
Randomized algorithms for resource allocation in

device to device communication

Thesis submitted in fulfillment of the requirements for the degree

of

Doctor of Philosophy in Computer Science

by

Subhankar Ghosal

Under the supervision of

Prof. Sasthi Charan Ghosh

Submitted on December 2021

ADVANCED COMPUTING AND MICROELECTRONICS UNIT

INDIAN STATISTICAL INSTITUTE

© Subhankar Ghosal

All rights reserved

DECLARATION

Thesis Title
Randomized algorithms for resource allocation in device to device

communication

Author Subhankar Ghosal

Supervisor Prof. Sasthi Charan Ghosh

I declare that this thesis entitled Randomized algorithms for resource allocation in device

to device communication is the result of my own work except as cited in the references.

The thesis has not been accepted for any degree and is not concurrently submitted

in candidature of any other degree.

Subhankar Ghosal

Advanced Computing and Microelectronics Unit

Indian Statistical Institute

Date: January 13, 2022

iii

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my research supervisor,

Prof. Sasthi Charan Ghosh, for kindly giving me the opportunity to do research under

him and providing invaluable guidance throughout this work. His dynamism,

vision, sincerity and motivation have deeply inspired me. He has taught me the

methodology to carry out the work and to present the works as clearly as possible.

It was a great privilege and honor to work under his guidance.

I am greatly indebted to my honorable teachers of Advanced Computing and Mi-

croelectronics Unit of Indian Statistical Institute who taught me different techniques

and enlighten me about recent developments in Computer Science.

I am extremely thankful to my parents for their unconditional love, endless

prayers, caring and immense sacrifices for educating and preparing me for my

future. I would like to say thanks to my friends and relatives for their kind support

and care.

Finally, I would like to thank all the people who have supported me to complete

these research work directly or indirectly.

Subhankar Ghosal

Advanced Computing and Microelectronics Unit

Indian Statistical Institute

Date: January 13, 2022

iv

ABSTRACT

In device to device (D2D) communication, two users residing in close proximity can

directly communicate between themselves, through a common channel, without

the need of a base station. A pair of D2D users forms a link and a channel needs

to be allocated to it. The interference relationship among the active links at time

t is modelled in terms of a interference graph. To establish interference-free com-

munication, we have to assign a channel and some power to each link such that

the required signal to interference plus noise ratio (SINR) criteria is satisfied for

each link. Since channels are costly resources we have to minimize the maximum

channel used at time t. Due to the movement of the D2D users, a channel allocated

at time (t − 1) may create interference at time t. Hence a link may require to switch

its channel to maintain its SINR. Channel switching produces delay and hence an

additional overhead. Hence, to maintain quality of service, the total number of

channel switches or perturbations at time t should also be minimized. Since each

transmitter has a limited battery power, minimizing the total power allocated at

time t is also an objective of minimization. Note that if we allocate each link a

different channel then each link has no interference from other links. In that case,

total perturbations is zero and each link can operate with the minimum power,

resulting total power requirement to be the minimum. But the maximum channel

used is huge in that case.Thus the maximum channel used, the total perturbations

and the total power requirement have natural trade-offs among them. Due to the

hardness, optimizing maximum channel used, total perturbations and total power

requirement, owing to their respective trade-offs is a challenging task. In this thesis,

we have developed a randomized algorithm as well as its parallel version which

can minimize the maximum channel (color) used, in expected polynomial time. To

v

minimize the total perturbations, we developed a centralized and a decentralized

differential coloring technique as well as a random coloring technique. We calcu-

lated expected perturbations produced by each of them. To minimize a cost defined

as a linear combination of the maximum channel used and the total perturbations,

we proposed a geometric prediction based and a graph union based approach and

calculated the expected cost produced by them. Finally to minimize a cost defined

as a linear combination of the maximum channel used and the total power require-

ment, we proposed a randomized joint channel and power allocation technique

and calculated the expected cost and energy efficiency produced by it. For each

problem, we theoretically analyse the performance of our algorithms, compare with

existing state-of-the-art solutions and verify the analysis through simulation.

vi

LIST OF PUBLICATIONS FROM THE CONTENT OF

THE THESIS

Accepted Journals

• Subhankar Ghosal and Sasthi C. Ghosh: “A Randomized Algorithm for Joint

Power and Channel Allocation in 5G D2D Communication”, Computer Com-

munications (Elsevier) [Accepted for publication on Jul 21, 2021].

Published in Refereed Conference Proceedings:

1. Subhankar Ghosal and Sasthi C. Ghosh: “An Incremental Search Heuristic

for Coloring Vertices of a Graph”. Graphs and Combinatorial Optimization

from Theory to Applications, Proc. of the 18th Cologne-Twente Workshop on

Graphs and Combinatorial Optimization (CTW 2021), pp. 39-52, 2021.

2. Subhankar Ghosal and Sasthi C. Ghosh: “A Randomized Algorithm for Joint

Power and Channel Allocation in 5G D2D Communication”. Proc. of the 18th

IEEE International Symposium on Network Computing and Applications

(IEEE NCA 2019), Cambridge, MA, USA, September 26-28, pp. 1-5, 2019.

3. Subhankar Ghosal and Sasthi C. Ghosh: “A Decentralize Algorithm for Pertur-

bation Minimization in 5G D2D Communication”. Proc. of the 15th Wireless

On-demand Network systems and Services (IEEE/IFTP WONS 2019), Wen-

gen, Switzerland, January 22-24, pp. 72-78, 2019.

4. Subhankar Ghosal and Sasthi C. Ghosh: “Channel Assignment in Mobile

Networks Based on Geometric Prediction and Random Coloring”. Proc. of

vii

the 40th IEEE Conference on Local Computer Networks (IEEE LCN 2015),

Florida, USA, October 26-29, pp. 237-240, 2015.

Submitted/Under Review at Journals:

1. Subhankar Ghosal and Sasthi C. Ghosh: “Expected Polynomial-time Ran-

domized Algorithm for Graph Coloring Problem”, Under review at Discrete

Applied Mathematics (Elsevier) [Manuscript ID: DA12997].

2. Subhankar Ghosal and Sasthi C. Ghosh: “An Expected Polynomial-time Algo-

rithm for Perturbation Sensitive Sparse Temporal Graph Coloring”. Submitted

to Discrete Applied Mathematics (Elsevier) [Manuscript ID: DA13503].

viii

NOTATIONS

Notation Meaning

C(t) = (ci(t))
Color/channel vector at time t, where

ci(t)

is the color/channel allocated to ver-

tex/link i at that time.

X(t) = (xi(t))
Power vector at time t, where xi(t)

is the power allocated to vertex/link i at

that time.

n Total number of vertices/links.

Ii(C(t), C(t − 1)) 1 if ci(t) ̸= ci(t − 1) otherwise 0

Y(t) =
n

max
i=1

ci(t) Maximum color/channel allocated at

time t

A(t) =
n

∑
i=1

Ii(C(t), C(t − 1)) Total number of perturbations at time t

P(t) =
n

∑
i=1

xi(t) Total power of all links at time t

α Relative weight between Y(t) and A(t) or

Y(t) and P(t)

g(t) Interference graph at time t

∆(g(t)) Maximum degree of g(t)

δ(i, t) Degree of vertex i at time t

Y Average Y

ix

P Average P

f Average f

EE Average EE

Throughput Average Throughput

G(n, λ) Random graph with n vertices and ex-

pected average degree λ

SINRi(t) Signal to noise plus interference ratio

(SINR) required at link i at time t

Gij(t) Gain from transmitter of links j to receiver

of link i at time t

h f ast
ij (t) Fast fading from transmitter of links j to

receiver of link i at time t

hslow
ij (t) Slow fading from transmitter of links j to

receiver of link i at time t

SDL Set of D2D links

SCL Set of cellular links

DL D2D link

CL Cellular link

ηi(t) Residual power at link i at time t

π A permutation of pseudo-vertices

L(π) Set of all orders that could be generated

by permuting vertices within a pseudo-

vertex, while keeping the order of pseudo-

vertices intact as in π.

∼n x(n) ∼n y(n) =⇒ lim
n→∞

x(n)
y(n)

= 1

≲n x(n) ≲n y(n) =⇒ lim
n→∞

x(n)
y(n)

≤ 1

x

≳n x(n) ≳n y(n) =⇒ lim
n→∞

x(n)
y(n)

≥ 1

h(n) y(n) = h(x(n)) ⇐⇒ x(n) ≲n y(n)

H(x) lim
x→0

H(x)
x

= 0 and lim
x→∞

H(x)
x

= 0

O(x) f (x) = O(g(x)) if ∃x0, c0 ∈ [0, ∞] s.t.,

∀x ≥ x0 f (x) ≤ c0g(x)

Ω(x) f (x) = Ω(g(x)) if ∃x0, c0 ∈ [0, ∞] s.t.,

∀x ≥ x0 f (x) ≥ c0g(x)

Θ(x) f (x) = Θ(g(x)) if f (x) = Ω(g(x)) &

f (x) = O(g(x))

o(x) f (x) = o(g(x)) if lim
x→∞

f (x)
g(x)

= 0

Table 1: Summary of Notations

xi

Contents

1 Introduction 1

1.1 Related Literature . 5

1.1.1 Minimizing the maximum channel 6

1.1.2 Minimizing the total perturbation 7

1.1.3 Minimizing both maximum channel and total perturbation . 8

1.1.4 Minimizing both maximum channel and total power 9

1.2 Scope of the thesis . 11

1.3 Organization of Thesis . 14

2 Minimizing the maximum channel 15

2.1 Introduction . 15

2.2 Key Ideas . 17

2.3 Selective Search (SS) Algorithm . 22

2.3.1 Analysis of SS . 23

2.4 Incremental Search Heuristic (ISH) Algorithm and its Parallel Version 26

2.4.1 Incremental Search Heuristic (ISH) 27

2.4.2 Parallel Incremental Search Heuristic (PISH) 27

2.4.3 Analysis of ISH and PISH . 29

2.5 Simulation Results . 30

2.5.1 Simulation on benchmarks . 30

2.5.2 Simulation on random graph 36

xii

2.6 Conclusion . 40

3 Minimizing the total perturbation 41

3.1 Introduction . 41

3.2 Hardness of the problem . 44

3.3 Differential Coloring (DC) and Random Coloring (RC) 45

3.4 Decentralized differential coloring (DDC) 46

3.5 Analysis of DC, DDC and RC . 47

3.6 Comparison with other approaches . 50

3.7 Simulation . 51

3.8 Conclusion . 54

4 Minimizing both maximum channel and total perturbation 55

4.1 Introduction . 55

4.2 Integer Linear Programming (ILP) formulation of the problem 59

4.3 Geometric prediction (GP) based approach 61

4.4 Perturbation sensitive greedy coloring (PGC) 64

4.5 Graph union based approach . 68

4.6 Comparison with existing approaches 69

4.7 Simulation . 70

4.8 Conclusion . 72

5 Minimizing both maximum channel and total power 73

5.1 Introduction . 73

5.1.1 Problem Formulation . 76

5.2 Hardness of JPCAP . 77

5.3 MILP Formulation . 78

5.4 Greedy Channel and Power Allocation Algorithm 80

5.4.1 Analysis of GCPA . 83

5.5 Randomized Algorithm . 87

xiii

5.5.1 Incremental Algorithm (IA) . 87

5.5.2 Randomized Joint Channel and Power Allocation (RJCPA)

Algorithm . 88

5.5.3 Analysis of RJCPA . 90

5.5.4 Expected value of ρ2 . 93

5.6 Expected Cost and Energy Efficiency 95

5.6.1 Calculation of expected cost . 95

5.6.2 Calculation of expected energy efficiency 97

5.6.3 Calculations of expected value of parameters 98

5.7 Simulation . 99

5.7.1 Simulation environment . 99

5.7.2 Comparison with other algorithms 100

5.7.3 Validations of expected cost and energy efficiency 104

5.8 Conclusion . 106

6 Conclusion and Future Scope 107

6.1 Future Scope . 108

Bibliography 109

xiv

List of Figures

2.1 Vertices and pseudo-vertices . 21

2.2 Example of a situation when SS cannot improve span 23

2.3 Summary of Table 2.1 . 36

2.4 ISH vs greedy algorithm with varying p 37

2.5 ISH vs greedy algorithm with varying n 37

2.6
q
(χgreedy − χISH)2 with varying n and p 38

2.7
χgreedy

χISH
with varying n and p . 39

3.1 Y vs n . 52

3.2 A vs n . 52

3.3 Y vs r . 52

3.4 A vs r . 52

3.5 Y vs k . 53

3.6 A vs k . 53

4.1 Y vs n . 71

4.2 A vs n . 71

4.3 Y + αA vs n . 71

4.4 Y vs r . 71

4.5 A vs r . 71

4.6 Y + αA vs r . 71

4.7 Y vs k . 71

xv

4.8 A vs k . 71

4.9 Y + αA vs k . 71

5.1 f = Y + αP in dB vs |SDL| . 101

5.2 P in mJ vs |SDL| . 101

5.3 EE in bitmJ−1Hz−1 vs |SDL| . 101

5.4 Y vs 10log10(α) and |SDL| . 103

5.5 P vs 10log10(α) and |SDL| . 103

5.6 f = Y + αA vs 10log10(α) and |SDL| 103

5.7 EE vs 10log10(α) and |SDL| . 103

5.8 Throughput vs 10log10(α) and |SDL| 103

5.9 packetloss vs 10log10(α) and |SDL| . 103

5.10 Y vs ρ . 105

5.11 P vs ρ . 105

5.12 f = Y + αP vs ρ . 105

5.13 EE vs ρ . 105

xvi

List of Tables

1 Summary of Notations . xi

2.1 Span and time requirements of different algorithms on benchmarks . 34

3.1 E[Y(t)] and E[A(t)] produced by different algorithms 51

4.1 E[f (t)] produced by different algorithms 70

5.1 Simulation Environment . 100

xvii

Chapter 1

Introduction

The rapid advancement of mobile communication technology has inspired more and

more mobile users to demand for varieties of applications over wireless networks.

Media-rich mobile applications involving streaming of video and multimedia files

require sufficiently high data rates. Nowadays users are using different devices

to communicate and hence total number of wireless devices are increasing day by

day. Each device requires a channel and a power to communicate. In traditional

cellular network, devices communicate via the base station (BS) through a channel.

Due to explosion of number of users under a BS and scarcity of channels, BSs are

not been able to provide a channel to each users under it. Device to device (D2D)

communication is a paradigm shift in cellular networks which helps reducing the

load of BS and also the outage of mobile devices at the cell edge, through spectrum

reuse. In D2D communication, a pair of proximity users can communicate directly

among themselves with or without the help of a BS which are referred to as operator-

controlled (OC) and device-controlled (DC) respectively [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

The architecture that supports D2D communication is primarily based on two

tiers, namely macro-cell and device tiers [5]. The macro-cell tier consists of the

conventional cellular communication where the BS communicates with a mobile

device or a mobile device communicates with the BS by forming a cellular link

1

(CL). In device tier, two proximity users communicate by forming a direct device to

device link (DL) between them. Depending upon the frequency reuse factor, D2D

communications can be classified as underlay or overlay. In underlay scenario, DLs

and CLs share the same set of channels whereas, in overlay scenario, DLs and CLs

use different set of dedicated channels. In this thesis, we consider both operator-

controlled and device-controlled scenarios and primarily deal with overlay type of

communications in the device tier architecture of the network.

A pair of proximity D2D users forms a link and communicates directly over

a channel. Each link has a transmitter and receiver and operates on a channel.

Transmitter of each link allocates a power subject to the maximum available power

at that time, to transmit signal to its receiver. Receiver of a link gets interference

from the transmitter of every other link running on the same channel. Each link has

a data rate requirement. To fulfill that data rate, signal to noise plus interference

ratio (SINR) must be more than a predefined threshold.

Since channels are costly we have to minimize the maximum channel used at

time t. Since power of transmitter of a link is a limited resource, we also have to

minimize the total power used. Since users are moving and the network topology

changes over time, channel and power allocated to a link may need to be changed

over time to maintain the required SINR. Thus a channel assigned to a link at

time (t − 1) may not remain as an interference-free channel anymore at time t and

hence we have to do channel switching which invites switching delay and degrades

quality of service (QoS). Channel switch also increases packet loss probability. To

maintain QoS, we also have to minimize the total number of channel switches or

perturbation. It is evident that if we can afford to allocate different channel to

each link then no perturbation will be needed and also each link will be able to

operate with minimum power. But in that case, maximum channel used will be

large. This implies that there is a natural trade-off between maximum channel

used, total perturbation and total power requirement. Owing to these trade-offs,

2

we choose our minimization objective as 1) the maximum channel used, 2) the total

perturbation 3) a linear combination of the maximum channel used and the total

perturbation and 4) a linear combination of the maximum channel used and the

total power requirement respectively.

For first three objectives we simplify the problem as follows. Note that here

we are not considering total power requirement as a part of the minimization

objective and leave its allocation to the base station. Since the channel gain is a

decreasing function of distance, we can neglect the interference between two links

if the distance between transmitter of one link and receiver of the other link is

more than some threshold distance called the interference range. Thus we essentially

considering two links are interfering if the transmitter of one link and the receiver of

the other link are within the interference range. Hence the interference relationship

of the active links can be considered as an interference graph, where each link is

a vertex and two vertices have an edge between them if corresponding links are

interfering with each other. Since two users forming a link reside in close proximity,

a link can be represented by the point, the midpoint of the line joining the transmitter

and receiver of the link, with respect to the large geometric region. Since both of the

endpoints of a link are moving, the corresponding midpoint will also move with

certain velocity. We term the velocity with which the midpoint of a link is moving,

as the velocity of that link. We also assume that for the considered transmission

time both users of a link are residing within the transmission range of each other,

i.e., the link remains active for that time period. For a large geometric region, due to

law of large number and central limit theorem, the average number of links per unit

area will converge to a finite constant. Hence interference graph can be considered

as a random graph whose average degree is a finite constant. Since interface graph

evolves over time, the vertices of it remains the same because links are active for

the considered transmission time. Note that minimizing the maximum channel

(color) is equivalent to solving graph coloring problem which is a well-known NP-

3

complete problem [11]. It is also known that providing n1/ϵ approximation ∀ϵ > 0

is NP-hard [12]. On the other hand, if we retain the previously allocated channels of

the links at the current time instant, some monochromatic edges (an edge whose both

endpoints are colored with the same color) may appear in the interference graph. We

term the graph induced by these monochromatic edges as a conflict graph. Note

that to produce minimum perturbation, we essentially have to recolor each vertex in

the minimum vertex cover of the conflict graph. Since finding the minimum vertex

cover of a graph is NP-complete [11], minimizing the total perturbation is also a

NP-hard problem. It is also known that providing 2 − ϵ approximation ∀ϵ > 0

is also NP-hard [13]. For the last objective, we consider the general problem of

the allocation of both channel and power to the active links. More specifically, we

allocate both channel and power to each of the active links such that the required

SINR is satisfied for each link.

This thesis mainly deals with the resource allocation problem in D2D commu-

nication. It focuses on developing algorithms for channel and power allocation

in presence of interference so that the subsequent allocations require minimum

maximum channel, power and channel switching. It is evident that for each of these

problems, either providing an approximation algorithm with approximation ratio

better than a constant factor, or providing any approximation ratio at all, is also

NP-hard [12, 13]. Hence authors developed different heuristic approaches to solve

these problems. These heuristic approaches mainly performed a sophisticated ran-

dom search to find the optimum, but they did not provide a theoretical guarantee

of hitting the optimum. On contrary, this thesis focuses on developing expected

polynomial time randomized algorithms to find the optimum. We essentially pro-

posed centralized, distributed as well as parallel algorithms to solve these problems.

For each problem we have theoretically analysed the performance our algorithms.

These theoretical results are also validated through extensive simulations. Finally

we compared our results with state-of-the-art algorithms, both theoretically and

4

through simulations.

1.1 Related Literature

Several authors [14, 15, 16, 17, 18] have studied the problem of resource allocation

in D2D communication. A nice survey of various resource allocation schemes in

D2D communication can be found in [8]. In [19] authors propose a joint mode

selection and resource allocation solution based on branch-and-bound method.

They developed low-complexity algorithms according to the network load. Here

one CL can only be paired with one DL. In [20] authors discussed an analytical

model of resource allocation. They use Shannon’s capacity based approach for mode

selection, channel and power allocation to maximize the data rate. They considered

that one CL can be paired up with only one DL. In [15, 16, 21], energy efficient

mode selection techniques were discussed. In [22] authors discussed a energy

saving coding design. In [23], a power minimization solution for the joint channel

allocation and mode selection problem in D2D communication is proposed. In [24]

a resource allocation and data transmission procedure is described for operator

controlled D2D communication. In [25] different strategies to minimize power were

discussed. In [26] authors optimizes resource allocation and power control between

the cellular and D2D connections that share the same resources subject to maximum

transmit power or energy limitation. They apply greedy algorithm for channel and

power allocation. In their set up one CL can be paired with only one DL. In [27] the

close relationship between power allocation and channel allocation had been shown.

In [28, 29, 30] authors propose various channel assignment algorithms where both

cellular and D2D users share channels. In this underlaid scenario, cellular and

D2D users may interfere with each other. Here, one channel could be used by

one cellular user only whereas, a single channel might be used by multiple D2D

users. In [31, 32, 33] authors developed channel assignment algorithms for D2D

5

communication through graph coloring based approach. In this thesis, we adopt

the graph coloring based approach and develop various schemes for minimizing

maximum channel/color, total perturbation and total power.

1.1.1 Minimizing the maximum channel

The problem of minimizing the maximum color required to color the interference

graph such that no monochromatic edge exists, is essentially the classical graph

coloring problem, which is a well-known NP-complete problem [11]. It is also

known that providing n1/ϵ approximation solution, ∀ϵ > 0, of the graph coloring

problem is also NP-hard [12]. A good survey of heuristic algorithms for graph

coloring can be found in [34, 35]. Recently a reinforcement learning based local

search algorithm [36], a modified cuckoo algorithm [37], a hybrid evolutionary

algorithm [38], a feasible and infeasible search based algorithm [39] and a parallel

ordering based algorithm [40] are developed for graph coloring problem. Greedy

coloring is the natural choice for this problem, which visits vertices of interference

graph following an order, and while visiting a vertex v, it puts the minimum color

that is absent in all neighbors of v. Since performance of greedy coloring is order

dependent, several authors have proposed methods to find good orders such as

largest-degree-first [41], Kempe-order [42] and Dsature-order [43]. Largest-degree-first

sorts the vertices of a graph according to non-increasing order of their degrees.

Authors of [41] have shown that with this ordering a graph having degree sequence

d1 ≥ d2 ≥ · · · ≥ dn, has maximum color ≤ 1 + maxi min(di, i − 1). Kempe-order

is generated as follows. We find a vertex with minimum degree in the graph and

push it into a stack and remove it from the graph. Recursively apply this step on

the residual graph till the graph become empty. Then pop the elements from the

stack and this will give the Kempe-order. Dsature-order is generated as follows.

Choose a random vertex and enqueue it into a queue. Calculate the saturation degree

of all the vertices, not in queue, as defined bellow. The saturation degree of a

6

vertex is the number of it’s neighbors in the queue. Now choose the vertex with

the maximum saturation degree and enqueue it into the queue. Continue this

process till the queue contains all the vertices of the graph. Dequeue the elements

from the queue and consider this order as the Dsature-order. Since finding an

optimum order, among all possible n! orders, is a hard problem, several authors

have developed different search heuristics to find a near-optimum order. Some of

them are based on simulated annealing [44], genetic algorithms [45] and tabu-search

[46, 47]. Simulated annealing is a probabilistic heuristic where the probability of

accepting a worse solution is decreased over time. In genetic algorithm, a set of

orders is considered initially. They had been subject to mutation, cross-over, and

selection to generate a set of better orders. Tabu-search minimizes the objective

gradually, keeps a record of previous steps to prune the chance of repetition, and

chooses a worsening move when stuck in a local optimum. It is evident that most

of these heuristics may eventually reach a poorer order than the current best order

during the search process. In this thesis, we developed a randomized algorithm

which given the interference graph g(t) = (V(t), E(t)), solves the channel allocation

problem via graph coloring formulation in expected O(|V(t)|+ |E(t)|) time and

space complexities. The salient feature of our algorithm is that it never searches

poorer order than the current best order .

1.1.2 Minimizing the total perturbation

The problem of assigning colors to the vertices of the interference graph such that

total perturbation is minimized, is essentially equivalent to find a minimum vertex

cover of the conflict graph, which is also an NP-complete [11] problem. It is also

known that providing 2 − ϵ factor algorithm ∀ϵ > 0 for minimum vertex cover is

also NP-hard [13]. A 2-approximation algorithm to find vertex cover can be found in

[48]. There also exist several decentralized algorithms for finding vertex cover of a

graph [49, 50, 51, 52]. As argued in [53] and to the best of our knowledge a few work

7

had been done to maintain coloring of a graph which evolves over time with the

objective of minimizing total perturbation. Authors in [53, 54, 55] have studied this

problem with the property that at time t only one edge could appear or disappear.

They call this incident as an update and try to maintain the coloring of the graph on

a per-update basis. They fix a maximum color for the graph and upon occurrence of

an update, change the color of some other vertices so that the proper coloring of the

graph is maintained. To do that they partition the vertex set of interference graph

into different subsets and arrange the subsets into different labels. Upon occurrence

of an update, they exchange vertices between different labels. In their approaches

they maintain various in-variants and use additional data structures. In [53] authors

proposed a bucket based approach, which has later been improved by [54] in terms

of required time per-update. In [55] authors proposed a randomized algorithm

which partitions interference graph into different labels and maintains the expected

number of colors of interference graph g(t) in log(∆(g(t))) time per-update. Here

∆(g(t)) is the maximum degree of g(t). In [56] a dynamic-fit algorithm is developed

to solve the time varying graph coloring problem for selected classes of graphs like

trees and products of graphs. An agent-based algorithm [57] and greedy approach

[58] are developed to color dynamic graphs. In our problem set up, at time t, some

monochromatic edges may appear in g(t) and we consider recoloring them together

such that total perturbation A(t) is minimized. To minimize A(t), we propose a

centralized and a decentralize differential coloring (DC and DDC) technique and a

random coloring (RC) technique.

1.1.3 Minimizing both maximum channel and total perturbation

Owing to the natural trade-off between maximum color Y(t) and total perturbation

A(t), in [59] authors first considered the cost function as f (t) = Y(t) + αA(t) and

proposed a SNAP and a SMASH approach to solve the problem. SNAP colors

g(t) using incremental coloring (IC) [59], ∀t. IC colors vertices of g(t) following a

8

random order and while coloring a vertex it applies first-fit if there is no incident

monochromatic edge into it. First-fit essentially puts the minimum color to a vertex

which is absent in all of its neighbors. On the other hand, SMASH minimizes

A(t) through minimizing the size of vertex cover of the conflict graph. In k + 1

time interval SMASH builds a SMASHed graph gk
s(t) =

k[

τ=0
g(t + τ) and colors it

applying IC, and retains that color for next k time instances. Though in this case,

perturbation occurs only once in k + 1 time instances, but to build a SMASHed

graph, they require future information, which may not be available. In this thesis,

we have proposed a perturbation sensitive greedy coloring (PGC) technique which

can find minimum f (t) = Y(t) + αA(t) given g(t) and channel allocation at time

(t − 1), in expected O(n) time and space complexities. Since coloring of future

graphs are functions of coloring of current graph, to reduce expected cost E[f (t)]

we have also proposed a graph union based approach (GU) which uses the past

information to build a union graph and colors it with PGC. To minimize E[f (t)], we

also propose a geometric prediction (GP) based approach which using the current

position and maximum velocity of the users, builds a predicted graph and color it

using DC.

1.1.4 Minimizing both maximum channel and total power

There are several algorithms which deal with the problem of optimizing both total

power P(t) and maximum channel Y(t). Authors choose different objectives while

allocating channels and powers. Most of them set the objective to maximize as

spectral efficiency (SE) or energy efficiency (EE). SE [60] and EE [61, 62] are two

well adopted maximization objective in power and channel allocation in D2D

communication. In SE data rate per spectrum is maximized whereas, in EE, data

rate per spectrum per energy unit is maximized. In [27] authors formulate the

resource allocation problem as a non-convex optimization problem to minimize

9

power. In [17] authors discussed the method to maximize the minimum weighted

energy efficiency of D2D links while ensuring maximum data rate in cellular links.

In [63, 64] authors propose matching based algorithms for EE maximization. They

consider that each DL can pairs with at most one CL and both can operate on

the same channel. They form a two-step solution of the problem where the first

step differs. In the first step of the algorithm proposed in [63], a game theoretic

approach is employed to analyze the interactions and correlations among the users

and subsequently an iterative power allocation algorithm is developed to establish

mutual preferences. Whereas, the optimal power that is required to optimize EE

for each DL-CL pair is found in the first step of the algorithm proposed in [64].

In the second step, both algorithms find a stable matching of DL and CL using

Gale-Shapley algorithm [65]. It is evident that Gale-Shapley algorithm provides a

pareto-optimal solution of stable matching problem. Note that the performance of

the second step is highly dependent on the performance of the first step and as a

result, stable matching may produce highly sub-optimal solution. In [10] authors

propose a mixed integer non-linear programming (MINLP) for EE maximization.

In their problem setup, the number of DLs is at most the number of CLs and also

one DL can be paired with at most one CL. They then solve the EE maximization

problem in two-step. For a given DL-CL pairing, they propose a method to minimize

the energy consumption. To efficiently form the DL-CL pairs they propose a random

switch-based iterative (RSBI) algorithm. RSBI starts with a random DL-CL pairing

and then taking random steps tries to minimize the energy consumption. Authors of

[66] propose a graph coloring and group reforming based D2D resource allocation

and power control (DRAPC) algorithm. Here multiple DL can be paired with

one CL. They first run a color based grouping algorithm for channel and power

allocation. Then they run different algorithms for power control, member adding

and throughput rising. Since different algorithms are interdependent, performance

of one algorithm depends on the other. Also there is no guarantee to hit optimum.

10

Since both power and channels are scarce resources, we set our minimization

objective as f (t) = Y(t) + αP(t) and developed a randomized joint channel and

power allocation (RJCPA) algorithm to find the near optimum solution. We have

shown that RJCPA also minimizes EE efficiently.

1.2 Scope of the thesis

In this thesis, we formulate the resource allocation problem as a cost minimization

problem where cost is defined as Y(t), A(t), Y(t) + αA(t) or Y(t) + αP(t). We

consider C(t) = (ci(t)) and X(t) = (xi(t)) as the channel and power vector, where

ci(t) ∈ {1, 2, · · · n} and xi(t) ∈ [0, ηi(t)] are the channel and power allocated to

link i at time t. Here ηi(t) is the maximum power available at the transmitter of

link i at time t. We first consider the problem of minimizing the maximum color

Y(t) = max
i

ci(t). To minimize Y(t) we essentially have to solve the graph coloring

problem. Greedy coloring is the most natural solution of this problem. Greedy

coloring visits the vertices of g(t) following an order S and while visiting a vertex

v, it puts the minimum color that is absent in all of its neighbors. Here we assume

that colors are positive integers starting from 1 and denote the maximum color

Y(t) used in C(t) as the span. We show that the set of orders with span Y(t) ≤ k

can be partitioned into disjoint subsets of equivalent orders. Next, we propose a

selective search (SS) algorithm, which takes ρ as an input parameter, selects ≥ ρ

orders each from a different set of equivalent orders with high probability, applies

greedy coloring on them, and returns the color vector with minimum span. We

analytically show that by evaluating the same number of orders, SS performs better

than greedy coloring with high probability. We further propose an incremental search

heuristic (ISH) which ρ1 times executes SS with parameter ρ2 and returns the color

vector with minimum span. A parallel version of ISH called PISH is also proposed,

which essentially calls SS ρ1 times in parallel. We prove that ISH solves the graph

11

coloring problem in expected O(|V(t)|+ |E(t)|) time and space complexity. We

have evaluated ISH and PISH on 136 challenging benchmarks and shown that

they significantly outperform 10 existing state-of-the-art algorithms mentioned in

[67, 68, 37, 69, 70]. Finally we have validated our theoretical findings by evaluating

ISH and greedy coloring on random graphs. This work is presented in Chapter 2.

Next we consider the problem of minimizing the total number of channel

switches or total perturbation A(t) = ∑
i

Ii(C(t), C(t − 1)). Here Ii(C(t), C(t −

1)) = 1 if ci(t) ̸= ci(t − 1) else 0. We first show that minimizing A(t) given g(t) and

C(t − 1) is a NP-hard problem. Then to minimize A(t), we propose a centralized

and a decentralized differential coloring (DC and DDC) technique and a random

coloring (RC) technique. DC and RC are centralized and runs at the base station,

while DDC runs at the user end. All these algorithms first set C(t) = C(t − 1)

which in effect may create some monochromatic edges in g(t). Let gc(t) be the

graph induced by those monochromatic edges. We then apply a 2-approximation

maximal matching based technique to find a minimum vertex cover Vc(t) of gc(t).

DC removes the color of the vertices in Vc(t) and then recolors them by applying

first-fit on a random order of the vertices. First-fit puts to a vertex the minimum

color that is absent in all of the neighbors of that vertex. RC does thfit instead of

first-fit. Random-fit puts to a vertex a random color from {1, 2, · · · , k} that is absent

in ae same thing as DC with the exception that it applies random-ll of the neighbors

of that vertex. Here k ≥ ∆(g(t)) + 1, where ∆(g(t)) is the maximum degree of

g(t). Using the channel state information from the base station, and performing

message exchange among the links within ≤ r distance apart, DDC minimizes

A(t). It applies the maximal matching based algorithm on gc(t), without actually

building the gc(t), in a decentralized manner. We theoretically calculate E[A(t)]

and E[Y(t)] produced by DC, DDC and RC and compare with existing approaches

mentioned in [53, 54, 55]. This work is presented in Chapter 3.

Next we consider the problem of minimizing the combined objective f (t) =

12

Y(t) + αA(t). Since g(t)s are evolving over time, f (t + 1) is a function of C(t).

Considering the sequence of g(t)s, we aim to minimize E[f (t)] = E[lim
T→∞

1
T

T

∑
t=0

f (t)].

With this objective we propose a geometric prediction (GP) based approach and

a graph union (GU) based approach. GP uses the current position and maximum

velocity of the users to predict the future, on the other hand, GU uses the past

information to minimize E[f (t)]. Considering k as an input parameter, in every

k + 1 time intervals, GP builds a predicted graph gk
p(t) ⊇

k[

τ=0
g(t + τ) which is a

super-graph of the union of the current and all possible graphs that may appear

within next k time intervals and color it using DC. Then it retains the color of this

predicted graph for next k time intervals. Since perturbation can only occur once

in current and next k time intervals, perturbation is reduced by k + 1 factor, at the

expense of increased color requirement. Next we propose a perturbation sensitive

greedy coloring (PGC) technique which finds the minimum f (t) given g(t) and

C(t − 1), in expected O(n) time and space complexities, which is asymptotically

minimum among all algorithms which can solve this particular problem. In contrast

to GP, GU builds a union graph gk
u(t) =

k[

τ=0
g(t − τ) and colors it using PGC.

We calculate E[f (t)] produced by GP and GU and compare that with existing

approaches mentioned in [59, 53, 54, 55]. This work is presented in Chapter 4.

Finally we consider the joint power and channel allocation problem (JPCAP)

whose objective is to minimize the combined objective f (t) = Y(t) + αP(t), where

P(t) = ∑
i

xi(t) is the total power allocated at the links at time t. We reduce the

problem of minimizing f (t) to the classical graph coloring problem and thereby

show that it is NP-hard and also providing n1/ϵ approximation to JPCAP ∀ϵ > 0 is

NP-hard. Next we propose a mixed integer linear programming (MILP) formulation

for this problem and subsequently develop a greedy channel and power allocation

(GCPA) algorithm for it. GCPA works by taking an order of the links as input.

We show that there exists an order of the links on which if GCPA is applied it

13

will provide an optimal solution. Then we develop a method to search orders

efficiently. We show that an order is equivalent to many orders. We develop

an incremental algorithm (IA) which searches orders from different equivalent

sets and thereby evaluating less number of orders, it essentially explores large

number of orders. Finally, using IA, we design a randomized joint channel and

power allocation (RJCPA) algorithm to find the near optimum solution. We also

theoretically calculate the expected cost E[f (t)] and energy efficiency (EE) produced

by RJCPA. Moreover, we identify some special cases where RJCPA can produce

optimal result in expected polynomial time. We perform extensive simulations to

show that RJCPA outperforms both the two-step approach [64] and RSBI algorithm

[10] with respect to both cost and EE significantly. Finally we validate our theoretical

findings through simulations. This work is presented in Chapter 5.

1.3 Organization of Thesis

In chapter 2 we consider the minimization of Y(t) and for that we propose random-

ized algorithm, called incremental search heuristic (ISH) and its parallel version

PISH, which solves it in expected polynomial time.In chapter 3 we minimize A(t),

for given Y(t) ≤ Ymax and propose a centralized and a decentralized differential

coloring algorithm (DC and DDC) and a random coloring (RC) algorithm to solve it.

In Chapter 4 we consider the minimization objective as Y(t) + αA(t) and propose a

geometric prediction (GP) based algorithm and a graph union (GU) based algorithm

to solve it. GP uses predicted future information and GU uses past information.

In chapter 5 we consider the minimization objective as Y(t) + αP(t) and develop

a randomized joint channel and power allocation (RJCPA) algorithm to solve this

problem. Finally in chapter 6 we conclude the thesis.

14

Chapter 2

Minimizing the maximum channel

2.1 Introduction

In this chapter, we formulate the resource allocation problem as a cost minimization

problem where cost is defined as Y(t). In D2D communication several D2D links

are placed in a large geometric region. We are considering here D2D overlaid

scenario, where a separate set of channels are available for allocating the D2D links.

Each D2D link i requires a channel ci(t) to communicate at time t. Since channels

are costly, we have to reuse the same channel/color to multiple links. A pair of

links operating on the same channel may interfere with each other if the receiver of

one link resides within the interference range of the transmitter of the other link.

Hence at time t, the interference relationship among the active device to device

links (DLs) can be modelled as an interference graph g(t) = (V(t), E(t)), where

each DL is considered as a vertex v ∈ V(t) and a pair of vertices forms an edge

if their representing links are interfering to each other. So our problem is to find

a channel/color vector C(t) = (ci(t)) of g(t) such that the span Y(t) = max
i

ci(t)

gets minimized and there does not exist any monochromatic edge in g(t). It is

evident that the problem is equivalent to graph coloring problem which is one

of the fundamentally known NP-complete [11] problem. Since for this particular

15

problem Y(t) depends only on g(t), from here onward in this chapter, we will

consider g(t), C(t), V(t), E(t) as G, C, V and E respectively.

Greedy coloring is the natural choice for this problem, which visits vertices

of G following an order S and while visiting a vertex v, it puts the minimum

color that is absent in all neighbors of v. Since performance of greedy coloring is

order dependent, several authors have proposed methods to find good orders, as

summarized in the related work section of the introduction. However, most of

the existing heuristics may eventually reach a poorer order than the current best

order during the search process. In contrast to that we propose a selective search

(SS) algorithm which never searches poorer order than the current best order. SS

starts with an order S and applies greedy coloring on it and returns a color vector

with span k. It then partitions V into k independent sets having same color, called

pseudo-vertices. To reduce span further, it chooses a random permutation of the k

pseudo-vertices, a random order S′ from it, and applies greedy coloring on S′. It can

be shown that the span generated by the new order is ≤ k. SS repeats the procedure

considering S′ as S. SS abort the process when ρ consecutive unsuccessful attempts

to reduce span occur, where ρ is a input parameter. We analytically show that SS

is better than greedy coloring when executed on the same number of orders, with

very high probability. We show that, SS starting with a particular order S may

not hit the optimum even if all k! permutations are considered. To evaluate each

order with a positive probability, we propose an incremental search heuristic (ISH)

which simply calls SS with parameter ρ2, ρ1 times and reports the minimum span

produced by them. We have shown that ISH solves the graph coloring problem in

expected O(|V|+ |E|) time and space complexities, which is minimum among all

possible randomized algorithms for this problem. For time efficient solution using

multiple possessors we also developed a parallel versions of SS and ISH called PSS

and PISH respectively. We simulate ISH and PISH on 136 well-known benchmarks

and show that both ISH and PISH hits the best known span. Also time taken by ISH

16

and PISH are significantly better than 10 states of the art algorithms. We validate

our theoretical findings by evaluating ISH and greedy coloring on random graphs

as well.

2.2 Key Ideas

Consider a graph G(V, E) with n vertices v1, v2, · · · , vn, where V is the set of vertices

and E is the set of edges. Let S = (vl1 , vl2 , · · · , vln) be an arbitrary order of the

vertices of G, where 1 ≤ lk ≤ n. Assuming colors are positive integers starting

from 1, let c(vlk) be the color of vertex vlk obtained by applying greedy coloring

on G following order S. Recall that greedy coloring colors the vertices of a graph

following a specific order of the vertices and while coloring a vertex it puts the

minimum color that is absent in all of its neighboring vertices. Hence c(vlk) depends

only on the colors assigned to the vertices vl1 , vl2 , · · · , vlk−1
that appear before vlk in

S. Moreover, greedy coloring always produces a no-hole coloring. A coloring of G

is a no-hole coloring if it uses all colors between 1 and its maximum color. Given

S, let C = (c(v1), c(v2), · · · , c(vn)) be the color vector obtained by applying greedy

coloring on G following S. Note that greedy coloring essentially is a function F

which takes graph G and an order S of its vertices as input and produce a color

vector C as output. That is C = F(G, S). Note that in the color vector, colors of the

vertices are stored in the ascending order of their vertex indexes. That is, if l1 = 5,

then v5 will be colored first by the greedy coloring but its color will appear in the

fifth position in C. With respect to the resulted color vector obtained by greedy

coloring, an order may be considered as equivalent to another order as formally

defined in Definition 1.

Definition 1 (Equivalent order) Let S1 and S2 be two orders of the vertices of G. Then

S1 and S2 are equivalent to each other if and only if F(G, S1) = F(G, S2).

The span of a color vector C denoted by span(C) is the total number of distinct

17

colors in C. As colors start from 1 and greedy coloring produces no-hole coloring,

span(C) is essentially same as the maximum color used in C.

Definition 2 Let S1 and S2 be two orders of the vertices of G. Then S1 ◁ S2 if and only if

span(F(G, S1)) ≤ span(F(G, S2)).

Note that C = F(G, S) essentially partitions the graph into k = span(C) vertex

disjoint independent sets each of which contains all the vertices of a particular

color. We call each such independent set as a pseudo-vertex as formally defined in

Definition 3.

Definition 3 (Pseudo-vertex) Let S be an order of the vertices of G and C = F(G, S)

with k = span(C). A pseudo-vertex Vi = {v ∈ V : c(v) = i} is a subset of vertices of G

all of which get color i in C, where 1 ≤ i ≤ k.

Definition 4 (Cardinal order) An order S = (vl1 , vl2 , · · · , vln) of the vertices of G is

said to be a cardinal order if C = F(G, S) such that c(vl1) ≤ c(vl2) ≤ · · · ≤ c(vln).

Let Π(S) be the set of all permutations of V1, V2, · · · , Vk, and π = (Vl1 , Vl2 , · · · , Vlk) ∈
Π(S) where 1 ≤ li ≤ k. Let L(π) be the set of all orders generated from π

by permuting vertices within the same pseudo-vertex but keeping the order of

the pseudo-vertices intact. Then all orders in L(π) are considered as orders

represented by π. Let Nk = |L(π)| = n1!n2! · · · nk!, where ni = |Vi|, ∀i. Let

π0(S) = (V1, V2, · · · , Vk) ∈ Π(S). It is evident that each order S′ ∈ L(π0(S)) is a

cardinal order.

Theorem 2.2.1 Let S be an order of vertices of G and V1, V2, · · · , Vk be the k pseudo-

vertices of C = F(G, S). Let π = (Vl1 , Vl2 , · · · , Vlk) ∈ Π(S). All orders ∈ L(π) are

equivalent to each other.

Proof : Let S1, S2 ∈ L(π) such that S1 ̸= S2. Also assume that S1 = (vr1 , vr2 , · · · vrn),

where 1 ≤ ri ≤ n for all i. Let C1 = F(G, S1) and C2 = F(G, S2). To show that S1 is

18

equivalent to S2, we have to prove that c1(vri) = c2(vri) for all vri . We prove this by

induction on i. Since Vl1 is an independent set c1(vr1) = c2(vr1) = 1. Hence the base

case is done. Our induction hypothesis is, for all vertex vrj appears before vri in S1,

c1(vrj) = c2(vrj). We now left to prove c1(vri) = c2(vri). Let vri ∈ Vlm . Note that

c1(vri) and c2(vri) depend only on the colors of those vertices which appear before

vri in S1 and S2 respectively. All the vertices of Vl1 , Vl2 , · · · , Vlm−1 and some vertices

of Vlm may only appear before vri in both S1 and S2. Since Vlm is an independent set,

eventually c1(vri) and c2(vri) depend only on the vertices that belong to
m−1[

j=1

Vlj . But

according to our induction hypothesis, c1(vrj) = c2(vrj) for all vrj ∈
m−1[

j=1

Vlj . Hence

the proof.

Theorem 2.2.2 Let S be an order and V1, V2, · · · , Vk be the k pseudo-vertices of C =

F(G, S). Then for each cardinal order S′ ∈ L(π0(S)), S′ is equivalent to S.

Proof : Let S′ = (vr1 , vr2 , · · · , vrn) and C′ = F(G, S′), where 1 ≤ ri ≤ n for all i. To

show S′ is equivalent to S, we have to show that c(vri) = c′(vri) ∀i. We will apply

induction on i to prove this. For i = 1 the proof is trivial. Hence the base case is

done. Our induction hypothesis is, c(vrj) = c′(vrj) for all vertices appearing before

vri in S′. Note that c′(vri) depends only on the colors of those vertices which appear

before vri in S′. It is evident that all the vertices which have been colored with less

than c(vri) in C must appear before vri in S′ according to the construction of S′.

Hence c′(vri) cannot be less than c(vri). Some vertices which have been colored

with c(vri) in C may also appear before vri in S′. But all such vertices belong to an

independent set in G. Hence c(vri) = c′(vri). Hence the proof.

Theorem 2.2.3 Let S be an order and V1, V2, · · · , Vk be the k pseudo-vertices of C =

F(G, S). If π = (Vl1 , Vl2 , · · · , Vlk) ∈ Π(S), ∀S′ ∈ L(π), S′ ◁ S.

Proof : Let S′ = (vr1 , vr2 , · · · , vrn), where 1 ≤ ri ≤ n for all i. Let C = F(G, S) and

C′ = F(G, S′). Let vri belongs to the pseudo-vertex which is in mi-th position in π.

19

Our claim is that c′(vri) ≤ mi ∀i. Since 1 ≤ mi ≤ k, if our claim is true, then we can

immediately conclude that span(C′) ≤ k = span(C).

So we are left to prove our claim. We prove this by induction on i. Since all

vertices belong to the first pseudo-vertex in π get color 1 in C′, our claim is trivially

true for all such vertices. Hence base case is done. We now consider in induction

hypothesis that for all vertices appear before vertex vri in S′ our claim is true. This

implies that our claim is true for all vertices which belong to the pseudo-vertices of

C appeared before mi-th position in π. Note that c′(vri) depends only on the colors

of those vertices which appear before vri in S′. There are mi − 1 pseudo-vertices

before mi-th position in π. Hence according to our induction hypothesis, the colors

of the vertices belong to those pseudo-vertices are at most mi − 1. Note that some

vertices belong to the pseudo-vertex in mi-th position may also appear before vri

in S′. Since each pseudo-vertex is an independent set, c′(vri) does not depend on

those vertices. Hence c′(vri) ≤ mi. Hence the proof.

Example 1 We now illustrate the essence of theorems 2.2.1, 2.2.2 and 2.2.3 using the

graph shown in Figure 2.1(1). Greedy coloring on S = (v1, v2, v3, v4) produces color

vector C = (1, 1, 2, 3) with pseudo-vertices V1 = {v1, v2}, V2 = {v3} and V3 = {v4}
respectively. Note that Π(S) = {(V1, V2, V3), (V1, V3, V2), (V3, V2, V1), (V3, V1, V2),

(V2, V1, V3), (V2, V3, V1)}. Consider π = (V3, V1, V2) and π0(S) = (V1, V2, V3). Ob-

serve that L(π) = {(v4, v1, v2, v3), (v4, v2, v1, v3)} and L(π0(S)) = {(v1, v2, v3, v4),

(v2, v1, v3, v4)} respectively. Greedy coloring on both S′ = (v1, v2, v3, v4) ∈ L(π0(S))

and S′′ = (v2, v1, v3, v4) ∈ L(π0(S)) produces color vector C′ = C′′ = (1, 1, 2, 3) =

C, so both S′ and S′′ are equivalent to S (Theorem 2.2.2). Greedy coloring on both

S′ = (v4, v1, v2, v3) ∈ L(π) and S′′ = (v4, v2, v1, v3) ∈ L(π) produces color vector

C′ = C′′ = (2, 1, 2, 1) with pseudo-vertices V1 = {v2, v4} and V2 = {v1, v3} respectively

as shown in Figure 2.1(2). So S′ and S′′ are equivalent to each other (Theorem 2.2.1). Since

span(C′) = span(C′′) < span(C), we get that S′ ◁ S and S′′ ◁ S (Theorem 2.2.3).

20

V1

V3

V2

v1 v2

v4

v3 v1 v3

v4 v2

V1

V2

(1) (2)

Figure 2.1: Vertices and pseudo-vertices

Theorem 2.2.4 Given any coloring C′ of G we could generate an order S = (vl1 , vl2 , · · · , vln)

by sorting the vertices of G according to ascending order of their colors in C′. If C = F(G, S)

then span(C) ≤ span(C′).

Proof : We claim that c(vli) ≤ c′(vli) for all li, 1 ≤ li ≤ n. We prove this by

induction on i. For the first vertex, the claim is trivially true. So the base case is

done. In induction hypothesis we assume that the claim is true for each vertex

which appears prior to vli in S. Let N(vli) be the set of neighbors of vli in G which

appear before vli in S. As S is constructed by sorting the vertices according to

ascending order of their colors in C′, we get c′(vl1) ≤ c′(vl2) ≤ · · · ≤ c′(vli).

Since c′(vli) is a valid coloring of vli in C′, N(vli) can not contain c′(vli). In other

words, c′(vlj) ≤ c′(vli)− 1 for ∀vlj ∈ N(vli). From the induction hypothesis, we

get c(vlj) ≤ c′(vlj) for ∀vlj ∈ N(vli). The previous two arguments together imply

c(vlj) ≤ c′(vli)− 1 for ∀vlj ∈ N(vli). Since C is obtained by greedy coloring, c(vli)

must be the minimum color which is not been used in any of the vertices of N(vli),

implying c(vli) ≤ c′(vli). Hence the proof.

The following notations will be frequently used in the rest of this chapter:

x(n) ∼n y(n) ⇐⇒ lim
n→∞

x(n)
y(n)

= 1, x(n) ≲n y(n) ⇐⇒ lim
n→∞

x(n)
y(n)

≤ 1 and

y(n) = h(x(n)) ⇐⇒ x(n) ≲n y(n).

21

2.3 Selective Search (SS) Algorithm

Given any order S, we can apply greedy coloring on S and generate C = F(G, S).

Again from C we can construct k pseudo-vertices V1, V2, · · · , Vk where k = span(C).

It is also evident that for each order S′ ∈ L(π) where π ∈ Π(S), S′ ◁ S. Also all Nk =
k

∏
i=1

|Vi|! = h((
n
k

!)k) = h((
n
ek
)n) (Using Stirling’s approximation) orders belong to

L(π) are equivalent to S′ and ∀π1, π2 ∈ Π(S), π1 ̸= π2 ⇐⇒ L(π1)
\

L(π2) =

∅. From the above discussion we can think of a natural algorithm which can

be stated as: Starting with a random order S build C = F(S, G). Consider a

random permutation π ∈ Π(S), a random order S′ ∈ L(π) and build C′ = F(G, S′).

Repeat the process with the aim to improve the span. Terminate the process if no

improvement is found in ρ consecutive orders, and return the color vector with

minimum span among the orders considered. SS executes h(ρ) steps, where a step

is defined as the event of applying greedy coloring on an order and finding its color

vector. Time complexity of executing a step is O(|V| + |E|). Let K be the set of

spans that could be produced by applying greedy coloring on all possible orders of

vertices of G. Clearly χ(G) ≤ |K| ≤ ∆(G) + 1, where χ(G) is the chromatic number

and ∆(G) is the maximum degree of G. Hence total time and space complexities of

SS are O(ρ|K|(|V|+ |E|)) and O(|V|+ |E|), where ρ is an input parameter. Formally

SS is presented in Algorithm 1.

Remark 1 Starting with an order S, SS might not hit the optimum even if it searches all

the k! permutations of V1, V2, · · · , Vk. One possible condition on the vertices belongs to

different pseudo-vertices such that further reduction of span by SS is impossible is as follows.

Suppose a vertex u in Vx has at least one neighbor in each of the other pseudo-vertices Vy,

1 ≤ y ≤ k, x ̸= y. If this condition holds for all vertices in Vx and for all x, 1 ≤ x ≤ k, SS

cannot further reduce the span.

Example 2 We now elaborate the discussion in Remark 1 through an example. Consider

the graph shown in Figure 2.2. Note that by applying greedy coloring on the order S =

22

Algorithm 1: Selective Search (SS) Algorithm
Input: G, ρ
Output: C

1 Generate a random order S;
2 C = C′ = F(G, S);
3 for i = 1, 2, · · · ρ do
4 Consider a random permutation π ∈ Π(S) and a random order S′ ∈ L(π);
5 C′ = F(G, S′);
6 if span(C′) < span(C) then
7 C = C′;
8 S = S′;
9 Reset i = 1;

10 return C

(v1, v2, v3, v4, v5, v6) we get color vector C = (1, 1, 2, 2, 3, 3) with 3 pseudo-vertices

V1 = {v1, v2}, V2 = {v3, v4} and V3 = {v5, v6} respectively. Since the graph is bipartite,

optimum span is 2. Note that if we start SS with S then the condition mentioned in Remark

1 is satisfied and hence, even considering all 3! permutations of V1, V2 and V3 we still stuck

at span 3 and can’t ever achieve the optimum.

V1 V2 V3

v1

v2

v4

v3

v6

v5

Figure 2.2: Example of a situation when SS cannot improve span

2.3.1 Analysis of SS

So far, we get that SS starts with an order having span k and basically applies

greedy coloring on some h(ρ) specifically chosen orders having span ≤ k. The valid

23

question is that if we randomly choose the same number of orders and apply greedy

coloring on them, would it give the same result, or SS is likely to give a better result.

To show the benefit of SS, in this sub-section, we will find the condition for which

the optimum hitting probability of SS would be higher than greedy coloring when

applied on the same number of orders.

Let S1 and S2 be two distinct random orders such that upon applying greedy

coloring on them, they produce the span ≤ k. Note that the set of h(Nk) orders

equivalent to S1 and the set of h(Nk) orders equivalent to S2 might not be disjoint.

Hence by evaluating ρ distinct random orders, greedy coloring essentially evaluates

≤n h(ρNk) orders. On the other hand, if SS starts with an order with span ≤ k

and considers ρ orders from ρ distinct permutations, it eventually evaluates h(ρNk)

orders.

Let pSS be the probability that SS starting with an order S having span ≤ k, es-

sentially evaluates h(ρNk) distinct orders. Note that this is equivalent to evaluating

ρ orders from ρ distinct permutations. Let pg be the probability that greedy coloring

when applied on ρ random orders each having span ≤ k, essentially evaluates

h(ρNk) distinct orders. Note that this is equivalent to evaluating ρ orders such that

the sets of their corresponding equivalent orders are mutually disjoint.

Theorem 2.3.1 Optimum hitting probability of SS starting with an order S having span

≤ k is asymptotically greater than the same of greedy coloring when both executed on ρ

orders, where 1 < ρ < min(n!
h(Nk)

, k!).

Proof : It is evident that we only have to show pg ≤n pSS. Note that (n
x1,x2,··· ,xm

) is the

number of ways of splitting a set of n elements into the disjoint sets of x1, x2, · · · , xm

elements. Also (n
r) is the number of ways of choosing r elements from a set of n

elements. It is evident that total number of ways to choose ρ distinct permutations

from k! permutations is �
k!

1, 1, · · · , 1, k! − ρ

�
.

24

Also the total number of ways to choose ρ permutations (not necessarily distinct)

from k! permutations is �
k!
1

�ρ

.

Hence

pSS =

�
k!

1, 1, · · · , 1, k! − ρ

�

�
k!
1

�ρ

=
ρ−1

∏
i=1

�
1 − i

k!

�
∈
 �

1 − ρ − 1
k!

�ρ−1

,
�

1 − 1
k!

�ρ−1
!

, (2.1)

where χ(G) ≤ k ≤ n. Again total number of ways to choose ρ orders each with span

≤ k, from n! orders, such that greedy coloring eventually evaluate h(ρNk) = ρn!x

distinct orders is �
n!

n!x, n!x, · · · , n!x, n!(1 − ρx)

�
,

where x = h(Nk)
n! ∈ (0, 1

ρ). On the other hand, the number of ways to choose ρ orders

(not necessarily distinct) each with span ≤ k, from n! orders, is

�
n!

n!x

�ρ

.

Hence

pg =

�
n!

n!x, n!x, · · · , n!x, n!(1 − ρx)

�

�
n!

n!x

�ρ

∼n

(n!)n!

(n!x)n!xρ(n!(1 − ρx))n!(1 − ρx)

(n!)n!

(n!x)(n!x)(n!(1 − x))n!(1−x)

!ρ [Applying Stirling’s approximation]

25

∼n


 (1 − x)(1 − x) ρ

(1 − ρx)(1 − ρx)




n!

It has been shown in [71] that if x ∈ (0,
1
y
), y > 1, f (x) = y(1 − x) log(1 −

x)− (1 − xy) log(1 − xy) then
d f
dx

= −y(log(1 − x) + 1) + y(log(1 − xy) + 1) =

log((
1 − xy
1 − x

)y) < 0. That is f(x) is monotonically decreasing function of x, with

f (0) = 0. By considering y = ρ and x = h(Nk)
n! ∈ (0, 1

ρ), we get

pg ∼n

(1 − x)(1 − x)ρ

(1 − ρx)(1 − ρx)

!n!

= o(1) =⇒ pg ≤n pSS.

(2.2)

Hence the proof.

2.4 Incremental Search Heuristic (ISH) Algorithm and

its Parallel Version

SS starts with a random order S having span k and then generates and evaluates

orders in a specific manner to improve the span. The process terminates after ρ

failed attempts to improve the span. By evaluating an order, SS essentially evaluates

h(ρNk) orders. Note that SS starting with an order S having span k, can essentially

evaluate at most h((∆(G) + 1− χ(G))k!Nk) orders which can be < n!. Thus starting

with order S with span k, SS may not reach the optimum order even for arbitrarily

large ρ. This section proposes our incremental search heuristic (ISH) algorithm to

hit the optimum with a positive probability. ISH essentially generates some random

orders, calls SS for each of them, and finally reports the best span obtained. We also

propose a parallel version of ISH, which is more time-efficient if multiple processors

26

are present.

2.4.1 Incremental Search Heuristic (ISH)

ISH generates ρ1 random orders and calls SS with ρ = ρ2 for each of them and finally

returns the color vector having the minimum span. ISH is formally presented in

Algorithm 2. It is evident that ISH executes h(ρ1ρ2) steps. Similar to SS the time and

space complexities of ISH are O(ρ1ρ2|K|(|V|+ |E|)) and O(|V|+ |E|) respectively.

Algorithm 2: Incremental Search Heuristic (ISH)
Input: G,ρ1,ρ2
Output: C

1 C = (1, 2, · · · , n);
2 for i = 1, 2, · · · , ρ1 do
3 Ci = SS(G, ρ2);
4 if span(Ci) < span(C) then
5 C = Ci;

6 return C;

2.4.2 Parallel Incremental Search Heuristic (PISH)

ISH could be interpreted as parallel programming. For this purpose, first, we build

a parallel version of SS, called parallel selective search (PSS) algorithm, and present

it in Algorithm 3. Using PSS, we build the parallel version of ISH, called parallel

incremental search heuristic (PISH), and present it in Algorithm 4. In PISH, we

essentially evaluate SS in a parallel manner with different orders. We fix a global

color vector Co and a global variable lo which store the minimum span and the

minimum number of steps to get Co from different threads running PSS, respectively.

It is evident that if multiple processors are present, we can hit the optimum more

time-efficiently using PISH. Note that both PSS and PISH executes h(ρ2) steps.

Time and space complexities of both PSS and PISH are O(ρ2|K|(|V| + |E|)) and

O(|V|+ |E|).

27

Algorithm 3: Parallel Selective Search (PSS) Algorithm
Input: G, ρ, Global (Co, lo, µ)

1 Generate a random order S of the vertices of G;
2 x = 0;
3 C = F(G, S);
4 x = x + 1;
5 µ.lock();
6 if span(C) < span(Co) then
7 Co = C;
8 lo = x;

9 else if span(C) = span(Co) and lo > x then
10 lo = x;

11 µ.unlock();
12 for i = 1, 2, · · · ρ do
13 Let π ∈ Π(S) and S′ ∈ L(π);
14 C′ = F(G, S′);
15 x = x + 1;
16 if span(C′) < span(C) then
17 C = C′;
18 µ.lock();
19 if span(C) < span(Co) then
20 Co = C;
21 lo = x;

22 µ.unlock();
23 Reset i = 1;

Algorithm 4: Parallel Incremental Search Heuristic (PISH)
Input: G,ρ1,ρ2
Output: Co

1 Set Co = (1, 2, · · · , |V(G)|);
2 Set lo = 0;
3 Declare mutex µ;
4 Do in parallel using ρ1 threads
5 PSS(G, ρ2, Global(Co, lo, µ));

6 return Co;

Remark 2 It is evident that though PISH is a parallel version of ISH it still need the

information of the whole graph to run. It is interesting to build a decentralized version of

ISH and would be considered in future work.

28

2.4.3 Analysis of ISH and PISH

Let ϕ(k) and ϕ′(k) be the expected number of steps to hit span k by ISH and PISH,

respectively. Since PISH makes ρ1 PSS calls in parallel manner, ϕ′(k) ≤ ϕ(k)
ρ1

.

So, in the rest of this section, we analyze ISH only. By replacing ϕ(k) with ϕ′(k),

we get the corresponding results for PISH. Let K be the set of spans that could

be produced by applying greedy coloring on all possible orders of vertices of G.

Let A(k) and A(≤ k) be the set of orders with span k and ≤ k respectively. Let

p(k|k′) =
|A(k)|

|A(≤ k′)| be the probability that a random order chosen from the set

of orders with span ≤ k′, hits span k. Let p(k) be the probability that a random

order, chosen from n! orders, hits span k. Clearly, p(k) =
|A(k)|

n!
=

h(Nk)

n!
=

h(
1
kn) and p(k|k′) = p(k)

∑
k′′∈K & k≤k′′≤k′

p(k′′)
. Let χ(G) be the chromatic number of G.

Since Theorems 2.2.1 and 2.2.3 show that there are h(χ(G)!Nχ(G)) optimum orders,

p(χ(G)) = h(χ(G)!
(χ(G))n).

Theorem 2.4.1 The expected number of steps required by ISH to hit span k is ϕ(k) = o(1).

Proof : It is evident that ISH calls SS with a random order with span k′. SS es-

sentially partitions the set of orders A(≤ k′) into disjoint sets of h(Nk′) equivalent

orders. It then chooses ρ random partitions and evaluates one order from each

such partition. Thus SS hits span k from k′ with probability h(Nk′)×
|A(k)|

|A(≤ k′)| =
h(Nk′ × p(k|k′)). Thus given k′ ≥ k, total number of steps required by SS to hit span

k, is
1

h(Nk′ × p(k|k′)) . Again, the initial order of SS has span k′ with probability

p(k′). Thus the number of steps required by ISH to find span k is:

ϕ(k) = ∑
k′∈K & k′≥k

p(k′)
1

h(Nk′ × p(k|k′))

= ∑
k′∈K & k′≥k

∑
k′′∈K & k≤k′′≤k′

p(k′′)
1

n!p(k)
≤ n

n!p(k)
=

n
h(Nk)

29

=





o(1) Ifk < n
e

o(n(ek
n)

n) Otherwise.

Since p(χ(G)) = h(
χ(G)!
(χ(G))n), we are left to show ϕ(χ(G)) = o(1) when χ(G) ≥ n

e .

Note that if χ(G) ≥ n
e , χ(G) = ϵn, for some ϵ ∈ [e−1, 1]. Hence ϕ(χ(G)) =

o(n
(eϵ)n

(nϵ)!
) = o(n

(e1+ϵϵ)n

(nϵ)(nϵ)
) = o(1). Hence the proof.

Since ϕ(χ(G)) = o(1) and each step requires O(|V| + |E|) time and space com-

plexity, the expected time and space complexity of ISH is O(|V|+ |E|). Since each

vertex and edge must be visited to color vertices of a graph, these complexities are

asymptotically minimum among all randomized algorithms for this problem. Since

NP-complete problems are inter-reducible in polynomial time, from Theorem 2.4.1

we can conclude: For each problem in NP, there is a randomized algorithm that solves it

in expected polynomial time.

2.5 Simulation Results

In this section, we first simulate ISH and PISH on 136 well-known benchmark

instances and compare with 10 states of the art algorithms, and then we verify our

theoretical results on random graphs.

2.5.1 Simulation on benchmarks

We simulate ISH and PISH with ρ1 = ρ2 = ρ = 106 and compare with 10 state of the

art algorithms on 136 challenging benchmarks taken from [72, 73, 74, 75, 76, 77, 78,

79, 80] and show the results in Table2.1. These benchmarks are well-known graph

coloring problems, including geometric graphs which is the graphs can be gener-

ated as interference graphs in D2D communication. Here n represents the number

of vertices, e represents the number of edges, and χu represents the best known

30

upper bound of the chromatic number of the corresponding benchmarks. LAVCA

represents a variable action-set learning automaton reported in [67]. DBG represents

a hybrid genetic algorithm reported in [68]. MCOACOL represents a modified cuckoo

optimization algorithm reported in [37]. Best of [81] represents the minimum

span produced and its corresponding time among the five integer linear program-

ming based algorithms REP, POP, POP2, ASS+(c), and ASS+(e) reported in [81].

DR represents a Doglas-Ranchford algorithm reported in [69]. EBDA represents an

enhanced binary dragonfly algorithm reported in [70]. Note that these algorithms

are considered by many authors [82, 83, 84, 85]. For a particular algorithm, χ and

T represents smallest span produced and the time taken in seconds (s) (rounded

up to 4-th decimal point) by corresponding algorithm to reach its corresponding

value of χ. Here l represents the number of steps required to reach χ for both ISH

and PISH. For ISH and PISH let σ(T) be the standard deviation of time T taken

by those algorithms. Since σ(T) depends on T, we present σ(T)
T for both ISH and

PISH respectively. For each state of the art algorithm, we count and report the

number of instances for which its span (χ) is greater, equal and smaller than that of

ISH and PISH, in the format x/y, at the bottom of the table, where x and y represent

the corresponding number of instances for ISH and PISH respectively. For each

algorithm we also count and report the number of instances, for which span χ

≤ that of ISH and PISH, and time T is greater, equal and smaller than that of ISH

and PISH. For both ISH and PISH, σ(T) ≤ T, which is in accordance with the

geometric distribution. We observe both ISH and PISH hit the optimum span for all

benchmarks and PISH takes the minimum time among all algorithms. Moreover

for a benchmark, if a state-of-the-art algorithm hits the best known upper bound,

then most of the times, time taken by ISH is less than that of that algorithm. These

indeed are reflections of theoretical findings stated in Theorem 2.4.1.

31

Be
nc

hm
ar

k
LA

V
C

A
[6

7]
D

BG
[6

8]
M

C
O

A
C

O
L[

37
]

Be
st

of
[8

1]
D

R
[6

9]
EB

D
A

[7
0]

IS
H

PI
SH

In
st

an
ce

s
n

e
χ

u
χ

T
χ

T
χ

T
χ

T
χ

T
χ

T
χ

l
T

σ
(T

)
T

χ
l

T
σ
(T

)
T

1-
Fu

llI
ns

-3
30

10
0

4
−

−
−

−
4

0.
4

−
−

−
−

−
−

4
1

0.
00

01
0.

0
4

1
0.

00
01

0.
0

1-
Fu

llI
ns

-4
93

59
3

5
−

−
−

−
−

−
−

−
−

−
−

−
5

1
0.

00
14

0.
0

5
1

0.
00

12
0.

0
1-

Fu
llI

ns
-5

28
2

32
47

6
−

−
−

−
6

1.
9

6
1.

54
−

−
−

−
6

3
0.

00
16

0.
02

6
1

0.
00

05
0.

0
1-

In
se

rt
io

ns
-4

67
23

2
5

−
−

−
−

−
−

−
−

−
−

5
2.

63
5

1
0.

00
02

0.
01

5
1

0.
00

02
0.

01
1-

In
se

rt
io

ns
-5

20
2

12
27

6
−

−
−

−
6

1.
2

−
−

−
−

−
−

6
1

0.
00

03
0.

0
6

1
0.

00
03

0.
01

1-
In

se
rt

io
ns

-6
60

7
63

37
7

−
−

−
−

7
8.

1
−

−
−

−
−

−
7

2
0.

00
24

0.
01

7
1

0.
00

11
0.

01
2-

Fu
llI

ns
-3

52
20

1
5

−
−

−
−

5
0.

4
−

−
−

−
−

−
5

1
0.

00
08

0.
0

5
1

0.
00

07
0.

01
2-

Fu
llI

ns
-4

21
2

16
21

6
−

−
−

−
6

1.
2

6
0.

01
−

−
−

−
6

2
0.

00
05

0.
01

6
1

0.
00

02
0.

0
2-

Fu
llI

ns
-5

85
2

12
20

1
7

−
−

−
−

7
10

.7
7

5.
02

−
−

−
−

7
4

0.
00

3
0.

0
7

2
0.

00
14

0.
0

2-
In

se
rt

io
ns

-3
37

72
4

−
−

4
2.

23
4

0.
4

−
−

−
−

4
2.

08
4

1
0.

00
01

0.
0

4
1

0.
00

01
0.

0
2-

In
se

rt
io

ns
-4

14
9

54
1

5
−

−
−

−
5

1.
1

−
−

−
−

5
5.

71
5

1
0.

00
01

0.
0

5
1

0.
00

01
0.

0
2-

In
se

rt
io

ns
-5

59
7

39
36

6
−

−
−

−
6

6.
5

−
−

−
−

−
−

6
2

0.
00

27
0.

02
6

1
0.

00
12

0.
01

3-
Fu

llI
ns

-3
80

34
6

6
−

−
−

−
6

0.
4

−
−

−
−

−
−

6
1

0.
00

09
0.

01
6

1
0.

00
08

0.
01

3-
Fu

llI
ns

-4
40

5
35

24
7

−
−

−
−

7
1.

6
7

0.
02

−
−

−
−

7
2

0.
00

11
0.

01
7

1
0.

00
05

0.
0

3-
Fu

llI
ns

-5
20

30
33

75
1

8
−

−
−

−
8

30
.5

−
−

−
−

−
−

8
3

0.
03

75
0.

05
8

1
0.

01
13

0.
03

3-
In

se
rt

io
ns

-3
56

11
0

4
−

−
4

3.
37

4
0.

5
−

−
−

−
4

3.
49

4
1

0.
00

01
0.

0
4

1
0.

00
01

0.
0

3-
In

se
rt

io
ns

-4
28

1
10

46
5

−
−

−
−

5
2.

1
−

−
−

−
−

−
5

1
0.

00
06

0.
0

5
1

0.
00

06
0.

0
3-

In
se

rt
io

ns
-5

14
06

96
95

6
−

−
−

−
6

45
−

−
−

−
−

−
6

3
0.

00
97

0.
0

6
1

0.
00

29
0.

0
4-

Fu
llI

ns
-3

11
4

54
1

7
−

−
−

−
7

0.
7

−
−

−
−

−
−

7
1

0.
00

12
0.

01
7

1
0.

00
11

0.
01

4-
Fu

llI
ns

-4
69

0
66

50
8

−
−

−
−

8
7.

7
8

0.
02

−
−

−
−

8
2

0.
00

3
0.

02
8

1
0.

00
14

0.
02

4-
Fu

llI
ns

-5
41

46
77

30
5

9
−

−
−

−
9

14
7.

5
−

−
−

−
−

−
9

1
0.

10
13

0.
09

9
1

0.
09

12
0.

14
4-

In
se

rt
io

ns
-3

79
15

6
4

−
−

−
−

4
0.

6
−

−
−

−
4

3.
72

4
1

0.
00

01
0.

0
4

1
0.

00
01

0.
0

4-
In

se
rt

io
ns

-4
47

5
17

95
5

−
−

−
−

5
3.

7
−

−
−

−
−

−
5

2
0.

00
27

0.
0

5
1

0.
00

12
0.

0
5-

Fu
llI

ns
-3

15
4

79
2

8
−

−
−

−
8

0.
5

−
−

−
−

−
−

8
1

0.
01

0.
02

8
1

0.
00

9
0.

01
5-

Fu
llI

ns
-4

10
85

11
39

5
9

−
−

−
−

9
28

9
0.

04
−

−
−

−
9

2
0.

00
53

0.
0

9
1

0.
00

24
0.

01
ab

b3
13

G
PI

A
15

57
53

35
6

12
−

−
−

−
12

22
4

−
−

−
−

−
−

12
46

32
9

25
1

0.
43

12
1

0.
00

49
0.

02
an

na
13

8
49

3
11

−
−

11
11

.6
3

11
0.

8
−

−
11

1.
04

11
2.

53
11

1
0.

00
01

0.
0

11
1

0.
00

01
0.

0
as

h3
31

G
PI

A
66

2
41

81
4

−
−

−
−

5
42

.2
4

3.
29

−
−

−
−

4
53

0
8

0.
27

4
2

0.
02

72
0.

01
as

h6
08

G
PI

A
12

16
78

44
4

−
−

−
−

4
0.

5
−

−
−

−
−

−
4

53
1.

02
3

0.
01

4
2

0.
03

47
0.

08
as

h9
58

G
PI

A
19

16
12

50
6

5
−

−
−

−
5

47
1.

6
−

−
−

−
−

−
5

79
1.

3
0.

09
5

3
0.

04
44

0.
05

C
20

00
.5

20
00

99
98

36
15

1
−

−
15

1
84

21
−

−
−

−
−

−
−

−
15

1
51

20
20

1
75

24
1

0.
36

15
1

51
20

67
.7

14
2

0.
04

C
20

00
.9

20
00

17
99

53
2

41
1

−
−

41
1

73
68

−
−

−
−

−
−

−
−

41
1

10
65

72
7

14
93

6
0.

44
41

1
85

1.
07

21
0.

1
C

40
00

.5
40

00
40

00
26

8
28

2
−

−
28

2
21

28
81

−
−

−
−

−
−

−
−

28
2

12
22

32
7

77
72

1
0.

41
28

2
12

22
69

.9
30

2
0.

37
da

vi
d

87
40

6
11

−
−

11
10

.8
9

11
0.

5
−

−
11

0.
26

11
2.

61
11

1
0.

00
01

0.
0

11
1

0.
00

01
0.

0
D

SJ
C

10
00

.1
10

00
49

62
9

20
20

43
.1

07
20

49
82

−
−

−
−

−
−

20
39

75
20

69
23

53
34

48
0.

2
20

69
2

3.
10

16
0.

24
D

SJ
C

10
00

.5
10

00
24

98
26

83
84

20
5.

1
83

21
64

−
−

−
−

−
−

83
21

18
83

60
22

75
42

76
0.

04
83

60
2

3.
84

66
0.

36
D

SJ
C

10
00

.9
10

00
44

94
49

22
3

22
4

42
3

22
4

80
92

−
−

−
−

−
−

22
3

57
89

22
3

50
59

9
33

9
0.

04
22

3
51

0.
30

75
0.

22
D

SJ
C

12
5.

1
12

5
73

6
5

5
0.

00
9

6
13

.1
2

−
−

−
−

−
−

5
4.

02
5

10
75

0.
46

43
0.

0
5

1
0.

00
04

0.
0

D
SJ

C
12

5.
5

12
5

38
91

17
17

17
.0

4
17

19
.7

1
−

−
20

36
00

−
−

17
13

.4
8

17
39

09
15

.4
66

5
0.

21
17

2
0.

00
71

0.
04

D
SJ

C
12

5.
9

12
5

69
61

44
44

41
.1

7
44

35
.8

7
−

−
44

36
00

−
−

−
−

44
69

6
3.

03
25

0.
33

44
2

0.
00

78
0.

0
D

SJ
C

25
0.

1
25

0
32

18
8

8
16

.0
15

8
26

.0
7

8
3

−
−

−
−

8
5.

77
8

11
15

36
49

21
0.

08
8

10
1

2.
7

0.
25

D
SJ

C
25

0.
5

25
0

15
66

8
28

28
42

.0
1

28
89

33
60

0
−

−
−

−
30

80
.1

2
28

13
06

7
23

12
0.

39
28

30
1

37
.8

09
0.

42
D

SJ
C

25
0.

9
25

0
27

89
7

72
72

67
.3

72
75

.8
1

−
−

−
−

−
−

72
63

.2
8

72
17

65
11

2
0.

45
72

3
0.

17
13

0.
12

D
SJ

C
50

0.
1

50
0

12
45

8
12

12
32

.2
12

11
2

−
−

−
−

−
−

12
11

0.
34

12
19

39
19

.4
0.

3
12

1
0.

00
9

0.
02

D
SJ

C
50

0.
5

50
0

62
62

4
48

48
10

6
48

14
7

−
−

−
−

−
−

48
14

7.
3

48
73

98
71

9
95

94
0.

03
48

16
0.

01
87

0.
0

D
SJ

C
50

0.
9

50
0

11
24

37
12

6
12

7
11

4.
5

12
6

19
0

−
−

−
−

−
−

12
6

17
3.

18
12

6
40

58
3

73
0.

13
12

6
1

0.
00

16
0.

02
D

SJ
R

50
0.

1
50

0
35

55
12

−
−

−
−

12
6.

9
−

−
−

−
12

14
0.

27
12

11
0.

01
5

0.
01

12
3

0.
00

37
0.

01
D

SJ
R

50
0.

1c
50

0
12

12
75

85
−

−
85

58
1

−
−

85
0.

33
−

−
−

−
85

22
9

0.
03

35
0.

06
85

2
0.

00
03

0.
0

D
SJ

R
50

0.
5

50
0

58
86

2
12

2
−

−
12

4
72

8
−

−
12

2
57

2.
01

−
−

12
2

58
7

12
2

15
14

5
25

45
0.

16
12

2
11

1.
66

36
0.

02
fla

t1
00

0-
50

10
00

24
50

00
50

−
−

50
80

2
−

−
−

−
−

−
50

64
8

50
19

67
62

98
5

0.
15

50
8

0.
03

6
0.

05
fla

t1
00

0-
60

10
00

24
58

30
60

−
−

60
13

44
−

−
−

−
−

−
60

11
97

60
27

54
47

19
34

0.
46

60
18

0.
11

37
0.

04
fla

t1
00

0-
76

10
00

24
67

08
82

−
−

82
37

95
−

−
−

−
−

−
−

−
82

11
95

81
74

8
0.

23
82

12
0

0.
67

56
0.

08
fla

t3
00

-2
0

30
0

21
37

5
20

−
−

20
49

82
−

−
−

−
−

−
−

−
20

41
1

0.
54

34
0.

02
20

1
0.

00
12

0.
01

32

fla
t3

00
-2

6
30

0
21

63
3

26
−

−
26

27
5

−
−

−
−

−
−

26
27

2
26

35
15

3
73

0.
1

26
35

0.
06

54
0.

08
fla

t3
00

-2
8

30
0

21
69

5
28

−
−

28
31

9
−

−
−

−
−

−
28

34
8

28
10

24
31

17
1

0.
21

28
10

29
1.

54
6

0.
14

fp
so

l2
.i.

1
49

6
11

65
4

65
−

−
65

82
.0

3
65

3.
6

65
82

.0
3

65
46

3.
94

−
−

65
1

0.
00

11
0.

0
65

1
0.

00
1

0.
02

fp
so

l2
.i.

2
45

1
86

91
30

−
−

30
69

.7
9

30
7.

4
−

−
30

49
5.

94
−

−
30

1
0.

00
1

0.
01

30
1

0.
00

09
0.

01
fp

so
l2

.i.
3

42
5

86
88

30
−

−
30

67
.1

4
30

6.
4

−
−

30
48

0.
27

−
−

30
1

0.
00

15
0.

01
30

1
0.

00
13

0.
01

ga
m

es
12

0
12

0
63

8
9

−
−

9
10

.7
7

9
0.

8
−

−
9

0.
24

9
3.

24
9

1
0.

00
01

0.
0

9
1

0.
00

01
0.

0
ho

m
er

56
1

16
28

13
−

−
−

−
13

4.
3

−
−

13
59

.0
1

13
6.

67
13

1
0.

00
2

0.
01

13
1

0.
00

18
0.

0
hu

ck
74

30
1

11
−

−
11

11
.1

11
0.

5
−

−
11

0.
11

11
4.

78
11

1
0.

00
01

0.
0

11
1

0.
00

01
0.

0
in

it
hx

.i.
1

86
4

18
70

7
54

−
−

−
−

54
19

.4
−

−
54

24
43

.4
3

54
93

.1
4

54
1

0.
00

48
0.

01
54

1
0.

00
43

0.
01

in
it

hx
.i.

2
64

5
13

97
9

31
−

−
−

−
31

9
−

−
31

15
00

.4
5

31
39

.1
6

31
1

0.
00

34
0.

02
31

1
0.

00
3

0.
01

in
it

hx
.i.

3
62

1
13

96
9

31
−

−
−

−
31

6
−

−
31

14
32

.4
3

31
42

.7
1

31
1

0.
00

17
0.

01
31

1
0.

00
15

0.
01

je
an

80
25

4
10

−
−

10
9.

92
10

0.
5

−
−

10
0.

13
10

4.
42

10
1

0.
00

01
0.

0
10

1
0.

00
01

0.
0

la
ti

n-
sq

ua
re

-1
0

90
0

30
73

50
99

−
−

99
12

67
−

−
−

−
−

−
99

81
3

99
13

05
07

9
76

35
0.

38
99

13
0.

06
84

0.
06

le
45

0-
15

a
45

0
81

68
15

15
31

.2
9

−
−

−
−

−
−

15
19

44
.3

5
15

2.
63

15
12

92
37

3
83

0
0.

3
15

1
0.

00
06

0.
01

le
45

0-
15

b
45

0
81

69
15

15
40

.1
4

−
−

−
−

15
70

0.
5

15
20

76
.5

4
15

4.
23

15
18

51
9

14
97

0.
49

15
31

2.
25

53
0.

26
le

45
0-

15
c

45
0

16
68

0
15

15
77

.1
2

15
93

−
−

25
36

00
15

17
3.

1
−

−
15

17
85

78
24

0.
42

15
19

69
.4

08
0.

46
le

45
0-

15
d

45
0

16
75

0
15

15
59

.1
5

15
22

8
−

−
26

36
00

15
61

9.
74

−
−

15
12

42
73

13
05

5
0.

25
15

43
4.

06
55

0.
36

le
45

0-
25

a
45

0
82

60
25

−
−

−
−

25
4.

4
−

−
25

68
.9

3
25

3.
65

25
15

6
0.

00
1

0.
01

25
1

0.
00

01
0.

0
le

45
0-

25
b

45
0

82
63

25
−

−
−

−
25

7
−

−
25

65
.8

2
25

5.
58

25
34

0.
00

14
0.

01
25

1
0.

00
01

0.
0

le
45

0-
25

c
45

0
17

34
3

25
25

74
.2

25
74

0
−

−
30

36
00

−
in

ft
y

−
−

25
16

84
8

92
98

0.
39

25
26

12
.9

13
9

0.
37

le
45

0-
25

d
45

0
17

42
5

25
25

80
.1

03
25

38
2

−
−

30
36

00
−

in
ft

y
−

−
25

13
71

3
80

51
0.

18
25

26
13

.7
38

3
0.

11
le

45
0-

5a
45

0
57

14
5

−
−

−
−

−
−

5
21

.1
7

5
82

.4
7

−
−

5
29

38
26

.6
78

2
0.

21
5

2
0.

01
63

0.
01

le
45

0-
5b

45
0

57
34

5
−

−
−

−
−

−
5

14
0.

16
5

23
8.

33
−

−
5

24
18

28
0.

39
5

2
0.

02
08

0.
06

le
45

0-
5c

45
0

98
03

5
−

−
−

−
6

27
9

−
−

5
68

.6
8

−
−

5
81

9
4.

11
01

0.
17

5
2

0.
00

9
0.

02
le

45
0-

5d
45

0
97

57
5

−
−

−
−

7
80

.8
−

−
5

44
.4

9
−

−
5

75
0

4.
14

42
0.

18
5

2
0.

00
99

0.
01

m
ile

s1
00

0
12

8
32

16
42

−
−

−
−

42
1

−
−

42
2.

43
42

5.
73

42
12

0.
00

37
0.

01
42

1
0.

00
03

0.
0

m
ile

s1
50

0
12

8
51

98
73

−
−

−
−

73
1.

2
−

−
73

24
.6

5
73

9.
34

73
2

0.
00

05
0.

01
73

1
0.

00
02

0.
0

m
ile

s2
50

12
8

38
7

8
−

−
8

4.
39

8
1.

1
−

−
8

0.
4

8
4.

52
8

5
0.

00
04

0.
0

8
1

0.
00

01
0.

0
m

ile
s5

00
12

8
11

70
20

−
−

20
14

.4
8

20
1.

2
−

−
20

1.
07

20
5.

11
20

7
0.

00
06

0.
01

20
1

0.
00

01
0.

0
m

ile
s7

50
12

8
21

13
31

−
−

−
−

31
1.

5
−

−
31

2.
54

31
5.

64
31

22
0.

00
85

0.
01

31
1

0.
00

03
0.

0
m

ug
10

0-
1

10
0

16
6

4
−

−
4

8.
34

4
0.

8
4

0.
13

4
0.

07
4

2.
9

4
1

0.
00

01
0.

0
4

1
0.

00
01

0.
0

m
ug

10
0-

25
10

0
16

6
4

−
−

4
8.

21
4

0.
5

4
0.

31
4

0.
06

4
2.

57
4

1
0.

00
03

0.
0

4
1

0.
00

02
0.

0
m

ug
88

-1
88

14
6

4
−

−
4

4.
05

4
1.

1
−

−
4

0.
05

4
2.

46
4

1
0.

00
01

0.
0

4
1

0.
00

01
0.

0
m

ug
88

-2
5

88
14

6
4

−
−

4
3.

67
4

1.
3

−
−

4
0.

05
4

1.
65

4
1

0.
00

02
0.

0
4

1
0.

00
02

0.
01

m
ul

so
l.i

.1
19

7
39

25
49

−
−

49
25

.7
5

49
1.

2
−

−
49

18
.7

9
49

9.
68

49
1

0.
00

09
0.

01
49

10
4

0.
08

05
0.

1
m

ul
so

l.i
.2

18
8

38
85

31
−

−
31

22
.0

7
31

1.
1

−
−

31
63

.1
8

31
7.

43
31

1
0.

00
03

0.
0

31
1

0.
00

02
0.

0
m

ul
so

l.i
.3

18
4

39
16

31
−

−
31

23
.4

9
31

1.
3

−
−

31
55

.8
8

31
6.

49
31

1
0.

00
06

0.
0

31
1

0.
00

05
0.

0
m

ul
so

l.i
.4

18
5

39
46

31
−

−
31

25
.2

2
31

1.
7

−
−

31
60

.7
1

31
6.

75
31

1
0.

00
02

0.
0

31
1

0.
00

01
0.

0
m

ul
so

l.i
.5

18
6

39
73

31
−

−
31

28
.3

3
31

1.
9

−
−

31
62

.7
2

−
−

31
1

0.
00

45
0.

01
31

1
0.

00
41

0.
01

m
yc

ie
l3

11
20

4
−

−
4

0.
01

4
0.

2
−

−
−

−
4

0.
48

4
1

0.
00

03
0.

0
4

1
0.

00
03

0.
01

m
yc

ie
l4

23
71

5
−

−
5

0.
89

5
0.

3
−

−
−

−
5

0.
82

5
1

0.
00

31
0.

02
5

1
0.

00
28

0.
01

m
yc

ie
l5

47
23

6
5

−
−

5
5.

51
6

0.
3

−
−

−
−

6
1.

97
5

1
0.

00
5

0.
01

5
1

0.
00

45
0.

03
m

yc
ie

l6
95

75
5

7
−

−
7

12
.7

7
7

0.
5

−
−

−
−

7
1.

72
7

1
0.

01
5

0.
02

7
1

0.
01

35
0.

02
m

yc
ie

l7
19

1
23

60
8

−
−

8
20

.1
9

8
3.

8
−

−
−

−
8

4.
36

8
2

0.
00

08
0.

0
8

1
0.

00
04

0.
01

qg
.o

rd
er

30
90

0
26

10
0

30
−

−
−

−
30

32
6.

4
−

−
−

−
−

−
30

20
68

9
10

4
0.

23
30

1
0.

00
45

0.
03

qg
.o

rd
er

40
16

00
62

40
0

40
−

−
−

−
41

74
6.

3
40

53
4.

83
−

−
−

−
40

12
51

1.
27

72
0.

12
40

1
0.

00
09

0.
0

qg
.o

rd
er

60
36

00
21

24
00

62
−

−
−

−
−

−
62

36
00

−
−

−
−

62
57

34
61

14
55

4
0.

11
62

2
0.

04
57

0.
11

qu
ee

n1
0-

10
10

0
29

40
12

−
−

−
−

12
9.

6
12

36
00

−
−

−
−

12
82

97
16

3
0.

06
12

2
0.

03
54

0.
01

qu
ee

n1
1-

11
12

1
39

60
13

−
−

−
−

14
2.

4
13

36
00

−
−

−
−

13
39

09
13

51
36

0.
37

13
21

7
2.

16
0.

21
qu

ee
n1

2-
12

14
4

51
92

15
−

−
−

−
15

2.
8

−
−

−
−

−
−

15
77

69
22

7
0.

13
15

3
0.

07
89

0.
05

qu
ee

n1
3-

13
16

9
66

56
16

−
−

−
−

16
9.

3
−

−
−

−
−

−
16

10
73

11
13

97
0.

43
16

20
0

2.
34

33
0.

36
qu

ee
n1

4-
14

19
6

41
86

17
−

−
−

−
17

22
.2

−
−

−
−

−
−

17
10

53
69

20
37

0.
44

17
40

7
7.

08
13

0.
17

qu
ee

n1
5-

15
22

5
51

80
18

−
−

−
−

18
17

.9
−

−
−

−
−

−
18

18
63

42
7

39
64

5
0.

4
18

45
8

8.
76

97
0.

43
qu

ee
n1

6-
16

25
6

12
64

0
19

−
−

−
−

19
53

.6
−

−
−

−
−

−
19

16
94

43
7

51
30

0.
05

19
10

0
0.

27
25

0.
1

qu
ee

n5
-5

25
32

0
5

−
−

5
1.

2
5

0.
3

−
−

−
−

5
2.

01
5

1
0.

00
1

0.
01

5
1

0.
00

09
0.

01
qu

ee
n6

-6
36

58
0

7
−

−
7

1.
32

8
5.

7
−

−
−

−
7

2.
47

7
12

6
0.

01
35

0.
05

7
1

0.
00

01
0.

0

33

qu
ee

n7
-7

49
95

2
7

−
−

7
6.

91
7

30
.5

−
−

−
−

7
6.

17
7

14
70

0.
06

8
0.

06
7

3
0.

00
01

0.
0

qu
ee

n8
-1

2
96

13
68

13
−

−
−

−
13

1.
1

−
−

−
−

−
−

13
56

7
0.

28
85

0.
07

13
13

0.
00

6
0.

04
qu

ee
n8

-8
64

72
8

9
−

−
9

9.
87

10
1.

4
−

−
−

−
10

10
.2

4
9

54
9

2.
94

2
0.

28
9

2
0.

00
96

0.
01

qu
ee

n9
-9

81
10

56
10

−
−

10
13

.9
6

11
94

−
−

−
−

−
−

10
74

3
8.

63
37

0.
12

10
2

0.
02

09
0.

02
r1

00
0.

1
10

00
14

37
8

20
−

−
20

49
82

−
−

−
−

−
−

20
64

4
20

19
1

0.
28

37
0.

07
20

1
0.

00
13

0.
01

r1
00

0.
1c

10
00

48
50

90
98

−
−

98
13

29
−

−
−

−
−

−
−

−
98

65
0

4.
75

8
0.

44
98

1
0.

00
66

0.
01

r1
00

0.
5

10
00

23
82

67
24

2
−

−
24

2
15

07
−

−
−

−
−

−
24

2
14

22
24

2
48

66
0

30
7

0.
4

24
2

49
0.

27
82

0.
01

r1
25

.1
12

5
20

9
5

−
−

−
−

5
1.

2
−

−
−

−
5

4.
02

5
2

0.
00

01
0.

0
5

1
0.

00
01

0.
0

r1
25

.1
c

12
5

75
01

46
−

−
−

−
46

1.
8

−
−

−
−

46
4.

45
46

6
0.

00
04

0.
01

46
1

0.
00

01
0.

0
r1

25
.5

12
5

38
38

37
−

−
−

−
37

6.
7

−
−

−
−

37
13

.4
8

37
90

0
0.

27
82

0.
08

37
2

0.
00

06
0.

0
r2

50
.1

25
0

86
7

8
−

−
8

30
8

8
2.

4
−

−
−

−
8

26
4

8
3

0.
00

1
0.

01
8

1
0.

00
03

0.
0

r2
50

.1
c

25
0

30
22

7
64

−
−

64
26

6
64

5
−

−
−

−
64

18
9

64
22

0.
00

74
0.

04
64

1
0.

00
03

0.
0

r2
50

.5
25

0
14

84
9

65
−

−
65

26
1

−
−

−
−

−
−

−
−

65
67

47
5

25
.7

81
0.

25
65

67
0.

02
3

0.
06

sc
ho

ol
1

38
5

19
09

5
14

−
−

−
−

14
19

34
.2

−
−

−
−

−
−

14
59

7
0.

49
1

0.
27

14
1

0.
00

07
0.

01
sc

ho
ol

1-
ns

h
35

2
14

61
2

14
−

−
−

−
14

13
52

.6
14

12
.7

6
−

−
−

−
14

77
3

0.
32

38
0.

09
14

2
0.

00
08

0.
0

w
ap

01
a

23
68

11
08

71
42

42
16

.1
86

−
−

−
−

−
−

−
−

−
−

42
93

91
9

11
51

0.
06

42
11

0.
12

13
0.

04
w

ap
02

a
24

64
11

17
42

41
41

32
.0

57
−

−
−

−
−

−
−

−
−

−
41

11
23

93
11

68
0.

21
41

17
0.

15
9

0.
1

w
ap

03
a

47
30

28
67

22
44

44
90

.3
21

−
−

−
−

−
−

−
−

−
−

44
13

60
11

63
95

7
0.

33
44

10
4.

23
21

0.
19

w
ap

04
a

52
31

29
49

02
43

43
68

.2
5

−
−

−
−

−
−

−
−

−
−

43
21

53
47

3
13

26
71

0.
05

43
5

0.
27

72
0.

25
w

ap
05

a
90

5
43

08
1

50
−

−
−

−
50

12
.4

50
12

5.
45

−
−

−
−

50
11

0.
01

25
0.

0
50

1
0.

00
1

0.
0

w
ap

06
a

94
7

43
57

1
41

41
3.

23
−

−
−

−
−

−
−

−
−

−
41

79
27

08
33

35
0.

25
41

5
0.

01
89

0.
0

w
ap

07
a

18
09

10
33

68
42

42
20

.1
95

−
−

−
−

−
−

−
−

−
−

42
24

19
46

7
18

79
7

0.
34

42
10

0.
06

99
0.

05
w

ap
08

a
18

70
10

41
76

42
42

28
.3

02
−

−
−

−
−

−
−

−
−

−
42

96
10

27
68

77
01

91
0.

47
42

15
0.

10
82

0.
1

w
ill

19
9G

PI
A

70
1

67
72

7
−

−
−

−
8

21
.8

7
6.

68
−

−
−

−
7

46
0

0.
91

54
0.

25
7

2
0.

00
36

0.
01

ze
ro

in
.i.

1
21

1
41

00
49

−
−

49
28

.2
4

49
1.

7
−

−
49

27
.1

49
7.

74
49

1
0.

00
11

0.
01

49
1

0.
00

1
0.

01
ze

ro
in

.i.
2

21
1

35
41

30
−

−
30

83
.3

9
30

2.
1

−
−

30
39

.0
8

30
15

.1
1

30
1

0.
00

11
0.

01
30

1
0.

00
1

0.
02

ze
ro

in
.i.

3
20

6
35

40
30

−
−

30
27

.0
6

30
1.

6
−

−
30

34
.5

1
30

9.
87

30
1

0.
00

09
0.

01
30

1
0.

00
08

0.
01

G
re

at
er

3/
3

3/
22

3/
3

51
/

65
11

/
11

72
/

81
5/

5
17

/
23

0/
0

37
/

39
3/

3
54

/
65

Eq
ua

ls
22

/
22

0/
0

65
/

65
0/

0
81

/
81

0/
0

23
/

23
0/

0
39

/
39

0/
0

65
/

65
0/

0
Sm

al
le

r
0/

0
19

/
0

0/
0

14
/

0
0/

0
9/

0
0/

0
6/

0
0/

0
2/

0
0/

0
11

/
0

Ta
bl

e
2.

1:
Sp

an
an

d
ti

m
e

re
qu

ir
em

en
ts

of
di

ff
er

en
ta

lg
or

it
hm

s
on

be
nc

hm
ar

ks

34

The summary of Table 2.1 is presented in Figure 2.3. Here algorithms LAVCA

([67]), DBG ([68]), MCOACOL ([37]), Best of [81], DR ([69]) and EBDA ([70]) are

represented in x-axis as a1, a2, · · · , a6 respectively. It is evident from Table 2.1, that

ISH hits the best known upper bound for each of the 136 benchmarks. On the other

hand, each other algorithm ai considered only a subset of them. In y-axis for each

algorithm ai, we plot total number of benchmarks considered by algorithm ai:

1. Where ISH hits the best known upper bound (i.e., χ(ISH) = χu). (Since ISH

hits the best known upper bound for each of the 136 benchmarks, this number

essentially represents the total number of benchmarks considered by ai);

2. Where ai hits the best known upper bound (i.e., χ(ai) = χu);

3. Where ai hits the best known upper bound (i.e., χ(ai) = χu) and time taken

by ai is less than that of ISH (i.e., T(ai) ≤ T(ISH));

respectively. It is observed from Figure 2.3 that,

1. For each algorithm ai ∈ {a1, a2, · · · , a6}, ISH produces the best known upper

bound for all the benchmarks considered by algorithm ai.

2. For each algorithm ai ∈ {a2, a3, · · · , a6}, only for a small fraction of the bench-

marks considered by ai, ISH takes more time than ai to produce the best

known upper bound.

Hence ISH hits the best known upper bound for each of the 136 benchmarks, and

in most of the cases, it takes lesser time than the other algorithms.

35

a
1

a
2

a
3

a
4

a
5

a
6

0

20

40

60

80

100

120

140

Algorithms

N
u
m

b
e
r

o
f
b
e
n
c
h
m

a
rk

s
 c

o
n
s
id

e
re

d
 b

y
 a

i

Where χ(a
i
) = χ

u
 and T(a

i
) < T(ISH)

Where χ(a
i
) = χ

u

Where χ(ISH) = χ
u

Figure 2.3: Summary of Table 2.1

2.5.2 Simulation on random graph

In this subsection, we simulate ISH on random graphs G(n, p). We run ISH with

ρ1 = ρ2 = ρ for different values of n, p and ρ, and compare with greedy coloring.

For each value of n, p and ρ we simulate ISH and greedy coloring over 104 random

graphs and report the average result obtained from them.

36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

p

s
p
a
n

greedy coloring

ISH with ρ = 5

ISH with ρ = 10

Figure 2.4: ISH vs greedy algorithm with varying p

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

n

s
p
a
n

greedy coloring for p = 0.1

ISH with ρ = 10 for p = 0.1

greedy coloring for p = 0.5

ISH with ρ = 10 for p = 0.5

greedy coloring for p = 0.9

ISH with ρ = 10 for p = 0.9

Figure 2.5: ISH vs greedy algorithm with varying n

Figure 2.4 shows the resulted spans produced by ISH and greedy coloring on

G(n, p) for varying p and fixed n. We fix n = 100 and vary p from 0 to 1 with an

increment of 0.01. We plot the spans produced by ISH with ρ = 5 and ρ = 10. Recall

37

that ISH evaluates h(ρ2) steps. Hence, we evaluate greedy coloring on 100 random

orders and report the best span for a fair comparison. We observe that the span

produced by the greedy algorithm is higher than the span produced by the ISH for

both values of ρ. We also observe that with higher ρ, ISH produces a lesser expected

span.

Figure 2.5 shows the resulted spans produced by ISH and greedy coloring on G(n, p)

for varying n and fixed p. We fix p = 0.1, 0.5 and 0.9 and vary n from 100 to 1000

with an increment of 50. Here we fix ρ = 10 for ISH. Again, we evaluate greedy

coloring on 100 random orders and report the best span for a fair comparison. It

can be observed that the performance of ISH is better than the greedy coloring.

Moreover, with increasing n and p, spans produced by both ISH and greedy coloring

increases.

0
1

10

1000

20

30

p

0.5

n

40

500

0 0

Figure 2.6:
q
(χgreedy − χISH)2 with varying n and p

38

1
1

1.05

1000

1.1

p

0.5

n

1.15

500

0 0

Figure 2.7:
χgreedy

χISH
with varying n and p

Let χISH and χgreedy be the spans produced by ISH with ρ = 10 and greedy coloring

on 100 random orders, respectively. We vary n from 0 to 1000 in an interval of 10 and

p from 0 to 1 in an interval of 0.01 and plot
q
(χgreedy − χISH)2 and

χgreedy

χISH
in Figures

2.6 and 2.7 respectively. We observe that, for a fixed p,
q
(χgreedy − χISH)2 increases

with n. We also observe that, for a fixed n, with increasing p,
q
(χgreedy − χISH)2

initially increases from 0 and then decreases down to 0. This is because when p → 0

then the graph is highly sparse and hence both greedy coloring and ISH can reach

the optimum. Similarly when p → 1, the graph is highly dense and hence both of

the above mentioned algorithms perform the same. In rest of the cases ISH performs

better than greedy coloring. We observe from Figure 2.7 that
χgreedy

χISH
∈ [1, 2]. This

statistically shows that ISH performs better than greedy coloring on random graphs.

It is known from [86] that greedy coloring on random graphs produces exactly 2-

39

factor of the expected optimum span χopt. Hence
χISH

χopt
=

1
χgreedy
χISH

× χgreedy

χopt
=

2
χgreedy
χISH

.

This statistical result implies that ISH produces ≤ 2-factor of the expected optimum

span.

2.6 Conclusion

In this chapter, we have reduced the D2D channel assignment problem for mini-

mizing Y(t) alone a graph coloring problem. We have proposed an incremental

search heuristic (ISH) and its parallel version PISH for coloring graphs. The salient

feature of ISH is that it solves the graph coloring problem in expected polynomial

time. We simulate ISH on 136 challenging benchmarks and found that it performs

significantly better than 10 state of the art algorithms. We also have validated our

theoretical findings on random graphs. It is evident that ISH essentially partitions

the set of orders into different sets of equivalent orders and then chooses only one

order from an equivalent set. This idea can be applied to develop orders based

heuristic for other problems like minimum vertex cover, maximum independent set

and minimum sum coloring in expected polynomial time.

40

Chapter 3

Minimizing the total perturbation

3.1 Introduction

In chapter 2 we minimized maximum channel required to keep every link active at

time t. In this Chapter we essentially capture the effect of mobility of users on the

resource allocation problem. We consider the D2D overlaid scenario, where a set

of channels {1, 2, · · · , Ymax} is reserved for D2D links (DLs). Due to the mobility

of users, same channel might not be allocated to same link in consecutive time

instances to avoid interference. Hence several channel switches/ color changes/

perturbations may occur. This leads to switching overhead which in turn may

increase delay and packet loss. In this chapter, we address the problem of minimiza-

tion of number of perturbations explicitly.

It is evident that each D2D link i requires a channel ci(t) to communicate at time

t. Since channels are costly we have to allocate the same channel to multiple links.

Since two users forming a D2D link reside in close proximity and the geometric

region is large, a link can be represented by the middle point joining the endpoints

of a link. Since each user is moving and we assume that each link remains active in

the time of consideration, that middle point also moves with a velocity ≤ v. A pair

of links resides within some r distance (interference range) apart can interfere with

41

each other if they use the same channel. Thus at time t, the interference relationship

of the active DLs can be modelled as an interference graph g(t) = (V(t), E(t)),

where each DL is considered as a vertex v ∈ V(t) and a pair of vertices forms an

edge if their representing DLs are interfering to each other. Consider that some

n links are placed within a large geometric region and they are active for a long

time. Now from law of large number and central limit theorem we can say that

the average number of DLs per unit area converges to a finite constant. Due to

mobility of users, g(t) varies over time, but V(t) remains constant, as links are

active for a sufficiently long time as per our assumption. Thus g(t) = G(n, λ)

can be considered as a sparse random graph with n vertices where each edge is

generated with probability λ
n and λ = O(1).

Since g(t) varies over time, a channel assigned to a link at time (t − 1) may

not remain as an interference-free channel anymore at time t and hence we need

to do channel switching which involves switching delay and degrades quality of

service (QoS). To maintain QoS, we have to minimize the total number of channel

switches or perturbations A(t) = ∑
i

Ii(C(t), C(t − 1)), where Ii(C(t), C(t − 1)) is

an indicator variable which indicates 1 if ci(t) ̸= ci(t − 1), 0 otherwise. This chapter

deals with the perturbation minimization problem, the objective of which is to

find C(t) given g(t) and C(t − 1) such that A(t) is minimized. It is evident that if

we copy C(t − 1) to C(t) some monochromatic edges may appear in g(t). Graph

induced by those monochromatic edges is termed as conflict graph gc(t). Since

to resolve each monochromatic edge we have to recolor at least one endpoint of

it, to resolve all edges in gc(t) we have to recolor the minimum vertex cover Vc(t)

of it. It is well-known that finding a minimum vertex cover of a graph is an NP-

complete [11] problem. Note that we not only have to find a minimum vertex cover

of gc(t) but also recolor the vertices in it. This makes the perturbation minimization

problem more challenging.

In this chapter we essentially solve the problem of generating C(t) given g(t) and

42

C(t − 1) such that A(t) is minimized. It is evident that if we can afford to allocate

different channel to each link then no perturbations will ever be needed but in that

case, Y(t) will be large. On the other hand, if we fix Y(t) at the chromatic number

of g(t), then perturbations will be huge. This implies that Y(t) and A(t) have

natural trade-offs among them. In [59] an incremental coloring technique (IC) to

minimize A(t) is proposed. IC copies C(t − 1) to C(t) and then traverse the vertices

following an order. While visiting vertex v it checks whether v is an endpoint

of a monochromatic edge. If yes, it recolors v using first-fit. First-fit essentially

puts the minimum color to a vertex that is absent in all of its neighboring vertices.

However, there is no guarantee that A(t) produced by IC is ≤ ϵ|Vc(t)| for any ϵ > 1.

To give such guarantee, we propose a differential coloring (DC) technique. DC

first copies C(t − 1) to C(t) and then builds gc(t). Next it applies a well-known

2-approximation minimum vertex cover algorithm to find the minimum vertex

cover, removes the color of those vertices and then recolors them using first-fit. This

implies that DC indeed provides a guarantee of producing A(t) within 2-factor of

its optimum value. Note that DC always applies first-fit for recoloring purpose.

So it is efficient if number of channels are very small (indeed O(λ)). However, by

allowing more channels to be allocated, we should be able to reduce A(t) further.

Owing to the trade-off between Y(t) and A(t), we propose a random coloring (RC)

technique to further reduce A(t). RC follows the same algorithm as DC but instead

of first-fit it apples random-fit. Random-fit on vertex v essentially puts a random

color chosen from a range {1, 2, · · · , k} to v that is absent in all of its neighboring

vertices. Here k ≥ ∆(g(t)) + 1 where ∆(g(t)) is the maximum degree of g(t).

It is evident that both DC and RC are centralized approaches. We also propose a

decentralized differential coloring (DDC) technique. In DDC using channel state in-

formation (CSI) and message passing we essentially implement the 2-approximation

minimum vertex cover algorithm to find Vc(t), without generating gc(t). After find-

ing the Vc(t), DDC also recolors those vertices in Vc(t). For recoloring purpose,

43

DDC essentially applies a distributed version of random-fit on the vertices to be

recolored. Finally we calculate the expected cost produced by DC, DDC and RC and

compare with some existing algorithms. We also verified the theoretical findings

through simulation.

Rest of the chapter is organized as follows. We formally show that perturbation

minimization is a NP-hard in Section 3.2. In section 3.3 we present our DC and

RC algorithms. The DDC algorithm is presented in Section 3.4. In Section 3.5 we

present our analysis of DC, DDC and RC. Here we first show that DC, DDC and RC

provide 2-factor approximation of A(t) and then calculate expected maximum color

E[Y(t)] and expected number of perturbations E[A(t)] generated by DC, DDC and

RC. In Section 3.6, we compare the performance of DC, DDC and RC with existing

approaches in terms of E[Y(t)] and E[A(t)]. In Section 4.7 we verify our theoretical

findings through simulation. Finally Section 3.8 concludes the chapter.

The following notations will be frequently used in the rest of this chapter:

x(n) ∼n y(n) ⇐⇒ lim
n→∞

x(n)
y(n)

= 1 and x(n) ≲n y(n) ⇐⇒ lim
n→∞

x(n)
y(n)

≤ 1.

3.2 Hardness of the problem

In this section we show that perturbation minimization is NP-hard.

Theorem 3.2.1 Given g(t) and C(t − 1) producing C(t) such that A(t) is minimized is

NP-hard.

Proof: We will show that given g(t) and C(t − 1) producing C(t) such that A(t)

is minimized is NP-hard, by reducing our problem to minimum vertex cover

problem. Consider an oracle algorithm Alg(g(t), C(t − 1)) produces C(t) such

that A(t) is minimized. Suppose we want to find minimum vertex cover of graph

G. Consider g(t) = G and cv(t − 1) = 1, ∀v. If we set C(t) = C(t − 1), then

gc(t) = g(t), and Vc(t) is the minimum vertex cover of g(t). Hence to minimize

44

A(t), Alg(g(t), C(t − 1)) have to recolor the vertices of the minimum vertex cover

of g(t). We can filter out the minimum vertex cover by putting the vertices who

have changed colors in C(t) from C(t − 1) in a set. Since finding minimum vertex

cover is NP-complete, our problem is NP-hard. Hence the proof.

3.3 Differential Coloring (DC) and Random Coloring

(RC)

Given g(t) and C(t − 1) DC first sets C(t) = C(t − 1), then builds gc(t) and finally

applies classical 2-approximation minimum vertex cover algorithm to find Vc(t).

Classical 2-approximation minimum vertex cover algorithm is as follow: Initially set

Vc(t) = ∅. If there exists any monochromatic edge in gc(t) choose one random edge

from gc(t) and include both of its endpoint in Vc(t) and repeat the process. Note

that this algorithm will essentially find a maximal matching and both endpoints

of each of its edges are members of Vc(t). Both DC and RC remove colors of the

vertices of Vc(t) from C(t) and then color those vertices following a random order

using first-fit (in case of DC) or random-fit (in case of RC) with k ≥ ∆(g(t)) + 1. We

present DC and RC formally in Algorithms 5 and 6 respectively.

Algorithm 5: Differential coloring (DC)
Input: g(t),C(t − 1)
Output: C(t)

1 Set C(t) = C(t − 1);
2 Generate gc(t);
3 Find Vc(t) of gc(t) using classical 2-approximation maximal matching algorithm;
4 Remove color of each vertex ∈ Vc(t) from C(t);
5 Recolor vertices of Vc(t) using first-fit in a random order return C(t);

45

Algorithm 6: Random coloring (DC)
Input: g(t),C(t − 1),k ≥ ∆(g(t)) + 1
Output: C(t)

1 Set C(t) = C(t − 1);
2 Generate gc(t);
3 Find Vc(t) of gc(t) using classical 2-approximation maximal matching algorithm;
4 Remove color of each vertex ∈ Vc(t) from C(t);
5 Recolor vertices of Vc(t) using random-fit, with choosing colors from {1, 2, · · · , k},

in a random order;
6 return C(t);

3.4 Decentralized differential coloring (DDC)

In this section we present our decentralized differential coloring (DDC) algorithm to

minimize A(t). Initially all links in g(t) will retain their previous colors. This may

cause some monochromatic edges in g(t). We assume that the user-pair forming a

D2D link can identify whether its channel is being used by other user-pair within r

distance apart by observing the channel state information (CSI). When user-pair

of a link identify that some other link is interfering with it, then the concerned

user-pair goes in channel switching mode. In this mode, the concerned user-pair

will be in communication with each other and decide together a different channel

for communication so that the monochromatic edge is dissolved. When user-pair

forming link i finds that its channel is being used by another link, it broadcasts its

channel/color information to all its neighbors which are within r distance apart.

Communication power of a vertex will be set to transmit up to its interference range

while the concerned vertex is in channel switching mode. Communications in this

mode will be performed by taking the assistance of the base station. Each receiving

user of that signal then reply back their channel information to the requesting user.

By this way the user-pair forming link i will get the total channel information of its

neighbors and construct a set Mi(t) containing all links which are active with the

same channel as that of link i. If Mi(t) is not empty, link i randomly chooses link

j ∈ Mi(t) and send a pairing request to j. If i and j both send pairing request to each

46

other then they form a pair and send that information to all their neighbors. Then

i and j will then choose two random colors from {1, 2, · · · , k} and {1, 2, · · · , k},

where k is a input parameter ≥ ∆(g(t)) + 1, such that for each link the color of that

link is not being used by their neighbors. After forming the pair and successfully

acquiring the channel, both i and j will get released from channel switching mode. If

link i is not paired, upon receiving pairing requests from other neighbors, it removes

those neighbors from Mi(t). If Mi(t) is still not empty, i repeat the process to pair

up with another link. Finally when Mi(t) become empty, then no monochromatic

edge exists in g(t) whose one endpoint is the color used by link i. In that case

link i will get released from channel switching mode. This algorithm is presented

formally in Algorithm 7 which will be run by the user-pair forming link i.

Remark 3 It is evident that at time t, each link has to exchange messages with only its

neighbors. Again to form the pairing, each link may have to exchange its information to each

of its neighbor O(
1

(1 − 1
∆(g(t)) + 1

)∆(g(t))
) = O(e) = O(1) times. Hence expected

message complexity for each link, to execute DDC at time t, is O(∆(g(t))).

3.5 Analysis of DC, DDC and RC

In this section we first show that given g(t) and C(t − 1), DC, DDC and RC provide

2-factor approximation of A(t) and then calculate expected maximum color E[Y(t)]

and expected number of perturbation E[A(t)] generated by DC, DDC and RC.

Theorem 3.5.1 Given g(t) and C(t − 1), DC, DDC and RC provide 2-factor approxima-

tion of A(t).

Proof: Since DC, DDC and RC apply 2-approximation algorithm to calculate Vc(t)

of gc(t) and then color the endpoints of each vertex in the calculated Vc(t), it can at

most recolor 2-times the size of optimal Vc(t). Since |Vc(t)| is at least the optimum

A(t), the proof follows.

47

Algorithm 7: Decentralized differential coloring (DDC)
Input: g(t),C(t − 1),k ≥ ∆(g(t)) + 1
Output: C(t)

1 For each vertex common in V(g(t)) and V(g(t − 1)) set ci(t) = ci(t − 1);
2 Check whether ci(t) is used by any other link by seeing CSI;
3 if ci(t) is used by another link in its neighborhood then
4 Enter into channel switching mode;
5 Send current color ci(t) to all neighbors and request for their colors;
6 Receive colors from all neighbors;
7 Construct Mi(t) as the set of all neighbors whose color is same as ci(t);
8 while Mi(t) ̸= ∅ do
9 Choose an user j randomly from Mi(t);

10 Send pairing request to j;
11 Receive pairing request from all neighbors;
12 if j sent a pairing request to i then
13 Pair with j;
14 Share the pairing status with all neighbors;
15 Choose random colors from {1, 2, · · · , k} and {1, 2, · · · , k}, such that for

each link the color of that link is not being used by their neighbors;
16 Exit from channel switching mode;

17 else
18 Receive pairing information from all neighbors;
19 Remove all already paired links from Mi(t);
20 Exit channel switching mode;

21 else if i receives coloring request from any of its neighbors then
22 Send current color ci(t) to all such requesting neighbors;

Theorem 3.5.2 Given g(t) = G(n, λ), λ = O(1), and C(t − 1), DC produces

E[Y(t)] ∼n λ

and

E[A(t)] ∼n λ

respectively.

Proof: It is evident from [87] that first-fit on g(t) = G(n, λ), λ = O(1), over a

random order, produces E[Y(t)] ∼n λ. Since DC does not recolor the vertices of g(t)

48

which do not belong to a vertex cover of gc(t), this may increase E[Y(t)] over time. If

Y(t− 1) ∼n λ then a vertex u can have color cu(t) ∼n λ only if there exists neighbors

of u with colors 1, 2, · · · , λ in C(t). Probability of this event is ∼n (λ
n)

λ 1
λλ ∼n

1
nλ .

This probability → 0 when n → ∞. Hence DC produces E[Y(t)] ∼n λ. It is evident

that an edge uv is in gc(t) with probability P(uv ∈ gc(t)) = P(uv ∈ g(t) & uv /∈
g(t − 1) & cu(t − 1) = cv(t − 1)) ∼n

λ

n
× (1− λ

n
)× 1

λ
∼n

1
n

. Since vertex u belongs

to gc(t) only if it has at least one incident monochromatic edge, probability of that

event is P(u ∈ gc(t)) ∼n (1 − (1 − 1
n
)λ) ∼n

λ

n
. Hence expected number of vertices

and expected average degree of gc(t) are n × P(u ∈ gc(t)) ∼n n × λ

n
∼n λ and

n × P(uv ∈ gc(t)) ∼n n × 1
n
∼n 1 respectively. That means, each vertex in gc(t) has

only one monochromatic edge incident to it. That is, gc(t) is essentially a collection

of disjoint edges in expected sense and one endpoint of each monochromatic edge

is a member of minimum vertex cover. Hence E[|Vc(t)|] ∼n 0.5λ. Since DC applies

a 2-approximation algorithm to find the minimum vertex cover and recolor those

vertices, from Theorem 3.5.1, it follows that E[A(t)] ∼n 2E[|Vc(t)|] ∼n λ.

Theorem 3.5.3 Given g(t) = G(n, λ), λ = O(1), and C(t − 1), RC and DDC with

parameter k ≥ ∆(g(t)) + 1 produces

E[Y(t)] ∼n k

and

E[A(t)] ∼n
λ2

k

respectively.

Proof: Since random-fit chooses a random color from {1, 2, · · · , k}, using the proof

of Theorem 3.5.2 we can show that E[Y(t)] ∼n k. Similar to the proof of Theorem

3.5.2 we can further show that P(uv ∈ gc(t)) ∼n
λ

n
(1− λ

n
)

1
nk

∼n
λ

nk
. Thus expected

number of vertices and expected average degree of gc(t) are n × P(u ∈ gc(t)) ∼n

49

n × λ2

nk
∼n

λ2

k
and n × P(uv ∈ gc(t)) ∼n n × λ

nk
∼n

λ

k
respectively. This implies

together with Theorem 3.5.1 that E[A(t)] ∼n
λ2

k
. It is evident that DDC is only a

decentralized version of RC. Hence the results hold for DDC also. Hence the proof.

Remark 4 It is evident that DDC is essentially a decentralized version of RC, except that

k = ∆(g(t)) + 1. Hence by replacing k by ∆(g(t)) + 1 in the expression of RC in Theorem

3.5.3, we get the expected maximum and perturbations produce by DDC.

Remark 5 It is evident that RC essentially applies a random colors from {1, 2, · · · , k} to

the vertices such that no monochromatic edge remains in g(t). It is evident from Theorem

3.5.3 that E[Y(t)] ∼n k and E[A(t)] ∼n
λ2

k . Thus by increasing k we can decrease

E[A(t)] to a arbitrarily small value, with lim
k→∞

E[Y(t)] = ∞ and lim
k→∞

E[A(t)] = 0. This

clearly indicates how RC efficiently uses the trade-off between Y(t) and A(t) to decrease

A(t).

3.6 Comparison with other approaches

Authors in [53, 54, 55] have studied this problem with the property that at time t

only one edge could appear or disappear. They call this incident as an update and

try to maintain the coloring of the graph on a per-update basis. They fix a maximum

color for the graph and upon occurrence of an update, change the color of some

other vertices so that the proper coloring of the graph is maintained. At time t, some

monochromatic edges may appear in g(t). We consider each such monochromatic

edge one by one and apply their algorithms. The computed E[Y(t)] and E[A(t)]

of the above mentioned algorithms and the same produced by RC, DDC and DC

along with their corresponding time and space complexities are presented in Table

3.1.

From Table 3.1 we observe the following. DC provides reasonably low E[A(t)]

with keeping E[Y(t)] at its minimum, where the algorithm proposed in [54] pro-

50

vides the same E[Y(t)] though E[A(t)] is higher. It is evident from Table 3.1 that

if E[Y(t)] = O(λ) then DC produces less E[A(t)] than the algorithm reported

in [54]. Note that authors of [53] and [55] considered E[Y(t)] = O(∆(g(t))) and

E[Y(t)] = O(log(n)) respectively. So if we adopt k = ∆(g(t)) + 1 or k = log(n) in

RC, RC produces lesser E[A(t)] than that produced by those two algorithms respec-

tively. It is evident from Remark 5 that RC can decrease E[A(t)] to arbitrarily small

value by considering E[Y(t)] to be very large. So we can conclude that due to the

trade-off between Y(t) and A(t), by increasing color requirement we can decrease

the number of perturbations. Therefore, according to the relative importance of

E[Y(t)] and E[A(t)], sometimes DC and sometimes RC is the preferable choice for

this problem.

Sl Algorithm Time & space
No Paper Name E[Y(t)] E[A(t)] complexities
(1) DC λ λ Θ(n)

(2) RC k
λ2

k
Θ(n)

(3) DDC ∆(g(t)) + 1
λ2

∆(g(t)) + 1
Θ(n)

(4) [53] O(log(n)) O(0.5
λ2

log(n)
) Θ(n)

(5) [54] O(λ) O(0.5λ × polylog(n)) Θ(n)

(6) [55] O(∆(g(t))) O(0.5
λ2 log(∆(g(t))

∆(g(t))
) Θ(n)

Table 3.1: E[Y(t)] and E[A(t)] produced by different algorithms

3.7 Simulation

Since our analysis is asymptotic in nature, in this section, we verify our theoretical

findings on DC and RC through simulations, considering finite values of n. We

consider that n links are initially placed randomly inside a 1 km radius circular

region and at each time instance t each link i chooses a random speed vi(t) ∈ [0, v]

51

and a random angle θi(t) ∈ [0, 2π] and move with it. That is, links are moving

following the random way-point mobility model (RWM) [88]. At each time t, we

build g(t) by considering each link as a vertex and each pair of links residing within

r distance have an edge between them. We consider the default values of n, r, v

as 100, 100 m, 10 m/s. We vary one of the parameters n, r and keep others at its

default value and observe Y = E[Y(t)] and A = E[A(t)] generated by DC and RC

with k = 10.

60 80 100 120 140

4

6

8

10

12

14

n

Y

DC

RC with k = 10

Figure 3.1: Y vs n

60 80 100 120 140

1

1.5

2

2.5

3

3.5

n

A
DC

RC with k = 10

Figure 3.2: A vs n

60 80 100 120 140

6

8

10

12

14

r

Y

DC

RC with k = 10

Figure 3.3: Y vs r

60 80 100 120 140

2

3

4

5

r

A

DC

RC with k = 10

Figure 3.4: A vs r

In Figures 3.1 and 3.2 we vary n from 50 to 150 with an interval of 5 keeping

r = 100 m and v = 10 m/s and plot Y and A produced by DC and RC respectively.

Also in Figures 3.3 and 3.4 we vary r from 50 m to 150 m with an interval of

52

5 m keeping n = 100 and v = 10 m/s and plot Y and A produced by DC and

RC respectively. It is evident from those figures that with increasing n and r, Y

produced by DC increases while the Y produced by RC remains the same. Similarly

with increasing n and r, A produced by DC and RC increases. Also Y produced by

DC is lesser than that produced by RC. On the other hand, A produced by DC is

greater than the same produced by the RC respectively. Note that average degree of

g(t) is λ ∝ nr2 where λ ≤ k. From Table 3.1 we get that Y and A produced by DC

are ∼n λ and λ respectively and those produced by RC are ∼n k and
λ2

k
respectively.

Hence the experimental results are in accordance with theoretical finding present in

Table 3.1.

10 20 30 40 50

8

10

12

14

16

18

20

k

Y

RC

Figure 3.5: Y vs k

10 20 30 40 50

2.5

3

3.5

4

4.5

k

A

RC

Figure 3.6: A vs k

In Figures 3.5 and 3.6 we vary k from 10 to 50 with an interval of 1, keeping

n = 100 and r = 100 m and v = 10 m/s and plot Y and A produced by RC. We

observed that with increasing k, Y ∝ k and A ∝
1
k

. From Table 3.1 we get that Y and

A produced by RC are ∼n k and
λ2

k
respectively. Hence the experimental results

are again in accordance with theoretical finding present in Table 3.1.

53

3.8 Conclusion

In this chapter we have provided centralized and decentralized algorithms for

minimizing A(t) given g(t) and C(t − 1). We first propose a DC algorithm which

copies C(t − 1) to C(t) and then find and color the minimum vertex cover of gc(t).

Using the trade-off between Y(t) and A(t), we propose a RC algorithm which

further minimize A(t). To reduce the overhead of base station we then propose

a decentralized differential coloring (DDC). Finally we calculated the expected

maximum color and expected number of perturbations produced by our algorithms

and compare those with some existing approaches. We also verify the theoretical

results via simulation.

54

Chapter 4

Minimizing both maximum channel

and total perturbation

4.1 Introduction

In chapter 3 we minimized total number of perturbations A(t) required to keep

every link active at time t. If we allocate each link a different channel then each

link has no interference from other links and hence total perturbations A(t) will be

zero. But in that case, the maximum channel used Y(t) is huge. Thus Y(t) and A(t)

have a natural trade-offs among them. Motivated by this, in this chapter, we will

minimize a cost defined as a linear combination of Y(t) and A(t).

We formulate the resource allocation problem as a cost minimization problem

where cost is defined as Y(t) + αA(t). In device to device (D2D) communication,

two proximity users can directly communicate among themselves, through a com-

mon channel, without the need of a base station [10]. At time t, a pair of D2D

communicating users forms a link and each link v operates on a channel cv(t) [10].

Since users are moving and a pair of users forming a link resides in a close proximity,

we can assume each link as a moving point in the geometric region. Since wireless

channels are costly resources, we need to reuse the same channel for multiple links.

55

However, the links activated with the same channel may interfere to each other. Two

links are said to be interfering to each other if they are ≤ r distance apart, where r

denotes the interference range. At time t, interference relationship among the active

links can be modeled as an interference graph g(t) = (V(t), E(t)), where each link

represents a vertex and two vertices form an edge if and only if their representing

links are interfering to each other. We assume that a pair of users forming a link is

moving independently with speed ≤ v, where v
r = O(1). Consider that some n links

are placed within a large geometric region and they are active for a long time. Hence

E(t) varies over time but V(t) remains constant. This implies that g(t) is indeed

a temporal graph. To establish communication of each link, at time t, we have to

allocate a channel/color vector C(t) = (cv(t)), where cv(t) ∈ {1, 2, · · · , n = |V(t)|}
is the channel/color assigned to vertex v ∈ V(t) at that time. For a large geometric

region, due to law of large number and central limit theorem, the average number

of links per unit area will converge to a finite constant. Hence g(t) = G(n, λ) can be

considered as a sparse random graph with n vertex, where each edge is generated

with probability λ
n and λ = O(1). Note that average degree and maximum degree

of g(t) are ∼n λ and ∆(g(t)) ∼n ∆(G(n, λ)) = O(
log(n)

log log(n)
) respectively, where

x(n) ∼n y(n) =⇒ lim
n→∞

x(n)
y(n)

= 1. Since g(t) varies over time, a channel assigned

to a link at time (t − 1) may not remain as an interference-free channel anymore at

time t and hence we need to do channel switching which involves switching delay

and degrades quality of service (QoS). Consider Iv(C(t), C(t − 1)) as an indicator

variable which indicates 1 if cv(t) ̸= cv(t − 1) and 0 otherwise. Since channels are

costly and there is a delay associated with channel switch, at time t, to improve QoS,

we have to minimize both maximum color Y(t) = max
v∈V(t)

cv(t) used in C(t) and total

number of perturbations/channel switch A(t) = ∑
v∈V(t)

Iv(C(t), C(t − 1)) in C(t)

from C(t − 1). It is evident that if we allocate different channel to each link then no

perturbations will occur but in that case, Y(t) will be large. On the other hand, if

56

we fix Y(t) at the chromatic number of g(t), then perturbations will be huge. Hence

Y(t) and A(t) have a natural trade-off [59]. Owing to this natural trade-off, we have

adopted the expression of cost function f (t) = Y(t) + αA(t) as mentioned in [59].

Here α ∈ [0, ∞] is a constant representing the relative weights of Y(t) and A(t) with

weight of Y(t) normalized to 1. Thus perturbation sensitive channel assignment

problem in D2D communication is essentially a temporal graph coloring problem

which can formally be stated as: At each time t ∈ {1, 2, · · · , T}, find C(t) given

g(t) = G(n, λ) and C(t − 1) such that no monochromatic edge exists in g(t) and

the expected cost E[lim
T→∞

1
T

T

∑
t=1

f (t)] is minimized.

If α is small we have to minimize Y(t) only. In the Chapter 2, we have dealt with

the problem of minimizing Y(t). If α is large, we have to minimize A(t) only. In

Chapter 3, we have dealt with the problem of minimizing A(t). As mentioned in

[53] and also to our best of knowledge; only little works had been done to solve the

problem of maintaining coloring of a graph that evolves over time, which explicitly

deals with trade-off between Y(t) and A(t). In this chapter, we consider the problem

of minimizing f (t) = Y(t) + αA(t) by explicitly dealing with the trade-off between

Y(t) and A(t).

Authors in [53, 54, 55] proposed another version of this problem. They consider

that at time t only one edge could appear or disappear. They call this incident as an

update and try to maintain the coloring of the graph on a per-update basis. They fix

a maximum color for the graph and upon occurrence of an update, change the color

of some other vertices so that the proper coloring of the graph is maintained. To do

that they partition V(t) into different subsets and arrange the subsets into different

labels. Upon occurrence of an update, they exchange vertices between different

labels. In their approaches they maintain various in-variants and use additional

data structures. In [53] authors proposed a bucket based approach, which has

later been improved by [54] in terms of required time per-update. In [55] authors

proposed a randomized algorithm which partitions V(t) into different labels and

57

maintains the expected number of colors of g(t) in log(∆(g(t))) time per-update,

where ∆(g(t)) is the maximum degree of g(t).

As mentioned earlier, if we copy C(t − 1) to C(t) some monochromatic edges

may appear in g(t). Graph induced by those monochromatic edges is termed as

conflict graph gc(t). Since to resolve each monochromatic edge we have to recolor at

least one endpoint of it, to resolve all edges in gc(t) we have to recolor the minimum

vertex cover Vc(t) of it. Considering the sequential nature of g(t)s, in [59] authors

proposed a SNAP and a SMASH algorithm. SNAP colors g(t) using incremental

coloring (IC) [59], ∀t. IC copies C(t − 1) to C(t) and then traverse the vertices

following an order. While visiting vertex v it checks whether v is an endpoint of

a monochromatic edge. If yes, it recolors v using first-fit, which puts to a vertex

the minimum color absent in any of its neighbors. On the other hand SMASH

minimizes A(t) through minimizing |Vc(t)|. In k + 1 time interval SMASH builds

a SMASHed graph gk
s(t) =

k[

τ=0
g(t + τ) and colors it applying IC, and retains that

color for next k time instances. Though in this case, perturbation occurs only once in

k + 1 time instances, but to build a SMASHed graph, they require future information,

which may not be available. To avoid this problem, in this chapter, we propose

a geometric prediction (GP) based approach. GP uses the current position and

maximum velocity of the users to predict all possible graphs that could be generated

in future. In GP, in k + 1 time interval, predicted graph gk
p(t) is built by adding

edges between vertices whose corresponding links are ≤ (r + 2vk) distance apart.

We show that a pair of links currently residing at distance d, can come within r

distance, in current and next k time instances, only if d ≤ (r + 2vk). Thus gk
p(t) is

the union of current and all possible graphs that could be generated in next k time

instances. GP then colors the predicted graph using the differential coloring (DC)

technique described in Chapter 3, and the obtained color vector is retained for the

next k time instances.

As mentioned in Chapter 3, DC provides a 2-approximation solution to find

58

and color the vertices of Vc(t). Since DC limits recoloring the vertices of Vc(t) only,

Y(t) may get increased over time. To overcome this limitation, in this chapter, we

propose a perturbation sensitive greedy coloring (PGC) technique which finds the

minimum f (t) = Y(t) + αA(t) given g(t) and C(t − 1), in expected O(n) time and

space complexities, which is asymptotically minimum among all algorithms which

can solve this particular problem. Since coloring of future graphs are functions of

coloring of the current graph, to reduce E[f (t)], we also propose a graph union (GU)

based approach which using the past information builds a union graph and then

colors it using PGC. Here the union graph represents the union of current and past

k graphs, where parameter k resembles how many previous graphs is considered

for making the union graph. We finally compare GP and GU with some existing

approaches and show that GU outperforms all of these existing approaches.

The remaining chapter is organized as follows: In Section 4.2 we propose the

Integer Linear Programming (ILP) formulation of the problem. In Section 4.3 we

present the geometric prediction (GP) based approach. In Section 4.4 we present

the perturbation sensitive greedy coloring (PGC) algorithm using which in Section

4.5 we present the graph union based approach. We compare our approaches with

existing works in Section 4.6. Section 4.8 concludes the Chapter.

4.2 Integer Linear Programming (ILP) formulation of

the problem

In this section we present an Integer Linear Programming (ILP) formulation of

the problem of minimizing Y(t) + αA(t). For each time instant t, we define the

following binary optimization variables:

zic(t) =





1 if color c is assigned to vertex i

0 otherwise.

59

yc(t) =





1 if color c is assigned to at least one vertex

0 otherwise.

Constraints 4.1 checks whether color c is allocated to at least least one vertex.

zic(t) ≤ yc(t) ∀ i, c (4.1)

Constraint 4.2 guarantees that each vertex is allocated with exactly one color.

n

∑
c=1

zic = 1 ∀ i (4.2)

Constraint 4.3 guarantees that endpoint of each edge gets different colors.

zic + zjc ≤ 1 ∀ ij ∈ E(t) ∀c (4.3)

Constraints 4.4 and 4.5 calculate Y(t) and A(t) respectively, where ⊕ represents the

XOR operation. Since zic(t − 1) is a constant at time t, zic(t)⊕ zic(t − 1) is a linear

operation.

Y(t) =
n

∑
c=1

yc(t) (4.4)

A(t) =
1
2

n

∑
c=1

zic(t)⊕ zic(t − 1) (4.5)

Hence the problem is formulated as follows:

minimize Y(t) + αA(t) (4.6)

Subject to

Constraints (4.1)-(4.5), where

yc(t) ∈ {0, 1} ∀c (4.7)

60

zic(t) ∈ {0, 1} ∀i, c (4.8)

4.3 Geometric prediction (GP) based approach

In geometric prediction based approach, using the current position and maximum

velocity of the users, in k + 1 time instances, we build a predicted graph which is a

super-graph of union of current and all possible graphs that could be generated in

current and next k instances. To build the predicted graph gk
p(t) at current time, we

essentially join edges between pair of links which are ≤ (r + 2vk) distance apart.

We will show in Theorem 4.3.1 that two links can come within r distance, in current

and next k time instances, only if they are currently residing at ≤ (r + 2vk) distance

apart. After building gk
p(t) we apply DC to color the vertices of it. GP is formally

stated in Algorithm 8.

Algorithm 8: Geometric prediction (GP) based approach
Input: Current position of each link, v, r, k, C(t − 1)
Output: C(t)

1 if t ≡ 0 mod (k + 1) then
2 Build gk

p(t) by joining an edge between each pair of vertices which are
≤ r + 2vk distance apart;

3 C(t) = DC(gk
p(t), C(t − 1));

4 else
5 C(t) = C(t − 1);

6 return C(t);

Theorem 4.3.1 Two links i and j can come within r distance, in current and next k time

instances, only if they are currently residing at ≤ (r + 2vk) distance apart.

Proof: Since users are moving and a pair of users forming a link resides in a close

proximity, we assumed each link as a moving point in the geometric region. Also

we assumed that a pair of users forming a link is moving independently with speed

≤ v. Hence the maximum relative velocity of j with respect to i is 2v. Thus they

61

can come within r distance, in current and next k time instances, only if they are

currently residing at ≤ (r + 2vk) distance apart. Hence the proof.

From Theorem 4.3.1 it is obvious that gk
p(t) ⊇

k[

τ=0
g(t + τ). GP generates and colors

gk
p(t) using DC in k + 1 time interval and retains that color for current and next k

time intervals. Since GP colors gk
p(t) only once in k + 1 time interval, it essentially

minimizes the expected perturbation by a factor of k.

Theorem 4.3.2 The expected cost produced by GP with parameter k is E[f (t)] ∼n λ(1 +
2vk

r
)2(1 +

α

k + 1
).

Proof: It is evident that average degree of a vertex of g(t) = G(n, λ) in the large

geometric area is proportional to r2. Since average degree of G(n, λ) is λ we can

say λ ∝ r2. Since gk
p(t) is built by joining edges between the links residing within

≤ (r + 2vk) distance apart, gk
p(t) has the average degree λ(1 +

2vk
r

)2. That is

gk
p(t) = G(n, λ(1 + 2vk

r)2).

In [87] authors state that first-fit following a random order S on g(t) = G(n, λ)

produces E[Y(t)] ∼n λ, where x(n) ∼n y(n) ⇐⇒ lim
n→∞

x(n)
y(n)

= 1. This implies

gk
p(t) = G(n, λ(1 + 2vk

r)2) has expected number of colors E[Y(t)] ∼n λ(1 +
2vk

r
)2.

The reason behind this is as follows. Consider C(t − 1) had Y(t − 1) ∼n λ(1 +
2vk

r
)2. Now a vertex in gk

p(t) will get color ∼n λ(1 +
2vk

r
)2 + 1 only if all the

colors 1, 2, · · · , λ(1 + 2vk
r)2 appear in its neighbors. Probability of this event is

(
λ(1 +

2vk
r

)2

n
)
λ(1 +

2vk
r

)2

× 1

(λ(1 +
2vk

r
)2)

λ(1 +
2vk

r
)2

∼n
1

n
λ(1 +

2vk
r

)2
, which

→ 0 when n → ∞.

If we consider C(t) = C(t − 1) then the probability that an edge uv ∈ gc(t) is

P(uv ∈ gc(t)) = P(uv ∈ gk
p(t))P(uv /∈ gk

p(t − (k + 1)))P(cu(t) = cv(t))

62

∼n

λ(1 +
2vk

r
)2

n
× (1 −

λ(1 +
2vk

r
)2

n
)× 1

λ(1 +
2vk

r
)2

∼n
1
n

Again probability that a vertex u has at least one incident monochromatic edge is

P(u ∈ gc(t)) ∼n 1 − (1 − P(uv ∈ g(t)))
λ(1 +

2vk
r

)2

∼n

λ(1 +
2vk

r
)2

n

Thus total number of vertices in gc(t) and average degree of gc(t) are

nP(u ∈ gc(t)) ∼n

λ(1 +
2vk

r
)2

n

and

nP(uv ∈ gc(t)) ∼n 1

respectively. This implies that each vertex in gc(t) has only one incident monochro-

matic edge and gc(t) is essentially collection of disjoint edges. Since in this case

exactly one endpoint of each edge belongs to Vc(t), E[|Vc(t)|] ∼n 0.5λ(1 +
2vk

r
)2.

Since GP uses DC which applies a 2-approximation maximal matching based

algorithm to find and recolor the vertices of Vc(t) and perturbation occurs one

once in the k + 1 time intervals, E[A(t)] ∼n λ(1 +
2vk

r
)2 1

k + 1
. Thus E[f (t)] ∼n

λ(1 +
2vk

r
)2(1 +

α

k + 1
). Hence the proof.

63

4.4 Perturbation sensitive greedy coloring (PGC)

It is evident that GP essentially minimizes E[f (t)] over time. In this section, we

would discuss about a perturbation sensitive greedy coloring which guarantees to

minimize f (t) given g(t) and C(t − 1) in expected polynomial time.

Greedy coloring is a well known technique to color vertices of a given graph.

Greedy coloring on g(t), visits the vertices following an order S = {vl1 , vl2 , · · · ,

vln}, 1 ≤ li ≤ n, 1 ≤ i ≤ n, and while visiting vertex vli it applies first-fit on it.

Greedy coloring on g(t) following S produces a color vector CS(t).

In Chapter 2, we propose a selective search (SS) algorithm which starts with

a random order S1 and finds color vector CS1(t) by applying greedy coloring on

S1. Note that CS1(t) partitions V(t) into YS1(t) = max
v

cS1
v (t) pseudo-vertices V1, V2,

· · · , VYS1 (t) where a pseudo-vertex Vx = {v ∈ V(t) : cS1
v (t) = x}, 1 ≤ x ≤ YS1(t).

Let π(S1) be a permutation of those pseudo-vertices and L(π(S1)) be the set of

all orders generated from π(S1) by permuting vertices within the same pseudo-

vertex but keeping the order of the pseudo-vertices intact. SS actually considers

ρ − 1 random permutations πi(S1), 2 ≤ i ≤ ρ of those pseudo-vertices. For each

such permutation SS chooses a random order Si ∈ L(πi(S1)) and applies greedy

coloring on it. Finally SS reports the minimum Y(t) produced by greedy coloring

on S1, S2, · · · Sρ. Note that SS deals with the case of α = 0 where no perturbation

cost is involve.

Here we adopt the essence of SS presented in Chapter 2 and develop a per-

turbation sensitive greedy coloring (PGC) algorithm for minimizing f (t). PGC

is exactly same as SS except first-perturbation-fit is used in place of first-fit when

greedy coloring is applied on an order and finally the color vector with mini-

mum cost is reported. When first-perturbation-fit is applied on a vertex vli fol-

lowing order S, it puts the color which is absent in all of its allocated neighbors

and for which cS
vli
(t) + αIvli

(CS(t), C(t − 1)) is minimum. Let’s define YS
0 (t) = 0,

64

YS
i (t) = max(cS

vli
(t), YS

i−1(t)) and AS
i (t) =

i

∑
j=1

Ivlj
(CS(t), C(t − 1)). It is evident

that, while coloring vertex vli , first-perturbation-fit essentially minimizes f S
i (t) =

YS
i (t) + αAS

i (t), where YS(t) = YS
n (t), AS(t) = AS

n(t) and f S(t) = f S
n (t). PGC is

formally stated in Algorithm 9. We will later analytically show that PGC can find

optimum f (t) given g(t) and C(t − 1) in expected polynomial time. Before proving

this main result, we first show that there exists an order on which PGC produces

optimal color vector and also present some properties of PGC which will be used to

prove the main result.

Algorithm 9: Perturbation sensitive greedy coloring (PGC)
Input: g(t),C(t − 1)
Output: C(t)

1 Generate a random order S;
2 Calculate CS(t) by applying first-perturbation-fit following S;
3 C(t) = CS(t);
4 for i = 1, 2, · · · ρ do
5 Consider a random permutation π(S) ∈ Π(S) and a random order

S′ ∈ L(π(S));
6 Calculate CS′

(t) by applying first-perturbation-fit following S′;
7 if f S′

(t) < f S(t) then
8 C(t) = CS′

(t);
9 S = S′;

10 Reset i = 1;

11 return C(t);

Lemma 4.4.1 Given g(t) and C(t − 1), there exists an order S = (vl1 , vl2 , · · · , vln),

1 ≤ li ≤ n and 1 ≤ i ≤ n, which provides an optimum color vector Co(t) when first-

perturbation-fit is applied on it.

Proof: Let Co(t) be an optimal color vector such that ∑
v

co
v(t) is minimum among all

optimal color vectors. We first build S = (vl1 , vl2 , · · · , vln) by sorting the vertices

according to their colors in Co(t). Next we apply first-perturbation-fit on S. For

each vertex vli , first-perturbation-fit sets cvli
(t) as either the minimum color which is

65

not present in any of its neighbors, or the color cvli
(t − 1) corresponding to C(t − 1).

Our claim is that for each vli , cS
vli
(t) = co

vli
(t). We prove this by contradiction.

If possible, let i be the first position for which cS
vli
(t) ̸= co

vli
(t). By definition of

Co(t) this is possible only if ∃ vlj , where j > i, such that cS
vli
(t) = co

vlj
(t) and vli and

vlj have an edge between them. If there does not exists any such vlj then by replacing

co
vli
(t) by cS

vli
(t) in Co(t) and keeping the colors of all other vertices intact, we get

a new color vector Co′(t) for which either f o′(t) < f o(t) or ∑
v

co′
v (t) < ∑

v
co

v(t). In

both cases, we arrive at a contradiction.

If ∃ vljs with j > i, such that cS
vli
(t) = co

vlj
(t) and vli and vlj have an edge between

them, we bring all such vljs before vli in S. Hence S is now modified and one of the

vljs would become the i-th vertex vli . Since all vlj , where j < i are already colored,

we start coloring the new vli(t) using first-perturbation-fit. Note that now either

cS
vli
(t) = co

vli
(t) or we have to repeat the above mentioned process. Since |V| is finite,

we will eventually be able to get a vertex at position i for which cS
vli
(t) = co

vli
(t). We

then color the next vertices following the above mentioned process and finally get

an updated order S for which cS
vli
(t) = co

vli
(t) for all i.

Lemma 4.4.2 Consider that by applying first-perturbation-fit on a random order S we get

color vector CS(t) with pseudo-vertices V1, V2, · · · , VYS(t). Then

1. For any permutation π(S), ∀ S′, S′′ ∈ L(π(S)), f S′
(t) = f S′′

(t).

2. |L(π(S))| = Ω((
n

eYS(t)
)n).

3. πi(S) ̸= πj(S) =⇒ L(πi(S))
\

L(πj(S)) = ∅.

Proof: Since S′, S′′ ∈ L(π(S)), only the relative positions of the vertices within the

same pseudo-vertex may be different, but the relative positions of the pseudo-

vertices are not changed. Since a pseudo-vertex is an independent set and c(t − 1)

is fixed, color of a vertex cannot change regardless of its position within the same

66

pseudo-vertex. That is ∀S ∈ L(π(S)), cS
v(t) + αIv(CS(t), C(t − 1)) remains the same

∀v. Hence the proof of Clause 1.

Since first-perturbation-fit produces YS(t) pseudo-vertices V1, V2, · · · , VYS(t), similar

to [89] we can show |L(π(S))| =
YS(t)

∏
i=1

(|Vi|)! = Ω((
n

eYS(t)
)n), using Stirling’s

approximation. Hence the proof of Clause 2.

If πi(S) ̸= πj(S) then ∃ Vx, Vy, x, y ∈ {1, 2, · · · , Y(t)} such that Vx appears before

Vy in πi(S) and after Vy in πj(S). Hence the proof of Clause 3.

Theorem 4.4.1 Given g(t) = G(n, λ) and C(t − 1), PGC produces optimal color vector

in expected O(n) time and space complexities, which is asymptotically minimum among all

possible randomized algorithm that solves this particular problem.

Proof: In [87] authors state that first-fit following a random order S on g(t) = G(n, λ)

produces E[Y(t)] ∼n λ, where x(n) ∼n y(n) ⇐⇒ lim
n→∞

x(n)
y(n)

= 1. It is evident

that if C(t − 1) is colored with ∼n λ colors using PGC then C(t) would be col-

ored with ∼n λ colors as well. This is because vertex v in g(t) can have color

λ + 1 only if each of the colors 1, 2, · · · , λ is present in its neighbors, probabil-

ity of which is ∼n
1

λλ
× (

λ

n
)λ =

1
nλ

→ 0, when n → ∞. From Lemma 4.4.1

and Lemma 4.4.2 (Clauses 1 and 2), we can state that optimum hitting prob-

ability of a random order is
1
n!

× Ω((
n
eλ

)n) = Ω(
1

λn). Again using Lemma

4.4.2 (Clause 3) we get the expected number of orders, i.e., ρ, to hit optimum

is E[ρ] =
1

Ω((
n
eλ

)n)× Ω(
1

λn)
= O((

eλ2

n
)n) = O(1). Since first-perturbation-fit has

time and space complexity O(|V(t)|+ |E(t)|), where |E(t)| ∼n
λn
2 = O(n) because

λ = O(1), PGC’s expected time and space complexity to reach optimum is O(n). It

is also evident that each algorithm that solves this problem has to store g(t) and

search each vertex to find optimal C(t). Hence the proof.

67

4.5 Graph union based approach

Since g(t) evolves over time, coloring of g(t) will affect the coloring of future graphs.

To address the temporal nature of g(t) we further propose a graph union based

approach (GU). In GU instead of coloring g(t), we build and color using PGC an

union graph gk
u(t) =

k[

τ=0
g(t − τ), which is union of current and past k graphs.

Here parameter k resembles how many previous graphs will be considered for

making the union graph. Let gc(t) be the graph induced by the monochromatic

edges created in gk
u(t) if C(t) = C(t − 1). Note that an edge uv ∈ gc(t) only if

uv ∈ g(t) & uv /∈ gk
u(t − 1) & cu(t − 1) = cv(t − 1). Thus with increasing k, GU

basically decreases E[A(t)] at the cost of increasing E[Y(t)]. GU is formally stated

in Algorithm 10.

Algorithm 10: Graph union (GU) based approach
Input: g(t), g(t − 1), · · · , g(t − k), C(t − 1), k
Output: C(t)

1 Build gk
u(t) =

k[

τ=0

g(t − τ);

2 C(t) = PGC(gk
u(t), C(t − 1));

3 return C(t);

Theorem 4.5.1 Expected cost produced by GU is E[f (t)] ∼n λ(k + 1 +
0.5α

k + 1
), where

min
k

E[f (t)] ∼n 2λ
√

0.5α.

Proof: As mentioned in the proof of Theorem 4.4.1, PGC and similarly first-fit on

gk
u(t) = G(n, (k + 1)λ) produces E[Y(t)] ∼n (k + 1)λ. Note that (k + 1)λ is the

expected chromatic number of G(n, (k + 1)λ) [87]. It is evident that for each edge

uv, P(uv ∈ gc(t)) = P(uv ∈ g(t) & uv /∈ gk
u(t − 1) & cu(t − 1) = cv(t − 1)) ∼n

λ

n
× (1 − (k + 1)λ

n
)× 1

(k + 1)λ
∼n

1
(k + 1)n

. Since only the edges belong to g(t)

can be monochromatic in gk
u(t), probability that a vertex u has at least one incident

monochromatic edge is P(u ∈ gc(t)) ∼n (1 − (1 − 1
(k + 1)n

)λ) ∼n
λ

(k + 1)n
. Hence

68

expected number of vertices and expected average degree of gc(t) are n × P(u ∈
gc(t)) ∼n n × λ

(k + 1)n
∼n

λ

k + 1
and n × P(uv ∈ gc(t)) ∼n n × 1

(k + 1)n
∼n

1
(k + 1)

respectively. That means each vertex in gc(t) has only one monochromatic

edge incident to it in an expected sense and hence recoloring one vertex per edge is

enough to resolve the monochromatic edges. That is gc(t) is essentially a collection

of disjoint edges in expected sense. Hence E[|Vc(t)|] ∼n 0.5
λ

k + 1
. At time t, given

C(t − 1), if an oracle algorithm sets C(t) = C(t − 1) and then finds and recolors

only the vertices of Vc(t) with first-fit, it will produce E[f (t)] ∼n λ(k + 1 +
0.5α

k + 1
).

Since A(t) ≥ |Vc(t)|, from Theorem 4.4.1, it implies that PGC on gk
u(t) produces

E[A(t)] = E[|Vc(t)|]. Hence E[f (t)] ∼n λ(k + 1 +
0.5α

k + 1
). Thus min

k
E[f (t)] ∼n

2λ
√

0.5α where k + 1 ∼n
√

0.5α. Hence the proof.

Remark 6 It is evident that in GU we have to store k previous graphs in queue to construct

gk
u(t). We can decrease the memory burden by keeping n2 variables sij(t)s, where sij(t) =

ιJij(t) + (1 − ι)sij(t − 1). Here Jij(t) = 1 if edge ij ∈ g(t) otherwise 0 and ι > 0.5. At

time t we make gk
u(t) by joining each edge ij if corresponding sij(t) ≥ ι(1 − ι)k. Since

E[Jij(t)] ∼n
λ

n
we further get that

E[sij(t)] = ιE[Jij(t)] + (1 − ι)E[sij(t − 1)] =⇒ E[sij(t)] ∼n
λ

n
.

Thus through this method we can also find λ of an unknown network topology by calculating

E[sij(t)] over time.

4.6 Comparison with existing approaches

We calculate E[f (t)] produced by SNAP [59], RC, GP using the techniques men-

tioned in the proofs of Theorems 4.4.1 and 4.5.1. Note that algorithms proposed

by [53, 54, 55] maintain coloring of a graph on a per update basis. At time t, some

monochromatic edges may appear in g(t). We consider each such monochromatic

69

edge one by one and apply their algorithms. The computed E[Y(t)], E[A(t)] and

E[f (t)] of the above mentioned algorithms and the same produced by GU with

k + 1 ∼n
√

0.5α along with their corresponding time and space complexities are

presented Table 4.1. From Table 4.1 we can conclude that E[f (t)] produced by

each of the above mentioned algorithms is Ω of the same produced by GU with

k + 1 ∼n
√

0.5α.

Sl Algorithm Time & space
No Paper Name E[Y(t)] E[A(t)] E[f (t)] complexities
(1) [59] SNAP λ 0.5λ λ(1 + 0.5α) = Ω(λ) Θ(n)

(2) RC k λ2

k
k + α

λ2

k
= Θ(n)

Ω(max(2
√

αλ,
log(n)

log log(n)
))

(3) GP λ(1 +
2vk

r
)2 λ(1 + 2vk

r)2

k + 1
λ(1 +

2vk
r

)2(1 + α
1

k + 1
) = Ω(λ) Θ((k + 1)n)

(4) [53] O(log(n)) O(0.5
λ2

log(n)
) O(log(n)(1 + 0.5α

λ2

log(n)
)) Θ(n)

(5) [54] O(λ) O(0.5λ × polylog(n)) O(λ(1 + 0.5α × polylog(n))) Θ(n)

(6) [55] O(∆(g(t))) 0.5
λ2 log(∆(g(t)))

∆(g(t))
O(∆(g(t)) + O(0.5α

λ2 log(∆(g(t)))
∆(g(t))

) Θ(n)

(7) GU λ
√

0.5α λ
√

0.5α 2λ
√

0.5α = Ω(λ) Θ(n)

Table 4.1: E[f (t)] produced by different algorithms

4.7 Simulation

Since our analysis is asymptotic in nature, in this section, we simulate GP and GU

for finite values of n and verify the obtained results with that of the theoretical

findings. Here we consider n links are initially placed randomly inside a 1 km

radius circular region and at each time instance t each link i chooses a random

speed vi(t) ∈ [0, v] and a random angle θi(t) ∈ [0, 2π] and moves with it. That

is, we assume that links follow random way-point mobility model (RWM) [88].

At each time t, we build g(t) by considering each link as a vertex and each pair

of links residing within r distance have an edge between them. We consider the

default values of n, r, v, α and k as 100, 100 m, 10 m/s, 10 and 2. We vary one of the

parameters n, r, k and keep others at their default values and observe Y = E[Y(t)]

70

and A = E[A(t)] generated by GP and GU.

50 100 150

n

2

4

6

8

10

Y

GP

GU

Figure 4.1: Y vs n

50 100 150

n

0

0.2

0.4

0.6

0.8

A

GP

GU

Figure 4.2: A vs n

50 100 150

n

5

10

15
GP

GU

Figure 4.3: Y + αA vs n

50 100 150

r

5

10

15

20

25

30

Y

GP

GU

Figure 4.4: Y vs r

50 100 150

r

1

2

3

4

5

A

GP

GU

Figure 4.5: A vs r

50 100 150

r

20

40

60

80
GP

GU

Figure 4.6: Y + αA vs r

10 20 30 40 50

k

5

10

15

20

25

30

Y

GP

GU

Figure 4.7: Y vs k

10 20 30 40 50

k

2

4

6

8

10

A

GP

GU

Figure 4.8: A vs k

10 20 30 40 50

k

40

60

80

100

120
GP

GU

Figure 4.9: Y + αA vs k

In Figures 4.1-4.3 we vary n from 50 to 150 with an interval of 5, in Figures

4.4-4.6 we vary r from 50 m to 150 m with an interval of 5 m, and in Figures 4.7-4.9

we vary k from 1 to 50 with an interval of 1, keeping other parameters fixed at their

default values, and plot Y, A and Y + αA produced by GP and GU respectively.

From Figures 4.1-4.9, we observe that with increasing n and r, each of Y, A and

Y + αA produced by both GP and GU increases. Again with increasing k, for

both GP and GU, Y increases and A decreases. From Table 4.1 we get that for GP,

71

Y ∼n λ(1 +
2vk

r
)2, A ∼n

λ(1 + 2vk
r)2

k + 1
and Y + αA ∼n λ(1 +

2vk
r

)2(1 + α
1

k + 1
)

respectively. Again from Theorem 4.5.1 for GU, Y ∼n λ(k + 1), A ∼n
0.5λ

k + 1
and

Y + αA ∼n λ(k + 1+
0.5α

k + 1
) respectively. Note that with increasing n and r average

degree of g(t) ∼n λ ∝ nr2 increases. Also, according to the expression of both GP

and GU, with increasing k, Y increases and A decreases. Hence the experimental

results are in accordance with the theoretical findings.

4.8 Conclusion

In this chapter, we first model the interference relationship among the active links

in D2D communication as a time-varying graph g(t) and then proposed PGC

algorithm which finds minimum cost f (t) in expected polynomial time and space

complexities. Next using PGC we proposed a GU algorithm. We have shown that

E[f (t)] produced by some existing algorithms is Ω of the same produced by GU.

Finally we compare our algorithm with SNAP and validate the theoretical findings

through simulation.

72

Chapter 5

Minimizing both maximum channel

and total power

5.1 Introduction

In the previous chapters we consider minimization of maximum channel and total

perturbation. There we assumed that the power assignment is dealt by the base

station. In this chapter we also consider the power allocation along with channel

allocation in a general set up. If we allocate each link a different channel then each

link has no interference from other links and hence can operate with minimum

power. But in that case, the maximum channel used Y(t) is huge. Thus Y(t) and

P(t) have a natural trade-offs among them. Owing this natural trade-off, we will

minimize a cost defined as a linear combination of Y(t) and P(t).

In device to device (D2D) communication, two users residing within the trans-

mission range of each other can communicate directly among themselves over

a common channel without involving the base station (BS). A cellular user com-

municates with the BS by forming a cellular link (CL) and a pair of D2D users

communicate among themselves by forming a D2D link (DL). In D2D underlaid

cellular network, DLs reuse the same up-link channel resources of CLs [90, 91, 64].

73

Each link (CL or DL) includes a transmitter and a receiver. The transmitter of each

link has to be allocated sufficient power such that it can communicate with its

receiver in the presence of noise and interference from other links operating on the

same channel. More specifically, the allocated power of a transmitter must satisfy

the required signal to interference plus noise ratio (SINR) at the receiver of that link.

Each link requires certain level of SINR depending on its data rate requirement.

Moreover, the allocated power at a transmitter must not exceed the residual power

available at it.

Note that under a BS only one CL can use a particular channel. However, the

channel of a CL may be shared by multiple DLs provided the required SINR is

satisfied for each link sharing the channel. Hence, at time t, we have to find a

channel vector C(t) = (ci(t)) for the n links, where ci(t) represents the channel

allocated to link i. Due to the scarcity of channels, we always have to minimize

maximum channel Y(t)max
i

ci(t) used in the communication. We assumed that

channels are positive integers starting from 1.

It is evident that maximum power that can be allocated to the transmitter of a

link is a limited quantity. If link i is activated with power xi(t) then xi(t) ≤ ηi(t),

where ηi(t) is the maximum power available at the transmitter of link i. Hence we

have to find a power vector X(t) = (xi(t)) for the n links, such that the total power

requirement P(t) =
n

∑
i=1

xi(t) is minimized.

The links activated with the same channel will interfere to each other. If more

links are activated with the same channel to keep the channel requirement at low,

the power requirement of the corresponding links would be high. On the other

hand, if each link is activated with a different channel, the power requirement will

be minimum but the channel requirement will be maximum. It is thus evident

that Y(t) and P(t) have a natural trade-off. Owing to this natural trade-off, we

define our minimization objective as a cost function f (t) = Y(t) + αP(t). Here α

is a constant reflecting the relative weights of Y(t) and P(t), where the weight of

74

Y is normalized to 1. The joint power and channel allocation problem (JPCAP)

deals with the problem of finding the channel vector C(t) and the power vector

X(t) such that the required SINR criteria for each link is satisfied and the cost

f (t) = Y(t) + αP(t) is minimized.

We formulate JPCAP as a cost minimization problem where the cost f (t) =

Y(t)+ αP(t) is designed such a manner that by properly tuning α we can set the goal

of JPCAP to minimize Y(t) only or P(t) only or a joint objective of Y(t) and P(t).

Then we reduce JPCAP to the classical graph coloring problem and thereby show

that it is NP-hard and also providing n1/ϵ approximation to JPCAP ∀ϵ > 0 is NP-

hard. Next we propose a mixed integer linear programming (MILP) formulation for

JPCAP and subsequently develop a greedy channel and power allocation (GCPA)

algorithm for it. GCPA works by taking an order of the links as input. We show

that there exists an order of the links on which if GCPA is applied it will provide an

optimal solution. Then we develop a method to search orders efficiently. We show

that an order is equivalent to many orders. We develop an incremental algorithm

(IA) which searches orders from different equivalent sets and thereby evaluating

less number of orders, it essentially explores large number of orders. Finally, using

IA, we design a randomized joint channel and power allocation (RJCPA) algorithm

to find the near optimum solution. We also theoretically calculate the expected

cost produced by RJCPA. Moreover, we identify some special cases where RJCPA

can produce optimal result in expected polynomial time. We also compute the

expected energy efficiency (EE) produced by RJCPA. Here EE is the data rate per

spectrum per energy unit. We perform extensive simulations to show that RJCPA

outperforms both the two-step approach [64] and RSBI algorithm [10] with respect

to both cost and EE significantly. Finally we validate our theoretical findings

through simulation.

75

5.1.1 Problem Formulation

Suppose there are n links within the coverage region of a BS where each link is

either a CL or a DL. Let SCL be the set of CLs and SDL be the set of DLs where n =

|SCL ∪ SDL|. Let channels are represented by positive integers and Sc = {1, 2, · · · , n}
be the set of available channels. Each link i requires a channel ci(t) ∈ Sc and power

xi(t) ∈ [0, ηi(t)] for its activation, where ηi(t) is the residual power available at

the transmitter of link i. It is evident that xi(t) consists of power consumption

of transmitter of link i and power loss at circuitry blocks of both transmitter and

receiver of link i [10]. When communication is not taking place xi(t) is considered

to be 0 by neglecting the minute leakage current [92]. If xj(t) power is allocated

at the transmitter of link j then the power received at the receiver of link i can be

expressed as xj(t)Gij(t), where Gij(t) = h f ast
ij (t)hslow

ij (t)d−β
ij (t) [27] is the gain at the

receiver of link i from the transmitter of link j, h f ast
ij (t) is fast fading gain, a log-

normally distributed random variable, hslow
ij (t) is slow fading gain, a exponentially

distributed random variable, dij(t) is the Euclidean distance between the transmitter

of link j and the receiver of link i and β > 1 is the pathloss exponent. Note that our

solution technique is independent of how Gi,j(t) is computed.

Note that each link i will receive interference from every other link j for which

ci(t) = cj(t) where i ̸= j. Let γi(t) be minimum SINR required at the receiver of

link i to satisfy its data rate requirement. Link i can be activated with ci(t) and xi(t)

if SINRi(t), the SINR received at the receiver of link i, is greater than or equals to

γi(t). That is,

SINRi(t) =
xi(t)Gii(t)

σ2 + ∑
j : j ̸= i

&
ci(t)=cj(t)

xj(t)Gi,j(t)
≥ γi(t), (5.1)

where σ2 is the constant noise over each link.

We denote yc(t) = 1 if channel c ∈ Sc is allocated to at least one link, else 0. Note

76

that each CL requires a different channel to communicate [64] and hence ci(t) ̸= cj(t)

for all i, j ∈ SCL where i ̸= j. But a DL may share channel with other CL and/or DL.

Clearly total number of distinct channels used is given by Y(t) =
n

∑
c=1

yc(t) and total

power used in the communication is given by P =
n

∑
i=1

xi(t).

Given a constant α, our objective is to find a channel vector C = (ci(t)) and a

power vector X = (xi(t)) such that 1) cost f (t) = Y(t) + αP(t) is minimized, 2)

each activated CL gets different channel and 3) SINRi(t), the SINR received at the

receiver of each activated link i, satisfies Constraint (5.1).

Rest of the chapter is organized as follows. In Section 5.2 we formally prove

that JPCAP is NP-hard and then in Section 5.3 we propose a mixed integer linear

programming formulation for this problem. Since solving MILP is NP-hard, we

propose a greedy channel and power allocation (GCPA) algorithm and analyse it in

Section 5.4. Using GCPA, we develop a random joint power and channel allocation

(RJCPA) algorithm and analyse it in Section 5.5. We theoretically calculated expected

cost and expected energy efficiency in Section 5.6. In Section 5.7 we compare our

algorithms with some existing algorithms and validate theoretical findings. Finally

in Section 5.8 we conclude the chapter.

5.2 Hardness of JPCAP

Theorem 5.2.1 JPCAP is NP-hard and even providing n1/ϵ approximation of it is also

NP-hard ∀ϵ > 0.

Proof: Consider α = 0. Thus the problem becomes reducing only Y(t). We

consider σ2 = 1, ηi(t) = 1 ∀i, γi(t) = 1 ∀i and SCL = ∅. Finally we consider

Gii(t) = 1 ∀i and Gij(t) = Gji ∈ {0, 1} ∀i, j where i ̸= j.

77

Now consider a graph G(V, E), where V is the set of vertices and E is the set of

edges of G. We consider each vertex as a link and hence V becomes the set of links.

If there is an edge {i, j} ∈ E between two links i and j, we set Gij(t) = Gji(t) = 1

else 0. Hence by this construction we can eventually capture any possible graph

with n = |V| vertices. Now if Gij(t) = Gji(t) = 1 for some i, j where i ̸= j,

then Constraint (5.1) implies xi(t) ≥ 1 + xj(t) and xj(t) ≥ 1 + xi(t) for i and j

respectively as σ2 = 1 and γi(t) = 1 ∀i. Also xi(t), xj(t) ≤ 1 as ηi(t) = 1 ∀i. It

is evident that xi(t) ≥ 1 + xj(t), xj(t) ≥ 1 + xi(t) and xi(t), xj(t) ≤ 1, together

have no solution. Hence links i and j cannot get the same channel if and only if

{i, j} ∈ E. Hence our problem gets reduced to the graph coloring problem. That is,

if there is a solution C(t) and X(t) to our problem then that obtained C(t) will be

the solution of the classical graph coloring problem on graph G. The classical graph

coloring problem is a well known NP-Complete problem [11] and even providing

n1/ϵ approximation ∀ϵ > 0 of it is also NP-hard [12]. Hence the proof.

We now propose a mixed integer linear programming (MILP) formulation for

JPCAP.

5.3 MILP Formulation

For all c ∈ Sc and i ∈ SCL ∪ SDL, we define the following binary optimization

variables:

zic(t) =





1 if channel c is used by link i

0 otherwise.

yc(t) =





1 if channel c is used by at least one link

0 otherwise.

78

Apart from the above binary variables, we define xi(t) ∈ [0, ηi(t)] as a real optimiza-

tion variable representing the power allocated at link i. Based on these variables,

we can formulate JPCAP as a mixed integer linear programming:

Constraint (5.2) checks whether channel c is being used by at least one link.

zic(t) ≤ yc(t) ∀i, c (5.2)

Constraint (5.3) guarantees that a channel could be used by at most one CL.

∑
i∈SCL

zic(t) ≤ 1 ∀c (5.3)

Constraint (5.4) guarantees that each link is allocated with exactly one channel.

n

∑
c=1

zic(t) = 1 ∀i (5.4)

Let us define ψic(t) = xi(t)zic(t) as an intermediate variable, where ψic(t) ∈
[0, ηi(t)]. Note that ψic(t) = xi(t) ≤ ηi(t), the power xi(t) allocated to link i, if

channel c is assigned to link i and 0, otherwise. Constraints (5.5), (5.6) and (5.7)

linearize ψic(t) = xi(t)zic(t) as follows. Constraints (5.5), (5.6) and (5.7) together

guarantee that if zic(t) = 0 then ψic(t) ≤ 0, ψic(t) ≤ xi(t) and ψic(t) ≥ xi(t) −
ηi(t) = −(ηi(t)− xi(t)) respectively, implying ψic(t) = 0. Constraints (5.5), (5.6)

and (5.7) together guarantee that if zic(t) = 1 then ψic(t) ≤ ηi(t), ψic(t) ≤ xi(t) and

ψic(t) ≥ xi(t) respectively, implying ψic(t) = xi(t) ≤ ηi(t).

ψic(t) ≤ ηi(t)zic(t) ∀i, c (5.5)

ψic(t) ≤ xi(t) ∀i, c (5.6)

ψic(t) ≥ xi(t)− (1 − zic(t))ηi(t) ∀i, c (5.7)

Constraint (5.8) ensures that if zic(t)) = 1, the SINR requirement of link i as repre-

79

sented by Equation (5.1) is satisfied. Here M represents a large positive value.

(1 − zic(t))M + xic(t)Gii(t) ≥ γi(t)(σ2 + ∑
j ̸=i

Gij(t)ψjc(t)), ∀i, c (5.8)

Constraints (5.9) and (5.10) calculate Y(t), the maximum channels assigned and

P(t), the total power P(t) used, respectively.

Y(t) =
n

∑
c=1

yc(t) (5.9)

P(t) =
n

∑
i=1

xi(t) (5.10)

Hence JPCAP can be formulated as:

minimize Y(t) + αP(t) (5.11)

Subject to

Constraints (5.2)-(5.10), where

yc(t) ∈ {0, 1} ∀c (5.12)

xi(t) ∈ [0, ηi(t)] ∀i (5.13)

zic(t) ∈ {0, 1} ∀i, c (5.14)

ψic(t) ∈ [0, ηi(t)] ∀i, c (5.15)

As solving MILP is a NP-hard problem we now formulate a greedy channel and

power allocation algorithm to solve JPCAP.

5.4 Greedy Channel and Power Allocation Algorithm

In this section, we propose a greedy channel and power allocation (GCPA) algo-

rithm to allocate channels and powers to the links. Let S = (l1, l2, · · · , ln) be an

80

arbitrary order of the links. In GCPA, we visit the links one by one following S

and allocate channels and powers to them. Thus while allocating link li, all the

links l1, l2, · · · , li−1 have already been allocated. In other words, clj(t) and xlj(t),

1 ≤ j ≤ i − 1, are already known before the allocation of cli(t) and xli(t). Let

k ∈ Sc be a channel. We now consider the situation that will arise if we allocate

channel k to link li. Note that if we allocate cli(t) = k then the powers allocated

to all the links in Si
k(t) = {j | clj(t) = k, 1 ≤ j ≤ i} may need to be modified

while others will remain intact. Let xk,l1(t), xk,l2(t), · · · , xk,li(t) be the powers that

will be temporarily allocated to the links l1, l2, · · · , li and Pi
k(t) =

i

∑
j=1

xk,lj(t) if we

set cli(t) = k. Let yi
k(t) be the total number of distinct channels used for the links

l1, l2, · · · , li if we set cli(t) = k. For link li, we first set cli(t) = k and xk,lj(t) = xlj(t)

for j ∈ {1, 2, · · · , i} \ Si
k(t). Then for link li, we solve the linear programming (LP)

problem stated below to get Pi
k(t) and corresponding xk,lj(t) where j ∈ Si

k(t).

LP: minimize ∑
j∈Si

k

xk,lj(t) (5.16)

Subject to

Gljlj(t)xk,lj(t) ≥ γlj(t)(σ
2 + ∑

m∈Si
k(t)\{j}

xk,lm(t)Gljlm(t)) ∀j ∈ Sk
i (t) (5.17)

xk,lj(t) ≤ ηlj(t) ∀j ∈ Sk
i (t) (5.18)

After computing Pi
k(t) for all k ∈ {1, 2, · · · , yi−1

cli−1
(t)(t) + 1}, we find the channel k′

such that

yi
k′(t) + αPi

k′(t) = min{yi
k(t) + αPi

k(t) | k ∈ {1, 2, · · · , yi−1
cli−1

(t)(t) + 1}}. (5.19)

If multiple k′ exists then we choose the minimum one. If k′ exists then we reset

cli(t) = k′, xlj(t) = xk′,lj
(t) for all j ∈ Si

k′ , else we mark link li as un-allocated. GCPA

81

is formally stated in Algorithm 11.

Complexity of GCPA: If LPt(n, m) and LPs(n, m) are the time and space complexi-

ties of the LP running on n variables and m constraints and ζ =
n

max
k=1

|{li | cli(t) =

k}| then the time and space complexities of GCPA are O(n2 × LPt(ζ, ζ)) and O(n2 +

LPs(ζ, ζ)) respectively.

Algorithm 11: Greedy Channel and Power Allocation (GCPA) Algorithm
Input: (γli(t)), σ2, (Glilj(t)), SCL, SDL, Sc, (ηli(t)), α and an order of links

S = (l1, l2, · · · , ln)
Output: C,X

1 C = (∅);
2 X = (0);
3 for i = 1 to n do
4 Calculate Pi

k(t) for ∀k ∈ Sc by solving the LP;
5 Find yi

k(t) for ∀k ∈ Sc;
6 Find k′ such that

yi
k′(t) + αPi

k′(t) = min{yi
k(t) + αPi

k(t) | k ∈ {1, 2, · · · yi−1
cli−1

(t) + 1}};

7 if such k′ exists then
8 Reset cli(t) = k′ and update the corresponding xlj(t)s for all j ∈ Si

k′(t);

9 else
10 Keep li as un-allocated;

11 return C,X;

Remark 7 It is evident that though in JPCAP formulation we assume cost f (t) = Y(t) +

αP(t) but it could essentially be any function f (Y(t), P(t)) which is increasing function

of both Y(t) and P(t). In that case, Equation (5.19) needs to be replaced by

f (yi
k′(t), Pi

k′(t)) = min{ f (yi
k(t), Pi

k(t)) | k ∈ {1, 2, · · · , yi−1
cli−1

(t) + 1}}. (5.20)

If instead of Equation (5.19) we use Equation (5.20) in GCPA, all the results presented later

in Subsections 5.4.1-5.5.4 will also remain valid.

82

5.4.1 Analysis of GCPA

It is evident that GCPA takes an order S as input and produces C(t) and X(t) as

output. Hence the cost f (t) = Y(t) + αP(t) is entirely depends on the order it

chooses. We now show that there is an order for which GCPA produces optimum

result. To prove this, we first introduce the concept of pseudo-vertex as defined

below.

Definition 5 (Pseudo-vertex) Let C(t) be a channel vector having m distinct channels

in it. Given C(t), a pseudo-vertex Vk = {j : c(lj) = k, 1 ≤ j ≤ n} is defined as the set of

all links which have been allocated with channel k, where 1 ≤ k ≤ m.

Theorem 5.4.1 There is an order of links for which GCPA produces optimum solution.

Proof: Let Co(t) = (co,li(t)) and Xo(t) = (xo,li(t)) be the channel and power

vector of an optimal solution. Let V1, V2, · · · , Vm be the m pseudo-vertices obtained

from Co, where n1 = |V1|, n2 = |V2|, · · · , nm = |Vm| and n = n1 + n2 + · · ·+ nm.

Let lk
1, lk

2, · · · , lk
nk

be the links in Vk, where 1 ≤ k ≤ m. We now build an order

S = (l1
1, l1

2, · · · , l1
n1

, l2
1, l2

2, · · · , l2
n2

, · · · , lm
1 , lm

2 , · · · , lm
nm), where the links in V1 appear

first, then appear the links of V2 and so on, and finally appear the links of Vm. Links

in the same pseudo-vertex may appear in arbitrary order. Our claim is that if we

assign channels to the links following S, every link belongs to Vk will get channel k.

Clearly if we assign channels following S then the first link l1
1 of V1 will get

channel 1. Let l1
i ∈ V1 be the first link of V1 which did not get channel 1. If

channel 1 is not assigned to l1
i , then the power of l1

i will be independent of the links

l1
1, l1

2, · · · , l1
i−1 all of which have been assigned with channel 1. Let B be the power of

link l1
i when channel 1 is not assigned to link l1

i . Let A(k, {l1
j }), where j ≤ k, be the

total power of links in {l1
1, l1

2, · · · , l1
k} \ {l1

j } obtained by solving the LP, assuming all

of them have been assigned with channel 1. Clearly GCPA will not assign channel 1

83

to link l1
i only if

2 + α(A(i, {l1
i }) + B) < 1 + αA(i, ∅)

=⇒ 1/α + B < (A(i, ∅)− A(i, {l1
i })). (5.21)

It is evident that A(k, ∅)− A(k, {l1
j }) is an increasing function of the power allo-

cated to link l1
j assuming its channel as 1. This is because the power assigned to link

l1
i will interfere with all other links assigned with channel 1 which in turn leads to

increase their powers.

Now consider the optimal solution. If channel m+ 1 is assigned to link l1
i instead

of channel 1 then the power of l1
i will be independent of the links V1 \ {l1

i }. In that

case, the power of link l1
i will be same as B. Since {l1

1, l1
2, · · · , l1

i } ⊆ V1, xo(l1
i) must

be higher than the power of l1
i obtained by solving the LP assuming all the links

l1
1, l1

2, · · · , l1
i are assigned with channel 1. As A(k, ∅)− A(k, {l1

j }) is an increasing

function of the power allocated to link l1
j assuming its channel as 1, we get

A(n1, ∅)− A(n1, {l1
i }) ≥ A(i, ∅)− A(i, {l1

i }). (5.22)

From Equations (5.22) and (5.21) it follows that channel m + 1 will be a better choice

of link l1
i in the optimal solution. A contradiction! This implies GCPA will assign

all links of V1 with channel 1.

Similarly we can show that if GCPA finds it beneficial to assign channel 1 to link

l2
1 then in optimal solution also it would have been beneficial to assign channel 1 to

link l2
1 and thereby reaching a contradiction. By this way we can show that GCPA

will assign channel k to all links of Vk, 1 ≤ k ≤ m.

Note that GCPA finally assigns power to the links using the LP solution when

the last link of each pseudo-vertex is considered. Hence the power assignment will

be the same as the optimum one. Hence the proof.

So far we know that the performance of GCPA depends on the order it chooses.

84

Also there exists an order on which GCPA produces optimal results. Now to

compare between a pair of orders, we introduce the notion of equivalent order in

Definition 6.

Definition 6 (Equivalent order) Two orders S1 and S2 are said to be equivalent if upon

applying GCPA on them they produce channel vectors C1(t) and C2(t) such that C1(t) =

C2(t).

Let S be an order and upon applying GCPA on S we get channel vector C with

pseudo-vertices V1, V2, · · ·Vm. For a particular permutation π = (Vc1 , Vc2 , · · · , Vcm)

of V1, V2, · · ·Vm, let L(π) be the set of all orders generated by permuting links within

each pseudo-vertex while keeping the order of the pseudo-vertices unchanged. Let

Π(S) be the set of all m! permutations of V1, V2, · · ·Vm. If π0(S) = (V1, V2, · · ·Vm)

then Theorem 5.4.2 implies that all orders belongs to L(π0(S)) are equivalent to S.

Theorem 5.4.2 There are Ω((n
em)n) many orders which are equivalent to S.

Proof: Consider the case where GCPA is applied on an order S′ ∈ L(π0(S)). In

this case, similar to the proof of Theorem 5.4.1, we can show that all links in Vk will

get channel k, where 1 ≤ k ≤ m. Again |L(π0(S))| = (|V1|)!(|V2|)! · · · , (|Vm|)!) =
Ω(((n

m)!)m) = Ω((n
em)n) using Stirling’s approximation. Hence the proof.

If total number of pseudo-vertices in optimum order is mo then from Theorems

5.4.1 and 5.4.2 following corollaries are immediate.

Corollary 1 Total number of optimum orders is

Ω((
n

emo
)n).

Corollary 2 Probability that an order is optimum is

p = Ω(
1
n!
(

n
emo

)n) = Ω(
1

mn
o
).

85

Let S1 and S2 be two orders of links and upon applying GCPA on them we get

channel vectors C1 and C2 with pseudo-vertices V1
1 , V1

2 , · · · , V1
m1

and V2
1 , V2

2 , · · · , V2
m2

respectively. Now without loss of generality, in the following lemma, we will prove

that no two pseudo-vertices in V1
1 , V1

2 , · · · , V1
m1

can be merged into a pseudo-vertex

in V2
1 , V2

2 , · · · , V2
m2

.

Lemma 5.4.1 ∄ V1
x , V1

y and V2
z such that V1

x
S

V1
y ⊆ V2

z where x ̸= y.

Proof: If possible let ∃V1
x , V1

y and V2
z such that V1

x
S

V1
y ⊆ V2

z . As V2
z is build using

GCPA then ∃V1
t such that V1

x
S

V1
y ⊆ V1

t . Since GCPA upon applying on S1 puts

two different channel to the links of V1
x and V1

y , this is impossible. Hence the proof.

We now consider two different permutations π1, π2 of V1, V2, · · ·Vm. If we apply

GCPA on S1 ∈ L(π1) and S2 ∈ L(π2) we get channel vectors C1 and C2 with pseudo-

vertices V1
1 , V1

2 , · · · , V1
m1

and V2
1 , V2

2 , · · · , V2
m2

respectively. It is evident that when

we choose π1 ̸= π0(S) then pseudo-vertices V1, V2, · · ·Vm may split and merge with

other pseudo-vertices to form a new set of pseudo-vertices V1
1 , V1

2 , · · · , V1
m1

. Since

by split and merge the total number of pseudo-vertices can only decrease, hence

m1 ≤ m0. Consider that S1, S′
1 ∈ L(π1), S1 ̸= S′

1 then upon applying GCPA our

resulted set of pseudo-vertices corresponding to S1 and S′
1 may be different. Hence

L(π1) may not be an equivalent set. But what about π3 = (V1
1 , V1

2 , · · · , V1
m1
) and

π4 = (V2
1 , V2

2 , · · · , V2
m2
)? Clearly L(π3) and L(π4) are two equivalent sets, each

with exponential number of elements, according to Theorem 5.4.2. Now we would

like to show that these two equivalent sets are disjoint. That is, L(π3)
T

L(π4) = ∅.

In that case by evaluating S1 ∈ L(π1) and S2 ∈ L(π2), S1 ̸= S2, we can eventually

search element from two disjoint equivalent sets each with exponential number of

orders. We formally prove L(π3)
T

L(π4) = ∅ in Theorem 5.4.3. In order to prove

L(π3)
T

L(π4) = ∅, we first show that there exists a position x in π3 and π4 such

that V1
x ̸= V2

x , in the following lemma.

Lemma 5.4.2 ∃x, such that V1
x ̸= V2

x .

86

Proof: Let π1 = (Va1 , Va2 , · · ·Vam) and π2 = (Vb1 , Vb2 , · · ·Vbm). Since π1 ̸= π2, let i

be the first position in π1 such that ai ̸= bi. Since according to Lemma 5.4.2, ∄V1
x1

and V2
x2

such that Vai

S
Vbi ⊆ V1

x1
or Vai

S
Vbi ⊆ V2

x2
, ∃e1 ∈ Vai and e2 ∈ Vbi such that

e1 appears before e2 in any order in L(π3) and e1 appears after e2 in any order in

L(π4). Hence the proof.

Theorem 5.4.3 L(π3)
T

L(π4) = ∅.

Proof: If possible, assume L(π3)
T

L(π4) ̸= ∅. Since L(π3)
T

L(π4) ̸= ∅, all links

in V2
1 must appear in V1

1 and all links in V1
1 must appear in V2

1 . That is, V2
1 ⊆ V1

1

and V1
1 ⊆ V2

1 implying V2
1 = V1

1 . Similarly, we can show that V2
2 = V1

2 , V2
3 = V1

3

and so on. Hence m1 = m2 = m and V2
x = V1

x , 1 ≤ x ≤ m. But from Lemma 5.4.1,

we know that ∃x such that V1
x ̸= V2

x . Contradiction! Hence the proof.

5.5 Randomized Algorithm

In this section we first propose an incremental algorithm (IA) to minimize the

cost and then propose a randomized joint channel and power allocation algorithm

(RJCPA) which uses IA with parameter ρ to further minimize the cost. Next we

present the analysis of RJCPA. Since the optimum hitting probability of RJCPA is a

function of ρ2, we then compute the expected value of ρ2 to find the optimum.

5.5.1 Incremental Algorithm (IA)

We now propose our incremental algorithm (IA) which starts with an order S,

applies GCPA on S and constructs C and X. It then considers a random permutation

π of pseudo-vertices of C and applies GCPA on a random order Sr ∈ L(π). This

step is repeated for ρ times where ρ is an input parameter. If total cost improves,

we set S = Sr and repeat the process. Formally IA is presented in Algorithm 12. It

is evident that IA with an order S searches Ω(ρ(n
em)n) orders.

87

Complexity of IA: The time complexity of IA is ρ times the time complexity of

GCPA and space complexity of IA is same as the space complexity of GCPA.

Algorithm 12: Incremental Algorithm (IA)
Input: (γli(t)), σ2, (Glilj(t)), SCL, SDL, Sc, (ηli(t)), α, an order S, ρ
Output: Cmin, Xmin

1 Set fmin(t) = ∞;
2 C(t), X(t) = GCPA((γli(t)), σ2, (Glilj(t)), SCL, SDL, Sc, (ηli(t)), α, S);
3 Calculate cost f (t);
4 Set Cmin(t) = C(t);
5 Set Xmin(t) = X(t);
6 Set fmin(t) = f (t);
7 Generate pseudo-vertices V1, V2, · · · , Vm of C(t);
8 Set nk = |Vk| for 1 < k < m;
9 for r = 1, 2, · · · ρ do

10 Consider an arbitrary permutation π of V1, V2, · · · , Vm;
11 Generate random order Sr ∈ L(π);
12 C(t), X(t) = GCPA((γli(t)), σ2, (Glilj(t)), SCL, SDL, Sc, (ηli(t)), α, Sr);
13 Calculate cost f (t);
14 if f (t) < fmin(t) then
15 Set Cmin(t) = C(t);
16 Set Xmin(t) = X(t);
17 Set fmin(t) = f (t);
18 Set S = Sr;
19 Generate pseudo-vertices V1, V2, · · · , Vm of C(t);
20 Set nk = |Vk| for 1 < k < m;
21 Restart loop with r = 1;

22 return Cmin(t), Xmin(t);

5.5.2 Randomized Joint Channel and Power Allocation (RJCPA)

Algorithm

It is evident that the performance of IA depends on the initial order S. With initial

order S, the set of all orders and their equivalent orders that could eventually be

88

searched with positive probability by IA has size

|
[

π∈Π(S)

[

S′∈L(π)

L(πo(S′))| = Ω
�

m!(
n

em
)n
�

, (5.23)

which could be less than n!. That is, if IA starts with S then there may exist some

orders which are searched with 0 probability. To search each of the n! orders

with a positive probability, we introduce the randomized joint channel and power

allocation (RJCPA) algorithm. RJCPA chooses some ρ random orders, applies IA on

each of them and reports the best result. RJCPA is formally presented in Algorithm

13.

Algorithm 13: Randomize Joint Channel and Power Allocation (RJCPA) Algo-
rithm

Input: (γli(t)), σ2, (Glilj(t)), SCL, SDL, Sc, (ηli(t)), α,ρ
Output: Cmin(t), Xmin(t)

1 Set fmin(t) = ∞;
2 for r = 1 to ρ do
3 Generate a random order S of the links;
4 C(t), X(t) = IA((γli(t)), σ2, (Gli ,lj(t)), SCL, SDL, Sc, (ηli(t)), α, S,ρ);
5 Calculate cost fS generated by GCPA on order S;
6 if fS(t) < fmin(t) then
7 fmin(t) = fS(t);
8 Cmin(t) = C(t);
9 Xmin(t) = X(t);

10 Restart loop with r = 1;

11 return Cmin(t), Xmin(t);

Complexity of RJCPA: The time complexity of RJCPA is ρ times the time complexity

of IA and space complexity of RJCPA is same as the space complexity of IA.

89

5.5.3 Analysis of RJCPA

Let SO(Si) be the set of exactly those orders and their equivalent orders that would

be searched by IA with initial order Si. Clearly

|SO(Si)| = Ω(ρ(
n

em
)n). (5.24)

Definition 7 If x ∈ {0, 1, · · · }, then H(x) ∈ (0, ∞) is defined as H(x)
x → 0 when x → 0

or x → ∞.

Lemma 5.5.1 If |SO(Si)| = H(
√

n!
ρ) ∀i ∈ {1, 2, · · · , ρ}, where either ρ = o(

√
n!) or

√
n! = o(ρ), then

lim
n→∞

P(∀i, j ∈ {1, 2, · · · , ρ}, i < j, SO(Si)
\

SO(Sj) = ∅) = 1.

Proof: It is evident that for an order S,

P(S ∈ SO(Si)) =
|SO(Si)|

n!
. (5.25)

Now,

P(∀i, j ∈ {1, 2, · · · , ρ}, i < j, SP(Si)
\

SO(Sj) = ∅)

=
ρ

∏
i=1

∏
i<j

P(SO(Si)
\

SO(Sj) = ∅)

=
�

1 − P(SO(Si)
\

SO(Sj) ̸= ∅)
�(ρ

2)

= (1 − P

[

∀S

(S ∈ SO(Si) & S ∈ SO(Sj))

!
)(

ρ
2)

≥ (1 − ∑
∀S

P(S ∈ SO(Si) & S ∈ SO(Sj)))
(ρ

2) (5.26)

(because for any finite collection of events {Ai | ∀i},

P(
[

∀i

Ai) ≤ ∑
∀i

P(Ai)).

90

Also the events that an order belongs to SO(Si) and an order belongs to SO(Sj) are

independent to each other. Hence from Equation (5.26) we get that

P(∀i, j ∈ {1, 2, · · · , ρ}, i < j, SP(Si)
\

SO(Sj) = ∅)

≥ (1 − n! × P(S ∈ SO(Si))× P(S ∈ SO(Sj)))
(ρ

2)

= (1 − n! × |SO(Si)|
n!

× |SO(Sj)|
n!

)(
ρ
2)

= (1 − |SO(Si)| × |SO(Sj)|
n!

)(
ρ
2). (5.27)

Again as |SO(Si)| = H(
√

n!
ρ), ∀i ∈ {1, 2, · · · , ρ}, where either ρ = o(

√
n!) or

√
n! =

o(ρ), we get from Equation (5.27) that,

lim
n→∞

P(∀i, j ∈ {1, 2, · · · , ρ}, i < j, SO(Si)
\

SO(Sj) = ∅)

= lim
n→∞

(1 −
H(

√
n!

ρ2)
√

n!
ρ2

× 1
ρ2)

(ρ
2) = 1. (5.28)

Hence the proof.

Using Lemma 5.5.1 we will calculate the total number of orders RJCPA eventu-

ally searches in Theorem 5.5.1.

Theorem 5.5.1 Let τ(m) be the total number of orders eventually searched by RJCPA.

Then

τ(m) =





Ω(ρ2(n
em)n) if ρ = o(

√
n!) or

√
n! = o(ρ) & m > n

1− 1
loge(n)

2 + ρ
2
n

Ω(ρ(n
em)n) else

Again if ρ = o(
√

n!) or
√

n! = o(ρ) and m > n
1− 1

loge(n)
2 + ρ

2
n then lim

m→n
τ(m) = ρ2 else

lim
m→1

τ(m) = n!.

Proof: If |SO(Si)| = H(
√

n!
ρ), where either ρ = o(

√
n!) or

√
n! = o(ρ), from

91

Equation 5.24 we get that,

Ω
�

ρ(
n

em
)n
�
= |SO(Si)| = H(

√
n!

ρ
)

=⇒ lim
n→∞

ρ2(n
em)n

√
n!

= 0

=⇒ lim
n→∞

ρ2

mn (
n
e
)n/2 = 0. (5.29)

Putting m = n
1
x into Equation (5.29) we get that,

lim
n→∞

ρ2

n
n
x
(

n
e
)n/2 = 0

=⇒ lim
n→∞

n
n
2 (1− 1

loge(n)
)+

loge(ρ
2)

loge(n)
− n

x = 0

=⇒ lim
n→∞

n
n
2 (1− 1

loge(n)
)+

loge(ρ
2)

loge(n)
− n loge(m)

loge(n) = 0. (5.30)

Note that in Equation (5.30) if power of n is < 0 then the limit in left hand side

would converge to 0 when n → ∞. Hence from Equation (5.30) we get that

n
2
(1 − 1

loge(n)
) +

loge(ρ
2)

loge(n)
<

n loge(m)

loge(n)

=⇒ m > n
1− 1

loge(n)
2 + ρ

2
n (5.31)

where either ρ = o(
√

n!) or
√

n! = o(ρ), is the sufficient condition for SO(Si)
T

SO(Sj) = ∅, ∀i, j ∈ {1, 2, · · · , ρ}, i ̸= j, when n → ∞. As |SO(Si)| = Ω(ρ(n
em)n)

hence we get that τ(m) = Ω(ρ2(n
em)n) with

lim
m→n

τ(m) = ρ2,

(because with m = n each of the n channels is allocated to a different link and hence

|SP(Si)| = ρ and τ(n) = ρ2).

92

Else in worst case all of the SP(Si), where 1 ≤ i ≤ ρ, may be exactly equal, hence

τ(m) = Ω(ρ × (
n

em
)n), with lim

m→1
τ(m) = n! (because τ(m) ≤ n!), when n → ∞.

Hence the proof.

Remark 8 From Theorem 5.5.1 we get that, if ρ = o(
√

n!) or
√

n! = o(ρ) and m is big

(m > n
1− 1

loge(n)
2 + ρ

2
n) then in RJCPA we essentially search disjoint SQ(Si) for different

Si’s. Hence the total number of orders searched is Ω(ρ(n
em)n). On the other hand if m

is small there might be overlapping between different SO(Si)’s. But in this case, as m

gets smaller SO(Si) gets bigger. So in either case, RJCPA searches orders very efficiently.

Moreover, RJCPA always produces the optimum result for the limiting cases when m = 1

or m = n.

Remark 9 From Equation (5.31) we get that, if ρ = o(
√

n!) or
√

n! = o(ρ) then with

increasing ρ2 the lower bound of necessary value of m increases. Since the maximum value

of m is n, if

n
1− 1

loge(n)
2 + ρ

2
n ≥ n

=⇒ ρ ≥ (n − n
1− 1

loge(n)
2)

n
2 ,

∃i, j ∈ {1, 2, · · · , ρ}, i ̸= j, such that SO(Si)
T

SO(Sj) ̸= ∅ even if n → ∞. Thus with

higher value of ρ we need higher value of m to keep each SO(Si) disjoint.

It is evident from Theorem 5.5.1 that total number of orders eventually searched

by RJCPA is Ω(ρ2(n
em)n), which is a function of ρ2. Hence in the next Section we

will calculate expected value of ρ2 to find the optimum.

5.5.4 Expected value of ρ2

Let’s define a step as applying GCPA on an order and obtaining C and X. Clearly

IA and RJCPA have Ω(ρ) and Ω(ρ2) steps. Hence time complexity of RJCPA to hit

93

the optimum is a function of ρ2. We now calculate the expected value of ρ2. Let m′

be the maximum number of distinct channels in a step and n be the total number of

links. It is evident from Theorem 5.4.2 that there are Ω((n
em′)n) orders equivalent to

S. Note that value of ρ2 to hit optimum follows a Geometric distribution with mean
1
η where

η =





1 If m′mo ≤ n
e

Ω((n
em′)n × 1

mn
o
) = Ω((n

em′mo
)n) Otherwise

.

This fact implies Theorem 5.5.2.

Theorem 5.5.2 Expected number of steps RJCPA takes to hit optimum is

E[ρ2] =
1
η
=





1 if m′mo ≤ n
e

O((em′mo
n)n) Otherwise

. (5.32)

From Theorem 5.5.2 and the fact that (1 − x)
1
x ≤ e−1 ∀x ∈ (0, 1), Corollary 3 is

immediate.

Corollary 3 If m′mo ≤ n
e , expected number of steps to reach optimum is E[ρ2] = O(1).

If m′mo >
n
e , RJCPA hits the optimum in ρ2 = ϵ

η = ϵE[ρ2] steps with probability

= (1 − (1 − η)ρ2
)

= (1 − (1 − η)
ϵ
η)

≥ (1 − e−ϵ). (5.33)

Hence if m′mo ≤ n
e we can solve JPCAP in expected polynomial time, else we can

solve it in slowly growing expected exponential time with very high probability.

It is evident from Chebyshev’s in-equality that the distribution of ρ2 to find the

94

optimum is highly concentrated around E[ρ2] = 1
η . That is

P
�
|ρ2 − E[ρ2]| ≥ ϵσ[ρ2]

�
≤ 1

ϵ2 , (5.34)

where standard deviation of ρ2 is

σ[ρ2] =
q

E[(ρ2 − E[ρ2])2] =

s
1 − η

η2 .

5.6 Expected Cost and Energy Efficiency

We now analyze the expected cost and energy efficiency (EE) produced by RJCPA.

For the analysis purpose we will first state some assumptions and notations. We as-

sume that n links are situated inside a R radius cell with base station placed centered

at it and κ = |SDL|
n . Let g = E[Glili(t)], where li ∈ SDL

S
SCL, and G = E[Glilj(t)],

where i ̸= j and li, lj ∈ SDL
S

SCL. Also Γ = E[γli(t)]. Let E[Y(t)] = Y, E[P(t)] = P,

E[xli(t)] = x = P
n , E[f (t)] = f and E[ηli(t)] = η. Let EE(t) be the energy efficiency

and E[EE(t)] = EE. We also assume that expected value of ηli(t) over DL is ηDL(t)

and over CL is ηCL(t). Let’s also define a(n) ∼n b(n) ⇐⇒ lim
n→∞

b(n)
a(n)

= 1. This

section is organized into three subsections. In the first subsection we calculate

the expected cost f . In the second subsection we calculate the expected energy

efficiency EE. Since all expressions of the first two subsections are functions of g, G

and η in the third subsection we calculate them.

5.6.1 Calculation of expected cost

We first calculate Y and P to calculate expected cost f . Clearly, when n → ∞ due

to symmetry of the links, in expected case, inequalities in the LP calculating x(li)’s

will turn out to be equality’s and each channel will be assigned to equal number of

95

links, hence

gx = Γ(σ2 + (
n
Y
− 1)xG) =⇒ P = Γ(nσ2 + (

n
Y
− 1)PG). (5.35)

It is evident that

Y ≥ |SCL| = (1 − κ)n. (5.36)

Note that one pseudo-vertex can at most have n
Y

links only if

α
n
Y

x ≤ 1 =⇒ αP ≤ Y. (5.37)

Again

x ≤ η =⇒ P ≤ nη. (5.38)

Now from Equations (5.35), (5.37), (5.38) and (5.36) we get

P ≤ n × min(
σ2α + G
α(g

Γ + G)
, η), and (5.39)

Y ≥ n × max(min(
σ2α + G

g
Γ + G

, αη), 1 − κ). (5.40)

Since when n → ∞ In-equations (5.39) and (5.40) becomes equations and hence we

get

P ∼n n × min(
σ2 + G

α
g
Γ + G

, η), (5.41)

Y ∼n n × max(min(
σ2α + G

g
Γ + G

, αη), (1 − κ)), and (5.42)

96

f ∼n n × (max(min(
σ2α + G

g
Γ + G

, αη), (1 − κ)) + min(
σ2α + G

g
Γ + G

, αη)). (5.43)

From Equations (5.42), (5.41) and (5.43) we get that Y, P and f are increasing

functions of n and η. Also f and Y are non-decreasing function of α and P is a

non-increasing function of α. Finally Y is a non-increasing function of κ.

5.6.2 Calculation of expected energy efficiency

We now calculate the expression for expected energy efficiency EE. It is evident

from [63, 64, 10, 61, 62] that

EE =
1

∑
i

xli(t)

n

∑
c=1

∑
∀i s.t.

cli
(t)=c

loge(1 +
xli(t)Glili(t)

σ2 + ∑
j : j ̸= i

&
cli
(t)=clj

(t)

xlj(t)Glilj(t)
).

Thus when n → ∞ we get

EE =
n
P

loge(1 +
xg

σ2 + (n
Y
− 1)xG

)

∼n
n
P

loge(1 +
g

nσ2

P
+ (n

Y
− 1)G

)

∼n
α

min(σ2α+G
g
Γ+G

, αη)
× loge(1 + g/(

σ2α

min(σ2α+G
g
Γ+G

, αη)
+

(
1

max(min(σ2α+G
g
Γ+G

, αη), (1 − κ))
− 1)G)). (5.44)

Note that EE is a non-decreasing functions of α and η, and a non-increasing function

of κ.

97

5.6.3 Calculations of expected value of parameters

Since all the above expressions are in terms of g, G and ∆ we now calculate them.

Let’s assume users are placed uniformly inside the R radius circle. We also assume

that r is the expected distance of transmitter and receiver of a DL. Then using the fact

that hslow
lilj

(t) and h f ast
li lj

(t) are random log-normally and exponentially distributed

variable with mean 0, standard deviation 1 and mean 1 respectively, and r0 <<

r << R is the minimum distance between devices we get

g ∼n


κ

Z r0

dli li
=r

d−β
li li
r

d(dlili) + (1 − κ)
Z r0

dli li
=R

d−β
li li
R

d(dlili)




×E[hslow
lilj

(t)]× E[h f ast
li lj

(t)]

∼n

1

β − 1
(

κ

r
(

1

rβ−1
0

− 1
rβ−1) +

1 − κ

R
(

1

rβ−1
0

− 1
Rβ−1))

!

×E[hslow
lilj

(t)]× E[h f ast
li lj

(t)], (5.45)

G ∼n
1

(β − 1)R
(

1

rβ−1
0

− 1
Rβ−1)

×E[hslow
lilj

(t)]× E[h f ast
li lj

(t)], (5.46)

∆ ∼n κ∆DL + (1 − κ)∆CL. (5.47)

It is evident from weak law of large number and central limit theorem that calculated

values of Y, P, g and G over N number of experiments converge to the exact values

of Y, P, g and G respectively, with their variances → 0, when N → ∞.

Remark 10 Since Equation (5.42) states that n
Y
= O(1), the expected time and space com-

plexities of RJCPA becomes O((ρn)2 × LPt(
n
Y

, n
Y
)) = O((ρn)2) and O(n2 + LPs(

n
Y

, n
Y
)) =

O(n2) respectively. Note that in expected case the time and space complexities of LP are

O(1). Thus by calling LP repeatedly we can solve the problem in relatively small that is

O(n2) time.

98

5.7 Simulation

This section comprises of three subsection. In the first subsection we elaborate the

simulation environment. In the second subsection we compare RJCPA with two

existing algorithms. In the third subsection we validate our analytical findings

through simulation.

5.7.1 Simulation environment

The simulation environment is mostly similar to that of [64, 27, 66, 93]. We consider

a 250 m radius circular cell with one base station placed in the center of it. We

consider DL and CL are uniformly placed within the circular region. For each

DL, transmitter and receiver are placed randomly within 1 m to 25 m away from

each other. Minimum power allocated to a link is considered to be −60 dBm and

the maximum power ηi(t) is considered to be 24 dBm for CL and 21 dBm for DL.

We consider a snapshot based approach, where users are considered to be static

during execution time of the algorithm. For generating different snapshots, we

considered that users move following random way-point mobility model with

average velocity 20 m/s (i.e v = 40). Snapshots are taken every 1 s interval. The

important simulation parameters are summarized in Table 5.1. We have written our

own C++ custom code and run them on a GNU 5.5.0 compiler on Intel core i7 Linux

machine.

99

Parameters Description
Cell radius 250 m

δi(t) 24 dBm for CL & 21 dBm for DL
Minimum power allocated to a link −60 dBm

σ2 −174 dBm
γi(t) 25 dB

hslow
ij (t) log-normal distribution with

mean 0 dB and standard deviation 8 dB
h f ast

ij (t) exponential distribution with µ = 1
Pathloss exponent β 4

Packet size 100 byte
Average speed of users 20 ms−1

Bandwidth 5 MHz
|SCL| 25
|SDL| ∈ {1, 2, · · · , 75}

Table 5.1: Simulation Environment

5.7.2 Comparison with other algorithms

In this section through simulation we will compare our algorithm with that of the

two-step solution proposed in [64, 10]. In [64], a matching based algorithms for

energy efficiency (EE) maximization is presented. In the first step, the optimal

power that is required to maximize EE for each DL-CL pair is found and then

in the second step, it finds a stable matching of DL and CL using Gale-Shapley

algorithm [65]. It is important to note that the performance of the second step is

highly dependent on the performance of the first step. In [10] authors propose a

two step approach for EE minimization. Given DL-CL pairing, they show that the

energy minimization problem is conditionally convex. If the problem is convex,

they solve it using standard techniques else they propose an iterative approach

for it. To efficiently form DL-CL pair they then propose a random switch-based

iterative (RSBI) algorithm. RSBI starts with a random DL-CL pairing and then

taking random steps tries to minimize the energy consumption. It is evident that

both approaches consider that only one DL can be paired with one CL. Hence in

both [64, 10] |SDL| ≤ |SCL|. This scenario is called resource-abundant scenario and

100

5 10 15 20 25
25

26

27

28

29

30
RJCPA

RSBI

EE matching

Figure 5.1: f = Y + αP in dB vs |SDL|

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4
10 -3

RJCPA

RSBI

EE matching

Figure 5.2: P in mJ vs |SDL|

0 5 10 15 20 25
2

3

4

5

6

7

8
10 6

RJCPA

RSBI

EE matching

Figure 5.3: EE in bitmJ−1Hz−1 vs |SDL|

considered by several authors [64, 94, 10]. In contrast to this, RJCPA has no such

bound on |SDL| and |SCL|. Also, RJCPA allows multiple DL to pair with a CL. In

addition to that RJCPA deals with the channel and power allocation problems jointly

and by making use of the GCPA it evaluates a large number of orders by searching

only a few. There are also some cases for which RJCPA solve the JPCAP in expected

polynomial time and for other cases it solves it in slowly growing exponential time

with very high probability.

In Figures 5.1, 5.2 and 5.3 we compare the cost f = Y + αP, P in mJ and EE in

101

bitmJ−1Hz−1 obtained by RJCPA with that obtained by EE matching based [64]

and RSBI [10] algorithms respectively, where 10 log10(α) = 30, |SCL| = 25 and

|SDL| ∈ {1, 2, · · · , 25}. To make these algorithms comparable, we fix the number of

channels available as |Sc| = 25 for all of them. We run our algorithm with ρ = 10

and report the average result of 10 runs. We observe that RJCPA produces lesser

f , P and higher EE than that of both EE matching based and RSBI algorithms.

By efficiently searching the orders, RJCPA eventually reduces the total power

requirement of the links and thus achieves higher EE.

102

20

50

40

60

60
40

40

80

20
30 0

Figure 5.4: Y vs 10log10(α) and |SDL|

0

50

2

4

10
-3

60

6

40
40

8

20
30 0

Figure 5.5: P vs 10log10(α) and |SDL|

0

50

200

400

60

600

40
40

800

20

30 0

Figure 5.6: f = Y + αA vs 10log10(α) and
|SDL|

0

50

5

10
6

60
40

40

10

20
30 0

Figure 5.7: EE vs 10log10(α) and |SDL|

4000

50

6000

8000

10000

60

12000

40
40

14000

20
30 0

Figure 5.8: Throughput vs 10log10(α)
and |SDL|

0

50

20

40

60

60

40
40

80

20
30 0

Figure 5.9: packetloss vs 10log10(α) and
|SDL|

103

5.7.3 Validations of expected cost and energy efficiency

In this subsection, we will validate our theoretical expressions with practical find-

ings. In Figures 5.4-5.9 we plot Y, P in mJ−1, Y + αP, EE in bitmJ−1Hz−1, average

throughput Throughput in Mbps and average packet loss packetloss in % against

different values of 10 log10(α) and |SDL| respectively. We fix |SCL| = 25 and vary

|SDL| ∈ {1, 2, · · · , 75} and 10 log10(α) ∈ {30, 31, · · · , 50}. We have calculated

throughput using Shannon’s capacity formula and for computation of packet loss,

we have considered maximum number of channels available as 25. For each value

of |SDL| and α, we simulate 100 instances and run RJCPA with ρ = 100 and report

the average.

In Figures 5.4, 5.5 and 5.6 we observe that Y, P and f increase with increasing

|SDL|. With increasing α, both Y and f increase but P decreases. These behaviors

of Y, P and f reflect the theoretical facts mentioned in Equations (5.41), (5.42) and

(5.43) respectively. In Figure 5.7 we observe that with increasing |SDL|, EE decreases.

Since every CL gets different channel, when |SDL| → 0, EE → log(1 + Γ)
σ2 which is

indeed a extremely large value. As |SDL| increases, the data rate increases slowly

(due to the logarithmic relation with SINR), but total power increases very fast.

Hence EE decreases with increasing |SDL|. This also follows from Equation (5.44),

where we had shown that EE is a non-increasing function of κ, i.e., |SDL|. We also

observe that with increasing α, EE increases. This is also in accordance with the

theoretical result presented in Equation (5.44).

We further see from Figure 5.8 that Throughput increases with both |SDL| and α.

With increasing |SDL|, total number of links increases and our algorithm allocates

more channels to accommodate all of them subject to the maximum number of

channels available (which is here the total number of links). Hence Throughput

increases with |SDL|. With increasing α, relative weight on P increases. As a result of

that Y increases (i.e., more channels are allocated) and hence Throughput increases.

On the other hand, if we restrict maximum number of channels that could be

104

allocated, then our algorithm may not be able to allocate all the links. In Figure

5.9 we fix maximum number of channels that could be allocated to 25 and plot

packetloss vs |SDL| and 10 log10(α). We observe that packetloss increases with both

|SDL| and α. With increasing |SDL|, more links are failing to be accommodated

within 25 channels, resulting packetloss to increase. With increasing α, the relative

weight on P increases and hence multiple DL cannot be shared with one CL due to

increased interference. Hence packetloss increases.

10 20 30 40 50

20

25

30

35

40

45

50

Figure 5.10: Y vs ρ

10 20 30 40 50

1

1.5

2

2.5

3

3.5

4
10

-3

Figure 5.11: P vs ρ

10 20 30 40 50

20

25

30

35

40

45

50

55

60

Figure 5.12: f = Y + αP vs ρ

10 20 30 40 50

4

6

8

10

12

14

16
10

5

Figure 5.13: EE vs ρ

In Figures 5.10-5.13 we plot Y, P, f = Y + αP and EE vs ρ for fixed |SCL| =

105

|SDL| = 25 and varying 10 log10(α) ∈ {35, 40, 45, 50} respectively. We observe that

Y, P and f decrease while EE increases with increasing ρ. So we can conclude that

with increasing ρ, both the expected cost and expected energy efficiency improve,

which also reflects the theoretical behavior discussed in Subsection 5.5.4.

5.8 Conclusion

In this chapter, we have formulated the joint power and channel allocation problem

(JPCAP) in D2D underlaid cellular network as a cost minimization problem, where

cost is defined as a linear combination of Y and P. We first showed that JPCAP is

NP-hard and even providing a n1/ϵ approximation for it is also NP-hard. Then we

proposed a MILP formulation of this problem. As solving MILP is also NP-hard we

proposed a GCPA algorithm which runs on an order of links. We proved that there

exists an order for which this GCPA produces optimum solution. Then we proposed

an IA algorithm which by actually evaluating less number of orders achieves the

effect of evaluating large number of orders. As IA depends on the initial order hence

we proposed a RJCPA algorithm to solve JPCAP. We showed that for some cases

RJCPA solves JPCAP in expected polynomial time and for other cases it solves with

slowly growing expected exponential time with high probability. We calculated

the expected cost and energy efficiency produced by RJCPA. Through simulation,

we have shown that RJCPA outperforms two existing approaches in terms of cost

and energy efficiency. Finally we have validated our theoretical findings through

simulation.

106

Chapter 6

Conclusion and Future Scope

In this thesis, we modeled the resource allocation problem in D2D communication

as a cost minimization problem. We aimed to minimize the maximum channels,

total number of perturbations, and total power. Since there is a natural trade-

off between these three quantities we consider our minimization objective as 1)

Maximum channel, 2) Total perturbations, 3) A linear combination of maximum

channel and total perturbation, and 4) A linear combination of maximum channel

and total power respectively. For first three cases, we simplified the problem in

terms of interference graph. To minimize maximum channel, we proposed an ISH

and a PISH technique. Since minimizing channel is essentially solving the graph

coloring problem, we showed that ISH can solve the graph coloring problem in

expected polynomial time. By definition, NP-complete class is a subset of NP class

such that each problem inside NP can be reduced to each member of NP-complete

class in polynomial time and graph coloring problem is a well-known NP-complete

problem [11]. Since ISH is a randomized algorithm which solves the graph coloring

problem in expected polynomial time, this implies that ”For each problem in NP

there is a randomized algorithm which can solve it in expected polynomial time”.

To minimize total perturbation, we proposed DC, RC and DDC algorithms. To

minimize a linear combination of maximum channel and total perturbation, we

107

proposed GP and GU. Finally we minimized a linear combination of maximum

channel and total power. After showing the hardness, we developed a RJCPA

algorithm to solve it. For each of these approaches, we theoretically analyse the

performance of our algorithms, then compare and verify through simulation.

6.1 Future Scope

In this thesis we indeed tried to develop a novel paradigm of solving optimization

problems in NP. This paradigm could be enhanced for other problems too. A

proper formalisation of this paradigm might be an option for future study. Also the

decentralization of each centralized approach mentioned here is a challenging task.

Since interference graph is indeed a geometric graph, so it may be that each links

need to communicate to only its neighbors, to assign its color and power. It is also

possible to split the whole graph into small clusters in decentralized manner and

then apply those algorithms only on it. GU can also be decentralized by considering

k as a small value and each node has to store the information of its neighbors only at

a time. Since the current movement of a link, depends on previous moves, further

improvement could also be done by applying reinforcement learning and taking

Markov model into consideration.

108

Bibliography

[1] Subhankar Ghosal and Sasthi C Ghosh. A randomized algorithm for joint

power and channel allocation in 5g d2d communication. In 2019 IEEE 18th

International Symposium on Network Computing and Applications (NCA), pages

1–5. IEEE, 2019.

[2] Ajay Pratap and Rajiv Misra. Firefly inspired improved distributed proximity

algorithm for d2d communication. In 2015 IEEE International Parallel and

Distributed Processing Symposium Workshop, pages 323–328. IEEE, 2015.

[3] Hesham ElSawy, Ekram Hossain, and Mohamed-Slim Alouini. Analytical mod-

eling of mode selection and power control for underlay d2d communication

in cellular networks. IEEE Transactions on Communications, 62(11):4147–4161,

2014.

[4] Ahmed Hamdi Sakr and Ekram Hossain. Cognitive and energy harvesting-

based d2d communication in cellular networks: Stochastic geometry modeling

and analysis. IEEE Transactions on Communications, 63(5):1867–1880, 2015.

[5] Mohsen Nader Tehrani, Murat Uysal, and Halim Yanikomeroglu. Device-

to-device communication in 5g cellular networks: challenges, solutions, and

future directions. IEEE Communications Magazine, 52(5):86–92, 2014.

[6] Zhesheng Lin, Yuancao Li, Si Wen, Yuehong Gao, Xin Zhang, and Dacheng

Yang. Stochastic geometry analysis of achievable transmission capacity for

109

relay-assisted device-to-device networks. In 2014 IEEE international conference

on communications (ICC), pages 2251–2256. IEEE, 2014.

[7] Hongliang Zhang, Yun Liao, and Lingyang Song. D2d-u: Device-to-device

communications in unlicensed bands for 5g system. IEEE Transactions on

Wireless Communications, 16(6):3507–3519, 2017.

[8] Jiajia Liu, Nei Kato, Jianfeng Ma, and Naoto Kadowaki. Device-to-device

communication in lte-advanced networks: A survey. IEEE Communications

Surveys & Tutorials, 17(4):1923–1940, 2014.

[9] Jiajia Liu, Hiroki Nishiyama, Nei Kato, and Jun Guo. On the outage probability

of device-to-device-communication-enabled multichannel cellular networks:

An rss-threshold-based perspective. IEEE Journal on Selected Areas in Communi-

cations, 34(1):163–175, 2015.

[10] Shijun Lin, Haichuan Ding, Yuguang Fang, and Jianghong Shi. Energy-efficient

d2d communications with dynamic time-resource allocation. IEEE Transactions

on Vehicular Technology, 68(12):11985–11999, 2019.

[11] Richard M Karp. Reducibility among combinatorial problems. In Complexity of

computer computations, pages 85–103. Springer, 1972.

[12] David Zuckerman. Linear degree extractors and the inapproximability of max

clique and chromatic number. In Proceedings of the thirty-eighth annual ACM

symposium on Theory of computing, pages 681–690, 2006.

[13] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to

within 2- ε. Journal of Computer and System Sciences, 74(3):335–349, 2008.

[14] Min Sheng, Yuzhou Li, Xijun Wang, Jiandong Li, and Yan Shi. Energy efficiency

and delay tradeoff in device-to-device communications underlaying cellular

networks. IEEE Journal on Selected Areas in Communications, 34(1):92–106, 2015.

110

[15] Daquan Feng, Guanding Yu, Cong Xiong, Yi Yuan-Wu, Geoffrey Ye Li, Gang

Feng, and Shaoqian Li. Mode switching for energy-efficient device-to-device

communications in cellular networks. IEEE Transactions on Wireless Communi-

cations, 14(12):6993–7003, 2015.

[16] Dan Wu, Jinlong Wang, Rose Qingyang Hu, Yueming Cai, and Liang Zhou.

Energy-efficient resource sharing for mobile device-to-device multimedia com-

munications. IEEE Transactions on Vehicular Technology, 63(5):2093–2103, 2014.

[17] Tuong Duc Hoang, Long Bao Le, and Tho Le-Ngoc. Energy-efficient resource

allocation for d2d communications in cellular networks. IEEE Transactions on

Vehicular Technology, 65(9):6972–6986, 2015.

[18] Zhenyu Zhou, Mianxiong Dong, Kaoru Ota, Guojun Wang, and Laurence T

Yang. Energy-efficient resource allocation for d2d communications underlay-

ing cloud-ran-based lte-a networks. IEEE Internet of Things Journal, 3(3):428–438,

2015.

[19] Guanding Yu, Lukai Xu, Daquan Feng, Rui Yin, Geoffrey Ye Li, and Yuhuan

Jiang. Joint mode selection and resource allocation for device-to-device com-

munications. IEEE transactions on communications, 62(11):3814–3824, 2014.

[20] Jiahao Dai, Jiajia Liu, Yongpeng Shi, Shubin Zhang, and Jianfeng Ma. Analyti-

cal modeling of resource allocation in d2d overlaying multihop multichannel

uplink cellular networks. IEEE Transactions on Vehicular Technology, 66(8):6633–

6644, 2017.

[21] Demia Della Penda, Liqun Fu, and Mikael Johansson. Energy efficient d2d

communications in dynamic tdd systems. IEEE Transactions on Communications,

65(3):1260–1273, 2016.

[22] Shijun Lin, Liqun Fu, and Yong Li. Energy saving with network coding design

111

over rayleigh fading channel. IEEE Transactions on Wireless Communications,

16(7):4503–4518, 2017.

[23] Xiaoming Tao, Xiao Xiao, and Jianhua Lu. A qos-aware power optimization

scheme in ofdma systems with integrated device-to-device (d2d) communica-

tions. Engine, 2012.

[24] Lei Lei, Zhangdui Zhong, Chuang Lin, and Xuemin Shen. Operator controlled

device-to-device communications in lte-advanced networks. IEEE Wireless

Communications, 19(3):96–104, 2012.

[25] Gabor Fodor, Demia Della Penda, Marco Belleschi, Mikael Johansson, and

Andrea Abrardo. A comparative study of power control approaches for

device-to-device communications. In 2013 IEEE International Conference on

Communications (ICC), pages 6008–6013. IEEE, 2013.

[26] Chia-Hao Yu, Klaus Doppler, Cassio B Ribeiro, and Olav Tirkkonen. Resource

sharing optimization for device-to-device communication underlaying cellular

networks. IEEE Transactions on Wireless communications, 10(8):2752–2763, 2011.

[27] Rui Yin, Caijun Zhong, Guanding Yu, Zhaoyang Zhang, Kai Kit Wong, and

Xiaoming Chen. Joint spectrum and power allocation for d2d communica-

tions underlaying cellular networks. IEEE Transactions on Vehicular Technology,

65(4):2182–2195, 2015.

[28] Pekka Janis, Visa Koivunen, Cassio Ribeiro, Juha Korhonen, Klaus Doppler,

and Klaus Hugl. Interference-aware resource allocation for device-to-device

radio underlaying cellular networks. In VTC Spring 2009-IEEE 69th Vehicular

Technology Conference, pages 1–5. IEEE, 2009.

[29] Mohammad Zulhasnine, Changcheng Huang, and Anand Srinivasan. Efficient

resource allocation for device-to-device communication underlaying lte net-

112

work. In 2010 IEEE 6th International conference on wireless and mobile computing,

networking and communications, pages 368–375. IEEE, 2010.

[30] Hyunkee Min, Jemin Lee, Sungsoo Park, and Daesik Hong. Capacity en-

hancement using an interference limited area for device-to-device uplink un-

derlaying cellular networks. IEEE Transactions on Wireless Communications,

10(12):3995–4000, 2011.

[31] Tinghan Yang, Rongqing Zhang, Xiang Cheng, and Liuqing Yang. Graph

coloring based resource sharing (gcrs) scheme for d2d communications under-

laying full-duplex cellular networks. IEEE Transactions on Vehicular Technology,

66(8):7506–7517, 2017.

[32] Dimitris Tsolkas, Eirini Liotou, Nikos Passas, and Lazaros Merakos. A graph-

coloring secondary resource allocation for d2d communications in lte networks.

In 2012 IEEE 17th international workshop on computer aided modeling and design of

communication links and networks (CAMAD), pages 56–60. IEEE, 2012.

[33] Xuejia Cai, Jun Zheng, and Yuan Zhang. A graph-coloring based resource

allocation algorithm for d2d communication in cellular networks. In 2015 IEEE

International Conference on Communications (ICC), pages 5429–5434. IEEE, 2015.

[34] Philippe Galinie and Alain Hertz. A survey of local search methods for graph

coloring. Computers and Operations Research, 33(9):2547–2562, 2006.

[35] Pardalos Panos, M, Mavridou Thelma, and Xue Jue. The graph coloring prob-

lem: A bibliographic survey. Handbook of combinatorial optimization. Springer,

pages 1077–1141, 1998.

[36] Zhou Yangming, Hao Jin-Kao, and Duvala Béatrice. Reinforcement learning

based local search for grouping problems: A case study on graph coloring.

Expert Systems with Applications, 64:412–422, 2016.

113

[37] Shadi Mahmoudi and Shahriar Lotfi. Modified cuckoo optimization algorithm

(mcoa) to solve graph coloring problem. Applied soft computing, 33:48–64, 2015.

[38] Laurent Moalic and Alexandre Gondran. Variations on memetic algorithms

for graph coloring problems. Journal of Heuristics, 24(1):1–24, 2018.

[39] Wen Sun, Jin-Kao Hao, Xiangjing Lai, and Qinghua Wu. On feasible and

infeasible search for equitable graph coloring. In Proceedings of the Genetic and

Evolutionary Computation Conference, pages 369–376, 2017.

[40] Hasenplaugh William, Kaler Tim, Schardl Tao, B, and Leiserson Charles, E.

Ordering heuristics for parallel graph coloring. In Proceedings of the 26th ACM

symposium on Parallelism in algorithms and architectures, pages 166–177, 2014.

[41] Dominic JA Welsh and Martin B Powell. An upper bound for the chromatic

number of a graph and its application to timetabling problems. The Computer

Journal, 10(1):85–86, 1967.

[42] Alfred B Kempe. On the geographical problem of the four colours. American

journal of mathematics, 2(3):193–200, 1879.

[43] Daniel Brélaz. New methods to color the vertices of a graph. Communications

of the ACM, 22(4):251–256, 1979.

[44] David S Johnson, Cecilia R Aragon, Lyle A McGeoch, and Catherine Schevon.

Optimization by simulated annealing: An experimental evaluation; part ii.

Graph Coloring and Number Partitioning. Operations Research, 39(3):378–406, 1991.

[45] John H Holland. Adaptation in natural and artificial systems. Ann Arbor, MI:

University of Michigan Press and, 1992.

[46] Fred Glover. Tabu search and adaptive memory programming—advances,

applications and challenges. In Interfaces in computer science and operations

research, pages 1–75. Springer, 1997.

114

[47] Alain Hertz and Dominique de Werra. Using tabu search techniques for graph

coloring. Computing, 39(4):345–351, 1987.

[48] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization:

algorithms and complexity. Dover Publications, 1998.

[49] Matti Åstrand and Jukka Suomela. Fast distributed approximation algorithms

for vertex cover and set cover in anonymous networks. In Proceedings of the

twenty-second annual ACM symposium on Parallelism in algorithms and architec-

tures, pages 294–302, 2010.

[50] Christos Koufogiannakis and Neal E Young. Distributed and parallel algo-

rithms for weighted vertex cover and other covering problems. In Proceedings

of the 28th ACM symposium on Principles of distributed computing, pages 171–179,

2009.

[51] Fabrizio Grandoni, Jochen Könemann, and Alessandro Panconesi. Distributed

weighted vertex cover via maximal matchings. ACM Transactions on Algorithms

(TALG), 5(1):1–12, 2008.

[52] Changhao Sun, Wei Sun, Xiaochu Wang, and Qingrui Zhou. Potential game

theoretic learning for the minimal weighted vertex cover in distributed net-

working systems. IEEE transactions on cybernetics, 49(5):1968–1978, 2018.

[53] Luis Barba, Jean Cardinal, Matias Korman, Stefan Langerman, André

Van Renssen, Marcel Roeloffzen, and Sander Verdonschot. Dynamic graph

coloring. In Workshop on Algorithms and Data Structures, pages 97–108. Springer,

2017.

[54] Shay Solomon and Nicole Wein. Improved dynamic graph coloring. arXiv

preprint arXiv:1904.12427, 2019.

115

[55] Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and

Danupon Nanongkai. Dynamic algorithms for graph coloring. In Proceed-

ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 1–20. SIAM, 2018.

[56] Piotr Borowiecki and Elżbieta Sidorowicz. Dynamic coloring of graphs. Funda-

menta Informaticae, 114(2):105–128, 2012.

[57] Davy Preuveneers and Yolande Berbers. Acodygra: an agent algorithm for col-

oring dynamic graphs. Symbolic and Numeric Algorithms for Scientific Computing

(September 2004), 6:381–390, 2004.

[58] Linda Ouerfelli and Hend Bouziri. Greedy algorithms for dynamic graph

coloring. In 2011 International Conference on Communications, Computing and

Control Applications (CCCA), pages 1–5. IEEE, 2011.

[59] Feng Yu, Amotz Bar-Noy, Prithwish Basu, and Ram Ramanathan. Algorithms

for channel assignment in mobile wireless networks using temporal coloring.

In Proceedings of the 16th ACM international conference on Modeling, analysis &

simulation of wireless and mobile systems, pages 49–58, 2013.

[60] Feng Shu, XiaoHu You, Mao Wang, YuBing Han, Yang Li, and WeiXing Sheng.

Hybrid interference alignment and power allocation for multi-user interference

mimo channels. Science China Information Sciences, 56(4):1–9, 2013.

[61] Minchae Jung, Kyuho Hwang, and Sooyong Choi. Joint mode selection and

power allocation scheme for power-efficient device-to-device (d2d) commu-

nication. In 2012 IEEE 75th vehicular technology conference (VTC Spring), pages

1–5. IEEE, 2012.

[62] Yanxiang Jiang, Qiang Liu, Fuchun Zheng, Xiqi Gao, and Xiaohu You. Energy-

efficient joint resource allocation and power control for d2d communications.

IEEE Transactions on Vehicular Technology, 65(8):6119–6127, 2015.

116

[63] Zhenyu Zhou, Kaoru Ota, Mianxiong Dong, and Chen Xu. Energy-efficient

matching for resource allocation in d2d enabled cellular networks. IEEE

Transactions on Vehicular Technology, 66(6):5256–5268, 2016.

[64] Sihan Liu, Yucheng Wu, Liang Li, Xiaocui Liu, and Weiyang Xu. A two-stage

energy-efficient approach for joint power control and channel allocation in d2d

communication. IEEE Access, 7:16940–16951, 2019.

[65] David Gale and Lloyd S Shapley. College admissions and the stability of

marriage. The American Mathematical Monthly, 69(1):9–15, 1962.

[66] Wei-Kuang Lai, You-Chiun Wang, He-Cian Lin, and Jian-Wen Li. Efficient

resource allocation and power control for lte-a d2d communication with pure

d2d model. IEEE Transactions on Vehicular Technology, 69(3):3202–3216, 2020.

[67] Javad Akbari Torkestani and Mohammad Reza Meybodi. A new vertex color-

ing algorithm based on variable action-set learning automata. Computing and

Informatics, 29(3):447–466, 2012.

[68] Sidi Mohamed Douiri and Souad Elbernoussi. Solving the graph coloring prob-

lem via hybrid genetic algorithms. Journal of King Saud University-Engineering

Sciences, 27(1):114–118, 2015.

[69] Francisco J Aragón Artacho, Rubén Campoy, and Veit Elser. An enhanced

formulation for solving graph coloring problems with the douglas–rachford

algorithm. Journal of Global Optimization, pages 1–21, 2018.

[70] Karim Baiche, Yassine Meraihi, Manolo Dulva Hina, Amar Ramdane-Cherif,

and Mohammed Mahseur. Solving graph coloring problem using an enhanced

binary dragonfly algorithm. International Journal of Swarm Intelligence Research

(IJSIR), 10(3):23–45, 2019.

117

[71] Subhankar Ghosal (https://mathoverflow.net/users/91159/subhankar

ghosal). Prove that (1−x)y(1−x)

(1−xy)1−xy ≤ 1, when 0 ≤ x ≤ 1, y ≥ 1 and xy ≤ 1. Math-

Overflow. URL:https://mathoverflow.net/q/383250 (version: 2021-02-05).

[72] Kazunori Mizunoa and Seiichi Nishihara. Constructive generation of very hard

3-colorability instances. Discrete Applied Mathematics, 156(2):218–229, 2008.

[73] Zymolka Adrian, Koster Arie, M.C.A., and Wessaly Roland. Transparent

optical network design with sparse wavelength conversion. In Proceedings of

the 7th IFIP Working Conference on Optical Network Design and Modelling, pages

61–80, 2003.

[74] Carla Gomes and David Shmoys. Completing quasigroups or latin squares:

A structured graph coloring problem. In In D. S. Johnson, A. Mehrotra, M.

Trick (eds.), Proceedings of the Computational Symposium on Graph Coloring and its

Generalizations, pages 22–39, 2002.

[75] Shahadat Hossain and Trond Steihaug. Graph coloring in the estimation of

mathematical derivatives. In In D. S. Johnson, A. Mehrotra, M. Trick (eds.), Pro-

ceedings of the Computational Symposium on Graph Coloring and its Generalizations,

pages 9–16, 2002.

[76] Kazunori Mizuno and Seiichi Nishihara. Toward ordered generation of excep-

tionally hard instances for graph 3-colorability. In Proceedings of the Computa-

tional Symposium on Graph Coloring and its Generalizations, pages 1–8, 2002.

[77] Massimiliano Caramia and Paolo Dell’Olmo. Coloring graphs by iterated local

search traversing feasible and infeasible solutions. Discrete Applied Mathematics,

156(2):201–217, 2008.

[78] Gary Lewandowski and Anne Condon. Experiments with parallel graph

coloring heuristics and applications of graph coloring. DIMACS Series in

Discrete Mathematics and Theoretical Computer Sciences, 26:309–334, 1996.

118

[79] Anuj Mehrotra and Micheal A Trick. A column generation approach for graph

coloring. INFORMS Journal On Computing, 8(4):344–354, 1996.

[80] Culberson Joseph, Beacham Adam, and Papp Denis. Hiding our colors. In In

Proceedings of the CP’95 Workshop on Studying and Solving Really Hard Problems,

pages 31–42, 1995.

[81] Adalat Jabrayilov and Petra Mutzel. New integer linear programming models

for the vertex coloring problem. In Latin American Symposium on Theoretical

Informatics, pages 640–652. Springer, 2018.

[82] Yassine Meraihi, Amar Ramdane-Cherif, Mohammed Mahseur, and Dalila

Achelia. A chaotic binary salp swarm algorithm for solving the graph coloring

problem. In International Symposium on Modelling and Implementation of Complex

Systems, pages 106–118. Springer, 2018.

[83] Taha Mostafaie, Farzin Modarres Khiyabani, and Nima Jafari Navimipour. A

systematic study on meta-heuristic approaches for solving the graph coloring

problem. Computers & Operations Research, page 104850, 2019.

[84] Yangming Zhou, Jin-Kao Hao, and Béatrice Duval. Reinforcement learning

based local search for grouping problems: A case study on graph coloring.

Expert Systems with Applications, 64:412–422, 2016.

[85] Yangming Zhou, Béatrice Duval, and Jin-Kao Hao. Improving probability

learning based local search for graph coloring. Applied Soft Computing, 65:542–

553, 2018.

[86] Colin JH McDiarmid. Colouring random graphs badly. Graph Theory and

Combinatorics. RJ Wilson, Ed. Pitman Advanced Publishing Program, San Francisco,

1979.

119

[87] Geoffrey R Grimmett and Colin JH McDiarmid. On colouring random graphs.

In Mathematical Proceedings of the Cambridge Philosophical Society, volume 77,

pages 313–324. Cambridge University Press, 1975.

[88] Dieter Mitsche, Giovanni Resta, and Paolo Santi. The random waypoint

mobility model with uniform node spatial distribution. Wireless networks,

20(5):1053–1066, 2014.

[89] Subhankar Ghosal and Sasthi C Ghosh. An incremental search heuristic for

coloring vertices of a graph. Graphs and Combinatorial Optimization: from Theory

to Applications: CTW2020 Proceedings, pages 39–52, 2021.

[90] Klaus Doppler, Mika Rinne, Carl Wijting, Cassio B Ribeiro, and Klaus Hugl.

Device-to-device communication as an underlay to lte-advanced networks.

IEEE Communications Magazine, 47(12):42–49, 2009.

[91] Gábor Fodor, Erik Dahlman, Gunnar Mildh, Stefan Parkvall, Norbert Reider,

György Miklós, and Zoltán Turányi. Design aspects of network assisted device-

to-device communications. IEEE Communications Magazine, 50(3):170–177, 2012.

[92] Hongseok Kim and Gustavo De Veciana. Leveraging dynamic spare capacity in

wireless systems to conserve mobile terminals’ energy. IEEE/ACM transactions

on networking, 18(3):802–815, 2009.

[93] Durgesh Singh and Sasthi C Ghosh. Mobility-aware relay selection in 5g

d2d communication using stochastic model. IEEE Transactions on Vehicular

Technology, 68(3):2837–2849, 2019.

[94] Li Wang, Huan Tang, Huaqing Wu, and Gordon L Stüber. Resource alloca-

tion for d2d communications underlay in rayleigh fading channels. IEEE

Transactions on Vehicular Technology, 66(2):1159–1170, 2016.

120

