
Indian Statistical Institute

Kolkata

Master’s Thesis

Multi-Agent Systems: Model-checking in Logics

of Protocols

Supervisor: Author:

Dr. Sujata Ghosh Pinaki Chakraborty

CS1824

A thesis submitted in fulfillment of the requirements

for the degree of Master of Technology

in

Computer Science

January 25, 2021

Declaration of Authorship

I, Pinaki Chakraborty, declare that this thesis titled, “Multi-Agent Systems:

Model-checking in Logics of Protocols” and the work presented in it, submitted

to Indian Statistical Institute, Kolkata, is a bonafide record of the study carried

out in the partial fulfillment for the award of the degree Master of Technology in

Computer Science. I confirm that:

• No part of this thesis has previously been submitted for a degree or any other

qualification at this University.

• I have acknowledged all relevant sources of help.

Signed:

Date: January 25, 2021

ii

Indian Statistical Institute,Kolkata

Kolkata, West Bengal, India, PIN - 700108

This is to certify that this thesis, “Multi-Agent Systems: Model-checking in

Logics of Protocols” submitted by Pinaki Chakraborty to Indian Statistical In-

stitute, Kolkata, fulfills all the requirements of this Institute.

Signed:

Dr. Sujata Ghosh

Associate Professor

Computer Science Unit

Indian Statistical Institute, Chennai

iii

Dedicated to My Parents

ACKNOWLEDGMENTS

It is a great pleasure for me to express my respect and deep sense of gratitude

to my supervisor Dr. Sujata Ghosh, Computer Science Unit, Indian Statistical

Institute, Chennai, for her vision, expertise, guidance, enthusiastic involvement,

persistent encouragement, immense patience and unwavering faith in me during the

planning and development of this work, and for her painstaking efforts in thoroughly

going through and improving the manuscripts. I also gratefully acknowledge her

contribution towards introducing me to the formal study of Logic.

I am highly obliged to Dr. Ansuman Banerjee, Advanced Computing and Mi-

croelectronics Unit, Indian Statistical Institute, Kolkata for initiating me to the

field of Model Checking and encouraging me throughout this endeavor.

I am highly grateful to Dr. Malvin Gattinger, Department of Artificial Intelli-

gence, University of Groningen for his valuable feedback in the early stages of this

work.

I am highly obliged to my parents for their blessings and for providing me with

their best.

I wish to express my obligation towards Dr. Malay Bhattacharya, Machine

Intelligence Unit, Indian Statistical Institute, Kolkata for his moral support. I

also wish to express my appreciation towards my friend Mr. Spandan Das for his

encouragement and helping hand.

I would also like to express my deep and sincere thanks to all other persons

whose names do not appear here, for helping me.

Finally, I am indebted and grateful to Indian Statistical Institute, Kolkata for

hosting me as an M. Tech. student.

(P. C.)

v

ABSTRACT

A multi-agent system can often be described as a protocol based interacting system

wherein the information flow, inter-agent communication and agent behavior can be

naturally modeled with dynamic and epistemic logics which are different variants

of modal logics. Such protocols may either be known beforehand to each agent or

be unknown to any agent at the start. In the later situation, such protocols are

called hidden protocols. When an agent learns of a hidden protocol, it is led to

have some expectations about future observations and updates its knowledge of the

state by matching its actual observations with the expected ones. In their paper

“Hidden Protocols: Modifying our expectations in an evolving world”, Hans van

Ditmarsch, Sujata Ghosh, Rineke Verbrugge and Yanjing Wang studied how agents

perceive such protocols and introduced the notion of epistemic expectation models

and a propositional dynamic logic-style epistemic logic, Epistemic Protocol Logic for

reasoning about knowledge via matching agents’ expectations to their observations,

updates of protocols and fact-changing actions. This is of particular interest to

modeling scenarios where security aspects mandate knowledge of protocols to be

hidden to some or all agents beforehand or at all times. In this project we will focus

upon theory and implementation of a model checker for Epistemic Protocol Logic

incorporating Epistemic Expectation Models and study formal methods towards a

symbolic model checking approach to this end.

vi

Contents

Declaration ii

Certificate iii

Dedication iv

Acknowledgments v

Abstract vi

List of Figures x

List of Acronyms/Abbreviations xi

List of Symbols xii

1 Introduction 1

1.1 Introduction to Epistemic Logic . 4

1.1.1 Epistemic Logic . 5

1.1.2 Example of Kripke Model . 7

1.2 Dynamic Epistemic logic . 7

1.2.1 An example of update with action model 8

2 Logic of Protocols 10

2.1 Expectation and Observation . 11

2.1.1 Example of an Epistemic Expectation Model 12

2.2 Public Observation Logic . 12

2.3 Epistemic Protocol Logic . 14

2.3.1 An Example of Protocol Update 16

3 Model Checking Logic of Protocols 19

3.1 Related Work . 20

3.2 Model Checking Framework . 20

3.2.1 Translation to Epistemic Propositional Dynamic Logic 20

3.2.2 Syntax and Semantics of POL 22

vii

3.2.3 Decidability of POL . 22

3.3 Algorithms for Model Checking POL and EPL over EEMs 24

3.3.1 Functions from Syntax Tree . 25

3.3.2 Method of DFA Construction 28

3.3.3 Algorithms for some auxiliary functions upon DFAs 28

3.3.4 Evaluation of Formula . 28

4 Model Checking Tool for Logic of Protocols 33

4.1 Introduction . 33

4.1.1 Rationale for Choice of Haskell 34

4.2 Explicit Model Checking . 35

4.2.1 Basic Representations . 36

4.2.2 Representing Observation and Protocol Expressions 36

4.2.3 Tokenization and Parsing . 37

4.2.4 Epistemic Expectation Models and Protocol Models 39

4.2.5 DFA Construction, Representation and Functionalities 43

4.2.6 Scalability and Complexity . 43

4.3 An Example of Model Checking . 45

5 Conclusions 49

5.1 Summary . 49

5.2 Scope for Future Work . 49

6 Conclusions 51

6.1 Summary . 51

6.2 Scope for Future Work . 51

Biblography 53

viii

List of Figures

1.1 A Kripke Model . 7

1.2 Coin Heads or Tails: Update with Action Model 9

2.1 An epistemic scenario with state-dependent protocols 10

2.2 Dutch or not Dutch problem . 12

2.3 The Valentine’s Day problem . 17

3.1 A syntax tree for the expression (a + b)∗ ⋅ a ⋅ b ⋅ b ⋅# 25

3.2 nullable values for each node in a syntax tree for (a+b)∗ ⋅a ⋅b ⋅b ⋅# 26

3.3 firstpos and lastpos sets for each node in a syntax tree for

(a + b)∗ ⋅ a ⋅ b ⋅ b ⋅# . 26

3.4 followpos sets for two leaf nodes in a syntax tree for (a+ b)∗ ⋅
a ⋅ b ⋅ b ⋅# . 27

3.5 Rules for computing nullable, firstpos functions as presented

in p. 177, “Compilers: Principles, Techniques, & Tools” by

Aho, Lam, Sethi, Ullman . 27

4.1 ADT for an agent and type synonym for a partition of a set 36

4.2 ADTs for propositions and Boolean formulas 36

4.3 ADT for Observation Expressions 37

4.4 ADT for Protocol Expressions . 37

4.5 Function ObQ for the quotient (/) operation upon Observa-

tion Expressions . 38

4.6 Function for converting Protocol Expressions to Observa-

tion Expressions . 38

4.7 Tokens for Observation Expressions 38

4.8 ADT for Observation Expressions Tokens 39

4.9 Happy specification for Protocol Expressions 39

4.10 Happy specification for Protocol Expressions 40

4.11 ADT for EEMs . 40

4.12 ADT for Protocol Models . 41

4.13 ADT for an EPL formula . 41

4.14 Main function for Model checking 42

ix

4.15 Function for Update by Observation 42

4.16 Functions for Protocol Update . 42

4.17 Functions for Protocol Update . 42

4.18 An Automaton . 43

4.19 ADT for DFAs . 43

4.20 Function for building a DFA . 44

4.21 DFA utility functions . 44

4.22 Initial Epistemic Expectation Model M 45

4.23 Protocol Model . 45

4.24 Setting up the environment for an EPLMC session — input

of the states, agents, propositions, Observation Expressions

and Protocol Expressions . 46

4.25 Internal Representation of M — denoted by the variable

‘initM’ and A — denoted by ‘ptcl’ 46

4.26 Updated Expectation Model . 47

4.27 The Updated Model, ‘initM’ × ‘ptcl’ 47

4.28 Expectation Model (M×A) ∣N . 47

4.29 Expectation Model after observation of “N” 48

4.30 Model Checking the formula ϕ in EPLMC with respect to

(M, t) . 48

x

List of Acronyms/Abbreviations

BNF Backus–Naur form

POL Public Observation Logic

EPL Epistemic Protocol Logic

ETL Epistemic Temporal Logic

DEL Dynamic Epistemic Logic

BDD Binary Decision Diagram

EPDL Epistemic Propositional Dynamic Logic

DFA Deterministic Finite Automaton

ADT Algebraic Data Type

xi

List of Symbols

N The set of Natural numbers

P Powerset / Partition

U ,V Vocabulary

xii

Chapter 1

Introduction

On October 29, 2018 a Boeing 737 MAX aircraft, Lion Air Flight 610 crashed

killing 189 people on-board, and on March 10, 2019 another Boeing 737 MAX

aircraft, Ethiopian Airlines Flight 302 crashed killing 157 people on-board. Inves-

tigations revealed that the crashes were caused by an improper design of the The

Maneuvering Characteristics Augmentation System, which is an embedded software

in the Boeing 737 MAX aircraft control system. In another incident, on May 6,

2010, the Dow Jones Industrial Index slumped nearly 1,000 points, wiping out more

than $862 billion off the American stock market immediately. The government reg-

ulator identified the cause as an unintentional behavior of an automated algorithmic

trading strategy employed by Waddell & Reed, a US mutual fund.

The above incidents highlight the importance of verification of a computerized

system against its specifications to ensure proper behavior. To this end any system

involving either a single computational agent (for example the aircraft embedded

software) or a group of agents communicating with each other (for example in the

algorithmic trading strategy scenario —buyer and seller agents are mutually inter-

acting), needs to be formally modeled and checked against a formal specification of

its behaviors in order to eliminate unintended ‘side-effects’.

Usually, a logical formalism suitable to the corresponding problem domain is

employed to model the structure as well as to specify the behavior and desired

properties of a system. In general, the systems in consideration have finite states or

finite state abstractions. For example, such systems include, but are not limited to,

digital circuits, network protocols, embedded software etc. The task of modeling

such systems and specifying their behaviors, along with designing frameworks to

check the models against corresponding specifications, is known as Model Checking

(also known as Property Checking).

In the late 1950’s and early 1960’s, Model Checking was associated chiefly with

traditional hardware design. The methodologies, which were built upon proposi-

tional logic, were found to be quite suitable for verification of combinatorial circuits

and their behaviors. But as hardware systems became more complicated with the

introduction of large scale integrated circuits, the shortcomings of propositional

1

logic to describe properties of such systems became apparent.

In another direction, in the 1960’s and 1970’s, first order logic was used with

considerable success in the domain of Theorem proving [Eme08]. This paradigm for

verification, which is based upon proof-theoretic reasoning using formal axioms and

inference rules, is oriented chiefly towards sequential programs. But these methods

were not suitable to express parallelism characteristic to hardware systems con-

sisting of very large scale integrated circuits and the emerging concurrent software

systems. Moreover theorem proving in first-order logic is undecidable and hence

often relies upon heuristics.

These underscored the need to avoid the difficulties with manual deductive

proofs and to come up with methods that are decidable, thereby motivating alterna-

tive paradigms of formalism based upon modal logic in which the relevant property

specifications (such as correctness,fairness etc) could be naturally expressed.

Amir Pnueli, in his seminal paper “The Temporal Logic of Programs”, intro-

duced temporal logic as one such suitable tool for modeling these concurrent systems

[Pnu77]. Informally, any system comprising rules and symbolism for representation

of and reasoning about propositions which are qualified with the modality of time

is called a temporal logic.

The methodologies, which were developed upon temporal logic up to the early

1980’s, suffered from the state explosion problem. As the number of state variables

in the system increases, the size of state space grows exponentially. In the late

years of the 1980’s, symbolic methods for model checking that avoided explicit

representation of the system state, thereby mitigating the state explosion problem,

were developed [BCM+92].

In the subsequent decade, model checking based upon temporal logic was em-

ployed widely in many applications, such as improving real-time systems for en-

suring the stability of buildings during earthquakes [CW96], and these techniques

became industry standards. But the vast majority of existing tools are not quite

useful for modeling situations or problems involving knowledge.

Another variant of modal logic, namely epistemic logic [FHMV95], which is

chiefly concerned with logical approaches to knowledge, belief and related notions,

naturally models such scenarios. While deeply rooted in philosophical traditions,

the idea of a formal logical analysis of reasoning about knowledge is more recent.

The impetus came from various research problems in the fields of economics, linguis-

tics, artificial intelligence etc. It must be clarified that it is possible to incorporate

epistemic operators in the framework of temporal logic [PR03].

Epistemic Logic is also particularly useful for modeling and analyzing situations

2

involving multiple agents. Informally stated, Multi-agent systems are those sys-

tems that include multiple autonomous entities with either diverging information

or diverging interests, or both. A multi-agent system is typically characterized by

communication between agents, which can change the epistemic states of agents.

[Azi10]. Pragmatic concerns about the relationship between knowledge and action

of an agent (or a group of agents) requires an analysis of change in the epistemic

states of the corresponding agents.

Now let us consider a few examples that illustrate the concept of epistemic

states of agents. In an affected area, a group of autonomous robotic agents are

coordinating between themselves to accomplish a disaster response goal. Depending

upon the degree of cooperation and nature of the goal, a formal analysis of the

strategies being employed by the agents, requires different notions of epistemic

states.

If the goal is to asses the damage incurred, for example, then the epistemic state

of each agent incorporates the knowledge of the facts in its immediate surroundings.

On the other hand, if the goal is to assist in evacuation and rescue operations, then

the epistemic state of each agent must incorporate not only the knowledge of the

facts in its immediate surroundings, but also the knowledge regarding the epistemic

states of other agents in its vicinity.

As another motivating example, consider a bargaining situation. The seller of a

car must consider what the potential buyer knows about the car’s value. The buyer

must also consider what the seller knows about what the buyer knows about the

car’s value, and so on.

The previous two examples illustrate that, different notions of epistemic states

naturally arise in a multi-agent situation.

In some scenarios, it is imperative to consider the case wherein for a group of

agents I, each agent i ∈ I, knows a proposition ϕ, and each agent i knows that

another agent j ∈ I knows ϕ, and so on. In the literature, this is called common

knowledge of ϕ in a group of agents I.

For example, the convention that green light mandates the action “go” and

red light for “stop” in a traffic control scenario, is presumably common knowledge

among the drivers.

A related notion is that of a protocol. Informally stated, rules which prescribe

the actions of agents with respect to their knowledge states are called protocols

in the context of epistemic logic. In the traffic control scenario, for example, the

convention that a green light mandates to perform the action “go” and red light

mandates to perform the action “stop” is a protocol.

3

It is not necessarily the case that protocols are common knowledge to all agents.

In some situations agents may have partial knowledge of protocols. In those cases,

based upon its partial knowledge about the protocols and its observations of other

agents’ actions, an agent tries to reason about the facts in its world.

In this work, the methodologies for model checking different logic of protocols

[vDGVW14], which are a part of the broad spectrum of epistemic logic, will be

discussed and the implementation of a model checking tool for such logic will be

presented. The work is organized and structured in the form of the following chap-

ters:

i) Introduction: The need and scope for model checking variants of epistemic

logic are discussed along with a presentation of the formal semantics of epis-

temic logic on Kripke Models. Dynamic Epistemic Logics are also briefly

discussed to illustrate dynamic operations upon epistemic states.

ii) Logic of Protocols: The different logic of protocols, namely Public Ob-

servation Logic (POL) and Epistemic Protocol Logic (EPL) are discussed in

detail.

iii) Model Checking Logic of Protocols: In this chapter, the problem of

model checking is introduced formally and then a methodology for implemen-

tation of a model checking tool for POL and EPL is formulated.

iv) Model Checking Tool for Logic of Protocols: In this chapter, the details

of a Haskell implementation of a model checking tool based upon the ideas

in the previous chapter is described. An example of model checking EPL

formulas with respect to a given scenario is also presented.

v) Conclusions: This chapter concludes the work and the scopes for future

works are mentioned.

1.1 Introduction to Epistemic Logic

As mentioned before, epistemic logic is the study of knowledge (and related

epistemic attitudes such as belief) using formal languages and mathematical models.

In the literature, approaches rooted in modal logic are widely used to formalize

epistemic logic.

In this section, we first very briefly discus the syntax and semantics of epistemic

logic, and then in the next section, syntax and semantics of a related logic, called

Dynamic Epistemic Logic, is briefly discussed.

4

We begin by defining some preliminary concepts. Let I be a finite set of agents,

I = {1, . . . , n}. Let us further assume that a countably infinite set of atomic

propositional variables exist. A finite subset of these variables is called a vocabulary

and is denoted by V .

Definition 1.1.1. The language LB(V) of Boolean formulas over a vocabulary V
is given by the following BNF :

ϕ ∶∶= ⊺ ∣ p ∣ ¬ϕ ∣ ϕ ∧ ϕ where p ∈ V

Throughout this work, the following connective symbols, � ∶= ¬⊺, ϕ∨ψ ∶= ¬(¬ϕ∧
¬ψ), ϕ→ ψ ∶= ¬ϕ ∨ ψ) and ϕ↔ ψ ∶= (ϕ→ ψ) ∧ (ψ → ϕ) are used.

Definition 1.1.2. A Boolean assignment for a vocabulary V assigns to each atomic

proposition a truth value. An assignment S is a function of the form S ∶ V →
{True, False}.

For a fixed vocabulary, S is identified with the subset of atomic propositions

which are true in it. Thus S = {p ∈ V ∣ S(p) = True}. A formula, ϕ is termed

satisfiable, if it is possible to find an assignment S, such that ϕ is true over S. It is

denoted as S ⊧ ϕ, and is defined recursively, as following:

1. S ⊧ ⊺

2. S ⊧ p iff p ∈ S

3. S ⊧ ¬ϕ iff not S ⊧ ϕ

4. S ⊧ ϕ ∧ ψ iff S ⊧ ϕ and S ⊧ ψ

A formula ϕ is called valid iff it satisfies all assignments and this is denoted as ⊧ ϕ.

1.1.1 Epistemic Logic

We begin by defining the general syntax of a formula in epistemic logic.

Definition 1.1.3 (Epistemic Logic Syntax). Given a set of agents I and a

vocabulary V, the language of epistemic logic L(V) extends the Boolean language

LB(V), and is expressed by the following BNF:

ϕ ∶∶= ⊺ ∣ p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣Kiϕ ∣ C∆ϕ

Where p ∈ V , i ∈ I and ∆ ⊆ I.

5

The formula Kiϕ is read as “agent i knows that ϕ is true”, and the formula C∆ϕ

says that ϕ is common knowledge among agents in the group ∆.

Before discussing the semantics of a formula, the model upon which the truth

of a formula is evaluated, is discussed in the following two definitions.

Definition 1.1.4 (Kripke Frame). A Kripke Frame for a set of agents I =
{1, . . . , n} is a tuple M = ⟨W,R⟩, where W is a finite set of possible worlds and

R is a family of binary relations over W indexed by agents i.e Ri ⊆ W ×W for each

i ∈ I.

Definition 1.1.5 (Kripke Model). A Kripke Model for a set of agents I and

a vocabulary V is a tuple M = ⟨W,Π,R⟩, where ⟨W ,R⟩ is a Kripke Frame for I
and Π ∶ W →P(V) is a valuation function and P(V) is the powerset of V.

For any group of agents ∆ ⊆ I, the transitive closure of the union of their

relations is denoted by R∆ which is defined as (∪i∈∆Ri)∗. A pointed Kripke

Model is a pair (M,w) where w is a world of M. The interpretation of the

relation Ri is that it relates worlds which the agent i considers possible in its

current knowledge state.

Knowledge is defined in terms of this possibility: agent i knows ϕ at a world w

iff at all the worlds that i considers possible with respect to w, ϕ is true. Assuming

Ri to be an equivalence relation: i knows something iff it is true at all those worlds

that i cannot distinguish from the actual world w.

In Definition 1.1.6, a special class of Kripke Models called S5 Kripke Models,

is defined.

Definition 1.1.6 (S5 Kripke Model). For a group of agents I and a Kripke

Model M= ⟨W,Π,R⟩, if each Ri is an equivalence relation, then M is called to be

a S5 Kripke Model.

Now the semantics of epistemic logic is introduced in Definition 1.1.7.

Definition 1.1.7 (Epistemic Logic Semantics). Semantics for L(V) on pointed

S5 Kripke models are as follows:

1. (M,w) ⊧ ⊺

2. (M,w) ⊧ p iff p ∈ Π(w)

3. (M,w) ⊧ ¬ϕ iff not (M,w) ⊧ ϕ

4. (M,w) ⊧ ϕ ∧ ψ iff (M,w) ⊧ ϕ and (M,w) ⊧ ψ

6

5. (M,w) ⊧Kiϕ iff for all wj ∈W , if Riwwj, then (M,wj) ⊧ ϕ

6. (M,w) ⊧ C∆ϕ iff for all wj ∈W , if R∆wwj, then (M,wj) ⊧ ϕ

Note that, since ⊺ is trivially satisfied in any model, we refrain from including

it while defining the semantics throughout this work.

1.1.2 Example of Kripke Model

w1

p

w2

p,q

Bob
Alice,Bob Alice,Bob

Figure 1.1: A Kripke Model

Figure 1.1 shows a Kripke model M. The model consists of two worlds w1

and w2, and describes the Epistemic state of two agents called Alice and Bob. The

actual world w1 is marked with a double border in Figure 1.1. The semantics, in

this scenario, is illustrated with the following true statement:

• (M,w1) ⊧ p ∧ ¬q ∧CAlice,Bobp ∧KAlice¬q ∧ ¬KBobq

1.2 Dynamic Epistemic logic

In this section a very brief overview of Dynamic Epistemic Logic which permits

modeling change in epistemic state of an agent is presented. Update of epistemic

states was introduced in [Pla07], which is known as Public Announcement Logic

(PAL) in the literature. This extends epistemic logic with a modality to describe

incoming information in the form of a truthful public announcement, made by a

trusted authority, which is received and accepted by every agent.

But knowledge can be changed by many other forms of communications such as

semi-private, private or secret announcements. Epistemic states of agents can also

be altered by occurrence of events.

As an example, if in a room with two persons, a coin is flipped at random,

and the result is made known to one of the persons then the knowledge of that

person regarding the state of affairs changes but that of the other person remains

unchanged.

7

In [BMS98], Action Models were introduced to model such complex commu-

nications and events. This framework came to be known as Dynamic Epistemic

Logic (DEL) [DvdHK07].

The syntax and semantics of Dynamic Epistemic Logic formulas are as following:

Definition 1.2.1 (Action Model). Let V be a vocabulary. An action model is a

tuple A = (A,RA, pre) where A is a set of atomic events, RA is a family of relations

Ri ⊆ A ×A for each i, pre ∶ A → L(V) is a function which assigns to each event a

formula called the precondition.

Definition 1.2.2 (Product Update). Given a Kripke model M and an action

model A using the same vocabulary, their product is M×A ∶= ⟨Wnew,Πnew,Rnewi ⟩,
whereWnew ∶= {(w,a) ∈ W×AA ∣ (M,w) ⊧ pre(a)}, Rnewi ∶= {((w,a), (v, b)) ∣ RMi wv
and RAi ab} and Πnew((w,a)) ∶= Π(w).

Definition 1.2.3 (Action). An action is a pair (A, a) where a ∈ AA. To update

a pointed Kripke model with an action the following is defined: (M,w) × (A, a) ∶=
(M×A, (w,a)).

Definition 1.2.4 (DEL Syntax). Given a vocabulary V, the language of Dynamic

Epistemic logic LD(V) with dynamic operators for action models extends L(V) and

is given by the following BNF:

ϕ ∶∶= ⊺ ∣ p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣Kiϕ ∣ C∆ϕ ∣ [A, a]ϕ

Here p ∈ V , i ∈ I, ∆ ⊆ I and (A, a) is an action. Since the only new operator

is the one denoting application of an action, only the semantic for that operator is

defined in Definition 1.2.5.

Definition 1.2.5 (DEL Semantics). The semantic of [A, a] operator is as fol-

lowing: (M,w) ⊧ [A, a]ϕ iff (M,w) ⊧ pre(a) implies (M×A, (w,a)) ⊧ ϕ

We conclude this section with an example of update with action models:

1.2.1 An example of update with action model

. Let us consider the following scenario. A coin lies on a table in a dark room.

There are two persons a and b, in that room. a is facing the table, whereas b is

looking in the opposite direction relative to the table. Initially none of the persons

are aware of the fact that the coin lies heads up. Let the proposition that this coin

is heads up be denoted with p. Now a light-bulb is lit in the room is lit by pressing

8

a switch from outside. Since only, a is facing the table, a becomes aware of the fact

p immediately but b’s ignorance regarding the situation still persists.

Figure 1.2 depicts a Kripke model of the initial situation, an action model repre-

senting the event of lighting the room and the resultant Kripke model. The actions

are represented with rectangles. The precondition is prefixed with the symbol ‘?’.

a1

?p

a2

?¬p

w1

p

w2

¬p

× =

(w1, a1)

p

(w2, a2)

¬p

a,b

a,b a,b

a,b

a,b b b

Figure 1.2: Coin Heads or Tails: Update with Action Model

9

Chapter 2

Logic of Protocols

In this chapter the notion of protocol, mentioned in Chapter 1 will be made

more precise and the different logics of protocols as introduced in [vDGVW14] will

be discussed. The notion of protocol in this context, following the convention in

[vDGVW14], emphasizes upon understanding the underlying meaning of the actions

induced by a protocol.

As an illustrative example consider an epistemic scenario wherein the agents are

not only uncertain about the factual state of the world but also about the protocol

that can be executed given some factual state, depicted as Figure 2.1: Here s and t

s

{a}

p

t

{b}

¬p

1,2

Figure 2.1: An epistemic scenario with state-dependent protocols

are labels of possible worlds, 1 and 2 are two agents, p is a proposition, and a and

b are expected actions (the notion of action here is related to but not exactly the

same as those on page 8). The uncertainty of the agents regarding the protocol is

denoted by a state-dependent protocol assigning singleton action sets {a} to s and

{ b} to t. The reflexive arrows are omitted in this figure.

In the above example model, intuitively it is possible to reclaim some form of

common knowledge of the protocol, by describing the protocol as follows: if p then

perform a and if ¬p then perform b. In the following sections a precise notion of

such intuitive description, namely observation expressions and protocol ex-

pressions are presented.

The formalism discussed in the following sections does not incorporate other

aspects of protocols such as how these protocols are designed in the first place and

how the agents come to agree to use them.

10

2.1 Expectation and Observation

In order to reason about update of knowledge of an agent via matching its obser-

vations with its expectations, the concept of an Epistemic Expectation Model, which

is an augmented form of the Kripke Model (Section 1.1.1), is utilized. An agent

observes events that occur around it and reasons based upon these observations.

In general observation of actions such as ‘going to the right’, are the focus of

this framework rather that of facts, such as ‘the chair is red’. An observation can be

thought of as a finite sequence of actions and an agent may expect to observe any

one among (infinitely many) different observations at any given state in the world.

Therefore in order to succinctly represent the potential observations of an agent,

the notion of an observation expression (a form of regular expressions) is used.

Definition 2.1.1 (Observation Expression). Given a finite set of action symbols

Σ, the language Lobs of observation expressions is defined by the following BNF:

π ∶∶= δ ∣ ε ∣ a ∣ π ⋅ π ∣ π + π ∣ π∗

where δ stands for the empty set ∅ of observations, ε represents the empty string,

and a ∈ Σ. The semantics for observation expressions are given by sets of observa-

tions (which are strings over Σ), in a similar way to that of regular expressions.

The notion of observation is formalized in Definition 2.1.2 in terms of observation

expression.

Definition 2.1.2 (Observation). Let Σ be a set of action symbols and π be an

observation expression over Σ. The corresponding set of observations, L(π) is the

set of finite strings over Σ, which are defined recursively,

1. L(δ) = ∅

2. L(ε) = { ε}

3. L(a) = {a}

4. L(π1 ⋅ π2) = {wv ∣ w ∈ L(π1) and v ∈ L(π2)}

5. L(π1 + π2) = L(π1) ∪ L(π2)

6. L(π∗) = { ε} ∪ ⋃n>0L(πn)

The definition of an Epistemic Expectation Model, which can be thought of as

an epistemic model (Kripke Model) augmented by a set of expected observations

for each world, expressed as an observation expression, follows:

11

Definition 2.1.3 (Epistemic Expectation Model). A tuple ⟨S,V ,∼,Exp⟩ where

⟨S,V ,∼⟩ is an epistemic model (a S5 kripke model) and Exp ∶ S → Lobs is an ex-

pected observation function that assigns to each state s ∈ S an observation expression

π such that L(π) ≠ ∅ is called an Epistemic Expectation Model Mexp.

Similar to the pointed Kripke Models in page 5, an epistemic expectation state

is a pointed epistemic expectation model ⟨Mexp, s⟩ where s ∈ S. The subscript is

often dropped if the meaning is clear from the context.

Remark 2.1.4. An epistemic model M can be thought of as an epistemic expecta-

tion model Mexp where for all s ∈ S, Exp(s) = Σ∗.

2.1.1 Example of an Epistemic Expectation Model

In this example, we consider the following scenario from [vDGVW14]: In the

Netherlands, people often greet each other by kissing three times on the cheek (left-

right-left) while in the rest of Europe, people usually kiss each other only twice.

We can reason whether a person is ‘Dutch-related’ by observing her behavior. Let

pD be the proposition meaning ‘Mary is Dutch-related’, a and b are two actions

denoting kissing the left cheek and the right cheek, respectively. The following

is the corresponding Epistemic Expectation Model: The equivalence relation in

s

a ⋅ b ⋅ a

pD

t

a ⋅ b

¬pD

1

Figure 2.2: Dutch or not Dutch problem

Figure 2.2 depicts that agent 1 does not know whether pD. In the next section

a logic, called Public Observation Logic which is suitable for reasoning based on

actual observations is presented.

2.2 Public Observation Logic

Before introducing the syntax and semantics of Public Observation Language

formulas (POL), update of epistemic expectation models according to some obser-

vation w ∈ Σ∗ is defined. The underlying assumption is that agents are inherently

12

equipped with the capability of distinguishing between possible and impossible sce-

narios by observing sequence of actions.

Definition 2.2.1 (Update by Observation). Let w be an observation over Σ∗

and M = ⟨S,V ,∼,Exp⟩ be an epistemic expectation model. The updated model is

M∣w = ⟨S ′,V ′,∼′,Exp′⟩ where the components are given as, S ′ ∶= {s ∣ Exp(s)/w ≠ δ},

∼′i ∶= ∼i∣(S′×I×S′), V ′ ∶= V∣S′ and Exp′(s) ∶= Exp(s)/w. The notation π/w denotes the

observation expression corresponding to the set {v ∣ wv ∈ L(π)} and I is the set of

agents.

Note that intuitively if w = ε then the model should not change at all. In

Remark 2.2.2, this notion is made precise.

Remark 2.2.2. π/w is defined with the following auxiliary output function O ∶=

1. π = O(π) +∑a∈Σ(a ⋅ π/a)

2. O(ε) ∶= ε

3. O(δ) ∶= O(a) = δ

4. O(π1 + π2) ∶= O(π1) + O(π2)

5. O(π1 ⋅ π2) ∶= O(π1) ⋅ O(π2)

6. O(π∗) ∶= ε

7. δ/a = ε/a = b/a ∶= δ (a ≠ b)

8. a/a ∶= ε

9. (π1 + π2)/a = π1/a + π2/a

10. (π1 ⋅ π2)/a = (π1/a) ⋅ π2 +O(π1) ⋅ (π2/a)

11. π∗/a = π/a ⋅ π∗

12. π/a0 . . . an = π/a0 . . . /an

13. π/ε ∶= π

Definition 2.2.3 (POL Syntax). The formulas in POL are expressed by the

following BNF ∶=
ϕ ∶∶= ⊺ ∣ p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣Kiϕ ∣ [π]ϕ

13

Here p ∈ P is the set of propositional symbols, i ∈ I is the set of agents and

π ∈ Lobs. The modal operator [π] is called the observation update operator. As before

in Section 1.1, other propositional connectives are defined in the usual manner.

Definition 2.2.4 (POL Semantics). The semantics of POL formulas are as fol-

lowing. Given an epistemic expectation model M = ⟨S,V ,∼,Exp⟩, a state s ∈ S,

and a POL-formula ϕ,

1. M, s ⊧ p iff p ∈ V(s)

2. M, s ⊧ ¬ϕ iff not M, s ⊧ ϕ

3. M, s ⊧ ϕ1 ∧ ϕ2 iff M, s ⊧ ϕ1 and M, s ⊧ ϕ2

4. M, s ⊧Kiϕ iff for all t ∶ s ∼i t,M, t ⊧ ϕ

5. M, s ⊧ [π]ϕ iff for all w ∈ L(π), if w ∈ init(Exp(s)) then M∣w, s ⊧ ϕ where

w ∈ init(π) iff existsv ∈ Σ∗ such that wv ∈ L(π) i.e., L(π/w) ≠ ∅

In Figure 2.2, for example, M, s ⊧ [a ⋅ b](¬K1pD ∧ [a]K1pD). In Section 2.3, a

formal framework for reasoning about how expectation is acquired and changed by

agents, called Epistemic Protocol Logic ([vDGVW14]), is presented.

2.3 Epistemic Protocol Logic

As a starting point, the notion of protocols and protocol models as sources for

expected observations is defined as following:

Definition 2.3.1 (Protocol Expression). The language Lprot is defined by the

following BNF:

η ∶∶= δ ∣ ε ∣ a ∣ ?ϕ ∣ η + η ∣ η ⋅ η ∣ η∗

where a ∈ Σ, ϕ ∈ LB(P), P is a set of propositions.

Remark 2.3.2. The test condition (?) in protocol expressions is used to describe

the conditions under which certain observations may occur.

For example, referring to Figure 2.2, the underlying protocol can be expressed

as ?pD ⋅ a ⋅ b ⋅ a+?¬pD ⋅ a ⋅ b.
The semantics for protocol expressions are as following:

Definition 2.3.3 (Semantics of Protocol Expressions). The set Lg(η) of

guarded observations of the form ρ0a0 . . . ρkak, where pj ∈ P, associated to a pro-

tocol η, encoding the conditions for later observations to be witnessed, is defined

inductively as following ∶=

14

1. Lg(δ) = ∅

2. Lg(ε) = {ρ ∣ ρ ⊆ P }

3. Lg(a) = {ρaρ ∣ ρ ⊆ P }

4. Lg(?ϕ) = {ρaρ ∣ ρ ⊧ ϕ, ρ ⊆ P}

5. Lg(η1 ⋅ η2) = {w ◇ v ∣ w ∈ Lg(η1), v ∈ Lg(η2) }

6. Lg(η1 + η2) = Lg(η1) ∪ Lg(η2)

7. Lg(η∗) = {ρ ∣ ρ ⊆ P ∪⋃n>0Lg(ηn) }

where w ◇ v = w′ρv′ when w = w′ρ and v = ρv′, and not defined otherwise; ρ ⊧ ϕ iff

ϕ is true under the valuation induced by ρ.

In Definition 2.3.4, a function to convert a protocol expression to an observation

expression is presented.

Definition 2.3.4. The set of observations which are expected under the same con-

dition, denoted by the set of propositions ρ according to a protocol η are expressed

by the following conversion function fρ ∶ Lprot → Lobs

1. fρ(δ) = δ

2. fρ(ε) = ε

3. fρ(a) = a

4. fρ(?ϕ) = if ρ ⊧ ϕ then ε else δ

5. fρ(η1 + η2) = fρ(η1) + fρ(η2)

6. fρ(η1 ⋅ η2) = fρ(η1) ⋅ fρ(η2)

7. fρ(η∗) = (fρ(η))∗

In Definition 2.3.5, an Epistemic Protocol Model is presented,

Definition 2.3.5 (Epistemic Protocol Model). An Epistemic Model A is a

triplet ⟨T ,∼, P rot⟩, where T is a domain of abstract objects, ∼ stands for a set

of equivalence relations {∼i∣ i ∈ I }, and Prot ∶ T → Lprot assigns to each domain

object a protocol expression.

A pointed Epistemic Protocol Model is known as an Epistemic Protocol (anal-

ogous to the definition of an action on page 8).

15

Definition 2.3.6 (Protocol Update). Given an Epistemic Expectation Model,

Mexp = ⟨S,V ,∼,Exp⟩ and an Epistemic Protocol Model A = ⟨T ,∼, P rot⟩, the product

Mexp ×A = ⟨S ′,V ′,∼′,Exp′⟩ is defined as following:

1. S ′ = { (s, t) ∈ S × T ∣ L(fVM(s)(Prot(t))) ≠ ∅}

2. (s, t) ∼′i (s′, t′) iff = s ∼i s′ and t ∼i t′

3. V ′(s, t) = V(s)

4. Exp′((s, t)) = fVM(s)(Prot(t))

Now the framework of Epistemic Protocol Logic(EPL), which is a DEL-style

logic based upon an extension of POL (Section 2.2) and is suitable to describe the

‘change’ of protocols, together with the effect of observations of agents, based upon

the current protocol, is presented:

Definition 2.3.7 (EPL Syntax). The formulas of EPL are given by the following

BNF:

ϕ ∶∶= ⊺ ∣ p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣Kiϕ ∣ [π]ϕ ∣ [!Ae]ϕ

where p ∈ P, i ∈ I, π ∈ Lobs and Ae is an Epistemic Protocol with designated state e.

Remark 2.3.8. EPL formulas are evaluated with respect to an Epistemic Expec-

tation Model. It is assumed that the protocol models are finite. Given any EPL

formula ϕ that does not contain the modal operator [!Ae] and a pointed Epistemic

Expectation ModelMexp with a designated state s, the truth conditions are the same

as that of POL formulas in Section 2.2. Therefore the following definition only ex-

presses the truth condition for this new modal operator [!Ae].

Definition 2.3.9 (EPL Semantics). Given an EPL formula [!Ae]ϕ and a pointed

Epistemic Expectation Model Mexp with a designated state s, we have

Mexp, s ⊧ [!Ae]ϕ iff L(fV(s)(Prot(e))) ≠ ∅ implies M×A, (s, e) ⊧ ϕ

2.3.1 An Example of Protocol Update

Consider the following scenario: Three friends Carl, Bob and Alice are sitting

in a pub. Carl says to Bob, who is his childhood friend, “On Valentine’s day I

went to this pub with Mike and Sara. It was a crazy night!”. This immediately

catches the attention of Alice, who is secretly in love with Mike. She asks: ‘What

happened?’ Carl winks to Bob, who know each other like the back of their hands,

16

and replies, “Nothing”. Bob immediately realizes that indeed nothing had occurred,

whereas Alice, who doesn’t know what that wink stands for, becomes unsure about

the events of that night.

A depiction of the initial expectation model, the protocol model and the updated

expectation model is depicted in Figure 2.3. Here p stands for the fact that ‘Some-

s

Σ∗

p

t

Σ∗

¬p

Bob,Alice

(a) M1

u

?p ⋅ Y +?¬p ⋅N

v

?¬p ⋅ Y +?p ⋅N

Alice

(b) A

(s, u)

Y

p

(t, v)

Y

¬p

(s, v)

N

¬p

(t, u)

N

p

Alice Alice

Alice,Bob

Alice,Bob

(c) M2

(t, u)

ε

¬p

(s, v)

ε

p

Alice

(d) M3

Figure 2.3: The Valentine’s Day problem

thing has happened involving Mike and Sara on Valentine’s night’, while Y encodes

17

Carl answering affirmatively to Alice’s question, and N encodes Carl answering

negatively.

Initially(Figure 2.3a), in model M1 both Alice and Bob were expecting any

possible observation(denoted by Σ∗) and considered the states s (where p holds)

and t (where ¬p holds) equally possible. The ignorance of Alice regarding the

meaning underlying Carl’s wink is depicted in Figure 2.3b as A.

Here at states u and v with valuation p and ¬p respectively, the coresponding

protocol expressions are ?p ⋅ Y +?¬p ⋅N and ?¬p ⋅ Y +?p ⋅N in that order, meaning if

p holds at that state then Alice considers Y otherwise she considers N .

Note that it in this protocol (indicated by the reflexive arrows for Bob, which

are omitted) Bob is not ignorant about the meaning of Carl’s action and hence the

equivalence class induce by the accessibility relation pertaining to him, consists of

only singleton sets.

The updated epistemic expectation model M2, after the installation of this

protocol is shown in Figure 2.3c. In Figure 2.3d, M3 depicts the model after the

observation N .

It can be easily verified that in this example, M1, t ⊧ [!Au][N](KBob¬p ∧
¬KAlice¬p), but M1, t ⊧ [!Au][N]KAlice(KBobp ∨KBob¬p).

18

Chapter 3

Model Checking Logic of Protocols

In Chapter 1, the model checking problem was described informally. If both the

system description (in the form of a model) and the required specification can be

formalized in a logical language, then the model checking problem is equivalent to

asking whether the system fulfills its specification. A formal description of the prob-

lem can be expressed as the following question: Given a model, M and a formula

ϕ, is ϕ true in M? In the context of this work, M is an Epistemic Expectation

Model and ϕ ∈ LPOL (or ϕ ∈ LEPL).

This is a trivial question from the perspective of mathematical logic, since if

the semantics of a logic is properly defined, then the model checking problem can

be answered using the definition of satisfaction for a formula recursively, where the

number of steps involved is usually not more than the size of the formula.

But from the perspective of automating this procedure, the problem becomes

hard, since it is not apparent, in concrete terms, what data structures are suitable

for succinct representation of the model, and what framework is to be used in order

to efficiently determine satisfiability.

As mentioned before in Chapter 1, naive implementation of standard logical

semantics usually results in the State Explosion Problem, wherein the number of

worlds increases exponentially in terms of agents and propositions thereby increas-

ing inefficiency. A solution to this predicament was first presented by Randal Byrant

who introduced Binary Decision Diagrams [Bry86].

This led to emergence of Symbolic Model Checking wherein a description of a

model that is capable of evaluating all the formulas of interest is provided as input

in the form of a symbolic (ideally compact) representation along with a formula to

be evaluated. However the problem of formulating compact symbolic representation

is not always tractable.

In this chapter, we will focus upon the algorithmic aspects of model checking the

logics of protocols, and formulate an explicit model checking framework. Chapter 4

focuses upon an implementation of the ideas in this chapter. We leave symbolic

model checking of POL and EPL as future works.

19

3.1 Related Work

A first step towards symbolic model checking epistemic modality was [SSL07]

which presents a symbolic model checking framework for temporal logics of knowl-

edge by a Boolean translation of the knowledge operators but does not cover dy-

namic operators such as announcements. On the other hand, frameworks that are

capable of Although there are no specific prior work upon model checking dynamic

logics of epistemic protocols that we know of, general frameworks for explicit model

checking DEL do exist, notably DEMO-S5 [vE14]. We mention the case of DEL

because the data structures that are used to design explicit model checking tools

for DEL are quite relevant for our purpose, since Protocol Models are analogous to

Event Models in DEL with respect to their corresponding structures. For example,

the idea to represent equivalence relations with partitions, in order to compactly

store the accessibility relations of an agent, was implemented in DEMO-S5. How-

ever it is to be noted that in the worst case, when for each agent each state of the

world is only related to itself, this idea is not better than using list of tuples.

3.2 Model Checking Framework

Before discussing the methodology employed for formulation of a model checking

framework, it is explored whether a suitable transformation of the Epistemic Ex-

pectation Models yields an algorithm for model checking POL (and thereby EPL).

The intuition behind such an initiative is that the observation expressions are analo-

gous to program constructs in Propositional Dynamic Logic (PDL) [TB19] in terms

of their corresponding syntax. Thus it is imperative to consider whether a direct

transformation from Epistemic Expectation Models to Epistemic Temporal Models,

if achievable, is fruitful towards implementing a model checking framework for POL

by translating a POL formula accordingly. In Section 3.2.1 it is discussed whether

such a transformation, if exists, can be directly leveraged or not in formulation of

our framework.

3.2.1 Translation to Epistemic Propositional Dynamic Logic

An epistemic temporal model is a Kripke model with both epistemic and tem-

poral binary relations between possible worlds. It can be shown that Epistemic

Expectation Models (EEMs) are compact representations of a particular form of

Epistemic Temporal Models (ETMs) as presented in Definition 3.2.1:

20

Definition 3.2.1 (Generated Epistemic Temporal Model). Let M be an

Epistemic Expectation Model ⟨S,∼i,V ,Exp⟩. TheM-generated Epistemic Temporal

Model ET (M) is defined as, ⟨H, a→, ,∼′i,V ′⟩. The components of ET (M) are defined

as following ∶=

1. H = {(s,w) ∣ s ∈ S,w = ε or w ∈ L(Exp(s)) }

2. (s,w) a→ (t, v) iff s = t and v = wa, a ∈ Σ

3. (s,w) ∼′i (t, v) iff s ∼i t and w = v

4. p ∈ V ′(s,w) iff p ∈ V(s)

The semantics of POL formulas (only the modal operators are shown) over these

Epistemic temporal Models are as following:

1. ⟨N , h⟩ ⊧Kiϕ iff for all h′ such that h ∼i h′, ⟨N , h′⟩ ⊧ ϕ

2. ⟨N , h⟩ ⊧ [π]ϕ iff for each w ∈ L(π), for all h′ such that h
w→ h′, ⟨N , h′⟩ ⊧ ϕ

The logic thus defined is called Epistemic Propositional Dynamic Logic (EPDL) in

[vDGVW14].

The equivalence of between Epistemic Expectation Models and Epistemic Tem-

poral Models is made precise in Theorem 3.2.2:

Theorem 3.2.2 (Equivalnce of EEM with ETM).

⟨M, s⟩ ⊧ ϕ iff ⟨ET (M), (s, ε)⟩ ⊧EPDL ϕ

where ⟨M, s⟩ is a pointed Epistemic Expectation Model and ϕ is a POL formula.

Proof. Refer to page 12 in [vDGVW14]. ∎

Thus the problem of model checking a POL formula against an Epistemic Ex-

pectation Model reduces to the problem of model checking that formula (viewed

as an EPDL formula) against the generated Epistemic Temporal Model. But from

Definition 3.2.1 it is evident that the number of states in a generated Epistemic

Temporal Model is potentially infinite. Therefore the ideas from Model Checking

temporal logic can not be utilized to provide a model checking procedure for POL.

In Section 3.2.3, it is shown that POL is decidable. For the sake of convenience,

in Section 3.2.2, syntax and semantics of POL is very briefly mentioned.

21

3.2.2 Syntax and Semantics of POL

In Chapter 2, the syntax and semantics of POL formulas were discussed in detail,

which is, again, briefly presented here for convenience.

POL formulas are interpreted over the class of Epistemic Expectation Models.

An Epistemic Expectation Model is a Kripke Model augmented with an Expectation

function that associates an Observation Expression with each of the states.

The syntax is given by the following BNF,

ϕ ∶∶= ⊺ ∣ p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣Kiϕ ∣ [π]ϕ

The modal operator [π], is called the observation update operator in this thesis.

The semantics is as following: Given an epistemic expectation model M =
⟨S,V ,∼,Exp⟩, a state s ∈ S, and a POL-formula ϕ,

1. M, s ⊧ p iff p ∈ V(s)

2. M, s ⊧ ¬ϕ iff not M, s ⊧ ϕ

3. M, s ⊧ ϕ1 ∧ ϕ2 iff M, s ⊧ ϕ1 and M, s ⊧ ϕ2

4. M, s ⊧Kiϕ iff for all t ∶ s ∼i t,M, t ⊧ ϕ

5. M, s ⊧ [π]ϕ iff for all w ∈ L(π), if w ∈ init(Exp(s)) then M∣w, s ⊧ ϕ where

w ∈ init(π) iff existsv ∈ Σ∗ such that wv ∈ L(π) i.e., L(π/w) ≠ ∅

3.2.3 Decidability of POL

Since only the introduction of the formula [π]ϕ extends standard epistemic logic

to POL, and the model checking problem of standard epistemic logic is decidable, we

need to consider the semantics of this formula only for deciding the model checking

problem of POL. But first some notations are presented in Definition 3.2.3 and

Definition 3.2.4.

Definition 3.2.3 (Compliant Observation). Let Σ be a set of action symbols.

w ∈ Σ∗ is said to be compliant with an observation expression π iff w ∈ init(π) i.e

π/w ≠ δ. This is denoted as w & π.

Definition 3.2.4 (Pre-sequences of Observation Expressions). Let π be an

observation expression over a set of action symbols Σ. The set of all the pre-

sequences of π is init(π) = {w ∣ w & π }.

22

Lemma 3.2.5 shows that for an observation expression π, the set init(π) can

be finitely partitioned. In [Wan11], a quite similar lemma is proved for a scenario

involving a PDL-style logic interpreted over pointed S5 kripke models.

Lemma 3.2.5. Let π be an observation expression over a finite set of action sym-

bols Σ. There exists a minimal natural number k such that the set init(π) can be

partitioned into k sets, each expressed by observation expressions π0, . . . , πk, where

for any two w, v ∈ L(πi) for some i ∈ {1, . . . , k }, π/w = π/v.

Proof. Observation Expressions are a domain specific format of Regular Expres-

sions. For any regular expression a corresponding minimal Deterministic Finite

Automaton (DFA) can be constructed [HMU07]. Let the minimal DFA correspond-

ing to the observation expression π be A = {Q,Σ, q0,T ,F }, where Q = { q0, . . . qk },

F ⊆ Q and q0 be the start state. Let q ∈ Q be a state in A. q is said to be F-

admissible if there exists at least one state f ∈ F such that f is reachable from q.

For each i ≤ k such that qi is F -admissible, let πi be the observation expression cor-

responding to the DFA, Ai = {Q,Σ, q0,T ,{ qi }}. Since each Ai is deterministic, the

family of sets {L(πi) ∣ i ∈ {1, . . . k }} constitutes such a partitioning of init(π). ∎

Following the convention in [Wan11], we call these partitions pre-derivatives .

Now the equivalence relation induced by pre-derivatives upon action strings (strings

formed by action symbols) is defined in Definition 3.2.6.

Definition 3.2.6 (Pre-derivative Equivalence). Let τ be an observation ex-

pressions over a set of action symbols Σ. u, v ∈ Σ∗ are said to be pre-derivative

equivalent with respect to τ iff u, v ∈ L(τi) for a pre-derivative τi of τ . It is denoted

as u ∼τ v.

Now Theorem 3.2.7 shows that the language of all POL formulae, LPOL is de-

cidable.

Theorem 3.2.7. Given an Epistemic Expectation scene ⟨M, s⟩ and a formula

[π]ϕ ∈ LPOL, the problem of determining whether ⟨M, s⟩ ⊧ [π]ϕ is decidable.

Proof. In Definition 2.2.4 the semantics of [π]ϕ over Epistemic Expectation Models

is provided, according to which for all w ∈ L(π) such that w ∈ init(Exp(s)), deter-

mining whether ϕ is satisfied at ⟨M∣w, s⟩ is necessary. According to Lemma 3.2.5,

there are finitely many pre-derivatives of Exp(s). Let DExp = {DExp
1 , . . . ,DExp

k }
be the set of pre-derivatives of Exp(s). Thence from Definition 2.2.1 it follows

that for any i ∈ {1, . . . , k } for any two u, v ∈ DExp
i , M∣u ≡ M∣v. Furthermore

L(π)∩ init(Exp(s)) = ⋃i(L(π)∩DExp
i). Hence from Definition 3.2.6 it follows that

23

∼Exp(s) induces a finite partition upon L(π)∩init(Exp(s)). Therefore it is sufficient

to pick an element w from each L(π) ∩DExp
i and check whether ϕ is satisfied at

⟨M∣w, s⟩. Thus this problem is decidable. ∎

Remark 3.2.8. For an Epistemic Expectation scene ⟨M, s⟩ and a formula [π]ϕ ∈
LPOL, Theorem 3.2.7 also provides us with an algorithm to check whether ⟨M, s⟩ ⊧
[π]ϕ as described in Algorithm 1. Note that, while there is a minimal natural

number k corresponding to an observation expression π such there are not fewer

than k pre-derivatives of π, we can still bi-partition the language of a pre-derivative

of π to produce another two pre-derivatives. This corresponds to the case when

we do not use the minimal DFA in Lemma 3.2.5. This is particularly helpful in

construction of an algorithm.

Remark 3.2.9. Note that decidability of EPL follows from decidability of POL

and the fact that the protocol update operator transforms an Epistemic Expectation

Model into another Epistemic Expectation Model.

In the following sections we present the relevant algorithms for model checking

POL (and EPL).

3.3 Algorithms for Model Checking POL and EPL

over EEMs

At first the procedure for construction of a DFA from an observation expression

is presented. Afterwards auxiliary algorithms for some functionalities upon DFAs

will be presented, and then algorithms for evaluation of POL (and EPL) formulas

will be discussed.

The following two remarks discuss some notions that are utilized in our method

for DFA construction.

In Remark 3.3.1, a modified form of observation expressions [ALSU06], which

are required for construction of DFA, is presented.

Remark 3.3.1. Let π be an observation expression over a vocabulary V. An aug-

mented observation expression is of the form, π ⋅ # where # is an end marking

symbol. It is ensured that # /∈ V.

In Remark 3.3.2, syntax trees for observation expressions are discussed.

Remark 3.3.2. A syntax tree for an observation expression is a such a tree that

each leaf node corresponds to either the empty string symbol or a character literal

24

value. Non-leaf nodes correspond to the operators in the expression. Each leaf

node is marked with a single position value. The position value starts from 1 and

increases from left to right. For example if two leaf nodes are siblings and the leaf

at the left has position value n then its sibling at the right side will have position

value n + 1. The set of position values for a non-leaf node n is the collection of all

position values of the leaf nodes in the subtree rooted at n. The set of position values

for a symbol ‘a‘ is the collection of position values of those leaves that contain the

symbol ‘a’.

In Figure 3.1, a syntax tree is shown. In the next subsection i.e. Section 3.3.1,

some functions upon syntax trees that are required in DFA construction, are dis-

cussed.

Figure 3.1: A syntax tree for the expression (a + b)∗ ⋅ a ⋅ b ⋅ b ⋅#

3.3.1 Functions from Syntax Tree

For a syntax tree T representing an augmented observation expression τ = π ⋅#,

the following four functions are computed to facilitate construction of a DFA.

• nullable(n) is true for a syntax-tree node n if and only if the subexpression

represented by the subtree rooted at n has ε in its language.

• firstpos(n) is the set of positions in the subtree rooted at n that correspond

to the first symbol of at least one string in the language of the subexpression

rooted at n.

25

• lastpos(n) is the set of positions in the subtree rooted at n that correspond

to the last symbol of at least one string in the language of the subexpression

rooted at n.

• followpos(p), for a position p,is the set of positions q in the entire syntax tree

such that there is some string x = a1a2 . . . an in L(τ) such that for some i there

is a way to explain the membership of x in L(τ) by matching ai to position p

and ai+1 to position q.

In Figure 3.2, nullable values for a given syntax tree, in Figure 3.3, firstpos and

lastpos sets for that syntax tree, and in Figure 3.4, followpos sets for the same tree

are shown respectively.

Figure 3.2: nullable values
for each node in a syntax tree
for (a + b)∗ ⋅ a ⋅ b ⋅ b ⋅#

Figure 3.3: firstpos and lastpos sets
for each node in a syntax tree
for (a + b)∗ ⋅ a ⋅ b ⋅ b ⋅#

26

Figure 3.4: followpos sets
for two leaf nodes in a syntax tree
for (a + b)∗ ⋅ a ⋅ b ⋅ b ⋅#

For a given syntax tree, the functions nullable, firstpos and lastpos are computed

essentially by a straightforward recursion on the height of that tree. The basis and

inductive rules for nullable and firstpos are summarized in Figure 3.5. The rules for

lastpos are essentially the same as that for computation of firstpos, but the roles of

children c1 and c2 have to be swapped for a node representing ⋅ (the concatenation

operator). We leave the rules for computing followpos in this work. This can be

found on p. 177 in [ALSU06].

Figure 3.5: Rules for computing nullable, firstpos functions
as presented in p. 177, “Compilers: Principles, Techniques, & Tools” by
Aho, Lam, Sethi, Ullman

27

3.3.2 Method of DFA Construction

The method presented below is from Chapter 3 in [ALSU06]. In order to com-

pute a DFA from an observation expression the following steps in order are to be

performed.

1. Construct a syntax tree for the augmented expression τ = π ⋅#.

2. Compute nullable, firstpos, lastpos and followpos functions using the rules as

described in Figure 3.5.

3. Construct a finite labeled transition graph, D′ (start state and set of final

states is not designated) using Algorithm 1

4. Mark firstpos(root) ∈ D′
S as the start state in for a DFA, D, where root is

the root of the syntax tree and D′
S is the set of states in D′.

5. Mark those sets, which contain the position ‘#’ as final states thereby con-

structing D from D′.

The procedure to obtain a labeled finite transition graph from a syntax tree is

presented in Algorithm 1. ∅ represents an empty set in that algorithm.

In the following subsection, two algorithms are presented. Algorithm 2 returns

a list of DFAs, each representing a pre-derivative of the observation expression

corresponding to the input DFA. Algorithm 3 returns a string that is in the language

of the input DFA.

3.3.3 Algorithms for some auxiliary functions upon DFAs

The procedure to obtain the DFAs corresponding to pre-derivatives is shown in

Algorithm 2. The procedure to obtain a string that is acepeted by a given DFA is

shown in Algorithm 3. The function ‘findPath’ is essentially a depth first search

based procedure that returns a path from the start state to a final state in a DFA. It

is implicitly assumed that every edge has weight 1 in this procedure. Here a depth

first search is performed to extract a path from the start state to a final state.

3.3.4 Evaluation of Formula

The algorithms for evaluation of EPL formulas are shown in Algorithm 4 to Al-

gorithm 9. The procedure Convert in Algorithm 9 is defined in Definition 2.3.4. It

uses a straightforward recursion upon a protocol expression to obtain an observation

expression.

28

Algorithm 1: Procedure to Obtain a Labeled Finite Transition
Graph from a Syntax Tree

1 function: Obtain-Transitions (T)
Input : A Syntax Tree T
Output: A labeled finite transition diagram D′

2 S ← ∅
3 D′ ← INIT-LABELED-FTD()
4 s← firstpos(root(T))
5 mark(s) ← False
6 S.insert(s)
7 while there exists t ∈ S such that mark(t) == False do
8 mark(t) ← True
9 foreach a ∈ T .symbols do

10 p← positionV aluesOf(a)
11 foreach pv ∈ p do
12 sf ← ⋃ followpos(pv)
13 end
14 D′.transition[s, a] = sf
15 if sf /∈ S then
16 S.insert(sf)
17 mark(sf) ← False

18 end

19 end
20 return D′

Algorithm 2: Procedure to Obtain List of DFAs corresponding to
Pre-derivatives
1 function: DFA-PRE-DERIVATIVE (D)

Input : A DFA D
Output: A list of DFAs DFALIST

2 DFALIST ← []
3 foreach p ∈ (D.States /D.F inals) do
4 D′ ← D
5 D′.F inals← {}
6 insert(D′.F inals, p)
7 DFALIST.insert(D′)
8 end
9 DFALIST.insert(D)

10 return DFALIST

29

Algorithm 3: Procedure to Obtain a String in the Language of a
Given DFA
1 function: FindString (D)

Input : A DFA D
Output: A string w

2 w ← ε
3 finalPath← findPath(D)
4 for i = 1 to finalPath.length do
5 (u, v) ← finalPath[i]
6 w.concatenate(readLabel(u, v))
7 end
8 return w

Algorithm 4: Procedure to Model Check an EPL Formula —
Proposition

1 function: Evaluate (⟨M, s⟩ , p)
Input : An Epistemic Expectation Scene ⟨M, s⟩ and an EPL-formula p,

where p is a proposition
Output: True or False

2 if p ∈ V(s) then
3 return True
4 else
5 return False
6 end

Algorithm 5: Procedure to Model Check an EPL Formula —
Negation

1 function: Evaluate (⟨M, s⟩ , ϕ)
Input : An Epistemic Expectation Scene ⟨M = {W, s⟩ and an

EPL-formula ϕ = ¬ψ
Output: True or False

2 if Evaluate(⟨M, s⟩ , ψ) == True then
3 return False
4 else
5 return True
6 end

30

Algorithm 6: Procedure to Model Check an EPL Formula — Con-
junction

1 function: Evaluate (⟨M, s⟩ , χ)
Input : An Epistemic Expectation Scene ⟨M = {W, s⟩ and an

EPL-formula χ = ϕ ∧ ψ
Output: True or False

2 if (Evaluate(⟨M, s⟩ , ϕ) == True) && ((Evaluate(⟨M, s⟩ , ψ) == True)
then

3 return True
4 else
5 return False
6 end

Algorithm 7: Procedure to Model Check an EPL Formula —
Knowledge Operator

1 function: Evaluate (⟨M, s⟩ , ψ)
Input : An Epistemic Expectation Scene ⟨M = {W, s⟩ and an

EPL-formula ψ =Kiϕ where i is an agent
Output: True or False

2 status← True
3 for t ∈ Related(∼, i, s) do
4 status = status∧ Evaluate(⟨M, t⟩ , ϕ)
5 if status == False then
6 return False
7 else
8 continue
9 end

10 end
11 return True

31

Algorithm 8: Procedure to Model Check an EPL formula — Ob-
servation Update Operator

1 function: Evaluate (⟨M, s⟩ , ψ)
Input : An Epistemic Expectation Scene ⟨M, s⟩ and an EPL-formula

ψ = [π]ϕ
Output: True or False

2 status← True
3 DExp(s) ← BuildDFA(Exp(s))
4 Dπ ← BuildDFA(π)
5 {Dτ1 , . . . ,Dτk} ←DFA-PRE-DERIVATIVE(init(Exp(s))
6 for i← 1 to k do
7 Dπ×τi ← Dπ ×Dτi
8 if L(Dπ×τi) ≠ ∅ then
9 w = FindString(Dπ×τi)

10 mark = Evaluate(M∣w, ϕ)
11 status = status ∧mark
12 else
13 continue
14 end

15 end
16 return status

Algorithm 9: Procedure to Model Check an EPL Formula — Pro-
tocol Update Operator

1 function: Evaluate (⟨M, s⟩ , ψ)
Input : An Epistemic Expectation Scene ⟨M, s⟩ and an EPL-formula

ψ = [!Ae]ϕ where Ae is a protocol
Output: True or False

2 if Convert (V(s), P rot(e)) == δ then
3 return True
4 else
5 updatedM ←M×A
6 state← FindState(updatedM, s, e)
7 return Evaluate(⟨updatedM, state⟩ , ϕ)
8 end

32

Chapter 4

Model Checking Tool for Logic of

Protocols

In Chapter 3, algorithmic aspects of explicit model checking Public Observation

Logic and Epistemic Protocol Logic were discussed. In this chapter, an imple-

mentation in the form of a Haskell library which is based upon the algorithms in

Chapter 3 is discussed. The module is still under development especially regarding

I/O handling, and therefore is not released yet in Hackage, which is the repository

of Haskell modules. The code is available on demand as of now.

This chapter is broadly divided into two sections. In Section 4.1, data structures

and implementations of the algorithms in Chapter 3 are briefly discussed, where as

in Section 4.3, an example of model checking a scenario is presented.

Besides the main task of model checking POL/EPL formulas, other auxiliary

tasks such as an implementation of a customized observation/protocol expression

evaluator, functions for DFA manipulation etc are also implemented.

This implementation is written in Haskell and can be used from a command

line interface. All parts of the implementation are not discussed in detail and the

complete source code is not included in this work, only relevant code snippets are

presented.

In Section 4.1, a very brief overview of existing software for epistemic model

checking is presented. The rationale of choosing Haskell is also illustrated in this

section highlighting its advantages for dealing with data types for logical formulas.

4.1 Introduction

Since our implementation deals with three modal operators, namely the Knowl-

edge Operator K, the Observation Update Operator [π], and the Protocol Update

Operator Ae, of which, only K has been studied before for implementation pur-

pose, we begin with a very brief discussion of a few other model checking tools that

have incorporated the epistemic modality K. As mentioned in Chapter 3, the vast

majority of existing symbolic model checking tools deal with temporal modalities

33

only. One of the first model checkers for temporal logic incorporating K is MCTK

[SSL07], which employed the technique of translating the modality K into a boolean

formula thereby facilitating symbolic model checking. Since we are not using sym-

bolic means for this implementation, we are not going to mention further any other

tool employing symbolic translation methodology. For Dynamic Epistemic Logic,

in contrast, the standard explicit implementations are the two explicit model check-

ers by Jan van Eijck: DEMO and its successor DEMO-S5 [vE14], both written in

Haskell.

The major advantage of explicit model checking tools for epistemic logics is

their usability in the sense that they provide an interface to deal with the Kripke

structures directly. The models can also be manipulated at a single possible world

and if required, can be visualized using any graph generating tool.

DEMO further utilized the power of Haskell’s type system to gain extra flex-

ibility: possible worlds in Kripke models can be of any suitable type a, thereby

carrying information in their names, eliminating the need for a separate valuation

function.

4.1.1 Rationale for Choice of Haskell

The choice of Haskell is motivated due to the following considerations [Gat18],

• Since this is a functional language, its facilities for list syntax, pattern match-

ing and point-free function composition allow to write code that resembles

the original notation thereby greatly reducing the burden to devise represen-

tations for mathematical objects.

• Since Haskell is statically typed, it is guaranteed to produce errors arising out

of type mismanagement in compile time. This property also helps ensuring

correctness of a program. For example it is impossible to represent a formula

that is not well-formed in our program.

• Since Haskell provides succinct representations for our purpose, using an

object-oriented language will result in greater number of lines of code.

• Most of the existing tools for model checking Epistemic Logic are written in

Haskell, thereby providing some opportunity for code re-use.

• Most importantly, Haskell is lazy, i.e. it only evaluates expressions in our

program when they are needed. This provides a means to work with infinite

structures such as the list of natural numbers [0..] or an infinite supply of

34

atomic propositional variables — as long as it is made sure that, once this is

actually run, only a finite part will be used. This also helps with finite objects

in the following sense. If parts of a model or structure is needed only for some

computation, the rest need not be immediately computed.

It is worth mentioning that in terms of formulating a program, it often happens

that differences which we did not care about when defining something, suddenly

become important in order to provide a correct implementation. As an example,

we usually identify a propositional variable p ∈ V with the same variable used as

a formula p ∈ L(V), for some vocabulary V . But to implement this in a typed

language such as Haskell, it is necessary to make a distinction between these two.

Similarly, distinctions need to made regarding subsets of A × B and functions of

the form A → P(B) in Haskell : lists of pairs [(a,b)] and unary functions to lists

a− > [b] are different types.

Furthermore, often mathematical definitions need to be reformulated due to

practical considerations. For an example, rather than using ϕ ∧ ψ, it is more con-

venient to use ϕ ∨ ψ whenever feasible since, evaluating the former requires con-

sideration of both ϕ and ψ. While this particular example seems irrelevant and

a trivial point to make, such effects propagate for complex boolean formulas and

their elimination results in better performance.

In the following section, the details of the implementation are discussed. As

mentioned before, only relevant code snippets are provided.

4.2 Explicit Model Checking

The module developed here is called EPLMC (Epistemic Logic Model Checker). It

is capable of model checking any EPL formula, provided enough memory and time.

We discuss the issues with scalability of this approach in Section 4.2.6.

This module is still highly experimental and Input/Output is still quite cumber-

some. Specifically, a data format for reading in a complete description of a Epistemic

Expectation Model (EEM) and Protocol Models is yet to be implemented. How-

ever input/output functionalities have been designed for Observation and Protocol

Expressions.

Furthermore, no functionality of visualizing EEMs, is provided yet. Existing

graph visualization tools for Haskell (such as GraphViz module for Haskell), still

lack the capability to accept certain symbols that are used in regular expressions

to denote operators, as labels for graph nodes. Therefore no ready-made solution

is available as of now for this purpose. We leave all this for future work.

35

This section is further divided into the following subsections:

4.2.1 Basic Representations

In Figure 4.1 and Figure 4.2, some basic data-types are shown.

Figure 4.1: ADT for an agent and type synonym for a partition of a set

Figure 4.2: ADTs for propositions and Boolean formulas

4.2.2 Representing Observation and Protocol Expressions

We define Observation and Protocol Expressions in terms of a construct in Haskell,

called Algebraic Data Types (ADTs). This construct provides a means to implement

a new data type T from existing types by prefixing the types with corresponding

tags, called value constructors. The following provides an example.

Example 4.2.1. ‘data Pair = P Int Double’ creates a pair of numbers, an Int and

a Double together. The tag P is used (in other constructors and pattern matching)

36

to combine the contained values (of type Int and Double in that order) into a single

structure that can be assigned to a variable of type Pair.

In Figure 4.3, the ADT for Observation Expressions, and in Figure 4.4, the ADT

for Protocol Expressions, are shown.

Figure 4.3: ADT for Observation Expressions

Figure 4.4: ADT for Protocol Expressions

We only show the important functions for Observation Expressions and Protocol

Expressions in Figure 4.5 and Figure 4.6.

4.2.3 Tokenization and Parsing

We use two tools, alex and happy, which are a lexical analyzer and a parser respec-

tively, written in Haskell and available as standalone soft-wares, for tokenizing and

parsing observation expressions.

37

Figure 4.5: Function ObQ for the quotient (/)
operation upon Observation Expressions

Figure 4.6: Function for converting Protocol Expressions to Observation
Expressions

In Figure 4.7 and Figure 4.8, the alex specifications for Observation Expressions

are shown. We denote δ with @ and ε with $. In Figure 4.9 and Figure 4.10, the

Figure 4.7: Tokens for Observation Expressions

happy specifications for Protocol Expressions are shown. We do not show the alex

specification for Observation Expressions and happy Specification for Protocol Ex-

pressions in this work. The purpose of these specifications is to build corresponding

parsers for Observation and Protocol Expressions for I/O.

In the next section, the representation and functions of EEMs and Protocol

Models are shown.

38

Figure 4.8: ADT for Observation Expressions Tokens

Figure 4.9: Happy specification for Protocol Expressions

4.2.4 Epistemic Expectation Models and Protocol Models

In Figure 4.11, the ADT of an EEM, and in Figure 4.12, that of a Protocol Model

is shown. Since the accessibility relations are equivalences, they are represented

39

Figure 4.10: Happy specification for Protocol Expressions

by partitions, indexed by each agent. Here they are given by list of tuples of

the form [(agent,[[states]])], where each element in this list is a tuple of the form

(agent[[states]]). For example, if for an agent ‘alice’, and the states s,t,u and v,

it is the case that sRaliceu,uRalicev but not sRalicet, then the tuple for ‘alice’ is

(alice,[[s,u,v],[t]]).

Figure 4.11: ADT for EEMs

In Figure 4.13, the ADT for an EPL formula is shown. The Protocol Installation

Operator is written as ‘PU’, the Observation Update Operator is written as ‘PO’

and the Knowledge operator is denoted as ‘Kn’. In Figure 4.14, the most important

function for our purpose, the function for model checking an EPL formula is shown.

This function has been named as ‘isValidAt’. It takes three inputs — an Epistemic

40

Figure 4.12: ADT for Protocol Models

Figure 4.13: ADT for an EPL formula

Expectation Model M, a state s in M, and an EPL formula ϕ in that order. In

Figure 4.15, the function to obtain an updated EEM, M′ from an input EEM,

M after performing an update with a string w, is shown. In Figure 4.16 and

Figure 4.17, the functions to perform protocol update are shown. We do not show

the various helper functions here. The main function that performs this job is the

‘prtProduct’ function.

In the next subsection, code snippets for representation of DFAs and some func-

41

Figure 4.14: Main function for Model checking

Figure 4.15: Function for Update by Observation

Figure 4.16: Functions for Protocol Update

Figure 4.17: Functions for Protocol Update

tions defined upon them are shown.

42

4.2.5 DFA Construction, Representation and Functionali-

ties

In Figure 4.19, the ADT for a DFA is shown. Due to practical considerations, DFA

states are represented by lists of Integers rather than Integers. For example, the

DFA in Figure 4.18 is represented by, DFA [1,2][[1,2], [3]][([1,2], ‘b′, [1,2]), ([1,2],
‘a′, [3]), ([3], ‘b′, [3])]. In Figure 4.20, the main function that builds a DFA from an

[1,2] [3]

a

b

b

Figure 4.18: An Automaton

Figure 4.19: ADT for DFAs

observation expression is shown. This function implements the method mentioned

in Section 3.3.2. For the sake of brevity, the helper functions for computation of

syntax tree, nullable, firstpos, lastpos and followpos functions are not shown.

The utility functions to find the list of DFAs corresponding to pre-derivatives of

an observation expression and finding a string in a DFA are shown in Figure 4.21.

The main functions that perform these jobs are ‘findPartitions’ and ‘findStringDFA’

respectively.

4.2.6 Scalability and Complexity

The performance of this tool depends upon four factors: the number of states in

the Epistemic Expectation Model nM, the structure of the DFA corresponding to

the observation expression at the given state in the Epistemic Expectation Model,

43

Figure 4.20: Function for building a DFA

Figure 4.21: DFA utility functions

the number of states in the Protocol Model nA and the length lp, of the protocol

expression at the designated state in the protocol model.

Of these four, discerning the effect of the number of states in the Epistemic

Expectation Model, that of the Protocol Model and the length of the protocol

expression, for a formula that does not contain the Observation Update Operator

but contains the Protocol Update operator is straightforward — it is bounded by

O(nMnAlp).

But determining the effect of the structure of the DFA is not straightforward.

We leave this for future work which would help us to obtain a proper performance

benchmarking.

44

4.3 An Example of Model Checking

In this section we consider the The Valentine’s Day problem mentioned

in Section 2.3.1. To recall, the problem is as following: Three friends Carl, Bob

and Alice are sitting in a pub. Carl says to Bob, who is his childhood friend, “On

Valentine’s day I went to this pub with Mike and Sara. It was a crazy night!”. This

immediately catches the attention of Alice, who is secretly in love with Mike. She

asks: ‘What happened?’ Carl winks to Bob, who know each other like the back of

their hands, and replies, “Nothing”. Bob immediately realizes that indeed nothing

had occurred, whereas Alice, who doesn’t know what that wink stands for, becomes

unsure about the events of that night.

The initial model is called M and is depicted in Figure 4.22 and the protocol

model, A is depicted in Figure 4.23. In Figure 4.24 and Figure 4.25, the way

s

p

Σ∗

t

¬p

Σ∗
Alice,Bob

Figure 4.22: Initial Epistemic Expectation Model M

u

?p ⋅ Y +?¬p ⋅N

v

?¬p ⋅ Y +?p ⋅N

Alice,Bob

Figure 4.23: Protocol Model

these models are provided as inputs in an EPLMC session are shown — the initial

model, M is denoted by the variable ‘initM’, and the protocol model A is denoted

by the variable ‘ptcl’.

As mentioned before, the accessibility relations are represented with partitions

— lists of lists in Haskell. We denote Alice as Agent 1 and Bob as Agent 2, the

worlds s and t are given with integers 1 and 2 and the states u and v of the protocol

model are given by the integers 3 and 4. It is possible in EPLMC to denote these

states with their own custom data types, rather than with integers, but for the sake

of simplicity, we use integers. The actual state in M is t.

In Figure 4.26, the model M × A is depicted. In Figure 4.27, the result of

performing this update, M×A in EPLMC is shown.

Now we show in Figure 4.28, the resultant model, (M × A) ∣N after updating

the modelM×A with the string “N”. In Figure 4.29, representation of this model

45

Figure 4.24: Setting up the environment for an EPLMC session —
input of the states, agents, propositions,
Observation Expressions and Protocol Expressions

Figure 4.25: Internal Representation of M —
denoted by the variable ‘initM’
and A — denoted by ‘ptcl’

(M×A) ∣N as computed in EPLMC is shown. This is denoted by ‘observeUpdateM’

in this session. The symbol ‘@’ is used to denote ε.

Now in Figure 4.30, an example of providing a formula as input and checking

its validity in an EPLMC session is shown — the variable ‘phi’ denotes the formula

ϕ = [!Au][N](KBob¬p∧¬KAlice¬p). It is seen from Figure 4.30, thatM, t ⊧ ϕ since

the function for model checking in EPLMC, ‘isTrueAt’, when provided with input

initM, t and phi, returns True. From Figure 4.29 and Figure 4.28, it follows that

46

(s, u)

Y

p

(t, v)

Y

¬p

(s, v)

N

¬p

(t, u)

N

p

Alice Alice

Alice,Bob

Alice,Bob

Figure 4.26: Updated Expectation Model

Figure 4.27: The Updated Model, ‘initM’ × ‘ptcl’

(t, u)

ε

¬p

(s, v)

ε

p

Alice

Figure 4.28: Expectation Model (M×A) ∣N

indeed (M×A) ∣N⊧KBob¬p ∧ ¬KAlice¬p, as at state (t, u), KBob¬p, and ¬KAlice¬p.
This is because Alice can not distinguish between the two states as there remains an

47

Figure 4.29: Expectation Model after observation of “N”

edge labeled Alice between the two worlds (t, u) and (s, v). Similarly in Figure 4.29,

for Alice (Agent 1), the accessibility relation (in the form of a list of lists of states)

is [[1,2]] (both states are in the same partition), and thus for her the two states are

indistinguishable.

Figure 4.30: Model Checking the formula ϕ in EPLMC with respect to
(M, t)

48

Chapter 5

Conclusions

In this work the main objective was to design and implement a framework for

model checking logics of protocols, namely POL and EPL. In Section 6.1, the main

ingredients of this work are summarized, and in Section 6.2, the scope and direction

of future work are presented.

5.1 Summary

We started with a preliminary discussion of the Model Checking Problem in

Epistemic Logic and presented an overview of the Epistemic Logic paradigm with

an emphasis upon the framework of Dynamic Epistemic Logic.

In the next chapter, an introduction to the Logic of Public Observations and

Epistemic Protocols was presented. The next two chapters revolved around the

following two goals, 1) formulation of an algorithmic framework for model checking

Logics of Public Observations and Epistemic Protocols, 2) design and implementa-

tion of a model checking tool using these approaches. To achieve these goals,

• A constructive proof of decidability of POL is attained.

• An algorithm framework for POL and EPL is formulated.

• A model checking tool written in Haskell called EPLMC for this algorithmic

framework is developed.

There remains a plethora of scope for further development which we discuss in

Section 6.2

5.2 Scope for Future Work

There still remains much room for improvement in EPLMC. As of now, it is

designed as a module. Although it is capable of performing the required model

checking task, it can not be invoked on its own. Functionalities for efficient han-

dling of I/O need to be added to build a full fledged stand-alone software. For this

49

purpose, a description language for input of Epistemic Expectation Models and

Protocol Models, and a mini-compiler for that language need to be implemented.

Another line of investigation would be to investigate optimizations for further per-

formance improvement.

In yet another direction, symbolic encoding of Epistemic Expectation Models

remains an open problem. This is useful in order to mitigate state explosion prob-

lem. To this end, various approaches based upon BDDs (Binary Decision Diagram)

and ASP (Answer Set Programming) may be adopted. We plan to pursue these ap-

proaches further to formulate a symbolic framework and a corresponding software.

50

Chapter 6

Conclusions

In this work the main objective was to design and implement a framework for

model checking logics of protocols, namely POL and EPL. In Section 6.1, the main

ingredients of this work are summarized, and in Section 6.2, the scope and direction

of future work are presented.

6.1 Summary

We started with a preliminary discussion of the Model Checking Problem in

Epistemic Logic and presented an overview of the Epistemic Logic paradigm with

an emphasis upon the framework of Dynamic Epistemic Logic.

In the next chapter, an introduction to the Logic of Public Observations and

Epistemic Protocols was presented. The next two chapters revolved around the

following two goals, 1) formulation of an algorithmic framework for model checking

Logics of Public Observations and Epistemic Protocols, 2) design and implementa-

tion of a model checking tool using these approaches. To achieve these goals,

• A constructive proof of decidability of POL is attained.

• An algorithm framework for POL and EPL is formulated.

• A model checking tool written in Haskell called EPLMC for this algorithmic

framework is developed.

There remains a plethora of scope for further development which we discuss in

Section 6.2

6.2 Scope for Future Work

There still remains much room for improvement in EPLMC. As of now, it is

designed as a module. Although it is capable of performing the required model

checking task, it can not be invoked on its own. Functionalities for efficient han-

dling of I/O need to be added to build a full fledged stand-alone software. For this

51

purpose, a description language for input of Epistemic Expectation Models and

Protocol Models, and a mini-compiler for that language need to be implemented.

Another line of investigation would be to investigate optimizations for further per-

formance improvement.

In yet another direction, symbolic encoding of Epistemic Expectation Models

remains an open problem. This is useful in order to mitigate state explosion prob-

lem. To this end, various approaches based upon BDDs (Binary Decision Diagram)

and ASP (Answer Set Programming) may be adopted. We plan to pursue these ap-

proaches further to formulate a symbolic framework and a corresponding software.

52

Bibliography

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques, and Tools (2nd Edition). Addison

Wesley, August 2006.

[Azi10] Haris Aziz. Multiagent systems: Algorithmic, game-theoretic, and

logical foundations by y. shoham and k. leyton-brown cambridge uni-

versity press, 2008. SIGACT News, 41(1):34–37, March 2010.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.

Symbolic model checking: 1020 states and beyond. Information and

Computation, 98(2):142 – 170, 1992.

[BMS98] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic

of public announcements, common knowledge, and private suspicions.

In Proceedings of the 7th Conference on Theoretical Aspects of Ra-

tionality and Knowledge, TARK ’98, page 43–56, San Francisco, CA,

USA, 1998. Morgan Kaufmann Publishers Inc.

[Bry86] Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677–691, 1986.

[CW96] Edmund Clarke and Jeannette Wing. Formal methods: State of the

art and future directions. ACM Computing Surveys, 28, 12 1996.

[DvdHK07] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dy-

namic Epistemic Logic. Springer Publishing Company, Incorporated,

1st edition, 2007.

[Eme08] E. Allen Emerson. The beginning of model checking: A personal

perspective, 2008.

[FHMV95] R Fagin, JY Halpern, Y Moses, and MY Vardi. Reasoning about

knowledge mit press. Cambridge, MA, London, England, 1995.

[Gat18] Malvin Gattinger. New Directions in Model Checking Dynamic Epis-

temic Logic. PhD thesis, University of Amsterdam, 2018. Available

at https://malv.in/phdthesis.

53

https://malv.in/phdthesis

[HMU07] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Au-

tomata Theory, Languages, and Computation. Pearson/Addison Wes-

ley, 2007.

[Pla07] Jan Plaza. Logics of public communications. Synthese, 158:165–179,

08 2007.

[Pnu77] A. Pnueli. The temporal logic of programs. In 2013 IEEE 54th Annual

Symposium on Foundations of Computer Science, pages 46–57, Los

Alamitos, CA, USA, oct 1977. IEEE Computer Society.

[PR03] Rohit Parikh and Ramaswamy Ramanujam. A knowledge based se-

mantics of messages. Journal of Logic, Language and Information,

12(4):453–467, 2003.

[SSL07] Kaile Su, Abdul Sattar, and Xiangyu Luo. Model checking temporal

logics of knowledge via obdds. The Computer Journal, 50(4):403–420,

2007.

[TB19] Nicolas Troquard and Philippe Balbiani. “Propositional Dynamic

Logic”, The Stanford Encyclopedia of Philosophy, Edward N. Zalta

(ed.), March 2019. Available at https://plato.stanford.edu/

archives/spr2019/entries/logic-dynamic.

[vDGVW14] Hans van Ditmarsch, Sujata Ghosh, Rineke Verbrugge, and Yanjing

Wang. Hidden protocols: Modifying our expectations in an evolving

world. Artificial Intelligence, 208:18 – 40, 2014.

[vE14] Jan van Eijck. “DEMO-S5”, 2014. Available at https://homepages.

cwi.nl/~jve/software/demo_s5.

[Wan11] Yanjing Wang. Reasoning about protocol change and knowledge. vol-

ume 6521, pages 189–203, 01 2011.

54

https://plato.stanford.edu/archives/spr2019/entries/logic-dynamic
https://plato.stanford.edu/archives/spr2019/entries/logic-dynamic
https://homepages.cwi.nl/~jve/software/demo_s5
https://homepages.cwi.nl/~jve/software/demo_s5

	Declaration
	Certificate
	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Acronyms/Abbreviations
	List of Symbols
	Introduction
	Introduction to Epistemic Logic
	Epistemic Logic
	Example of Kripke Model

	Dynamic Epistemic logic
	An example of update with action model

	Logic of Protocols
	Expectation and Observation
	Example of an Epistemic Expectation Model

	Public Observation Logic
	Epistemic Protocol Logic
	An Example of Protocol Update

	Model Checking Logic of Protocols
	Related Work
	Model Checking Framework
	Translation to Epistemic Propositional Dynamic Logic
	Syntax and Semantics of POL
	Decidability of POL

	Algorithms for Model Checking POL and EPL over EEMs
	Functions from Syntax Tree
	Method of DFA Construction
	Algorithms for some auxiliary functions upon DFAs
	Evaluation of Formula

	Model Checking Tool for Logic of Protocols
	Introduction
	Rationale for Choice of Haskell

	Explicit Model Checking
	Basic Representations
	Representing Observation and Protocol Expressions
	Tokenization and Parsing
	Epistemic Expectation Models and Protocol Models
	DFA Construction, Representation and Functionalities
	Scalability and Complexity

	An Example of Model Checking

	Conclusions
	Summary
	Scope for Future Work

	Conclusions
	Summary
	Scope for Future Work

	Biblography

