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Abstract

The existence of evasion attacks during the test phase of machine learning algorithms repre-
sents a significant challenge to their deployment and understanding. These attacks are carried
out by adding imperceptible perturbations to the inputs to generate adversarial examples. As
of now designing good robust classifiers in real life seems very difficult. But so far most of the
studies depict the relationship between computational power of adversary and robustness of
the classifier. In this report, we have used some of the cryptographic schemes to create robust
classifiers and show the dependency of robustness with adversarial budget.

1 Introduction

One of the basic tasks of machine learning is to learn a classifier from a given data set. Let X be
the domain, i.e., the set of objects that are required to be classified, in general the elements of X are
a suitable encoding of the objects which are represented by vectors, commonly called as a feature
vector. Let Y be a set of possible labels. Let D be an unknown distribution over X × Y and S be a
set of m samples drawn i.i.d. from D. Call L as the training set. A learning algorithm takes a input
the training set S and a set of hypothesis functions H,and outputs a classifier h ∈ H. The goal is to
(approximately) minimize the error

δ = Pr
(x,y)

D←X×Y
[h(x) 6= y].

Classification problems abound in nature and designing good classifiers are important in today’s
world. There are numerous practical scenarios where a good classifier makes our lives easier, for
example, classifying good emails from spams, classifying pixels in a satellite image as land-mines and
safe, and many others.

Designing good classifiers using small training sets which can perform well on previously unseen
data have been a problem of interest for many years and numerous techniques to design classifiers
have been developed like logistic regression, discriminant analysis, nearest neighbor methods, (deep)
neural networks etc[8]. There have also been numerous theoretical studies on classification problems
which tries to characterize the class of learn-able functions, compute bounds on the training set size
etc[10].

Recently there has been an interest in studying classification problems in the adversarial setting.
We describe the problem in one such setting with a simple example. Let us consider a classifier h for
images which takes in an image and classifies it into two classes say cat and dog signifying whether
the image has in it a cat or a dog. We assume that h performs quite good on examples drawn
from the true distribution. The goal of the adversary is to fool this classifier h in the following way.
Suppose x is an image containing a dog and h classifies it correctly, the adversary perturbs x into a
new instance x′ which is very close to x, the adversary wins if h classifies x′ as cat. Note that a small
perturbation of x is unlikely to change the visual information in it but the classifier fails to classify it
correctly. It has been shown that several classification algorithms, which are otherwise efficient may
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be sensitive to small perturbations and may succumb to the adversarial attack described above [1, 7].
In real world setting there can be scenarios where this adversarial behaviour can render a classifier
useless, for example, consider senders of junk email disguising their emails by adding small amount
of extra words which forces the classifier to classify as legitimate email.

A learning algorithm is called a robust learner if it produces a classifier that still predicts the true
label of a input instance x if it is perturbed to a close instance x′. In the last decade there have been
intense activity in addressing this problem: both for strategies to design classifiers to thwart such
attacks [9] and new attacks [4].

Till date design of robust classifiers for real life problems has proved to be a very difficult task and
in the existing race between designers and attackers it seems that the attackers still have a upper hand.
Thus an important problem of today is to construct classifiers which are provably robust. Among
many directions that are being explored towards solving this problem one significant one asks the
question of the relation between computational power and robustness. A class of research shows
evidence that constructing a robust classifier from limited training data is information theoretically
possible but computationally intractable [3].

Most modern cryptographic constructions have the property that they are secure against computa-
tionally bounded adversaries but insecure against information theoretic (computationally unbounded)
adversaries. Thus, it is likely that cryptographic objects may help in construction of robust classifiers
and there are a line of work which explores this idea [5, 2, 6]. We explore further in this direction.

Our Contribution: In [6] the authors study the problem of robust classification in a fresh way.
Their main contribution is to see the robustness of a classifier against the computational power
of an adversary. In particular they claim that there exists a classification problem P which has a
classifier hP which is only robust against computationally bounded adversaries but not robust against
computationally unbounded adversaries. They use a one-time signature scheme, and error correcting
codes in their construction in a novel way. The security definition and the security results that they
prove are in the asymptotic setting.

Firstly, we analyze in detail the construction in [6]. Using their basic idea we come up with two
different constructions of robust classification problems. Instead of the asymptotic setting we use the
concrete security setting and give concrete security bounds for the adversarial risk of our classifiers.

1. In our first construction we use a hash function. For proving security we treat the hash function
as a random oracle. Though unrealistic, the random oracle model is a well accepted heuristic
in the provable security literature.

2. Our second construction uses block ciphers. We introduce a new (non-standard) assumption
regarding the block cipher which we call the Black-Box-non-Reconstructible (BBnR) assump-
tion. Which essentially says that it is not possible for a computationally bounded adversary to
reconstruct the description of a block-cipher from its input-output pairs. This assumption can
be seen as a stronger version of the assumption that key recovery is difficult from input output
pairs. Note that for the BBnR assumption the description of the block cipher is kept hidden
from the adversary. We prove our construction to be robust if the BBnR assumption holds.
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2 Preliminaries

General Notations: {0, 1}∗ is the set of all binary strings and {0, 1}n denotes the set of all n-bit
strings. For x, y ∈ {0, 1}∗, x||y denotes the concatenation of strings x and y. When X is a finite set,

by x
$← X we mean that x is a uniform random element of X.For x ∈ {0, 1}n, wt(x) is defined as

the number of 1’s in x. For x, x′ ∈ {0, 1}n the Hamming distance between x and x′ is denoted by

HD(x, x′) = wt(x ⊕ x′). If D is a probability distribution over a set X, then by x
D←− X indicates

that (x, y) is sampled from D where x ∈ X and y ∈ Y .

Signature Scheme: A signature Scheme is a tuple of three probabilistic ploynomial-time algorithms
(Gen, Sign,Vrfy) satisfying the following :

1. The key-generation algorithm Gen takes as input a security parameter 1n and outputs a pair
of keys (pk, sk). These are called public key and the private key, respectively. We assume for
convenience that pk and sk each have length at least n, and that n can be determined from
pk, sk.

2. The signing algorithm Sign takes as input a private key sk and a message m ∈ {0, 1}∗. It
outputs a signature σ, denoted as σ ← Signsk(m).

3. The deterministic verification algorithm Vrfy takes as input a public key pk, a message m, and
a signature σ. It outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid. We
write this as b := Vrfypk(m,σ).

Security of a signature scheme is defined by the following. We say a signature scheme is secure, if

1. Completeness: It is required that for every n, every (pk, sk) output by Gen(1n), and every
m ∈ {0, 1}∗, it holds that,

Vrfypk(m, Signsk(m)) = 1.

2. Unforgeability: For every positive polynomial s, for every λ and every pair of algorithm
(A1, A2), which are polynomial in s(λ), the following probability is negligible in λ.

Pr[(sk, pk)← Gen(1λ);

(m, st)← A1(1
λ, pk);

σ ← Signsk(m);

(m′, σ′)← A2(1
λ, pk, st,m, σ);

m 6= m′ ∧ Vrfypk(σ
′,m′) = 1]

≤ negl(λ)

(1)

Error Correcting Code: An error correction code with code rate α and error rate β consists of
two algorithms Encode and Decode as follows.
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• The encode algorithm Encode takes a binary string m and outputs a Boolean string c such that
|c| = |m|/α

• The decode algorithm Decode takes a binary string c and outputs either⊥ or a Boolean stringm.
For all m ∈ {0, 1}∗, c = Encode(m) and c′ where HD(c, c′) ≤ β · |c|, it holds that Decode(c′) =
m.

Hash Functions: A hash function G : ∪i≤M{0, 1}i → {0, 1}N maps arbitrary long strings to a
fixed length string. Many cryptographic protocols uses hash functions. If a hash function G is well
designed, it should be the case that the only efficient way to determine the value G(x) for a given
x is to actually evaluate the function G at the value x. This should remain true even if many other
values G(x1), G(x2)... have already been computed.

The random oracle model provides a mathematical model of an ideal hash function. In this model,
a hash function G : X −→ Y is considered to be a uniform random element of FX,Y , where FX,Y

denotes the set of all functions mapping X to Y , and we are only permitted oracle access to the
function G. This means that we are not given a formula or an algorithm to compute values of the
function G. Therefore the only way to compute the value G(x) is to query the oracle. This can be
thought of as looking up the value of G(x) in a giant book of random numbers such that, for each
possible x, there is a complete random value G(x). As a consequence of the assumption made in the
random oracle model, it is obvious that the following independence property holds:

Property 1 Suppose that G
$← FX,Y , and let X0 ⊆ X. Suppose that the values G(x) have been

determined (by querying an oracle for G) if and only if x ∈ X0. Then Pr[G(x) = y] = 1
|Y | for all

x ∈ X0 and all y ∈ Y

Hoeffding’s inequality: In probability theory Hoeffding’s inequality provides an upper bound on
the probability that the sum of bounded independent random variables deviates from its expected
value by more than a certain amount.

Hoeffding’s inequality is a generalization of Chernoff bound, which applies only to Bernoulli random
variable.

Let Z1, Z2, Z3, ...., Zn be independent bounded random variables with Zi ∈ [a, b] for all i where
−∞ < a ≤ b <∞. Then

P

(
1

n

n∑
i=1

(Zi − E[Zi]) ≥ t

)
≤ exp

(
− 2nt2

(b− a)2

)
(2)

and

P

(
1

n

n∑
i=1

(Zi − E[Zi]) ≤ −t

)
≤ exp

(
− 2nt2

(b− a)2

)
(3)
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So if Z1, Z2, Z3, ...., Zn be independent bounded random variables with Zi ∈ {0, 1}, and P (Zi = 1) = p
Then

P

(
n∑
i=1

Zi ≤ (p− t)n

)
≤ exp

(
−2nt2

)
(4)

One-way Functions :A one-way function f has the property that it is easy to compute, but hard
to invert.

Let f : {0, 1}∗ → {0, 1}∗ be a function. Consider the following experiment defined for any
algorithm Alg and any value n for the security parameter.

The inverting experiment: InvertAlg,f (n)

1. Choose input x
$← {0, 1}n. Compute y := f(x).

2. Alg is given 1n and y as input, and outputs x′

3. The outout of the experiment is defined to be 1 if f(x′) = y and 0 otherwise.

Alg need not to find x itself but it suffices for Alg to find any value x′ for which f(x′) = y = f(x).

A function f : {0, 1}∗ → {0, 1}∗ is one-way if the following two conditions hold:

1. (Easy to Compute) There exists a polynomial time algorithm Mf computing f ; that is Mf (x) =
f(x) for all x

2. (Hard to invert) For every probabilistic polynomial time algorithm Alg, there exists a negigible
function negl such that

Pr[InvertAlg,f (n) = 1] ≤ negl(n)

3 Robust Classification

A classification problem is defined by P = (X, Y,D,H) where set X is the set of possible instances,
Y is the set of possible labels, D is a joint distribution over X×Y , and H is the space of hypothesis.
Generally, the hypothesis class contains functions h : X → Y . For our purpose, we assume that each
h ∈ H is a function h : X → Y ∪ {∗}, where ∗ is a special symbol not in Y . This extension of the
hypothesis functions was done in [6] for providing ability to a classifier to detect tampering or “out
of distribution” instances. In all schemes described here this modified definition of a hypothesis will
play an important role. A learning algorithm is an algorithm which outputs a hypothesis h ∈ H
given the training instances set denoted by S.

For a classification problem P , the risk or error of a hypothesis h is defined as

RiskP (h) = Pr
(x,y)

D←−X×Y
[h(x) 6= y].
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For the purpose of defining adversarial perturbations we associate a metric d over the set of
instances X. For a metric d over X, we let db(x) = {x′|d(x, x′) ≤ b} be the ball of radius b centered
at x under metric d. For the rest of the document we will consider the instance space to be a finite
set of binary strings of a fixed length and we will associate the Hamming distance as the metric with
X.

In cryptography game based security definitions are common. A game based definition, in general,
consists of interactions between two entities, a challenger and an adversary and an adversarial goal
is specified. In [6] a game based definition of robust learning was provided which we state next.

Definition 1 (Security game of adversarial robust learning) Let Pn = (Xn, Yn, Dn, Hn) be a
classification problem where the components are parameterized by n. Let L be a learning algorithm
with sample complexity m = m(n) for Pn. Consider the following game between Challenger Chal and
an adversary A with tampering budget b = b(n).

1. Chal samples m i.i.d examples S ←− Dm
n and gets hypothesis h←− L(S) where h ∈ Hn

2. Chal then samples a test example (x, y)← Dn and sends (x, y) to the adversary A.

3. Having oracle access to hypothesis h and a sampler for Dn, the adversary obtains the adversarial
instance x′ ←− Ah(.),Dn(x) and outputs x′.

Winning conditions :

1. In case x = x′ the adversary A wins if h(x) 6= y.

2. In case x 6= x′, the adversary wins if all the following hold:

(a) HD(x, x′) ≤ b,

(b) h(x′) 6= y

(c) h(x′) 6= ∗

Definition 2 (Adversarial Risk of hypotheses and learners:) Suppose L is a learning algo-
rithm for a problem P = (X, Y,D,H). For a class of attackers A we define

AdvRiskP,A(L) = sup
A∈A

Pr[A wins ],

where the winning is defined as in Definition 1.

A class of attackers will be generally specified by its running time t /circuit size s, and its
perturbation budget b. For a class of attackers with running time t and perturbation budget b we
will specify the adversarial risk of L by AdvRiskP,b,t(L), similarly for a class of attackers with
circuit size s and perturbation budget b we will specify the adversarial risk by AdvRiskP,b,t(L). For
computationally unbounded or information theoretic attackers, with no bound in running time but
with a perturbation budget b, we specify the adversarial risk by AdvRiskP,b(L).

6



Definition 3 (Computationally Robust learners :) Let Pn = (X, Y,D,H) be a classification
problem parameterized by n. A learning algorithm L is a computationally robust learner with risk at
most R = R(n) against b = b(n) perturbing adversaries, if for any polynomial s = s(n), there is a
negligible function negl(n) = n−ω(1) such that

AdvRiskPn,b,s(L) ≤ R(n)negl(n)

The above definitions are all restated as in [6]. These definitions are asymptotic in nature and are
parameterized by n as is common in cryptographic definitions. One can state the concrete version
of these definitions where the classification problem is a fixed problem P (X, Y,D,H) without any
parameterizations. The concrete version of Definition 3 will be as

Definition 4 ((ε, t, b)-robust learner) Let P = (X, Y,D,H) be a classification problem. A learning
algorithm L, associated with P is (ε, t, b) robust if the adversarial risk of L against all b perturbing
adversaries, which runs for time at most t, is at most ε.

4 A Computationally Robust Classification Problem

In [6] the authors present the construction of a classification problem along with its classifier and
claim it to be robust against computationally bounded adversaries but not so against computationally
unbounded adversaries. We first describe their construction and their proof.

The construction: Let Q = ({0, 1}d, Y,D,H) be a learning problem and h ∈ H be a classifier for
Q such that RiskQ(h) = α. Construct a family of learning problems Pn (based on the fixed problem
Q) with a family of classifiers hn. In this construction the following objects would be used:

1. A signature scheme Ψ = (Gen, Sign,Vrfy) where the bit length of the public key pk is λ and the
bit length of the signature is `(λ) = polylog(λ).

2. An error correction code (Encode,Decode) with code rate cr = Ω(1) and error rate er = Ω(1).

The new problem Pn = (Xn, Yn, Dn, Hn) is defined as follows:

1. The space of instances for Pn is Xn = {0, 1}n+d+l(n)

2. The set of labels Yn = Y

3. The distribution Dn is defined by the following process:

• (x, y)← D

• (pk, sk)← Gen(1n·cr)

• σ ← Sign(sk, x)
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• [pk]← Encode(pk)

• output ((x, σ, [pk]), y)

4. : The classifier hn : Xn → Yn is defined as

hn(x, σ, [pk]) =

{
h(x) if Vrfy(Decode([vk], x, σ)
∗ otherwise.

Theorem 1 For family Pn of construction above the family of classifiers hn is computationally robust
with risk at most α against adversaries with budget er · n (er is the error rate of the error correction
code). On the other hand hn is not robust against information theoretic adversaries of budget b+`(n),
if h is itself not robust to b perturbations:

AdvRiskPn,b+l(n)(hn) ≥ AdvRiskQ,b(h) (5)

Proof:

Claim: For problem Pn,
RiskPn(hn) = RiskQ(h) = α

RiskPn(hn) = Pr[((x, σ, [vk]), y)← Dn;hn(x, σ, [vk]) 6= y]

= Pr[(x, y)← D;h(x) 6= y]

= RiskQ(h)[Proved]

Claim: For family Pn,and for any polynomial s(·) there is a negligible function negl such that
for all n ∈ N

AdvRiskPn,er·n,s(hn) ≤ α + negl(n) (6)

Proof: Let A{n∈N} be the family of circuits maximizing the adversarial risk for hn for all n ∈ N.
We build a sequence of circuits A1

{n∈N},A
2
{n∈N} such that A1,A2 are of size at most s(n) + poly(n).

A1
n just samples a random (x, y) ← D and outputs (x, y). A2

n gets x, σ and vk, calls An to get
(x′, σ′, vk′) ← An((x, σ, [vk]), y) and outputs (x′, σ′). Note that A2

n can provide alll the oracles
needed to run An if the sampler from D, h and c are all computable by a circuit of polynomial size.
Otherwise, we need to assume that our signature scheme is secure with respect to those oracles and
the proof will follow. We have,

AdvRiskPn,er·n,s(hn) = Pr[((x, σ, [vk]), y)← Dn; (x′, σ′, vk′)← A((x, σ, [vk]), y);
h(x′, σ′, vk′) ∈ HDer·n(x, σ, [vk]) ∧ hn(x′, σ′, vk′) 6= ∗ ∧ hn(x′, σ′, vk′) 6= y]

Note that (x′, σ′, vk′) ∈ HDer·n(x, σ, [vk]) inplies that Decode(vk′) = vk based on the error rate
of the error correcting code. Also hn(x′, σ′, vk′) 6= ∗implies that σ′ is a valid signature for x′ under
verification key vk . Therefore we have,
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AdvRisker·n,s(hn)

≤ Pr[(sk, vk)← KeyGen(1n; (x, y)← A1(1
n);σ ← Sign(sk, x); (x′, σ′)← A2(x, σ, vk); Verify(vk, x′, σ′)∧

hn(x′, σ′, [vk]) 6= y]

≤ Pr[(sk, vk)← KeyGen(1n;x← A1(1
n);σ ← Sign(sk, x); (x′, σ′)← A2(x, σ, vk); Verify(vk, x′, σ′)∧

x′ 6= x] +RiskPn(hn)

Thus, by unforgeability of the one-time signature scheme we have

AdvRiskPn,er·n,s(hn) ≤ RiskPn(hn) + negl(n)

which by the above claim implies

AdvRiskPn,er·n,s(hn) ≤ α + negl(n)

4.1 Analysis of the construction

It is claimed that the construction is robust against computationally bounded adversaries with linear
budget but is not so against information theoretic adversaries with even polylog budget. We analyze
these situations in details in light of their construction and the proof.

The goal of the adversary is to produce a new instance (x′, σ′, [pk]′) which is close to the instance
(x, σ, [pk]) provided by the challenger. To be successful it is at least required that the new instance
is considered as a valid one by the classifier, i.e,

Vrfy(Decode([pk]′), x′, σ′) = 1.

As per the construction, the lengths of the signature σ and the encoded public key [pk] are only
dependent on the security parameter n, and length of x is a constant d. Thus the budget, which
is also parameterized on n does not provide any restriction on the change of x, i.e., the whole of x
could be changed to get a x′ without violating the budget.

As specified by the construction, the length of pk is n. pk is the encoded using an error correcting
code with code rate cr to obtain [pk], thus the length of [pk] is cr · n. As the error rate of the error
correcting code is er, thus to change [pk] to [pk]′ such that Decode([pk]′) 6= [pk] the adversary needs
to change more than er.n many bits of [pk], which is beyond the budget of the adversary. Thus any
change that that the adversary makes on [pk] within its budget will essentially not change it upon
decoding, thus the adversarial strategy would be not to change [pk] at all.

Keeping x fixed, it is not possible for the adversary to change σ, thus it will always be the case
that x 6= x′. To realize such a change and still be successful the adversary has to forge a signature
of x′ under the public key [pk]. A curious feature of the construction is that the signature length is
polylog(n), thus the whole signature can be changed within the perturbation budget.

The main argument in the proof is that a computational adversary will be unable to produce a
valid (x′, σ′) pair as the signature scheme is a secure one. In particular, the success probability of
the adversary in forging would be a negligible function in n. Though the argument is valid, but a
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signature with length `(n) = polylog(n) is a weak signature. The number of possible signatures of
length `(n) for a message m is at most 2`(n), thus the adversary can trivially forge with probability

2−`(n) = n−polylog(n). In other words, the adversary will require quasi polynomial time to brute
force search over all possible signatures. If `(n) = O(n) was used instead then the signature would
have been a stronger one, with the adversary requiring exponential time to brute force search over
all signatures. Also, most signature schemes in use have signature lengths of O(n).

The authors of [6] do not use a linear length signature to accommodate their strong claim regarding
information theoretic adversaries. A computationally unbounded adversary can forge the signature
of any length but to allow a lesser perturbation budget of polylog(n), they use a polylog(n) sized
signature.

5 Construction with Hash function

Here we provide a new construction which instead of a signature scheme uses a hash function

G : {0, 1}d → {0, 1}N

. The Construction: Let P = (X, Y,D,H) be a learning problem and h ∈ H be a classifier for P .
Construct a family of learning problems P ′(based on the fixed problem P ) with a family of classifiers
h′. In this construction random oracle model is used. Let G : {0, 1}d → {0, 1}N be a hash function
modelled as a random oracle. First (x, y)← D is sampled, then after getting G(x) we use (x,G(x), y)
as the input instances to the learning algorithm of P ′.

1. The space of instances for P ′ is X ′ = {0, 1}d+N

2. The set of labels Y ′ = Y

3. The distribution D′ is defined by the following process: (x, y)← D, compute z = G(x), output
((x, z), y)

4. The classifier h′ : X ′ → Y ′ is defined as

h′(x, z, y) =

{
h(x) if G(x) = z
∗ otherwise.

Theorem 2 For a family P ′ of construction above, the family of classifiers h′ is ε robust against

adversaries with budget K, where ε = exp
{
−
(
N
2

+ 2K2

N

)}
and K ≤ N

2
.
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To prove this we need the following lemma.

Lemma 1: Let G : {0, 1}d → {0, 1}Nbe a random oracle, Then for any x, x′ ∈ {0, 1}d,

Pr[HD(G(x), G(x′)) ≤ K] ≤ exp

(
−2N

(
1

2
− K

N

)2
)

Proof: G(x) ∈ {0, 1}N so for two instances of input say x1, x2, we are trying to find

Pr (HD(G(x1), G(x2)) ≤ K)

Note as G is modelled as a random oracle, thus G(x1), G(x2) are two uniform random elements
of {0, 1}N . Let Di ∈ {0, 1} be a random variable where,

Di =

{
1 if (G(x1))i = (G(x2))i
0 otherwise.

So we have,

HD(G(x1), G(x2)) =
N∑
i=1

Di

and Pr (Di = 1) =
1

2

Using Hoeffding bound[equation (3)], we can write

Pr

(
N∑
i=1

Di ≤ (
1

2
− t)N

)
≤ exp

(
−2Nt2

)
(7)

Now, putting t = (1
2
)− (K

N
) gives,

Pr

(
N∑
i=1

Di ≤ K

)
≤ exp

(
−2N

(
1

2
− K

N

)2
)

Hence,

Pr (HD(G(x1), G(x2)) ≤ K) ≤ exp

(
−2N

(
1

2
− K

N

)2
)

�
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Proposition 1 Let x, x′ ∈ {0, 1}d be such that HD(x, x′) = b and b ≤ K. Let z = G(x) and

z′ = G(x′), then Pr[HD(x||z, x′||z′) ≤ K] ≤ exp
(
−2N

(
1
2
− K

N

)2)
.

Proof: When the adversary budget isK, andHD(x, x′) = b, thenHD(G(x), G(x′)) ≤ K−b ≤ K.
So,

Pr[HD(x||z, x′||z′) ≤ K] = Pr[HD(z, z′) ≤ K − b]
≤ Pr[HD(G(x), G(x′)) ≤ K − b]
≤ Pr[HD(G(x), G(x′)) ≤ K]

≤ exp

(
−2N

(
1

2
− K

N

)2
)
.

�

Now,

AdvRiskP,b(h)

= Pr[Adversary finds a x′ such that HD((x||G(x)), (x′, G(x′))) ≤ K]

≤ Pr[∃x′ such that HD((x||G(x)), (x′, G(x′))) ≤ K]

≤ exp

(
−2N

(
1

2
− K

N

)2
)

Theorem 2 follows directly from Lemma 1 and Proposition 1 So the adversarial risk is at most

ε = exp
(
−2N

(
1
2
− K

N

)2)
for the construction mentioned above. �

With some simplification it can be shown that, for the scheme to be ε robust, where ε =

exp
(
−2N

(
1
2
− K

N

)2)
, the adversarial budget K can be at most N

(
1
2
−
√

log 1
ε

2N

)

6 A Block Cipher based construction

A bock cipher is a function E : {0, 1}k × {0, 1}n → {0, 1}n, where for every K ∈ {0, 1}k, EK :
{0, 1}n → {0, 1}n is a bijection. For convenience, we will assume throughout that k = n. For
K,m ∈ {0, 1}n we will sometimes write EK(m) instead of E(K,m).

We make a nonstandard assumption regarding the function E, which essentially says that no
efficient adversary can reverse engineer and construct E given input output examples.

Definition 5 Black-Box not Reconstructible: An adversary A is given oracle access to E, and
it can query it multiple times. Suppose the adversary asks q queries where the ith query is (K(i), x(i))
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and the response is z(i) = E(K(i), x(i)). Let Q = {(K(i), x(i)) : 1 ≤ i ≤ q}. Finally the A outputs
(K̃, x̃, z̃). We say A is successful if (K̃, x̃) /∈ Q and E(K̃, x̃) = z̃.

We say that E is (ε, t, q)-black-box not reconstructible (BBnR) if for all adversaries who run for
time at most t, asks at most q queries to its oracle have its success probability at most ε.

Note that the BBnR assumption can be seen as a weaker version of the fact that key recovery
is difficult, i.e. given {xi, yi}qi=1 such that yi = EK(xi), it is difficult to find K. For the BBnR
assumption we even hide the description of E from the adversary but we find no way to reduce this
property from existing standard assumptions on block ciphers.

Now we describe a construction for a robust classification problem using E

6.1 The construction

As before let C = (X, Y,D,H) be a classification problem, where X = {0, 1}n, D is a probability
distribution over X × Y and H consists of hypotheses where each h ∈ H is h : X → Y ∪ {∗}. We
convert Q to a classification problem P = (X ′, Y,D′, H ′), where

1. X ′ = {0, 1}3n

2. The new distribution on X ′ × Y is defined as:

(x, y)
D← X × Y

K
$← {0, 1}n

z = E(K, x)

output (x, z,K, y)

3. The new hypothesis h′ is defined as

h′(x, z,K) =

{
h(x) if EK(x) = z
∗ otherwise.

Theorem 3 The classification problem P defined above is robust. In particular for an arbitary
adversary B against robustness of P with budget b and running time t, there exists a BBnR adversary
A for the block cipher E : {0, 1}n × {0, 1}n → {0, 1}n, which asks at most q query to its oracle such
that,

AdvRiskP (h) ≤ AdvbbnrE (A) + q exp

(
−6n

(
1

2
− b

3n

)2
)

Let A be an adversary to BBnR. It has the oracle access and it can ask q queries to the oracle.
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Let B be an arbitrary adversary. We will construct the adversary A, which will use B and thus
will also provide the environment for B. Specifically A would act as the challenger for B and also
provides it with the required oracle.

AdversaryB’s goal is to output (x′, z′, K ′) given (x, z,K) such thatHD((x||z||K), (x||z′||K ′)) ≤ b,
where b is the adversarial budget.

1. On a sample query from B, A sends (x, z,K, y) as defined above to B.

2. On a classifier query from B, A sends h(x) or ∗ as mentioned above to B.

3. A outputs what B outputs

Let (x′, z′, K ′) is the output from B.
Let us define the following:

E1 ≡ EK′(x′) = z′

E2 ≡ HD((x||z||K), (x||z′||K ′)) ≤ b

E3 ≡ HD((x||z||K), (xi||zi||Ki)) ≥ b, where (xi||zi||Ki) ∈ Q and Q is the query set as defined above

E4 ≡ (x||z′||K ′) /∈ Q

Let AW defines the event that adversary A wins, similarly Let BW defines the event that adversary
B wins. Pr[AW ] = Pr[E1 ∧ E2] and Pr[BW ] = Pr[E1 ∧ E4]

Also, Pr[AW ] = AdvbbnrE (A)

Also, Pr[AW ∧ E3] ≥ Pr[BW ∧ E3]
So,

Pr[BW ]− Pr[AW ] = Pr[BW ∧ E3] + Pr[BW ∧ E3]− Pr[AW ∧ E3] + Pr[AW ∧ E3]

≤ Pr[BW ∧ E3]− Pr[AW ∧ E3]

= Pr[BW |E3] Pr[E3]− Pr[AW |E3] Pr[E3]

= Pr[E3](Pr[BW |E3]− Pr[AW |E3])

≤ Pr[E3]
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Pr[E3]

= Pr[HD((x||z||K), (xi||zi||Ki)) < b] such that ∃(xi||zi||Ki) ∈ Q
= Pr[Ei], such that ∃i and (xi||zi||Ki) ∈ Q where Ei ≡ HD((x||z||K), (xi||zi||Ki)) < b

= Pr

[
q⋃
i=1

Ei

]

≤
q⋃
i=1

Pr[Ei]

≤ q exp

(
−6N

(
1

2
− b

3N

)2
)

(Using Lemma 1)

So,

AdvRiskP (h) = Pr[BW ]

≤ Pr[AW ] + Pr[E3]

≤ AdvbbnrE (A) + q exp

(
−6N

(
1

2
− b

3N

)2
)

So the adversarial risk is at most ε = AdvbbnrE (A) + q exp
(
−6N

(
1
2
− b

3N

)2)
for the construction

mentioned above. �
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