
AN EFFICIENT ALTERNATIVE OF

THE IDENTITY MAPPING OF THE

ResNet ARCHITECTURE

A Thesis submitted by

ARPAN KUMAR BAG

In the partial fulfillment of the requirements for the degree of

MASTER OF TECHNOLOGY

In

COMPUTER SCIENCE

Under the guidance of

Dr. UJJWAL BHATTACHARYA
Associate Professor (Equiv.)

Computer Vision and Pattern Recognition Unit

Indian Statistical Institute, Kolkata

August 31, 2020

Acknowledgement

I sincerely express my gratitude towards my supervisor, Dr.Ujjwal Bhattacharya for

providing me with the necessary materials and for all his advice and support. I would

also like to sincerely thank all the researchers working in the Handwriting Recognition

Lab of the Computer Vision and Pattern Recognition Unit of my institute, Indian

Statistical Unit, Kolkata.

1

Abstract

In the past few years, deep models have made a huge impact in the field of computer

vision. Among these deep models, Residual Networks or ResNets have become par-

ticularly popular for their simple architecture and efficient performance. Despite the

achievement, the skip connection which made the training of a very deep model possible

was also considered as a drawback of this model. Some studies have been done on the

comparative performance of various types of skip connections. Inspired by the recent

work on skip connection which proposed use of ReLU with group normalization as an

alternative to the identity skip connection resulting in better performance than tradi-

tional ResNet, we have explored use of various activation functions. In this thesis, we

propose a different transformation to be used together with the ReLU Group Normaliza-

tion (RG) connection to improve the performance of Residual networks. We simulated

our results on CIFAR-10 and CIFAR-100 datasets. The code developed as a part of this

study is available at https:// github.com/ Arpan142/ Arpan dissertation.

2

https://github.com/Arpan142/Arpan_dissertation

Contents

1 Introduction 4

1.1 Preliminaries . 4

1.1.1 Why deep networks . 4

1.1.2 Residual Networks . 4

1.1.3 Problems with ResNet . 6

1.1.4 Motivation . 6

1.2 Activation functions . 8

1.2.1 Various types of activation function 8

1.3 Loss function . 10

1.4 Our Contribution . 10

2 Previous Work 11

3 Our Work 16

4 Implementation Details and Results 19

4.1 Implementation Details . 19

4.1.1 Datasets . 19

4.2 Experimental setup . 20

4.3 Simulation Results . 20

5 Analysis of Results and Conclusion 23

5.1 Analysis of Results . 23

5.2 Conclusion . 23

6 Future work 24

7 Bibliography 25

3

Chapter 1

Introduction

1.1 Preliminaries

In the recent years it has been seen that increasing the number of layers in the con-

volution neural network models, produces a much superior performance. Models like

Alexnet, VGG, Inception, ResNet, etc. Among all these models ResNet has been exper-

imented with a large number of layers and achieved state of the art benchmark in several

tasks including object classification on ImageNet [1] and CIFAR [2], object detection

and segmentation on MSCOCO [3] and PASCAL VOC [4]. ResNet quickly caught

everyone’s attention because of its simple architecture and outstanding performance.

1.1.1 Why deep networks

From circuit complexity theory it can be seen that shallow network may require expo-

nentially more components than deep networks [5]. The ResNet model is made thin

and deep which leads to a model with less parameter [5]. A simple example is that a

7× 7 convolution has the same receptive field as three 3× 3 convolutions.

1.1.2 Residual Networks

Deep residual networks consists of many stacked “residual units”, each unit can be

expressed as:

yl = h(xl) + F (xl, wl), (1.1)

xl+1 = f(yl), (1.2)

4

[6] where xl and xl+1 is the input and output of the lth layer. The h function represents

skip connection, F represents the function of a block,wl represents the weights of the

lth block and f represents the final transformation which produces the output of lth

block. It has been shown that h(xl) = xl performs best among many choices of h [6].

The identity connection provides gradient stability which helps the network to converge

in spite of using many layers.

In ResNet, two types of blocks are used. By block, we mean a sequence of operations

using some convolution layers and some functions(ReLU, batch normalization, etc.).

The depth of a ResNet model is measured by calculating the number of learnable lay-

ers, e.g., ResNet-26 means the model has 26 learnable layers. The basic block consists

of two 3× 3 convolution and the bottleneck block consists of two 1× 1 convolution and

a 3× 3 convolution.

(a) Basic Block (b) Bottleneck Block

Figure 1.1: The basic block consists of two 3×3 convolution. Here the channel dimension
stays the same throughout the block. In bottleneck block, the channel dimension of the
output of the last 1× 1 convolution is 4 times the channel dimension of the output of
the first 1× 1 convolution.

In ResNet, four convolution groups of blocks are used normally. The authors of [7]

called these groups as conv2, conv3, conv4, conv5. conv1 being the convolution layers

at the beginning of the model which do not belong to any building block (basic block

or bottleneck block). Each convolution group contains a stack of basic blocks or bottle-

neck blocks. After each convolution group the channel dimension of the input increases

and the height and the width decreases. This is known as downsampling. Through-

out this thesis we will be using bottleneck block. So in each bottleneck block there is

three learnable layers. At the beginning of ResNet, a 7 × 7 or a 3 × 3 convolution is

used. Sometimes a pooling layer is used after the first convolution layer. At the end

a fully connected layer is used for classification purpose. The performance of ResNet

5

for classification tasks is measured using top-1 error. The top-1 error means for how

many inputs the class predicted by the network, i.e., the highest class probability of

the softmax output matches the actual class of the input.

The architecture of ResNet-34 is shown in figure 1.2 . This design is for ImageNet [1]

classification where the number of classes are 1000. The input image is passed through

a 7×7 convolution with stride 2 which reduces the image height and width by half and

the output channel dimension is 64. After each convolution group, downsampling takes

place and at the end of the architecture there is an average pooling layer and after that

a fully connected layer for classification.

1.1.3 Problems with ResNet

As mentioned in [5] the identity map which helps with gradient stability is also a

drawback for ResNet. The identity map does not learn any useful features. Since the

gradient flows through the residual connection there is no guarantee that the gradi-

ent will go through the residual block weights which means that only the lower level

blocks may learn some useful information. This is known as diminishing feature reuse

[8]. DenseNet [9] achieves better performance than ResNet with the same number of

parameters. A dense-block has direct connection between a layer and its subsequent

layers. But DenseNet requires large GPU memory and large computation time for

training [10].

1.1.4 Motivation

Skip connections have made a huge impact on deep learning. Skip connections have

been used in many applications of NLP [11], computer vision [12], [9] etc. The skip

connections help with the gradient flow which deals with the vanishing gradient prob-

lem. We have the relation xl+1 = xl +F (xl, wl). We are using the notations mentioned

in the previous section and ε is the error produced by the loss function. Computation

of error gradients in backpropagation is shown below.

∂ε

∂xl
=

∂ε

∂xl+1

∂xl+1

∂xl
=

∂ε

∂xl+1

(1 +
∂F (xl, wl)

∂xl
) (1.3)

∂ε

∂xl+1

(1 +
∂F (xl, wl)

∂xl
) =

∂ε

∂xl+2

∂xl+2

∂xl+1

(1 +
∂F (xl, wl)

∂xl
) (1.4)

6

Figure 1.2: ResNet-34 with basic block designed for ImageNet [1] classification. The
dotted skip connection means downsampling. For ResNet-34 the convolution group
lengths are 3, 4, 6, 3. So that after the first three basic blocks first downsampling takes
place. Then again after three blocks and again after five blocks. In the figure /2 means
the dimension of the input height and width is getting halved. The numbers after the
convolution dimension represent the channel dimension of the output.

∂ε

∂xl+2

∂xl+2

∂xl+1

(1 +
∂F (xl, wl)

∂xl
) =

∂ε

∂xl+2

(1 +
∂F (xl+1, wl+1)

∂xl+1

)(1 +
∂F (xl, wl)

∂xl
) (1.5)

So if we multiply all these terms we can see that gradient is flowing directly from the

last layer to any other layer. The skip connection does not learn any useful feature [5].

Recent work [10] has proposed a simple nonlinear transformation as skip connection

which achieves better performance than traditional ResNet. This proves that there is

7

room for improvement in this area which makes this area a good field for research.

1.2 Activation functions

Activation functions are used at a node of a neural network. That is after multiplying

the input with the weight, the result is passed through the activation function which

ultimately determines the output. Sometimes only the input can be passed through

the activation function without performing any weight multiplication [6], [10]. The

activation functions are mainly used to introduce nonlinearities in the network so that

the network can capture complex patterns.

1.2.1 Various types of activation function

• ReLU: ReLU is defined as

ReLU(xi) =

xi, if xi > 0

0, otherwise

• GELU: GELU[13] is defined as

GELU(xi) = xiΦ(xi) = 0.5xi(1 + erf(
xi√

2
))

Here Φ is the cumulative distribution of N (0, 1) and erf(z) = 2√
π

∫ z
0
e−t

2
dt

• Logistic/Sigmoid: Logistic or Sigmoid can be defined as

Sigmoid(xi) =
1

1 + e−xi

• Softmax: Softmax function is defined as

Softmax(~x)i =
exi∑
i e
xi

• Tanh: Tanh function is defined as

Tanh(xi) =
exi − e−xi
exi + e−xi

· · ·

8

• Leaky ReLU: The Leaky ReLU is defined as

Leaky ReLU(xi) =

xi, if xi > 0

αxi, otherwise

Here α is a hyperparameter.

All the activation functions mentioned above except Softmax, take a scalar as input. If

these functions are applied on a vector then they are applied on each coordinate of the

vector. The input of these functions is denoted by xi, the ith coordinate of the vector x.

For Softmax the input is a vector and the output is also a vector. Among the activation

functions ReLU, GELU, Leaky ReLU are unbounded. The range of Sigmoid and Tanh

are (0, 1) and (−1, 1) respectively. The sup norm of a softmax output ∈ (0, 1]. Softmax

is mainly used at the last layer of a network for classification problem to generate class

probabilities.

(a) ReLU and GELU (b) Leaky ReLU

Figure 1.3: The left side represents ReLU and GELU function and the right side rep-
resents Leaky ReLU function where α = 0.01.

9

(a) Sigmoid
(b) Tanh

Figure 1.4: The left side represents the Sigmoid function whose range is (0, 1) and the
right figure represents the Tanh function whose range is (−1, 1).

1.3 Loss function

For the loss function, we use cross-entropy loss which is the negative log-likelihood

of the softmax output. For our context at the end of the ResNet model we have a

fully connected layer where the output dimension is the number of classes. The fully

connected layer performs a linear transformation to the input. Then applies softmax on

the output (which has the dimension same as the number of classes). After performing

the softmax we need to pass the class of the input as a target. Then we take the

negative log-likelihood of the target component of the softmax vector. The total loss is

the average loss across all input in a batch.

1.4 Our Contribution

Our work explores different activation functions and is mainly based on the work of

[10]. The previous works show [6] that the use of scaling, gating, 1 × 1 convolution,

Dropout as a shortcut connection impedes the signal propagation leading to higher test

error. The latest work [10] uses a simple yet effective shortcut. The authors of [10] used

ReLU and group normalization (RG) as a shortcut connection and some variations of

it which are discussed in the previous work section. Our work uses this model with an

extra transformation on each channel of the input in each layer which results in a better

performance. We first tested the transformation on smaller architecture then moved to

larger ones.

10

Chapter 2

Previous Work

As mentioned earlier a lot of work has already been done on deep models, and many

methods have arisen for better performance, like auxiliary classifiers [14], weight ini-

tialization [12], normalization [15], [16], [17], [18], [19] etc. Among these, we will focus

on normalization techniques. Normalization became crucial for better performance of

deep networks. There are four types of normalization techniques. Batch, layer, instance

and Group. Among these we will focus on batch normalization [15] and group normal-

ization [18]. In any normalization technique we normalize the data at that epoch along

a particular axis. In the case of batch normalization [15] the normalization takes place

along the batch axis and in case of group normalization [18] we split the channel axis

into some number of groups then we normalize these groups along the height and width

axis.

(a) Batch Normalization (b) Group Normalization

Figure 2.1: The batch normalization takes place along the batch axis (N axis) and
the group normalization takes place along the channel axis (C axis). The H, W axis
represents to height and width.

Group normalization is an efficient method when it comes to memory constraint. As

the batch size decreases the performance of batch normalization deteriorates [18]. It has

11

been found that group normalization works better when used in shortcut connection

[10]. In [10] the authors proposed three different models. They used bottleneck block

in all their experiments and in place of skip connection they used ReLU with group

normalization. The ReLU was for nonlinearity and the group normalization was for

extra stability [10]. The 3 different models proposed in [10].

Figure 2.2: Here xl and xl+1 are input and output of the lth layer. In the first model,
the authors used one RG shortcut in place of identity skip connection (b-RGSNet [10]).
In the second model, they used another inner RG shortcut along with the first model
(d-RGSNet [10]). In the third model, they used an extra identity skip connection
(Res-RGSNet [10]).

• b-RGSNet: In this model, the ReLU+Group Normalization shortcut (RG short-

cut) is applied on the input of the block and added with the output of the last

batch normalization.

• d-RGSNet: In this model, along with the b-RGSNet structure the authors

added another RG shortcut to the output of the first batch normalization and

added the output of the RG shortcut with the output of the second batch nor-

malization.

12

• Res-RGSNet: This model is same as d-RGSNet with an extra identity skip

connection like normal ResNet.

.

Some previous works have also been discussed in [6] as mentioned earlier. The experi-

ments performed in [6], are as follows:

• Constant Scaling : In [6] the authors used scaling on the output of the both

shortcut connection and final convolution layer of a block (i.e., in both f and F

of (1.1)). They experimented with 0.5 scaling. First, they scaled only the skip

connection which was not able to converge (by not able to converge they meant

that the model has more than 20% top-1 error on test dataset), then they tried

scaling both skip connection and residual block connection. The second model

was able to converge with a much higher testing error than the baseline model

(The baseline model is ResNet with identity skip connection).

• Gating : The concept of gating was first introduced in [8]. The authors of [6]

used a 1 × 1 convolution followed by a sigmoid function. If the gating value is

g(x) then they scaled the skip connection with 1 − g(x) and the residual block

connection with g(x) where x is the input. The authors of [6] were able to converge

the model with a specific range of bias initialization, though the end result was

worse than the baseline model.

• 1×1 Shortcut: The 1×1 convolution as skip connection worked well for relatively

shallow model but it did not work well for deeper model (ResNet-110).

• Dropout Shortcut : The authors of [7] used Dropout [20] (In neural networks

sometimes the hidden units gain highly correlated behavior. This phenomenon

is known as co-adaption. It is better for a neural network to have hidden units

which can detect independent features. Co-adaptation causes overfitting which

affects the performance of the neural network at test time. Dropout is a regu-

larization technique, which prevents co-adaptation. In Dropout at the time of

training a weight is multiplied by zero with probability p and is multiplied by 1

with probability 1 − p, where p is a hyperparameter) with p = 0.5, on the skip

connection. As the expected value of the output of the skip connection becomes

0.5 times of that input which is like the constant scaling discussed above, Dropout

also fails to meet the accuracy of the baseline model.

13

In [6] the authors proposed another version of ResNet model, called Pre-activation

ResNet which performs better than the model proposed in [7]. Throughout this thesis

we will be considering the ReLU-only pre-activation [6] model as our base ResNet

model. In [6] the authors mentioned five different ResNet models together with the

original model [7].We denote the skip connection output as skip(x) where x is the

input, batch normalization as BN , and convolution weights as weight.

• original : ReLU(BN(weight(ReLU(BN(weight(x))))) + skip(x))

• BN after addition : ReLU(BN(weight(ReLU(BN(weight(x)))) + skip(x)))

• ReLU-Before-addition : ReLU(BN(weight(ReLU(BN(Weight(x))))))+skip(x)

• ReLU-only pre-activation : BN(weight(ReLU(BN(weight(ReLU(x)))))) +

skip(x)

• full pre-activation :weight(ReLU(BN(weight(ReLU(BN(x)))))) + skip(x)

(a) ReLU-only pre-activation (b) Full pre-activation

Figure 2.3: Two versions of ResNet model

In pre-activation ResNet, the output after addition of the output of the identity skip

connection and F in (1.1), is not affected by any other transformation, unlike the

previous models which are mentioned above. In pre-activation ResNet F starts with

either only ReLU or with batch normalization + ReLU. This means that input is passed

through an activation function at the beginning of a block which is why these models are

14

called pre-activation ResNet. The model where only ReLU is used as pre-activation is

called ReLU-only pre-activation and the one with batch normalization + ReLU is called

full pre-activation. Among the five models mentioned above, we only need ReLU-only

pre-activation and full pre-activation for our work.

15

Chapter 3

Our Work

Inspired by the work of [10] we first experimented with various combinations of acti-

vation functions and stabilizing methods. Like [10] we used bottleneck block for all

ResNet model unlike [7], [6], who used basic block (a stack of two 3× 3 convolutions)

for ResNets with layers less than 50 and bottleneck block for ResNet with layers more

than or equal to 50. Our work can be thought of as an extension of [10]. Though there

are many activation functions to try, we considered only GELU [13] and Leaky ReLU.

We experimented with different combinations of these functions and normalizations.

For all cases, the performance was inferior to the model proposed in [10]. We also used

full pre-activation as our basic ResNet model, which did not converge well.

There has been some work on the contribution of skip connection in ResNet performance

[6], [21]. Our next intuition was to focus on the distribution of the input of a layer.

We are considering that the features are independent of each other. We assume that

the input is sampled from multivariate standard normal distribution N (0, I), where 0

represents the zero vector and I represents the identity matrix. By assuming that the

input follows standard normal distribution we thought about focusing on the skewness

of the data.

16

Figure 3.1: Skew normal density function

The probability density function of a skew normal distribution with a parameter α is

denoted by SN (α) if it has the density function

f(x) = 2φ(x)Φ(αx) (3.1)

where φ(x) denotes the standard normal density function and Φ(x) standard normal

distribution function. If we set α = 0, then we get the standard normal density function.

So in a neural network, if we are planning to learn the parameter α and if the input

follows standard normal distribution, then the network can always set α as zero resulting

in no change in the distribution. In this context, we plan to learn α for each coordinate

of the input vector. For that, we used a transformation that allows the model to choose

how much skewness is best for this model at that layer or is it required at all. As

mentioned in [22], suppose we have a n-dimensional random variable (x1, x2, ..., xn)

following normal distribution with standardized marginals. The authors of [22] did not

assume that the xi’s are independent. We are considering the part that we need for

our work. Now let x0 ∼ N (0, 1) where x0 is independent of the other xi’s. Let δi’s ∈
(−1, 1)where i = 1, 2, ..., n. Define zj = δj | x0 | +

√
(1− δ2j)xj. Then zj ∼ SN (λ(δj)),

where λ(δ) = δ√
1−δ2 . The joint density function of Z is given by 2φn(Z; Ω)Φ(αᵀZ)

where Z ∈ Rn and

αᵀ =
λᵀ∆−1√
1 + λᵀλ

∆ = diag(
√

(1− δ21),
√

(1− δ22), ...
√

(1− δ2n))

17

λ = (λ(δ1), λ(δ2),λ(δn))ᵀ

Ω = ∆(I + λλᵀ)∆

Here φn(Z; Ω) denotes the multivariate normal distribution with standardized marginals

and correlation matrix Ω.

Figure 3.2: This figure represents how our proposed skip-connection works. Here we
are multiplying the input tensor and the parameter tensor channel wise. The parameter
tensor has the same dimension as the input tensor.

We use the transformation defined by zj above to transform the distribution of the input.

We propose a transformation in which we multiply (Hadamard product) a learnable

matrix channel wise and sample a number x0 from N (0, 1) in each pass and perform

the transformation. Our proposed transformation is defined as:

Z = δ | x0 | +
√

(1− δ2)X,

where δ is the learnable matrix, X is the input matrix. Since the matrix norm of ma-

trices which were multiplied is less than 1, the performance of the model using only

this transformation was very poor. We then used the linear combination of the two

skip connections, one that is our proposed transformation and the second one is the

transformation used in [10]. We also added the inner skip connection which was used in

d-RGSNet. The performance of the resulting model was superior to Res-RGSNet [10]

model which uses the identity skip connection also.

18

Chapter 4

Implementation Details and Results

4.1 Implementation Details

We mainly focused our work on CIFAR-100 and CIFAR-10 datasets.

4.1.1 Datasets

• CIFAR-100: The CIFAR-100 [2] dataset has 60000 colour images of size 32×32,

in 100 classes. Each class has 600 images. The training set has 50000 images and

test set has 10000 images.

• CIFAR-10: The CIFAR-10 [2] dataset is almost same as CIFAR-100, except it

has 10 classes and each class has 6000 images.

For CIFAR-100 and CIFAR-10 datasets [2] at first, we used a 3 × 3 convolution with

stride 1 followed by a batch normalization and ReLU. The dimension of the input was

3×32×32. We used four convolution groups (conv2, conv3, conv4, conv5) in our exper-

iment like traditional ResNet. After each convolution group, downsampling takes place

(except the last one). For downsampling, we used a 3×3 convolution with stride 2. We

ran each model for 200 epochs starting with initial learning rate 0.1 and decreasing the

learning rate by a factor of 10 at 82, 124, 164 epochs respectively. We set the weight

decay to 0.0005 and batch size to 128.

19

4.2 Experimental setup

We consider RGSNet as our baseline model. Before coming up with the transformation

we looked into some other activation functions which we used with or without some

stabilizing techniques, as a skip connection. we tested each combination for ResNet-26.

Once the performance improved then we tested the architecture with ResNet-50.

• We started with GELU [13]. We replaced ReLU and group normalization shortcut

with GELU. The performance was inferior to the baseline model.

• We used GELU and group normalization in d-RGSNet the performance was in-

ferior to the baseline model.

• We used full pre-activation ResNet as the base model of RGSNet. The perfor-

mance was further inferior to our baseline result.

• We used group normalization and batch normalization together in b-RGSNet

model. The performance was almost the same with the real b-RGSNet.

• We used Leaky ReLU in place ReLU in b-RGSNet. Although the performance

was inferior to our baseline model but the difference in performances was not

much significant.

• Next, we used our skip connection. We looked into a couple of combinations

and finally came up with a combination almost similar to d-RGSNet. We used

the linear combination of our skip connection and the RG-shortcut where higher

weight is given to our skip connection, as the outer skip connection and for the

inner skip connection which starts after the first 1× 1 convolution and ends after

the 3 × 3 convolution, we used the RG-shortcut. This model has outperformed

d-RGSNet and has achieved a performance as good as Res-RGSNet (which uses

the identity skip connection) or even better.

4.3 Simulation Results

For normalization of CIFAR-100 we used ((0.507, 0.487, 0.441),(0.267, 0.256, 0.276))

and for CIFAR-10 we used ((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)). Here the

first tuple represents the mean of each channel and the second tuple represents the

standard deviation. For CIFAR-100 we mainly focus on models with 26, 50 and 152

20

layers because we want to compare deep traditional ResNet and shallow RGSNets and

our model. It has already been shown that Res-RGSNet-50 is as good as ResNet-200

[10]. For CIFAR-10 we considered the results published in [6]. We ran the RGS models

and our models with 26 layers on CIFAR-10. The results of our experiments are shown

in Table 4.1 and Table 4.2.

Due to the lack of computational facility, we were not able to simulate the performance

of deeper models. We were only able to get result for one such model with 50 layers.

Table 4.1: Comparison on CIFAR-100 dataset

Model Type Depth Skip connection top-1 error

ResNet 26 identity 23.17
ResNet 50 identity 21.43
ResNet 152 identity 20.08

b-RGSNet 26 RG shortcut 21.32
d-RGSNet 26 RG shortcut + inner RG shortcut 20.71

Res-RGSNet 26 RG shortcut + inner RG shortcut + identity 20.49
d-RGSNet 50 RG shortcut + inner RG shortcut 20.00

Res-RGSNet 50 RG shortcut + inner RG shortcut + identity 19.59
d-RGSNet 26 GELU 21.6
d-RGSNet 26 GELU + group normalization 21.78
d-RGSNet 26 GELU + group normalization + batch normalization 23.31
b-RGSNet 26 ReLU + group normalization(full Preactivation ResNet) 26.84
b-RGSNet 26 Leaky ReLU + group normalization 24.86
b-RGSNet 26 0.7× proposed transformation+0.3× RG shortcut 20.93
d-RGSNet 26 0.6×proposed transformation+0.4×RG shortcut + RG inner shortcut 20.54
d-RGSNet 26 0.7×proposed transformation+0.3×RG shortcut + RG inner shortcut 20.2
d-RGSNet 50 0.6×proposed transformation+0.4×RG shortcut + RG inner shortcut 19.07

21

Table 4.2: Comparison on CIFAR-10 dataset

Model Type Depth Skip connection top-1 error

ResNet 110 identity 6.37

ResNet 1001 identity 4.92

b-RGSNet 26 RG shortcut 4.56

d-RGSNet 26 RG shortcut+RG inner shortcut 4.52

b-RGSNet 26 0.7×proposed transformation+0.3×RG shortcut 4.55

b-RGSNet 26 0.6×proposed transformation+0.4×RG shortcut 4.46

d-RGSNet 26 0.7×proposed transformation+0.3×RG shortcut+RG inner shortcut 4.67

d-RGSNet 26 0.8×proposed transformation+0.2×RG shortcut+RG inner shortcut 4.64

d-RGSNet 26 0.6×proposed transformation+0.4×RG shortcut+RG inner shortcut 4.28

22

Chapter 5

Analysis of Results and Conclusion

5.1 Analysis of Results

Proposed transformation with ResNet-50 as the base model has achieved 19.17% top-1

error on CIFAR-100. In fact, our proposed model outperforms state-of-the-art Res-

RGSNet-50 model (19.59% top-1 error on CIFAR-100 dataset) which uses the identity

skip connection to boost its performance. ResNet-152 achieved 20.08% top-1 error on

the same dataset. So the proposed model has successfully provided better classification

performance than state-of-the-art ResNet models. Also, ResNet-110 and ResNet-1001

achieved respectively 6.37% and 4.92% top-1 error on CIFAR-10 while our proposed

model achieves 4.28% top-1 error with 26 layers. Previously all the works have stated

that skip connection gives a boost in the performance. We have shown that even with-

out using the identity skip connection we can achieve significantly higher classification

performance.

5.2 Conclusion

After studying the work presented at the BMVC, 2019 [10] we thought it might be a

good idea to work with the channel transformation because in RGSNets, group nor-

malization also performs its operation along the channel axis only. And since ReLU

changes the initial normal distribution to half-normal distribution we thought about

adding the skewness to the model. So inter channel transformations can be seen as a

possible replacement of the identity skip connection of ResNets.

23

Chapter 6

Future work

In the future, we are planning to continue the study in the following directions.

• We would like to investigate the classification performance of the proposed model

on ImageNet [1] which could not be possible to obtain as a part of the present

study due to time and computational facility constraint. Since the dimension of

its samples is 3 × 224 × 224, it might be a good idea to downsample the image

first then use our proposed transformation and then upsample with transposed

convolution to match the input dimension.

• We would also like to obtain the performance of the proposed model on MSCOCO

[3] and PASCAL-VOC [4] datasets towards object detection task.

• Gating mechanism will be introduced in the proposed model to enhance its per-

formance similar to the approach used in [8].

• We would also like to explore the use of some alternative transformations capable

of capturing the inter-channel dependencies.

24

Chapter 7

Bibliography

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-

scale hierarchical image database,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2009, pp. 248–255.

[2] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny

images,” 2009.

[3] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,

and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European

Conference on Computer Vision. Springer, 2014, pp. 740–755.

[4] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The

pascal visual object classes (voc) challenge,” International Journal of Computer

Vision, vol. 88, no. 2, pp. 303–338, 2010.

[5] S. Zagoruyko and N. Komodakis, “Wide residual networks,” ArXiv preprint

arXiv:1605.07146, 2016.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual net-

works,” in European Conference on Computer Vision. Springer, 2016, pp. 630–645.

[7] ——, “Deep residual learning for image recognition,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[8] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” CoRR

abs/1505.00387 (2015), ArXiv preprint arXiv:1505.00387, 2015.

25

[9] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected

convolutional networks,” in Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, 2017, pp. 4700–4708.

[10] C. Zhang, F. Rameau, S. Lee, J. Kim, P. Benz, D. M. Argaw, J.-C. Bazin, and I. S.

Kweon, “Revisiting residual networks with nonlinear shortcuts.” in Proceedings of

the British Machine Vision Conference (BMVC), 2019, p. 12.

[11] H. Ren, W. Wang, X. Qu, and Y. Cai, “A new hybrid-parameter recurrent neural

network for online handwritten chinese character recognition,” Pattern Recognition

Letters, vol. 128, pp. 400–406, 2019.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” in Proceedings of the IEEE

International Conference on Computer Vision, 2015, pp. 1026–1034.

[13] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” ArXiv preprint

arXiv:1606.08415, 2016.

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[15] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training

by reducing internal covariate shift,” ArXiv e-prints, 2015.

[16] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing

ingredient for fast stylization,” ArXiv preprint arXiv:1607.08022, 2016.

[17] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” ArXiv preprint

arXiv:1607.06450, 2016.

[18] Y. Wu and K. He, “Group normalization,” in Proceedings of the European Confer-

ence on Computer Vision (ECCV), 2018, pp. 3–19.

[19] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameter-

ization to accelerate training of deep neural networks,” in Advances in Neural

Information Processing Systems, 2016, pp. 901–909.

26

[20] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,

“Improving neural networks by preventing co-adaptation of feature detectors,”

ArXiv preprint arXiv:1207.0580, 2012.

[21] T. Liu, M. Chen, M. Zhou, S. S. Du, E. Zhou, and T. Zhao, “Towards understand-

ing the importance of shortcut connections in residual networks,” in Advances in

Neural Information Processing Systems, 2019, pp. 7892–7902.

[22] A. Azzalini and A. D. Valle, “The multivariate skew-normal distribution,”

Biometrika, vol. 83, no. 4, pp. 715–726, 1996.

27

	Introduction
	Preliminaries
	Why deep networks
	Residual Networks
	Problems with ResNet
	Motivation

	Activation functions
	Various types of activation function

	Loss function
	Our Contribution

	Previous Work
	Our Work
	Implementation Details and Results
	Implementation Details
	Datasets

	Experimental setup
	Simulation Results

	Analysis of Results and Conclusion
	Analysis of Results
	Conclusion

	Future work
	Bibliography

