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Abstract

The 5G technology has created a lot of interest recently to support the increasing
demand for higher data rates by the user equipments (UEs). The most interesting
part of 5G is the use of device to device (D2D) communication, using millimeter
waves. Millimetre waves can immensely increase the data rates compared to 4G. But
millimetre waves suffer from a host of problems ranging from high free space loss
restricting range, and also extremely high penetration loss, making it almost line of
sight (LOS) communication. To handle these problems, communication links can be
broken into multiple hops by using intermediate devices as relays, avoiding obstacles
and thereby extending the range. Knowing the location and size of obstacles is key to
choosing good relays. Satellite imagery can be used to do the same. But small obsta-
cles like trees cannot be captured properly using satellite imagery. Moreover presence
of an obstacle in the image, does not guarantee obstruction. Our work concentrates
on mapping static obstacles in a given area to help in the process of relay selection.
We propose a learning based strategy, which considers spatial correlation of obstacles,
to build the static obstacle map efficiently without relying on satellite imagery. We
propose a evidential framework to model the confidence in the knowledge gained for
each cell, as this can model uncertainty better than a typical probabilistic model. We
also propose an operation similar to Gaussian smoothing, to learn information about
a cell, using the information available from the nearby cells. We have proposed a
visibility graph algorithm which will reduce the overhead due to repeated updation of
the location information by the UEs, and thereby improve the overall coverage dra-
matically. We have also proposed a exploration mode during relay selection, which
can be used in the place of the normal mode of relay selection, which can reduce
the time taken to learn the map, by selecting relays which encourage exploration
rather than prioritizing maximizing throughput only. Through simulations, we show
that our evidential framework based approach can learn the map faster and more
accurately than the typical probabilistic model based work [18].

Keywords: Learning, Obstacle avoidance, Evidential Framework, 5G D2D Com-
munication, relay selection
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Chapter 1

Introduction

1.1 Introduction to D2D Communication

The increasing demand for higher data rates by the user equipments (UEs) has created

great interest in 5G device to device (D2D) communications. In D2D communication,

two proximity UEs can directly communicate with each other without involving the

base station (BS). Generally D2D communication is studied for short distance com-

munication which makes millimeter wave (mm wave) in the ranges between 30GHz

to 300GHz as the suitable candidate for it. At this frequency, the data rate is of the

order of multi gigabits per second and the corresponding wavelengths is in the range

of millimetres. This extremely high frequency also means that the antennas can be

further small, which can produce highly directional beams, and hence can pave the

way for efficient D2D communication.
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1.2 Problems Associated with D2D Communica-

tion

As the frequency of the transmitted wave increases, the signals suffer from high trans-

mission and penetration loss than their lower frequency counterparts. Authors in [17]

have found out that a 10cm thick concrete wall causes an attenuation of 175dB at

40 GHz. Hence, nearby UEs cooperate with each other and relay signals to establish

a line of sight (LOS) path for a given source-destination pair. With the help of the

relays, the communication links between a pair of UEs can be broken into multiple

short hops, avoiding obstacles and thereby effectively lowering transmission and pen-

etration losses. Hence detecting the presence of static as well as dynamic obstacles is

of paramount importance to efficiently select an appropriate relay for a UE, lowering

the chance of allocating an obstacle prone link.

1.3 Existing Solutions

One simple way of knowing the positions of the static obstacles is through satel-

lite imagery. But the use of satellite imagery comes with two problems. Satellite

information is proprietary, and it is costly to obtain detailed maps of all locations

where the systems will be deployed. The other one is, smaller static obstacles such

as lamp posts, banners, poles and trees, do not get registered in satellite imagery as

easily, though they can potentially block mm wave signals. Learning based relay se-

lection [18] provides an interesting framework by which static and dynamic obstacles

can be learnt by using the history of mobile communications over the occupancy grid.

In occupancy grid representation, the area in question is divided into a discrete cells

of equal area, where the status of a cell at a particular time is either occupied by or
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free from any obstacles. Obstacles may be learnt in a occupancy grid, by making use

of the link failures/successes over a period of time. The above method of learning the

occupancy of a discretized area of grids is known as occupancy grid mapping. Occu-

pancy grid mapping is a well studied problem [7,21] in robotics. It is usually studied

as a part of simultaneous localisation and mapping (SLAM) problem. In this report,

we take a different look at the problem of static obstacle detection as a standalone

map building problem.

1.4 Our Contribution

Learning based relay selection algorithms using occupancy grids may take large num-

ber of cycles to identify the static and dynamic obstacles. Most existing algorithms

make a simplifying assumption that the occupancy of each cell of the occupancy grid

is independent of the others. Whereas, in reality, obstacles in any area, is not in-

dependently distributed in a given area and are usually clustered in blocks. This is

because, obstacles like buildings and many others usually span over multiple grids.

Apart from this, existing algorithms do not model adequately the high uncertainty in

each measurement. The presence of an obstacle in the initial few cells, would essen-

tially mean that, we don’t have much information about the remaining cells in the

communication path. This would mean that instead of observing information about

obstacles in all the cells that fall in the communication path, we would in reality be

getting information about the first obstacle only, the number of obstacle blocks after

that would not matter. This is because, a single obstacle along the communication

path is sufficient to block the mm wave communication.

Using the spatial correlation of obstacles not only increases the accuracy of the

map, but also can decrease the time taken for the map to converge. Many works
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which deal with learning maps using spatial correlation use methods like Gaussian

process (GP), belief propagation to learn from other labelled points after the tra-

ditional training step completed. The occupancy grid filter (OGF) in [20] made an

improvement over GP by merging the training and prediction steps, thereby enabling

continuous learning of the map using OGF as opposed to training GP with a large

stream of input data, and then predicting the remaining cells in the map using GP.

This way of updating other cells by simultaneous prediction and training is more

suitable for our problem of relay selection, due to 2 reasons.

• In relay selection, the presence of an obstacle in the communication path is de-

tected by measuring the difference between the expected signal-to-interference-

plus-noise ratio (SINR) and the actual SINR and comparing the difference with

a predefined threshold. However, the SINR measurements have a very high

uncertainty due varying channel conditions. It will take a lot of iterations with

these measurements for the confidence to build up to a level where GP can be

used for prediction.

• Merging of training and prediction, can produce more complete occupancy maps

while the process is running. This map can be used to choose relays in the

meantime. Whereas, building maps solely with measurements produces a map

with a very high uncertainty which will not be of much use until it finishes

training.

In this report, we propose a evidential framework to model the confidence in the

knowledge gained for each cell, as this can model uncertainty better than a typical

probabilistic model. We also propose an operation similar to Gaussian smoothing,

to learn information about a cell, using the information available from the nearby

cells. Also, we have proposed a visibility graph algorithm which will reduce the
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overhead due to repeated updation of the location information by the UEs, and also

improve the overall coverage dramatically. We have also proposed a exploration mode

during relay selection, which can be used in the place of the normal relay selection

algorithm, which can reduce the time taken to learn the map, by selecting relays which

encourage exploration rather than prioritizing maximizing throughput. This mode

can be useful in cases, where a setting up time is available. Through simulations, we

compare our work with the work in [18], and show that it learns the same map faster

and more accurately using our proposed model, and we also show that due to the use

of evidential framework, our map is more precise than the map prepared using the

probability model in [18].

1.5 Thesis Outline

The rest of the report is organized as follows. In Chapter 2, we detail the related

works in map building which incorporate spatial correlation in the process of learning.

Chapter 3 deals with the system models and assumptions the proposed evidential

framework based algorithm uses while arriving at the solution. In Chapter 4, we

explain the basics of the evidential framework and about belief functions and some of

the combination rules that have been used throughout the report. In Chapter 5, we

present the details of our evidential framework based learning procedure. This section

is divided into 3 parts. Section 5.1 details how basic learning of the map takes place.

In Section 5.2, we will deal about how the algorithm relies on spatial correlation to

better the learning speed and accuracy. Section 5.3 will deal with the visibility graph

algorithm and the relay selection which works along with the learning procedure to

assign relays by making use of the learnt map. Later in Chapter 6, the details about

the simulation setup and the results are mentioned. Finally conclusions and future
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works are presented in Chapter 7.
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Chapter 2

Related Work

2.1 Occupancy grid mapping

There has been lot of work regarding occupancy grid mapping using sensors such as

SONAR [7,21], LIDAR [5,6], Laser scanners [11], Global Navigation Satellite System

( GNSS ) and even mmwaves [23]. Most of the work on occupancy grids work with the

assumption that each individual grid is independent from each other. Also, in [23],

the authors assume that they can detect the time of arrival and time difference of

arrival of the reflections of mmwaves, which will require extra hardware to achieve

and will not be possible with a typical mobile equipment.

2.2 Spatial correlation in occupancy grids

To address the problem of independence, there has been many works trying to take

advantage of the spatial correlation. The work in [14] uses Gaussian process regression

to model the spatial correlation to predict cells’ occupancies. Authors in [20] proposes

an improvement over Gaussian process regression in terms of computational complex-
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ity, by using Kalman filter based OGF. Mark A. Paskin and S. Thrun [16] proposed

a geometric representation of the occupancy using polygonal random fields. Belief

propagation on high order factor graphs was used in [6] to propagate the learnt infor-

mation from a cell to its neighbours. However, all of the above works are proposed for

mapping using sensors which provide a good probability distribution through models

such as forward or inverse sensor models, which they take advantage of in their works.

2.3 Detection without range information

The problem at hand deals with a sensor, which can only sense whether a particular

LOS is blocked or not. Range information is not available to us, since we are assum-

ing that each device in this process is a typical mobile device, which generally does

not have sensors like radar or ultrasonic sensors which can detect range of obstacles.

Mapping using the difference between the expected SINR and the actual SINR also

has been explored, using Global Positioning System (GPS) in [10] or Global Navi-

gation Satellite System ( GNSS ) in [8, 22]. In these works the SINR of the signal

from a set of satellites, has been used to build 3D occupancy maps of buildings and

other obstacles which block the rays. The advantage that these works have are, all

the obstacles are clustered on one side of the communication path i.e. in the com-

munication path from the satellite to the person on the ground, it is highly unlikely

that an obstacle will be present anywhere in the middle, apart from some grids near

the ground level. Unlike these methods, in our problem an obstacle may lie any-

where in the communication path. Also these works make use of data from multiple

satellite sources simultaneously, using which we can identify some of these grids as

empty, by using the intersecting information of these multiple satellites, whereas each

communication path is examined only using one beam at a time in our problem.

13



2.4 Evidential framework in map building

Evidential approaches to map building have been explored by multiple authors. In

[15], a sensor model has been developed using Dempster-Shafer theory, for a SONAR

sensor beam, for handling its bigger arc of uncertainty in SONAR based detection.

In [5], a LIDAR based mapping is done using Dempster-Shafer evidence theory. They

also make use of a modified updation rule called PCR6 rule, to suit their needs

better. They also make use of discounting to incorporate unreliable evidences into

their learning process. Evidential approach have been used for vehicle trajectory

planning in [13] to capture the uncertainty in environment perception. However,

almost all of the works which uses evidential frameworks deal with sensors which

have well-defined sensor models connecting the outputs of these sensors with range

information.

In our work, we take the evidential approach to map building and apply it for the

problem of relay selection. The map is constructed from data obtained from the his-

tory of communications, which doesn’t have any well defined sensor model unlike all

the other works which takes the evidential approach to occupancy grid map construc-

tion. Also we propose a method similar to Gaussian Smoothing, for taking advantage

of the spatial correlation of the distribution of obstacles in the area, which improves

the learning rate and also the quality of the map. We have also proposed a visibility

graph algorithm for relay selection which reduces the communication overhead and

the computational overhead due to the collection of location information at every

time-step. Due to the availability of uncertainty information of each cell in the grid,

relay selection algorithm can also be improved by specifically suggesting relays, which

can help reduce the map uncertainty faster than the existing relay selection algorithm.

We have proposed this as a separate mode of relay selection called exploration mode,

14



which can be used in situations where link quality is not of priority.
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Chapter 3

System model and Assumptions

Millimeter wave communication can provide considerable improvement in the data

rate only if the distance between the sender and the receiver is within a threshold,

and they should have a LOS transmission path. If the distance is high, the data rate

reduces considerably due to the high free space loss of mm waves.

Figure 3.1: Example of a relaying

In Figure 3.1, UE1 wants to communicate with UE3, but since it is obstructed by

a building, it uses UE2 as a relay, since UE1 has an LOS with UE2 which in turn has

an LOS with UE3.
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3.1 Considered Architecture

In our work, we are considering a similar architecture to the ones mentioned in [9,18].

There is a central base stations (BS) and 6 other mm wave BS (MMW BS) on the

sides of a regular hexagon with the central long term evolution base station (LTE BS)

at the centre. The MMW BSs are connected to the LTE BS through a high speed

back-haul network. The UEs are spread across the area uniformly.

Each MMW BS can communicate with other base stations directly through the

back-haul network. It can also communicate with other UEs if there is an short

distance LOS path from the UE to the MMW BS. It can also try connecting by

the use of other UEs if they are willing to act as relays. Similarly, UEs also can

communicate with other UEs either directly or using other UEs as relays to ensure it

at least has a multi-hop LOS path.

The UE, when trying to communicate with other UEs can take suggestions from

the LTE BS, regarding the best path/relay to choose. Since these are all compar-

atively small control messages, even low data rate LTE connections can be used to

exchange these messages. Once an UE gets the required information, it tries to estab-

lish to the next link in the multi-hop path (i.e., the next link it has been suggested)

to reach the desired UE. Here we assume that, at a time any UE can accept at a

maximum one incoming and outgoing link. If the relay is established successfully, the

packets are sent through this relay. If the suggestions of the LTE BS fails, the UE

has to use the LTE BS for communication with a lower data rate.

The figure 3.2 shows one such example of the system model explained above. In

the center of the image, there is the LTE BS, and there are 6 other mm wave BS

arranged in a hexagon. The sparsely dashed line indicates the control signals that

passes between the UEs and the LTE BS, the densely dashed line represents the
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Figure 3.2: Typical system state

actual mm wave D2D communications, and the continuous lines represent the back

haul network transmission. The image shows three types of connections possible in

the network. UE1 tries to connect UE2, and it uses MMW BS 1, as a relay. UE3

wants to communicate with UE6, since it doesn’t have a direct path or a 1 hop path,

it is instructed to reach MMW BS 2, through a one hop pass. UE3 reaches MMW BS

2 through UE5. MMW BS 2 connects to MMW BS 3 through the backhaul network,

which in turn communicates to UE6. In the other example, UE4 manages to establish

a direct 1 hop path to UE7 without the help of any mm-wave BS.

3.2 Assumptions

3.2.1 Mapping Area

We divide up the area under the LTE BS into square grids of a reasonable size.

The smallest possible size of square grids are bounded by the fact that GPS has a

finite resolution, below which our method fails to differentiate between separate grids.
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Some GPS, provide an accuracy of 30cm. Such level of detail is usually not necessary.

Decreasing the size of the grids into finer grids, increases the complexity quadratically,

but also increases the accuracy with which the map has been learnt. On the other

hand, coarse grids suffer from the lack of reliability in the learnt information, as a

large grid can have an obstacle in some place and have free paths. Here we assume

that the grid size is 1m x 1m.

3.2.2 User Equipment Behaviour

Similar to [18], we consider only UEs which are used by Pedestrians. Similarly UEs

movement is assumed to be pseudo-stationary, i.e., UEs are assumed to be occupy

the same cell it occupies for a short interval of time. This is not an unreasonable

assumption, due to the fact that the speed of a pedestrian and the grid size, allows

us to choose a quantum of time, for which this assumption is true.

3.2.3 Obstacle behaviour

We consider two kinds of obstacles, static and dynamic. In our work, both kinds of

obstacles are present, but unlike [18], we only model the static obstacles. Dynamic

obstacles are included in the work, to show that the algorithm is resilient even in

presence of dynamic obstacles.

Static Obstacles: The static obstacles usually involve big building, trees, bridges,

towers, signboards etc. We assume all these obstacles block the mmwaves enough to

reduce the SINR below the acceptable threshold.

Dynamic Obstacles: Dynamic obstacles constitute humans and vehicles. These

obstacles still hamper the transmission. But the obstacles can be expected to be not

present in the same cell in subsequent time epochs.
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Chapter 4

Evidential Framework

Dempster-Shafer theory (DST) was born from the works of Dempster in 1967 [4] and

developed by Shafer in 1976 [19]. DST is also known as the theory of belief functions.

It deals with frame of discernment (FoD), basic belief assignments (BBA), belief

(Bel), plausibility (Pl) and combination rules. DST is considered as the counterpart

of Bayesian updation for belief functions. Evidential framework allows us to work

with uncertain, unreliable measurements, while also maintaining the complexity in

manageable levels.

4.1 Belief Functions

Let us consider w be a unknown quantity from a possible set of values Ω, also called

frame of discernment (FoD). The pieces of evidence are represented as a function

f : 2Ω → [0, 1], such that m(φ) = 0 and
∑

A⊆Ω m(A) = 1.

In the occupancy grid problem, 2Ω = {φ, F,O, F ∪ O = Ω}, where F represents

free, O represents occupied and Ω denotes both of them, which essentially means

unknown. A mass function known as basic belief assignment (BBA) is calculated.
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The BBA is a function which maps every possible subset of Ω to a mass value similar

to probability, such that the sum of all these masses add up to 1. The mass of

a particular subset denotes the belief in the particular subset. Mass assigned to Ω

denotes the uncertainty or unknown. Conflict φ is explicitly avoided in some rules like

Dempster’s rule of combination, whereas in Smets combination rule and in Yager’s

combination rule [12], they are either kept as is, or is added to the universal set Ω.

Belief functions can be used to model the level of certainty we have in each cell

of the occupancy grid. The communications which are used for training the map,

provide evidences for occupancy of each cell. These evidences can be combined using

the below mentioned combination rules, with the existing belief of these cells, to

gradually eradicate the uncertainty from the occupancy map.

4.2 Combination Rules

Combination rules are rules using which two separate pieces of information are com-

bined to produce the final BBA. There are multiple noteworthy rules, which are

useful. Let the two information sources be I1 and I2, and the resultant belief after

the combination be R.

4.2.1 Dempster’s Rule of Combination

This is the widely used combination rule in the evidential framework. This rule con-

siders both the pieces of information as independent to each other. In the case of

occupancy grid problem, the set is 2Ω = {φ, F,O, F ∪O = Ω}.

For any A ∈ 2Ω, The combination rule is defined as,
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mR(A) =
m∩(A)

1−m∩(φ)
(4.1)

where, mR(A) corresponds to the resultant belief after combination and m∩ cor-

responds to the conjunction rule of combination defined as,

m∩(A) =
∑

B∩C=A
B,C∈2Ω

mI1(B).mI2(C) (4.2)

m∩(φ) =
∑
B∩C=φ
B,C∈2Ω

mI1(B).mI2(C) (4.3)

Here, mI1(A) and mI2(A) corresponds to the input beliefs before combination.

Here, it can be observed that the conflict masses are removed, and the other masses

are normalized to sum up to 1.

4.2.2 Yager’s Rule of Combination

One of the main assumptions of Dempster’s rule of combination is that the evidences

are completely reliable. So in that case, a conflict only occurs in the case of corrupt

evidence. So in that case, the corrupt evidence shouldn’t be part of the belief at all.

So it was removed.

But in cases of non-reliable evidence sources, conflict can also arise due to the

inability of the sources to correctly identify the evidences. In this case, Yager proposes

to modify the combination rule to include the conflicting mass m(φ) to the whole

set m(Ω), which implies that the conflict occurs due to the uncertainty of different

evidences, rather than the corruption of any evidence source.
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For any A ⊆ Ω, The combination rule is defined as,

mR(A) =
∑

B∩C=A
B,C⊆Ω

mI1(B)mI2(C) (4.4)

mR(Ω) = mI1(Ω)mI2(Ω) +
∑
B∩C=φ
B,C⊆Ω

mI1(B)mI2(C) (4.5)

where, mR(A) denotes the resultant combined belief of A, whereas mI1(A) and

mI2(A) are the input beliefs of A, and Ω denotes the universal set.

Yager’s rule of combination is used through the work, because the reliability of

evidence is very low in our case.

23



Chapter 5

Learning based map building

algorithm

Using the above architecture and assumptions, an occupancy map can be learnt by

the use of continuous updation based on the connections established and broken.

After learning a good amount of information, this information can be used to form

good visibility graph, as mentioned in [18], which can be expected to help the relay

selection algorithm in choosing good relays and links.

The proposed method to learn the occupancies of the grids consists of two parts.

The first part of the algorithm is to update the beliefs of the grids by assigning links

to UEs and BSs and detecting the SINR difference, to guess whether the links are

laden with obstacles or not. The second part of the algorithm updates the beliefs of

student cells by learning from the surrounding expert cells. Expert cells are cells

which have a high mass for either free or occupied, i.e., above a particular predefined

threshold th. Student cells on the other hand, are cells which have both their beliefs

below a specific threshold tl. The second part of the algorithm takes advantage of the

fact that obstacles are not distributed uniformly and independently across the grid,
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but distributed as clusters such as buildings, bridges etc.

Below we explain the process to build the map for UE-UE communication. The

UE-BS communication also requires a similar process.

5.1 Learning from communication

We propose to improve the algorithm proposed by [18] to learn individual occupancies

of each cell in the grid. In the above algorithm, the authors propose that every time

a link gets obstructed, i.e., the measured SINR is very less than the expected SINR,

the cells in the straight line from the sender to the receiver, are assigned an equal

probability for the presence of the obstacle. Then by using the prior for the cells, the

probabilities are adjusted.

There are some problems with this kind of updation

• There can be more than 1 obstacle in the straight line from I to J. So considering

the cells equiprobable to contain the obstacle is not accurate. Also the updation

probabilities of each cell is independent of the other, as each cell here is a

separate distribution. So it need not necessarily add up to 1.

• Now considering that there is a possibility of more than 1 obstacle, the first

obstacle the wave hits, will mostly be enough to annihilate the SINR. So the

presence of the 2nd and the other obstacles make no difference to our outcome

of the experiment.

For example: Consider that we have a high probability of an obstacle in a par-

ticular cell in the beginning of the straight line from the sender to the receiver.

Let the grid below be the straight line from the sender to the receiver. The

numbers in each cell indicate the probability of finding an obstacle in that cell.
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If we are fairly certain that the obstacle exists in the 2nd cell which has a

high probability of an obstacle, then the experiment we conducted doesn’t say

anything about the cells after the cell. So assigning an equal probability to

those cells will be misleading. Our experiment, will have lesser and lesser idea

of the status of the cells after the 2nd cell, since the obstacle probability is

higher in the 2nd cell. No matter what lies or doesn’t lie after the 2nd cell,

the experiment’s outcome will not change. So the updation probability/beliefs

should be lesser and lesser as we move forward in such situations.

By using the evidential framework, we are well placed to learn in the midst of

highly uncertain evidence. The algorithm also has two sub parts, explained below.

The first part, we can call as the forward updation, will provide an evidential way to

update the cells moving forward from the sender’s cell moving towards the receiver’s

cell. In the second part, the backward updation, will try to influence the forward

updation’s updation probability, if the cells after the particular cell is mostly empty.

5.1.1 Forward Updation

Let us consider 2 hyper parameters for now. Let Os be the density of static obstacles

in the given area, and Od be the rate of dynamic obstacles in the given area.

We use an algorithm called Bresenham’s algorithm [2], which is a well known

algorithm in Computer Graphics to draw straight lines avoiding floating point op-

erations in computer screens. Using Bresenham’s algorithm, let us consider that we

have obtained the sequence of cells, which come in between the sender cell (I) and

the receiver cell (J). Each cell has a corresponding tuple attached with it. Let it be
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(Co, Cf , Cd), where Co is the mass of Presence of obstacle of cell C,Cf is the mass of

absence of obstacle of cell C, Cd is the mass of , or otherwise “Don’t know”. Let the

cells in the straight line from I to J, be C1, C2, ., Cn

Case 1 : Experiment returns no obstacles: In this case, we now clear all

these cells of any possibility of having a static obstacle. So we now update this with

triples ( 0,1,0 ). Using the update rule ( Dempster’s Combination rule ), if we update

for all the cells C1, C2, C3, ..Cn, all the cells will then have tuples (0,1,0), (0,1,0)...,

signifying that we are sure that it doesn’t have any static obstacle. We can do this,

because even if we have one obstacle-less communication, it is sure that there are no

static obstacles, otherwise we wouldn’t have obtained an LOS even once.

Case 2: Experiment returns an obstacle: In this case, our experiment re-

turned an SINR which is very less than the expected SINR. We have to consider all

the possibilities of an obstacle. The drop in SINR can be due to a dynamic obstacle

or there could have been a static obstacle somewhere in the straight line.

Let us consider the probability with which ray reaches a cell Cr be Pr. We can

calculate Pr by using the below mentioned recursive formula.

Pr = Pr−1((1−Os)C
d
r−1(old) + (1−Od)C

f
r−1(old)) (5.1)

P1 = 1

The equation 5.1 is a heuristic formula. As we argued in Section 5.1, we can learn

information about a cell when and only when the mm wave reaches the particular cell.

So, when the probability of reaching the cell is low, the evidence we get for saying the

cell is occupied, also reduces. For the same reason, we calculate the probability Pr

with which the mm wave reaches cell Cr without significant drop in SINR. We consider

that with a probability OsC
d
r +Co

r +OdC
f
r , where Os is the hyper parameter indicating
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the approximate density of obstacles, and Od is the rate of dynamic obstacles ( Od = 1

indicates there is always a dynamic obstacle, in any free space, Od = 0 indicates there

is no dynamic obstacles ). Instead of relying on the hyper parameter Od, one can

instead rely on a dynamic obstacle metric, which depends upon the actual probability

of dynamic obstacles in the particular area or with an estimated probability of a

dynamic obstacle using a method like dynamic obstacle learning method specified

in [18]. But that is beyond the scope of this report.

Now using eqn. 5.1 we devise a BBA for the current experiment. Let the belief

for the current experiment for cell r be Br = (By
r , B

n
r , B

d
r ),

Bo
r = PrOs, B

f
r = 0 (5.2)

Bd
r = 1−Bo

r (5.3)

To obtain the posterior, this BBA can be combined with the prior using the

Yager’s Combination rule. Yager’s rule has been chosen here because the uncertainty

of the experiment is still very high, so conflicting information can be taken as a source

of uncertainty. Since we are using Yager’s rule, the cells which have prior beliefs (

0,1,0 ) are corner cases here. Instead of updating these cells, these are left as is, as

the updation using the new BBAs can make the cell’s belief uncertain again, but in

our experiments, we argued in Case 1 in 5.1.1 that (0,1,0) is the only certain state

that we can have, since we can clear any cell of an obstacle if it ever has a successful

communication. Due to this, only Pr is calculated for these cells and the updation

steps are skipped.
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Co
r(new) = Co

r(old)(B
o
r +Bd

r ) +Bo
rC

d
r(old) (5.4)

Cf
r(new) = Cf

r(old)(B
f
r +Bd

r ) +Bf
rC

d
r(old) (5.5)

Cd
r(new) = Cf

r(old)B
o
r + Co

r(old)B
f
r +Bd

rC
d
r(old) (5.6)

5.1.2 Backward Updation

In forward updation, we assumed Os to be a hyperparameter constant. But consider a

case where we already know most of the cells after a particular cell Cr, in the straight

line from I to J, is empty. In this case, we can deduce that there is an increased

chance/evidence of an obstacle being here. Ideally, in such a situation, we can assign

a high belief for the cell being Occupied.

Due to this, let us consider Os,r to take values equal to a function of another hy-

perparameter θ, which now denotes the approximate density of obstacles. Whenever

the cells after Cr are not known to be mostly empty, this function will return a value

equal to θ. But when those cells are known to be mostly empty, it should take a value

almost equal to 1.

Let us consider an skewed/weighted occupancy metric, Ar for the cell r.

Ar =
1

n− r

n∑
i=r+1

(γ(Cf
r ) + (1 + γ)(Co

r + Cd
r )) (5.7)

γ is a hyperparameter which takes a positive value near to 0. This is to ensure

that Ar doesn’t actually reach 0 in any case. The backward updation formula we will

propose will have a value equal to 1, when Ar is exactly 0. Whereas in reality we will

never be certain about the presence of a static obstacle, even if all the cells after the

cell in discussion, is empty, Since there is a finite possibility of a dynamic obstacle.
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So γ shifts the left extreme of the axis to some small positive value above 0. Also

(1 + γ) factor is used to skew the range above 1, to ensure that in cases where there

is a small uncertainty about some cells, but all remaining cells are known to be free,

the average is not brought down by the majority free cells. i.e. The mere presence of

a free cell is less significant in this decision than the presence of an obstructed or an

uncertain cell.

Now using this we can introduce a new parameter in place of Os, by the use of θ,

as a weaker hyperparameter.

Os =


θ + (1− θ) log(Ar+ε)

logε
Ar ≤ 1

θ Ar > 1

(5.8)

Here ε is yet another hyperparameter, which will determine how fast the curve

falls from 1 to θ. The figure 5.1 below showcases the effect of different ε.
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Weighted occupancy of cells after Cr i.e. Ar

O
s

Backward updation of Os. θ = 2/5

0.0000001
0.00001
0.0001
0.001
0.01

Figure 5.1: Os for various values of ε

This parameter Os can now be used in (5.1) and (5.2) instead of the constant
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hyper parameter.

Algorithm 1, details the implementation of the learning by communication algo-

rithm. G is the entire grid, which contains the triples for all the cells in the entire

map. p1 and p2, are the coordinates of I and J. C is an auxiliary array used here to

store all the individual elements in the straight line between I and J. Each element

of G and C, is a structure which in turn contains three elements o,f and d as shown

below. Lines 7 to 10,is the part where updation for cells which are found to be empty

happens. Lines 11 to 29, is where the updation for lines which are blocked happens.

Lines 13 - 16 is the backward updation. It should be clear now, why it can be called

backward updation, since the computation starts from the last cell. Lines 17 - 29

corresponds to the forward updation, where the main learning takes place. Ar from

backward updation, is used in Line 18 to obtain Os. In line 27, the call for learning

from surroundings arises, which will be detailed later. After all the learning, we will

finally update the cells in the grid.

struct belief_mass{

float o,f,d;

};

5.2 Learning from neighbourhood

We can learn a sparse map from the algorithm detailed in Section 5.1. But as we

explained in Section 1.4, we also propose to improve the learning process by con-

sidering the spatial correlation of the obstacles. This property helps us to predict

the occupancy of cells ,whose neighbour cells have high belief. Here we propose an

algorithm similar to Gaussian smoothing, to learn from neighbours.
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Algorithm 1: Learning through Communication

Data: p1, p2, δ, G, θ, ε, Od, γ
Result: G

1 E SINRp1,p2 ← Estimated SINR between p1 and p2 assuming LOS using
Frii’s free space equation ;

2 M SINRp1,p2 ← Measured SINR between p1 and p2 ;
3 Bp1,p2 ← Set of cells lying between p1 and p2 using Bresenham’s algorithm. ;
4 P ← 1 ;
5 n← len(Bp1,p2) /* Length of Bp1,p2 */;
6 C ← Belief triplets for cells corresponding to Bp1,p2 from G /* C is an

array of a structure with three members, C.o,C.f,C.d */ ;
7 if |M SINR− E SINR| < δ then /* LOS established */

8 for r ← 1 to n do
9 C[r]← (0, 1, 0)

10 end

11 else /* LOS blocked */

12 A← Array of floats of size n-1;
13 for r ← n− 1 to 1 do
14 R Sum← (1 + γ) ∗ (C[r + 1].o+ C[r + 1].d) + γ ∗ C[r + 1].f ;

15 A[r]← R Sum
n−r ;

16 end
17 for r ← 1 to n do
18 if A[r] ≤ 1 then

19 Os ← θ + (1− θ) ∗ log(A[r]+ε)
log(ε)

;

20 else
21 Os ← θ
22 end
23 Pnew ← P ∗ ((1−Os) ∗ C[r].d+ (1−Od) ∗ C[r].f);
24 B ← (P ∗Os, 0, 1− P ∗Os);
25 if C[r] 6= (0, 1, 0) then
26 C[r]← YagersCombination(C[r],B) ;
27 end
28 LearnFromSurroundings(C,Bp1,p2) ;
29 P ← Pnew

30 end

31 end
32 Update G using updated values from C ;
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Our claim is taking the spatial correlation into account, makes the learning phase

shorter and also since the algorithm relies entirely on random connections, it also

helps to learn a better representation of the map within a short period of time and

possibly with fewer data points.

5.2.1 Discrete Gaussian Smoothing

Discrete Gaussian Smoothing [3] is a well known operator used in Computer Vision

to smooth/blur and to remove noise from an input image.

A 2-D isotropic Gaussian has the form :

G(x, y) =
1

2πσ2
e−

x2+y2

σ2 (5.9)

A discrete approximation of a Gaussian function is used as the Gaussian filter, and

is usually convolved around an image in order to smooth the image or remove noise

in the image. The filter in the Figure 5.2 is a discrete approximation of a Gaussian

distribution with σ = 1. The distribution is truncated after 5 cells in either direction,

and the entire filter is finally normalized to add up to 1.

1 4 7 4 1

4 16 26 16 4
1

273
7 26 41 26 7

4 16 26 16 4

1 4 7 4 1

Figure 5.2: Discrete gaussian filter of size 5 with σ = 1
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5.2.2 Smoothing based learning

Let us name the cells ,which have high mass i.e. more than a threshold th, for either

Free or Occupied state as experts. Due to the spatial correlation of the obstacles

in the space, each expert gives us some clue into how the surrounding cells will look

like.

For cells, which have masses for both Free and Occupied less than less than a

particular threshold tl, we learn from the neighbouring experts using Smoothing based

learning. Let us call them student cells.

Let us consider a fixed neighbourhood size of l, throughout the learning phase.

The size of the filter for a neighbourhood size l will be (2l + 1)× (2l + 1).

Let us consider a variance function σ(t), where t is the number of the iteration.

The purpose of this variance function is to enable the Gaussian filter to shrink over-

time, as to make it learn from lesser area, as we learn more about the environment.

σ(t) = σ0e
−αtt (5.10)

α(t) can now be used in the place of α for generating the Gaussian distribution.

Let us consider the coordinates of the expert cell using which smoothing is going

to be applied in its neighbourhood, be x0 and y0.

All the student cells in the neighbourhood of ( x0 ,y0 ), i.e. x0 − l ≤ x ≤ x0 +

l, y0 − l ≤ y ≤ y0 + l are all chosen, and let the set be F . If the cell in ( x0 ,y0 ) is a

Free expert, then for a cell (x, y) ∈ F in its neighbourhood, the new BBA will be

Bo
(x,y) = 0, Bf

(x,y) = G(x− x0, y − y0) (5.11)

Bd
(x,y) = 1−Bf

(x,y)
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Similarly, if ( x0 ,y0 ) is a Occupied expert, then for a cell (x, y) ∈ F in its

neighbourhood, the new BBA will be

Bo
(x,y) = G(x− x0, y − y0), Bf

(x,y) = 0 (5.12)

Bd
(x,y) = 1−Bo

(x,y)

For all cells in F, Yager’s combination rule is used to update the belief assignment.

5.2.3 Implementation Details

The environment even though is correlated to a degree, is not usually very smooth.

This kind of smoothing should be applied carefully, as it can make the resulting map

too smooth. So everytime, a cell is updated through communication, the updated

expert cells, can be used to learn information about their surroundings.

The Algorithm 2 shows how a particular cells in the map, whose belief is less than a

threshold, can learn from its expert neighbours. Here ( x0, y0 ) is the coordinate of the

expert cell, whose expertise we are about to spread to its student neighbours. T is the

iteration number. σ0 is the initial value of standard deviation. αt is the time constant,

which will determine how fast the standard deviation falls off. G is the occupancy

grid that is currently being learnt by the algorithm. l is the neighbourhood size of

the filter. th and tl are limits, using which we can identify student and expert cells.

From lines 4 - 17, we check whether the particular cell in question is an expert, on

which case, we try to spread its expertise to its neighbours. If the cell is an occupied

cell, it increases the belief for occupied class for cells in its neighbourhood, defined by

l. If it is unoccupied, it does the same but for the other class. For each expert cell,

this is a O(1) operation since, filter sizes remain a constant throughout. For the each
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communication though, it is of the order O(E), where E is the number of expert cells

in the straight line after the initial updation.

Algorithm 2: Learning through Smoothing

Data: x0, y0, T,G, σ0, αt, l, th, tl
Result: G

1 σT = σ0e
−αtT ;

2 Gauss ← Gaussian filter of size (2l + 1)× (2l + 1) with σ = σT and
normalized to 1;

3 S ← Coordinates of students in the range
x0 − l ≤ x ≤ x0 + l, y0 − l ≤ y ≤ y0 + l ;

4 if Go
x0,y0
≥ th OR Gf

x0,y0
≥ th then

5 for (xs, ys) ∈ S do
6 B(xs,ys) ← (0, 0, 1) ;
7 if Go

x0,y0
≥ th then ; /* Occupied expert */

8

9 Bo
(xs,ys)

= Gauss(xe − x0, ye − y0) ;

10 Bd
(xs,ys)

= 1−Bo
(xs,ys)

;

11 else ; /* Free expert */

12

13 Bf
(xs,ys)

= Gauss(xe − x0, ye − y0) ;

14 Bd
(xs,ys)

= 1−Bf
(xs,ys)

;

15 end
16 G(xs,ys) ← Yagers Combination( G(xs,ys), B(xs,ys) ) ;

17 end

18 end

5.3 Building Visibility graph and Relay Selection

Algorithm

We are also suggesting improvements to the visibility graph and the relay selection

algorithm proposed in [18].
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5.3.1 Visibility Graph

In [18], the visibility graph involved all the mm wave BS’s to build their own visibility

graphs with only the nodes inside the coverage area of kD, where k is the number

of hops allowed and D is the distance beyond which SINR drops too low to get any

significant advantage in data rate. Also at every time step, the visibility graph gets

reconstructed based on their updated locations.

This has two potential problems.

• Expecting the devices to update the location at every time step, especially when

the time step considered here is 0.25s is unrealistic. Also when the number of

UEs in the zone gets high, the overhead induced by an updation like this, will

become unmanageable very quickly.

• When each mm wave BS construct their own visibility graphs, with a horizon

of kD, a lot of potential D2D links will be missed which cross the horizon of

the mm wave BS’s coverage. This problem will only worsen when the available

UEs within the zone increases. So some sort of global visibility graph has to

be maintained within the entire zone to ensure those links aren’t missed. But

with the current setup, constructing the global visibility graph will impose a

heavy computational load on the BS, especially considering the time limit of a

time-step being as small as 0.25s

Due to the above mentioned problems, we propose that the visibility graph to be

constructed in the LTE BS instead of the mm wave BS, as the coverage of any mm

wave BS is limited when compared to the LTE BS. Also since the LTE BS can reach

any device within the zone, it constructs a global visibility graph for that zone.

Addressing the problem of increasing computational complexity, we propose that

instead of constructing the visibility graph at the start of every iteration from scratch,
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the changes in locations can be received as updates from the UEs, which will then be

updated in the visibility graph. Changes in the location of an UE will mean that it will

have new neighbours. To find out the neighbour a KD-Tree [1] will be maintained

alongside the visibility graph which can efficiently compute the neighbours of any

other node in O(
√
n+ k) time , where k is the number of neighbours of a cell, and n

being the total nodes in the KD-Tree. Also calculating and adding the new node in

the visibility graph will be O(k) using a visibility graph similar to the one proposed

in [18]. The deletion of a node in the KD-Tree takes another O(
√
n) time.

One drawback of this method is, since we are maintaining the visibility graph

without reconstructing every iteration, the weights of the visibility graph which will

encode the information learnt in the visibility map, will remain outdated. This should

not be a problem in a place where the UEs keep moving fast. But in such a situation,

the overhead by changing the nodes will overtake the overhead of constructing the

visibility graph every iteration. In a zone, where the UEs dont move fast, the weights

of the visibility graph also does not get adapted fast.

So to overcome this problem, the entire graph can be reconstructed once every

n iterations once, to ensure that the graph the algorithm is not working with very

outdated information.

The visibility graph’s weights are decided by the use of the visibility map con-

structed through learning in Section 5.1. Consider two nodes in the graph correspond-

ing to individual devices at positions p1 and p2, the weight of the edge connecting

these two nodes is calculated by multiplying the Free and Uncertain belief masses

of all the intermediate cells between p1 and p2. Uncertain belief mass is also taken

into account to encourage the algorithm to suggest uncertain links for exploration

implicitly.
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w(p1, p2) =
∏

b∈Bp1,p2

(1− Co
b ) (5.13)

In the case where, a separate pre-processing time can be allocated, for example if

it is possible that while setting up such a network, a group of dummy UEs are allowed

to roam around the area, then an alternate type of visibility graph can be used for

such a phase, which we can call exploratory phase. During the exploratory phase,

the aim of the experiment is to learn as much as possible about the map/zone. So

since the communication quality is not of importance here, we can slightly tweak the

visibility graph weight allocation procedure to prefer uncertain links rather than best

LOS links.

In the exploratory phase, instead of the above mentioned weight initialization

formula, the below formula can be used.

w(p1, p2) =
∑

b∈Bp1,p2

Cd
b (5.14)

By using the uncertainty alone during the link creation, while relay selection, links

with the highest cumulative uncertainty can be preferred over well known performing

links. This will aid the faster learning of the graph and reduce the number of iterations

required for convergence of the graph.

Algorithm 3, details how the individual functions of the visibility graph should

work. The function CreateVGraph creates a visibility graph from the set of nodes

initially. EditVGraph is the function which will be called when the UE updates its

location change to the LTE BS. This function updates the Visibility Graph in such

a way that the information related to the updated UE is up to date. AddToVGraph

is a helper function, whereas DeleteFromGraph is called when the UE moves updates
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the BS that it is going to disappear.

5.3.2 Relay Selection

Using the visibility graph, if a request for data transmission from p1 to p2 arrives,

the distance between them are checked. If they are within the same mm wave BS’s

coverage and within kT distance, the mm wave BS will arrange a k hop limited

path from p1 to p2. But on the other hand, if they don’t satisfy either one of these

constraints, the mm wave BS arranges a path to their nearest mm wave BS, which

can act as a data portal.

When a request for a link from p1 to p2 arrives, the candidate links are chosen

from the visibility graph in such a way that the expected data rate of the link chosen

is maximized. The maximum data rate of a particular link can be easily computed

using Shannon’s capacity theorem and by the use of Frii’s transmission equation, as

mentioned in [18].

For each hop, in the path, we have the knowledge of probability of obstruction in

the form of the weight of the corresponding edge in the visibility graph. Using this

information, we can easily compute the expected data rate using that link. For a k

hop link, the minimum of the expected data rates is the expected data rate of the

entire k hop link, as the weakest link will determine the rate of information through

the k hop link. There will be usually multiple candidate links, which are suggested

by the visibility graph. The K-hop limited link, which has maximum of the expected

data rate is finally chosen as the best relay, and is communicated to the involved

devices and relays.

Exploration Phase: If an exploration phase is possible, then the relay selection

algorithm also has to be tweaked accordingly to use the modified visibility graph. As
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Algorithm 3: Visibility Graph constructed by LTE BS

Data: G,U,R,m, T, k,mode
Result: V G = (V,E), T r = KDTree(U ∪R ∪m)

1 Function CreateVGraph(G,U,R,m, T, k,mode):
2 V ← U ∪R ∪m
3 Tr = KDTree( V )
4 for p1 ∈ V do
5 AddToVGraph(p1, V, T r,G,mode)
6 end
7 return (V,E)

8 EndFunction
9 Function EditVGraph(G,D, T,mode):

10 Remove D from V
11 Remove D from Tr
12 Add new location of D in Tr
13 AddToVGraph(D, V, Tr,G,mode)

14 EndFunction
15 Function AddToVGraph(p1, V, T r,G,mode):
16 P ← Tr.GetNeighbours( p1, T )
17 for p2 ∈ P do
18 Bp1,p2 ← Set of points between p1 and p2 using bresenham’s algorithm
19 if mode == ”explore” then

20 E(p1, p2)←
∑

b∈Bp1,p2

Gd
b

21 else

22 E(p1, p2)←
∏

b∈Bp1,p2

(Gf
b +Gd

b)

23 end

24 end

25 EndFunction
26 Function DeleteFromVGraph(p1, V, T r):
27 Remove p1 from V
28 Remove p1 from Tr

29 EndFunction
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the modified visibility graph contains the uncertainty in each hop, the score of each

link can be calculated by using the sum of all the weights of each edge in the k-hop

link suggested by the visibility graph, and the link which has the maximum score is

finally used for the communication.

The procedure in Algorithm 4 is the relay selection algorithm in detail. The K

hop limited BFS in line 4 is O(N), where N is the number of neighbours in k hop

radius. The As we can see, in line 3, the score is calculated differently when compared

to line 5, where the relay selection mode is normal. Finally the algorithm returns the

path with the best score, which corresponds to the path with the highest data rate

in normal mode, or the path with the highest uncertainty in explore mode. We can

easily see here, that the link performance, will be progressively worse in the explore

mode, as it obsessively tries to form links through areas, where not much is known.

Algorithm 4: Relay selection by LTE BS

Data: ps, pd, G, k,mode, V G
Result: Suggested path

1 P ← V G.hopLimitedBFS(ps, pd, G, k)
2 for p ∈ P do
3 if mode == ”explore” then

4 Sp ←
∑
e∈p

w(e)

5 else

6 w ←
∏
e∈p

w(e)

7 Sp ← min
e∈p

(W log2(1 +MAX SINRe))

8 Sp ← w ∗ Sp
9 end

10 end

11 return (p∗ : S∗p = max
p∈P

R
′
p)
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Chapter 6

Simulation and Results

6.1 Simulation Setup

For simulating the algorithm, we have assumed some system parameters. We have

considered a square area of 1500m × 1500m , with an LTE BS in the center of

the area, surrounded by 6 mm wave BS’ in the form of a regular hexagon, equally

placed so as to cover maximal area. For the purpose of comparing the efficacy of the

algorithm under various kinds of obstacles density, we have assumed two different

sorts of obstacle placement. Sparse obstacles and dense obstacles. In a Sparse map,

we have assumed 100 15x15 obstacles, 5 20x20 obstacles and 6 100x100 obstacles. In

the dense map, we have considered 100 15x15 obstacles, 50 20x20 obstacles and 20

100x100 obstacles, an almost 3 times increase in the obstacle density.

In addition to the static obstacles, there are 300 3x3 dynamic obstacles constantly

moving around the map, using the random waypoint model, with thinking period

randomly chosen in the range (0s,10s). Eventhough, the above algorithm does not

model dynamic obstacles, those are still deployed to test how both algorithms fare in

the presence of dynamic obstacles.
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There are 1300 UEs moving around the map, continuously in the same random

waypoint model, with thinking period in the range of (0s,10s). The maximum speed

of a UE is limited to 4 kmph. Thinking period adds some realism to the movement,

as the users generally dont keep continuously moving around. Also, thinking periods,

allow us to use the computational benefits of not having to update the location of

UEs in every 0.25s or in each iteration.

The coverage of a UE or mm wave BS is chosen to be 150m and hops are capped

at 3. The time period of each iteration is chosen to be 0.25s.

We assume that half the UEs, chosen randomly, are willing to act as a relay at

any point of time. And in the remaining half, half of them will act as senders and

the rest will act as receivers.

Due to the pseudo-stationary assumption, we also assume that all the movement

happens between the iterations and not during a single iteration. This is a reasonable

assumption to make since the block sizes are 1m x 1m, even if the UEs of obstacles

are in motion during the time interval, if they remain in the same cell, the assumption

still holds.

We assume that if there is an obstacle in the path of a link, there will be significant

attenuation at that epoch, so much so that, it will pull the measured SINR below the

acceptable threshold.

The existing learning algorithm in [18], assumes initially that the entire map is

free. In our algorithm, we consider the entire map’s belief in entirely uncertain, i.e.

the belief masses of each of the cell in the entire map is (0,0,1) initially.
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6.2 Results

Here we compare the proposed procedure with the learning based approach proposed

by [18]. In [18], the updation rule used, is very similar to yager’s combination rule, if

we consider the probability as belief mass of occupied class. So we used the yager’s

updation rule for the method proposed in [18], to make both the maps easily compara-

ble. Also, the existing model, learns information about dynamic obstacles in addition

to learning about the static map. Since in this report, we are only modelling static

obstacles, learning of the dynamic obstacle was not done for the existing algorithm,

in order to maintain a level playing field.

Figure 6.1: Actual simulation area

We calculated the accuracy , precision and recall of the estimated map with the

actual map, at the end of each iteration, by considering that if the belief mass of a

particular cell being occupied is greater than or equal to the mass of the cell being

empty, then we consider the particular cell occupied, and vice versa. Accuracy, pre-

cision and recall was calculated using the formula below. The figure 6.2, shows what

True Positive ( TP ), False Positive ( FP ), True Negative ( TN ) and False Negative

( FN ) correspond to.
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Figure 6.2: Confusion Matrix

Accuracy =
Number of correctly predicted grids

Total Number of grids

=
TP + TN

TP + TN + FP + FN

(6.1)

Precision =
Number of correctly predicted occupied grids

Number of grids predicted as occupied

=
TP

TP+FP

(6.2)

Recall =
Number of correctly predicted occupied grids

Number of actually occupied grids

=
TP

TP+FN

(6.3)

Accuracy measures how much cells, the algorithm tags correctly in general. Pre-
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(a) At the end of 100 itera-
tions

(b) At the end of 200 itera-
tions

(c) At the end of 300 itera-
tions

(d) At the end of 100 itera-
tions

(e) At the end of 200 itera-
tions

(f) At the end of 300 itera-
tions

Figure 6.3: The maps after different stages of learning. The top row corresponds to
the proposed model, and the bottom row corresponds to the existing model
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Dense map Sparse map

Static Obstacle sizes 15,20,100 15,20,100
Static Obstacle nos. 100,50,20 100,5,6

Dynamic Obstacle nos. 300 100
Dynamic Obstacles size 3 3

θ 0.4 0.25
Od 0.003 0.001
ε 0.01 0.01
γ 0.05 0.05
σ0 100 100
αt 0.001 0.001
l 3 3
t ( 0.45, 0.55 ) (0.45, 0.55 )

Table 6.1: Hyperparameters chosen

cision measures how correct the predictions of a particular class is. In this case, we

are measuring how precise our occupied predictions are. Recall is the ratio which

measures how many occupied cells we are successfully finding out from the set of

actually occupied cells. Precision measures how specifically we are tagging a grid as

an obstacle, whereas recall measures how good the algorithm is at finding an obstacle.

We need to compare all three metrics, because the number of unoccupied cells far

outweigh occupied cells, to come to a conclusion only with accuracy.

For the above conditions and using the hyperparameters mentioned in Table 6.1,

both the algorithms were tested for 300 iterations, with each iteration consisting of

325 communications. Also, the visibility graph and relay selection proposed by this

report was used for the comparisons. Also, both the algorithms were tested for the

same amount of time, when the relay selection mode was exploratory. The map in

Figure 6.1 is one such dense maps, in which the simulation took place. The results of

the learning can be seen in Figure 6.3. The cyan zones correspond to the free zones,

and the black zones correspond to obstacles.

The accuracy in Figure 6.4a and precision in Figure 6.4b of the proposed method
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raises much faster than that of the existing method regardless of the mode of relay

selection used. The recall in 6.4c of the proposed method though falls with iterations

and later stabilises at a certain point. The above behaviour suggests that exist-

ing method tags occupied spaces much more easily when compared to the proposed

method, as the precision of the existing method rises slower when compared to the

proposed method. This is due to the fact that if an obstacle is found, the existing

method tags the entire straight line from the sender to the receiver, as an obstacle

with a probability inversely proportional to the length. The proposed method consid-

ers the fact that, the edges of the obstacle can only be observed by such an experiment

and cautiously avoids making assumptions about the interiors of the obstacles. Due

to this, the insides of a large obstacles can be seen as a hugely uncertain area in the

proposed method, since it was actually never observed at all.

49



0 100 200 300

0.2

0.4

0.6

0.8

1

Iterations

A
cc

u
ra

cy

Proposed method in explore mode
Proposed method in normal mode
Existing method in explore mode
Existing method in normal mode

(a) Accuracy w.r.t iterations

0 100 200 300

0.2

0.4

0.6

0.8

Iterations

P
re

ci
si

on

Proposed method in explore mode
Proposed method in normal mode
Existing method in explore mode
Existing method in normal mode

(b) Precision w.r.t iterations
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(c) Recall w.r.t iterations

Figure 6.4: Metric variation w.r.t incoming data
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Chapter 7

Conclusion and Future Work

In this report, we proposed a evidential framework based learning algorithm which

also takes advantage of the spatial correlation, and showed that it learns faster than

the other learning algorithm for relay selection. This does not need any sort of prior

data such as satellite terrain data. Also, we proposed a visibility graph algorithm

which reduces the overhead of the number of location updates. We also proposed

a relay selection mode called exploration mode, using which the map can be learnt

faster than the normal mode.

Future work in this area can concentrate on the relay selection algorithm here,

which is still expensive, as it involves a BFS every time, and this becomes unman-

ageable once the number of hops increase. An efficient relay selection algorithm with

a more efficient data structure can be looked into to heavily improve the learning

algorithm along with the system in place.
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