
Indian Statistical Institute
203 BT Road, Kolkata - 700108

On a Few Progressive Algorithms

Ankan Kumar Das
M.Tech. Computer Science

Roll: CS1815

Supervisor: Dr. Arijit Bishnu

A dissertation submitted in partial fulfilment of the requirement

for the degree of

Master of Technology in Computer Science

July 2020

CERTIFICATE

This is to certify that the dissertation titled “On a Few Progressive Algorithms”
submitted by Ankan Kumar Das to Indian Statistical Institute, Kolkata in partial
fulfilment for the award of the degree of Master of Technology in Computer
Science is a bonafide record of work carried out by him under my supervision and
guidance. The dissertation has fulfilled all the requirements as per regulation of this
institute and, in my opinion, has reached the standard needed for submission.

Dr. Arijit Bishnu
Associate Professor,
Advanced Computing and Microelectronics Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.

i

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor Dr. Arijit Bishnu for
giving me an opportunity to work under him and providing me exciting problems to
think upon. Throughout the development of this project he was always available for
discussion and guidance. I would also like to thank Prof. Subhas Chandra Nandy
for providing me useful suggestions and valuable feedback since mid-term evaluation.
He never hesitated to discuss with me whenever I asked for. Special thanks to Anup
Bhattacharya for helping me to understand many thing regarding research work and
this project. Finally I would like to express my special gratitude to my first teacher
my parents, who have always encouraged me in all aspect, for igniting the love for
knowledge within me.

iii

ABSTRACT

The progressive algorithms are algorithms that outputs intermediate solutions which
approximate the complete solution to the given problem. The user can decide whether
to continue the running of the algorithm based on the error of the partial solutions.
In this dissertation, we have studied few problems from the perspective of progressive
algorithm. We have proposed the following:

Huffman encoding: a progressive algorithm for finding optimal prefix encoding or
huffman coding. We have proved that error of the partial solution in step r is
bounded by n/2r−2. Overall running time of the algorithm, we have shown, is
O(n log n).

Convex hull in 2D: Next, we have moved towards geometric problems. We have
presented a randomized progressive algorithm for finding convex hull of the points
in R2. The algorithm runs in at most log n many rounds and expected running
time of each round is O(n).

Convex hull in 3D: We have also extended an existing progressive algorithm for
finding convex hull of the points in R2 for the point set in R3. We have proposed
a procedure to have an upper bound of O(log n) for the number of rounds of the
algorithm for this problem. This work uses one observation whose proof eludes
us but we have compelling experimental evidence for the observation.

v

Contents

1 Introduction 1
1.1 Progressive Algorithm . 1

1.1.1 The framework . 2
1.2 Problem Definition . 2

1.2.1 Huffman Coding . 3
1.2.2 Convex Hull . 4

1.3 Related Work . 5
1.4 Organization of Thesis . 5

2 Huffman Coding 7
2.1 Error Function . 7
2.2 Cooking an Algorithm . 7
2.3 Understanding the Algorithm . 11
2.4 Convergence Function . 15

3 Convex Hull in R2 17
3.1 Error Function . 17
3.2 Designing Algorithm . 18

3.2.1 Existing Algorithm . 18
3.2.2 Randomized Progressive Algorithm 20

3.3 Analysis of Algorithm . 22
3.3.1 Convergence Function . 22
3.3.2 Expected Running Time . 22

4 Convex Hull in R3 25
4.1 Error Function . 25
4.2 Designing Algorithm . 25
4.3 Analysis of Algorithm . 29

4.3.1 Convergence Function . 29
4.3.2 Running Time . 29

vii

CONTENTS viii

5 Conclusion and Future Works 31

Bibliography 34

Chapter 1

Introduction

The most natural approach when we design algorithms for a particular problem is to
get necessary inputs at the very beginning and then to compute the complete solution
without allowing for any interaction in between. Traditional algorithms are designed
like that way and of course in many instances it is the desired approach. But consider
the scenario when we have large data sets then computing the complete solution will
take lot of time. That time will take anyway, but if on the way of computing the
complete solution, the application can output partial and meaningful solutions then
that will help user to decide whether it is necessary to continue the computation and
perhaps in which way the computation should proceed. Such algorithms are called
progressive algorithms [2]. We shall briefly discuss about progressive algorithm and
formally present the framework in the next subsection (1.1). In this dissertation, we
shall present and study progressive algorithms for the following problems: huffman
coding, computing convex hull in 2-dimension and 3-dimension. For huffman coding
our focus will be to get encoding of the symbols way before getting optimal encoding
and as our algorithm progresses we shall argue that our encoding is getting better and
better and ultimately when algorithm stops we should get the optimal encoding. For
the convex hull we shall present randomized progressive algorithm when the points
are in 2-dimension and a deterministic progressive algorithm when the points are in
3-dimension.

1.1 Progressive Algorithm

A progressive algorithm is an algorithm that works in rounds, reporting partial solu-
tions with smaller error guarantees in each round, until in the last round a complete
solution is reported. The error guarantees are specified by a convergence function
fconv : {1, . . . , k} → R≥0, where k is the number of rounds. More precisely, a k-round
progressive algorithm with convergence function fconv with respect to error function err
is an algorithm that outputs, after the r-th round (for 1 ≤ r ≤ k), a partial solution
Sr with err(Sr) ≤ fconv(r) [2]. It is preferable that each partial solution should be a

1

CHAPTER 1. INTRODUCTION 2

“refinement” of the previous one. It is to be noted that the convergence function fconv
is just a bound on the err function but it does not implicitly guarantee that a solu-
tion in the next round is better than the solution in the current round. Nevertheless,
the basic idea behind progressive algorithm is that one should get better and better
solution as the algorithm progresses.

1.1.1 The framework

We shall use the same framework as presented in [2]. Let D be the data set that forms
the input to the problem. The set D defines a set S(D) of valid partial solutions, and
we are given an error function err : S(D)→ R≥0 that assigns every partial solution a
non-negative value. A complete solution is partial solution S with err(S) = 0.

A progressive algorithm reports partial solutions with smaller error guarantees in
each round, until a complete solution is reported. The guarantees are specified by
a convergence function fconv : {1, . . . , k} → R≥0, where k is the number of rounds
and 0 = fconv(k) ≤ fconv(k − 1) ≤ · · · ≤ fconv(1). A k-round progressive algorithm
with convergence function fconv (with respect to error function err) is now defined as
an algorithm that outputs after the r-th round, for r = 1, 2, . . . , k, a partial solution
Sr with err(Sr) ≤ fconv(r). The convergence function specifies how rapidly the error
decreases.

Another important metric in measuring the performance of any algorithm is the
running time. Authors in the article [2] have defined two ways to measure the running
time.

• Tmax(n), the maximum time per round. Let Tr(n) be the worst case running
time for round r. Then we have Tmax(n) := maxr Tr(n). When algorithm takes
little time every round, then user never has to wait too long for the next partial
solution.

• T ∗max(n), maximum amortized time per round. Let T≤r(n) be the worst case total
running time for rounds 1, . . . , r. Then we have T ∗max(n) := maxr T≤r(n)/r. This
measure gives the possibility to report initial partial solutions very quickly so
that later rounds can take little more time.

In our analysis, we shall mainly use the first way i.e. Tmax(n) to measure running
time of our algorithms. For randomized progressive algorithms we can use the following:

• Emax[T (n)], the maximum expected time per round. Let E[Tr(n)] be the expected
running time for round r. Then Emax[T (n)] := maxr E[Tr(n)].

1.2 Problem Definition

Now we shall briefly discuss about the problems that are presented in this dissertation.
For both the problems mentioned below the progressive algorithm presented in this
thesis will follow the above framework.

CHAPTER 1. INTRODUCTION 3

1.2.1 Huffman Coding

Huffman coding is a lossless data compression algorithm. It is a particular type of
optimal prefix code developed by David A. Huffman in 1952 [5].

Let A = {a1, a2, . . . , an} be a set of n symbol alphabets. We are also given a set W =
{w1, w2, . . . , wn} of n positive symbol weights i.e., wi = weight(ai) for i ∈ {1, 2, . . . , n}.
Usually symbol weights are proportional to the number of occurrences or probabilities
of corresponding symbol alphabets. We need to output C = {c1, c2, . . . , cn} set of n
binary codewords, where ci is codeword for ai for i ∈ {1, 2, . . . , n}. Let ACL(C) =
n∑
i=1

wi × length(ci) be the average code length for code C, then the condition to be

satisfied is ACL(C) ≤ ACL(C ′) for any code C ′ of alphabet set A.
When the symbols are not presented in sorted order of their weights then the

algorithm runs in O(n log n) time and at the end of computation it provides optimal
binary codewords C. Our objective is to apply the progressive algorithm framework
for this problem. While computing the optimal binary codewords, our algorithm will
provide meaningful binary codewords C1, C2, . . . , Ck where Cr is the set of codewords
after r-th round for r = 1, 2, . . . , k. By meaningful binary codewords, we mean that the
set of codewords should satisfy the following conditions.

• None of the codewords Ci for i = 1, 2, . . . , k should be ambiguous. “The message
codes will be constructed in such a way that no additional indication is necessary
to specify where a message code begins and ends once the starting point of
a sequence of message is known” (Restriction mentioned in [5]). Say we have
A = {a1, a2, a3} as 3 symbol alphabets and C ′ = {11, 10, 111} be their codewords.
Then we see that codeword of a1 is a prefix of codeword of a3. This is ambiguous
as the encoder needs to encode additional information to distinguish those two
symbols. Traditional huffman coding does not generate such codewords. All the
intermediate codewords C1, C2, . . . , Ck should also follow the same rule.

• Codewords C1, C2, . . . Ck should be such that err(Ci) ≤ fconv(i) for i = 1, 2, . . . , k.
The error function err will be precisely defined for this problem in the following
chapter (2).

• At the end of the progressive algorithm, i.e., after the k-th round, the generated
set of codewords Ck should be optimal in terms of average code length.

While this is good to generate meaningful codewords that gets better and better as
the algorithm progresses, the user will not be happy if algorithm needs to compromise
too much with the overall running time. In other words overall running time of this
progressive algorithm should be O(n log n).

CHAPTER 1. INTRODUCTION 4

1.2.2 Convex Hull

In geometry, a subset of an affine space over reals is a convex set if given any two
points in the set, it contains the whole line segment that joins them. Now given a
point set P , convex hull of P is the smallest convex set that contains it. Similar to
the previous problem, here also our objective again is to apply progressive algorithm
framework to compute CH(P), the convex hull of P . Let k be the number of rounds for
the progressive algorithm then we define our partial solutions as C1, C2, . . . , Ck, where
Cr is the partial solution reported after the r-th round. Each of our partial solutions
will be a convex polygon satisfying Cr ⊆ CH(P). Convex polygons Cr are actually a
convex hull of a subset of P carefully chosen by the algorithm. Based on the nature of
the point set P , we have sub-categorized this into following.

Convex Hull in R2

Let P = {p1, p2, . . . , pn} be a set of n points where each of the point pi ∈ R2 for
i = 1, 2, . . . , n. Alewijnse et al. [2] have developed a progressive algorithm for finding
covex hull of P combining the ideas from construction of coresets and the QuickHull
algorithm [3]. At each round r, their algorithm is selecting a subset Pr ⊂ P such that
all points in Pr are extreme. Their idea is to select the extreme points from P for a
predetermined set of directions. In our case, a set of directions will be selected via a
randomized algorithm. We shall discuss about error function, the algorithm and its
analysis in chapter (3).

Convex Hull in R3

Our objective for this problem will be to extend the progressive algorithm for the
point sets in R3. Let P = {p1, p2, . . . , pn} be a set of n points where each of the
point pi ∈ R3 for i = 1, 2, . . . , n. We have imposed few restrictions on the point set
P such as “no three of the points should belong to same straight line”, “no four of
the points should belong to same plane” (general position assumptions). At the r-th
round, our solution Cr will be convex hull of the point set Pr ⊂ P . Since each of
the points in Pr is extreme points in some direction, so the selected point set will be
part of final solution. As a result, partial solutions will satisfy the following relation.
C1 ⊆ C2 ⊆ · · · ⊆ Ck = CH(P). We shall define error function and present our
algorithm and its analysis in chapter (4). During analysis we shall find convergence
function fconv(r) that upper bounds the error of the partial solution Cr. This result
is not fully provable because we could not formally prove an observation, but our
observation is backed up by experimental results.

CHAPTER 1. INTRODUCTION 5

1.3 Related Work

The framework of the progressive algorithm was introduced by Alewijnse et al. in
2015 [2]. They studied problems in computational geometry like finding convex hull
in a plane, computing k popular regions for a set of trajectories. They also observed
a nice connection between approximation algorithm and progressive algorithm as later
produces approximate solutions in each step. Amir Mesrikhani and Mohammad Farshi
presented progressive algorithm for sorting in external memory model [8]. Progressive
algorithms are also studied for finding euclidean minimum spanning tree [9] and in
database also [6].

1.4 Organization of Thesis

We started with the definition of “Progressive Algorithm” followed by the framework.
These helped us to describe the problems more specifically for our objectives for those
problems in section (1.2).

In chapter (2) we study about our first problem i.e., Huffman Coding. We define an
error function, develop an algorithm and find convergence function for this problem.
In chapter (3), we turn our attention to convex hull. First we present the existing
progressive algorithm, then propose our modification followed by its analysis. The
ideas from this chapter help us to extend the algorithm (for the points in R3) and to
bound the errors of the partial solutions in chapter (4).

Chapter 2

Huffman Coding

The problem and our objective are already described in the previous chapter (check
section 1.2.1). Now we describe the error function we have considered for this problem
and then proceed to the progressive algorithm and its analysis.

2.1 Error Function

Let C ′ = {c′1, c′2, . . . , c′n} be any intermediate set of binary codewords generated by
the algorithm and C = {c1, c2, . . . , cn} be an optimal set of binary codewords then the
error function we consider is

errC′ = ACL(C ′)− ACL(C) (2.1)

where ACL(C) is the average code length for set of codewords C and is defined as
follows

ACL(C) =
∑
ci∈C
wi∈W

wi × length(ci) (2.2)

W is the set of weights associated with set of symbol alphabets for an instance of this
particular problem.

Optimal set of codewords C may not be unique but for any given problem instance,
average code length ACL(C) is unique by the condition of optimality. So we are
effectively subtracting constant value for each of the intermediate solutions. At the
end of the algorithm we must get a set of codewords C ′′ such that errC′′ = 0. Then by
equation 2.1 we get ACL(C ′′) = ACL(C), which is the desired output.

2.2 Cooking an Algorithm

When the symbols are not presented in sorted order of their weights, traditional algo-
rithm maintains a min heap. It extracts two minimum weighted nodes from the heap,

7

CHAPTER 2. HUFFMAN CODING 8

creates a new node and insert that back to the heap. It continues till we have only
one node in the heap [5]. As we need codewords for all the alphabets, it is possible
only when there is single node left in the heap. So, we could not bring this to the
progressive algorithm framework.

Later in the year 1976, J. van Leeuwnen presented a linear time algorithm when
inputs are presented in sorted order of their weights [10]. This is useful in our case as
it can generate set of codewords for all the alphabets in O(n) time. Only thing it needs
is weights should be in sorted order. Authors in the article [2] presented a progressive
algorithm for sorting. So we combine these two ideas to present a progressive algorithm
with respect to the error function (2.1) for this problem.

Input: Alphabet set A, Weight set W , Two indices first, last.
Output: Rooted binary tree whose leaf contains alphabets A[first] to

A[last]. Root node also stores sum of their weights.
1 Function GroupAlphabets(A,W, first, last):
2 root← newNode() ; // generates tree with two empty leaf nodes

3 temp← root ;
4 for (it← first to last− 2) do
5 temp.left← A[it] ;
6 temp.right← newNode() ;
7 temp← temp.right ;

8 temp.left← A[last− 1] ;
9 temp.right← A[last] ;

10 root.weight←
last∑

i=first

wi ;

11 return root ;

Remark. (GroupAlphabets 1) Above procedure creates a binary tree for a set of alpha-
bets. It is obvious that each call to the procedure will take O(last− first) time.

This procedure will be useful to group unsorted alphabet symbols. Once we present
our main algorithm, the importance will be clearer. Before that, we present the pro-
cedure based on [10] to generate Huffman code for sorted input weights.

CHAPTER 2. HUFFMAN CODING 9

Input: inputQueue, a queue containing nodes in non-decreasing order of their
weights.

Output: Rooted binary coding tree which we can use to generate set of binary
prefix code for alphabets.

1 Function EfficientHuffmanCoding(inputQueue):
2 Q1 ← inputQueue ;
3 Q2 ← emptyQueue() ;
4 while (Q1.size() ≥ 2 or Q2.size() ≥ 2) do

/* popMin() method compares front of the two queues removes and

returns the node which is minimum */

5 first← popMin(Q1, Q2) ; // 1st minimum node

6 second← popMin(Q1, Q2) ; // 2nd minimum node

7 temp← newNode() ;
8 temp.left← first ;
9 temp.right← second ;

10 temp.weight← first.weight+ second.weight ;
11 Q2.pushBack(temp) ; // Inserts the node to the back of the queue

12 return Q2.front() ;

Remark. (EfficientHuffmanCoding 2) At each iteration of the while loop, we are re-
moving two nodes and inserting one node again, effectively the total number of nodes
are reduced by one. Therefore, this procedure runs in linear time with respect to the
inputQueue size.

There is a natural bijection between binary prefix codes and rooted binary coding
trees, in which any node is either leaf or it has two children. So we have omitted the
procedure to generate binary prefix code from a coding tree. If we get a coding tree we
can simply replace left link with 0 and right link with 1 to get binary prefix code for
the alphabets. One can use any other approaches but as long as there is a bijection,
things will go through. Since all the ingredients are ready, now we cook our final recipe
(ProgressiveHuffmanCoding 3).

CHAPTER 2. HUFFMAN CODING 10

Algorithm 1: ProgressiveHuffmanCoding

Input: Alphabet set A and Weight set W .
Output: After each round algorithm outputs a rooted binary coding tree

which specifies set of binary prefix codes for alphabets
1 Function ProgressiveHuffmanCoding(A, W):
2 n← A.size() ;
3 Q← emptyQueue() ;
4 k ← dlog2(n)e ; // Number of rounds

5 pivotPos← 2k ; // lowest power of 2 not less than n

6 for (r ← 1 to k) do
7 start← 1 ;
8 end← min(n, start+ 2× pivotPos− 1) ;
9 while (start+ pivotPos− 1 <= n) do

/* partition() method will work on the segments A[start . . . end] and

W [start . . . end], in this segment pivotPos-th largest weight will

be placed in proper position s.t. following conditions hold

W [i] ≥W [start+ pivotPos− 1] for i = {start, . . . , start+ pivotPos− 1},
W [j] ≤W [start+ pivotPos− 1] for j = {start+ pivotPos, . . . , end} */

10 partition(A,W, start, end, pivotPos) ;
11 start← end+ 1 ;
12 end← min(n, start+ 2× pivotPos− 1) ;

13 if (pivotPos > 2) then
14 start← 1 ;
15 end← min(n, start+ pivotPos− 1) ;
16 while (start ≤ n) do
17 tree← GroupAlphabets(A,W, start, end) ;
18 Q.pushFront(tree) ; // Insert node to the front of the queue

19 start← end+ 1 ;
20 end← min(n, start+ pivotPos− 1) ;

/* when pivotPos = 2, the alphabets become sorted in non increasing

order of their weights */

21 else
22 for (i← 1 to n) do

/* create a new leaf node with symbol and weight */

23 node← leafNode(ai, wi) ;
24 Q.pushFront(node) ;

25 Ci ← EfficientHuffmanCoding(Q) ;
26 print Ci ; // tree to generate codewords for r-th round

27 pivotPos← pivotPos/2 ;

CHAPTER 2. HUFFMAN CODING 11

Remark. (ProgressiveHuffmanCoding 3) Step 4 ensures that the for loop at step 6
runs O(log n) many times. Since selection can be performed in linear time [4], so our
partition method (which will implicitly call selection method) at step 10 can be done in
linear time too. Other procedures inside for loop (step 6) are also linear. Therefore,
for each round r, we are spending constant time per alphabet, i.e. each round takes
O(n) time. Hence, worst case overall time complexity for this progressive algorithm is
O(n log n).

2.3 Understanding the Algorithm

Now we shall try to understand how the algorithm just described (ProgressiveHuff-
manCoding 3) generates a series of coding trees after each round. We describe a small
problem instance and run our algorithm on that instance for better understanding. Let
A = {a1, a2, . . . , a12} and W = {0.02, 0.004, 0.11, 0.05, 0.019, 0.018, 0.042, 0.015, 0.007,
0.025, 0.48, 0.21}. Let us see how it works.

Figure 2.1: ProgressiveHuffmanCoding when round r = 1. Average Code
Length ACL(C1) = 9.078

CHAPTER 2. HUFFMAN CODING 12

Figure 2.2: ProgressiveHuffmanCoding when round r = 2. Average Code
Length ACL(C2) = 6.091

CHAPTER 2. HUFFMAN CODING 13

Figure 2.3: ProgressiveHuffmanCoding when round r = 3. Average Code
Length ACL(C3) = 3.526

CHAPTER 2. HUFFMAN CODING 14

Figure 2.4: ProgressiveHuffmanCoding when round r = 4. Average Code
Length ACL(C4) = 2.409

CHAPTER 2. HUFFMAN CODING 15

2.4 Convergence Function

Lemma 2.4.1. Let Cr be the partial solution after round r generated by the algorithm
3. Then errCr ≤ n/2r−2.

Proof. As we want a bound of the partial solutions with respect to the error function
defined in the section 2.1, we observe the following points.

• When we are at the r-th round, partitioning of the set will ensure that the rank
of the alphabet with largest weight will be at most 2n/2r−1.

• At r-th round root to leaf maximum length of the trees generated by the pro-
cedure GroupAlphabets is bounded by pivotPos which is again bounded by
2n/2r−1.

• Initial queue length (size of Q) at round r is at most 2r. We feed Q to the
procedure EfficientHuffmanCoding.

• Let lri be the root to leaf length for alphabet ai at the coding tree Cr. It has two
parts namely lrig , root to leaf node for alphabet ai after GroupAlphabets at r-th
round and lrie , extra length added for ai when we call EfficientHuffmanCoding
for r-th round. lri = lrig + lrie .

So we have,

errCr = ACL(Cr)− ACL(C) [C be an optimal coding tree]

= (
n∑
i=1

wi × lri)− ACL(C)

= (
n∑
i=1

wi × (lrig + lrie))− ACL(C)

=
n∑
i=1

wi × lrig + (
n∑
i=1

wi × lrie − ACL(C))

≤
n∑
i=1

wi × lrig

[As,
n∑
i=1

wi × lrie ≤ ACL(C),

intuitive since we have min(2r, n)

many nodes in sorted order]

≤
n∑
i=1

wi × (2n/2r−1) [As, lrig ≤ 2n/2r−1]

= n/2r−2 [As,
n∑
i=1

wi = 1]

CHAPTER 2. HUFFMAN CODING 16

Lemma 2.4.2. The algorithm will output an optimal coding tree at final round i.e.
errCk

= 0.

Proof. This is due to the fact that alphabets will be sorted according to their weights
at final round (Alewijnse et al. [2]) and once they are sorted Leeuwen’s algoritm [10]
ensures that we get an optimal coding tree.

Theorem 2.4.1. Given a set of n alphabets and their corresponding weights, there is
a progressive algorithm for finding an optimal coding tree with convergence function
fconv(r) = n/2r−2 for r = 1, 2, . . . , k − 1 and fconv(k) = 0 with respect to the error
function defined in section 2.1.

Proof. The theorem directly follows from Lemma 2.4.1 and Lemma 2.4.2.

Theorem 2.4.2. Overall running time of the algorithm (ProgressiveHuffmanCoding
3) given a set of n alphabets and their corresponding weights is O(n log n).

Proof. Step 4 of the algorithm (ProgressiveHuffmanCoding 3) ensures that there are
O(log n) many rounds and as discussed earlier each round takes O(n) time to compute
and output a partial solution. Hence the claim holds.

Chapter 3

Convex Hull in R2

We have described the problem in section 1.2.2. In this chapter first we define an
error function then present the existing progressive algorithm, our modification and
its analysis. In order to extend the algorithm to higher dimensions, we have slightly
modified the notations as used in the article [2].

3.1 Error Function

Given P = {p1, p2, . . . , pn}, a set of n points in R2, and a partial solution (also a convex
polygon) C ⊆ CH(P), the error function which Alewijnse et al. [2] have considered is

errC = max
~v

{
1− width~v(C)

width~v(CH(P))

}
(3.1)

~v is any vector of the form xî + yĵ. Let the angle between ~v and the positive x-axis
be θ. Then width~v(C) is the distance between two tangent lines of C making an angle
θ + π/2 with the positive x-axis.

In the Figure 3.1, P = {p1, p2, . . . , p10}. Polygon C whose edges are colored red is a
partial solution. ~v is any arbitrary vector. l1, l2 are the tangent lines of C and l1, l3 are
tangent lines of CH(P) perpendicular to ~v. Then width~v(C) is the distance between
l1, l2 and width~v(CH(P) is the distance between l1, l3.

Since partial solution C is a convex hull of a subset of the original points, so it
will never be the case that width~v(C) > width~v(CH(P)). Also note that according to
the framework of progressive algorithm at final round, errC should be 0 which is only
possible when convex polygon C = CH(P) otherwise if, C ⊂ CH(P) then there will
always exist a vector ~v such that width~v(C) < width~v(CH(P)).

17

CHAPTER 3. CONVEX HULL IN R2 18

Figure 3.1: width~v(C) and width~v(CH(P))

3.2 Designing Algorithm

First we discuss the existing algorithm developed by Alewijnse et al. [2] then present
our randomized version of the algorithm.

3.2.1 Existing Algorithm

First we need a preprocessing step which will ensure that width of CH(P) is roughly
same in all directions. More precisely, CH(P) will be α-flat for some constant 0 <
α < 1 in the following sense: there are concentric circles Cin and Cout such that
Cin ⊂ CH(P) ⊂ Cout and radius(Cin) = α · radius(Cout). We can do so due to the
following lemma [1].

Lemma 3.2.1. For any set P of n points in R2 such that area of CH(P) is nonzero,
there is an affine transformation τ such that

(i) τ(P) is α-flat and

(ii) For any Q ⊆ P we have

width~v(CH(Q))

width~v(CH(P))
=
width~v(CH(τ(Q)))

width~v(CH(τ(P)))

Such a transformation, together with the circles Cin and Cout can be computed in O(n)
time.

CHAPTER 3. CONVEX HULL IN R2 19

We assume that Cin and Cout are centered at origin. Let V (r) be the set of unit vec-
tors we are working with in the r-th round and P (r) ⊆ P be the set of extreme points,
the algorithm selected during the computation of the r-th round. Cr = CH(P (r)) is
the partial solution after r-th round of the progressive algorithm.

Constructing Initial Hull [2]

1. V (1) = {̂i, ĵ,−î,−ĵ}. Notice that they are equally spaced on circumference of a
unit radius circle.

2. Let p(~v) ∈ P denote the point that is extreme in the direction of ~v, ρ(~v) denote
the ray from origin with the direction same as ~v and e(~v) denote the edge of
CH(P) that is intersected by ρ(~v). One can find e(~v) using linear programming
in O(n) time [7] where the points in P induce constraints. Then initial extreme
points are

P (1) := {p(~v) : ~v ∈ V (1)} ∪ {p : p is an endpoint of e(~v) for some ~v ∈ V (1)}

3. C1 = CH(P (1)) is the initial convex hull or the partial solution reported after
round 1.

4. For each edge e of C1, mark the points which belong to the cone joining origin
with two endpoints of e but not within C1. This step can be done in O(n) time.

Remark. Since there are 4 unit vectors in V (1), so there can be at most 4 extreme
points in those directions and we can have at most total 8 endpoints of some edge e(~v).
Thus P (1) contains not more than 12 points of P and C1 = CH(P (1)) can be found
in O(1) time. Obviously, total time to construct initial hull is O(n).

Constructing Cr from Cr−1 [2]

In a generic round r, we are given the polygon Cr−1. For each edge of Cr−1, a set P (e)
is defined as follows. Consider the rays from the origin through the vertices of Cr−1.
These rays partition R2 into cones. cone(e) corresponds to the edge e of Cr−1. Now
P (e) contains the points from P that lie in cone(e) but outside Cr−1. Basically, points
in P (e) can still appear as vertices of CH(P), other points that are vertices of Cr−1
will be vertices of CH(P) as well, and the points which are inside Cr−1 are eliminated
from the contest. Now proceed as follows.

1. Determine V (r), set of 2r+1 many unit vectors such that they are equally spaced
on the circumference of a unit radius circle and î must belong to the set.

2. For each new vector ~v ∈ V (r) \ V (r − 1) find the edge e of Cr−1 such that
p(~v) ∈ P (e). This entire step can be done in O(n) time for all the new vectors
by walking around Cr−1. There can be at most one vector ~v per edge e of Cr−1

CHAPTER 3. CONVEX HULL IN R2 20

because in between any two new direction vector there is a direction vector in
V (r).

3. For each new direction ~v ∈ V (r) \ V (r − 1) find the edge e of Cr−1 which is
intersected by the ray ρ(~v). Here also we can have only one such edge.

4. For each edge e of Cr−1, if P (e) 6= φ find a ray ~ρe from origin such that it contains
at most |P (e)|/2 many points from P (e) on either side.

5. Now for each edge e with P (e) 6= φ do the following.

• If in Step 2 we found a vector ~v with p(~v) ∈ P (e), then compute the extreme
point p(~v) of P (e) in the direction of vector ~v.

• If in Step 3 we found a vector ~v which intersects e then compute the edge e(~v)
of CH(P) that is intersected by the ray ρ(~v) using linear programming where
the points in P (e) together with the endpoints e induce the constraints.

• Also find the edge of CH(P) that is intersected by ~ρe as found in Step 4
again using linear programming.

6. Step 5 gives upto five new vertices per edge e of Cr−1. These are inserted in
between e to obtain the convex chain replacing e in new intermediate solution
Cr. Now for each new edge e′, we also need to compute P (e′). For this, we
can check each point p of old set P (e), if p lies inside Cr, then just remove it,
otherwise find e′ from the new edges in this chain such that p ∈ P (e′) and insert
it to P (e′). This will take O(|P (e)|) time per old chain of Cr−1.

Remark. All of the steps individually can be done in O(n) time. Thus each round
of this progressive algorithm can be done and partial solution can be reported in O(n)
time.

3.2.2 Randomized Progressive Algorithm

The above algorithm chooses the set of vectors (which are computed in each round)
in deterministic way. We wanted to see if randomization helps and compute the set of
vectors.

Computing set V (r) at round r

Suppose we are given set of unit vectors V (r − 1) and we want to compute a set of
unit vectors for the r-th round. We do as follows.

1. For each ~v of V (r − 1) find the point of intersection between unit radius circle
centered at origin and a ray from origin in the direction of ~v. Let U(r − 1) =
{u1, u2, . . . } be the set of all such points in the same order as the corresponding
vectors.

CHAPTER 3. CONVEX HULL IN R2 21

2. Initialize U(r) = φ. For each of the two consecutive points ui, ui+1 generate two
points in between using the following rule.

• Let the short arc length joining ui and ui+1 be θ.

• Generate two point uniformly randomly on the arc. These two points divide
the arc into three smaller arcs. If length of any of these new three arcs is
greater than θ/2 then repeat this step, otherwise insert those two points
along with ui and ui+1 to the set U(r) in order of their position in the arc.

3. Remove duplicates from U(r) by a linear scan. Construct V (r) according to the
position vectors of the points of U(r).

Constructing Initial Hull

For constructing initial hull we follow the same procedure as the previous algorithm
(at section 3.2.1). Notice that during the procedure we set V (1) = {̂i, ĵ,−î,−ĵ} which
is necessary to generate set of vectors for upcoming rounds. Thus algorithm reports
C1.

Constructing Cr from Cr−1

We generate the set of vectors V (r) using the method discussed above. Other steps
will be quite similar to the earlier one (at section 3.2.1). Earlier we were having only
one new vector in between old vectors, here we have two new vectors in between the
vectors of the previous round. We do as follows.

1. For each vector ~v ∈ V (r)\V (r−1) find the edge e of Cr−1 such that p(~v) ∈ P (e).

2. For each direction ~v ∈ V (r)\V (r−1) find the edge e of Cr−1 which is intersected
by the ray ρ(~v).

3. For each edge e of Cr−1, if P (e) 6= φ find a ray ~ρe from origin such that it contains
at most |P (e)|/2 many points from P (e) on either side.

4. Now for each edge e with P (e) 6= φ do the following.

• If in Step 1 we found some vector ~v with p(~v) ∈ P (e), then compute the
extreme point p(~v) of P (e) in the direction of each such vector ~v.

• If in Step 2 we found some vector ~v which intersects e then compute the
edge e(~v) of CH(P) that is intersected by the ray ρ(~v) using linear pro-
gramming where the points in P (e) together with the endpoints e induce
the constraints.

• Find the edge of CH(P) that is intersected by ~ρe as found in Step 3 again
using linear programming.

CHAPTER 3. CONVEX HULL IN R2 22

5. Above step gives upto eight new vertices per edge e of Cr−1. These are inserted
in between e to obtain the convex chain replacing e in new intermediate solution
Cr. Now for each p ∈ P (e), check whether it lies inside Cr. Otherwise find e′

from these new edges such that p ∈ P (e′) and insert it to that set. This will take
O(|P (e)|) time per old chain of Cr−1.

3.3 Analysis of Algorithm

3.3.1 Convergence Function

Notice that, while constructing initial hull our set of vectors was V (1) = {̂i, ĵ,−î,−ĵ}.
Angle between two consecutive vector is π/2. While constructing V (r) from V (r−1) our
randomized algorithm ensures angle between two consecutive vector is upper bounded
by half of the same of previous round. Combining these two facts, we can say that at
round r, angle between two consecutive vector is upper bounded by π/2r. Now we can
use the lemma by Alewijnse et al. [2] to get the following lemma.

Lemma 3.3.1. For round r, partial solution Cr reported by the randomized progressive
algorithm satisfy the following property

errCr = O(1/22r) (3.2)

where errC is as defined as in equation 3.1

Therefore, the convergence function for the randomized progressive algorithm is
fconv(r) = O(1/22r) with respect to the error function.

3.3.2 Expected Running Time

For determining the expected running time of the randomized progressive algorithm,
we need the expected running time per round and a upper bound on number of rounds.

Lemma 3.3.2. Maximum expected running time per round Emax[T (n)] of the progres-
sive randomized algorithm discussed above is O(n).

Proof. For r = 1, we are constructing the initial hull following the same procedure as
the existing algorithm 3.2.1. So worst case running time for r = 1 is O(n).

For r > 1 we can divide each round in two parts.

• Computing Vr from Vr−1

• Constructing Cr from Cr−1

CHAPTER 3. CONVEX HULL IN R2 23

The time spent for constructing Cr from Cr−1 at Step 1-5 is O(n +
∑

e |P (e)|),
where the sum is taken over all the edges e of Cr−1. Since

∑
e |P (e)| < n, the time for

constructing Cr from Cr−1 given set of vectors V (r) is O(n) in worst case.
Now it remains to find the expected time for computing Vr from Vr−1. Suppose

we have arc of length θ. We take two random points x, y on the arc, both uniform on
[0, θ]. Let A = min(x, y), B = max(x, y) and C = max(A,B − A, θ −B).

If C > θ/2, randomized algorithm will discard that x, y and will generate the points
again. So C ≤ θ/2 is favourable case for our algorithm. Now,

Figure 3.2: Representing probability as area in the square of side θ

Pr(C ≤ θ/2) = Pr(max(A,B − A, θ −B) ≤ θ/2)

= Pr(A ≤ θ/2, B − A ≤ θ/2, θ −B ≤ θ/2)

= 2.P r(x ≤ θ/2, y − x ≤ θ/2, θ − y ≤ θ/2, x < y)
[From symmetry of x, y]

= 2.P r(x ≤ θ/2, y ≤ x+ θ/2, y ≥ θ/2, x < y)

To calculate Pr(x ≤ θ/2, y ≤ x + θ/2, y ≥ θ/2, x < y) we take a square of side θ.
Any point (x, y) inside the square represents uniformly randomly selected two points
on the arc of length θ. It is trivial that x, y ∈ [0, θ]. Ratio of an area of a region to the
area of the square denotes the probability of that region.

We plot x ≤ θ/2, y ≤ x + θ/2, y ≥ θ/2, x < y and get their intersection as the
triangle shaded in the Figure 3.2. Area of the triangle is 1

2
× θ

2
× θ

2
= θ2

8
. Thus,

CHAPTER 3. CONVEX HULL IN R2 24

Pr(C ≤ θ/2) = 2× Pr(x ≤ θ/2, y ≤ x+ θ/2, y ≥ θ/2, x < y)

= 2× (
θ2

8
: θ2)

= 2× 1

8
= 0.25

Favourable or success probability for selecting two uniformly random points on the
arc to satisfy the criteria is 0.25. Therefore, the expected number of trials for the
points to satisfy the criteria is 1/0.25 = 4. Since number of vectors in the set Vr−1 in
worst case is bounded by O(n), so expected time for computing Vr from Vr−1 is O(n).

Thus maximum of the expected running time per round Emax[T (n)] of the progres-
sive randomized algorithm is O(n).

Similar to a theorem by Alewijnse et al. [2] we can get the following theorem.

Theorem 3.3.1. There is a randomized progressive algorithm to compute the convex
hull of a set of n points in R2 that runs in at most k := blog nc rounds, maximum
expected running time of each round being O(n), with convergence function fconv(r) =
O(1/22r) with respect to the error function defined in equation 3.1.

Proof. The bound on convergence rate follows from Lemma 3.3.1. Maximum of the
expected running time we get from Lemma 3.3.2. Step 3 of the progressive algorithm
makes sure that |P (e)| < n/2r for any edge e of Cr. So total number of rounds is at
most log n.

Chapter 4

Convex Hull in R3

We have described the problem in section 1.2.2. In this chapter we shall extend the
progressive algorithm for convex hull in R2 by Alewijnse et al. [2] to points in R3.
We interpret the notations in terms of this problem. During analysis, we shall see
the bottleneck of our algorithm in terms of the running time. Here we have used an
observation to upper bound the error of a partial solution. There is no formal proof
for the result. Though our observation is backed up by experimental results.

4.1 Error Function

Given P = {p1, p2, . . . , pn}, a set of n points in R3 and a partial solution C ⊆ CH(P),
the error function we have used is

errC = max
~v

{
1− width~v(C)

width~v(CH(P))

}
(4.1)

~v is any vector of the form xî + yĵ + zk̂ and width~v(C) is the distance between two
tangent planes of the convex polygon C whose normal vector is ~v.

4.2 Designing Algorithm

Like what we did when the points were in R2, here also we preprocess the points so
that CH(P) becomes α-flat. We use following lemma by Agarwal et al. [1].

Lemma 4.2.1. [1] For any set P of n points in R3 such that volume of CH(P) is
non zero, there is an affine transformation τ such that,

(i) τ(P) is α-flat, i.e., for some constant 0 < α < 1 there are concentric spheres
Cin, Cout centered at origin such that Cin ⊂ CH(τ(P)) ⊂ Cout and radius(Cin) =
α · radius(Cout).

25

CHAPTER 4. CONVEX HULL IN R3 26

(ii) For any Q ⊆ P we have

width~v(CH(Q))

width~v(CH(P))
=
width~v(CH(τ(Q)))

width~v(CH(τ(P)))

Such a transformation, together with the circles Cin and Cout can be computed in O(n)
time.

This preprocessing step will make sure that width of the convex hull is roughly
same in all direction. Now we define few notations that will be useful to present the
progressive algorithm.

• Let P = {p1, p2, . . . , pn} be given set of points after applying transformation τ
where pi ∈ R3 for i = 1, 2, . . . , n. We assume that points are in general position
i.e., no three points lie on same line, no four points lie on the same plane.

• p(~v) ∈ P denotes extreme point with respect to the direction of ~v. It is extreme
in the sense that if we take the plane with normal vector ~v and passing through
the point p(~v) then all the points of P will belong to same side of the plane.

• s(~v) denotes the surface of CH(P) that is hit by the ray that was shot from the
origin with direction of ~v.

• P (r) ⊆ P denotes the set of extreme points after r-th round of the algorithm.

• Let V (r) denote the set of vectors the algorithm uses during r-th round of com-
putation and V ′(r) be the set of tuples during r-th round. Each tuple is of the
form t = (~v1, ~v2, ~v3). The set V ′(r) helps to compute V (r + 1).

• Let Cr be the convex polygon reported as partial solution of r-th round. Due to
restriction of point set P , each surface is triangular. For each surface if we draw
a plane taking a side of the surface and passing through origin then entire R3

will be divided into hollow cones. We denote the cone corresponding to surface s
by cone(s) and P (s) is the set of points from P which are in cone(s) but outside
the convex polygon Cr.

Constructing Initial Hull C1

1. Take V (1) = {̂i,−î, ĵ,−ĵ, k̂,−k̂} and V ′(1) = {(̂i, ĵ, k̂), (−î, ĵ, k̂), (−î,−ĵ, k̂),
(̂i,−ĵ, k̂), (̂i, ĵ,−k̂), (−î, ĵ,−k̂), (−î,−ĵ,−k̂), (̂i,−ĵ,−k̂)}. Notice that the angle
between any two of the vectors in a tuple is π/2.

2. Find p(~v) ∈ P for each ~v ∈ V (1).

3. Find s(~v) for each ~v ∈ V (1). We can find s(~v) using linear programming for three
dimension [7] in O(n) time.

CHAPTER 4. CONVEX HULL IN R3 27

4. P (1) := {p(~v) : ~v ∈ V (1)} ∪ {p : p is a vertex of s(~v) for some ~v ∈ V (1)}.

5. There can be at most twenty four points in P (1). Report C1 = CH(P (1)) as
the initial hull or the partial solution after round 1. For each surface s of C1

determine the set P (s) (points in cone(s) but outside C1) as it will be helpful
from next round.

Computing set V (r) at round r

Now we present our idea to determine the set of vectors for r-th round. We already
have set of tuples V ′(r − 1) from previous round. Our objective is to bound the angle
between two vectors in a tuple by half of the previous round. Initialize V (r) = V (r−1)
and V ′(r) = φ. For each t = (~v1, ~v2, ~v3) ∈ V ′(r − 1) we do as follows.

1. Shoot three rays from the origin with direction vectors ~v1, ~v2, ~v3, respectively and
find their intersection with unit radius sphere centered at the origin. Let the
points be A1, A2, A3, respectively. We can find the points simply by dividing the
vectors by their corresponding norms.

2. Construct the triangle 4A1A2A3 and find the point within triangle whose dis-
tance from its closest vertex is maximum.

3. Without loss of generality, let A1A2 ≥ A2A3 ≥ A3A1. Also let position vector of
the mid-point of the sides be ~va3 , ~va1 , ~va2 , respectively. We now have three cases.

(a) If 4A1A2A3 is acute-angled triangle, then their circumcenter is the required
point which we can find easily as the coordinates of A1, A2, A3 are known.
Let the position vector of the point be ~vc.

• Set V ′(r) = V ′(r) ∪ {(~vc, ~v1, ~va3), (~vc, ~v2, ~va3), (~vc, ~v2, ~va1), (~vc, ~v3, ~va1),
(~vc, ~v3, ~va2), (~vc, ~v1, ~va2)}.
• Set V (r) = V (r) ∪ {~vc, ~va1 , ~va2 , ~va3}.

(b) If 4A1A2A3 is right-angled triangle, then circumcenter is the required point
and it is the midpoint of the largest side, i.e., position vector is ~va3 .

• Set V ′(r) = V ′(r) ∪ {(~va3 , ~va2 , ~v1), (~va3 , ~va2 , ~v3), (~va3 , ~va1 , ~v3),
(~va3 , ~va1 , ~v2)}.
• Set V (r) = V (r) ∪ {~va1 , ~va2 , ~va3}.

(c) Finally, if 4A1A2A3 is obtuse-angled triangle then the required point will
lie on largest side A1A2. Intersection of the side A1A2 with perpendicular
bisector of the second largest side A2A3 is the point whose closest distance
from any of the vertices is maximum. Let the position vector of the point
be ~vc.

• Set V ′(r) = V ′(r)∪{(~vc, ~va1 , ~v2), (~vc, ~va1 , ~va3), (~va1 , ~va2 , ~va3), (~va3 , ~va2 , ~v1),
(~va1 , ~va2 , ~v3)}.

CHAPTER 4. CONVEX HULL IN R3 28

• Set V (r) = V (r) ∪ {~vc, ~va1 , ~va2 , ~va3}.

Remark. For each tuple we can do the above steps in O(1) time. The number of tuples
for round 1 is |V ′(1)| = 8. Each tuple can generate at most six tuples in the worst case
following above procedure. Thus we have |V ′(r)| ≤ 8× 6r−1.

By design, the above procedure tries to halve the angle between any two vectors
for a tuple in next round. Let θrmax be the maximum angle between two vectors within
a tuple for r-th round. Experimentally we have seen θrmax < 2π/2r for r = 1, 2, . . . , 30.
Moreover, for each r = 2, 3, . . . , 29, it is observed that θrmax ≥ 2 · θr+1

max. Though a
formal proof would have been better, for our analysis, we shall assume θrmax < 2π/2r

as observed from the experiment.

Constructing Cr from Cr−1

1. Determine the set V (r) using the above procedure.

2. For each direction ~v ∈ V (r) \ V (r − 1), find the surface s of Cr−1 such that
p(~v) ∈ P (s).

3. For each direction ~v ∈ V (r)\V (r−1) find the surface s of Cr−1 which is intersected
by the ray ρ(~v).

4. Now for each s with P (s) 6= φ do the following.

• If in Step 2 we found ~v with p(~v) ∈ P (s), then compute the extreme point
of P (s) with respect to the direction of ~v.

• If in Step 3 we found ~v intersecting this surface s, then compute s(~v) as
defined before.

• Thus we get at most four new points for the surface s. Insert these vertices
to replace s with a new set of surfaces. For each point in P (s) determine
the new set P (s′) where s′ is a new surface.

• For each new surface check if there exists any s′ such that |P (s′)| > |P (s)|/2.
There can be at most one such surface. If s′ exists, then replace it using
median trick as discussed below.

5. Once algorithm computes the above steps, report current convex polygon Cr as
the partial solution for r-th round.

Median Trick

In order to bound the number of rounds of the progressive algorithm, we want to make
sure that for each surface s, the points outside hull, i.e., P (s) reduces by at least half
of its size in next round. If for some s′, it violates, i.e., |P (s′)| > |P (s)|/2, then we do
as follows.

CHAPTER 4. CONVEX HULL IN R3 29

1. Find a plane passing through origin and intersecting surface s′ such that both
side of the plane contains at most |P (s′)|/2 many points from P (s′).

2. Take the line segment of intersection of the plane and surface s′.

3. Find the position vector of the mid point of the line segment. Let it be ~v.

4. Compute s(~v), surface of CH(P) intersected by the ray ρ(~v). Thus we get three
new extreme points along with three extreme points of s′.

5. Replace the old surface s′ with new surfaces of convex hull of the six extreme
points.

6. For each new surface s′′ determine P (s′′). If there exist any s′′ such that |P (s′′)| >
|P (s)|/2 then follow median trick again for s′′.

4.3 Analysis of Algorithm

4.3.1 Convergence Function

For finding convergence function of the progressive algorithm with respect to the error
function we follow the technique used by Alewijnse et al. [2]. Let ~v be any arbitrary

direction, then we need to bound 1 − width~v(Cr)
width~v(CH(P))

for partial solution after round r.

Let planeO be the equation of a plane passing through origin and normal to ~v. If we
rotate the plane anti-clockwise, let ~v∗ be the vector from V (r) it intersects first after
crossing ~v.

According to our selection of vectors we know that the angle between ~v and ~v∗ is
bounded by 2π/2r. Again let, p(~v) ∈ cone(s) of Cr. If we take any extreme point from
cone(s) which is also a vertex of Cr then the angle between their position vector will
again be bounded by 2π/2r. Therefore, following the method analogous to points in
R2 we obtain

errCr = O(1/22r) (4.2)

Thus error at the r-th round of the algorithm can be bounded by the convergence
function fconv(r) = O(1/22r).

4.3.2 Running Time

• While constructing Cr from Cr−1 the “median trick” ensures that |P (s)| < n/2r

for any surface s of Cr. This implies that the number of rounds of the progressive
algorithm will be at most k := blog nc.

• Preprocessing step can be done in O(n) time and initial hull can also be computed
in O(n) time.

CHAPTER 4. CONVEX HULL IN R3 30

• As discussed earlier, computing the set V (r) at round r takes O(6r) time. Since
r < log n, worst case time to compute V (r) will be O(n).

• Now coming to the construction time of Cr from Cr−1. Up to Step 3, we can do
in O(n) time. To bound the number of rounds, we are doing “median trick” at
the next step. Since the procedure is recursive and it can continue till number
of points for a surface reduces to half of the previous round, it can take in worst
case O(n log n) time. This is the bottleneck of our algorithm, which increases
total running time of the progressive algorithm.

We can summarize our result with the following theorem.

Theorem 4.3.1. There is a progressive algorithm to compute the convex hull of a
set of n points in R3 following general position assumption that runs in at most
k := blog nc rounds, each taking at most O(n log n) time with convergence function
fconv(r) = O(1/22r) with respect to the error function defined in this chapter.

Chapter 5

Conclusion and Future Works

For the huffman coding problem our progressive algorithm ensures errCr ≤ n/2r−2 but
there is no guarantee that solutions are getting better and better. Precisely we can
not say without proof that errC1 ≥ errC2 ≥ . . . ≥ errCk

. It would be interesting to
develop a progressive algorithm which actually ensures this monotonicity. In case of
convex hull, we can clearly see this property holds as convex hull generated in current
round will be subset of the convex hull to be generated in the next round.

For the convex hull in R3 we have imposed general position assumption for the
point set. So there is a scope of improvement when we relax this restriction. Also we
see overall running time of the algorithm is O(n(log n)2). But there are already better
algorithms for finding convex hull for points in R3. So we can think upon coming up
with a progressive algorithm with overall running complexity that matches with the
time complexity of best known algorithm.

There is a nice relationship between Voronoi diagrans and Delaunay triangulations
of points in R2 and the convex hulls of a particular set of points in R3. So once we can
develop an efficient progressive algorithm for convex hull for any set of points in R3,
that would in turn help to design and analysis of progressive algorithms for Voronoi
diagrams and Delaunay triangulations in 2-dimension.

31

Bibliography

[1] Pankaj K Agarwal, Sariel Har-Peled, Kasturi R Varadarajan, et al. Geometric
approximation via coresets. Combinatorial and computational geometry, 52:1–30,
2005.

[2] Sander P. A. Alewijnse, Timur M. Bagautdinov, Mark de Berg, Quirijn W. Bouts,
Alex P. ten Brink, Kevin Buchin, and Michel A. Westenberg. Progressive geometric
algorithms. JoCG, 6(2):72–92, 2015. doi: 10.20382/jocg.v6i2a5. URL https:

//doi.org/10.20382/jocg.v6i2a5.

[3] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull
algorithm for convex hulls. ACM Trans. Math. Softw., 22(4):469–483, 1996. doi:
10.1145/235815.235821. URL https://doi.org/10.1145/235815.235821.

[4] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.
Tarjan. Time bounds for selection. Journal of Computer and System Sciences, 7
(4):448 – 461, 1973. ISSN 0022-0000. doi: 10.1016/S0022-0000(73)80033-9. URL
http://www.sciencedirect.com/science/article/pii/S0022000073800339.

[5] David A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the Institute of Radio Engineers, 40(9):1098–1101, September 1952.
doi: 10.1109/JRPROC.1952.273898. URL https://doi.org/10.1109/JRPROC.

1952.273898.

[6] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. Efficient and progressive
group steiner tree search. In Proceedings of the 2016 International Conference on
Management of Data, pages 91–106, 2016.

[7] Nimrod Megiddo. Linear programming in linear time when the dimension is fixed.
J. ACM, 31(1):114–127, 1984. doi: 10.1145/2422.322418. URL https://doi.

org/10.1145/2422.322418.

[8] Amir Mesrikhani and Mohammad Farshi. Progressive sorting in the external
memory model. The CSI Journal on Computer Science and Engineering, 15(2),
2018.

33

https://doi.org/10.20382/jocg.v6i2a5
https://doi.org/10.20382/jocg.v6i2a5
https://doi.org/10.1145/235815.235821
http://www.sciencedirect.com/science/article/pii/S0022000073800339
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1145/2422.322418
https://doi.org/10.1145/2422.322418

BIBLIOGRAPHY 34

[9] Amir Mesrikhani, Mohammad Farshi, and Mansoor Davoodi. Progressive algo-
rithm for euclidean minimum spanning tree. In First Iranian Conference on,
page 29, 2018.

[10] Jan van Leeuwen. On the construction of huffman trees. In S. Michaelson and
Robin Milner, editors, Third International Colloquium on Automata, Languages
and Programming, University of Edinburgh, UK, July 20-23, 1976, pages 382–
410. Edinburgh University Press, 1976. URL http://www.staff.science.uu.

nl/~leeuw112/huffman.pdf.

http://www.staff.science.uu.nl/~leeuw112/huffman.pdf
http://www.staff.science.uu.nl/~leeuw112/huffman.pdf

	Introduction
	Progressive Algorithm
	The framework

	Problem Definition
	Huffman Coding
	Convex Hull

	Related Work
	Organization of Thesis

	Huffman Coding
	Error Function
	Cooking an Algorithm
	Understanding the Algorithm
	Convergence Function

	Convex Hull in R2
	Error Function
	Designing Algorithm
	Existing Algorithm
	Randomized Progressive Algorithm

	Analysis of Algorithm
	Convergence Function
	Expected Running Time

	Convex Hull in R3
	Error Function
	Designing Algorithm
	Analysis of Algorithm
	Convergence Function
	Running Time

	Conclusion and Future Works
	Bibliography

