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Chapter 1

Introduction

Let R be a commutative, Noetherian ring of (Krull) dimension d. It is well known that

the set of isomorphism classes of (oriented, if d is even) stably free R-modules of rank d

carries the structure of an abelian group. This group can be identified with the orbit

space of unimodular rows namely, Umd+1(R)/SLd+1(R). The prime objective of this

thesis is to provide the complete computation of this group, when X = Spec(R) be

a smooth real affine variety of dimension d ≥ 2 (with the assumption that the set of

real points of X is non-empty and orientable ). In order to achieve our goal, we first

carry out the computation of the ′′elementary orbit space′′ Umd+1(R)/Ed+1(R), when

X = Spec(R) be as above. We also prove a structure theorem for the Mennicke symbols

of length d+ 1 (MSd+1(R)).

These results will be discussed in Chapter 4. These results have been obtained in a

joint work with Mrinal Kanti Das and Md. Ali Zinna. This thesis is based primarily on

our paper [DTZ1].

We now give brief introductions to the problems tackled in this thesis and the statements

of the main results that we obtain.

Let R be as above. It follows from a classical result of Bass [Ba] that the stably free

R-modules of rank at least d+ 1 are all free. Let R be an affine algebra of dimension

d over a field k. If k is algebraically closed, or more generally, if the cohomological

dimension of k is at most one, Suslin then proved that a stably free R-module of rank d

1
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is free (see [Su 2, Su 4]). These results of Suslin do not extend to any arbitrary k. For

example, if d 6= 1, 3, 7, the tangent bundle of a real d-sphere is stably free but not free.

These examples also show that the aforementioned result of Bass is the best possible.

Therefore, it is certainly of interest to understand the stably free R-modules of rank

d ≥ 2 when R is the coordinate ring of an affine variety over the field of real numbers.

Among other results, we prove the following: Let X = Spec(R) be a smooth real affine

variety of even dimension d, whose real points X(R) constitute an orientable manifold.

Then the set of isomorphism classes of (oriented) stably free R-modules of rank d is a

free abelian group of rank equal to the number of compact connected components of X(R).

In contrast, if d ≥ 3 is odd, then the set of isomorphism classes of stably free R-modules

of rank d is a Z/2Z-vector space (possibly trivial). We elaborate below.

The rings considered in this thesis are assumed to have (Krull) dimension at least

two, unless mentioned otherwise. Recall that for any ring R of dimension d, a stably free

R-module P of rank d corresponds to a unimodular row (a0, · · · , ad) ∈ Rd+1 (meaning,

there exist b0, · · · , bd ∈ R such that
∑d

0 aibi = 1). The module P is free if and only

if (a0, · · · , ad) is the last row of a matrix in SLd+1(R). Let Umd+1(R) be the set of

unimodular rows of length d + 1 over R. The preceding discussion inspires one to

study the action of SLd+1(R) on Umd+1(R). The group SLd+1(R) and its elementary

subgroup Ed+1(R) act naturally on this set by multiplication from right. Thanks to

the foundational works due to Vaserstein [SuVa, Section 5] (for d = 2) and van der

Kallen [vdK 1] (for d ≥ 2), the orbit space Umd+1(R)/Ed+1(R) carries the structure of

an abelian group (inducing a group structure on Umd+1(R)/SLd+1(R) as well [vdK 1]).

Due to Jean Fasel’s work [F 1], we now also have a modern-day interpretation of

Umd+1(R)/Ed+1(R) in terms of cohomology. In this thesis we compute this group and

its quotient Umd+1(R)/SLd+1(R), when R is a smooth affine domain over the reals of

dimension d ≥ 2. We now present our results one by one. But first, let us set up some

notations.

Notation. Let X = Spec(R) be a smooth affine variety of dimension d ≥ 2 over R.

We always assume that the set of real points X(R) of X is non-empty, and therefore

under the Euclidean topology, it is a smooth real manifold of dimension d. Let R(X)
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denote the ring obtained from R by inverting all the functions having no real zeros. Note

that dim(R) = dim(R(X)). Let C be the (finite) set of connected components of X(R)

which are compact. In this article we always assume that X(R) is orientable.

The following is an accumulation of various results ( Theorem 4.2.8, Corollary 4.3.5,

Theorem 4.3.6, Corollary 4.3.9, Corollary 4.7.4).

Theorem 1.0.1. Let X = Spec(R) be as above. Then, we have the following assertions:

(i) Umd+1(R(X))/Ed+1(R(X))
∼→
⊕

C∈C Z.

(ii) The canonical map β : Umd+1(R)/Ed+1(R) → Umd+1(R(X))/Ed+1(R(X)) is a

surjective group homomorphism and K = ker(β) is the unique maximal divisible

subgroup of Umd+1(R)/Ed+1(R). Consequently, Umd+1(R)/Ed+1(R)
∼→ K ⊕

(
⊕

C∈C Z).

(iii) Precisely, K consists of those elementary orbits which can be represented by a

unimodular row whose one entry is a square. Further, for any [(a0, · · · , ad)] ∈ K

and any r ≥ 1, [(a0, · · · , ad)]r = [(a0, · · · , ard)].

(iv) If d ≥ 3, then K is torsion-free.

Let [v] ∈ K be arbitrary. Using divisibility of K and taking r = d! in (iii) above, it

immediately follows from a celebrated result of Suslin [Su 2] that v is the last row of a

matrix in SLd+1(R). This observation makes the computation of Umd+1(R)/SLd+1(R)

quite easy. Note that the group Umd+1(R)/SLd+1(R) is in bijection with the set of

isomorphism classes of (oriented1, if d is even) stably free R-modules of rank d. We

prove the following result ( in Chapter 4, Theorems 4.4.1 and 4.4.5 ):

Theorem 1.0.2. Let X = Spec(R) be as above. If the dimension d is even, then we

have:

Umd+1(R)

SLd+1(R)

∼−→ Umd+1(R(X))

SLd+1(R(X))

∼−→ Umd+1(R(X))

Ed+1(R(X))

∼−→
⊕
C∈C

Z.

1For any ring R of dimension d, a unimodular row (a0, · · · , ad) gives rise to a stably free R-module
P together with a canonical orientation χ : R

∼→ ∧d(P ). In this article, for d even, stably free modules
are always chosen with an orientation. See the discussion in section 2.3 preceding Theorem 2.3.1 . We
refer to [BRS 3, Page 214] for further details.
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If d is odd, then Umd+1(R)/SLd+1(R) is a Z/2Z-vector space of rank ≤ |C|.

If d is odd, Umd+1(R)/SLd+1(R) can be trivial. For example, by [F 1, Proposition

5.13], it is trivial when R is the coordinate ring of the real 3-sphere or the 7-sphere. We

also touch on this in Section 4.5 using simpler arguments. For the other spheres of odd

dimension, it follows from our results that this group is Z/2Z.

We now turn our attention to Mennicke symbols of Suslin. In [Su 3], Suslin used

them to prove that the Milnor K-theory of a field injects into the Quillen K-theory

modulo torsion. Our interest is in its connection with the group structure defined on

Umd+1(A)/Ed+1(A), where A is a commutative Noetherian ring of dimension d ≥ 2. In

[vdK 2] van der Kallen introduced weak Mennicke symbols and showed that the universal

weak Mennicke symbol (wms,WMSd+1(A)) is in bijection with Umd+1(A)/Ed+1(A),

thus giving the latter the structure of an abelian group. As a Mennicke symbol is also

a weak Mennicke symbol, the universal Mennicke symbol MSd+1(A) is a quotient of

Umd+1(A)/Ed+1(A). We prove the following results in Section 4.6.

Theorem 1.0.3. Let X = Spec(R) be as in Theorem 1.0.1. Then,

(i) MSd+1(R(X))
∼→
⊕

C∈C Z/2Z.

(ii) The kernel L of the canonical surjection β0 : MSd+1(R) �MSd+1(R(X)) is the

unique maximal divisible subgroup of MSd+1(R). Consequently, MSd+1(R)
∼→

L⊕ (
⊕

C∈C Z/2Z).

(iii) The kernel of the canonical surjection Umd+1(R)/Ed+1(R) �MSd+1(R) is a free

abelian group of rank |C|.

(iv) If d ≥ 3, then L is torsion-free.

We now spend a few words on our methods. As it turns out, the computation of

Umd+1(R)/Ed+1(R), with explicit description of its maximal divisible subgroup K, is

the key. Such computations become easier if there is another related group to compare

with, whose structure is well-understood. Recall from [BRS 3, DZ, vdK 4] that if A is a

Noetherian ring of dimension d ≥ 2, there is an exact sequence

Umd+1(A)/Ed+1(A)
φA−→ Ed(A) −→ Ed0(A) −→ 0, (∗)
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where Ed(A) is the d-th Euler class group of A and Ed0(A) is the d-th weak Euler class

group of A. We recall the definition of Ed(A) in Chapter 2. We do not use Ed0(A) in

this thesis.

For smooth affine real varieties the following structure theorem was proved in [BRS 2].

Theorem 1.0.4. [BRS 2] Let R be as in Theorem 1.0.1. Then, Ed(R)
∼→ Ed(C) ⊕

Ed(R(X)), where Ed(C) is the subgroup generated by all those Euler cycles in Ed(R),

which are supported on complex maximal ideals of R. Further, Ed(C) is uniquely divisible

and Ed(R(X)) is free abelian of rank |C|.

We compare the elementary orbit spaces with the Euler class groups. As mentioned

in (∗) above, we have group homomorphisms φR(X) : Umd+1(R(X))/Ed+1(R(X)) →

Ed(R(X)), and φR : Umd+1(R)/Ed+1(R) → Ed(R). But we found these maps to be

insufficient for our purposes. To have more leverage, we take a reverse path, as follows.

Let A be a regular domain of dimension d ≥ 2, which is essentially of finite type

over an infinite perfect field k such that 2A = A. Based on the formalism developed in

[DTZ2], in Chapter 3 we introduce a map δA : Ed(A) → Umd+1(A)/Ed+1(A). When

k = R, this map gives us a lot of control.

Again let R be as in Theorem 1.0.1. In Section 4.2 we prove that δR(X) :

Ed(R(X)) → Umd+1(R(X))/Ed+1(R(X)) is an isomorphism. In Section 4.3 we prove

that δR : Ed(R)→ Umd+1(R)/Ed+1(R) is a group homomorphism which is trivial on the

divisible component Ed(C). This enables us to analyze the kernel K of the natural map β :

Umd+1(R)/Ed+1(R)→ Umd+1(R(X))/Ed+1(R(X)) and deduce our main results. Com-

posing with the canonical projection ε : Umd+1(R)/Ed+1(R)→ Umd+1(R)/SLd+1(R),

we also have a group homomorphism δ′R : Ed(R)→ Umd+1(R)/SLd+1(R), which turns

out to be surjective (Theorem 4.4.2). Finally, the relation between the Euler class group

and the elementary orbit space can be summed up in the form of the following exact

sequence:

0→ Ed(C)→ Ed(R)
δR−→ Umd+1(R)/Ed+1(R)→ K → 1

Evidently, the maps δR and δR(X) make a lot of arguments remarkably easier, which

can be seen in Sections 4 and 4.3.
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When the real variety X = Spec(R) is rational, Jean Fasel carried out some computa-

tion of the orbit spaces and Mennicke symbol using cohomological methods in [F 1, F 2].

Results in [F 1, Section 5] inspired us to take up this project.

1.1 layout

The layout of this thesis is as follows:-

In Chapter 2, we record some useful definitions and some general results. In this

chapter,we also give a brief introduction to the orbit spaces of unimodular rows and

their group structure. Further, the notion of Euler class group is recalled in this chapter

with specific emphasis on the structure of the Euler class groups E(R), when R is a

smooth affine algebra over R.

In Chapter 3, we focuss on the the maps between the orbit spaces of unimodular rows

and the Euler class group and investigating their important properties.

In Chapter 4, we establish our main results.

In Chapter 5 we prove the map from Euler class group to orbit space of unimodular

rows is bijective.



Chapter 2

Preliminaries

All the rings considered in this thesis are commutative and Noetherian. By the dimension

of a ring we mean its Krull dimension. Modules are assumed to be finitely generated.

2.1 Definitions and general results

In this section we shall collect some definitions and preliminary results which will be

used throughout this thesis. We begin with the following definition.

Definition 2.1.1. Let R be a ring. An R-module P is said to be projective if there

exists another R-module Q such that P ⊕Q ' Rn for some positive integer n. In other

words, P ⊕Q is free .

For this thesis, projective modules are always assumed to have constant rank.

The proof of the following lemma can be found in [BRS 3, Corollary 2.13]. This is a

consequence of a result of Eisenbud-Evans [EE], as stated in [Pl, p. 1420]. Recall that

for a projective R-module P , the R-module HomR(P,R) is denoted by P ∗.

Lemma 2.1.2. Let R be a ring and P be a projective R-module of rank n. Let (α, a) ∈

(P ∗ ⊕ R). Then there exists an element β ∈ P ∗ such that ht (Ia) ≥ n, where I =

(α+ aβ)(P ). In particular, if the ideal (α(P ), a) has height ≥ n then ht I ≥ n. Further,

if (α(P ), a) is an ideal of height ≥ n and I is a proper ideal of R, then ht I = n.

7
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When R is a geometrically reduced affine algebra we have the following version of

Swan’s Bertini theorem, as stated in [BRS 2, Theorem 2.11], which is a refinement of

above Lemma (2.1.2). This version can be deduced from [Sw, Theorems 1.3 and 1.4].

Lemma 2.1.3. Let R be a geometrically reduced affine ring over an infinite field and P

be a projective R-module of rank n. Let (α, a) ∈ (P ∗ ⊕R). Then there exists an element

β ∈ P ∗ such that if I = (α+ aβ)(P ) then,

(i) Either Ia = Ra or ht (Ia) = n such that (R/I)a is a geometrically reduced ring .

(ii) If n < dim R and Ra is geometrically integral, then (R/I)a is also geometrically

integral.

(iii) If Ra is smooth, then (R/I)a is also smooth.

In particular, if we consider free modules instead of projective modules, then the

proof of lemma 2.1.2 is an easy application of the prime avoidance lemma (for a proof,

see [IR, Lemma 7.1.4]). We state this version below.

Lemma 2.1.4. Let R be a ring and (a1, · · · , an, a) ∈ Rn+1. Then there exist

µ1, · · · , µn ∈ R such that ht(Ia) ≥ n, where I = (a1 + aµ1, · · · , an + aµn). In other

words, if p ∈ Spec(R) such that I ⊂ p and a /∈ p, then ht(p) ≥ n.

Remark 2.1.5 If R is a geometrically reduced affine algebra over an infinite field then

Swan’s Bertini theorem, as stated above, implies that µ1, · · · , µn can be so chosen that

the ideal I = (a1 + aµ1, · · · , an + aµn) has the additional property that (R/I)a is a

geometrically reduced ring.

The following lemma also follows from the prime avoidance lemma and standard

general position arguments (see for example [RS, Lemma 3] or [BRS 1, Lemma 4.4]).

Here En(R) is the subgroup of SLn(R) generated by elementary matrices. For the

definition of En(R) see definition 2.2.3.

Lemma 2.1.6. Let R be a ring. Let J and K be ideals of R such that J + K = R.

Assume that ht((J)) = n ≥ dim(R/K) + 2 and that J is generated by n elements

a1, . . . , an. Then, there exists an element σ ∈ En(R) such that
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(i) [a1, . . . , an]σ = [b1, . . . , bn].

(ii) ht(b1, . . . , bn−1) = n− 1.

(iii) (b1, . . . , bn−1) +K = R.

The following lemma is an application of Nakayama lemma. We give a proof from

[BRS 3] for the sake of completeness.

Lemma 2.1.7. Let R be a ring and J ⊂ R be an ideal of R. Let K ⊂ J and L ⊂ J2

be two ideals of R such that K + L = J . Then J = K + (e) for some e ∈ L with

e(1− e) ∈ K. Further, there is an ideal J ′ such that J ′ + L = R and K = J ∩ J ′ .

Proof. Let bar denote reduction modulo the ideal K. Since J
2

= J , by Nakayama lemma

there exists e ∈ J such that (1− e)J = 0. It then follows that J = (e) and e2 = e. Since

the map L → J is surjective, we may assume that e ∈ L. Now J = K + (e). Since

e2 = e, we have e− e2 ∈ K. Take J ′ = K + (1− e). Then L+ J ′ = R, since e ∈ L. As

J ∩ J ′ = (e)(1− e) = (0), it follows that K = J ∩ J ′.

In this context, we recall the next lemma, which is an application of Lemmas 2.1.2

and 2.1.7. This is a synthesis of [BRS 3, Corollary 2.14] and [BRS 4, Corollary 2.4] and

we give a proof for the sake of completeness. We shall call this lemma as the “Moving

lemma 1”.

Lemma 2.1.8. (Moving Lemma 1) Let R be a ring of dimension d ≥ 2 and let P be a

projective R-module of rank d. Let J ⊂ R be an ideal of height d and let α̃ : P/JP � J/J2

be a surjection. Then there exists an ideal J ′ ⊂ R and a surjection β : P � J ∩ J ′ such

that:

(i) J + J ′ = R.

(ii) β ⊗R/J = α̃.

(iii) ht(J ′) ≥ d.

(iv) Given finitely many ideals J1, · · · , Jr of R, each of height ≥ 1, the ideal J ′ can

be chosen with the additional property that it is comaximal with Ji for each i =

1, · · · , r.
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Proof. Let K = J2 ∩ J1 ∩ · · · ∩ Jr. Then by the assumption, ht(K) ≥ 1. Therefore, there

exists an element a ∈ K ⊂ J2 such that ht(R/aR) ≤ d− 1. Note that (J/aR)2 = J2/aR.

Let bar denote reduction modulo the ideal (a).

As P is a projective module, α̃ can be lifted to an R-linear map δ : P −→ J . Then

δ(P ) + J
2

= J . By Lemma 2.1.7, there exists c ∈ J2
such that δ(P ) + (c) = J . Now

applying Lemma 2.1.2 to the element (δ, c) ∈ P ∗ ⊕R, we see that there exists γ ∈ P ∗

such that if N = (δ + cγ)(P ) then ht(Nc) ≥ d. Note that dim(R) ≤ d− 1. This implies

that (c)r ∈ N for some positive integer r. Therefore, as N + (c) = J and c ∈ J2
, we

have N = J . Therefore we get (δ + cγ)(P/aP ) = J/aJ .

Let θ : P −→ J be a lift of δ + cγ, then we have θ(P ) + (a) = J . By Lemma 2.1.2,

replacing θ by θ + aθ1 for some θ1 ∈ P ∗, we may assume that θ(P ) = J ∩ J ′, where

ht(J ′) ≥ d and J ′ + (a) = R. This proves the lemma.

Before finishing this section let us recall the definition of a special type of projective

modules, which constitutes one of the main themes in this thesis.

Definition 2.1.9. Let R be a ring and P be projective R-module. Then P is said to

be stably free, if there exist m,n ∈ N such that P ⊕ Rm ' Rn, and rank of module is

n−m.(Such a module is of course projective. )

It is easy to see that any stably free module of rank one is free. It follows from

a classical result of Bass [Ba] that if R is a ring of dimension d, then any stably free

R-module of rank at least d+ 1 is free. There are examples of rings R of dimension d,

and stably free modules of rank d which are not free.

2.2 Unimodular rows and related results

Definition 2.2.1. let R be a ring. A row (a1, . . . , an) ∈ Rn is said to be a unimodular

row of length n if there exists another row (b1, . . . , bn) ∈ Rn such that
∑n

i=1 aibi = 1,

(equivalently, the ideal generated by a1, . . . , an is the whole ring R.)

The set of unimodular rows of length n is denoted by Umn(R).
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Example 2.2.2. (i) Consider the following ring

R =
R[X1, · · · , Xn]

(X2
1 + · · ·+X2

n − 1)
= R[x1, · · · , xn]

where xi is the image of Xi in R. Then (x1, · · · , xn) is unimodular row, as

x2
1 + · · ·+ x2

n = 1.

(ii) Any row of an invertible matrix over R is a unimodular row. In particular any row

of a matrix in SLn(R) is a unimodular row of length n.

Definition 2.2.3. Recall that eij denotes the n× n matrix whose only non-zero entry

is 1 at the (i, j)-th place, and define Eij(λ) := In + λeij for λ ∈ R and i 6= j. Such

Eij(λ) are called the elementary matrices. Let En(R) denote the subgroup of SLn(R)

generated by all elementary matrices Eij(λ) (where i 6= j, and λ ∈ R ). The group

En(R) is called the elementary group.

Remark 2.2.4 The group SLn(R) acts on Umn(R) as follows:

Umn(R)× SLn(R)→ Umn(R) by ((a1, . . . , an),M)→ (a1, . . . , an)M

The orbit space will be denoted by Umn(R)/SLn(R).

Notation. Let (a1, . . . , an), (b1, . . . , bn) ∈ Umn(R). We write

(a1, · · · , an)
SLn(R)∼ (b1, · · · , bn)

if there exists a matrix M ∈ SLn(R) such that (a1, . . . , an)M = (b1, . . . , bn).

The orbit of (a1, . . . , an) will be denoted by [(a1, . . . , an)]. (Or [a1, . . . , an] when there is

no ambiguity. )

Remark 2.2.5 Note that En(R) acts on Umn(R) in a similar manner. The orbit

space will be denoted by Umn(R)/En(R).
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Definition 2.2.6. A unimodular row (a1, . . . , an) ∈ Rn is said to be completable if it is

(last) row of some matrix M ∈ SLn(R). Or equivalently if it belongs to the orbit of the

unimodular row (0, . . . , 0, 1) in Umn(R)/SLn(R).

Remark 2.2.7 It can be easily deduced that if (a1, . . . , an) ∈ Rn is completable then

it can be any row of a matrix in SLn(R).

Remark 2.2.8 A unimodular row (a1, . . . , an) ∈ Rn is said to be elementarily com-

pletable if

(a1, . . . , an)
En(R)∼ (0, · · · , 0, 1)

Remark 2.2.9 It can be easily shown that any unimodular row of length 2 is com-

pletable. It is well known that for odd n 6= 1, 3, 7, the unimodular row given by previous

example [2.2.2 (i)] is not completable (for details, see [IR, proposition 3.1.10]).

In [SwT] R. G. Swan and J. Towber observed the remarkable fact that for any ring

R and any (a, b, c) ∈ Um3(R), the unimodular row (a2, b, c) ∈ Um3(R) is completable.

Suslin [Su 2] generalized the result of Swan-Towber by proving the following theorem

which will be crucial for this thesis.

Theorem 2.2.10. [Su 2] Let (a0, . . . , an) be a unimodular row and let m0, . . . ,mn be

positive integers such that
∏i=n
i=0 mi is divisible by n!. Then (am0

0 , . . . , amn
n ) is completable.

In particular (a0, . . . , an−1, a
n!
n ) is completable.

Remark 2.2.11 Let P be an R-module such that P ⊕R ' Rn+1. In other words, P

is a projective R-module of of rank n (which is stably free of type 1). One can then

regard P as ker(α), where α : Rn+1 → R is some suitable surjection. Let e1, . . . , en+1

be the canonical basis of Rn+1 and also let α(ei) = ai, for all i = 1, . . . , n + 1. Since

α is surjective, there exists (b1, . . . , bn+1) ∈ Rn+1 such that
∑n+1

i=1 aibi = 1. Therefore,

(a1, . . . , an+1) ∈ Umn+1(R).

Conversely, Let v = (b1, · · · , bn+1) ∈ Umn+1(R), then v gives a surjective map

β : Rn+1 → R such that β(ei) = bi, for all i = 1, . . . , n + 1. Let P = ker(β). Then
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clearly, P ⊕Rv ' P ⊕R ' Rn+1. Let us denote P as Pv.

The following is a standard result. The proof can be found in [IR].

Proposition 2.2.12. [IR, Proposition 3.1.6] Let v ∈ Umn+1(R). Then Pv is free if

and only if v is completable.

2.3 Group structure on orbit space of unimodular rows

Let R be a ring of dimension d ≥ 2. By a simple application of the prime avoidance

lemma, it can be shown that for n ≥ d+ 2, the group En(R) acts transitively on Umn(R)

(see [La, Chapter II, Theorem 7.3] for a proof). There are counterexamples to show that

this is the best possible result. For d = 2, in [SuVa, Section 5] Vaserstein shows that,

Um3(R)/E3(R) has bijective correspondence with a certain Witt group. This abelian

group structure can be pulled back on Um3(R)/E3(R) to give the latter the structure

of an abelian group. Later, van der Kallen [vdK 1] derived from this (inductively) the

abelian group structure on the orbit space Umd+1(R)/Ed+1(R) (when dimR = d). This

induces a group structure on Umd+1(R)/SLd+1(R) as well.

Let P be a projective R-module of rank d with R
∼→ ∧d(P ). An isomorphism

χ : R
∼→ ∧d(P ) is called an orientation of P , and P is called oriented if it comes with

a chosen χ. A pair of oriented projective modules (P1, χ1) and (P2, χ2) are said to be

isomorphic if there exists an isomorphism φ : P1
∼→ P2 such that (∧dφ)χ1 = χ2.

Let v = (a0, · · · , ad) ∈ Umd+1(R) and Pv be the kernel of the surjection θ : Rd+1 � R

given by θ(ei) = ai, 0 ≤ i ≤ d (here {e0, · · · , ed} is the canonical basis of Rd+1). In

[BRS 3, Page 214], it is shown in detail that Pv is oriented, endowed with a natural

orientation. We give a sketch. Let b0, · · · , bd ∈ R be such that a0b0 + · · · + adbd = 1.

Then the map ψ : R −→ Rd+1 given by x 7→ (xb0, · · · , xbd) is the injection which

splits θ, and we have an isomorphism Rd+1 ∼→ Pv ⊕R. Let f = b0e0 + · · ·+ bded, and

pi = aif − ei for 0 ≤ i ≤ d. It is then easy to check that under the isomorphism, pi

are images of ei and therefore they generate Pv. Eventually, it is shown in [BRS 3]

that if ωi = p0 ∧ · · · pi−1 ∧ pi+1 · · · pd (0 ≤ i ≤ d), and χ :=
∑d

0(−1)iaiωi, then χ is an

orientation of Pv. Thus, every unimodular row v corresponds to an oriented stably free
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module.

The following result from [vdK 1] (see Theorem 4.8 and the discussion surrounding

it in [vdK 1]) inspires one to study the action of SLd+1(R) on Umd+1(R).

Theorem 2.3.1. Let R be ring of dimension d ≥ 2. If d is even, then the set of

isomorphism classes of oriented stably free R-modules of rank d is in bijection with

Umd+1(R)/SLd+1(R) and therefore carries the structure of an abelian group. If d is odd,

then Umd+1(R)/SLd+1(R) is the set of isomorphism classes of stably free R-modules of

rank d (without orientation).

We now recall the group structure on the orbit space Umd+1(R)/Ed+1(R) from

[vdK 1, vdK 2] and record some useful results. The defining relation goes as follows: If

(q, v1, · · · , vd) and (1 + q, v1, · · · , vd) are both unimodular and if r(1 + q) ≡ q modulo

v1R+ · · ·+ vdR, then

[q, v1, · · · , vd] = [r, v1, · · · , vd][1 + q, v1, · · · , vd]

The following ‘useful formulas’ from [vdK 2, Lemma 3.5] are extensively used in this

thesis.

Theorem 2.3.2. Let R be a ring of dimension d ≥ 2. Let (a, v1, . . . , vd), (b, v1, · · · , vd),

and (a, r) be unimodular. Choose p ∈ R such that ap ≡ 1 modulo v1R+ · · ·+ vdR. Then

we have the followings assertions:

(i) [b, v1, · · · , vd][a, v1, . . . , vd] = [a(b+ p)− 1, (b+ p)v1, . . . , vd].

(ii) [a, v1, . . . , vd] = [a, r2v1, v2, . . . , vd] = [a, rv1, rv2, . . . , vd].

(iii) [a, v1, . . . , vd][b
2, v1, · · · , vd] = [ab2, v1, · · · , vd].

(iv) [a, v1, . . . , vd]
−1 = [−p, v1, . . . , vd].

(v) [a2, v1, · · · , vd] = [a, v2
1, v2, · · · , vd].

Much later, van der Kallen gives a simpler relation for the group structure on

Umd+1(R)/Ed+1(R) in [vdK 3]. The following is a useful lemma for that purpose.
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Lemma 2.3.3. (Mennicke-Newman) [vdK 3, Lemma 3.2] Let v, w ∈ Umd+1(R). Then

there exist α, β ∈ Ed+1(R) such that vα = (x, a1, . . . , ad) and wβ = (y, a1, . . . , ad) such

that x+ y = 1.

The product rule then goes as follows: If (x, a1, . . . , ad), (y, a1, . . . , ad) are unimodular

with x+ y = 1, then

[x, a1, . . . , ad][y, a1, . . . , ad] = [xy, a1, . . . , ad].

2.4 The Euler class group and related results

In this section we quickly recall the generalities of the Euler class group theory. We first

accumulate some basic definitions, namely, the definitions of the Euler class group, the

Euler class of a projective module, and then state some results which are relevant to

this thesis. Detailed accounts of these topics can be found in [BRS 1, BRS 3].

Let R be a smooth affine domain of dimension d ≥ 2 over an infinite perfect field k.

We recall definitions of the Euler class groups from [BRS 1]. Our emphasis will also be

on the definition of the Euler class group given by M. V. Nori in terms of homotopy (as

appeared in [BRS 1]). In [DK], the authors investigated in detail the relation between

these two equivalent definitions and their consequences. We reproduce some of those

results in one place for completeness.

The Euler class group Ed(R):

Let R be a smooth affine domain of dimension d ≥ 2 over an infinite perfect field k.

Let B be the set of pairs (m,ωm) where m is a maximal ideal of R and ωm : (R/m)d →→

m/m2. Let G be the free abelian group generated by B. Let J = m1 ∩ · · · ∩mr, where

mi are distinct maximal ideals of R. Any ωJ : (R/J)d →→ J/J2 induces surjections

ωi : (R/mi)
d →→ mi/m

2
i for each i. We associate (J, ωJ) :=

∑r
1(mi, ωi) ∈ G.

Definition 2.4.1. (Nori) Let S be the set of elements (I(1), ω(1))− (I(0), ω(0)) of G

where (i) I ⊂ R[T ] is a local complete intersection ideal of height d; (ii) Both I(0) and I(1)

are reduced ideals of height d; (iii) ω(0) and ω(1) are induced by ω : (R[T ]/I)d →→ I/I2.

Let H be the subgroup generated by S. The d-th Euler class group Ed(R) is defined as
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Ed(R) := G/H.

Definition 2.4.2. (Bhatwadekar-Sridharan) Let S1 be the set of elements (J, ωJ) of

G for which ωJ has a lift to a surjection θ : Rd →→ J and H1 be the subgroup of G

generated by S1 . The Euler class group Ed(R) is defined as Ed(R) := G/H1.

Remark 2.4.3 We shall refer to the elements of the Euler class group as Euler cycles.

Remark 2.4.4 The above definitions appear to be slightly different than the ones

given in [BRS 1]. However, note that if (J, ωJ) ∈ S (resp. S1) and if σ ∈ Ed(R/J), then

the element (J, ωJσ) is also in S (resp. S1). For details, see [DK, Remark 5.4] and [DZ,

Proposition 2.2].

Remark 2.4.5 Bhatwadekar-Sridharan proved (see [BRS 1, Remark 4.6]) that H = H1

and therefore the above definitions of the Euler class group are equivalent.

The following theorem collects a few results in one place (see [BRS 1, 4.11], [K, 4.2],

[DK, Theorem 5.13] for details).

Theorem 2.4.6. Let R be a smooth affine domain of dimension d ≥ 2 over an infinite

perfect field k. Let J ⊂ R be a reduced ideal of height d and ωJ : (R/J)d →→ J/J2 be a

surjection. Then, the following are equivalent:

(i) The image of (J, ωJ) = 0 in Ed(R)

(ii) ωJ can be lifted to a surjection θ : Rd � J .

(iii) (J, ωJ) = (I(0), ω(0)) − (I(1), ω(1)) in G where (i) I ⊂ R[T ] is a local complete

intersection ideal of height d; (ii) Both I(0) and I(1) are reduced ideals of height

d, and (iii) ω(0) and ω(1) are induced by ω : (R[T ]/I)d � I/I2.

A series of remarks are in order.
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Remark 2.4.7 Let J ⊂ R be an ideal of height d which is not necessarily reduced and

let ωJ : (R/J)d →→ J/J2 be a surjection. Then also one can associate an element (J, ωJ)

in Ed(R) and prove the above theorem for (J, ωJ). See [BRS 1, Remark 4.16] for details.

Remark 2.4.8 ([BRS 1], Remark 4.14) An arbitrary element of Ed(R) can be rep-

resented by a single Euler cycle (J, ωJ), where J is a reduced ideal of height d and

ωJ : (R/J)d � J/J2 is a surjection.

The following notation will be used in the rest of this thesis.

Notation. Let dim(R) = d. Let (J, ωJ) ∈ Ed(R) and u ∈ R be a unit modulo J . Let

σ be any matrix in GLd(R/J) with determinant u (bar means modulo J). We shall

denote the composite surjection

(R/J)d
σ
∼→ (R/J)d

ωJ
� J/J2

by uωJ . It is easy to check that the element (J, uωJ) ∈ Ed(R) is independent of σ (the

key fact used here is that SLd(R/J) = Ed(R/J) as dim(R/J) = 0).

The following remark is useful for the next section of this thesis.

Remark 2.4.9 ([BRS 3, Remark 5.0, Lemma 5.4]) Let R and J be as above and also

let (J, ω1) and (J, ω2) in Ed(R). Then it can be obtained from [BRS 3, Lemma 2.2] that

(J, ω2) = (J, ūω1), for some unit ū ∈ R/J . If ū ∈ (R/J)∗ is a square say, ū = v̄2. Then

(J, ω1) = (J, v̄2ω1).

Remark 2.4.10 [BDM, Lemma 3.4, 3.6] Let R and J be as above. Let ωJ be induced

by J = (a1, · · · , ad) +J2. Consider K = (a1, · · · , ad−1) +J2. Then it is proved in [BDM,

Lemma 3.4, 3.6] that (K,ωK) = (J, ωJ) + (J,−ωJ) in Ed(R), where ωK corresponds to

K = (a1, · · · , ad−1, a
2
d) +K2. In fact, (K,ωK) is independent of ωK .

Definition 2.4.11. (The Euler class of a projective module): Let R be a smooth affine

domain of dimension d ≥ 2 over an infinite perfect field k. Let P be a projective

R-module of rank d such that R ' ∧d(P ) and let χ : R
∼→ ∧dP be an isomorphism.
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Let ϕ : P � J be a surjection where J is an ideal of height d. Therefore we obtain an

induced surjection ϕ : P/JP � J/J2. Let γ : (R/JR)d
∼→ P/JP be an isomorphism

such that ∧d(γ) = χ. Let ωJ be the composite surjection ϕ γ : (R/JR)d � J/J2. Let

e(P, χ) be the image in Ed(R) of the element (J, ωJ) of G. Then it is proved in [BRS 3]

that the assignment sending the pair (P, χ) to the element e(P, χ) of Ed(R) is well

defined. The Euler class of (P, χ) is defined to be e(P, χ).

We record the following results from [BRS 3] for later use.

Theorem 2.4.12. Let R be a be a smooth affine domain of dimension d ≥ 2 over an

infinite perfect field k such that dimR = d ≥ 2. Let P be a projective R-module of rank

d with R ' ∧d(P ) and let χ : R
∼→ ∧dP be an isomorphism. Let J ⊂ R be an ideal of

height n and ωJ : (R/JR)d � J/J2 be a surjection.

(i) Let e(P, χ) = (J, ωJ) in Ed(R). Then there exists a surjective map α : P � J such

that (J, ωJ) is induced by (α, χ).

(ii) P ' P1⊕R for some projective R-module P1 of rank d−1 if and only if e(P, χ) = 0

in Ed(R).

2.5 Results on the Euler class groups of smooth affine do-

main over R

Let X = Spec(R) be a smooth affine variety of dimension d ≥ 2 over R. Also, let m be a

maximal ideal of R. If R/m ' R, then we call it a real maximal ideal and if R/m ' C,

then we call it a complex maximal ideal. Let X(R) denote the set of all real points of X.

In this thesis we assume that X(R) 6= ∅. Let S denote the multiplicatively closed subset

of R consisting of all functions which do not have any real zeros (which do not belong

to any real maximal ideal of R ). Let R(X) := RS . (The ring R(X) informally dubbed

as the “real” coordinate ring of the variety). Then dim(R) = dim(R(X)). Under the

Euclidean topology, X(R) is a smooth real manifold of dimension d. Let C be the (finite)

set of connected components of X(R) which are compact.

Moreover, as R(X) is a direct limit of smooth affine domains then it can be verified that

Euler class group Ed(R(X)) can be taken as direct limits of the respective Euler class
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groups of smooth affine domains. Hence all the analogous results concerning the Euler

class groups of smooth affine domains hold for R(X).

Some essential observations to get the structure theorem of Ed(R):

Here we list some results from [BRS 2] that we shall need in this thesis.

(i) Let m be a maximal ideal of R(X) and (m, ω1), (m, ω2) ∈ Ed(R(X)) where ω1, ω2 :

(R(X)/m)d � m/m2 be two surjections. From Remark 2.4.9, (m, ω2) = (m, uω1)

for some u ∈ (R/m)∗ = R∗. Then either u or −u is a square. If u = v2, Then

(m, ω2) = (m, v2ω1) = (m, ω1), by Remark 2.4.9. Otherwise, −u = v2 and (m, ω2) =

(m,−v2ω1) = (m,−ω1). Therefore, (m, ω2) = (m, ω1) or (m, ω2) = (m,−ω1).

(ii) Let m be a maximal ideal of R(X) such that the real point associated to m does not

belong to any compact connected component of X(R). Then it follows from [BRS 2,

Corollary 4.9] that (m, ωm) = 0, for any surjection ωm : (R(X)/m)d � m/m2.

(iii) If m is maximal ideal of R(X) such that the real point associated to m belongs

to a compact connected component of X(R), then it follows from the [BRS 2,

proof of Theorem 4.13] that for any surjection ωm : (R(X)/m)d � m/m2, (m, ωm) +

(m,−ωm) = 0 in Ed(R(X)).

Moreover, by [BRS 2, proof of Theorem 4.13] , if m′ in R(X) is another maximal

ideal such that the real point associated to m′ belongs to the same compact

connected component of X(R), then it follows from (i) and the above discussion

that for any other surjection ωm′ : (R(X)/m′)d � m′/m′2, either (m′, ωm′) = (m, ωm)

or (m′, ωm′) = −(m, ωm).

Structure theorem of Ed(R)

In[ [BRS 2], [BDM]] the structure of Ed(R(X)) has been extensively studied. Our

interest is in the case when X(R) is orientable. By [BRS 2, Theorem 4.12, 4.13] and

[BDM, Theorem 4.21] Ed(R(X)) is a free abelian group of rank equal to the number of
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compact connected components of X(R):

Ed(R(X))
∼−→
⊕
|C|

Z,

where C is the set of all compact connected components of X(R).

Since R(X) is a localization of R and is equidimensional, then there is a canonical

surjective group homomorphism Γ : Ed(R) � Ed(R(X)) (for details see [BRS 2, page

307]).

For smooth affine real varieties the following structure theorem was proved in [BRS 2,

Theorem 4.14].

Theorem 2.5.1. Let R be as above and let X(R) be orientable. Then, Ed(R)
∼→

Ed(C) ⊕ Ed(R(X)), where Ed(C) is the subgroup generated by all those Euler cycles

in Ed(R), which are supported on complex maximal ideals of R. As mentioned above,

Ed(R(X)) is free abelian of rank |C|.

It can also be deduced from [BDM, 4.26,4.25] that Ed(C) is divisible and torsion

free. We give an outline of the proof.

Remark 2.5.2 Let X = Spec(R) be a smooth affine variety of dimension d ≥ 2 over

R and CH0(X) denote the group of zero cycles of X modulo rational equivalence. Let

J ⊂ R be an ideal of height d. By abuse of notation we will denote the cycles associated

to the module R/J by [J ]. The assignment (J, ωJ) ∈ Ed(R) to [J ] ∈ CH0(X) gives rise

to a well defined surjective group homomorphism say, φ.

Following [BDM, Remark 4.24] let us consider RC := R⊗R C. Let Y := Spec(RC).

Then RC is a smooth affine domain of dimension d over C and hence CH0(Y ) is a

divisible group. Let π : Y → X be the canonical finite group homomorphism. Then we

have induced maps

π∗ : CH0(Y )→ CH0(X) and π∗ : CH0(X)→ CH0(Y ),

such that π∗π
∗ is multiplication by 2.
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Write G := π∗(CH0(Y )) ⊂ CH0(X). Then by [BDM, Lemma 4.25], G is a divisible

group and torsion free for d ≥ 2. It is also proved in [BDM, Lemma 4.26], that

G = φ(Ed(C)). Now consider the following commutative diagram:

Ed(R)
φ // CH0(X)

Ed(C)

φ∣∣Ed(C)
//

i

OO

G

i

OO

where i denotes the inclusion map. From the proof of [BDM, proposition 4.29] it follows

that φ is injective on (Ed(C)). Therefore we have (Ed(C)) ' G. Since G is a divisible

torsion free group (Ed(C)) is also divisible and torsion free group for d ≥ 2.
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Chapter 3

Objects, Maps and Homotopy

In this chapter we collect some basic definitions and useful results. We also establish a

map δR from the Euler class group Ed(R) to the group Umd+1(R)/Ed+1(R), which is

one of the main tools of this thesis. This definition involves homotopy orbits of certain

objects. By ‘homotopy’ we mean ‘naive homotopy’, as defined below.

3.1 Homotopy

Definition 3.1.1. Let F be a functor originating from the category of rings to the

category of sets. For a given ring R, two elements F (u0), F (u1) ∈ F (R) are said to be

homotopic if there is an element F (u(T )) ∈ F (R[T ]) such that F (u(0)) = F (u0) and

F (u(1)) = F (u1).

Definition 3.1.2. Let F be a functor from the category of rings to the category of sets.

Let R be a ring. Consider the equivalence relation on F (R) generated by homotopies (the

relation is easily seen to be reflexive and symmetric but is not transitive in general). The

set of equivalence classes thus obtained will be denoted by π0(F (R)) and an equivalence

class will be called a homotopy orbit.

Example 3.1.3. Let R be a ring. Two matrices σ, τ ∈ GLn(R) are homotopic if there

is a matrix θ(T ) ∈ GLn(R[T ]) such that θ(0) = σ and θ(1) = τ . Of particular interest

are the matrices in GLn(R) which are homotopic to identity.

23
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Remark 3.1.4 Any θ ∈ En(R) is homotopic to identity. To see this, let θ =
∏
Eij(λij).

Define Θ(T ) :=
∏
Eij(Tλij). Then, clearly Θ(T ) ∈ En(R[T ]) and we observe that

Θ(1) = θ, Θ(0) = In.

In this context, we record below a remarkable result of Vorst.

Theorem 3.1.5. [Vo, Theorem 3.3] Let R be a regular ring which is essentially of finite

type over a field k. Let n ≥ 3 and θ(T ) ∈ GLn(R[T ]) be such that θ(0) = In (θ is thus a

homotopy between In and θ(1) ∈ GLn(R)). Then θ(T ) ∈ En(R[T ]).

Remark 3.1.6 Using a result of Popescu [Po], the above theorem can be extended to

the case when R is a regular ring containing a field.

3.2 Homotopy orbits of unimodular rows

For a ring R, consider the set

Umn+1(R) := {(a1, · · · , an+1) ∈ Rn+1 |
n+1∑
i=1

aibi = 1 for some b1, · · · , bn+1 ∈ R}

of unimodular rows of length n + 1 in R. Then Fn+1(R) := Umn+1(R) is a functor.

Two unimodular rows (a1, · · · , an+1) and (a′1, · · · , a′n+1) are homotopic if there exists

(f1(T ), · · · , fn+1(T )) ∈ Umn+1(R[T ]) such that fi(0) = ai and fi(1) = a′i for i =

1, · · · , n+ 1. The set Umn+1(R) has a base point, namely, (0, · · · , 0, 1).

We shall need the following theorem later. See also [F 1, Theorem 2.1] for a more

general version.

Theorem 3.2.1. Let R be a regular ring containing a field k. Then, for any n ≥ 2 there

is a bijection ηR : π0(Umn+1(R))
∼−→ Umn+1(R)/En+1(R).

Proof. Let v ∈ Umn+1(R). We define ηR by sending the homotopy orbit of v to the

elementary orbit of v. But we have to ensure that ηR is well-defined. Let u ∈ Umn+1(R)

be such that v is homotopic to u. Then, by definition, there exists f(T ) ∈ Umn+1(R[T ])

such that f(0) = v and f(1) = u. As R is a regular ring containing a field k, it

follows from [Li, Po] that f(T ) is extended from R. In other words, there exists
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σ(T ) ∈ GLn+1(R[T ]) such that f(T )σ(T ) = f(0). Therefore, f(0)σ(0) = f(0). It

then follows that f(T )σ(T )σ(0)−1 = f(0). Writing τ = σ(T )σ(0)−1 we see that

τ ∈ GLn+1(R[T ]) and τ(0) = In+1. By Theorem 3.1.5 (and Remark 3.1.6) above,

we actually have τ ∈ En+1(R[T ]). As uτ(1) = f(1)τ(1) = f(0) = v, we are done proving

that ηR is well-defined.

Injectivity of ηR is clear because elementary matrices are homotopic to identity. Surjec-

tivity is trivial.

3.3 The pointed set Q′2n(R) and its homotopy orbits

Let R be any commutative Noetherian ring. Let n ≥ 2 and consider the set

Q′2n(R) = {(x1, · · ·xn, y1, · · · , yn, z) ∈ R2n+1 |
n∑
i=1

xiyi + z2 = 1}

with a base point (0, · · · , 0, 0, · · · , 0, 1). Assume that 2R = R and let O2n+1(R) be the

group of orthogonal matrices preserving the quadratic form
∑n

i=1XiYi +Z2. Then there

is a natural action of O2n+1(R) and its subgroup SO2n+1(R) on the set Q′2n(R). Let

EO2n+1(R) be the elementary subgroup of SO2n+1(R) as defined in [VaP, Section 3],

[Va, p. 1503]. As n ≥ 2, the subgroup EO2n+1(R) is normal in SO2n+1(R) (see [VaP,

Lemma 4]). Indeed, the group EO2n+1(R) also naturally acts on the set Q′2n(R). For the

convenience of the reader, we recall the definition of EO2n+1(R) from [Va, VaP] below.

We explicitly describe the generators of this group by writing out their actions on a

vector (x1, · · · , xn, y1, · · · , yn, z). The first three correspond to the long root unipotents,

while the last two correspond to the short root unipotents, as mentioned in [Va, VaP].

Definition 3.3.1. The elementary subgroup EO2n+1(R): The group EO2n+1(R) is

the subgroup of SO2n+1(R) generated by the following elementary orthogonal transvec-

tions:

(1 ≤ i, j ≤ n, i 6= j, and λ ∈ R)

(i) (x1, · · · , xn, y1, · · · , yn, z)

7→ (x1, · · · , xi−1, xi + λxj , xi+1, · · · , yj−1, yj − λyi, yj+1, · · · , yn, z)
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(ii) (x1, · · · , xn, y1, · · · , yn, z) 7→ (x1, · · · , xi−1, xi + λyj , · · · , xj − λyi, xj+1, · · · , yn, z)

(iii) (x1, · · · , xn, y1, · · · , yn, z) 7→ (x1, · · · , yi−1, yi + λxj , · · · , yj − λxi, yj+1, · · · , yn, z)

(iv) (x1, · · · , xn, y1, · · · , yn, z) 7→ (x1, · · · , xi−1, xi + 2λz − λ2yi, xi+1, · · · , yn, z − λyi)

(v) (x1, · · · , xn, y1, · · · , yn, z) 7→ (x1, · · · , yi−1, yi + 2λz − λ2xi, yi+1, · · · , yn, z − λxi)

Remark 3.3.2 Any reader consulting [Va, VaP] should be cautioned that we are

following a different scheme of notations here. The 0 th coordinate of [Va, VaP] is the last

coordinate here. Also, they use negative indices for the y-coordinates. More precisely,

their x0 is our z, and their x−i is our yi. The reader may also note that the description

of EO2n+1(R) by Calmes-Fasel [CF] as mentioned in [F3, p. 320] is concurrent with the

above definition.

Remark 3.3.3 It is easy to see from the description of EO2n+1(R) above that if

σ ∈ EO2n+1(R), then σ is homotopic to the identity matrix I2n+1.

The following result is a consequence of a much more general result proved by

Stavrova in [St, Theorem 1.3]. This is an analogue of [Vo, Theorem 3.3].

Theorem 3.3.4 (Stavrova). Let R be a regular ring containing a field k with Char(k) 6=

2. Let n ≥ 2 and τ(T ) ∈ O2n+1(R[T ]) be such that τ(0) = I2n+1. Then, τ(T ) ∈

EO2n+1(R[T ]).

The following result has been proved by Mandal-Mishra [MaMi, Theorem 4.2].

Theorem 3.3.5 (Mandal-Mishra). Let R be a regular ring containing a field k with

Char(k) 6= 2. Let H(T ) ∈ Q′2n(R[T ]). Then, there exists τ(T ) ∈ O2n+1(R[T ]) such that

τ(0) = I2n+1 and H(T )τ(T ) = H(0).

We now prove the following theorem. Recall from the beginning of this section

that two elements (x1, · · ·xn, y1, · · · , yn, z) and (x′1, · · ·x′n, y′1, · · · , y′n, z′) from Q′2n(R)

are homotopic if there is (f1(T ), · · · , fn(T ), g1(T ), · · · , gn(T ), h(T )) ∈ Q′2n(R[T ]) such

that fi(0) = xi, fi(1) = x′i, gi(0) = yi, gi(1) = y′i for i = 1, · · · , n, and h(0) = z and

h(1) = z′. Also, π0(Q′2n(R)) is the set of homotopy orbits of Q′2n(R).
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Theorem 3.3.6. Let R be a regular ring containing a field k with Char(k) 6= 2. Then,

for any n ≥ 2 there is a bijection

η : π0(Q′2n(R))
∼−→ Q′2n(R)/EO2n+1(R).

Proof. Let u := (x1, · · ·xn, y1, · · · , yn, z) ∈ Q′2n(R). Let η be the map which takes the

homotopy orbit of u to its EO2n+1(R)-orbit. We have to check first that η is well-defined.

Let u and v be two representatives of the same homotopy orbit. By definition, they

will be connected by a finite sequence of homotopies. We first consider the simple case,

namely, when u and v are homotopic. In that case, there exists H(T ) ∈ Q′2n(R[T ]) such

that H(0) = u and H(1) = v. By Theorem 3.3.5, there exists τ(T ) ∈ O2n+1(R[T ]) such

that τ(0) = I2n+1 and H(T )τ(T ) = H(0). Applying Theorem 3.3.4 we conclude that

τ(T ) ∈ EO2n+1(R[T ]). Then, σ := τ(1) ∈ EO2n+1(R) and we have

vσ = H(1)τ(1) = H(0) = u.

Therefore u and v are connected by an element of EO2n+1(R) (namely, σ), and they

define the same EO2n+1(R)-orbit. To tackle the general case, we can take the product

of those σ obtained for each homotopy.

The map η is clearly surjective. To prove the injectivity, let u, v ∈ Q′2n(R) be such

that there exists σ ∈ EO2n+1(R) with v = uσ. By Remark 3.3.3, σ is homotopic to I2n+1.

Therefore, there exists Θ(T ) ∈ EO2n+1(R[T ]) such that Θ(0) = I2n+1 and Θ(1) = σ.

Define

H(T ) := uΘ(T ) ∈ Q′2n(R[T ]).

Then, H(0) = u and H(1) = v, showing that u and v are homotopic.

The following corollary is now obvious.

Corollary 3.3.7. Let R be a regular ring containing a field k with Char(k) 6= 2. Then,

for n ≥ 2, the relation induced by homotopy on Q′2n(R) is also transitive, and hence an

equivalence relation.
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Remark 3.3.8 Observe that there is an obvious map from Q′2n(R) to Umn+1(R)

taking (x1, · · ·xn, y1, · · · , yn, z) to (x1, · · ·xn, z), which will induce a set-theoretic map

ζR : π0(Q′2n(R))→ π0(Umn+1(R)) between the homotopy orbit spaces.

3.4 The pointed set Q2n(R) and its homotopy orbits

Let R be any commutative Noetherian ring. Let n ≥ 2 and consider the set

Q2n(R) = {(x1, · · ·xn, y1, · · · , yn, z) ∈ R2n+1 |
n∑
i=1

xiyi = z − z2}

with a base point (0, · · · , 0, 0, · · · , 0, 0). It is proved in [F3] that if 1
2 ∈ R, then there is

a bijection βn : Q2n(R)→ Q′2n(R) and its inverse αn : Q′2n(R)→ Q2n(R) given by

• βn(x1, · · ·xn, y1, · · · , yn, z) = (2x1, · · · 2xn, 2y1, · · · , 2yn, 1− 2z)

• αn(x1, · · ·xn, y1, · · · , yn, z) = 1
2(x1, · · ·xn, y1, · · · , yn, 1− z)

Note that both αn and βn preserve the base points of the respective sets. They induce

bijections between the sets π0(Q2n(R)) and π0(Q′2n(R)) (will use the same notations).

By transporting the action of EO2n+1(R) on Q′2n(R) through the bijections given above

one sees that EO2n+1(R) also acts on Q2n(R) in the following way:

Mv := αn((βn(v))M),

for v ∈ Q2n(R) and M ∈ EO2n+1(R) (with the assumption 1
2 ∈ R). Further, note that

the bijections αn, βn induce bijections between the sets π0(Q2n(R)) and π0(Q′2n(R)).

Combining these with Theorem 3.3.6, one obtains the following result.

Theorem 3.4.1. Let R be a regular ring containing a field k with Char(k) 6= 2. Then,

for any n ≥ 2 there is a bijection

π0(Q2n(R))
∼−→ Q2n(R)/EO2n+1(R).

We shall require the following corollary later.
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Corollary 3.4.2. Let R be a regular ring containing a field k with Char(k) 6= 2. Then,

for n ≥ 2, the relation induced by homotopy on Q2n(R) is also transitive, and hence an

equivalence relation.

In the next three sections we shall discuss about the maps between the Euler class

group Ed(R) and Umd+1(R)/Ed+1(R), when R is a smooth affine domain of dimension

d ≥ 2 over an infinite perfect field k.

3.5 The map φR : Umd+1(R)/Ed+1(R)→ Ed(R)

Let R be a smooth affine domain of dimension d ≥ 2 over an infinite perfect field k. We

now recall the definition of a group homomorphism φR : Umd+1(R)/Ed+1(R)→ Ed(R).

When d is even, φR has been defined in [BRS 3]. The extension to general d is available

in [DZ, vdK 4]. We urge the reader to look at [DZ, Section 4] for the details.

Definition 3.5.1. Let v = (a1, · · · , ad+1) ∈ Umd+1(R). Applying elementary transfor-

mations if necessary, we may assume that ht(a1, · · · , ad) ≥ d . Write J = (a1, · · · , ad) and

let ωJ : Rd � J be the surjection induced by (a1, · · · , ad). As ad+1 is a unit modulo J ,

we have J = (a1, · · · , adad+1)+J2 and the corresponding element in Ed(R) is (J, ad+1ωJ).

Let [v] denote the orbit of v in Umd+1(R)/Ed+1(R). Define φR([v]) = (J, ad+1ωJ). It is

proved in [DZ, vdK 4] that φR is a group homomorphism.

Remark 3.5.2 When d is even, the above definition coincides with the one given in

[BRS 3]. A short remark on the definition given in [BRS 3] is in order. Note that the

unimodular row v gives rise to a stably free R-module, say, P of rank d together with a

canonical orientation χ : R
∼−→ ∧d(P ). Bhatwadekar-Sridharan defines φR([v]) to be the

Euler class of the pair (P, χ) which resides in Ed(R). The computation of this Euler

class in [BRS 3, Page 214] shows that it turns out to be exactly the one given above,

namely, (J, ad+1ωJ).

The rest of this chapter is devoted to establishing a (set-theoretic) map from the

Euler class group Ed(R) to Umd+1(R)/Ed+1(R). In order to do so, we have to factor

through π0(Q2d(R)) which we take up in the next section.
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3.6 The map θR : Ed(R) −→ π0(Q2d(R))

We first recall the definition of a set-theoretic map from the Euler class group Ed(R) to

π0(Q2d(R)) from [DTZ2], where R is a smooth affine domain of dimension d ≥ 2 over

an infinite perfect field k.

By Remark 2.4.8, we know that an arbitrary element of Ed(R) can be represented by a

single Euler cycle (J, ωJ), where J is a reduced ideal of height d. Now ωJ : (R/J)d � J/J2

is given by J = (a1, · · · , ad) + J2, for some a1, · · · , ad ∈ J . Applying Nakayama Lemma

one obtains s ∈ J2 such that J = (a1, · · · , ad, s) with s− s2 = a1b1 + · · ·+ adbd for some

b1, · · · , bd ∈ R (see Lemma 2.1.7 for a proof). We associate to (J, ωJ) the homotopy

class [(a1, · · · , ad, b1, · · · , bd, s)] in π0(Q2d(R)).

The following proposition from [DTZ2], has also been proved in [AF, MaMi] with

the additional assumption that Char(k) 6= 2. We do not need that assumption and our

line of proof is entirely different.

Proposition 3.6.1. Let R be a smooth affine domain of dimension d ≥ 2 over an infinite

perfect field k. The association (J, ωJ) 7→ [(a1, · · · , ad, b1, · · · , bd, s)] is well defined and

it gives rise to a set-theoretic map θR : Ed(R) → π0(Q2d(R)). The map θR takes the

trivial Euler cycle to the homotopy orbit of the base point (0, · · · , 0) of Q2d(R).

Proof. We need to check the following:

(i) If ωJ is also given by J = (α1, · · · , αd) + J2 and if τ ∈ J2 is such that τ − τ2 =

α1β1 + · · · + αdβd, then [(a1, · · · , ad, b1, · · · , bd, s)] = [(α1, · · · , αd, β1, · · · , βd, τ)]

in π0(Q2d(R)).

(ii) If σ ∈ Ed(R/J), then the image of (J, ωJσ) in Q2d(R) is homotopic to the image

of (J, ωJ).

(iii) If (J, ωJ) is also represented by (J ′, ωJ ′) in Ed(R), then their images are homotopic

in Q2d(R).

Proof of (i) : This has been proved in [F3, Theorem 2.0.2].

Proof of (ii) : Suppose that (J, ωJ) is given by J = (a1, · · · , ad) +J2, and s ∈ J2 be such

that J = (a1, · · · , ad, s) with s− s2 = a1b1 + · · ·+ adbd for some b1, · · · , bd ∈ R. Let σ ∈
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Ed(R) be a lift of σ and write (a1, · · · , ad)σ = (α1, · · · , αd). Then J = (α1, · · · , αd) +J2

and J = (α1, · · · , αd, s). If we write (b1, · · · , bd)(σ−1)t = (β1, · · · , βd) (here t stands for

transpose), then it is easy to see that s(1− s) = α1β1 + · · ·+ αdβd. Now, note that

λ =


σ 0 0

0 (σ−1)t 0

0 0 1

 ∈ E2d+1(R)

and (a1, · · · , ad, b1, · · · , bd, s)λ = (α1, · · · , αd, β1, · · · , βd, s). Since elementary matri-

ces are homotopic to identity, we are done in this case.

Proof of (iii) : We break this proof into two steps.

Step 1. We have (J, ωJ) = (J ′, ωJ ′) ∈ Ed(R) = G/H1, where H1 is as in Definition 2.4.2.

It then follows that

(J, ωJ) +
r∑
i=1

(Ki, ωKi) = (J ′, ωJ ′) +
s∑

j=r+1

(K ′j , ωK′j )

in G, where all the (Ki, ωKi) and (K ′j , ωK′j ) are in S1 (where S1 is as in Definition 2.4.2).

Adapting the proof of [BRS 1, 4.11], if necessary, we can change the above equation

to obtain a new one where the ideals appearing on the left are mutually comaximal

(consequently, so are the ideals on the right). Therefore, without loss of generality, we

may assume that J,K1, · · · ,Kr are mutually comaximal (and so are J ′,K ′r+1, · · · ,K ′s)

and we have J ∩K1 ∩ · · · ∩Kr = J ′ ∩K ′r+1 ∩ · · · ∩K ′s. Let us write K = K1 ∩ · · · ∩Kr

and K ′ = K ′r+1 ∩ · · · ∩K ′s. Also, let ωK be the surjection (R/K)d � K/K2 induced

by ωK1 , · · · , ωKr . Similarly, let ωK′ be the surjection (R/K ′)d � K ′/K ′2 induced by

ωK′r+1
, · · · , ωK′s . Summing up, we have:

(1) (J, ωJ) + (K,ωK) = (J ′, ωJ ′) + (K ′, ωK′) in G;

(2) J +K = R = J ′ +K ′;

(3) J ∩K = J ′ ∩K ′.

Step 2. Assume that ωJ is induced by J = (a1, · · · , ad) + J2 and let ωK be induced by
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K = (c1, · · · , cd). They will together induce ωJ∩K : (R/J ∩K)d � (J ∩K)/(J ∩K)2,

say, given by J ∩K = (β1, · · · , βd) + (J ∩K)2.

Because of (ii) above, we are now free to apply elementary transformations. Applying

elementary transformations on (c1, · · · , cd), if necessary, we may assume by Lemma

2.1.6 that ht(c1, · · · , cd−1) = d − 1 and J + (c1, · · · , cd−1) = R (Note that if we apply

σ ∈ Ed(R) on (c1, · · · , cd), we have to apply σ on (a1, · · · , ad) as well to retain the

relations and equations). Consider the ideal L = (c1, · · · , cd−1, (1 − cd)T + cd) in

R[T ]. Write I = L ∩ J [T ]. Using the Chinese Remainder Theorem we can then find

f1, · · · , fd ∈ I such that:

(a) I = (f1, · · · , fd) + I2.

(b) fi = ci mod L2 for i = 1, · · · , d− 1 and fd = (1− cd)T + cd mod L2.

(c) fi = ai mod J [T ]2 for i = 1, · · · , d.

Let ω : (R[T ]/I)d � I/I2 be the surjection corresponding to f1, · · · , fd. We then

have, I(0) = J ∩K, I(1) = J . From (b) we get fi(0) = ci mod K2. On the other hand,

from (c) we get fi(0) = ai mod J2. Combining, we observe that fi(0) ≡ βi mod (J ∩K)2.

In other words, ωJ∩K is the same as ω(0). Also, from (c), we obtain fi(1) ≡ ai mod J2,

implying that ωJ is the same as ω(1). Therefore, by Lemma 3.6.2 proved below, the

images of (J, ωJ) and (J ∩K,ωJ∩K) are the same in π0(Q2d(R)).

Following exactly the same procedure, as above, we can see that the images of

(J ′, ωJ ′) and (J ′ ∩K ′, ωJ ′∩K′) are the same in π0(Q2d(R)). Since J ∩K = J ′ ∩K ′, and

ωJ∩K = ωJ ′∩K′ , it follows that (J, ωJ) and (J ′, ωJ ′) have the same image in π0(Q2d(R)).

This completes the proof of the proposition.

Lemma 3.6.2. Let R be a smooth affine domain of dimension d ≥ 2 over an infinite

perfect field k. Let I ⊂ R[T ] be an ideal of height d such that both I(0) and I(1) are

ideals of height d in R. Assume that there is a surjection ω : (R[T ]/I)d � I/I2. Then,

the images of (I(0), ω(0)) and (I(1), ω(1)) in π0(Q2d(R)) are the same.

Proof. Let ω : (R[T ]/I)d � I/I2 be given by I = (f1(T ), · · · , fd(T )) + I2. Then, ω(0) is

given by I(0) = (f1(0), · · · , fd(0))+I(0)2 and ω(1) is given by I(1) = (f1(1), · · · , fd(1))+

I(1)2.
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There exist h(T ) ∈ I2 and g1(T ), · · · , gd(T ) ∈ R[T ] such that:

(i) I = (f1(T ), · · · , fd(T ), h(T ));

(ii) h(T )− h(T )2 = f1(T )g1(T ) + · · ·+ fd(T )gd(T ).

Then the 2d+ 1-tuple (f1(T ), · · · , fd(T ), g1(T ), · · · , gd(T ), h(T )) ∈ Q2d(R[T ]).

Now h(0) ∈ I(0)2 with h(0) − h(0)2 = f1(0)g1(0) + · · ·+ fd(0)gd(0). Similarly, we

have h(1) ∈ I(1)2 with h(1) − h(1)2 = f1(1)g1(1) + · · · + fd(1)gd(1). Therefore it is

easy to see that (f1, · · · , fd, g1, · · · , gd, h) ∈ Q2d(R[T ]) is the required homotopy for the

images of (I(0), ω(0)) and (I(1), ω(1)) in Q2d(R). This concludes the proof.

Remark 3.6.3 So far we have worked with Euler cycles represented by reduced ideals.

Now let J be an ideal which is not reduced and ωJ : (R/J)d � J/J2 be a surjection.

As indicated in [BRS 1, 4.16], using Swan’s Bertini theorem we can find a reduced

ideal K of height d and elements a1, · · · , ad such that: (i) J ∩ K = (a1, · · · , ad); (ii)

J + K = R; (iii) the images of a1, · · · , ad induce ωJ (for a proof, see [DRS, Lemma

2.7, Remark 2.8]). Let ωK : (R/K)d � K/K2 be the surjection induced by a1, · · · , ad.

We may apply the same procedure again and find a reduced ideal L of height d such

that: (iv) K ∩ L = (b1, · · · , bd); (v) L+K ∩ J = R; (vi) bi − ai ∈ K2 for i = 1, · · · , d.

Let ωL : (R/L)d � L/L2 be the surjection induced by b1, · · · , bd. One then associates

(J, ωJ) := (L, ωL) in Ed(R). It can be easily checked that this association is well-defined

and (J, ωJ) also satisfies the calculus of Euler cycles represented by reduced ideals. Now,

to the data J = (a1, · · · , ad) + J2 we can associate an element of π0(Q2d(R)) (exactly

as we did in Definition 3.6). On the other hand, from L = (b1, · · · , bd) + L2, we shall

obtain θR((L, ωL)) ∈ π0(Q2d(R)). We now prove:

Proposition 3.6.4. With notations as above, the element of π0(Q2d(R)) associated to

J = (a1, · · · , ad) + J2 is the same as θR((L, ωL)).

Proof. We first note that statements (i) and (ii) of Proposition 3.6.1 are also true for

the pair (J, ωJ).

The idea of proof of this proposition is essentially contained in the proof of Proposition

3.6.1 (iii) (Step 2 ). Therefore, we shall only give a sketch. As K ∩ L = (b1, · · · , bd),
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we can easily construct an ideal I ⊂ R[T ] and a surjection ω : (R[T ]/I)d � I/I2 such

that I(0) = J , I(1) = J ∩ K ∩ L, ω(0) = ωJ , and ω(1) = ωJ∩K∩L. On the other

hand, as J ∩K = (a1, · · · , ad), we can construct an ideal I ′ ⊂ R[T ] and a surjection

ω′ : (R[T ]/I)d � I ′/I ′2 such that I ′(0) = L, I ′(1) = J ∩ K ∩ L, ω′(0) = ωL, and

ω′(1) = ωJ∩K∩L. We can now apply Lemma 3.6.2 to conclude the proof.

Remark 3.6.5 It has been proved in [DTZ2] that the map θR : Ed(R)→ π0(Q2d(R))

is in fact a bijection. We provide the proof in the appendix of this thesis.

Now we are ready to define our desired map from Ed(R) to Umd+1(R)/Ed+1(R).

We carry this out in the next section where we also record some useful properties of this

map.

3.7 The map δR : Ed(R) −→ Umd+1(R)/Ed+1(R)

Let R be a regular domain of dimension d ≥ 2 which is essentially of finite type over an

infinite perfect field k with Char(k) 6= 2.

From Proposition 3.6.1 we get a well defined map θR : Ed(R) → π0(Q2d(R)). In

Section 3.4 we discussed about the set theoretic bijection βd : π0(Q2d(R)) ' π0(Q′2d(R)).

Therefore composition of these two maps yields a set-theoretic map βd ◦ θR from Ed(R)

to π0(Q′2d(R)) whose description goes as follows. Let (J, ωJ) ∈ Ed(R), where J is a

reduced ideal of height d. Now ωJ : (R/J)d � J/J2 is given by J = (a1, · · · , ad) + J2,

for some a1, · · · , ad ∈ J . Applying Nakayama Lemma one obtains s ∈ J2 such that

J = (a1, · · · , ad, s) with s− s2 = a1b1 + · · ·+ adbd for some b1, · · · , bd ∈ R.

The assignment of (J, ωJ) to

βd ◦ θR(J, ωJ) = βd([(a1, · · · , ad, b1, · · · , bd, s)]) = [(2a1, · · · , 2ad, 2b1, · · · , 2bd, 1− 2s)]

in π0(Q′2d(R)) is a well-defined set-theoretic map. The following composite

Ed(R)
θR−→ π0(Q2d(R))

βd
∼−→ π0(Q′2d(R))

ζR−→ π0(Umd+1(R))
ηR
∼−→ Umd+1(R)/Ed+1(R)
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gives a set-theoretic map from Ed(R) to Umd+1(R)/Ed+1(R). Let us call it δR. (For

the description of the last two maps see Remark 3.3.8 and Theorem 3.2.1.)

Remark 3.7.1 Thus δR : Ed(R) −→ Umd+1(R)/Ed+1(R) takes (J, ωJ) (where ωJ is in-

duced by a1, · · · , ad, s, as above) to the orbit [(2a1, · · · 2ad, 1−2s)] ∈ Umd+1(R)/Ed+1(R),

where (1 − 2s)2 ≡ 1 modulo the ideal (2a1, · · · 2ad). Conversely, let an orbit

[v] = [(x1, · · · , xd, z)] ∈ Umd+1(R)/Ed+1(R) be such that the ideal (x1, · · · , xd) is

reduced of height d, and z2 ≡ 1 modulo (x1, · · · , xd), then [v] is in the image of δR.

Notation. An orbit [(x1, · · · , xd, z)] ∈ Umd+1(R)/Ed+1(R) will be written as

[x1, · · · , xd, z].

We now compute the composite map φRδR : Ed(R) −→ Ed(R). The description of

this composite will play a very important role in the next chapter.

Theorem 3.7.2. Let R be a regular domain of dimension d ≥ 2 which is essentially of

finite type over an infinite perfect field k with Char(k) 6= 2. For any (J, ωJ) ∈ Ed(R),

we have

φRδR((J, ωJ)) = (J, 2dωJ)− (J,−2dωJ).

Consequently, if d is even or if
√

2 ∈ R, then φRδR((J, ωJ)) = (J, ωJ)− (J,−ωJ).

Proof. Suppose that ωJ is given by J = (a1, · · · , ad)+J2. Using some standard arguments

we may assume that ht(a1, · · · , ad) = d. There is s ∈ J2 with s−s2 ∈ (a1, · · · , ad). Now,

s−s2 = a1b1 + · · ·+adbd, for some b1, · · · , bd ∈ R. Then δR((J, ωJ)) = [2a1, · · · , 2ad, 1−

2s] ∈ Umd+1(R)/Ed+1(R). Write K = (2a1, · · · , 2ad) = (a1, · · · , ad) (as 1
2 ∈ R).

If we write J ′ = (a1, · · · , ad, 1 − s), then it is easy to see that K = J ∩ J ′, and

J ′ = (a1, · · · , ad) + J ′2. Therefore, we write 0 = (K,ωK) = (J, ωJ) + (J ′, ωJ ′) in Ed(R),

where ωK is induced by the generators a1, · · · , ad of K and ωJ ′ is induced from the data

J ′ = (a1, · · · , ad) + J ′2.

Now, from the definition of φR it follows that φRδR((J, ωJ)) = (K, (1− 2s)2dωK).

We write u = (1− 2s). Then, we have (here ‘tilde’ means modulo J2, and so on),

φRδR((J, ωJ)) = (K,u2dωK) = (J, ũ2dωJ) + (J ′, u2dωJ ′)
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As 1 − 2s ≡ 1 mod J and 1 − 2s ≡ −1 mod J ′, we have φRδR((J, ωJ)) = (J, 2dωJ) +

(J ′,−2dωJ ′). Further, note that (J,−2dωJ) + (J ′,−2dωJ ′) = 0. Therefore, finally we

have,

φRδR((J, ωJ)) = (J, 2dωJ)− (J,−2dωJ).

If d is even or
√

2 ∈ R, then 2d is a square and it follows from Remark 2.4.9 that

φRδR((J, ωJ)) = (J, ωJ)− (J,−ωJ).

The proof of the following corollary is routine and we omit the proof.

Corollary 3.7.3. The composite φRδR : Ed(R) −→ Ed(R) is a morphism of groups.

We shall also need the following proposition in the next chapter.

Proposition 3.7.4. Let R be a regular domain of dimension d ≥ 2 which is essentially

of finite type over an infinite perfect field k with Char(k) 6= 2. Let (J, ωJ) ∈ Ed(R).

Then δR((J, ωJ) + (J,−ωJ)) is the trivial orbit in Umd+1(R)/Ed+1(R).

Proof. Let ωJ be given by J = (a1, · · · , ad) + J2. Then by Remark 2.4.10 it follows that

(K,ωK) = (J, ωJ) + (J,−ωJ) in Ed(R). Where

K = (a1, · · · , ad−1) + J2.

Here we are taking K = (a1, · · · , ad−1, a
2
d) +K2 which corresponds to ωK .

Now there exists t ∈ K2 such that K = (a1, · · · , ad−1, a
2
d, t) with

t− t2 ∈ (a1, · · · , ad−1, a
2
d).

We have, δR(K,ωK) = [2a1, · · · , 2ad−1, 2a
2
d, 1− 2t] = [2a1, · · · , 2ad−2, 4ad−1, a

2
d, 1− 2t]

(applying [Theorem 2.3.2,(ii)] here). But if we move the square, we remain in the same

elementary orbit [Theorem 2.3.2,(v)], implying that

[2a1, · · · , 2ad−2, 4ad−1, a
2
d, 1− 2t] = [2a1, · · · , 2ad−2, 4ad−1, ad, (1− 2t)2].

But (1− 2t)2 is 1 modulo (a1, · · · , ad−1, a
2
d) and therefore it is also 1 modulo the ideal

(2a1, · · · , 2ad−2, 4ad−1, ad). As a consequence, this orbit is trivial.



Chapter 4

Structure Theorem of Orbit

Spaces Of Unimodular Rows

As we mentioned in introduction, in this chapter we concentrate on the group structure

of Umd+1(R)/Ed+1(R) over smooth real affine algebras.

4.1 A key result

We first prove a key lemma which is inspired by the proof of [OPS, Proposition 2.1].

Lemma 4.1.1. Let R be a smooth affine domain over R of dimension d ≥ 2. Let

v ∈ Umd+1(R). Then there is some t ∈ R and (x1, · · · , xd, z) ∈ Umd+1(R) such that:

(i) [v] = [x1, · · · , xd, z] in Umd+1(R)/Ed+1(R) (and hence in Umd+1(R)/SLd+1(R));

(ii) (zt2)2 ≡ 1 modulo the (reduced) ideal (x1, · · · , xd);

(iii) [x1, · · · , xd, zt2] = [x1, · · · , xd, z][x1, · · · , xd, t2] in Umd+1(R)/Ed+1(R) (and hence

in Umd+1(R)/SLd+1(R));

(iv) The orbit [x1, · · · , xd, zt2] is in the image of δR : Ed(R) −→ Umd+1(R)/Ed+1(R).

Proof. Let v = (y1, · · · , yd, w). We can use Swan’s Bertini Theorem [Remark 2.1.5] and

find α1, · · · , αd ∈ R such that the ideal I = (y1 + α1w, · · · , yd + αdw) is a reduced ideal

37
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of height d. We write xi = yi + αiw for i = 1, · · · , d, and we rename w as z. Then note

that [v] = [x1, · · · , xd, z] in Umd+1(R)/Ed+1(R) (and hence in Umd+1(R)/SLd+1(R)).

As (x1, · · · , xd, z) is unimodular, there exist b1, · · · , bd, b ∈ R such that x1b1 + · · ·+

xdbd + zb = 1. Now, R/I is a finite direct product of R or C. Therefore, the unit

b
2 ∈ (R/I)∗ is a fourth power, say, b

2
= t

4
. Let t ∈ R be a lift of t. Then z2t4 ≡ 1

modulo I. Therefore, there exist a1, · · · , ad ∈ R such that x1a1 + · · ·+xdad + (zt2)2 = 1.

It is then easy to see that the orbit [x1, · · · , xd, zt2] is in the image of δR : Ed(R) −→

Umd+1(R)/Ed+1(R) (see Remark 3.7.1). Statement (iii) simply follows from Theorem

[2.3.2,(iii)].

4.2 The “real” coordinate ring

We set up some notations.

Notation. Let X = Spec(R) be a smooth affine variety of dimension d ≥ 2 over R.

Let X(R) denote the set of real points of X. We assume that X(R) 6= ∅. Therefore,

under the Euclidean topology, X(R) is a smooth real manifold of dimension d. Let

R(X) denote the ring obtained from R by inverting all functions which do not have

any real zeroes. Informally the ring R(X) dubbed as the “real” coordinate ring of the

variety. Since R(X) is a localization of R and dim(R) = dim(R(X)), there is a canonical

surjective group homomorphism Γ : Ed(R) � Ed(R(X)) (see [BRS 2, page 307], as we

mentioned in Chapter 2.)

Theorem 4.2.1. The map δR(X) : Ed(R(X)) −→ Umd+1(R(X))/Ed+1(R(X)) is surjec-

tive.

Proof. Take any orbit [v] ∈ Umd+1(R(X))/Ed+1(R(X)). Note that Lemma 4.1.1 applies

to R(X) as well. Therefore, we have

[x1, · · · , xd, zt2] = [x1, · · · , xd, z][x1, · · · , xd, t2] in Umd+1(R(X))/Ed+1(R(X)),

such that [v] = [x1, · · · , xd, z]. The row (x1, · · · , xd, t2) can be taken to (x1, · · · , xd, x2
1 +

· · · + x2
d + t2) using elementary transformations. Since x2

1 + · · · + x2
d + t2 does not
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vanish at any real point, it is a unit in R(X). Consequently, [x1, · · · , xd, t2] is trivial in

Umd+1(R(X))/Ed+1(R(X)) and the proof is complete by Lemma 4.1.1 (iv).

For the rest of this thesis we will assume that X(R) is orientable. In this case, the

real line bundle on X(R) induced by the canonical bundle KR := ∧d(ΩR/R) is trivial and

therefore, by [BDM, Theorem 4.21], Ed(R(X)) is torsion-free. We use only this piece of

(nontrivial) information to prove that δR(X) is bijective in Theorem (4.2.4) below. But

before that we record a crucial result (which is discussed in Section [2.5,(iii)]) in the

form of the following proposition and a corollary (as they are implicit in [BRS 2]).

Proposition 4.2.2. Let m be a real maximal ideal of R. Assume that the real point

corresponding to m belongs to a compact connected component of X(R). Then, for any

ωm : (R/m)d � m/m2, one has (m, ωm) + (m,−ωm) = 0 in Ed(R(X)).

Proof. See toward the end of the proof of [BRS 2, Theorem 4.13].

Corollary 4.2.3. Let J ⊂ R(X) be a reduced ideal and ωJ : (R(X)/J)d � J/J2 be a

surjection. Then (J, ωJ) + (J,−ωJ) = 0 in Ed(R(X)).

Proof. Let J = m1 ∩ · · ·mr ∩mr+1 ∩ · · ·ms. Assume that the real points corresponding

to the maximal ideals mr+1, · · · ,ms do not belong to any compact connected component

of X(R). Now ωJ will induce ωi : (R(X)/mi)
d � mi/m

2
i for i = 1, · · · , s and we have:

(J, ωJ) =
∑s

i=1(mi, ωi). By (the proof of) [BRS 2, Theorem 4.13] or as discussed in

section 2.5(ii), (mi, ωi) = 0 for i = r + 1, · · · , s. The corollary now follows from the

above proposition.

Theorem 4.2.4. The map δR(X) : Ed(R(X))→ Umd+1(R(X))/Ed+1(R(X)) is a bijec-

tion.

Proof. We proved above that δR(X) is surjective. To prove that δR(X) is injective, it

is enough to prove that φR(X)δR(X) is injective. Since φR(X)δR(X) is a morphism of

groups by Corollary 3.7.3, we pick (J, ωJ) ∈ Ed(R(X)) (with J reduced) such that

φR(X)δR(X)((J, ωJ)) = 0 and prove that (J, ωJ) = 0.

By the assumption, from Theorem 3.7.2 we have (J, ωJ)− (J,−ωJ) = 0. But as J is

reduced, by Corollary 4.2.3 we also have (J, ωJ) + (J,−ωJ) = 0 in Ed(R(X)). Therefore,
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2(J, ωJ) = 0. But under the assumptions on X(R), the group Ed(R(X)) has no nontrivial

torsion. Therefore, (J, ωJ) = 0.

Corollary 4.2.5. φR(X) : Umd+1(R(X))/Ed+1(R(X)) −→ Ed(R(X)) is injective.

Proof. As φR(X)δR(X) is injective and δR(X) is a surjection, the result follows.

The set-theoretic map δR(X) turns out to be a group homomorphism.

Theorem 4.2.6. The group homomorphism δR(X) : Ed(R(X))→ Umd+1(R(X))/Ed+1(R(X))

is in fact an isomorphism of groups, where the group structure on Umd+1(R(X))/Ed+1(R(X))

is the one given in [vdK 1].

Proof. Let us denote the group composition in Umd+1(R(X))/Ed+1(R(X)) by ∗. In

this proof the actual representation of elements would not matter. Therefore, let

α, β ∈ Ed(R(X)). Our aim is to show that δR(X)(α+ β) = δR(X)(α) ∗ δR(X)(β) (here +

is the group composition of the Euler class group). As φR(X)δR(X) : Ed(R) −→ Ed(R) is

a group homomorphism,

φR(X)(δR(X)(α+ β)) = (φR(X)δR(X))(α+ β) = (φR(X)δR(X))(α) + (φR(X)δR(X))(β)

= φR(X)(δR(X)(α)) + φR(X)(δR(X)(β)) = φR(X)(δR(X)(α) ∗ δR(X)(β))

As φR(X) is injective, we have δR(X)(α+ β) = δR(X)(α) ∗ δR(X)(β).

Let X(R) be connected but not compact. Then we know from [BRS 2, Corollary 4.9]

that the Euler class group Ed(R(X)) is trivial. The same conclusion is now immediate

for the group Umd+1(R(X))/Ed+1(R(X)).

Corollary 4.2.7. Let R as above and set of real points, X(R) be connected but not

compact. The group Umd+1(R(X))/Ed+1(R(X)) is then trivial.

Proof. We have δR(X) surjective and under the assumptions, Ed(R(X)) is trivial by

[BRS 2, Corollary 4.9].

As a consequence of the results obtained in this section and the structure theorem for

the Euler class groups as established in [BRS 2, BDM], we obtain the following structure

theorem. ( See the Section 2.5 for the structure theorem for Ed(R(X)) .)
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Theorem 4.2.8. Let X = Spec(R) be a smooth affine variety of dimension d ≥ 2 over

R. Assume that X(R) is orientable. Let C be the set of compact connected components

of X(R). Then,

Umd+1(R(X))/Ed+1(R(X))
∼→
⊕
C∈C

Z

Corollary 4.2.9. The composite group homomorphism φR(X)δR(X) : Ed(R(X)) −→

Ed(R(X)) is multiplication by 2.

Proof. It is clearly enough to consider the case when X(R) is compact and connected.

Then we know from [BRS 2] that Ed(R(X)) is generated by (m, ω), where m is any real

maximal ideal and ω : (R(X)/m)d � m/m2 is any surjection.

Now, from Theorem 3.7.2, we have φR(X)δR(X)((m, ω)) = (m, ω)− (m,−ω). But by

Proposition 4.2.2, (m, ω) + (m,−ω) = 0. Therefore, it follows that φR(X)δR(X)((m, ω)) =

2(m, ω).

The following theorem will be useful in the next section.

Theorem 4.2.10. Let X = Spec(R) be a smooth affine variety of even dimension d

over R. Then,

Umd+1(R(X))/Ed+1(R(X))
∼→ Umd+1(R(X))/SLd+1(R(X)).

Proof. It suffices to prove that the canonical projection ε : Umd+1(R(X))/Ed+1(R(X))→

Umd+1(R(X))/SLd+1(R(X)) is injective. Recall from the Definition(3.5.1) and the

subsequent remark (or [DZ, Section 4]), that the group homomorphism φR(X) :

Umd+1(R(X))/Ed+1(R(X)) −→ Ed(R(X)) is such that when d is even, then φR(X)([v])

is precisely the Euler class of the stably free module associated to the unimodular row v

in a canonical way.

Now let v = (a1, · · · , ad+1) ∈ Umd+1(R(X)) be such that it is completable to a

matrix in SLd+1(R(X)). It is enough to show that this unimodular row is elementarily

completable. As v is completable in SLd+1(R(X)), the Euler class of the stably free

module associated to v is trivial, and therefore, φR(X)([v]) = 0 in Ed(R(X)). As φR(X)

is injective, [v] is trivial in Umd+1(R(X))/Ed+1(R(X)).
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4.3 The elementary orbit space

Let X = Spec(R) be a smooth affine variety of dimension d ≥ 2 over reals. As before,

we always assume that X(R) is orientable. As in the previous sections, we are treating

the orbit spaces of unimodular rows as a multiplicative groups.

Recall from [BRS 2, page 307] that there is a canonical surjective group homomor-

phism Γ : Ed(R) � Ed(R(X)). Bhatwadekar-Sridharan denotes the kernel of this map

by Ed(C). They prove that Ed(C) is the subgroup of Ed(R) generated by all (m, ωm),

where m runs over the complex maximal ideals of R, and ωm : (R/m)d � m/m2 is

any surjection. Let β : Umd+1(R)/Ed+1(R) −→ Umd+1(R(X))/Ed+1(R(X)) be the

canonical map. The group Ed(C) is torsion-free and divisible. We have discussed this in

detail in Chapter 2, Remark 2.5.2.

We have the following commutative diagram with exact rows. As δR(X) is an

isomorphism and Γ is surjective, it follows that β is a surjective group homomorphism.

Write K = ker(β).

0 // Ed(C) //

��

Ed(R)
Γ //

δR
��

Ed(R(X))

δR(X)

��

// 0

1 // K // Umd+1(R)
Ed+1(R)

β // Umd+1(R(X))
Ed+1(R(X))

// 1

Proposition 4.3.1. The restriction of δR on the subgroup Ed(C) is trivial.

Proof. Let (J, ω) ∈ Ed(C), where J is a product of complex maximal ideals. It follows

from Remark 2.5.2 that Ed(C) is a torsion-free divisible group.

As Ed(C) is divisible, there is some (I, ωI) ∈ Ed(C) such that (J, ω) = 2(I, ωI). By

Remark 2.4.9 note that (I, ωI) = (I,−ωI). Therefore, (J, ω) = (I, ωI) + (I,−ωI), and

consequently, by Proposition 3.7.4, δR((J, ω)) = 0.

Proposition 4.3.2. The group homomorphism β is injective on the image of the map

δR.

Proof. Let (J, ωJ) ∈ Ed(R) be such that βδR((J, ωJ)) = [0, · · · , 0, 1]. Then, from the

diagram we have, δR(X)Γ((J, ωJ)) = [0, · · · , 0, 1]. Since δR(X) is an isomorphism, we have
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Γ((J, ωJ)) = 0 in Ed(R(X)). By exactness of the top row, (J, ωJ) ∈ Ed(C). But then

δR((J, ωJ)) = [0, · · · , 0, 1] by the above proposition.

Theorem 4.3.3. The map δR is a group homomorphism.

Proof. We have to prove that if (J, ωJ) and (I, ωI) are two elements of Ed(R) such that

J, I are both reduced ideals and J + I = R, then

δR((J, ωJ) + (I, ωI)) = δR((J, ωJ))δR((I, ωI)),

where the multiplication on the right is that of Umd+1(R)/Ed+1(R). There are three

cases to consider.

Case 1. Both J and I are contained only in complex maximal ideals of R. Then, both

(J, ωJ) and (I, ωI) are from Ed(C). This case follows trivially from Proposition 4.3.1.

Case 2. Both J and I are contained only in real maximal ideals of R.

Note that the exact sequence in the top row of the above diagram splits. There is a

split group homomorphism θ1 : Ed(R(X))→ Ed(R). Define

θ2 := δR θ1 (δR(X))
−1 : Umd+1(R(X))/Ed+1(R(X))→ Umd+1(R)/Ed+1(R).

It is easy to see that θ2 is a split map (for the bottom row) and δRθ1 = θ2δR(X). We

then have the following diagram, where δR denotes the restriction of δR. The same for β

and Γ.

θ1(Ed(R(X))
Γ

∼ //

δR
��

Ed(R(X))

δR(X)

��

θ2

(
Umd+1(R(X))
Ed+1(R(X))

)
β

∼
//// Umd+1(R(X))
Ed+1(R(X))

We can treat the elements (J, ωJ) and (I, ωI) as elements of θ1(Ed(R(X)). It is therefore

enough to prove that δR is a group homomorphism. This is clear from the diagram.

Case 3. In this case we assume that J is contained only in complex maximal ideals and

I is contained only in real maximal ideals of R.

For convenience, we write x = (J, ωJ) and y = (I, ωI). Note that δR(x) is trivial.



44 Chapter 4: Structure Theorem of Orbit Spaces Of Unimodular Rows

It is therefore enough to show that δR(x + y) = δR(y). We compute: β(δR(x + y)) =

δR(X)Γ(x+ y) = δR(X)Γ(y) = β(δR(y)). By Proposition 4.3.2, β is injective on the image

of δR. We are done.

Proposition 4.3.4. The group K is divisible.

Proof. Let [x1, · · · , xd, z] ∈ K and n be any integer. Let α1x1+· · ·+αdxd+bz = 1. Recall

from Lemma 4.1.1 that t is chosen so that b2 ≡ t4n mod (x1, · · · , xd). Therefore (t2nz)2 ≡

1 modulo (x1, · · · , xd). We have [x1, · · · , xd, t2nz] = [x1, · · · , xd, z][x1, · · · , xd, t2n].

Clearly, β([x1, · · · , xd, t2n]) = [0, · · · , 0, 1], and therefore it follows that [x1, · · · , xd, t2nz] ∈

K. But [x1, · · · , xd, t2nz] = δR((J, ωJ)) for some (J, ωJ) ∈ Ed(R). Then δR(X)Γ((J, ωJ)) =

[0, · · · , 0, 1]. As δR(X) is an isomorphism, we see that Γ((J, ωJ)) = 0 and thus

(J, ωJ) ∈ Ed(C). Therefore, [x1, · · · , xd, t2nz] = δR((J, ωJ)) = [0, · · · , 0, 1] by Proposition

4.3.1. So [x1, · · · , xd, z][x1, · · · , xd, t2n] = [0, · · · , 0, 1]. Then

[x1, · · · , xd, z] = ([x1, · · · , xd, t2]n)−1 = ([x1, · · · , xd, t2]−1)n.

Note that ([x1, · · · , xd, t2]−1) ∈ K (any unimodular row with a square entry is in K and

K is a subgroup of Umd+1(R)/Ed+1(R)). Therefore K is a divisible subgroup.

Before the next corollary let us recall that an abelian group is said to be reduced if

its only divisible subgroup is {0}.

Corollary 4.3.5. K is the unique maximal divisible subgroup of Umd+1(R)/Ed+1(R).

Proof. Let D be the unique maximal divisible subgroup of Umd+1(R)/Ed+1(R). Then

K ⊆ D. Write H = Umd+1(R(X))/Ed+1(R(X)). Now, we have Umd+1(R)/Ed+1(R) =

K ⊕H and H is reduced. It follows that

D = (D ∩K)⊕ (D ∩H) = K ⊕ (D ∩H).

But then (D ∩H) is a direct summand of the divisible group D and is contained in the

reduced group H, implying that (D ∩H) is trivial. Therefore, D = K.

Combining Theorem 4.2.8 and the results proved above, we have the following:
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Theorem 4.3.6. Let X = Spec(R) be a smooth affine variety of dimension d ≥ 2 over

R. Assume that X(R) is orientable. Let C be the set of compact connected components

of X(R). Then,

Umd+1(R)/Ed+1(R)
∼→ K ⊕ (

⊕
C∈C

Z),

where K is the unique maximal divisible subgroup of Umd+1(R)/Ed+1(R).

In Section 4.7, we shall prove that K is torsion-free if d ≥ 3. A summary of our

conclusions above fits in an exact sequence, as given below.

Theorem 4.3.7. The sequence 0→ Ed(C)→ Ed(R)
δR−→ Umd+1(R)/Ed+1(R)→ K →

1 is an exact sequence of abelian groups.

We now analyze the subgroup K in intricate detail. This is in fact, a preparation for

the next section.

Theorem 4.3.8. Let [x1, · · · , xd, z] ∈ K. Then [x1, · · · , xd, z] = [x1, · · · , xd,−z] and as

a consequence, [x1, · · · , xd, z]n = [x1, · · · , xd, zn] for any n ≥ 1.

Proof. Let α1x1 + · · · + αdxd + bz = 1. Recall from Lemma 4.1.1 that t is chosen so

that b2 ≡ t4 mod (x1, · · · , xd) and then [x1, · · · , xd, t2z] = [x1, · · · , xd, z][x1, · · · , xd, t2] .

As α1x1 + · · ·+ αdxd + (−b)(−z) = 1, in a similar manner we have, [x1, · · · , xd,−t2z] =

[x1, · · · , xd,−z][x1, · · · , xd, t2]. As [x1, · · · , xd, z] ∈ K, the argument as in Proposition

4.3.4 shows that [x1, · · · , xd, t2z] = [0, · · · , 0, 1]. As (t2z)2 ≡ 1 modulo (x1, · · · , xd), by

[Theorem 2.3.2,(iv)], [x1, · · · , xd,−t2z] is nothing but the inverse of [x1, · · · , xd, t2z], and

hence trivial. Therefore, [x1, · · · , xd, z] = [x1, · · · , xd,−z] and by [Ra, Lemma 1.3.1],

[x1, · · · , xd, z]n = [x1, · · · , xd, zn] for any n ≥ 1.

It is obvious that any unimodular row over R with one square entry is in K. The

following easy corollary is the converse.

Corollary 4.3.9. Any element in K is of the form [x1, · · · , xd, w2].

Proof. Let [v] ∈ K. As K is 2-divisible, [v] = [x1, · · · , xd, w]2 for some [x1, · · · , xd, w] ∈

K. Then, [v] = [x1, · · · , xd, w]2 = [x1, · · · , xd, w2] by the above theorem.
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Corollary 4.3.10. Let v ∈ Umd+1(R) be such that [v] ∈ K. Then the row v can be

completed to a matrix in SLd+1(R).

Proof. As K is divisible, [v] = [x1, · · · , xd, w]d! for some [x1, · · · , xd, w] ∈ K. Then,

[v] = [x1, · · · , xd, w]d! = [x1, · · · , xd, wd!] by the above theorem. Under the canonical

group homomorphism Umd+1(R)/Ed+1(R) � Umd+1(R)/SLd+1(R), the image of [v] is

trivial by a celebrated theorem of Suslin [Su 2] recorded in Theorem 2.2.10.

4.4 Stably free modules

Our aim in this section is to prove the following: Let X = Spec(R) be a smooth real affine

variety of even dimension d, whose real points X(R) constitute an orientable manifold.

Then the set of isomorphism classes of (oriented) stably free R-modules of rank d is

a free abelian group of rank equal to the number of compact connected components of

X(R). In contrast, if d ≥ 3 is odd, then the set of isomorphism classes of stably free

R-modules of rank d is a Z/2Z-vector space (possibly trivial)..

We now proceed to compute the group Umd+1(R)/SLd+1(R). In order to do so, we

consider the following composite group homomorphisms. We shall call the first composite

as δ′R, and the second one as δ′R(X).

(i) Ed(R)
δR→ Umd+1(R)/Ed+1(R)

εR→ Umd+1(R)/SLd+1(R), and

(ii) Ed(R(X))
δR(X)→ Umd+1(R(X))/Ed+1(R(X))

εR(X)→ Umd+1(R(X))/SLd+1(R(X)).

Note that by results proved in the previous section, δ′R(X) is a group homomorphism.

We shall refer to the following commutative diagram with exact rows. Since εR(X) and β

are both surjective, it follows that γ is also a surjective group homomorphism.

0 // Ed(C) //

��

Ed(R)
Γ //

δR
��

Ed(R(X))

δR(X)

��

// 0

1 // K //

ε

��

Umd+1(R)
Ed+1(R)

β //

εR
��

Umd+1(R(X))
Ed+1(R(X))

εR(X)

��

// 1

1 // ker(γ) // Umd+1(R)
SLd+1(R)

γ // Umd+1(R(X))
SLd+1(R(X))

// 1
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We now prove the following theorem.

Theorem 4.4.1. Let d be even. Then, Umd+1(R)/SLd+1(R)
∼→
⊕

C∈C Z, where C is

the set of all compact connected components of X(R).

Proof. We have observed that γ is surjective. As εR is surjective, and εR(X) is an

isomorphism by Theorem 4.2.10, it follows that the induced map ε : K → ker(γ) is also

surjective. It is immediate from Corollary 4.3.10 that ε is the trivial group homomorphism,

implying that ker(γ) is trivial. Now apply Theorem 4.2.10.

Theorem 4.4.2. The group homomorphism δ′R : Ed(R) → Umd+1(R)/SLd+1(R) is

surjective.

Proof. From the above theorem, this is obvious when d is even. For general d we need addi-

tional arguments. Recall from the proof of Theorem 4.3.3 that there is a split group homo-

morphism θ1 : Ed(R(X))→ Ed(R) for the top row. Also, there is a split group homomor-

phism θ2 : Umd+1(R(X))/Ed+1(R(X))→ Umd+1(R)/Ed+1(R). We checked that the re-

striction of δR on θ1(Ed(R(X))) is an isomorphism onto θ2(Umd+1(R(X))/Ed+1(R(X))).

Note that εR is surjective and it is trivial on K. As Umd+1(R)/Ed+1(R) = K ⊕

θ2(Umd+1(R(X))/Ed+1(R(X))), it follows that for any element in Umd+1(R)/SLd+1(R),

there is a preimage in θ2(Umd+1(R(X))/Ed+1(R(X))), which further has a preimage in

θ1(Ed(R(X))) ⊂ Ed(R) under δR.

We record the following corollary which will be used soon.

Corollary 4.4.3. Let X(R) be orientable, compact and connected. Then Umd+1(R)/SLd+1(R)

is generated by δ′R((m, ωm)), where m is any real maximal ideal of R and ωm : (R/m)d �

m/m2 is any surjection.

Proof. By the discussion in Section 2.5, Ed(R(X)) = Z, and it is generated by any (m, ωm)

as in the statement of this corollary. By the proof of the above theorem, δ′R((m,ωm))

generates Umd+1(R)/SLd+1(R).
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Remark 4.4.4 Let d be even. If Ed(C) = 0 (for example, when R is the coordinate

ring of a real sphere, or when Spec(R) is a rational variety), then it follows that Ed(R)

is isomorphic to Umd+1(R)/SLd+1(R). Consequently, under this assumption, a stably

free R-module P of rank d is free if and only if it has a unimodular element (see also

[F 1, Theorem 5.10]).

We are now ready to compute Umd+1(R)/SLd+1(R) when d is odd.

Theorem 4.4.5. Let d ≥ 3 be odd. Then Umd+1(R)/SLd+1(R) is an F2-vector space

of rank ≤ |C|, where C is the set of all compact connected components of X(R).

Proof. By [vdK 1, 4.3], the group Umd+1(R)/SLd+1(R) satisfies Mennicke relations. In

particular, for any orbit [x1, · · · , xd, z], and for any r ≥ 1, one has [x1, · · · , xd, z]r =

[x1, · · · , xd, zr]. Let us keep this in mind.

Recall that we proved that δ′R is a surjective group homomorphism. We actually

proved that for any [v] ∈ Umd+1(R)/SLd+1(R), there is (J, ωJ) ∈ θ1(Ed(R(X))) such

that δ′R((J, ωJ)) = [v]. Let ωJ be induced by J = (a1, · · · , as, s) where s − s2 ∈

(a1, · · · , ad). Then, by the definition of δ′R, it follows that [v] = [a1, · · · , ad, 1 − 2s].

Since Mennicke relations hold in Umd+1(R)/SLd+1(R), [v]2 = [a1, · · · , ad, 1 − 2s]2 =

[a1, · · · , ad, (1−2s)2] = [0, · · · , 0, 1]. It shows that every element of Umd+1(R)/SLd+1(R)

is 2-torsion.

As θ1(Ed(R(X))) is isomorphic to Ed(R(X)), and Ed(R(X)) =
⊕

C∈C Z, the result

follows.

4.5 Computations on spheres

Let us now apply the above computations on real spheres. Consider the coordinate ring

of the d-dimensional real sphere Sd(R) for d ≥ 2 (no further assumption on d):

R =
R[X1, · · · , Xd+1]

(X2
1 + · · ·+X2

d+1 − 1)
= R[x1, · · · , xd+1]

We now have the following result (see also [F 1, Corollary 5.12]).
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Theorem 4.5.1. Let R be the coordinate ring of Sd(R). Then Umd+1(R)/SLd+1(R) is

generated by the orbit of the tangent bundle.

Proof. By Corollary 4.4.3, Umd+1(R)/SLd+1(R) is generated by δ′R((m, ωm)) (see nota-

tions therein), where m is any real maximal ideal of R and ωm : (R/m)d � m/m2 is any

surjection.

We now concentrate on the orbit [x1, · · · , xd+1] of the tangent bundle. We have the

following relations among the ideals involved:

(x1, · · · , xd) = (x1, · · · , xd, 1− xd+1) ∩ (x1, · · · , xd, 1 + xd+1) = m1 ∩m2,

and m1, m2 are both real maximal ideals. Let s = 1
2(1 − xd+1). Then, s − s2 =

1
4(1−x2

d+1) ∈ (x1, · · · , xd). Therefore, m1 = (x1, · · · , xd, 1
2(1−xd+1)) will induce ωm1 and

by definition, δ′R((m1, ωm1)) = [x1, · · · , xd, xd+1]. This shows that Umd+1(R)/SLd+1(R)

is generated by the orbit of the tangent bundle.

The following corollary is now obvious.

Corollary 4.5.2. All stably free modules of top rank on S3(R) and S7(R) are free. For

odd d 6= 1, 3, 7, the set of isomorphism classes of stably free modules of rank d over Sd(R)

is isomorphic to Z/2Z.

Proof. For S3(R) and S7(R), the orbit of the tangent bundle in each case is trivial. For

d 6= 3, 7, the orbit of the tangent bundle is non-trivial.

Remark 4.5.3 The assertion on S3(R) and S7(R) was first proved in [F 1, Proposition

5.13].

Remark 4.5.4 Most of the results of this section can be extended to smooth affine

varieties over R, where R is any real closed field. One needs to use the structure theorem

for the Euler class group in this case which is available in [BS].
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4.6 Mennicke symbols

In this section we are going to describe a similar kind of structure theorem for Mennicke

symbols of length d+ 1 over the ring R, with the same notation of previous sections. At

first we briefly recall the definition of Mennicke symbols.

Definition 4.6.1. Let B be a ring. A Mennicke symbol of length n+ 1 ≥ 3 is a pair

(ψ,G), where G is a group and ψ : Umn+1(B)→ G is a map such that:

ms1. ψ((0, · · · , 0, 1)) = 1 and ψ(v) = ψ(vσ) for any σ ∈ En+1(B);

ms2. ψ((b1, · · · , bn, x))ψ((b1, · · · , bn, y)) = ψ((b1, · · · , bn, xy)) for any two unimodular

rows (b1, · · · , bn, x) and (b1, · · · , bn, y).

Clearly, a universal Mennicke symbol (ms,MSn+1(B)) exists.

W. van der Kallen introduced the weak Mennicke symbol in [vdK 2]. Now let

dim(B) = n ≥ 2. It was proved in [vdK 2] that the universal weak Mennicke symbol

(wms,WMSn+1(B)) is in bijective correspondence with Umn+1(B)/En+1(B), giving

the latter a group structure. A Mennicke symbol of length n + 1 is also a weak

Mennicke symbol of length n+ 1 and there is a unique surjective group homomorphism

WMSn+1(B)→MSn+1(B). So,we have the following commutative diagram:

(wms,WMSn+1(B)) Umn+1(B)/En+1(B)

(ms,MSn+1(B))

Summing up, we have a surjective group homomorphism fB : Umn+1(B)/En+1(B)→

MSn+1(B), whose kernel is generated by all elements of the following form:

[b1, · · · , bn, x][b1, · · · , bn, y][b1, · · · , bn, xy]−1.

Let X = Spec(R) be a smooth affine variety of dimension d ≥ 2 over R. Assume

that X(R) is orientable. To compute MSd+1(R), we first focus on MSd+1(R(X)). We

shall consider the following diagram. Here L denotes the kernel of the natural map
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β0 : MSd+1(R)→MSd+1(R(X)). As fR(X)β = β0fR is surjective, it follows that β0 is

surjective.

1 // K //

f

��

Umd+1(R)
Ed+1(R)

β //

fR

��

Umd+1(R(X))
Ed+1(R(X))

fR(X)

��

// 1

1 // L //MSd+1(R)
β0 //MSd+1(R(X)) // 1

Theorem 4.6.2. MSd+1(R(X)) is a Z/2Z-vector space.

Proof. Take any element ms((x1, · · · , xd, z)) ∈MSd+1(R(X)), where (x1, · · · , xd, z) is

a unimodular row over R(X). It is clear that

(ms((x1, · · · , xd, z)))2 = ms((x1, · · · , xd, z2)) = (fR(X)([x1, · · · , xd, z2])).

But [x1, · · · , xd, z2] = [0, · · · , 0, 1] in Umd+1(R(X))/Ed+1(R(X)). It follows that every

element in MS(R(X)) is 2-torsion and therefore it is a Z/2Z-vector space.

It follows from the above theorem and Theorem 4.2.8 that MSd+1(R(X)) is a Z/2Z-

vector space of dimension ≤ |C|. We now claim that it is actually of dimension |C|. To

prove this, we first need the following easy lemma.

Lemma 4.6.3. Let (m, ωm) ∈ Ed(R(X)) and let λ, µ ∈ (R(X)/m)∗ = R∗. Then,

(m, λωm) + (m, µωm)− (m, λµωm) is equal to:

(i) (m, ωm) if λ > 0, µ > 0;

(ii) −3(m, ωm) if λ < 0, µ < 0;

(iii) (m, ωm) if λ and µ have opposite signs.

Proof. This is nothing but a straightforward computation. From Section 2.5 we can use

the following two facts:

• If λ > 0 then (m, λωm) = (m, ωm) and if λ < 0 then (m, µωm) = (m,−ωm) in

Ed(R(X).

• (m, ωm) + (m,−ωm) = 0 in Ed(R(X).
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Corollary 4.6.4. Let J = (a1, · · · , ad) be a reduced ideal of height d in R(X). Let

ωJ : (R(X)/J)d � J/J2 be the surjection induced by a1, · · · , ad. Let λ, µ be units

modulo J . Then (J, λωJ) + (J, µωJ)− (J, λµωJ) ∈ 4Ed(R(X)).

Proof. We have (J, ωJ) = 0 in Ed(R(X)). Let J = m1 ∩ · · · ∩ mk, where each mi is a

maximal ideal. We then have,

0 = (J, ωJ) = (m1, ωm1) + · · ·+ (mk, ωmk
), (∗)

where ωmi : (R(X)/mi)
d � mi/m

2
i is the surjection induced by ωJ .

Let us write λ as the tuple (λ1, · · · , λk), where λi is the image of λ in R(X)/mi.

Similarly, µ = (µ1, · · · , µk). By renaming if necessary, we may assume that λi and µi

are both negative for i = 1, · · · , r, for some r (0 ≤ r ≤ k). Then an easy verification

using the lemma above will show that

(J, λωJ)+(J, µωJ)−(J, λµωJ) = (mr+1, ωmr+1)+· · ·+(mk, ωmk
)−3 ((m1, ωm1) + · · · (mr, ωmr)) ,

which equals (J, ωJ)− 4 ((m1, ωm1) + · · · (mr, ωmr)), and we are done by the relation (∗)

above.

We are now ready to prove:

Theorem 4.6.5. MSd+1(R(X)) is a Z/2Z-vector space of dimension |C|.

Proof. Recall from Corollary 4.2.5 that φR(X) : Umd+1(R(X))/Ed+1(R(X)) −→

Ed(R(X)) is injective, and in fact, it is an isomorphism onto 2Ed(R(X)).

Consider the kernel of the map fR(X) : Umd+1(R(X))/Ed+1(R(X)) �MSd+1(R(X)).

We know that ker(fR(X)) is generated by elements of the form

[w] = [a1, · · · , ad, λ][a1, · · · , ad, µ][a1, · · · , ad, λµ]−1.

Adding suitable multiples of λµ to a1, · · · , ad, we may assume that J = (a1, · · · , ad)

is a reduced zero-dimensional ideal. Then we have φR(X)([w]) = (J, λωJ) +
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(J, µωJ) − (J, λµωJ) ∈ 4Ed(R(X)), by the corollary proved above. As a conse-

quence, we have an induced surjective group homomorphism φR(X) : MSd+1(R(X)) �

2Ed(R(X))/4Ed(R(X)). As the target object is a Z/2Z-vector space of dimension |C|,

combining with Theorem 4.6.2 we are done.

From the above theorem and Theorem 4.2.8, we have the following easy corollary.

Corollary 4.6.6. Any element [v] in the kernel of fR(X) : Umd+1(R(X))/Ed+1(R(X))→

MSd+1(R(X)) is a square.

Theorem 4.6.7. The map f : K −→ L is surjective and therefore L is divisible. In

fact, L is the unique maximal divisible subgroup of MSd+1(R).

Proof. We take any element from L. As fR is surjective, we will have a preimage of the

form [v] θ2([w]) in Umd+1(R)/Ed+1(R), where [w] ∈ Umd+1(R(X))/Ed+1(R(X)) and

[v] ∈ K. But [w] ∈ ker(fR(X)) and by Corollary 4.6.6, it is a square, say, [w] = [w1]2

for some [w1]. Let [w1] = δR(X)((J, ωJ)) for some (J, ωJ) ∈ Ed(R(X)). As Mennicke

relations hold in MSd+1(R), exactly the same argument as in the proof of Theorem 4.4.5

will show that fRθ2([w]) is trivial. This shows that f : K −→ L is surjective. Thus L is

divisible and therefore, L⊕ (⊕C∈C(Z/2Z))
∼→MSd+1(R). We can argue as in Corollary

4.3.5 to prove that L is the maximal divisible subgroup.

Theorem 4.6.8. The map f : K −→ L is an isomorphism.

Proof. Let [v] ∈ K be such that f([v]) is trivial. So, [v] ∈ ker(fR) and therefore [v] is a fi-

nite product of elements of the form [w] = [x1, · · · , xd, zu][x1, · · · , xd, z]−1[x1, · · · , xd, u]−1.

We apply the method of Lemma 4.1.1 once again. We choose appropriate t, λ ∈ R

such that (t2z)2 ≡ (λ2u)2 ≡ 1 modulo (x1, · · · , xd). We have:

(i) [x1, · · · , xd, t2z] = [x1, · · · , xd, z][x1, · · · , xd, t2];

(ii) [x1, · · · , xd, λ2u] = [x1, · · · , xd, u][x1, · · · , xd, λ2];

(iii) [x1, · · · , xd, (tλ)2zu] = [x1, · · · , xd, zu][x1, · · · , xd, t2λ2].

Then, writing x for x1, · · · , xd and regrouping, we have

[w] =
(
[x, t2λ2]−1[x, t2][x, λ2]

) (
[x, (tλ)2zu][x, t2z]−1[x, λ2u]−1

)
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Note that the first bunch is trivial by Theorem [2.3.2,(iii)] and each term in the second

bunch is in the image of δR. Then, it follows that [v] is in fact a finite product of

elements, each of which is in the image of δR. Therefore, [v] is in K as well as in the

image of δR, implying that [v] is trivial.

Corollary 4.6.9. The kernel of fR : Umd+1(R)/Ed+1(R) �MSd+1(R) is a free abelian

group of rank |C|.

Proof. Easy to see, as we now have K
∼→ L.

4.7 Cohomological methods.

We now prepare ourselves to prove that L is torsion-free if d ≥ 3. For this purpose,

we shall require some cohomological interpretation of MSd+1(R) from [F 2]. We shall

freely use various terms and notations from [F 1, F 2], without explicitly recalling their

definition. In the result below Kd+1 is the sheafification of the pre-sheaf arising out of

Milnor K-theory groups and Hd(A,Kd+1) is the K-cohomology group.

Theorem 4.7.1. [F 2, Theorem 1.4] Let A be a smooth affine algebra of dimension

d ≥ 3 over a perfect field of characteristic unequal to 2. Then MSd+1(A) is isomorphic

to Hd(A,Kd+1).

Let X = Spec(R) be a smooth affine variety of dimension d ≥ 2 over R. Assume

that X(R) is orientable. Consider RC := R ⊗R C. Let Y := Spec(RC) and π : Y → X

be the canonical finite group homomorphism. We then have induced maps

π∗ : Hd(RC,Kd+1)→ Hd(R,Kd+1) and π∗ : Hd(R,Kd+1)→ Hd(RC,Kd+1)

such that π∗π
∗ is multiplication by 2. This result follows from the Projection Formula

as available in [Ro] (or see [EKM, Proposition 56.9]). By a slight abuse of notation, we

record the following reformulation to suit our needs. Note that in this section we are

treating the groups as additive groups.
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Proposition 4.7.2. Let d ≥ 3. The finite group homomorphism π : Y → X induces

group homomorphisms

π∗ : MSd+1(RC)→MSd+1(R) and π∗ : MSd+1(R)→MSd+1(RC)

such that π∗π
∗ is multiplication by 2.

We are now ready to prove the following theorem.

Theorem 4.7.3. Let X = Spec(R) be a smooth affine variety of dimension d ≥ 3 over R.

Assume that X(R) is orientable. Then, the divisible group L = ker(β0) is torsion-free.

Proof. We have already proved that L is divisible. Let α ∈ MSd+1(R) be a torsion

element, say, nα = 0. Then 0 = π∗(nα) = nπ∗(α) in MSd+1(RC). By [F 2, Theorem

2.2], MSd+1(RC) is a torsion-free divisible group. Therefore π∗(α) = 0, implying that

2α = π∗π
∗(α) = 0. This shows that any torsion element of MSd+1(R) is 2-torsion. The

same is true for the subgroup L. As L is divisible, it is now easy to deduce that L is

torsion-free.

Corollary 4.7.4. Let d ≥ 3. The kernel K of the canonical surjection β :

Umd+1(R)/Ed+1(R) � Umd+1(R(X))/Ed+1(R(X)) is torsion-free.

Proof. K and L are isomorphic by Theorem 4.6.8.

Theorems 4.6.5, 4.6.7, and 4.7.3, yield the following structure theorem for MSd+1(R).

Theorem 4.7.5. Let X = Spec(R) be a smooth affine variety of dimension d ≥ 2 over

R. Assume that X(R) is orientable. Then MSd+1(R)
∼→ L ⊕ (⊕C∈CZ/2Z), where L

is the unique maximal divisible subgroup of MSd+1(R). Further, if d ≥ 3, then L is

torsion-free.

Remark 4.7.6 To prove that L is torsion-free, we rely on Fasel’s cohomological

interpretation of MSd+1(R), which in turn depends on the work of Fabien Morel (see

[F 1, 4.5, 4.6, 4.7] and [F 2, 1.4]). The restriction d ≥ 3 stems from there. At the

moment we do not know how to extend the final statement of the above theorem to

d = 2.
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4.8 An auxiliary result

In this thesis, we saw that the map δR : Ed(R) −→ Umd+1(R)/Ed+1(R) served us well

when the base field is R. However, it is completely useless if the base field is algebraically

closed, as we show now. But so is its counter-part φR.

Theorem 4.8.1. Let R be a smooth affine domain of dimension d ≥ 2 over an

algebraically closed field k of characteristic 6= 2. Then, the map δR : Ed(R) −→

Umd+1(R)/Ed+1(R) is the trivial group homomorphism.

Proof. Under the assumptions, the Euler class group is isomorphic to the Chow group

CHd(R) of 0-cycles. Let (I, ωI) ∈ Ed(R). As CHd(R) is uniquely divisible, it follows

that there exists (J, ωJ) ∈ Ed(R) such that (I, ωI) = 2(J, ωJ). As k is algebraically

closed, −1 is a square and therefore, applying Remark 2.4.9 we have (J, ωJ) = (J,−ωJ)

in Ed(R). Therefore, (I, ωI) = (J, ωJ) + (J,−ωJ). The proof is now complete by

Proposition 3.7.4.

After reading an earlier version of our paper[DTZ1], Jean Fasel suggested us this

improvement, also indicating a proof.

Theorem 4.8.2. (Fasel) Let k be an infinite perfect field of cohomological dimension

≤ 1 and of characteristic unequal to 2. Let R be a smooth affine domain of dimension

d ≥ 3 over k. Then the map δR : Ed(R) −→ Umd+1(R)/Ed+1(R) is the trivial group

homomorphism.

Proof. Under the assumptions of the theorem, by [GRa, F 2], the group Umd+1(R)/Ed+1(R)

is isomorphic to MSd+1(R). Therefore, by [F 2, Theorem 2.2], it is uniquely 2-divisible.

Consequently, the map κ : [v] 7→ [v]2 is an isomorphism of Umd+1(R)/Ed+1(R). As the

group structure is Mennicke-like, κ is actually Vaserstein’s square operation, taking an

orbit [x1, · · · , xd, z] to [x1, · · · , xd, z2].

Now let (J, ωJ) ∈ Ed(R) and let ωJ be induced by (a1, · · · , ad, s) with s(1 − s) ∈

(a1, · · · , ad). Then κδR((J, ωJ)) = [a1, · · · , ad, (1 − 2s)2] and the image is clearly the

trivial orbit, as (1− 2s)2 ≡ 1 modulo (a1, · · · , ad). As κ is an isomorphism, the result

follows.
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Appendix: A bijection

We now prove that the set-theoretic map θd : Ed(R)→ π0(Q2d(R)) is a bijection.

We shall need another “moving lemma” for π0(Q2n(A)) (Lemma 5.0.1 below), where

A is any commutative Noetherian ring. This has been proved in [AF]. However, we

reprove it here using the prime avoidance lemma, which is perhaps a bit easier to follow.

Lemma 5.0.1. (Moving Lemma 2) Let A be a commutative Noetherian ring. Let

(a, b, s) = (a1, · · · , an, b1, · · · , bn, s) ∈ Q2n(A). Then there exists µ = (µ1, · · · , µn) ∈ An

such that

(i) The row (a′, b′, s′) = (a1 + µ1(1− s)2, · · · , an + µn(1− s)2, b1(1− µbt), · · · , bn(1−

µbt), s+ µbt(1− s)) ∈ Q2n(A),

(ii) [(a, b, s)] = [(a′, b′, s′)] in π0(Q2n(A)) and

(iii) ht(K) ≥ n, where K = (a1 + µ1(1− s)2, · · · , an + µn(1− s)2, s+ µbt(1− s)).

Proof. We consider the row (a1, · · · , an, (1− s)2) ∈ An+1. By Lemma 2.1.4 there exist

µ1, · · · , µn ∈ A such that ht(I(1−s)2) ≥ n, where I = (a1+µ1(1−s)2, · · · , an+µn(1−s)2).

In other words, if p ∈ Spec(A) such that I ⊂ p and (1− s) /∈ p, then ht(p) ≥ n.

Set A = a+ T (1− s)2µ ∈ A[T ]n, then an easy computation yields that

Abt(1− Tµbt) = (1− s)(1− Tµbt)− (1− s)2(1− Tµbt)2.

Setting B = (1− Tµbt)b, it is easy to check that (A,B, (1− s)(1− Tµbt)) ∈ Q2n(A[T ]).

57
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Then it follows that (A,B, 1− (1− s)(1− Tµbt)) = (A,B, s+ Tµbt(1− s)) ∈ Q2n(A[T ]).

Thus (i) and (ii) are proved.

Now we have the following relations among the ideals:

I =
(
a1 + µ1(1− s)2, · · · , an + µn(1− s)2

)
=
(
a+ µ(1− s)2, (1− s)(1− µbt)

)
∩
(
a+ µ(1− s)2, s+ µbt(1− s)

)
=
(
a+ µ(1− s)2, (1− s)(1− µbt)

)
∩K

Let p ∈ Spec(A) such that K ⊂ p. As s + µbt(1 − s) ∈ K ⊂ p, it follows that

(1− s)(1− µbt) /∈ p and therefore, 1− s /∈ p. Note that I ⊂ K ⊂ p. Therefore, by the

first paragraph, ht(p) ≥ n. This proves (iii).

Remark 5.0.2 If A is a geometrically reduced affine algebra over an infinite perfect

field then using Swan’s Bertini theorem or Remark 2.1.5 in place of Lemma 2.1.4, one

can choose K to have the additional property that either K = A or K is a reduced ideal.

Theorem 5.0.3. Let R be a smooth affine domain of dimension d ≥ 2 over an infinite

perfect field k. The set-theoretic map θd : Ed(R)→ π0(Q2d(R)) is a bijection.

Proof. Let v = (a1, · · · , ad, b1, · · · , bd, s) ∈ Q2d(R). Then the ideal I(v) := (a1, · · · , ad, s)

of R need not be of height d. However, we may apply Lemma 5.0.1 to obtain v′ =

(a′1, · · · , a′d, b′1, · · · , b′d, s′) in the same homotopy class of v such that the ideal K =

(a′1, · · · , a′d, s′) has height ≥ d. Assume that K is proper. We have K = (a′1, · · · , a′d)+K2.

If ωK : (R/K)d � K/K2 is the corresponding map, then it follows that the image of

(K,ωK) under θd is [v′] = [v] in π0(Q2d(R)). On the other hand, if K = R, then the row

(a′1, · · · , a′d, s′) is unimodular and therefore there exist α1, · · · , αd, β ∈ R such that

α1a
′
1 + · · ·+ αda

′
d + βs′ = 1, and therefore,

(1− s′)(α1a
′
1 + · · ·+ αda

′
d) + β(s′ − s′2) = 1− s′.

As s′− s′2 is in the ideal (a′1, · · · , a′d), it follows that there exist λ1, · · · , λd ∈ R such that

λ1a
′
1 + · · ·+ λda

′
d = 1− s′. We can apply elementary orthogonal transformation of type
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(v) in Definition 3.3.1 and change (a′1, · · · , a′d, b′1, · · · , b′d, s′) to (a′1, · · · , a′d, b′′1, · · · , b′′d, 1).

The latter is clearly homotopic to (0, · · · , 0, 0, · · · , 0, 1). By [MaMi, Lemma 5.3], the

orbits [(0, · · · , 0, 0, · · · , 0, 1)] and [(0, · · · , 0, 0, · · · , 0, 0)] are the same in π0(Q2d(R)).

This trivial orbit has preimage in Ed(R). Therefore, θd is surjective.

The rest of the proof is devoted to proving that θd is injective. Let (J, ωJ) and

(J ′, ωJ ′) be elements of Ed(R) be such that θd((J, ωJ)) = θd((J
′, ωJ ′)). Let ωJ be given

by J = (a1, · · · , ad) + J2. As ht(J) = d, applying Lemma 2.1.4 if necessary, we may

assume that ht(a1, · · · , ad) = d. Now there exists s ∈ J2 such that J = (a1, · · · , ad, s)

with s − s2 = a1b1 + · · · + adbd for some b1, · · · , bd ∈ R. Similarly, ωJ ′ is given by

J ′ = (a′1, · · · , a′d) + J ′2 with ht(a′1, · · · , a′d) = d. There exists s′ ∈ J ′2 be such that

J ′ = (a′1, · · · , a′d, s′) with s′ − s′2 = a′1b
′
1 + · · ·+ a′db

′
d for some b′1, · · · , b′d ∈ R.

We now assume that

θd((J, ωJ)) = [(a1, · · · , ad, b1, · · · , bd, s)] = [(a′1, · · · , a′d, b′1, · · · , b′d, s′)] = θd((J
′, ωJ ′))

in π0(Q2d(R)). Applying Corollary 3.4.2 we have V = (f1, · · · , fd, g1, · · · , gd, h) ∈

Q2d(R[T ]) such that V (0) = (a1, · · · , ad, b1, · · · , bd, s) and V (1) = (a′1, · · · , a′d, b′1, · · · , b′d, s′).

If we consider the ideal I = (f1, · · · , fd, h) of R[T ] then we have I = (f1, · · · , fd) + I2.

Let ωI : (R[T ]/I)d � I/I2 denote the corresponding surjection. However, the height of

I need not be d, although both I(0) (= J) and I(1) (= J ′) have height d.

As both ht((a1, · · · , ad) = d = ht(a′1, · · · , a′d), it follows that

ht(f1, · · · , fd, T (T − 1)) = d+ 1 (∗)

Consider (f1, · · · , fd, (T 2 − T )h2) ∈ R[T ]d+1. By Lemma 2.1.4, there exist µ1, · · · , µd ∈

R[T ] such that ht((F1, · · · , Fd)h2(T 2−T )) ≥ d, where Fi = fi + µih
2(T 2 − T ), for i =

1, · · · , d. Note that we have I = (F1, · · · , Fd) + (h), and (h) ⊂ I2. Applying [BRS 3,

2.11], there exists e ∈ (h) such that I = (F1, · · · , Fd, e) where e − e2 ∈ (F1, · · · , Fd).

We now take K = (F1, · · · , Fd, 1 − e) and write ωK : (R[T ]/K)d � K/K2 for the

corresponding surjection. We record that I ∩K = (F1, · · · , Fd) in R[T ].

Let P ∈ Spec(R[T ]) be such that K ⊆ P . Then, as e ∈ (h) and 1 − e ∈ K, we
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see that h 6∈ P . If T 2 − T 6∈ P , then ht(P ) ≥ d. If T 2 − T ∈ P , then by (∗) above,

ht(P ) ≥ d+ 1. In any case, ht(K) ≥ d. Note that

K(0) ∩ I(0) = K(0) ∩ J = (F1(0), · · · , Fd(0)) = (a1, · · · , ad),

K(1) ∩ I(1) = K(1) ∩ J ′ = (F1(1), · · · , Fd(1)) = (a′1, · · · , a′d).

As the height of each of the ideals involved here is d, we have

(J, ωJ) + (K(0), ωK(0)) = 0 = (J ′, ωJ ′) + (K(1), ωK(1)) in Ed(R),

where ωK(0) is induced by a1, · · · , ad, and ωK(1) is induced by a′1, · · · , a′d.

Therefore, (J, ωJ)− (J ′, ωJ ′) = (K(1), ωK(1))− (K(0), ωK(0)) ∈ H (where H is as in

(2.4.1)) and consequently, (J, ωJ) = (J ′, ωJ ′) in Ed(R). This completes the proof.

Remark 5.0.4 In Proposition 3.6.1 and Theorem 5.0.3 we can take R to be a regular

domain of dimension d which is essentially of finite type over an infinite perfect field k.
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Panoramas et Synthèses 46, Soc. Math. France, Paris, 2016, École d’été
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