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ABSTRACT

In boundary labelling problem the target is to labeling a set P of n points in

the plane with labels that are aligned to side of the bounding box of P . In this

work, we investigate a variant of this problem. In our problem, we consider a

set of sites inside a rectangle R and label are placed in the compliment of R and

touches the left boundary of it. Labels are axis- parallel rectangles of same size

and no two labels overlaps. We introduce a set V , called visibility , which is a set

of subsets of labels correspond to points of sites. Before connecting site (say p) at

point (say p1 ∈ p) with some label (say l), first we need to check weather subset of

label correspond to p1 is in set V or not. If it is then we check the label l belongs to

that subset of label or not. If it contains that label then we can join site to the label,

otherwise not. In our problem we used po-leaders, that is starting from site it is

parallel to the side of R where its label resides and then orthogonal to that side of

R. We considered various geometric objects as sites, such as point, same length

horizontal segment, different length horizontal segments. As a solution, we derive

a dynamic algorithm that minimizes the arbitrary cost function and give us planar

solution where sites connects to labels by po- leaders and induces a matching

such that no two po-leader intersects, also no two leaders shares common site

(or label) and every leader satisfies visibility V . For points as sites, our dynamic

algorithm runs in O(n3) time and optimizes the cost function. This running time

also same for the case of unit length horizontal line segments as sites. Then we

taken arbitrary length horizontal segment, algorithms runs in O(n4) time. We

assumed that only one end point of any horizontal line segment can be used to

connect label (by po-leader).
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Chapter 1

Introduction

A Map consists of areas having different sizes and various information. To rec-

ognize those areas, their associated information is required. For this, we label

areas with their associated information. But when we need better visualization

of map as well as information about areas, then arbitrary labelling of map leads

to loss of information. Also, arbitrary labelling reduces the readability of map if

map is dense (that is, map has too many areas and lot of information to show).

To address this problem, we need algorithms to labelling of maps such that the

results increases the visibility as well as readability of map with minimum loss of

information.

1.1 Boundary labeling problem

In 2007, Bekos et al.[1] introduce the following boundary labeling problem.

Given an axis-parallel rectangle R = [lR, rR]× [bR, tR] and a set P ⊂ R of n

sites pi = (xi, yi), each associated with an axis-parallel rectangular open label li
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of width wi and height hi , the task is to find an optimal leader-label placement.

An optimal leader-label placement follows the following criterias:

1. Labels have to be disjoint.

2. Labels have to lie outside R.

3. Intersections of leaders with other leaders, sites or labels are not allowed.

4. Leader ci connects site pi with label li for 1 ≤ i ≤ n.

5. The ports which are the endpoints of leaders at labels may be fixed.

A rectilinear leader consists of a sequence of axis-parallel segments that con-

nects a site with its label. Bekos et al.[1] consider boundary labeling problem

for various types of leaders and optimal leader-label placements according to the

following two objective functions:

(I) short leaders (minimum total length) and

(II) simple leader layout (minimum number of bends while considering recti-

linear leader).

1.2 Our problem definition

We describe our problem definition with the notation used in kindermann et al.[3].

We are given an axis parallel rectangle R = [0,W ] × [0, H], which is called

the enclosing rectangle, a set P ⊂ R of n sites s1, s2, ...., sn within the rectangle

R and a set L of n axis-parallel rectangles l1, l2, ...., ln of equal size (same width

and same height), called labels. The labels lie in the complement of R and touch

the left boundary of R. No two labels overlap.

We introduce a set V , called visibility , which is a set of subsets of labels

correspond to points of sites. Before connecting site (say si) at point (say sia ∈ si)
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with some label (say l), first we need to check weather subset of label correspond

to sia is in set V or not. If it is then we check the label l belongs to that subset of

label or not. If it contains that label then we can join site to the label, otherwise

not.

We define visibility V = {Vs11 , Vs12 , .., Vs21 , Vs22 , . . . . . . , Vsn1 , Vsn2 , . . . }where

Vsia ⊆ L and sia ∈ si and sia is a point. If we wish to join some point (say sjb ∈ sj
to label (say lk) where sj is a site, we check weather subset of labels (say Vsjb )

corresponding to sjb is in V or not. If Vsjb ∈ V and lk ∈ Vsjb then we have a

choice of leader (say c) which connects site sj at sjb to label lk, otherwise not.1

We denote an instance of the problem by the quadruplets (R,L, P, V ). A

feasible solution of a problem instance (R,L, P, V ) is a set of n non- intersecting

leaders C = {c1, c2, ...., cn} in the interior of R, if they satisfies the following

conditions:

(1): each leader connects a site to label and no two leaders of set C share a com-

mon label (or site).

(2): for each leader except their end points they should not intersect with any site.

(3): leaders must satisfy visibility V .

In our problem, we consider only po-leader. A po-leader consists of a two

axis-parallel segments that connects a site with its label. The first line segment

of a po-leader starting at a site pi is parallel (p) to the side of R where its label

touches and the second line segment which joins label is orthogonal (o) to that

side of R. For an illustration of po-leader see 1.1. The endpoint of a leader at a

label is said to be port. Two leaders are same if and only if their corresponding
1 In theory |V | possibly infinite, But when we use it for our algorithms |V | <∞.
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Figure 1.1: Example of po-leaders

end points are same. We define this type of labelling as planar boundary labelling

by po-leader. We define cost function which takes input as leader and returns a

real value. The optimal solution of a problem is a planar boundary labelling by

po-leader with minimum cost.

We consider some variation of this problem which are as follows:

(Prob 1): P is a set of n points, i.e. we take points as sites.

(Prob 2): P is a set of n same length horizontal (or unit length) line segments

where only end points of line segment can be used to connect label.

(Prob 3): P is a set of n arbitrary length horizontal line segments where only end

points of line segment can be used to connect label.

We say a site p is labelled with a label l if there exist a po-leader connecting

p with label l. Similarly, a horizontal line segment h is labelled with a label l if

there exist a po-leader connecting one of the end point of h with label l. We call

an instance (R,L, P, V ) is solvable, if there exist a feasible solution for it.
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Chapter 2

Related Work

In this chapter, we will discuss some algorithms and related work on some varia-

tion of boundary labelling with po-leader problem.

2.1 One-side labeling with uniform labels

In [1], Bekos et al. proved the following theorem.

Theorem 2.1.1. Given a rectangle R, a side s of R, a set P ⊂ R of n sites in

general position and a rectangular uniform label for each site, there is an O(n2)-

time algorithm that produces a legal type-po labeling of minimum total leader

length.

Now we describe the alorithm given by Bekos et al. [1] that produces a legal

type-po labeling of minimum total leader length.

5



2.1.1 Algorithm

• Input : (R,L, P ), where R is a rectangle, P is a set of n sites inside R and

L is a set of n labels to the right side r2 of R

• Output : Planar leader label placement with minimum length po-leaders C.

2.1.2 Proof of Correctness

In Algorithm (1), we have two while loops. Since, we can’t decrease horizontal

length of po-leader. So, we have only choice to decrease vertical length. We sort

the labels and sites in increasing order (with respect to Y-axis). By connecting

the ith smallest site pi with ith smallest label li using leader cii gives us guarantee

that, we have minimum total leader length. But, the solution may contain the

intersection between leaders.

To remove intersection between leaders, we use another while loop in algo-

rithm. Suppose, we have leader cpq and set of leaders Cl intersects horizontal part

of it, where leader cwx ∈ Cl if and only if (Y-coordinate of site p)≥ (Y-coordinate

of w). Let’s assume that cuv ∈ Cl be the right most leader intersect at horizontal

part of the leader cpq. If we connect site u to label q, resulting leader is cuq (Sim-

ilarly we obtain leader cpv), then without increasing the length between leaders,

we have leader cuq not intersect to any other leader as shown in figure 2.2. Since,

there are finite number of leaders and each time we get a leader which doesn’t

intersect to any other leader. Eventually, we have set of leaders (where no two

leaders intersects), without increasing the minimum length.
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Algorithm 1: Quadratic Algorithm for Leader Length minimization
Sort the sites P and labels L with respect to increasing order of their
Y-coordinate, store the sorted sites in array A, and sorted labels in array B;

We use 2-D range search tree T to store the sites, first level of T arranged
with respect to Y-axis while auxiliary are arranged with respect to X-axis;

An array C[n][n+ 1] is used to store the leaders and it’s corresponding
intersected leaders;

for (i = 1; i ≤ n; i+ +) do
a = A[i];
b = B[i];
Connect site a with label b using leader cab and store at C[i][1]. Each of
A[i], B[i] and C[i][1] contains two pointers, pointing towards other
two. Site a is at coordinate (ax, ay) and port of label b is at coordinate
(bx, by);

Perform Range Query [−∞, ay]× [ax,∞] on T and store resulting
points (or sites) from C[i][2]. Store position of last point (or site) at
C[i][1]. (Here we assume that query reports the sites in increasing
order with respect to X-axis);

end
for (i = 1; i ≤ n; i+ +) do

l = position stored of last point at C[i][1];
cpq = leader at C[i][1];
while l 6= 1 do

cuv is leader correspond to C[i][l], stored at C[k][1];
if cpq ∩ cuv 6= ∅ then

Change leader cuv to cuq and cpq to cpv;
Store cuq at C[k][1] and cpv at C[i][1];
Update related pointers;
cpq = cpv;

end
l = l − 1;

end
end
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(a) Leaders before swap (b) Leaders after swap

Figure 2.1: After swapping combined leader length is same

2.1.3 Time and Space Complexity

In algorithm (1), sorting takes O(n log n) time. Construction of Range search

tree T take O(n log2 n) (can be reduces to O(n log n)). First loop runs up to n

iteration, each iteration connects site to label with leader, uses O(1) time, and

perform range query, takes O(log2 n + k) time (using fractional cascading range

query time reduces to O(log n+ k)), where k is number of points reported by the

query. So, first loop runs in O(n log2 n) time (can be reduces to O(n log n).

While, second loop also takes n iteration. In that, each iteration takes O(n)

time, because number of intersection, for leader cii correspond to ith smallest site

pi (with respect to Y-axis), can have at most (i− 1) to other leaders, (where sites

correspond to these leaders have Y-coordinate less than (or equal to), Y-coordinate

of site pi). In each iteration, we get a leader which not intersects to any other

leader. So, to remove all intersection for the leader cii, we need at most (i − 1)

iteration. This, leads total time complexity for second loop to O(n2).

By adding we get O(n2) time complexity for the algorithm. Space complexity

is also O(n2), this we can easily conclude from algorithm.
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2.2 Two-side labeling with uniform labels of maxi-

mum height

The next result deals with two-side placement of uniform labels of maximum

height. The author [1] consider type-po leaders and their goal is to minimize the

total leader length. They obtain the following theorem:

Theorem 2.2.1. Given a rectangle R with n/2 uniform labels of maximum height

on each of its left and right sides, and a set P ⊂ R of n sites in general po-

sition, there is an O(n2)-time algorithm that attaches each site to a label with

non-intersecting type-po leaders such that the total leader length is minimized.

2.3 Multi-Sided Boundary Labeling problem

Kindermann et al. [3] study the Multi-Sided Boundary Labeling problem, where

labels lying on at least two sides of the enclosing rectangle. They consider the

problem of finding efficient algorithms for testing the existence of a crossing-free

leader layout that labels all sites and also for maximizing the number of labeled

sites in a crossing-free leader layout. They also give an algorithm for minimizing

the total leader length for two-sided boundary labeling with adjacent sides. More

importantly, they restrict their solutions to po-leaders. Author consider two ver-

sions of the Boundary Labeling problem: either the position of the ports on the

boundary of R is fixed and part of the input, or the ports slide, i.e., their exact

location is not prescribed. For example, in sliding ports, we can simply fix all

ports to the bottom-left corner of their corresponding labels. They [3] obtain the

following theorems:

9



Theorem 2.3.1. Two- sided boundary labeling with adjacent sides can be solved

in O(n2) time using O(n) space.

Theorem 2.3.2. Two- sided boundary labeling with adjacent sides and sliding

ports can be solved in O(n2) time using O(n) space.

Theorem 2.3.3. Two- sided boundary labeling with adjacent sides can be solved

in O(n3 log n) time using O(n) space such that the number of labeled sites is

maximized.

Theorem 2.3.4. Two- sided boundary labeling with adjacent sides can be solved

in O(n8 log n) time using O(n6) space such that the total leader length is mini-

mized.

Theorem 2.3.5. Three- sided boundary labeling can be solved in O(n4) time us-

ing O(n) space.

Theorem 2.3.6. Three- sided boundary labeling can be solved in O(n9) time us-

ing O(n) space.

2.4 Multi-Criteria Boundary Labeling

Benkert et al. [2] study labeling a set P of n points in the plane with labels that

are aligned to one side of the bounding boxR. They prove the following theorem.

Theorem 2.4.1. Given a set of n points and a set of n labels on the left side

of a bounding box R, computing a crossing-free labeling with po-leaders with

minimum total length takes Θ(n log n) time and Θ(n) space in the worst case.
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Below we describe their [2] O(n log n)-time algorithm to compute a crossing-

free labeling with po-leaders of minimum total length. They provide a sweep line

algorithm for boundary labelling problem. The algorithm we discuss here, uses

same problem definition, as we defined for the Quadratic time algorithm. (Here,

we assume that labels are on the left side of R.)

2.4.1 Preliminaries

Consider the subdivision of the plane intoO(n) strips by horizontal lines, through

the sites and horizontal edges of the label. Let’s we denote a strip by ‘σ’.

• “paσ” be number of sites above σ (including site at top edge of σ).

• “pbσ” be number of sites below σ (including site at bottom edge of σ).

• “laσ” be number of label above σ (including label intersects with σ).

• “lbσ” be number of labels below σ (including label intersects with σ).

Strip σ categories as follows:

• downward strip, if paσ > laσ .

• upward strip, if pbσ > lbσ .

• neutral strip, if (paσ = laσ ) and/or (pbσ = lbσ).

Maximal set of consecutive upward strips is upward set. Similar way, we can

define downward set and neutral set.
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2.4.2 Algorithm

• Input : Set of site P , set of labels L and rectange R.

• Output : Set of crossing free minimum length po-leaders leaders C.

Algorithm 2: Sweep Line Algorithm for Leader Length minimization
Subdivide plane R into horizontal strips, and store it on array A in
increasing fashion (with respect to Y-axis);

Traverse each strip σ on array A, identify it’s category and store it on A
along with σ;

We use an array Bu to store upward sets of A. In similar way, Bd for
downward sets and Bn for neutral sets.

while there is unvisited upward set in Bu do
Sweep the horizontal line bottom to top, if we encounters site (while
sweeping), store it in waiting list W , and if we encounters label,
connect the site (which has minimum X-coordinate in list W ) to the
label using po-leader;

Mark the upward set visited;
end
while there is unvisited downward set in Bd do

Sweep the horizontal line top to bottom, if we encounters site (while
sweeping), store it in waiting list W and, if we encounters label,
connect the site (which has minimum X-coordinate in list W ) to the
label using po-leader;

Mark the downward set visited;
end
while there is unvisited neutral set in Bn do

Sweep the horizontal line top to bottom, if we encounters site connect it
with direct leader;

Mark the neutral set visited;
end

12



2.4.3 Time and Space Complexity

Since, there are O(n) strips, sorting takes O(n log n) time. It is easy to say that,

we can identify the category of each strip of array A in O(n) time. Storing data to

array Bu, Bd and Bn will also uses O(n) time. We know that, strip σ can be either

upward or downward or neutral. So, strip σ process in exactly one of the three

while loops. If, list W uses min heap data structure, then insertion and deletion

both will take O(log n) time. That is, total time while loops uses O(n log n).

So, over all time complexity is O(n log n), while space complexity is O(n).

2.4.4 Proof of Correctness

Benkert et al. [2] observe that in any optimal labelling, no leader crosses a neutral

strip σ. It can be easily figure out, in figure 2.2(a). So, site belongs to neutral

set have direct leader to label. Between any downward strip and upward strip,

both (paσ − laσ) and (pbσ − lbσ) differ by at least two. When going from a strip to

adjacent strip, the value of each of these expression changes by at most one. Hence

downward strip and upward strip always separated by neutral strip. It follows that

in any optimal labeling, the points in any upward (or downward) set S must be

labeled by leaders that lie entirely within S.

Consider an upward set S. Suppose σ be bottom most strip in S and strip

below σ is β. Note that strip β is a neutral strip. It is clear that (pbβ ≤ lbβ) while,

strip σ have (pbσ > lbσ). Hence, (pbβ = lbβ), this implies that, first event must be a

site p in the upward set. It is possible that, β and σ may intersect at label l, but site

p can’t connect to label l, because (pbβ = lbβ) and no leader can cross strip β. So

we must label all sites in (and on the boundary of) S with labels that lie entirely

13



p p

p p

p′ p′

l l

l′l′

lσ lσ
σ σ

σσ

(a) Eliminating intersections with
neutral strips

p p

p′p′
l l

l′l′

(b) The black points are in W when
the sweep line reaches l.

Figure 2.2: Illustration to proof of correctness, for Sweep line algorithm

above σ. Now, it is easy to conclude from figure 2.2(b), that algorithm gives us

the optimal labelling.

In [2], Benkert et al. also prove the following theorem:

Theorem 2.4.2. Assume we are given a set of n points P , a set of n labels on

the left side of a bounding box R, and a badness function bad() such that we can

determine, in O(n) time, the badness and the location of an optimal po-leader to

a given point with its arm in a given height interval (independent of the location

of other leaders). We can compute a crossing-free labeling with po-leaders for P

with minimum total badness in O(n3) time and O(n2) space.

Benkert et al.[2] also consider the case for two-sided crossing-free labeling

and obtain the following result.

Theorem 2.4.3. Assume we are given a set of n points P , a set of n labels on

the left side of a bounding box R, and a badness function bad() such that we can

determine, in O(n) time, the badness and the location of an optimal po-leader to

a given point with its arm in a given height interval (independent of the location

14



of other leaders). Then a two-sided crossing-free labeling with po-leaders can be

computed with minimum total badness in O(n8) time and O(n6) space.

15



Chapter 3

Our Contribution

3.1 Introduction

In this section, we consider the problem defined in Introduction (Chapter 1) under

section “Problem definition”. Benkert et al.[2] provide a dynamic based solu-

tion where labels at one side (in particular left side of R). Our algorithm almost

follows the same idea but we introduce a new set called visibility V . That is, be-

fore connecting site to a label first we need to check whether we have permission

to connect it (by leader) or not. Later we consider same length horizontal line

segments(or of unit length) rather than points as sites. We say a horizontal line

segment h is connected with a label l if there exists a po-leader connecting one

of the end point of h with l. Our goal is to find a planar boundary labelling with

minimum cost function. After that, we investigate this problem for horizontal line

segments with arbitrary length.
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3.2 Dynamic Approach for Points as Sites

In this section, we consider sites as point.

3.2.1 Preliminaries

We have a problem instance (R,L, P, V ), where P is set of n sites contained inR,

also no two sites have same X (and Y-coordinate) and there are n labels L(uniform

rectangle) touching left side of R. V is a visibility for sites P . We assume that

elements of P = {p1, p2, ...., pn}are arranged according to their increasing order

of Y - coordinates. Similarly, L = {l1, l2, ...., ln} also be arranged according to

their increasing order of Y - coordinate of bottom-right corner points.

We sub-divide the plane R into O(n) strips (excluding top most strip) by hor-

izontal lines through the sites and horizontal edges of the label such that part of

label does not belongs to strip (say σi), if it intersects with bottom most hori-

zontal line of σi. We assume that set of labels L and sites P are arranged in

such a way that any horizontal line bounds the boundary of strip, contains either

horizontal side (of label) or site, but not both. Let us assume that set of strips

σ = {σ1, σ2, ...., σm} are arranged such a way that if σj, σk are two distinct strips

in σ where j < k and σjty , σkty are the Y-coordinate of top most horizontal line of

σj, σk, respectively then σjty < σkty .

We define a set of possible ports for label li and strip σj as, Sij = {sk : sk ∩

li ∩ σj ∩ R 6= φ and sk ∈ R, li ∈ L, σj ∈ σ}. Let S = {Sij : |Sij| > 0, i ∈

[1, n] , j ∈ [1,m], {i, j} ∈ Z}.

We assume that L = {C1, C2, C3, ....} is a feasible solutions of an instance

(R,L, P, V ). It is possible that, cardinality of set L is infinite.
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Now we define cost function of leaders denoted by cost(leader) which takes

leader as an input and returns x ∈ R as output. We say cost(leader) =∞ if leader

not satisfies the visibility V or except it’s end point intersects with the site(s). We

derive cost of Ck ∈ L and optimal labelling for instance (R,L, P, V ) in equation

(3.1) and (3.2), as follows:

Cost(Ck) =
∑

ck1k2∈Ck

cost(ck1k2) (3.1)

Opt labelling(L) = {Ca | ∃Ca ∀Cb, Cost(Ca) ≤ Cost(Cb), and {Ca, Cb} ∈ L}

(3.2)

Since |L| is infinite, it is practically impossible to get Opt labelling(L). So it

means that some how we need a set of labellingLf ⊆ L, where,Opt labelling(L)∩

Lf 6= φ and |Lf | <∞.

ConsiderQijk = {qi′1j′1k′1 , qi′1j′1k′2 , . . . , qi′aj′bk′c , . . . } is the set of po-leaders, where

qi′aj′bk′c ∈ Qijk if and only if qi′aj′bk′c starts at site pi, and ends label lj at port

sk′ where sk′ ∈ Sjk and Sjk ∈ S. Let Q = {Qijk : |Qijk| ≥ 1, i, j ∈

[1, n], k ∈ [1,m], and {i, j, k} ∈ Z}. We denote a optimal leader of Qijk

by qi′aoj′bok
′
co

, if it belongs to set T = {t : cost(t) ≤ cost(qi′aj′bk′c), and t <

∞ and t ∈ Qijk, ∀ qqi′aj′bk′c ∈ Qijk}. Let Qopt inf = {qi′aoj′bok′co : qi′aoj′bok
′
co
∈

Qijk, Qijk ∈ Q, i, j ∈ [1, n], k ∈ [1,m], and {i, j, k} ∈ Z}. It may possible

that, |Qopt inf | = ∞. To make it finite, we allow exactly one optimal leader from

each set of leaders Qijk if it contains optimal leader. We call this new set is Qopt.

Clearly, Qopt is finite.

To get set of labelling Lf , we use the concept of strips. We know that, any
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site always at the boundary of some strip. Suppose, Qijk ∈ Q is a set of leaders.

If |Qijk| = 1, then only one leader (say l1, if cost(l1) < ∞, then l1 = qi′aoj′bok
′
co

,

else l1 never be in any optimal labelling) is possible which starts at site pi ∈ P ,

ends label lj ∈ L at port sj′ ∈ Sjk. If Copt ∈ L is a optimal labelling and have

leader from site pi, to label lj intersects at strip σk, then qi′aoj′bok′co ∈ Copt (because

there is only one choice of leader) and we done. So we assume that, |Qijk| > 1

and {qi′aoj′bok′co , qi′aj′bk′c , ....} ∈ Qijk. Let us assume, we have set of leaders W for

sites P before joining qi′aoj′bok′co or qi′aj′bk′c , such that for any leader l ∈ W , then l

does not intersect with any leader used so far and also does not intersect to any

site as well. It is obvious that, we can use atmost one leader of Qijk, if problem

instance (R,L, P, V ) is solvable (or feasible). So if we use leader qi′aoj′bok′co , and

after joining it W changes to W1. But if, we use qi′aj′bk′c instead of qi′aoj′bok′co , then

after joining it, W changes to W2. Since, ports of both the leader are in same

strip σk, so W1 = W2. Implies that if, we have optimal labelling Copt ∈ L, such

that, Qijk ∩ Copt = qi′aj′bk′c . Then either qi′aj′bk′c = qi′aoj′bok
′
co

, or cost(qi′aj′bk′c) =

cost(qi′aoj′bok
′
co

). In ‘either’ case it is obvious and in ‘or’ case, we can replace

qi′aj′bk′c to qi′aoj′bok′co without increasing the Cost(Copt). That is, Lf = {L′ : L′ ⊆

Qopt & |L′| = n where L′is a feasible solution for instance(R,L, P, V )}.

So if (R,L, P, V ) have a feasible solution then Lf ∩ Opt labelling(L) 6= φ.

If cardinality of sites, labels and strips is finite, then |Lf | <∞.

3.2.2 Recurrence Relation

Suppose, σα and σβ are two strips. Sub-plane induced by strips between σα and

σβ (including σα and σβ) is r(σα, σβ), where {σα, σβ} ∈ σ. Assume, Pαβ ⊆ P be

a set of unlabelled sites in region r(σα, σβ) and Lαβ be a set of unlabelled labels

19



in r(σα, σβ), (that is, Lαβ = {lj | (lj ∈ L)& (lj ∩ r(σα, σβ) = lj)}). If α > β,

then we assume |Pαβ| = |Lαβ| = 0.

Let, pr = (prx , pry) be the right most site in region r(σα, σβ) to label. Con-

sider, set of leadersQrjk whereQrjk ∈ Q, and (α ≤ k ≤ β). Let, qr′aoj′bok′co ∈ Qrjk

be the optimal leader, joins the site pr to the label lj at port s′k ∈ Sjk. It is clear

that, no site belongs to above σk and to the left of pr can join the label below lj and

vice versa. Implies, after joining leader qi′aoj′bok′co , we can sub-divide the problem

in two regions r(σα, σk−1) and r(σk+1, σβ) where σα ≤ σk−1 and σk+1 ≤ σβ . Let

us suppose, Rprx = [0, prx)× [0, H].

For region r(σα, σβ), we call an strip σk, a feasible strip for right most unla-

belled site pr, only if, |Lα(k−1)| = |Pα(k−1) ∩ Rprx | and |L(k+1)β| = |P(k+1)β ∩

Rprx |, and qr′aoj′bok′co ∈ Qrjk, Qrjk ∈ Q, {r, j} ∈ [1, n], {r, j} ∈ Z and α < β.

Let us assume, Fαβr be the set which have all feasible strips for region r(σα, σβ)

corresponds to rightmost unlabelled site pr in r(σα, σβ). Since we have β−α+ 1

strips, so |Fαβr | ≤ (β − α + 1).

opt labelling(α, β) =



min
σk∈Fαβr

{cost(qr′aoj′bok′co ) + opt labelling(α, k − 1)+

opt labelling(k + 1, β)} if Fαβr 6= φ

∞, if Fαβr = φ.

check all possible labelling and return

the optimum labelling, if no labelling

return∞, if |α− β| ≤ 1

(3.3)

Now, we call for opt labelling(1,m) for problem instance (R,L, P, V ). If it
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returns value x <∞, then (R,L, P, V ) is solvable (or feasible), and we get a cost

of minimum optimal labelling. But if x = ∞, then (R,L, P, V ) is not solvable

(or infeasible).

Proof of Correctness :

Base Condition : Since, we apply brute force if r(α, β) have at most two strips.

That is, we have optimal labelling for r(α, β).

Induction Hypothesis : Suppose, for all smaller problems, we have optimal

labelling.

Since, recurrence in equation (3.3), takes care of all feasible strips in r(1,m)

and their associated sub problems. And, we takes the minimum among all. So,

we have optimal labelling for region r(1,m).

3.2.3 Dynamic Algorithm

We assume that, calculation of a optimal leader on set of leaders Qijk ∈ Q and

cost of optimal leader both takes O(n) time. An strip σk ∈ σ intersects at at most

one label. So we have atmost O(n × m) optimal leaders. A strip σk, contains

information of, site pi (if pi intersects with σk) (and / or) range of Sjk (if (|Sjk| >

0)).

• Input : (R,L, P, V ), where R is a rectangle, P is a set of n sites inside R

and L is a set of n labels to the right side r2 of R

• Output : minimum cost po-leaders of planar leader label placement.
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Algorithm 3: Recursive Algorithm to calculate optimal labelling
OPT LABELLING-initialization()
Sub divide the plane into O(n) strips (as we defined earlier) and store strips
on array A[m] in increasing order (with respect to Y-coordinate of top
most horizontal line of strip), along with strips in A[m], store the
Y-coordinate of top most and bottom most horizontal line of strip;

An Array B[m][m] is used to store the sub-problems, such that, B[i][j]
stores the cost of optimal labelling for r(σi, σj), initially,
B[i][j] = φ, ∀{i, j} ∈ [1,m];

We use 2-D range search tree T to store the sites and pointer to their
corresponding strips, first level of T arranged with respect to Y-axis of
sites, while auxiliary trees are arranged with respect to X-axis (of sites);

An array C[n][m] is used to store the leaders and it’s corresponding
intersected leaders;

Let us assume, initially, an array D[n][n] stores the visibility V (that is, if
D[i][j] = 1, site pi can join the label lj(by po-leader), otherwise, not);

for (i = 1; i ≤ n; i+ + do
for (k = 1; k ≤ m; k + +) do

if Sjk stored at A[k] and D[i][j] = 1 then
Compute optimal leader qi′aoj′bok′co ∈ Qijk and cost
cost(qi′aoj′bok

′
co

);
Store port sk of leader q′i′aoj′bokco

in C[i][k];

And also cost(qi′aoj′bok′co ) at C[i][k];
else

Store cost of leader,∞, at C[i][k];
And port sk = φ, at C[i][k];

end
end

end
Cost of optimal labelling = OPT-labelling(A,B,C,D, T, 1,m)
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OPT-labelling(A,B,C,D, T, i, j)
if i ≤ j then

if B[i][j] = φ then
if |i− j| ≤ 1 then

if there is a feasible solution then
Check for all possible solution;
Store value in B[i][j] of minimum cost labelling among all
possible labelling;

return cost of minimum among all possible labelling;
else

Store value ‘∞’ in B[i][j];
return (∞);

end
else

B[i][j] =∞;
FIND-B[i][j](A,B,C,D, T, i, j);

end
else

return value of minimum optimal labelling stored at B[i][j];
end

else
return 0;

end

3.2.4 Proof of Correctness for Dynamic Algorithm

Since, we are checking manually for small problems in our algorithm so it is

obvious that result will be optimal for them.

We assumed that, for the set Qijk, we get optimal leader in O(n) time. In

initialization phase, since array D stores the visibility set V . So in for loop, along

with strip σk stores any label or not, we are also checking weather we have per-

mission to connect label lj with site pi or not. So, in this way we satisfies the
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FIND-B[i][j](A,B,C,D, T, i, j)
Let us suppose Y-coordinate of bottom most horizontal line of strip stored
at A[i] is σiby and top most horizontal line of strip stored at A[j] is σity ;

Perform range query on [σiby , σity ]× [0,W ] on Range Tree T and store on
some temporary array E[j− i+ 1] starting from position E[1] (We assume
that sites reported by query in increasing order with respect to X-axis);

Check for site (which is not labelled yet) in E[(j − i+ 1)] which have
maximum value of X-coordinate (Assume, we get site pr = (prx , pry ));

Let, nq be the number of sites reported by range query which have X-
coordinate less than prx and lq be the number of unlabelled label in
r(σi, σj). Assume, σt be a strip in between σi and σj , nqtb be the number of
sites reported by query in r(i, t− 1), and lqtb be the number of unlabelled
labels in r(σi, σt−1). And nqta be the number of sites reported by query in
r(σt+1, j), and lqta be the number of unlabelled labels in r(σt, σj);

for t = 1, t ≤ j; t+ + do
if C[r][t] <∞ and satisfy equality of number of unlabelled sites and
labels in both separated regions by strip σt then
min opt = C[r][t] + OPT-labelling(A, B, C, D, T, i, t-1) +
OPT-labelling(A, B, C, D, T, t + 1, j);

if min opt <∞ then
if min opt < B[i][j] then

B[i][j] = min opt;
end

end
end
if A[t] stores site whose X-coordinate less than prx then

nqta = nqta − 1 and nqtb = nqtb + 1;
end
if strip at A[t] have unlabelled label and A[t+ 1] have no label then

lqtb = lqtb + 1;
end
if strip at A[t] have no label and A[t+ 1] have unlabelled label then

lqta = lqta − 1;
end

end
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visibility V .

Since we are looking for right most site (which is not labelled by any leader)

By performing range query in range [σiby , σity ] × [0,W ] we get all the points in

increasing order (with respect to X-axis) for the region r(σi, σj). By traversing

reported sites by query we get the correct site which is right most and not labelled

by any label. Now, we have right most site pr = (prx , pry) in region r(σi, σj).

We calculate number of sites in region r(σi, σj) whose X- coordinate less

than prx . These sites must be unlabelled because we are labelling from right to

left. And since we are labelling the right most unlabelled site Pr, so site which

left unlabelled must be to the left of right most site pr. By traversing label from

position i to j in array A we get number of unlabelled labels.

Since we are traversing strips bottom to top one by one. So, number of un-

labelled site reduce by atmost 1 on switching from r(σt+1, σj) to r(σt+2, σj) (be-

cause a strip contains atmost one site), while on switching region from r(σi, σt−1)

to r(σi, σt) number of unlabelled sites increase by atmost 1. If A[t] stores site

whose X- coordinate less than prx the number of unlabelled site in r(σt+2, σj)

one less than r(σt+1, σj) and number of unlabelled sites in r(σi, σt) one more

than unlabelled sites in r(σi, σt−1), else number of unlabelled sites remain same.

It is not possible that both strips at A[t + 1] and A[t] stores different labels,

because A[t + 1] and A[t] stores consecutive strips and no two consecutive strip

can store two different labels because no two label overlaps.

If strips at A[t + 1] have unlabelled label and A[t] have no label, then label in

region r(σi, σt) and r(σi, σt−1) remain same, but numbers of labels in r(σt+1, σj)

one less than r(σt, σj).

If strips at A[t + 1] have no labels and A[t] have unlabelled label, then labels
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in region r(σi, σt) have one more than labels in r(σi, σt−1) , but numbers of labels

in r(σt+1, σj) and r(σt, σj) remain same.

If strips at A[t + 1] and A[t] have same label, then labels in region r(σi, σt)

and r(σi, σt−1) reamain same, and also labels in r(σt+1, σj) and r(σt, σj) will also

remain same.

for loop in function ‘find − B[i][j]′ runs for all strips in between σi and

σj(including σi and σj one by one. ‘If’ condition checks weather we can join

leader starts from site pr to label at strip σt, along with that it also checks equal-

ity of number of unlabelled sites left of prx and number of unlabelled labels in

r(σi, σt−1) as well r(σt+1, σj)
1. If condition satisfies, algorithm adds the cost of

optimal leader starts at site pr and ends at label l′t (where l′t stores at σt) and opti-

mal cost of sub- problems r(σi, σt−1) and r(σt+1, σj). Since, pr is the right most

site which is to be labelled, then no unlabelled site have X- coordinate less than

prx in r(σi, σt−1) can join the label belongs to r(σt+1, σj) and vice versa. So,

by checking optimality in region r(σi, σt−1) and r(σi, σt−1) separately will not

make any difference. Since, for loop iterates over all all strips between σi to σj

(including σi, σj) and picking the minimum among all we have optimal solution.

Since, r(σi, σj) algorithm checks for all possible choices of leader from strip

σi to σj and maintains the minimalitiy at B[i][j]. So, if B[i][j] = ∞ then there

is no feasible solution possible for r(σi, σj), else we have optimal solution with

respect to cost function we have.

1if number of unlabelled site and unlabelled labels are different, then it is obvious that there
will not exist any feasible solution. but if number of sites and labels are equal then there is a
possibility for feasibility.
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3.2.5 Time and Space Complexity

Sub-division of plane into O(n) strips takes O(n) time. Storing them on Array A

in increasing order takesO(n log n) time. Since, each strip stores atmost one label

(and/ or site). So, size of A is O(n). We have atmost m2 sub-problems (because,

rightmost unlabelled site connects to any label divides the problem in two sub

problems). We use 2D-ArrayB to store the sub-problem results to reuse. We have

to store atmostm2 sub-problems, soB is ofm2 (that is,O(n2)). Initialization ofB

takes O(n2) time. We have n is the number of sites, so range tree T , construction

time for 2D-plane is O(n log n) and space complexity is to store range search

tree T is O(n log n). Array C[n][m] is used to store optimal leader of Qijk if

|Qijk| > 0. Since, we assume that, optimal leader in Qijk can be computed in

O(n) time. So, calculate array C (that is, all possible optimal leader) time uses

O(n2m).

Small problem takes O(1) time. So, we look for ‘FIND-B[i][j]’ function.

Range Query on tree T takes (log n+ k′) time, where k′ are the number of points

reported by query. Checking right most site (which is not labelled) on points

reported by range query will take O(n) time. Calculation of number of unlabelled

labels in region r(σi, σj) will take O(j − i + 1) time. For loop runs (j − i + 1)

time while in each iteration, it takes O(1) time. So total time taken by for loop is

O(j − 1 + 1).

That is, initialization phase takes O(n3) time. Since, we have m2 (m is num-

ber of strips) sub-problems and each sub- problem takes O(n) time (as we seen

above). So, total time complexity is O(n3), While space complexity is O(n2).
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3.3 Recurrence Relation for Horizontal Line Seg-

ments as sites

In this section, we consider horizontal line segments as sites.

3.3.1 Preliminaries

We have an problem instance (R,L, P, V ), where P is set of n sites contained in

R, also no two sites have same Y-coordinate (and endpoints of them have same

X- coordinate). There are n labels L (uniform rectangle) touching left side of R.

V is a visibility for sites P . We assume that only end point of line segment can be

used to connect label. Let P = {p1, p2, ...., pn}, are arranged according to their

increasing order of Y - coordinates. Similarly, L = {l1, l2, ...., ln} also be arranged

according to their increasing order of Y - coordinate of bottom-right corner points.

We sub-divide the plane R into O(n) strips (excluding top most strip) by hor-

izontal lines through the sites and horizontal edges of the label such that part of

label does not belongs to strip (say σi), if it intersects with bottom most horizontal

line of σi. We assume that, set of labels L and sites P arranges, such that, any

horizontal line bounds the boundary of strip, contains either horizontal side (of

label), or site, but not both. Let us assume that set of strips σh = {σ1, σ2, ...., σm}

are arranged such a way that if σj, σk are two distinct strips in σ where j < k and

σjty , σkty are the Y-coordinate of top most horizontal line of σj, σk, respectively

then σjty < σkty .

We define a set of possible ports for label li and strip σj as, Sij = {sk : sk ∩

li ∩ σj ∩ R 6= φ and sk ∈ R, li ∈ L, σj ∈ σ}. Let S = {Sij : |Sij| > 0, i ∈

[1, n] , j ∈ [1,m], {i, j} ∈ Z}.
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We assume that L = {C1, C2, C3, ....} is a feasible solutions of an instance

(R,L, P, V ). It is possible that, cardinality of set L is infinite.

Now we define cost function of leaders, denoted by cost(leader), which takes

leader as an input and returns x ∈ R as output. We say cost(leader) = ∞,

if leader not satisfies the visibility V or except it’s endpoint it intersect with the

site(s). We derive cost of Ck and optimal labelling for instance (R,L, P, V ) in

equation (3.1) and (3.2), as follows:

Cost(Ck) =
∑

ck1k2∈Ck

cost(ck1k2) (3.4)

Opt labelling(L) = {Ca | ∃Ca ∀Cb, Cost(Ca) ≤ Cost(Cb), and {Ca, Cb} ∈ L}

(3.5)

Since, |L| is infinite, it is practically impossible to getOpt labelling(L). So it

means that some how we need a set of labellingLf ⊆ L, where,Opt labelling(L)

∩ Lf 6= φ and |Lf | <∞.

Let suppose, pi ∈ P be a line segment (or site) and piL is a left end point in pi

while piR is right end point in pi. ConsiderQiLjk = {qi′1Lj′1′k′1 , qi′2Lj′1k′1 , . . . , qi′aLj′bk′c ,

. . . } is the set of po-leaders, where qi′aLj′bk′c ∈ QiLjk if and only if qi′aLb′jc′k starts

at left end point piL of site (or line segment) pi, and ends label lj at port sk1

where sk1 ∈ Sjk and Sjk ∈ S. In the same way we can define QiRjk with re-

spect to right end point piR of pi . Let assume that QL = {QiLjk : |QiLjk| ≥

1, i, j ∈ [1, n], k ∈ [1,m], and {i, j, k} ∈ Z} and similarily QR is defined

also in the same way as QL but with respect to right end points of line seg-

ments (or sites). We denote a optimal leader of QiLjk by qi′aoLj′bok′co , if it it be-
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longs to set T = {t : cost(t) ≤ cost(qi′aLj′bk′c), and (cost(t) < ∞), and t ∈

QiLjk, ∀ qqi′aLj′bk′c ∈ QiLjk}. Same way optimal leader for QiRjk is qi′aoRj′bok′co .

Let us assume, Qopt infL = {qi′aoLj′bok′co : qi′aoLj′bok
′
co
∈ QiLjk, QiLjk ∈ QL, i, j ∈

[1, n], k ∈ [1,m], and {i, j, k} ∈ Z}. It may possible that, |Qopt infL| = ∞. To

make it finite, we allow exactly one optimal leader from each set of leaders QiLjk

if it contains optimal leader. We call this new set is QoptL . Clearly, QoptL is finite.

Same way we can define QoptR , but with respect to right end points of sites P . We

say, Q = QL ∪QR We say, Qopt = QoptL ∪QoptR .

To get set of labelling Lf , we use the concept of strips. As we seen earlier in

section (3.2.1).that,Lf = {L′ : L′ ⊆ Qopt & |L′| = n andL′ is a feasible solution

of instance(R,L, P, V ) }.

So if (R,L, P, V ) have a feasible solution then Lf ∩ Opt labelling(L) 6= φ.

If cardinality of sites, labels and strips is finite, then |Lf | <∞.

3.3.2 Recurrence Relation for Unit Length Horizontal

Line Segments

Here we assume sites are Unit Length Horizontal Line Segments. Suppose, σα

and σβ, (α ≤ β) are two strips, and sub-plane induced by strips between σα and

σβ (including σα and σβ) is r(σα, σβ), where {σα, σβ} ∈ σ. Assume, Pαβ ⊆ P be

a set of unlabelled sites in region r(σα, σβ) and Lαβ be a set of unlabelled labels

in r(σα, σβ), (that is, Lαβ = {lj | (lj ∈ L)& (lj∩r(σα, σβ) = lj)}). If α > β, then

we assume |Pαβ| = |Lαβ| = 0. Let, pr be the right most site in region r(σα, σβ)

to label. Assume left end points of site pr is prL = (prLx , prLy) and right end point

of site pr is prR = (prRx , pRRy). Consider, set of leaders QrLjk where QrLjk ∈ QL

and α ≤ k ≤ β. Let, qr′aoLj′bok′co ∈ QrLjk be the optimal leader, joins the left end
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point of site pr to the label lj at port sk1 ∈ Sjk and site pr is on the strip σt and

qr′aoRj
′
bo
k′co
∈ QrRjk be the optimal leader, joins right end point of site pr to the

label lj at port sk2 ∈ Sjk and site pr is on the strip σt.

Suppose R′prLx = (prLx , prRx ]× [0, H]. Since, as we know pr is the right most

site to label and sites as unit length horizontal line segments2. Then (R′prLx ∩

r(σt+1, σk−1) ∩ P ) = φ. That is, if we join site pr to label lj in strip σt using

leader qr′aoLj′bok′co . Then, no unlabelled site below strip σk and to the left of site pr

(with respect to the right end point of site pr), can join the label above σk (ignoring

the label which intersects with σk because label at σk is labelled with site pr). The

case where right end point of site pr connects label is obvious. Case if t > k and

t = k is similar.

Implies, if we joins leader qi′aoLj′bok′co (or qi′aoRj′bok′co ), we can sub-divide the

problem in two regions r(σα, σk−1) and r(σk+1, σβ).

Let suppose, Sprx = [0, prRx) × [0, H]. We assume site pr is labelled. For

region r(σα, σβ), we call an strip σk is a feasible strip for right end point prR of

right most site pr, only if, |Lα(k−1)| = |Pα(k−1)∩Sprx | and |L(k+1)β| = |P(k+1)β ∩

Sprx |, and qr′aoRj′bok′co ∈ QrRjk, QrRjk ∈ QR, {r, j} ∈ [1, n], {r, j} ∈ Z, α < β.

We define, FαβrR be the set which have all feasible strips for region r(σα, σβ)

with respect to the right end point prR of right most unlabelled site pr. In the

similar way, FαβrL be the set which have all feasible strips for region r(σα, σβ)

with respect to the left end point prL of right most unlabelled site pr. We say,

Fαβr = FαβrR ∪ FαβrL . Since, |FαβrR | ≤ β − α + 1 and |FαβrL | ≤ β − α + 1,

because we have atmost β − α + 1 strips. So, |Fαβr | ≤ 2 × (β − α + 1). Let

2 If horizontal lines are of arbitrary length then it is possible that (R′prLx
∩ r(σt+1, σk−1) ∩

P ) 6= φ, so site below σt can also join the label which is above σt. Implies that we can’t sub-divide
the plane in O(n) strips for arbitrary length horizontal line segment.
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us assume, Lαβr ⊆ Qopt be a set of optimal leaders which starts from right most

unlabelled site pr in r(σα, σβ) and ends at each feasible strip of endpoints belongs

to pr. Cardinality of set |Lαβr | ≤ 2× (β − α + 1).

opt labelling(α, β) =



min
q′
r′aoj

′
bo
kco
∈Lαβr

{cost(qr′aoj′bok′co )+

opt labelling(α, k − 1)+

opt labelling(k + 1, β)} if Lαβr 6= φ

∞, if Lαβr = φ.

check all possible labelling and return

the optimum labelling, if no labelling

return∞, if |α− β| ≤ 1

(3.6)

Now, we call for opt labelling(1,m) for problem instance (R,L, P, V ). If it

returns value x <∞, then (R,L, P, V ) is solvable (or feasible), and we get a cost

of minimum optimal labelling. But if x = ∞, then (R,L, P, V ) is not solvable

(or infeasible).

Algorithm and Time Complexity

Algorithm is similar to the case when sites are points and satisfies the visibility V .

So, we are omitting the algorithm part for this case.

When joining a right most unit length line segment to label it sub- divide the

region into two parts. Since we have O(n) strips, so there will be O(n2) different

sub- problems. By picking a right most unlabelled unit length line segment (as
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we did for points in section (3.2)) and going through all possible feasible leaders

(which is atmost 2× (β −α+ 1) for a line segment). To solve a sub- problem we

need O(n) time complexity (as we seen for the case when sites are points in the

section (3.2)). So, total time complexity will be O(n3). And space complexity

will be O(n2).

3.3.3 Recurrence Relation for Arbitrary Length Horizontal

Line Segments as sites

Here we assume sites are arbitrary length horizontal line segments. Let assume

that V be a set of end points of sites arranged in increasing order according to

the X-coordinate. Suppose, σα and σβ, (α ≤ β) are two strips and sub-plane

induced by strips between σα and σβ (including σα and σβ) is r(σα, σβ), where

{σα, σβ} ∈ σ. Let vγ = (vγx , vγy) ∈ V and Rvγx = (−∞, vγx ] × [0, H]. Then

region r(σα, σβ, vγ) = Rvγx ∩ r(σα, σβ).

Let Pαβγ ⊆ P be the set of unlabelled sites in (or intersects) r(σα, σβ, vγ) and

Lαβγ be the set of unlabelled labels in r(σα, σβ, vγ), that is, Lαβγ = {lj | (lj ∈

L) & (lj ∩ r(σα, σβ, vγ) = lj)}. For α > β, we assume |Pαβγ| = |Lαβγ| = 0.

Let vr ∈ V be the right most point in region r(σα, σβ, vγ) such that the cor-

responding site pu ∈ P is unlabelled. Now we consider following two possible

cases.

• Case 1 : vr is the right most end point of pu. Let vr = (vrRx , vrRy).

Consider, set of leaders QrRjk where QrRjk ∈ QR and α ≤ k ≤ β. Let,

qr′aoRj
′
bo
k′co
∈ QrRjk be the optimal leader, joins vr to the label lj at port

sk1 ∈ Sjk and site pr is on the strip σt. Then no endpoint(s) of site(s) in

33



r(σα, σβ, vr) and below strip σk can join the label which is above σk (ignore

the label intersects to strip σk) and vice versa. So, by adding qr′aoRj′bok′co we

can subdivide the problem in two region r(σα, σk−1, vr) and r(σk+1, σβ, vr).

But optimal solution possibly may not have leader which joins vr to any

label. That means, left end point of site pu must join to some la ∈ L. We

have horizontal lines, so left end point of pu must be in r(σα, σk−1, vr). That

means if we consider site pu as unlabelled in r(σα, σβ, vr−1), problem can

be restricted to r(σα, σβ, vr−1), if r > 1.

• Case 2 : vr is the left most end point of pu. In this case we assume,

vr = (vrLx , vrLy). Consider, set of leaders QrLjk where QrLjk ∈ QL and

α ≤ k ≤ β. Let, qr′aoLj′bok′co ∈ QrLjk be the optimal leader, joins vr to the

label lj at port sk2 ∈ Sjk and site pu is on the strip σt. Then no endpoint(s) of

site(s) in r(σα, σβ, vr) and below strip σk can join the label which is above

σk (ignore the label intersects to strip σk) and vice versa. So, by adding

qr′aoLj
′
bo
k′co

we can subdivide the problem in two region r(σα, σk−1, vr) and

r(σk+1, σβ, vr). Since site pu is unlabelled and vr is the left most end point

of pu then pu /∈ r(σα, σβ, vr−1). If we consider site pu as unlabelled, restrict

the problem in r(σα, σβ, vr−1), then we never get feasible solution.

If no optimal leader possible for vr in r(σα, σβ, vr), then problem is infeasi-

ble.

For the case where, vr is a right endpoint of pu then we say a strip σk is a

feasible strip for vr in the region r(σα, σβ, vγ), only if, |Lα(k−1)r| = |Pα(k−1)r| and

|L(k+1)βr| = |P(k+1)βr|, and qr′aoRj′bok′co ∈ QrRjk, QrRjk ∈ QR, {r, j} ∈ [1, n],

{r, j} ∈ Z, α < β. We define, FαβγR be the set which have all feasible strips for
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region r(σα, σβ, vγ) with respect to right most end point vr whose corresponding

site pu is unlabelled and vr is right end point of pu. Similar way, for the case where

vr is a left endpoint of pu, we define FαβγL be the set which have all feasible

strips in the region r(σα, σβ, vγ) with respect to vr. |FαβγR | ≤ β − α + 1 and

|FαβγL | ≤ β − α + 1, because we have atmost β − α + 1 strips. Let us assume,

LαβγR ⊆ QoptR be a set of optimal leaders such that for each leader starts from

right most point vr in r(σα, σβ, vγ) and ends at each feasible strip of vr if vr is

the right end point of pu, else |LαβγR | = φ. Similar way, LαβγL can be defined

if vr is the left end point of pu. Cardinality of set |LαβγR | ≤ (β − α + 1) and

|LαβγL | ≤ (β−α+ 1). Let VR ⊂ V be the set of all right end point of sites P and

VL ⊂ V be the set of all left end point of sites P . Let suppose, vλαβ be the second

most right end point in r(σα, σβ, vγ) where site correspond to it is unlabeled. If

there is no such point exist then vλαβ = vγ .
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opt labelling(α, β, γ) =



min
qr′aoj

′
bo
k′co
∈LαβγL

{cost(qr′aoj′bok′co )+

opt labelling(α, k − 1, γ)+

opt labelling(k + 1, β, γ)} if LαβγL 6= φ & vγ ∈ VL

∞, if LαβγL = φ & vγ ∈ VL.

min { min
qr′aoj

′
bo
k′co
∈LαβγR

{cost(qr′aoj′bok′co )+

opt labelling(α, k − 1, γ)+

opt labelling(k + 1, β, γ)},

opt labelling(α, β, λ)} if LαβγR 6= φ, vγ ∈ VR& vγ 6= vλαβ

∞, if LαβγR = φ, vγ ∈ VR

min
qr′aoj

′
bo
k′co
∈LαβγR

{cost(qr′aoj′bok′co )+

opt labelling(α, k − 1, γ)+

opt labelling(k + 1, β, γ)} if LαβγR 6= φ, vγ ∈ VR& vγ = vλαβ

check all possible labelling and return

the optimum labelling, if no labelling

return∞, if |α− β| ≤ 1

(3.7)

Now, we call for opt labelling(1,m, 2×n) for problem instance (R,L, P, V ).

If it returns value x < ∞, then (R,L, P, V ) is solvable (or feasible), and we get

a cost of minimum optimal labelling. But if x = ∞, then (R,L, P, V ) is not

solvable (or infeasible).
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Algorithm and Time Complexity

Algorithm is similar to the case when sites are points and satisfies the visibility V .

So, we are omitting the algorithm part for this case.

When joining a right most end point of arbitrary length horizontal line seg-

ments to label it sub- divide the region into two parts. Since we have O(n3) dif-

ferent regions. So we check the time taken by each sub- problem. By arranging the

labels and site in increasing order, when we initialize the problem. Traversing top

to bottom of the strip and checking equality between number of unlabelled sites

and unlabelled label can be done in O(n) time. Ckecking the second right most

end point whose corresponding site is unlabelled can be done in O(n) time. Mini-

mality checking also takesO(n) time. So, time taken by to solve a sub- problem is

O(n). we are not going through much details because these sub-problem and the

sub- problem we solved when we considered sites as points are very similar. So

total time complexity to solve for the optimality of problem instance (R,L, P, V )

will be O(n4) and space complexity will be O(n3).
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Chapter 4

Conclusion and possible future work

In this report, we have studied algorithms for solving the one-sided as well as multi

sided boundary labeling problem with po-leaders. The algorithms either minimize

the total leader length or optimize a general badness function. Considering same

length horizontal segment rather than points as sites, we obtain some results for

one sided boundary labelling problem. Here is a list of interesting future task:

• A polynomial time algorithm to find a minimum length solution of three-

sided and four- sided boundary labeling when sites are points.

• Labelling various type of line segments such as different length horizontal

segment, axis parallel line segment with same length, general line segment with

same length as well as arbitrary length for one sided boundary labelling problem

with minimum leader length.

• Labelling various type of line segments for opposite sided boundary la-

belling problem with minimum leader length.
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