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Preface

Cops and Robber games are pursuit-evasion games played on connected
graphs. They have been studied extensively and finding the cop number
of certain classes of graphs has been one of the major problems in these
games. Networks, on the other hand, have been some of the most interest-
ing graph classes. In this work, we will investigate the cop number problem
of two types of networks, whose cop numbers were not known in general,
namely, butterfly networks and solid grid graphs.
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1 Cops and Robber Games: An Introduction

Cops and Robber is a pursuit-evasion game played on finite connected graphs
with the following rules:

• It is a two-player game, where one player controls k cops, where k ≥ 1,
and the other controls the robber

• The game begins with the k cops occupying a vertex or some vertices
and then the robber occupies a vertex

• The cops and robber makes alternating moves

• On the cops’ turn, any number of the k cops can move to their adjacent
vertices or stay put on their current vertex

• The same goes for the robber as well. On its turn, it can move to any
of the adjacent vertices of its current vertex or stay put

• This is a perfect information game,i.e., all the agents, (an agent is
either a cop or the robber) can see the entire graph as well as other
agents and their moves

• If at least one of the cops succeed in occupying the same vertex as the
robber, we call it a capture

• The cops win if they capture the robber within finite time, otherwise,
the robber wins

This is the classical version of the Cops and Robber game which was
introduced in [5].

The cop number of a graph G, denoted by c(G), is the minimum
number of cops required to capture the robber, irrespective of the sequence
of moves of the robber. The cop number is finite as the number of vertices
of a graph is an obvious upper bound. If a graph G has c(G) = 1, then we
say that G is copwin graph.

2 Some Known Results

We have the following known theorems for cop numbers([1]):

Theorem 1. The cop number of a tree is 1.
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Figure 1: Chasing the robber in tree

Proof. The cop can start anywhere, and at each step move to the unique
neighbour that is closer to the robber. The uniqueness is ensured by the
acyclic nature of tree since between any two vertices there is a single path in
the graph as shown in figure 1. Each of the cop’s steps reduces the size of
the subtree that the robber is confined to, so the game eventually ends with
the cop capturing the robber.

Theorem 2. The cop number of a cycle of length 3 is one.

Figure 2: Chasing the robber in 3-cycle

Proof. Let G be a 3 − cycle. Let a cop C start at any of the vertices. We
see that in figure 2 no matter where the robber starts it will either be in the
same vertex as that of the cop or in any of its two neighbours. In the former
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case, the robber gets captured right away whereas in the latter case the cop
can capture the robber in its next move.

Theorem 3. The cop number of a cycle of length more than three is 2.

Proof. Let G be a cycle with length greater than 3. Let a cop C start at
any vertex, say v, in G. Let the robber R start at a vertex w, such that the
distance between v and w is at least 2, which is possible since the length of
the cycle G is at least 2. At each turn of C, it can move only one vertex
closer to R thus decreasing the distance by 1. However, R can simply move
one vertex further away from C, thus evading the effect of C’s last move and
bringing the distance back to what it was before that. This way R can ensure
that the distance between itself and C never decreases and thus it never gets
captured.

Figure 3: Chasing the robber in a cycle of length greater than 3 using two
cops

Let there be two cops C1 and C2. Let them both start at a vertex say
v, while the robber R starts at some vertex w. If, v = w, then we are done.
If not, then the cops can form a strategy to capture R. The cop C1 will
keep chasing R to capture it by moving to its neighbour in the shortest path
between its vertex and that of the R, while C2 stays put in v. The robber,
can either stay put or move away from C1. At each turn it stays put the cop
C1 can decrease the distance by moving closer to it. At each turn, it moves
away from C1 it comes closer to C2. Thus, after a finite number of moves, it
will either be a neighbour of C1 or C2 or both, which will ensure its capture
by a cop.
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3 Butterfly Networks

Butterfly Networks are a special class of networks that are defined inductively
for every non-negative integer([4]). We denote the nth Butterfly Network as
Bn and say that it is the nth level or n − dimensional Butterfly Network.
The definition is as follows:

• At level 0, we have B0 which is a graph with single vertex and no self-
loops. We also say that the set of external vertices of B0, denoted
by Ext(B0) is that very single vertex.

Figure 4: B0

• The set V of nodes (vertices) of an n-level butterfly network (n ≥ 1)
correspond to pairs [w, i], where i is the dimension or level of a node
(0 ≤ i ≤ n), and w is an n-bit binary number that denotes the row
of the node. Two nodes [w, i] and [w′, i′] are linked by an edge if and
only if i′ = i + 1 and either, (i) w and w′ are identical, or (ii) w and
w′ differ in precisely the ith bit. In figure 5 we have B3.

The external vertices of Bn, Ext(Bn) are precisely the vertices of level
0, the vertices v = [w, 0]. Since w is an n-bit binary number so it can have
exactly 2n many different values. Thus, |Ext(Bn)| = 2n and |V (Bn)| =
2n(n + 1), for all n ≥ 0.

3.1 Construction of Bn+1 from Bn

We can construct B1 from B0 as follows:

• We take two copies of B0, labelling one of them as [0, 1]) and the other
as [1, 1] as shown in figure 6

• We then join a new vertex labelled as [0, 0] to [0, 1] and to [1, 1] as
shown in 7

• And at last we join another new vertex labelled as [1, 0] to [1, 1] and to
[0, 1]
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Figure 5: Butterfly network of 3rd level, B3

Figure 6: Two copies of B0

It is clear, the above graph is B1. In general, we can construct Bn+1 from
Bn, where n ≥ 1 as follows:
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Figure 7: Adding a vertex [0, 0]

Figure 8: B1 constructed from two copies of B0

• We take two copies of Bn, say B′ and B′′

Figure 9: Two copies of Bn
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• We increase the level number of each vertex in both B′ and B′′ by 1

• We add a 0 at the beginning of the row number of each vertex in B′,
making it n + 1-bit

• We add a 1 at the beginning of the row number of each vertex in B′′,
making it n + 1-bit

• We bring in 2n+1 new vertices labelled [w, i] with i = 0 and w being an
(n + 1)-bit binary number ranging from 0 to 2n+1 − 1.

• We join a new vertex [w, i] to another vertex [w′, i′] from either B′ or
B′′ iff i′ = i + 1 and either, (i) w and w′ are identical, or (ii) w and w′

differ in precisely the i bit.

Figure 10: Construction of Bn+1 from two copies of Bn

We claim that this new graph as shown in figure 10 is Bn+1. If we take
two vertices [w, i] and [w′, i′], both from either B′ or B′′ then are joined by
the rules of butterfly networks. If one is in B′ and the other is in B′′, then
they will not have an edge between them by our very construction. And
by the last step in our construction, we can see that the new vertices are
joined to vertices in B′ and B′′ by the rules of butterfly network. Thus, the
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above construction gives us a butterfly network. As, for the level, then we
can see that the levels of nodes range from 0 to n + 1 and the row numbers
are n+ 1-bit binary numbers, so we have Bn+1. The external vertices of this
graph are precisely the ones of level 0.

Thus, from the above construction, we see that any butterfly network Bn,
n ≥ 1 can be constructed from two copies of Bn−1. In fact, for any n ≥ 1,
we can construct Bn straight from B0. We have the following theorem:

Theorem 4. For any butterfly network Bn, the copies of Bk, with 0 ≤ k ≤ n,
within Bn is 2n−k.

Proof. We will prove this by induction on n.
Base Case: When n = 0. Thus, k can only have the value of 0. It is

clear that B0 will only have one copy of itself within itself.
Induction Hypothesis: Let our statement be true when n = m, for

some m ∈ N.
Inductive Step: We consider the case when n = m+ 1. If k = m+ 1,

then as Bm+1 will have only one copy of itself within itself, so the claim is
true in this case.

If 0 ≤ k ≤ m, then by Induction hypothesis each Bk will have 2m−k

many copies within Bm. As there are two copies of Bm within Bm+1 by
construction, so each of those Bk will have 2m+1−k many copies in Bm+1,
thus proving our statement.

Corresponding vertices: As, Bn, n ≥ 1 contains copies of B0, . . .,
Bn−1, the vertices which are not in Ext(Bn), will have corresponding copies.
So, if there is a vertex with label [w, i], where i 6= 0 and i 6= n, then it does
not belong to Ext(Bn), and its corresponding copies are all those vertices
[w′, i], which would have the exact same row number as itself in an isolated
copy of Bn−i, that is, w and w′ are identical after the first i bits. As for
vertices of level n in Bn, then they are essentially the copies of B0 in Bn and
are thus corresponding to each other. We have the following theorem.

Theorem 5. In Bn, the corresponding vertices in the sets of external vertices
of the copies of Bn−1 have the same neighbours in Ext(Bn).

Proof. Let two vertices [w, 1] and [w′, 1] be corresponding vertices in the
sets of external of the copies of Bn−1. So, by our construction, w and w′

are identical except for the 0th bit. Consider, [w, 1]. By our construction
its neighbours in Ext(Bn+1 are exactly two, one of them being [w, 0] and
the other being [w′, 0]. Similarly, the neighbours of [w′, 1] are exactly two
in Ext(Bn+1, one of them being [w, 0] and the other being [w′, 0]. Thus
proved.
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Figure 11: Agents and their images in B2

3.2 Cops and Robber game in Butterfly Networks: (Our
Main Contribution)

We have two cops C1 and C2, and a robber R. Let,
v(Ci) := Current position of the cop Ci.
v(R) := Current position of the robber R.
Observation: We observe that irrespective of the value of v(Ci) or

v(R) in a graph Bn, n ≥ 0 it is bound to lie in a vertex v ∈ Ext(Bk), where
0 ≤ k ≤ n, where n− k is the level of the vertex. If k = n, it is in Ext(Bn)
or else in Ext(Bk) for some k < n. This is because, we are constructing
Bn incrementally from B0, B1,....,Bn−1. Thus, each vertex in Bn, lies in an
external vertex of some Bi, where 0 ≤ i ≤ n.

We use the above observation to define certain terms for our agents. (An
agent is either a cop or a robber). For an agent x, v(x) denotes its current
position.

Container graph: Let v(x) belong to Ext(Bk), such that 0 ≤ k ≤ n
Let’s consider j, such that 0 ≤ j < k, then we notice that v(x) does not

belong to any vertex of any of the copies of Bj within Bn. Also, if k < n and
we consider j, such that k < j ≤ n, then while v(x) may or may not belong
to a particular copy of Bj, it surely does not belong to the sets of external
vertices of any of the copies of Bj. Thus, we see that v(x) and the copy of Bk,
such that v(x) ∈ Ext(Bk) have a relationship. We call this particular copy of
Bk to be the container graph of the agent x and k to be its container level.
In particular, if v(x) = [w, i], then k = n−i. Thus, in figure 11, the container
level of agent x is 2, since v(x) ∈ Ext(B2), for agent y it is 1, since it belongs
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to the external vertices of a copy of B1 and similarly for agent z it is 0.
Image Positions: Let v(x) have its container level k, such that 0 ≤ k <

n.
We note that as k < n, then by theorem 4, Bk will have multiple copies

within Bn. We denote the container graph of v(x) to be B′, which is a copy
of Bk. As v(x) ∈ Ext(B′), then the other copies of Ext(Bk) each have their
vertices corresponding to v(x). We define set of image positions of x, I(x),
to be precisely those vertices,i.e., I(x) :=

⋃
copies of Bk

{v ∈ Ext(Bk)|v(x) 6=
v, and v is corresponding to v(x)}. So in figure 11, I(x) = ∅, whereas I(y)
is a singleton set marked pink and I(z) contains three vertices marked green.
If a cop Ci manages to occupy vertex belonging to I(R), then we say that
an image of R has been captured by Ci.

Effective Positions: For an agent x, the set of effective positions,
Eff(x) is defined as,

Eff(x) := {v(x)} ∪ I(x).
Effective distance: Let Ci be a cop. The distance d(Ci, R) is the actual

distance between v(Ci) and v(R), defined in the usual way. We, define the
effective distance between Ci and R, dE(Ci, R), as:

dE(Ci, R) := min{d(v(Ci), w)|w ∈ Eff(R)}.
Thus, dE(Ci, R) ≤ d(Ci, R). Also, note that dE(Ci, R) = 0, iff v(Ci) and

v(R) are corresponding to each other or v(Ci) = v(R), whereas d(Ci, R) = 0,
iff v(Ci) = v(R). If, dE(Ci, R) = 0, then we say that an effective position of
R has been captured by Ci.

We have the following algorithm to ensure capture of effective position
by one cop:

Theorem 6. Algorithm 1 ensures that the cop Ci will capture one of the
effective positions of the robber R, i.e., either R itself or one of its images.

Proof. We notice that the algorithm moves the cop Ci closer to the closest
effective position of the robber R. This results in the following:

• If R moves out of its current container graph to a bigger one then it
increases the effective distance by 1. The cop on its turn nullifies it by
moving closer to the robber’s current effective position closest to itself.

• If R moves from its current container graph into something smaller,
then it decreases the effective distance. The cop on its turn decreases
the distance even further. If the effective distance reaches nil, then we
are done.

• If R on its turn stays put, then too the cop decreases the effective
distance by moving closer to the former’s closest effective position to
itself.
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Algorithm 1 Capture Effective Position of Robber R

Require: Positions of the Cop Ci and the robber R and the graph under
consideration, Bm

Ensure: Ci captures either R or one of its image positions
Initially cop Ci should be place in vertex [w,m], where w is the m-bit
binary representation of 0
while dE(Ci, R) 6= 0 do

Move Ci to the closest effective position of R on its turn
Update the positions of all agents

end while
if d(Ci, R) = 0 then

Report the capture and terminate the game
end if
if dE(Ci, R) = 0 but d(Ci, R) 6= 0 then

Report capture of image
end if

• As our graph is finite, so the robber can’t increase the effective distance
indefinitely and thus it will keep decreasing until it drops to nil.

Theorem 7. By Algorithm 1, if R is not captured, then it can never happen
that the dimension of v(Ci) is less than that of v(R), without R getting its
image captured before that.

Proof. Initially, we see that in the graph Bn, Ci begins at [w, n], where w
is the n-bit representation of 0. Thus, if R begins at any of the vertices of
dimension n its image gets captured at the very beginning, since all vertices of
dimension n are corresponding to each other. On, the other hand if R begins
at a vertex of dimension less than n, and then it tries to move to vertices
of higher dimensions, it is actually decreasing the value of dE(Ci, R). If, it
stays put then to Ci will keep decreasing the value of dE(Ci, R) by theorem
6. Thus, before it can move to vertices of dimensions higher than that of
v(Ci), its image will get captured, if it does not get captured itself.

Theorem 8. If an image position of R has been captured by Ci in Bn by using
Algorithm 1, then the cop can either capture R or keep its image captured.

Proof. Lets say that an image position of R has been captured by Ci, such
that v(R) = [w, i] and v(Ci) = [w′, i]. Then, the cop can do the following:
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• If R moves from [w, i] to [w, i−1], (if 0 ≤ i−1 ≤ n), then Ci will move
from [w′, i] to [w′, i− 1]

• If R moves from [w, i] to [w, i+ 1], (if 0 ≤ i+ 1 ≤ n), then Ci will move
from [w′, i] to [w′, i + 1], if [w, i + 1] and [w′, i] are not adjacent

• If R moves from [w, i] to [w, i + 1], (if 0 ≤ i + 1 ≤ n), then Ci will
capture R, if [w, i + 1] and [w′, i] are adjacent

• These similar moves are applied even when the value of either w or i
changes. Thus, Ci always keeps an image of R captured or captures R.

Degree of Freedom: Suppose the cop Ci has captured one of the images
of R (not R itself). We then define the degree of freedom of R. The
degree of freedom of R, denoted by D(R), is the largest value k, where
0 ≤ k ≤ n, such that R is in one of the copies of Bk but Ci does not belong
to the exact same copy of Bk. If D(R) = k, then the copy of Bk such that R
is in Bk, is called the freedom graph of R.

Observation: If D(R) = k, then while Ci may not be in R’s freedom
graph Bk, it can be in any of the other copies of Bk and it is obviously in
the copy of Bk+1 containing R.

Theorem 9. If D(R) = k, then R cannot move to Ext(Bk+1).

Proof. We notice that if R wants to move to Ext(Bk+1), then it must first
come to an external vertex of its freedom graph Bk. Then by theorem 8, Ci

too will move to the corresponding vertex in its copy of Bk. Also, we note
as shown in figure 12 that the vertex of R will have exactly two neighbours
in Ext(Bk+1), which are precisely the two neighbours of the vertex of Ci

from Ext(Bk+1), by theorem 5. Thus, any movement of R from its current
position to a vertex of Ext(Bk+1), will result in its capture.

Corollary 9.1. If D(R) = k, then it can’t move out of its freedom graph Bk.

Proof. This follows from theorem 9.

Corollary 9.2. If D(R) ≤ k, then it can’t move out of its freedom graph.

Proof. This too follows from the theorem 9 above.

Theorem 10. Let C1 and C2 be two cops with Bn, where n ≥ 2, being
our graph in consideration. Suppose, C1 has captured an image of R, thus
making its degree of freedom to be k, such that 0 ≤ k < n. Then, using C2

in Algorithm 1, either we can capture R or decrease D(R) even further.
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Figure 12: When the robber R tries to escape from D(R)

Proof. Let D(R) = k, due to C1, such that 0 ≤ k < n. While R is moving
within its freedom graph Bk we bring C2 to the top − right vertex of this
copy of Bk,i.e, the vertex [w, n], such that w is all zeroes after the first n− k
bits. By, Corollary 9.1, R should not go out of its freedom graph Bk to avoid
getting captured by C1. Thus, we might as well, consider the graph to be
the freedom graph of R. We, now repeat the algorithm 1 with C2, R and Bk.
Thus, by the theorem 6 already proved, either C2 will capture R or reduce
D(R) to k′, such that 0 ≤ k < k′.

Corollary 10.1. D(R) can be reduced to 0.

Proof. By the last theorem, we can alternatively use C1 and C2 to keep
decreasing the value of Dn until it becomes zero.

Corollary 10.2. It is possible to capture the robber R using only two cops.

Figure 13: When D(R) = 0 and the robber can be captured
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Proof. Once, D(R) = 0, due to say Ci, we bring Cj, as shown in figure 13
(j 6= i), to one of the neighbours of R. On its next turn if R stays put then
it will get captured by Cj. If R moves to its neighbour unoccupied by Cj,
then it becomes adjacent to Ci, thus getting captured on the latter’s next
turn.

We thus have the following algorithm for capturing the robber R using
two cops C1 and C2

Algorithm 2 Capture the Robber R

Require: Positions of the Cops C1 and C2 and the robber R and the graph
under consideration, Bn

Ensure: R get captured
while R has not been captured do

Alternatively use C1 and C2 in Algorithm 1 to decrease the degree of
freedom to zero
When degree of freedom of R is zero we use one of the cops to capture
it

end while
Report capture and terminate the game

Theorem 11. The Cop number of a Butterfly Network Bn, is one if n = 0,
else it is two.

Proof. If n = 0, then we can capture the robber R by using only one cop as
it is only a single-vertex no edge graph.

If n = 1, then we have a four-cycle whose cop number is known to be
two.

If n ≥ 2, then as it is will have copies of the four cycle, so one cop is
not sufficient for the capture, and by Corollary 10.2, two cops are sufficient.
Thus in this case, the cop number is two as well.

Therefore, the theorem has been proved.

Time Analysis: Before we move on to give a time analysis of the
algorithm to capture the robber in a butterfly network we need the following
theorem.

Theorem 12. In a butterfly network Bn, n ≥ 0, the largest possible value of
the dE(Ci, R) in Algorithm 1, is n.

Proof. We will prove this by induction on n on the initial value of dE(Ci, R).
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Base Case: When n = 0, it is obvious the distance as well as the
effective distance between the robber R and the cop Ci is zero.

Induction Hypothesis: Let the claim be true when n = m, for some
m ∈ N.

Inductive Step: Let n = m + 1. Initial position of Ci is in [w,m + 1],
where w is the m + 1-bit representation of 0.

Case i: R is not in Ext(Bm+1). In this case if both R and Ci are in the
same copy of Bm, we can apply the induction hypothesis to deduce that the
maximum value of dE(CI , R) is m ≤ m + 1. If they are in different copies
then we consider the image of R closest to Ci to be actual R, in which case
too, by our induction hypothesis, the maximum value of dE(Ci, R) should be
m ≤ m + 1.

Case ii: R is in Ext(Bm+1). In this case the actual distance is the
effective distance, and the maximum value of actual distance possible is m+1,
since all the vertices of Ext(Bm+1 are at a distance of m+ 1 from [w,m+ 1].

Now, as our algorithm proceeds, by theorem 6, the value of dE(Ci, R)
keeps decreasing. Thus, proved.

So, if the cops begin at [w, n] in Bn, where w is the n-bit binary rep-
resentation of 0 and the robber R at [w′, 0], where w′ is the n-bit binary
representation of 2n − 1, we will have the maximum effective distance possi-
ble by theorem 12, which is n. As, algorithm 1 will cause one cop say C1 to
move closer to the effective position of R, the time needed to capture either
R or its image is at most n. Upon the image capture of R by C1, we need to
bring C2 to the copy of Bn−1 where R is located. This, will take n− 1 steps
to cover the maximum effective distance within Bn−1, then one more to move
to a vertex in Ext(Bn), one more to move from there to the copy of Bn−1
where R has been restricted to. Finally, in order to move to [w, n−1], where
w is the n−bit binary number starting with 1 and followed by all 0’s there
needs to be at most n more steps. Thus, in order for a cop C1 to capture the
image of R in Bn and for C2 to reach the position where the algorithm 1 can
be applied again we need atmost:

n + (n− 1) + 1 + 1 + n = 3n + 1 ≤ 4n.
Thus, to keep decreasing the value of D(R) until it reaches 0 and gets

captured we need at most:
4(n + n− 1 + . . . . . . + 1 + 1) = 2n(n + 1) + 4 = 2n2 + 2n + 4 = O(n2).
So, the time complexity to capture the robber R using two cops in a

butterfly network Bn is O(n2).
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Figure 14: A 3× 4 grid

4 Grid Graphs

There is another class of networks called grid graphs. We will begin our
discussion with rectangular grid graphs.

Definition of rectangular grid graph: Formally an m×n rectangular
grid Gm,n is a graph whose vertices are arranged in m rows and n columns,
where each vertex vi,j, 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1 is connected
to the four vertices vi−1,j, vi+1,j, vi,j−1, vi,j+1, whenever these indices stay
inside the closed intervals [0,m − 1] and [0, n − 1] respectively. Then the
vertices can be divided into three sets, namely: corner vertices, where both
the subscripts i and j have the values 0 or m−1, and 0 or n−1, respectively;
border vertices, where one of the subscripts i and j has the value 0 or m−1,
or 0 or n − 1, respectively; internal vertices, i.e. all the others. Corner,
border, and internal vertices have two, three, and four neighbors each.

4.1 Cops and Robber Game in Rectangular Grids[6]

If a rectangular grid is a path then we know that the cop number is one. If it
is a four-cycle then we know that the cop number is two. Our claim is that
an arbitrary rectangular grid Gm,n which is not a path also has cop number
two as well. This was proved in [6] . Before we present the proof, we observe
the following, with R being the robber and C1, C2 being the two cops:

Coordinates of an agent x: Let vi,j be the position of an agent x,
then we say that (i, j) are the coordinates of agent x.

Horizontal Distance between Ck and R: Let (i, j) be the coordinates
of a cop Ck and (i′, j′) be the coordinates of R. Then we say that the
horizontal distance between cop Ck and R, denoted by dh(Ck, R) is defined
as follows:

dh(Ck, R) := |j − j′|.
Vertical Distance between Ck and R: Let (i, j) be the coordinates of

a cop Ck and (i′, j′) be the coordinates of R. Then we say that the vertical
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distance between cop Ck and R, denoted by dv(Ck, R) is defined as follows:
dv(Ck, R) := |i− i′|.
Effective Distance between Ck and R: The effective distance between

Ck and R, denoted by dE(Ck, R), is defined as follows:
dE(Ck, R) := max{dh(Ck, R), dv(Ck, R)}.
Cornering of R by a cop Ck: We say that the robber R has been

cornered by cop Ck if either of the following happens:

• The coordinate of R is (0, 0) whereas that of Ck is (1, 1)

• The coordinate of R is (m− 1, 0) whereas that of Ck is (m− 2, 1)

• The coordinate of R is (0, n− 1) whereas that of Ck is (1, n− 2)

• The coordinate of R is (m−1, n−1) whereas that of Ck is (m−2, n−2)

Idea behind the algorithm: Our algorithm will use one of the cops,
say C1 to corner the robber. If R moves to one of its neighbours then it
will get captured by C1, thus its forced to remain still on the corner. Then
the other cop, say C2 will occupy one of the two neighbours of R. Now, if
on its turn R moves to its unoccupied neighbour it will get captured by C1

otherwise by C2.

Theorem 13. The above algorithm is correct, that is, the cop C1 either
captures the robber R or corners it.

Proof. Without loss of generality, let the effective distance be initially in the
horizontal direction. Our algorithm will cause C1 to decrease it by moving
in the horizontal direction. This goes on until the effective distance is in the
vertical direction. For, R to evade capture it must try to increase the distance
in the direction of the effective distance. As our graph is finite so R will reach
one of the border vertices. Once, the direction of effective distance changes
so will the movement of C1. This, will cause R to move in the extreme of
the border it is in already and thus get cornered by C1.

Corollary 13.1. It is possible in a rectangular grid Gm,n for two cops to
capture R.

Proof. Once, cornered by C1, C2 can come to occupy one of the neighbours
of vertex of R. If, on its turn R moves to its unoccupied neighbour it gets
captured by C1 else by C2 as shown in figure 15.

Theorem 14. The cop number of a rectangular grid Gn,m which is not a
path is 2.
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Algorithm 3 Corner the Robber R

Require: Position of the robber R and the graph under consideration, Gn,m

Ensure: Either C1 captures R or C1 corners R
Initially the position of both C1 and C2 is (0, 0), while R can start from
anywhere
while R is un-captured and R is not cornered by C1 do

Calculate dh(C1, R), dv(C1, R) and dE(C1, R)
if Effective distance is the same as the horizontal distance then

Move the cop C1 from its position, say vi,j, to vi,j+1

Update the positions of all agents
if C1 is adjacent to R then

Let C1 capture R
Report capture and terminate the game

end if
else

Move the cop C1 from its position, say vi,j, to vi+1,j

Update the positions of all agents
if C1 is adjacent to R then

Let C1 capture R
Report capture and terminate the game

end if
Update the positions of all agents

end if
end while

Figure 15: Capture after getting cornered in a rectangular grid
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Proof. If we have one cop, then as a rectangular grid which is not a path will
have in it four-cycles so the robber can simply evade capture by maintaining
a distance of two in a cycle.

Also by corollary 13.1, we have already shown that two cops can capture
the robber, thus the cop number of the graph class in 2.

Time Analysis of Algorithm 3: The maximum value of effective dis-
tance is d, where d = max{n−1,m−1}. Also, the maximum actual distance
possible between a cop and the robber is d′, where d′ = n+m−2. So, for the
cop C1 in our algorithm the time needed to make the effective distance to be
1 is O(m+n). After that in order to corner R, C1 needs O(d) time to corner
R. Once, R is cornered, C2 will take O(m + n) time to reach the desired
position. Thus, the capture takes place in O(m+n+d+m+n) = O(m+n)
time.

4.2 Solid Grid Graphs: A Work in Progress

The two-dimensional integer grid G∞ is an infinite graph with vertex set of
all points of the Euclidean plane with integer coordinates. In this graph,
there is an edge between any two vertices of unit distance. For a vertex v
of this graph, let vx and vy denote x and y coordinates of its corresponding
point.

A grid graph is a finite vertex-induced subgraph of the two-dimensional
integer grid. In a grid graph, each vertex has degree of at most four. We
notice that the rectangular grid graphs we discussed before are precisely the
grid graphs G(n,m), whose vertex set is V := {v|0 ≤ vx ≤ n − 1, 0 ≤ vy ≤
m− 1}.

A solid grid graph is a grid graph without holes, i.e., all interior faces are
four cycles. In the next few sections we will try to determine the cop number
of partial grids in general. However, the reader is requested to keep
in mind that it is still a work in progress so concrete results in
this regards may not be possible. In fact, some of the very claims
are based on intuitive ideas rather than formal proofs.

4.2.1 Decomposition of solid grid graphs

A solid grid graph is either a rectangular grid or made up of multiple rect-
angular grids. Since, the vertices of the solid grid have coordinates in R2, so
one can define the height, h(G) and the width w(G) of the graph. Essen-
tially, h(G) := difference between maximum and minimum y-coordinates of
the vertices in G and w(G) := difference between maximum and minimum
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Figure 16: A solid grid G and its tree decomposition T

x-coordinates of the vertices in G. It seems possible that any solid grid G
with h(G) ≤ w(G) can be decomposed to a graph T as follows:

• We start from the leftmost vertex in G, i.e., the one with the smallest
x-coordinate

• From there we keep including vertices and the edges incident upon then
as long as we can maintain the structure of a rectangular grid

• Once we see we can no more maintain rectangular property we stop

• We then begin with the border vertices of the above grid and do the
same until all the vertices are covered

• For each rectangular grid formed with represent it with a node in T

• Two nodes in T are adjacent iff their corresponding grids share vertices

We do in a similar manner when h(G) > w(G).
If u is node in T , then its corresponding rectangular grid in G is denoted

by u(G). We show a decomposition of a solid grid in figure 16. Note the
following claims although labelled as lemma are actually claims
based on intuition. The “proofs” too are statements of intuitive
observations, as those are all works in progress.
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Lemma 15. T is connected.

Proof. Let u, v ∈ V (T ). If their respective grids in G, say u(G) and v(G)
share vertices then we are done. If not then there must be some finitely many
rectangular grids in between them. By our construction this will give arise
to a path in T . Thus, T is connected.

Lemma 16. T is acyclic.

Proof. If possible, let T be cyclic. Let the largest cycle in T be u1—u2—
. . . . . .—uk—u1. Then the path u1–uk will have their rectangular grid in G
placed side by side. However, it is not possible for the rectangular grid u1(G)
to share any vertices with uk(G) as this will create holes in G, which is not
possible. Thus, T can have no cycles.

4.2.2 Cops and Robber games in solid grid graphs

We have already seen that the cop number of rectangular grid is 2. We
think it is possible for solid grids as well that the cop number is 2 in general.
Suppose for a solid grid G, the decomposition T happens to be a path as in
16. Then, we begin with both the cops in the top left corner of the leftmost
rectangular grid, say u. If the robber is in that grid we use the two cops
to corner it as in the normal rectangular grid. Then, either the robber gets
captured or moves on to the next rectangular grid, say v. Notice, in this
case there is a unique vertex in the shared vertices between u and v which is
closest to the robber. We use both our cops to capture that unique vertex.
This is possible as that unique vertex, even if it changes position due to the
robber’s movement within v, will lie in a path, which is essentially the border
vertices of u shared with v. Once, captured we can then make sure that one
cop, say C1, always keeps this unique vertex captured thus, preventing R’s
re-entry to u. This, reduces R’s area of movement in T . In the meantime,
C2 can either use the usual cornering algorithm in v or move to the unique
vertex in the border of v which is closest to robber if it has moved to the
grid whose representative in T is the successor the representative of v in T .
If while doing so, the cop C2 becomes diagonally opposite to R, then we
can corner it and hence capture it. Otherwise, we keep moving C2 along the
shortest path to R. It seems like this should allow C2 at some point to be in
a position to R like C1. Thus, we can alternatively use C1 and C2 to finally
corner R in the last vertex of the path T . What happens if T is non-path
tree? Well, even in that case we can consider the unique path between the
cops and R and do the same alogrithm.
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Of course, as stated earlier, all the above assertions are intuitive ideas
about a work on progress and we need to come up with formal rigorous
proof.
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