033.

Bellenguez-Morineau, O. and E. Néron (2007): “A branch-and-bound method

for solving multi-skill project scheduling problem,” RAIRO-operations Research, 41,

155–170.

Bevilacqua, M. and F. Ciarapica (2010): “Analysis of check-in procedure using

simulation: a case study,” in Industrial Engineering and Engineering Management

(IEEM), 2010 IEEE International Conference on, IEEE, 1621–1625.

Bhulai, S., G. Koole, and A. Pot (2008): “Simple methods for shift scheduling in

multiskill call centers,” Manufacturing & Service Operations Management, 10, 411–

420.

Bierwirth, C. and F. Meisel (2010): “A survey of berth allocation and quay crane

scheduling problems in container terminals,” European Journal of Operational Re-

search, 202, 615–627.

186 BIBLIOGRAPHY

——— (2015): “A follow-up survey of berth allocation and quay crane scheduling prob-

lems in container terminals,” European Journal of Operational Research, 244, 675–689.

Bitran, G. R. and H. H. Yanasse (1982): “Computational complexity of the capac-

itated lot size problem,” Management Science, 28, 1174–1186.

Blazewicz, J., M. Drabowski, and J. Weglarz (1986): “Scheduling multiproces-

sor tasks to minimize schedule length,” IEEE Transactions on Computers, 389–393.

Blazewicz, J., K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz (2013):

Scheduling computer and manufacturing processes, springer science & Business media.

Blazewicz, J., J. K. Lenstra, and A. R. Kan (1983): “Scheduling subject to

resource constraints: classification and complexity,” Discrete applied mathematics, 5,

11–24.

Brown, G. G., S. Lawphongpanich, and K. P. Thurman (1994): “Optimizing

ship berthing,” Naval Research Logistics (NRL), 41, 1–15.

Brucker, P. and S. Knust (2000): “Resource-constrained project scheduling and

timetabling,” in International Conference on the Practice and Theory of Automated

Timetabling, Springer, 277–293.

Brucker, P., R. Qu, and E. Burke (2011): “Personnel scheduling: Models and

complexity,” European Journal of Operational Research, 210, 467–473.

Brunetta, L., L. Righi, and G. Andreatta (1999): “An operations research model

for the evaluation of an airport terminal: SLAM (simple landside aggregate model),”

Journal of Air Transport Management, 5, 161–175.

Brunner, J. O., J. F. Bard, and R. Kolisch (2009): “Flexible shift scheduling of

physicians,” Health care management science, 12, 285–305.

——— (2010): “Midterm scheduling of physicians with flexible shifts using branch and

price,” Iie Transactions, 43, 84–109.

Brunner, J. O. and G. M. Edenharter (2011): “Long term staff scheduling of physi-

cians with different experience levels in hospitals using column generation,” Health

care management science, 14, 189–202.

BIBLIOGRAPHY 187

Brunner, J. O. and R. Stolletz (2014): “Stabilized branch and price with dynamic

parameter updating for discontinuous tour scheduling,” Computers & operations re-

search, 44, 137–145.

Bruno, G., A. Diglio, A. Genovese, and C. Piccolo (2018): “A decision support

system to improve performances of airport check-in services,” Soft Computing, 1–10.

Bruno, G. and A. Genovese (2010): “A mathematical model for the optimization of

the airport check-in service problem,” Electronic Notes in Discrete Mathematics, 36,

703–710.

Castillo-Salazar, J. A., D. Landa-Silva, and R. Qu (2016): “Workforce schedul-

ing and routing problems: literature survey and computational study,” Annals of

Operations Research, 239, 39–67.

Catalão, J. P., H. M. Pousinho, and V. M. Mendes (2012): “Optimal offering

strategies for wind power producers considering uncertainty and risk,” IEEE Systems

Journal, 6, 270–277.

Cheng, S. W., Y. P. Zhang, and Y. Y. Guo (2012): “Theory of Allocating and

Scheduling Resources at Airport Passenger Terminals: A Review,” in Advanced En-

gineering Forum, Trans Tech Publ, vol. 5, 66–70.

Chun, H. W. (1996): “Scheduling as a multi-dimensional placement problem,” Engi-

neering Applications of Artificial Intelligence, 9, 261–273.

Chun, H. W. and R. W. T. Mak (1999): “Intelligent resource simulation for an

airport check-in counter allocation system,” IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), 29, 325–335.

Cordeau, J.-F., M. Gaudioso, G. Laporte, and L. Moccia (2007): “The ser-

vice allocation problem at the Gioia Tauro maritime terminal,” European Journal of

Operational Research, 176, 1167–1184.

Cordeau, J.-F., G. Laporte, P. Legato, and L. Moccia (2005): “Models and

tabu search heuristics for the berth-allocation problem,” Transportation science, 39,

526–538.

188 BIBLIOGRAPHY

Correcher, J. F. and R. Alvarez-Valdes (2017): “A biased random-key genetic

algorithm for the time-invariant berth allocation and quay crane assignment problem,”

Expert Systems with Applications, 89, 112–128.

Correcher, J. F., R. Alvarez-Valdes, and J. M. Tamarit (2019): “New exact

methods for the time-invariant berth allocation and quay crane assignment problem,”

European Journal of Operational Research, 275, 80–92.

Daganzo, C. F. (1989): “The crane scheduling problem,” Transportation Research

Part B: Methodological, 23, 159–175.

Dantzig, G. B. (1954): “Letter to the editor—A comment on Edie’s “Traffic delays at

toll booths”,” Journal of the Operations Research Society of America, 2, 339–341.

Dantzig, G. B. and P. Wolfe (1960): “Decomposition principle for linear programs,”

Operations research, 8, 101–111.

——— (1961): “The decomposition algorithm for linear programs,” Econometrica:

Journal of the Econometric Society, 767–778.

Desrochers, M. and F. Soumis (1989): “A column generation approach to the urban

transit crew scheduling problem,” Transportation Science, 23, 1–13.

Di Martinelly, C., P. Baptiste, and M. Maknoon (2014): “An assessment of the

integration of nurse timetable changes with operating room planning and scheduling,”

International Journal of Production Research, 52, 7239–7250.

Diabat, A. and E. Theodorou (2014): “An integrated quay crane assignment and

scheduling problem,” Computers & Industrial Engineering, 73, 115–123.

Dijk, N. M. v. and E. v. d. Sluis (2006): “Check-in computation and optimization

by simulation and IP in combination,” European Journal of Operational Research,

171, 1152–1168.

Du, J. and J. Y.-T. Leung (1989): “Complexity of scheduling parallel task systems,”

SIAM Journal on Discrete Mathematics, 2, 473–487.

Du Merle, O., D. Villeneuve, J. Desrosiers, and P. Hansen (1999): “Stabilized

column generation,” Discrete Mathematics, 194, 229–237.

BIBLIOGRAPHY 189

Duin, C. W. and E. v. d. Sluis (2006): “On the Complexity of Adjacent Resource

Scheduling,” Journal of Scheduling, 9, 49–62.

Erhard, Melale, C. and M. Vanhoucke (2018): “State of the art in physician

scheduling,” Health Systems, 4, 1–18.

Ernst, A. T., H. Jiang, M. Krishnamoorthy, B. Owens, and D. Sier (2004a):

“An annotated bibliography of personnel scheduling and rostering,” Annals of Oper-

ations Research, 127, 21–144.

Ernst, A. T., H. Jiang, M. Krishnamoorthy, and D. Sier (2004b): “Staff

scheduling and rostering: A review of applications, methods and models,” European

Journal of Operational Research, 153, 3–27.

——— (2004c): “Staff scheduling and rostering: A review of applications, methods and

models,” European journal of operational research, 153, 3–27.

Fayez, M., A. Kaylani, D. Cope, N. Rychlik, and M. Mollaghasemi (2008):

“Managing airport operations using simulation,” Journal of Simulation, 2, 41–52.

Felix, M. and V. Reis (2017): “A hybrid discrete-event and an agent-based simulation

model for assessing the performance of the check-in areas in airports,” EUROPEAN

TRANSPORT-TRASPORTI EUROPEI.

Florian, M., J. K. Lenstra, and A. Rinnooy Kan (1980): “Deterministic produc-

tion planning: Algorithms and complexity,” Management science, 26, 669–679.

Geibinger, T., F. Mischek, and N. Musliu (2019): “Investigating constraint pro-

gramming for real world industrial test laboratory scheduling,” in International Con-

ference on Integration of Constraint Programming, Artificial Intelligence, and Opera-

tions Research, Springer, 304–319.

Giallombardo, G., L. Moccia, M. Salani, and I. Vacca (2010): “Modeling

and solving the tactical berth allocation problem,” Transportation Research Part B:

Methodological, 44, 232–245.

Gielen, D., F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini

(2019): “The role of renewable energy in the global energy transformation,” Energy

Strategy Reviews, 24, 38–50.

190 BIBLIOGRAPHY

Goiri, Í., M. E. Haque, K. Le, R. Beauchea, T. D. Nguyen, J. Guitart,

J. Torres, and R. Bianchini (2015): “Matching renewable energy supply and

demand in green datacenters,” Ad Hoc Networks, 25, 520–534.

Goiri, Í., K. Le, M. E. Haque, R. Beauchea, T. D. Nguyen, J. Guitart, J. Tor-

res, and R. Bianchini (2011): “Greenslot: scheduling energy consumption in green

datacenters,” in Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, 1–11.

Goldberg, D. E. (1989): Genetic Algorithms in Search, Optimization and Machine

Learning, Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1st ed.

Guan, Y. and R. K. Cheung (2004): “The berth allocation problem: models and

solution methods,” OR spectrum, 26, 75–92.

Guan, Y., K.-H. Yang, and Z. Zhou (2013): “The crane scheduling problem: models

and solution approaches,” Annals of Operations Research, 203, 119–139.

Hartmann, S. and D. Briskorn (2010): “A survey of variants and extensions of the

resource-constrained project scheduling problem,” European Journal of operational

research, 207, 1–14.

Hsu, C.-I. and C.-C. Chao (2005): “Scheduling Purchase and Renewal of Interna-

tional Airport Departure Facilities,” Journal of the Eastern Asia Society for Trans-

portation Studies, 6, 736–751.

Hsu, C.-I., C.-C. Chao, and K.-Y. Shih (2012): “Dynamic allocation of check-

in facilities and dynamic assignment of passengers at air terminals,” Computers &

Industrial Engineering, 63, 410–417.

Huele, V. (2015): “Decomposition-based heuristics for the integrated physician roster-

ing and surgery scheduling problem,” 159–175.

Hwang, T.-L., C.-R. Jeng, and S.-S. Wang (2012): “Airport check-in counter

assignment: a proposed solution,” International Journal of Aviation Management, 1,

257–270.

IATA (2018): “IATA Forecast Predicts 8.2 Billion Air Travellers in 2037,” https:

//www.iata.org/pressroom/pr/Pages/2018-10-24-02.aspx, accessed: 2018-11-1.

https://www.iata.org/pressroom/pr/Pages/2018-10-24-02.aspx
https://www.iata.org/pressroom/pr/Pages/2018-10-24-02.aspx

BIBLIOGRAPHY 191

IATA-ADRM (2014): Airport Development Reference Manual, 10th Edition, Interna-

tional Air Transport Association.

Icmeli, O., S. S. Erenguc, and C. J. Zappe (1993): “Project scheduling problems:

a survey,” International Journal of Operations & Production Management.

Imai, A., H. C. Chen, E. Nishimura, and S. Papadimitriou (2008): “The simul-

taneous berth and quay crane allocation problem,” Transportation Research Part E:

Logistics and Transportation Review, 44, 900–920.

Imai, A., K. Nagaiwa, and C. W. Tat (1997): “Efficient planning of berth allocation

for container terminals in Asia,” Journal of Advanced transportation, 31, 75–94.

Imai, A., E. Nishimura, M. Hattori, and S. Papadimitriou (2007a): “Berth allo-

cation at indented berths for mega-containerships,” European Journal of Operational

Research, 179, 579–593.

Imai, A., E. Nishimura, and S. Papadimitriou (2001): “The dynamic berth alloca-

tion problem for a container port,” Transportation Research Part B: Methodological,

35, 401–417.

——— (2003): “Berth allocation with service priority,” Transportation Research Part

B: Methodological, 37, 437–457.

Imai, A., X. Sun, E. Nishimura, and S. Papadimitriou (2005): “Berth allocation

in a container port: using a continuous location space approach,” Transportation

Research Part B: Methodological, 39, 199–221.

Imai, A., J.-T. Zhang, E. Nishimura, and S. Papadimitriou (2007b): “The berth

allocation problem with service time and delay time objectives,” Maritime Economics

& Logistics, 9, 269–290.

International Chamber of Shipping (2020): “Shipping and World Trade,” https:

//www.ics-shipping.org/shipping-facts/shipping-and-world-trade, accessed

on 2020-7-1.

https://www.ics-shipping.org/shipping-facts/shipping-and-world-trade
https://www.ics-shipping.org/shipping-facts/shipping-and-world-trade

192 BIBLIOGRAPHY

International Civil Aviation Organization (2017): “The World of Air Trans-

port in 2017, Annual Report 2017, institution = International Civil Aviation Or-

ganization, A UN Specialized Agency, howpublished = https://www.icao.int/

annual-report-2017/Pages/the-world-of-air-transport-in-2017.aspx,,” .

International Energy Agency (2019): “India 2020, Energy Policy Re-

view,” https://niti.gov.in/sites/default/files/2020-01/IEA-India%

202020-In-depth-EnergyPolicy_0.pdf, accessed On: 2020-4-10.

International Energy Agency, Paris (2019): “Tracking Industry, May 2019,”

https://www.iea.org/reports/tracking-industry, accessed On: 2020-4-10.

Iris, Ç., D. Pacino, and S. Ropke (2017): “Improved formulations and an adaptive

large neighborhood search heuristic for the integrated berth allocation and quay crane

assignment problem,” Transportation Research Part E: Logistics and Transportation

Review, 105, 123–147.

Iris, Ç., D. Pacino, S. Ropke, and A. Larsen (2015): “Integrated berth alloca-

tion and quay crane assignment problem: Set partitioning models and computational

results,” Transportation Research Part E: Logistics and Transportation Review, 81,

75–97.

Jacobs, L. W. and S. E. Bechtold (1993): “Labor utilization effects of labor schedul-

ing flexibility alternatives in a tour scheduling environment,” Decision Sciences, 24,

148–166.

Jacobs, L. W. and M. J. Brusco (1996): “Overlapping start-time bands in implicit

tour scheduling,” Management Science, 42, 1247–1259.

Jarrah, A. I., J. F. Bard, and A. H. deSilva (1994): “Solving large-scale tour

scheduling problems,” Management Science, 40, 1124–1144.

Joustra, P. E. and N. M. Van Dijk (2001): “Simulation of check-in at airports,”

in Proceedings of the 33nd conference on Winter simulation, IEEE Computer Society,

1023–1028.

Khatod, D. K., V. Pant, and J. Sharma (2013): “Evolutionary programming based

optimal placement of renewable distributed generators,” IEEE Transactions on Power

Systems, 28, 683–695.

https://www.icao.int/annual-report-2017/Pages/the-world-of-air-transport-in-2017.aspx
https://www.icao.int/annual-report-2017/Pages/the-world-of-air-transport-in-2017.aspx
https://niti.gov.in/sites/default/files/2020-01/IEA-India%202020-In-depth-EnergyPolicy_0.pdf
https://niti.gov.in/sites/default/files/2020-01/IEA-India%202020-In-depth-EnergyPolicy_0.pdf
https://www.iea.org/reports/tracking-industry

BIBLIOGRAPHY 193

Kim, G., J. Kim, and J. Chae (2017): “Balancing the baggage handling performance

of a check-in area shared by multiple airlines,” Journal of Air Transport Management,

58, 31–49.

Kim, K. and S. Mehrotra (2015): “A two-stage stochastic integer programming

approach to integrated staffing and scheduling with application to nurse management,”

Operations Research, 63, 1431–1451.

Kim, K. H. and K. C. Moon (2003): “Berth scheduling by simulated annealing,”

Transportation Research Part B: Methodological, 37, 541–560.

Kim, K. H. and Y.-M. Park (2004): “A crane scheduling method for port container

terminals,” European Journal of operational research, 156, 752–768.

Kiran, A. S., T. Cetinkaya, and S. Og (2000): “Simulation modeling and analysis

of a new international terminal,” in Proceedings of the 32nd conference on Winter

simulation, Society for Computer Simulation International, 1168–1172.

Kıyıldı, R. K. and M. Karasahin (2008): “The capacity analysis of the check-in

unit of Antalya Airport using the fuzzy logic method,” Transportation Research Part

A: Policy and Practice, 42, 610–619.

Kolen, A. W., J. K. Lenstra, C. H. Papadimitriou, and F. C. Spieksma (2007):

“Interval scheduling: A survey,” Naval Research Logistics (NRL), 54, 530–543.

Kolisch, R. and R. Padman (2001): “An integrated survey of deterministic project

scheduling,” Omega, 29, 249–272.

Korpaas, M., A. T. Holen, and R. Hildrum (2003): “Operation and sizing of

energy storage for wind power plants in a market system,” International Journal of

Electrical Power & Energy Systems, 25, 599–606.

Lai, K. and K. Shih (1992): “A study of container berth allocation,” Journal of

advanced transportation, 26, 45–60.

Lalita, T. R., D. K. Manna, and G. S. R. Murthy (2020): “Mathematical formu-

lations for large scale check-in counter allocation problem,” Journal of Air Transport

Management, 85, 101796.

194 BIBLIOGRAPHY

Lalita, T. R. and G. S. R. Murthy (2020a): “An Efficient Algorithm to the Inte-

grated Shift and Task Scheduling Problem,” Technical Report, SQC and OR Division.

——— (2020b): “The Wind Power Scheduling Problem,” Technical Report-SQCOR-

2020-05.

——— (2021a): “Day Ahead Wind Power Forecast Data,”

http://dx.doi.org/10.17632/3t5ns4x58r.11.

——— (2021b): “Staff Requirement Data for Staff Scheduling,”

http://dx.doi.org/10.17632/bk33vpzvkd.1.

Lau, H. C. (1996): “On the complexity of manpower shift scheduling,” Computers &

Operations Research, 23, 93–102.

Li, C., A. Qouneh, and T. Li (2012): “iSwitch: coordinating and optimizing renew-

able energy powered server clusters,” ACM SIGARCH Computer Architecture News,

40, 512–523.

Liang, R.-H. and J.-H. Liao (2007): “A fuzzy-optimization approach for genera-

tion scheduling with wind and solar energy systems,” IEEE Transactions on Power

Systems, 22, 1665–1674.

Liberatore, F., G. Righini, and M. Salani (2011): “A column generation algorithm

for the vehicle routing problem with soft time windows,” 4OR, 9, 49–82.

Lim, A. (1998): “The berth planning problem,” Operations research letters, 22, 105–110.

Lim, A., B. Rodrigues, F. Xiao, and Y. Zhu (2004): “Crane scheduling with spatial

constraints,” Naval Research Logistics (NRL), 51, 386–406.

Lin, D., Z. Xin, and Y. Huang (2015): “Ground crew rostering for the airport check-

in counter,” in Industrial Engineering and Engineering Management (IEEM), 2015

IEEE International Conference on, IEEE, 1462–1466.

Lin, Y.-H. and C.-F. Chen (2013): “Passengers’ shopping motivations and commercial

activities at airports–The moderating effects of time pressure and impulse buying

tendency,” Tourism Management, 36, 426–434.

BIBLIOGRAPHY 195

Liu, J., Y.-w. Wan, and L. Wang (2006): “Quay crane scheduling at container

terminals to minimize the maximum relative tardiness of vessel departures,” Naval

Research Logistics (NRL), 53, 60–74.

Liu, Y., J. Wang, and S. Shahbazzade (2019): “The improved AFSA algorithm

for the berth allocation and quay crane assignment problem,” Cluster Computing, 22,

3665–3672.

Lodi, A., S. Martello, and M. Monaci (2002): “Two-dimensional packing prob-

lems: A survey,” European journal of operational research, 141, 241–252.

Lous, C. (2011): “Modelling and optimization of allocation of check-in counters in an

airport,” B.S. thesis, Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby,

Denmark.

Lübbecke, M. E. and J. Desrosiers (2005): “Selected topics in column generation,”

Operations research, 53, 1007–1023.

Maenhout, B. and M. Vanhoucke (2013): “An integrated nurse staffing and schedul-

ing analysis for longer-term nursing staff allocation problems,” Omega, 41, 485–499.

——— (2016): “An exact algorithm for an integrated project staffing problem with a

homogeneous workforce,” Journal of Scheduling, 19, 107–133.

——— (2017): “A resource type analysis of the integrated project scheduling and per-

sonnel staffing problem,” Annals of Operations Research, 252, 407–433.

Makarov, Y. V., P. V. Etingov, J. Ma, Z. Huang, and K. Subbarao (2011):

“Incorporating uncertainty of wind power generation forecast into power system oper-

ation, dispatch, and unit commitment procedures,” IEEE Transactions on Sustainable

Energy, 2, 433–442.

Mauri, G. R., G. M. Ribeiro, L. A. N. Lorena, and G. Laporte (2016): “An

adaptive large neighborhood search for the discrete and continuous berth allocation

problem,” Computers & Operations Research, 70, 140–154.

Meisel, F. and C. Bierwirth (2009): “Heuristics for the integration of crane pro-

ductivity in the berth allocation problem,” Transportation Research Part E: Logistics

and Transportation Review, 45, 196–209.

196 BIBLIOGRAPHY

——— (2013): “A framework for integrated berth allocation and crane operations plan-

ning in seaport container terminals,” Transportation Science, 47, 131–147.

Ministry of Power, G. o. I. (2005): “National Electricity Policy,” https:

//powermin.nic.in/en/content/national-electricity-policy, accessed On:

2018-05-07.

Moccia, L., J.-F. Cordeau, M. Gaudioso, and G. Laporte (2006): “A branch-

and-cut algorithm for the quay crane scheduling problem in a container terminal,”

Naval Research Logistics (NRL), 53, 45–59.

Monaco, M. F. and M. Sammarra (2007): “The berth allocation problem: a strong

formulation solved by a Lagrangean approach,” Transportation Science, 41, 265–280.

Moorthy, R. and C.-P. Teo (2007): “Berth management in container terminal:

the template design problem,” in Container Terminals and Cargo Systems, Springer,

63–86.

Mota, M. M. (2015): “Check-in allocation improvements through the use of a

simulation–optimization approach,” Transportation Research Part A: Policy and

Practice, 77, 320–335.

Mota, M. M. and C. Z. Alcaraz (2015): “Allocation of Airport Check-in Counters

Using a Simulation-Optimization Approach,” in Applied Simulation and Optimization,

Springer, 203–229.

Mota, M. M. and C. Zuniga (2013): “A simulation-evolutionary approach for the

allocation of check-in desks in airport terminals.” ATOS 2013, 4th International Air

Transport and Operations Symposium.

Murthy, G. (2016): Applications of Operations Research and Management Science,

Springer.

Neumann, K., C. Schwindt, and J. Zimmermann (2012): Project scheduling with

time windows and scarce resources: temporal and resource-constrained project schedul-

ing with regular and nonregular objective functions, Springer Science & Business Me-

dia.

https://powermin.nic.in/en/content/national-electricity-policy
https://powermin.nic.in/en/content/national-electricity-policy

BIBLIOGRAPHY 197

Nikolaev, A. G., S. H. Jacobson, and L. A. McLay (2007): “A sequential stochas-

tic security system design problem for aviation security,” Transportation Science, 41,

182–194.

Nishimura, E., A. Imai, and S. Papadimitriou (2001): “Berth allocation planning

in the public berth system by genetic algorithms,” European Journal of Operational

Research, 131, 282–292.

Oliveira, A. S., S. Urrutia, and J. Oppen (2016): “A decomposition approach to

solve the quay crane scheduling problem,” arXiv, 1604–00527.

Oukil, A., H. B. Amor, J. Desrosiers, and H. El Gueddari (2007): “Stabilized

column generation for highly degenerate multiple-depot vehicle scheduling problems,”

Computers & Operations Research, 34, 817–834.

Pacheco, R. and E. Fernandes (2003): “Managerial efficiency of Brazilian airports,”

Transportation Research Part A: Policy and Practice, 37, 667–680.

Papadimitriou, C. H. and K. Steiglitz (1998): Combinatorial optimization: algo-

rithms and complexity, Courier Corporation.

Parisio, A. and C. N. Jones (2015): “A two-stage stochastic programming approach

to employee scheduling in retail outlets with uncertain demand,” Omega, 53, 97–103.

Park, Y. and S. B. Ahn (2003): “Optimal assignment for check-in counters based on

passenger arrival behaviour at an airport,” Transportation Planning and Technology,

26, 397–416.

Parlar, M., B. Rodrigues, and M. Sharafali (2013): “On the allocation of

exclusive-use counters for airport check-in queues: static vs. dynamic policies,”

Opsearch, 50, 433–453.

Parlar, M. and M. Sharafali (2008): “Dynamic allocation of airline check-in coun-

ters: a queueing optimization approach,” Management Science, 54, 1410–1424.

Pinedo, M. (2002): Scheduling: Theory, Algorithms and Systems, 2nd edn, 2002,

Prentice-Hall: Englewood Cliffs, NJ.

Pinedo, M. and X. Chao (1998): “Operations scheduling with applications in man-

ufacturing and services, 1999,” .

198 BIBLIOGRAPHY

Raghavan, S. and D. Stanojević (2011): “Branch and price for WDM optical net-

works with no bifurcation of flow,” INFORMS Journal on Computing, 23, 56–74.

Reddy, S. S. (2017): “Optimal scheduling of wind-thermal power system using clus-

tered adaptive teaching learning based optimization,” Electrical Engineering, 99, 535–

550.

Rodič, B. and A. Baggia (2017): “Airport Ground Crew Scheduling Using Heuristics

and Simulation,” in Applied Simulation and Optimization 2, Springer, 131–160.

Ros Prat, I. (2017): “Improving check-in processing at Brisbane airport,” Master’s

thesis, Universitat Politècnica de Catalunya.

Snowdon, J. L., S. El-Taji, M. Montevecchi, E. MacNair, C. A. Callery,

and S. Miller (1998): “Avoiding the blues for airline travelers,” in Proceedings of

the 30th conference on Winter simulation, IEEE Computer Society Press, 1105–1112.

Snowdon, J. L., E. MacNair, M. Montevecchi, C. Callery, S. El-Taji, and

S. Miller (2000): “IBM journey management library: an arena system for airport

simulations,” Journal of the Operational Research Society, 51, 449–456.

Soukour, A. A., L. Devendeville, C. Lucet, and A. Moukrim (2013): “A

memetic algorithm for staff scheduling problem in airport security service,” Expert

Systems with Applications, 40, 7504–7512.

Statista (2020): “Container Shipping- Statistics and Facts,” https://www.statista.

com/topics/1367/container-shipping/), accessed on 2020-7-1.

Stolletz, R. (2010): “Operational workforce planning for check-in counters at air-

ports,” Transportation Research Part E: Logistics and Transportation Review, 46,

414–425.

Stolletz, R. and E. Zamorano (2014): “A rolling planning horizon heuristic for

scheduling agents with different qualifications,” Transportation Research Part E: Lo-

gistics and Transportation Review, 68, 39–52.

Su, W., J. Wang, and J. Roh (2014): “Stochastic energy scheduling in microgrids

with intermittent renewable energy resources,” IEEE Transactions on Smart Grid, 5,

1876–1883.

https://www.statista.com/topics/1367/container-shipping/
https://www.statista.com/topics/1367/container-shipping/

BIBLIOGRAPHY 199

Sungur, B., C. Özgüven, and Y. Kariper (2017): “Shift scheduling with break

windows, ideal break periods, and ideal waiting times,” Flexible Services and Manu-

facturing Journal, 29, 203–222.

Takakuwa, S. and T. Oyama (2003): “Modeling people flow: simulation analysis

of international-departure passenger flows in an airport terminal,” in Proceedings of

the 35th conference on Winter simulation: driving innovation, Winter Simulation

Conference, 1627–1634.

Tanabe, T., T. Sato, R. Tanikawa, I. Aoki, T. Funabashi, and R. Yokoyama

(2008): “Generation scheduling for wind power generation by storage battery sys-

tem and meteorological forecast,” in Power and Energy Society General Meeting-

Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, IEEE,

1–7.

Tang, C.-H. (2010): “A network model for airport common use check-in counter as-

signments,” Journal of the Operational Research Society, 61, 1607–1618.

Theodorou, E. and A. Diabat (2015): “A joint quay crane assignment and schedul-

ing problem: formulation, solution algorithm and computational results,” Optimiza-

tion Letters, 9, 799–817.

Thompson, G. M. (1995): “Improved implicit optimal modeling of the labor shift

scheduling problem,” Management Science, 41, 595–607.

Thompson, G. M. and M. E. Pullman (2007): “Scheduling workforce relief breaks in

advance versus in real-time,” European Journal of Operational Research, 181, 139–155.

Trakoonsanti, L. (2016): “A Process Simulation Model of Airline Passenger Check –

In,” .

Türkoğulları, Y. B., Z. C. Taşkın, N. Aras, and İ. K. Altınel (2014): “Optimal

berth allocation and time-invariant quay crane assignment in container terminals,”

European Journal of Operational Research, 235, 88–101.

Ursavas, E. and S. X. Zhu (2016): “Optimal policies for the berth allocation problem

under stochastic nature,” European Journal of Operational Research, 255, 380–387.

200 BIBLIOGRAPHY

Van den Bergh, J., J. Beliën, P. De Bruecker, E. Demeulemeester, and

L. De Boeck (2013): “Personnel scheduling: A literature review,” European journal

of operational research, 226, 367–385.

Vanderbeck, F. (2000): “On Dantzig-Wolfe decomposition in integer programming

and ways to perform branching in a branch-and-price algorithm,” Operations Research,

48, 111–128.

——— (2011): “Branching in branch-and-price: a generic scheme,” Mathematical Pro-

gramming, 130, 249–294.

Vanderbeck, F. and L. A. Wolsey (1996): “An exact algorithm for IP column

generation,” Operations research letters, 19, 151–159.

Vanhoucke, M., E. Demeulemeester, and W. Herroelen (2002): “Discrete

time/cost trade-offs in project scheduling with time-switch constraints,” Journal of

the Operational Research Society, 53, 741–751.

Venkatesh, B., T. Geetha, and V. Jayashankar (2011): “Frequency sensitive

unit commitment with availability-based tariff: an Indian example,” IET generation,

transmission & distribution, 5, 798–805.

Volland, J., A. Fügener, and J. O. Brunner (2017a): “A column generation

approach for the integrated shift and task scheduling problem of logistics assistants

in hospitals,” European Journal of Operational Research, 260, 316–334.

Volland, J., A. Fügener, J. Schoenfelder, and J. O. Brunner (2017b): “Ma-

terial logistics in hospitals: a literature review,” Omega, 69, 82–101.

Wang, F. and A. Lim (2007): “A stochastic beam search for the berth allocation

problem,” Decision support systems, 42, 2186–2196.

Wang, K., L. Zhen, S. Wang, and G. Laporte (2018): “Column generation for the

integrated berth allocation, quay crane assignment, and yard assignment problem,”

Transportation Science, 52, 812–834.

Wang, Q., J. Wang, and Y. Guan (2013): “Price-based unit commitment with wind

power utilization constraints,” IEEE Transactions on Power Systems, 28, 2718–2726.

BIBLIOGRAPHY 201

Wibowo, S. S. and S. R. Fadilah (2018): “Queuing analysis using Viswalk for check-

in counter: Case study of Lombok Praya International Airport,” in MATEC Web of

Conferences, EDP Sciences, vol. 181, 02006.

Wilhelm, W. E. (2001): “A technical review of column generation in integer program-

ming,” Optimization and Engineering, 2, 159–200.

Wong, J.-T. and T. Liu (1998): “Development and application of an airport termi-

nal simulation model—a case study of CKS airport,” Transportation Planning and

Technology, 22, 73–86.

Wu, P. P.-Y. and K. Mengersen (2013): “A review of models and model usage

scenarios for an airport complex system,” Transportation Research Part A: Policy

and Practice, 47, 124–140.

Xie, F., T. Wu, and C. Zhang (2019): “A Branch-and-Price Algorithm for the

Integrated Berth Allocation and Quay Crane Assignment Problem,” Transportation

Science, 53, 1427–1454.

Xin, Z., D. Lin, Y. Huang, W. Cheng, and C. Chong Teo (2014): “Design of

service capacity for the ground crew at the airport check-in counters,” International

Journal of Quality and Service Sciences, 6, 43–59.

Yan, S., K.-C. Chang, and C.-H. Tang (2005): “Minimizing inconsistencies in air-

port common-use checking counter assignments with a variable number of counters,”

Journal of Air Transport Management, 11, 107–116.

Yan, S., C. Tang, and C. Chen (2008): “Reassignments of common-use check-in

counters following airport incidents,” Journal of the Operational Research Society, 59,

1100–1108.

Yan, S., C.-H. Tang, and J.-H. Chen (2014): “Common-use check-in counter reas-

signments with a variable number of service lines and variable length of time window,”

Journal of the Chinese Institute of Engineers, 37, 643–658.

Yan, S., C.-H. Tang, and M. Chen (2004): “A model and a solution algorithm for

airport common use check-in counter assignments,” Transportation Research Part A:

Policy and Practice, 38, 101–125.

202 BIBLIOGRAPHY

Yeung, B. K. W. and H. W. Chun (1995): “Check-in counter allocation using genetic

algorithm,” .

Zamorano, E., A. Becker, and R. Stolletz (2018): “Task assignment with

start time-dependent processing times for personnel at check-in counters,” Journal

of Scheduling, 21, 93–109.

Zhen, L. (2015): “Tactical berth allocation under uncertainty,” European Journal of

Operational Research, 247, 928–944.

Zhen, L., L. H. Lee, and E. P. Chew (2011): “A decision model for berth allocation

under uncertainty,” European Journal of Operational Research, 212, 54–68.

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Thesis Overview
	1.1 Introduction
	1.1.1 Types of Resource Scheduling Problems
	1.1.1.1 Resource Constrained Project Scheduling Problem

	1.1.2 Adjacent Resource Scheduling Problem
	1.1.3 Strip Packing Problem
	1.1.4 Interval Scheduling Problem
	1.1.5 Multiprocessor Scheduling

	1.2 Overview of Chapters
	1.2.1 Integrated Staff and Task Scheduling Problem
	1.2.2 The Check-in Counter Allocation Problem
	1.2.3 Berth Allocation and Crane Assignment and Scheduling Problem
	1.2.4 The Windmill Problem
	1.2.5 Contributing Papers

	2 The Integrated Staff And Task Scheduling Problem
	2.1 Introduction
	2.2 Motivation and Literature Review
	2.3 Problem description and Formulation
	2.3.1 Shift Pattern Subproblem - Stage 1
	2.3.2 Staff Assignment Problem - Stage 2
	2.3.3 The Split Technique

	2.4 Real-Life Instances and Numerical Experiments
	2.4.1 The Software Industry Problem
	2.4.2 Airport Check-in Counter Requirement Problem
	2.4.3 Call Center Data
	2.4.4 Instances for ISTSP

	2.5 Summary of Experimental Results
	2.5.1 Results for stage 1 model
	2.5.2 Results of problem instances with given demand vector
	2.5.3 Results of ISTSP problem instances

	2.6 Summary

	3 Planning Airport Check-in Counter Allocation
	3.1 Introduction
	3.2 The Check-in Counter Allocation Problem
	3.3 Literature
	3.4 Notation
	3.5 New Formulations
	3.5.1 Stage 1: Determining Number of Counters
	3.5.2 Stage 2: Scheduling Tasks with Adjacency Constraint

	3.6 Solving Real-World Problems
	3.6.1 The One-Day Problem
	3.6.2 One-Week Problem

	3.7 Additional methods for Check-in Counter Planning
	3.8 Summary

	4 Berth Assignment and Crane Scheduling at Ports
	4.1 Introduction
	4.2 Literature
	4.3 Port Operations
	4.4 Problem Description
	4.5 Formulations
	4.5.1 Berthing Profiles
	4.5.2 Formulation for Heterogeneous Cranes
	4.5.3 Formulation for Homogeneous Cranes
	4.5.4 Expanding the BCI Class

	4.6 Numerical Experiments
	4.6.1 Results for Instances with Heterogeneous Cranes
	4.6.2 Results for Instances with Homogeneous Cranes

	4.7 Summary

	5 Extension of Resource Scheduling Models to Wind Power Scheduling
	5.1 Introduction
	5.2 Literature Review
	5.3 Problem Description and Formulation
	5.4 Analysis
	5.4.1 The Spell Subproblems Px"0365xi(s"0365si,i,yi,u"0365ui,i)

	5.5 Solving the Windmill Problem
	5.6 Application
	5.7 Summary

	6 Conclusions and Future Work
	6.1 The Integrated Staff and Task Scheduling Problem
	6.2 Check-in Counters Problem
	6.3 The Berth and Crane Assignment (Specific) Problem
	6.4 Windmill problem

	A The check-in counter allocation problem: A Detailed literature survey
	A.1 Introduction
	A.2 The Check-In Counter Allocation Problem
	A.3 Determining Optimal Number of Check-in Counters
	A.4 Adjacent Counter Allocation
	A.5 Some Real-world Airport Applications
	A.6 Different Approaches to Counter Allocation
	A.6.1 Simulation for Counter Allocation
	A.6.2 Network Model for Counter Allocation
	A.6.3 Evolutionary Algorithms and Counter Allocation
	A.6.4 Queuing Theory and Counter Allocation

	A.7 Related Scheduling Problems

	B Datasets and Computer Programs associated with the Thesis
	Bibliography

