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1. Introduction. The last decade has witnessed great developments in the area
of martingale central limit theorems (CLT). A recent paper by B. M. Brown [3] may
be referred to for a brief outline of the historical development, and a good bibliogra-
phy. It may be meationed that the most general types of results in this direction
provide not only a proof of the classical Lindeberg—Feller CLT for martingales,
but also guarantee the weak convergeace of all finite dimensional distributions of
an a.e. sample continuous stochastic process to those of a Wiener process. A functional
CLT (also known as an invariance principle) is proved which says that the distributions
of the said process converge weakly to a Wiener measure on C[0, 1].

Functional CLT's were proved for martingales under the stationarity and ergo-
dicity assumptions by BILLINGSLEY [1], [2] and IsraGIMOV [6]. These conditions were
relaxed and replaced by a Lindeberg-type condition by BrowN [3]. The present paper
extends Brown’s results to a martingale sequence with random indices, proving a
functional CLT. The main results are given in section 2. Classical random CLT's
for martingales are proved by CsorGo [4] and Prakasa Rao [7]. We shall see at the
end of section 2 that conditions imposed by them for proving the CLT imply ours,
and are, in fact, much more restrictive.

2. The main results. We adopt the same notations as BrowN's {3]. Let {S,, #,, n=
=1} be a martingale sequence on the probability space (@, #, P) with §;=0. Define
X,=S,—S,_;,nzl. f, need not be the trivial o-field {@,Q}. Let E,_,(Y)=
=E(Y/#,_). Define

@ o} = E, (XD, iz,
22 v = lé;a’, nzl,
(2.3) S=EFH=ESH), n=z=l
We assume the following two conditions are satisfied:

@49 Vst es new
@) s.-'g" E[X}I(X)] = 6s)] ~ O,
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as n—oo for all =0, where J/(B) denotes the indicator function of B. Martingale
functional CLT’s were proved by Brown [3] under (2.4) and (2.5). Under the same
conditions, we shall prove here the following two theorems, the second one giving
in fact a random functional CLT for martingales. With this end, first define the
process

(2'6) El(l) = S;l(sr+xr+l(’s:_s’)/(“f+lLs’))t

for O0=t=1, and s73s? s¢=s728", 4, r=0,1,...,n—1, 5,=0. Then we have the
following two theorems.

THEOREM 1. Let BE 8, and P(B)>0. Then under (2.4) and (2.5) one has
lim (525, = x|B) = @(x) = @)% [ exp(—4y)d,

Jor all x. Further, all the finite dimensional distributions of ,(t) converge weakly under
the measure Py to the finite dimensional distributions of the Wiener measure, where

@n Py(4) = P(4|B) forany Acp.

THEOREM 2. Let {v,} be a sequence of positive integer valued random variables
(rv's) defined on (R, ¢). Also, let there exist a sequence {a,} of p integers such
that a,~ = as n—+o, and

P
@8 Sedsen = 4y

Jor some positive rv A. Then under (2.4) and (2.5) the process {£, (1) : 0=t=1)} converges
weakly to the Wiener measure.

Theorem 1 ensures a Rényi type mixing condition (see Renvi [8]). This is the
major tool used in proving theorem 2 along the lines of BILLINGSLEY [2].

PrOOF OF THEOREM 1. Let B¢ #, and P(B)>0. Define
Q9 S7=8. if nz=zk+1, =0, X,p=5-S2 ®for nzk+],
so that X, y=X, if n=k+2, X, ,,,5=Sy,1. To prove the theorem, first observe that

{S2, 7, n=k+ 1} is 2 martingale on (2, #, Py). To see this, note that with the use of
the notation Ez( f) for ffdP,, one has for any A€ _#, and for any n=k+2,

(2.10) SEX2\S, ) dPy = [Ey(X,)F,_)dPy= [X,dPs=
A A A
= (P(B®) [ X.dP = (P(B)) h[ E(X,£_)dP =
ANB ANB
=(@@)* [HEX,\f-) dP.
A

But Be S, g, y(n=k+2)= I E(X,| f,-,) is F,., measurable. Hence
Ey(X|f.-) = IBEX,) I ) =0 ae [Py
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Define now o3 3 =Eg (X} 515, 1), n=k+ 1. Proceeding as in the earlier para-
graph one gets

@) ais = IBYE(XNS,_) ae [Py
Let V2p= 2.' o} g for n=k+1. Then one gets
J=k+1
.12) Vig= ’(B)I_%.E(X}M-l)-kdu.l a.c. [Py}

R+1
= IBV~1B) S RO D+ obs ne. Byl

Hence, l’,,f,/.r,’,lzr 1 as n—+o= and proceeding as in lemma 1 of BRowN [3]

(213 Ep(Via/s) =1 88 n— o,
This leads to
@149 VEEVID 221 as n e

Again the Lindeberg condition for the sequence {X, 5, n2k + 1} of rv's namely
(2.15) EsVin)! I-%'H Es[X7 11X, 5| = eE3(V2))] - O

as n— oo for all £>0, follows from the definition of X 5’s (jzk+1), (2.5) and (2.13).
Hence, by theorem 2 of BROWN [3] one has

(2.16) lim Py((Es¥22)4S,,5 = x) = &(x).

(2.9), (2.13) and (2.16) now lead to
(217 lim P(s;S, = x|B) = &(x).

From the same theorem of Brown, it follows that the finite dimensional distributions
of £, (1) converge weakly under the measure Py to the corresponding finite dimensional
distributions of the Wiener measure. This completes the proof of Theorem 1.

REMARK 1. It is also possible to have a result similar as Brown’s theorem 3.
This essentially says that if {D, 2, W} is the probability space, where D=DI[0, 1],
9 is the Borel o-field generated by open sets in D, and W is Wiener measure on
D0, 1], then P(£,€ A|B)-~W(A), for all W-continuity sets 4 in D and BeU, where
U={B:B¢c #, for some k=1 and P(B)>0}. Note that Brown’s result is for all
W’-continuity sets 4 in C=C[0, 1], where W’ is Wiener measure on C, but the
extension is trivial since W(D—C)=0.

ProoF oF THEOREM 2. We proceed analogously as theorem 10.3 and 17.2 of
BILLINGSLEY [3}. First, let p, be a sequence of real numbers such that

S,, ~ oo and 5, /s, -0 as n -+ oo,
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Defining now ¥,(t)=0if ts2<st and=s52(S,—8,) if st sstsrsd=s?,, for all
rzp,, one getsfrom (2.6)
E@) if ts3<s,
@18 160 (8) = Ya()l = 157 185, + Xoyr (157 —5D/(5701 = 57)|
if & =s'swt=ss,, foral r=p,
Now from (2.6)
2.19) sup, {Ea(0)] = st max (S|+|X))) = 357 (B ISils

1%iE
Oy Pn
Pn

using X,= S;— S;—, (1=i=p,). Thus, from (2.18),

@20 swp |6, ()~ %)) = 35 max [Si|+95 max 1K
The Kolmogorov inequality for martingales gives
(2.21) P{lmg): M >u.} se i) ~ 0

us n—oo. Also, from (2.5), 57! jmax | X, L4 0 as n— oo, (2.20) and (2.21) now give
P
222 sup & (1) = Y, (1)] ~ 0 as n ~ oo,
L}

By virtue of theorem 1 (the remarks following it), (2.22) and theorem 3 of Brown,
it follows that
(2.23) [P{(Y,eA)NB}—P(Y,cA)P(B)| - 0

as n— oo for all B¢ U and for all W-continuity sets 4 in D.
Next we proceed as theorem 17.2 of Billingsley, changing the definitions of
@,(t, w) in his (17.16) by

B, (1, W) = 155 (yfss, 55 nfsi, S 1
and 18 otherwise. This leads to the result.
REMARK 2. Condition (2.8) seems to be more involved than the usual condition

(2.29) o, B2, as n— e,

where 1 is a positive rv. It is easy to check that for a stationary sequence {X;) of
rv’s with E(X)) =0, E(X})=0% (2.8) in fact reduces to (2.24). However, (2.24) along
with (2.4) and (2.5) will oot lead to theorem 2 in general. The following example
illustrates this.

Let X,, Xj, ... be independent normal variables with zero means, and V(X)=
=V(X)=1, V(X)=exp (i/log i)—exp (({—1)/log (i—1)) for i=3. Then,

(2.25) 53 = V(S,) = exp (nflog n)—exp (2/log 2)+2,

for n=3. Define &,(r) (0=¢=1) as in (2.6). Using nflogn—(n—1)/log (n—1)—0
a8 n— <o, it is easy to check that V(X,)/si~0 as n--co. In this case ¥;s5;%=1 for all
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nz1 so that (2.4) is satisfied. Also, appealing to theorem 2, p. 492 of FELLER [5]
we find that (2.5) is satisfied. Hence, from BROWN's [3] result, {, converges weakly in
C[0, 1] to W, the standard Brownian motion process.

Define now
(2.26) vo=max {j=nS; =0}, n=1;
(2.27) m, =[n—(logm?], n=1,

[4] denoting the integer part of u. Then, since, log (s3, /%)~ —log n (by a,~b, we
mean a,/b,—~1 as n—), it follows that

(2.28) safsh—~0 as n-— e,
Note now that using (2.28) and the weak convergence of ¢, to W in C[0, 1],
229)P(v, < my) = P{ sup W) < 0}- P{ sup W(l)<0}= 0 as 5 -~ oo,
0St#l

% 3y tEeEl

From the definition of m, in (2.27), it follows now that

2.30) viln Z 1.

However, £, ()=s;'S, =0 for all n, so that £, does not converge weakly in
Clo, 1) to #.

ReEMARK 3. CSORGO [4] proved a random CLT for a sequence of martingales
with E(X}) =0}, E(XE| % -1)=0% for all k=2. It is easy to sce then that V'¥/st=1 for
all # so that (2.4) is automatically satisfied. Also, s;2 max o =n"! ~0 asn — =,
Further, defining 1 an

(2.24) @,(t) = E[exp (tX)| F_, [ =E;_,[exp Gt X)]]. J =1,
(2.25) £ = 11_2 o,is), n=1,

2 n
one gets f,,(l)={l ——;—"+o(n“)] , 80 that log f,(f) = — 4% as n—<o. It follows now
from theorem 1 of BrowN [3] that (2.5) holds. Thus Csorgo’s assumptions imply ours.

REMARK 4. PrRAKASA Rao [7] proved a random CLT under stationarity and
ergodicity conditions of BILLINGSLEY [1], [2] along with the strong mixing condition

(2.26) |P(8|4)—P(B)| = ¢ (n),

if AcS,, Béthe g-algebra generated by (X.,, Xisns1,-..) for a fixed /, where
12y()zy(2)=..., im Y(n)=0. One can sce casily that stationarity and ergo-
dicity imply (2.5) and (2.4), where (2.26) is redundant.

Acknowledgement. Thanks are due to the referee for his constructive criticisms
on the original version of the paper.
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