
Enhancing speed of Gaussian processes
Indian Statistical Institute, Kolkata

Sanchari Sil
Supervisor: Sourav Chakraborty

July, 2020

Abstract

Gaussian Processes are used in supervised learning. They have been in the world of
machine learning for quite some time, dealing with complex data sets where parametric
methods fail. While calculating the gaussian distribution function for a large feature
vector, we need a matrix inversion algorithm which has high run time complexity O(n3)
and space complexity O(n2). To increase its performance, subset sampling is an im-
portant technique used, one method was described in the paper Fast Gaussian Process
Regression for Big Data by Sourish Das, Sasanka Roy, Rajiv Sambasivan. It described
an algorithm involving combined estimates from models developed using subsets sampled
uniformly, much similar to bootstrap sampling. But as a drawback it has been found
that the method doesn’t work well for all kinds of data. The results developed were based
on synthetic data only. In our work we shall provide a different sampling technique.
We put weights on the points and sample accordingly. This is thought to be a better
approach if the weights are chosen wisely. Empirical results to establish our idea have
been provided.

1

Acknowledgement

I sincerely express my gratitude towards my supervisor, Sourav Chakraborty for pro-
viding me with the necessary materials and for all his advices and support.

2

Contents

1 Introduction 4
1.1 Introduction to Gaussian Processes . 4

1.1.1 Prediction in absence of noise 5
1.1.2 Prediction in presence of noise 6

1.2 The Problem . 7

2 Previous Work 8
2.1 Sketch of the work and the Algorithm 8
2.2 Parameters involved and their estimation 9

2.2.1 Effect of the parameters . 10

3 Our Algorithm 12
3.1 An overview . 12
3.2 The Algorithm . 13
3.3 Algorithm for Gaussian Regression . 14

4 Analytical Results 15
4.1 Datasets . 15
4.2 Application of the three algorithms on data sets 16

5 Conclusion 18

6 Bibliography 19

3

Chapter 1

Introduction

When traditional parametric methods are a failure, Gaussian Processes (GP) would be
helpful to perform supervised learning tasks on complex datasets. They are convinient
to use in comparison to alternatives like neural networks (Rasmussen [2006]). They
can be used for both regression and classification. For classification, there are various
applications, recognition of handwritten digits for an instance. In case of regression,
predictive soil mapping, or to learn inverse dynamics of a robot arm may be some fields
where GP can be used.

The main advantage of a Gaussian Process over other alternative models is that, being
non parametric, it can model arbitrary functions of the input points. They may be
complex to understand but nonethless, lead to simple linear algebric implementations.
Applying Gaussian Processes to Regression problems, one can get exact inference. But
the computation of the solution requires a matrix inversion. A dataset of size n has
O(n3) as the time complexity of matrix inversion. The space complexity of storing
a matrix of size n is O(n2). This makes the applicability of the technique restricted
to small or moderate sized datasets. To apply it for large data sets, different ap-
proaches have been tried. Gaussian Processes for Machine Learning by Rasmussen and
Williams [Chapter 8][1] provides some approximate methods to speed up Gaussian Pro-
cesses. Here, we shall deal with subset sampling. It may mean to be wasteful of data,
but it is sane if the predictions obtained are quite accurate according to our requirement.

Let’s get some notions about what a Gaussian Process exactly is.

1.1 Introduction to Gaussian Processes

A Gaussian process is a collection of random variables, any finite number of which have
a joint Gaussian distribution.

4

Let D be a data set of n observations comprising of (xi, yi) where, i = 1, . . . , n. xi is
the input vector of independent variables of size p, and yi is the output. A Gaussian
process, f(x) is completely specified by its mean function µ(x) and covariance function,
k(x,x’) where,

µ(x) = E[f(x)]

k(x,x’) = E[(f(x)− µ(x))(f(x’)− µ(x’)]

Then f(x) ∼ GP (µ(x), k(x,x’))
For convinience we assume µ(x) to be 0.

1.1.1 Prediction in absence of noise

Let us divide the complete dataset into two subsets, the training set of size N and the
test set of size N∗. In the absence of any random noise component, the joint distribution
of the output variables f and f∗ of the training set and the test set respectively, would be:

[
f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])

where,

• X and X∗ respectively represent the N × p and N∗ × p covariate matrices of the
training and the test set.

• K(X,X) denotes the N ×N matrix representing the variance-covariance matrix
of the training set. Similarly, K(X∗, X∗) of dimension N∗ × N∗ is the variance-
covariance matrix of the test set

• K(X,X∗) is the N×N∗ matrix of covariances evaluated at each pair of the training
points and the test points.

The predictive equations for f∗ are:

f∗ | X,X∗, f ∼ N (̂f∗, cov(f∗))

f̂∗ = E[f∗ | X, f, X∗] = K(X∗, X)K(X,X)−1f (1.1)

cov(f∗) = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗) (1.2)

5

1.1.2 Prediction in presence of noise

In real world, we may not have access to functional values but their noisy versions.
Given a random noise component η, where η ∼ N(0, σ2

n), our model can be written as

y = f(x) + η (1.3)

Here:

• y represents the target variable to be predicted

• x represents the input vector of co-variates

• The noise terms η are assumed to be iid random variables drawn from N(0, σ2
n)

Then,

cov(y) = K(X,X) + σ2
nI (1.4)

The joint distribution of the observed values of the target variable y and the function
value of the test set f∗ can be written as:

[
y
f∗

]
∼N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
We want to predict the the response value f∗, at test point X∗ and the predictive equa-
tions are:

f∗ | X,y, X∗ ∼ N(̄f∗, cov(f∗))

f̄∗ = E[f∗ | X,y, X∗] = K(X∗, X)[K(X,X) + σ2
nI]−1y (1.5)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗) (1.6)

where I is the N ×N identity matrix.

Equation (1.5) requires the computation of an inverse which has O(N3) time complexity
and O(N2) space complexity. These become a hurdle in the use of GPs. Use of the
entire training set becomes difficult when the data size is very large. In this era of big
data we often come across such data sets. Since GP regression is both effective and
versatile on complex datasets in comparison to parametric methods, a solution to the
hurdles mentioned above will enable us to apply GP regression to large datasets that
are complex.

6

1.2 The Problem

When the matrix K (X,X) is quite large, the GP regression becomes slow and we need
an alternate method to speed up the regression. The goal of our thesis is to achieve
the same. We give an algorithm that can be proved to be correct. A good method can
be to cleverly choose a submatrix of the large matrix K(X,X) and use the same to

predict the response function f∗. We want to find an estimate, ˆ̄f∗ that is quite close to
the predicted response f̄∗, obtained from original Gaussian regression.

The sketch of the algorithm is as follows:

We know that there may be clusters in our data which leads to bad predictions when
SRSWR procedure is followed during sampling a submatrix from K (X,X). Hence we
get the clusters, find their sizes and attach weights to each data points as the inverse of
the relative frequency of the cluster to which they belong. This seems to give a uniform
covarage of all data points when sampling is done.

In a previous work by Fast Gaussian Process Regression for Big Data Sourish Das,
Sasanka Roy and Rajiv Sambasivan, similar method was used, that is to be discussed in
the next chapter. We are intended to get another sampling method which we claim to
be better than that of Das, Roy and Sambasivan. Chapter 3 shall deal with the same.
Chapter 4 shall be the analytical results of the new algorithm followed by conclusions
in Chapter 5.

7

Chapter 2

Previous Work

2.1 Sketch of the work and the Algorithm

The previuos work on making the Gaussian Process regression faster has been given
in Fast Gaussian Process Regression for Big Data by Sourish Das, Sasanka Roy, Rajiv
Sambasivan[2]. Estimators were developed on small subsets of the data and applied
to the big data set. k small subsets of size NS were taken from the original datasets
using Simple Random Sampling With Replacement. Then a Gaussian Process estimator
was developed for each such sample. To combine the estimators, the predictions were
averaged over all k estimators. The method was similar to bootstrap estimation. The
required size of the sample was estimated empirically.

The algorithm thus used is as follows:

Algorithm 1

Input: A dataset D of size n, no. of iterations k
Output: An estimator f̃ that combines the estimators fitted from resampling

1: Select hyperparameters k and NS

2: for i = 1, 2, . . . , k do
3: Choose a sample of size NS uniformly from 1,2,. . . ,N
4: Uniformly sample from K(X,X), the N×N submatrix S using the correspond-

ing indices of the sample indices chosen in the previous step.
5: ỹ ← subset of y with features corresponding to the indices in sampx
6: Cov S ← Subvector of the Covariance vector between training features and the

test feature chosen according to the sample of indices.
7: f̃ ← f̃ + Cov S(X∗, X)[S + σ2

nI]−1ỹ
8: end for
9: f̃ ← f̃/k

10: return f̃

8

The time complexity is reduced from O(N3) to O(kN3
S) as now we have to perform

matrix inversion on the submatrix of size NS and the same repeated for k iterations.

The method is based on model averaging. Given, i = 1, 2, ...k models, and given a point
X, the conditional distribution of the target variable Y given X is:

P (Y | X) =
k∑
i=1

P (Y | i,X)P (i)

Here it is assumed that each of the model is equally probable, then p(i) = 1
k
.

P (Y | X) ∼ N (µ(x), σ2(x)),
µ(x) = 1

k

∑k
i=1 µi(x)

σ2(X) = 1
k2

∑k
i=1 σ

2
i (X)

The correctness of the algorithm was not proved but analytical results showed that it
is empirically true. The results reported were consistent with the results from Mini-
max theory for non-parametric regression. Simplicity of the algorithm was the main
advantage. In general the methods used for applying Gaussian Process regression to
large data sets required use of large number of hyper parameters unlike that we are
talking about.

2.2 Parameters involved and their estimation

The key parameters of the algorithm were size of the subset and accuracy(specified as
a error threshold, ε). Two methods were used for estimating the size of the sample.

• Using Statistical Inference: Given a dataset of size N , the subset size NS was
represented as

NS = Nd, where 0 ≤ d ≤ 1

.
d was determined by inference from a proportion using a small sample. Using
Simple Random Sampling, a small sample of the original data set was picked.
Starting with a small value of d, algorithm 1 was run iterativel incrementing the
value of d by a certain fraction at each iteration. The iterative procedure ended
when the prediction error became acceptatble that is, lied within a pre-determined
threshold value. The size of the data set used being small, the procedure was quite
fast. It resulted in a reliable estimate of d.

9

• Using Empirical Estimation: There were two propositions involved that said:

1. Subset size, NS is proportional to data size N , that is, NS ∝ N

2. NS is a decreasing function of the error rate, ε.

These two propositions led to the following empirical estimator of the sample size:

NS =
N δ(N)

g(ε)

where,
δ(N) defines the fact that NS is proportional to data size N
g(ε) define the fact that NS should increase with the decrement in ε, the desired
error rate.

2.2.1 Effect of the parameters

Algorithm 1 involves 3 parameters, Data size, Subset size, Number of estimators. Based
on performed experiments, they got some relation of these parameters on accuracy of
the predicted value. The effect of the three hyperparameters used, as observed from
experiments, were:

1. Dataset size: For each data set of size N , a fraction Nd was picked, and a good
estimate of d was obtained to provide a preset target accuracy. It was inferred
from the performed that the d required to maintain the given accuracy decreased
very slowly with increase in N .

2. Subset Size: The subset of size, NS , used for Gaussian Process model develop-
ment was Nd. The RMSE, Root Mean Square Error(ε), was recorded for a range
of values of d. Because of the effect reported in Section 5.2 of [2], d must decrease
with increase in Subset Size For complex data sets like Sinc function, the subset
size required to get a required level of accuracy was large.

3. Number of Estimators: The key observation from the performed experiments
was that given a subset size, NS, the error drops with increase in number of
estimators k upto a point after which increasing k has not much effect on the
error. Plausibly the explanation for this behavior could be that increase in k
reduces the variance component of the error in the bias-variance decomposition
of the error(ε).

The target variable of each data used, depended on a small number of features, but data
size ranged from few thousand to two million. Mainly synthetic data was used and the
characteristic of the data provided a good reason for the attractive rate of convergence

10

as indicated by the results from Mini-max theory for non-parametric regression.

According to the experimental results used, it was inferred that we could get reasonable
models with a small subset of data, when the no. of predictor variables were small. The
flaw of the above algorithm is that the method doesn’t work well with data of varying
density. Moreover, the sample was taken independently and the results obtained were
based on synthetic data sets. Hence we provide a better (by our claim) algorithm, that
would decrease the error as well as speed up our GP Regression.

11

Chapter 3

Our Algorithm

This Chapter deals with an algorithm that uses certain weights during sampling pro-
cedure. We know that density of a data may vary. In fact, there may be clusters in
the data set. Use of Algorithm 1 for such data sets may not provide a good estimate
of the target variable. This is because when we are randomly selecting from N data
points, many points of the same cluster may get into our subset, while if the size of
some cluster is very small, there may be no representative point from that cluster in
our subset. This is a major problem during estimation. After missing value treatment
and outlier removal of the given data, when we are sampling, we need a good subset of
sample points so as to correctly predict the target variable of the test point. Hence we
use the approach given in the following section.

3.1 An overview

Given C1, C2, . . . , Ct, are clusters obtained from the training part of the data using a
clustering algorithm like k-means. Each cluster Ci is of size ni, i = 1, 2, . . . , t. We
define Sn =

∑t
i=1 ni

We associate with each training point j ∈ [N], a factor aj such that,

aj =
Sn
ni

if j ∈ Ci

This aj is the associated weight with the jth training point.
A = {a1, a2, . . . , aN} is the vector of weights for the training set. Weights of data points
within the same cluster will be same and for different clusters the weights would be
inversely proportional to the cluster size, ni. Thus, intuitively, when sampling is done
each of the clusters shall be given attention uniformly.

Now we give the algorithm to obtain the subset using weighted sampling as described

12

above. We first have split the data into training and test set. Then using k-means clus-
tering algorithm divided our data into an optimum number of clusters. The optimum
number can be determined by several procedures. Elbow, Silhouette and Gap Statistic
methods are some of those. We have used the Silhoutte index.
The Silhoutte value measures how similar a point is to its own cluster compared to
other clusters.
Define,

a(i) =
1

nl − 1

∑
j∈Cl,i 6=j

d(i, j) ∀i ∈ Ck

b(i) = min
k 6=l

1

nk

∑
j∈Cl

d(i, j) ∀i ∈ Cl

Silhoutte value for ith data point is

s(i) =

1− a(i)

b(i)
if a(i) < b(i)

0 if a(i) = b(i)
b(i)
a(i)
− 1 if a(i) > b(i)

The average silhoutte value over all t clusters is max for a specific no. of clusters T .
Then T is the required optimum.
We then divide the data set into T clusters and run Algorithm 2.

3.2 The Algorithm

The theory described in the previous section is the backbone of Algorithm 2. The
convergence of the clustering algorithm involved ensures the formation of weight vector
corresponding to the data points.
Here too, the time complexity of the algorithm 2 is reduced to O(k ∗N3

S), though the
pre-processing involving clustering algorithm takes O(N2).

Both the algorithms are fast but the advantage with the second is that it gives a better
estimate of the target variable as obtained from experiments. While we believe that we
can prove the correctness of the algorithm, we couldn’t do it due to lack of time. Instead
we have run algorithm 2 on real life data and concluded the results to be discussed in
the next Chapter.

13

Algorithm 2

Input: A dataset D of size n

Output: An estimator ˆ̄f∗ that combines the estimators fitted from resampling

1: Using Silhoutte Averaging, obtain optimim number of clusters, T
2: Perform k-means clustering algorithm to obtain T clusters.
3: Find the cumulative frequencies of each cluster.
4: For each j ∈ Ci, aj = Sn

ni

5: Define the weight vector A, where A = (a1, a2, ..., aN) each aj being associated
weight of jth training point.

6: for i=1,2,...k do
7: ỹ ← subset of y sampled using A as weights
8: S ← Submatrix of K formed by features in ỹ.
9: Cov S ←Cov vector between training features and the test feature

10: ˆ̄f∗ ← ˆ̄f∗ + Cov S(X∗, X)[S + σ2
nI]−1ŷ

11: end for
12: ˆ̄f∗ ← ˆ̄f∗/k

13: return ˆ̄f∗

3.3 Algorithm for Gaussian Regression

The original algorithm for a Gaussian process regression to estimate the target variable,
is given below:

Algorithm 3

Input: A dataset D of size N
Output: f̄

1: f̄ ← K(X∗, X)[K(X,X) + σ2
nIn]−1y

2: return f̄

Consistency of Gaussian Process regression has been discussed in [1], section 7.1, when
considering square error loss.

We can compare the Error variances and Time compexity associated with f̄ , f̃ and ˆ̄f∗
empirically. The next chapter uses real life data to support our ideas.

14

Chapter 4

Analytical Results

Given a data set D of size n, we have first split D into a training set and test set. The
train-test split used is 80-20. We first pre-process our data removing missing values
and outliers. After that we run the three algorithms on each of the three data sets to
obtain desired results. Lets first see the data used:

4.1 Datasets

The following datasets were used:

1. data 1: Concrete Data.csv from https://archive.ics.uci.edu/ml/datasets/Concrete+
Compressive+Strength. Concrete is the most important material in civil engineer-
ing. The concrete compressive strength is a highly nonlinear function of age and
ingredients. These ingredients include cement, blast furnace slag, fly ash, water,
superplasticizer, coarse aggregate, and fine aggregate. There are 1030 instances,
number of attributes 9 (8 quantitative input variables and 1 quantitative output
variable)

2. data 2: House price from https://www.kaggle.com/shree1992/housedata. It has
4600 rows and 10 columns. The attribute, ’price’ being our target variable. The
independent attributes are, bedrooms”, ”bathrooms”, ”sqft living”, ”sqft lot”,
”floors”, [6] ”waterfront”, ”view”, ”condition”, ”sqft above” and ”sqft basement”

3. data 3: Airfoil self noise from https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-
Noise. The attributes are angle of attack, in degrees, chord length, in meters
free-stream velocity, in meters per second, suction side displacement thickness, in
meters. The only output is scaled sound pressure level, in decibels. There are
1503 data points.

15

data Algorithms No.of training points No. of test points Time of execution average absolute error
variance of the
estimate

Maximum absolute error
(amongst all test points)

data1
Algorithm1

824 206
1.140631e-01 7.354844 88.01718 27.90448

Algorithm2 1.728981e-01 7.330808 86.21974 27.31775

Algorithm3 2.413 7.308073 85.69483 27.3466

data2
Algorithm1

3680 920
0.114955 9.874916e-06 1.884632e-12 7.003297e-06

Algorithm2 0.2470450 1.016547e-07 1.799822e-12 6.988388e-06

Algorithm3 4.12390 9.639035e-07 1.633238e-12 6.462059e-06

data3
Algorithm1

1203 300
0.21390 26.83056 1060.556 79.77511

Algorithm2 0.207 26.46328 1058.624 71.91087

Algorithm3 2.82 26.05414 1001.452 71.07715

Table 4.1: Sample size= 250

data Algorithms No.of training points No. of test points Time of execution average absolute error
variance of the
estimate

Maximum absolute error
(amongst all test points)

data1
Algorithm1

824 206
0.90806 7.901368 98.87474 29.5766

Algorithm2 0.01810680 7.351767 86.9728 27.02792

Algorithm3 2.413 7.308073 85.69483 27.3466

data2
Algorithm1

3680 920
0.1008700 1.05469e-06 1.948816e-12 7.111638e-06

Algorithm2 0.1082000 1.042754e-06 1.900779e-12 6.997945e-06

Algorithm3 4.12390 9.639035e-07 1.633238e-12 6.462059e-06

data3
Algorithm1

1203 300
1.208033e-01 36.5032 1460.941 73.85941

Algorithm2 0.11948 32.56631 1448.658 71.40905

Algorithm3 2.82 26.05414 1001.452 71.07715

Table 4.2: Sample size= 100

4.2 Application of the three algorithms on data sets

All the three algorithms were implemented in R-programs. Clustering was done using
k-means() function provided in the package ’cluster’. Other functions used involved
sample() and int.sample() in algorithms 2 and 1 respectively to draw random samples
under the given conditions. Other functions were written as per the requirement of the
programs.

The tables in this chapter compare the mean absolute error, variance of the estimate
and time of execution for the three algorithms corresponding to the above data

Description of the tables

The columns of the tables are :

1. data: The different data sets

2. Algorithms: The three Algorithms, 1,2 and 3 are compared for each data set

16

3. Time of execution: The average time of execution for any algorithm.

4. Average absolute error: Average over the absolute error that is the absolute
difference between the predicted value and the observed response, the average
being taken over all k iterations.

5. Variance of the estimator: If f̄∗i be the estimate of ith test point, Variance of the
estimator is

V ar =
1

N∗

N∗∑
i=1

(f̄∗i − y∗i)2

where N∗ is the size of test set and y∗i is the value of the ith target variable in the
test set.

6. Maximum absolute error: The maximum absolute difference between the pre-
dicted value and the observed response among all the test points.

The tables show how each of the algorithms are related. We find that the Time com-
plexity of ALgorithm 1 and Algorithm 2 are much less than that of Algorithm 3. Also
the average absolute error and the variance of the estimates are less for the second al-
gorithm in any of the given data. That is, the second algorithm gives better prediction
of the test set target variable than the first. It predicts value closer to the one obtained
from Algorithm 3, the Gaussian Process regression. Analytically we see our claim that
algorithm 2 is better than algorithm 1, holds.

17

Chapter 5

Conclusion

The main problem with GP regression is the infinite dimensional parameters of the
priors which makes the proof for consistency of posterior distribution a fine challenge.
In [4], almost sure consistency for posterior distributions is verified, when the prior
distribution on the regression function is a GP, for a single dimensional covariate.
We can extend it to multidimensional covariates, to prove almost sure consistency
of Algorithm 1 and 2. It woud be a future work. Here though the proofs could not
be done, we have used a few data sets to compare the 3 different algorithms and
check their behaviour empirically. The datasets obtained were from various fields, with
varying feature sizes. We have obtained the given results for fixed hyperparameters.
The time complexity is reduced from order O(n3) to O(kNs

3) where Ns is the sample
size and K, the number of iterations. Empirically, Algorithm 2 gives a better prediction
than Algorithm1 the error variance being smaller. Also we see that as sample size
increases, the error variance decreases towards that of Algorithm 3. Due to lack of time
though the theoritical proof of correctness have not been done, we have established a
few results to stand by our notion. Although the clustering algorithm takes much time,
the advantage of Algorithm 2 is that it is simple and more accurate.

18

Chapter 6

Bibliography

[1] Gaussian Processes for Machine Learning Carl Edward Rasmussen and Christopher
K. I. Williams MIT Press, 2006.

[2] Fast Gaussian Process Regression for Big Data Sourish Das 1 , Sasanka Roy 2 , and
Rajiv Sambasivan 1 1 Chennai Mathematical Institute 2 Indian Statistical Institute

[3] Posterior Consistency in Non Parametric Regression Problems under Gaussian Pro-
cess Priors By Taeryon Choi and Mark J. Schervish Carnegie Mellon University

[4] Posterior Consistency of GP Regression by Choi and Schervish(2007)

[5] Gaussian processes by Chuong B. Do, 2007

19

	Introduction
	Introduction to Gaussian Processes
	Prediction in absence of noise
	Prediction in presence of noise

	The Problem

	Previous Work
	Sketch of the work and the Algorithm
	Parameters involved and their estimation
	Effect of the parameters

	Our Algorithm
	An overview
	The Algorithm
	Algorithm for Gaussian Regression

	Analytical Results
	Datasets
	Application of the three algorithms on data sets

	Conclusion
	Bibliography

