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Chapter 1

Introduction

The following formula, usually called Beilinson’s formula — though independently due

to Deligne as well — describes the motivic cohomology group of a smooth projective

variety X over a number field as the group of extensions in a conjectured abelian category

of mixed motives, MMQ. If i and n are two integers then [Sch93],

Ext1
MMQ

(Q(−n), hi(X)) =


CHn

hom(X)⊗Q if i+ 1 = 2n

H i+1
M (X,Q(n)) if i+ 1 6= 2n

Hence, if one had a way of constructing extensions in the category of mixed motives by

some other method, this would provide a way of constructing motivic cycles.

One way of doing so is by considering the group ring of the fundamental group of an

algebraic variety Z[π1(X,P )]. If JP is its the augmentation ideal, the kernel of the map

from Z[π1(X,P )]→ Z, then the graded pieces JaP /J
b
P with a < b are expected to have a

motivic structure. These give rise to natural extensions of motives. So one could hope

that these extensions could be used to construct natural motivic cycles.

Understanding the motivic structure on the fundamental group is appears difficult.

However, the Hodge structure on the fundamental group is well understood [Hai87].

The regulator of a motivic cohomology cycle can be thought of as the realisation of

the corresponding extension of motives as an extension in the category of mixed Hodge

structures. So while we may not be able to construct motivic cycles as extensions of

1



2 Chapter 1. Introduction

motives coming from the fundamental group - we can hope to construct their regulators

as extensions of mixed Hodge structures (MHS) coming from the fundamental group.

The aim of this thesis is to describe this construction in the case of the motivic co-

homology group of the Jacobian of a curve. The first work in this direction is due to

Harris [Har83] and Pulte [Pul88], [Hai87]. They showed that the Abel-Jacobi image of

the modified diagonal cycle on the triple product of a pointed curve (C,P ), or alterna-

tively the Ceresa cycle in the Jacobian Jac(C) of the curve, is the same as an extension

class coming from JP /J
3
P , where JP is the augmentation ideal in the group ring of the

fundamental group of C based at P .

In [Col02], Colombo extended this theorem to show that the regulator of a cycle in the

motivic cohomology of a Jacobian of a hyperelliptic curve, discovered by Collino [Col97],

can be realised as an extension class coming from JP /J
4
P , where JP is the augmentation

ideal of a related curve. In this thesis we extend Colombo’s result to more general curves.

Let C be a smooth projective curve of genus g with a function f on it whose divisor

is of the form div(f) = NQ − NR for some points Q and R and some integer N and

f(P ) = 1 for some other point P . Then there is a motivic cohomology cycle ZQR,P

in H2g−1
M (Jac(C),Z(g)) discovered by Bloch [Blo00]. We show that the regulator of

this cycle can be expressed in terms of an extensions coming from JP /J
4
P . When C

is hyperelliptic and Q and R are ramification points of the canonical map to P1, this

recovers Colombo’s result.

A crucial step in Colombo’s work is the fact that the modified diagonal cycle is

torsion in the Chow group CH2
hom(C3) when C is a hyperelliptic curve. This means the

extension coming from JP /J
3
P splits and hence does not depend on the base point P .

This allows her to consider the extension for JP /J
4
P . For general curves modified diagonal

cycle is not torsion. In fact the known examples of non-torsion modified diagonal cycles

come from the curves we consider - namely modular and Fermat curves. Our main

contribution is to use an idea of Rabi [Rab01] to show that Colombo’s arguments can

be extended to work in our case as well. As a result we have a more general situation

— which has some arithmetical applications.

Colombo’s paper had some errors in Propositions 3.2 and 3.3 which was pointed out

by a referee of an earlier version of this thesis. Hence we had to make some revisions.
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As it turns out the statement of the main result continues to hold under some restricted

conditions.

1.0.1 Main Theorem

We have the following theorem (Theorem (4.2.13)):

Theorem 1.0.1. Let C be a smooth projective curve of genus g over C. Let P , Q and

R be three distinct points such that there is a function fQR with div(fQR) = NQ−NR

for some integer N and fQR(P ) = 1. Let ZQR = ZQR,P be the element of the motivic

cohomology group H2g−1
M (Jac(C),Z(g)) constructed by Bloch [Blo00]. There exists an

extension class ε4QR,P in Ext1
MHS(Z(−2),∧2H1(C)) constructed from the mixed Hodge

structures associated to the fundamental groups π1(C\Q,P ) and π1(C\R,P ) such that

ε4QR,P = (2g + 1)N regZ(ZQR)

in Ext1
MHS(Z(−2),∧2H1(C)).

In other words the regulator of a natural cycle in the motivic cohomology group of

a Jacobian of a curve, being thought of as an extension class, is same as the extension

class of a natural extension of mixed Hodge structures coming from the fundamental

group of the curve.

Our primary motivation are the conjectures relating regulators of the motivic cycles

to special values of L-functions. One application we have is to the case of modular

curves. Beilinson [Bĕı84] constructed a cycle in the group H3
M(X0(N) ×X0(N),Q(2))

and showed that its regulator is related to a special value of the L-function. We construct

the extension of MHS coming from the fundamental group which corresponds to the

regulator of the image of this cycle in the Jacobian of X0(N). In other words, this is

the projection on to the sub-motive ∧2H1(C) of ⊗2H1(C).

Since the mixed Hodge structure associated to the fundamental group is related to

iterated integrals we also get an expression for the regulator as an iterated integral. In a

subsequent paper we apply this in the case of Fermat curves to get an explicit expression

for the regulator in terms of hypergeometric functions analogous to the works of Otsubo

[Ots12],[Ots11].
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Darmon-Rotger-Sols [DRS12] have used the modified diagonal cycle to construct

points on Jacobians of the curves and used the iterated integral approach to find a

formula for the Abel-Jacobi image of these points. Starting with Bloch [Blo84] and later

Collino [Col97] and Colombo [Col02] it has been known that these null homologous cycles

degenerate to higher Chow cycles on related varieties. Recently Iyer and Müller-Stach

[IMS14] have shown that the modified diagonal cycle degenerates to the kind of cycles

we consider in some special cases. This degeneration can be understood from the point

of view of extensions and we make a few remarks on that.

The thesis is organised as follows. In §2, we begin by recalling the definition of motivic

cohomology, Deligne cohomology groups and the regulator map for a graded part of K1.

In §3, we discuss mixed Hodge structures (MHS). The main theme of this section is to

understand certain interesting extensions in the category of MHS. Here we discuss the

result of Pulte which explains the Abel-Jacobi image of the Ceresa cycles as an extension

class coming from fundamental group of C. In §4, we discuss the generalisation of the

result of Pulte by Colombo [Col02] which expresses the regulator image of Collino cycle

as an extension coming from fundamental group of an open curve. In the Appendix we

describe the Baer sum which is the addition in the Ext-group and a generalisation due

to Rabi [Rab01].



Notations and Abbreviations

� X := X(C), the set of C valued points of an algebraic variety X.

� H i(X) := The singular cohomology with Z coefficients.

� C := a smooth projective curve of genus g.

� Jac(C) := The Jacobian of C.

� MHS := category of integral mixed Hodge structures.

� H i
c(X) := The cohomology group of forms with compact support on X.

� JP := Ker(Zπ1(C,P ) −→ Z) and J•,P := Ker(Zπ1(C \ {•}, P ) −→ Z), where

• ∈ C \ {P}.

� H i
D(X,A(n)) := the Deligne cohomology group with coefficients in a Z module A

� H i
M(X,Z(n)) := the integral Motivic cohomology group of X.

� C \ γ := C \ U(γ) be the manifold with boundary C \ γ, where U(γ) is an open

tubular neighborhood of γ in C.

5





Chapter 2

Motivic cohomology, Deligne

cohomology and Regulator map

Beilinson formulated a set of conjectures relating the values at integers of L-functions

of an algebraic variety defined over a number field to algebraic invariants coming from

motivic cohomology groups of the variety. He defined a regulator map from motivic

cohomology groups to certain real vector spaces called Real Deligne cohomology groups.

He then conjectured that the image of the regulator map is a full sub-lattice of this space.

Further, he conjectured that the covolume of this lattice is related to the first non-zero

value of the Taylor expansion of the L-function. Beilinson conjectures on special values

of L-function are discussed in the first chapter of the book [Sch88]. However, as we are

not going to address the conjectures directly we will describe the objects only over C,

though much of what we do can be done over number field. In this section we introduce

the objects involved especially in the particular case of curves and related objects.

2.1 Motivic cohomology

Let X be a smooth projective variety defined over C and Ki(X) be the ith higher

algebraic K-group introduced by Quillen [Qui10]. The motivic cohomology groups of X

are defined to be, for integer n ≥ 0,

H2n−1
M (X,Z(n)) := K1(X)(n),

7



8 Chapter 2. Motivic cohomology, Deligne cohomology and Regulator map

where K1(X)(n) is the Adams eigenspace of weight n [Sch88]. This has the following

alternative description. Let Zi(X) be the free abelian group generated by irreducible

subvarieties of X of codimension i. Let Z be an irreducible subvariety of codimension

n − 1 in X. Let j : Z̃ → Z be a normalization of Z. Let kZ be the field of rational

functions on Z and k∗Z be the set of all nonzero elements of kZ . Let us denote divZ(f) :=

j∗divZ̃(f) ∈ Zn(X). Then one has

H2n−1
M (X,Z(n)) :=

Ker

( ⊕
Z∈Zn−1(X)

k∗Z
⊕divZ(f)−→ Zn(X)

)

Im

(
K2(X)

T−→
⊕

Z∈Zn−1(X)

k∗Z

) ,

where T is the Tame symbol map. An element of the above group can be represented by

Z =
∑t

i=1(Zi, fi) such that Zi ∈ Zn−1(X) and fi ∈ k(Zi)
∗ such that

∑t
i=1 divZi(fi) = 0.

Beilinson defined motivic cohomology groups as a group of extensions in the conjec-

tured category MMQ of mixed motives [Bĕı87]. In particular one expects

ExtMMQ
(Q(−n), hi−1(X)) 'H i

M(X,Q(n)) for 2n 6= i

'CHn
hom(X)Q for 2n = i.

There are various categories of mixed motives constructed by Levine [Lev13], Deligne-

Jannsen. Thus an element in the motivic cohomology group can be interpreted as an

extension class in those respective categories. The regulator map which we discuss here

is the realisation of that extension class in the category of Mixed Hodge Structures.

2.1.1 Elements in the motivic cohomology group H2g−1
M (X,Z(g))

Let C be a smooth projective curve of genus g over C. Let X = Jac(C) be its Jacobian.

In this section we will construct an element ZQR,P ∈ H2g−1
M (X,Z(g)) under the added

assumption that there exist two distinct points Q, R ∈ C and a function fQR with

div(fQR) = N(Q−R)

for some integer N . To determine the function precisely we have to choose another

distinct point P ∈ C and require that fQR(P ) = 1.
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The first examples of such curves and functions are hyperelliptic curves. In this case

the element was constructed by Collino [Col97]. Other examples of curves and functions

are modular curves with the points being cusps ([Man72]) and Fermat curves with the

points being the ‘trivial solutions’ of Fermats Last Theorem.

Let CQ be the image of the map iQ : C → Jac(C) defined by x→ x−Q and CR be

the image of the map iR : C → Jac(C) defined by x → R − x. Let fQ, fR denote the

function fQR considered as a function on CQ and CR respectively.

Consider the cycle in Jac(C) given by

ZQR,P := (CQ, fQ) + (CR, fR) (2.1.1)

divCQ(fQ) + divCR(fR) = N(0)−N(R−Q)−N(0) +N(R−Q) = 0 (2.1.2)

This implies that ZQR,P gives an element of H2g−1
M (Jac(C),Z(g)). Consider the natural

map

η : C × C → Jac(C)

(x, y) 7→ (x− y). (2.1.3)

It induces a functorial homomorphism

η∗ : H3
M(C × C,Z(2))→ H2g−1

M (Jac(C),Z(g)).

Let us define the element

Z∆QR,P := (C ×Q, 1/fQ) + (∆, f∆) + (R× C, 1/fR), (2.1.4)

in H3
M(C×C,Z(2)). Bloch studied Z∆QR,P when C = X0(37), with Q, R cusps. In fact

Z∆QR,P maps to Collino cycle –

η∗(Z∆QR,P ) = ZQR,P ∈ H2g−1
M (Jac(C),Z(g)).
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2.2 Deligne cohomology

Let X = Jac(C). The Deligne cohomology group of X with Z coefficients is defined

to be the hypercohomology of certain complex, known as Deligne complex (Page 7, in

[Sch88]). In the case, one has the following identification

H2g−1
D (X,Z(g)) ∼=

H2g−2(X,C)

F gH2g−2(X,C) +H2g−2(X,Z(g))

∼=
(F 1H2(X,C))∗

H2(X,Z(2))
,

where second isomorphism is induced by Poincaré duality.

The Deligne cohomology with Z coefficients is thus a generalised complex torus.

In other words it is the C-vector space of linear functionals on the cohomology group

F 1H2(X) modulo the lattice H2(X,Z(2)). In next chapter we identify the Deligne co-

homology group with the group of Extensions of Mixed Hodge structures. The Deligne

cohomology with R coefficients is obtained by considering R −MHSs. Deligne coho-

mology with R coefficients is

H2g−1
D (X,R(g)) =

(F 1H2(X,C))∗

H2(X,R(2))
∼= (F 1H2(X,R(1)))∗.

2.3 Regulator Maps

The Regulator map is a map from motivic cohomology group to Deligne cohomology

group. Conjecturally an element Z ∈ H2g−1
M (X,Z(g)) corresponds to an extension in

MMQ. The Regulator map is the realisation of such extensions in the category of MHSs.

In other words for any Z one obtains an extension of MHS. By the Carlson isomorphism

(see Theorem 3.2.1) such an extension class can be evaluated as a functional on the

cohomology group F 1 ∧2 H1(C). An example of such extension class was discussed in

§6 in [KLMS06].

Beilinson defined a regulator map

regZ : H2n−1
M (X,Z(n)) −→ H2n−1

D (X,Z(n)).
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In the particular case when n = g, the motivic cohomology group is H2g−1
M (X,Z(g)).

One has the following explicit formula: Let

Z =
∑
i

(Ci, fi)

be an element of the motivic cohomology group, where Ci and fi satisfy the conditions

(2.1.2). Let [0,∞] be the path from 0 to∞ along the real axis in P1(C). Let µi : C̃i → Ci

be a resolution of singularities. We can think of fi as a map from C̃i to P1. Let

γi = µi∗(f
−1
i [0,∞]).

From the co-cycle condition and the fact that H2(X) does not have torsion, we have

i=t∑
i=1

γi = ∂(D),

for some 2-cycle D on X. The regulator map is defined to be

regZ(Z)(ω) =

(
i=t∑
i=1

∫
Ci\γi

log(fi)ω + 2πi

∫
D
ω

)
. (2.3.1)

where ω ∈ F 1H2(X,C). Here Ci \γi is the Riemann surface with boundary obtained by

removing an open tubular neighbourhood of γi from Ci. It is a closed subset of Ci with

the structure of a manifold with boundary. The boundary ∂(Ci \ γi) is made up of two

copies of γi with opposite orientation.

When C is a hyperelliptic curve and Z is Collino’s element constructed above,

Colombo [Col02] constructed an extension of mixed Hodge structures coming from the

fundamental group of C which corresponds to the regulator of Z. In this thesis we

generalise her construction to get an extension class corresponding to the more general

elements we have discussed above.





Chapter 3

Extensions of Mixed Hodge

Structures and the Regulator

map

Let X be a smooth projective variety defined over C. Its cohomology group H i(X)

with complex coefficients has a bidegree decomposition known as Hodge decomposition.

More generally Deligne showed in [Del71] that cohomology groups (modulo the torsion

elements) of a variety possess a Mixed Hodge structure and natural maps between them

are example of morphisms of MHS. Mixed Hodge Structures form an abelian category

with tensor product which contains the category of pure Hodge structures as a full

subcategory. Certain extensions in the category of MHS are of our interest. The image

of a null homologous cycle under the Abel Jacobi maps gives an example of such an

extension. More generally the image of an element of a motivic cohomology group

under the regulator map gives examples of such extensions. The Carlson representative

can be used to understand such extensions. In this chapter we discuss such objects.

3.1 Mixed Hodge Structures

We recall some definitions and constructions due to Griffiths and Deligne. The book of

Voisin is a good reference [Voi02].

13



14 Chapter 3. Extensions of Mixed Hodge Structures and the Regulator map

Definition 3.1.1. A integral pure Hodge structure of weight l is a pair V = (VZ, F
•)

where VZ is a Z-module and F • is a decreasing filtration on VC = VZ ⊗ C, called the

Hodge filtration, such that for all p, q ∈ Z with p+ q = l + 1,

F pVC ⊕ F qVC = VC,

F pVC ∩ F qVC = ∅,

where − indicates complex conjugation.

An integral mixed Hodge structure (MHS) is a triple V = (VZ,W•, F
•) where • ∈ Z

such that

� VZ is an integral lattice.

� W• is an increasing filtration on VQ called the weight filtration.

� F • is a decreasing filtration on VC called the Hodge filtration.

� The weight and Hodge filtration are compatible in the sense that F • induces a pure

Hodge structure of weight l on each of the graded pieces GrWl = Wl/Wl−1 ⊗ C.

Let V ′ = (V ′Z,W•, F
•) be another object in the category of MHS. Then a morphism

of weight 2m of mixed Hodge structures is a map φ : V −→ V ′ such that

� φ : VZ −→ V ′Z is a group homomorphism.

� φ(Fp VC) ⊂ Fp+m V ′C.

� φ(WnV ) ⊂Wn+2mV
′.

Let us formulate few properties of the category of MHS.

� MHS on Hom: For two MHS V1, V2, Hom(V1, V2) has a natural Mixed Hodge

structure. The Hodge filtration F • is defined by

F p Hom(V1, V2)C = {f ∈ Hom(V1, V2)C : f(F iV1C) ⊂ F p+iV2C, i ≥ 0}.
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Weight filtration W• is defined by

Wp Hom(V1, V2)Q = {f ∈ Hom(V1, V2)Q : f(WiV1Q) ⊂Wp+iV2Q, for all i ≥ 0}.

� Direct Sum: Let V1 and V2 be two MHS. Their direct sum V = V1 ⊕ V2 is a MHS

with WmV = WmV1 ⊕WmV2 and Fm(VC) = FmV1C ⊕ FmV2C.

� Tensor product: For two MHS V1 and V2, Hodge and weight filtration the tensor

product V1 ⊗ V2 is defined by

F p(V1 ⊗ V2)C = ⊕iF iV1C ⊗ F p−iV2C

Wp (V1 ⊗ V2) = ⊕iWiV1Q ⊗Wp−iV2Q.

� If f is a morphism of MHS, then Ker f and Coker f are also have a mixed Hodge

structure as sub and quotient groups with induced filtrations. Deligne has shown

in [Del74] that MHS on the cokernel of the kernel coincides with the MHS on the

kernel of the cokernel. Hence MHS form an abelian category.

3.1.1 Examples of MHS

Let X be a variety defined over C. The ith cohomology group of X, H i(X), is endowed

with a functorial mixed Hodge structure. That has weight filtration of length 2i

{0} = W−1 ⊂W0 ⊂ ... ⊂W2i = H i(X)

where GrWk is a pure Hodge structure of weight k. When X is smooth and projective

then Wl = 0 for l 6= i and Wi = H i(X). In other words H i(X) has a pure Hodge

structure of weight i. If X is smooth but not necessarily projective then Wl = 0 for l < i

and for X projective but not necessarily smooth then Wl = H i(X) for l ≥ i.

Another source of MHS are the homotopy groups of a complex algebraic variety

[Hai87]. A first non trivial case in this direction is MHS on the subquotients of Zπ1(X,P )

by its augmentation ideals where P be a fixed closed point in X(C). Let

JP = Ker [Zπ1(X,P )→ Z]
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be the augmentation ideal of the group-ring Zπ1(X(C), P ). Let γ : [0, 1] → X be

piecewise smooth path on X and ωi are smooth C-valued 1-form on X. The iterated

integral of length n of ω1ω2..ωn is defined by

∫
γ
ω1ω2...ωn =

∫
...

∫
0≤t1≤t2≤...≤tn=1

f1(t1)..fi(ti)..fn(tn)dt1dt2...dtn,

where γ∗(ωi) = fi(ti)dti. An iterated integral of length ≤ n is linear combination of

iterated integrals of length l ≤ n. It is a functional on the space of paths on X(C). An

iterated integral is said to be a homotopy functional if it depends only on the homotopy

class of a path. Let us recall a few properties of iterated integrals.

Lemma 3.1.2. Let ω1 and ω2 be smooth 1-forms on X and α, β be two piecewise smooth

paths on X with α(1) = β(0). Then

1.
∫
α.β ω1.ω2 =

∫
α ω1.ω2 +

∫
β ω1.ω2 +

∫
α ω1.

∫
β ω2

2.
∫
α ω1.ω2 +

∫
α ω2.ω1 =

∫
α ω1.

∫
α ω2

3.
∫
α dfω1 =

∫
α fω1 − f(α(0))

∫
α ω1

4.
∫
α ω1df = f(α(1))

∫
α ω −

∫
α fω1

Proof. Proposition 1.3 in [Hai87].

Let H0(Bs(X,P )) be the C vector space generated by iterated integrals which are

homotopy functionals of length less than or equal to s. Chen’s π1-de Rham theorem

states the following-

Theorem 3.1.3. [Hai87] For s ≥ 0, there is an isomorphism

πDR : H0(Bs(X), P )) −→ HomZ(Zπ1(X,P )/Js+1
P ,C).

Proof. Theorem 4.1 in [Hai87].

In [Hai87] Hain defined a canonical mixed Hodge structure on H0(Bs(X), P ). Hence

from the above isomorphism, one has.
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Theorem 3.1.4. If X is an algebraic variety over C and P ∈ X, there is a MHS on

Zπ1(X,P )/Js+1
P .

Proof. Theorem (5.1) in [Hai87].

3.2 Group of extensions of Mixed Hodge Structures

An extension H of B by A in the category MHS is represented by a short exact sequence

0→ A→ H → B → 0,

where A,B and H are Mixed Hodge structures. An extension is called separated if

the highest weight of A is less than the lowest weight of B. Let Ext1
MHS(B,A) be the

set of congruence classes of separated extensions of B by A. It is an abelian group,

where addition is defined by Baer Sum, discussed in the Appendix. In [Car80], Carlson

showed that Ext1
MHS(B,A) has an alternative description which is more amenable to

computation.

For a mixed Hodge structure V of negative weight, let

J0(V ) :=
VC

F 0VC + VZ
.

When A and B are separated extensions of MHS, Hom(B,A) is of negative weight.

Carlson showed

Theorem 3.2.1. [Car80] Let A and B be two MHS such that the highest weight of A

is less than the lowest weight of B. Then the group

Ext1
MHS(B,A) ∼= J0 Hom(B,A),

Proof. See Proposition 2 in [Car80].

From this one can see that the Deligne cohomology group H2g−1
D (Jac(C),Z(g)) ∼=

Ext1
MHS(Z(−2),∧2H1(C)).
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3.3 Examples from Geometry

In this section we discuss the regulator map in two situations. The first is the Abel-Jacobi

map from K0(Jac(C))g−1 and the second is the higher regulator map from K1(Jac(C)g.

3.3.1 Abel-Jacobi map as an extension of MHS

Let P ∈ C. Consider the map iP : C → Jac(C), defined by x → x − P . Let CP be

the image of C. Let CP be the image of CP under the involution (−1)∗ induced by

multiplication by −1 on Jac(C). (−1)∗ acts by the identity on H2k(Jac(C)). Hence, for

two distinct points P and Q, the cycle CP −CQ is a codimension (g − 1) homologically

trivial cycle. If P = Q such cycles are called Ceresa cycles.

Let JP be the augmentation ideal as in Section 3.1.1. Consider the extension

e3
P : 0→ (JP /J

2
P )∗ → (JP /J

3
P )∗ → (J2

P /J
3
P )∗ → 0.

One knows (JP /J
2
P ) = H1(C,Z). Let K = Ker(⊗2H1(C)

∪−→ H2(C)). It turns out

(Section 6 in [Hai87]) (J2
P /J

3
P )∗ = K as MHS. Both H1(C) and K do not depend on

the base point P . Hence the extension e3
P determines a class m3

P ∈ Ext1
MHS(K,H1(C)).

Generalising a result of Harris, Pulte obtained an expression for the Abel-Jacobi image

of the Ceresa cycle in terms of the class m3
P .

Theorem 3.3.1. [Pul88] Let C be a smooth projective curve of genus g. Let P and Q be

points on C and CP − CQ be null homologous cycles defined above. Then the extension

class corresponding to the image of CP − CQ under the Abel-Jacobi map is given by

m3
P +m3

Q.

CHg−1
hom(JacC)

Aj−→ J0H3(Jac(C))
Φ−→ Ext1

MHS(K,H1(C))

CP − CQ −→ Aj(CP − CQ) −→ m3
P +m3

Q.

Proof. See Theorem 3.9 and 4.9 in [Pul88].

In particular, if P = Q the Ceresa cycle CP − CP corresponds to the extension

class 2m3
P . As an application, if C is a Fermat curve of degree ≥ 5, Otsubo used this
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theorem to express the Abel-Jacobi image of certain Ceresa cycles in terms of values of

hypergeometric series (Theorem 4.8, 5.3 [Ots12]).

3.3.2 Beilinson Regulators as Extensions of Mixed Hodge Structures

Collino [Col97] constructed a related cycle in the group H2g−1
M (Jac(C),Z(g)), where C is

a hyper-elliptic curve of genus g. Colombo [Col02] extended Pulte’s result to this cycle

as follows. Collino’s cycle depends on a choice of Weierstrass points Q and R on the

hyper-elliptic curve.

Let us consider C \ •, where • ∈ {Q,R} and J•,P := ker{Z[π1(C \ {•}, P )] → Z}.

For r ≥ 3 one has extensions,

er•P : 0→ (J•,P /J
r−1
•,P )∗ → (J•,P /J

r
•,P )∗ → (Jr−1

•,P /J
r
•,P )∗ → 0.

Let

mr
•P ∈ Ext1

MHS

(
(Jr−1
•,P /J

r
•,P )∗), (J•,P /J

r−1
•,P )∗

)
be the extension class associated to the extension er•P . One knows (Jr−1

•,P /J
r
•,P )∗ =

⊗r−1H1(C) so it does not depend on the base point P or the points Q and R. However,

(J•,P /J
r
•,P )∗ could. In the case r = 4 when C is hyperelliptic, since (J•,P /J

3
•,P )∗ is

related to the class of the Ceresa cycle. We know from [Col02] Proposition 2.1 that this

class is 2 − torsion. Hence the extension splits rationally. Hence it turns out that the

classes m4
QP and m4

RP lie in Ext1
MHS(⊗3H1(C),⊗2H1(C) ⊕ H1(C)). Colombo shows

that the class of the Collino cycle is given by the extension

e4
QP 	B e4

RP ,

where 	B denotes the Baer difference of the two extensions.

In general, the class of the Ceresa cycle need not be torsion. For instance, if C is a

modular curve or a Fermat curve, one has examples when it is known to be non-torsion.

Under some conditions one can still construct a cycle similar to Collino’s cycle and we

extend the result of Colombo to this more general case. In order to do this, we need
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to use the work of Kaenders in which he describes the extension class corresponding to

(J•,P /J
3
•,P )∗.

Consider the extension e3
•P . From Hain, one has that (J2

•,P /J
3
•,P )∗ = Ker(⊗2H1(C \

{•}) ∪→ H2(C \ {•})). One has H1(C \ {•}) = H1(C). Since C \ {•} is non-compact,

H2(C \ {•}) = 0, so (J2
•,P /J

3
•,P )∗ = ⊗2H1(C). Hence the extension class m3

•P lies in

Ext1
MHS(⊗2H1(C), H1(C)).

As above K is the kernel of the cup product map ⊗2H1(C)→ H2(C) = Z(−1). The

exact sequence of Hodge structures

0→ K → ⊗2H1(C)
∪→ Z(−1)→ 0

splits over Q but not over Z. This happens as follows: There is a bilinear form [Kae01]

b : ⊗2H1(C)×⊗2H1(C) −→ Z

defined by

b(x1 ⊗ x2, y1 ⊗ y2) = (x1 ∪ y2) · (x2 ∪ y1).

Let S denote the orthogonal complement of K in ⊗2H1(C) with respect to this bilinear

form. Then, under the cup product S projects to 2gZ(−1) where g is the genus of C

and ⊗2H1(C)Q = KQ ⊕ SQ as Q-Hodge structures.

It is well known that Ext1
MHS(S,H1(C)) = Ext1

MHS(Z(−1), H1(C)) = Pic0(C).

From the work of Hain and Pulte described in the previous section, the other term in

Ext1
MHS(K,H1(C)) is the class m3

P of the Ceresa cycle or the extension e3
P . Kaenders

and independently Rabi, have the following explicit description of the class m3
•P .

Proposition 3.3.2. The image of the class m3
•P corresponding to the extension e3

•P

with respect to the above splitting is given by

Ext1
MHS(⊗2H1(C), H1(C))

φ→ Ext1
MHS(KQ, H

1(C))× Ext1
MHS(Q(−1), H1(C))

m3
•P → (m3

P , 2g • −2P − κC),

where κC is the Canonical divisor of C.

Proof. See [Kae01] Theorem 1.2.
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Let C, Q, R, P and fQR,P as in the section 2.1.1. Then one has m3
QP − m3

RP =

(0, 2g(Q−R)). As Q−R is torsion in Jac(C), this is torsion. It means the mixed Hodge

structure m3
QP −m3

RP splits rationally. Hence

(m3
QP −m3

RP ) = H1(C)Q ⊕⊗2H1(C)Q,

Suppose we are able to construct an extension in MHS

e4
QR,P : 0→ (JQP /J

3
QP )∗ 	 (JRP /J

3
RP )∗ → A→ ⊗3H1(C)→ 0.

Then projecting e4
QR,P to H1(C) will give a class in Ext1

MHS(⊗3H1(C), H1(C)). Then

a standard pull back and push forward argument along the lines of Colombo ([Col02])

will produce a class

ε4QR,P ∈ Ext1
MHS(Q(−2),∧2H1(C)).

It turns out that this class is related to the regulator of the cycle ZQR,P . In the next

chapter we explain how one can do this.





Chapter 4

An Explicit Formula for the

Regulator map

Let C, Q, R, P , fQR and ZQR,P be as in § 2.1.1. In this chapter we prove our main

theorem which relates the regulator of ZQR,P with an extension class coming from the

fundamental groups of the curves C \Q and C \R. We have the following theorem.

Theorem 4.0.1. Let C be a smooth projective curve of genus g over C. Let P , Q and R

be three distinct points such that there is a function fQR with div(fQR) = NQ−NR for

some integer N and fQR(P ) = 1. Let ZQR,P be the element of the motivic cohomology

group H2g−1
M (Jac(C),Z(g)) constructed in § 2.1.1 ([Blo00]). There exists an extension

class ε4QR,P in Ext1
MHS(Z(−2),∧2H1(C)) constructed from the mixed Hodge structures

associated to the fundamental groups π1(C\Q,P ) and π1(C\R,P ) such that

ε4QR,P = (2g + 1)N regZ(ZQR)

in Ext1
MHS(Z(−2),∧2H1(C)).

4.1 The regulator of ZQR,P

Let ZQR,P be the element of H2g−1
M (Jac(C),Z(g)) constructed in § 2.1.1. In this section

we obtain a more explicit description of the regulator map (2.3.1) which will allow us to

23
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relate it to an extension class. To that end we obtain a more explicit description of the

2-cycle D.

Recall that fQR : C → P1 is a finite map of degree N . Let [0,∞] be the positive real

line in P1 and γ = f−1
QR[0,∞]. Thus γ is the union of N paths γi which lie in different

sheets having Q and R in common, where 1 ≤ i ≤ N . Let fQ, fR be as in §2.1.1. Let γQ

and Rγ be the corresponding paths on CQ and CR respectively. From co-cycle condition

(2.1.2) one has γ−Q .Rγ
− = ∂(D), where α−(t) is the inverse of the path α : [0, 1] → C.

It is defined by α−(t) := α(1 − t). We parametrize γ : [0, 1] → [0,∞] ⊂ C so that

fQR(γ(t)) = t
1−t .

Lemma 4.1.1. Let a(s, t) = t and b(s, t) =
t(1− s)

1− s(1− t)
, where s, t ∈ [0, 1]. Define

Fi : [0, 1]× [0, 1]→ Jac(C) by

Fi(s, t) = γi(a(s, t))− γi(b(s, t)),

for 1 ≤ i ≤ N and let Di = Im(Fi).

Then ∂(Di) = γi−Q .Rγ
i−. In particular if D = ∪Ni=1Di then ∂(D) = γ−Q .Rγ

−.

Proof. The oriented boundary of Di is

∂(Di) = F (0, t) ∪ Fi(s, 1) ∪ Fi(1, 1− t) ∪ Fi(1− s, 0).

Restricting Fi to the boundary

Fi(0, t) ={γi(t)− γi(t)} = 0

Fi(s, 1) ={γi(1)− γi(1− s)} = (Rγ
i)−

Fi(1, 1− t) ={γi(1− t)− γi(0)} = γi−Q

Fi(1− s, 0) ={γi(0)− γi(0)} = 0.

Therefore,

∂(Di) = γi−Q .(Rγ
i)−.

Hence the proof follows.
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Lemma 4.1.2. Let φ and ψ be harmonic 1-forms on Jac(C) and Di be a disc as in the

above lemma. Then ∫
Di

φ ∧ ψ =

∫
γi−Q

φψ −
∫
Rγi−

ψφ,

where the right hand side is an iterated integral.

Proof. Proof is similar to Lemma 1.3, [Col02].

Combining Lemma 4.1.1 and 4.1.2, expression (2.3.1) reduces to the following theo-

rem.

Theorem 4.1.3. Let ZQR,P be the element of H2g−1
M (Jac(C),Z(g)) and φ, ψ are two

harmonic 1-forms in Jac(C) with ψ holomorphic and fQR = f . Then

regZ(ZQR,P )(φ ∧ ψ) = 2

∫
C\γ

log(f)φ ∧ ψ + 2πi

∫
γ
(φψ − ψφ)

Proof. Since φ and ψ are harmonic forms on Jac(C), they are translation invariant.

Further, (−1)∗ acts by (−1) on 1-forms. Hence φ ∧ ψ is invariant.

Since γQ is a translate of γ and γR is a translate followed by the action of (−1), the

integral in Lemma 4.1.2 becomes

∫
Di

φ ∧ ψ =

∫
γi−Q

φψ −
∫
Rγi−

ψφ =

∫
γi−Q

=

∫
γi

(φψ − ψφ).

Taking sum over all Di, we obtain the following iterated integral expression

∫
D
φ ∧ ψ =

∫
γ
(φψ − ψφ)

Recall that (2.3.1) states

regZ(ZQR,P )(φ ∧ ψ) =

(∫
CR

log(fR)φ ∧ ψ +

∫
CQ

log(fQ)φ ∧ ψ + 2πi

∫
D
φ ∧ ψ

)
.

Since φ ∧ ψ is also invariant under translation and (−1)∗, this expression becomes

regZ(ZQR,P )(φ ∧ ψ) =

(
2

∫
C\γ

log(f)φ ∧ ψ + 2πi

∫
γ
(φψ − ψφ).

)
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4.1.1 Elements in Ext1
MHS(Z(−2),∧2H1(C))

As we observed, in order to get an extension class similar to Colombo, the main ob-

struction is one cannot add extensions lying in different Ext groups. In order to do

this we will use a homological algebra lemma which can be found in [Rab01]. Then a

standard pushforward and pullback argument will produce the desired extension class

ε4QR,P ∈ Ext1
MHS(Z(−2),∧2H1(C)).

Recall that for • ∈ {Q,R}, we have extension of MHS

e3
•P : 0→ (J•P /J

2
•P )∗ → (J•P /J

3
•P )∗ → ⊗2H1(C)→ 0,

e4
•P : 0→ (J•P /J

3
•P )∗ → (J•P /J

4
•P )∗ → ⊗3H1(C)→ 0.

Let us consider the following diagram constructed from above extensions with all the

rows and columns are exact and • ∈ {Q,R}.

0

��

0

��
0 // H1(C)

��

// H1(C) //

��

0

��
0 // (J•P /J

3
•P )∗

π•

��

// (J•P /J
4
•P )∗ //

��

⊗3H1(C)

��

// 0

0 // ⊗2H1(C)

��

// (J•P /J
4
•P )∗

H1(C)
//

��

⊗3H1(C) //

��

0

0 0 0



4.1. The regulator of ZQR,P 27

Now using Lemma (5.1.1) in the appendix we obtain the following diagram with exact

rows and columns.

0

��
⊗2H1(C)

��
0 // B1

l // B2
π // F

��

// 0

⊗3H1(C)

��
0 ,

where

B1 =(JQP /J
3
QP )∗ 	B (JRP /J

3
RP )∗,

B2 =(JQP /J
4
QP )∗	̃B(JRP /J

4
RP )∗

and

F =(JQP /J
4
QP )∗	̃B(JRP /J

4
RP )∗/(JQP /J

3
QP )∗ 	B (JRP /J

3
RP )∗

=
(JQP /J

4
QP )∗

H1(C)
	B

(JRP /J
4
RP )∗

H1(C)

and 	̃B is generalised Baer sum defined in the Appendix.

Let m• ∈ Ext1
MHS(⊗3H1(C),⊗2H1(C)) be the extension class obtained from the

push foroward of the extension e4
•P by π•. From Corollary 5.1.2 in Appendix the exten-

sion class mQR corresponds to the extension

0→ ⊗2H1(C)→ F → ⊗3H1(C)→ 0.

where

mQR = mQ −mR,

Lemma 4.1.4. mQR is N -torsion in Ext(⊗3H1(C),⊗2H1(C)). Namely,

N · F ∼= ⊗2H1(C)⊕⊗3H1(C) as MHS.
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Proof. From Rabi [Rab01], Corollary 3.3, one has that the classmQ andmR ∈ Ext(⊗3H1(C),⊗2H1(C))

are represented by extension whose middle term are

H23
Q,P = H1(C)⊗ e3

QP ⊕B e3
QP ⊗H1(C)

and

H23
R,P = H1(C)⊗ e3

RP ⊕B e3
RP ⊗H1(C).

Taking their difference gives

H23
R,P 	B H23

Q,P = H1(C)⊗ (e3
R,P 	B e3

Q,P )⊕B (e3
RP 	B e3

QP )⊗H1(C)

From Lemma 3.3.2 we have
[
e3
R,P 	B e3

Q,P

]
= (0, 2g(Q−R)) ∈ ExtMHS(⊗2H1(C), H1(C)).

As Q−R is N -torsion, we have

N · F = N · (H23
R,P 	B H23

Q,P ) ∼= H1(C)⊕⊗2H1(C).

The middle term B1 corresponds to the extension e3
QR,P = e3

Q 	B e3
R which is N

torsion by Proposition 3.3.2. Thus we have the following extension

Ne4
QR,P : 0→ ⊗2H1(C)⊕H1(C)→ B2 → ⊗3H1(C)⊕⊗2H1(C)→ 0.

In other words, the extension class corresponding to the Ne4
QR,P is

[Ne4
QR,P ] ∈Ext1

MHS

(
⊗3H1(C)⊕⊗2H1(C),⊗2H1(C)⊕H1(C)

)
=
∏
i,j

Ext1
MHS(⊗iH1(C),⊗jH1(C)),

where i ∈ {2, 3} and j ∈ {1, 2}. Projecting to the Kunneth component we have

[Ne4
QR,P ] ∈ Ext1

MHS

(
⊗3H1(C), H1(C)

)
.
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We use the same notation e4
QR,P for the projection. Let Ω ∈ ⊗2H1(C) be a polariazation

which induces a monomorphism

JΩ : H1(C)(−1)→ ⊗3H1(C).

Pulling back the extension under the morphism JΩ we get

N [J∗Ωe
4
QR,P ] ∈ Ext1

MHS(H1(C)(−1), H1(C)).

Tensoring with H1(C) we get the class

N [H1(C)⊗ J∗Ωe4
QR,P ] ∈ Ext1

MHS(⊗2H1(C)(−1),⊗2H1(C)).

Let β be the section of the cup product map

β : Z(−1)→ ⊗2H1(C),

and i : ∧2H1(C) → ⊗2H1(C) be the inclusion map. Pulling back by the map i and

pushing forward by β we get

ε4QR,P = i∗β∗([NJ
∗
Ωe

4
QR,P ⊗H1(C)]) ∈ Ext1

MHS(Z(−2),∧2H1(C)).

In the following section we will compute the Carlson representative of this extension

class ε4QR,P . We will conclude by comparing the expression for the regulator of ZQR,P

and and the Carlson representative of the class ε4QR,P .

4.2 Carlson representative of the extension ε4QR,P

This section is an application of the Theorem 3.2.1. It identifies an extension group in

the category of mixed Hodge structures with a generalised torus. In order to relate our

extension class with the regulator of the motivic cycle we need to compute its image

under this isomorphism. This is similar to the case of the Abel-Jacobi image of the

Ceresa cycle.
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We first describe the Carlson representative of the extension

e4
QR,P ∈ ExtMHS(⊗3H1(C), H1(C)).

From the Theorem 3.1.2, this is an element of

J0(Hom(⊗3H1(C), H1(C)) =
Hom(⊗3H1(C)C, H

1(C)C)

F 0 Hom(⊗3H1(C)C, H1(C)C)⊕Hom(⊗3H1(C), H1(C))
.

Thus, given an element of ⊗3H1(C)C we get an element of H1(C)C which we can think

of as a functional on H1(C)C.

Let CQR denote the open curve C \ {Q,R}. In fact we will describe the functional as

an iterated integral made up of forms in H1(CQR)C and will naturally be a functional

on H1(CQR). We have a natural inclusion

i : CQR ↪→ C

which induces i∗ on homology and i∗ on cohomology. In order to consider the iterated

integral as a functional on H1(C) we have to make a choice of an embedding H1(C) ↪→

H1(CQR) which splits the map i∗. There are many ways of doing this, but for our formula

to work, we need to make a particular choice. In this section we first construct a ‘natural’

splitting of the map i∗ – namely a subgroup of H1(CQR) which maps isomorphically to

H1(C) under i∗.

Consider the group π1(CQR;P ). This is a free group on 2g + 1 generators. The

generators have the following description. The fundamental polygon of C is a 4g sided

polygon with the edges ei and ei+g identified. The end points of the edges are identified

and so they give 2g loops α′i in CQR which we consider as loops based at P . Let βQ

be a small simple loop around Q based at P . Then π1(CQR;P ) =< α′1, . . . , α
′
2g, βQ >.

Without loss of generality we assume that f is unramified at P .

The map f : C → P1 restricts to give f : CQR → P1 − {0,∞} and this induces

f∗ : π1(CQR;P ) −→ π1(P1 − {0,∞}; 1).

One knows π1(P1 − {0,∞}) ' Z. Let β0 denote the generator. Let H = Ker(f∗).

f∗(π1(CQR;P )) is a subgroup of Z. In a deleted neighbourhood of 0 the map looks like
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z → zN where N is the degree. Hence the loop βQ is taken to Nβ0. Let f∗(α
′
i) = miβ0

for some mi ∈ Z. Then αi = α′i
Nβ−miQ satisfies f∗(αi) = 0. Let G denote the subgroup

of H = ker(f∗) generated by the {αi}.

The inclusion map i also induces i∗ on the fundamental groups. Since i∗(βQ) = 0,

i∗(αi) = i∗(α
′
i)
N . The fundamental group of C is π1(C;P ) = {< i∗(α

′
1), . . . , i∗(α

′
2g) > /∏

[i∗(α
′
i), i∗(α

′
i+g)] = 0}. Hence one has a map G → π1(C;P ) whose image is the

subgroup generated by the N th-powers of α′i.

Lemma 4.2.1. The abelianization of G is isomorphic to the subgroup of index N2g of

the abelianization of π1(C;P ).

G/[G,G] ' N · π1(C)/[π1(C), π1(C)],

where N · denotes multiplication by N .

Proof. Let α =
∏
αbiai be a word in G. For a generator αi of G define

ordαi(α) =
∑
ai=i

bi

namely, the number of times αi appears in the word. Define

Ψ : G→ Z2g

Ψ(α) =
(
ordαi(α), . . . , ordα2g(α)

)
Let K = ker(Ψ). Clearly [G,G] ⊂ K. Further, the map Ψ factors through i∗ and is

surjective. We claim K = [G,G]. To see this, observe that if a, b ∈ G

ab ≡ ba (mod[G,G]).

Repeatedly applying this one can see that any word

α =
∏

αbiai ≡
2g∏
i=1

α
ordαi (α)
i mod([G,G]).
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In particular, if ordαi(α) = 0 for all i, α ∈ [G,G]. Hence K = [G,G]. Hence

G/[G,G] ' Z2g

The map i∗ takes αi to α′Ni . One has a similar map Ψ′ : π1(C;P ) → Z2g using α′i

instead of αi which shows that the abelianization of π1(C;P ) is Z2g as well. However,

under this map Ψ′(αi) = N and hence G/[G,G] is carried to the subgroup N · Z2g.

Multiplication by N is an isomorphism so the map

iN :=
1

N
◦ i∗ : G/[G,G] −→ π1(C)/[π1(C), π1(C)]

is an isomorphism between the two abelianizations.

Let V = VZ = G/[G,G]. The abelianization of the fundamental group of CQR is

H1(CQR) and so V is a subgroup of H1(CQR). The abelianization of π1(C) is H1(C).

Hence the map iN is an isomorphism between V and H1(C). Let jN : H1(C) −→ V be

the inverse isomorphism. This gives an embedding of H1(C) in H1(CQR). As discussed

above, the Carlson representative is a functional on H1(C). However, we will obtain a

functional on H1(CQR) which will be the Carlson representative of the extension when

considered as a functional on V .

Let [α] denote the homology class of a loop α. The collection {[α′i]} has the property

that their images {[i∗(α′i)]} in H1(C) form a symplectic basis. Since i∗([βQ]) = 0,

i∗([αi]) = Ni∗([α
′
i]). Hence under the isomorphism, iN ([αi]) = [i∗(α

′
i)]. Let {dxi} be

the dual basis of harmonic form in H1(C,C) satisfying
∫

[i∗(α′i)]
dxj = δij , where δij is the

Kronecker Delta function. With this choice of {[α′i]}s and {dxi}s, the volume form on

H2(C) can be expressed as follows. Let

c(i) =


1 if i ≤ g

−1 if i > g

and σ(i) = i+ c(i)g. The volume form is

g∑
i=1

c(i)dxi ∧ dxσ(i).
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From that one gets that a Poincaré dual of [α′i] is c(i)dxσ(i).

The cohomology group H1(CQR,C) is generated by the i∗(dxi) = dxi along with the

logarithmic form df
f = f∗(dzz ) where dz

z generates the cohomology group of H1(CP 1 −

{0,∞}).

Since we are dealing with the non-compact manifold CQR, recall that Poincaré duality

states that

H1
c (CQR) ' H1(CQR),

where H1
c (CQR) is the compactly supported cohomology of CQR. This group has

mixed Hodge structure determined by identifying it with relative cohomology group

H1(CQR, {Q,R}). Unlike H1(CQR) which has non trivial weight 1 and weight 2 pieces,

cohomology with compact support has weight 0 and weight 1 pieces and is covariant.

However

GrW1 H1
c (CQR)Q ' GrW1 H1(CQR)Q ' H1(C)Q

Here the first isomorphism is induced by identity and the second by i∗.

The space V determines a splitting of the Hodge structure on H1(CQR). The space

V ∗ of Poincaré duals of element of V is a subspace of H1
c (CQR) which determines a

splitting of the Hodge structure on H1
c (CQR). Further, V ∗ is isomorphic to H1(C).

Hence if η is a form in H1(C) it is cohomologous in CQR to a compactly supported form

in V ∗ ⊂ H1
c (CQR). One has

H1
c (VQR)Q = VQ ⊕Q · ωQ

where ωQ is a Poincaré dual of βQ. Q · ωQ ' Q(0). Note that

∫
[αj ]

ωQ =

∫
CQR

i∗(c(j)dxσ(j)) ∧ ωQ =

= −
∫
CQR

ωQ ∧ i∗(c(j)dxσ(j)) = −
∫
βQ

i∗(c(j)dxσ(j)) = −
∫
i∗([βQ])

c(j)dxσ(j) = 0

since i∗(βQ) = 0.

Further ∫
[αi]

i∗(dxj) =

∫
i∗([αi]

dxj =

∫
Ni∗([α′i])

dxj = Nδij .
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Hence the dual of [αi] is i∗(dxi)
N and under the dual map dxi is taken to dxi

N in V ∗ =

Hom(V,Z). Further, note that ∫
[αi]

df

f
= 0

since [αi] ∈ Ker(f∗).

From the calculation of Ω, a Poincaré dual of dxk
N is c(k)ασ(k). Finally

∫
CQR

dxk
N
∧ df
f

=

∫
c(k)ασ(k)

df

f
=

∫
f∗(c(k)ασ(k))

dz

z
= 0.

Hence dxk ∧ df
f is exact.

We now construct a cover of CQR which has the property that its homology group is

G/[G,G] and the form df
f is exact. Further, the loops αi lift to loops on this cover. We

do that as follows. Let u : X → CQR denote the universal cover of CQR. The group G

acts on X as a group of deck transformations. Let C̃ = X/G denote the quotient and

q : C̃ → CQR denote the covering map. This is a cover

q : (C̃, P̃ ) −→ (CQR, P ) (4.2.1)

such that π1(C̃; P̃ ) = G, where P̃ is a point in q−1(P ). Now by homotopy lifting

([Hat02], Proposition 1.31), loops based at P whose homotopy class lie in G ⊂ π1(CQR)

will lift to loops in C̃ based at P̃ . Thus αi ∈ G will lift to a unique, upto homotopy loop

α̃i based at P̃ such that q∗(α̃i) = αi. The covering space C̃ is not an algebraic variety.

Proposition 4.2.2. q∗(dff ) = 0 in H1(C̃). Hence there is a function, which we call

log(q∗(f)), defined on C̃ such that d log(q∗(f)) = q∗(d(f)
f ).

Proof. From Lemma 4.2.1,

H1(C̃) ' G/[G,G] ' V ' N · π1(C)/[π1(C;P ), π1(C;P )] ' N ·H1(C) ' H1(C)

By the de Rham isomorphism, H1(C̃) ' H1(C).

The maps q∗ and q∗ are adjoint with respect to the de Rham isomorphism. If σ ∈

H1(C̃) and ω ∈ H1(CQR,C) then

∫
q∗(σ)

ω =

∫
σ
q∗(ω).
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Further, q∗(ω) is 0 in H1(C̃) if and only if
∫
q∗(σ) ω = 0 for all σ ∈ H1(C̃). Applying this

to ω = df
f and using the fact that [α̃i], 1 ≤ i ≤ 2g give a basis for H1(C̃), we have

q∗(
df

f
) = 0 ∈ H1(C̃)⇔

∫
[α̃i]

q∗(
df

f
) = 0 for all i⇔

∫
[αi]

df

f
= 0 for all i.

The map f induces

f∗ : H1(CQR) −→ H1(CP 1 − {0,∞}).

The form df
f = f∗(dzz ). Hence, one has

∫
[αi]

df

f
=

∫
[αi]

f∗(
dz

z
) =

∫
f∗([αi])

dz

z
.

However, since αi ∈ G and by choice G ⊂ ker(f∗), we have f∗(αi) = 0 so f∗([αi]) = 0

and finally ∫
f∗([αi])

dz

z
= 0.

Hence q∗(dff ) = 0 ∈ H1(C̃). Therefore integration of dff is path independent and we have

a well defined function

log(q∗(f))(x) =

∫ x

P̃
q∗(

df

f
)

on C̃. Note that log(q∗(f)(P̃ )) = 0.

Hence the space V can be understood as the homology of the space C̃ and the map

q∗ gives a rational splitting of the map i∗. We also have the following description of VC.

Lemma 4.2.3. Let f : CQR −→ CP 1 − {0,∞} be the map with divisor div(f) =

NQ−NR and f(P ) = 1 and V = G/[G,G] as above. Let WQ = Ker(f∗ : H1(CQR)Q −→

H1(P1 − {0,∞})). Then VQ = WQ.

Proof. Since V ⊂ Ker(f∗), VC ⊂ WC. However, both VC and WC are subspaces of

codimension 1 in H1(CQR)C. Hence they are isomorphic.

Note that it does not appear to be true that V = Ker(f∗) as Z-modules. Intrinsically,

the reason why there is such a V is the following. If C and CQR are as above, there is
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an exact sequence of mixed Hodge structures

0 −→ Z(1) −→ H1(CQR) −→ H1(C) −→ 0

induced by the inclusion map. Hence H1(CQR) determines a class in Ext(H1(C),Z(1)).

From the Carlson isomorphism one knows

ExtMHS(H1(C),Z(1)) ' ExtMHS(Z(−1), H1(C)) ' CH1
hom(C)

and the class determined by H1(CQR) is nothing but the class of Q− R in CH1
hom(C).

Since there exists a function f with div(f) = NQ − NR it implies that this sequence

splits rationally. Hence there is a map

p : H1(CQR)Q −→ Q(1)

which splits the exact sequence. This map can be seen to be

p(σ) =

∫
σ

df

f
=

∫
f∗(σ)

dz

z

and if VQ is the kernel, then VQ ' H1(C)Q. Clearly σ ∈ Ker(p) ⇔ σ ∈ Ker(f∗). Hence

Ker(f∗) is isomorphic to H1(C)Q. The V defined above is only contained in Ker(f∗) but

is a subgroup of the integral homology H1(C) – so has a little more information.

4.2.1 The Carlson representative of e4
QR,P

The Carlson representative of e4
QR,P is given by

p1 ◦ rZ ◦ sF ◦ i3,

where

� p1 is the projection of N · B1 ' H1(C)⊕⊗2H1(C)
p1−→ H1(C).

� i3 is the inclusion map ⊗3H1(C)
i3
↪→ ⊗3H1(C)⊕⊗2H1(C).
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To describe sF we need a little more. Let us consider C \ {•} for • ∈ {Q,R}. The

inclusion map

i• : C \ {•} ↪→ C

induces isomorphisms on the first homology and cohomology groups and in we will

identify elements of H1(C \ {•}) with their images in H1(C) and similarly elements of

H1(C) with their images in H1(C \ {•}).

Recall 	̃B denotes the generalised Baer difference. Let

sF ◦ i3 : ⊗3H1(C) −→ N · B2 ' N ·
(
(JQ,P /J

4
Q,P )∗	̃B(JR,P /J

4
R,P )∗

)
be the section preserving the Hodge filtration given by

sF (dxi ⊗ dxj ⊗ dxk) = (IijkQ , IijkR ).

Here Iijk• ∈ (J•,P /J
4
•,P )∗ for • ∈ {Q,R} are iterated integrals with

Iijk• = N

(∫
dxidxjdxk + dxiµjk,• + µij,•dxk + µijk,•

)
. (4.2.2)

where µij,•, µjk,• and µijk,• are smooth, logarithmic 1-forms on C \ {•} such that

1. dµjk,• + dxj ∧ dxk = 0

2. dµij,• + dxi ∧ dxj = 0

3. dxi ∧ µjk,• + µij,• ∧ dxk + dµijk,• = 0.

There are inclusion maps of CQR into C \Q and C \R and we can pull back the forms

dxi, µij,• and µijk,• to CQR and consider all the forms as forms on CQR. To compute the

element of Hom(⊗3H1(C)C, H
1(C)C) obtained as the projection under p1, we describe

it as an element of H1(C)∗C = Hom(H1(C),C) = H1(C,C). The integrands Iijk• are

made up of forms on CQR and so to compute it on elements of H1(C) we have to choose

an embedding of H1(C) in H1(CQR). This is precisely what the subgroup V gives us.

Hence from now on if α is a homology class in H1(C) we think of it as an element of

H1(CQR) by identifying it with its image under the map jN .
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The map from

H1(C) −→ (H1(C)⊕H1(C))/∆H1(C)

is given by

x −→ (x,−x).

Further, if α is a loop based at P on CQR, the class in H1(C) = J•,P /J
2
•,P corresponding

to it is 1− α. So one has p1 ◦ rZ ◦ sF ◦ i3 ∈ Hom(⊗3H1(C)C, H
1(C)C). As an integral,

it is

p1 ◦ rZ ◦ sF ◦ i3(dxi ⊗ dxj ⊗ dxk)(α) =

∫
1−α

IijkQ −
∫

1−α
IijkR

where the first 1 − α is the class in H1(CQ) and the second is the class in H1(CR).

They are both carried to the same class in V under the isomorphism, so we can take

the difference of the integrals when we consider α as a loop in CQR whose corresponding

homology class lies in V . This resulting expression is

∫
1−α

IijkQ −
∫

1−α
IijkR = N

(∫
1−α

dxi (µjk,Q − µjk,R) + (µij,Q − µij,R) dxk + (µijk,Q − µijk,R)

)
.

We can choose the logarithmic forms µij,• and µijk,•, for • ∈ {Q,R}, satisfying the

following

� µij,• = −µji,•.

� For |i−j| 6= g, µij,• is smooth on C\•, as dµij,• = dxj∧dxi = 0. AsH2(CQR,Z) = 0

and µij,• is smooth, it is orthogonal to all closed forms, that is, µij,•∧dxk is exact.

� µiσ(i),• has a logarithmic singularity at • with residue c(i).

� µij,Q − µij,R = 0 if |i− j| 6= g as forms on CQR.

� µiσ(i),Q − µiσ(i),R = c(i)
N

df
f , where f = fQR is a function such that div(fQR) =

NQ−NR. We can normalise fQR once again by requiring that fQR(P ) = 1.

In terms of the basis of forms of H1(C), Ω ∈ ⊗2H1(C) is

Ω =

g∑
i=1

dxi ⊗ dx(i+g) − dx(i+g) ⊗ dxi =

2g∑
i=1

c(i)dxi ⊗ dxσ(i).

With these choices of µij,• and µijk,•, we have the following theorem:
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Theorem 4.2.4. Let GQR,P ∈ Hom(H1(C)(−1)C, H
1(C)C) be the Carlson representa-

tive corresponding to the extension class J∗Ω(e4
QR,P ). It is given by

GQR,P (dxk)(αj) = p1 ◦ rZ ◦ sF ◦ i3(dxk ⊗Ω)(αj) = (2g + 1)

∫
αj

df

f
dxk −N

∫
αj

W (dxk).

in J0(Hom(H1(C)(−1), H1(C)), where

W (dxk) =

2g∑
i=1

c(i)(µkiσ(i),Q − µkiσ(i),R)

is a 1-form on CQR which satisfies

dW (dxk) = (2g + 1)
dxk
N
∧ df
f
.

Proof. Let SF denote the map SF = sF ◦ i3 ◦ JΩ : H1(C)(−1) → N · H4
QR,P . This is

given by

SF (dxk) =

2g∑
i=1

c(i)sF (dxk ⊗ dxi ⊗ dxσ(i))

From (4.2.2) one has

SF (dxk) =

(
2g∑
i=1

c(i)

∫
I
kiσ(i)
Q ,

2g∑
i=1

c(i)

∫
I
kiσ(i)
R

)

Evaluating on a loop αj based at P using the maps described above, this is

2g∑
i=1

∫
1−αj

c(i)
(
I
kiσ(i)
Q − Ikiσ(i)

R

)
2g∑
i=1

N

(∫
1−αj

c(i)dxk(µiσ(i),Q − µi,σ(i),R) + (µki,Q − µki,R)dxσ(i) + (µkiσ(i),Q − µkiσ(i),R)

)

From the choice of the forms µij,• and µijk,• above, the leading terms and several of the

lower order terms cancel out and

µki,Q − µki,R = c(k)δkσ(i)
1

N

df

f

and

µiσ(i),Q − µiσ(i),R = c(i)
1

N

df

f
.
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Since c(i)2 = 1 what remains is

2g∑
i=1

∫
1−αj

dxk
df

f
−
∫

1−αj

df

f
dxk +N

2g∑
i=1

c(i)

∫
1−αj

(
µkiσ(i),Q − µkiσ(i),R

)
.

Let

W (dxk) =

2g∑
i=1

c(i)
(
µkiσ(i),Q − µkiσ(i),R

)
.

Since integration over a point, which corresponds to the constant loop 1, is 0 and
∫
αj

df
f =

0 by choice of αj , using Lemma 3.1.2 (2) the integral becomes

GQR,P (dxk)(αj) = 2g

∫
1−αj

dxk
df

f
−
∫

1−αj

df

f
dxk +N

∫
1−αj

W (dxk).

= −(2g + 1)

∫
αj

dxk
df

f
−N

∫
αj

W (dxk).

Now consider

dW (dxk) =

2g∑
i=1

c(i)d
(
µkiσ(i),Q − µkiσ(i),R

)
.

From the choice of µijk,•, one has

dµijk,• = −dxi ∧ µjk,• − µij,• ∧ dxk.

So the sum becomes

dW (dxk) =

2g∑
i=1

−c(i)
((
dxk ∧ µiσ(i),Q + µki,Q ∧ dxσ(i)

)
−
(
dxk ∧ µiσ(i),R + µki,R ∧ dxσ(i)

))

=

2g∑
i=1

−c(i)
(
dxk ∧ (µiσ(i),Q − µiσ(i),R) + (µki,Q − µki,R) ∧ dxσ(i)

)
.

In the second sum, only one term survives and one has

= −c(σ(k))(µkσ(k),Q − µkσ(k),R) ∧ dxk +

2g∑
i=1

−c(i)
(
dxk ∧

c(i)

N

df

f

)

= −c(σ(k))(
c(σ(k))

N

df

f
) ∧ dxk +

2g∑
i=1

−c(i)
(
dxk ∧

c(i)

N

df

f

)

= −(2g + 1)

N

df

f
∧ dxk =

(2g + 1)

N
dxk ∧

df

f
.
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We have computed the Carlson representative GQR,P of our class in Ext(H1(C)(−1), H1(C)).

We now tensor with H1(C) and pull back using the map ⊗Ω : Z(−1) −→ ⊗2H1(C).

This gives us an element of Ext(Z(−2),⊗2H1(C)). We denote its Carlson representative

by FQR,P .

Lemma 4.2.5. The Carlson representative of the class in Ext(Z(−2),⊗2H1(C)) is

given by

FQR,P = (GQR,P ⊗ Id) ◦ ⊗Ω

in (⊗2H1(C)C)∗. On an element αj ⊗ αk it is given by

FQR,P (Ω)(αj ⊗ αk) = c(σ(k))N

(∫
αj

(2g + 1)
df

f
dxσ(k) −NW (dxσ(k))

)
(4.2.3)

Proof. Recall that

Ω =

2g∑
1

c(i)dxi ⊗ dxσ(i).

From above we have

(GQR,P ⊗ Id)(Ω)(αj ⊗ αk) =

2g∑
1

c(i)GQR,P (dxi)(αj) · Id(dxσ(i))(αk).

From the choice of αk one has

Id(dxσ(i))(αk) = Nδkσ(i).

Hence, in the sum above, precisely one term survives, at i = σ(k). Therefore

(GQR,P ⊗ Id)(Ω)(αj ⊗ αk) = Nc(σ(k))GQR,P (dxσ(k))(αj).

In particular

FQR,P (Ω)(αj ⊗ αk) =Nc(σ(k))GQR,P (dxσ(k))(αj)

=Nc(σ(k))

(∫
αj

(2g + 1)
df

f
dxσ(k) −NW (dxσ(k))

)
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We now use Proposition 4.2.2 to convert the iterated integral in to an ordinary

integral. The iterated integral term in (4.2.3) is

Nc(σ(k))(2g + 1)

∫
αj

df

f
dxk

which we can evaluate using Lemma 3.1.2(3) if df
f is exact. However, df

f is not exact

on CQR but it is exact on C̃ using Proposition 4.2.2. So we do the integration on C̃.

Precisely, we do that as follows.

Let α be a loop such that [α] ∈ q∗(H1(C̃)), where q : C̃ −→ CQR is the cover. Let

α = q∗(α̃), where α̃ is a loop based at P̃ lying over the basepoint P of α. In other words

α̃ be a lift of α. Let ψ be another compactly supported 1 form on CQR whose Poincare

dual lies in q∗(H1(C̃)). We have

∫
α

df

f
ψ =

∫
α̃
q∗(

df

f
)q∗(ψ)

From Proposition 4.2.2, q∗(dff ) is exact on α̃. In other words q∗(dff ) = d log(q∗(f)).

Choose a primitive log(q∗(f)) such that log(q∗(f)(P̃ )) = 0. Using Lemma 3.1.2(3) and

the fact that we have chosen log(q∗(f)) with log(q∗(f)(P̃ )) = 0,

∫
α̃
q∗(

df

f
)q∗(ψ) =

∫
α̃

log(q∗(f))q∗(ψ)

Hence we have ∫
α

df

f
ψ =

∫
α̃

log(q∗(f))q∗(ψ)

Applying this to the case at hand we have

FQR,P (Ω)(αj⊗αk) = Nc(σ(k))

(∫
α̃j

(2g + 1) log(q∗(f))q∗(dxσ(k))−Nq∗(W (dxσ(k)))

)
.

(4.2.4)

We have made a choice of α̃j . If we chose a different basepoint, the value of log(q∗(f))

will change by 2πiM for some M ∈ Z. This will change the integral by 2πiM
∫
αj
dxσ(k).

This does not affect the class in the intermediate Jacobian.
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We would like to connect the expression above which is the Carlson representative of

the extension class ε4QR,P – to the regulator of an explicit cycle on the Jacobian of the

curve. To that end, we have the following lemma.

Proposition 4.2.6 (Colombo Proposition 3.3). Let f = fQR be as before and ψ a

closed 1-form CQR. Let W (ψ) be a 1-form such that dW (ψ) = df
f ∧ ψ such that Θ =

log(f)ψ + ω(ψ) closed 1-form on the manifold with boundary C \ γ. Let α be a loop in

CQR such that [α] ∈ V and ηα ∈ H1
c (CQR) be the Poincaré dual of [α] constructed below.

Then we have

∫
α

df

f
ψ + ω(ψ) =

∫
C\γ

ηα ∧Θ + 2πi

∫
γ
ηαψ

(
mod 2πi

∫
α
ψZ

)

Proof. The subgroup V is generated by the classes of αi = α′Ni β
−mi
Q where α′i is one of

the ‘standard’ generators of π1(C) coming from the edges of the fundamental polygon

and βQ is a small simple loop around Q. These loops satisfy f∗(αi) = 0.

It suffices to prove the theorem for the αi and extend linearly, so from this point on

we let α = αi, α
′ = α′i. Let ηα be the compactly supported 1-form which is the Poincaré

dual of [α] constructed as in [FK80] as follows: Suppose δ is a simple closed curve in

CQR. Let D = Dδ be a tubular neighbourhood of δ. We can write Dδ − δ = D+
δ ∪D

−
δ

with D−δ to the left and D+
δ to the right of δ. Let D0 be a sub-tubular neighbourhood

of δ in D and D±0 = D0 ∩ D±δ . Let Gδ be a function such that is smooth on CQR − δ

and

Gδ ≡


1 on D−0 ∪ δ

0 outside D−δ

Define

ηδ =


dGδ on Dδ − δ

0 elsewhere

so the support Supp(ηδ) ⊂ D−δ . One can then see that if ψ is a closed 1-form on CQR∫
CQR

ηδ ∧ ψ =

∫
D−δ

dGδ ∧ ψ =

∫
D−δ

dGδψ =

∫
∂(D−δ )

Gδψ =

∫
[δ]
ψ

since Gδ ≡ 1 on δ and with this choice of orientation ∂(D−δ ) = δ.
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In our case, in general α = αi = α′Ni β
−mi
Q , is not a simple closed curve. However, α′

and βQ are. Let D−α = D−α′ ∪D
−
βQ

. Define

ηα = Nηα′ −miηβQ .

ηα is supported in D−α and is the Poincaré dual of [α] as, for a 1-form ψ,

∫
CQR

ηα ∧ ψ = N

∫
CQR

ηα′ ∧ ψ −mi

∫
CQR

ηβQ ∧ ψ =

∫
N [α′]−mi[βQ]

ψ =

∫
[α]
ψ

Let Θ̃ = q∗(Θ) = log(q∗(f))q∗(ψ)+q∗(ω(ψ)). From the discussion after Lemma 4.2.5

∫
α

df

f
ψ + ω(ψ) =

∫
α̃

Θ̃.

where α̃ is a lifting of α to a loop in C̃ such that it is based at P̃ and log(q∗(f)) is

chosen such that log(q∗(f)(P̃ ) = 0. We would like to compute this integral. However, Θ̃

is a form on the manifold with boundary C̃B = C̃ − q−1(U(γ)) so we cannot simply use

Poincaré duality.

We have α = α′Nβ−miQ . Let α̃′ be the lift of α′ and β̃Q the lift of βQ such that

α̃′ ˜−miβQQ = α̃.

The restriction α′|C\γ =
⋃M
j=0 α

′j is a union of paths α′j . The covering map q induces

a homeomorphism from each α′j to a path α̃′j such that
⋃
α̃′j = α̃′|C̃B . Let Dα′j denote

the restriction of the tubular neighbourhood of α′ to a tubular neighbourhood of the

path α′j . We have

D−α′ − γ =
⋃
j

D−
α′j

Hence we have

∫
CQR\γ

ηα′ ∧Θ =

∫
D′−α −γ

ηα′ ∧Θ =
∑
j

∫
D−
α′j

ηα′ ∧Θ

The boundary of the restricted tubular neighbourhood D−
α′j

is

∂(D−
α′j

) = α′j ∪ Ij0 ∪ −I
j
1 ∪ (γ1 ∩D−α′j ) ∪ (−γ2 ∩D−α′j )
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Here Ij0 and Ij1 are the half intervals at the endpoints. By construction Ij1 = −Ij+1
0

except at the final stage when IM1 = −I0
0 . Applying Stokes’ Theorem we get

∫
D−
α′j

ηα′ ∧Θ =

∫
D−
α′j

dGα′Θ =

∫
∂(D−

α′j
)
Gα′Θ

∫
α′j

Θ +

∫
Ij0

Gα′Θ−
∫
Ij1

Gα′Θ +

∫
γ1∩D−

α′j

Gα′Θ−
∫
γ2∩D−

α′j

Gα′Θ

Summing up over j we have
∑

j

∫
Ij0
Gα′Θ +

∫
Ij+1
1

Gα′Θ = 0 as Ij1 = −Ij+1
0 and the terms

cancel. ∑
j

(∫
γ1∩D−

α′j

Gα′Θ−
∫
γ2∩D−

α′j

Gα′Θ

)
=

∫
γ1

Gα′Θ−
∫
γ2

Gα′Θ

as Gα′ is supported in D−α′ . Similar to the case of dg, as Gα′(Q) = 0, this simplifies to

∫
γ1

Gα′Θ−
∫
γ2

Gα′Θ = −2πi

∫
γ
Gα′ψ = −2πi

∫
γ
ηα′ψ

So we get ∫
CQR\γ

ηα′ ∧Θ =
∑
j

∫
α′j

Θ− 2πi

∫
γ
ηα′ψ

We can make a similar argument for βQ.

Finally combining these two we get

N
∑
j

∫
α′j

Θ−mi

∑
s

∫
βsQ

Θ =

∫
CQR\γ

ηα ∧Θ + 2πi

∫
γ
ηαψ

Since the support ηα is outside Q and R, thus we can replace CQR \ γ with C \ γ. In

particular one has

N
∑
j

∫
α′j

Θ−mi

∑
s

∫
βsQ

Θ =

∫
C\γ

ηα ∧Θ + 2πi

∫
γ
ηαψ

To link this to the integral over α̃ we observe the following. The loop α′N lifts to a path

in α̃′N in C̃ which is made up of copies of α̃′. Let α̃′k denote the lift of the kth copy of α′

so α̃′k(1) = α̃′k+1(0). We can choose the homeomorphisms between α′j and α̃′j such that

the kth copy of α′j is homeomorphic to a path α̃′jk in α̃′k. So we have homeomorphisms

N⋃
k=1

⋃
j

α′j '
N⋃
k=1

⋃
j

α̃′jk ' α̃′N − ∂(C̃ \ q−1(γ))
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A similar situation holds for βQ. Via these homeomorphisms

N
∑
j

∫
α′j

Θ−mi

∑
s

∫
βsQ

Θ =
N∑
k=1

∑
j

∫
α̃′jk

Θ̃−
mi∑
r=1

∑
s

∫
β̃sQ,r

Θ̃

which is ∫
˜

α′Nβ
−mi
Q −∂(C̃−q−1U(γ))

Θ̃ =

∫
α̃−∂(C̃−q−1(U(γ))

Θ̃ =

∫
α̃

Θ̃

as the α̃ ∩ ∂(C̃ − q−1(γ)) is a set of measure 0. Therefore

∫
α̃

Θ̃ =

∫
C\γ

ηα ∧Θ− 2πi

∫
γ
ηαψ

We have made a choice of a lifting α̃ of α. A different choice of basepoint P̃ ′ would change

the value of log(q∗(f)) by 2πiM for some M ∈ Z. This would change the integral by

2πiM
∫
α ψ. Hence this equality holds only up to 2πi

∫
α ψZ.

We have the following useful corollary to the above proposition, which says that in

fact, we can replace ηα by any form on CQR which is cohomologous to i∗[ηα] ∈ H1
c (CQR)

and compactly supported in C \ γ.

Corollary 4.2.7. Let f , ψ, and W (ψ) be as above and φ = φα a closed 1-form on C

which is compactly supported in the manifold with boundary C \ γ and is cohomologous

in H1(C) to i∗[ηα] for some α in V . Then

∫
α

df

f
ψ +W (ψ) =

∫
C\γ

φα ∧Θ + 2πi

∫
γ
φαψ

(
mod 2πi

∫
α
ψZ

)

Proof. Any closed form φ on C is compactly supported in manifold with boundary C \γ

as manifold with boundary C \ γ is a closed subset of C. Hence we can apply the

Corollary to i∗(φ) in H1(CQR), which, by abuse of notation, we will continue to denote

by φ. Further, by choice of V it will be cohomologous to ηα for some α ∈ V . In particular

we know that c(i)
dxσ(i)
N is cohomologous to a Poincaré dual of [αi] in H1(CQR).
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Let φα denote the form above. Then φα − ηα = dg. One has

∫
C\γ

φα ∧Θ =

∫
C\γ

dg ∧Θ +

∫
C\γ

ηα ∧Θ

So it suffices to compute the two terms separately.

Since both φα and ηα are compactly supported on the manifold with boundary C \γ,

so is dg and hence g and dg∧Θ are compactly supported as well. From Stokes’ Theorem

we get ∫
C\γ

dg ∧Θ =

∫
C\γ

d(gΘ) =

∫
∂(C\γ)

gΘ

∂(C \ γ) = γ1 ∪ γ2, where γ1 and γ2 are two copies of γ oriented oppositely. So

∫
∂(C\γ)

g(log(f)ψ +W (ψ)) =

∫
γ1

g(log(f)ψ +W (ψ))−
∫
γ2

g(log(f)ψ +W (ψ))

The value of log(f) on the γi differ by 2πi. The values of gW (ψ) agree on γ1 and

γ2, since both g and W (ψ) are defined on C. Further gW (ψ) has compact support.

Therefore
∫
γ1
gW (ψ) −

∫
γ2
gW (ψ) = 0. Hence, keeping track of the orientation, the

integral simplifies to ∫
∂(C\γ)

gΘ = −2πi

∫
γ
gψ

Finally, note that
∫
γ dgψ =

∫
γ(g − g(Q))ψ. Since dg is compactly supported on C \ γ,

g can not have singualarity at Q or R. As Θ is a closed 1-form on C \ γ, using Stokes

theorem one obtains ∫
∂(C\γ)

Θ =

∫
C\γ

dΘ = 0.

As above the left hand side simplifies to

∫
∂(C\γ)

Θ = −2πi

∫
γ
ψ = 0.

Hence the integral deos not depend on the choice of primitive dg and we have
∫
γ dgψ =∫

γ gψ. Thus ∫
C\γ

dg ∧Θ = −2πi

∫
γ
dgψ.

From Proposition 4.2.6 we have
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∫
α

df

f
ψ +W (ψ) =

∫
C\γ

ηα ∧Θ + 2πi

∫
γ
ηαψ

(
mod 2πi

∫
α
ψZ

)
.

Since the integral of dg ∧Θ cancels the iterated integral term, we have

∫
C\γ

φα ∧Θ + 2πi

∫
γ
φαψ =

∫
C\γ

(ηα ∧Θ + dg ∧Θ) + 2πi

∫
γ

(ηαψ + dgψ)

=

∫
C\γ

ηα ∧Θ + 2πi

∫
γ
ηαψ =

∫
α

df

f
ψ +W (ψ)

(
mod 2πi

∫
α
ψZ

)

Remark 4.2.8. We will apply this to compute the Carlson representative of an extension

class. This is an element of the intermediate Jacobian associated to the extension, hence

the two expressions, while they possibly differ by and element of (2πi
∫
α ψ)Z, will have

the same class in HomZ(Z(−2),⊗2H1(C)) keeping in mind isomorphism of H1(C) with

q∗(H1(C̃)) ⊂ H1(CQR). We will use ≡ to keep in mind the fact that all equalities hold

only in the intermediate jacobian.

We now apply this in the case of interest to us.

Corollary 4.2.9. Let αj be as above. Then modulo 2πi
∫
αj
dxσ(k)Z

FQR,P (Ω)(αj ⊗ αk) ≡N(2g + 1)c(j)c(σ(k))

(∫
C\γ

dxσ(j) ∧
(

log(f)dxσ(k) −
N

(2g + 1)
W (dxσ(k))

)
+ 2πi

∫
γ
dxσ(j)dxσ(k)

)

Proof. It is a straightforward application of Corollary 4.2.7 to the expression in Lemma

4.2.5.

FQR,P (Ω) determines an element of the intermediate Jacobian of (⊗2H1(C)∗C)

J(⊗2H1(C)∗C) '
F 1(⊗2H1(C)∗C)

(⊗2H1(C)∗)
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so to determine FQR,P (Ω) it suffices to evaluate it on elements of F 1(⊗2H1(C)∗C). We

can choose the basis dzi of the space of holomorphic 1-forms on C such that

∫
αi

dzj = Nδij 1 ≤ i ≤ g,

where {αi} is the basis of V . We have

i∗[dzj ] = [dxj ] +

g∑
i=1

Aji[dxi+g] where Aji =
1

N

∫
αi+g

dzj ,

obtained from the fact that c(j)
dxσ(j)
N is dual to αj . Then

dzj = dxj +

g∑
i=1

Ajidxi+g,

when we think of it as form on CQR. Let ζj = c(σ(j))ασ(j) +
∑

1≤i≤g Ajic(i)αi, where

j ≤ g. Then dzj is cohomologous to the Poincaré dual of ζj in CQR. Thus we can apply

Corollary 4.2.10. We then have the following proposition.

Proposition 4.2.10. The map FQR,P (Ω) evaluated on elements of the form ζi ⊗ αj is

FQR,P (Ω)(ζi ⊗ c(σ(j))ασ(j)) ≡ (2g + 1)N

(∫
C\γ

log(f)dzi ∧ dxj + 2πi

∫
γ
dzidxj

)

In other words

dzi ∧W (dxj) = 0.

Proof. See Proposition 3.4 in [Col02].

In fact, the theorem holds for the other term as well.

Proposition 4.2.11. For a suitable choice of µijk,Q and µijk,R one has

W (dzi) :=W (dxi) +
∑
k

AkiW (dxi+g) = 0

Proof. [Col02] Lemma 3.1.

Hence we have
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Proposition 4.2.12.

FQR,P (Ω)(c(σ(j))ασ(j) ⊗ ζi) ≡ (2g + 1)N

(∫
C\γ

log(f)dxj ∧ dzi + 2πi

∫
γ
dxjdzi

)
.

Comparing this with the regulator term in Theorem 4.1.3 we get

Theorem 4.2.13. Let ZQR,P be the motivic cohomology cycle constructed above and

ε4QR,P the extension in ExtMHS(Z(−2),∧2H1(C)). We use ε4QR,P to denote its Carlson

representative as well. Then one has

ε4QR,P (ω) ≡ (2g + 1)N regZ(ZQR,P )(ω)

where ω ∈ F 1 ∧2 H1(C).

Proof. It suffices to check this on dzi ∧ dxj = dzi ⊗ dxj − dxj ⊗ dzi. The result then

follows by comparing the formula for the Carlson representative FQR,P in Lemma 4.2.5

with the expression for the regulator in Theorem 4.1.3 using Proposition 4.2.10.

From Theorem 4.2.12 and Lemma 4.2.5 we have

FQR,P (Ω)(c(σ(j))ασ(j) ⊗ ζi) ≡(2g + 1)N

(∫
C\γ

log(f)dxj ∧ dzi + 2πi

∫
γ
dxjdzj

)

On the other hand, from Propostion 4.2.12 one has

FQR,P (Ω)(ζi ⊗ c(σ(j))ασ(j)) = (2g + 1)N

(∫
C\γ

log(f)dzi ∧ dxj + 2πi

∫
γ
dzidxj

)

= (2g + 1)N

(
−
∫
C\γ

log(f)dxj ∧ dzi + 2πi

∫
γ
dzidxj

)

Therefore we get

FQR,P (Ω)(c(σ(j))ασ(j) ∧ ζi) ≡FQR,P (Ω)(c(σ(j))ασ(j) ⊗ ζi)− FQR,P (Ω)(ζi ⊗ c(σ(j))αασ(j))

≡(2g + 1)N

(
2

∫
C\γ

log(f)dxj ∧ dzi + 2πi

∫
γ
(dxjdzi − dzidxj)

)
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On the other hand, from Theorem 4.1.3

(2g+1)N regZ(ZQR)(dxj∧dzi) = (2g+1)N

(
2

∫
C\γ

log(f)dxj ∧ dzi + 2πi

∫
γ
(dxjdzi − dzidxj)

)

Recall that we have assumed in both cases that fQR(P ) = 1. If we do not make that

assumption, then one has a term corresponding to a decomposable element that one has

to account for. However, if we work modulo the decomposable cycles we can ignore that

term.

As a result of this theorem, we get the following expression of the regulator as an

integral over a loop - which is more amenable to computation.

Corollary 4.2.14. Let ZQR,P be the element of H2g−1
M (Jac(C),Z(g)) and let η and ω

be two closed, 1-forms on C with ω holomorphic. Let α be a loop in CQR based at P,

such that α ∈ V and a Poincare dual of [α] is homologous to η in H1
c (CQR). Let α̃ be a

lift of α to a loop in C̃ based at P̃ where P̃ is chosen so that log(q∗(f))((̃P )) = 0. Then

regZ(ZQR,P )(η ∧ ω) ≡ 2(2g + 1)N

∫
α̃

log(q∗(fQR))q∗(ω)

Proof. It suffices to check this for η = dxi and ω = dzj . From Theorem 4.2.13, one has

FQR,P (Ω)(c(σ(j))ασ(j)∧ζi) ≡ (2g+1)N

(
2

∫
C\γ

log(f)dxj ∧ dzi + 2πi

∫
γ
(dxjdzi − dzidxj)

)
.

From Lemma 3.1.2 we have

∫
γ
dxjdzi +

∫
γ
dzidxj =

∫
γ
dxj

∫
γ
dzi.

From Corollary 4.2.7
∫
γ dzi = 0. Thus we have

∫
γ dxjdzi = −

∫
γ dzidxj .

Therefore we have

regZ(ZQR,P )(dxj ∧ dzi) = 2(2g + 1)N

(∫
C\γ

log(f)dxj ∧ dzi + 2πi

∫
γ
dxjdzi

)
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Using Corollary 4.2.7 this becomes

regZ(ZQR,P )(dxj ∧ dzi) = 2(2g + 1)c(j)N

∫
α̃σ(j)

log(q∗(f))q∗(dzi)



Chapter 5

Appendix

5.1 Extensions in an Abelian category

Let A and B be elements in an abelian category C of R-modules over a commutative

ring R. An extension of B by A is an exact sequence

E : 0→ A→ H → B → 0.

Two extensions are said to be congruent if there is an isomorphism Λ such that the

following diagram commutes.

0 −−−−→ A
i1−−−−→ H1

π1−−−−→ B −−−−→ 0yIA yΛ

yIB
0 −−−−→ A

i2−−−−→ H2
π2−−−−→ B −−−−→ 0

The set of congruence classes of extensions in C is denoted by ExtC(B,A). It can be

given an abelian group structure using the Baer sum.

In this Appendix we recall the Baer sum and describe a generalisation due to Rabi

which we need for our purposes.

53
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5.1.1 Baer Sum and its Generalisation

For an extension E let [E] denote its extension class. Given two extensions E1 and

E2, we will define a third extension E such that [E] defines an addition structure on

ExtC(B,A). One defines the Baer sum [E1]⊕B [E2] = [E]. Let Ej , where j ∈ {1, 2} be

extensions

0→ A
ij→ Hj

πj→ B → 0.

Let E denote the extension

0→ A→ H → B → 0,

where H is defined as follows. Let Y = {(h1, h2) ∈ H1 ⊕ H2, π1(h1) = π2(h2)} and

D = (i1(a),−i2(a)). Let H = Y/D. The class [E] is defined to be the Baer sum of [E1]

and [E2]. We will use ⊕B to denote the Baer sum. Using D′ = (i1(a), i2(a)) in the place

of D gives an extension congruent to the Baer difference [E1]	B [E2].

We now define the generalised Baer sum which exists under certain circumstances.

Now suppose we have diagrams of the following type:

0y
A1yij

0 −−−−→ Bj
1

fj−−−−→ Bj
2

pj−−−−→ B3 −−−−→ 0yπj
C1y
0

where the vertical and horizontal sequences are exact for j ∈ {1, 2}. Let Ej denote the

horizontal exact sequences:

Ej : 0 −−−−→ Bj
1

fj−−−−→ Bj
2

pj−−−−→ B3 −−−−→ 0.
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We would like to take the Baer difference of the Ej — but since they do not lie in the

same Ext group we cannot quite do that. However, we can still salvage something.

One gets two types of extension classes in Ext groups which do not depend on j. The

vertical exact sequences give classes in Ext(C1, A1). We can form their Baer difference

to get an exact sequence

0 −−−−→ A1 −−−−→ B1 −−−−→ C1 −−−−→ 0.

The horizontal exact sequences give extensions in Ext(B3, B
j
1). These depend on j but

their push forward under πj give classes f
Bj2

in Ext(B3, C1).

Define B2 as follows: Let H2 = Ker(ψ), where ψ is the ‘difference’ map

ψ : B1
2 ⊕B2

2 −→ B3

ψ((b12, b
2
2)) = (p1(b12)− p2(b22))

Let D2 be the image of the map

A1 −→ B1
1 ⊕B2

1 −→ H2

a −→ (f1(i1(a)), f2(i2(a)))

Define B2 = H2/D2. We call this the generalised Baer difference of E1 and E2 and

denote it by 	̃B. Observe that this is almost the Baer difference of E1 and E2 in the

sense that if B1 = B1
1 = B2

1 , then we could take the difference in Ext(B3, B1). Since that

is not the case, we do the best we can — we take the difference of the inexact sequences

0 −−−−→ A1 −−−−→ Bj
2 −−−−→ B3 −−−−→ 0.

As a result of this one has a complex

0 −−−−→ B1
f1⊕f2−−−−→ B2

p1(or p2)−−−−−→ B3 −−−−→ 0

However, this complex is not exact since Ker(p1) is larger than (f1⊕ f2)(B1). The next

lemma describes this difference.
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Lemma 5.1.1 (Rabi[Rab01]). Let F = FB1
2	̃BB2

2
= B2/B1. Then one has the following

diagram, in which the horizontal and vertical sequences are exact.

0y
C1yφ

0 −−−−→ B1
f−−−−→ B2

η−−−−→ F −−−−→ 0yp̄
B3y
0

Proof. [Rab01], Appendix B. We repeat the proof here as that is unpublished. The

horizontal sequence is exact by definition. To show the vertical sequence is exact we

have to first describe be map φ. It is defined as follows. One has maps πj : Bj
1 −→ C1.

Consider the natural map

φ̃ : C1 ⊕ C1 −−−−→ (B1
1 ⊕B2

1)/∆A1

(f1,f2)−−−−→ B2 = H2/D2

φ̃(c1, c2)→ (π−1
1 (c), π−1

2 (c))→ (f1(π−1
1 (c1)), f2(π−1

2 (c2)))

where ∆A1 = {(i1(a), i2(a))|a ∈ A1}. φ gives a well defined map

(C1 ⊕ C1)/∆C1 −→ B2/φ̃(∆C1)

where ∆C1 = {(c,−c)|c ∈ C1} is the anti-diagonal. This is well defined as if (b1, b2) and

(b′1, b
′
2) are in (π−1

1 (c1), π−1
2 (c2)) we have to show

(f1(b1), f2(b2)) ≡ (f1(b′1), f2(b′2)) mod φ̃(∆C1)

or

(f1(b1 − b′1), f2(b2 − b′2)) ∈ φ̃(∆C1).
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From exactness, we have b1 − b′1 = i1(a1) and b2 − b′2 = i2(a2) with ai ∈ A1. The image

of ∆C1 under (π−1
1 , π−1

2 ) consists of (b, b′) such that π1(b) = π2(b′). (i1(a1), i2(a2)) lie in

this image, hence

(f1(i1(a1)), f2(i2(a2))) = (f1(b1 − b′1), f2(b2 − b′2)) ∈ φ̃(∆C1).

Note that the pre-image (π−1
1 , π−1

2 )(∆C1) in B1
1 ⊕ B2

1)/∆A1 is the Baer difference B1.

Further, (C1 ⊕ C1)/∆C1) ' C1. Hence one has a map φ : C1 → F = B2/B1 and we get

a exact sequence

0 −→ C1
φ−→ FB1

2	̃BB2
2

p̄−→ B3 −→ 0

This sequence is exact as if b = (b12, b
2
2) is in FB1

2	̃BB2
2

and p̄(b) = 0, then p1(b12) =

p2(b22) = 0. So b12 and b22 lie in the image of B1
1 ⊕B2

1 — say b12 = f1(b11) and b22 = f2(b21).

Let ci = π1(b11) and c2 = π2(b21). Then

b = φ(c1, c2)

so it lies in the image of φ.

In general, for any Z-linear combination m · B1
2	̃B n · B2

2 of B1
2 and B2

2 we get an

extension class fm·B1
2	̃B n·B2

2
in Ext(B3, C1) corresponding to Fm·B1

2	̃B n·B2
2
. The relation

between this and the extension classes constructed above is given as follows:

Corollary 5.1.2. Let f
Bj2

and fm·B1
2	̃B n·B2

2
be the extensions in Ext(B3, C1) described

above. Then,

fm·B1
2	̃B n·B2

2
= m · fB1

2
	B n · fB2

2
.

Proof. This follows from the construction of the map φ.
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