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Chapter 1

Introduction

There are two parts to this thesis and both the parts involve working with derived

categories over noetherian formal schemes. Beyond this there is no overlap between

them and we discuss them separately.

(I)

The first part concerns Grothendieck duality on noetherian formal schemes.

Grothendieck duality is a vast generalisation of Serre duality in algebraic geometry.

The main statements in this theory are expressed in the language of derived categories.

We begin with an important special case.

Let f : X → Y be a proper map of noetherian schemes which is smooth of rela-

tive dimension n. For any G ∈ D+
qc(Y ) (where D+

qc(−) denotes the derived category of

bounded-below complexes with quasi-coherent homology), set fs(G) := f∗G⊗ωf [n]. Then

for any F ∈ D+
qc(X) there is a natural bi-functorial isomorphism

HomD+
qc(X)(F , f

sG)
∼−→ HomD+

qc(Y )(Rf∗F ,G) (1.1)

where ωf is the top exterior power of the sheaf of relative differential forms for X over

Y .

In other words, fs : D+
qc(Y )→ D+

qc(X) is a right adjoint to Rf∗ : D+
qc(X)→ D+

qc(Y ).

1



2 Chapter 1. Introduction

In particular, if X is a smooth projective variety of dimension n over an algebraically

closed field k and F is a locally free sheaf on X, we recover Serre duality by plugging in

Y = Spec(k) and G = k so that f∗ = Γ (X,−) the global sections functor.

The right-adjointness of fs however does not hold in general if the properness or the

smoothness assumption on f is dropped. But it turns out we do have the following:

For any separated finite-type map f : X → Y of noetherian schemes, the functor

Rf∗ has a right adjoint, i.e., there is a functor f× : D+
qc(Y )→ D+

qc(X) such that for any

F ∈ D+
qc(X) and G ∈ D+

qc(Y ), there is a natural bi-functorial isomorphism

HomD(X)(F , f×G)
∼−→ HomD+

qc(Y )(Rf∗F ,G). (1.2)

Thus if f is both proper and smooth, f s and f× agree, but not in general. The

adjointness property of f×, in effect, gives a duality statement and under properness

assumption this is of considerable interest since Rf∗ then preserves coherence of ho-

mology. It is interesting that the restriction of (−)× to the category of proper maps

appears to blend seamlessly with the restriction of (−)s to the category of smooth maps

and so gives rise to a family of functors (−)! which forms the central object of study in

Grothendieck duality.

Thus Grothendieck duality mainly concerns constructing a theory of (−)! primarily

determined by the following conditions. For now, let C denote the category of finite-type

separated map of noetherian schemes.

1. When f : X → Y is a smooth map in C of relative dimension n, then we must have

f ! ∼−→ fs.

2. When f : X → Y is a proper map in C, then we must have f ! ∼−→ f×.

3. The theory of (−)! should behave well with respect to compositions, in the sense

that for maps X
f−→ Y

g−→ Z in C, there is a canonical comparison isomorphism

f !g! ∼−→ (gf)! which is moreover associative vis-a-vis composition of three or more

maps in C. This is expressed by saying that (−)! forms a pseudofunctor.
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These conditions remain the guiding principles even as we extend C to include formal

schemes or essentially finite-type maps or stacks, etc.

The actual construction of (−)! satisfying (i), (ii) and (iii) is a non-trivial task which

remains unfinished in some situations. Over noetherian schemes, where the theory is

essentially complete, we refer to the books [H], [Co] and [L] for a detailed exposition of

the construction, see also, [Y] and [YJ]. Broadly there are two approaches to it. Gluing

(i) and (ii) via (iii) necessarily gives rise to many compatibility issues which are often

subtle in nature, hence a natural starting point is to use lesser data than that prescribed

by (i) and (ii). This means one starts with a smaller category in at least one of (i) or

(ii), e.g., that of open immersions or of etale maps in (i) or that of closed immersions

or of finite maps in (ii). The formula for (−)! being already prescribed in these cases,

one then tries to factor an arbitrary map as a composite of these two cases and now (iii)

provides a guide for handling compositions. Finally, one has to come back and verify

that the full strength of (i) and (ii) is satisfied by the construction.

Thus, in the more explicit approach of [H] or [Co] one glues (−)s on smooth maps

with (−)× on closed immersions while in the more abstract approach of [L] one glues

(−)× on proper maps with (−)s on open immersions (where it is isomorphic to the inverse

image (−)∗). One advantage in the latter case is that via Nagata’s compactification

theorem, every map f in C factors as an open immersion followed by a proper map

and so in this approach we can define (−)! over all of C. In the former case, there is no

such global factorisation result and so for dealing with maps that are neither smooth nor

finite, the construction goes through a considerable detour involving dualizing complexes

and the final theory still involves restrictions on the maps of schemes and homology of

the complexes.

A lot of the work discussed above has been extended to the category of (noethe-

rian) formal schemes. Once the appropriate analog of the maps, complexes, functors,

etc have been worked out, one follows a similar outline as above though the details are

considerably more technical. However, one crucial aspect is the lack of a suitable com-

pactification result over formal schemes where it is not expected to hold. So while there

is a theory of (−)! for composites of etale and (pseudo)-proper maps, we do not know if

this theory applies to an arbitrary smooth map.



4 Chapter 1. Introduction

In this thesis we take a direct approach of gluing (i) and (ii) in the category of noethe-

rian formal schemes (whose morphisms are the pseudo-finite-type separated maps). Thus

our construction extends the existing one of (−)! and in particular includes the case of all

smooth maps. Even over ordinary schemes, this gives a slightly different perspective on

why the cases (i) and (ii) glue and gives a streamlined view of the compatibilities needed

to put them together. We use suitable modifications of many of the technical results

used in earlier constructions. The basic method for gluing comes from [Nk] whose main

result is informally recalled below.

Let F be the category of separated pseudofinite-type maps of noetherian formal

schemes and P and S be two subcategories of F closed under isomorphisms, compo-

sition and fibered products. Let C be the full subcategory of composites of P-maps and

S-maps. For the input for the pasting result, assume that there are pseudofunctors (−)×

and (−)s on P and S respectively. Furthermore, assume that for every fibered square

originating as a fibered product of P-map with a S-map, there is an associated base-

change isomorphism βs and that for every factorization of the identity map into a P-map

followed by a S-map, there is an associated fundamental isomorphism φ−,−. The com-

parison maps of (−)× and (−)s, the base change isomorphism βs and the fundamental

isomorphism φ−,− are assumed to satisfy certain compatibility conditions (see chapter 4

and chapter 7 for compatibility conditions). With these input conditions, Nayak’s past-

ing result gives a pseudofunctor (−)! over the subcategory C such that the restriction of

(−)! to the subcategory of P-maps is isomorphic to (−)× and the restriction of (−)! to

the subactegory of S-maps is isomorphic to (−)s.

We begin by establishing the first input condition in chapter 3. We define the functor

(−)×t on the category of pseudoproper morphisms of noetherian formal schemes and the

functor (−)s
t on the category of smooth morphisms. We will go on to show that these

are in fact pseudofunctors on their respective subcategories.

In chapter 4 we define and prove the smooth-base-change isomorphism for fibered

diagram of noetherian formal schemes. For its proof we shall use the flat-base-change

isomorphism, see [AJL, Section 7]. We will then show that the smooth-base-change

isomorphism is horizontally and vertically transitive. In chapter (6) we also define and

prove a special case of tor-independent base change isomorphism of fibered squares of

pseudoproper and local complete intersection morphisms.
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In chapter 5 we give a concrete description of the functor f×t , when f is a local

complete intersection. We denote this concrete version of f×t by f \ and establish a

smooth-base-change isomorphism for fibered squares involving smooth morphisms and

local complete intersection morphisms and prove that this is compatible with the smooth-

base-change isomorphism βs defined in chapter 3.

In chapter 6 we give a fundamental isomorphism for smooth and pseudoproper maps

factoring identity. Consider the sequence, X
f−→ Y

u−→ X, where u is smooth separated

map (and hence f is locally a complete intersection), such that uf = 1. For such a

factorization of identity map, we want to define a canonical isomorphism φf,u : f×t u
s
t
∼−→

1D+
qct(X). Moreover, we want this isomorphism to behave well with smooth or pseudo-

proper base change on X.

Using the results in the chapters 1-6 we have established the input conditions given

in [Nk] required to paste the pseudofunctors (−)×t and (−)s
t and hence as output we

obtain a D+
qct-valued pseudofunctor (−)! on C, the category of composites of smooth

and pseudoproper morphisms of noetherian formal schemes. We then have the following

theorem.

Theorem 1.1. On the category of noetherian formal schemes where morphisms are

composites (any number of factors) of smooth and pseudo-proper morphisms, there exists

a D+
qct-valued pseudofunctor (−)! with the following properties.

1. If f : X → Y is smooth, then f !(−) = RΓ ′X (f∗(−) ⊗ ω̂f [n]), where n is the rel-

ative dimension of f and ω̂f is the top exterior power of the complete module of

differentials of f .

2. If f : X→ Y is pseudoproper, then f !(−) = f×(−), the right adjoint to Rf∗.

We also introduce the derived category D̃(−) and its associated derived subcategories

D̃qc(−) and D̃+
qc(−) and state a non-torsion version of the Theorem 1.1. Using the right

adjoint ΛX of the derived torsion functor RΓ ′X , we obtain the following theorem.

Theorem 1.2. On the category C of noetherian formal schemes whose morphisms

are separated finite-type composites of smooth and pseudoproper morphisms, there is

a D̃+
qc(−)-valued pre-pseudofunctor f !̃ with the following properties.
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1. If f : X→ Y is a pseudoproper morphism, then f !̃ = ΛXf
×
t RΓ ′Y and is right adjoint

to Rf∗RΓ
′

X .

2. If f : X → Y is a separated smooth morphism, then f !̃ ' ΛXf
s
tRΓ

′
Y and f !̃ '

ΛX(f∗ ⊗ ωf [n]).

3. Finally, for any f : X → Y in C, f !̃(D+
c (Y)) ⊂ D+

c (X), and thus f !̃|D+
c

is a

pseudofunctor such that if f is smooth of relative dimension n, then f !̃ ' f∗⊗ωf [n].

(II)

The second part of this thesis deals with the idea of reconstruction of formal schemes

from their derived categories.

Balmer in [B1] defines the spectrum Spc(K) of a tensor triangulated category K and

shows that it has a structure of a locally ringed space. He proves that for K = Dperf(X),

where X is a topologically noetherian scheme, Spc(K) ' X. The topology on Spc(K)

is obtained using Thomason’s classification of ⊗-thick subcategories of a triangulated

category, see [T1]. Later, AJS in [AJS], give a correspondence between ⊗-compatible

localizing subcategories of Dqct(X) and the specialization closed subsets of X.

In part two of the thesis we use classification of ⊗-compatible localizing subcategories

of Dqct(X) given by [AJS] to construct the Balmer spectrum Spc(Dqct(X)) of Dqct(X)

and show that it is homeomorphic to X. Furthermore, we define the triangular presheaf

structure on Spc(Dqct(X)). Here we defer from Balmer’s construction of triangular

presheaf on Spc(Dperf(X) as we did not have the equivalent version of [TT][Proposition

5.2.4(a)] for Dqct(X). Hence we make use of direct computation to prove the equivalent

version of [B1][Theorem 8.4]. Finally we prove that for any open subset U ⊂ X, there

is a natural map

EndDqct(X)(OU ) ' OX(U ) (1.3)

which is an isomorphism. Using the isomorphism (1.3) we recover the structure sheaf

OX along with the adic-structure. The result is summarized in the following theorem.
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Theorem 1.3. Consider the functor D : F → T from the category F of noetherian

formal schemes which are either separated or of finite Krull dimension to the category

T of tensor triangulated categories with unit, given by X 7→ (Dqct(X),⊗L
OX
,RΓ ′XOX).

Then this functor is faithful and takes isomorphisms to isomorphisms. Moreover, over

the subcategory T ′ ⊂ T comprising tensor triangulated categories satisfying Properties

1, 2 and 3 of Definition 11.1, there exists a functor from T into ringed spaces such that

its pre-composition with the functor D yields the natural inclusion of F into the ringed

spaces.





Part I

Duality Pseudofunctor over the

Composites of Smooth and

Pseudoproper Morphisms of

Noetherian Formal Schemes
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Chapter 2

Notation and Preliminaries

We begin by setting up some notation and recall a few definitions and results which

we shall be using in this article. All our formal scheme maps have been assumed to be

separated unless stated otherwise, and all the formal schemes are a priori assumed to

be noetherian. We begin by recalling a few notions about formal schemes and derived

categories of sheaves on formal schemes.

A homomorphism f : A→ B of noetherian adic rings is (essentially) of pseudo-finite

type if it is continuous and the composition A→ B → B/b, with b ⊂ B a defining ideal,

is (essentially) of finite type, i.e., B/b is a localization of a finite-type A-algebra.

A map of ordinary schemes f : X → Y is essentially of finite type if every y ∈ Y has

an affine open neighbourhood V = Spec(A) such that f−1V can be covered by finitely

many affine open Ui = Spec(Ci) such that the corresponding maps A→ Ci are essentially

of finite type. For any morphism of formal schemes f : (X,OX) → (Y,OY), there exist

ideals of definition I ⊂ OX and J ⊂ OY satisfying J OX ⊂ I ; and correspondingly

there is an induced map of ordinary schemes fn : (X,OX/I
n+1) → (Y,OY/J

n+1).

We say f is separated (resp. (essentially) of pseudo-finite type, resp. pseudo-finite,

resp. affine, resp. pseudo-proper) if for some (hence for all) n, fn is separated (resp.

(essentially) of finite type, resp. finite, resp. affine, resp. proper).

We denote by A(X) the abelian category of sheaves of modules over the formal scheme

X. We then denote by Aqc(X) the full subcategory of A(X) of quasi-coherent sheaves

of OX-modules. Similarly, we denote by Ac(X) the full subcategory of A(X) of coherent

13



14 Chapter 2. Notation and Preliminaries

OX-modules. Let K(X) be the homotopy category of A(X) complexes and D(X) be the

corresponding derived category.

For any full subcategory A∗(X) of A(X) we will denote by D∗(X) the full subcategory

of D(X) of those complexes whose homology sheaves lie in A∗(X). We will denote by

D+
∗ (X) (resp. D−∗ (X)) the full subcategory of D∗(X) whose objects are those complexes

F ∈ D∗(X) such that Hm(F) vanishes for m� 0 (resp. m� 0).

2.0.1 Sign Convention

We will use the following sign convention. Let A be an abelian category and K(A) be the

homotopy category of A. Then K(A) is a triangulated category. For A•, B• complexes

in K(A) we have the following isomorphism

θi,j : A•[i]⊗B•[j] ∼−−→ (A• ⊗B•)[i+ j] (2.1)

satisfying for every pair p, q ∈ Z

θi,j |(Ap+i ⊗Bq+j) = multiplication by(−1)pj . (2.2)

Similarly, for fixed A• we have a family of isomorphisms

θ(B•) : A• ⊗B• ∼−−→ B• ⊗A•

defined locally by

θ(B•)(a⊗ b)→ (−1)pq(b⊗ a) for a ∈ Ap and b ∈ Bq. (2.3)

For objects A,B,C in A, the following diagram of isomorphism commutes and both

the compositions θm+n,l ◦ (θm,n ⊗ 1) and θm,n+l ◦ (1⊗ θn,l) have the sign (−1)mn+lm+ln.

A[m]⊗B[n]⊗ C[l]
θm,n⊗1

(−1)nm
//

1⊗θn,l (−1)ln

��

(A⊗B)[m+ n]⊗ C[l]

θm+n,l(−1)l(m+n)

��
A[m]⊗ (B ⊗ C)[n+ l]

θm,n+l

(−1)(n+l)m // (A⊗B ⊗ C)[m+ n+ l]

(2.4)
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2.4.2 The torsion functor

Let (X,OX) be a ringed space. For any OX -ideal I and any M∈ A(X), set

ΓIM := lim
−→
n

HomOX (OX/I
n,M). (2.5)

For M,N ∈ A(X), we have the following isomorphism from [AJL2, page 20]

RΓI (M⊗N ) ' RΓIM⊗N . (2.6)

For a formal scheme X with ideal of definition I , we set

Γ ′X := ΓI . (2.7)

This definition is independent of the choice of the defining ideal I . We call M ∈ A(X)

a torsion OX-module if Γ ′XM = M . Let At(X) := AI (X) be the thick subcategory of

A(X) whose objects are all the torsion OX-modules; and set Aqct(X) := Aqc(X)∩At(X).

Let Dqct(X) denote the full subcategory of D(X) consisting of complexes of OX-modules

whose cohomologies lie in Aqct(X).

There is a natural inclusion functor jtX : Aqct(X) ↪→ A(X), and whenever X is a

separated noetherian formal scheme this jtX, by [AJL, prop 5.3.1], induces an equivalence

of categories, D+(Aqct(X))
≈−−→ D+

qct(X).





Chapter 3

The pseudofunctors (−)×t and (−)st

In this section we will define the functor (−)×t on the category of pseudoproper mor-

phisms of noetherian formal schemes and the functor (−)s
t on the category of smooth

morphisms. We will go on to show that these are in fact pseudofunctors on their re-

spective subcategories, which will establish the conditions [A] and [B] of the input data

mentioned in [Nk], required for pasting (−)×t and (−)s
t over the category of composites

of smooth and pseudoproper morphisms.

3.0.1 Right-adjoint to the derived direct image functor for pseudo-

proper maps

For a pseudofinite type map f : X → Y of noetherian formal schemes, the functor Rf∗

takes D+
qct(X) to D+

qct(Y) and has a right 4-adjoint f×t : D+
qct(Y)→ D+

qct(X), i.e., there

exists a morphism of 4-functors τf : Rf∗f
×
t → 1, called the trace map, such that for all

G ∈ D+
qct(X) and F ∈ D+

qct(Y), the composed map (in the derived category of abelian

groups),

HomD+
qct(X)(G, f

×
t F) −−→ HomD+

qct(Y)(Rf∗G,Rf∗f
×
t F)

τf−−−→ HomD+
qct(Y)(Rf∗G,F) (3.1)

is an isomorphism. By construction, the pair (f×t , τf ) is unique upto a unique isomor-

phism. For the construction of f×t and the proof of the above statements we refer the

reader to [AJL, section 4,5].

17
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t

Furthermore, it holds that the assignment f 7−→ f×t (via the trace maps τf ), forms a

pseudofunctor, that is, given pseudofinite-type maps X
f−→ Y

g−→ Z of noetherian formal

schemes, there is a comparison isomorphism of functors

c×f,g : f×t g
×
t
∼−→ (gf)×t (3.2)

such that for pseudofinite-type maps of noetherian formal schemes, X
f−→ Y

g−→ Z
h−→ W

we have the following commutative diagram of isomorphism of functors.

f×t g
×
t h
×
t

f×t (c×g,h)
//

c×f,g

��

f×t (hg)×t

c×f,hg

��
(gf)×t h

×
t

c×gf,h // (hgf)×t

(3.3)

The comparison maps c×−,− are dependent on the choice of the trace maps τ− though

we usually suppress reference to them. The commutativity of the diagram above follows

from the pseudofunctoriality of R(−)∗ and the right adjointness of (−)×t above.

3.3.2 Projection formula and flat-base-change isomorphism

For a morphism f : X → Y of noetherian formal schemes, and for E ∈ D+
qct(X) and

F ∈ D+
qct(Y), the functorial projection map

Rf∗E ⊗ F → Rf∗(E ⊗ Lf∗F) (3.4)

defined as the adjoint to the natural composition

Lf∗(Rf∗E ⊗ F)→ Lf∗Rf∗E ⊗ Lf∗F → E ⊗ Lf∗F (3.5)

is an isomorphism. While, we do not necessarily need E ∈ D+
qct(X) and F ∈ D+

qct(Y)

for the projection map to be an isomorphism, it is true for more general complexes (see

[AJL, page 30]), but for us restriction to D+
qct(−) suffices. The details can be found in

[L, pages 123-125], with appropriate modifications for the formal case, see [AJL, page

30].
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The projection isomorphism (3.4) leads to an adjoint version for (−)×t as follows.

Let f : X −→ Y be a pseudoproper map for noetherian formal schemes, F a complex

in D+
qct(Y) and L a bounded complex of locally free OY-modules, i.e. a perfect complex.

Then, consider the map,

pr× : f×t F ⊗X f
∗L −→ f×t (F ⊗Y L) (3.6)

defined as the adjoint of the following composition,

Rf∗(f
×
t F ⊗X f

∗L) ' Rf∗f
×
t F ⊗Y L → F ⊗Y L. (3.7)

The map pr× is an isomorphism; let E ∈ D+
qct(X) and consider the map

αf : HomD+
qct(X)(E , f×t F ⊗X f

∗L) −→ HomD+
qct(X)(E , f×t (F ⊗Y L)) (3.8)

defined via the commutatitivity of the following diagram.

HomD(X)(E , f
×
t F ⊗OX

f∗L)
αf //

o
��

HomD(X)(E , f
×
t (F ⊗OY

L)

HomD(X)(E ⊗OX
(f∗L)∨, f×t F)

o
��

HomD(Y)(Rf∗E ,F ⊗OY
L)

o

OO

HomD(Y)(Rf∗(E ⊗OX
(f∗L)∨),F)

(3.4) // HomD(Y)(Rf∗E ⊗OY
L∨,F)

o
OO

(3.9)

The vertical arrows in both the columns are isomorphisms on account of the adjointness

between Rf∗ and f×t and the fact the L is a bounded complex of locally free modules.

The bottom row isomorphism is given by the projection isomorphism. Since all the maps

are isomorphisms, hence αf is an isomorphism. Since E was an arbitrary complex in

D+
qct(X), pr× is an isomorphism.

Along with the right adjointness of (−)×t and pseudofunctoriality, we have a flat-

base-change isomorphism for (−)×t , that is, given the fibered square of noetherian formal

schemes

X′
v //

g

��

X

f
��

Y′
u // Y
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where u, v are flat and f, g pseudo-proper, we have a base change isomorphism

β : RΓ ′X′ v
∗f×t (F)

∼−−→ g×t RΓ ′Y′u
∗(F) (3.10)

where F ∈ D+
qct(Y). For the proof of flat-base-change see [AJL, Theorem 7.4].

3.10.3 Differential forms and smoothness over formal schemes

Recall that a continuous homomorphism φ : A→ B of noetherian adic rings is said to be

formally smooth if for every discrete topological A-algebra C and every nilpotent ideal

I of C, any continuous A-homomorphism B → C/I factors as B
ν−→ C � C/I, where ν

is a continuous A-homomorphism.

Recall that a morphism of formal schemes f : X → Y is said to be formally smooth

if for any morphism Z → Y where Z = Spec(C) is an affine scheme, and for any closed

subscheme Z0 ⊂ Z defined by a nilpotent ideal in C, every Y-morphism Z0 → X extends

to a Y-morphism Z → X.

We call a morphism f : X → Y smooth if it is essentially of pseudofinite type and

formally smooth.

For a brief introduction of basic properties of smooth maps for formal schemes we

refer the reader to [LNS, section 2].

Let f : X → Y be an essentially pseudofinite type map of formal schemes with

defining ideals I ,J respectively. Consider the induced map of ordinary schemes

fn : Xn := (X,OX/I
n+1)→ (Y,OY/J

n+1) =: Yn.

Let jn : Xn ↪→ X be the canonical closed immersion. For m ≥ 0 let Ωm
Xn/Yn

be the

m-th exterior power of the sheaf of relative differentials for fn, and set Ω̂mf = Ω̂mX/Y =

lim←−
n

jn∗Ω
m
Xn/Yn

. Here Ω̂m
f is independent of the choice of I ,J . Moreover, it is a coherent

OX-module.

If f is smooth then f is flat and Ω̂m
X/Y is locally free of finite rank. This rank is

constant on the connected components of X, and if the rank is same on all connected
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components, say n, then f is said to be of pure relative dimension n. In that case

we define the canonical invertible module as ω̂f :=
∧n Ω̂f . For morphisms of formal

schemes which do not have a pure relative dimension, we adopt the convention that

the relative dimension n is a locally constant integer-valued function on X. Henceforth,

unless stated otherwise, by relative dimension of a smooth morphism f : X → Y of

noetherian formal schemes we shall mean this locally constant integer-valued function

on X. Likewise, if F is a complex on X and n a locally constant integer-valued function

on X, then F [n] has the obvious meaning, namely, that for any connected component U

of X, F [n]|U := F|U [n|U ].

We shall state a few properties and results associated with ω̂ here.

Property 1. Let f : X −→ Y and g : Y −→ Z be smooth maps of relative dimensions d and e

respectively. Then gf is smooth of relative dimension d+e and there is a canonical

isomorphism

φ : f∗ω̂g ⊗OX
ω̂f

∼−−→ ω̂gf .

In particular, for positive integers m,n we have the following isomorphism.

φ : f∗ω̂g[m]⊗OX
ω̂f [n]

∼−−→ ω̂gf [m+ n]. (3.11)

Property 2. Let f : X −→ Z and g : Y −→ Z be formal scheme maps with f essentially

of pseudo-finite type, so that the projection q : W := X ×Z Y −→ Y is also of

pseudo-finite type.

X×Z Y =: W

p

��

q // Y

g

��
X

f // Z

Then for the projection p : W −→ X there is a natural isomorphism

ϕ : p∗Ω̂1
X�Z

∼−−→ Ω̂1
W�Y. (3.12)

Property 3. With the hypotheses as in Property 2., assume further that f is smooth of constant

relative dimension d. Then q is also of smooth of relative dimension d. Further-

more there exists a natural isomorphism

ψ : p∗ω̂f [d]
∼−−→ ω̂q[d]. (3.13)
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For the proofs for the above statements we refer the reader to [LNS, Proposition 2.6.5]

and [LNS, Proposition 2.6.6].

3.13.4 Pseudofunctors for smooth maps.

Let u : X −→ Y be a smooth map of noetherian formal schemes of relative dimension

n. Then we define a functor, us : D(Y) −→ D(X) as

us(F) := Lu∗(F)⊗X ω̂u[n]. (3.14)

Here, since u is smooth, and hence flat, so u∗ = Lu∗ and ⊗
=

= ⊗ as ω̂u is a locally free

sheaf. The functor us
t : D+

qct(Y)→ D+
qct(X) is defined as

us
t := RΓ ′Xu

s = RΓ ′X (u∗ ⊗X ω̂u[n]) ' RΓ ′Xu
∗ ⊗X ω̂u[n]. (3.15)

Proposition 3.1. The functor (−)s defined in (3.14) results in a pseudofunctor over

the category of smooth maps, while (−)s
t defined in (3.15) results in a D+

qct-valued pseud-

ofunctor over the category of smooth maps.

Thus, given any composition of smooth morphisms X
u−→ Y

v−→ Z we have an isomor-

phism of functors csu,v : usvs
∼−→ (vu)s such that for any triple composition of smooth

morphisms X
u−→ Y

v−→ Z
w−→W of relative codimensions m,n, l respectively, the following

diagram of isomorphisms commutes, and an analogous statement hold for (−)s
t.

usvsws
us(csv,w)

//

(csu,v)ws

��

us(vw)s

csu,wv

��
(vu)sws

csvu,w // (wvu)s

(3.16)
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To see this, we define the comparison isomorphism cs
u,v : usvs ∼−→ (vu)s to be the com-

position of following isomorphisms

usvs === u∗(v∗ ⊗ ω̂v[n])⊗ ω̂u[m]

∼−−→ u∗v∗ ⊗ (u∗ω̂v[n]⊗ ω̂u[m])

c∗u,v−−→ (vu)∗ ⊗ (u∗ω̂v[n]⊗ ω̂u[m])

∼−−→ (vu)∗ ⊗ (u∗ω̂v ⊗ ω̂u)[m+ n]

(3.11)−−−→ (vu)∗ ⊗ ω̂vu[m+ n]

=== (vu)s (3.17)

and proving the commutativity of diagram of isomorphisms (3.16) above reduces to

proving the commutativity of the following diagram.

u∗v∗ω̂w[l]⊗ u∗ω̂v[n]⊗ ω̂u[m]
∼ //

o

��

u∗ω̂wv[n+ l]⊗ ω̂u[m]

o

��
(vu)∗ω̂w[l]⊗ ω̂vu[m+ n]

∼ // ω̂wvu[m+ n+ l]

. (3.18)

The commutativity of (3.18) follows from the standard properties of differential forms

and the commutativity of the diagram (2.4).

We will now define the comparison isomorphism us
tv

s
t
∼−→ (v ◦ u)s

t. First, observe that

the following composition is an isomorphism.

RΓ ′Xu
sRΓ ′Yv

s ∼−−→ RΓ ′X (u∗RΓ ′Yv
s ⊗ ω̂•u)

∼−−→ RΓ ′Xu
∗RΓ ′Yv

s ⊗ ω̂•u
∼−−→ RΓ ′Xu

∗vs ⊗ ω̂•u
∼−−→ RΓ ′X (u∗vs ⊗ ω̂•u)

∼−−→ RΓ ′Xu
svs (3.19)

The third isomorphism follows from [AJL, Proposition 5.2.8(c)], see also (8.6) in sec-

tion 9. Now the isomorphism (3.19), together with the isomorphism (3.17), give the

required comparison isomorphism RΓ ′X (v ◦ u)s → RΓ ′Xu
svs. Moreover, these compari-

son isomorphisms also satisfy the associativity rule of (3.16), whose verification reduces
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easily to that of (3.18).



Chapter 4

Smooth Base Change

Isomorphism

In this section we will define and prove a smooth-base-change isomorphism for a fibered

diagram involving a smooth map and pseudoproper map. For its proof we shall use

the flat-base-change isomorphism mentioned in theorem (3.10). We will then show

that the smooth-base-change isomorphism is horizontally and vertically transitive. This

isomorphism along with its transitivities would provide us with the condition [C] of the

input data in [Nk] needed for gluing (−)×t on pseudoproper maps with (−)s
t on smooth

maps.

Consider a fibered square of noetherian formal schemes

V

g

��

v // X

f
��

U
u // Y

(4.1)

where f , (and hence) g are pseudo-proper and u, (and hence) v are smooth. Then the

smooth base-change isomorphism is the map

βs(F) : vs
tf
×
t F −−−−→ g×t u

s
tF , F ∈ D+

qct(Y) (4.2)

25
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defined via the commutativity of the following diagram

RΓ ′V v
sf×t F

βs(F) // g×t RΓ ′Uu
sF

RΓ ′V (v∗(f×t F)⊗ ω̂v[n])

o
��

g×t RΓ ′U(u∗F ⊗ ω̂u[n])

RΓ ′V v
∗(f×t F)⊗ ω̂v[n]

o(3.13)
��

g×t (RΓ ′Uu
∗F ⊗ ω̂u[n])

o

OO

RΓ ′V v
∗f×t F ⊗ g∗ω̂u[n]

(3.10) // g×t RΓ ′Uu
∗F ⊗ g∗(ω̂u[n])

(3.6)o

OO

(4.3)

Now we’ll prove that this βs satisfies horizontal and vertical transitivity vis-á-vis

extending (4.1) horizontally and vertically.

For a map f : X→ Y set f∗t := RΓ ′Xf
∗.

Proposition 4.1. Given the following fibered diagram of formal schemes,

X′′

σ1f ′′

��

v′ // X′

f ′

��

u′ // X

f
��

σ2

Y′′
v // Y′

u // Y

(4.4)

where f, f ′, f ′′ are pseudo-proper and u, u′, v, v′ are smooth morphisms of formal schemes,

we have following commutative diagram of isomorphisms for F ∈ D+
qct(Y).

v′st u
′s
t f
×
t F

��

// v′st f
′×
t us

tF // f ′′×t vs
tu

s
tF

��
(u′v′)s

tf
×
t F // f ′′×t (uv)s

tF

(4.5)

Proof. We expand the diagram (4.5) to diagram (4.6) below. We use ω̂•− in place of

ω̂−[−] for convenience. We verify that all the subdiagrams of (4.6) commute.

• The commutativity of the squares 3 and 6 is obvious from the definitions of

the labelled maps and the sign convention in (2.2).

• The square 2 commutes functorially.

• The squares 9 and 10 commute via the definition of definition of cs(u′,v′) and

cs(u,v) respectively, see (3.17).
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• The squares 1 and 11 commute via the definition of smooth-base-change, see

(4.2).

• And finally the square 8 commutes via the transitivity of flat-base-change proved

in [AJL, section 7.5.1].

Via the natural isomorphism ω̂•v′ ' f ′′∗ω̂•v , checking the commutativity of 5 reduces

to checking that of (4.7). Using the adjointness f ′′∗ a f ′′×t , the commutativity of the

septagon in (4.7) reduces to proving the commutativity of the border of the diagram

(4.8) where A = u∗tF and B = ω̂u. The unlabelled subdiagrams of (4.8) commute

functorially. The diagrams labelled ♣ commute by the definitions of the maps involved

and we notice that the commutativity of the subdiagram ♠ is the commutativity of

the projection isomorphism with the base change isomorphism, whose proof has been

detailed in [L, Proposition 3.7.3].
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v
′s t
u
′s t
f
× t
F

9

v
′s t
◦β

s σ
1

//

d
e
f.

(cs(u′,v′)) ◦ f×t ��

v
′s t
f
′ × t
u
s t
F

d
e
f.

β
s σ
2
◦u

s t
// f
′′
×

t
v
s t
u
s t
F

d
e
f.

f ′′×t ◦ (cs(u,v)) ��

1
0

v
′∗ t

(u
′∗ t
f
× t
F
⊗
ω̂
• u
′)
⊗
ω̂
• v′

1
(3

.1
3
)

��

v
′s t
◦β

s σ
1
// v
′∗ t
f
′ × t

(u
∗ t
F
⊗
ω̂
• u
)
⊗
ω̂
• v′

β
s σ
2
◦u

s t
//

(3.6) ��

f
′′
×

t
v
∗ t
(u
∗ t
F
⊗
ω̂
• u
)
⊗
ω̂
• v

��
5

v
′∗ t

(u
′∗ t
f
× t
F
⊗
f
′∗
ω̂
• u
)
⊗
ω̂
• v′

2

��

β
′ σ
1
⊗
1
// v
′∗ t

(f
′ × t
u
∗ t
F
⊗
f
′∗
ω̂
• u
)
⊗
ω̂
• v′

��

f
′′
×

t
(v
∗ t
u
∗ t
F
⊗
v
∗
ω̂
• u
⊗
ω̂
• v
)

(3.6) ��
v
′∗ t
u
′∗ t
f
× t
F
⊗
v
′∗
f
′∗
ω̂
• u
⊗
ω̂
• v′

3

(3
.1
3
)

��

β
′ σ
1
⊗
1
// v
′∗ t
f
′ × t
u
∗ t
F
⊗
v
′∗
f
′∗
ω̂
• u
⊗
ω̂
• v′

β
′ σ
2
//

(3
.1
3
)

��

f
′′
×

t
v
∗ t
u
∗ t
F
⊗
f
′′
∗
(v
∗
ω̂
• u
⊗
ω̂
• v
)

(3
.1
1
),
(3

.1
3
)

��

6

v
′∗ t
f
′ × t
u
∗ t
F
⊗
v
′∗
ω̂
• u
′
⊗
ω̂
• v′

(3
.1
1
)

��
v
′∗ t
u
′∗ t
f
× t
F
⊗
ω̂
• u
′ v
′

8

��

β
′ σ
1
⊗
1

// v
′∗ t
f
′ × t
u
∗ t
F
⊗
ω̂
• u
′ v
′

β
′ σ
2
⊗
1

// f
′′
×

t
v
∗ t
u
∗ t
F
⊗
ω̂
• u
′ v
′

��
(u
′ v
′ )
∗ t
f
× t
F
⊗
ω̂
• u
′ v
′

1
1

β
′ σ
⊗
1

//

d
e
f.

f
′′
×

t
(u
v
)∗ t
F
⊗
ω̂
• u
′ v
′

(3
.6
)◦

(3
.1
3
)

))
(u
′ v
′ )

s t
f
× t
F

β
s σ

// f
′′
×

t
(u
v
)s t
F

(4
.6

)
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v
′∗ t
f
′ × t

(u
∗ t
F
⊗
ω̂
• u
)
⊗
f
′′
∗
ω̂
• v

//

��

f
′′
×

t
v
∗ t
(u
∗ t
F
⊗
ω̂
• u
)
⊗
f
′′
∗
ω̂
• v

//

((

f
′′
×

t
(v
∗ t
(u
∗ t
F
⊗
ω̂
• u
)
⊗
ω̂
• v
)

��
v
′∗ t

(f
′ × t
u
∗ t
F
⊗
f
′∗
ω̂
• u
)
⊗
f
′′
∗
ω̂
• v

��

f
′′
×

t
(v
∗ t
u
∗ t
F
⊗
v
∗
ω̂
• u
)
⊗
f
′′
∗
ω̂
• v

v
′∗ t
f
′ × t
u
∗ t
F
⊗
v
′∗
f
′∗
ω̂
• u
⊗
f
′′
∗
ω̂
• v

// f
′′
×

t
v
∗ t
u
∗ t
F
⊗
v
∗
f
′∗
ω̂
• u
⊗
f
′′
∗
ω̂
• v

// f
′′
×

t
v
∗ t
u
∗ t
F
⊗
f
′′
∗
v
∗
ω̂
• u
⊗
f
′′
∗
ω̂
• v

OO

(4
.7

)
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f
′′ ∗
v
′∗ t
f
′ × t

(A
⊗
B

)

��

// v
′∗ t
f
′ ∗
f
′ × t

(A
⊗
B

)

♣

tr
a
c
e

//

d
e
f.

��

v
′∗ t

(A
⊗
B

)

��

f
′′ ∗
v
′∗ t

(f
′ × t
A
⊗
f
′∗
B

)

��

// v
′∗ t
f
′ ∗
(f
′ × t
A
⊗
f
′∗
B

)
// v
′∗ t

(f
′ ∗
f
′ × t
A
⊗
B

)

��tr
a
c
e

OO

f
′′ ∗
(v
′∗ t
f
′ × t
A
⊗
v
′∗
f
′∗
B

)

♠

��

f
′′ ∗
v
′∗ t
f
′ × t
A
⊗
v
∗
B

//

p
ro

j.

��

&&

v
∗ t
f
′ ∗
f
′ × t
A
⊗
v
∗
B

// v
∗ t
A
⊗
v
∗
B

f
′′ ∗
f
′′
×

t
v
∗ t
A
⊗
v
∗
B

tr
a
c
e

88

♣

f
′′ ∗
(v
′∗ t
f
′ × t
A
⊗
f
′′
∗
v
′∗
B

)
f
′′ ∗
(v
′∗ t
f
′ × t
A
⊗
f
′′
∗
v
′∗
B

)
// f
′′ ∗
(f
′′
×

t
v
∗ t
A
⊗
f
′′
∗
v
∗
B

)

OO

f
′′ ∗
(f
′′
×

t
v
∗ t
A
⊗
f
′′
∗
v
∗
B

)

♣

OO

(4
.8

)
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Proposition 4.2. Given the following fibered diagram

X′1

σ1g′

��

u′′ // X1

g

��
X′

σ2f ′

��

u′ // X

f
��

Y′
u // Y

where f, f ′, g, g′ are pseudo-proper and u, u′, u′′ are smooth maps, the following diagram

of isomorphisms commutes.

u′′st g
×
t f
×
t

��

// g′×t u
′s
t f
×
t

// g′×t f
′×
t us

t

��
u′′st (gf)×t

// (g′f ′)×t u
s
t

(4.9)

Proof. We expand the diagram (4.9) to the diagram (4.10) below. It suffices to prove

that all the subdiagrams commute.

• The commutativity of squares 2 and 4 is straightforward.

• The square 7 commutes via the definition of c×f,g.

• The diagram 8 is the transitivity of the adjoint projection map pr× defined (3.6)

and its commutativity follows from the Exercise 4.7.3.4 (d) in [L, page 197].

• The squares 1 , 6 and 3 commute via the definition of smooth-base-change.

• And finally the square 5 commutes via the transitivity of flat-base-change proved

in [AJL, Section 7].
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u
′′
s
t
g
× t
f
× t
F

7d
e
f.

β
s σ
1
◦f
× t

//

u′′st ◦ (c×(f,g))

��

g
′× t
u
′s t
f
× t
F

d
e
f.

g
′× t
◦β

s σ
2

// g
′× t
f
′ × t
u
s t
F

d
e
f.

(c×(f ′,g′)) ◦ u
s
t

��

8

u
′′
∗
t
g
× t
f
× t
F
⊗
ω̂
• u
′′

1

β
s σ
1

// g
′× t

(u
′∗ t
f
× t
F
⊗
ω̂
• u
′)

β
s σ
2

//

(3
.6
)

��

g
′× t
f
′ × t

(u
∗ t
F
⊗
ω̂
• u
)

(3
.6
)

��

3

u
′′
∗
t
g
× t
f
× t
F
⊗
ω̂
• u
′′

2

β
′ σ
1

// g
′× t
u
′∗ t
f
× t
F
⊗
g
′∗
ω̂
• u
′

β
′ σ
2

//

(3
.1
3
)

��

g
′× t
f
′ × t
u
∗ t
F
⊗
g
′∗
f
′∗

(ω̂
• u
)

(3
.1
3
)

��

4

u
′′
∗
t
g
× t
f
× t
F
⊗
ω̂
• u
′′

5
u
′′
∗
◦c
× (
f
,g

)
⊗
1

��

β
′ σ
1
⊗
1

// g
′× t
u
′∗ t
f
× t
F
⊗
ω̂
• u
′′

β
′ σ
2
⊗
1

// g
′× t
f
′ × t
u
∗ t
F
⊗
ω̂
• u
′′

c
× (
f
′ ,
g
′ )
◦u
∗
⊗
1

��
u
′′
∗
t

(f
g
)× t
F
⊗
ω̂
• u
′′

6

β
′ σ
⊗
1

//

d
e
f.

(f
′ g
′ )
× t
u
∗ t
F
⊗
ω̂
• u
′′

(3
.1
3
)

��
(f
′ g
′ )
× t
u
∗ t
F
⊗
g
′∗
f
′∗

(ω̂
• u
) (3

.6
)

))
u
′′
s
t

(f
g
)× t
F

β
s σ

// (
f
′ g
′ )
× t
u
s t
F

(4
.1

0
)
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Chapter 5

Fundamental Local Isomorphism

The final requirement of input conditions for pasting two pseudofunctors in [Nk] involves

factorization of identity maps (see input condition [D]). More precisely, for any object

X and for any composition X
f−→ Y

u−→ X factoring the identity map on X such that u is

smooth, there is a fundamental isomorphism φf,u : f×t u
s
t
∼−−→ 1X, which is compatible

with the comparison isomorphisms of (−)s
t and (−)×t and the base change isomorphisms.

To establish this we need to study the composition f×t u
s
t locally first. In this section, we

give a concrete description of the functor f×t , when f is a local complete intersection.

We denote this concrete version of f×t by f \. After constructing f \ we will establish a

smooth-base-change isomorphism for fibered squares involving smooth morphisms and

local complete intersection morphisms and prove that this is compatible with the smooth-

base-change isomorphism βs defined in (4.2).

We begin by briefly recalling a more concrete description of the functor f×t , when f

is a closed immersion.

5.0.1 Twisted Inverse Image for Closed Immersions

Let f : X −→ Y be a closed immersion of noetherian formal schemes. The functor

f∗ : A(X) −→ A(Y) is exact, so Rf∗ = f∗. Let I be the kernel of the surjective map

OY � f∗OX and let Y be the ringed space (Y,OY/I ), so that f factors naturally as

X
f−→ Y

i−→ Y, and the map f is flat.

35
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The functor HI : A(Y) −→ A(Y) defined by HI (G) := Hom(OY/I ,G) has an exact

left adjoint, namely i∗ : A(Y) −→ A(Y), so HI preserves K-injectivity and RHI is the

right-adjoint to i∗ : D(Y) −→ D(Y). Hence the functor f [ : D(Y) −→ D(X) defined

by,

f [(G) := f
∗
RHI (G) = f

∗
RHom•(OY/I ,G) ' f∗RHom•(f∗OX,G) (5.1)

is the right-adjoint to f∗ = i∗f∗ and f [ sends D+
qct(Y) to D+

qct(X). Via the trace map

Rf∗f
[G ' RHom•OY

(f∗OX,G)→ G (5.2)

we therefore obtain a canonical map

f [ → f×t (5.3)

which is an isomorphism.

A closed immersion f : X → Y of noetherian formal schemes with ideal sheaf I is

called a local complete intersection of codimension n, if for any x ∈ X, there exists an

affine open neighbourhood U ⊂ Y such that, over U the ideal IX(U) ⊂ OY(U) is gen-

erated by a regular sequence of length n. For a general local complete intersection map,

the codimension n is a locally constant integer-valued function on X and as in subsection

3.10.3, in future references, by the codimension of a local complete intersection map we

shall mean a locally constant integer-valued function on X.

Let X → Y be a closed immersion of noetherian formal schemes which is locally

a complete intersection of codimension r. Let I be the ideal sheaf corresponding to

this closed immersion. We define the normal sheaf as (I /I 2)
∨

:= HomX(I /I 2,OX),

where (I /I 2) is naturally an OX-module. This is a locally free sheaf of rank r. We

define Nf :=
∧r(I /I 2)

∨
as the normal bundle on X.

Proposition 5.1. (Fundamental Local Isomorphism). Let f : X −→ Y be a closed

immersion of noetherian formal schemes, where X is locally a complete intersection in

Y of codimension n with ideal sheaf I . Then there is a natural functorial isomorphism,

φ : f
∗
RHom•OY

(f∗OX,OY)
∼−−→

n∧
(I /I 2)

∨
[−n]. (5.4)
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Proof. We shall use the proof for the scheme case as given in [H2]. We shall proceed

with the proof after setting up the Koszul resolution for local complete intersection of

formal schemes.

Around any point x ∈ X and y = f(x) ∈ Y, we may find affine open subschemes V =

Spf(A) ⊂ Y, U = Spf(B) ⊂ X containing y and x respectively, such that f−1(V ) = U .

Let U = Spec(B) and V = Spec(A). Then

U

f
��

κU // U

f0
��

V
κV // V

(5.5)

is a fibered square and f0 : U → V is a local complete intersection of ordinary schemes

and κU , κV are flat completion morphisms. The induced map of rings f̃0 : A −→ B,

by virtue of f being a closed immersion is a surjective map. In view of the hypoth-

esis we may further assume by shrinking U and V , if necessary, that I = ker(f̃0) is

generated by a regular sequence of length n, i.e., B ' A/I, and I = (α),where α =

(α1, α2, . . . , αn) is a regular sequence in A.

The regular sequence (α) gives rise to a Koszul resolution of A/I over A and hence

over OV a Koszul resolution of OV /I, where I is the ideal sheaf of U in V . Then

κ∗V (I) = IV , is the ideal sheaf of U in V , which is also the kernel sheaf of the natural

map OV −→ f∗OU . We define Kp(α) :=
∧p On

V . Let {ei} be the basis of Op
V . We define

the differential map, dp : Kp(α) −→ Kp−1(α) via,

dp(ei1 ∧ ei2 ∧ · · · ∧ eip) = Σ(−1)jαjei1 ∧ ei2 ∧ · · · ∧ êij ∧ · · · ∧ eip . (5.6)

For an OV -module F , let K•(α;F) := Hom•OV (K•(α),F). The augumentation map

ε0 : K0(α) = OV −→ OV /I (5.7)

is the obvious canonical map, inducing a map of complexes K•(α)
ε−→ OV /I, which is

moreover a quasi-isomorphism. Hence,

κ∗V K•(α)→ OV /I (5.8)
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is a resolution of OV /I and we have the following isomorphisms.

f
∗
κ∗V RHom•OV (f0∗OU ,OV )

∼−→ f
∗
κ∗V RHom•OV

((OV /I),OV )

∼−→ f
∗
κ∗V RHom•OV

(K•(α),OV )

∼−→ f
∗
κ∗VH(K•(α))[−n]

∼−→ f
∗
κ∗V (OV /I)[−n]

∼−→
n∧

(I /I 2)
∨
[−n]. (5.9)

Here the second, fourth and fifth isomorphisms are dependent on the choice of the

generators of I, but the composition

f
∗
RnHom•OV

(f∗OU ,OV )
∼−→ f

∗
κ∗V RnHom•OV (f0∗OU ,OV )

∼−−→
n∧

(I /I 2)
∨

(5.10)

is independent of the choice of generators. These canonical isomorphism glue together

to give the following desired global isomorphism of OY-modules.

f [OY = f
∗
RHom•OY

(f∗OX,OY) −→
n∧

(I /I 2)
∨
[−n] = Nf [−n] (5.11)

For G• ∈ D(Y), define the functor f \ : D(Y)→ D(X) as follows:

f \(G) := Lf∗(G)⊗OX
Nf [−n]. (5.12)

Now since f∗OX has finite tor dimension, so for any G ∈ D(Y), we have

RHom•OY
(f∗OX,G)

∼−−→ RHom•OY
(f∗OX,OY)⊗Y G

∼−−→ G ⊗Y RHom•OY
(f∗OX,OY)

and hence the following isomorphism (see sign convention in (2.2) and (2.3)).

f [G = f
∗
RHom•OY

(f∗OX,G)
∼−−→ Lf∗G ⊗X f

[OY
∼−−→ Lf∗G ⊗X Nf [−n] = f \G (5.13)

Using (5.3) and (5.13) we have the following isomorphism.

η : f×t (G•) ∼−−→ f [(G•) ∼−−→ f \(G•) (5.14)



Chapter 5. Fundamental Local Isomorphism 39

For local complete intersections, (−)\ serves as a concrete version of (−)×t . Moreover,

for a local complete intersection w : X′ → Y′ of codimension n, we define the trace

morphism τ \w : w∗Nw[−n]→ OY′ as the following composition

w∗Nw[−n]
(5.14)−−−→ w∗w̄

∗RHom•OY′
(w∗OX′ ,OY′)

∼−−→ RHom•OY′
(w∗OX′ ,OY′)→ OY′ .

(5.15)

Consider the morphisms X
f−→ Y

g−→ Z where f and g are local complete intersections

of codimensions m and n respectively. Then (g ◦ f) is a local complete intersection

of codimension m + n. Moreover, for F ∈ D+
qct(Z) we have a following commutative

diagram.

f×t g
×
t F

��

// (gf)×t F

��
f [g[F

��

// (gf)[F

��
f \g\F // (gf)\F

(5.16)

In the case of ordinary scheme, the commutativity of the diagram on top follows

from the description of the isomorphism f×t
∼−−→ f [ and [H, III Proposition 6.6(1)] and

the commutativity of bottom diagram follows from [Co, Theorem 2.5.1]. The proof of

commutativity in the case of formal schemes are similar and hence have been omitted.

For the fibered product of a smooth map and a local complete intersection, there is

a concrete version of the smooth-base-change isomorphism involving (−)\. Consider the

following fibered diagram.

X′

q

��

v // Y′

p

��
X

u // Y

(5.17)

where u, v are smooth maps of relative dimension d and p, q are local complete intersec-

tions of codimension r. For F ∈ D+
qct(Y), we define the base-change map β\ : vs

tp
\F →
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q\us
tF , using the following composition.

vs
tp
\F === v∗t (Lp

∗F ⊗Np[−r])⊗ ω̂v[d]

∼−−→ v∗tLp
∗F ⊗ v∗Np[−r]⊗ ω̂v[d]

∼−−→ Lq∗u∗tF ⊗ ω̂v[d]⊗ v∗Np[−r]
∼−−→ Lq∗u∗tF ⊗ Lq∗ω̂u[d]⊗Nq[−r]
∼−−→ q∗(u∗tF ⊗ ω̂u[d])⊗Nq[−r]
∼−−→ q\us

tF (5.18)

The third isomorphism is induced by the canonical isomorphism A ⊗ B ' B ⊗ A.

In particular, the sign convention in (2.3) applies. Since all the maps involved are

isomorphisms, so is β\.

Also, for the fibered diagram (5.17) we have a base-change isomorphism β∗,[ : v∗t p
[F ∼−−→ q[u∗tF

which induces the base-change isomorphism βs,[ : vs
tp
[F ∼−−→ q[us

tF . The isomorphism β

is defined via the following composition.

v∗t p
[F ∼−−→ RΓ ′X′v

∗p̄∗RHom•OY
(p∗OY′ ,F)

∼−−→ RΓ ′X′ q̄
∗u∗RHom•OY

(p∗OY′ ,F)

∼−−→ RΓ ′X′ q̄
∗RHom•OX

(u∗p∗OY′ , u
∗F)

∼−−→ RΓ ′X′ q̄
∗RHom•OX

(q∗v
∗OY′ , u

∗F)

∼−−→ RΓ ′X′ q̄
∗RHom•OX

(q∗OX′ , u
∗F)

∼−−→ RΓ ′X′q
[u∗F

∼−−→ q[RΓ ′X u
∗F

∼−−→ q[u∗tF (5.19)
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The isomorphism β[ is defined as follows.

vs
tp
[F ∼−−→ RΓ ′X′v

∗p̄∗RHom•OY
(p∗OY′ ,F)⊗ ω̂•v

∼−−→ RΓ ′X′ q̄
∗u∗RHom•OY

(p∗OY′ ,F)⊗ q∗ω̂•u
∼−−→ RΓ ′X′ q̄

∗RHom•OX
(u∗p∗OY′ , u

∗F)⊗ q∗ω̂•u
∼−−→ RΓ ′X′ q̄

∗RHom•OX
(q∗v

∗OY′ , u
∗F)⊗ q∗ω̂•u

∼−−→ RΓ ′X′ q̄
∗RHom•OX

(q∗OX′ , u
∗F)⊗ q∗ω̂•u

∼−−→ RΓ ′X′ q̄
∗(RHom•OX

(q∗OX′ , u
∗F)⊗ ω̂•u)

∼−−→ RΓ ′X′ q̄
∗RHom•OX

(q∗OX′ , u
∗F ⊗ ω̂•u)

∼−−→ RΓ ′X′q
[(u∗F ⊗ ω̂•u)

∼−−→ q[RΓ ′X (u∗F ⊗ ω̂•u)

∼−−→ q[us
tF

We will now show that via the isomorphism η defined in (5.14), β\ is compatible with

the smooth-base-change isomorphism βs for (−)×t .

Proposition 5.2. For the fibered square of (5.17) and for F ∈ D+
qct(Y), the following

diagram of isomorphisms commutes.

vs
tp
\F β\ //

η

��

q\us
tF

η

��
vs
tp
×
t F

β // q×t u
s
tF

(5.20)

Proof. Consider the following diagram

vs
tp
\F

1

β\ //

η

��

q\us
tF

η

��
vs
tp
[F

2

βs,[
//

��

q[us
tF

��
vs
tp
×
t F

β // q×t u
s
tF

(5.21)
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We first the reduce the diagram 2 into the following diagram.

vs
tp
[F //

��

q[(u∗tF ⊗ ω̂•u)

��

pr[ // q[u∗tF ⊗ q∗ω̂•u

��
v∗t p
×
t F ⊗ ω̂•v // q×t (u∗tF ⊗ ω̂•u) // q×t u

∗
tF ⊗ q∗ω̂•u

(5.22)

The adjoint projection map pr[ in the diagram (5.22) is obtained via the base-change

isomorphism β[ (equivalently it can also be obtained via the isomorphism (5.3) and the

adjointness of (−)×t ) making the diagram (5.22) commute. Now using the isomorphism

ω̂•v ' q∗ω̂•u, the commutativity of the subdiagram 2 reduces to the commutativity of

the following diagram.

v∗t p
[F

3

//

��

q[u∗tF

��
v∗t p
×
t F // q×t u

∗
tF

(5.23)

To show that the diagram 3 commutes, we use the adjointness of q∗ to q×t to reduce

to proving the commutativity of the diagram (5.24).

In the diagram (5.24) below, the commutativity of subdiagram ♠1 follows from the

definition of the base change isomorphism u∗p∗ ' q∗v
∗ and the commutativity of sub-

diagram ♠2 follows from the application of trace map to the isomorphism (5.3). The

remaining diagrams commute for trivial reasons.
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Γ
′

X
q ∗
v
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om
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X
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)

♠
1

o ��

d
ef

.
//

∼

++

q ∗
v
∗ tp
× t
F

��
R
Γ
′

X
u
∗ p
∗p̄
∗ H
om
• O
Y

(p
∗O

X
,F

)

♠
2

o ��

(5
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)
// R
Γ
′

X
u
∗p
∗p
× t
F

τ p ��
R
Γ
′

X
q ∗
q̄∗
u
∗ H
om
• O
Y

(p
∗O

X
,F

)

o ��

∼
// R
Γ
′

X
u
∗ H
om
• O
Y

(p
∗O

X
,F

)
//

o ��

R
Γ
′

X
u
∗ H
om
• O
Y

(O
Y
,F

)
∼

//

o ��

R
Γ
′

X
u
∗ F

R
Γ
′

X
q ∗
q̄∗
H
om
• O
X
(u
∗ p
∗O

X
,u
∗ F

)

o ��

∼
// R
Γ
′

X
H
om
• O
Y
′(
u
∗ p
∗O

X
,u
∗ F

)
//

o ��

R
Γ
′

X
H
om
• O
Y
′(
u
∗ O

Y
,u
∗ F

)

o ��
R
Γ
′

X
q ∗
q̄∗
H
om
• O
Y
′(
q ∗

O
X
′ ,
u
∗ F

)
∼

// R
Γ
′

X
H
om
• O
Y
′(
q ∗

O
X
′ ,
u
∗ F

)
∼

// R
Γ
′

X
H
om
• O
Y
′(

O
Y
′ ,
u
∗ F

)
// u
∗ tF

(5
.2

4
)
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We now expand the diagram 1 in (5.21) using the definitions of the (−)s
t, (−)[ and

(−)\.

v∗t (Lp
∗F ⊗N •p )⊗ ω̂•v //

��

Lq∗(u∗tF ⊗ ω̂•u)⊗N •q

��

v∗tLp
∗F ⊗ v∗p̄∗RHom•OY

(p∗OX,OY)⊗ ω̂•v

��
v∗t p̄
∗RHom•OY

(p∗OX,F)⊗ ω̂•v // q̄∗RHom•OY′
(q∗OX′ , u

∗F ⊗ ω̂•u)

(5.25)

Since p∗OX and q∗OX′ have finite-tor dimension, we can rewrite the above diagram as

follows.

v∗tLp
∗F ⊗ v∗N •p ⊗ ω̂•v //

��

Lq∗u∗tF ⊗N •q ⊗ q∗ω̂•u

��
v∗tLp

∗F ⊗ v∗p̄∗RHom•OY
(p∗OX,OY)⊗ ω̂•v // Lq∗u∗tF ⊗ q̄∗RHom•OY′

(q∗OX′ ,OY′)⊗ q∗ω̂•u

(5.26)

Now the commutativity of (5.26) follows from the commutativity of the diagram (5.27)

which follows from (5.19) (using F = OY) and the isomorphism (5.14).

v∗tN •p //

��

N •q

��
v∗t p̄
∗RHom•OY

(p∗OX,OY) // q̄∗RHom•OY′
(q∗OX′ ,OY′)

(5.27)
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Tor-independent Base Change

Isomorphism

In this section we give a base-change isomorphism for fibered squares of pseudoproper

maps and local complete intersections.

A fibered square

V
v //

g

��

X

f
��

U
u // Y

(6.1)

where f is essentially of pseudofinite type and u is a local complete intersection of

codimension n will be called a tor-independent square if for any y = f(x), any affine

open neighbourhood U of y such that the ideal of u−1U in U is given by a regular

sequence (t) = (t1, . . . , tn) and any affine open neighbourhood V of x, the natural image

of (t) over V is also regular. Thus v is also a local complete intersection of codimension

n.

Proposition 6.1. Suppose that in the tor-independent square of (6.1) f, g are pseudo-

proper maps. Then the following statements are true.

(a) The morphism θ : Lu∗Rf∗F −→ Rg∗Lv
∗F obtained via the following composition

Lu∗Rf∗F −→ Lu∗Rf∗v∗Lv
∗F ∼−−→ Lu∗u∗Rg∗Lv

∗F −→ Rg∗Lv
∗F

is an isomorphism for F ∈ D+
qct(X).

45
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(b) The base change map β : Lv∗f×t F → g×t Lu∗F obtained via the following natural

composition

Lv∗f×t F −→ g×t Rg∗Lv
∗f×t F

θ−→ g×t Lu∗Rf∗f
×
t F

τf−−→ g×t Lu∗F

is an isomorphism for F ∈ D+
qct(Y).

For the proof of the statement (a) we use the proof of [AJL, Prop 7.2.1(b)] where u, v

are assumed to be flat. We proceed using the following alterations. The only ingredients

in the proof of [AJL, Prop 7.2.1(b)] which do not work for lci maps are [AJL, Lemmas

7.2.1, 7.2.2].

The analog of [AJL, Lemma 7.2.1] in our case holds, for if X and Y are ordinary

schemes and u, v are lci then it implies that U and V are ordinary schemes as well,

whereupon we employ Lipman’s proof of base change for independent squares for ordi-

nary schemes, see [L, Theorem 4.4.1].

We now prove the analog of [AJL, Lemma 7.2.2] in our case as follows.

Proposition 6.2. Let I be the ideal of definition of a noetherian formal scheme Y,

let Yn be the ordinary scheme (Y,OY/I
n) and let in : Yn ↪→ Y be the canonical closed

immersion. Also, let u : U → Y be a local complete intersection of codimension r.

Assume further that the following fibered square is tor-independent (see (6.1)).

U ′ = Yn ×U
pn //

un
��

U

u

��
Yn

in // Y

Then the map αF : Lu∗in∗F → pn∗Lu
∗
nF adjoint to the following natural composition,

in∗F
τ−→ in∗un∗Lu

∗
nF −→ u∗pn∗Lu

∗
nF (6.2)

is an isomorphism for F ∈ D+
qct(Yn).

Proof. Since u is a closed immersion, to show that αF is an isomorphism, it is enough

to show

u∗αF : u∗Lu
∗in∗F → u∗pn∗Lu

∗
nF (6.3)
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is an isomorphism. It is enough to check that u∗α is an isomorphism on affine patches.

Let V ⊂ Y be an affine open subset such that in is given by a regular sequence (t) of

length r. Let K = K•(t) be the Koszul resolution of OV /I (V ). Using tor-independence

of the square (6.2), we have a Koszul resolution induced by the natural image of the

sequence (t) over OYn . We will denote it by Kn = K•(t). For convenience, we consider

U′,U, Yn as ringed spaces on Y, extended by zero outside their support. Thus now

u∗ = un∗ = pn∗ = in∗ = identity. Similarly we consider a complex F to be a complex

on Y, extended by zero outside its support.

Thus if M is a complex of OYn-modules and N a complex of OX-modules, there are

natural maps

M→M⊗L
Yn OU′ ' Lu∗nM,

Lu∗N ' N ⊗L
OY

OU → N ⊗OY
OU ' N .

It follows that αF is the composite Lu∗F → Lu∗Lu∗nF → Lu∗nF . Moreover there are

natural isomorphisms.

Lu∗F ' F ⊗L
OY

OU ,

Lu∗nF ' F ⊗L
OYn

OU′ ' F ⊗OYn
Kn ' F ⊗OY

K ' F ⊗L
OY

OU ,

Lu∗Lu∗nF ' Lu∗(F ⊗L
OY

OU ) ' (F ⊗L
OY

OU )⊗L
OY

OU .

In the following commutative diagram the bottom row composes to the identity map,

hence αF , which is the composite of the top row, is an isomorphism.

Lu∗F //

o
��

Lu∗Lu∗nF //

o
��

Lu∗nF

o
��

F ⊗L
OY

OU
β // (F ⊗L

OY
OU )⊗L

OY
OU

γ // F ⊗L
OY

OU

(6.4)

In the bottom row, β is induced by applying −⊗L
OY

OU to F → F ⊗L
OY

OU , while γ is

induced by the canonical map OU ⊗L
OY

OU → OU .

Plugging the proposition 6.2 in the proof of [AJL, Theorem 7.2] as a replacement

for [AJL, Lemma 7.2.2], we now have the proof of proposition 6.1(a).
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We will now prove 6.1(b). In the independent square (6.1), f, g are pseudoproper

maps and u, v are closed immersions which are locally complete intersections maps. Let

h = fv = ug be the composition. Now, since closed immersions are pseudoproper maps,

we have a comparison isomorphism.

c× : h×t F
∼−→ v×t f

×
t F

∼−→ g×t u
×
t F (6.5)

Moreover, for local complete intersection maps, by (5.14) we have the isomorphisms

u×t G ' u\G and v×t F ' v\F for F ,G in D+
qct(X) and D+

qct(Y) respectively. Now, using

β, and the additional information that u, v are local complete intersection, we consider

the map β′ defined via following composition.

v\f×t F === v∗t f
×
t F ⊗Nv[−n]

βt−−→ g×t u
∗
tF ⊗Nv[−n]

∼−−→ g×t u
∗
tF ⊗ g∗Nu[−n]

∼−−→ g×t (u∗tF ⊗Nu[−n])

∼−−→ g×t u
\F . (6.6)

Hence, β is an isomorphism if and only if β′ is an isomorphism, and to show that the

map β′ is an isomorphism, it is enough to show that for F ∈ D+
qct(Y), the following

diagram commutes.

v\f×t F
β′t //

η

��

g×t u
\F

η

��
v×t f

×
t F

c× // g×t u
×
t F

(6.7)

Using the definition of β′, we rewrite the diagram as follows.

v\f×t F // g×t u
\F

Lv∗t f
×
t F ⊗Nv[−n] //

��

g×t Lu∗tF ⊗ g∗Nu[−n] // g×t (Lu∗tF ⊗Nu[−n])

��
v×t f

×
t F // g×t u

×
t F

(6.8)

Applying Rh∗(
∼−−→ Rf∗v∗ ' u∗Rg∗) to the lower part of the diagram (6.8), via ad-

jointness of Rh∗ with h×t , it suffices to consider the diagram (6.10) below where N •v =
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Nv[−n],N •u = Nu[−n] and h∗ = Rh∗. The unlabelled diagrams commute for obvious

reasons. We will now show that the subdiagram ♠1 in (6.10) commutes. We first record

that the following diagram is commutative.

v∗N •v
τv

��

∼ // f∗u∗N •u
τu

��
OX

∼ // f∗OY

(6.9)

To prove the commutativity of ♠1 we expand it into the diagram (6.11) where the

commutativity of the sub-diagram ♣1 in (6.11) is shown by expanding it into the diagram

(6.12) with M = f×t F and N = N •v .

The commutativity of the unlabelled diagrams of (6.12) is straight-forward to check.

The diagram � commutes via the adjointness of f∗ a f∗ and [L, Proposition 3.7.3] and

the subdiagram 1 commutes via the definition of the adjoint base change isomorphism.
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h
∗
(v
∗
f
× t
F
⊗
N
• v
)

o ��

h
∗
(v
∗
f
× t
F
⊗
g
∗
N
• u
)

o ��

β
// h
∗
(g
× t
u
∗
F
⊗
g
∗
N
• u
)

o ��

// h
∗
g
× t

(u
∗
F
⊗
N
• u
)

o ��
f ∗
v ∗

(v
∗
f
× t
F
⊗
N
• v
)

♠
1

//

p
ro

j v

��

u
∗
g ∗

(v
∗
f
× t
F
⊗
g
∗
N
• u
)

β
//

p
ro

j g

��

u
∗
g ∗

(g
× t
u
∗
F
⊗
g
∗
N
• u
)

//

p
ro

j g

��

u
∗
g ∗
g
× t

(u
∗
F
⊗
N
• u
)

τ
g

��

f ∗
(f
× t
F
⊗
v ∗
N
• v
)

τ
v

��

u
∗
(g
∗
v
∗
f
× t
F
⊗
N
• u
)

β
//

��

u
∗
(g
∗
g
× t
u
∗
F
⊗
N
• u
)

τ
g

��
f ∗

(f
× t
F
⊗

O
X

)

��

u
∗
(u
∗
f ∗
f
× t
F
⊗
N
• u
)

τ
f

//

p
ro

j u

��

u
∗
(u
∗
F
⊗
N
• u
)

p
ro

j u

��

u
∗
(u
∗
F
⊗
N
• u
)

p
ro

j u

��
f ∗
f
× t
F
⊗
u
∗
N
• u

τ
u

��

τ
f

// F
⊗
u
∗
N
• u

τ
u

��

F
⊗
u
∗
N
• u

τ
u

��
f ∗
f
× t
F

��

f ∗
f
× t
F
⊗

O
Y

τ
f

��

F
⊗

O
Y

��

F
⊗

O
Y

��
F

F
//

oo
F

F
⊗

O
Y

(6
.1

0
)
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f ∗
v ∗

(v
∗ f
× t
F
⊗
N
• v
)

♣
1

c ∗
//

p
ro

j v

��

u
∗g
∗(
v
∗ f
× t
F
⊗
g
∗ N
• u
)

p
ro

j g

��
f ∗

(f
× t
F
⊗
v ∗
N
• v
)

(6
.9

)

∼
//

τ v

��

f ∗
(f
× t
F
⊗
f
∗ u
∗N
• u
)

τ u ��

p
ro

j f

))

u
∗(
g ∗
v
∗ f
× t
F
⊗
N
• u
)

a
d

j.
b

c

��
f ∗

(f
× t
F
⊗

O
X

)
∼

//

��

f ∗
(f
× t
F
⊗
f
∗ O

Y
)

p
ro

j f

��

f ∗
f
× t
F
⊗
u
∗N
• u

τ u

uu

τ f ��

u
∗(
u
∗ f
∗f
× t
F
⊗
N
• u
)

τ f ��

p
ro

j u

oo

f ∗
f
× t
F

//

��

f ∗
f
× t
F
⊗

O
Y

τ f

##

F
⊗
u
∗N
• u

τ u

}}

u
∗(
u
∗ F
⊗
N
• u
)

p
ro

j u

oo

F
// F
⊗

O
Y

(6
.1

1
)



f ∗
v ∗

(v
∗
M
⊗
g
∗
N

)
∼

// h
∗
(v
∗
M
⊗
g
∗
N

)
u
∗
g ∗

(v
∗
M
⊗
g
∗
N

)
∼

oo

f ∗
v ∗

(v
∗
f
∗ t
f ∗
M
⊗
g
∗
N

)

�1 ∼ c
∗
//

o ��

τ
f

aa

f ∗
v ∗

(g
∗ t
u
∗
f ∗
M
⊗
g
∗
N

)
∼
//

o ��

f ∗
v ∗

(g
∗ t
g ∗
v
∗
M
⊗
g
∗
N

)
∼ c
∗
//

o ��

τ
g

kk

u
∗
g ∗

(g
∗ t
g ∗
v
∗
M
⊗
g
∗
N

)

τ
g

OO

f ∗
(M
⊗
v ∗
g
∗
N

)

o
p
ro

j v

OO

f ∗
(f
∗ t
f ∗
M
⊗
v ∗
g
∗
N

)

o
a
d
j.

b
c

��

τ
f

oo
f ∗
v ∗
g
∗ t
(u
∗
f ∗
⊗
N

)
∼

a
d
j.

b
c
// f
∗
v ∗
g
∗ t
(g
∗
v
∗
M
⊗
N

)
∼ c
∗
// u
∗
g ∗
g
∗ t
(g
∗
v
∗
M
⊗
N

)

o

OO

f ∗
f
∗ t
u
∗
(u
∗
f ∗
M
⊗
N

)

a
d
j.

b
c

OO

∼
a
d
j.

b
c
// f
∗
f
∗ t
u
∗
(g
∗
v
∗
M
⊗
N

)

a
d
j.

b
c

OO

u
∗
(g
∗
v
∗
M
⊗
N

)
τ
f

oo

τ
g

OO

f ∗
(M
⊗
f
∗
u
∗
N

)

o
a
d
j.

b
c

OO

f ∗
(f
∗ t
f ∗
M
⊗
f
∗
u
∗
N

)
τ
f

oo
f ∗
f
∗ t
(f
∗
M
⊗
u
∗
N

)
∼

oo

o
p
ro

j u

OO

f ∗
M
⊗
u
∗
N

τ
f

oo
∼

p
ro

j u

// u
∗
(u
∗
f ∗
M
⊗
N

)

τ
f

ii

o
a
d
j.

b
c

OO

(6
.1

2
)

52



Chapter 6. Tor-independent Base Change Isomorphism 53





Chapter 7

Identity Factorization

After defining (−)×t for local complete intersections and obtaining a fundamental local

isomorphism in chapter 5, we are now in position to establish the input condition [D]

of [Nk, Subsection 2.1, Page 7], to glue the pseudofunctors (−)st and (−)×t . We will use

the Proposition 7.1 below and the isomorphism (5.14) to give the isomorphism (7.6).

We will then show this isomorphism is compatible for extension of base by smooth or

pseudoproper morphisms. Finally, we will show that this isomorphism is compatible

with compositions and smooth-base-change isomorphism.

Proposition 7.1. Consider a sequence X
f−→ Y

u−→ X of separated pseudofinite-type

maps of noetherian formal schemes, such that u is smooth of relative dimension n, and

uf = 1X. Then f is a local complete intersection of codimension n.

Proof. Consider a point x in X. Let f(x) = y so that u(y) = uf(x) = x. Let A = OX,x

and B = OY,y, so we have induced maps of local rings,

A −→ B � A

and hence induced maps

Â −→ B̂ −→ Â (7.1)

where the completions are along the respective maximal ideals. Let k = A/mA. Then

since the first map from the induced sequence k → B̂/mAB̂ → k is smooth, we know

55
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that there is an isomorphism

ρ : k[[T ]]
∼−−→ B̂/mAB̂ (7.2)

for suitable variables T = (t1, t2, . . . , tn). Consider the following diagram where r is a

lift of the map ρ.

I

��

Â[[T ]]

r
��

Â //

==

B̂ // Â

(7.3)

Here I is the kernel of the map r. By complete Nakayama [Mat, Theorem 8.4], r is

surjective. Going modulo mA in (7.3) and using the isomorphism (7.2) and the flatness

of B̂ over Â, we conclude that I/mAI = 0. By Nakayama, we conclude that I = 0.

Thus r is an isomorphism. Now if J = ker(B → A) and Ĵ is its completion along the

maximal ideal mB, then Ĵ is generated by the regular sequence (t1, t2, . . . , tn) of length

n. Since, J/mBJ ' Ĵ/mBĴ , thus, J is generated by a sequence of length n which is

regular by faithful flatness.

Consider the sequence, X
f−→ Y

u−→ X, where u is smooth separated map such that

uf = 1 hence f is locally a complete intersection. For such a factorization of identity

map, we want to define a canonical isomorphism φf,u : f×t u
s
t
∼−→ 1D+

qct(X). Moreover, we

want this isomorphism to behave well with smooth or pseudo-proper base change on X.

We begin with an important special case.

Proposition 7.2. If f : X −→ Y is a smooth separated map of relative dimension n,

and i : Y → X is a section of f given by an ideal I ⊂ OX, then we have a canonical

isomorphism

ζ ′i,f : NY/X[−n]⊗ i∗ω̂X/Y[n] ' OY (7.4)

where ω̂X/Y =
∧n Ω1

X/Y and NY/X =
∧n(i∗(I /I 2))∨ = Nf .

Here is a description of the isomorphism (7.4) using local coordinates on X. Since

f : X → Y is smooth of relative dimension n, for any x ∈ X we can choose an open
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neighbourhood U ⊂ X containing x and pick n ordered sections, say, x1, x2, . . . , xn of

OX over U which will be the local coordinates relative to f . Then dx1 ∧ dx2 ∧ · · · ∧

dxn is a local generator of ω̂X/Y over the open set U . Now i : Y → X is a local

complete intersection of codimension n, hence we can, by Proposition 7.1, ensure that

x1, x2, . . . , xn chosen above are also the local generators of the ideal sheaf I over the

open set U . Then x
∨

1 ∧ x
∨

2 ∧ · · · ∧ x
∨

n generate NY/X =
∧n(i∗(IY/I

2
Y))

∨
over the open

set U . The morphism ζ ′ is now locally defined by the following map of generators.

x
∨

1 ∧ x
∨

2 ∧ · · · ∧ x
∨

n ⊗ i∗(dx1 ∧ dx2 ∧ · · · ∧ dxn) 7−→ 1 (7.5)

This map is independent of the choice of generators x1, x2, . . . , xn. It then follows that

this local definition globalizes. For a detailed proof of the Proposition 7.2 in the case of

ordinary schemes, see [Co, Section 2.7].

We will now define φf,u for the composition of maps, X
f−→ Y

u−→ X described

above. For any G• ∈ D+
qct(X) we look at the following isomorphism ζ ′f,u obtained via the

composition of the following natural isomorphisms.

ζ ′f,u : G• ∼−−−−→ G• ⊗Y OY

(7.4)−−−−→ G• ⊗Y (Nf [−n]⊗ f∗ω̂u[n])

∼−−→ Lf∗u∗tG• ⊗ f∗ω̂u[n]⊗Nf [−n]

∼−−−−→ Lf∗(u∗tG• ⊗ ω̂u[n])⊗Nf [−n]

def.
==== f \us

tG• (7.6)

Using ζ ′f,u we define φ\f,u : f \us
t
∼−−→ 1X to be the inverse of the ζ ′f,u. We define the

abstract fundamental isomorphism φ× : f×t u
s
t → 1X via the following composition of

isomorphisms, see (5.14).

f×t u
s
tF

∼−−→ f \us
tF

φ\−−→ F (7.7)

Now we will check that, φf,u is compatible with the base change isomorphism (4.2)

and the comparison isomorphism (3.2) defined earlier.



58 Chapter 7. Identity Factorization

Proposition 7.3. Consider the following fibered diagram of separated noetherian formal

schemes

X′

g

��

f ′ // Y′

h
��

u′ // X′

g

��
X

f // Y
u // X

(7.8)

where u and u′ are smooth morphisms, uf = 1X , u′f ′ = 1X′ so that by Proposition 7.1,

f, f ′ are local complete intersection maps.

(a) If g (hence h) is a pseudoproper morphism then the following diagram of isomor-

phism commutes for F ∈ D+
qct(X).

f×t u
′s
t g
×
t F

β //

φ

��

f
′×
t h×t u

s
tF

c× // g×t f
×
t u

s
tF

φ

��
1D(X′)g

×
t F g×t F g×t F

(7.9)

(b) If g (hence h) is a smooth morphism, then the following diagram of isomorphisms

commutes for F ∈ D+
qct(X).

f
′×
t u′st g

s
tF

cs //

φ

��

f
′×
t hs

tu
s
tF

β\ // gs
tf
×
t u

s
tF

φ

��
1D(X′)g

s
tF gs

tF gs
tF

(7.10)

Proof. For part (a) we use the isomorphism (5.14) in the diagram (7.9) and obtain the

following diagram.

f×t u
′s
t g
×
t F

♣

βu,g //

η

��

f
′×
t h×t u

s
tF

♠

c× //

η

��

g×t f
×
t u

s
tF

η

��
f ′\u′st g

×
t F

1

βs
//

φ
��

f ′\h×t u
s
tF

β\ // g×t f
\us
tF

φ
��

1D(X′)g
×
t F g×t F g×t F

(7.11)

The diagram ♣ commutes via (5.20) and the diagram ♠ commutes via (6.7). We will

now prove that the diagram 1 is commutative. We expand it below. As before we use

f∗ = Lf∗, f ′∗ = Lf ′∗, ω̂• = ω̂[n] and N • = N [−n], where n is the relative dimension of
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g.

f ′\u′st g
×
t F

f ′\βs,g

// f ′\h×t u
s
tF

β′f,h(u
s
t) // g×t f

\us
tF

f ′∗(u′∗t g
×
t F ⊗ ω̂•u′)⊗N •f ′

f ′\βs
u,g //

o

��

f ′∗h×t (u∗tF ⊗ ω̂•u)⊗N •f ′
β′f,h(u

s
t) //

o

��

g×t (f∗(u∗tF ⊗ ω̂•u)⊗N •f )

o

��
f ′∗h×t u

∗
tF ⊗ f ′∗h∗ω̂•u ⊗N •f ′

o

��

g×t (f∗u∗tF ⊗ f∗ω̂•u ⊗N •f )

pr× o

��
f ′∗u′∗t g

×
t F ⊗ f ′∗ω̂•u′ ⊗N •f ′ //

ζ′
f′,u′

��

f ′∗h×t u
∗
tF ⊗ f ′∗ω̂•u′ ⊗N •f ′ //

ζ′
f′,u′

��

g×t f
∗u∗tF ⊗ g∗(f∗ω̂•u ⊗N •f )

ζ′f,u

��
f ′∗u′∗t g

×
t F ⊗ OX′

f ′∗βu,g //

o
��

f ′∗h×t u
∗
tF ⊗ OX′

βf,h(u
s
t) //

o
��

g×t f
∗u∗tF ⊗ g∗OX

o
��

f ′∗u′∗t g
×
t F

2

f ′∗βu,g //

u′f ′=1

��

f ′∗h×t u
∗
tF

βf,h(u
s
t) // g×t f

∗u∗tF

uf=1

��
1X′g

×
t F g×t F g×t 1XF

(7.12)

In the above diagram the commutativity of all the unlabelled subdiagrams is straight-

forward to check. We only need to show the commutativity of diagram 2 . By adjoint-

ness of g∗ to g×t , we reduce to proving the commutativity of the following diagram.

g∗f
′∗u′∗t g

×
t F

♣1

��

βu,g //

βf,g
��

g∗f
′∗h×t u

∗
tF

βf,g
��

f∗h∗u
′∗
t g
×
t F

♣2

βu,g //

βu,g
��

f∗h∗h
×
t u
∗
tF

τh

��

g∗g
×
t F

��

f∗u∗t g∗g
×
t Foo

τg

��
f∗u∗tF

uf=1
��

f∗u∗tF

��
F F

(7.13)

In the diagram (7.13) the subdiagram ♣1 commutes functorially and the diagram ♣2

commutes via the definitions of smooth-base-change isomorphisms.
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For part (b), using the Proposition 7.1 we expand the diagram (7.10) as follows.

f
′×
t us

tg
s
tF

cs //

��

f
′×
t g′st u

s
tF

βf,g′ //

��

gs
tf
×
t u

s
tF

��
f ′\us

tg
s
tF

cs //

��

f ′\g′st u
s
tF

β\
f,g′ // gs

tf
\us
tF

��
1X′g

s
tF gs

tF gs
t1XF

(7.14)

Here again the top left diagram commutes functorially and the top right diagram com-

mutes by Proposition 5.2 and expanding the bottom diagram using the definitions of

the functors involved we obtain the diagram (7.15).

The commutativity of (7.15) is straight-forward from the definition of the labelled

maps and the comparison maps for the pseudofunctor (−)∗t .
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f
′\
u
′s t
g

s t
F

cs
// f
′\
g
′s t
u

s tF
β
\

// g
s t
f
\ u

s tF

f
′∗

(u
′∗ t

(g
∗ tF
⊗
ω̂
• g)
⊗
ω̂
• u′

)
⊗
N
• f′

o ��

cs
// f
′∗

(g
′∗ t

(u
∗ tF
⊗
ω̂
• u)
⊗
ω̂
• g′

)
⊗
N
• f′

o ��

β
\

// g
∗ t(
f
∗ (
u
∗ tF
⊗
ω̂
• u)
⊗
N
• f
)
⊗
ω̂
• g

o ��
f
′∗
u
′∗ t
g
∗ tF
⊗
f
′∗
u
∗ ω̂
• g
⊗
f
′∗
ω̂
• u′
⊗
N
• f′

ζ
′ f
′ ,
u
′

��

c∗
// f
′∗
g
′∗ t
u
∗ tF
⊗
f
′∗
g
′∗
ω̂
• u
⊗
f
′∗
ω̂
• g′
⊗
N
• f′

o ��

c∗
// g
∗ tf
∗ u
∗ tF
⊗
g
∗ (
f
∗ ω̂
• u
⊗
N
• f
)
⊗
ω̂
• g

ζ
′ f,
u

��

f
′∗
g
′∗ t
u
∗ tF
⊗
f
′∗
ω̂
• u′
⊗
N
• f′
⊗
ω̂
• g

ζ
′ f
′ ,
u
′

��
f
′∗
u
′∗ t
g
∗ tF
⊗

O
X
′
⊗
ω̂
• g

c∗
//

o ��

f
′∗
g
′∗ t
u
∗ tF
⊗

O
X
′
⊗
ω̂
• g

c∗
//

o ��

g
∗ tf
∗ u
∗ tF
⊗
g
∗ O

X
⊗
ω̂
• g

o ��
f
′∗
u
′∗ t
g
∗ tF
⊗
ω̂
• g

c∗
//

u
′ f
′ =

1

��

f
′∗
g
′∗ t
u
∗ tF
⊗
ω̂
• g

c∗
// g
∗ tf
∗ u
∗ tF
⊗
ω̂
• g

u
f

=
1

��
1
X
′ g
∗ tF
⊗
ω̂
• g

��

g
∗ t1

X
F
⊗
ω̂
• g

��
g
∗ tF
⊗
ω̂
• g

g
s t
F

g
∗ tF
⊗
ω̂
• g

(7
.1

5
)
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Proposition 7.4. For the following diagram of separated noetherian formal schemes,

X

f
��
Y

g

��

v // X

h
��

Z
u //W

w // X

(7.16)

where the middle square is fibered, f, g, h are pseudoproper and u, v, w are smooth maps,

such that uf = 1 = wh (hence, (gf)(wu) = 1), the following diagram of isomorphisms

commutes for F ∈ D+
qct(X).

f×t g
×
t u

s
tw

s
tF //

��

(gf)×t (wu)s
tF

��
f×t v

s
th
×
t w

s
tF // F

(7.17)

Proof. Here again we will use Proposition 7.1 and the isomorphism η of (5.14) to obtain

the following diagram.

f×t g
×
t u

s
tw

s
tF

c×(cs) //

η

''

f×t (β)ws
t

��

(gf)×t (wu)s
tF

η

vv

φ×vf,wh

��

f \g\us
tw

s
tF

♣

c\(cs) //

f\(β)ws
t

��

(gf)\(wu)s
tF

φvf,wh

��
f \vs

th
\ws

tF
φf,v(φh,w)

// 1D+
qct(X)F

f×t v
s
th
×
t w

s
tF

η

88

φ×f,v(φ×h,w)
// 1D+

qct(X)F

(7.18)

The commutativity of the trapezium on the left follows from the commutativity of

the diagram (5.20). The commutativity of the trapezium on the top follows from the

commutativity of the diagram (5.16). The trapezium in the bottom commutes via the

definition of φ×f,v and φ×h,w. The trapezium on the right commutes via the definition of

φ×vf,wh. We will now prove the commutativity of the diagram ♣.

Using the definition of the functors involved in the middle square of the diagram

(7.18) we get the diagram (7.19).



f
∗
(g
∗
(u
∗ t
(w
∗ t
F
⊗
ω̂
• w

)
⊗
ω̂
• u
)
⊗
N
• g
)
⊗
N
• f

��

// f
∗
g
∗
((
w
u

)∗ t
F
⊗
u
∗
ω̂
• w
⊗
ω̂
• w

)
⊗
f
∗
N
• g
⊗
N
• f

// (
g
f

)∗
((
w
u

)∗ t
F
⊗
ω̂
• w
u
)
⊗
N
• gf

��
f
∗
g
∗
u
∗ t
w
∗ t
F
⊗
f
∗
g
∗
(u
∗
ω̂
• w
⊗
ω̂
• u
)
⊗
f
∗
N
• g
⊗
N
• f

//

��

(g
f

)∗
(w
u

)∗ t
F
⊗

(g
f

)∗
ω̂
• w
u
⊗
N
• gf

��
f
∗
g
∗
u
∗ t
w
∗ t
F
⊗
f
∗
g
∗
u
∗
ω̂
• w
⊗
f
∗
g
∗
ω̂
• u
⊗
f
∗
N
• g
⊗
N
• f

��

(g
f

)∗
(w
u

)∗ t
F
⊗

((
g
f

)∗
ω̂
• w
u
⊗
N
• gf

)

��

f
∗
v
∗ t
h
∗
w
∗ t
F
⊗
f
∗
v
∗
h
∗
ω̂
• w
⊗
f
∗
ω̂
• v
⊗
f
∗
v
∗
N
• h
⊗
N
• f

��
(v
f

)∗ t
(w
h

)∗ t
F
⊗

(v
f

)∗
h
∗
ω̂
• w
⊗

(v
f

)∗
N
• h
⊗
f
∗
ω̂
• v
⊗
N
• f

��
F
⊗
h
∗
ω̂
• w
⊗
N
• h
⊗
f
∗
ω̂
• v
⊗
N
• f

��

F
⊗

(g
f

)∗
ω̂
• w
u
⊗
N
• gf

��
F
⊗

O
X
⊗

O
X

// F
⊗

O
X

(7
.1

9
)
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The commutativity of diagram (7.19) reduces to showing commutativity of the fol-

lowing diagram of differentials.

f∗g∗(u∗ω̂•w ⊗ ω̂•u)⊗ f∗N •g ⊗N •f

♣

o
��

// f∗g∗ω̂•wu ⊗N •gf
c∗ // (gf)∗ω̂•wu ⊗N •gf

ζ′gf,wu

��

f∗g∗u∗ω̂•w ⊗ f∗ω̂•v ⊗ f∗v∗N •h ⊗N •f
oc∗

��
f∗v∗h∗ω̂•w ⊗ f∗v∗N •h ⊗ f∗ω̂•v ⊗N •f

o
��

f∗v∗(h∗ω̂•w ⊗N •h )⊗ f∗ω̂•v ⊗N •f
ovf=1

��
h∗ω̂•w ⊗N •h ⊗ f∗ω̂•v ⊗N •f

ζ′h,w o
��

OX ⊗ f∗ω̂•v ⊗N •f
o
��

f∗ω̂•v ⊗N •f
ζ′f,v o
��

OX OX

(7.20)

The diagram (7.20) is a statement on sheaves and its commutativity can be checked

over local rings. Let x ∈ X and let y = v−1(x) = f(x), z = (wu)−1(x) = (gf)(x) and

t = w−1(x) = h(x) be its pre-images in Y,Z and W respectively.

We can choose t1, . . . , tm to be the ordered sections in OW,t as the local coordinates

of w around t and z1, . . . , zn as local coordinates of u around z in OZ,z. Moreover, we

can choose {ti} in such a way that these are also the local generators of ideal sheaves

Ih, where Ih is the ideal sheaf for the local complete intersection h. We first observe

the following.

1. The sections {v∗ti} are also local generators of Ig, the ideal sheaf of the local

complete immersion g.

2. The sections {g∗zj} are local coordinates of v around y in OY and can be chosen

in such a way that they are also the local generators of the ideal sheaf If , the
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ideal sheaf of the local complete intersection f . We will abuse of notation slightly

here by calling {zj} as the local coordinates of v around y in Y.

3. By abuse of notation, {t1, . . . , tm, z1, . . . , zn} can be chosen as the local coordinates

of (wu) around the point z such that they are also the local generators of Igf , the

ideal sheaf for the local complete intersection (gf).

In light of observations (1)-(3) above, we have the following.

dt1 ∧ · · · ∧ dtm generates ω̂•w

dz1 ∧ · · · ∧ dzn generates ω̂•u

dz1 ∧ · · · ∧ dzn generates ω̂•v

dz1 ∧ · · · ∧ dzn ∧ dt1 ∧ · · · ∧ dtm generates ω̂•wu

v∗(z
∨

1 ∧ · · · ∧ z
∨

n) generates N •f

u∗(t
∨

1 ∧ · · · ∧ t
∨

m) generates N •g

t
∨

1 ∧ · · · ∧ t
∨

m generates N •h

z
∨

1 ∧ · · · ∧ z
∨

n ∧ t
∨

1 ∧ · · · ∧ t
∨

m generates N •gf

The commutativity of the diagram (7.20) now follows from the local description of the

maps ζ ′h,w, ζ
′
f,v and ζ ′gf,wu given below.

ζ′h,w(dt1 ∧ · · · ∧ dtm ⊗ t
∨

1 ∧ · · · ∧ t
∨

m) = 1

ζ′f,v(dz1 ∧ · · · ∧ dzn ⊗ z
∨

1 ∧ · · · ∧ z
∨

n) = 1

ζ′gf,wu(dz1 ∧ · · · ∧ dzn ∧ dt1 ∧ · · · ∧ dtm ⊗ z
∨

1 ∧ · · · ∧ z
∨

n ∧ t
∨

1 ∧ · · · ∧ t
∨

m) = (−1)mn1 (7.21)

The (−1)mn in (7.21) is on account of the sign change encountered in isomorphism

(second vertical map on the left)

f∗g∗u∗ω̂•w ⊗ f∗ω̂•v ⊗ f∗v∗N •h ⊗N •f
∼−−→ f∗v∗h∗ω̂•w ⊗ f∗v∗N •h ⊗ f∗ω̂•v ⊗N •f

in the diagram (7.20), since using the local description, the isomorphism

f∗v∗N •h ⊗ f∗ω̂•v
∼−−→ (−1)mnf∗ω̂•v ⊗ f∗v∗N •h

has the sign (−1)mn via the properties of wedge product.
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Chapter 8

The Output

In section 3 we defined the functor (−)s
t and (−)×t for smooth and pseudoproper mor-

phisms of noetherian formal schemes respectively and proved that these are in fact a

D+
qct-valued pseudofunctors on the respective subcategories, see Proposition 3.1 and di-

agram (3.3). We then gave a base change map for smooth-proper squares of noetherian

formal schemes and proved that this map is an isomorphism and is transitive for vertical

and horizontal extensions, see Propositions 4.1 and 4.2. We proved the fundamental

local isomorphism in the formal case for maps factoring identity in and showed that this

isomorphism is compatible with extensions by smooth and pseudoproper morphisms,

see Proposition 7.3. Thus we have established all the input conditions stated in [Nk,

Section 2.1] required to glue two pseudofunctors, see [Nk, Theorem 7.1.3]. And as a

result we have the following output.

Theorem 8.1. Let C be the category of noetherian formal schemes whose morphisms

are composites of separated smooth morphisms and pseudoproper morphisms. Then on

C, we have a D+
qct-valued pseudofunctor (−)!, with the following properties.

(a) If f : X→ Y is a separated smooth morphism of relative dimension n, then

f !(G) = RΓ ′X (f∗(G)⊗ ω̂f [n]).

(b) If f : X → Y is a pseudoproper morphism, then f ! ' f×t , where f×t is the 4-

functorial right adjoint of Rf∗.
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In [Nk], f ! was defined for the composites of etale and pseudoproper maps of noethe-

rian formal schemes, so the definition of f ! which we have obtained, extends the previous

definition of f ! to the composites of smooth and pseudoproper maps.

Moreover, glueing the pseudofunctors for smooth and pseudoproper also generalizes

the two classical approaches to constuct f ! mentioned in the introduction.

8.0 Extension to Non-torsion version

We will now introduce the derived category D̃(−) and its associated derived subcate-

gories D̃qc(−) and D̃+
qc(−) and state a non-torsion version of Theorem 8.1. The category

D̃qc(−), contains Dqc(−) and hence Dqct(−) as a full subcategory and the functor RΓ ′(−)

maps D̃qc(−) inside Dqct(−). In fact RΓ ′(−) : D̃qc → Dqct(−) has a M-functorial right

adjoint Λ. By using f ! together with these functors we can define a functor (−)!̃, which

would have D̃qc(−) as its source category. As explained below, (−)!̃ turns out to be

a pre-pseudofunctor (see [NS]) instead of a pseudofunctor on D̃qc(−). However, its

restriction to Dc(−) is a pseudofunctor.

For a locally noetherian formal scheme X, we define

D̃qc(X) := RΓ
′−1

X (Dqc(X)) (8.1)

to be the full subcategory of D(X) whose objects are complexes F , such that RΓ ′XF ∈

Dqc(X). Also, D̃+
qc(X) : = D̃qc(X) ∩D+(X).

It is immediate from the definition that D+
qct(X) ⊂ D+

qc(X) ⊂ D̃+
qc(X). We refer

the reader to [AJL, section 5] for a detailed treatment of the torsion functor Γ ′X and

its properties. We recall a few results involving the torsion functor here. The functor

RΓ ′X : D(X)→ D(X) has a 4-functorial right adjoint given by

ΛX := RHom(RΓ ′XOX,−). (8.2)

Also, we have natural morphisms of functors,

RΓ ′X → 1→ ΛX. (8.3)



8.0. Extension to Non-torsion version 69

Via the above morphisms, the functors RΓ ′X and ΛX are idempotent, and in fact we have

the following isomorphisms.

RΓ ′XRΓ ′X
∼−→ RΓ ′X

∼−→ RΓ ′XΛX

ΛXRΓ ′X
∼−→ ΛX

∼−→ ΛXΛX (8.4)

Nayak and Sastry in [NS], construct a duality pre-pseudofunctor (−)] over D̃+
qc(−).

Roughly, a pre-pseudofunctor (−)] satisfies all but one condition of being a pseudo-

functor, namely, it is no longer required that (−)] is isomorphic to the identity functor

for identity morphisms and instead one only gets a morphism to the identity functor.

More precisely, for every X there exists a natural map 1]X → 1, so that for any mor-

phism f : X → Y, the canonical maps f ]1]Y → f ] and 1]Xf
] → f ] are the comparison

isomorphisms.

Let us now construct an analogue of the pseudofunctor (−)! defined in Theorem 8.1

to obtain a D̃+
qc(−)-valued pre-pseudofunctor (−)!̃.

For a finite-type separated morphism f : X→ Y, consider the diagram below.

Rf∗ : D+
qct(X) //
� _

��

D+
qct(Y)
� _

��
Rf∗RΓ

′
X : D̃+

qc(X) //

88

D̃+
qc(Y)

(8.5)

The dotted arrow indicates that the actual target where the image of Rf∗RΓ
′

X lies is the

full subcategory D+
qct(Y) of D̃+

qc(Y). We need to make a small comment here regarding

[NS, equation (1.1.1)], which says that for any map f : X → Y, the following are

isomorphisms.

RΓ ′XLf∗RΓ ′Y
∼−→ RΓ ′XLf∗

∼−→ RΓ ′XLf∗ΛY (8.6)

ΛXLf∗RΓ ′Y
∼−→ ΛXLf∗

∼−→ ΛXLf∗ΛY (8.7)
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We would like to add that for a smooth map u : X → Y of noetherian formal schemes,

in light of (10.2), the following are isomorphisms too.

RΓ ′Xu
s
tRΓ

′
Y
∼−→ RΓ ′Xu

s
t
∼−→ RΓ ′Xu

s
tΛY

ΛXu
s
tRΓ

′
Y
∼−→ ΛXu

s
t
∼−→ ΛXu

s
tΛY (8.8)

For a map f : X→ Y in C, we define f !̃ = ΛXf
!RΓ ′Y : D̃+

qc(Y)→ D̃+
qc(X). It follows easily

from the definiton that (−)!̃ is a D̃qc(−)-valued pre-pseudofunctor on C. Moreover, if

f is pseudoproper, the f !̃ is right adjoint to Rf∗RΓ
′

X while if f is smooth of relative

dimension n, then f !̃ = ΛX(f∗ ⊗ ωf [n]).

The restriction of (−)!̃ to D+
c (−) works out to be a pseudofunctor because Λ|D+

c (−) is

isomorphic to the identity functor. For any smooth map f : X→ Y of relative dimension

n and any F ∈ D+
c (Y), we have

ΛXf
∗F ∼−→ f∗F

which induces the isomorphism

ΛXf
sF ∼−→ f sF ' f∗F ⊗ ω̂f [n].

Theorem 8.2. On the category C of noetherian formal schemes whose morphisms are

separated and essentially of pseudofinite-type and furthermore are composites of smooth

and pseudoproper morphisms, there is a D̃+
qc(−)-valued pre-pseudofunctor f !̃ with the

following properties.

(a) If f : X→ Y is a pseudoproper morphism, then f !̃ = ΛXf
×
t RΓ ′Y and is right adjoint

to Rf∗RΓ
′

X .

(b) If f : X→ Y is a separated smooth morphism, then

f !̃ ' ΛXf
s
tRΓ

′
Y ' ΛX(f∗ ⊗ ωf [n]).

(c) Finally, for any f : X → Y in C, f !̃(D+
c (Y)) ⊂ D+

c (X), and thus f !̃|D+
c

is a

pseudofunctor such that if f is smooth of relative dimension n, then f !̃ ' f∗⊗ωf [n].
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Chapter 9

Introduction and Preliminaries

Balmer in [B1] defines the spectrum Spc(K) of a tensor triangulated category K and

shows that it admits a structure of a locally ringed space. He shows that if K = Dperf(X),

where X is a topologically noetherian scheme, and Dperf(X) is the full subcategory of

perfect complexes in the derived category of OX -modules D(X), then Spc(K) ' X. The

underlying space and the topology on Spc(K) is obtained using Thomason’s classification

of ⊗-thick subcategories of the triangulated category K, see [T1], which goes back to

earlier work of Hopkins and Neeman when X is affine, see [Ho], [N1]. In the global case,

Thomason also uses the fact that for any closed subset Y ⊂ X, of a noetherian scheme,

there exists a perfect complex over X, say F , such that Supph(F) = Y . However, we

not know of such results for perfect complexes over formal schemes.

Alonso-Tarrio, Jeremias-Lopez and Souto-Salorio in [AJS], for a noetherian for-

mal scheme X, give a correspondence between ⊗-compatible localizing subcategories

of Dqct(X) the derived category of complexes with quasi-coherent and torsion homol-

ogy (see section 3), and the specialization closed subsets of X. We use this classifica-

tion to modify the definition of spectrum of Dqct(X), define a topology on it and show

that Spc(Dqct(X)) can be equipped with a ringed structure in a canonical way. More-

over, together with this ringed structure, we have an isomorphism of formal schemes

Spc(Dqct(X)) ' X. Moreover, we obtain a faithful embedding of the category F of sep-

arated noetherian formal schemes into the category T of tensor triangulated categories

with unit, see Theorems 12.1 and 12.2.
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9.0 Spectrum for Tensor Triangulated Categories

In this section we will briefly recap a few definitions and properties from [B1]. The

reader is referred to [B1] for an introduction to the notion of spectrum of a tensor

triangulated category.

Let K be a triangulated category. We say that a subcategory K′ ⊂ K is a full

triangulated subcategory if it is closed under translations, isomorphisms and cones of the

morphisms in K′. A full triangulated subcategory K′ of K is called a thick subcategory

if the condition A⊕B ∈ K′, where A, B ∈ K, implies that either A ∈ K′ or B ∈ K′.

A tensor triangulated category is a triangulated category K with a covariant functor

⊗ : K×K → K which is exact in each variable. A morphism of ⊗-triangulated categories

is a triangulated functor which commutes with ⊗ up to isomorphism. A priori, there

is no assumption on the associativity or commutativity of this ⊗, however, since we

will be considering only full subcategories of derived categories of OX-modules, where X

is a noetherian formal scheme, the ⊗ (derived tensor product) will be associative and

commutative upto isomorphism and have a unit element.

A thick subcategory K′ of a tensor triangulated category (K,⊗) is called ⊗-thick if

P ∈ K′ implies that P ⊗Q ∈ K′ and Q⊗ P ∈ K′ for all Q ∈ K.

Let C ⊂ K be a collection of objects in a tensor triangulated category K. We will

denote by 〈C〉 the smallest ⊗-thick subcategory of K containing C.

Definition 9.1. A ⊗-thick subcategory of a tensor triangulated subcategory A ⊂ (K,⊗)

is called atomic if whenever A ⊂ 〈D〉 for a collection of objects D ⊂ K, then there exists

an element d ∈ D such that A ⊂ 〈d〉.

Remark 9.1. It is easy to see that definition 9.1 is equivalent to: whenever there is a

collection of ⊗-thick subcategories {Bi ⊂ K|i ∈ I} such that A ⊂ 〈
⋃
iBi〉, then there

exists an i ∈ I such that A ⊂ Bi. Moreover, an atomic ⊗-thick subcategory is by

definition principal (generated by a single element).

Definition 9.2. Let (K,⊗) be a tensor triangulated category. We define the spectrum

of (K,⊗) (denoted by Spc(K)) to be the collection of all non-zero atomic subcategories

of (K,⊗).
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Spc(K) is a topological space with the basic open sets given by

U(a) := {B ∈ Spc(K)|B 6⊂ 〈a〉}. (9.1)

We will now state some conditions on the morphisms in K for which the construction of

Spc(−) is functorial, see [B1].

Definition 9.3. A morphism ϕ : (K,⊗)→ (L,⊗) of ⊗-triangulated categories is called

dense if 〈ϕ(K)〉 = L. The morphism ϕ is called geometric if the following condition is

satisfied: For any collection of ⊗-thick subcategories {Ci|i ∈ I} in K one has

〈ϕ(
⋂
Ci)〉 =

⋂
〈ϕ(Ci)〉. (9.2)

The proofs of the following two propositions can be found in [B1]. Proposition 9.1

corresponds to the [B1, Proposition and Definition 4.1] and Proposition 9.2 corresponds

to [B1, Proposition 4.11].

Proposition 9.1. Let ϕ : K → L be a morphism of ⊗-triangulated categories. Assume

that ϕ is geometric and dense. Let C ∈ Spc(L). Define

Φ(C) :=
⋂

H⊂K ⊗-thick s.t. C⊂〈ϕ(H)〉

H. (9.3)

The following conditions hold.

1. Φ(C) is a non-zero atomic ⊗-thick subcategory of K, hence Φ defines a map of

topological spaces Spc(L)→ Spc(K), which is moreover continuous.

2. C ⊂ 〈ϕ(Φ(C))〉.

Proposition 9.2. The association ϕ 7→ Φ of Proposition 9.1 induces a contravariant

functor Spc(−) from the category of ⊗-triangulated categories with geometric and dense

morphisms to the category of topological spaces.



78 Chapter 9. Introduction and Preliminaries

9.3.1 Triangular presheaves

Let (K,⊗) be a ⊗-triangulated category. Let V ⊂ Spc(K) be an open subset and

V c = Spc(K) \ V be its complement. Set J(V c) := 〈
⋃

A∈V c
A〉. Define

K(V ) := K/J(V c). (9.4)

Thus, K(V ) is the Verdier quotient of the triangulated category K by the full subcategory

J(V c).

Here, we differ slightly from the definition of K(V ) given in [B1]. Balmer defines

K(V ) as the idempotent completion of the above mentioned localization and when K =

Dperf(X) where X is a topologically noetherian scheme, the idempotent completion

˜K/J(V c) is equivalent to the category Dperf(V ), see [B1, Theorem 7.8]. However we do

not know of any such “lifting” result in the category Dqct(X) where X is a noetherian

formal scheme, so we shall work with only the quotient. Later, we will show that the

association V 7→ K(V ) is sufficient to recover the structure sheaf OX, which will be

sufficient to reconstruct the formal scheme X.



Chapter 10

Localizing subcategories of Dqct(X)

In [AJS], Alonso Tarrio, Jeremias Lopez and Souto Salorio classify ⊗-compatible lo-

calizing subcategories of Dqct(X) for a noetherian formal scheme X. Over an ordinary

noetherian scheme such subcategories are generated by perfect complexes and hence

their classification can be viewed as a generalization of Thomason’s classification of ⊗-

thick subcategories of Dperf(X). We will use the results from [AJS] to identify the

points of the spectrum of Dqct(X) and construct a triangular presheaf on the topological

space Spc(Dqct(X)). We begin by recalling the definition of the derived torsion functor

RΓ ′X .

10.0.1 Torsion functors

Let (X,OX) be a ringed space. For any OX -ideal I and any M∈ A(X), set

ΓIM := lim
−→
n

HomOX (OX/I
n,M). (10.1)

For M,N ∈ A(X), there is an isomorphism

RΓI (M⊗N ) ' RΓIM⊗N . (10.2)

For a formal scheme X with ideal of definition I , we set

Γ ′X := ΓI . (10.3)
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Moreover if Z ⊂ X is a closed subset given by ideal sheaf I,

Γ ′Z := ΓI .

This definition is independent of the choice of the defining ideal I . We call M ∈

A(X) a torsion OX-module if Γ ′XM = M . Let At(X) be the thick subcategory of A(X)

whose objects are all the torsion OX-modules; and set Aqct(X) := Aqc(X) ∩ At(X). Let

Dqct(X) denote the full subcategory of D(X) consisting of complexes of OX-modules

whose cohomologies lie in Aqct(X).

There is a natural inclusion functor jtX : Aqct(X) ↪→ A(X), and whenever X is a sep-

arated noetherian formal scheme, this jtX, by [AJL, prop 5.3.1], induces an equivalence

of categories, D(Aqct(X))
≈−−→ Dqct(X).

For a locally noetherian formal scheme X, we define

D̃qc(X) := RΓ
′−1

X (Dqc(X)) (10.4)

to be the full subcategory of D(X) whose objects are complexes F , such that RΓ ′XF ∈

Dqc(X).

It is immediate from the definition that Dqct(X) ⊂ Dqc(X) ⊂ D̃qc(X). We refer

the reader to [AJL, section 5] for a detailed treatment of the torsion functor Γ ′X and

its properties. We recall a few results involving the torsion functor here. The functor

RΓ ′X : D(X)→ D(X) has a 4-functorial right adjoint given by

ΛX := RHom(RΓ ′XOX,−) (10.5)

Also, we have the natural morphisms of functors,

RΓ ′X → 1→ ΛX. (10.6)

Via above morphisms the functors RΓ ′X and ΛX are idempotent, and in fact we have the

following isomorphisms.

RΓ ′XRΓ ′X
∼−→ RΓ ′X

∼−→ RΓ ′XΛX

ΛXRΓ ′X
∼−→ ΛX

∼−→ ΛXΛX (10.7)
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For a closed immersion Z ↪→ X, we have the functor RΓZ : Dqc(X)→ Dqct(X), which

is the right derived functor of sheaf of sections supported along Z. Along with RΓZ ,

we also have the derived torsion functor RΓ ′Z on Dqct(X) (see Chapter 2). These two

functors are naturally isomorphic over Dqct(X), see [AJS, Section 4].

10.7.2 Localizing subcategories

We will now recall a few results on localizing subcategories of Dqct(X), see [AJS].

The category Dqct(X) has a natural tensor bi-functor ⊗
=

L which makes it into a ⊗-

triangulated category. A triangulated subcategory L ⊂ Dqct(X) is called localizing if it

is closed under taking coproducts. A localizing subcategory L ⊂ Dqct(X) is called rigid

if it is ⊗-thick.

In addition, the tensor multiplication in Dqct(X) is commutative and associative

upto isomorphism and the object RΓ ′XOX is the identity for this tensor multiplication in

Dqct(X). That is, for F ∈ Dqct(X), there are the following natural isomorphisms.

RΓ ′XOX ⊗L
OX
F ' F ⊗L

OX
RΓ ′XOX ' RΓ ′X (F ⊗L

OX
OX)

∼−→ F (10.8)

We will start with the set-up given in section 4 and 5 of [AJS] and briefly recap a

few results leading up to their classification theorem.

Let K be a tensor triangulated category and C ⊂ K be a collection of objects. We

will denote by 〈C〉 the smallest ⊗-thick subcategory of K that contains C.

Let X be a noetherian formal scheme and let I be its ideal of definition. Let x ∈ X

and denote by ix : Xx ↪→ X the canonical inclusion map where Xx = Spf(ÔX,x). Let

κ(x) denote the residue field of the local ring ÔX,x, and let Kx denote the quasi-coherent

torsion sheaf associated to ÔX,x-module κ(x). Define K(x) := Rix∗Kx = ix∗K(x). Note

that K(x) = RΓ{x}K(x) ∈ Dqct(X).

For x ∈ X, denote by Lx := 〈K(x)〉, the smallest ⊗-thick localizing subcategory of

Dqct(X) generated by K(x). For any subset Z ⊂ X, define LZ to be smallest localizing

subcategory of Dqct(X) that contains {K(x)|x ∈ Z}. If F ∈ Dqct(X) and x ∈ X, then

RΓ{x}(Rix∗i
∗
xF) ∈ Lx for ix : Xx ↪→ X, see [AJS, Lemma 4.1].
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We will state below a few properties, the proofs of which can be found in [AJS]

Property 1. The smallest localizing subcategory L of Dqct(X) that contains K(x) for every x ∈ X

is the whole of Dqct(X).

Property 2. If x, y ∈ X and x 6= y, then K(x)⊗L K(y) = 0.

Property 3. For every subset Z ⊂ X, the localizing subcategory LZ is rigid.

Property 4. If Z and Y are subsets of X such that Z ∩ Y = ∅, then F ⊗L G = 0 for every

F ∈ LZ and G ∈ LY .

Property 5. For x ∈ X and F ∈ Lx, we have F = 0⇔ F ⊗L
OX
K(x) = 0.

Property 6. For a noetherian formal scheme X there is a bijection between the class of all

rigid localizing subcategories of Dqct(X) denoted by Loc(Dqct(X) and the set of all

subsets of X. Thus, if P(X) denotes the power set of X, then there are following

inverse bijections φ, ψ

ψ : Loc(Dqct(X)� P(X) : φ, (10.9)

where on one hand, φ(Z) := LZ for any subset Z ⊂ X and on the other hand, for

any ⊗-thick localizing subcategory L ⊂ Dqct(X),

ψ(L) := {x ∈ X| there exists G ∈ L such that K(x)⊗L
X G 6= 0}.

10.9.3 Tensor-compatible localizations

Associated to every localizing subcategory L of a tensor triangulated category K there

are endofunctors `, the Bousfield localization functor and γ, the colocalization functor.

For F ∈ Dqct(X), there is a canonical distinguished triangle

γF −→ F −→ `F +−→ (10.10)
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such that γF ∈ L and `F ∈ L⊥. The endofunctors ` and γ are idempotent and for

F ,G ∈ Dqct(X) there are following canonical isomorphisms

HomD(X)(γF , γG)
∼−→ HomD(X)(γF ,G) (10.11)

HomD(X)(`F , `G)
∼−→ HomD(X)(F , `G) (10.12)

If L is rigid, then the above isomorphisms also hold for sheafified inner-Homs. Moreover,

there are natural morphisms

t : F ⊗L γG −→ γ(F ⊗L G) (10.13)

p : F ⊗L `G −→ `(F ⊗L G) (10.14)

such that the diagram

F ⊗L γG //

t
��

F ⊗L G // F ⊗L `G + //

p

��
γ(F ⊗L G) // F ⊗L G // `(F ⊗L G)

+ //

(10.15)

is a morphism of distinguished triangles.

The localizing subcategory L (or the localizing functor `) is called ⊗-compatible if

the canonical morphism t of (10.13) (or equivalently p of (10.14)) is an isomorphism.

Let X be a noetherian formal scheme, then forK = Dqct(X), and for any specialization-

closed subset Z ⊂ X, the functor RΓZ together with the natural map RΓZ → 1, satisfies

the formal properties of a localization functor for the localizing pair (Dqct(X),LZ). More-

over, since over Dqct(X) the functors RΓ ′Z and RΓZ are isomorphic and for F ,G ∈ Dqct(X)

we have the natural isomorphism RΓZ(F ⊗ G) ' F ⊗ RΓZG, the morphism t defined

in (10.13) is an isomorphism. Hence LZ is a ⊗-compatible localizing subcategory of

Dqct(X).

Theorem (5.3) in [AJS] states that the image of a ⊗-compatible localizing subcat-

egory under the bijection ψ mentioned in the remark (10.9) is a specialization-closed

subset of X. And conversely, if Z ⊂ X is a specialization-closed subset, then φ(Z) is a

⊗-compatible localizing subcategory of Dqct(X). We summarize this as follows.
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There is a bijection between the class of ⊗-compatible localizing subcategories of

Dqct(X) denoted by Loc⊗(Dqct(X)) and the set of subsets stable for specialization of

X. That is, φ and ψ of (10.9) induce inverse bijections:

ψ : Loc⊗(Dqct(X))� {Z ⊂ X|Z is specialization closed} : φ. (10.16)



Chapter 11

The topological space Spc(Dqct(−))

We will now define the spectrum of tensor triangulated category Dqct(X) for a noetherian

formal scheme X, where X is either separated or of finite Krull dimension. Owing to

the fact that the cohomological support of an object in Dqct(X) is a specialization-closed

subset and not necessarily a closed subset of X, our definition of spectrum of Dqct(X)

will be different from Balmer’s definition. In order to avoid confusion we will use a

different notation Spc⊗(Dqct(X)) to denote the spectrum. We will then try to study

the underlying topological space of Spc⊗(Dqct(X)). For this construction we require our

tensor triangulated category to have a unit object, which serves as the multiplicative

identity for the tensor product. For Dqct(X), the tensor multiplication is the derived

tensor product ⊗L
OX

and the unit element is RΓ ′XOX. We also need to make a few

additional assumptions on the tensor triangulated category which we will state below

and show that Dqct(X) satisfies these conditions.

Proposition 11.1. Let X be a noetherian formal scheme and let K = Dqct(X). The

intersection of all rigid localizing subcategories of a tensor triangulated category (K,⊗)

is (0).

The proof follows from [AJS, Theorem 4.2, Cor. 4.9].

Proposition 11.2. If {Li|i ∈ I} is a collection of ⊗-compatible rigid localizing sub-

categories of a tensor triangulated category (K,⊗), then ∩iLi is a ⊗-compatible rigid

localizing subactegory of (K,⊗).
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It is easy to see that ∩iLi is rigid and localizing for any tensor triangulated category

K. And for K = Dqct(X), tensor compatibility of ∩iLi can be obtained using [AJS,

Theorem 5.3].

Henceforth, for any collection of objects D in tensor triangulated category K, we will

denote by 〈D〉⊗ the smallest ⊗-compatible rigid localizing subcategory of K containing

D.

Definition 11.1. Let (K,⊗) be a tensor triangulated category with the following prop-

erties.

1. K is closed under coproducts.

2. Intersection of⊗-compatible rigid localizing subcategories ofK is also⊗-compatible

rigid localizing subcategory of K.

3. K is molecular, that is, every ⊗-compatible rigid localizing subcategory of K is

generated by the ⊗-compatible rigid localizing atomic subcategories contained in

it.

Then we define the spectrum of K, denoted by Spc⊗(K), to be collection of all ⊗-

compatible rigid atomic localizing subcategories of K.

We define the topology on Spc⊗(K) by defining

B = {U(L)|L ∈ Spc⊗(K)} (11.1)

as the collection of sub-basic open subsets where, for any L ∈ Spc⊗(K),

U(L) := {L′ ∈ Spc⊗(K)|L′ 6⊂ L}. (11.2)

Equivalently, we can use the collection B′ = {F (L)|L ∈ Spc⊗(Dqct(X))}, where

F (L) := {L′ ∈ Spc⊗(Dqct(X))|L′ ⊂ L}, (11.3)

to generate the closed subsets of the topology on Spc⊗(Dqct(X)), that is, any closed

subset in Spc⊗(Dqct(X)) is an arbitrary intersection of finite union of elements of B′.
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Lemma 11.3. Let X be a noetherian formal scheme. Let {Yi|i ∈ I} be a collection

of specialization-closed subsets of X. Then their union Y = ∪iYi is also specialization

closed and

LY = 〈
⋃
i

LYi〉⊗. (11.4)

Proof. The first assertion is obvious, as taking any point y ∈ Y amounts to y ∈ Yi

for some i, and since Y ′i s are specialization-closed, {y} ⊂ Yi ⊂ Y . The subcategory

〈
⋃
i LYi〉⊗ is a ⊗-compatible rigid localizing subcategory of Dqct(X) and by (10.16), we

know that any ⊗-compatible rigid localizing subcategory of Dqct(X) is of the form LZ

for some specialization-closed subset Z ⊂ X. Let LZ = 〈
⋃
i LYi〉⊗. Since the definition

of LZ makes the (10.16) correspondence inclusion preserving, hence Z must be smallest

specialization-closed subset containing all the Y ′i s, whence Z = ∪iYi.

Definition 11.2. Let K,K′ be tensor triangulated categories satisfying conditions (1)-

(3) of (11.1) and let ϕ : K′ → K be a morphism of tensor triangulated categories. Then

we say

1. ϕ is geometric if for any collection {Li} of ⊗-compatible rigid localizing subcate-

gories of K′

〈ϕ(
⋂
Li)〉⊗ =

⋂
〈ϕ(Li)〉⊗. (11.5)

2. ϕ is dense if 〈ϕ(K′)〉⊗ = K.

Proposition 11.4. Let X be a noetherian formal scheme and let Y ⊂ X be a specialization-

closed subset. Then LY is a non-zero ⊗-compatible atomic subcategory of Dqct(X) if and

only if Y is non-empty, closed and irreducible.

The proof of the above proposition is similar to that of [B1, Proposition 7.2].

Thus,

Spc⊗(Dqct(X)) := {L{x}|x ∈ X}. (11.6)

Now that we have have identified the points in Spc⊗(Dqct(X)), let us identify the

topology of Spc⊗(Dqct(X)).
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Recall that the a topology on Spc⊗(Dqct(X)) by describing the subbasis of open

subsets. For any L ∈ Spc⊗(Dqct(X)), we have

U(L) := {L′ ∈ Spc⊗(Dqct(X))|L′ 6⊂ L}, (11.7)

which using Proposition 11.4 can be written as

U(L) = {L{x} ∈ Spc⊗(Dqct(X))|L{x} 6⊂ L}.

We use the collection B = {U(L)|L ∈ Spc⊗(Dqct(X))} as a sub-basis of open subsets to

give a topology on Spc⊗(Dqct(X)).

Proposition 11.5. Let f : X → Y be a morphism of noetherian formal schemes. Let

Z ⊂ Y be a specialization-closed subset. Then f−1Z is a specialization-closed subset of

X and

〈RΓ ′XLf∗(LZ)〉⊗ = Lf−1Z . (11.8)

Proof. Let x ∈ f−1Z. Since Z is specialization-closed and f is continuous, we have

f({x}) ⊂ {f(x)} ⊂ Z. Thus, {x} ⊂ f−1Z.

Since LZ is generated by K(y) for y ∈ Z, proving (11.8) reduces to proving the

following for every y ∈ Z.

〈RΓ ′XLf∗L{y}〉⊗ = L
f−1{y} (11.9)

The inclusion 〈RΓ ′XLf∗L{y}〉⊗ ⊂ Lf−1{y} follows from [AJS, Theorem 5.6], since RΓ ′XLf∗K(y)

is supported inside f−1{y}.

We will now prove the inclusion 〈RΓ ′XLf∗L{y}〉⊗ ⊃ Lf−1{y}. Let x ∈ f−1{y} be any

point. We will show that K(x) is a summand of RΓ ′XLf∗K(y) ⊗L
OX
K(x). First observe

that

RΓ ′XLf∗K(y)⊗L
OX
K(x) ' Lf∗K(y)⊗L

OX
RΓ ′XK(x) ' Lf∗K(y)⊗L

OX
K(x). (11.10)

Thus

Hi(RΓ ′XLf∗K(y)⊗L
OX
K(x)) = 0 for i > 0 and

H0(RΓ ′XLf∗K(y)⊗L
OX
K(x)) ' H0(Lf∗K(y)⊗L

OX
K(x) ' f∗K(y)⊗OX

K(x) ' K(x).
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Now consider the commutative diagram

K(x)
∼ // OX ⊗L

OX
K(x)

∼ // RΓ ′XLf∗OY ⊗L
OX
K(x)

β

��
RΓ ′XLf∗K(y)⊗L

OX
K(x)

α

��
K(x)

(11.11)

where β is induced by the canonical map OY → K(y) while α is the canonical trun-

cation map in degree 0. Thus K(x) is a summand of the complex RΓ ′XLf∗K(y) ⊗L
OX

K(x). Since 〈RΓ ′XLf∗K(y)〉⊗ is closed under summands and tensor, hence 〈K(x)〉⊗ ⊂

〈RΓ ′XLf∗K(y)〉⊗. Since, x ∈ f−1{y} was arbitrarily chosen, thus 〈K(x)〉⊗ ⊂ 〈RΓ ′XLf∗K(y)〉⊗

for all x ∈ f−1{y}, hence L
f−1{y} ⊂ 〈RΓ

′
XLf∗L{y}〉⊗.

Proposition 11.6. Let X be a noetherian formal scheme. Then there is a homeomor-

phism of topological spaces as follows:

E : X −→ Spc⊗(Dqct(X))

x 7−→ L{x}. (11.12)

Proof. By Proposition 11.4, L{x} ∈ Spc⊗(Dqct(X)), and hence we obtain E as defined

above. By (10.16), E is bijective. Let Y ⊂ X be any closed set. Then E(Y ) = {L{y}|y ∈

Y }. If Y is irreducible say Y = {η}, then

E(Y ) = {L{y}|y ∈ {η}} = {L{y}|L{y} ⊂ L{η}} = F (L{η}), (11.13)

and hence E(Y ) is a closed set. In general, since X is noetherian, Y is a finite union of

irreducible closed subsets, hence E(Y ) is closed. Hence E is a closed map of topological

spaces. Moreover,

E−1(F ({L{y}})) = {y′|L{y′} ∈ L{y}} = {y′|y′ ∈ {y}} = {y}. (11.14)

Thus E−1 is a closed map of topological spaces and hence E is a homeomorphism.

For a map f : X → Y of noetherian formal schemes, consider the functor RΓ ′XLf∗ :

Dqct(Y)→ Dqct(X). The functor RΓ ′XLf∗ induces a map of topological spaces
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Φf := Spc⊗(RΓ ′XLf∗) : Spc⊗(Dqct(Y)) → Spc⊗(Dqct(X)) described as follows. For a

L ∈ Dqct(Y), define

Φf (L) :=
⋂

H⊂K ⊗-compatible rigid loc.
s.t. L⊂〈RΓ ′

X
Lf∗(H)〉⊗

H. (11.15)

The proof of the fact that Φf (L) ∈ Spc⊗(Dqct(X)) is similar to the given in [B1, Propo-

sition 4.6]

Proposition 11.7. Let f : X→ Y be a morphism of noetherian formal schemes. Then

the morphism RΓ ′XLf∗ : Dqct(Y)→ Dqct(X) between the tensor triangulated categories is

geometric, dense and continuous (see Definition 11.2). Moreover, the following diagram

of maps of topological spaces is commutative.

X
f //

oE
��

Y

oE
��

Spc⊗(Dqct(X))
Φf // Spc⊗(Dqct(Y))

(11.16)

Proof. Let {Ci|i ∈ I} be a collection of ⊗-compatible rigid localizing triangulated sub-

categories of Spc⊗(Dqct(Y)). In view of the classification (10.16), there exist specialization-

closed subsets Zi of Y corresponding to Ci, that is, Ci = LZi . Let Z = ∩Zi. Thus we

have

〈RΓ ′XLf∗(
⋂
i

Ci)〉⊗ = 〈RΓ ′XLf∗(
⋂
i

LZi)〉⊗ = 〈RΓ ′XLf∗LZ〉⊗ = Lf−1Z (11.17)

=
⋂
i

Lf−1(Zi) =
⋂
i

〈RΓ ′XLf∗(LZi)〉⊗ =
⋂
i

〈RΓ ′XLf∗(Ci)〉⊗, (11.18)

where the second equality in the first line and the first equality in the second line

follows from the fact that for a collection {Wi} of specialization-closed subsets of Y,⋂
i LWi = L∩Wi . The last equality in the first line and the second equality in the second

line follows from Proposition (11.5). Since, RΓ ′XLf∗Dqct(Y)
∼−−→ Dqct(X), hence ϕ is

dense (see Definition (11.2). The proof of continuity of Φf (−) is similar to the one given

in [B1, Proposition 4.8].

For the proof of commutativity of the diagram (11.16) we will use a notation similar

to the one given in [B1, Theorem 7.7] for simplicity. Let x ∈ X. We will use the following
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notation:

K := Dqct(Y), K′ := Dqct(X), ϕ = RΓ ′XLf∗ : K → K′

Φf := Spc(ϕ) : Spc(K′)→ Spc(K).

By definition we have

Φf (E(x)) :=
⋂

H⊂K ⊗-compatible rigid loc.
s.t. E(x)⊂〈ϕ(H)〉⊗

H. (11.19)

On the right hand side we are taking the intersection of those ⊗-compatible rigid localiz-

ing subcategories of K which contain the ⊗-compatible rigid localizing subcategory E(x)

of K. Now using the classification given in (10.16), we may assume that Φf (E(x)) = LW ,

that H = LZ , where Z and W are specialization-closed subsets of Y. Thus

LW =
⋂

LZ⊂K s.t. L{x}⊂Lf−1Z

LZ (11.20)

or

W =
⋂

Z⊂Y sp. closed s.t. x∈f−1Z

Z. (11.21)

This means that W is the smallest specialization-closed subset of Y which contains f(x).

Thus Φf (E(x)) = L{f(x)} = E(f(x)).
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Reconstruction of the structure

sheaf OX

We saw in the previous section that a map f : X → Y of noetherian formal schemes

induces a continuous map Φf : Spc⊗(Dqct(X)) → Spc⊗(Dqct(Y)) of topological spaces

via the functor RΓ ′XLf∗ : Dqct(Y) → Dqct(X). Now consider a morphism ϕ : (K′,⊗) →

(K,⊗) of tensor triangulated categories. This morphism induces a (continuous) map Φ

of topological spaces defined as follows. For any L ∈ Spc⊗(K),

Φ(L) :=
⋂

H⊂K ⊗-compatible rigid loc.
s.t. L⊂〈ϕ(H)〉⊗

H. (12.1)

The difference between the map Φ and the map Φf defined in (11.15) for K = Dqct(−), is

that the latter is induced by an actual morphism of formal schemes whereas the former

is induced by a morphism of tensor triangulated categories and does not assume the

existence of any morphism of underlying formal schemes.

We will now proceed to define a sheaf of rings on the space Spc⊗(Dqct(X)) but before

that we will define a presheaf of tensor triangulated categories on it.

Let K be a tensor triangulated category and let Spc⊗(K) be its spectrum. Let

J(U c) := 〈
⋃
L∈Uc

L〉⊗ and let K (U) = K/J(U c) be the Verdier quotient of K by the

⊗-compatible rigid localizing subcategory J(U c). The association

U  K (U) (12.2)
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forms a presheaf of tensor triangulated categories on Spc⊗(K) and the pair (Spc⊗(K),K )

becomes a triangulated presheaf in the sense of [B1, Definition 5.6]. Moreover, if ϕ : K →

K′ is a morphism of tensor triangulated categories such that K and K′ satisfy properties

1 and 2 of the Definition 11.1 and that ⊗-compatible rigid localizing sucategories of K′

are generated by the ⊗-compatible rigid localizing atomic subcategories contained in

them, then the following holds.

1. ϕ(J(U c)) ⊂ J(Φ−1(U c))

2. There is a morphism of presheaves of tensor triangulated categories on Spc⊗(K)

F : K → Φ∗K
′

where the presheaf Φ∗K is defined on Spc⊗(K) as follows. For any open subset

U ⊂ Spc⊗(K),

Φ∗K
′(U) = K (Φ−1(U)).

The proofs of the above statements are the same as that of the corresponding statements

in [B1, Section 5].

Let X be a noetherian formal scheme and let U ⊂ Spc⊗(Dqct(X)) be an open subset

and let V = E−1U be the open subset in X, where E is the homeomorphism defined

in (11.12). It is easy to see that for the tensor triangulated category K = Dqct(X), the

localizing subcategory J(U c) := 〈
⋃
L∈Uc

L〉⊗, is the subcategory LUc and hence the Verdier

quotient K (U) is given by

K (U) = Dqct(X)/LUc .

12.2.1 Presheaf of rings

Let X be a noetherian formal scheme and let K be the presheaf of triangulated categories

on Spc⊗(Dqct(X)) defined above.

In the rest of the this section we shall drop the usage of the homeomorphism map

E and use the same symbol to denote a subset of X and its homeomorphic image in

Spc⊗(Dqct(X)) or vice-versa.
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Let V ⊂ X be an open subset, let Z = Spc⊗(Dqct(X)) \ V be its complement in

Spc⊗(Dqct(X)) and let K (V ) be as defined above. Since LZ is a rigid ⊗-compatible

localizing subcategory it is easy to verify that the tensor structure over Dqct(X) induces,

in a natural way, a tensor multiplication over K (V ) with same multiplicative identity

namely RΓ ′XOX. Recall that K (V ) = Spc⊗(Dqct(X))/LZ is the category whose objects

are the same as the objects of Dqct(X) and morphisms are obtained by inverting those

Dqct(X)-morphisms whose cones lies in LZ . From (10.8) it follows immediately that

RΓ ′XOX is the multiplicative identity in K (V ) for all open subsets V of X. Consider the

set of endomorphisms of the unit object RΓ ′XOX in the category K (V ), namely,

EndK (V )(RΓ
′

XOX) = HomK (V )(RΓ
′

XOX,RΓ
′

XOX). (12.3)

Moreover, if V = Spc⊗(Dqct(X)), that is K (V ) = Dqct(X), then

EndDqct(X)(RΓ
′

XOX) = HomDqct(X)(RΓ
′

XOX,RΓ
′

XOX) (12.4)

∼−→ HomDqct(X)(OX,ΛXRΓ ′XOX)

∼−→ HomDqct(X)(OX,OX)

∼−→ Γ (X,OX).

Here, the first isomorphism follows from the adjointness of RΓ ′X and ΛX and the second

isomorphism which is induced by the co-unit map ΛXRΓ ′X → 1, holds by Greenlees-May

duality (see [AJL, 6.2.1]).

Proposition 12.1. Let V ⊂ Spc⊗(Dqct(X)) be an open subset, let Z be its complement

and let K (V ) = Spc⊗(Dqct(X))/LZ be the corresponding localized triangulated category.

Then there is a natural isomorphism of rings

EndK (V )(RΓ
′

XOX) ' OX(V ). (12.5)

Proof. We will first construct a map in either direction. An endomorphism of RΓ ′XOX

in K (V ) is given by a fraction in the derived category over X, say,

RΓ ′XOX

a
##

RΓ ′XOX

h
{{

C

(12.6)
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where the cone c(h) of h lies in LZ . To this diagram we apply the functor j∗, where

j : V ↪→ X is the inclusion map, to obtain the following diagram.

RΓ ′VOV ' j∗RΓ ′XOX

j∗a
''

j∗RΓ ′XOX ' RΓ ′VOV

j∗h
ww

j∗C

(12.7)

We know that j∗(c(h)) = 0, hence the map j∗h is an isomorphism, and hence (12.7) gives

a morphism (j∗h)−1j∗a : j∗RΓ ′XOX → j∗RΓ ′XOX, which using (12.4), gives an element of

Γ (V,OX) = OX(V ). It is easy to see that this element is independent of the choice of the

fraction (12.6) representing the endomorphism. Thus we get a map EndK (V )(RΓ
′

XOX)→

OX(V ) which we denote by α.

Given an element s ∈ OX(V ), it defines a map s : OX(V ) → OX(V ). The canonical

map t : RΓ ′XOX → RΓ ′X j∗j
∗OX is an isomorphism over V , hence its cone c(t) lies in LZ .

Thus t induces an isomorphism in K (V ). Also, s induces a natural map j∗j
∗OX →

j∗j
∗OX, which gives the following fraction.

RΓ ′XOX

t

&&
RΓ ′X j∗j

∗OX

RΓ ′X j∗s

''

RΓ ′XOX

t

xx
RΓ ′X j∗j

∗OX

(12.8)

Thus we get an element of EndK (V )(RΓ
′

XOX) and we will denote the resulting map

OX(V )→ EndK (V )(RΓ
′

XOX) by β.

We will now show that α ◦ β ' 1. For s ∈ OX(V ), construct a diagram as in

(12.8) above. Applying j∗ to this diagram and using j∗RΓ ′X j∗s ' RΓ ′Xs and that j∗t

is an isomorphism and finally that j∗t commutes with RΓ ′Xs, we see that (α ◦ β)(s) =

s. It follows that α is surjective and it remains to see that α is injective. Let g ∈

EndK (V )(RΓ
′

XOX) be such that α(g) = 0 in OX(V ). Assume that the map g is given by
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the following fraction, where the cone of h lies in LZ .

RΓ ′XOX

u

##

RΓ ′XOX

h

{{
C

(12.9)

Since α(g) = 0, and j∗(h) is an isomorphism, therefore j∗u : j∗RΓ ′XOX → j∗C is the

zero map, thus the bottom fraction in the diagram (12.10) below represents the zero

map. Then, the commutativity of the diagram (12.10) and the fact that the cones of all

the vertical arrows lie in LZ implies that the fraction on the top is isomorphic to the

fraction in the bottom in K (V ). Thus the fraction g is zero.

RΓ ′XOX

u

''��

RΓ ′XOX

h

ww ��
RΓ ′X j∗j

∗OX

j∗j∗u

''

C

��

RΓ ′X j∗j
∗OX

j∗j∗h

ww
RΓ ′X j∗j

∗C

(12.10)

Now let V1 ⊂ V2 be two open subsets of X (and hence of Spc⊗(Dqct(X))) and let

Z1, Z2 be their respective complements. Then Z2 ⊂ Z1 and hence LZ2 ⊂ LZ1 . Now

from universal property of localization, it follows that there exists a unique functor

q12 : K (V2)→ K (V1)and q1 factors upto isomorphism as q12 ◦ q2.

K
q2

##

q1 //K (V1)

K (V2)

q12
99

(12.11)

Thus for every inclusion of open subsets V1 ⊂ V2, we have obtained a functor q12 :

K (V2)→ K (V1). The factorization q1 ' q12 ◦ q2 is an isomorphism of functors and not

an equality. For the following inclusion of open subsets V1 ⊂ V2 ⊂ V3 in Spc⊗(Dqct(X)),

we can use the universal property and obtain an isomorphism of functors.

q13 ' q12 ◦ q23 (12.12)
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For the inclusion j12 : V1 ↪→ V2, the restriction map q12 : K (V2) → K (V1) induces a

map of endomorphism rings of identity,

res12 : HomK (V2)(RΓ
′

XOX,RΓ
′

XOX)→ HomK (V1)(RΓ
′

XOX,RΓ
′

XOX) (12.13)

such that the following is a commutative diagram of rings.

EndK (V2)(RΓ
′

XOX)

res12

��

α // OX(V2)

j∗12
��

EndK (V1)(RΓ
′

XOX)
α // OX(V1)

(12.14)

The isomorphism (12.5) in Proposition 12.1 and the restriction maps discussed in the

preceding paragraph give a locally ringed structure on Spc⊗(Dqct(X)) which is isomor-

phic to OX. Thus the topology on Spc⊗(Dqct(X)) and the isomorphism (12.5) give the

following proposition.

Proposition 12.2. Let X be a noetherian formal scheme, then the spectrum of the

category Dqct(X) is a locally ringed space isomorphic to OX.

So far we have reconstructed the locally ringed space (X,OX) as a spectrum of the

tensor triangulated category Dqct(X). Next we claim that there is only one equivalence

class of coherent ideals I ⊂ OX for which the I -adic topology makes X into a formal

scheme. Recall that two coherent ideals I1,I2 ⊂ OX are called equivalent if there exist

positive integers m and n such that I n
1 ⊂ I2 and Im

2 ⊂ I1.

Now let I1 and I2 be two coherent ideals in OX which make (X,OX) into two formal

schemes denoted by X1 = (X,OX,I1 ⊂ OX) and X2 = (X,OX,I2 ⊂ OX) respectively.

We can and will further assume that I1 and I2 are radical ideals and hence the largest

ideals of definition of the respective formal schemes. Since, (X,OX/I2) is an ordinary

scheme with the underlying space X and I1 is the largest defining ideal of X1, hence,

Im
1 ⊂ I2 for some integer m. By symmetry of the above argument, we also have

I n
2 ⊂ I1 for some integer n. Thus I1 and I2 are equivalent ideals.

We now have following generalizations of Corollary (8.6) and Theorem (9.7) of [B1]

respectively.

Theorem 12.1. Let X and Y be two noetherian formal schemes which are either sepa-

rated or of finite Krull dimension. Assume that there is an equivalence of ⊗-triangulated
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categories with identity

(Dqct(X),⊗L
OX
,RΓ ′XOX) ' (Dqct(Y),⊗L

OY
,RΓ ′YOY).

Then there exists an isomorphism of noetherian formal schemes X ' Y, inducing the

above equivalence.

Theorem 12.2. Consider the functor D : F → T from the category F of noetherian

formal schemes which are either separated or of finite Krull dimension to the category

T of tensor triangulated categories with unit, given by X 7→ (Dqct(X),⊗L
OX
,RΓ ′XOX).

Then this functor is faithful and takes isomorphisms to isomorphisms. Moreover, over

the subcategory T ′ ⊂ T comprising tensor triangulated categories satisfying Properties

1, 2 and 3 of Definition 11.1, there exists a functor from T into ringed spaces such that

its pre-composition with the functor D yields the natural inclusion of F into the ringed

spaces.
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