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Chapter 1

Introduction

This thesis consists of three theoretical essays in Microeconomics. The first two essays analyze

the properties of a particular class of prize sharing rules groups may employ in a situation of a

collective contest with another group, over a private good. The third essay studies a situation

of multi-lateral bargaining, where a buyer wants to successfully bargain with multiple sellers,

who own an input each, so that he can implement a grand project. The main focus of the

thesis is to theorize about and generate hypotheses of the situations summarized above.

In the first chapter, we consider a situation of a collective contest between two groups

of different sizes and pick for analysis a prize sharing rule groups may employ to share the

prize within the group in case of success. The rule being analyzed was introduced in Nitzan

(1991) and subsequently became the standard in the collective contests literature. Despite its

popularity the rule is ad hoc. In this chapter, we provide a robust strategic basis to these

prize sharing rules.

In the second chapter once again we deal with the same context as the first chapter, i.e.,

a collective contest over a private prize between two differently sized groups. We analyze

in depth the prize sharing rules introduced in Nitzan (1991). We posit a restriction on the

rule which can be interpreted as a group specific norm of competitiveness. We then go on to

analyze how the posited social norms affect the outcomes of the contest. In particular, we

analyze how these social norms affect the welfare of the groups participating in the contest.

In the third chapter we consider a situation of multi-lateral bargaining between a buyer

1



Chapter 1: Introduction 2

and multiple sellers, who own and input each. The buyer needs to successfully bargain with

multiple sellers in order to implement a project. We embed the sellers in a graph and study

how the underlying structure of the graph, which determines the locations of the sellers,

affects the outcomes of the ensuing bargaining game. Specifically, we show how the presence

of indispensable sellers turns out to be crucial to the way the surplus is divided in equilibrium.

In the following sections we take up one chapter at a time and provide a brief description

outlining the research questions, the theoretical approach taken and the main findings.

Chapter 1

Prize Sharing Rules in Collective Contests: Towards Strategic Foundations

In this chapter, we consider a situation where two differently sized groups engage in a contest

over a private prize. In such situations the assumption made is contracts cannot be written

between groups and any conflict has to be solved via a contest. But, within groups contracts

are possible. The main issue a group confronts in such situations is to decide how to divide

the prize within the group if the group succeeds. Given that the amount of promised rewards

affects the effort choice of an individual member of a group, the group has to carefully choose

a sharing scheme, as that will affect the chances of its success. To that end, Nitzan (1991)

proposed a sharing scheme, which has non-cooperative features.

The sharing scheme introduced in Nitzan (1991) is a weighted average of an egalitarian

sharing scheme, which discourages individual effort and a competitive sharing scheme, which

boosts individual effort. The problem with boosting efforts is that it eats into the prize. So

a leader essentially faces a trade-off. If he tries to boost efforts then his group will win the

contest more often but the size of the prize which can be enjoyed ex post is low. If the group

chooses to be more egalitarian then prize dissipation is low but the group does not win the

contest often. Given this trade-off inherent in the rule, it has been subject to substantial

analysis.
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Despite its intuitive properties, the rule is ad hoc. Why choose this rule and not some

other rule? That is the question we pose. To answer this, we introduce a rule which represents

intra-group cooperation and ask the following question: Will the prize sharing rule of Nitzan

(1991) ever be chosen given that cooperative options are also available? We construct a two

stage game where group leaders choose between the cooperative rule and prize sharing rules

simultaneously in the first stage, followed by individuals putting in efforts in the second stage.

We analyze the subgame perfect Nash equilibrium of the game .

We find that the prize sharing rules may be chosen in equilibrium by both groups under

certain conditions. But, the game is a Coordination game where both groups choosing the

cooperative option is a also a Nash equilibrium. Moreover, the equilibrium with the coopera-

tive option is Pareto superior, thereby satisfying the payoff dominance criterion of equilibrium

selection. However, when we subject the equilibria to the selection criterion of risk dominance

and the security principle, we find that the equilibrium involving the non-cooperative prize

sharing rules may indeed be selected. Based on these results we claim a robust strategic basis

to the prize sharing rules introduced by Nitzan (1991).

Chapter 2

Prize Sharing Rules in Collective Contests: When Does Group Size Matter?

In this chapter, we again consider a situation where two differently sized groups contest over a

private prize. Like the previous chapter, there is no possibility of a writing a contract between

groups. But a group needs to decide how to share the prize among group members in case

of success. To that end, we take up the prize sharing rule introduced by Nitzan (1991). The

rule is a weighted average of an egalitarian component, which commits to divide the prize

equally among group members in case of success and a competitive component, in which an

individual’s reward depends on the amount of effort he has put in relation to the aggregate

group effort.
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The egalitarian component discourages individuals from putting in effort, which lowers the

chances of the group winning the contest but leaves behind a lot of surplus to be consumed

in the case of success. The competitive component, on the other hand, encourages individual

efforts, thereby increasing chances of the group winning the contest. However, most of the

surplus is dissipated in effort provision. The literature on strategic choice of sharing rules

focuses on how to resolve this trade off by optimally choosing the weight to be be put on

each component. The main takeaway of this literature is that smaller groups generally put

all the wight on the competitive component to incentivize efforts given the disadvantages of

a smaller size in a collective contest. The larger group, however, chooses to put some weight

on the egalitarian component, compromising on chances of winning to save some surplus for

consumption in case of success.

But, the result critically depends on the restrictions which are imposed on the rule. One

strand of the literature assumes that the leader can reward effort at most proportionally, i.e.,

there cannot be any transfers between individual members of the group. Another part of the

literature does away with the assumption of proportional rewards by allowing such transfers

between members. The two strands agree on the fact that at least one group will choose

to put a positive weight on the egalitarian component. But practically, this seems to be

unlikely behavior in the situation of a contest. So we impose restrictions on the rule which

generalize the above literature, i.e., both strands of literature are special cases of our model.

The restriction limits the amount competition that can be induced within a particular group.

We treat it as a group specific norm of competition and consider it as a parameter in the model.

Besides the generality such an assumption allows us, we are able to find precise conditions

under which both groups try to maximize their chances of winning the contest by putting

all the weight on the competitive component. We show that the result critically depends on

the norm of the larger group. If the larger group has sufficiently egalitarian norms then cases

arises, where both groups focus exclusively on winning the contest by putting all the weight on

the competitive component. This is an important observation as trying to maximize chances
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of winning is the natural thing to do in a situation of conflict.

We also take up the question of welfare of the groups in the contest in the presence of

such group specific norms. Specifically, we take up the question of when a larger group will

fare worse, a phenomenon called Group Size Paradox (GSP) in the literature. We are able to

provide precise conditions on the norms, which will lead to GSP.

Remark: We focus exclusively on analyzing the Nitzan rule in the first two chapters because

the literature on general sharing schemes in collective contests is sparse. There are a few

recent studies on general sharing schemes like Nitzan and Ueda (2014b), Trevisan (2020) and

Kobayashi and Konishi (2020), but they all assume that the sharing scheme of a particular

group is its private information, whereas we assume complete information about sharing rules.

In fact, characterization of general sharing schemes when information is complete is still an

open question.

Chapter 3

Bargaining for Assembly

In this chapter, we consider a situation where a single buyer has to bargain successfully with

multiple sellers to implement a project. Examples of such situations include land assembly,

production of new drugs etc. The inherent problem is such situations is that once the buyer

reaches an agreement with all sellers except one, the remaining seller gets too much bargaining

power and may demand too much. Ex ante all sellers have that power. Therefore, it may

turn out to be the case that agreements involve significant delay or bargaining may simply not

take off ,i.e., either efficient projects are not implemented or are implemented with significant

delay. This problem is recognized as the problem of hold out in the bargaining literature.

In an important contribution to the literature on the hold out problem, Roy Chowdhury

and Sengupta (2012) showed that such situations may lead to the buyer getting approximately

zero surplus in equilibrium in absence of outside options. What underlies their stark result is
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the assumption of perfect complementarity between the inputs, that need to be acquired. We

were skeptical of the assumption of perfect complementarity and try to weaken it.

In order to model different degrees of complementarity between inputs we propose special

production processes. We assume sellers are located on a graph. The nodes are the sellers and

an edge exits between two sellers if they own complementary inputs. The buyer needs to pick

up a path of a certain size in the graph to implement the project. The existence of multiple

such paths allows the possibility of input substitutability.

Using the same bargaining protocol as Roy Chowdhury and Sengupta (2012), we are able

to show the importance of the assumption of perfect complementarity that was made in their

paper. We show that unless there exist sellers who belong to every path, i.e., an indispensable

seller, the buyer can extract full surplus from the sellers with minimal delay in equilibrium.



Chapter 2

Prize Sharing Rule in Collective Contests:

Towards Strategic Foundations

2.1 Introduction

Collective contests are situations where agents organize into groups to compete over a given

prize. Such situations are quite common: funds to be allocated among different departments

of an organization, team sports, projects to be allocated among different divisions of a firm,

regions within a country vying for shares in national grants, party members participating in

pre-electoral campaigns, disputes between tribes over scarce resources.

Prizes in such contests may be purely private, e.g. money. Or the prizes may have some

public characteristic like reputation or glory for the winning team. In this chapter we focus

on purely private prizes. For prizes with public characteristics the reader may refer to Baik

(2008), Balart et al. (2016).

One essential feature of collective contests is that a groups’ performance depends on the

individual contribution of its members. Departments in universities usually receive funds de-

pending on the publication record of the department, which in turn depends on the individual

publication of its members. So the group needs to coordinate and establish some rules re-

garding its internal organization, in particular how to share the prize in case of success in a

contest. In this study we focus on two such important sharing rules. One such prize sharing

7
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rule, which was proposed by Nitzan (1991) suggests the following way of sharing the prize

within the group in case of success:

(1− αi)
xki
Xi

+ αi
1

ni
, (2.1)

where xki is the effort put in by the kth member of group i, Xi is the total effort of group i and

ni is the size of group i. Further, αi is weight put on egalitarian sharing of the prize within

the group and 1− αi is the weight put on a sharing rule, which rewards higher efforts within

the group, thereby inducing intra-group competition. We call this scheme prize sharing rule

N . Rule N introduces intra-group externalities by making each member’s reward depend on

efforts of all other members of the group.

This prize sharing rule has been extensively studied in the literature on collective contests,

see e.g. Flamand et al. (2015). The popularity of this rule lies in its intuitive appeal. It

combines two extreme forms of internal organization, capturing the tension between intra-

group competition and the tendency to free ride on efforts of other group members. Despite

its popularity the rule is ad hoc. In this chapter we try to provide strategic foundations to

these prize sharing rules N .

In order to do that, we introduce another rule E, which represents cooperative behavior

within a group. According to this rule, the net expected group payoff is divided equally among

all group members, thereby aligning individual and group interests. In other words, using rule

E helps to internalize all intra-group externalities. It is defined as follows:

1

ni
(Pi(Xi, Xj)−Xi), (2.2)

where Pi(Xi, Xj) is the probability with which group i wins the prize and Xi is aggregate

effort of the group i.

We consider a situation in which a group has access to these two prize sharing rules E and

N . We construct a two stage game where the groups choose between the rules simultaneously
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in the first stage. The rules having been chosen, the individual group members simultaneously

put in efforts in the second stage. The question we ask is whether this game has any subgame

perfect Nash equilibrium in which rule N is chosen by any group.

We find that both groups choosing E always constitutes a subgame perfect Nash equilib-

rium in pure strategies. However, we also uncover a class of games, that we call Coordination

games, in which both groups choosing N is also a subgame perfect Nash equilibrium in pure

strategies.

The reason why such Coordination games arise is that, when the weight on intra-group

competition is high enough in both groups, a situation of strategic uncertainty is created

between the groups. In these cases rule N is a powerful instrument to increase chances of

winning the contest. If a particular group chooses N , it generates high efforts and helps win

the contest with a high probability. The other group should, in that case, choose N to increase

its own efforts to counter the first group and keep its probability of winning from falling too

much. The upward spiral in efforts comes at the cost of a vastly reduced net surplus 1, which

harms both groups in terms of net payoffs.

In fact, we go on to show that the Nash equilibrium in which E is chosen payoff dominates

the one in which both groups choose N . So it does not survive the equilibrium selection

criterion of payoff dominance, as suggested in Harsanyi et al. (1988).

However, when we consider criteria of equilibrium selection, which are based on the “risk-

iness” of the equilibrium point, the results change. First, we consider the notion of risk

dominance, as suggested in Harsanyi (1995). We are able to provide necessary and sufficient

conditions for equilibrium profile NN to risk dominate EE. We go on to show the exis-

tence of such games by considering a special subclass of coordination games we call symmetric

coordination games.

We also consider a equilibrium selection criterion called the Security Principle. According

to it the players choose the strategy that maximizes their minimum possible payoff, see e.g.

1Surplus minus total efforts put in the contest
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Van Huyck et al. (1990). We show that equilibrium profile NN is always selected by this

criterion.

Even though different equilibrium selection criterion make different prescriptions, the fact

that equilibrium NN is selected by some of them helps us establish that there exists a strategic

basis to the prize sharing rules N introduced by Nitzan (1991).

The chapter is structured as follows. In Section 2 we discuss the relevant literature. In

Section 3 we describe the model. In Section 4 we analyze the second stage of the game, where

individuals make effort choices. In Section 5 we analyze the first stage of the game where

the group leaders make their choice between E and N . In Section 6 we study the robustness

of the equilibria to equilibrium refinement criteria of Payoff Dominance and Risk Dominance

and the Security Principle. Section 7 contains a discussion of the results and things left out of

the main body. Section 8 provides a few extensions of the basic model. Section 9 concludes.

All proofs can be found in the Appendix 1.

2.2 Literature

The literature on prize sharing rules in collective contests started with an influential paper by

Nitzan (1991). Thereafter, this class of rules have been widely applied to the analysis of group

competition. The popularity of this class of rules owes to the fact that it very nicely captures

effects of intra-group competition on the welfare of the groups in the collective contest. For

an extensive survey the reader can look at Flamand et al. (2015).

These rules have been used to study two very important features of collective contests, (a)

Monopolization and (b) Group Size Paradox (GSP).

In two group contests Davis and Reilly (1999) uses the term monopolization to refer to a

situation where one group withdraws from the competition. Ueda (2002) extended the idea of

monopolization to multi-group contests. In our analysis monopolization is possible but plays

a supplementary role with regard to the main aim of this chapter.
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Group Size Paradox (GSP) is a situation where a smaller group outperforms a larger one

in terms of payoffs. The notion dates back to the seminal work by Olson (1965), who focused

on the detrimental effects of free riding within large groups. Our focus not being on GSP, the

interested reader is referred to Flamand et al. (2015).

There is an extensive literature on strategic choice of sharing rules under different restric-

tions on publicness of the prize and the sharing rule itself. One part of the literature (Baik

(1994), Lee (1995), Noh (1999), Ueda (2002)) focuses on the case where the prize can be shared

at most proportionally to individual contributions. Another part of the literature weakens this

assumption (Baik and Shogren (1995), Lee and Kang (1998), Baik and Lee (1997), Baik and

Lee (2001), Lee and Kang (1998), Gürtler (2005)) and allows transfers from worse performing

group members to better performing group members. A recent strand of literature, (Nitzan

and Ueda (2014a), Vázquez-Sedano (2014)) has studied cost sharing schemes with purely

public prizes, where prize sharing is not possible.

There are a few other papers, which study the effect of publicness of the prize on group

welfare. The purely public prizes case, where the prize sharing rules do not apply, has been

analyzed by (Baik (1993), Baik (2008), Bag and Mondal (2014)). Esteban and Ray (2001)

considers the case of a mixed private-pubic goods, with exogenous and fully egalitarian sharing

rules, which was later endogenized in a private information framework in Nitzan and Ueda

(2011). Balart et al. (2016) analyze the case of a mixed public-private prize with strategic

choice of sharing rules in a complete information setting.

This chapter differs in focus from all the strands of literature cited above, in that it attempts

to provide non-cooperative foundations to these prize sharing rules N instead of studying its

effects on group welfare. We assume the prize to be fully private. Moreover, we do not allow

any group the freedom to choose what weight to assign to different components of rule N .

Instead, we provide the groups a strategic choice between an exogenous and intra-group non-

cooperative prize sharing rule N and an intra-group cooperative prize sharing rule E and ask

whether a group chooses rule N in any subgame perfect Nash equilibrium of an appropriately
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defined two stage game.

There are two papers, which analyze the choice between E and N , when both options are

available. Cheikbossian (2012) questions the validity of GSP, by giving individual members of

the groups a choice between N with αi = 1, which captures maximal internal non-cooperation

and cooperative rule E. He goes on to show that it is easier to sustain E as a subgame perfect

Nash equilibrium within the larger group, where the punishment used for a group member

deviating from E is that other group members deviate to N thenceforth.

The focus of our chapter is different. We focus on how the presence of different options

creates strategic uncertainty between the groups and why that may lead to N being chosen

by both groups in equilibrium. In our model, individuals cannot deviate from the sharing rule

chosen by their leaders. Cheikbossian (2012), on the other hand, focuses on the question of

the ease of maintaining cooperation within a group, given that non-cooperative options are

present for each individual member.

To the best of our knowledge, the only other paper that seeks to develop a strategic

foundation for rule N is Ursprung (2012). He considers two groups of the same size. He gives

the groups a choice among E, and the two extreme points of rule N , i.e. αi = 0 and αi = 1.

He goes onto show that in an evolutionary game, N with αi = 0 crowds out E in the long run.

In our model, there is no choice between different points of rule N . Also, groups can be of

different sizes. Besides, our study does not take the evolutionary game route. Instead, we try

to characterize which parts of rule N can arise in equilibrium of an appropriately constructed

two stage game. As our study differs on important features from Ursprung (2012), our analysis

can be considered to be complementary to theirs.

2.3 Model

There are two groups A and B, of size ni , i = {A,B}, where ni ∈ {2, 3, ....}. We assume

without loss of generality that group B is at least as large as A, i.e. nB > nA. We denote the



Chapter 2: Strategic Foundations of Prize Sharing Rules 13

total number of agents as N , so that N = nB +nA. All agents are assumed to be risk neutral.

Both groups compete for a purely private prize, the size of which we normalize to 1. The

groups cannot write binding contracts among themselves regarding sharing the prize. Instead

they indulge in a rent-seeking Tullock contest spending efforts trying to win the contest. The

outcome of this contest depends on the aggregate effort spent by the two groups. Let xki

denote the effort level of individual k belonging to group i, where effort costs are C(xki). In

particular C(xki) = xki. The aggregate effort of group i is Xi =
∑ni

k=1 xki. The aggregate

effort of the groups in the contest is denoted X, i.e., X = X1 +X2.

Efforts do not add to productivity, and only determine the probability Pi(Xi, Xj) that

group i wins the contest. We assume that Pi(Xi, Xj) takes the ratio form, i.e.

Pi(Xi, Xj) =


Xi

Xi+Xj
, if Xi > 0 or Xj > 0,

1
2
, otherwise.

(2.3)

Every group has a leader, who has the authority to enforce a sharing rule that specifies

how the spoils are to be shared within the group. Both leaders are benevolent, maximizing

the expected group payoff while making their decisions.

The leaders can choose between two alternative sharing rules, either a cooperative sharing

rule denoted E, or a non-cooperative sharing rule denoted N . We next turn to discussing

these two rules.

� Cooperative Sharing Rule E: The cooperative sharing rule E, introduced in (2.2),

involves the group leader committing to share the net expected group payoff equally among

all its members. Given Pi(Xi, Xj) takes the ratio form in (2.3), that is equivalent to the

leader committing to divide the surplus net of aggregate efforts, i.e., 1 − X, equally among

all members in case of success2. It is important to note that rule E implies that group effort

levels Xi are contractible, i.e., verifiable. The expected net utility of member k of group i is

2Pi(Xi, Xj)−Xi = Xi

Xi+Xj
−Xi = Xi

Xi+Xj
(1−Xi −Xj) = Pi(Xi, Xj)(1−X)
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as follows:

EUki(E) =
1

ni
(Pi(Xi, Xj)−Xi) = Pi(Xi, Xj)

(1−X
ni

)
. (2.4)

Individual k in group i chooses effort xki to maximize equation (2.4).

As this scheme gives each member a fixed share in the net group payoff, each individual’s

interest gets aligned with group interest. Therefore, rule E allows the leader to implement the

first best effort levels within the group. That is why we call the rule E cooperative. The equal

sharing assumption is of course not necessary for perfect alignment of individual and group

interests. Any asymmetric sharing scheme which gives all members a fixed positive share in

the net group payoff will also work. We fix it at equal shares because it has natural appeal

in a setting where all agents are symmetric. More importantly, the equal sharing assumption

makes the leader a representative agent of his group, which makes concerns about his identity

irrelevant.

� Non-cooperative Rule N: The group leader can instead opt for the prize sharing rules

introduced by Nitzan (1991). We denote this prize sharing rule by N . If group i leader chooses

Rule N , then in case of success, the share of the kth member of group i (ski) is as follows:

ski(xki, Xi;αi, ni) = (1− αi)
xki
Xi

+
αi
ni
, (2.5)

where αi ∈ [0, 1]. αi is fixed for a group and cannot be manipulated by the leaders 3. N is

feasible as
∑

k∈ni ski = 1. It is important to note that rule N implies that only the ratio of

individual to group efforts, i.e., xki
Xi

, needs to be verifiable 4.

Note that this rule is a weighted average of an egalitarian component 1
ni

and a competitive

component xki
Xi

. The egalitarian part tends to reduce group effort because individual members

of a group free ride on effort provision, given that his share is independent of his efforts. The

3We endogenize the choice of αi in Chapter 2
4One way to look at our problem is when the leader makes a choice between E and N he cannot see

anything. If he chooses E then Xi becomes verifiable and if he chooses N then xki

Xi
becomes verifiable. He

cannot see both Xi and xki

Xi
. So the problem can be imagined to be one of endogenous verifiability.
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competitive component, on the other hand, tends to increase group efforts because individual

members compete internally to get a larger share of the prize in case of success.

It should be noted that a change in group efforts has two countervailing effects. On the one

hand, an increase in groups efforts increases the chances that the group wins the contest. On

the other hand, higher group efforts also dissipates the prize leaving a lower ex post surplus.

This is the trade off, which the literature on strategic choice of prize sharing rules focuses

on, see e.g. Flamand et al. (2015). While abstracting from this trade-off in this chapter by

fixing the weights αi, we focus on a qualitatively similar trade-off which is generated when the

groups choose between E and N .

When group i leader chooses N , individual k in group i chooses efforts xki to maximize his

expected utility, which is as follows:

EUki(N) =


ski(xki, Xi;αi, ni)Pi(Xi, Xj)− xki if Xi > 0, Xj > 0,

1
2ni

if Xi = Xj = 0,

0 if Xi = 0, Xj > 0.

(2.6)

� Leader’s Objective: Recall that the leader of both groups are benevolent social planners.

The strategy of the leader of group i is denoted σi ∈ {E,N}, i ∈ {A,B}. The leader chooses

σi, i.e., either the cooperative rule E or non-cooperative rule N , to maximize the net group

payoffs. The maximization problem of leader of group i is as follows:

max
σi∈{E,N}

Pi

(
Xi(σi, σj), Xj(σi, σj)

)(
1−X(σi, σj)

)
(2.7)

where X(σi, σj) = Xi(σi, σj) +Xj(σi, σj).

The payoff representation in equation (2.7) is intuitive, and captures the trade-off inherent

in the group leader’s maximization problem. X measures the amount of prize dissipated in

the competition between the two groups. Therefore, 1−X is the surplus net of efforts, which
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remains for ex post consumption. The probability with which group i wins this net surplus

is Pi(Xi, Xj). If leader of group i wants to win the contest with a higher probability she has

to take measures, which increase group efforts Xi. But when Xi goes up so does X, which

reduces the size of the net surplus.

� Description of the Game: Our game consists of two stages. In the first stage the two

leaders simultaneously choose between E and N . Having observed the choice of the sharing

rules, in stage two all agents simultaneously decide on their own effort levels.

We denote an equilibrium strategy profile of the game σ∗ = (σ∗A, σ
∗
B).

We solve for the Subgame Perfect Nash equilibrium (SPNE) of the game described above.

2.4 Choice of Individual Efforts

In this section we characterize the Nash equilibrium effort choices of individual members

of the groups taking as given the sharing rules, which are chosen by the group leaders in the

first stage.

Before stating the results we define the phenomenon of Monopolization of a group in the

contest, which is well recognized in the collective contest literature, see e.g. Davis and Reilly

(1999).

Definition 1 Monopolization

A SPNE 〈σ∗A, σ∗B〉 is said to involve monopolization of group i, if group i does not put in any

effort in the contest.

Convention: In what follows we denote generic efforts as XA and XB. But when we talk

about equilibrium efforts, surpluses and probabilities of winning we use superscripts. We fix

the first component of the superscripts to be the strategy chosen by group A and the second

component to be the strategy chosen by group B in the first stage.
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2.4.1 Equilibrium Net Surplus and Probabilities of Success

In the following proposition we report only the surplus net of effort S, which remains for

consumption, i.e. S = 1 − X, and the probabilities with which each group wins the net

surplus, Pi and Pj. Such a choice was made to keep the discussion in line with the basic

trade-off in the model. In the Appendix 1 we provide all the details. Before proceeding we

introduce the following notation:

For i, j ∈ {A,B} and j 6= i we define

χi = ni + ni(nj − 1)αj − nj(ni − 1)αi. (2.8)

χi can be interpreted as a measure of the competitiveness of group i relative to group j. In

fact, when both groups choose N , the probability that group i wins the contest Pi is directly

proportional to χi. Note that χi is increasing in αj and decreasing in αi. When αj is large

relative to αi, group j is relatively less competitive, which gives group i an advantage in the

contest. On the other hand when αi large relative to αj, group j wins the contest more often.

In Proposition 1 we report the net surplus and probabilities of winning in an equilibrium

of the second stage of our game. For features of the best response functions the readers are

encouraged to go to Appendix 2. There we do a detailed analysis of individual and aggregate

best response functions and analyze when aggregate efforts are strategic substitutes and when

they are strategic complements.

Proposition 1

(A) If both groups choose E then in any Nash equilibrium of the effort subgame

(a) The net surplus in the contest is SEE = 1
2
.

(b) The probabilities of winning are (PEE
i , PEE

j ) = (1
2
, 1

2
).

(B) If group i chooses E and group j chooses N , i, j ∈ {A,B} and j 6= i, then in any Nash

equilibrium of the effort subgame
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(a) The net surplus in the contest is SσAσB = 1− 1+(1−αj)(nj−1)

nj+1
.

(b) The probabilities of winning are (P σAσB
i , P σAσB

j ) = (
1+αj(nj−1)

(nj+1)
, 1− 1+αj(nj−1)

(nj+1)
).

(C) If both groups choose N then

(1) If χi 6 0 , i, j ∈ {A,B} and j 6= i 5, then group i is monopolized by group j. In

the unique intra-group symmetric Nash Equilibrium of the effort subgame

(a) The net surplus in the contest is SNN = 1− (1−αj)(nj−1)

nj
.

(b) The probabilities of winning are (PNN
i , PNN

j ) = (0, 1).

(2) If χi > 0 and χj > 0, i, j ∈ {A,B} and j 6= i, then neither group is monopolized

and in the unique intra-group symmetric Nash equilibrium of the effort subgame

(a) The net surplus in the contest is SNN = 1− 1+(1−αi)(ni−1)+(1−αj)(nj−1)

N
.

(b) The probabilities of winning are (PNN
i , PNN

j ) = (χi
N
, 1− χi

N
).

We next discuss the results summarized in Proposition 1.

� Both groups choose E: When both groups choose E in the first stage, there exists a

continuum of Nash equilibria in individual efforts in all of which XEE = 1
2

and so the net

surplus is SEE = 1
2
. Both groups win with equal probabilities PEE

i = PEE
j = 1

2
. Therefore,

XEE
i = XEE

j = 1
4
, but the individual effort choices can be asymmetric. Given the fact that

aggregate effort choices are all that matters, we find that the equilibrium levels of aggregate

efforts are independent of group sizes. We will treat this case as our benchmark for comparison

as it represents full cooperation within both the groups.

� Group i chooses E, group j chooses N: Here we analyze the individual effort choices of

group members when group i has chosen E and group j has chosen N in the first stage. For

ease of exposition, let us assume that group i = A and j = B. Just as in the benchmark case,

the individual effort choices in the Nash equilibrium is not unique but the aggregate efforts

XEN
A and XEN

B are. The Nash equilibrium levels of net surplus SEN and the probability of

5If χi 6 0 then χj > 0 as χi + χj = N
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group A winning, PEN
A are stated in Proposition 1. In Figure 2.1, we make a comparison to

the benchmark case.

The total effort XEN monotonically decreases and net surplus SEN monotonically increases

in αB, equaling the benchmark level of 1
4

at αB = 1
2
. For αB >

1
2

aggregate effort costs XEN

is lower compared to the benchmark case, and hence the net surplus, SEN is higher.

On the other hand, the probability that group A wins the contest, PEN
A , monotonically

increases in αB, equaling the benchmark level at αB = 1
2
. As αB rises, free riding increases

within group B, thereby not only creating a larger net surplus but also reducing the probability

that group B wins the contest.

� Both groups choose N: When both groups choose N in the first stage, we may have

Monopolization of one group by the other, in that the equilibrium effort level of the other

group is zero,(see Figure 2.2). It is clear that the probability with which group i wins the

contest is zero when χi 6 0, which happens when αi is large relative to αj.

We now focus on the more interesting case, where neither group is Monopolized, which

happens when χi > 0. From Proposition 1,

The net surplus SNN > 1
2

if:

(ni − 1)(1− 2αi) + (nj − 1)(1− 2αj) < 0 (2.9)

whereas probability that group i wins PNN
i > 1

2
if:

χi >
N

2
(2.10)

The equations are represented in Figure 2.3. For relatively low levels of both αA and αB

the effort expended in the contest is more than the benchmark level of 1
2
, which makes the net

surplus less than 1
2

. The probability of group i winning is lower the closer we are to the line

where it is monopolized.

The total effort XNN is monotonically decreasing and the net surplus SNN is monotonically
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increasing in both αA and αB. When αA goes up free riding goes up within group A reducing

the total effort put in the contest, thereby increasing the net surplus. Similarly for αB.

The probability that group i wins, PNN
i , goes up as αj rises as free riding goes up within

group j. But, PNN
i falls with αi, as now there is more free riding among its own members.

αA11
20

1
2

1

αB

SEN > 1
2 = SEE

SEN < 1
2 = SEE

PEN
A < 1

2 = PEE
A

PEN
A > 1

2 = PEE
A

Figure 2.1: Comparison of EN to EE

χB = 0

χA = 0

B Monopolized

A Monopolized

αA

αB
1

10 1
2

1
2

PNN
A = 1, PNN

B = 0

0 < PNN
A < 1

0 < PNN
B < 1

PNN
A = 0, PNN

B = 1

Figure 2.2: Probabilities of winning under NN
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αA11
2

0

1
2

1

αB

PNN
A = 1

PNN
A = 0

χB = 0

χA = 0

SNN = 1
2

PNN
A = 1

2

PNN
A > PEE

A

SNN < SEE

PNN
A < PEE

A

SNN < SEE

PNN
A > PEE

A

SNN > SEE

PNN
A < PEE

A

SNN > SEE

Figure 2.3: Comparison of NN to EE

2.4.2 Group Payoff Functions

In the previous subsection we analyzed properties of the equilibrium in the second stage of our

game, specifically focusing on the associated net surplus and the probabilities of winning. But

given that we are primarily interested in group payoffs instead of its individual components,

we next we analyze what happens to the group payoffs when the parameters in the model are

changed.

As mentioned at the beginning under any strategy profile the payoff of group i can be

expressed as follows:

Πi = PiS (2.11)

where Pi is the probability with which group i wins the contest and S is the surplus net of

efforts of the groups.



Chapter 2: Strategic Foundations of Prize Sharing Rules 22

So, the growth rate of group payoffs with respect to a particular parameter, will just be the

sum of the growth rate of the probability of winning and the growth rate of the net surplus

with respect to that parameter. Suppose we change parameter K, then the following will be

true

gΠi
K = gPiK + gSK (2.12)

where gYK = 1
Y
dY
dK

, for any variable Y .

In the previous subsection we analyzed dPi
dαi

and dS
dαi

. Here we analyze the composition of

the two effects when αi is changed. Given that there exists a trade-off between Pi and S,

analyzing the composition of the two separate growth rates helps us pin down the growth rate

of group payoffs. Obviously, the growth rate of group payoffs will be of the same sign as dΠi
dαi

.

Changing αi

Here we will change αA and αB and see how it affects group payoffs. The following Proposition

contains the information.

Before stating the proposition we introduce the following notation:

αoB =
(nB − nA)(1 + αA(nA − 1))

2nA(nB − 1)
(2.13)

αoB is the value of αB, which maximizes the payoff of group B, ΠNN
B .

Proposition 2

(A) If group i chooses E and group j chooses N, i, j ∈ {A,B} and j 6= i, then

(a) ΠσAσB
j is strictly increasing (decreasing) in αj iff αj < (>)1

2
and achieves global

maximum at αj = 1
2
.

(b) ΠσAσB
i is strictly increasing in αj.

(B) If both groups choose N and neither group is monopolized, then
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(a) ΠNN
A is strictly decreasing in αA.

(b) ΠNN
A is strictly increasing in αB.

(c) ΠNN
B is strictly increasing in αA.

(d) ΠNN
B is strictly increasing (decreasing) in αB iff αB < (>)αoB and achieves global

maximum at αB = αoB.

� Group A chooses E, Group B chooses N:

I Case 1: αB <
1
2
.

In this case the payoffs of the groups depend only on αB. When αB <
1
2
, we have PEN

B >

SEN , so that the base probability of winning for group B is higher than the base net surplus.

It is also true that XA and XB are strategic substitutes in this case 6. An increase in αB

reduces XEN
B as free riding increases within group B. But, XEN

A increases as the strategies

are substitutes. This causes XEN
B to fall farther. The net surplus SEN rises as XEN

B falls more

than XEN
A rises, thereby reducing aggregate efforts XEN .

As XEN
A increases so does the probability of winning for group A, PEN

A . As the growth

rates of both SEN and PEN
A are positive, ΠEN

A is increasing with αB.

The payoff of group B, ΠEN
B , also rises in this case as the base probability of winning PEN

B

is quite high and SEN is low to start with. So, the growth in SEN dominates the deceleration

in probability of success PEN
B , causing group B payoffs to increase with αB.

I Case 2: αB >
1
2
.

In this case, we have PEN
B < SEN , so that the base net surplus higher than the base

probability of winning for group B.

As αB rises, XEN
B falls due to increased free riding in group B. But, XEN

A also declines

as XA is a strategic complement to XB. But, XEN
B falls more than XEN

A , so that PEN
A is

still increasing. Again, as the growth rates of both SEN and PEN
A are positive, ΠEN

A keeps on

increasing with αB

6See Appendix 2
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For group B, on the other hand, the deceleration in PEN
B is now more than positive growth

the in net surplus SEN , by the base effect. So, the payoff of group B declines as αB increases.

�Both groups choose N: In this case it is easier to clarify part (b) and (c) of the proposition.

As αB rises, SNN rises and so does PNN
A . The growth rates of both are positive and so ΠNN

A

also grows with αB. Similarly, as αA goes up, ΠNN
B is increasing.

To understand part (a) of the proposition, notice that as αA goes up so does SNN . There-

fore, the growth rate of the net surplus, SNN , is positive. But, the growth rate of PNN
A is

negative when αA rises. Given that group A is the smaller group, when αA increases, a small

number of agents reduce their efforts, causing a minute growth of net surplus. However, de-

creased efforts contribute more to a reduction of the group’s chances of victory. So, the growth

rate in net surplus is always outdone by the slowdown in winning probabilities for group A.

So, ΠNN
A is decreasing in αA.

To understand part (d), notice that when αB goes up, SNN goes up but PNN
B falls. When,

αB < αoB, the growth rate of net surplus dominates the deceleration in chances of winning

for group B. This happens because, at such a low level of αB the larger group B is also very

competitive. It generates a lot of effort XNN
B , causing a lot of the rent to be dissipated. This

makes the base net surplus SNN lower than the base PNN
B in this case. When αB rises, the

growth rate in net surplus dominates the deceleration in probability of winning due to a lower

base. So, the payoffs of group B is rising here.

When, αB > αoB, the bases switch and therefore the deceleration in probabilities of winning

dominates the growth in net surplus and the payoffs of group B start to fall.

2.5 Choice of Sharing Rules by Group Leaders

In this section we consider the choice made by the group leaders in the first stage. Given the

effort choices made by individual group members in the second stage, the group leaders play

a normal form game in the first stage. A strategy profile is a Nash equilibrium of the normal
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Group B

E N

Group A
E ΠEE

A ,ΠEE
B ΠEN

A ,ΠEN
B

N ΠNE
A ,ΠNE

B ΠNN
A ,ΠNN

B

Table 2.1: Game Γ

form game, if both leaders choose strategies, which maximize (2.7), taking the other groups

strategy choice as fixed.

Given any configuration of parameters (αA, αB, nA, nB), we have a normal form game we

denote Γ(αA, αB, nA, nB). We denote the set of all such normal form games Γ. Games in Γ

are bi-matrix games as represented in Table 2.1.

Proposition 3

Consider any game G ∈ Γ. EE is a pure strategy Nash equilibrium of G.

This result is quite convenient and serves as a benchmark for us. The fact that E constitutes

mutual best responses means that the only way we can generate N as a part of a Nash

Equilibrium of any G ∈ Γ is when both groups choose N , which takes the structure of a

Coordination Game. To prove that EE is a Nash Equilibrium we have to show that

For i, j ∈ {A,B} and j 6= i and ∀G ∈ Γ

ΠσAσB
i (σi = N, σj = E) 6 ΠEE

i

Using Proposition 1 the inequality can be written as follows:

(
1 + (1− αi)(ni − 1)

ni + 1

)(
1− 1 + (1− αi)(ni − 1)

ni + 1

)
6

(
1

2

)(
1

2

)
=

1

4
(2.14)

where the first term in brackets is the probability that group i wins the contest Pi and the

second term in brackets is the net surplus 1−X. But (2.14) follows directly from part (A) of

Proposition 2 and the fact that ΠEE
i = ΠEE

i = 1
4
.
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When group j chooses E, group i can guarantee a payoff of 1
4

by responding with E. At

profile EE, the net surplus is SEE = 1
2

and each group wins it with PEE
i = PEE

j = 1
2
. On the

other hand, if group i responds with N it can get a maximum of 1
4

when αi = 1
2
. Otherwise,

it gets a lower payoff. Therefore E is always a best response for group i when group j plays

E. Look at Figure 2.4, where we plot ΠEE
i and ΠσAσB

i (σi = N, σj = E).

1O 1
2

1
4

1
2

ΠEE
i , ΠσAσB

i

αi

ni
(ni+1)2

ni
(ni+1)2

ΠEE
i

ΠσAσB
i (σi = N, σj = E)

Figure 2.4: Payoff Comparison of EE and EN

I Case 1: αi <
1
2

Consider i = A and j = B. In this case, we know that PNE
A > SNE. We also know that

PNE
A > PEE

A = 1
2

and SNE < SEE = 1
2
, so that group A gets a larger share of a smaller net

surplus. As, XA and XB are strategic substitutes in this case, as αA increases, XA falls and

XB increases. SNE increases but PNE
A falls. This means that the incremental net surplus,

which is a public good created by a reduction in efforts by group A, is mostly captured by

group B. Even, though the payoff of group A is increasing due to a lower base SNE, choosing
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N cannot be an optimal response because group A could switch to E, where both groups

contribute equally to the net surplus and take away an equal share of it.

I Case 2: αi >
1
2

Consider i = A and j = B. In this case, we know that PNE
A < SNE. It is also true that

PNE
A < PEE

A = 1
2

and SNE > SEE = 1
2
. Here, as αA increases XA falls but so does XB as it

is strategic complement to XA. But XA falls more and PNE
A keeps on decreasing. So, again

group A gets a smaller share of the public good it largely creates. It would be better for group

A to switch to E, and get an equal share in a lower net surplus, which both groups have

contributed to equally.

Given that EE is a Nash equilibrium of any G ∈ Γ, we need to check when games in Γ

also have as Nash equilibrium the strategy profile NN .

Definition 2 Coordination game

Consider any game G ∈ Γ. G will be called a Coordination game iff ΠEE
A > ΠNE

A , ΠNN
A > ΠEN

A ,

ΠEE
B > ΠEN

B and ΠNN
B > ΠNE

B . The set of Coordination games is denoted ΓC.

For i = A,B and j 6= i, we introduce the following notations:

αi =
1 + αj(nj − 1)

nj + 1
, (2.15)

and

αi =
(1 + αj(nj − 1))(ni − n2

j)

nj(nj + 1)(ni − 1)
, (2.16)

where αi is the larger and αi is the smaller root of the following quadratic equation 7

ΠσAσB
i (σi = E, σj = N) = ΠNN

i

We are now in a position to state and analyze the main result of the chapter. Proposition

4 confirms the existence and helps us clearly identify the Coordination games we are looking

7Notice that αi =
ni−n2

j

nj(ni−1)αi. So the roots are multiples of each other, i.e., αi = Cαi, where C < 1.
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for. This result helps us establish strategic foundations of the prize sharing rules N , which

have been subjected to extensive analysis in the collective contests literature, see e.g. Flamand

et al. (2015).

Proposition 4

Consider any game G ∈ Γ

(A) EE and NN are pure strategy Nash equilibria of G iff αA ∈ [0, αA] and αB ∈ [max{0, αB}, αB].

(B) Otherwise, G is dominance solvable and EE is its unique pure strategy Nash equilibrium.

This is the main result of this chapter. We have been able to show, that there exist games

G ∈ Γ such that NN is a Nash equilibrium outcome, thereby providing strategic foundations

to the prize sharing rules N .

G belongs to the set of Coordination games ΓC when αA ∈ [0, αA) and αB ∈ (αB, αB) if

αB > 0. On the other hand, when αB < 0 then G belongs to the set of Coordination games

ΓC , if αA ∈ [0, αA) and αB ∈ [0, αB). Under the conditions specified above N is a strict best

response to N for both the groups and hence satisfies the requirements for any G ∈ Γ to be a

Coordination game.

If αA = αA, then N is a weak best response to N for group A. The cooperative strategy E

weakly dominates the non-cooperative strategy N for group A. This follows from Proposition

3. Similarly, E weakly dominates N for group B, when αB = αB or αB = αB, in case αB is

positive 8. Even though we can see in Part (A) of Proposition 4 that both EE and NN are

Nash equilibria in such cases 9, we ignore them while considering Coordination games ΓC as

they are defined to have N as a strict best response to N for both groups.

To check when N is a best response to N for group i we need to check the following

inequality:

8Of course in these cases equilibrium NN will be lost if we apply Iterated Elimination of Weakly Dominated
Strategies (IEWDS)

9It can also be easily verified that αA and αB intersect at (αA, αB) = ( 1
2 ,

1
2 ). At (αA, αB) = ( 1

2 ,
1
2 ) all

strategy profiles, i.e., EE, NN , EN and NE are Nash equilibria of Γ.
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For i, j ∈ {A,B} and j 6= i

PNN
i SNN > [P σAσB

i SσAσB ](σi = E, σj = N) (2.17)

It can be easily verified that SNN > SσAσB(σi = E, σj = N) iff αi > αi. Similarly, it can

be verified that PNN
i > P σAσB

i (σi = E, σj = N) iff αi < αi. At, αi = αi, the strategies N

and E are equivalent for group i both in terms of net surplus and probabilities of winning the

contest.

Let us first consider group A and refer to Figure 2.5. Let us start from αA = αA, where

ΠNN
A = ΠEN

A . Now from Proposition 2 we know that ΠNN
A is strictly decreasing in αA. So,

starting from, αA = αA, if we reduce αA, then ΠNN
A will strictly increase, while ΠEN

A , being

independent of αA, will remain unchanged. Given that the smaller root αA is negative, it

follows that for all αA ∈ [0, αA), N is a strict best response to N for group A.

The story for group B is slightly different and can be seen in Figures 2.6 and 2.7. If

αB = αB, then ΠNN
B = ΠNE

B . From Proposition 2 we know that ΠNN
B is decreasing in αB if

αB > αoB. So, starting from αB = α1
B, if we reduce αB, ΠNN

B first increases upto αoB and then

decreases. ΠNE
B , being independent of αB is unchanged. Given that ΠNN

B decreases when we

reduce αB below αoB, gives rise to the possibility that the smaller root of ΠNN
B = ΠNE

B , which

we denote αB, is positive.

It can be easily verified that αB is negative when nB < n2
A. So in this case N is a strict

best response to N for group B when αB ∈ [0, αB) (see Figure 2.6).

In the other case, when nB > n2
A, the smaller root αB is non negative and N is a strict

best response to for group B when αB ∈ (αB, αB). This is captured in Figure 2.7.

In Figures 2.8 and 2.9 we represent the Coordination games for the two different cases in

the αAαB plane. The case, where αB is negative is captured in Figure 2.8. The case where

αB is non-negative is captured in Figure 2.9. The Coordination games are marked in blue.

� Intuition: To see why NN turns out to be a Nash equilibrium when G ∈ ΓC , we have

to understand how presence of the non-cooperative rule N creates a situation of strategic
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uncertainty for the groups. The main feature of this rule N is that it allows the groups a

chance to enhance its probability of winning at the expense of the other group, when G ∈ ΓC .

Even, though the net surplus is lower a group wins with a higher chance by choosing N . If

both groups believe that the other is going to choose N to increase its chances of winning the

contest, both end up choosing N , so as not to give up a substantial winning advantage to the

other group. Of course, coordinating on NN comes at the cost of a substantially reduced net

surplus.

For example, consider the case where group B chooses N . If group A were to choose E,

then it gives up the option of increasing its chances of winning the contest. If αB is sufficiently

low, then group B puts in a lot of effort and wins with a very high probability a net surplus,

which is lower. But, group A has no way to counter group B. However, if group A were

to respond with N , then it would be able to stop its probability of winning from falling too

much. The result is similar in flavor to the results in Baliga and Sjöström (2004) and Baliga

and Sjöström (2008).

Therefore, in the race to keep its probability of winning high, a group may choose N if it

believes the other group will also do so. These kind of perverse incentives of groups results

from the fact the net surplus behaves exactly like a public good between the groups, leading

to free riding on its maintenance by both groups. Instead, both groups have an incentive to

increase their winning chances by putting in more effort. Therefore, if one group believes that

the other is trying to enhance its chances of winning by choosing N , it should respond by

doing the same to maintain parity. Given efforts eat into the prize, none of the groups ideally

want to end up in this spiral of higher efforts. But, given the strategic uncertainty embodied

in the normal form game G ∈ ΓC , NN turns out to be an equilibrium outcome. This result

essentially has the flavor of a failure to coordinate on the Pareto efficient outcome EE.
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αA1O

1
2

1
2

ΠNN
A , ΠEN

A

ΠNN
A

ΠEN
A

αA

N Best Response to N for Group A

Group A Monopolized

Figure 2.5: N best response to N for group A

αB1O

1
2

1
2

ΠNN
B , ΠNE

B

ΠNN
B

ΠNE
B

αB

N Best Response to N for Group B

Group B Monopolized

Figure 2.6: N best response to N for group B when nB < n2
A
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αB1O

1
2

1
2

ΠNN
B , ΠNE

B

ΠNN
B

ΠNE
B

αB αB

N Best Response to N for Group B

αoB

Group B Monopolized

Figure 2.7: N best response to N for group B when nB > n2
A
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αA11
2

O

1
2

1

αB

Coordination

Games

E is a dominant strategy for B

not for A

E is a dominant strategy for A

not for B

E is dominant

for both

groups

αA = αA

αB = αB

1
nA+1

1
nB+1

Figure 2.8: Coordination Games when nB < n2
A
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αA11
2

O

1
2

1

αB

Coordination
Games

E is dominant strategy only for B

E is a dominant strategy only for A

E is dominant for both groupsE dominant

for B, not A

E is dominant

for both groups

αB = αB

αA = αA

αB = αB1
nA+1

(nB−n2
A)

nA(nA+1)(nB−1)

1
nB+1

Figure 2.9: Coordination Games when nB > n2
A
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2.6 Equilibrium Selection

We have been able to generate NN as a subgame perfect Nash equilibrium of an appropriately

constructed two stage game, thereby providing a strategic foundations to the non-cooperative

prize sharing rule N , which has been so extensively analyzed in the collective contests litera-

ture. But, given that it is an equilibrium of a Coordination game, where EE is also a Nash

equilibrium, the natural next step is to consider the question of equilibrium selection, i.e.,

which of the equilibria are the groups likely to coordinate on? To tackle this we introduce the

three refinement criteria of the Nash equilibrium solution concept, namely payoff dominance,

risk dominance and the security principle10.

If a game has multiple Nash equilibria and there is one Nash equilibrium which is Pareto

superior to all other Nash equilibria then it is called payoff dominant. The notion of payoff

dominance is based on the idea of collective rationality, which leads to a coordination on

the Pareto superior equilibrium. The readers may refer to Harsanyi et al. (1988) for the first

discussions of this refinement concept. Readers may also refer to (Schelling, 1980), who argues

that efficiency based considerations may make decision makers to focus on and select a payoff

dominant equilibrium point if it is unique.

A Nash equilibrium is said to be risk dominant if the losses from deviation from it is the

largest among all other Nash equilibria. In the presence of high degree of uncertainty about

other player’s actions, this criterion seems to be more natural as players have an incentive to

coordinate on it to minimize losses. A risk dominant equilibrium is defined to be one which

generates the highest product of losses for the players, when there is a deviation from it.

Harsanyi (1995) first made a case for risk dominance as an equilibrium selection criterion.

Interestingly, there can be a tension between the criteria of risk dominance and payoff

dominance in the sense that they may make conflicting prescriptions. A Nash equilibrium can

be payoff dominant but not risk dominant and vice versa. This leads to the obvious concern

10As an aside, readers are referred to Ray et al. (2005) to understand how existence multiple equilibria
proves to be a problem for implementation of correlated equilibrium distributions.
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about the relative appropriateness of the criteria? Researches have built evolutionary game

theory models in an attempt to justify one or the other of the refinements, see e.g. Samuelson

(1997). As it turns out, the tension between the two criterion is also a feature of our model

under certain circumstances.

There also exists a substantial experimental literature, which studies how real subjects

actually select between payoff dominance and risk dominance, when the two criteria make

conflicting prescriptions. For a guide to that literature, the readers may look at Keser et al.

(2000) and the references therein. The major takeaways from this literature is that the number

of players, time horizon, pre-play communication and the structure of interactions matter.

Interestingly, Keser et al. (2000) report an experiment where despite the two criteria making

the same equilibrium prescription, subjects systematically deviate from playing it. Based on

their conclusions, the authors claim that it is important to look for new criteria that may play

an important role in equilibrium selection.

Therefore, we also consider the Security principle, see e.g. Van Huyck et al. (1990), as an

additional selection criteria in this chapter. The security principle suggests players to select a

course of action that maximizes their minimum payoffs over all possible actions. The idea is

based on the notion of maximin introduced by Von Neumann and Morgenstern (1944). This

criterion, like risk dominance, is based on the “riskiness” of the equilibrium point. Therefore,

it will be salient when there is sufficient uncertainty regarding the other player’s actions.

We now take up the equilibrium selection criteria one at a time. We first formally define

a criterion tailored to our game ΓC . Then we state the corresponding result.

First, we take up the equilibrium selection criteria based on “riskiness”of the equilibrium

point, i.e., risk dominance and the security principle. Then, we consider the selection criterion

of payoff dominance.

Definition 3 Risk Dominance

Consider any game G ∈ ΓC. NN is said to risk dominate EE in G iff (ΠNN
A −ΠEN

A )(ΠNN
B −

ΠNE
B ) > (ΠEE

A −ΠNE
A )(ΠEE

B −ΠEN
B ). If the inequality holds strictly NN is said to strictly risk
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dominate EE.

For ease of stating the result we start by introducing some notations.

For i, j ∈ {A,B} and j 6= i we define

∆i = nj(nj + 1)2
[
(αi − αi)(αi − αi)

]
, (2.18)

where αi and αi are the roots of ΠσAσB
i (σi = E, σj = N) = ΠNN

i as defined in (2.15) and

(2.16). ∆i is a measure of ΠNN
i − ΠσAσB

i (σi = E, σj = N). As we consider only Coordination

games, it is true that αi ∈ (αi, αi) and therefore the right hand side of (2.18) is positive. We

are now in a position to state a condition which is necessary and sufficient for equilibrium

profile NN to risk dominate EE.

Proposition 5

Consider any game G ∈ ΓC. NN risk dominates EE in G iff N4(1 − 2αA)2(1 − 2αB)2 6

16∆A∆B.

The Proposition provides us a very easy to check condition for NN to risk dominate EE.

It can be written out as follows:

N4(1− 2αA)2(1− 2αB)2 6 16nAnB(nA + 1)2(nB + 1)2(αA−αA)(αA−αA)(αB −αB)(αB −αB)

(2.19)

The left hand side of (2.19) is a measure of (ΠEE
A −ΠNE

A )(ΠEE
B −ΠEN

B ). It is close to zero if

either αA or αB is close to 1
2
. But it is clear from Figures 2.8 and 2.9, that Γ is a Coordination

game when αA and αB are relatively symmetric, i.e., not too far from each other. So if the

left hand side has to be small when Γ is a Coordination game, we must have αA ≈ αB and

close to 1
2
.

The the right hand side of (2.19) is a measure of (ΠNN
A −ΠEN

A )(ΠNN
B −ΠNE

B ). Its size depends

on the product ∆A∆B. The product will be close to zero if either αA or αB approaches any of
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its respective roots. But, it is clear from Figures 2.8 and 2.9, that when αA ≈ αB and close to

1
2
, both αA and αB are at some distance from its roots, which may make the product ∆A∆B

large enough to dominate left hand side of (2.19), which is close to zero.

Therefore, Coordination games in which NN risk dominates EE, if they exist, are likely

to be located around αA = αB. To show that the set of games in which equilibrium profile

NN risk dominates EE is non-empty, we consider a subclass of Coordination games of Γ we

call Symmetric Coordination games.

Definition 4 Symmetric Cordination games

Consider any game G ∈ ΓC. G is said to be a Symmetric Coordination game iff nA = nB = n

and αA = αB = α. The set of all Symmetric Coordination games is denoted ΓSC.

Corollary 1

Consider any game G ∈ ΓSC. NN risk dominates EE in G iff α ∈ [1
4
− 1

4n
, 1

2
) 11.

This result can be obtained by replacing nA = nB = n and αA = αB = α in (2.19) 12

13. This corollary of Proposition 5 establishes that when groups participating in the collective

contest are symmetric in all respects, there is a robust strategic basis of N based on the

equilibrium selection criterion of risk dominance. In order to understand why these games

arise, first note that at αA = αB = 1
2
, both the right hand side and left had side of (2.19) are

zero. As we approach αA = αB = 1
2

from below, along αA = αB, the right hand side falls at

faster rate than the left hand side and therefore has to dominate it along the path, given that

both have to be zero at αA = αB = 1
2
.

If we introduce asymmetries between groups it is unlikely that NN will pass the test of

risk dominance as it becomes harder to satisfy (2.19).

Next, we consider the equilibrium selection criterion called the Security Principle, see e.g.

Van Huyck et al. (1990). A secure strategy for a player is one in which the smallest payoff is

11These games are in fact Stag Hunt games, see e.g. Skyrms (2004)
12It is easiest to see if we use the form of ∆i in (2.59).
13This case corresponds to Figure 2.8, with nA = nB = n.
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at least as large as the smallest payoff to any other feasible strategy. Security principle selects

equilibrium points implemented by secure strategies. The Security Principle, as we will see,

always selects NN unlike the criterion of payoff dominance, never selects it (Proposition 7).

Definition 5 Secure Strategy

A strategy σi of group i is said to be secure iff σi = arg
(
maxσi∈{E,N}minσj∈{E,N}Πi(σi, σj)

)
,

i, j ∈ {A,B} and j 6= i.

The strategy σi guarantees group i the best out of the worst of its outcomes.

Definition 6 Security Principle

Consider any game G ∈ ΓC. NN will be said to satisfy the Security Principle in G iff N is a

secure strategy for both groups A and B.

Proposition 6

Consider any game G ∈ ΓC. NN satisfies the Security Principle in G.

Proof :

We do the proof assuming i = A.

We know that ΠNN
A > ΠEN

A when Γ is a Coordination game. We also know from Proposition

7 that ΠEE
A > ΠNN

A when Γ is a Coordination game. Therefore it follows that we must have

ΠEE
A > ΠNN

A > ΠEN
A when Γ is a Coordination game.

We can also see in proof of Proposition 3, that ΠEE
A > ΠNE

A when αA < 1
2
. And, it can

also be easily verified from Proposition 1 and 4, that ΠNE
A > ΠNN

A when Γ is a Coordination

game. This is true because both PNE
A > PNN

A and SNE > SNN , i.e., not only is the net surplus

higher in this case, but group A also wins the contest with a higher probability. Therefore,

when Γ is a Coordination game, we have ΠEE
A > ΠNE

A > ΠNN
A > ΠEN

A .

As ΠNN
A > ΠEN

A , i.e., the minimum payoff from choosing N is strictly larger than the

minimum payoff from choosing E for group A, N is a secure strategy for group A. The

argument is similar for group B. �
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Finally, we consider the equilibrium selection criterion of payoff dominance.

Definition 7 Payoff Dominance

Consider any game G ∈ ΓC. EE is said to payoff dominate NN in G iff ΠEE
A > ΠNN

A and

ΠEE
B > ΠNN

B with one inequality holding strictly. If both inequalities hold strictly we will say

that EE strictly payoff dominates NN in G.

Proposition 7

Consider any game G ∈ ΓC. EE strictly payoff dominates NN in G.

To prove this result we need to show that, for G ∈ ΓC and i = A,B

PNN
i SNN > PEE

i SEE (2.20)

We proceed by identifying games G ∈ Γ, such that strategy profile EE is Pareto superior

to strategy profile NN , i.e., PNN
i SNN > PEE

i SEE, i = A,B. We denote such games ΓPS.

Then we go on to show that the set of Coordination games ΓC is a proper subset of ΓPS , i.e.,

ΓC ⊂ ΓPS.

The following equation represents the bigger root 14 of the quadratic equation of (2.20)

α+
j =

(nj − ni)(ni − 1)αi +N
√

((ni − 1)αi)2 + ni − 2ni
2ni(nj − 1)

(2.21)

For instance, when αB = α+
B, we have ΠNN

A = ΠEE
A = 1

4
. If αB < α+

B, group B is more

competitive and generates more effort, which leads to a lower SNN and PNN
A and hence a

lower ΠNN
A compared to ΠEE

A = 1
4
. Similarly, when αA < α+

A, we have ΠNN
B < ΠEE

B . For the

shapes of α+
A and α+

B look at Figure 2.10.

When both αB 6 α+
B and αA 6 α+

A with one inequality holding strictly, EE is Pareto

superior to NN . This can be observed in Figure 2.10. It is clear from the diagram that EE

Pareto superior to NN , when both αA and αB are substantially less than 1
2
.

14We do not report the smaller root α−
j as it is negative and can be ignored. See proof of Proposition 7 in

Appendix 1
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To understand why this must be the case we refer to Figure 2.3. We start from αA = αB =

1
2
, where strategy profiles EE and NN are equivalent. Now, if either αA or αB falls then

SNN < 1
2

and decreasing. For example, if αA falls substantially but αB falls infinitesimally,

then PNN
A rises and PNN

B falls and we approach PNN
A = 1. Here, group A captures almost the

whole of the reduced net surplus, thereby getting a payoff ΠNN
A > ΠEE

A = 1
4
. For this case not

to arise we need αB to fall sufficiently as well.

It can also be observed in Figures 2.11 and 2.12, that αA supports α+
A from below and αB

supports α+
B from above at (1

2
, 1

2
) in the αAαB plane. This fact helps us establish our result.

If (αA, αB) < (1
2
, 1

2
), then α+

B > αB and α+
A > αA. Therefore, the set of Coordination games

ΓC , is a proper subset of the games in which EE is Pareto superior to NN .

� Intuition: To understand the result, it is best to begin by noticing that the issue is only

relevant in Coordination games. Further note that the Coordination games are clustered

around PNN
A = PNN

B = 1
2

(see Figures 2.3 and 2.8). The difference in probabilities of winning

between the groups cannot be too large if Γ has to be a Coordination game.

We know from Proposition 1 that PEE
A = PEE

B = 1
2
. Given that the disparity in probabili-

ties of winning between the groups cannot be large, i.e., PNN
A ≈ PNN

A , and SNN < 1
2

= SEE,

when Γ is Coordination game, it will be the case that each group achieves a payoff strictly

less than 1
4
, i.e., EE Payoff dominates NN . In Coordination games, both groups essentially

cancel out the gain in winning probabilities each wishes to have by choosing N . But, as both

groups efforts are higher under NN , the net surplus is lower compared to EE. The net effect

is that both groups lose by choosing N .

In this section we introduced several equilibrium selection criterion to check whether equi-

librium NN is prescribed by any of them. When we consider the criterion of risk dominance

we are able to show that there exist Coordination games in which NN risk dominates EE.

We provide a necessary and sufficient conditions for NN to risk dominate EE in Proposition

5 and then go onto show existence of such games using a symmetric subclass of Coordination

games in Corollary 1.
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When we consider equilibrium selection criterion called the Security Principle, we are able

to show that NN is always prescribed over EE. However, when we consider the principle

of payoff dominance, equilibrium profile NN is never selected as is shown in Proposition 7.

The results are therefore mixed. However, given that there exist equilibrium criteria which

prescribe selection of equilibrium NN , allows us to claim that there exists a robust strategic

basis of prize sharing rules N , first introduced in Nitzan (1991).

2.7 Discussion

In this section we discuss a few assumptions we made and some other properties, which we

have skipped in the main body.

� Coordination Devices: Given that in our model selecting equilibrium NN is essentially

a failure to coordinate on a Pareto efficient equilibrium point EE, we discuss a couple of

coordination devices, which may help the groups circumvent the problem.

(1) Timing of the Game: In our game we assume that in the first stage the group leaders

move simultaneously to choose between E and N and having observed those choices the agents

make their effort decisions simultaneously. But, it is clear that if one leader moves first, then

the groups will coordinate on EE. Given the EE payoff dominates NN (Proposition 7), if one

of the group leaders could choose the rule first, he would choose E and coordination failure

on N will be avoided. But, the assumption of simultaneous choice of the rules is justified

because in our framework of direct conflict and no communication between the groups, there

is no reason to assume otherwise.

(2) Strategic Choice of Sharing Rules: In our game we have kept the αi’s fixed and

provided the leader a choice between E and N . Another part of the literature considers the

case, where the leaders do not have access to E. The only rule available is N but the leaders

can choose αi ∈ [0, 1]. This part of the literature mostly focuses on the phenomenon of Group

Size Paradox (GSP), whereby a larger group wins the contest less often due to free riding.
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If we allow the leaders to choose αi ∈ [0, 1] in our model, then all equilibria will be payoff

equivalent to EE. Given that the group leaders have some adjustment room with N , they

will adjust N in such a manner that both groups will get fully cooperative payoffs. In fact

it can shown that EE, NE ,EN will all be equilibrium profiles, with the leader of group i,

choosing αi = 1
2

under N . Only NN will not be an equilibrium profile. So, allowing strategic

choice of sharing rules essentially gives the leaders an extra degree of freedom and help them

avoid coordination failures.

� Prisoner’s Dilemma Games: There also exists a class of Prisoner’s Dilemma games in

our model. We primarily focused on the case where (αA, αB) < (1
2
, 1

2
), because the focus of the

chapter was on providing strategic foundations to N . But if (αA, αB) > (1
2
, 1

2
), and αA > α+

A

and αB > α+
B (α+

A and α+
B defined in (2.21)), then Γ turns out to be Prisoner’s Dilemma games.

Both groups have a dominant strategy E, but the strategy profile NN payoff dominates EE.

So the use of grim trigger strategies, would allow us to generate NN as a subgame perfect

Nash equilibrium if the first stage game is infinitely repeated 15. The Prisoners Dilemma

games can be seen in Figures 2.11 and 2.12.

When, (αA, αB) > (1
2
, 1

2
), rule N makes both groups less competitive in the contest for

the prize. The benefit is that a lot of net surplus gets saved and both groups benefit. But of

course, given that rule N is not competitive enough, both groups have unilateral incentives

of deviating to E. If the groups could write enforceable agreements they would have chosen

X = 0. In this case mutually beneficial agreements are the ones in which (αA, αB) > (1
2
, 1

2
),

αA > α+
A and αB > α+

B. But in absence of the possibility of explicit agreements between groups,

one way to sustain NN as an equilibrium outcome is to repeat our stage game infinitely and

use reverting to the Nash equilibrium EE forever as a punishment strategy for deviation from

strategy N by any group at any stage.
15Ursprung (2012) recognizes that if αA = 1 and αB = 1 then Γ is a Prisoner’s Dilemma game.
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2.8 Extensions

In this section we provide two extensions of the main model. The first extension is to consider

a general Tullock Contest Success Function and verify whether the main results of the chapter

go through or not under it. The second extension is one in which we consider a situation in

which the group leaders are maximizing the probabilities of winning instead of expected group

payoffs. The aim again is to verify whether there are games in which rule N is chosen by the

leaders in any equilibrium.

2.8.1 Generalized Tullock Contest Success Function

In this section we consider the Generalized Tullock Contest Success Function and try to

replicate the main results of the paper under it. The Generalized Tullock Contest Success

Function which is as follows:

Pi(Xi, Xj) =


Xr
i

Xr
i +Xr

j
, if Xi > 0 or Xj > 0,

1
2
, otherwise.

(2.22)

We will be assuming that r ∈ (0, 1] throughout to rule out the possibility of Increasing

Returns to Scale (IRS)16.

Second Stage Choices

First, we study the second stage choice of individual efforts by group members taking as fixed

the first stage choices made by the group leaders. There are four regimes to consider, .i.e.,

EE, EN , NE, NN .

16We consider the generalized Tullock form instead of the winner take all contest success function because
only mixed strategy equilibria exist when we consider the the winner take all function.
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Regime EE

Here we analyze the individual effort choices when both groups choose strategy E in the firsts

stage of the game. The following result summarizes the essential features of this regime.

Proposition 8

In any Nash equilibrium of the effort subgame

(1) The efforts of the groups are
(
XEE
A , XEE

B

)
=
(
r
4
, r

4

)
.

(2) The probabilities of winning are
(
PEE
A , PEE

B

)
=
(

1
2
, 1

2

)
.

(3) The group payoffs are
(
ΠEE
A ,ΠEE

B

)
=
(

2−r
4
, 2−r

4

)
.

This result extends Proposition 1 to the generalized Tullock CSF for the case, where both

leaders have chosen strategy E in the first stage of the game. One can easily make comparisons

between the two results to verify that they coincide at r = 1. When, r < 1 , the efforts made

in the contest are lower and hence the group payoffs are higher.

Regime EN

Here we analyze the case where the leader of group A chooses E and leader of group B chooses

N . The following Proposition summarizes the essential features of this regime.

As has been defined previously θB = (1− αB)(nB − 1).

Proposition 9

Along the Nash equilibrium path in the effort subgame the following equation needs to be

satisfied

θB
r

[
XB

XA

]r
− nB

XB

XA

+

(
1 +

θB
r

)
= 0 (2.23)

There exists a unique z∗ =
[
XB
XA

]∗
, which satisfies (2.23)
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Unlike when r = 1, we cannot explicitly solve for individual efforts when r < 1. But this

result proves that in any Nash equilibrium the ratios of the aggregate efforts of the two groups

must be fixed. Even though we cannot explicitly solve for the ratio, we are able to prove that

it exists and must be unique. Therefore, we are able to characterize all results in terms of this

fixed ratio z∗.

The following result summarizes the efforts, probabilities of winning, and group payoffs in

terms of z∗.

Proposition 10

In any Nash equilibrium of the effort subgame

(1) The efforts of the groups are
(
XEN
A , XEN

B

)
=
( r(z∗)r

[1+(z∗)r]2
, r(z∗)r+1

[1+(z∗)r]2

)
.

(2) The probabilities of winning are
(
PEN
A , PEN

B

)
=
(

1
1+(z∗)r

, (z∗)r

1+(z∗)r

)
.

(3) The group payoffs are
(
ΠEN
A ,ΠEN

B

)
=
(1+(1−r)(z∗)r

[1+(z∗)r]2
, (z∗)r+(z∗)2r−r(z∗)r+1

[1+(z∗)r]2

)
.

This result is an extension of Proposition 1 for the Generalized Tullock CSF, when group

A chooses E and group B chooses N .

Regime NE

Here we analyze the case where group A chooses N and group B chooses E. The following

Proposition summarizes the essential features of the regime.

As has been defined previously θA = (1− αA)(nA − 1).

Proposition 11

Along the Nash equilibrium path in the effort subgame the following equation needs to be

satisfied

θA
r

[
XA

XB

]r
− nA

XA

XB

+

(
1 +

θA
r

)
= 0 (2.24)

There exists a unique y∗ =
[
XA
XB

]∗
, which satisfies (2.24)
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This result helps pin down the unique ratio of efforts y∗, that the two groups put in when

group Ais choosing N and group B is choosing E.

Proposition 12

In any Nash equilibrium of the effort subgame

(1) The efforts of the groups are
(
XNE
A , XNE

B

)
=
( r(y∗)r+1

[1+(y∗)r]2
, r(y∗)r

[1+(y∗)r]2

)
.

(2) The probabilities of winning are
(
PNE
A , PNE

B

)
=
( (y∗)r

1+(y∗)r
, 1

1+(y∗)r

)
.

(3) The group payoffs are
(
ΠNE
A ,ΠNE

B

)
=
( (y∗)r+(y∗)2r−r(y∗)r+1

[1+(y∗)r]2
, 1+(1−r)(y∗)r

[1+(y∗)r]2

)
.

This result extends Proposition 1 for the Generalized Tullock CSF, where group A is

choosing N and group B is choosing E.

Regime NN

In this section we consider the case where both group leaders have chosen N in the first stage of

the game. We specifically restrict ourselves to the cases where there is no monopolization,.i.e.

0 < XB
XA

<∞.

As before we define θi = (1−αi)(ni−1) , i = A,B. The following Proposition summarizes

the essential features of this regime.

Proposition 13

Along the Nash equilibrium path of the effort subgame, where neither group is monopolized,

the following equation needs to be satisfied

nAθB

(
XB

XA

)r
− nBθA

(
XB

XA

)1−r

− nB(r + θA)

(
XB

XA

)
+ nA(r + θB) = 0 (2.25)

There exists a unique x∗ =

[
XB
XA

]∗
, which solves equation (2.25).
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Group B

E N

Group A
E ΠEE

A ,ΠEE
B ΠEN

A ,ΠEN
B

N ΠNE
A ,ΠNE

B ΠNN
A ,ΠNN

B

Table 2.2: Game ψ

This result again helps pin down a unique ratio of efforts the groups must put in when

both groups are choosing N . But it has to be noted that we have restricted the analyses

to parameters, such that neither group is monopolized in equilibrium. Such a restriction is

without any loss, given that we are only interested in verifying whether there are Coordination

games like the case whre r = 1. Recall that groups cannot be monopolized in a Coordination

game.

Proposition 14

In any Nash equilibrium of the effort subgame, where neither group is monopolized

(1) The efforts of the groups are
(
XNN
A , XNN

B

)
=
( r(x∗)r+(1+(x∗)r)θA

nA[1+(x∗)r]2
, (r+θA)(x∗)r+1+θA(x∗)

nA[1+(x∗)r]2

)
.

(2) The probabilities of winning are
(
PNN
A , PNN

B

)
=
(

1
1+(x∗)r

, (x∗)r

1+(x∗)r

)
.

(3) The group payoffs are
(
ΠNN
A ,ΠNN

B

)
=
( (nA−θA)(1+(x∗)r)−r(x∗)r

nA[1+(x∗)r]2
, nA(1+(x∗)r)(x∗)r−(r+θA)(x∗)r+1−θA(x∗)

nA[1+(x∗)r]2

)
.

This results extends Proposition 1 for the Generalized Tullock CSF for the case, where

both groups choose N and neither is monopolized.

First Stage Choices

In this section we analyze the first stage choices between E and N made by the group leaders

when they maximize group payoffs. The game they play is represented in Table 2.2. We

denote as ψ the games in Table 2.2 . In what follows we compute the Nash equilibria of games

in ψ.
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Proposition 15

Consider any game G ∈ β. For all r ∈ (0, 1], EE is a Nash equilibrium of G.

This result is the counterpart of Proposition 3 for the Generalized Tullock CSF case. It

clarifies that the form of contest success function is irrelevant, i.e., r does not matter. The

strategy profile EE is always a Nash equilibrium. It is not surprising given rule E allows the

groups to internalize all within group externalities.

Proposition 16

Consider any game G ∈ β. There exists r∗ such that for all r ∈ (r∗, 1], G is a Coordination

game if ΠNN
A (r = 1) > ΠEN

A (r = 1) and ΠNN
B (r = 1) > ΠNE

B (r = 1).

This result helps extend Proposition 4. It verifies that the Coordination problem between

groups we illustrated in the main model is quite general. It says that if the parameters are

such that a game is a Coordination game in the main model, i.e., r = 1, there exists a whole

range of values of r for which it is a Coordination game. Only for low values of r do the

problems of coordination between the groups get solved.
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Group B

E N

Group A
E PEE

A , PEE
B PEN

A , PEN
B

N PNE
A , PNE

B PNN
A , PNN

B

Table 2.3: Game β

2.8.2 Group Leader Maximizes Probabilities of Winning

In what follows group leaders have a choice between cooperative rule E and N . The objective

is to check whether there is an equilibrium with prize sharing rules N , when group leaders

maximize probabilities of winning instead of expected group payoffs. Given any configuration

of parameters (αA, αB, nA, nB), we denote the game group leaders play in the first stage as

β(αA, αB, nA, nB). We denote the set of all such normal form games simply as β. Games in β

are bi-matrix games as represented in Table 2.3.

The following proposition characterizes the equilibria of game in β.

Proposition 17

Consider any game G ∈ β.

(A) EE is a pure strategy Nash equilibrium of G iff αA ∈ [1
2
, 1] and αA ∈ [1

2
, 1].

(B) NN is a pure strategy Nash equilibrium of G iff αA ∈ [0, αA] and αB ∈ [0, αB].

(C) NE is a pure strategy Nash equilibrium of G iff αA ∈ [0, 1
2
] and αB ∈ [αB, 1].

(D) EN is a pure strategy Nash equilibrium of G iff αA ∈ [αA, 1] and αB ∈ [0, 1
2
].
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It can be seen from Figure 2.13 the games in β are no longer Coordination Games. But, we

still have Nash equilibria in which N is chosen by both groups. In fact, the conditions under

which NN is an equilibrium, are the same irrespective of the objective of the leader. The

reason why the coordination problems arise, when leaders are maximizing group payoffs, is

that even though N is useful in increasing probabilities of winning the contest, it dissipates

most of the prize in unproductive effort. So, leaders would only choose N under the belief that

the other group is also doing so. In fact, when leaders care about group payoffs, equilibrium

NN is payoff dominated by equilibrium EE, so that selecting equilibrium NN is an instance

of coordination failure between the groups.

However, when the objective of the leader is to maximize the chances of winning, the

leaders are not concerned about how much prize is dissipated due to excessive efforts. In such

a case, the best option for group i is to choose N when αi is low because in such cases N is a

more potent tool that E in terms of generating efforts.

2.9 Conclusion

The explicit aim of the chapter was to provide strategic foundations to the prize sharing rules

introduced by Nitzan (1991), which has subsequently become the standard in the collective

contests literature. To that end, we were able to uncover a class of Coordination games, where

in fact the groups may end up coordinating on the Nitzan rule N , even though a cooperative

option E is present. The games we study have transparency of choice and commitment to the

choice by the group leaders as in Bagwell (1995). Coordinating on rule N looks like a case of

coordination failure, because the equilibrium with mutual cooperation EE payoff dominates

the one in which both groups choose the prize sharing rules NN .

However, when we introduce equilibrium selection criterion of risk dominance and security

principle, which are based on the “riskiness” of the equilibrium point, we find that NN does

indeed survive both these criterion. We provide a necessary and sufficient condition for NN
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to risk dominate EE and show existence of such a class of coordination games. When we use

the security principle, we find that the prescription is always to select NN . In light of these

selection criterion, which prescribe selection of equilibrium profile NN , we claim that there

exists a robust strategic basis to the prize sharing rules N .

We also uncover a class of Prisoner’s Dilemma games where, the prize sharing rule N

has a robust basis if the game is repeated infinitely and the leaders can use grim-trigger like

punishment strategies.

Previously Ursprung (2012) showed in an evolutionary game theoretic model, that the

extreme point αi = 0 of the prize sharing rule N crowds out E in the long run. We considered

the whole class of rules in a 2 stage game and showed that there exist games, where the prize

sharing rules may arise in equilibrium. Our analysis is complementary to theirs. It seems a

worthwhile exercise to check, which parts of the rule N can actually crowd out E in the long

run, given that we have been able to compute precise the conditions under which N is a Nash

equilibrium in the static context.

Given, the complexity of the analysis we also did not consider what would happen if there

are more than two groups. Another question which deserves attention is whether these prize

sharing rules N will ever be chosen in equilibrium if efforts also had a productive component.

All these issues and more, are beyond the aims and scope of the current analysis and warrant

future research.
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2.10 Appendix 1

2.10.1 Individual Effort Choice Problem

Proof of Proposition 1

Proposition 1 will be proved with the help of a few Lemmas, which we prove next.

Lemma 1

If both group A and B choose Rule E, then in any Nash Equilibrium

• Group effort levels are (XEE
i , XEE

j ) = (1
4
, 1

4
).

• The net surplus in the contest is SEE = 1
2

• The probabilities of winning are (PEE
i , PEE

j ) = (1
2
, 1

2
)

• The payoffs of the groups are (ΠEE
i ,ΠEE

j ) = (1
4
, 1

4
).

Proof :

The payoff of member k of Group i is as follows:

ΠEE
ki =

1

ni
(

Xi

Xi +Xj

−Xi) (2.26)

The individual members of the groups choose efforts xki to maximize (2.26).

The following equation represents the F.O.C of any member k in group i:

Xj

(Xi +Xj)2
= 1 (2.27)

Similarly, the following equation represents the F.O.C. of any member k in group j:

Xi

(Xi +Xj)2
= 1 (2.28)

Adding (2.27) and (2.28) and we find that
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Xi +Xj =
1

2
(2.29)

Using (2.29) back in (2.27) and (2.28) we obtain that in any Nash equilibrium we must

have:

(Xi, Xj) = (
1

4
,
1

4
)

Again using (2.29) we get that the net surplus SEE = 1−Xi −Xj = 1− 1
2

= 1
2

The probabilities can be obtained by dividing the equilibrium efforts by (2.29) and we get

(PEE
i , PEE

j ) = (1
2
, 1

2
)

Using the equilibrium effort levels in (2.26) we obtain the payoffs of the groups in equilib-

rium are as follows:

(ΠEE
i ,ΠEE

j ) = (
1

4
,
1

4
)

. �

Lemma 2

If Group i chooses E and j chooses N, then in the intra-group symmetric Nash Equilibrium

• Group effort levels are (Xi, Xj) = (
1+(1−αj)(nj−1)

(nj+1)
− (1+(1−αj)(nj−1))2

(nj+1)2
,

(1+(1−αj)(nj−1))2

(nj+1)2
).

• The net surplus in the contest is SσAσB = 1− 1+(1−αj)(nj−1)

nj+1
.

• The probabilities of winning are (P σAσB
i , P σAσB

j ) = (
1+αj(nj−1)

(nj+1)
, 1− 1+αj(nj−1)

(nj+1)
).

• The payoffs of the groups are:

(ΠσAσB
i ,ΠσAσB

j ) = (
(1+αj(nj−1))2

(nj+1)2
,

1+(1−αj)(nj−1)

(nj+1)
− (1+(1−αj)(nj−1))2

(nj+1)2
)

Proof :

The payoff of member k in group i is as follows:
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Πki =
Xi

Xi +Xj

−Xi (2.30)

The payoff of member k of Group j (which chooses N) is as follows:

Πkj =
Xj

Xi +Xj

[(1− αj)
xkj
Xj

+
αj
nj

]− xkj (2.31)

The following equation represents the F.O.C. of member k of group i:

Xj

(Xi +Xj)2
= 1 (2.32)

The following equation represents the F.O.C. of member k of group j:

Xi

(Xi +Xj)2
[(1− αj)

xkj
Xj

+
αj
nj

] +
Xj

Xi +Xj

[
(1− αj)(Xj − xkj)

X2
j

] = 1 (2.33)

Adding (2.33) over members in group j we reach the following condition:

Xi

(Xi +Xj)2
+

(1− αj)(nj − 1)

Xi +Xj

= nj (2.34)

Adding (2.32) and (2.34) we find the total effort expended in the contest in equilibrium to

be :

Xi +Xj =
1 + (1− αj)(nj − 1)

nj + 1
(2.35)

The net surplus can obtained from (2.35) and is as follows

SσAσB = 1−Xi −Xj = 1− 1 + (1− αj)(nj − 1)

nj + 1

.

Using (2.35) in (2.32) we find that in equilibrium group j puts in
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Xj =
(1 + (1− αj)(nj − 1))2

(nj + 1)2
(2.36)

Replacing Xj in (2.36) in (2.35) we solve for Xi in equilibrium to be

Xi =
1 + (1− αj)(nj − 1)

(nj + 1)
− (1 + (1− αj)(nj − 1))2

(nj + 1)2
(2.37)

To figure out the payoff of Group i we divide (2.37) by (2.35) we get the probability of

group i winning the contest to be

P σAσB
i =

Xi

Xi +Xj

= 1− 1 + (1− αj)(nj − 1)

nj + 1
(2.38)

Subtracting Xi in (2.37) from (2.38) gives us group i’s payoff in equilibrium to be

ΠσAσB
i =

(1 + αj(nj − 1))2

(nj + 1)2

Similarly dividing (2.36) by (2.35) we obtain the probability that group j wins the contest

and subtracting Xj from the result we get the payoff of group j.

�

Lemma 3

If both groups choose N and αinj(ni − 1)− αjni(nj − 1) > ni then group i is monopolized by

group j. In the unique intra-group symmetric Nash Equilibrium

• Group efforts are (Xi, Xj) = (0,
(1−αj)(nj−1)

nj
).

• The net surplus in the contest is SNN = 1− (1−αj)(nj−1)

nj
.

• The probabilities of winning are (PNN
i , PNN

j ) = (0, 1).

• The payoffs of the groups are (ΠiM
i ,ΠiM

j ) = (0,
1+αj(nj−1)

nj
).
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Proof :

If both groups choose rule N, then the payoff of member k in group i is as follows

Πki =
Xi

Xi +Xj

[(1− αi)
xki
Xi

+
αi
ni

]− xki (2.39)

The following is the F.O.C. for member k of group i

Xj

(Xi +Xj)2
[(1− αi)

xki
Xi

+
αi
ni

] +
Xi

Xi +Xj

[
(1− αi)(Xi − xki)

X2
i

] 6 1 (2.40)

If both groups choose rule N, then the payoff of member k in group j is as follows

Πkj =
Xj

Xi +Xj

[(1− αj)
xkj
Xj

+
αj
nj

]− xkj (2.41)

The F.O.C. for member k in group j is

Xi

(Xi +Xj)2
[(1− αj)

xkj
Xj

+
αj
nj

] +
Xj

Xi +Xj

[
(1− αj)(Xj − xkj)

X2
j

] 6 1 (2.42)

For all members of group i to choose xki = 0, the F.O.C. of group i members in (2.40)

satisfied at xki = 0, which boils down to the following condition after we sum the F.O.C s

1

Xj

+
θi
Xj

6 ni (2.43)

And summing the F.O.C.s of group j members in (2.42) ,at Xi = 0 we get the following

condition

njXj = θj (2.44)

For i to be monopolized in a Nash equilibrium both (2.43) and (2.44) have to be satisfied.

Replacing Xj from (2.44) into (2.43) and simplifying we find that group i is monopolized if



Chapter 2: Strategic Foundations of Prize Sharing Rules 61

αinj(ni − 1)− αjni(nj − 1) > ni

Using (2.44) we get Xj =
θj
nj

=
(1−αj)(nj−1)

nj

Therefore, net surplus is SNN = 1−Xj = 1− (1−αj)(nj−1)

nj
. Group j wins the contest with

probability 1. The payoff of group i is 0, because it is monopolized. The payoff of group j is

the net surplus SNN , which it wins with probability 1.

�

Lemma 4

If both groups choose N and none of the groups is monopolized then in the unique intra-group

symmetric Nash Equilibrium

• Group efforts are (Xi, Xj) = (nj(X
NN)2−(1−αj)(nj−1)XNN , ni(X

NN)2−(1−αi)(ni−

1)XNN) where XNN =
1+(1−αi)(ni−1)+(1−αj)(nj−1)

N
.

• The net surplus in the contest is SNN = 1− 1+(1−αi)(ni−1)+(1−αj)(nj−1)

N
.

• The probabilities of winning are (PNN
i , PNN

j ) = (χi
N
, 1 − χi

N
) where χi = ni + ni(nj −

1)αj − nj(ni − 1)αi.

• The payoffs of the groups are:

(ΠNN
i ,ΠNN

j ) = ((χi
N

)(1−1+(1−αi)(ni−1)+(1−αj)(nj−1)

N
), (1−χi

N
)(1−1+(1−αi)(ni−1)+(1−αj)(nj−1)

N
)).

Proof :

As none of the groups is monopolized the F.O.C. (2.40) and (2.42) hold with equality at

some xki > 0 , ∀k ∈ {2, 3..ni} and xkj > 0 , ∀k ∈ {2, 3..nj}.

Using (2.40) which the F.O.C. for Group i members and summing it over all the members

in i we get the following condition

Xj

X2
+
θi
X

= ni (2.45)
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Summing (2.42) over members of group j , we get the following condition

Xi

X2
+
θj
X

= nj (2.46)

Adding (2.45) and (2.46) and simplifying we can solve for total effort X to be

XNN =
1 + θi + θj
ni + nj

=
1 + (1− αi)(ni − 1) + (1− αj)(nj − 1)

N
(2.47)

From (2.47) it follows that the net surplus is

SNN = 1−XNN = 1− 1 + (1− αi)(ni − 1) + (1− αj)(nj − 1)

N

From (2.45) and (2.46) and using θr = (1− αr)(nr − 1), r = i, j we can deduce that

Xi = njX
2 − (1− αj)(nj − 1)X

and

Xj = niX
2 − (1− αi)(ni − 1)X

From these equations it is clear that the probability that group i wins the contest is

PNN
i =

Xi

X
= njX − (1− αj)(nj − 1) (2.48)

Replacing XNN from (2.47) in (2.48) and simplifying we get that PNN
i = χi

N
where χi =

ni + ni(nj − 1)αj − nj(ni − 1)αi. Of course, the chances that group j wins the contest is just

PNN
j = 1− χi

N
.

Note that ΠNN
i = PNN

i SNN . Replacing values of PNN
i and SNN we get our result. Similarly

we can obtain the payoff of group j.

�

Proposition 1 is just sub-parts of Lemma 5, 6, 7, 8.
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Proof of Proposition 2

� Part A of the Proposition

Notice in Lemma 6 that both ΠσAσB
i and ΠσAσB

j are independent of αi.

Again from Lemma 6

ΠσAσB
i =

(1 + αj(nj − 1))2

(nj + 1)2

This is clearly a strictly increasing function of αj.

ΠσAσB
j =

1 + (1− αj)(nj − 1)

(nj + 1)
− (1 + (1− αj)(nj − 1))2

(nj + 1)2
(2.49)

Define C =
1+(1−αj)(nj−1)

(nj+1)
. It is easy to see that dC

dαj
< 0.

Replacing value of C in (2.49) we simplify it to ΠσAσB
j = C − C2

Differentiating with respect to αj we get

dΠσAσB
j

dαj
= (1− 2C)

dC

dαj

As dC
dαj

< 0, the sign of
dΠ

σAσB
j

dαj
depends on the sign of 1−2C. If 1−2C < 0 then

dΠ
σAσB
j

dαj
> 0.

But 1− 2C < 0 when αj <
1
2
. If αj >

1
2
, then 1− 2C > 0 and then we have

dΠ
σAσB
j

dαj
< 0.

� Part (B) of the Proposition

Using Lemma 8 we can write the payoff of group i as follows

ΠNN
i =

(ni + ni(nj − 1)αj − nj(ni − 1)αi
N

)(1 + αi(ni − 1) + αj(nj − 1)

N

)
(2.50)

Notice that in both the terms within the brackets αj enters with a positive sign. Therefore,

it is the case that
dΠNNi
dαj

> 0. So we have
dΠNNA
dαB

> 0 and
dΠNNB
dαA

> 0.

Differentiating ΠNN
i in (2.50) with respect to αi we get

dΠNN
i

dαi
=

(ni − 1)[(ni − nj)(1 + (nj − 1)αj)− 2nj(ni − 1)αi]

N2
(2.51)
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The sign of
dΠNNi
dαi

is the same as the sign of (ni−nj)(1 + (nj− 1)αj)− 2nj(ni− 1)αi, which

is the second term in brackets in the numerator.

Consider i = A. The term then is (nA − nB)(1 + (nB − 1)αB) − 2nB(nA − 1)αA. It is

negative as we have assumed nB > nA. Therefore,
dΠNNA
dαA

< 0.

Consider i = B. The term (nB − nA)(1 + (nA − 1)αA) − 2nA(nB − 1)αB > 0 when

αB <
(nB−nA)(1+(nA−1)αA)

2nA(nB−1)
= αoB. Therefore,

dΠNNB
dαB

> 0 if αB < αoB. And
dΠNNB
dαB

< 0 if αB > αoB.

2.10.2 Leader’s Choice Problem

Proof of Proposition 3

Strategy profile EE will be a pure strategy Nash equilibrium of Γ if ΠEE
A > ΠNE

A and

ΠEE
B > ΠEN

B .

From Lemma 5 we know that ΠEE
A = 1

4
. And from Lemma 6 we know that

ΠNE
A =

1 + (1− αA)(nA − 1)

(nA + 1)
− (1 + (1− αA)(nA − 1))2

(nA + 1)2

E is a best response to E for group A if the following inequality is satisfied

1

4
>

1 + (1− αA)(nA − 1)

(nA + 1)
− (1 + (1− αA)(nA − 1))2

(nA + 1)2
(2.52)

To see why (2.52) holds we define x = 1+(1−αA)(nA−1)
(nA+1)

. Then (2.52) can be written as

1

4
> x− x2

⇒ (x− 1

2
)2 > 0

But this is true irrespective of the values of the parameters. Playing strategy E is a best

response for group A to group B playing E.



Chapter 2: Strategic Foundations of Prize Sharing Rules 65

When αA = 1
2
, then x = 1

2
and we have

⇒ (x− 1

2
)2 = 0

So in this case E is a weak best response to E for group A. In all other cases E is a strong

best response for group A to E.

Similarly we can show that ΠEE
B > ΠEN

B which means group B playing E is a best response

to group A playing E.

Proof of Proposition 4

For strategy profile NN to be a Nash equilibrium we must have ΠNN
A > ΠEN

A and ΠNN
B >

ΠNE
B .

In general it must be true that for i = A,B

ΠNN
i > ΠσAσB

i (σi = E, σj = N) (2.53)

Replacing the payoffs from Lemma 6 and 8 in (2.53) we get

(
ni + ni(nj − 1)αj − nj(ni − 1)αi

)(
1 + (ni − 1)αi + (nj − 1)αj

)
N2

>

(
1 + αj(nj − 1)

)2

(nj + 1)2

(2.54)

We solve (2.54) as a quadratic equation using the Sridharacharya formula and get the

following two roots:

The smaller root is

αi =
(ni − n2

j)(1 + αj(nj − 1))

nj(nj + 1)(ni − 1)
(2.55)

The larger root is
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αi =
1 + αj(nj − 1)

(nj + 1)
(2.56)

It can be easily shown using Proposition 2 that ΠNN
i > ΠσAσB

i (σi = E, σj = N) iff

αi ∈ [αi, αi].
17 In other words, if αi ∈ [αi, αi] for i = A,B, then NN is a Nash equilibrium

profile.

Now consider i = A. Given the assumption that nB > nA it is clear from (2.55) that

αA < 0. Therefore the lower root can be ignored and the relevant range is αA ∈ [0, αA].

Consider i = B. From equation (2.55) it is clear that αB < 0 iff nB < n2
A. Otherwise it is

positive. If αB < 0, then the relevant range for NN to be a Nash equilibrium is αB ∈ [0, αB].

If αB > 0 , then the relevant range is αB ∈ [αB, αB]. We can write this range in a concise

manner as αB ∈ [max{0, αB}, αB].

Therefore, NN is a Nash equilibrium profile of Γ iff αA ∈ [0, αA] and αB ∈ [max{0, αB}, αB].

If the condition is not satisfied then in light of Proposition 3 it follows that strategy E is a

strictly dominant strategy for at least one of the groups in Γ. Given that there are only two

groups, Γ will be dominance solvable with the unique Nash equilibrium strategy profile EE.

See Figures 2.8 and 2.9.

Proof of Proposition 5

Let us first consider the terms ΠNN
A − ΠEN

A and ΠNN
B − ΠNE

B . In general, for i = A,B we

are have to consider ΠNN
i − ΠσAσB

i , where group i is the one which chooses E when the two

group choose different strategies.

From Lemma 6 and 8 we can write the difference as follows

ΠNN
i − ΠσAσB

i =
(
ni+ni(nj−1)αj−nj(ni−1)αi

N

)(
1+αi(ni−1)+αj(nj−1)

N

)
− (1+αj(nj−1))2

(nj+1)2
(2.57)

17 For instance, consider group A. Starting from αA where (2.54) holds with equality, if we decrease αA

slightly, the LHS of (2.54) increases by Proposition 2 but the RHS being independent of αA is unaffected.
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Simplifying we get the following condition

ΠNN
i − ΠσAσB

i = (ni−1)
N2(nj+1)2

(
(n2

j − ni)(1 + αj(nj − 1))2 + (nj + 1)2(ni − nj)(1 + αj(nj − 1))αi

−nj(nj + 1)2(ni − 1)α2
i

)
(2.58)

Let us define

∆i =
(n2

j − ni)(1 + αj(nj − 1))2 + (nj + 1)2(ni − nj)(1 + αj(nj − 1))αi − nj(nj + 1)2(ni − 1)α2
i

(ni − 1)

(2.59)

Using the definition of αi and αi in (2.15) and (2.16) we can simplify and rewrite the above

condition as follows

∆i = nj(nj + 1)2
[
(αi − αi)(αi − αi)

]
(2.60)

Using this definition of ∆i in (2.59) we can write equation (2.58) as

ΠNN
i − ΠσAσB

i =
(ni − 1)2

N2(nj + 1)2
∆i (2.61)

Now let us consider ΠEE
A −ΠNE

A and ΠEE
B −ΠEN

B . In general for i = A,B we are interested

in ΠEE
i − ΠσAσB

i , where group i is the one which chooses N when the two groups choose

different strategies.

From Lemma 5 and 6 we can write the difference as
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ΠEE
i − ΠσAσB

i = 1
4
− 1+(1−αi)(ni−1)

(ni+1)
− (1+(1−αi)(ni−1))2

(ni+1)2

= (1
2
− 1+(1−αi)(ni−1)

(ni+1)
)2

(2.62)

This can be simplified and written as

ΠEE
i − ΠσAσB

i =
(ni − 1)2

4(ni + 1)2
(1− 2αi)

2 (2.63)

For NN to risk dominate EE we must have

(ΠNN
A − ΠEN

A )(ΠNN
B − ΠNE

B ) > (ΠEE
A − ΠNE

A )(ΠEE
B − ΠEN

B ) (2.64)

Using equations (2.61) and (2.63) for groups i = A,B, we can immediately conclude that

inequality (2.64) is satisfied iff

N4(1− 2αA)2(1− 2αB)2 6 16∆A∆B

.

Proof of Proposition 7

For EE to strictly payoff dominate NN we find when is it that ΠNN
A < ΠEE

A and ΠNN
B <

ΠEE
B .

In general for i = A,B we must have

ΠNN
i < ΠEE

i (2.65)

Using Lemma 5 and 8 in (2.65) we get the following inequality which needs to hold

(
ni + ni(nj − 1)αj − nj(ni − 1)αi

)
(1 + (ni − 1)αi + (nj − 1)αj

)
N2

<
1

4
(2.66)
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Solving (2.66) as a quadratic equation using the Sridharacharya formula we get the follow-

ing two roots

The larger root is

α+
j =

(nj − ni)(ni − 1)αi +N
√

((ni − 1)αi)2 + ni − 2ni
2ni(nj − 1)

(2.67)

The smaller root is

α−j =
(nj − ni)(ni − 1)αi −N

√
((ni − 1)αi)2 + ni − 2ni

2ni(nj − 1)
(2.68)

Using Proposition 2 we can easily verify that EE will payoff dominate NN iff αj ∈

(α−j , α
+
j ), j = A,B.

We first consider group i = A. The roots of ΠNN
A = ΠEE

A are α+
B and α−B. We now state a

few important properties which these roots satisfy.

Property 1

In the αAαB plane α+
B lies completely above the αA axis and α−B lies completely below the αA

axis and can therefore be ignored 18.

This can be verified by trying to solve either α+
B = 0 or α−B = 0, which gives us values of αA

at which these roots cut the αA axis. Neither equation has a real solution as the discriminant

for both these problems is N
√

1− nB, which is a complex number. Therefore, there does not

exist a real αA such that α+
B = 0 or α−B = 0. Therefore, neither α+

B = 0 nor α−B = 0 cut the

αA axis.

Replacing, αA = 0 in α+
B we find that it cuts the αB axis at

N
√
nA−2nA

2nA(nB−1)
> 0. This combined

with the observation made above helps us conclude that α+
B lies completely above the αA axis

Replacing, αA = 0 in α−B we find that it cuts the αB axis at
−N√nA−2nA

2nA(nB−1)
< 0. Therefore,

α−B lies completely below the αA axis and can be ignored.

18This means that the relevant zone for payoff dominance will be αB ∈ [0, α+
B)
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Property 2

α+
B is increasing and convex in the αA

19.

To prove this we just look at the first and the second derivatives of α+
B with respect to αA

dα+
B

dαA
=

(nB − nA)(nA − 1) + N(nA−1)2αA√
nA+(αA(nA−1))2

2nA(nB − 1)
> 0

d2α+
B

dα2
A

=
N(nA − 1)2

2nA(nB − 1)

( nA

(nA + (αA(nA − 1)2)
3
2

)
> 0

Property 3

α+
B passes through (αA, αB) = (1

2
, 1

2
). At αA = 1

2
it is supported from below by the line αB.

The first part is easily shown by replacing αA = 1
2

in α+
B. We get α+

B = 1
2

To prove the second part we note from (2.56) that the slope of αB is dαB
dαA

= nA−1
nA+1

.

The slope of α+
B is

dα+
B

dαA
=

(nB − nA)(nA − 1) + N(nA−1)2αA√
nA+(αA(nA−1))2

2nA(nB − 1)

At αA = 1
2
, the slope is

dα+
B

dαA
=

(nB − nA)(nA − 1) + N(nA−1)2

nA+1

2nA(nB − 1)
=
nA − 1

nA + 1

Therefore, Slope of αB = Slope of α+
B at αA = 1

2
. Also at αA = 1

2
we have αB = 1

2
and

α+
B = 1

2
. So, the curve α+

B and line αB have a common point and same slope at αA = 1
2
. Given

that α+
B is convex and increasing and αB is increasing and linear in αA, it follows that αB

supports α+
B from below at αA = 1

2
.

Now we consider i = B and state similar properties for α+
A and α−A

19For clear visualization note that in the αAαB plane α+
B plots as an increasing and convex function
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Property 4

In the αAαB plane α+
A lies completely to the right of the αB axis and α−A lies completely to the

left of αA axis and can therefore be ignored.

We skip the proof as it follows exactly the same steps as Property 1.

Property 5

α+
A in increasing (decreasing) in αB if αB > (<) nB−nA

2
√
nA(nB−1)

. α+
A is convex in αB

20.

To prove this we just look at the first and the second derivatives of α+
A with respect to αB

dα+
A

dαB
=

N(nB−1)2αB√
α2
B(nB−1)2+nB

− (nB − nA)(nB − 1)

2nB(nA − 1)

Therefore,
dα+

A

dαB
> 0 iff

N(nB − 1)2αB√
α2
B(nB − 1)2 + nB

> (nB − nA)(nB − 1)

Simplifying we get that this happens iff αB >
nB−nA

2
√
nA(nB−1)

For convexity of α+
A we look at the second derivative, which is

d2α+
A

dα2
B

=
N(nB − 1)2

2nB(nA − 1)

( nB

((nB − 1)2α2
B + nB)

3
2

)
> 0

Property 6

α+
A passes through (αA, αB) = (1

2
, 1

2
). At αB = 1

2
it is supported from below by the line αA

21.

We skip the proof as it follows exactly the same steps as Property 3.

Properties 1 to 6 are captured in Figure 2.10.

20In the αAαB plane it plots as a concave function when α+
A is increasing and convex function when α+

A is
decreasing. This happens because the domain of the function α+

A. i.e., αB ∈ [0, 1] is the vertical axis
21In the diagram in the αAαB plane it seems that αA supports α+

A from above not below. But it has to be
noted that that the domain αB ∈ [0, 1] is the vertical axis and not the horizontal axis
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We now proceed to show that the set of games Γ with Nash equilibria EE ad NN , i.e.,

αA ∈ [0, αA] and αB ∈ [max{0, αB}, αB], is a proper subset of the set of games where EE

payoff dominates NN , i.e., αA ∈ [0, α+
A) and αB ∈ [0, α+

B).

This fact directly follows from Property 3 and 6. Given for i = A,B, αi supports α+
i from

below it is true that αi < α+
i except at (αA, αB) = (1

2
, 1

2
) 22, where they are equal. But we can

remove (αA, αB) = (1
2
, 1

2
) as at that point all strategy profiles are Nash equilibria. In the set of

games we are interested in we have αA < α+
A and αB < α+

B. A look at the parametric ranges

in the previous paragraph immediately confirms that the games which have Nash equilibria

EE and NN are a proper subset of the games in which EE strictly payoff dominates NN .

Look at Figures 2.11 and 2.12.

2.11 Appendix 2

2.11.1 Best Response Functions

Here we study the properties of the best response functions of the individual’s in the two

groups. To do that we start with a few notations.

We denote the best response function of the kth member of group i ∈ {A,B}, when the

group chooses σi ∈ {E,N} as Rσi
ik(Xj). For example, if group A chooses E, then the best

response function of the kth member of group A will be denoted RE
Ak(XB), and if it chooses

N , then RN
Ak(XB).

When group i chooses E, the best response Function of member k , RE
ik(Xj) can be obtained

by maximizing (2.4). It is implicitly characterized by the following first order condition:

Xj

(Xi +Xj)2
= 1 (2.69)

Similarly, when group i chooses N , its best response function of member k, RN
ik(Xj) is

obtained by maximizing (2.3). It is implicitly characterized by the following first order condi-

22(αA, αB) = ( 1
2 ,

1
2 ) is the point at which the lines αi s support the curves
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tion:

Xj

(Xi +Xj)2
[(1− αi)

xki
Xi

+
αi
ni

] +
Xi

Xi +Xj

[
(1− αi)(Xi − xki)

X2
i

] = 1 (2.70)

Because group members are symmetric in all respects, the best response functions are the

same. We can therefore apply symmetry and obtain the best response function of a repre-

sentative agent of the group, which we denote Rσi
i (Xj). This is the same notation introduced

above but without the subscript k.

In the Proposition that follows, we use the following notation:

For i ∈ {A,B}

θi = (1− αi)(ni − 1)

θi is a measure of competitiveness of group i weighted by group size. If αi is low θi is high, so

that more competitive groups will tend to have a higher θi. If such a group is also large, then

the competitive nature of the group gets accentuated by its size. Therefore, larger groups with

lower αi’s have higher θi’s and are the most competitive ones.

Next, we state a general result about best response functions of the groups. We state the

result without proof 23 but do a detailed diagrammatic analysis.

Proposition 18

For i, j ∈ {A,B} and j 6= i

(A) If group i chooses E, then the slope of the best response function is as follows:

RE
i (Xj)

dXj

=
Xi −Xj

2Xj

Therefore, Xi is a strategic complement to Xj iff Xi > Xj.

23Available on request
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(B) If group i chooses N, then the slope of the best response function is as follows:

RN
i (Xj)

dXj

=
(Xi −Xj)− θi(Xi +Xj)

2Xj + 2θi(Xi +Xj)

Therefore, Xi is a strategic complement to Xj iff Xi
Xj

> 1+θi
1−θi .

We next discuss the results summarized in Proposition 18.

� Both groups choose E: The best Response Functions in this case are represented in

Figure 21. Both RE
A(XB) and RE

B(XA) are strictly increasing when XA < 1
4

and XB < 1
4
.

Here, XA and XB are strategic complements.

The Best Response functions are well defined except at (XA, XB) = (0, 0) and they intersect

at (XEE
A , XEE

B ) = (1
4
, 1

4
), which is the unique Nash equilibrium in group efforts. At the equi-

librium point, XA and XB are strategically independent, i.e., neither strategic complements

nor strategic substitutes.

It is also important to notice that the Best Response Functions are independent of the

parameters in the model.

� Group i chooses E, Group j chooses N: Here, we will analyze the Best response

functions of group i, which chooses E and group j, which chooses N . For ease of exposition

we will assume that i = A and j = B. The Best Response Functions in this case are

represented in Figure 2.16. The Best Response function for group A, RE
A(XB), is the same as

in the previous case.

The Best Response Function of group B, RN
B (XA), is increasing when XB

XA
> 1+θB

1−θB
. The

term on the right hand side is positive only when αB ∈ (nB−2
nB−1

, 1]. In all other cases, the

condition is trivially satisfied.

To see this clearly, in Figure 2.16, we have plotted the Best Response Function of group B

for αB = 0, 1
2
, 1. When we increase αB, RN

B (XA), shifts inwards, because free riding increases

within group B, which causes XB to fall for the same group size nB.
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The Best Response Functions have a unique intersection and it is always at a point, where

RN
B (XA) is strictly decreasing. So, XB is a strategic substitute of XA in the neighborhood of

any Nash equilibrium in group efforts .

XA, on the other hand, is a strategic substitute to XB as, long as XB > 1
4
. So, when

XB >
1
4
, XA and XB are strategic substitutes. The Nash equilibrium in group effort levels, is

stable.

However, when XB < 1
4
, XA is a strategic complement to XB, while XB is a strategic

substitute of XA. The Nash equilibrium in group effort levels, is unstable.

� Both groups choose N: The Best Response Functions in this case are represented in

Figure 2.17. As in the previous case the Best Response Function of group B, RN
B (XA), is

strictly increasing when XB
XA

> 1+θB
1−θB

. However, now the Best Response function of group A,

RN
A (XB), is also increasing when XA

XB
> 1+θA

1−θA
. The functions intersect uniquely to yield the

Nash equilibrium in group efforts.

The functions intersect at a point, where RN
B (XA) is decreasing. Therefore, XB is a strate-

gic substitute for XA in the neighborhood of any Nash equilibrium. If, additionally at the

equilibrium we have that XA
XB

< 1+θA
1−θA

, so that RN
A (XB) is also decreasing, then XA is also a

strategic substitute for XB and the Nash equilibrium is stable.

If, however, αA ∈ (nA−2
nA−1

, nA(2−N)
(nB−nA)(nA−1)

+ 2nA(nB−1)
(nB−nA)(nA−1)

αB), the functions intersect at a point

where RN
A (XB) is increasing. Here, XA is a strategic complement to XB. In this case the Nash

equilibrium is unstable.

For this case to arise, we need both αA and αB to be sufficiently high and close to 1. One

example of such a case is where αA = 1 and αB = 1. This is shown in Figure 2.17. When

αi rises, i ∈ {A,B}, RN
i (Xj) shifts in as free riding increases within group i but RN

j (Xi) is

unaffected.

One interesting phenomenon, which arises in this case, is Monopolization of a group from

the contest. If θB
nB
> 1+θA

nA
, then the Best Response Function of group A is contained within

the Best Response Function of group B, so that they do not intersect at any point in the
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interior, where both XA > 0 and XB > 0. Then in the Nash equilibrium in efforts, group

B puts in an aggregate effort of XNN
B = 1+θA

nA
and group A members best respond with zero

effort, so that XNN
A = 0. So, we say that group A has been monopolized by group B. This

phenomenon is captured in Figure 20. In a similar manner, group B is monopolized by group

A when, θA
nA
> 1+θB

nB
.
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2.12 Appendix 3

In this Appendix we provide the complete proofs of the Propositions stated in the Extensions

of the chapter.

2.12.1 Generalized Tullock Contest Success Function

Proof of Proposition 8

Proof :

The expected payoff of individual k of group A is as follows

EUkA(E) =
1

nA

( Xr
A

Xr
A +Xr

B

−XA

)
(2.71)

The expected payoff of individual k of group B is as follows

EUkB(E) =
1

nB

( Xr
A

Xr
A +Xr

B

−XA

)
(2.72)

The following equation is the F.O.C. of members of group A

rXr−1
A Xr

B

(Xr
A +Xr

B)2
= 1 (2.73)

The following equation is the F.O.C. of members of group B

rXr−1
B Xr

A

(Xr
A +Xr

B)2
= 1 (2.74)

Equating (2.73) and (2.74) it follows that in equilibrium we muct have XEE
A = XEE

B = X.

Replacing this fact in (2.73) we obtain X = r
4
.

Of course, given that both groups put in equal amount of effort in equilibrium, we have

PEE
A = PEE

B = 1
2
.

The payoffs can be easily obtained by replacing the efforts and probabilities of winning in

the payoff function of the groups in (2.71) and (2.72). �
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Proof of Proposition 9

Proof :

The expected payoff of member k of group A is

EUkA(E) =
1

nA

( Xr
A

Xr
A +Xr

B

−XA

)
(2.75)

The expected payoff of member k of group B is

EUkB(N) =
[
(1− αB)

xkB
XB

+
αB
nB

] Xr
B

Xr
A +Xr

B

− xkB (2.76)

The following equation represents the F.O.C. of the members of group A

rXr−1
A Xr

B

(Xr
A +Xr

B)2
= 1 (2.77)

The following equation represents the F.O.C. of member k of group B

rXr−1
B Xr

A

(Xr
A +Xr

B)2
[(1− αB)

xkB
XB

+
αB
nB

] +
Xr
B

Xr
A +Xr

B

[
(1− αB)(XB − xkB)

X2
B

] = 1 (2.78)

Imposing symmetry on equation (2.78) we get

rXr−1
B Xr

A

(Xr
A +Xr

B)2
+

Xr−1
B θB

Xr
A +Xr

B

= nB (2.79)

Henceforth, we will work with equations (2.77) and (2.79). Define x = Xr
A and y = Xr

B.

Using this definition we can rewrite equation (2.77) as

rxy

XA(x+ y)2
= 1 (2.80)

Similarly equation (2.79) can be rewritten as
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rxy

XB(x+ y)2
+

yθB
XB(x+ y)

= nB (2.81)

Dividing equation (2.81) by (2.80) we obtain the following equation

XA

XB

+
XA

XB

θB
r

[
1 +

y

x

]
= nB (2.82)

Noticing that y
x

=
(
XB
XA

)r
and realigning (2.82) we get the desired result.

To prove that there exists a unique solution to equation (2.23) we define z = XB
XA

and study

the properties of the following function

y =
θB
r
zr − nBz +

(
1 +

θB
r

)
(2.83)

The function is continuous. At z = 0, y = 1 + θB
r
> 0. Also dy

dz
= θBz

r−1 − nB and

d2y
dz2

= (r − 1)θBz
r−2 < 0 as r ∈ (0, 1]. So the function is concave. The function is increasing

and concave when z <

[
θB
nB

] 1
1−r

and decreasing and concave if z >

[
θB
nB

] 1
1−r

.

To prove that y = 0 has a solution we study the limiting properties of y as z →∞.

lim
z→ ∞

θB
r
zr − nBz +

(
1 +

θB
r

)
= −∞

This follows as
(
1+ θB

r

)
is a positive constant and limz→ ∞

θB
r
zr−nBz = limz→ ∞ z

(
θB
r

1
z1−r
−

nB
)

= −∞. This is true as the terms within the brackets is by bounded below by −nB. The

idea of the proof is captured in Figure 2.19.



Chapter 2: Strategic Foundations of Prize Sharing Rules 82
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Figure 2.19: Uniqueness of z∗

�

Proof of Proposition 10

Proof :

From the previous proposition we know that XB = z∗XA in equilibrium. Replacing this

in (2.77) we get that XA = r(z∗)r

[1+(z∗)r]2
in equilibrium. And XB is obtained from XB = z∗XA.

Replacing XB = z∗XA in PA(XA, XB) =
Xr
A

Xr
A+Xr

B
we get that the equilibrium probability

of winning as PEN
A = 1

1+(z∗)r
. And the probability of winning for group B is just PEN

B =

1− PEN
A = (z∗)r

1+(z∗)r
.

The equilibrium payoffs can be obtained from the fact that ΠEN
A = PEN

A − XEN
A and

ΠEN
B = PEN

B −XEN
B .

�

The proofs of Proposition 11 and 12 are skipped because are same as the proofs of Propo-

sitions 9 and 10.

Proof of Proposition 13

Proof :

The expected payoff of member k of group A is as follows:
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EUkA(N) =
[
(1− αA)

xkA
XA

+
αA
nA

] Xr
A

Xr
A +Xr

B

− xkA (2.84)

The expected payoff of member k of group B is as follows:

EUkB(N) =
[
(1− αB)

xkB
XB

+
αB
nB

] Xr
B

Xr
A +Xr

B

− xkB (2.85)

The following equation represents the F.O.C. of member k of group A.

rXr−1
A Xr

B

(Xr
A +Xr

B)2
[(1− αA)

xkA
XA

+
αA
nA

] +
Xr
A

Xr
A +Xr

B

[
(1− αA)(XA − xkA)

X2
A

] = 1 (2.86)

The following equation represents the F.O.C. of member k of group B.

rXr−1
B Xr

A

(Xr
A +Xr

B)2
[(1− αB)

xkB
XB

+
αB
nB

] +
Xr
B

Xr
A +Xr

B

[
(1− αB)(XB − xkB)

X2
B

] = 1 (2.87)

Imposing symmetry on (2.86) we get

rXr−1
A Xr

B

(Xr
A +Xr

B)2
+

Xr−1
A θA

Xr
A +Xr

B

= nA (2.88)

Imposing symmetry on (2.86) we get

rXr−1
B Xr

A

(Xr
A +Xr

B)2
+

Xr−1
B θB

Xr
A +Xr

B

= nB (2.89)

Henceforth we will work with equations (2.88)and (2.89). Define p = Xr
A, q = Xr

B and

z = XB
XA

. Using these definitions and dividing (2.89) by (2.88) we get

rpq + q(p+ q)θB
rpq + p(p+ q)θA

=
nB
nA

z (2.90)

Because neither group is monopolized p > 0 and q > 0 and we can divide the numerator

and denominator of LHS of (2.90) by pq to get the following equation
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r + θB + zrθB

r + θA + θA
zr

=
nB
nA

z (2.91)

Rearranging (2.91) we get that (2.25) must be satisfied along the Nash equilibrium path

where neither group is monopolized.

Now we will show that a solution to (2.25) exists and is unique. To proceed we define

x = XB
XA

and study the properties of the following function

y = nAθBx
r − nBθAx1−r − nB(r + θA)x+ nA(r + θB) (2.92)

Because neither group is monopolized x ∈ (0,∞). It is clear that the function is continuous

over its domain.

First, notice that limx→ 0 y = nA(r + θB) > 0. Also limx→ ∞ y = limx→ ∞ x
(
nAθB

1
x1−r
−

nBθA
1
xr
− nB(r + θA) + nA(r + θB) 1

x

)
= −∞. This follows as the term within the bracket is

bounded below by −nB(r + θA).

These two observations immediately imply that at least one solution to y = 0 exists. To

prove uniqueness we need some more properties of the function in (3.49).

The slope of the function (3.49) is as follows:

dy

dx
= rnAθBx

r−1 − (1− r)nBθAx−r − nB(r + θA) (2.93)

It can be easily seen from (2.93) that limx→ ∞
dy
dx

= −nB(r + θA).

To study the properties of the slope as x→ 0 we write the slope as follows:

dy

dx
= x−r

(
rnAθBx

2r−1 − (1− r)nBθA − nB(r + θA)xr
)

(2.94)

There are three separate cases which we have to consider now. We will show that in all

three cases there will exist a unique x∗ which solves y = 0.



Chapter 2: Strategic Foundations of Prize Sharing Rules 85

Case 1: 2r − 1 > 0

In this case it can be seen from (2.94) that limx→ 0
dy
dx

= −∞. The term outside the bracket

goes to ∞ and the term within the bracket is bounded below by −(1 − r)nBθA. Also recall

from (2.93) that limx→ ∞
dy
dx

= −nB(r+ θA). So the function y is negatively sloped at the end

points of the domain. The question to be answered is whether it can ever be positively sloped

or not. We prove by contradiction that dy
dx

� 0.

Suppose dy
dx
> 0. From (2.94) it is clear that it will happen when rnAθBx

2r−1 > (1 −

r)nBθA + nB(r + θA)xr. The LHS is an increasing concave function with intercept 0. The

RHS is an increasing concave function with positive intercept (1 − r)nBθA. Let us assume

that they intersect at z∗. Given that they cross at z∗ and both are increasing and concave,

it immediately follows that for all z > z∗ we have dy
dx
> 0. But this contradicts the fact that

limx→ ∞
dy
dx

= −nB(r + θA). Therefore, dy
dx

� 0.

Therefore, dy
dx
< 0 over the whole domain and y = 0 has a unique solution x∗ in this case.

Look at Figure 2.20.

y

xO

nA(r + θB)

x∗

Figure 2.20: Case: 2r − 1 > 0
Case 2: 2r − 1 < 0

In this case note in (2.94) that limx→ 0
dy
dx

=∞. Also recall from (2.93) that limx→ ∞
dy
dx

=

−nB(r + θA).

Notice that even though the slope is positive initially, i.e., rnAθBx
2r−1 > (1 − r)nBθA +

nB(r + θA)xr when x → 0, the LHS is a decreasing convex function and the RHS is an
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increasing concave function with intercept (1− r)nBθA. Therefore, they will intersect at some

x1 and dy
dx
< 0 for all x > x1. Hence, y will be a decreasing function beyond x1 and y = 0 will

therefore have an unique solution x∗. Look at Figure 2.21.

y

xO

nA(r + θB)

x∗

Figure 2.21: Case: 2r − 1 < 0

Case 3: 2r − 1 = 0

In this case (2.94) becomes

dy

dx
=

1√
x

(1

2
nAθB −

1

2
nBθA − nB(

1

2
+ θA)

√
x
)

(2.95)

Now limx→ 0
dy
dx

=∞ if nAθB > nBθA. And limx→ 0
dy
dx

= −∞ if nAθB < nBθA.

When nAθB < nBθA, the function y is negatively sloped throughout as 1
2
nAθB <

1
2
nBθA +

nB(1
2

+ θA)
√
x. The LHS is a constant. The RHS is an increasing concave function which

starts above 1
2
nAθB. Therefore dy

dx
< 0 over the whole domain and y = 0 has unique solution.

This case looks the same as Figure in 2.20.

When nAθB > nBθA, The function y is positively sloped initially. But, eventually becomes

negatively sloped. This follows by noting that there exists some s such that 1
2
nAθB <

1
2
nBθA+

nB(1
2

+θA)
√
s. This is a consequence of the fact that the LHS is a constant and the RHS is an

increasing and concave function, which is unbounded above. Therefore, dy
dx
< 0 for all x > s.

From this it follows that y = 0 will have a unique solution in this case as well. This case looks

the same as in Figure 2.21.
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�

Proof of Proposition 14

Proof :

From the previous Proposition we know that there exists a unique (x∗) = XB
XA

in equilibrium.

Therefore, we have XB = (x∗)XA in equilibrium.

Replacing this fact in the F.O.C. of group A in equation (2.88 ) we get the following

equation

r(x∗)r

(1 + (x∗)r)2
+

θA
1 + (x∗)r

= nAXA (2.96)

Solving for XA from (2.96) we get XNN
A . We get XNN

B , by solving XNN
B = (x∗)XNN

A .

Replacing XB = (x∗)XA, in PA =
Xr
A

Xr
A+Xr

B
we get that PNN

A = 1
1+(x∗)r

. And PNN
B is obtained

by solving PNN
B = 1− PNN

A .

The group payoffs can be obtained by using the computed XNN
A and PNN

A in ΠNN
A =

PNN
A −XNN

A . Similarly, ΠNN
B = PNN

B −XNN
B .

�

Proof of Proposition 15

Proof :

To prove the results we need to show that ΠEE
A > ΠNE

A and ΠEE
B > ΠEN

B for all r ∈ (0, 1].

We will show the second inequality ΠEE
B > ΠEN

B . The proof for the other will follow exactly

the same steps and is skipped. There we need to show

2− r
4
>

(z∗)r + (z∗)2r − r(z∗)r+1

[1 + (z∗)r]2
(2.97)

Consider the function of the LHS of (2.97). It is a strictly decreasing linear function of r.

It takes the value 1
2

at r = 0 and the value 1
4

at r = 1.

The function on the RHS of (2.97) takes the value 1
2

at r = 0. At r = 1 and the value it
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takes is (z∗)r

[1+(z∗)r]2
. But it can be easily verified that 1

4
> (z∗)r

[1+(z∗)r]2
for all z∗. Therefore at the

endpoints the function on the RHS lies below the function on the LHS.

If we can show that the function on the RHS is strictly decreasing in r then we can claim

that (2.97) holds for all r. That is what we do next.

Applying the Envelope Theorem we get that

dΠEN
B

dr
= − (z∗)r+1

[1 + (z∗)r]2
< 0 (2.98)

We know ΠEE
B = ΠEN

B at r = 0, ΠEE
B > ΠEN

B at r = 1. ΠEE
B is linearly decreasing in r

and ΠEN
B is also strictly decreasing in r. In light of these observations we can conclude that

∀r ∈ (0, 1], we must have ΠEE
B > ΠEN

B . We can show ΠEE
A > ΠNE

A in a similar manner. The

result is represented in Figure 2.22.

r

ΠEE
B , ΠEN

B

1
2

1
4

10

ΠEE
B

ΠEN
B

Figure 2.22: EE equilibrium
�

Proof of Proposition 16

Proof :

We provide sufficient conditions under which NN is a Nash equilibrium in G. So we will
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try to figure out the conditions under which ΠNN
A > ΠEN

A and ΠNN
B > ΠNE

B . To keep the proof

short we will only find the conditions under which ΠNN
A > ΠEN

A . We use the same method for

the other inequality and therefore skip it in the proof.

To show when ΠNN
A > ΠEN

A we have to show the following inequality.

(nA − θA)(1 + (x∗)r)− r(x∗)r

nA[1 + (x∗)r]2
>

1 + (1− r)(z∗)r

[1 + (z∗)r]2
(2.99)

Notice by using Envelope Theorem we can easily show that the function on the LHS is

strictly decreasing in r as

dΠNN
A

dr
= − (x∗)r

nA[1 + (x∗)r]2
< 0 (2.100)

Similarly, the function on the RHS is also strictly decreasing in r as

dΠEN
A

dr
= − (z∗)r

[1 + (z∗)r]2
< 0 (2.101)

Also notice that at r = 0 The function on the RHS is strictly greater than LHS, i.e.,

ΠNN
A (r = 0) < ΠEN

A (r = 0) as 2(nA−θA)
4nA

< 1
2
.

Now when ΠNN
A (r = 1) > ΠEN

A (r = 1) the functions will cross at some r1 such that for

all r ∈ (r1, 1] we have ΠNN
A > ΠEN

A . Similarly, we can find r2 when considering ΠNN
B > ΠNE

B .

Define , r∗ = max{r1, r2} and our result follows.

For example the sufficient condition is satisfied for group A when

(nA − θA) + (nA − θA − 1)(x∗)

nA[1 + (x∗)]2
>

1

[1 + (z∗)]2
(2.102)

Similarly the sufficient condition is satisfied for group B when

(nA − θA)(x∗) + (nA − 1− θA)(x∗)2

nA[1 + (x∗)]2
>

1

[1 + (y∗)]2
(2.103)

Recall from the analysis in the main chapter with r = 1, that inequalities (2.102) and
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(2.103) are satisfied when αA ∈ [αA, αA] and αB ∈ [αB, αB]. These inequalities above give us

similar restrictions on αA and αB for the general case where r ∈ (0, 1]. Look at Figure 2.23.

r

ΠNN
A , ΠEN

A

1
2

1
4

10

ΠNN
A

ΠEN
A

r1

Figure 2.23: NN equilibrium
�

2.12.2 Group Leaders Maximize Probabilities of Winning

Proof of Proposition 17

Proof :

From Proposition 1 in the chapter we get the probabilities of winning for the groups.

To prove part (A) of the proposition notice that strategy E will be a best response to E

for both groups if PEE
A > PNE

A and PEE
B > PEN

B . That will be the case when the following

two inequalities are satisfied

1

2
> 1− 1 + αA(nA − 1)

nA + 1
(2.104)

and
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1

2
> 1− 1 + αB(nB − 1)

nB + 1
(2.105)

Inequality (2.104) is satisfied as long as αA > 1
2
. Inequality (2.105) is satisfied as long as

αB > 1
2
.

To prove Part (B) notice that NN will be a Nash equilibrium as long as PNN
A > PEN

A and

PNN
B > PNE

B . That will be the case when the following two equations are satisfied

nA + nA(nB − 1)αB − nB(nA − 1)αA
N

>
1 + αB(nB − 1)

nB + 1
(2.106)

nB + nB(nA − 1)αA − nA(nB − 1)αB
N

>
1 + αA(nA − 1)

nA + 1
(2.107)

Inequality (2.106) is satisfied as long as αA 6 αA and inequality (2.107) is satisfied as long

as αB 6 αB.

To prove Part (C) notice that NE will be a Nash equilibrium if PNE
A > PEE

A and PNE
B >

PNN
B . The first inequality is satisfied as long as αA 6 1

2
. It can be seen from proof of Part

(A). The second inequality is satisfied as long as αB > αB. This can be seen from proof of

Part (B).

The proof of Part (D) is similar to proof of Part (C). �



Chapter 3

Prize Sharing Rules in Collective Contests:

When Does Group Size Matter?

3.1 Introduction

Collective contests are situations where agents organize into groups to compete over a given

prize. Such situations are quite common: funds to be allocated among different departments

of an organization, team sports, projects to be allocated among different divisions of a firm,

regions within a country vying for shares in national grants, party members participating in

pre-electoral campaigns,disputes between tribes over scarce resources.

Prizes in such contests may be purely private, e.g. money. Or the prizes may have some

public characteristic like reputation or glory for the winning team. In this chapter we focus

on purely private prizes. For prizes with public characteristics the reader may refer to Baik

(2008), Balart et al. (2016).

One essential feature of collective contests is that a groups’ performance depends on the

individual contribution of its members. Departments in universities usually receive funds de-

pending on the publication record of the department, which in turn depends on the individual

publication of its members. So the group needs to coordinate and establish some rules re-

garding its internal organization, in particular how to share the prize in case of success. In

this study we focus the prize sharing rule proposed by Nitzan (1991). The rule suggests the

92
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following way of sharing the prize within the group, if the group wins the collective contest:

(1− αi)
xki
Xi

+ αi
1

ni
(3.1)

where xki is the effort put in by the kth member of group i, Xi is the total effort of group

i and ni is the size of group i. αi is weight put on egalitarian sharing of the prize within

the group and 1− αi is the weight put on a sharing rule, which rewards higher efforts within

the group, thereby inducing intra-group competition, i.e. an outlay-based incentive scheme.

An increase in the weight on the egalitarian component increases free riding incentives in the

group members. Whereas, an increased weight on the outlay-based component incentivizes

efforts by making each members reward depend on efforts of all other members of the group.

This prize sharing rule has been extensively studied in the literature on collective contests,

see e.g. Flamand et al. (2015). The popularity of this rule lies in its intuitive appeal. It com-

bines two extreme forms of internal organization, capturing the tension between intra-group

competition and the tendency to free ride on the efforts of other group members. In the situa-

tion of a collective contest, a larger weight on the outlay-based scheme helps a group generate

higher efforts, thereby increasing their chances of winning the contest. But, higher efforts also

eat into the surplus the groups are competing for, thereby making internal competition costly.

A larger weight on the egalitarian component increases internal free riding making a group

less competitive in the contest but leaves a larger surplus to be consumed in case of success.

This is the trade-off, which the group leaders face when choosing its organizational form i.e.,

the weight he wants to put on the respective components of the prize sharing rule.

The literature on strategic choice of sharing rules see e.g. Flamand et al. (2015), allows

the leader exactly this choice. A group leader can optimally choose the weight αi for his own

group. But there are two separate strands in this literature, which differ on the restrictions

which are placed on that choice.

In one strand, the choice of shares αi is restricted to the interval [0, 1], so that the leader

can choose to reward individual efforts at most proportionally. This situation is referred to as
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the case of “bounded meritocracy” in Balart et al. (2016). In an alternate strand, the leader

is allowed to reward efforts more than proportionally by fining members, who put in lower

effort and transferring that amount to the hard working ones. In such a case the interval over

which αi is chosen is (−∞, 1] 1. This case is called “unbounded meritocracy” in Balart et al.

(2016). The literature finds that when the leaders choose the rules simultaneously, at least

one of the groups chooses not to all the weight on the outlay-based component of the prize

sharing rule in equilibrium i.e., the leader of at least one group chooses not to make the group

maximally competitive in the contest. This is irrespective of whether the rule is “boundedly

meritocratic” or “unboundedly meritocratic”.

We generalize the above literature by fixing the choice of αi to the interval [αi, 1], where αi ∈

(−∞, 1] is a parameter in the model. It can be interpreted as a social norm of competitiveness

within the groups. This social norm, just like group sizes, is taken as an exogenous property

of the groups and denotes the maximum possible competitiveness of a group. So, we can have

smaller groups with very competitive norms i.e., “small aggressive groups” or large groups with

egalitarian norms i.e., “large docile groups” etc. One can imagine such group specific social

norms to have developed through intra-group interactions in times of peace but which acts as

constraints on the group leader in times of conflict. We assume that when competing with

the other group, a leader has to respect this group specific norm while choosing how to share

the prize in case of success in the contest. In our study we make necessary adjustments and

call group i “boundedly meritocratic” if αi > 0. Otherwise, group i is called “unboundedly

meritocratic”.

The above modeling innovation allows us to unify the different strands of the literature,

so that both strands emerge as special cases in our model 2. Moreover, we are able to iden-

tify situations in which both groups choose to make their groups maximally competitive in

equilibrium of the contest game between the groups, i.e., both groups put maximal weight on

1Readers can look at Hillman and Riley (1989) for a paper where such transfers between individuals is
possible.

2Both “bounded meritocracy” and “unbounded meritocracy” are special cases in our model
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the outlay-based incentive scheme by choosing αi = αi. We call a group “hawkish” when

it chooses to put all the weight on the outlay-based scheme. Otherwise, we call a group

“dovish”.

We assume throughout that group B is at least as large as group A. We find that the

smaller group A generally chooses to be hawkish. It counters the disadvantage of having

smaller numbers in the contest by putting all the weight on the outlay-based component of

the rule, thereby generating maximum possible efforts by its group members. In other words,

the smaller group focuses exclusively on winning the contest. The larger group B, on the

other hand, is usually not hawkish. In a sense, the onus of maintenance of a larger net

surplus falls on the larger group, when αB is low enough. If it chooses to be hawkish, then it

would win the contest more often, but most of the prize would have dissipated due to large

efforts by its large numbers. It is only when αB is really high i.e., group B is sufficiently

“boundedly meritocratic”, that it too shifts to being hawkish in order to increase its chances

of winning the contest. When αB is high, free riding becomes the overriding force in group

B and larger size actually becomes a handicap. The best a larger group can do to counter

the disadvantage, is take a hawkish stance. In Proposition 20 and Corollary 2, we precisely

identify the conditions under which both groups choose to be hawkish in equilibrium. This

is an important observation as taking a hawkish stance, which increases a group’s chance of

success in the contest, seems to be a natural path for a group leader to take in a collective

contest.

Next, we focus on the welfare of the groups in the contest, specifically focusing on the

following question: When does the larger group fare worse in the contest in terms of chances

of success? The fact that larger groups may fare worse in competition with smaller ones was

first identified by (Olson, 1965) and it was named The Group Size Paradox (GSP). We find that

if smaller group A is “unboundedly meritocratic” then GSP cannot be avoided. This result

is independent of the nature of meritocracy in the larger group B. Therefore, a necessary

condition for Group B to fare better in the contest is for smaller group to be “boundedly
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meritocratic”, i.e, the smaller group should not be in a position to undo the disadvantage of

smaller numbers by being “hawkish”. The situation where the larger group fares better is

called Group Size Advantage (GSA) in this chapter.

A sufficient condition for group B to fare better in the contest is for group A to be

“boundedly meritocratic” and group B to be “unboundedly meritocratic”. In this case group

A cannot undo the disadvantage of smaller numbers by using the prize sharing rule, while the

rule imposes no constraint on the leader of the larger group B.

The most interesting case arises when both groups are “boundedly meritocratic”. Whether

group B fares better or not entirely depends on the asymmetry between the norms of comep-

titiveness across groups. If the norms are too asymmetric i.e., αA very high and αB very low,

or vice versa, then whichever group is less comeptitive does worse due to excessive free riding.

In cases of extreme asymmetry, egalitarian groups may end up getting monopolized (Ueda

(2002)).

If the norms of competitiveness are symmetric across groups, i.e.,αA and αB are very close

to each other, then whether GSP arises or not depends on whether both groups egalitarian

or both are competitive. If both groups are egalitarian i.e., (αA >
1
2

and αB >
1
2
), then GSP

occurs because free riding is the dominant force for both groups in this case and it affects

the larger group more adversely. In fact, this case corresponds precisely to the type of groups

(Olson, 1965) studied in The Logic of Collective Action. We call this class of groups Olson’s

Groups.

On the other hand, if both groups are competitive i.e., (αA <
1
2

and αB <
1
2
), then intra-

group competition is the dominant force for both groups. In such a case, having a larger group

size is an advantage and we have GSA. This class of groups are a mirror image of the type of

groups (Olson, 1965) studied 3. We call this class of groups Neo-Olson Groups.

The chapter is structured as follows. In Section 2 we discuss the relevant literature. In

Section 3 we describe the model. In Section 4 we analyze the second stage of the game, where

3(Olson, 1965), however, did not study a collective contest but focused on collective action problems within
a single group and related it to its size. But, his insight generalizes to a situation of collective contests.
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individuals make effort choices. In Section 5 we analyze the first stage of the game where

the group leaders make their choice of the sharing rule. In Section 6 we discuss when the

phenomenon of Group Size Paradox arises and when it does not. In Section 7 we provide

a few extensions of the basic model. Section 8 concludes. All proofs can be found in the

Appendix in Section 3.10.

3.2 Literature

The literature on the prize sharing rules in collective contests owes its genesis to the influential

paper by Nitzan (1991). Following its introduction the rule has become the gold standard in

the field due to the simple manner it combines two extreme forms of internal organization of

groups i.e. one form, which encourages intra-group competition and another which promotes

egalitarinism thereby reducing internal competition. To be clear, the prize sharing rule was

first analyzed in Sen (1966). But their analysis focused on the optimality of the rule in a

labour cooperative (a single group of workers). Throughout this chapter we focus on collective

contests, where two groups compete for a rent and the influence that has on how the groups

internally organize themselves.

The literature on strategic choice of sharing rules focuses on the endogenous choice of

internal organization of groups i.e. the group leaders have an option to optimally choose the

weight he wants to place on the outlay based incentive scheme, which encourages higher group

efforts by promoting internal competition. Two strands have emerged in the literature, which

differ on the restriction placed on the leaders choice parameter. In the first strand ((Baik,

1994), (Lee, 1995), (Noh, 1999), Ueda (2002)), the leaders of the groups are allowed to choose

αi on the interval [0, 1]. So the outlay-based incentive can be at most proportional to efforts,

i.e. the leaders cannot fine members who slack. The second strand (Baik and Shogren (1995),

Baik and Lee (1997), Baik and Lee (2001), Lee and Kang (1998), Gürtler (2005)), makes the

choice unrestricted , so that αi ∈ (−∞, 1].
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In both cases the larger group chooses a less outlay-based incentive scheme than the smaller

group i.e. the larger group takes a dovish stance. The reason is that there exists a trade-off

between the chances of winning the contest and the size of the surplus net of efforts, which

remains for ex post consumption. If the larger group implements maximum competition within

its group, then given the advantage of size it wins the collective contest more often but the

surplus that is left over is too small. As it turns out, the larger group optimally chooses a

dovish stance to preserve a larger portion of the surplus.

We extend the above literature by proposing the restriction on the leaders choice of αi to

be over the [αi, 1], where αi ∈ (−∞, 1] is a parameter in the model. Both strands emerge

as special cases in our model. Our analysis generalizes the literature cited above and in the

process allows us to analyze the conditions under which both groups choose to be hawkish ,

focusing just on winning the contest by putting maximal weight on the outlay-based scheme.

Additionally, we discuss conditions under which the larger group loses the contest more

often, so that Group Size Paradox (GSP) applies. Even though it is not central to the main

question addressed in this chapter, we still report the results given that this has been a primary

focus of the literature on collective contests. For example, look at (Nitzan and Ueda, 2011),

(Balart et al., 2016) and (Esteban and Ray, 2001).

3.3 Model

There are two groups A and B, of size ni, i = {A,B}, where ni ∈ {2, 3, ....}. We assume

without loss of generality that group B is at least as large as A, i.e. nB > nA. We denote the

total number of agents as N , so that N = nB +nA. All agents are assumed to be risk neutral.

Both groups compete for a purely private prize, the size of which we normalize to 1. The

groups cannot write binding contracts among themselves regarding sharing the prize. Instead

they indulge in a rent-seeking Tullock contest spending effort trying to win the contest. The

outcome of this contest depends on the aggregate effort spent by the two groups. Let xki
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denote the effort level of individual k belonging to group i, where effort costs are C(xki). For

simplicity we take C(xki) = xki. The aggregate effort of group i is Xi =
∑ni

k=1 xki.

The efforts do not add to productivity, and only determine the probability Pi(Xi, Xj) that

group i wins the contest. We assume that Pi(Xi, Xj) takes the ratio form, i.e.

Pi(Xi, Xj) =


Xi

Xi+Xj
, if Xi > 0 or Xj > 0,

1
2
, otherwise.

(3.2)

Every group has a leader, who has the authority to enforce a sharing rule that specifies how

the groups payoffs are to be shared within the group in case the groups wins the contest. Both

leaders are benevolent, maximizing the expected group payoff while making their decisions.

We assume that the group leader has access to the prize sharing rules introduced by Nitzan

(1991), which is described follows:

ski(xki, Xi;αi, ni) = (1− αi)
xki
Xi

+
αi
ni
. (3.3)

We also assume that, a group leader can choose the level of αi for his group. Given the

choice of αi, the share of the prize the kth member of group i gets is ski. It should be noted

that this prize sharing rule is feasible as
∑

k∈ni ski = 1.

The rule is a weighted average of an egalitarian component 1
ni

and a competitive compo-

nent xki
Xi

. The egalitarian component is an incentive scheme, which makes individual rewards

independent of efforts. Therefore, a positive weight on it causes individual members of a group

to free ride in effort provision. This reduces aggregate group efforts, leading to lower prize

dissipation. The result is that a larger ex post surplus can be enjoyed by the group in case of

success at the cost of lower chances of winning the contest itself.

The competitive component, on the other hand, is an outlay based incentive scheme, which

rewards more those individuals, who have put in higher efforts within the group. The resultant

competition within the group raises individual efforts, which in turn increases aggregate group
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effort. As a consequence, the chances of success in the contest increases for the group but now

most of the prize gets dissipated in costly effort provision, which reduces the ex post surplus

to be enjoyed in case of success.

In line with the literature on strategic choice of prize sharing rules, e.g. Flamand et al.

(2015), this chapter explicitly focuses on how this trade-off influences the choice of αi by the

group leader.

We assume that when choosing the weights to put on the different components of the prize

sharing rule, a leader is subject to group specific norms of competitiveness. In particular,

the leader of group i, i ∈ {A,B}, is assumed to choose αi ∈ [αi, 1], where αi ∈ (−∞, 1] 4.

In other words, the “lower bound” αi corresponds to the maximum amount of competition

that a group leader can generate within his group, i.e., the maximum weight he can place on

the outlay-based incentive component. This limit on the competitiveness, which is a feature

specific to a group, may be imagined to have developed out of long term interactions among

group members. To be clear, the restriction implies that the leader can lower competition

within the group with respect to the group norm, by choosing αi > αi. He, however, cannot

increase internal competition beyond a certain limit given by αi. In this chapter we do not

go into the sources of such group specific norms and take them as fixed. For a study on the

emergence of social norms in an experimental setting, readers may look at Grimalda et al.

(2008).

It should also be made clear at this point that these restrictions generate an interplay of

the two main forces in our model. If αi is high enough then free riding is a dominant force

within group i and a larger group size is then a disadvantage as far as chances of winning the

contest is concerned. On the other hand if αi is low enough then the force of competition is

dominates and a larger group size would be an advantage . How these different intra-group

forces play out , where two groups of different sizes and different social norms are matched in

a collective contest, is the meat of this chapter.

4In the existing literature the cases considered are αi = 0 and αi = −∞
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After group i leader chooses αi, individual k in group i chooses efforts xki to maximize his

expected utility, which is as follows:

EUki(N) =


ski(xki, Xi;αi, ni)Pi(Xi, Xj)− xki if Xi > 0, Xj > 0,

1
2ni

if Xi = Xj = 0,

0 if Xi = 0, Xj > 0.

(3.4)

It should be noted that in this case only the ratio of the individual to the total group effort

needs to be verifiable.

� Leader’s Objective: Recall that the leaders of both groups are benevolent social

planners who choose αi ∈ [αi, 1], where αi ∈ (−∞, 1], to maximize net group payoffs.

The maximization problem of leader of group i can be written as follows:

max
αi∈[αi,1]

Pi(Xi, Xj)−Xi (3.5)

Given that Pi(Xi, Xj) takes the ratio form it is straight forward to check that leader i’s

maximization problem can be re-written as follows 5:

max
αi∈[αi,1]

Pi(Xi, Xj)(1−X) (3.6)

where X = Xi +Xj.

The payoff representation in (3.6) is intuitive, and captures the trade-off inherent in the

group leader’s maximization problem. X measures the amount of prize dissipated in the

competition between the two groups. Therefore 1 − X is the surplus net of efforts, which

remains for ex post consumption in case of success. The probability with which group i wins

this net surplus is Pi(Xi, Xj). If leader of group i wants to win the contest with a higher

5Pi(Xi, Xj)−Xi = Xi

Xi+Xj
−Xi = Xi

Xi+Xj
(1−Xi −Xj) = Pi(Xi, Xj)(1−X)
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probability he has to take measures, which increase group efforts Xi. But when Xi goes up so

does X, which reduces the size of the net surplus.

� Description of the Game: Our game consists of two stages. In the first stage the

leaders simultaneously choose their respective sharing rule αi ∈ [αi, 1], i = A,B. Having

observed the choice of the sharing rules, in stage 2 all agents simultaneously decide on their

own effort levels.

We denote the equilibrium of the game σ∗ = (σ∗A, σ
∗
B).

We solve for the Subgame Perfect Nash equilibrium (SPNE) of the game described above.

3.4 Choice of Individual Efforts

In this section we characterize the Nash equilibrium effort choices of individual members

of the groups taking as given the sharing rules αA and αB, which are chosen by the group

leaders in the first stage.

Before stating the results we need to state a few definitions, which we will use throughout

the chapter.

First, we define the phenomenon of Monopolization of a group in the contest, which is well

recognized in the collective contest literature, see e.g. Davis and Reilly (1999), Ueda (2002).

Definition 8 Monopolization

A SPNE 〈α∗A, α∗B〉 is said to involve monopolization of group i, if in equilibrium group i does

not put in any effort in the contest.

Equilibrium Net Surplus and Probabilities of Success

In the following proposition we report the surplus net of effort, which remains for consumption,

i.e. 1−X, which we denote S. We also report the probabilities with which each group wins the

net surplus, Pi and Pj. Such a choice was made to keep the discussion in line with the basic
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trade-off in the model. In the Appendix we provide the relevant details. Before proceeding

we introduce the following notations:

Henceforth, we denote the surplus net of efforts as S, so that S = 1−X.6

For i, j ∈ {A,B} and i 6= j we define

χi = ni + ni(nj − 1)αj − nj(ni − 1)αi. (3.7)

χi can be interpreted as a measure of the competitiveness of group i relative to group j. Note

that χi is increasing in αj and decreasing in αi. When αj is large relative to αi, group j is

relatively less competitive, which gives group i an advantage in the contest. On the other

hand when αi is large relative to αj, group j wins the contest more often. In fact, as we see

in the following Proposition, the probability with which group i wins the contest is directly

proportional to χi.

Proposition 19

Consider i, j ∈ {A,B} and j 6= i.

(A) If χi 6 0 7 then group i is monopolized by group j. In the unique intra-group symmetric

Nash equilibrium of the effort subgame

(a) The net surplus in the contest is SiM =
1+αj(nj−1)

nj
8.

(b) The probabilities of winning are (P iM
i , P iM

j ) = (0, 1).

(B) If χi > 0 and χj > 0 then neither group is monopolized. In the unique intra-group

symmetric Nash equilibrium of the effort subgame

(a) The net surplus in the contest is SNM =
1+αj(nj−1)+αi(ni−1)

N
9.

6This stands for the effective prize over which the contest takes place. See (3.6).
7When χi 6 0 then χj > 0 as χi + χj = N
8The first component in the superscript stands for the group which is monopolized and the second stands

for the word “monopolized”
9The first component in the superscript stands for the word “neither” and the second stands for the word

“monopolized”
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(b) The probabilities of winning are (PNM
i , PNM

j ) = (χi
N
, 1− χi

N
).

We next discuss the results summarized in Proposition 19

� Group i is Monopolized: When χi 6 0 group i retires from the contest. This is exactly

the same monopolization condition found by Ueda (2002). Furthermore, χi 6 0 when we have

a low αj and a high αi. Therefore, group j members are extremely active due to individual

incentives to exert effort, whereas free riding is such a dominant force in group i that individual

efforts fall to zero. The effort group j exerts in this case is X iM
j =

(nj−1)(1−αj)
nj

, which leaves a

net surplus of SiM =
1+αj(nj−1)

nj
. SiM increases in αj because the effort necessary to monopolize

group i decreases with αj, which leaves more surplus more consumption of group j.

� Neither group is Monopolized: This case arises when χi > 0 and χj > 0, which

immediately implies αi and αj cannot be too asymmetric. Notice that the probability that

group i wins is directly proportional to χi. For χi to be high we need a αi to be low relative

to αj, i.e., members of group i are relatively more active than members of group j.

It can be seen that the net surplus SNM is increasing in both αi and αj. This follows

from the fact that an increase in αi or αj exacerbates free riding within the groups, causing

aggregate efforts in the contest to fall.

Proposition 19 helps us set up the optimization problems that the leaders face in the first

stage. We now move to the first stage and characterize the Nash equilibrium.

3.5 Choice of Sharing Rules by Group Leaders

In this section we analyze the Nash equilibrium choice of the group leaders in the first stage.

This leads us to the main result of this chapter.

First, we define the stances taken by the group leaders in equilibrium. Group i is called

hawkish if in equilibrium its leader chooses to implement maximal competition by putting all

the weight on the outlay-based component of the prize sharing rule, i.e., αi = αi . A group i

is called dovish if in equilibrium its leader puts some weight on the egalitarian component of
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the prize sharing rule, thereby not implementing maximum group efforts, i.e. αi > αi.

It should be made clear that in this chapter the terms hawkish and dovish are not meant in

the usual sense of extremes on a uni-dimensional scale. Hawkish and dovish behavior are with

respect to group specific norms of competitiveness. A “hawk” focuses entirely on winning the

contest by choosing αi = αi. A “dove”, on the other hand, does not entirely focus on winning

the contest. It puts some attention on maintaining a larger net surplus by choosing αi > αi.

Definition 9

We call group i hawkish iff its leader chooses αi = αi in equilibrium. Otherwise, we call group

i dovish.

3.5.1 Leader’s Optimization Problem

In view of Proposition 19, we can set up the optimization problem of the group leaders noted

in (3.6). We look at how the leader of group i optimally chooses αi, given a fixed αj.

If leader of group i wants to monopolize group j then he has to choose αi such that χj 6 0.

This observation follows from part (A) in Proposition 19. In that case we can write down his

optimization problem as follows:

max
αi∈[αi,1]

1 + αi(ni − 1)

ni
s.t. χj 6 0 (3.8)

The solution to this problem is simple. As both the objective function and χj are increasing

in αi the leader will just set αi such that χj = 0 for given αj. We now define a cutoff αjMi and

call it the Monopolization cutoff. αjMi solves χj = 0 at αj = αj.

Definition 10 Monopolization Cutoff (αjMi )

For i, j ∈ {A,B} and j 6= i, the Monopolization Cutoff αjMi is defined as follows:

αjMi = − 1

ni − 1
+

(nj − 1)ni
(ni − 1)nj

αj.
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The cutoff αjMi is such that if group j chooses αj = αj, then the best choice of group i if

it wants to monopolize group j is αjMi .

Now we consider the case where neither group is monopolized, i.e., χi > 0 and χj > 0. In

that case using part (B) of Proposition 19 and (3.6) we can write the optimization problem of

the leader of group i as follows:

max
αi∈[αi,1]

(
χi
N

)(
1 + αj(nj − 1) + αi(ni − 1)

N

)
s.t. χi > 0 and χj > 0 (3.9)

The solution to problem (3.9) is non- trivial as χi is decreasing in αi but the second term in

brackets, which is the net surplus SNM , is increasing in αi. So to solve it we set up the Kuhn

Tucker problem. The Lagrangian of group i given i, j ∈ {A,B} and j 6= i, can be written as

follows:

Li =

(
χi
N

)(
1 + αj(nj − 1) + αi(ni − 1)

N

)
+ λi

(
αi − αi

)
(3.10)

Notice that we ignore the constraints αi 6 1 and χi > 0 and χj > 0 while setting up the

Lagrangian. We check later that they are satisfied. Maximizing the function in (3.10) leads

to a few cutoffs we need to define. These cutoffs help us delineate the parametric space by

which group’s constraint binds and which group’s does not in equilibrium.

Definition 11 Group i-Binding Cutoff (αiBj )

For i, j ∈ {A,B} and j 6= i, Group i-the Binding Cutoff αiBj
10 is defined as follows:

αiBj =
nj − ni

2ni(nj − 1)
(1 + αi(ni − 1)).

The Group i-Binding Cutoff αiBj arises from the Kuhn-Tucker conditions associated with

Li and Lj in (3.10). It arises when we assume that αj > αj and αi = αi, so that λj = 0 and

10The first component of the superscript represents the group whose constraint binds and the second denotes
the word binds
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λi > 0. The cutoff helps us identify the parametric region where groups i’s constraint will

bind but group j’s will not in equilibrium11.

Definition 12 Non-Binding Cutoffs(αNNi )

For i, j ∈ {A,B} and j 6= i the Non-Binding cutoffs are defined as follows:

αNNi =
ni − nj
N(ni − 1)

.

.

The Non-Binding cutoffs, αNNi and αNNj , are obtained from the Kuhn-Tucker conditions

associated with Li and Lj in (3.10). The cutoff arises when we assume that group i chooses

αi > αi and group j chooses αj > αj, so that λj = 0 and λi = 0 This cutoff helps us identify

the parametric zone where neither groups constraints bind in equilibrium12.

Proposition 20

∀ i, j ∈ {A,B} and j 6= i

(a) Group i is monopolized in a Nash equilibrium iff αi ∈ [ 1
ni−1

, 1] and αj ∈ (−∞, αiMj ].

In this case any combination of prize sharing rules (α∗i , α
∗
j), such that α∗i > αi and

α∗j = − 1
nj−1

+
(ni−1)nj
(nj−1)ni

α∗i is a Nash equilibrium.

(b) In the unique Nash equilibrium group i is hawkish and group j is dovish iff αi ∈

[αNNi , 1
ni−1

) and αj ∈ (−∞, αiBj ). The equilibrium prize sharing rules are (α∗i , α
∗
j)=(αi, α

iB
j ).

(c) In the unique Nash equilibrium both groups are dovish iff αi ∈ (−∞, αNNi ) and αj ∈

(−∞, αNNj ). The equilibrium prize sharing rules are (α∗i , α
∗
j)=(αNNi , αNNj ).

(d) In all other cases in the unique Nash equilibrium both groups are hawkish. The equilib-

rium prize sharing rules are (α∗i , α
∗
j)=(αi, αj).

11Derived in Lemma 10 and 11
12Derived in Lemma 9
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Next we discuss the results summarized in Proposition 20

� Group i Monopolized: It is clear from the bounds stated in part (a) of the result that for

group i to be monopolized in equilibrium, αi has to be sufficiently high and αj sufficiently low

(see Figure 3.1). Furthermore, αiBj and αiMj intersect at αi = 1
ni−1

, so that for all αi <
1

ni−1
we

have αiMj < αiBj . Here group j has the option to monopolize group i by choosing αj = αiMj .

But group j chooses not to do that because by choosing αj = αiBj , which is higher, it can

maintain more of the net surplus and give up only a tiny chance of winning upto group A.

The choice αj > αj, implies group j chooses more free riding within its group, which allows

group A to survive in the contest. Of course, the benefits of a larger net surplus dominates

the cost of decreased chances of winning for group j in this case.

In case αiMj > αiBj , it is again optimal for group j to choose the higher of the two in

equilibrium, in order to save net surplus. But at αj = αiMj , group i is monopolized. Given

that group i will be monopolized at αj = αiMj , any αi > αj is best response for group i, as

at all such choices it gets zero payoff. For group j on the other hand, the best response is to

choose a αj, which is consistent with αiMj , given whatever choice group i makes.

� Group A is hawkish, Group B is dovish: From part (b) of the proposition it is clear

that this case arises when both αA and αB are low, so that both groups are potentially very

competitive (see Figures 3.1 and 3.2). Because both groups are sufficiently competitive, having

a larger size is an advantage in the contest. But again, because both groups are competitive,

it is more difficult for group A to compete against the larger group B. So the optimal choice

of group A is to be maximally competitive by choosing a hawkish stance. In other words,

group A focuses entirely on its chances of winning instead of saving net surplus.

The larger group B , on the other hand, chooses to save some surplus by choosing αB =

αiBB > αB. It has the competitive advantage of a larger size. But the larger size also means

a lot of surplus will be dissipated if it focuses primarily on winning the contest by choosing a

hawkish stance. So, group B leader compromises on its chances of winning by choosing to be

dovish in order to save some net surplus.
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Similarly, we can analyze the case, where group B is hawkish and group A is dovish.

This case arises when group B is “boundedly meritocratic” but group A is “unboundedly

meritocratic”. This being the case, free riding is the dominant force within group B, which

makes its larger size a disadvantage. On the other hand, the smaller hand has very competitive

norms. Given the larger group is not much of a competition for it, group A shifts focus to

saving some net surplus by taking a dovish stance.

� Both groups are dovish: As can be seen in part (c) of the result, this case arises when

both αA and αB are extremely low, so that both groups have extremely competitive norms.

If either group focuses entirely on chances of winning by taking a hawkish stance, then a lot

of surplus will be lost in costly efforts. Hence, both groups compromise on chances of winning

by shifting some attention to saving net surplus.

� Both groups are hawkish: This is the main result of the chapter and is succinctly

summarized in Corollary 2. Look at Figure 3.2.

In this case both groups choose to be hawkish, i.e. both focus on winning the contest instead

of trying to save net surplus. This case arises when group B is “boundedly meritocratic”. The

smaller group A could be “boundedly meritocratic” or “unboundedly meritocratic”.

This case arises when social norms are such that a larger group size is a disadvantage

for group B, as free riding is the dominant force within it. Group B tries to counter that

disadvantage by choosing the lowest possible αi and making its group maximally competitive

in the contest.

For the smaller group on the other hand, the numbers are still a disadvantage. So, ir-

respective of the degree of meritocracy in its norms it tries to counter the disadvantage of

smaller numbers by choosing hawkish stance.

This situation arises, when social norms of both groups are such that group sizes are

a disadvantage. Hence both groups exclusively try to maximize their winning chances by

choosing αi = αi.

This is main observation of this chapter. We have clearly identified the circumstances



Chapter 3: Prize Sharing Rules and Group Sizes 110

under which both groups will be hawkish, which seems to be a natural stance to take in a

situation of pure conflict. This has not been identified in the literature til now. It is succinctly

summarized in the following corollary of Proposition 20.

Corollary 2

In the unique Nash equilibrium both group A and group B are hawkish iff αB > max{αAMB , αABB }

and αA > max{αBMA , αBBA }

Corollary 2 provides a lower bounds on egalitarianism, which ensure that both groups will

choose to be hawkish in equilibrium. As mentioned before, it is an important observation

because in the context of group conflicts, the natural path for a group leader to follow would

be to try and maximize chances of winning by generating maximal efforts. In other words, it

precisely captures the circumstances under which social norms have a bite for both groups.

The result can be seen clearly in Figures 3.1 and 3.2.

Intuition: This result points to the fact that for the larger group B to entirely focus on

winning the contest by taking a hawkish stance, it needs to have sufficiently egalitarian norms,

which makes free riding the dominant force within it. In that case, having larger numbers is a

disadvantage, which can only be countered by taking a hawkish stance. If it had competitive

norms, larger numbers would be an advantage in terms of winning the contest but would

dissipate a lot of the surplus if it tried to generate maximal efforts. So, in such a case, the

larger group leader takes a dovish stance, which reduce its efforts and chances of winning

below maximum but retains a larger amount of surplus, which can be had in case of success.

For the smaller group, on the other hand, numbers are a disadvantage. So it generally takes

a hawkish stance to counter that disadvantage by taking a hawkish stance.

Before concluding this section, let us take a closer look at Figure 3.2. In Figure 3.2 let us

consider the polygon ABCDEF . This is the polygon of Nash equilibrium choices made by the

leaders. If (αA, αB) lies inside or on the boundary of the polygon then the Nash equilibrium

is (α∗A, α
∗
B) = (αA, αB). If (αA, αB) lies outside the polygon then the Nash equilibrium is the

nearest point on the boundary closest to it.
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We conclude this section by summarizing the main takeaways. Firstly, we find that the

smaller group generally takes a “hawkish” stance in the contest. The larger group, however,

chooses a “hawkish” stance only in cases where it has sufficiently egalitarian norms, i.e.,

the incentive to free ride is so high within the group that larger numbers are actually a

disadvantage. When it has sufficiently competitive internal norms, the larger group chooses

a “dovish” stance to reduce its efforts and save surplus, which can be consumed ex post in

case of success. But, the main observation is made in Corollary 2, which precisely identifies

conditions under which both groups take a “hawkish” stance. Even though adoption of a

“hawkish” stance by all participating groups seems to be the most natural thing to do in a

purely competitive situation like ours, the conditions required for it to happen had not been

identified in the previous literature.

3.6 Equilibrium Characterization

In this section we characterize the subgame perfect Nash equilibrium (SPNE) of the whole

game. In Propositions 19 and 20, we characterized the Nash equilibrium of stage two and one

of the game respectively. Now, we use the two propositions to characterize the (SPNE) of the

game. We denote χi at (αA, αA) as χ
i
.

Proposition 21

(A) If group i is monopolized, then in the SPNE

(a) The net surplus in the contest is SiM = αi(ni−1)
ni

13.

(b) The probabilities of winning are (P iM
i , P iM

j ) = (0, 1).

(B) If neither group is monopolized, then in the SPNE

(1) If both groups are dovish then

13The first component in the superscript is the group which is monopolized and the second is the the word
monopolized
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(a) The net surplus in the contest is SNN = 1
N

.

(b) The probabilities of winning are (PNN
i , PNN

j ) = (
nj
N
, ni
N

).

(2) If group i is hawkish but group j is dovish then

(a) The net surplus in the contest is SiB =
1+αi(ni−1)

2ni
.

(b) The probabilities of winning are (P iB
i , P iB

j ) = (
1−αi(ni−1)

2
,

1+αi(ni−1)

2
).

(3) If both groups are hawkish then

(a) The net surplus in the contest is SB =
1+(nA−1)αA+(nB−1)αB

N
.

(b) The probabilities of winning are (PB
i , P

B
j ) = (

χ
i

N
,
χ
j

N
).

We next discuss the results summarized in Proposition 21.

� Group i is Monopolized: This case arises when χi 6 0 as can be seen from Proposition

19. Group j’s best response to any αi is to choose αj which solves χi = 0. The effort

is X iM
j = 1 − αi(ni−1)

ni
, which leaves a net surplus SiM = αi(ni−1)

ni
. The effort required to

monopolize group i is decreasing in αi as it easier for group j to crowd out group i, when free

riding has increased within it. Therefore, the net surplus is increasing in αi.

Given that αi is high enough in this case, means that free riding is the dominant force in

group i in this case. If now group i gets larger still, it becomes easier to monopolize group i

as free riding will increase. Therefore, net surplus is rising in ni as well.

Next, we focus on cases, where neither group is monopolized.

� Both groups are dovish: Both groups are dovish means that in equilibrium αi > αi

and αi > αi. When both groups take a dovish stance, the total effort in equilibrium is

XNN = 1 − 1
N

, which leaves a net surplus SNN = 1
N

. Because neither constraint binds, the

probabilities of winning and net surplus are independent of αi and only depends on group

sizes. In this case only groups sizes matter, i.e. social norms have no bite.

Given that both groups get to choose the globally best rules in this case, the only difference

which applies between groups is one due to sizes. Increasing the size of group i decreases the

effort of group i due to increased free riding. Efforts are strategic substitutes here and so the
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effort of group j goes up. But aggregate effort increases, thereby lowering net surplus SNN .

However, as the effort of group i falls, the probability of group i winning the contest goes

down.

� Group i is hawkish, Group j is dovish: This case arises when in equilibrium αi = αi

and αi > αi. In this case the aggregate effort in the Nash equilibrium is X iB = 1
2

+
(ni−1)(1−αi)

2ni
,

which leaves a net surplus SiB = 1
2
− (ni−1)(1−αi)

2ni
. When αi rises, the effort of group i decreases

due to increased free riding. The effort of group j rises as efforts are strategic substitutes.

Aggregate efforts decline and so the net surplus rises as αi rises. As effort of group i decreases,

the probability that group i wins goes down with αi.

When ni increases, aggregate effort increases, thereby reducing the net surplus. When

αi < 0, effort of group i rises with ni increasing its chances of winning. αi = 0 denotes

the cutoff above which the force of free riding dominates the force of competition in group i.

Therefore, in terms of payoffs, larger numbers are a disadvantage for group i when αi > 0 and

is an advantage otherwise.

� Both groups are hawkish: This case arises when in equilibrium αi = αi and αi =

αi. The aggregate effort level XB is declining in αA and αB due to increased free riding.

Therefore, the net surplus SB increases in αA and αB. As αi rises free riding in group i

rises and so effort of group i falls. Unless both αA and αB are close to 1, efforts are strategic

substitutes, so that when XB
i rises, XB

j falls. However, irrespective of whether Xj is a strategic

complement or substitute to Xi, it can be easily verified that the aggregate efforts decline with

αi. Furthermore, the probability of group i winning decreases in αi and increases in αj.

It should be noted that the efforts are higher when both groups are “doves” than when both

groups are “hawks”. This happens due to the way we have defined hawkish and dovish behavior

in this chapter. A group chooses a hawkish stance in equilibrium when it has egalitarian norms

and a dovish stance when it has competitive norms. If a group is egalitarian then free riding

is the dominant force within it. On the other hand, if a group has competitive norms then the

dominant force is that of internal competition. Even though the groups choose dovish stances
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under competitive norms, the reduction in efforts is not to the extent that it falls below the

efforts chosen by hawkish groups, which have egalitarian norms.

3.7 When does GSP occur?

In this section we turn to the question of welfare of the groups in the collective contest. We

focus on the phenomenon of Group Size Paradox (GSP), which denotes situations in which

the bigger group fares worse than the smaller group in the contest. In particular we link

the incidence of GSP to whether the groups are “boundedly meritocratic” or “unboundedly

meritocratic”. Even though GSP has been a primary focus of the literature on collective

contests, e.g. (Nitzan and Ueda, 2011), (Balart et al., 2016), there is no paper we know of

which analyzes how group specific social norms affect the welfare of the groups.

Definition 13

The group size paradox (GSP) occurs in equilibrium if the bigger group wins the contest with

a lower probability i.e. PB < PA. If the bigger group has at least as much chance to win the

contest as the smaller group i.e., PB > PA, then we say group size advantage (GSA) occurs

in equilibrium.

There is no loss in defining GSP in terms of probabilities of success. We could have

alternatively defined it in terms of group efforts or payoffs, as all of them are equivalent in

this framework.

Next we define a cutoff, which we will need in the next proposition.

Definition 14 GSP Cutoff (αGSPB )

The GSP cutoff αGSPB is defined as follows:

αGSPB =
nB − nA

2nA(nB − 1)
+

(nA − 1)nB
(nB − 1)nA

αA.
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This cutoff is obtained by checking when PBB
B > PBB

A i.e. when it the case that group B

wins the contest with a higher probability, where both groups are hawkish (Proposition 21).

Proposition 22

GSP occurs iff αA < 0 or αB > αGSPB .

We next discuss the result summarized in Proposition 22 by breaking it up into three

different cases.

� Smaller group is “unboundedly meritocratic” (αA < 0):

In this case the smaller group can choose to put a larger than proportional weight on the

competitive component of the rule. Allowing the smaller group this freedom allows it to counter

the disadvantage of having smaller numbers in the collective contest. This is irrespective of

whether the larger group is “boundedly meritocratic” or “unboundedly meritocratic”.

If αB > 0 then group B is “boundedly meritocratic”. Being larger and “boundedly merito-

cratic” is doubly disadvantageous for group B. Essentially, group B contains a large number

of free riders. Moreover, it does not have enough freedom to counter the force of free riding by

choosing a rule, which rewards efforts more than proportionally. Therefore, the larger group

always fares worse in this case.

If, on the other hand, group B is also “unboundedly meritocratic”, so that αB < 0, it faces

the trade off between winning the contest and saving net surplus because it is larger. Group

A being smaller does not face this trade off. It is optimal for group B to try and save net

surplus by taking a dovish stance. In the process, group B ends up doing worse than group

A, as the dovish stance increases free riding in it.

Therefore, αA = 0 captures the cutoff level of competitiveness, such that below it group A

is competitive enough to outdo the bigger group. In other, words group A being “boundedly

meritocratic” is a sufficient condition for GSP to occur.
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� Smaller group is “boundedly meritocratic” (αA > 0) and larger group is “un-

boundedly meritocratic”(αB < 0):

In this case the larger group has the advantage of rewarding efforts in its group more

than proportionally, thereby being in a position to generate substantial efforts from its larger

numbers. So it is in an advantageous position vis a vis the smaller group both with respect

to size and potential level of competitiveness and hence efforts. Therefore, in equilibrium it

fares better than the smaller group. We call this situation Group Size Advantage (GSA). Even

though group B is dovish, the fact that group A is “boundedly meritocratic”, allows it to fare

better than group A in equilibrium.

� Both groups are “boundedly meritocratic” (αA > 0 and αB > 0) :

This case, where both groups are “boundedly meritocratic” turns out to be the most

interesting one. What turns out to be important is the degree of asymmetry of the norms of

competitiveness across the groups. If the asymmetry is substantial, then the group with more

egalitarian norms does worse unequivocally.

If the norms of competitiveness are relatively symmetric across groups, i.e. αA and αB

are close to each other 14, then what determines the occurrence of GSP is whether both

groups have egalitarian norms or both groups have competitive norms. Given that norms of

competitiveness are symmetric across groups, what creates the difference between the groups

is their relative sizes. But, the difference in sizes operate differently depending on whether

both groups have competitive norms or both have egalitarian norms. Look at Figure 3.3.

If both groups are egalitarian i.e., αB > 1
2

and αA > 1
2
, then the dominant force is one

of free riding in both groups. Therefore, having a larger group is a disadvantage in this case.

So, group B does worse than group A and GSP operates. Incidentally, this case perfectly

characterizes the type of groups Olson (1965) talked about in The Logic of Collective Action

. Olson (1965) 15 studied the case where the norms of competitiveness were symmetric across

14In Figure 3.3 the idea of relative symmetry is captured by drawing the 45◦ line and looking at clusters of
αA and αB around it

15To be preciseOlson (1965) studied the issue of free riding in collective action with only one group. But his
conclusions generalize to the collective contest scenario.
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groups. Specifically, he focused on the case of full egalitarianism, i.e., αA = 1 and αB = 1,

making the force of free riding maximal within both groups. With that situation in mind, he

reached the conclusion that larger numbers are not ideal for successful collective action. We

show that the force of free riding dominates as long as αB >
1
2

and αA >
1
2
, thereby providing

a precise characterization of the types of groups, which were the focus of Olson (1965). We

call this collection of groups Olson’s Groups.

On the other hand, if both groups are sufficiently competitive i.e., 0 6 αB < 1
2

and

0 6 αA < 1
2
, then the competitive force dominates. In such a case having larger numbers

is an advantage and group B fares better, so that GSA operates. Olson (1965) spoke at

length about how “selective incentives” could be used to outdo the force of free riding, making

collective action possible in larger groups. This case provides a perfect characterization of

such a situation. The norms being symmetric across groups, only group sizes matter. Here

the “selective incentives”, allows the larger group to overcome the force of free riding and fare

better than the smaller group. We call the collection of groups with equally competitive norms

i.e., 0 6 αB <
1
2

and 0 6 αA <
1
2
, the Neo-Olson Groups. Look at Figure 3.3.
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3.8 Extensions

In what follows we extend the basic model in two directions. First, we consider the Generalized

Tullock Contest Success Function and verify whether the basic results of the main model go

through or not. Secondly, we consider the case where the group leaders are actually maximizing

the probability of winning the contest instead of group payoffs.

3.8.1 Generalized Tullock Contest Success Function

In this section we consider the Generalized Tullock Contest Success Function and try to

replicate the main results of the paper under it. The Generalized Tullock Contest Success

Function which is as follows:

Pi(Xi, Xj) =


Xr
i

Xr
i +Xr

j
, if Xi > 0 or Xj > 0,

1
2
, otherwise.

(3.11)

We will be assuming that r ∈ (0, 1] throughout to rule out the possibility of Increasing

Returns to Scale (IRS).

Second Stage Choices

The stage 2 choice of efforts is exactly the same as the NN regime of in Chapter 2 and

the equation which needs to be satisfied in equilibrium is provided in Proposition 13. In

the following result we state the efforts, probabilities and payoffs in a form that makes our

subsequent calculations easier.

Proposition 23

In any Nash equilibrium of the effort subgame, where neither group is monopolized

(1) The efforts of the groups are
(
XNN
A , XNN

B

)
=
( r(x∗)r+(1+(x∗)r)θA

nA[1+(x∗)r]2
, (x∗)r(r+[1+(x∗)r]θB)

nB [1+(x∗)r]2

)
.

(2) The probabilities of winning are
(
PNN
A , PNN

B

)
=
(

1
1+(x∗)r

, (x∗)r

1+(x∗)r

)
.
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(3) The group payoffs are
(
ΠNN
A ,ΠNN

B

)
=
( (nA−θA−r)PNNA +rPNNA

2

nA
,

(nB−θB−r)PNNB +rPNNB
2

nB

)
.

This result extends Proposition 19 to the case, where r < 1.

The next result shows that the probabilities of winning PNN
i decreases with αi. Therefore if

group leaders were maximizing probabilities of winning we would have αA = αA and αB = αB

in a Nash equilibrium of the first stage choice by group leaders.

Proposition 24

dPNNi

dαi
< 0 for i = A,B.

Like in the main model, where r = 1 the probability of winning for group i is decreasing

in αi when r < 1. The reason is and increase in αi only increases incentives to free ride within

group i, which reduces its chances of winning the contest.

First Stage Choices

In this section we study the problem where group leaders maximize their expected group

payoffs subject to the constraint αi > αi, i = A,B.

Proposition 25

In a SPNE

(1) If αi 6 −
1−r+2rPNNi

ni−1
, then group i will be dovish.

(2) If αi > −
1−r+2rPNNi

ni−1
and −dPNNi

dαi
>

(ni−1)PNNi

(ni−θi−r)+2rPNNi
at x = x∗, then group i will be

hawkish.

This result provides sufficient conditions for the groups to behave in a hawkish or dovish

manner in equilibrium. Even though they are not necessary conditions, the result does help

us put bounds on αi, which will make the groups behave in a particular manner.



Chapter 3: Prize Sharing Rules and Group Sizes 123

3.8.2 Group Leaders Maximize Probabilities of Winning

In what follows we analyze whether group leaders behave in a hawkish or dovish manner in

equilibrium, when their objective is to maximize the probability of winning the contest rather

than group payoffs.

We know from Proposition 9 that when neither group is monopolized the probability of

winning for group i is as follows

PNM
i =

ni + ni(nj − 1)αj − nj(ni − 1)αi
N

(3.12)

It can be observed in equation (3.12) that the probability of group i winning is strictly

decreasing in αi. Therefore, if the objective of group i leader is to maximize the probability

of his group winning the contest then he should always choose αi = αi, i.e., he should always

behave in a “hawkish” manner in equilibrium. This is not surprising as “ hawkish” behavior

increases probability of winning at the expense of surplus. Therefore, if the primary objective

is to win the contest there is no reason for any group leader to take a “dovish” stance.

In case group i is monopolized the probability of winning of group i is 0 and group j is 1.

The choice of αi is immaterial to the outcome. Group j will choose αj such that PNM
i = 0 in

equation (3.12).

3.9 Conclusion

In this chapter we generalized the prize sharing rule proposed by Nitzan (1991) in the context

of collective contests. We propose a way to model group specific norms of competitiveness

and then analyze how such internal norms affect a group’s chances in external conflict. The

modeling innovation allowed us to characterize situations in which both groups would choose

focus entirely on winning an external conflict i.e. both group take the hawkish stance. This

feature despite being the most natural thing to expect in a situation of conflict, had been

overlooked in literature till now.



Chapter 3: Prize Sharing Rules and Group Sizes 124

We find that the smaller group A generally chooses to be hawkish. For group B to also

behave in a hawkish manner, it has to be the case that it is sufficiently “boundedly merito-

cratic” i.e., αB > 0 and high enough. This allows us to identify types of group conflicts, where

both groups take the extremest stance possible in order to maximize the likelihood of success

in the contest.

We also provide the conditions under, which GSP occurs. We find that group A being “un-

boundedly meritocratic” is a sufficient condition for GSP to occur. If group A is “boundedly

meritocratic” and group B is “unboundedly meritocratic” then larger group size is an advan-

tage for group B and it fares better than the smaller group. If both groups are “boundedly

meritocratic”, then whether GSA applies or GSP depends critically on whether the norms are

symmetric across groups or not. If both group’s norms are symmetric and competitive, then

having a larger group is an advantage and GSA applies. If both group’s norms are sufficiently

egalitarian then free riding is the dominant force in both groups. In that case, being larger in

size is a disadvantage and therefore GSP applies.

Even though the modeling innovation of imposing restrictions on the prize sharing rule

allows us to clarify when group sizes matter and when social norms matter, what remains to

be understood is where such social norms themselves come from. Given that these restrictions

are interpreted as norms of competitiveness in surplus division within a group, modeling how

such norms arise as a function of economic conditions a group faces in times of peace or how

such norms relate to group sizes, are interesting questions that are left for future research.



Chapter 3: Prize Sharing Rules and Group Sizes 125

3.10 Appendix 1

To prove Proposition 21 we have to first set up the individual effort choice problem of group

members in stage two of the game. Then we propose and prove a set of Lemmas which help

us prove the result.

3.10.1 Individual Effort Choice Problem

Taking as given (αA, αB) chosen by the group leaders in stage one of the game, the payoff of

the kth member in Group A is given as follows:

πkA(XA, XB) =
XA

XA +XB

[(1− αA)
xkA
XA

+
αA
nA

]− xkA (3.13)

Similarly the payoff of the kth member of Group B is as follows:

πkB(XA, XB) =
XB

XA +XB

[(1− αB)
xkB
XB

+
αB
nB

]− xkB (3.14)

Both (3.13) and (3.14) are continuous except at (XA, XB) = (0, 0). The functions are

concave in xki. for i = A,B.

We can compute the Nash Equilibrium in individual efforts by examining the First Order

Conditions of (3.13) and (3.14).

We ignore the constraint 0 6 xki 6 1 while solving the problem and check later that

they are indeed satisfied. We characterize within group symmetric Nash Equilibrium in our

analysis.

Before proceeding we define the sets Ni = {1, 2...ni} for i = A,B.

First, we examine the First Order Conditions of the individual effort choice problem for

members of both the groups. The F.O.C of (3.13) w.r.t. xkA , ∀k ∈ NA is as follows:

XB

(XA +XB)2
[(1− αA)

xkA
XA

+
αA
nA

] +
XA

XA +XB

[(1− αA)
XA − xkA

X2
A

] ≤ 1 (3.15)
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Similarly, the F.O.C of (3.14) w.r.t xkB , ∀k ∈ NB is as follows:

XA

(XA +XB)2
[(1− αB)

xkB
XB

+
αB
nB

] +
XB

XA +XB

[(1− αB)
XB − xkB

X2
B

] ≤ 1 (3.16)

If (3.15) holds strictly then xkA = 0, ∀k ∈ NA. Similarly in (3.16). Both inequalities

cannot hold strictly at (xkA, xkB) = (0, 0), because it does not constitute a Nash Equilibrium.

Given the Tullock Contest Success Function at (xkA, xkB) = (0, 0), a member in one of the

groups will deviate because then his group will win the contest for sure and he will get a

share of the incremental group payoff. It can also be easily verified that the Second Order

Conditions hold.

Therefore, there are 3 mutually exclusive cases to take care of.

I CASE 1:

Inequality (3.15) holds weakly at xkA = 0, Inequality (3.16) holds with equality at some

xkB > 0.

Lemma 5

If αAnB(nA − 1) − αBnA(nB − 1) > nA then Group A is Monopolized by Group B.In the

symmetric within group Nash Equilibrium , xAMkA = 0 , ∀k ∈ NA and xAMkB = (nB−1)(1−αB)

n2
B

,

∀k ∈ NB. The aggregate effort of group B is XAM
B = (nB−1)(1−αB)

n2
B

.

Proof : If xAkA = 0, ∀k ∈ NA, then XA
A = nAx

A
kA = 0. But notice that at XA

A = 0 the L.H.S

of (3.15) is not well defined. So we will consider the limit of of L.H.S. of (3.15) as XA
A → 0.

Define xAkA = ε > 0 , ∀k ∈ NA. Then XA
A = nAx

A
kA = nAε. As nA is finite XA

A → 0 as

ε→ 0.

We need L.H.S. of (3.15) to be well defined and (3.15) to be satisfied as a weak inequality

at xAkA = ε and XA
A = nAε as ε→ 0.

We replace xAkA = ε and XA
A = nAε in (3.15) and sum it over all k ∈ NA to arrive at the

following condition:
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lim
ε→0

XA
B

(nAε+XA
B )2

+
(nA − 1)(1− αA)

(nAε+XA
B )

6 nA (3.17)

As this limit is well-defined we need the following condition to be satisfied if Group A is

to be Monopolized.

nAX
A
B > 1 + (nA − 1)(1− αA) (3.18)

At XA
A = 0, the L.H.S. of (3.16) is well defined. We sum (3.16) over all k ∈ NB, to arrive

at the following condition:

nBX
A
B = (nB − 1)(1− αB) (3.19)

For xAMkA = 0 and xAMkB = (nB−1)(1−αB)

n2
B

to be mutual best responses, both (3.18) and (3.19)

need to be satisfied. Replacing XA
B from (3.19) in (3.18) we arrive at the following condition:

αAnB(nA − 1)− αBnA(nB − 1) > nA (3.20)

Equation (3.20) needs to be satisfied if group A is to be monopolized.

�

I CASE 2:

Inequality (3.16) holds weakly at xkB = 0, Inequality 3.15 holds with equality at some

xkA > 0.

Lemma 6

If αBnA(nB − 1) − αAnB(nA − 1) > nB then Group B is Monopolized by Group A. In the

symmetric within group Nash Equilibrium , xBkB = 0 , ∀k ∈ NB and xBkA = (nA−1)(1−αA)

n2
A

,∀k ∈ NA. The aggregate effort of group A is XBM
A = (nA−1)(1−αA)

n2
A

.

Proof : The proof follows exactly the same lines as Lemma 5, but with the roles of the Groups
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reversed. Now A Monopolizes B so XBM
B = 0. We skip this proof. �

I CASE 3:

Both (3.15) and (3.16) hold with equality at some (xkA, xkB) > (0, 0)

Lemma 7

If −nA > αBnA(nB − 1) − αAnB(nA − 1) < nB, then neither group is Monopolized. In the

symmetric within group Nash Equilibrium , xNMki = 1
ni

(nj(X
NM)2 − (nj − 1)(1 − αj)X

NM)

,∀k ∈ Ni, i, j = A,B and i 6= j, where the combined contest effort of the groups is XNM =

XNM
A + XNM

B = 1+(nA−1)(1−αA)+(nA−1)(1−αA)
N

. The probability of winning for the groups is

(PNM
i , PNM

j ) = (χi
N
, 1− χi

N
).

Proof : Firstly, if none of the Groups is to be Monopolized neither Lemma 5 nor Lemma 6

can apply. The antecedent of Lemma 7 follows directly by negation of Lemma 5 and Lemma

6 .

In this case all the F.O.C.’s in (3.15) and (3.16) hold with equality.

To figure out the individual efforts in the within group symmetric Nash Equilibrium we

sum (3.15) over k ∈ NA to arrive at the following condition:

XNM
B

(XNM
A +XNM

B )2
+

(1− αA)(nA − 1)

XNM
A +XNM

B

= nA (3.21)

We sum (3.16) over k ∈ NB to arrive at the following condition:

XNM
A

(XNM
A +XNM

B )2
+

(1− αB)(nB − 1)

XNM
A +XNM

B

= nB (3.22)

Defining total effort in the collective contest as XNM = XNM
A + XNM

B and simplifying

equations (3.21) and (3.22) we obtain:

xNMkA =
1

nA
(nB(XNM)2 − (1− αB)(nB − 1)XNM),∀k ∈ NA (3.23)

and
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xNMkB =
1

nB
(nA(XNM)2 − (1− αA)(nA − 1)XNM),∀k ∈ NB (3.24)

Equations (3.23) and (3.24) are the Nash equilibrium effort levels in a within group sym-

metric equilibrium when both groups put in positive efforts in the collective contest.

Adding equations (3.21) and (3.22) we obtain:

XNM =
1 + (1− αA)(nA − 1) + (1− αB)(nB − 1)

N
(3.25)

�

Note (3.23) that PNM
A =

XNM
A

XNM = nAX
NM − (1− αB)(nB − 1)

Replacing value of XNM from (3.25) we get

PNM
A =

nA + nA(nB − 1)αB − nB(nA − 1)αA
N

=
χA
N

Similarly we can find the winning chances for group B.

Proposition 19 follows from Lemma 5, 6 and 7.

3.10.2 Leader’s Choice Problem

The last sub-section dealt with the individual effort choice problem, taking as given the choices

made by the respective group leaders. In this section, we focus on the choice problem of

the leaders in the first stage. The leaders are assumed to choose the prize sharing rules

simultaneously to maximize group payoffs. The sharing rules are subject to restrictions on

competitiveness. So the problem faced by leader of group i is as follows:

maximize
αi

Πi(αi, αj)

subject to αi 6 αi 6 1, i = A,B.
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Here Πi(αi, αj) denotes the payoff of group i. Leader of Group i takes αj as given. The

group payoffs are also a function of the group sizes ni and nj, but they are suppressed for

notational convenience.

To solve the above problem we set up the Kuhn-Tucker problem for the groups. To set-up

the Lagrangian, however, we need to figure out the group payoffs first.

Lemma 8

For i, j = A,B ,i 6= j

a)If Group i is Monopolized then,

ΠiM
i = 0 ,and ΠiM

j = 1−X iM
j

b) If neither group is monopolized then

ΠNM
i = (1−XNM)(njX

NM − (nj − 1)(1− αj))

where 1−XNM is the total rent ex-post and njX
NM − (nj − 1)(1− αj) is group i’s chance of

winning.

Proof : The payoff function of group i can be written as follows:

Πi(Xi, Xj) =
Xi

Xi +Xj

−Xi (3.26)

If Group i is monopolized then from Lemma 5 and Lemma 6 we have, X iM
i = 0 and

X iM
j > 0. Replacing in equation (3.26) we get part (a) of the Lemma.

If neither group is monopolized the from Lemma 7

XNM
i = nj(X

NM)2 − (nj − 1)(1− αj)XNM

Replacing in equation (3.26) we get the expression for the group payoffs in part (b) of the

Lemma.

�
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Now we can set-up the Optimization Problem that the leaders of the groups face. While

setting up the Lagrangian we ignore the Monopolization cases. We ignore the constraints

αi 6 1, i = A,B. We verify later that they are indeed satisfied in equilibrium.

The Lagrangian of the leader of Group A is as follows:

LA = [1−XNM ][nBX
NM − (nB − 1)(1− αB)] + λA[αA − αA] (3.27)

The Lagrangian of the leader of Group B is as follows:

LB = [1−XNM ][nAX
NM − (nA − 1)(1− αA)] + λB[αB − αB] (3.28)

λi is the Lagrangian multiplier of Group i. For ease of notation let us define θi = (ni −

1)(1− αi), i ∈ {A,B}.

The Kuhn -Tucker conditions are as follows:

dLA
dαA

= (nB − 2nBX
NM + θB)

dXNM

dαA
+ λA = 0 (3.29)

dLB
dαB

= (nA − 2nAX
NM + θA)

dXNM

dαB
+ λB = 0 (3.30)

λA > 0, αA > αA, λA[αA − αA] = 0 (3.31)

λB > 0, αB > αB, λB[αB − αB] = 0 (3.32)

We can use the Kuhn-Tucker conditions to break up the problem into four mutually ex-

clusive cases. Each case is stated as Lemmas. These set of Lemmas help us prove Proposition

20
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Neither Group’s Constraints Bind

In this case we have λA = 0 and λB = 0.

Lemma 9

If neither Group’s constraint binds then in Nash Equilibrium (α∗A, α
∗
B) = (αNNA , αNNB ) =

( nA−nB
N(nA−1)

, nB−nA
N(nB−1)

). The net surplus in the contest in equilibrium is SNN = 1
N

. The prob-

abilities of winning are (PNN
A , PNN

B ) = (nB
N
, nA
N

).

Proof :

Set λA = 0 and λB = 0 in (3.29) and (3.30)

It can be easily verified that dXNM

dαi
= −(ni−1)

N
< 0 i = A,B. Therefore, (3.29) and (3.30)

reduce to the following conditions:

nB − 2nBX
NM + θB = 0 (3.33)

and

nA − 2nAX
NM + θA = 0 (3.34)

If (3.29) and (3.30) are to hold simultaneously then the following equation must hold:

nAθB = nBθA (3.35)

From Lemma 7 we know that

XNM =
1 + θA + θB

N

Using this fact and (3.35) in (3.33), and solving we get :

θB =
(N − 2)nB

N
(3.36)
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Replacing θB from (3.36) in (3.35) we get:

θA =
(N − 2)nA

N
(3.37)

Using the definition of θi in (3.36) and (3.37), we get that in a Nash Equilibrium

(αNNA , αNNB ) = (
nA − nB
N(nA − 1)

,
nB − nA
N(nB − 1)

)

The net surplus and probabilities of winning can be obtained by replacing the Nash equi-

librium values of (αA, αB) in part (B) of Proposition 19

�

Group A’s Constraint Binds, Group B’s Constraint does not Bind

This is the case which corresponds to λA > 0 and λB = 0

Lemma 10

If Group A’s constraint binds but Groups B’s does not then in Nash Equilibrium (α∗A, α
∗
B) =

(αABA , αABB ) = (αA,
(nB−nA)(1+(nA−1)αA)

2nA(nB−1)
). The net surplus in the contest in equilibrium is SAB =

1+αA(nA−1)

2nA
. The probabilities of winning are (PAB

A , PAB
B ) = (

1−αA(nA−1)

2
,

1+αA(nA−1)

2
).

Proof :

Set λB = 0 in (3.30) and noting that dXNM

dαB
= −(nB−1)

N
< 0, the following condition is the

relevant one

nA − 2nAX
NM + θA = 0 (3.38)

Replacing XNM from Lemma 7 in (3.38) simplifying we get

NnA +NθA = 2nA(1 + θA + θB) (3.39)
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Solving for θB from (3.39)

θB =
nA(N − 2) + (nB − nA)θA

2nA
(3.40)

By definition θB = (nB − 1)(1− αB). Applying this definition and the fact that αA = αA

and simplifying the above equation we get

αABB =
(nB − nA)(1 + (nA − 1)αA)

2nA(nB − 1)
(3.41)

Therefore in this case the in a Nash equilibrium we have

(αABA , αABB ) = (αA,
(nB − nA)(1 + (nA − 1)αA)

2nA(nB − 1)
)

We, however, need to verify that λA > 0. To do that we use (3.29). We know that dXNM

dαA
=

−(nA−1)
N

< 0. Therefore to show that λA > 0 , we need to show that (nB−2nBX
NM +θB) > 0.

This is satisfied as long as

αA >
nA − nB
N(nA − 1)

= αNBA

This is the choice made by group A when none of the constraints bind in Lemma 9. This

condition delineates the zone where groups A’s constraint binds and where it does not in

equilibrium.

The net surplus and probabilities of winning can be obtained by replacing the Nash equi-

librium values of (αA, αB) in part (B) of Proposition 19

�

Group B’s Constraint Binds, Group A’s Constraint does not Bind

This is the case where we have λA = 0 and λB > 0

Lemma 11
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If Group B’s constraint binds but Groups A’s does not then in Nash Equilibrium (α∗A, α
∗
B) =

(αBBA , αBBB ) = (
(nA−nB)(1+(nB−1)αB)

2nB(nA−1)
, αB). The net surplus in the contest in equilibrium is SBB =

1+αB(nB−1)

2nB
. The probabilities of winning are (PBB

A , PBB
B ) = (

1+αB(nB−1)

2
,

1−αB(nB−1)

2
).

Proof :

The proof follows exactly the same line as the proof of Lemma 10, but now the relevant

first order condition being (3.29). Therefore, we skip the proof.

�

Both Groups Constraint Binds

This is the case where we must have λA > 0 and λB > 0

Lemma 12

If both Group A and Group B’s constraint binds then in Nash Equilibrium (α∗A, α
∗
B) = (αA, αB).

The net surplus in the contest in equilibrium is SB =
1+(nA−1)αA+(nB−1)αB

N
. The probabilities

of winning are (PB
A , P

B
B ) = (

χ
A

N
,
χ
A

N
).

Proof :

In this case α∗A = αA and α∗B = αB.

However, for this case to be valid we need to verify that λA > 0 and λB > 0. In light of

the fact that dXNN

dαi
= −(ni−1)

N
< 0, we can immediately conclude from (3.29) and (3.30) that

λi > 0 as long as (nj − 2njX
T + θj) > 0, i, j = A,B and i 6= j, where XT is given in (??).

We work with the expression (nj − 2njX
NM + θj) to find conditions under which it is

non-negative. Replacing XT in the expression we get

nj − 2nj
1 + θi + θj

N
+ θj > 0

⇒ Nnj − 2nj − 2njθi − 2njθj +Nθj > 0
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⇒ (N − 2)nj + (ni − nj)(1− αj)(nj − 1)− 2nj(1− αi)(ni − 1) > 0

⇒ 2nj(ni − 1)αi − (ni − nj)(nj − 1)αj > ni − nj

Simplifying we get that λA > 0 and λB > 0 as long as

αB >
(nB − nA)(1 + (nA − 1)αA)

2nA(nB − 1)
= αABB (3.42)

and

αA >
(nA − nB)(1 + (nB − 1)αB)

2nB(nA − 1)
= αBBA (3.43)

where αABB is the equilibrium choice of group B in the case where the constraint of group A

binds but group B does not ( Lemma 9) and αBBA is the equilibrium choice of group A in

the case where group B’s constraint binds but group A’s does not (Lemma 10). So, these

conditions cleanly delineate the zones of equilibria characterized in Lemma 9, 10 and 11.

The net surplus and probabilities of winning can be obtained by replacing the Nash equi-

librium values of (αA, αB) in part (B) of Proposition 19

�

Having exhaustively analyzed the cases where neither group is monopolized, now we bring

in monopolization to check when a group is monopolized in equilibrium.

Lemma 13

Group i is monopolized in a Nash equilibrium iff αi ∈ [ 1
ni−1

, 1] and αj ∈ (−∞, αMj ]. In this case

any combination of prize sharing rules (α∗i , α
∗
j), such that α∗i > αi and α∗j = − 1

nj−1
+

(ni−1)nj
(nj−1)ni

α∗i

is a Nash equilibrium. The net surplus in the contest in equilibrium is SiM = αi(ni−1)
ni

. The

probabilities of winning are (P iM
i , P iM

j ) = (0, 1).

Proof :

Let us consider the case where i = A. The proof for i = B will be analogous and is skipped.
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Now for group A to be monopolized we know from Lemma 5 that the following condition

needs to be satisfied

αAnB(nA − 1)− αBnA(nB − 1) > nA (3.44)

So if group B were to monopolize group A, then given any choice of αA, group B’s best

response is to choose

αB = − 1

nB − 1
+

(nA − 1)nB
(nB − 1)nA

αA (3.45)

This is so because it is the most egalitarian and hence the least costly way in which group

B could monopolize group A. This is obtained by solving for αB from (3.44) with an equality.

As for choice of of group A we have the following two cases

Case 1:

Suppose in an equilibrium, group A behaves in a hawkish manner, so that αA = αA. To

monopolize A, group B will choose from (3.45).

αMB = − 1

nB − 1
+

(nA − 1)nB
(nB − 1)nA

αA (3.46)

Now in this case, group B in equilibrium obtains a payoff of ΠAM
B =

αA(nA−1)

nA
) (see Propo-

sition 21).

If instead it were to deviate to αABB it would get ΠAB
B =

(1+(nA−1)αA)2

4nA
(see Lemma 10).

But notice that ΠAB
B > ΠAM

B . Therefore group B always wants to deviate to αABB . This

deviation is not possible if αA >
1

nA−1
16, because then ΠAB

A < 0, so that group A is drops out.

Given that group A will drop out group B’s best response is to choose αMB , because αMB > αABB

in this case and choosing αMB is the less costly way to monopolize A.

As group A gets zero payoff when monopolized, αA is a best response to αMB . Therefore,

when αA >
1

nA−1
, (αA, α

M
B ) constitute a Nash equilibrium in which group A is monopolized.

16This is where αAB
B and αM

B intersect
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If, however, αA < 1
nA−1

, then ΠAB
A > 0. Given that it is always optimal for group B to

deviate to αABB , it will do so and group A will not be monopolized. Therefore, there does not

exist a Nash equilibrium in which A is monopolized when αA <
1

nA−1
.

Case 2:

Group A acts in a dovish manner αA > αA in equilibrium.

When αA <
1

nA−1
, the best response for group B is to choose αB such that group A is not

monopolized. Given that group B will not monopolize group A, the best response for group

A do deviate to a hawkish stance, as its payoff is decreasing in αA. Therefore, there does not

exist a Nash equilibrium in which group A is dovish when αA <
1

nA−1
.

If αA >
1

nA−1
, nothing which group A does can guarantee it a positive payoff. So group A

is indifferent and can choose any αA > αA. In this case the best group B can do is to choose

the least costly way to monopolize A by choosing αB given in (3.45).

The fact that group A is indifferent between choices of αA when it is monopolized in

equilibrium, gives rise to multiple Nash equilibria. But, we can get around this issue by

assuming that when indifferent group A chooses αA = αA, because this choice is immune to

trembles in strategies of group B. �

Proposition 20 follows directly from Lemma 9, 10, 11, 12, 13. Also look at Figures 3.1 and

3.2.

The net surplus and probabilities of winning can be obtained by replacing the Nash equi-

librium values of (αA, αB) in part (B) of Proposition 19.

� Proof of Proposition 21

The proof directly follows from Proposition 20 noting that Πi = PiS.

� Proof of Proposition 22.

Proof : To prove this Proposition we use Figures 3.1 and break up the proposition into four

mutually exclusive cases. 17

17Even though GSP has been defined in terms of winning probabilities in the chapter, we proceed by
comparing payoffs of the groups, as these are equivalent in our framework.
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I Case 1: αA > 0 and αB < 0

From Figure 3.1 it is clear that in this case either group A is Monopolized or we are in the

case where Group A’s constraint binds but Group B’s does not.

If group A is monopolized then of course the larger group B wins the contest with proba-

bility 1 and GSA applies.

If group A is not monopolized then Lemma 10 applies. We can immediately verify that

ΠAB
B > ΠAB

A . This inequality holds as long as αA > 0. So again GSA applies.

I Case 2: αA > 0 and αB > 0

From Figure 3.1 it is clear that in this case we have many subcases, i.e., group A can be

monopolized, group B can be monopolized, both groups constraints may bind and we may

also be in situation where Group A’s constraint binds but Group B’s does not.

But just considering the case where both group’s constraint binds helps us to cleanly

delineate the parametric zone into zones where GSP or GSA applies. When both group’s

constraints bind then Lemma 12 applies. It can be easily verified that ΠB
A > ΠB

B if and only

if αB > αGSPB = nB−nA
2nA(nB−1)

+ (nA−1)nB
(nB−1)nA

αA.

αGSPB intersects αABB at αA = 0 and lies above it at any αA > 0. Also, αGSPB lies entirely

above αAMB at any αA > 0. So, these cases belong where αB 6 αGSPB , and therefore GSA

should apply in these cases. It can be easily verified from Lemma 10 and Lemma 13, that it

is indeed the case. Look at Figure 3.4.

Also, αGSPB lies completely below αBMA . So, the cases in which group B is monopolized

belong where αB > αGSPB , and therefore GSP applies.

αGSPB provides a clear delineation of this parametric zone, i.e., αA > 0 and αB > 0, as far

as occurrence of GSP or GSA is concerned.

I Case 3: αA < 0 and αB < 0

From Figure 3.1 it is clear that either we are in the case where Group A’s constraint binds

but Group B’s does not or we are in the case where neither groups constraint binds.



Chapter 3: Prize Sharing Rules and Group Sizes 140

In the case where neither groups constraint binds Lemma 9 applies. It can be immediately

verified from the Lemma that ΠNN
A > ΠNN

B . Therefore, GSP applies in such cases.

In the case where Group A’s constraint binds but Group B’s does not, Lemma 10 applies.

And again it is straightforward to check from the Lemma that ΠAB
B < ΠAB

A when αA < 0. So,

again GSP applies.

I Case 4: αA < 0 and αB > 0

From Figure 3.1 it is clear that this case has many subcases, i.e., neither group’s constraints

bind, group B is monopolized, Group A’s constraint binds but Group B’s does not and also

Group B’s constraint binds but Group A’s does not. In what follows we consider each case

one by one.

If we are in the case where group B is monopolized, then group A wins with probability 1

and GSP applies.

If neither groups constraint binds then Lemma 9 applies. It can be immediately verified

from the Lemma 9 that ΠNN
A > ΠNN

B . Therefore, GSP applies in such cases.

If group A’s constraint binds but group B’s does not then, Lemma 10 applies. It can be

easily verified from Lemma 10 that ΠAB
B < ΠAB

A when αA < 0. Therefore, GSP applies in this

case.

If group B’s constraint binds but group A’s does not then, Lemma 11 applies. It can be

easily verified from Lemma 11 that ΠBB
B < ΠBB

A when αB > 0. Therefore, GSP applies in this

case too.

The last case to consider is the one where both groups constraint binds. We saw that in

Case 2 that GSP applies when αB > αGSPB . When both groups constraints bind in this case,

the condition for GSP to occur is still αB > αGSPB as Lemma 12 still applies. But, we also

noted in the proof of Case 2 that αGSPB intersects αABB at αA = 0. In this particular case,

αGSPB lies entirely below αABB . For both groups constraints to bind it must be the case that

αB > αABB . But because αABB > αGSPB in this case, it follows that αB > αGSPB . Therefore, GSP

applies in this case as well. For visual clarity consider the dotted section of αGSPB in Figure
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3.4.

Proposition 22 directly follows from the above four cases and can be visualized in Figure

3.4

�
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GSA
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Figure 3.4: GSP-GSA
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3.11 Appendix 2

Proof of Proposition 23

Proof :

Using the fact that XB = x∗XA in (2.88) we get XNN
A . We get XNN

B , by replacing

XNN
B = (x∗)XNN

A in (2.89).

Replacing XB = (x∗)XA, in PA =
Xr
A

Xr
A+Xr

B
we get that PNN

A = 1
1+(x∗)r

. And PNN
B is obtained

by solving PNN
B = 1− PNN

A .

The group payoffs can be obtained by using the computed XNN
A and PNN

A in ΠNN
A =

PNN
A −XNN

A = PNN
A − r(x∗)r+(1+(x∗)r)θA

nA[1+(x∗)r]2
= PNN

A − 1
1+(x∗)r

( r(x∗)r+(1+(x∗)r)θA
nA[1+(x∗)r]

)
= PNN

A (1 − θA
nA
−

r(x∗)r

nA[1+(x∗)r]
) =

PNNA

nA

(
nA − θA − r(1− 1

1+(x∗)r
)
)

=
(nA−θA−r)PNNA +rPNNA

2

nA
.

Similarly we can find ΠNN
B . �

Proof of Proposition 24

Proof :

To prove this we use equation (2.25).

nAθB(x∗)r − nBθA(x∗)1−r − nB(r + θA)(x∗) + nA(r + θB) = 0 (3.47)

Differentiating the equation with respect to αA and rearranging we get

dx∗

dαA
=

−nB(nA − 1)[x∗ + (x∗)1−r]

rnAθB(x∗)r−1 − (1− r)nBθA(x∗)−r − nB(r + θA)
(3.48)

The numerator is clearly negative. As for the the denominator, we have to consider the

following function

y = nAθBx
r − nBθAx1−r − nB(r + θA)x+ nA(r + θB) (3.49)

Therefore slope of the function evaluated at x∗ is as follows:
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dy

dx

∣∣∣∣
x=x∗

= rnAθBx
∗r−1 − (1− r)nBθAx∗−r − nB(r + θA) (3.50)

Notice that the right hand side of (3.50) is the denominator of (3.48). We can also see in

Figure 2.20 and 2.21 that dy
dx

∣∣∣∣
x=x∗

< 0. Therefore, we can conclude that dx∗

dαA
> 0.

Now we know that PNN
A = 1

1+(x∗)r
.

Differentiating with respect to αA we get
dPNNA

dαA
= − r(x∗)r−1

(1+(x∗)r)2
dx∗

dαA
< 0.

Similarly we can show that
dPNNB

dαB
< 0.

�

Proof of Proposition 25

Proof :

To understand when group i constraint will be binding, i.e., αi = αi in equilibrium we

need to find conditions when
dΠNNi
dαi

< 0. Note from Proposition 23 that the payoff of group i

in equilibrium is

ΠNN
i =

(ni − θi − r)PNN
i + rPNN

i
2

ni
(3.51)

Taking the derivative with respect to αi we get

dΠNN
i

dαi
=

(ni − 1)PNN
i + (ni − θi − r + 2rPNN

i )
dPNNi

dαi

ni
(3.52)

We know that
dPNNi

dαi
< 0 from Proposition 24. So to determine the sign of

dΠNNi
dαi

we need to

focus on the sign of ni−θi−r+2rPNN
i . This will be non-positive as long as αi 6 −

1−r+2rPNNi

ni−1
.

But in that case
dΠNNi
dαi

> 0 and the group leader will choose αi > αi in equilibrium, which is

defined to be dovish behavior.

If on the other hand αi > −
1−r+2rPNNi

ni−1
then to have

dΠNNi
dαi

< 0 we also require −dPNNi

dαi
>

(ni−1)PNNi

(ni−θi−r)+2rPNNi
to hold. In this case, we will have group i leader behaving in a hawkish manner.

�



Chapter 4

Bargaining for Assembly

4.1 Introduction

In many real life situations a buyer needs to acquire multiple inputs to implement a project.

Examples include acquiring multiple plots of land to set up a factory, hiring faculty to set up

an academic department, acquiring different molecules to make a new drug, among others.

In most of these situations the inputs are owned by different individuals. Consequently, the

buyer needs to bargain successfully with multiple sellers owning distinct sets of inputs. We

refer to such situations as assembly problems.

For illustration, let us consider a buyer, who owns a production process, which can be

made operational with inputs viz., capital and labor. The buyer owns none of the inputs

and needs to acquire them from respective owners. The degree of complementarity between

different inputs turns out to be an important determinant of how bargaining between the

buyer and sellers unfolds. Roy Chowdhury and Sengupta (2012) show that when inputs are

perfectly complementary the buyer is subject to holdout by the sellers and therefore, realizes

little share of surplus in absence of an outside option.

We are skeptical about the assumption of perfect complementarity of inputs and want to

analyze whether holdout persists when we allow different degrees of complementarity. To do

that we introduce production processes modeled as graphs. Each node on the graph represents

an input and an edge between a pair of nodes represents the complementarity of these inputs

144



Chapter 4: Bargaining For Assembly 145

in the production process. The buyer wants to purchase a path of a desired length, called a

feasible path. Inputs can be substitutes because we assume that the buyer may not need to

acquire inputs from all sellers to implement the project — this is the situation when there are

more than one feasible path in the graph representing the production process. Examples of

such production processes is provided in subsection 4.3.1.

Most of the existing literature on multilateral bargaining assumes perfect complementarity

of inputs and focuses on the effect of different bargaining protocols on the incidence of hold out.

In contrast, we focus on the importance of the features of the underlying production process

for holdout to occur using a standard extension of the Rubinstein protocol to multilateral

bargaining.

We are able to show that full surplus extraction by the buyer within two periods is a

subgame perfect equilibrium of our bargaining model if and only if (a) there are no critical

sellers and (b) there exist at least two feasible paths with minimum sum of seller valuations.

The equilibria we characterize have the following features:

• Suppose the underlying graph has no critical sellers and seller valuations are identical.

– If the graph contains a cycle of a minimal length, the buyer can extract full surplus

in the first period itself regardless of whether she or seller makes the first offer.

This represents the case of perfect substitutability between all individual inputs.

– If the graph contains two disjoint paths, the buyer can extract full surplus in the

second period if she is making the first offer. She extracts full surplus in the first

period if sellers are making the first offer. This is the case of path-path substi-

tutability.

– For any other graph without critical sellers, which do not fall into the previous two

classes, the buyer can extract full surplus in the second period if she is making the

first offer. She extracts full surplus in the first period if sellers are making the first

offer. This is the case of node-path substitutability.
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• Suppose the underlying graph has no critical sellers and seller valuations are unequal.

The buyer cannot extract full surplus except in a special case.

• Suppose there is exactly one critical seller in the graph. We show that the buyer cannot

earn more than 1
1+δ

of the maximum surplus in any equilibrium. If there are more than

one critical sellers, buyer cannot earn more than 1−δ
1+δ

of the maximum surplus in any

equilibrium.

Our results highlight the importance of indispensable inputs (critical sellers) to the inci-

dence of strategic delays and the buyer getting minimal share of the surplus. In the process,

we underscore the importance of studying underlying production processes in models of mul-

tilateral bargaining, as it affects how bargaining unfolds in critical ways. Even though the

production process we propose is not the most general one, it has wide applications. We con-

jecture that our basic insight about the importance critical sellers in multilateral bargaining

will carry over to more general production processes if a critical seller is appropriately defined

in such a context.

We structure our chapter as follows. In the next section we discuss the relevant literature.

Subsequently, we lay down the preliminary structure of our model and present two important

results from the literature. Then we present our main results for different cases of our model.

All proofs are presented in the Appendix. The next section offers detailed discussion of the

main results. The final sections offer concluding remarks.

4.2 Literature

Situations where a buyer needs to buy complementary inputs from different sellers is quite

common. For example, the famous railroad example by Coase (1960) presents a situation

where the railroad has to acquire plots of land from several farmers. Given the complemen-

tarity inherent in such activities, the outcome is likely to exhibit hold out, allowing sellers

to extract a greater share of the surplus. In such scenarios hold out is expected to cause
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inefficiencies viz. strategic delays, implementation of sub optimal projects or complete break-

down of negotiations. This problem has been studied in the land assembly context (Asami,

1985; O’Flaherty, 1994; Cai, 2000b, 2003; Menezes and Pitchford; Miceli and Segerson, 2012;

Roy Chowdhury and Sengupta, 2012; Göller and Hewer, 2015).

In one of the earliest papers on the topic, Asami (1985) models a land market with mul-

tiple buyers and multiple sellers as a cooperative game. He finds that in a core allocation,

competition prevents agents from claiming surplus, but some agents, e.g. a critical seller or a

lonely buyer are able to extract positive surplus. In contrast, our approach is non-cooperative

and allows for general contiguity structures and valuations. However, it retains all the features

of Asami (1985) pertaining to the single buyer problem.

Strategic exchange is usually modeled in economics using bargaining games, where agents

on one side of the market propose prices (or, equivalently, shares of the surplus), and those

on the other side accept or reject. The legitimate range of price offers, the sequencing of the

offers and the possible length of the negotiation process are given by the bargaining protocol,

which is common knowledge (see Osborne and Rubinstein (1990) for a survey). The bargaining

protocol we follow is a natural extension of Rubinstein (1982) and is the same one used in

Roy Chowdhury and Sengupta (2012). We also assume complete information, i.e., all relevant

information pertaining to the game is common knowledge among players. So our model belongs

to the wider class of strategic bargaining models with complete information (e.g., Fernandez

and Glazer (1991)).

Closer to our setting, Menezes and Pitchford study a non-cooperative game of entry into

an efficient bargaining process. They show that there is inefficiency in the entry decision

and relate it to the degree of complementarity in production. Cai (2000b, 2003), shows how

inefficiency due to hold-out may arise by using a circular bargaining protocol, where the buyer

follows a fixed order of bargaining with sellers; sellers who reject an offer are pushed to the

end of the queue. In contrast, we do not study entry and we assume a simultaneous offers

game. Thus we are closest to Roy Chowdhury and Sengupta (2012). Also like most of the
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above papers (except Cai (2003)), we analyze the cash offers model, where payment is made

immediately upon agreement.

Roy Chowdhury and Sengupta (2012) have studied the problem of a buyer bargaining with

multiple sellers holding an item each, where all items are complementary. Either side of the

market can open the negotiations. Suppose the buyer begins by making simultaneous offers

to active sellers. A seller can accept or reject the offer he receives. On acceptance, the seller

surrenders his plot in lieu of the cash offer and leaves the market. Sellers rejecting buyer’s

offer make counteroffers in the next period that the buyer can accept or reject. Bargaining

continues till either the buyer quits to avail an outside option or realize an agreement with

all sellers. They focus on the role of transparent protocols and outside options: buyer can

extract higher surplus with transparent protocols if he has an outside option; holdout may be

unavoidable with less transparent protocols even in presence of an outside option.

We use the same bargaining protocol as Roy Chowdhury and Sengupta (2012) but assume

it to be transparent; we also assume that the buyer has no outside option, similar to their

benchmark model. We introduce competition among sellers in the model by allowing for

more sellers than the number of items required. Such competition has the familiar flavor

of Bertrand games covered in the applied game theoretic literature. Our graph theoretic

approach allows us to explore different degrees complementarity among inputs and relates

it to the phenomenon of holdout in an intuitive way. For a paper, which analyzes bilateral

bargaining between agents on a graph with complementary pieces of information, the reader

is referred to Jiménez Mart́ınez and Dam (2011).

A number of contributions in the literature have applied protocols where the buyer engages

in a sequence of bilateral negotiations with sellers (Cai, 2000b; Suh and Wen, 2006, 2009; Li,

2010a). Delay is embedded in such protocols in the sense that at least k periods are required

for successful assembly if the buyer needs to assemble k units. Unless the buyer’s budget per

period is limited, or the application in question involves bargaining with agents in different

levels of supply chain (e.g., wholesaler, retailer etc.), a rational buyer would minimize such
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delay. Notice that our protocol effectively allows for bilateral negotiations: for example, if

the buyer has to assemble two items, she can choose to make a positive offer to seller 1 and

a negative offer to seller 2. This allows a bilateral negotiation with seller 1 in period 1 and

that with seller 2 in period 2. Alternatively, she can make simultaneous offers to both sellers.

Consequently, whether she chooses to bargain simultaneously or in a sequence is a choice to be

made as an equilibrium response. Readers interested in the equilibria in sequential protocols

may refer to the papers cited above.

We want to distinguish our contribution from two seemingly related strands of literature.

First, it is distinct from the literature on bilateral trade on networks (see the survey by Manea

(2016)): in this literature, bilateral trade takes place in each period between a random pair

of nodes on a network. In contrast, we use a network to model the complementarity of inputs

owned by sellers. The buyer is isolated from this network, but wants to purchase all nodes on

a feasible path. She can make an offer to any seller and vice versa, but no seller can make any

offer to another seller. Secondly, it is distinct from the literature on spectrum and package

auctions (see the survey by Bichler and Goeree (2017)): in such auctions, multiple buyers

have possibly different valuations over different “packages” of radio spectrum. In contrast,

our single-minded buyer has the same valuation over every feasible path.

Sarkar (2017) investigated the existence of direct mechanisms that are “successful” in

the sense of Myerson and Satterthwaite (1983)1 when agents have private and independent

valuations and seller valuations are drawn from the same prior. Although a successful di-

rect mechanism may exist for certain priors, it is not easy to interpret the form of such a

mechanism2. In contrast, bargaining has a natural interpretation in a complete information

framework. It also enables us to study the equilibrium strategies of the agents in depth. It

remains to be investigated whether the generalized Rubinstein bargaining protocol that we

use can lead to efficient outcomes under asymmetric information.

1A mechanism is “successful” in this sense if it is ex-post efficient, interim incentive compatible, interim
individually rational and ex post budget balanced.

2See Krishna and Perry (2000) for the construction of a successful mechanism
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There is also a literature in multiagent contract theory that maybe of secondary interest

to our readership. Segal (1999) analyzes the problem of contracting with externalities. With

public commitment, inefficiency arises because of externalities in agents’ reservation utilities.

Genicot and Ray (2006) analyses a game where a principal offers contracts to a set of agents

whose outside option depends on the number of agents not contracted. In this game, compe-

tition among agents is exploited to force agents to inferior contractual terms.

A natural follow-up of our exercise is to investigate the impact of formation of seller

coalitions on equilibrium payoffs (see Ray (2007) for a survey of coalition formation). A

complete analysis of this question is beyond the scope of this chapter. In our discussion

section, we provide an example to show that if the sellers are allowed to form coalitions, the

buyer may not be able to extract full surplus even when sellers have identical valuations.

.

4.3 Preliminaries

4.3.1 Graphs and assembly problems

Sellers of inputs are located on nodes of a graph. Two sellers are connected by an edge if

the corresponding inputs are complementary in buyer’s production process. In an application

like land acquisition, adjacency can be interpreted in the usual physical sense. A path is a

sequence of connected nodes. The buyer wants to purchase a path of desired length3, say k.

This implies that the buyer can combine any k complementary inputs to produce output. We

will denote a path by P and the corresponding sum of seller valuations by S. An assembly

problem with complete information is a tuple: 〈Γ, k, v, δ〉. Here Γ is a graph of order n; positive

integer k is the desired minimum length of the path buyer is interested in purchasing; if the

buyer cannot acquire a path of size k or more, the project is not feasible and the value he

gets is normalized to 0; the first component of v ≡ (v0, v1, . . . , vn) denotes the valuation of the

3This can be relaxed to include any special graph of a fixed size. Rights of passage directly motivates the
desire to purchase a path in our case.
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buyer for a path of length k or more, and other components denote the valuation of the sellers

for their respective items; the real number δ ∈ [0, 1] denotes the common rate at which the

n+ 1 agents discount future payoffs. Note that efficiency would require the buyer to purchase

only paths of length k, unless some of the sellers have zero valuation. We assume that there

exists a path P ∈ Γ, such that it results in a positive surplus: v0 −
∑

i∈P vi > 0. Given such

a graph Γ, the expression maxP∈Γ

(
v0 −

∑
i∈P vi

)
is referred to as “full surplus” or “efficient

surplus”.

The variety of possible graph structures can be large since a graph with n nodes can have

up to
(
n
2

)
edges. We group possible graphs into four mutually exclusive and exhaustive classes

and analyze them independently to reach our main result. The four classes are as follows:

Graphs with Critical Sellers: A seller is critical if he lies on every feasible path (see Figure

4.1). This implies that the corresponding input is complementary with respect to every feasible

production plan. If there is only one feasible path in Γ, all sellers in that path are critical. But

if there are multiple feasible paths, a seller must lie in their intersection in order to qualify as

critical. If there are multiple feasible paths, the number of critical sellers cannot exceed k− 1:

not all sellers on a single path can be critical. Paths of length less than k that do not have

an intersection with any feasible path can be excluded from the analysis, because the buyer’s

valuation over such paths is zero.

1

23

4 5

Figure 4.1: A feasible path in the star graph when k = 3; seller 1 is critical.

Consider graphs with critical sellers, referred to as Γ∗ (see Figure 4.1 and Figure 4.2). In

this class, inputs belonging to critical sellers are not substitutable but those belonging to

non-critical sellers are substitutable in a limited sense.
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1 2 3 4

Figure 4.2: A line graph with two critical sellers marked red;k=3

Graphs with a k + 1 Cycle: Consider graphs with cycles of order k + 1, referred to as Γ4

(see Figure 4.3). Here, every input on a feasible path can be substituted by another input on

the graph. Note that when Γ is a complete graph of order n, which we denote as an assembly

1 4

2 3

Figure 4.3: A cycle of length 4.

problem by 〈n, k, v, δ〉, it belongs the the class Γ4 .

Graphs with Disjoint Paths: Next, we consider graphs with two disjoint paths, referred

to as ΓD (see Figure 4.4). Here, no individual input is completely substitutable, but a feasible

path can be substituted by another feasible path.

1

2

3

4

5

6

Figure 4.4: Graph with disjoint feasible paths; k=3

Oddball Graphs: Finally, consider graphs where (i) there is no cycle of length k + 1, (ii)

no two paths are disjoint and (iii) the intersection of all feasible paths is empty, referred to as
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ΓO (see Figure 4.5). For convenience, we will refer this class as oddball. In this class, inputs

in the intersection of two or more feasible paths cannot be substituted with respect to these

feasible paths, but they are substitutable with respect to inputs on other feasible paths.

1

2 4

3 5

Figure 4.5: An oddball graph, n = 5, k = 3

Facts 1-5 below imply that single component graphs with (a) critical sellers, (b) k+1-cycle,

(c) disjoint paths, and (d) oddball are four mutually exclusive and exhaustive categories. A

graph may have multiple components from different classes.

• Fact 1: All sellers on a single path of length k are critical, regardless of whether this

path is a cycle.

• Fact 2: The number of critical sellers on a single path reduces with its length.

• Fact 3: No cycle of length more than k has a critical seller.

• Fact 4: Cycles of length 2k or more have at least two disjoint feasible paths and hence,

no critical seller.

• Fact 5: The oddball class covers all cycles of length larger than k + 1 but smaller than

2k. Further, since every pair of feasible paths on an oddball graph intersect at least

once, it also covers graphs containing cycles of length less than or equal to k.

Applications

The following examples illustrate the natural appeal of using graph structures for modeling

assembly.
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The government wants to build a flyover or a gas pipeline by combining three (k = 3) plots

out of 6 available plots (n = 6) numbered 1 through 6. Every combination of three plots may

not be feasible because of practical reasons, say, the route between some pair of plots may

have protected forest cover. Each plot can be represented by a node on a graph; nodes that

do not have any forest cover between them are connected by an edge. The government then

needs to pick a path of length 3 on the resulting graph. Let us now interpret alternative graph

structures in this context.

Consider Figure 4.1. There is no forest cover between plot 1 and any other node, but the

path between every pair of other nodes have forest cover. Plot 1 must be a part of every path

— it is perfectly complementary to other plots in any production plan to construct the bridge.

We refer to such a plot as a critical plot and the corresponding seller as a critical seller. Note

that there can be more than one critical seller (Figure 4.2). If there were only three plots

without forest cover between any pair of plots, then all three of them would be critical.

Consider any pair of plots in Figure 4.3: either there is no forest cover between them,

or there exist an uninterrupted access from one plot to the other via some other plot. This

case represents perfect substitutability between any pair of nodes. If a particular plot in a

combination is replaced with some other plot, the resulting combination remains feasible.

Consider plots 1, 2 and 3 in Figure 4.4: there is no forest cover between 1 and 2 or 2 and

3, and consequently, there is an uninterrupted access between 1 and 3 via 2. Similarly for the

set consisting plots 4, 5 and 6. The government can substitute path 456 with path 123 but

cannot substitute a node within a path with a node outside a path. In this sense, nodes on a

particular path are perfect complements but the paths are perfect substitutes.

Consider Figure 4.5 containing a graph we call oddball. There is no critical seller, no pair

of paths is disjoint and not every node on a feasible path can be replaced by another node.

There is a cycle but it is unlike Figure 4.3. This is a case where a plot on a path can be

substituted by a set of plots to maintain feasibility. For instance, consider the path 123 — 1

or 3 can be replaced by 4 but 2 can be replaced by 4 and 5, while plot 3 is going to be wasted.
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Notice that the congruence of inputs matter in our model. This idea of congruence has

natural appeal in land assembly because the buyer needs rights of passage from one plot to the

other to implement the project. Another natural example is that of a mobile service provider

trying to purchase spectrum in multiple districts. The buyer values contiguity of districts

where spectrum is acquired because it ensures seamless connectivity across the coverage area.

A rather unconventional example in this context is a situation where a music composer wants

to assemble different parts from other songs to compile a new score. But these songs are

owned by different copyright holders. Portions of songs have to be harmonically close enough

to each other to be combined to yield a meaningful score.

Certain production processes may use a different idea of congruence that may not imme-

diately be amenable to our graph-theoretic treatment. Consider a pharmaceutical company

which wants to create a drug by assembling molecules owned by different companies. Let us

use Figure 4.1 to illustrate this case, renaming plots as molecules. Let us say that the only

combinations of molecules that work are 1, 2 and 3 or 1, 4 and 5. But now 2, 1 and 4 may not

always make a feasible combination because of their chemical properties. In a similar vein,

suppose 1 represents a factory, 2 and 4 are wholesalers while 3 and 5 are retailers; a brand

wants to create a complete supply chain by signing agreements with the factory, a wholesaler

and a retailer. Notice that now 214 no longer remains feasible as it contains two wholesalers

and no retailer. In this case, it makes more sense to use graphs like Figure 4.4, repeating 1

in both paths, or keep 1 out of the situation completely and consider disjoint paths with a

retailer and a wholesaler each.

4.3.2 Bargaining protocol

We apply a variant of the Rubinstein bargaining protocol which is due to Roy Chowdhury and

Sengupta (2012). In each period, either the sellers propose individual offers of surplus shares

to the buyer or the buyer proposes a vector of offers of surplus shares to active sellers. Suppose

the buyer proposes surplus shares. The sellers can individually accept or reject the offer. The
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sellers who reject buyer’s offer propose individual shares to the buyer in the next period that

the buyer may accept or reject. If the buyer reaches an agreement with any of the sellers in

some period, she immediately purchases his plot and the seller leaves the market. The buyer

and the remaining seller then resumes bargaining. The game continues till the buyer is able

to purchase at least one feasible path.

We allow the buyer to utilize negative surplus offers to exclude particular sellers from the

bargaining process — such offers translate into prices that are less than seller’s valuation and

therefore, rejected. This facilitates the buyer avoid the commitment involved in a cash offers

bargaining protocol. Also, such negative offers enable the buyer to choose sequences of sellers

to bargain with in each period as discussed in our introduction. Notice that a seller cannot

possibly make a negative offer to the buyer in our setting, since it delays trade with the buyer

or eliminates the prospect of trade4. Bilateral bargaining models, like that by Rubinstein

(1982) do not use this feature, while multilateral models like Roy Chowdhury and Sengupta

(2012) do.

4.3.3 Existing results

Two special cases of bargaining for assembly in our sense have been studied in the literature

and these are given below for completeness.

The bilateral game studied by Rubinstein (1982) is a special assembly problem with n =

k = 1. Here the only seller present is critical. The Subgame Perfect Nash Equilibrium of this

game, which is now a standard result, is presented below without a proof.

Theorem 1 (Rubinstein (1982)) Consider the model where the buyer bargains with one

seller for one input: 〈n = 1, k = 1, v0 > v1, δ〉. There is a unique SPNE of the model described

as follows:

Agent i proposes a share δ
1+δ

of the surplus to j whenever she has to propose, and

accept any share at least equal to δ
1+δ

whenever j has to propose.

4Allowing negative offers to sellers makes more sense when there are multiple buyers.
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The game ends in the first period itself, with buyer proposing δ
1+δ

to the seller and the seller

accepting it.

The model studied by Roy Chowdhury and Sengupta (2012) is a special assembly problem

with n = k ≥ 2 and all seller valuations are identical. Since the buyer wants all n plots, all

sellers are critical here.

Theorem 2 (Roy Chowdhury and Sengupta (2012)) Consider the model 〈n ≥ 2, k =

n, v1 ≤ · · · ≤ vn, v0 >
∑n

i=1 vi, δ〉. The buyer’s equilibrium payoff cannot be more than 1−δ
1+δ

of

the full surplus for any δ > 0.

In terms of our model this situation pertains to the case with only one feasible path in a

graph. Two types of equilibrium outcomes are identified: if 1 > nδ
1+δ

, the buyer offers δ
1+δ

to

every seller in the first period and all of them accept. Otherwise, the buyer would offer zero

in the first period, all but r ≥ 2 sellers would accept, and in the second period these r sellers

would demand P such that 1− rP = δ
(
1− rδ

1+δ

)
. Here, r is the highest positive integer such

that 1 > rδ
1+δ

.

4.3.4 Two examples

We are interested in assembly problems where not all sellers are critical — this corresponds

to the cases where Γ contains at least two feasible paths. Also, we allow for arbitrary seller

valuations. Subsection 4.4.1 discusses the case where no seller is critical, while Subsection

4.4.2 discusses the case with 1 or more critical sellers.

The essential arguments of our main results presented in the next section are illustrated

below using the simplest such cases: Example 1 presents the case of one buyer bargaining for

one item from two sellers holding an item each and having the same valuation; Example 2

deals with the case of one buyer bargaining for one item from two sellers holding an item each

and having different valuations.
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Example 1 Consider the model 〈n = 2, k = 1, v0 > v1 = v2, δ〉. Suppose the buyer makes

offers of zero surplus to seller 1 and negative surplus to seller 2. If seller 1 rejects the buyer’s

offer, he would compete with seller 2 in the next period and offer the entire surplus to the

buyer. If sellers 1 and 2 are making offers in the first period, they cannot make equal positive

claims: one of the sellers have the incentive to reduce her claim and increase payoff. On the

other hand, if their claims are unequal, the seller with the lowest claim has the incentive to

increase her claim slightly and increase his payoff. Consequently, none of the sellers 1 and 2

can extract any surplus. The game ends immediately with the buyer extracting full surplus.

The equilibrium outcome is identical even when the sellers are proposing first.

The situation described in Example 1 is identical to the well-known Bertrand model of

price competition between firms producing the same product at identical marginal costs. In

this model, competition between the sellers drives prices down to the marginal cost. The

buyer is able to extract full surplus. Note that in our model the competition is among feasible

paths. Consequently, the richness of the underlying graph structure allows for results that

are richer than simple Bertrand competition. However, the spirit of the argument applied for

richer graph structures is in the nature of Bertrand competition.

The simple example below illustrates that the buyer may not be able to extract efficient

surplus when seller valuations are not identical. This example is in the lines of Blume (2003)

who characterizes a class of equilibria in the Bertrand model of price competition when firms

have asymmetric marginal costs.

Example 2 Consider the land acquisition problem 〈n, k, v, δ〉 such that n = 2; k = 1, v1 <

v2 < v0. We claim that the buyer cannot extract the efficient surplus in equilibrium. Consider

the following strategies of the sellers: in any continuation game where the two sellers are

making offers, seller 1 offers to sell at a price of v2 and seller 2 mixes prices in (v2, v2 + γ),

γ > 0, with uniform probability. In any continuation game where the buyer is making an

offer, seller 1 accepts a surplus of at least δ(v2 − v1) and seller 2 accepts any positive surplus.

Given these strategies, following is a best response for the buyer: in any continuation game



Chapter 4: Bargaining For Assembly 159

where the buyer is making an offer, she offers a surplus of δ(v2− v1) to seller 1 and a negative

surplus to seller 2. In any continuation game where the sellers are making an offer, she accepts

any surplus offer which is less than or equal to v2− v1. If the buyer proposes first, trade takes

place in the first period itself with seller 1; seller 1 is able to extract a surplus of δ(v2− v1). If

the sellers propose first, trade takes place in the first period, where seller 1 is able to extract

a surplus of (v2 − v1). To check that this is an equilibrium, note that when making an offer,

buyer cannot offer any higher surplus to seller 1 as it would be accepted. The buyer cannot

offer positive surplus to seller 2, since he would accept it. Any lower surplus offer would

be rejected by seller 1. When sellers are making offers, the buyer cannot reject the offer of

seller 1 either because that would reduce her share of surplus. Seller 1 cannot reduce his offer

because it would be accepted. Any higher offer by seller 1 would be rejected, thus leading

to a lower surplus for him. If v1 < v0 < v2, only the trade with seller 1 is feasible. In this

circumstance, we are back to the equilibrium outcome of the familiar bilateral bargaining

model by Rubinstein (1982).

4.4 Results

In this section, we consider subgame perfect equilibrium outcomes of our simultaneous-offer

protocol in assembly problems 〈Γ, k, v, δ〉 where Γ has at least two different feasible paths

and v is any arbitrary valuation profile. The results given in this section characterize buyer’s

prospects of full surplus extraction in such equilibria. In the next subsection, we show that

the buyer extracts full surplus within two periods if the underlying graph does not contain a

critical seller and at least two feasible paths have the minimum sum of seller valuations. The

following subsection characterizes the highest share of the surplus the buyer can achieve in

the presence of critical sellers.
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4.4.1 Possibility of full surplus extraction

The following result characterizes when it is possible for the buyer to extract full surplus in

an equilibrium of our protocol.

Theorem 3 There exists δ̄ ∈ [0, 1) such that for all δ > δ̄ the buyer extracts full surplus in

at most two periods in an equilibrium if and only if

• Γ 6= Γ∗, i.e., there does not exist a critical seller in the underlying graph, and

• S1 = S2, i.e., there exist at least two paths with the minimum sum of valuations.

Remark 1 The two conditions for full surplus extraction are independent of each other. For

illustration, consider Figure 4.1: this graph contains a critical seller and multiple feasible paths

when k = 3. The existence of the critical seller on the graph is independent of the sum of

seller valuations on feasible paths and vice-versa.

In what follows, we break down this result into several Propositions — Propositions 1-3

correspond to the “if part” of this result, while Propositions 4 and 5 correspond to the “only

if” part of the result. Propositions 1-3 apply to problems where the valuations of sellers are

equal and the underlying graph does not contain a critical seller, i.e., either the graph has

a k + 1-cycle, or it has at least a pair of disjoint paths, or it is an oddball graph. We show

that there exist equilibria where the buyer extracts full surplus in the first period for any

δ ∈ [0, 1] if either the underlying graph is a k + 1-cycle, or sellers are making first offers.

If the underlying graph is not a k + 1-cycle, the buyer can extract full surplus only in the

second period while making the first offers provided δ is sufficiently large. Proposition 4 shows

that there is no equilibrium with full surplus extraction when there is a critical seller in the

assembly problem. Proposition 5 shows the impossibility of full surplus extraction when seller

valuations are unequal. We present a set of examples after each result to illustrate the essential

argument. Detailed proofs are presented in the appendix.
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Equal seller valuations and no critical sellers

Here we consider assembly problems without critical sellers where seller valuations are equal.

Propositions 26–28 claim existence of equilibria with full surplus extraction in these problems

within at most two periods.

Proposition 26 Consider an assembly problem 〈Γ4, k, v, δ〉 such that v1 = · · · = vn, v0 >

kv1. The buyer extracting full surplus is an equilibrium outcome.

Remark 2 Notice that in this case the existence of equilibrium with full surplus extraction

is not dependent on the magnitude of the discount factor δ.

Example 3 (A 4-cycle) Consider a cycle of length 4 (see Figure 4.3) . Note that there are

4 feasible paths of length 3. Every pair of feasible paths has a non-empty intersection. But

the intersection of all 4 feasible paths is empty. We argue that there exists an equilibrium

where the buyer extracts full surplus. First note that bargaining continues if and only if

there are at least two active sellers. Consider the following strategy of the buyer: She picks

a feasible path. Whenever she is proposing, she offers sellers from the picked path their

valuations (equivalently, zero surplus), and the remaining seller strictly less than his valuation

(equivalently, negative surplus). Whenever the sellers are proposing, she accepts the required

number of offers from the lowest seller claims, provided she can afford. Consequently, all active

sellers claiming zero surplus whenever they are required to make an offer is a best response.

To check this, note that no active seller can gain by deviating for one stage when all of them

claim zero surplus. If active sellers make identical positive surplus claims, one of them can

reduce his claim by a small amount and make a gain. If active sellers make unequal claims,

then a seller with lower claim can increase his claim by a small amount and make a gain.

Now consider a stage where the buyer is making an offer. Active sellers who are made zero

surplus offers would immediately accept: if any such seller rejects, he reaches a continuation
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game where the maximum he can gain is zero. Hence this is an equilibrium. Agreement takes

place in the first period itself with 3 sellers who are made zero surplus offers.The equilibrium

outcome does not change whether the buyer moves first, or the sellers.

1 2

3 4

Figure 4.6: A complete graph of order 4; a cycle of order 4 is a subgraph.

Note that any complete graph of order n > k contains a cycle of length k+ 1. This results

in the following Corollary.

Corollary 3 Consider an assembly problem 〈n, k, v, δ〉 such that v1 = · · · = vn, v0 > kv1.

The buyer extracting full surplus is an equilibrium outcome.

Remark 3 In the special case when k = 2, then the above result is also true for any graph

containing a cycle of length more than 3. But it is not true for k > 2. For instance, consider

the cycle of length 5 when k = 3 (see Figure 4.7). Suppose the buyer wants to make offers

that are acceptable to sellers 1,2 and 3 in the first period itself. Sellers 1 and 3 will accept

a zero surplus offer since if they reject, they have to compete with sellers 5 or 4. Seller 3,

on the other hand, will not accept a surplus of less than δv1, since if he rejects an offer, he

has to compete with sellers 4 and 5 together. Therefore, the buyer has two ways to complete

the transaction in the first period: either (i) she makes zero surplus offers to 4 sellers on the

graph and makes a negative offer to the remaining seller, or (ii) she makes zero surplus offers

to sellers 1 and 3, make a surplus offer of δv1 to seller 2, and negative offers to the remaining

sellers. In this particular case, she would prefer (ii) over (i).
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1

2

3 4

5

Figure 4.7: A cycle of length 5; ΓSO in blue

Proposition 27 Consider an assembly problem 〈ΓD, k, v, δ〉 such that v1 = · · · = vn, v0 >

kv1. (a) If the sellers move first, the buyer extracts full surplus in the first period. (b) If

the buyer moves first, there exists δ such that ∀δ > δ there is an equilibrium where the buyer

extracts full surplus in the second period

Remark 4 If δ < δ̄ then full surplus extraction is not possible in the equilibrium: either

buyer purchases items from all sellers on a single path by paying positive surplus shares; or,

she purchases 2k items by offering zero surplus shares to all sellers on two disjoint paths.

Example 4 (Two disjoint feasible paths) Consider a graph with two disjoint paths of

length 3 (see Figure 4.4). We will show that if the sellers move first, the buyer achieves full

surplus in the first period itself.If the buyer moves first and δ is large, there is an equilibrium

where buyer extracts full surplus in the second period.Consider the following strategy of the

buyer: whenever the buyer is proposing, she makes negative offers to all sellers. Whenever the

sellers are proposing, the buyer accepts the claims of sellers on a path with the lowest sum of

claims provided her share of surplus is non-negative and rejects all other claims. In case the

sum of claims on two feasible paths are same, she accepts claims from one of the paths chosen

with equal probability. We claim that, given the above strategy, sellers in the two disjoint

feasible paths claiming zero surplus whenever they are required to make an offer is a best

response. No seller can gain by deviating for one stage when the sum of surplus claims on

either path is zero. If the sum of surplus claims on both paths are equal and positive, a seller

on either path can reduce his claim by a small amount and make a gain. If the sum of surplus
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claims on two paths are unequal, then any seller on the path corresponding to the lower sum

can increase his claim by a small amount and make a gain. Hence these are not equilibrium

claims. To rule out other possible deviations, note that buyer can make zero surplus offers

to sellers on both paths; sellers on both paths would accept these offers. To ensure that this

deviation in the first stage is not profitable for the buyer, we require δ > v0−6v1
v0−3v1

. The buyer

can also make acceptable offers of surplus shares, 2δv1, to each seller on one path and negative

offers to all other sellers, provided v0 − 3v1 − 6δv1 > 0. This is because, by rejecting a first

period offer from the buyer, a seller on the chosen path competes with sellers on the other path;

the highest surplus he can claim in a continuation game where he and the other sellers are

making offers is 3v1−v1 = 2v1. To ensure that this deviation in the first stage is not profitable

for the buyer, we require δ > v0−3v1−6δv1
v0−3v1

. Thus, provided δ > max{v0−6v1
v0−3v1

, v0−3v1−6δv1
v0−3v1

}, the

buyer extracting full surplus in the second period is an equilibrium outcome in the strategies

described above for large δ.

Proposition 28 Consider an assembly problem 〈ΓO, k, v, δ〉 such that v1 = · · · = vn, v0 >

kv1. (a) If the sellers move first, the buyer extracts full surplus in the first period. (b) If

the buyer moves first, there exists δ such that ∀δ > δ there is an equilibrium where the buyer

extracts full surplus in the second period.

Remark 5 If δ < δ̄ then full surplus extraction is not possible in the equilibrium: either

buyer purchases items from all sellers on a single path by paying positive surplus shares; or,

she purchases more than k items by offering zero surplus shares to corresponding sellers.

Example 5 (An oddball graph) Consider the graph in Figure 4.5 below with k = 3. We

will show that if the sellers move first, the buyer extracts full surplus in the first period itself.If

the buyer moves first and δ is large, there is an equilibrium where buyer extracts full surplus

in the second period. Consider feasible path {125}.For each node x on this feasible path there

exists another node outside this path and a corresponding edge such that exclusion of x from

the path leaves at least one feasible path of length 3. For instance, exclusion of node 2, would
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leave the graph with feasible paths {134}. For each node x on a feasible path, let s(x) be the

order of the smallest subgraph such that the union of the graph excluding x and the subgraph

contains a feasible path. For example, in Figure 4.5, s(1) = s(5) = 1 and s(2) = 2.

Consider the following strategy of the buyer: In any continuation game where the buyer has

the first move , the buyer makes negative offers to all sellers. In any continuation game where

sellers have the first move, the buyer accepts the claims of sellers on a path with the lowest

sum of claims provided her share of surplus is non-negative, and reject all other claims. In

case the sum of claims on the two feasible paths are same, she accepts claims from one of the

paths chosen with equal probability. We claim that given the above strategy, sellers claiming

zero surplus at any subgame they are required to make an offer is a best response. To check

this, note that no seller can gain by deviating for one stage when the sum of seller claims

across paths is zero. This is because, for each node, there is always a feasible path in the

graph that excludes it. If sums across feasible paths are positive, a seller on one of the paths

can reduce his claim by a small amount and make a gain. If sums across paths are unequal,

then a seller on a path with lower sum of claims can increase his claim by a small amount

and make a gain. Hence these are not best responses. To disallow possible deviations, note

that buyer can make zero surplus offers to all sellers on the path picked, and negative surplus

offers to all other sellers; sellers on the path picked would accept these offers. To ensure

that this deviation in the first stage is not profitable for the buyer, we require δ > v0−4v1
v0−3v1

.

The buyer can also make acceptable offers of surplus shares to sellers on a path and negative

offers to all other sellers. Seller corresponding to node xi on the path picked accepts any

surplus share at least equal to δ(s(xi) − 1)v1. This is because, by rejecting a first period

offer from the buyer, a seller on the chosen path competes with sellers on the other path; the

highest surplus he can claim in a continuation game where he and the other sellers are making

offers is (s(xi) − 1)v.To ensure that this deviation in the first stage is not profitable for the

buyer, we require δ >
∑
i∈P (s(xi)−1)v1
v0−3v1

. Thus, provided δ > max
{
v0−4v1
v0−3v1

,
∑
i∈P (s(xi)−1)v1
v0−3v1

}
, the

buyer extracting full surplus in the second period is an equilibrium outcome in the strategies
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described above.

Remark 6 Observe that in Propositions 1-3 the underlying graph does not contain a critical

seller. If the graph has only one component, then the corresponding bargaining game has an

equilibrium where the buyer extracts full surplus in at most two periods. Suppose the graph

has multiple components. When seller valuations are identical, there exists an equilibrium

where the buyer extracts full surplus in the first period itself if and only if the graph contains

a k+1-cycle. Otherwise, (a)competing paths lie in different components or (b) form an oddball

graph. In these cases, there exist an equilibrium where the buyer extracts full surplus in the

second period if she is making the first set of offers, or in the first period itself if sellers are

making the first set of offers.

Critical sellers

Here we consider assembly problems where the underlying graph contains at least one critical

seller. This result is obtained without any assumption on valuations.

Proposition 29 Suppose Γ = Γ∗. The buyer cannot extract full surplus in an equilibrium.

Remark 7 The above result implies that in any equilibrium of Γ = Γ∗ a critical seller always

earns a positive surplus share. In fact, if there is more than one critical seller, each will take

away some positive share of the surplus. The buyers share of the surplus is decreasing in

the number of critical sellers till it reaches zero. The non-critical sellers may or may not get

positive shares.

Example 6 (Graph with critical sellers) Consider the situation in Figure 4.2 where the

numbers marking the nodes represent valuations. Suppose the buyer makes zero surplus

offers in the first period. By Theorems 1 and 2, at least one critical seller , say, seller 2,

rejects this offer and claims 1
1+δ

of the efficient surplus in the next period which buyer must

accept. Consequently, the buyer cannot extract full surplus within the first two periods in

an equilibrium. Suppose sellers make the first offers. As argued, critical seller 2 can claim
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strictly positive surplus. So full surplus extraction cannot take place in the first period. But if

the buyer rejects all seller offers in the first period, then she is on a continuation game where

she is proposing to all sellers. By the previous argument cannot extract full surplus in such a

continuation game.

Unequal seller valuations and no critical sellers

In this subsection, we consider the case where seller valuations are not equal. In this case,

the sum of seller valuations may differ over paths. The path corresponding to the least sum

of seller valuations is efficient in the sense that it corresponds to highest potential surplus. It

follows that if possible, the buyer would prefer to purchase the efficient path.

Let Pi denote the path corresponding to the i-th smallest sum of valuations on a path in

Γ. We will refer to a set of assembly problems as rich if there does not exist two disjoint paths

P1 and P2 such that S1 = S2. Suppose the richness condition is not satisfied. The buyer, if

offering first, can offer negative surplus shares to all sellers who reject such offers. In the next

period, sellers on P1 and P2 cannot claim any surplus: the buyer extracts full surplus in the

second period. If the sellers are making offers first, sellers on these two paths cannot claim

any surplus share.

Proposition 30 Consider the rich class of assembly problems 〈Γ, k, v, δ〉 such that v1 ≤ · · · ≤

vn with at least one strict inequality. There does not exist any equilibrium where the buyer

extracts full surplus.

Note that extracting full surplus implies trade taking place with only the k sellers on P1.

There may exist equilibria where the buyer offers zero surplus to more than k sellers who

accept. But this reduces the buyer’s surplus strictly below v0 − S1.

For the formal proof of Proposition 30, see Appendix 4.9.We apply the method of contra-

diction showing that at least one seller getting zero surplus share has a profitable deviation.

Thus, full surplus extraction is not an equilibrium outcome. Here we present four examples
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pertaining to the varieties of graph structures discussed in Section 4.3. In all these examples,

we have k = 3.

Example 7 (A 4-cycle) Consider the cycle in Figure 4.3 where the numbers marking the

nodes represent valuations. Suppose the buyer makes zero surplus offers to sellers on the

efficient path {123} in the first period and negative surplus offers to seller 4. At least one

seller, say, seller 1, would reject this offer and claim a price of 4, the valuation of the seller

outside this path, in the next period. The buyer must accept, provided the surplus on the

path excluding seller 1, v0 − 7 > 0. If this inequality does not hold, the buyer must offer δ
1+δ

times the efficient surplus, i.e., v0 − 6 to this seller. So, suppose buyer makes negative offers

to all sellers in the first period. Note that the sum of valuations on the four paths {123},

{234}, {341} and {412} are 6, 9, 8 and 7 respectively. Seller 1, being in the intersection of

{123} and {412} can raise his price claim to 2: thus the sum of claims over the four paths

become 7, 9, 9 and 8. Either the buyer accepts this claim, or she rejects and offers δ
1+δ

times

the efficient surplus to this seller. Not all sellers would claim zero surplus when proposing

first: for example, seller 1 can claim a price of 4, or if v0 − 7 < 0, she can claim 1
1+δ

times

the efficient surplus. If the buyer rejects all seller offers in the first period, then she is on

a continuation game where she is proposing to all sellers. We have already argued that she

cannot extract full surplus in such a continuation game.

Example 8 (Two disjoint feasible paths) Consider Figure 4.4 where the numbers mark-

ing the nodes represent valuations. Suppose the buyer makes zero surplus offers to all sellers

on {123} in the first period and negative surplus offers to the remaining sellers. Seller 1 can

reject this offer and claim a price equivalent to the sum of valuations on {456}, i.e., 15 in

the next period which buyer must accept, provided the corresponding surplus is positive, i.e.,

v0 − 20 > 0. If this inequality does not hold, the buyer must offer δ
1+δ

times the efficient

surplus to this seller. So, suppose buyer makes negative offers to all sellers in the first period.

If v0 > 15, sellers on {123} can make claims summing up to 15 in the second period. Either

the buyer accepts this claim, or she rejects and offers δ
1+δ

times the efficient surplus, v0− 6 to
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sellers on {123}. Not all sellers would claim zero surplus when proposing first: at least one

seller can claim a price of 15, or, if v0 − 20 < 0, she can claim 1
1+δ

times the efficient surplus

v0 − 6. If the buyer rejects all seller offers in the first period, then she is on a continuation

game where she is proposing to all sellers. We have already argued that she cannot extract

full surplus in such a continuation game.

Example 9 (An oddball graph) Consider the assembly problem in Figure 4.5 where the

numbers marking the nodes represent valuations. Suppose the buyer makes zero surplus offers

to sellers on the efficient path {123} in the first period. Seller 1 would reject this offer and

claim a price of 4 in the next period which buyer must accept, provided v0 − 9 > 0. If this

inequality does not hold, the buyer must offer δ
1+δ

times the efficient surplus v0 − 6 to this

seller. So, suppose buyer makes negative offers to all sellers in the first period. Note that

seller 1 lies in the intersection of multiple paths. He can raise his claim by at least 1. Either

the buyer accepts this claim, or she rejects and offers δ
1+δ

times the efficient surplus v0 − 6.

Not all sellers would claim zero surplus when proposing first: as argued before, seller 1 can

claim a price of 4, or if v0 − 9 < 0, she can claim 1
1+δ

times the efficient surplus v0 − 6. If the

buyer rejects all seller offers in the first period, then she is on a continuation game where she

is proposing to all sellers. We have already argued that she cannot extract full surplus in such

a continuation game.

4.4.2 Buyer’s surplus share in presence of critical sellers

Consider an assembly problem with critical sellers. We provide bounds on buyer’s surplus

share in such a problem when she purchases an efficient path in the equilibrium.

Remark 8 In equilibria where the buyer purchases an inefficient path or purchases more than

k items, she cannot realize the efficient surplus or the full surplus. We cannot characterize

bounds on the buyer’s realized surplus share in these equilibria since these are dependent on

valuation profiles and the value of δ.
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By Proposition 4 the buyer cannot extract full surplus in the equilibria of the class of

problems considered here. Hence her maximum surplus share is bounded above by 1, but it is

not the least upper bound. We will show that buyer’s equilibrium surplus share cannot exceed

1
1+δ

with one critical seller, and 1−δ
1+δ

with more than one critical sellers.

Note that there exist assembly problems where these bounds are exactly achieved: for

example, when n = k = 1, the bound given by Theorem 4 is exactly achieved if the buyer is

making the first offer (recall Theorem 1). It is also exactly achieved when Γ is a single line

graph with three nodes, k = 2 and the buyer is making the first offer. When n = k = 2, the

bound given by Theorem 5 is exactly achieved if the buyer is making the first offer (recall

Theorem 2). It is also exactly achieved when Γ is a single line graph with four nodes, k = 3

and the buyer is making the first offer.

Theorem 4 Consider an assembly problem 〈Γ, k, v, δ〉 with exactly one critical seller. In any

equilibrium where the buyer purchases an efficient path, her share of surplus cannot exceed

1
1+δ

.

Theorem 5 Consider an assembly problem 〈Γ, k, v, δ〉 with m critical sellers, where 2 ≤ m ≤

k. In any equilibrium where the buyer purchases an efficient path, her share of surplus cannot

exceed 1−δ
1+δ

.

4.5 Discussion

Our first result claims that if valuations of the sellers are identical and the underlying graph

structure does not have a critical seller, there exist equilibria where the buyer extracts full

surplus within two periods. Here we have considered the simple advantages of position that

certain sellers exact in a graph, and abstracted from advantages due to differences in seller

valuations.

We have considered four mutually exclusive and exhaustive categories of graphs, viz., (a)

graphs containing cycles of order k + 1, (b) graphs with two disjoint paths, (c) graphs with
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critical sellers, and (d) oddball graphs where (i) there is no cycle of length k + 1, (ii) no two

paths are disjoint and (iii) the intersection of all feasible paths is empty. These categories

can be easily interpreted in terms of complementarity and substitutability as we have done

in Section 4.3. Of particular interest is the k + 1 cycle, where every item on a feasible path

can be completely substituted by another item on the graph: only in this case, the buyer

is able to extract full surplus in the first period, regardless of whether the buyer makes the

first offer or the sellers. In other words, in this case, no seller has any positional advantage.

Thus, it is comparable to the pure Bertrand competition visible in Example 1. At the other

extreme is the graph with critical sellers: such critical sellers exhibit full positional advantage

and prevent the buyer from extracting surplus beyond a point, regardless of whoever makes

the first offer. Such sellers exhibit full complementarity with respect to any feasible path on

the graph.

The cases of graphs with disjoint feasible paths and oddball graphs lie between these

two extremes. If the buyer picks a feasible path on any of these graphs, its nodes have

limited substitutability. Note that our bargaining protocol only permits cash offers with full

commitment. Consequently, once the buyer commits to a seller on a feasible path, she tends

to commit to all sellers on that feasible path. Thus, the buyer has to cough up positive shares

of the surplus if she is making the first offer. However, the buyer can avoid this commitment

problem by making negative offers to all sellers and to push the outcome towards Bertrand

competition in the second period. For a patient buyer, the loss of surplus by shifting the onus

of bargaining to the sellers is not very significant.

The interpretation of these graphs in the context of anti-commons applications like land

acquisition is immediate. The notions of complements and substitutes also arise naturally in

contexts like acquiring patent rights for drug manufacturing or obtaining rights for musical

scores for a documentary.

Proposition 30 shows that full surplus extraction is not robust with respect to changes in

the valuation structure. In fact, the buyer cannot extract full surplus whenever the valuation
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profile of the sellers shows slightest degree of asymmetry. The positional advantages that

certain sellers hold become more pronounced when their valuations are asymmetric. In this

sense, asymmetric valuations enable sellers in the efficient feasible path exercise monopoly

power of a nature we had seen in Example 2.

It must be noted that earlier inefficiency results in the literature, like Theorem 2, focused

on the extreme case where all sellers are critical. Our generalized model, in contrast, shows

that the inefficiency result pertains to the rather extreme case of graphs with critical sellers

or when seller valuations are asymmetric.

In Propositions 4 and 5, we show that the bounds provided by Roy Chowdhury and Sen-

gupta on the surplus share the buyer can extract in an assembly with critical sellers carries

over to our generalized structure. The bounds are tight because the non-critical sellers can

be made to compete by buyers making unacceptable offers when it is their turn to offer. This

strategy however does not work in case of critical sellers, some of whom must be given a

positive share.The importance of the timing of the offers in the bargaining protocol is also

highlighted in the proofs of the results.

Recall that we are using subgame perfection in an infinite horizon sequential game of

complete information. In each period the surplus remains the same because payments made

by buyers in previous periods are sunk. An agreement in a period is followed by a continuation

game that has a smaller number of sellers and a reduced demand from the buyer. These

continuation games include as subgames (a) Rubinstein games with one critical seller, b)

games with multiple critical sellers studied in Roy Chowdhury and Sengupta (2012) and (c)

games which have only non-critical sellers which correspond to Theorem 1. If the game has

only non-critical sellers the buyer can walk away with the entire surplus. But if the game has

critical sellers we show that in any equilibrium where the buyer gets more than the bound

provided, some critical seller has incentive to deviate and force more out of the buyer. The

minimum the buyer has to give up to get agreements from all critical sellers provides us the

bound proposed in the results.
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An obvious extension of this exercise is to investigate the impact of coalition formation

among sellers on the surplus shares. For example, consider the problem where one item is

required and two sellers are present. First, notice that by making alternate offers to one of the

sellers according to the equilibrium strategy specified by Rubinstein (1982) and by excluding

the other seller using negative offers, the buyer can assure herself δ
1+δ

share of full surplus. If

we allow sellers to use trigger strategies, there exists an equilibrium where both sellers collude

to claim 1
1+δ

of the full surplus and the buyer picks one of them with equal probability provided

δ > 1√
2
. This equilibrium is sustained by the following trigger strategy: if any seller deviates

by charging less than 1
1+δ

, the other seller charges zero surplus share in the subsequent period.

The buyer then rejects the deviating seller’s offer and chooses to purchase from the other

seller. The collusive payoff 1
2(1+δ)

is greater than the non-collusive payoff 1 − δ if δ > 1√
2
. In

this equilibrium, both sellers gets positive expected payoff. If δ < 1√
2
, sellers compete and

earn zero surplus shares in the equilibrium. A complete investigation of seller coalitions is

beyond the scope of current chapter5.

4.6 Public Policy Implications

The main policy prescription of our paper would relate to examination of the contiguity

structure of plots before entering bargaining with landowners to implement a project. It is a

direct implication of our results that bargaining is likely to enter delays and hold-out if there

are critical sellers. So in order to implement a project without costly delays it would make

sense to first study the plot structure in the area. If the number of critical sellers is reasonably

high it makes sense to implement the project at an alternative location. The basic trade-off,

that needs to be solved is balancing the benefits of implementing a project at a productive

location versus the costs, which arise due to delays and critical sellers holding out.

Additionally, this paper also makes a case for application of eminent domain in particular

cases. If a location is particularly productive for a project but there are a few critical sellers

5The interested reader may refer to Gupta and Sarkar (2019).
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who hold out, it makes sense for the government to apply eminent domain and shift the

ownership of such land to more productive users.

4.7 Conclusion

In this chapter, we modeled the assembly problem as a bargaining game between one buyer

and multiple sellers located on the nodes of a graph. In our simple bargaining problem with-

out transaction costs, the buyer, using competition between sellers, is able to implement an

efficient project without significant delay when valuations are identical. Positional advantages,

or equivalently complementarities, can be exercised only under cases, when sellers are critical.

The second result states that asymmetry of seller valuations is an additional source of ineffi-

ciency: such asymmetry provides additional monopoly power to efficient sellers even if they

are not critical and prevent the buyer from efficient assembly. Thus, our results qualify the

claim by Coase (1960) when sellers are not “monopolistic” in terms of positional advantage

or due to valuations.

4.8 Appendix

4.8.1 Proof of Proposition 26

We will first prove the case of a graph which is a cycle of length k + 1.

Lemma 14 Consider an assembly problem 〈Γ∆, k, v, δ〉 such that v1 = · · · = vk+1, v0 > kv1.

The buyer extracting full surplus is an equilibrium outcome.

Proof : Consider the following strategy of the buyer: She picks a feasible path. In any con-

tinuation game where m < k plots have already been acquired and the buyer has the first

move , the buyer offers k −m sellers zero surplus and make negative offers to the remaining

seller. In any continuation game where m < k plots have already been acquired and sellers
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make the first, the buyer accepts the lowest k −m claims provided her share of the surplus

is non-negative and reject all other claims. If more than k − m sellers are making identical

lowest offers, she accepts k −m offers with equal probability.

We claim that given the above strategy, all active sellers claiming zero surplus at any

continuation game they are required to make an offer is a best response. Let xi be the surplus

claim of active seller i. No seller can gain by deviating for one stage when xi = xj = 0, i 6= j.

Hence it is an equilibrium. If xi = xj > 0, i 6= j, either seller i or j can reduce his claim by a

small amount and make a gain. If xi > xj ≥ 0, i 6= j, then seller j can increase his claim by a

small amount and make a gain. Hence these are not equilibrium claims.

At any subgame where the buyer is making an offer and m plots have already been ac-

quired, the active seller who is made a negative offer rejects it. Simultaneously, k −m would

immediately accept corresponding zero offers, since if any of these sellers reject such offers,

they reach a continuation game where the maximum he can gain by rejecting buyer’s offers is

zero. Hence this is an equilibrium. Trade takes place in the first period itself when m = 0,

with k sellers who are made zero surplus offers. �

Note that by Lemma 14 equilibrium outcome does not change whether the buyer moves

first, or the sellers.

It follows immediately that such an equilibrium can be obtained for any graph containing

a cycle of length k + 1 as a subgraph.

4.8.2 Proof of Proposition 27

Consider the following strategy of the buyer: In any continuation game where the buyer makes

the first , she makes negative offers to all sellers. In any continuation game where sellers have

the first move, the buyer accepts the claims of sellers on a path with the lowest sum of claims

provided her share of surplus is non-negative and reject all other claims. In case the sum of

claims on the two feasible paths are same, she accepts claims from one of the paths chosen
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with equal probability.

We claim that, given the above strategy, sellers in the two disjoint feasible paths claiming

zero surplus at any subgame they are required to make an offer is a best response. Let P1 and

P2 be the two feasible paths in ΓD. Let xi be the surplus claim of active seller i. No seller can

gain by deviating for one stage when
∑

i∈P1
xi =

∑
i∈P2

xi = 0. Hence it is an equilibrium. If∑
i∈P1

xi =
∑

i∈P2
xi > 0, a seller on one of the paths can reduce his claim by a small amount

and make a gain. If
∑

i∈P1
xi >

∑
i∈P2

xi, then any seller on P2 can increase his claim by a

small amount and make a gain. Hence these are not equilibrium claims.

Part (a) of the claim follows immediately. For part (b), note that buyer can make zero

surplus offers to sellers on both paths, and negative surplus offers to all other sellers; sellers

on both paths would accept these offers. To ensure that this deviation in the first stage is

not profitable for the buyer, we require δ > v0−2kv1
v0−kv1 . The buyer can also make acceptable

offers of surplus shares, δ(k − 1)v1, to each seller on one path and negative offers to all other

sellers, provided v0 − kv1 − δk(k − 1)v1 > 0. This is because, by rejecting a first period

offer from the buyer, a seller on the chosen path competes with sellers on the other path; the

highest surplus he can claim in a continuation game where he and the other sellers are making

offers is (k − 1)v1.To ensure that this deviation in the first stage is not profitable for the

buyer, we require δ > v0−kv1−δk(k−1)v1
v0−kv1 . Thus, provided δ > max{v0−2kv1

v0−kv1 ,
v0−kv1−δk(k−1)v1

v0−kv1 }, the

buyer extracting full surplus in the second period is an equilibrium outcome in the strategies

described above.

4.8.3 Proof of Proposition 28

We introduce some notation in the next two paragraphs that would be useful in proving the

next result.

We note that each graph ΓO has a subgraph ΓSO such that (i) it contains a feasible path

P , (ii) for each node x ∈ P there exists a node y ∈ ΓO−ΓSO and an edge e(y, z), z ∈ ΓSO such

that ΓSO − x + z contains a feasible path of length k. For instance, in Figure 4.7, the path
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{1234} qualifies as ΓSO. Figure 4.5 shows one more example. Observe that the order of any

ΓSO would vary from k to n− 1. For any given ΓO, let ΓSO∗ be the smallest of all ΓSO ⊂ ΓO

with order m∗.

Further, pick any feasible path P of length k on ΓO. For each x on P , let s(x) be the order

of the smallest subgraph ΓS of ΓO such that (P − x) ∪ ΓS is a feasible path of length k. For

example, in Figure 4.5, s(1) = s(5) = 1 and s(2) = 2.

Consider the following strategy of the buyer: In any continuation game where the buyer

has the first move , the buyer makes negative offers to all sellers. In any continuation game

where sellers have the first move, the buyer accepts the claims of sellers on a path with the

lowest sum of claims provided her share of surplus is non-negative and reject all other claims.

In case the sum of claims on the two feasible paths are same, she accepts claims from one of

the paths chosen with equal probability.

We claim that given the above strategy, sellers claiming zero surplus at any subgame they

are required to make an offer is a best response. Let P1, . . .Pm be the feasible paths in ΓO. Let

xi be the surplus claim of active seller i. No seller can gain by deviating for one stage when∑
i∈P1

xi = · · · =
∑

i∈Pm xi = 0. This is because, for each xi, there is always a feasible path in

ΓO that does not contain xi. Hence it is an equilibrium. If
∑

i∈P1
xi = · · · =

∑
i∈Pm xi > 0, a

seller on either path can reduce his claim by a small amount and make a gain. If
∑

i∈P1
xi >∑

i∈P2
xi, then any seller on P2 can increase his claim by a small amount and make a gain.

Hence these are not equilibrium claims.

Part (a) of the claim follows immediately. For part (b), note that buyer can make zero

surplus offers to all sellers on ΓSO∗, and negative surplus offers to all other sellers; sellers on

ΓSO∗ would accept these offers. To ensure that this deviation in the first stage is not profitable

for the buyer, we require δ > v0−m∗v1
v0−kv1 . The buyer can also make acceptable offers of surplus

shares to sellers on a path and negative offers to all other sellers. If P is the picked path

and xi is the node corresponding to seller i, he accepts any surplus share at least equal to

δ(s(xi) − 1)v1. This is possible when v0 − kv1 − δ
∑

i∈P(s(xi) − 1)v1 > 0. This is because,
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by rejecting a first period offer from the buyer, a seller on the chosen path competes with

sellers on the other path; the highest surplus he can claim in a continuation game where

he and the other sellers are making offers is (s(xi) − 1)v1.To ensure that this deviation in

the first stage is not profitable for the buyer, we require δ >
v0−kv1−δ

∑
i∈P (s(xi)−1)v1

v0−kv1 . Thus,

provided δ > max{v0−m∗v1
v0−kv1 ,

v0−kv1−δ
∑
i∈P (s(xi)−1)v1

v0−kv1 }, the buyer extracting full surplus in the

second period is an equilibrium outcome in the strategies described above.

4.8.4 Proof of Proposition 29

Suppose there is an equilibrium where the buyer obtains full surplus. Such an equilibrium

entails a strategy profile, where the buyer always make zero surplus offers and the sellers

accept such offers at some period. Alternatively, if the sellers are to make an offer they ask

for zero surplus at some period and the buyer accepts it. We will show by contradiction, that

in any such equilibrium a critical seller has profitable deviation.

Suppose, if possible, that the buyer obtains full surplus in an equilibrium at period t. This

implies that all sellers on an efficient path are selling their items at period t or some period

before t. Consider a critical seller with whom trade takes place at period t̂. Now let us consider

the following deviation by the critical seller at t̂: If he is offering at t̂ he asks for something

positive and if the buyer offers according to the equilibrium strategy he rejects it. In either

case, the critical seller moves to a continuation game in period t+1 where he is the only active

seller. By Theorem 1 the critical seller obtains a positive surplus share in the continuation

game. This constitutes a profitable deviation for the critical seller.

4.9 Proof of Proposition 30

Again the idea of the proof is to use the method of contradiction. Let us suppose that there is

an equilibrium where the buyer extracts full surplus. This entails a a strategy profile, where

the buyer always make zero surplus offers and the sellers accept such offers at some period.
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Alternatively, if the sellers are to make an offer they ask for zero surplus at some period and

the buyer accepts it. We find a contradiction to it.

Case 1 (Γ = Γ∆): Suppose the buyer obtains full surplus in an equilibrium at period t. This

implies that all sellers on the efficient path sell their items at t or prior to t. Let us pick a

seller i on the efficient path and suppose he is last active at period t̂ 6 t. Since buyer extracts

full surplus in the proposed equilibrium either i proposes zero surplus share at t̂ or accepts

a zero surplus share offer at t̂. Now pick the seller j who is on P2 but not on P1. Since by

assumption S1 < S2, vi < vj. Consider the following deviation for seller i at t̂: i makes a

surplus offer of 1
1+δ

(v0 − S1) if v0 < S2 and vj − vi − ε if v0 > S2 and accepts offer greater

than δ
1+δ

(v0 − S1) if v0 < S2 and δ(vj − vi − ε) if v0 > S2. Here ε is a small positive quantity.

If the buyer keeps rejecting i offer and keeps offering less than the claim of i then we reach a

continuation game where i is the only active seller on the efficient path. Note that for small

ε, buyer would never agree to trade with seller j. In this continuation game i can ensure a

positive surplus. This leads us to a contradiction.

Case 2 (Γ = ΓD): Suppose the buyer obtains full surplus in an equilibrium at period t. This

implies that all sellers on the efficient path sell their items at t or prior to t. Let us pick a

seller i on the efficient path and suppose he is last active at period t̂ 6 t. Since buyer extracts

full surplus in the proposed equilibrium either i proposes zero surplus share at t̂ or accepts a

zero surplus share offer at t̂.

Now consider the deviation strategy of i where he makes an offer of 1
1+δ

(v0−S1) if v0 < S2

and S2− vi− ε if v0 > S2 and accept offers of at least δ
1+δ

(v0−S1) if v0 < S2 and δ(S2− vi− ε)

if v0 > S2. Then there exists a continuation game at period t+1 where i is the only remaining

active seller on the efficient path and can guarantee himself a positive payoff.

Case 3 (Γ = ΓO): Suppose the buyer obtains full surplus in an equilibrium at period t. This

implies that all sellers on the efficient path sell their items at t or prior to t. Let us pick a

seller i at the intersection of P1 and P2 and suppose he is last active at period t̂ 6 t.Since

buyer extracts full surplus in the proposed equilibrium either i proposes zero surplus share at



Chapter 4: Bargaining For Assembly 180

t̂ or accepts a zero surplus share offer at t̂.

Now consider a deviation strategy for seller i: suppose the cheapest path on the subgraph

excluding i is PR. If v0 > SR, i claims SR − S1 − ε and accepts no less than δ(SR − S1 − ε).

If v0 ≤ SR, i claims 1
1+δ

(v0 − S1) and accepts no less than δ
1+δ

(v0 − S1). In this case there

is a continuation game at t + 1 where i is the only active seller on the efficient path and can

guarantee himself a positive surplus.

Remark 9 See Example 2 for an equilibrium in the simple model where the buyer agrees to

trade with sellers on the efficient path.

4.10 Proof of Theorem 4

By contradiction: Suppose there exists an equilibrium where the buyer purchases the efficient

feasible path and gets a surplus share strictly higher than 1
1+δ

. This implies that in equilibrium

the critical seller gets a surplus share strictly less than δ
1+δ

. Since in equilibrium the buyer

purchases an efficient feasible path and realizes a strictly positive surplus, the game terminates

at some finite period t. There are three mutually exclusive and exhaustive cases with respect

to the sellers who agree in period t.

Case (a): Suppose only the critical seller agrees to trade at t. By Theorem 1, in the

continuation game beginning at t, he gets a surplus share equal to δ
1+δ

if the buyer is making

an offer and 1
1+δ

if himself making an offer. Consequently, buyer’s surplus share cannot exceed

1
1+δ

.

Case (b): Suppose the critical seller and at least one non-critical seller agree to trade in

period t. If the buyer is making an offer in period t, she must offer the critical seller δ
1+δ

of

full surplus, otherwise this seller can reject the offer and move to period t + 1, where he can

earn a surplus share of 1
1+δ

.

Suppose the sellers are making offers, the critical seller claims x < δ
1+δ

and the buyer gets

the maximum possible surplus share X̄ > 1
1+δ

. Suppose the critical seller offers to sell at x+ ε
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surplus share instead. If the buyer accepts the offer, her surplus share is X̄ − ε. If she rejects

only this offer, her surplus share in the continuation game is 1
1+δ

. If she rejects some other offers

too, her surplus share in the continuation game cannot exceed X̄. Consequently, she would

accept the increment claimed by the critical seller in period t− 1 if X̄ − ε > δmax{ 1
1+δ

, X̄} =

δX̄. Hence the critical seller claiming strictly less than δ
1+δ

at t cannot be an equilibrium.

Case (c): Suppose only non-critical sellers agree to trade in period t and agreement takes

place with the critical seller in period t − 1. Suppose the buyer gets the maximum possible

surplus share X̄ > 1
1+δ

. Suppose sellers are making offers at t− 1. The critical seller claiming

x < δ
1+δ

can successfully claim a small increment as shown above. Suppose the buyer is

making offers in period t− 1 and realizes the highest possible surplus share X̄ > 1
1+δ

. Buyer’s

maximum surplus share in the continuation game beginning at period t−1 is X̄ = δ−x which

is strictly positive since it is greater than 1
1+δ

by the contradiction hypothesis; therefore, x < δ.

Now suppose the critical seller rejects buyer’s offer of x and charges a surplus share of x
δ

+ ε

in the next period. Since sellers are offering in this period, all non-critical sellers agree to

trade at their valuations. It follows that if the buyer accepts the critical seller’s new offer,

she realizes a surplus of 1− x
δ
− ε in the continuation game beginning period t, whereas if she

rejects, the surplus share she gets is at most δX̄ = δ2− δx. For ε < (1− δ2)
(
1− x

δ

)
, the buyer

would accept the critical seller’s new offer. Note that the buyer cannot be making offers in

any period prior to t− 1 where the critical seller agrees to trade: the non-critical sellers would

agree to trade in the very next period ending the game. The critical seller is always able to

claim a small increment if he is proposing anything below δ
1+δ

in any period prior to t− 1.

4.11 Proof of Theorem 5

We will apply an induction argument on the number of critical sellers in the problem. Consider

an equilibrium in an assembly problem with two critical sellers. Suppose the final agreement

takes place at period t. There are three mutually exclusive and exhaustive cases with respect
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to the sellers who agree at t.

Case (a): If only two critical sellers and no non-critical sellers agree to trade at t, then

by Roy Chowdhury and Sengupta (2012), buyer’s surplus share cannot exceed 1−δ
1+δ

. Suppose

there are some non-critical sellers who also agree to trade at t. If buyer is making an offer at t,

she must offer δ
1+δ

of full surplus to both critical sellers, otherwise one of them can reject the

offer and claim 1
1+δ

of the full surplus at t + 1. If the sellers are making an offer, any critical

seller receiving less than δ
1+δ

of full surplus can reject such an offer and claim 1
1+δ

at t+ 1.

Case (b): If only one critical seller agrees to trade at t, then this critical seller earns at

least δ
1+δ

. Suppose not. If the buyer is making offers at t, then this seller can reject offers less

than δ
1+δ

and successfully claim 1
1+δ

at t + 1. If sellers are making offers, this critical seller

is claiming x < δ
1+δ

. Suppose the buyer gets a surplus share of X in the continuation game

beginning at t. If this critical seller claims an increment ε over x, the buyer would accept as

long as X − ε > δX. Consider the other critical seller and suppose he agrees to trade at t− 1.

Suppose sellers are making offers in period t − 1, this critical seller claims a surplus share of

x < δ
1+δ

and the buyer’s maximum surplus share in the continuation game beginning at period

t− 1 is X > 1−δ
1+δ

. If this seller claims ε increment on his claim, the buyer would accept as long

as X − ε > δX because if she rejects this offer, the surplus share she can earn at t where both

critical sellers are active is X. Suppose the buyer is making offers at t − 1, offers x < δ
1+δ

to

the critical seller and earns the maximum possible surplus share X > 1−δ
1+δ

. Note that in the

next period only one critical seller would claim 1
1+δ

. Consequently, X = δ2

1+δ
− x > 1−δ

1+δ
> 0.

Therefore, x < δ2

1+δ
. Suppose the critical seller rejects this offer and makes a counteroffer of

x
δ

+ ε next period: the buyer can guarantee herself a surplus share δ
1+δ
− x

δ
− ε by accepting

the deviating seller’s offer and making a fresh offer to the other critical seller next period.

If she rejects this offer, in the continuation game beginning period t, both critical sellers are

present, and the buyer’s surplus share can be at most δX = δ3

1+δ
− δx. For small ε, the buyer

would accept the deviating critical seller’s offer. Similar arguments work if a critical seller is

agreeing to trade in a period prior to t− 1.
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Case (c): Suppose only non-critical sellers agree to trade at t. If agreement takes place

with both critical sellers at t− 1, then it cannot be that sellers are making offers at t− 1 and

the buyer’s equilibrium surplus share is more than 1−δ
1+δ

: like above, it implies that at least one

of the critical sellers is claiming x < δ
1+δ

. He can claim a sufficiently small increment ε over x

which the buyer cannot reject. Suppose the buyer is making an offer at t− 1 and realizes the

maximum possible surplus share of X > 1−δ
1+δ

. Then she must be making an offer of x < δ
1+δ

to some critical seller. Notice in this case, X = δ − x1 − x2, where xi is the surplus share

of critical seller i. Since X > 1−δ
1+δ

> 0, x1, x2 < δ. Now a critical seller who is getting less

than δ
1+δ

, say 1, can reject this offer and claim x1
δ

+ ε. If the buyer accepts this offer, she gets

1 − x2 − x1
δ

+ ε at t and at most δX if she rejects. For small ε, the buyer would accept this

offer. Recall that it cannot be that some critical seller agrees to trade prior to t − 1 since

non-critical sellers agree to trade in at most two periods. Similar arguments work if a critical

seller is agreeing to trade in a period prior to t− 1.

Suppose the claim is true for c = 2, . . . ,m− 1 critical sellers. We will show that it is true

for c = m. Note that by the induction hypothesis, the claim holds whenever the number of

sellers agreeing to trade at t is between 2 and m− 1. Suppose m critical sellers agree to trade

in period t. If the buyer is making offers at t, she cannot offer any critical seller less than

δ
1+δ

because such a seller can reject and claim 1
1+δ

in period t+ 1. If sellers are making offers

at t and the buyer is getting a surplus share of X > 1−δ
1+δ

, one of the critical sellers must be

claiming x < δ
1+δ

. Such a seller can successfully claim a small increment ε over x because if

the buyer rejects this offer, her maximum possible surplus share is δX. If only one critical

seller agrees to trade at t, he cannot be receiving less than δ
1+δ

. If buyer is making offers at

t and he is getting less than δ
1+δ

, he can reject and claim 1
1+δ

in period t + 1. If sellers are

making offers at t and the buyer is getting a surplus share of X > 1−δ
1+δ

, this critical seller

must be claiming x < δ
1+δ

. He can successfully claim a small increment ε over x because if

the buyer rejects this offer, her maximum possible surplus share is δX. Now consider m − 1

critical sellers agreeing to trade at period t− 1. Note that it implies all m sellers were present
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at period t − 1, otherwise the induction hypothesis would apply. If the sellers are making

offers at period t − 1, it cannot be that a critical seller claims x < δ
1+δ

and the buyer gets a

surplus of X > 1−δ
1+δ

: such a seller can always claim a small increment that the buyer cannot

reject. Suppose the buyer is making offers x1, . . . , xm at t − 1 to m sellers and if possible,

realizing the highest possible surplus share X > 1−δ
1+δ

. Since one of these sellers, say 1, would

reject this offer and make a counteroffer in period t, buyer’s equilibrium surplus share in the

continuation game beginning period t− 1 is X = δ2

1+δ
−
∑

i 6=1 xi which is greater than 1−δ
1+δ

by

the contradiction hypothesis. Therefore, for each seller i 6= 1, xi <
δ2

1+δ
− 1−δ

1+δ
, since xi ≥ 0

for all i. By refusing an offer any seller i 6= 1 can make a counteroffer 1
1+δ

in period t. Note

that then the continuation game beginning at period t has exactly two active sellers, and the

buyer’s equilibrium surplus share cannot be more than 1−δ
1+δ

in this continuation game and the

deviating critical seller has a guaranteed surplus share of δ
1+δ

in period t + 1. This deviation

therefore earns the critical seller δ3

1+δ
> δ2

1+δ
− 1−δ

1+δ
. Note that it cannot be the case that critical

sellers agree to trade in three or more different periods and the buyer gets a surplus share more

than 1−δ
1+δ

, because then there are at least three critical sellers and the induction hypothesis

applies.

Finally, consider the case where only non-critical sellers agree to trade at t. This implies all

m critical sellers must have agreed to trade at period t− 1. If the sellers are making offers at

t−1, it cannot be that any seller is claiming x < δ
1+δ

and the buyer is getting a surplus share of

X > 1−δ
1+δ

. Such a seller can successfully claim an increment in surplus share over x. Suppose the

buyer is making offers x1, . . . , xn at t− 1 and gets the highest possible surplus share X > 1−δ
1+δ

.

Since only non-critical sellers make offers in period t, X = δ −
∑

i xi >
1−δ
1+δ

> 0. Therefore,

xi < δ for all i. A critical seller, say 1, can reject the buyer’s offer at t − 1 and claim x1
δ

+ ε

at t. If the buyer accepts this claim, buyer’s equilibrium surplus share is 1−
∑

i 6=1 xi −
x1
δ
− ε

at t; if she rejects, her equilibrium surplus share is at most δX = δ2 − δ
∑

i xi −
x1
δ
− ε at t.

Therefore, for small ε, the buyer would accept the claim x1
δ

+ ε at t. Similar arguments work

if a critical seller is agreeing to trade in a period prior to t− 1.



Chapter 5

Conclusion

In this chapter, I take up the questions addressed in the thesis, discuss in brief the main

findings and suggest tentative ways forward. Some of the ideas discussed are projects currently

underway.

In the first chapter, we considered the situation of a collective contest between two dif-

ferently sized groups over a private prize. The aim of the chapter was to provide strategic

foundations to certain prize sharing rules, which may be used by groups in such a situation.

In particular, we considered the prize sharing rule introduced in Nitzan (1991). Even though

this rule is considered a standard in the literature, it was ad hoc in the sense that there was

nothing but an intuitive basis to it.

In order to provide the rules microfoundations, we proposed another rule which can be

considered to be the first best rule in our set up. We asked whether the prize sharing rule

will ever be chosen by any group when the first best rule is also present. We found that

under certain circumstances, the prize sharing rule being chosen by both groups may indeed

be an equilibrium of an appropriately constructed two stage game. But, it is an equilibrium

of a Coordination game where both groups choosing the first best rule is also a Nash equilib-

rium. It essentially captures a situation of failure by the groups to coordinate on the Pareto

superior equilibrium involving the first best rules. But, the equilibrium with prize sharing

rules survives the selection criterion of risk dominance under certain circumstances. And the

equilibrium always survives the criterion called the security principle. Given that there exist

185
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Nash equilibrium refinement criteria which select the equilibrium with the prize sharing rules,

we claim that there indeed exists a strategic basis to the prize sharing rules.

Besides the obvious extensions of considering larger number of groups, or testing the prize

sharing rules against other intuitive rules, an intriguing possibility is to test the model using

an appropriately constructed experiment. It is not hard to imagine group leaders choosing

inefficient institutions within his group, given it is in conflict with some other group. The best

way to construct an experiment would be to create two differently sized groups in a laboratory

setting and choose a leader from each group. Then just follow the exact approach taken in the

chapter and play our game (maybe a simplified version), with the constructed groups. If the

group leaders systematically choose the inefficient prize sharing rule in equilibrium at a rate

significantly greater than zero, then it would support the theoretical results of our model.

In the second chapter we tried to model social norms of competitiveness within groups and

how that affected their performance in a situation of conflict with other groups. We showed

that large egalitarian groups are the worst performing ones. It will be very difficult to test

the predictions of our model empirically or experimentally in a laboratory. But, it would be a

worthwhile exercise to find anecdotal evidence which either supports or refutes the predictions

of the model.

For instance, our model has an application to the theory of organizations. Given a world

where organizations of different sizes are always in conflict over some scarce resource, our

model predicts that large dispersed organizations will always fare worse than smaller, close

knit and more competitive organizations. For example, consider the wide, dispersed and the

larger identity, we call the Hindu identity. Our model would predict that such an identity

will more often than not lose out in competition to the much smaller, more coherent and

competitive identities, we can call the caste identities. Looking for evidence along such lines

to test our model is something we wish to do in future.

Moving away from the theme of collective contests, our final chapter considers a situation

of multilateral bargaining between a buyer and several sellers. Each seller owns an input
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each and the buyer needs to bargain successfully with a subset of sellers to implement a

grand project. The common theme in this literature is the problem of hold-out, whereby

sellers delay agreeing to accept offers in order to hold the buyer hostage, once the buyer has

already made agreements with some of them. The problem of hold out may lead to delay or

non-implementation of efficient projects.

What lies behind the phenomenon of hold out, is the extreme complemetaririties assumed

between inputs. We contend that such extreme degrees of complementarity between inputs is

not realistic. We try to model different degrees of complementarities between inputs using a

graph theoretic model, where each seller is a node on the graph and an edge exists between two

sellers in case they own complementary inputs. The buyer needs to pick a path of a particular

size to implement his project. The possibility of multiple such paths nicely builds in the idea

of substitutability between inputs.

We go on to show that the problem of hold-out more or less vanishes unless there exist

sellers, who belong to every path, i.e., a seller who is perfectly complementary to the production

process. This helps us show that the phenomenon of hold out critically depends on the

assumption of perfect complementarity and its incidence may thus been overstated in the

literature. Currently we are working on a project, the aim of which is to compute the coalition

proof Nash equilibria of the model in the chapter. Also, given the graph theoretic approach

does not give rise to the most general production processes, an interesting idea is to generalize

our model using the coalitional bargaining approach and verify whether our results hold in

that general model or not.

All the extensions and possible experiments suggested here are worthwhile future projects

but are much beyond the scope of this thesis.
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