
Efficient Learning of GAN

ARNAB SAHA

M.Tech CS

Supervisor: Dr. N.R. Pal

A thesis submitted in fulfilment of
the requirements for the degree of

M.Tech

ECSU
Indian Statistical Institute

Kolkata

10 July 2020

M.Tech(CS) DISSERTATION THESIS COMPLETION

CERTIFICATE

Student : Arnab Saha

Topic : Efficient learning of GAN

Supervisor : Dr. N.R. Pal

This is to certify that the thesis titled “Efficient learning of GAN” sub-

mitted by Arnab Saha in partial fulfillment for the award of the degree of

Master of Technology is a bonafide record of work carried out by him un-

der my supervision. The thesis has fulfilled all the requirements as per the

regulations of this Institute and, in my opinion, has reached the standard

needed for submission. The results contained in this thesis have not been

submitted to any other university for the award of any degree or diploma.

Prof. N.R. Pal

Supervisor

Dedication

To my parents and close ones, without your help and encouragement it

wouldn’t have been possible.

Acknowledgements

I would like to thank my dissertation supervisor Dr. N.R. PAL for agreeing

to guide me and for helping me to undertake work in the topic. Without his

continuous guide and support this wouldn’t have been possible.

I am also very much thankful to Suvro Da, Suchismita Di, Manish, Laltu

and all my lab mates and seniors of The CI lab of Indian Statistical

Institute , Kolkata for helping me though out the project with their valuable

time and suggestions.

Abstract

GAN or Generative Adversarial Network is a combination of two deep

Neural Networks in which one network acts as a generator where the other

acts as a discriminator which differentiate between real and generated fake

samples. There are different variants of GAN. For every variant of GAN

we have to train two deep neural networks simultaneously and the hardest

part about GAN is it’s training. During training many GAN models suffer

various major problems like non-convergence, mode collapse, high sensi-

tivity to the selection of hyper-parameters and vanishing gradient. In this

project we tried to address the problem Mode-collapse. Where the gen-

erator generates only one or limited variants of samples irrespective of the

inputs.

Contents

Chapter 1 Introduction 1

Chapter 2 Training of GAN Model 4

Chapter 3 Mode Collapse 6

Chapter 4 Our Approach to solve Mode Collapse 8

4.1 Theory . 8

4.2 Algorithm . 9

4.3 Experiment . 10

4.4 Result . 11

4.5 Result Analysis . 17

4.6 Conclusion . 17

References 19

CHAPTER 1

Introduction

Generative Adversarial Networks (GANs) are a powerful class of neu-

ral networks that are used for unsupervised learning, which was developed

and introduced by Ian J. Goodfellow in 2014 [1] .GAN is for creating, like

drawing a portrait or composing a symphony. GAN consists of 3 parts [2].

Generative : To learn a generative model, which describes how data is

generated in terms of a probabilistic model.

Adversarial : Training of model is done in an adversarial setting.

Network : Use of deep neural networks to train the model.

From the structural point of view GAN consist of 2 parts .

Generator : Generates fake samples from noise data. The outputs of

generator are fed to the discriminator. It tries to fool the discriminator[3].

Discriminator : The input of the discriminator is either from genera-

tor’s output or from the real data. It’s job is to discriminate between real

and fake data[3].

A generator alone will just create random noise. Conceptually, the discrim-

inator in GAN provides guidance to the generator on what images to create.

As we can see in the figure 1.1 in next page, input or random noise are

being fed to generator’s input and it creates an image which is known as a

fake sample or synthetic image. Then this fake sample and training sample

from real data both are being fed to discriminator and the discriminator pro-

duce an output D(X). The discriminator tries to make this D(x) as close as

1

2 1 INTRODUCTION

FIGURE 1.1. Schematic diagram of GAN [5]

possible to 1 for the real data and as close as possible to 0 for the fake data.

And depending upon this discriminator’s output GAN trains itself through

back-propagation. This is the simplest explanation of how the training of

GAN is done. But the training process of GAN is really not that simple.

Now to develop a clear idea of the training process we will go through

some simple equations .The discriminator outputs a value D(x) indicating

the chance that x is a real image. Our objective is to maximize the chance

to recognize real images as real and generated images as fake. i.e. the

maximum likelihood of the observed data [3]. To measure the loss, we use

cross-entropy as in most Deep Learning: plog(q). For real image, p (the

true label for real images) equals to 1. For generated images, we reverse the

label (i.e. one minus label). So the objective becomes:

max
D

V (D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(Z)))] ... (1)

On the generator side, its objective function wants the model to generate

images with the highest possible value of D(x) to fool the discriminator.

min
G
V (G) = Ez∼pz(z)[log(1−D(G(Z)))] ... (2)

1 INTRODUCTION 3

And combining both the equations 1 and 2 we get the objective function of

GAN. Which is illustrated below,

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(Z)))]...(3)

As we can see in the above objective function the discriminator tries to pro-

duce D(x) = 1 where x is taken from real data distribution and D(G(Z) =

0 where Z is sampled from normal or uniform distribution, So that the value

of V (G,D) can be 0, which is the maximum value of V (G,D). So we can

see that the discriminator tries to maximize the objective function V (G,D)

by only controlling it’s parameter D.

On the other hand the generator tries to fool the discriminator by making

D(G(Z) = 1. So that the value of V (G,D) can be −∞, which is the

minimum value of the objective function V (G,D). So we can see that the

generator tries to minimize the objective function V (G,D) by only control-

ling it’s parameterG. That’s why we often called GAN a min-max game [4].

CHAPTER 2

Training of GAN Model

After the objective function of GAN is defined the model is trained by

alternating gradient descent [3]. We fix the generator model’s parameters

and iterate once to perform gradient descent on the discriminator parameters

using the real and generated images. Then we fix the discriminator’s param-

eters and train the generator for another single iteration. We continue this

alternate gradient descent until the generator produces good quality images.

The below figure 2.1 shows the data flow and gradients in backpropagation.

FIGURE 2.1. Back propagation in GAN [3]

4

2 TRAINING OF GAN MODEL 5

The pseudo code below summarizes everything and we can see how a

GAN is trained.

Algorithm

for number of training iteration do

• Sample minibatch of m noise samples {z1,, zm} from noise

prior pg(z).

• Sample minibatch of m examples {x1,, xm} from data generat-

ing distribution pdata(x).

• Update the discriminator by ascending stochastic gradient :

∇θd
1
m

m∑
i=1

[logD(x(i)) + log(1−D(G(z(i))))]

• Sample minibatch of m noise samples {z1,, zm} from noise

prior pg(z).

• Update the generator by descending stochastic gradient:

∇θg[
1
m

m∑
i=1

[log(1−D(G(z(i))))].

end for

CHAPTER 3

Mode Collapse

Mode collapse is said to happen when the generator generates a lim-

ited diversity of samples, or even the same sample, regardless of the input.A

complete collapse is not common but a partial collapse happens often [5].

For example consider the MNIST dataset. When the dataset is feed to GAN

model it can be seen that after some training it for some considerable iter-

ations the generator starts to produce some particular digits with very high

quality instead of producing all the variety or mode of the digits i.e. from 0

to 9.

Now the question is why does this Mode Collapse occur in the first place?

To understand the reason behind it we have to recall the objective of GAN

generator (eq 2).

min
G
V (G) = Ez∼pz(z)[log(1−D(G(Z)))]

The stochastic gradient of the generator is given by,

∇θg
1
m

m∑
i=1

log(1−D(G(z(i))))]

The objective of generator is to create images that can fool the discrimina-

tor most. Now we consider an extreme case where we train the generator

extensively and update it parameters without updating of discriminator pa-

rameter(i.e. we stopped the discriminator training). Then the generator

training will converge to find the optimal image x∗ which is most realistic

from discriminator perspective. In this time the generator’s output will be

independent of generator’s input. Whatever z fed to generator’s input it will

always create the x∗. So, x∗ can be defined as,

x∗ = argmaxxD(x)

6

3 MODE COLLAPSE 7

And this way the mode collapses in a single point x∗. The gradient as-

sociated with z approaches to zero. And there is nothing in the objective

function that explicitly forces the generator to generate different samples

given the input.

When we restart the training in the discriminator, the most effective way to

detect generated images is to detect this single mode. Since the generator

desensitizes the impact of z already, the gradient from the discriminator is

likely push the single point around for the next most vulnerable mode. This

is not hard to find. The generator produces such an imbalance of modes in

training that it deteriorates its capability to detect others. Now, both net-

works are over fitted to exploit short-term opponent weakness . This turns

into a cat-and-mouse game and the model will not converge[5].

In the diagram below, in figure 3.1 the Unroll GAN [6] manages to pro-

duce all 8 expected modes of data. The second row shows another GAN for

which the mode collapses and rotates to another mode when the discrimi-

nator catches up.

FIGURE 3.1. Mode Collapse example [6]

CHAPTER 4

Our Approach to solve Mode Collapse

As we have seen earlier that we don’t use any particular method or ob-

jective that explicitly forces the generator to generate different samples or

more diverse samples in case of traditional GAN models. So in our work,

we use an explicit method to force the generator to generate more diverse

samples.

In our work, we tried to minimize the distance between the real data and

generated data using Maximum Mean Discrepancy(MMD) method.

4.1 Theory

Assume we are given data {xi}ni=1 , where xi ∈ X and xi ∼ PX . If we are

interested in sampling from PX , it is not necessary to estimate the density

of PX . Instead, Generative Adversarial Network (GAN) trains a generator

gθg parameterized by θg to transform samples z ∼ PZ , where z ∈ Z, into

gθg(z) ∼ Pθ such that Pθ ≈ PX . To measure the similarity between PX and

Pθ via their samples {x}ni=1 and {gθ(zj)}nj=1 during the training, we train

the discriminator Dθd parameterized by θd for help. The learning is done

by playing a two-player game, where Dθd tries to distinguish xi and gθg(zj)

while gθg aims to confuse Dθd by generating gθg(zj) similar to xi.

On the other hand, distinguishing two distributions by finite samples is

known as Two-Sample Test in statistics. One way to conduct two-sample

test is via kernel maximum mean discrepancy (MMD) [7]. In general, MMD
8

4.2 ALGORITHM 9

is defined by the idea of representing distances between distributions as dis-

tances between mean embedding of features. Given two distributions P and

Q, and a kernel k, the square of MMD distance is defined as,

Mk(P,Q) = ‖µP − µQ‖2H = EP [k(x, x′)]− 2EP,Q[k(x, y)] +EQ[k(y, y′)].

whereH is a Reproducing Kernel Hilbert Space.

and k is a characteristic kernel, such as Gaussian kernel.

In practice we use finite samples from distributions to estimate MMD dis-

tance [7]. Given X = {x1,, xn} ∼ P and Y = {y1,, yn}, one estima-

tor of Mk(P,Q) is,

M̂k(X, Y) = 1

(n2)

∑
i 6=i′

k(xi, x
′
i)− 2

(n2)

∑
i 6=j

k(xi, yj) +
1

(n2)

∑
j 6=j′

k(yj, y
′
j).

4.2 Algorithm

So, we can see from theory section, that MMD is a measure of distance be-

tween two distributions. The main idea of our approach is to minimize the

distance between the real data and fake or generated data, so that our gen-

erator can learn all the diversities embedded in the real data and therefore

can produce all the modes of the input dataset.

So we minimize the MMD of two distributions, but instead of calculating

the MMD of real data and fake data we extract our real and fake data from

our discriminator’s second last layer. After that we calculate their MMD

and used this measure as a regularizer to train our generator.

So basically, our algorithm is almost same as the conventional algorithm of

training a GAN but with the addition of this new regularizer in generator’s

objective function. So, our new algorithm looks like below,

10 4 OUR APPROACH TO SOLVE MODE COLLAPSE

Algorithm

for number of training iteration do

• Sample minibatch of m noise samples {z1,, zm} from noise

prior pg(z).

• Sample minibatch of m examples {x1,, xm} from data generat-

ing distribution pdata(x).

• Update the discriminator by ascending stochastic gradient :

∇θd
1
m

m∑
i=1

[logD(x(i)) + log(1−D(G(z(i))))]

• Extract the latent space representation of real data samples and

fake data samples from discriminator’s second last hidden layer.

Say, X̂ =⇒ real data’s latent space representation and Ẑ =⇒

fake data’s latent space representation.

• Calculate MMD of two distribution Ẑ and X̂ , say Mk(Ẑ, X̂).

• Sample minibatch of m noise samples {z1,, zm} from noise

prior pg(z).

• Update the generator by descending stochastic gradient with added

regularizer term:

∇θg[
1
m

m∑
i=1

[log(1−D(G(z(i))))] + ηMk(Ẑ, X̂)].

end for

4.3 Experiment

We train our regularized GAN to generate images on MNIST dataset which

contains 28*28, single channel, 60K training images. All the images are

generated from a random normal noise with µ = 0 and σ = 1.

4.4 RESULT 11

Network architecture : We used the conventional architecture of Deep

Convolution GAN (DCGAN) in our experiment. The network architecture

is shown below in figure 4.1,

FIGURE 4.1. DCGAN Architecture [8]

Kernel : In this experiment we use Gaussian kernel as our characteris-

tics kernel. So in our case, k(x, x′) = exp(‖x−x′‖2). We used a mixture of

Gaussian kernels with σ = [1,2,4,8,16] and calculate MMD based on these

kernels [7].

Hyper-parameters : We used adam optimizer with α = 0.0002 and β =

0.5 to optimize the generator and discriminator. We checked for regular-

izer co-efficient = 5, 10 and 15. We also tuned the latent space dimension

between 10 , 20 and 30. The minibatch size is set to 100 for all the cases.

4.4 Result

In Figure 4.2, 4.3, 4.4 and 4.5 we show our experiment result for regular-

izer co-efficient η = 0, 15, 10, 15. Here, η = 0 implies we train the network

without any regularizer. The reason we showed our result from epoch 25

is because, we observed that the DCGAN model without the regularizer

tends to generate mode collapsed images continuously after epoch 23 or

24 in most of the cases. We stopped our training after 30 epochs. So we

compare that result with our regularized GANs using different regularizer

co-efficient and one can observe that the results are better when we use the

MMD as regularizer.

12 4 OUR APPROACH TO SOLVE MODE COLLAPSE

To make the comparison fair and transparent we use same initial condition

for each of the regularizer co-efficient value. Here same initial conditions

refers to the fact that, we use same random noise to train the generator as

well as to produce fake samples from the generator in each of the cases.

In MNIST dataset there are total 60K training samples and in each iteration

we train mini batches of real data and fake data of size 100. So the number

of mini batches = 60000/100 = 600.

Now for each mini batch we need random noise (a 4D tensor) of dimension

[(mini batch size),1,1,100] to feed the generator. So we produce a list of

random numbers of size 600 and then used each element of that list as a

seed value to generate a noise vector for each 600 mini batches. In this way,

we ensure that the set of noise vectors for each regularizer co-efficient value

is exactly the same.

During the generation process we fixed a constant seed value and then gen-

erates random noise of dimension [(mini batch size),1,1,100]. This way, we

ensure that after being trained for 1 epoch our generator used the exactly

same random noise to generate fake samples. And this random noise is also

identical for each regularizer co-efficient value.

4.4 RESULT 13

FIGURE 4.2. Regularizer co-efficient η = 0

14 4 OUR APPROACH TO SOLVE MODE COLLAPSE

FIGURE 4.3. Regularizer co-efficient η = 5

4.4 RESULT 15

FIGURE 4.4. Regularizer co-efficient η = 10

16 4 OUR APPROACH TO SOLVE MODE COLLAPSE

FIGURE 4.5. Regularizer co-efficient η = 15

4.6 CONCLUSION 17

4.5 Result Analysis

As we can see from the result, for η = 0 (i.e. when we didn’t use MMD as

a regularizer in generator’s cost function) from epoch 25 mode collapse is

occurring again and again up to the last epoch of our training.

Now to match the scale of MMD with generator’s loss we used 3 regularizer

co-efficient 5, 10 and 15.

We observed that, when we used η = 5, then the generation quality is

somewhat good compare to η = 10, 15. But if we use this value multiple

times to train our generator, in some runs we observed that, mode collapse

occurred and stayed up to 2 to 3 epochs and then the generator again started

to produce mode-collapse free images.

When we used η = 15, then the generation quality dropped in some cases.

In case of η = 10 the mode collapse didn’t occur and the generation quality

is also better than the case where η = 15.

From the result we can conclude that, if we use η = 10 then the value of

MMD can be brought to the same scale as generator’s loss and we observed

there is a fair trade off between the generation quality and mode collapsed

free images. In case of η = 5 the generation is biased towards the generation

quality and for η = 15 the generation is biased towards mode collapsed free

images.

4.6 Conclusion

Mode collapse is an architectural problem of GAN. During the training pro-

cess of the generator if the generator’s parameter is updated extensively the

generator tries to find the optimal image which is most realistic from dis-

criminator’s perspective and it starts to produce that image irrespective of

the input and collapsed on that single mode. Now when the discriminator

detects this single mode the generator tries to find the next most vulnerable

mode from discriminator’s perspective. And this way, it turns in to a cat and

18 4 OUR APPROACH TO SOLVE MODE COLLAPSE

mouse game and the process repeats again and again.

Now to overcome this problem we introduce MMD in our work. MMD or

Maximum Mean Discrepancy is a measure between two probability distri-

butions. In the conventional cost function of GAN there is no explicit term

that force the generator to product more diverse samples. We used MMD

as a regularizer in our generator’s cost function and minimized it with the

generator’s cost using Adam optimizer so that the generator can produce

more diverse samples and can avoid mode collapse. And our results are

reflecting our goal of this work. Though due to this pandemic situation it

was not possible to access GPU or high speed internet connectivity. So we

only ran our test on MNIST data and couldn’t run it on large datasets like

CelebA dataset.

In future this solution can further be extended to produce more diverse sam-

ples with very high quality generation and this can lead to the solution of

GAN’s convergence problem which is another major problem of GAN.

References

[1] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio Gen-
erative Adversarial Networks https://arxiv.org/pdf/1406.
2661.pdf

[2] Rahul Roy Generative Adversarial Network (GAN) GFG Article link

[3] Jonathan Hui GAN — What is Generative Adversarial Networks GAN?
Medium Article link

[4] Ian J. Goodfellow NIPS 2016 Tutorial: Generative Adversarial Net-
works https://arxiv.org/abs/1701.00160

[5] Jonathan Hui GAN — Why it is so hard to train Generative Adversarial
Networks! Medium Article link

[6] Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein Un-
rolled Generative Adversarial Networks https://arxiv.org/
abs/1611.02163v4

[7] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, Barn-
abás Póczos MMD GAN: Towards Deeper Understanding of Moment
Matching Network. In the Proceedings of Thirty-first Annual Confer-
ence on Neural Information Processing Systems (NIPS 2017) https:
//arxiv.org/abs/1705.08584v3

[8] Alec Radford, Luke Metz, Soumith Chintala Unsupervised Represen-
tation Learning with Deep Convolutional Generative Adversarial Net-
works Under review as a conference paper at ICLR 2016 https:
//arxiv.org/abs/1511.06434

19

https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf
https://www.geeksforgeeks.org/generative-adversarial-network-gan/
https://medium.com/@jonathan_hui/gan-whats-generative-adversarial-networks-and-its-application-f39ed278ef09
https://arxiv.org/abs/1701.00160
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://arxiv.org/abs/1611.02163v4
https://arxiv.org/abs/1611.02163v4
https://arxiv.org/abs/1705.08584v3
https://arxiv.org/abs/1705.08584v3
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434

	Chapter 1. Introduction
	Chapter 2. Training of GAN Model
	Chapter 3. Mode Collapse
	Chapter 4. Our Approach to solve Mode Collapse
	4.1. Theory
	4.2. Algorithm
	4.3. Experiment
	4.4. Result
	4.5. Result Analysis
	4.6. Conclusion

	References

