
SECURE AND EFFICIENT COMPUTATION OF THE
DIFFIE-HELLMAN PROTOCOL USING MONTGOMERY

CURVES OVER PRIME ORDER FIELDS

A thesis submitted to the Indian Statistical Institute
in partial fulfillment of the thesis requirements for the degree of

Doctor of Philosophy in Computer Science

authored by

KAUSHIK NATH
(Applied Statistics Unit)

under the supervision of

PROF. PALASH SARKAR
(Applied Statistics Unit)

Indian Statistical Institute
203, Barrackpore Trunk Road

Kolkata - 700 108
India

November, 2021





I dedicate this effort of mine to the academic spirit of my late father,
Kumud Bihari Nath.





Contents

Acknowledgements xi

List of Algorithms xiv

List of Figures xvi

List of Tables xvii

1 Introduction and Overview 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 List of Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related Work 8
2.1 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Elliptic Curve Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Efficiency and Security Requirements in ECC . . . . . . . . . . . . . . . . . 10

2.2.1 Security Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Efficiency Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Edwards and Twisted Edwards Curves . . . . . . . . . . . . . . . . . . . . 14
2.4 Montgomery Curves and Montgomery Ladder . . . . . . . . . . . . . . . . 14

2.4.1 Diffie-Hellman Key Agreement on Montgomery Curves . . . . . . 15
2.4.2 Shared Secret Computation . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Montgomery Ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Complete Base Point Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.1 NIST Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 Curves Proposed by Certicom Research . . . . . . . . . . . . . . . . 18
2.6.3 Curve25519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.4 Curves Based on Mersenne and Pseudo-Mersenne Primes . . . . . 18
2.6.5 Curve448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Issues Related to Software Implementation . . . . . . . . . . . . . . . . . . 19
2.7.1 Relevant Instructions of Modern Intel Architectures . . . . . . . . . 19
2.7.2 Implementation Types . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



vi Contents

2.7.3 Performance Measurement . . . . . . . . . . . . . . . . . . . . . . . 21

3 Constant Time Montgomery Ladder 23
3.1 Conditional Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Conditional Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Assembly Implementations of CSWAP and CSELECT Using cmov . 26
3.3 Modified Constant Time Conditional Branching . . . . . . . . . . . . . . . 30
3.4 New Assembly Implementation of CSELECT . . . . . . . . . . . . . . . . . 31

I New Techniques for Efficient Implementations 32

4 Efficient Arithmetic in (Pseudo-)Mersenne Prime Order Fields 34
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Multiplication/Squaring for Saturated Limb Representation . . . . 35
4.1.2 Multiplication/Squaring for Unsaturated Limb Representation . . 35
4.1.3 Reduction for Saturated Limb Representation . . . . . . . . . . . . 35
4.1.4 Reduction for Unsaturated Limb Representation . . . . . . . . . . . 35
4.1.5 Assembly Implementations . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.6 Library for Field Arithmetic . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Representation of Elements in Fp . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Saturated versus Unsaturated Limb Representation . . . . . . . . . 39
4.2.2 Representation of Primes . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Unique Representation of Field Elements . . . . . . . . . . . . . . . 40
4.2.4 Inversion in Fp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Overview of the Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Meanings of Various Abbreviations . . . . . . . . . . . . . . . . . . 41
4.3.2 Algorithms for the Saturated Limb Representation . . . . . . . . . . 42
4.3.3 Algorithms for the Unsaturated Limb Representation . . . . . . . . 43
4.3.4 Descriptions of the Algorithms . . . . . . . . . . . . . . . . . . . . . 44

4.4 Integer Multiplication/Squaring for Saturated Limb Representation Us-
ing Independent Carry Chains . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Reduction Using Saturated Limb Representation . . . . . . . . . . . . . . . 48
4.5.1 Mersenne Primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.2 Pseudo-Mersenne Primes . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.3 Usefulness of Partial Reduction . . . . . . . . . . . . . . . . . . . . . 60
4.5.4 A Variant of reduceSLPMP . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.5 Comparison of reduceSLPMP and reduceSLPMPa . . . . . . . . . . . 62

4.6 Saturated Limb Computation Without Double Carry Chains . . . . . . . . 63
4.7 Multiplication Using Unsaturated Limb Representation . . . . . . . . . . . 65

4.7.1 Modified Multiplication Strategy . . . . . . . . . . . . . . . . . . . . 65
4.7.2 Dovetailing with Reduction Algorithms . . . . . . . . . . . . . . . . 66

4.8 Reduction Using Unsaturated Limb Representation . . . . . . . . . . . . . 68
4.8.1 An Important Implementation Issue . . . . . . . . . . . . . . . . . . 71
4.8.2 A Computational Bottleneck . . . . . . . . . . . . . . . . . . . . . . 72
4.8.3 Improved Reduction for Type A Primes . . . . . . . . . . . . . . . . 73
4.8.4 Independent Double Word Shifts . . . . . . . . . . . . . . . . . . . . 75
4.8.5 Improved Reduction for Type B Primes . . . . . . . . . . . . . . . . 76



Contents vii

4.9 Implementations and Timings . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Reduction Modulo 2448 − 2224 − 1 82
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 Efficient 64-bit Assembly Implementations of X448 . . . . . . . . . 82
5.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Arithmetic in Fp using Saturated Limb Representation . . . . . . . . . . . 83
5.3 Reduction in Fp using Saturated Limb Representation . . . . . . . . . . . . 84

5.3.1 Reduction from 14-Limb to 7-Limb . . . . . . . . . . . . . . . . . . . 84
5.3.2 Reduction from 8-Limb to 7-Limb . . . . . . . . . . . . . . . . . . . 89
5.3.3 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Comparison to the Reduction of [OLH+17] . . . . . . . . . . . . . . . . . . 92
5.4.1 Reduction Algorithms Used in the Code Accompanying [OLH+17] 92
5.4.2 An Efficiency Issue While Reducing h(0)(θ) to h(1)(θ) . . . . . . . . 92
5.4.3 Inline Assembly Code of Reduction from [OLH+17] . . . . . . . . . 93
5.4.4 Assembly Code of Reduction from the Implementations of this Work 95

5.5 Arithmetic in Fp using Unsaturated Limb Representation . . . . . . . . . . 96
5.5.1 Multiplication and Squaring in Fp . . . . . . . . . . . . . . . . . . . 97
5.5.2 Multiplication With a Small Constant in Fp . . . . . . . . . . . . . . 99
5.5.3 Addition and Subtraction in Fp . . . . . . . . . . . . . . . . . . . . . 99

5.6 Implementations and Timings . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.1 Performance of 7-limb Implementations . . . . . . . . . . . . . . . . 100
5.6.2 Performance of 8-limb Implementations . . . . . . . . . . . . . . . . 102

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Efficient Field Arithmetic Using 4-way Vector Instructions 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Representation of Field Elements and Primes . . . . . . . . . . . . . . . . . 104

6.2.1 Representation of Field Elements . . . . . . . . . . . . . . . . . . . . 104
6.2.2 Representation of the Primes . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Multiplication and Squaring in Fp . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.1 Applying Schoolbook . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.2 Applying Karatsuba . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.3 Reduction Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Multiplication by a Small Constant in Fp . . . . . . . . . . . . . . . . . . . 110
6.5 Dense Packing of Field Elements . . . . . . . . . . . . . . . . . . . . . . . . 110
6.6 Linear Operations in Fp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6.1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.6.2 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.6.3 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.6.4 Reduction after Linear Operations . . . . . . . . . . . . . . . . . . . 111
6.6.5 Hadamard Transformations . . . . . . . . . . . . . . . . . . . . . . . 112

6.7 Vector Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.7.1 Vector Representation of Field Elements . . . . . . . . . . . . . . . . 113
6.7.2 Dense Packing of Vector Elements . . . . . . . . . . . . . . . . . . . 113
6.7.3 Vector Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



viii Contents

6.7.4 Vector Multiplication and Squaring . . . . . . . . . . . . . . . . . . 114
6.7.5 Vector Multiplication by a Field Constant . . . . . . . . . . . . . . . 114
6.7.6 Vector Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.7.7 Vector Duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.7.8 Vector Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.7.9 Vector Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Efficient 4-way Vectorizations of the Montgomery Ladder 118
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 The 4-way Vectorization of [HEY20] . . . . . . . . . . . . . . . . . . . . . . 120
7.3 New 4-way Vectorizations of the Montgomery Ladder . . . . . . . . . . . . 120

7.3.1 Variable Base Scalar Multiplication . . . . . . . . . . . . . . . . . . . 125
7.3.2 Fixed Base Scalar Multiplication . . . . . . . . . . . . . . . . . . . . 126

7.4 Vectorized Montgomery Ladder . . . . . . . . . . . . . . . . . . . . . . . . 126
7.4.1 Constant Time Conditional Swap . . . . . . . . . . . . . . . . . . . . 128
7.4.2 Optimizing the Squaring in Ladder-step. . . . . . . . . . . . . . . . 128
7.4.3 Comparison of Algorithm 7.6 with the Vectorization of [HEY20] . . 129
7.4.4 Fixed Base Scalar Multiplication . . . . . . . . . . . . . . . . . . . . 130
7.4.5 Possible Optimization of the Multiplication Operations Using 512-

bit zmm Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.5 Implementations and Timings . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

II New Curves and Security/Efficiency Trade-off 136

8 Security and Efficiency Trade-off of ECDH over Prime Order Fields 138
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.2 Curves Proposed in RFC 7748 . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.4 Montgomery and (Twisted) Edwards Form Elliptic Curves . . . . . . . . . 142

8.4.1 Addition on Complete (Twisted) Edwards Curves . . . . . . . . . . 143
8.4.2 Birational Equivalences of Montgomery and Edwards Curves . . . 144

8.5 Concrete Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.5.1 Curves over F2251−9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.5.2 Curves over F2444−17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.5.3 Curves over F2506−45 . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.5.4 Curves over F2510−75 . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.5.5 Curves over F2521−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.6 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.6.1 64-bit Implementations . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.6.2 Vectorized Implementation . . . . . . . . . . . . . . . . . . . . . . . 157
8.6.3 Inversion in Fp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.7 Implementations and Timings . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.7.1 Fixed Base Scalar Multiplication . . . . . . . . . . . . . . . . . . . . 162
8.7.2 Complete Diffie-Hellman Protocol . . . . . . . . . . . . . . . . . . . 162



Contents ix

8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9 Conclusion 164
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Bibliography 166





Acknowledgements

This thesis describe the various research works which I have done towards my Ph.D. in
Computer Science under the supervision of Prof. Palash Sarkar at the Applied Statistics
Unit (ASU) of Indian Statistical Institute (ISI), Kolkata. I hope the results of this work are
found useful to the community.

I completed my M.Tech. in Computer Science from ISI in 2008 and joined the institute
again after seven years in pursuit of my Ph.D. degree. It has been a wonderful experience
all throughout these years and I have enriched myself to be a better person in many
different ways. Now, as I stand to the end of my thesis-writing, I would like to take the
opportunity to express my thankfulness to all the people who have helped me in various
ways during my Ph.D. days.

First of all, I express my gratitude to my supervisor Prof. Palash Sarkar for putting
his faith on me and considering me as one his Ph.D. students. He has been an inspiration
to me since the days of my M.Tech. program at ISI. I don’t know how much I lived up
to his expectations as a student of research. I can only say that I have always tried to
give my best effort in the area of work that he has let me embark on. In the beginning, I
expressed my interest to work in a possible area of cryptography which demands com-
puter implementations, and I am happy that he mounted me to the area of secure and
efficient implementations of software related to Elliptic Curve key Cryptography (ECC).
His precise guidance has been very valuable for my learning which produced the dif-
ferent contributions of this thesis. I must say that I have enjoyed enough freedom while
working under his supervision which has helped me to explore and further mine the
area of my research with passion. The experience was new, exciting and adventurous
and I wish to continue working in the area in future. In the context, I wish to thank the
various anonymous reviewers and editors whose comments have improved the quality
of the different research papers resulting to this thesis.

I would like to thank ISI for the financial and institutional support. I am thankful
to the Director’s office, the Dean’s office and other administrative offices of ISI for their
official help on different issues. I wish to thank my course teachers who taught me
various courses in the first year of my course work and also during my M.Tech. program
back in 2006-2008. I thank all other faculty members of ISI, specially from ASU who
have helped me at different stages of my research. I am obliged to the Chairpersons of
Research Fellows Advisory Committee (RFAC) of the Applied Statistics Division (ASD)
for their kind help which I got on several occasions. I also thank the staff of ASU office
for providing the different facilities whenever required. The Computer and Statistical
Services Center (CSSC) of ISI provided good support, specially during the pandemic
time when I had to work from home. I would like to thank all the CSSC-personnel for
extending their support on different issues. I have received quality health services from

xi



xii Acknowledgements

the Medical Welfare Unit of ISI regarding different illnesses of mine and eye check-ups.
I would like to specially thank Dr. Himajit Debnath for his medical advice and support
that I received from him during crucial times. I enjoyed the food of the canteen and I
thank the canteen-staff for their services. I had a nice stay at the Research Scholar Hostel
of the institute during these years. I want to thank Tapas for helping me to get the hostel
room when I joined the institute in 2015. I also thank the different hostel conveners and
superintendents for helping me with various issues regarding my stay in the hostel. I
have wonderful memories with my hostel room and I will surely miss it for the rest of
my life.

I have spent a major amount of time in the Turing lab during my research studies.
I am very thankful to my lab-mates Shashank, Butu, Sanjay, Sabyasachi, Sebati, Amit,
Aniruddha, Subhadip, Madhurima and Sreyosi for their wonderful company and help-
ing me in different forms at different points of time. I want to specially mention about
Sanjay’s jovial presence in the Turing lab during the weekends which gave me company
and helped to work for long hours during the early days of my research. Aniruddha
contacted the CSSC support-staff and helped me in getting my lab-computer fixed dur-
ing the pandemic time. I thank him for his help and co-operation. I had the pleasure
to share good times with other scholars and friends of the institute like Sumit, Atanu,
Tapas, Srimanta’da, Ankan, Indranil, Suchismita, Swarup, Mrinmoy, Murthy, Ashwin,
Binu, Avik, Nilanajan, Avijit, Diptendu, Amit, Nishant, Prabal, Susanta, Laltu, Subhas,
Avinandan, Shion, Jyoti, Avishek, Samir, Pritam, Mostafizar, Soumya, Nayana and many
others whom I am missing to mention. My days at ISI would not have been as enjoyable
as it was without their presence and I thank them all for their company. A special thanks
to Susanta for helping me with the thesis submission process and to Prabal for helping
me regarding a personal issue.

The accidental death of Prof. C. A. Murthy was a shocking incident. I had the op-
portunity to attend his lectures during my M.Tech. program. I often visited the shop of
Babu’da with Sanjay to have ghoogni-parota and tea in the afternoon hours. It was sad
to hear about his passing away too. I came across to the death news of a few employ-
ees of ISI whom I didn’t know personally. I offer my condolences to the families of the
deceased.

I was lucky to have Sumit again at ISI after my M.Tech. days and I have spent won-
derful times with him at different phases. He was of great help, specially while I was
doing my the course-works in the first year. I was new to cryptography and the different
discussions I had with him, motivated me to opt for cryptography as the area of my re-
search. In particular, the paper-less discussions will remain as the most memorable ones
which we had while we went for a stroll around ISI in the dawn after working whole
night and during the evening hours. My entry at ISI in 2006 as a student of the M.Tech.
program was influenced to a good extent by the interactions on basic mathematics that I
had with Atanu. Without those interactions I would have never realized about the basic
motivation of the ISI entrance examination. The simple understandings about the vari-
ous mathematical aspects which I learned from him long back has been one of the major
reasons for my entry to ISI again in 2015. I earnestly thank Atanu and Sumit who have
inspired me with their selfless academic help and wonderful company.

It has been an absolute pleasure to have Pralay and Plaban as friends since my B.Tech.
days. Knowing about them in life has been an inspiration to me in different ways. I
sincerely thank both of them for their help and support at different points of time. I



Acknowledgements xiii

learned a lot from the hard-working nature of Alok’da who has been an inspiration and
I sincerely thank him for his support and help while I worked under him. I also thank
Dr. Arindam Roy who helped and encouraged me with his good wishes.

I would like to specially remember a few teachers from my school days and under-
graduation in the context. I can’t ever forget the immense contribution of my mathe-
matics teacher late Raj Kishor Bose from my school who taught me mathematics free for
four years after my father passed away. He was a wonderful teacher of mathematics
and a nice human being who has always encouraged me whenever I met him after my
school days. He would have been very happy today hearing about my research. I would
also like to thank Chitta Banik Sir and Basu Sir for their free tuition supports during
my school days. Prof. Kashinath Chatterjee was of great help and inspiration while I
pursued my B.Sc. in Statistics (Hons.) at Asutosh College in Kolkata. Apart from his
remarkable lectures in the classes, I received strong support from him regarding several
mathematical problems which I struggled to understand, specially during the third year
of the course. I thank him for all the personal time that he gave me during my under-
graduation.

I will take the opportunity to express my sincere thanks to all the people who have
provided their good suggestions which helped my mother to get the job of the school
teacher after my father expired. Those helps were of major support for my family during
our struggling times. I am thankful to my paternal uncle, late Binod Bihari Nath who
supported us on different family issues even staying far from us. My fathers intimate
friend, late Sitanath Mandal was a very kind man and a father figure to me. He has
selflessly helped me and my family on various issues. I very much wished to let him
know about the completion of my Ph.D. degree. He would have been very happy for
me as he has always been, but unfortunately passed away recently. I have known a lot
about my father from him and I express my heartfelt thanks for all his help and support.
I would also like to extend my thanks to Parimal’da, Boudi, Tapas’da and Lokkhi’di
for lending their help to my family at various capacities on different occasions. Sujit’da
helped my mother at home with an important issue while I was at ISI and I am thankful
to him for that.

My father whom I lost long back during my school days has been a major source of
inspiration behind my academics. He would have been very happy today witnessing
this academic stage of mine. I have always got unending support from my mother who
stood strong behind me all throughout my life. Even being very fragile she has been the
lone warrior who took all the pain to uplift our family from the sudden distress after the
demise of my father. I wouldn’t have been the person today without her contribution
and sacrifice and I am thankful for her love, encouragement and continuous support. I
would like to specially thank Didi and Sekhar’da for their helps at various times during
my research. I also want to extend my thanks to Chordi and Jyotish’da for their love
and encouragement. During this time I was blessed with my daughter whose charm
and innocence has inspired me to improve as a person in many ways. Her smile has
been a source of power which kept my motivation alive in the difficult times of my re-
search. I can’t thank enough to my wife who has taken most of the pain till now to take
care of our daughter. I also thank my in-laws for their support during my research work.

To end, I wish everyone joy and happiness in life. Kaushik Nath,
March 24, 2021.



List of Algorithms

1.1 Diffie-Hellman protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1 Elliptic curve Diffie-Hellman protocol. . . . . . . . . . . . . . . . . . . . . 10
2.2 Differential addition operation on Montgomery curve EM,A,1 . . . . . . . . 15
2.3 Double operation on Montgomery curve EM,A,1 . . . . . . . . . . . . . . . . 16
2.4 Montgomery ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Single ladder-step based on the differential add and double operations . . 16
3.1 Constant time Montgomery ladder using conditional swap . . . . . . . . 23
3.2 Ladder-step combined with the differential add and doubling operations . 24
3.3 Conditional swap using the operators and and xor . . . . . . . . . . . . . . 25
3.4 Conditional swap using the operators +, - and · . . . . . . . . . . . . . . . . 25
3.5 Constant time Montgomery ladder using conditional selection . . . . . . . 26
3.6 Constant time Montgomery ladder using conditional selection . . . . . . . 30
4.1 Multiply f (θ) with an η-bit constant c; θ = 2η , η = 64. . . . . . . . . . . . . 45
4.2 Multiply f (θ) and g(θ); θ = 2η , η = 64. . . . . . . . . . . . . . . . . . . . . . 46
4.3 Square f (θ); θ = 2η , η = 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Reduction for saturated limb representation. Performs reduction modulo

p, where p = 2m − 1 is a Mersenne prime; θ = 2η . . . . . . . . . . . . . . . 49
4.5 Reduction for saturated limb representation. Performs reduction modulo

p, where p = 2m − δ is a pseudo-Mersenne prime; cp = 2η−νδ, 2α−1 ≤ δ <
2α, ν′ = 2(1− bν/ηc) and θ = 2η . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Partial reduction for saturated limb representation. Performs reduction
modulo p, where p = 2m− δ is a pseudo-Mersenne prime; cp = 2η−νδ and
θ = 2η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Generic reduction algorithm using saturated limb representation for the
primes in Table 4.4. It performs reduction modulo p = 2m − δ and m-bit
integers have a (κ, η, ν)-representation with η = 64; θ = 2η . . . . . . . . . 64

4.8 Reduction for unsaturated limb representation. Performs reduction mod-
ulo p = 2m − δ; m-bit integers have a (κ, η, ν)-representation with η < 64;
θ = 2η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Improved reduction algorithm for primes identified as type A in Table 4.4
using unsaturated limb representation. Performs reduction modulo p =
2m − δ and m-bit integers have a (κ, η, ν)-representation with η < 64; θ =
2η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.10 Improved reduction algorithm for primes identified as type B in Table 4.4
using unsaturated limb representation. Performs reduction modulo p =
2m − δ and m-bit integers have a (κ, η, ν)-representation with η < 64; θ =
2η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xiv



List of Algorithms xv

5.1 Reduction from 14-limb to 7-limb in Fp. In the algorithm, η = 64. . . . . . 86
5.2 Subtraction in Fp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Reduction in Fp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4 Multiplication with small constant in Fp. . . . . . . . . . . . . . . . . . . . 100
6.1 Expansion of product polynomial. . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Vector Hadamard transformation. . . . . . . . . . . . . . . . . . . . . . . . 115
6.3 Vector Hadamard transformation. . . . . . . . . . . . . . . . . . . . . . . . 116
7.1 4-way vectorization of Montgomery ladder-step corresponding to Figure 7.1.

123
7.2 4-way vectorization of Montgomery ladder-step corresponding to Figure 7.2.

124
7.3 4-way vectorization of Montgomery ladder-step obtained from [CS09]. . 124
7.4 4-way vectorization of Montgomery ladder-step obtained from Figure 1

in [HEY20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.5 Montgomery ladder with 4-way vectorization. In the algorithm m =

dlg pe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.6 Vectorized algorithm of Montgomery ladder-step corresponding to Algo-

rithm 7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.7 Vectorized algorithm of Montgomery ladder-step corresponding to Algo-

rithm 7.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



List of Figures

3.1 Assembly code to implement constant time conditional swap. Taken from
the amd64-64 implementation of [BDL+12]. . . . . . . . . . . . . . . . . . . 27

3.2 Assembly code to implement constant time conditional select for Curve25519
taken from the implementation of [OLH+17]. . . . . . . . . . . . . . . . . 28

3.3 Assembly code to implement CSELECT for X25519. . . . . . . . . . . . . . 29

4.1 Single carry chain for mulSCC. . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Two independent carry chains for mulSLDCC. . . . . . . . . . . . . . . . . 46

6.1 Normally packed vector field elements for the prime p = 2255 − 19 stored
in 10 256-bit registers. The 32-bit wide white blocks are free. . . . . . . . . 113

6.2 Densely packed vector field elements for the prime p = 2255 − 19 stored
in 5 256-bit registers. All 32-bit blocks are used. . . . . . . . . . . . . . . . . 114

7.1 A batching strategy for computing the formulas in (2.1) . . . . . . . . . . . 121
7.2 A batching strategy for computing the formulas in (2.1) . . . . . . . . . . . 122

8.1 Parameters for the curve M[[p251-9, 4698]] . . . . . . . . . . . . . . . . . . . 147
8.2 Parameters for the curve M[[p444-17, 4058]] . . . . . . . . . . . . . . . . . . 148
8.3 Parameters for the curve M[[p506-45, 996558]] . . . . . . . . . . . . . . . . . 149
8.4 Parameters for the curve M[[p510-75, 952902]] . . . . . . . . . . . . . . . . . 150
8.5 Parameters for the curve M[[p521-1, 1504058]] . . . . . . . . . . . . . . . . . 152

xvi



List of Tables

4.1 The various algorithms for multiplication/squaring and reduction described
in this paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The primes considered in this work. . . . . . . . . . . . . . . . . . . . . . . 38
4.3 The primes considered in this work and their saturated and unsaturated

limb representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Classification of primes for application of reduceUSL, reduceUSLA or re-

duceUSLB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Comparison of timings of various field arithmetic algorithms on Haswell.

The work [BDL+12] was targeted for the Intel’s Nehalem/Westmere CPUs.
78

4.6 Comparison of maa-timings of various field arithmetic algorithms on Sky-
lake. The work [BDL+12] was targeted for the Intel’s Nehalem/Westmere
CPUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Comparison of maax-timings of various field arithmetic algorithms on
Skylake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 Timings for integer multiplication and squaring in the maax setting on
Skylake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 CPU-cycle counts for shared secret computation and key generation on
Curve448 using 7-limb representation. Computation of key generation
has been done using Algorithm 5 of [OLH+17]. . . . . . . . . . . . . . . . 101

5.2 CPU-cycle counts for shared secret computation and key generation on
Curve448 using 7-limb representation. Computation of key generation
has been done using Algorithm 3.6. . . . . . . . . . . . . . . . . . . . . . . 102

5.3 CPU-cycle counts for shared secret computation and key generation on
Curve448 using 8-limb representation. Computation for both has been
done using Algorithm 3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Representations of field elements for vectorized arithmetic. . . . . . . . . 104

7.1 Comparison of the vector operations required by different algorithms. . . 125
7.2 CPU-cycle counts on Haswell and Skylake processors required by X25519

and X448 for variable base scalar multiplication. . . . . . . . . . . . . . . . 133
7.3 CPU-cycle counts on Haswell and Skylake processors required by X25519

and X448 for fixed base scalar multiplication. . . . . . . . . . . . . . . . . . 134

xvii



xviii List of Algorithms

8.1 Parameters of the curves. In the table, M[[486662]] is Curve25519 and
M[[156326]] is Curve448. See Section 2.2.1 for the definition of the param-
eters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.2 Saturated limb representations of field elements. . . . . . . . . . . . . . . . 154
8.3 Unsaturated limb representations of field elements. . . . . . . . . . . . . . 156
8.4 CPU-cycle counts for variable base scalar multiplication on Montgomery

curves at 128-bit, 224-bit and 256-bit security levels. . . . . . . . . . . . . . 158
8.5 CPU-cycle counts for fixed base scalar multiplication on Montgomery curves

at 128-bit, 224-bit and 256-bit security levels. . . . . . . . . . . . . . . . . . 161





C H A P T E R 1

Introduction and Overview

Public-key cryptography came into light in 1976 through the seminal work New Direc-
tions in Cryptography [DH76] by Whitfield Diffie and Martin Hellman. The work in-
troduced the first one-way function which gave birth to the famous Diffie-Hellman(DH)
key agreement protocol. The function simply exponentiates a positive integer modulo
a pre-defined prime number. The inverse of the function is called the discrete logarithm
and the corresponding problem is known as the Discrete Logarithm Problem (DLP). The
discrete logarithm problem can also be defined over certain other cryptographically rel-
evant algebraic groups where the problem is believed to be computationally hard. Some
of these groups are multiplicative subgroups of finite fields, group of points on elliptic
curves [Kob87, Mil85], divisor class groups of degree 0 on hyper-elliptic curves [Kob89].
In 1977, Ron Rivest, Adi Shamir and Leonard Adleman proposed the RSA cryptosys-
tem which is based on the hardness of the integer factorization problem. The DH protocol
was further extended by ElGamal in 1984 to define public-key encryption and signature
schemes. The area of work of this thesis is the Diffie-Hellman protocol.

1.1 Motivation

A finite cyclic group G is a group satisfying the following equivalent conditions: (1)
it is both finite and cyclic (2) it is isomorphic to the group of integers modulo n for
some positive integer n. An algorithmic form of the Diffie-Hellman protocol is provided
in Algorithm 1.1. The protocol works on a finite cyclic group G of order n having a
generating element g ∈ G. The algorithm has two phases, namely key generation and
shared secret computation. The key generation phase has the operation of the form gk

which exponentiates the fixed element g to the power k. The shared secret computation
phase has the operation of the form ak which exponentiates a variable element a ∈ G to
the power k. At the end of the protocol, both Alice and Bob are in possession of the group
element w = gxy. The element w is considered as the shared secret key between them.
The group G satisfies the necessary condition for making the communication secure if
there is not an efficient algorithm for determining gxy given g, gx, and gy. This is known
as the Diffie Hellman Problem over multiplicative groups and is assumed to be a hard
problem in G. If the discrete logarithm problem can be solved then the Diffie-Hellman
problem is also solvable, but the reverse is not known to be true.

1



2 1.1. Motivation

The Diffie-Hellman protocol can also be instantiated over elliptic curves which gives
the Elliptic Curve Diffie-Hellman (ECDH) protocol. Our focus in this work is on secure
and efficient computation of ECDH. We work with the elliptic curves of Montgomery form
and consider the underlying fields to be of prime order. The primes that we have worked
with are of special shape like Mersenne primes, pseudo-Mersenne primes and the Solinas
trinomial primes. These primes are taken into consideration because they allow high-
speed field arithmetic. We have addressed efficient computation of the ECDH on the
Montgomery curves from a software perspective, targeting the modern Intel architectures at
various security levels.

Algorithm 1.1 Diffie-Hellman protocol.

1: function DH(n, G, g)
2: input: n is a prime, G is a finite multiplicative group of order n and g ∈ G is the

generator of G.
3: output: Shared secret between Alice and Bob.

Key Generation

Alice Bob
4: Select the private key x ← [1, n− 1] Select the private key y← [1, n− 1]
5: Compute the public key u← gx Compute the public key v← gy

Shared secret computation

Alice Bob
6: Send u to Bob Send v to Alice
7: Compute w← vx = (gy)x = gxy Compute w← uy = (gx)y = gxy

8: return w
9: end function.

Security and efficiency. Security and efficiency are two crucial issues that need to be
taken care of while an elliptic curve is proposed and implementations are done which
can be used in real-world applications. At the design phase the curve parameters need
to be chosen such that they satisfy some pre-defined security requirements. At the im-
plementation level an important requirement of cryptographic software is to make them
side-channel resistant. For example, the software implementation has to run in constant
time to resist timing attacks. Timing attacks have been an active area of research within
applied cryptography in which cryptosystem or protocol implementations that do not
run in constant time are attacked.

The ECDH protocol has two phases, key generation and shared secret computation. Both
of the phases have a critical component known as the scalar multiplication and this has
different computational challenges depending on the target architecture of the imple-
mentation. In the scalar multiplication operation an elliptic curve point P is multiplied
by an n-bit scalar which is defined to be the n-fold addition of P. When the point P is a
fixed generator of the cryptographic group then the scalar multiplication is called fixed-
base scalar multiplication. On the other hand, when the point P is an arbitrary element
then the scalar multiplication is called variable-base scalar multiplication. In particular,
the variable-base scalar multiplication of the shared secret computation phase has more
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computational interest as this is relatively the more expensive operation. The key gen-
eration is a one-time operation, whereas the shared secret amongst two parties may be
computed several times once the key is established. A simple and efficient method to
compute the scalar multiplication on Montgomery curves in constant time is known as
the Montgomery ladder. Efficiently computing the ladder targeting various platform
and architectures has been heavily researched by the cryptographic community over the
last two decades. The performance of the associated field and curve arithmetic is a major
target of optimization. While implementing the cryptographic software for ECDH, the
instruction set of the target architecture is carefully exploited to achieve the best results.
Developing code for scalar multiplication is often done by writing the corresponding
programs using assembly instructions of the target architecture. The Intel architectures
are one of the most heavily used architectures all over the world and many software im-
plementations of ECDH have been developed on the top of it. The architecture provides
a rich set of sequential and vectorized instructions which have been exploited to the best
possible extent in the software implementations of this thesis.

1.2 Goal of the Thesis

There are several goals which are achieved by this thesis which are highlighted below.

• Provide a variety of efficient 64-bit assembly implementations of field multipli-
cation, squaring and FLT-based inversion for several cryptographically relevant
primes covering a wide range of security levels which are suitable for the Haswell-
onward Intel architectures. The implementations are done on the basis of various
algorithms which we formalize and also prove their correctness rigorously.

• Provide efficient assembly implementations of 4-way field multiplication/squaring
using the 4-way vector instructions available in the Haswell-onward Intel architec-
tures. This again has been done for several primes covering various security levels.

• Provide state-of-art implementations of ECDH for the standard curves over prime
order fields which have been proposed at various security levels.

• Propose new curves over prime order fields targeting various security levels which
are fairly competitive to the existing standards in terms of the shared-secret com-
putation phase of ECDH. On the basis of the new curves proposed and the existing
standards, we provide security and efficiency trade-offs targeting the different se-
curity levels considered.

In pursuit of the thesis goals mentioned above we have made various research contribu-
tions which we summarize next.

1.3 Summary of Contributions

Efficient arithmetic in (pseudo)-Mersenne prime order fields. Elliptic curve cryptog-
raphy is based on elliptic curves defined over finite fields. Operations over such elliptic
curves require arithmetic in the underlying field. In particular, fast implementations of
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multiplication and squaring in the finite field are required for performing efficient el-
liptic curve cryptography. Here we study the problem of obtaining efficient algorithms
for field multiplication and squaring. From a theoretical point of view, we present a
number of algorithms for multiplication/squaring and reduction which are appropri-
ate for different settings. Our algorithms collect together and generalize ideas which
are scattered across various papers and software. At the same time, we also introduce
new ideas to improve upon existing works. A key theoretical feature of our work is
that we provide formal statements and detailed proofs of correctness of the different
reduction algorithms that we describe. On the implementation aspect, a total of four-
teen primes are considered, covering all previously proposed cryptographically relevant
(pseudo-)Mersenne prime order fields at various security levels. For each of these fields,
we provide 64-bit assembly implementations of the relevant multiplication and squaring
algorithms targeted towards two different modern Intel architectures. We were able to
find previous 64-bit implementations for six of the fourteen primes considered in this
work. On the Haswell and Skylake processors of Intel, for all the six primes where pre-
vious implementations are available, our implementations outperform such previous
implementations.

Reduction modulo 2448 − 2224 − 1. An elliptic curve known as Curve448 defined over
the finite field Fp, where p = 2448 − 2224 − 1, has been proposed as part of the Trans-
port Layer Security (TLS) protocol, version 1.3. Elements of Fp can be represented us-
ing 7 limbs where each limb is a 64-bit quantity. Here we describe efficient algorithms
for reduction modulo p that are required for performing field arithmetic in Fp using 7-
limb representation. A key feature of our work is that we provide the relevant proofs
of correctness of the algorithms. We also report efficient constant-time 64-bit assem-
bly implementations for key generation and shared secret computation phases of the
Diffie-Hellman key agreement protocol on Curve448. Timings results on the Haswell
and Skylake processors demonstrate that the new 64-bit implementations for comput-
ing the shared secret and key generation are significantly faster than the previously best
known 64-bit implementations.

Efficient 4-way vectorizations of the Montgomery ladder. We propose two new al-
gorithms for 4-way vectorization of the well known Montgomery ladder over elliptic
curves in Montgomery form. The first algorithm is suitable for variable base scalar mul-
tiplication. In comparison to the previous work by Hisil et al [HEY20], it eliminates a
number of non-multiplication operations at the cost of a single multiplication by a curve
constant. Implementation results show this trade-off to be advantageous. The second al-
gorithm is suitable for fixed base scalar multiplication and provides clear speed improve-
ment over a previous vectorization strategy due to Costigan and Schwabe[CS09]. The
well known Montgomery curves Curve25519 and Curve448 are part of the TLS protocol,
version 1.3. For these two curves, we provide constant time assembly implementations
of the new algorithms. Additionally, for the algorithm of Hisil et al [HEY20], we pro-
vide improved implementations for Curve25519 and new implementation for Curve448.
Timings results on the Haswell and Skylake processors indicate that in practice the new
algorithms are to be preferred over previous methods for scalar multiplication on these
curves.
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Security and efficiency trade-offs for ECDH at the 128-bit, 224-bit and 256-bit secu-
rity levels. Within the Transport Layer Security (TLS) Protocol Version 1.3, RFC 7748
specifies elliptic curves targeted at the 128-bit and the 224-bit security levels. For the
128-bit security level, the Montgomery curve Curve25519 and its birationally equiva-
lent twisted Edwards curve Ed25519 are specified; for the 224-bit security level, the
Montgomery curve Curve448, the Edwards curve Edwards448 (which is isogenous to
Curve448) and another Edwards curve which is birationally equivalent to Curve448 are
specified. Our first contribution is to provide the presently best known 64-bit assembly
implementations of Diffie-Hellman shared secret computation using Curve25519. The
main contribution of this work is to propose new pairs of Montgomery-Edwards curves
at the 128-bit and the 224-bit and 256-bit security levels. For the new curves we work
with the prime p1 = 2251 − 9 at 128-bit security level and the prime p2 = 2444 − 17 at
224-bit security level. The new curves at at these two security levels are nice in the sense
that they have very small curve coefficients and base points. Compared to the curves
in RFC 7748, the new curves at these two security levels lose two bits of security. The
gain is improved efficiency. For Intel processors, we have made different types of im-
plementations of the Diffie-Hellman shared secret computation using the new curves.
The new curve at the 128-bit level is faster than Curve25519 for all types of implementa-
tions that we considered, while the new curve at the 224-bit level is faster than Curve448
using 64-bit sequential implementation using schoolbook multiplication, but is slower
than Curve448 for vectorized implementation using Karatsuba multiplication. Overall,
the new curves provide good alternatives to Curve25519 and Curve448.

At the 256-bit security level we work with three primes, namely p3 = 2506 − 45,
p4 = 2510 − 75 and p5 = 2521 − 1. While p5 has been considered earlier in the literature,
p3 and p4 are new. No Montgomery curves have been proposed in literature at 256-bit
security level until now. We define a pair of birationally equivalent Montgomery and
Edwards form curves over all the three primes and perform sequential and vectorized
computations of the Diffie-Hellman over the proposed curves targeting the modern Intel
processors. In Skylake, it has been found that the sequential implementation performs
better than the vectorized implementation for p3 and p4, but for p5 the vectorized imple-
mentation performs better than the sequential one. We get a comparative idea of security
and efficiency of the new Montgomery curves at 256-bit security level with respect to the
curves at 128-bit and 224-bit security levels.

1.4 Chapter Organization

In Chapter 2, we provide the background details and discuss the literature related to this
work. In Chapter 3, different algorithms to sequentially compute the Montgomery lad-
der in constant time have been detailed out. After this the thesis is divided in two parts;
the first part deals with new techniques for efficient implementations and the second
part proposes new curves and security/efficiency trade-offs.

Part I: New techniques for efficient implementations. Part I discusses about the new
contributions of efficient arithmetic in prime order fields which are addressed in the
Chapters 4, 5, 6 and 7. In Chapter 4 we discuss about the sequential algorithms for multi-
plication/squaring over Mersenne and pseudo-Mersenne prime order fields. In Chapter
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5 we discuss about the sequential algorithms for field arithmetic over the field based on
the Solinas trinomial prime 2448 − 2224 − 1. In Chapter 6 we provide formalizations of
the vectorized field arithmetic that can be implemented using 4-way vector instructions.
In Chapter 7 we propose new 4-way vectorizations of the Montgomery ladder.

Part II: New curves and security/efficiency trade-off. Part II discusses about the new
curves proposed through this work and the security and efficiency trade-offs in com-
parison to the existing standards. In Chapter 8 we discuss about the new Montgomery
curves proposed through this work and discuss their performances with respect to the
existing standards.

Finally, in Chapter 9 we draw the conclusion where we summarize the entire work of
this thesis and briefly comment on possible future works.

1.5 List of Software

Following is the list of softwares which have been contributed through this thesis. The
implementations are state-of-art and have been used by researchers with acknowledge-
ment. All our software are publicly available at the link

https://github.com/kn-cs.

1. Chapter 4 provides various 64-bit implementations of field arithmetic for 14 differ-
ent (pseudo)-Mersenne primes covering a wide range of security levels.

2. Chapter 5 provides various 64-bit implementations of field arithmetic for the Soli-
nas trinomial prime 2448− 2224− 1. It also provides efficient 64-bit implementations
of ECDH using Curve448.

3. Chapter 6 provides various 4-way vectorized implementations of field arithmetic
for 8 (pseudo)-Mersenne primes and the Solinas trinomial prime 2448 − 2224 − 1.

4. Chapter 7 provides various 4-way vectorized implementations of ECDH for the
standard curves Curve25519 and Curve448.

5. Chapter 8 provides various 64-bit implementations of ECDH for the standard curve
Curve25519. It also provides various 64-bit and 4-way vectorized implementations
for 5 new Montgomery curves at the 128-bit, 224-bit and 256-bit security levels.

1.6 List of Publications

This different chapters of the thesis have been written based on the following publica-
tions.

https://github.com/kn-cs
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C H A P T E R 2

Background and Related Work

Elliptic Curve Cryptography (ECC) is an approach to public-key cryptography which is
based on the algebraic structure of elliptic curves over finite fields. Use of elliptic curves
for cryptography was suggested independently by Koblitz [Kob87] and Miller [Mil85]
in 1985 as a mechanism to implement public-key cryptography. Some good texts on
elliptic curves and elliptic curve cryptography can be found at [Was08, Sil86, MvOV96,
CFA+05].

Two basic applications of ECC are key agreement and signature schemes. There are
several approaches for choosing a suitable curve on which a cryptographic primitive is
computed. The shared-secret component of ECDH can be efficiently computed over a
special form elliptic curve which are known as Montgomery form elliptic curves. While
sequential implementations of shared secret over Montgomery curves have been com-
mon, very recently it was found that 4-way vector instructions can also be efficiently
used for this computation [HEY20].

Finite field arithmetic constructs the fundamental base of a curve-based cryptosys-
tem, the operation of which are used to construct the point arithmetic formulas of the
curve. The point addition and doubling formulas exist right on the top of the field
arithmetic layer and these formulas are used to compute the scalar multiplication on
the curve. Apart from ECDH, scalar multiplication is also used in the signature schemes
where a fixed-base scalar multiplication is needed for signature generation and a double-
base scalar multiplication is needed for signature verification. While the key needed for
ECDH can be computed on Montgomery curves, it has been found that computing the
key is usually faster on the related (twisted) Edward form elliptic curves. Nevertheless,
computing the key efficiently on Montgomery form curves have also been investigated
and hence bears certain research interests. Efficiently computing the ECC primitives
in hardware and software are both considered as major challenges in cryptographic re-
search keeping in mind the huge practical importance of the corresponding security ap-
plications.

2.1 Elliptic Curves

We consider elliptic curves over prime order fields. Let p 6∈ {2, 3} be a prime and Fp be
the finite field of cardinality p. The algebraic closure of Fp is an algebraic extension of

8
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Fp which is algebraically closed and is denoted by Fp. An elliptic curve E is the set of all
points (x, y) ∈ Fp × Fp satisfying an appropriate equation along with a point at infinity
denoted as ∞. Under a suitably defined addition operation, an elliptic curve forms a
group with ∞ as the identity element. The subgroup E(Fp) is the set of all Fp-rational
points, i.e., along with ∞, it contains the set of all points (x, y) ∈ Fp × Fp which satisfy
the given equation. Points given in the form (x, y) are called affine points. Projective
coordinates are of the form (X : Y : Z). If Z 6= 0, then (X : Y : Z) corresponds to the
affine point (X/Z, Y/Z). The only projective point on E with Z = 0 is (0 : 1 : 0) and
this is the identity element of the group. The different form of elliptic curves are the
Weierstrass form, Montgomery form, (twisted) Edwards form and Legendre form. We
will specifically be interested in the Montgomery form of elliptic curves in this work.

Scalar multiplication. The ECDH protocol has two phases, key generation and shared
secret computation. The major operation involved in the two phases is scalar multiplication.
Given a point P on E and a non-negative integer n, the point nP is the n-fold addition of
P. The operation of computing nP is called scalar multiplication. We will be interested in
the case, where P is an Fp-rational point of E. The key generation phase has the operation
of the form Q = dG where G is the generator of the cryptographic group and d ∈ Fp is
the scalar. This is known as fixed-base scalar multiplication. The shared secret computation
phase has the operation of the form Q′ = dQ where the input point Q is an arbitrary
element in which case it is known as variable-base scalar multiplication.

2.1.1 Elliptic Curve Diffie-Hellman

The Diffie-Hellman protocol on elliptic curves is known as Elliptic Curve Diffie-Hellman
(ECDH) which is defined over additive group of points on elliptic curves. The idea was
suggested independently by Koblitz [Kob87] and Miller [Mil85] in 1985. The related hard
problem in the elliptic curve group of points is known as Elliptic Curve Discrete Logarithm
Problem (ECDLP). We illustrate how a shared key is established among two parties using
an elliptic curve defined over prime order fields with the following example.

Key establishment protocol. An algorithmic form of the ECDH protocol is provided
in Algorithm 2.1. Suppose, Alice and Bob are two parties who wish to establish a shared
key amongst themselves through an insecure channel which may be eavesdropped by a
third party, say Eve. Initially, the domain parameters 〈p, a, b, G, `, h〉 have to be agreed
upon. Here, p is the prime specifying the base field, a, b are elements in Fp which denote
the coefficient of the corresponding elliptic curve equation, G = (x, y) is the base point, `
is the prime order of the group generated by G and h is the cofactor of G. Both Alice and
Bob must have a key pair suitable for elliptic curve cryptography, consisting of a private
key d which is a randomly selected integer in the interval [1, ` − 1] and a public key
represented by a point Q where Q = dG. Let Alice’s key pair be (dA, QA) and Bob’s key
pair be (dB, QB). Each party must know the other party’s public key prior to execution
of the protocol. Alice computes the point (u, v) = dAQB and Bob computes the point
(u, v) = dBQA. Then the x-coordinate of the computed point, u is considered as the
shared secret between Alice and Bob. A symmetric key from u is derived using some
hash-based key derivation function by most standardized protocols which are based
on ECDH. The shared secrets calculated by Alice and Bob are equal because dAQB =
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dA(dBG) = dB(dAG) = dBQA. The only information about her key that Alice initially
exposes is her public key. So, no third party can determine Alice’s private key unless
that party can solve the ECDLP. Similarly, Bob’s private key is also secure. No third can
compute the secret which is shared amongst Alice and Bob unless that party can solve
the ECDH problem. While the shared secret may be directly used as a key, it may be
desirable to hash the secret to remove weak bits due to the Diffie-Hellman exchange.

Algorithm 2.1 Elliptic curve Diffie-Hellman protocol.

1: function ECDH(p, E(Fp), G = (x, y))
2: input: p is a prime, E(Fp) is an elliptic curve, G ∈ E(Fp) is a point of order `.
3: output: Shared secret between Alice and Bob.

Key Generation

Alice Bob
4: Select the private key dA ← [1, `− 1] Select the private key dB ← [1, `− 1]
5: Compute the public key QA ← dAG Compute the public key QB ← dBG

Shared secret computation

Alice Bob
6: Send QA to Bob Send QB to Alice
7: Compute P = (u, v)← dAQB Compute P = (u, v)← dBQA

8: return u
9: end function.

2.2 Efficiency and Security Requirements in ECC

The two major issues related to implementations of cryptographic software are security
and efficiency. The security requirement of an implementation is the first priority and
then appropriate techniques need to be applied to improve the overall performance of
the software. We discuss these issues in moderate detail in the context of our work.

2.2.1 Security Requirements

ECDLP security and ECC security. There is a gap between the difficulty of ECDLP
and desired security of ECC. There exist many attacks which are capable of breaking
real-world ECC without solving ECDLP. There can be issues while implementing stan-
dard curves which can make the curve insecure. For example, the implementations may
produce incorrect results for some rare curve points. The implementations may also
leak secret data when the input is not a curve point or through branch/cache timing.
These problems can be exploited by real attackers by taking advantage of the gap be-
tween ECDLP and real-world ECC. The invalid curve attack [BMM00] exploits ECDH im-
plementations which validate received public keys inappropriately. This kind of attack
belongs to a larger class of attacks known as small subgroup key recovery attacks. This class
of attacks utilizes small subgroups of finite groups in order to extract non-ephemeral
secret information. The MOV attack [MOV93] which is based on multiplicative trans-
fers relies on the elliptic curves which have low embedding degrees and the Smart-ASS
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attack [Sem98, SA98, Sma99] is based on additive transfers. We discuss the different se-
curity requirements below in brief. Details about the different security aspects can be
found at [BLb, BCC+15, BCLN16, CLN15, BHH+14].

Our consideration of security is based on the recommendations provided in [BLb].
Let E be an elliptic curve over Fp, where p is a prime. Let n = #E(Fp) and nT = 2(p +
1)− #E(Fp), i.e., n and nT are the orders of E(Fp) and its twist. A twist is another elliptic
curve which is isomorphic to E over an algebraic closure of Fp. Let ` (resp. `T) be a prime
such that n = h · ` (resp. nT = hT · `T). Cryptography is done over a subgroup of E(Fp)
of size `. The parameters h and hT are the co-factors of E(Fp) and its twist respectively.
For a Montgomery curve, the curve order n is a multiple of 4. Using this fact along with
n + nT = 2(p + 1), it is easy to argue that if p ≡ 3 mod 4, then the minimum value
of (h, hT) is (4, 4), while if p ≡ 1 mod 4, then the minimum value of (h, hT) is either
(8, 4) or (4, 8). Let k (resp. kT) be the smallest positive integer such that `|pk − 1 (resp.
`T|pkT − 1). The parameters k and kT are the embedding degrees of the curve and its
twist respectively. The complex multiplication field discriminant D of E is defined in the
following manner. Let t = p + 1− n. By Hasse’s theorem [Has36], |t| ≤ 2

√
p and in

the cases that we considered |t| < 2
√

p, so that t2 − 4p is a negative integer; let s2 be
the largest square dividing t2 − 4p; define D = (t2 − 4p)/s2, if t2 − 4p mod 4 = 1 and
D = 4(t2− 4p)/s2, otherwise. Recommendations in [BLb] suggest choosing curves such
that both h and hT are small, k and kT are large and also |D| is large to ensure security
against various known attacks. Note that if h and hT are small, this implies that ` and
`T are large. Considering twist security, the security level of a curve in terms of bits is
defined to be 1

2 min(log2 `, log2 `T).

Timing attacks. One of the major threat to the security of a cryptographic implemen-
tation are the so called timing attacks. A timing attack is a side channel attack through
which the attacker tries to discover vulnerabilities in a cryptosystem by inspecting the
time consumed by the implementations of different cryptographic algorithms in a com-
puter. It is a kind of attack that exploits the data-dependent behavioral characteristics of
the implementation of the cryptographic algorithm. Computers take different amounts
of time to process different inputs and hence timing characteristics vary depending on
the encryption key. The important factors causing time variability in implementations
are compiler optimizations, branching and conditional statements, processor instruc-
tions, RAM and cache hits. A timing attack studies the various computation times of
an implementation in a computer system and then makes use of statistical analysis to
identify the right decryption key to gain access.

Timing attacks are usually overlooked in the design phase as they are very much de-
pendent on the final implementation and can inadvertently creep in through different
optimizations incorporated by the compiler. We can get rid of the attacks by designing
constant-time functions in the target implementation and carefully test the final exe-
cutable code.

Constant time implementations. Cryptographic algorithms can be implemented in a
way which eliminates data dependent timing information of the implementation. Then
the implementations are said to run in constant time on all secret inputs and the imple-
mentations are termed as constant-time implementations. Let us consider an implementa-
tion in which every call to a subroutine always takes exactly t seconds to execute, where



12 2.2. Efficiency and Security Requirements in ECC

t is the maximum time it ever takes to execute that routine on every possible authorized
input. In such an implementation, the timing of the algorithm leaks no information
about the data supplied to that invocation. The drawback of this approach is that the
time used for all executions becomes that of the worst-case performance of the function.
Software implementations are considered to be constant-time in the following sense as
stated in [Ber06b]: “avoids all input-dependent branches, all input-dependent array indices, and
other instructions with input-dependent timings.” The Github page [Aum] lists coding rules
for implementations of cryptographic operations, and more generally for operations in-
volving secret or sensitive values. A useful resource specifying guidelines to mitigate
timing attacks against cryptographic implementations is [Zon].

Formal verification. In the context of hardware and software systems, formal verifica-
tion is the act of proving or disproving the correctness of intended algorithms underlying
a system with respect to a certain formal specification or property, using formal meth-
ods of mathematics. In cryptography formal verification is used to verify the security
services of a cryptographic algorithm or protocol. It uses specific high level modeling
specification to specify security solution and uses a back end formal verification tools
to find out if there are any security breaches. The outcome of the formal verification
provides information if the algorithm/protocol is safe or unsafe to use.

2.2.2 Efficiency Requirements

Field arithmetic. Since field multiplication and squaring are the most important op-
erations, most of the developments target to optimize these two operations in the im-
plementations. The schoolbook method is the most common method for integer mul-
tiplication and there are different ways of tackling it depending on the representation
of the field elements and considering the underlying multiplier within the target archi-
tecture. If the field element is represented using a smaller base then strategies based
on Karatsuba multiplication [K63] can be applied to speed-up the integer multiplica-
tion/squaring. However, deciding on Karatsuba over schoolbook and selecting an ap-
propriate Karatsuba strategy needs a good amount of analysis before diving for a final
implementation of the cryptographic primitive.

Field reduction is an important part of field multiplication/squaring which plays a
crucial role in the efficiency of implementations. Reduction on the NIST recommended
prime order fields are mainly based on the ideas proposed by Solinas [Sol]. A de-
tailed study on the software implementations of the NIST curves has been addressed
in [BHLM01]. Mersenne and pseudo-Mersenne primes help with fast and relatively
simple methods to implement. They support compact and scalable implementations
across different security levels and their performance scales well with the bit-length as
the security level increases. The primes of the form 2m ± 2n ± 1 such that m > n are
known as Solinas trinomial primes. Additionally, when the condition m = 2n satisfies
for such primes, the use of 2-way Karatsuba technique promotes efficient field multipli-
cation/squaring for some large primes at high security level. The possible efficiency gain
of the strategy depends on representations of field elements which have an even number
of limbs. This condition may not be met with for the implementations that use saturated-
limb representations or may necessitate the use of an extra limb and deal with unsatu-
rated limb representation in some platforms. These primes are relatively rare in compar-
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ison to the pseudo-Mersenne primes. Also, if the values of m, n are not aligned suitably
to the computer word size, then saturated limb implementations with these primes may
not be simple. As a consequence, the Solinas trinomial primes become quite suitable for
some platforms, but not for all. This makes uniform selection of Solinas primes for ECC
difficult. There are other primes of the form 2m(2n − r)− 1 such that m, n, r are positive
integers which are suitable for Montgomery multiplication [Mon85]. These primes are
called Montgomery-friendly primes and efficient field arithmetic based on these primes
can be implemented on various architectures. At the 128-bit security level Montgomery-
friendly primes are very efficient, but they lose relative efficiency compared to pseudo-
Mersenne primes at higher security levels. Efficient modular arithmetic using vector
instructions is also challenging while working with the Montgomery-friendly primes.
Some random primes have also been used by Brainpool curves [Brab]. But, software im-
plementations of these curves are slower than the curves that use primes of special form.
A detailed study on various primes can be found at [CLN15].

Curve arithmetic. Tackling the curve arithmetic properly also plays an important role
in the efficiency gain of the implementations. The algorithms to compute the crypto-
graphic schemes are essentially sequential in nature. Scheduling the operations within
the algorithm without the affecting the final output and optimizing the number of basic
instructions for the implementations provide noticeable benefits. In some cases the vec-
tor instructions of the target architecture can be intelligently exploited to vectorize the
curve arithmetic accordingly and achieve a major speed-up. The combined curve arith-
metic involved within the algorithm of scalar multiplication over Montgomery curves
is known as the Montgomery ladder. This ladder computes the shared secret and has
been attempted with 2-way/4-way vector instructions in several implementations of
Curve25519 [CS09, BS12, Cho15, FL15, FHD19, HEY20]. Along with the Diffie-Hellman
some of these implementations also addresses vector implementations of the Ed25519
signatures.

Efficient software. Cryptographic software is used by several applications for provid-
ing security to the corresponding users. These applications can run on different devices,
each having different hardware architectures. While the underlying hardware is a fac-
tor behind the performance of these applications, the efficiency of the software used by
them is also an important factor which contributes to the overall performance of the ap-
plications. Efficient software implementation of cryptographic schemes is an important
area of research which has been heavily cultured for several years now. Generic imple-
mentation of software using a certain high-level language usually provide sub-optimal
performance in terms of CPU-cycles consumed by the software while executed and the
performance loss depends on the choice of language used. Considering this effect, it
is preferable to use the instruction set of the target architecture directly bypassing the
compiler to write programs that implement the required cryptographic primitives. Stan-
dard mnemonics of the target architecture can be used to fulfill this purpose leading to
implementations that use assembly language. There are interfaces to access assembly in-
structions while developing programs using certain high-level languages, for example,
the interface to write inline assembly instructions on the top of a C compiler. On the other
hand there are interfaces like intrinsic functions provided by Intel which can almost access
the assembly level instructions from high-level using C. But, on Intel architectures we
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have found that, software developed using both these approaches under-perform com-
pared to software which is developed using hand-written assembly instructions and the
performance gain achieved by hand-written assembly instructions is quite significant
for modern Intel architectures. Writing assembly programs by hand provides complete
control to the developer over the set of registers available in the target machine and
largely helps to efficiently schedule instructions implementing the required high level
algorithms. However, working with registers directly to write efficient assembly pro-
grams is challenging and debugging turns out to be quite difficult. To develop a correct
code one requires good knowledge of the target architecture and the corresponding as-
sembly instructions.

2.3 Edwards and Twisted Edwards Curves

In 2007, Edwards [Edw07] introduced the family of elliptic curves known as Edwards
curves. Applications of Edwards curves to cryptography were developed by Bernstein
and Lange in 2008 [BL07b]. Twisted Edwards curves are a generalized form of the Ed-
wards curves which was introduced by Bernstein, Birkner, Joye, Lange and Peters in
2008 [BBJ+08].

In [BL07b], Bernstein and Lange introduced a form of Edwards curves defined by
u2 + v2 = c2(1 + du2v2) where c, d ∈ Fp with cd(1− dc4) 6= 0. In [BBJ+08], this form
is generalized to twisted Edwards form defined by EE,a,d : au2 + v2 = 1 + du2v2 where
a, d ∈ Fp with ad(a− d) 6= 0. Edwards curves are then a special case of twisted Edwards
curve where a can be rescaled to 1.

The fixed-base scalar multiplication which is used for key generation can be effi-
ciently computed over Edwards curves. A double-base scalar multiplication is used
while computing signatures and this can also be efficiently done using Edwards curves.
The most efficient explicit formula for arithmetic on Edwards curve is due to [HWCD08].
As we have completely focused on Montgomery curves in this work we keep the discus-
sion about Edwards curves brief.

2.4 Montgomery Curves and Montgomery Ladder

Let A, B ∈ Fp such that B(A2 − 4) 6= 0. The Montgomery form elliptic curve EM,A,B is
the set of all (x, y) ∈ Fp × Fp satisfying the equation By2 = x(x2 + Ax + 1) along with
the point at infinity denoted as ∞. This is called the affine form of the curve. The set
of all Fp-rational points of EM,A,B, denoted as EM,A,B(Fp) is the set of all (x, y) ∈ Fp ×
Fp satisfying By2 = x(x2 + Ax + 1) along with ∞. Under a suitably defined addition
operation, EM,A,B(Fp) is a group with ∞ as the identity element. It is known that the
order of this group is a multiple of 4. In fact, it is usually possible to obtain A and
B such that the order of EM,A,B is 4q for a prime q. For more extensive discussions of
Montgomery curves and their arithmetic, we refer to [BL17, CS18, Mon87].

The most famous example of Montgomery curve is Curve25519 which was intro-
duced by Bernstein [Ber06b]. For Curve25519, p = 2255 − 19, A = 486662 and B = 1.
The other Montgomery curve which is part of TLS 1.3 is Curve448 which was introduced
by Hamburg [Ham15]. For Curve448, p = 2448 − 2224 − 1, A = 156326 and B = 1. Apart
from these two, other proposals of Montgomery curves can be found at [BLb].
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2.4.1 Diffie-Hellman Key Agreement on Montgomery Curves

For computational efficiency, it is preferable to work with projective coordinates. The
projective form of the Montgomery curve EM,A,B is BY2Z = X(X2 + AXZ + Z2).

For a point P = [X : Y : Z] on EM,A,B, the x-coordinate map x is the following [CS18]:
x(P) = [X : Z] if Z 6= 0 and x(P) = [1 : 0] if P = [0 : 1 : 0]. Bernstein [Ber06a, Ber06b]
introduced the map x0 as follows: x0(X : Z) = XZp−2 which is defined for all values of
X and Z in Fp.

Following Miller [Mil85], Montgomery [Mon87] and Bernstein [Ber06b], the Diffie-
Hellman key agreement can be carried out on a Montgomery curve as follows. Let Q
be a generator of a prime order subgroup of EM,A,B(Fp). Alice chooses a secret key s
and has public key x0(sQ); Bob chooses a secret key t and has public key x0(tQ). The
shared secret key of Alice and Bob is x0(stQ). Using classical computers, the best known
method of obtaining x0(stQ) from Q, x0(sQ) and x0(tQ) requires about O(p1/2) time
using the Pollards rho algorithm [Pol78].

2.4.2 Shared Secret Computation

The shared secret computation of both Alice and Bob is the following. Given [X1 : Z1]
corresponding to a point P = [X1 : Y1 : Z1] and a non-negative integer n, obtain x0(nP).
Montgomery [Mon87] introduced a variant of the usual double-and-add algorithm for
the purpose of computing x0(nP). Let R = [X2 : Y2 : Z2] and S = [X3 : Y3 : Z3] be such
that R− S = P. Let 2R = [X′2 : Y′2 : Z′2] and R + S = [X′3 : Y′3 : Z′3]. Doubling corresponds
to obtaining [X′2, Z′2] from [X2 : Z2] while differential addition corresponds to obtaining
obtaining [X′3 : Z′3] from [X1 : Z1], [X2 : Z2] and [X3 : Z3]. Based on Theorems B.1
and B.2 of [Ber06b], Montgomery’s formulas for differential-add and doubling are as
given in (2.1).

X′3 = Z1((X2 − Z2)(X3 + Z3) + (X2 + Z2)(X3 − Z3))2

Z′3 = X1((X2 − Z2)(X3 + Z3)− (X2 + Z2)(X3 − Z3))2

X′2 = (X2 + Z2)2(X2 − Z2)2

Z′2 = 4X2Z2((X2 − Z2)2 + A+2
4 (4X2Z2)).

 (2.1)

Algorithm 2.2 Differential addition operation on Montgomery curve EM,A,1

1: function DIFF-ADD([X1 : Z1], [X2 : Z2], [X3 : Z3])
2: input: [X1 : Z1], [X2 : Z2], [X3, Z3] ∈ EM,A,1.
3: output: [X′3 : Z′3] ∈ EM,A,1.

4: R← (X2 − Z2) + (X3 + Z3)

5: S← (X2 − Z2)− (X3 + Z3)

6: X′3 ← Z1(R + S)2

7: Z′3 ← X1(R− S)2

8: return [X′3 : Z′3]
9: end function.

Note that the parameter B is not required in (2.1). Assume Z1 = 1. The quantity
4X2Z2 in (2.1) is to be computed as 4X2Z2 = (X2 + Z2)2 − (X2 − Z2)2. As a result,
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the formulas in (2.1) require 5 multiplications, 4 squarings and 1 multiplication by the
field constant (A + 2)/4. The operations differential addition and doubling respectively
denoted as DIFF-ADD(R, S, P) and DOUBLE(R) are described in Algorithms 2.2 and 2.3.
In Algorithm 2.3, the constant a24 is equal to (A + 2)/4. The operations DIFF-ADD and
DOUBLE do not involve the Y-coordinate and the parameter B is not required in the
computation.

Algorithm 2.3 Double operation on Montgomery curve EM,A,1

1: function DOUBLE([X2 : Z2])
2: input: [X2 : Z2] ∈ EM,A,1.
3: output: [X′2 : Z′2] ∈ EM,A,1.

4: R← (X2 + Z2)

5: S← (X2 − Z2)

6: X′2 ← R2 · S2

7: Z′2 ← (R2 − S2)(S2 + a24(R2 − S2))

8: return [X′2 : Z′2]
9: end function.

Algorithm 2.4 Montgomery ladder

1: function MONTGOMERY-LADDER(P, n)
2: input: P is a projective point [X1 : Z1] ∈ EM,A,B, n is an `-bit scalar such that n =

(n`−1n`−2 . . . n0).
3: output: x-coordinate of nP, the n-times scalar multiple of P.

4: R← [1 : 0]; S← P
5: for i← `− 1 down to 0 do
6: (R, S)← LADDER-STEP(R, S, P, ni)

7: end for
8: let R = [X : Z]
9: return XZp−2

10: end function.

Algorithm 2.5 Single ladder-step based on the differential add and double operations

1: function LADDER-STEP(R, S, P, b)

2: if b = 0 then
3: S← DIFF-ADD(R, S, P)
4: R← DOUBLE(R)
5: else
6: R← DIFF-ADD(R, S, P)
7: S← DOUBLE(S)
8: end if
9: return (R, S)

10: end function.



2. Background and Related Work 17

2.4.3 Montgomery Ladder

The combined formula due to Montgomery (2.1) is known as the Montgomery ladder.
which is built using the differential addition and doubling operations. The ladder is
described in Algorithm 2.4 which uses Algorithm 2.5 as a sub-routine. In the ladder,
Algorithm 2.2 is used to implement the operation DIFF-ADD and Algorithm 2.3 is used
to implement the operation DOUBLE. The value of Z1 in Algorithm 2.2 is considered
as 1. Hence, the call LADDER-STEP(R, S, P) in Step 6 of Algorithm 2.4 is essentially
LADDER-STEP(R, S, X1).

2.5 Complete Base Point Coordinates

For Montgomery curves, given the x-coordinate, the two possible y-coordinates are given
by ±

√
x3 + Ax2 + x. For Edward curves, given the v-coordinate, the two possible u-

coordinates are given by ±
√
(1− v2)/(1− dv2). In the two formulas the square-root

computations are done over the underlying field.

2.6 Related Work

Finite field computations lie at the base of ECC operations and protocols. The underlying
finite fields can be binary extension fields, prime fields, or prime extension fields. Fields
of prime order are well suited for cryptographic applications and are primarily used in
practice. For efficiency reasons primes of special shapes are considered while choosing
a finite field instead of random primes.

In this thesis we work with elliptic curves defined over fields of prime order. To be
more specific we concentrate on curves which are defined over fields based on Mersenne
and pseudo-Mersenne primes. We also work with Curve448 which is defined over the
field based on the Solinas trinomial prime 2448 − 2224 − 1. Elliptic curves which are de-
fined over other types of fields, like binary extension fields and quadratic extension fields
have also been studied in the context of cryptography. Some examples of these kind of
curves can be found at [HKM09, OLAR13, OLAR14, LS14, CHS14, CL15, FLS15, OLR16].
We do not get into the details of these curves since they are not related to our work. As
mentioned in [BLb] several standard bodies have proposed various curves for use in el-
liptic curve cryptography. Some of these curves which are relevant in the context of our
work are discussed below.

2.6.1 NIST Curves

In FIPS 186-4 standard [fSTa], National Institute of Standards and Technology (NIST) rec-
ommended ten elliptic curves for use in the Elliptic Curve Digital Signature Algorithm
(ECDSA) targeting a variety of security levels. The recommendation contained a total
of five prime curves and ten binary curves which were apparently chosen keeping op-
timal security and implementation efficiency in focus. Due to the progress of solving the
ECDLP over binary curves [FPPR12], considerable doubts raised on the use of binary
curves due to which prime curves became popular for deployment. The five primes of
the NIST prime curves are generalized Mersenne primes of specific shapes which are
defined as p192 = 2192 − 264 − 1, p224 = 2224 − 296 + 1, p256 = 2256 − 2224 + 2192 + 296 − 1,
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p384 = 2384 − 2128 − 296 + 232 − 1 and p521 = 2521 − 1. The respective curves are called
P-192, P-224, P-256, P-384, and P-521. They are also known as nistp192, nistp224,

nistp256, nistp384 and nistp521.

2.6.2 Curves Proposed by Certicom Research

In 2000, Certicom Research specified a set of elliptic curves [Res10] as standards in which
these curves were also included and named as secp192r1, secp224r1, secp256r1,

secp384r1 and secp521r1. In [Res10] a curve named secp256k1 over the prime 2256 −
232 − 977 has also been defined which is used to generate the Bitcoin signatures.

2.6.3 Curve25519

In 2006, the famous Curve25519 targeting the 128-bit security level was proposed by
Daniel J. Bernstein which was defined over the field corresponding to the prime 2255− 19.
At the same security level the existing NIST standard is P-256 which is defined against
the prime p256. A major performance difference of Curve25519 over P-256 comes from
the fact that 2255 − 19 is a more structured prime in comparison to p256, for which field
arithmetic turns out to be substantially faster when done with 2255 − 19. In particu-
lar, the field reduction becomes much faster with 2255 − 19. Apart from field arithmetic
there are other crucial reasons for which ECDH is reasonably faster when done with
Curve25519 rather than NIST P-256. The same is true while computing the other crypto-
graphic schemes with the related curves. Later on, Bernstein and Lange quoted in [BLa],
“NISTs ECC standards create (1) unnecessary losses of simplicity, security, and speed in ECC
implementations and (2) unnecessary tensions between simplicity, security, and speed in ECC
implementations.” and discussed the potential problems with the NIST’s ECC standards
in detail. Curve25519 has been included in the Transport Layer Security(TLS) protocol.
It has also been extensively deployed for various security applications [Cur].

2.6.4 Curves Based on Mersenne and Pseudo-Mersenne Primes

A prime is called Mersenne if it is of the form 2m − 1 for some m > 0. A prime is called
pseudo-Mersenne if it is of the form 2m− δ for some m > 0 such that δ is relatively much
small in comparison to 2m. While pseudo-Mersenne primes are pretty much available,
Mersenne primes are rare within a range of cryptographic interest. The first Mersenne
prime which has been considered in ECC is 2127 − 1 and the next is 2521 − 1. It was first
highlighted by Curve25519 that choosing a pseudo-Mersenne prime to define an ellip-
tic curve provides substantial speed-up to compute the ECDH at 128-bit security level.
Later on Bernstein et al [BDL+12] showed that a twisted Edwards curve (Ed25519) which
is birationally equivalent to Curve25519 can be used to efficiently generate and verify el-
liptic curve signatures. Several other curves over pseudo-Mersenne primes have been
proposed after Curve25519. In 2013, Bernstein et al proposed the Curve1174 [BHKL13]
based on the prime 2251 − 9 and Curve41417 [BCL14] at a higher security level which is
based on the prime 2414− 17. In [ABGR13] Aranha et al described some general-purpose,
high-efficiency elliptic curves tailored for security levels beyond 2128 based on (pseudo-
)Mersenne primes. The SafeCurves project [BLb] of Bernstein and Lange analyzes and
mentions about many such secure curves covering a wide range of security levels.
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2.6.5 Curve448

As part of the Transport Layer Security (TLS) protocol, version 1.3 [TP18], the document
RFC 7748 [LH16] specifies the Montgomery form elliptic curve Curve448 and its bira-
tionally equivalent Edwards form elliptic curve Edwards448. The curve Edwards448
was originally proposed in [Ham15] where it was named Ed448-Goldilocks. The under-
lying field for Curve448 and Edwards448 is Fp where p is the Solinas trinomial prime
2448 − 2224 − 1 which promotes efficient Karatsuba multiplication.

2.7 Issues Related to Software Implementation

Implementations of cryptographic software is an important part of cryptography. We
have worked with the modern Intel architectures. Here we discuss in brief about the
issues which are related to software implementation.

2.7.1 Relevant Instructions of Modern Intel Architectures

Multiplication is considered fundamentally the most important and critical operation
among all field operations while implementing the ECDH cryptographic protocol. The
sequential or the vectorized multiplier available in the modern Intel architectures can be
used to implement the multiplication operation over a field and hence the correspond-
ing assembly instructions play a major role in implementing the basic primitives of the
ECDH protocol. Nevertheless, there are also other assembly instructions which are also
involved in the implementations. Below we briefly summarize the instructions available
in modern Intel architectures which are most relevant to the various implementations of
this thesis.

Sequential instructions. The 64-bit architecture of the Intel x86 processors has sixteen
64-bit registers, namely rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8, r9, r10, r11, r12, r13, r14,
r15. Except rsp (which is the stack pointer), all other registers can be used for storing
data and operating on them. There is a register named FLAGS, which consists of various
available flags. We note two of these flags. Bit 0 of FLAGS is the carry flag CF and bit 11
of FLAGS is the overflow flag OF. Integer addition and multiplication affect the states of
these two flags and are relevant to our work.

The basic 64-bit arithmetic operations in the x86 processors are mul, imul, add and
adc. From the Broadwell processor onwards, Intel also provides another set of arithmetic
instructions, namely, mulx, adcx and adox. The structure of multiplication and addition
instructions and their operations are as follows.

mul src2; rdx : rax← src2 · rax.
imul src1, src2, dst; dst← lsb64(src1 · src2).
add src, dst; dst← src+ dst.
adc src, dst; dst← src+ dst+ CF.
mulx src1, dst`, dsth; dsth : dst` ← src1 · rax.
adcx src, dst; dst← src+ dst+ CF.
adox src, dst; dst← src+ dst+OF.
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The operation mulx is available from the Haswell processor onwards; adcx and adox are
available from the Broadwell processor onwards. Processors previous to Haswell had
only mul, imul, add and adc.

The effect on the carry and the overflow flags for the above mentioned arithmetic
operations are the following.

• mul, imul, add and adc affect both CF and OF;
• mulx affects neither CF nor OF;
• adcx affects only CF but not OF;
• adox affects only OF but not CF.

Suppose, there is an interleaved sequence of multiplications and additions to be per-
formed. The additions generate carries which need to be taken into consideration for
subsequent additions. The mul and imul instructions affect the carry flag and so the
carry out of the previous addition gets lost. On the other hand, a sequence of mulx and
adc instructions can efficiently perform such an interleaved sequence of multiplications
and additions. The mulx instruction does not affect the carry flag and so the sequence of
adc instructions can carry out the instructions using a single carry chain.

The combination of mulx, adcx and adox provides a more powerful tool. As men-
tioned above, the mulx instruction does not affect either CF or OF. A sequence of adcx
instructions proceeds by using a carry chain using only CF, while a sequence of adox
instructions proceeds by using a carry chain using only OF. So, in effect, it is possible to
use two independent carry chains which we call double carry chain. This greatly facilitates
arithmetic computations as we will see later.

Vector instructions. Modern day processor architectures, along with the general pur-
pose registers provide a limited set of vector registers, in which multiple values of the
same type having same bit-length can be stored in juxtaposition. For example, we can
keep eight 32-bit or four 64-bit integers in a 256-bit vector register. Arithmetic and other
kind of operations can be carried out on all these values simultaneously by the so called
SIMD instructions. The Intel x86-64 architecture supports instructions on vectors of dif-
ferent data types, typically 8-bit, 16-bit, 32-bit and 64-bit integers, and single-precision
and double-precision floating-point values. For Intel architectures, the 4-way vectorized
instruction set is known as the AVX2 instruction set. The modern Intel architectures like
Haswell, Skylake include sixteen 256-bit registers, which are named YMM0-YMM15. It is
possible to pack four 64-bit words into a single 256-bit YMM register and then use SIMD
instructions to simultaneously work on the four 64-bit words. Exploiting such a facil-
ity, simultaneous computations of different cryptographic operations can be performed
efficiently on the top of Intel processors.

The basic 4-way vectorized instructions in the x86 processors are vpmuludq and vpaddq.
The synopsis of the instructions are as follows.

vpmuludq ymm1, ymm2, ymm3;
vpaddq ymm1, ymm2, ymm3;

The instruction vpmuludqmultiplies the low unsigned 32-bit integers from each packed
64-bit element in ymm1 and ymm2, and stores the unsigned 64-bit results in ymm3. Sim-
ilarly, the instruction vpaddq adds packed 64-bit integers in ymm1 and ymm2, and stores
the unsigned 64-bit results in ymm3. The overflowed carry bits, if any, are lost due to the
operations.
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2.7.2 Implementation Types

All the implementations of this work have been developed using the Intel x86 64-bit
assembly language. Depending on the kind instructions used in the implementations
we will categorize them as follows.

maax-type implementations1: Primarily uses the instructions mulx, adcx and adox. It
can also use the instructions mul, add and adc.

mxaa-type implementations: Primarily uses the instructions mulx, add and adc. It doesn’t
use the instructions adcx and adox.

maa-type implementations: Primarily uses the instructions mul, add and adc. It doesn’t
use the instructions mulx, adcx and adox.

AVX2-type implementations: Primarily uses the 4-way vector instructions vpmuludq,
vpaddq, vpsllq and vpsrlq. It can also use the sequential instructions if needed.

2.7.3 Performance Measurement

The timing experiments in this thesis were carried out on a single core of Haswell and
Skylake processors. During measurement of the CPU cycles, TurboBoost c© and Hyper-
Threading c© features were turned off. The time stamp counter TSC was read from the
CPU to RAX and RDX registers by the RDTSC instruction.

Platform specifications. The details of the hardware and software tools used in our
software implementations are as follows. The compiler version essentially does not mat-
ter other than benchmarking and testing code, since it is being used essentially as an
assembler.

Haswell: Intel R©CoreTM i7-4790 4-core CPU 3.60 Ghz. The OS was 64-bit Ubuntu 14.04
LTS and the source code was compiled using GCC version 7.3.0.

Skylake: Intel R©CoreTM i7-6500U 2-core CPU @ 2.50GHz. The OS was 64-bit Ubuntu
14.04 LTS and the source code was compiled using GCC version 7.3.0.

Measurement. The timings reported in the different tables across different chapters
are the numbers of CPU cycles. For comparison, we provide the timings of the most ef-
ficient (to the best of our knowledge) and publicly available previous implementations.
The timings of the previous implementations were obtained by downloading the rel-
evant software and measuring the required CPU cycles on the same platforms where
the present implementations have been measured. The complier flags with which we
have complied these codes are identical to the ones with which we have compiled our
code. In some cases these values are different from the timings reported in the original
papers. Among the reasons for such differences are the possible differences in the micro-
architectures of the same family of processors along with the difference in the (version of

1These implementations are not applicable for the Haswell architecture. Corresponding timing entries
are marked with the “-” sign in different performance tables of this thesis.
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the) compiler. Different methodologies for measuring timings could also lead to a differ-
ence, but two reasonable methodologies are expected to provide similar timings and so
this issue would not lead to significant difference in timings. The speed-up percentage
have been computed using the following formula.

sup = 100× (previous cycle count− present cycle count)
previous cycle count

.
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Constant Time Montgomery Ladder

The Montgomery ladder described in Algorithm 2.4 which calls Algorithm 2.5 has a
conditional branching where the condition is based on a secret bit. So, a straightforward
implementation of the ladder algorithm will not be constant time and has the potential to
leak the secret bit. This problem has been addressed in the literature and several constant
time implementations are known. We discuss these methods below.

Algorithm 3.1 Constant time Montgomery ladder using conditional swap

1: function MONTGOMERY-LADDER-CSWAP(xP, n)
2: input: An `-bit scalar n and the x-coordinate xP of a point P.
3: output: x-coordinate of nP, the n-times scalar multiple of P.

4: X1 ← xP; X2 ← 1; Z2 ← 0; X3 ← xP; Z3 ← 1
5: prevbit := 0
6: for i← `− 1 down to 0 do
7: bit← bit at index i of n
8: b← bit ⊕ prevbit

9: prevbit← bit

10: (〈X2, Z2〉, 〈X3, Z3〉)← CSWAP(〈X2, Z2〉, 〈X3, Z3〉, b)
11: (〈X2, Z2〉, 〈X3, Z3〉)← LADDER-STEP(〈X2, Z2〉, 〈X3, Z3〉, X1)
12: end for
13: return X2Zp−2

2
14: end function.

3.1 Conditional Swap

Algorithm 2.4 can be made to run in constant time by using an idea known as con-
ditional swapping of field elements. At a top level, a description of the Montgomery
ladder which uses the idea is given in Algorithm 3.1. This algorithm calls Algorithm 3.2
which contains the combined field operations of the differential add and doubling op-
erations involved in a single step of the Montgomery ladder. It should be noted that
y-coordinates are not used in Algorithm 3.1 because the Montgomery ladder is com-
puted using only the x-coordinates. The z-coordinates are participating in the algorithm

23
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because the computation is done using projective coordinates.
Let the x-coordinate of the point P on which scalar multiplication has to be performed

be xP. The z-coordinate of the point P is conventionally considered to be 1 for computa-
tional efficiency. Hence, we have P = (X1 : Z1) = (xP : 1). Since Z1 = 1 the participa-
tion of Z1 in the ladder computation is nullified according to (2.2) and so the variable is
not explicitly used in Algorithm 3.1. According to Step 4 of Algorithm 2.4 the variable
R = (X2 : Z2) is initialized to x(∞) = (1 : 0) and the variable S = (X3 : Z3) is initialized
to x(P) = (xP : 1). This justifies the initializations done in Step 4 of Algorithm 3.1.

Algorithm 3.2 Ladder-step combined with the differential add and doubling operations

1: function LADDER-STEP(〈X2, Z2〉, 〈X3, Z3〉, X1)

2: T1 ← X2 + Z2
3: T2 ← X2 − Z2
4: T3 ← X3 + Z3
5: T4 ← X3 − Z3
6: T5 ← T2

1
7: T6 ← T2

2
8: T2 ← T2 · T3
9: T1 ← T1 · T4

10: T1 ← T1 + T2
11: T2 ← T1 − T2
12: X3 ← T2

1
13: T2 ← T2

2
14: Z3 ← T2 · X1
15: X2 ← T5 · T6
16: T5 ← T5 − T6
17: T1 ← a24 · T5
18: T6 ← T6 + T1
19: Z2 ← T5 · T6

20: return (〈X2, Z2〉, 〈X3, Z3〉)
21: end function.

Algorithm 3.1 uses a subroutine CSWAP which performs a constant time conditional
swap as follows: Function CSWAP(〈X2, Z2〉, 〈X3, Z3〉, b) swaps the pair of field elements
〈X2, Z2〉 and 〈X3, Z3〉 if b = 1, else not. We mention two methods for implementing
CSWAP which have been described in the literature. Algorithm 3.3 describes a method
given in [CS18] whereas Algorithm 3.4 describes a method given in [BL17].

3.2 Conditional Selection

Suppose X[0..1] is an array consisting of two field elements and b is a bit. Further sup-
pose that the value of X[b] is required. Bernstein [Ber06b] proposed that X[b] be obtained
as (1− b)X[0] + bX[1]. While this method of selecting between X[0] and X[1] is more
time consuming than simply accessing X[b], the advantage is that it can be executed in
constant time.
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We consider a variant of the above problem. Let X and Y be two variables and let b
be a bit. Define CSELECT(X, Y, b) to be a procedure which performs the following task.
If b = 0, then X retains its value and if b = 1, then X gets the value of Y. It is possible to
rewrite the Montgomery ladder using CSELECT. This has been done in the code accom-
panying [OLH+17]. We formalize the method used in the code as Algorithm 3.5. The
correctness of the algorithm is easy to verify. Further, assuming that CSELECT can be
executed in constant time, the entire ladder algorithm can also be computed in constant
time.

Algorithm 3.3 Conditional swap using the operators and and xor

1: function CSWAP1(〈X2, Z2〉, 〈X3, Z3〉, b)
2: input: X2, Z2, X3, Z3 are field elements encoded as `-bit strings and b is a bit.
3: output: The pairs 〈X2, Z2〉 and 〈X3, Z3〉 are swapped if b = 1, else not.

4: mask← (bb . . . b)`
5: T1 ← mask and (X2 xor X3)
6: T2 ← mask and (Z2 xor Z3)
7: T3 ← T1 xor X2
8: T4 ← T2 xor Z2
9: T5 ← T1 xor X3

10: T6 ← T2 xor Z3

11: return (〈T3, T4〉, 〈T5, T6〉)
12: end function.

Algorithm 3.4 Conditional swap using the operators +, - and ·
1: function CSWAP2(〈X2, Z2〉, 〈X3, Z3〉, b)
2: input: X2, Z2, X3, Z3 are field elements encoded as `-bit strings and b is a bit.
3: output: The pairs 〈X2, Z2〉 and 〈X3, Z3〉 are swapped if b = 1, else not.

4: T1 ← b · (X3 − X2) + X2
5: T2 ← b · (Z3 − Z2) + Z2
6: T3 ← (1− b) · (X3 − X2) + X2
7: T4 ← (1− b) · (Z3 − Z2) + Z2

8: return (〈T1, T2〉, 〈T3, T4〉)
9: end function.

Following Bernstein’s suggestion mentioned above, CSELECT(X, Y, b) can be exe-
cuted in constant time using the substitution rule

X ← (1− b)X + bY.

Later, we consider the issue of implementing CSELECT in constant time using the cmov

instruction available on Intel processors.

Remark 3.1. There is an implementation1 of constant time conditional branching for micro-
controllers which works by swapping the pointers to field elements instead of swapping the field

1https://munacl.cryptojedi.org/curve25519-cortexm0.shtml
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elements themselves. The advantage of this approach is that the number of data movement op-
erations is substantially less. On the other hand, such an approach does not necessarily lead to
constant time behavior2 on processors which have cache memory or non-constant time memory
access.

Algorithm 3.5 Constant time Montgomery ladder using conditional selection

1: function MONTGOMERY-LADDER-CSELECT(xP, n)
2: input: An `-bit scalar n and the x-coordinate xP of a point P.
3: output: x-coordinate of nP, the n-times scalar multiple of P.

4: X1 ← xP; X2 ← 1; Z2 ← 0; X3 ← xP; Z3 ← 1
5: prevbit← 0
6: for i← `− 1 down to 0 do
7: bit← bit at index i of n
8: b← bit ⊕ prevbit

9: prevbit← bit

10: T1 ← X2 + Z2
11: T2 ← X2 − Z2
12: T3 ← X3 + Z3
13: T4 ← X3 − Z3
14: T5 ← T1 · T4
15: T6 ← T2 · T3
16: CSELECT(T1, T3, b)
17: CSELECT(T2, T4, b)
18: T1 ← T2

1
19: T2 ← T2

2
20: X3 ← T5 + T6
21: Z3 ← T5 − T6
22: X3 ← X2

3
23: Z3 ← Z2

3
24: X2 ← T2
25: Z2 ← T1 − T2
26: T2 ← ((A + 2)/4) · Z2
27: T2 ← T2 + X2
28: X2 ← X2 · T1
29: Z2 ← Z2 · T2
30: Z3 ← Z3 · X1
31: end for
32: return X2Zp−2

2
33: end function.

3.2.1 Assembly Implementations of CSWAP and CSELECT Using cmov

Intel processors support the cmov instruction. There are a number of variants of this
instruction. We mention the manner in which the instruction is relevant in the present

2This issue was pointed out to us independently by Daniel J. Bernstein and Diego Aranha.
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context. Suppose, A, B, C are 64-bit registers or memory locations. Further suppose that
A stores the value of a bit b. Consider the following sequence of instructions.

cmp $1, A
cmov B, C

The effect of the above two instructions is the following. If A contains the value 0 (i.e.,
b = 0), then C retains its value, otherwise (i.e., if b = 1) the content of B is copied to C. So,
in effect the two instructions provide an implementation of CSELECT(B, C, b). The cmov

instruction is supposed to take constant time. We comment on this issue later.

cmp $1, %rsi

movq 0(%rdi), %rsi

movq 64(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 0(%rdi)

movq %rdx, 64(%rdi)

movq 8(%rdi), %rsi

movq 72(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 8(%rdi)

movq %rdx, 72(%rdi)

movq 16(%rdi), %rsi

movq 80(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 16(%rdi)

movq %rdx, 80(%rdi)

movq 24(%rdi), %rsi

movq 88(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 24(%rdi)

movq %rdx, 88(%rdi)

movq 32(%rdi), %rsi

movq 96(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 32(%rdi)

movq %rdx, 96(%rdi)

movq 40(%rdi), %rsi

movq 104(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 40(%rdi)

movq %rdx, 104(%rdi)

movq 48(%rdi), %rsi

movq 112(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 48(%rdi)

movq %rdx, 112(%rdi)

movq 56(%rdi), %rsi

movq 120(%rdi), %rdx

mov %rsi, %rcx

cmov %rdx, %rsi

cmov %rcx, %rdx

movq %rsi, 56(%rdi)

movq %rdx, 120(%rdi)

Figure 3.1: Assembly code to implement constant time conditional swap.
Taken from the amd64-64 implementation of [BDL+12].
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Implementation of CSWAP. Consider the CSWAP based ladder given in Algorithm 3.1.
The concrete implementation of CSWAP that we discuss here is from the amd64-64 imple-
mentation3 of Curve25519 accompanying the work [BDL+12].For 64-bit implementation,
the elements of F2255−19 have 4-limb representations. Consider the 4 limbs of the field el-
ements X2, Z2, X3, Z3 to be stored at the memory locations mentioned below. Also, let
the register rsi hold the value of swap.

X2 : 0(%rdi), 8(%rdi), 16(%rdi), 24(%rdi)

Z2 : 32(%rdi), 40(%rdi), 48(%rdi), 56(%rdi)

X3 : 64(%rdi), 72(%rdi), 80(%rdi), 88(%rdi)

Z3 : 96(%rdi), 104(%rdi), 112(%rdi), 120(%rdi)

The assembly instructions for swapping used in the amd64-64 [BDL+12] implemen-
tation are shown in Figure 3.1. Except the cmp, the effect of all the other instructions in
the first column of Figure 3.1 is to perform a conditional swap between X2 and X3. Simi-
larly, the instructions in the second column perform a conditional swap between Z2 and
Z3. The assembly code in Figure 3.1 has 32 movq, 8 mov and 16 cmov operations.

static inline void cselect(uint8_t bit,

uint64_t *const px, uint64_t *const py) {

__asm__ __volatile__(

"test %4, %4 ;"

"cmovnzq %5, %0 ;"

"cmovnzq %6, %1 ;"

"cmovnzq %7, %2 ;"

"cmovnzq %8, %3 ;"

: "+r"(px[0]), "+r"(px[1]), "+r"(px[2]),

"+r"(px[3])

: "r"(bit), "rm"(py[0]), "rm"(py[1]),

"rm"(py[2]), "rm"(py[3])

: "cc"

);

}

(a) Inline assembly code of CSe-

lect

movq 0(%rsi), %r9

movq 8(%rsi), %r8

movq 16(%rsi), %rcx

movq 24(%rsi), %rax

test %dil, %dil

cmovnzq 0(%rdx), %r9

cmovnzq 8(%rdx), %r8

cmovnzq 16(%rdx), %rcx

cmovnzq 24(%rdx), %rax

movq %r9, 0(%rsi)

movq %r8, 8(%rsi)

movq %rcx, 16(%rsi)

movq %rax, 24(%rsi)

(b) Generated assembly code of CSelect

Figure 3.2: Assembly code to implement constant time conditional select for
Curve25519 taken from the implementation of [OLH+17].

3https://github.com/floodyberry/supercop/blob/master/crypto_scalarmult/curve25519/

amd64-64/work_cswap.s (accessed on August 5, 2020).

https://github.com/floodyberry/supercop/blob/master/crypto_scalarmult/curve25519/amd64-64/work_cswap.s
https://github.com/floodyberry/supercop/blob/master/crypto_scalarmult/curve25519/amd64-64/work_cswap.s
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Implementation of CSELECT. Consider the CSELECT based Montgomery ladder given
in Algorithm 3.5. The 64-bit implementation of Curve255194 provided with [OLH+17]
has an implementation of CSELECT. The inline assembly code taken from the imple-
mentation of [OLH+17] is provided in the left column and the generated assembly is
shown in the right column of Figure 3.2. From the generated assembly it can be ob-
served that the registers r9, r8, rsi, rax hold the limb value of X for the subroutine
CSELECT(X, Y, select, ). The register values are conditionally overwritten with the limb
values of Y through the cmovnz instruction after the value of swap is tested using the test
instruction.

cmp $1, %rcx

movq 0(%rsp), %r8

movq 8(%rsp), %r9

movq 16(%rsp), %r10

movq 24(%rsp), %r11

movq 64(%rsp), %r12

movq 72(%rsp), %r13

movq 80(%rsp), %r14

movq 88(%rsp), %r15

cmov %r12, %r8

cmov %r13, %r9

cmov %r14, %r10

cmov %r15, %r11

movq %r8, 0(%rsp)

movq %r9, 8(%rsp)

movq %r10, 16(%rsp)

movq %r11, 24(%rsp)

movq 32(%rsp), %r8

movq 40(%rsp), %r9

movq 48(%rsp), %r10

movq 56(%rsp), %r11

movq 96(%rsp), %r12

movq 104(%rsp), %r13

movq 112(%rsp), %r14

movq 120(%rsp), %r15

cmov %r12, %r8

cmov %r13, %r9

cmov %r14, %r10

cmov %r15, %r11

movq %r8, 32(%rsp)

movq %r9, 40(%rsp)

movq %r10, 48(%rsp)

movq %r11, 56(%rsp)

Figure 3.3: Assembly code to implement CSELECT for X25519.

The assembly code shown in Figure 3.2 implements one CSELECT operation. So, im-
plementation of the two CSELECT operations in Algorithm 3.2 requires a total of 16 movq

and 8 cmovnz operations. It follows that the number of data movement instructions to
implement the 2 CSELECT operations in Algorithm 3.5 is significantly smaller than the
number of data movement operations to implement the CSWAP operation.

Remark 3.2. In the 64-bit implementation of Curve4485 provided with [OLH+17], the condi-
tional selection has been implemented using a high level ’C’ function. The logic used for the
conditional selection is similar to the logic used in Algorithm 3.3. The generated assembly does

4https://github.com/armfazh/rfc7748_precomputed/blob/master/src/x25519_x64.c (accessed on
August 5, 2020).

5https://github.com/armfazh/rfc7748_precomputed/blob/master/src/x448_x64.c (accessed on
August 5, 2020).

https://github.com/armfazh/rfc7748_precomputed/blob/master/src/x25519_x64.c
https://github.com/armfazh/rfc7748_precomputed/blob/master/src/x448_x64.c
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not use any conditional move instructions and the number of instructions required to implement
the conditional branching is fairly large.

Algorithm 3.6 Constant time Montgomery ladder using conditional selection

1: function MONTGOMERY-LADDER-CSELECT-NEW(xP, n)
2: input: An `-bit scalar n and the x-coordinate xP of a point P.
3: output: x-coordinate of nP, the n-times scalar multiple of P.

4: X1 ← xP; X2 ← 1; Z2 ← 0; X3 ← xP; Z3 ← 1
5: prevbit← 0
6: for i← `− 1 down to 0 do
7: T1 ← X2 + Z2
8: T2 ← X2 − Z2
9: T3 ← X3 + Z3

10: T4 ← X3 − Z3
11: Z3 ← T2 · T3
12: X3 ← T1 · T4

13: bit← bit at index i of n
14: b← bit ⊕ prevbit

15: prevbit← bit

16: CSELECT(T1, T3, b)
17: CSELECT(T2, T4, b)

18: T2 ← T2
2

19: T1 ← T2
1

20: T3 ← X3 + Z3
21: Z3 ← X3 − Z3
22: Z3 ← Z2

3
23: X3 ← T2

3
24: T3 ← T1 − T2
25: T4 ← ((A + 2)/4) · T3
26: T4 ← T4 + T2
27: X2 ← T1 · T2
28: Z2 ← T3 · T4
29: Z3 ← Z3 · X1
30: end for
31: return X2Zp−2

2
32: end function.

3.3 Modified Constant Time Conditional Branching

We rearrange the sequence of steps given in Algorithm 3.5 and formalize a variant of
it, which we denote as MONT-LADDER-CSELECT-NEW and is shown in Algorithm 3.6.
The new algorithm needs fewer number of temporary variables and the copy statement
in Step 24 has been omitted. The correctness of MONT-LADDER-CSELECT-NEW follows
from the correctness of MONT-LADDER-CSELECT.
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3.4 New Assembly Implementation of CSELECT

Figure 3.2 described the previous assembly implementation of CSELECT. We would like
to highlight a difference in the manner by which the cmov instructions have been used in
Figure 3.1 and the cmovnz instructions have been used in Figure 3.2. In Figure 3.1 all the
cmov instructions have their operands to be registers, while in Figure 3.2 all the cmovnz

instructions have one operand to be a memory location while the other is a register.
We prefer to have an implementation of CSELECT using cmov where both the operands
are registers6. This requires loading an element from the memory to registers before
applying cmov. Such a strategy increases the number of mov operations. We consider
this to be a small trade-off for increased assurance of constant-time execution of the cmov
instruction. The modified assembly implementation of cmov is shown in Figure 3.3. This
require a total of 24 movq and 8 cmov instructions.

6In an email communication, Bernstein indicated that there are no known variable-time problems with
the cmov instruction that is purely based on registers. Latencies of the cmov instructions whose one operand
is a memory location are missing in the Agner Fog’s instruction tables. We communicated with Agner Fog
regarding this and he commented that the corresponding timing is constant in case of a cache hit.
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C H A P T E R 4

Efficient Arithmetic in (Pseudo-)Mersenne
Prime Order Fields

4.1 Introduction

Two basic applications of curve-based cryptography are key agreement and signature
schemes. Both of these schemes require scalar multiplications. The computation consists
of two steps. In the first step, the scalar multiplication is computed using projective co-
ordinates and in the second step, an inversion in the underlying finite field is required to
convert the output to affine coordinates. Computing scalar multiplication using projec-
tive coordinates requires efficient algorithms for finite field arithmetic, especially multi-
plication and squaring. For performing an inversion, there are two approaches. Using
Fermat’s little theorem (FLT), an inversion can be computed using an exponentiation
which again requires efficient algorithms for multiplication and squaring. Alternatively,
inversion can be computed using Extended Euclidean algorithm which requires addi-
tions and subtractions.

In this chapter we carry out a comprehensive study of multiplication and squaring
algorithms over fields whose order is either a Mersenne or a pseudo-Mersenne prime.
We concentrate on single multiplication and squaring algorithms and so the aspect of
simultaneous multiplications using single instruction multiple data (SIMD) instructions
is not considered in the present work.

Field multiplication and squaring have two broad phases, namely, a multiplication
phase and a reduction phase. Let the prime p = 2m − δ. Elements of Fp fit within an
m-bit string. Such an m-bit string is formatted into κ binary strings where the first (κ− 1)
strings are each η bits long and the last string is ν bits long with 0 < ν ≤ η. Following
the usual convention, we call each of the individual κ binary strings as limbs. For 64-bit
arithmetic, each limb fits into a 64-bit word. Two kinds of representations have been
considered in the literature. In the first kind of representation, η = 64, and so the limbs
(except possibly for the last one) are packed tightly into 64-bit words. In the second kind
of representation, η < 64, and so the 64-bit words containing the limbs have some free or
redundant bits. We call the first kind of representation to be saturated limb representation
and the second kind to be unsaturated limb representation.

We provide various algorithms for multiplication/squaring and reduction using both
the saturated and the unsaturated limb representations. A brief summary of these con-

34
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tributions is as follows.

4.1.1 Multiplication/Squaring for Saturated Limb Representation

We describe two sets of algorithms with each set consisting of an algorithm for multi-
plication and one for squaring. The first set of algorithms (which we call mulSLDCC/
sqrSLDCC) generalizes the multiplication/squaring algorithms in the Intel white pa-
pers [OGG13, OGGF12] to work for 64i-bit integers for any i ≥ 2. These algorithms use
two independent carry chains and can be implemented in the newer generation of pro-
cessors. The second set of algorithms (which we call mulSLa/sqrSLa) do not use double
carry chains and can be implemented across all generation of processors. These algo-
rithms combine an initial step of the reduction with the multiplication. The idea behind
mulSLa/sqrSLa has not appeared earlier in the literature.

4.1.2 Multiplication/Squaring for Unsaturated Limb Representation

We describe two sets of algorithms. The first set of algorithms (which we call mu-
lUSL/sqrUSL) generalize the ideas used in [BDL+12] for the prime 2255 − 19. These al-
gorithms, however, lead to overflow for certain primes such as the Bitcoin prime 2256 −
232− 977. To handle such overflow issues, we describe a second set of algorithms (which
we call mulUSLa/sqrUSLa) which have not appeared earlier in the literature.

4.1.3 Reduction for Saturated Limb Representation

We describe four reduction algorithms, namely reduceSLMP, reduceSLPMP, reduceSL-
PMPa and reduceSL. Algorithms reduceSLMP, reduceSLPMP and reduceSLPMPa reduce
the outputs of mulSLDCC/sqrSLDCC. Specifically, reduceSLMP works for all Mersenne
primes and is a generalization of the ideas used in [BCLS14] for the prime 2127 − 1. Al-
gorithm reduceSLPMP works for a large class of pseudo-Mersenne primes and has not
appeared earlier. Algorithm reduceSLPMPa works for a large class of pseudo-Mersenne
primes and is a generalization of the ideas for 4-limb representation used in [BDL+12]
for the prime 2255 − 19. Algorithm reduceSL reduces the output mulSLa/sqrSLa and has
not appeared earlier in the literature.

4.1.4 Reduction for Unsaturated Limb Representation

We describe three reduction algorithms, namely, reduceUSL, reduceUSLA and reduceUSLB.
Algorithm reduceUSL works for a large class of pseudo-Mersenne primes and is a gener-
alization of the ideas for 5-limb representation used in [Cho15]1 for the prime 2255 − 19.
For certain primes, reduceUSLA is more efficient than reduceUSL and generalizes ideas
used in [BDL+12] for the prime 2255 − 19. For certain other primes, reduceUSLB is more
efficient than both reduceUSL and reduceUSLA. Compared to reduceUSLA, Algorithm re-
duceUSLB leaves an extra bit in most of the limbs of the partially reduced output. The
idea behind reduceUSLB has not appeared earlier in the literature.

In Table 4.1, for each algorithm presented in this work, we state whether it is new, or
the earlier work that it generalizes.

1See also https://github.com/floodyberry/supercop/tree/master/crypto_scalarmult/

curve25519/amd64-51.

https://github.com/floodyberry/supercop/tree/master/crypto_scalarmult/curve25519/amd64-51
https://github.com/floodyberry/supercop/tree/master/crypto_scalarmult/curve25519/amd64-51
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There are two key theoretical features of our work.

1. While previous works have developed code for a single prime, we describe the
algorithms in their full generality.

2. For each reduction algorithm, we state precise theorems about their correctness
and provide detailed proofs of correctness.

Works on implementation of Curve25519 provide reduction methods for the prime 2255−
19 [Ber06b, Cho15, DHH+15, FL15], though without proofs of correctness. We note that
there are excellent discussions on Barrett and Montgomery reductions available in the
literature [CFA+05, MvOV96, HMV03, BD20] which also describe reduction methods
for specific primes. On the other hand, to the best of our knowledge, the reduction algo-
rithms and the proofs that we describe do not appear in the literature.

The second aspect of our work is in the efficient implementation of the various mul-
tiplication and squaring algorithms.

4.1.5 Assembly Implementations

All the algorithms described in this paper have been implemented in 64-bit assembly
for Intel processors. The implementations are divided into two groups, namely maa and
maax. For implementations in the maa group, the only arithmetic instructions used are
mul, imul, add and adc, while for implementations in the maax group, the arithmetic
instructions mulx, adcx and adox are also used. These second set of instructions are
available from the Broadwell processor onwards.

4.1.6 Library for Field Arithmetic

Through our efficient 64-bit assembly implementations, we provide a library of field
multiplication and squarings in cryptographically relevant prime order fields targeting
the modern Intel processors. The efficient field arithmetic library can be used for the
development of fast projective-coordinate-based scalar multiplication over appropriate
elliptic curves. The implementations of the library can also be used to develop other
efficient applications of cryptography where the prime order fields of this work are rele-
vant.

We have considered a total of fourteen primes which include all previously proposed
cryptographically relevant (pseudo-)Mersenne primes at various security levels. These
primes are shown in Table 4.2. For the prime 2255 − 19, we have found earlier imple-
mentations of both maa and maax types and for five of the other primes, we have found
implementations of maa type. So, for eight of the fourteen primes, we provide the first
maa type implementation and for thirteen of the fourteen primes, we provide the first
maax type implementations.

Timings of the field operations for the new implementations and the existing imple-
mentations have been measured on the Haswell and Skylake processors. For each prime
where a previous implementation is available, our implementation improves upon such
previous implementations. A summary of the various speed-ups that were observed is
as follows. Further details are provided later.

maa type implementations:



4. Efficient Arithmetic in (Pseudo-)Mersenne Prime Order Fields 37

algorithm feature

mulSLDCC/sqrSLDCC generalizes [OGG13, OGGF12]

mulSLa/sqrSLa new

mulUSL/sqrUSL generalizes [BDL+12]

mulUSLa/sqrUSLa new

reduceSLMP generalizes [BCLS14]

reduceSLPMP new

reduceSLPMPa generalizes [BDL+12, 4-limb]

reduceSL new

reduceUSL generalizes [Cho15, 5-limb]

reduceUSLA generalizes [BDL+12, 5-limb]

reduceUSLB new

Table 4.1: The various algorithms for multiplication/squaring
and reduction described in this paper.

On Haswell: Speed-ups of about 10%, 3%, 4%, 36%, 2% and 18% were observed
for the primes 2127− 1, 2251− 9, 2255− 19, 2256− 232− 977, 2266− 3 and 2521− 1
respectively.

On Skylake: Speed-ups of about 10%, 12%, 4%, 28%, 8% and 16% were observed
for the primes 2127− 1, 2251− 9, 2255− 19, 2256− 232− 977, 2266− 3 and 2521− 1
respectively.

maax type implementations: On the Skylake processor, a speed-up of about 26% was
observed for the prime 2255 − 19.

The speed-ups obtained for 2255 − 19 and 2256 − 232 − 977 are particularly important.
The prime 2255 − 19 defines the underlying field for the famous Curve25519 while the
prime 2256 − 232 − 977 defines the underlying field for the curve secp256k1 which is
used in the Bitcoin protocol. The above mentioned improvements arises from use of
new reduction algorithms as well as hand optimizations of the corresponding assembly
codes.

Source codes of all our implementations are publicly available at the link

https://github.com/kn-cs/pmp-farith.

Remark 4.1. Let x be an `-bit non-negative integer and η ≤ `. The operation x mod 2η returns
lsbη(x), i.e., the η least significant bits of x, whereas the operation bx/2ηc returns the `− η most
significant bits of x. It will be helpful to keep this simple observation in mind while going through
the various algorithms given later.

4.2 Representation of Elements in Fp

Let η be a positive integer and θ = 2η . Consider the expression

h(θ) = h0 + h1θ + · · ·+ hk−1θk−1 (4.1)

https://github.com/kn-cs/pmp-farith
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prime curve(s)

2127 − 1 Kummer2 [BCLS14], FourQ [CL15]

2221 − 3 M-221 [ABGR13]

2222 − 117 E-222 [ABGR13]

2251 − 9 Curve1174 [ABGR13], KL2519(81,20) [KS20]

2255 − 19 Curve25519 [Ber06b], KL25519(82,77) [KS20]

2256 − 232 − 977 secp256k1 [Res10]

2266 − 3 KL2663(260,139) [KS20]

2382 − 105 E-382 [ABGR13]

2383 − 187 M-383 [ABGR13]

2414 − 17 Curve41417 [BCL14]

2511 − 187 M-511 [ABGR13]

2512 − 569 -

2521 − 1 P-521 [fSTb], E-521 [ABGR13]

2607 − 1 -

Table 4.2: The primes considered in this work.

where h0, h1, . . . , hk−1 are non-negative integers. The polynomial h(θ) is given by the
vector of coefficients 〈h0, h1, . . . , hk−1〉. We will call these coefficients to be the limbs of
the polynomial. Note that we do not insist that the coefficients are less than 2η ; in fact, at
intermediate steps, the coefficients will not necessarily be less than 2η .

Given an m-bit integer, by a (κ, η, ν)-representation we will mean a κ-limb representation,
where the first κ − 1 limbs are η bits long and the last limb (least significant limb) is ν bits long.

Example 4.1. For the prime p = 2251 − 9, the elements in the underlying field in base θ = 251

have the (κ, η, ν)-representation such that κ = 5, η = 51, ν = 47.

Proposition 4.1. Let x and y be two m-bit integers both having a (κ, η, ν)-representation and
let z = x · y. Then z has a (κ′, η, ν′)-representation where

κ′ = 2κ − 1, ν′ = 2ν if 0 < ν ≤ η/2; and κ′ = 2κ, ν′ = 2ν− η if η/2 < ν ≤ η.

Proof. We have m = η(κ − 1) + ν. The number of bits in z is at most 2m and we may
write 2m = η(2κ − 2) + 2ν. If 0 < ν ≤ η/2, then z has a (2κ − 1)-limb representation
where the first 2κ− 2 limbs are each η bits long and the last limb is ν′ = 2ν bits long. On
the other hand, if η/2 < ν ≤ η, then we may write 2m = η(2κ − 1) + 2ν− η and so z
has a 2κ-limb representation where the first 2κ− 1 limbs are each η bits long and the last
limb is 2ν− η bits long. (Note that η/2 < ν ≤ η implies 0 < 2ν− η ≤ η.)

Consider a (κ, η, ν)-representation of an m-bit integer w. Suppose that ω-bit arith-
metic will be used for implementation. Using ω-bit arithmetic, w will be represented by
κ ω-bit words w0, w1 . . . , wκ−1 such that the binary representation of w is given by

lsbν(wκ−1)||lsbη(wκ−2)|| · · · ||lsbη(w0). (4.2)

Here lsbi(x) denotes the i least significant bits of the binary string x and 0 < ν ≤ η ≤ ω.
Depending on the value of η, we identify two kinds of representations.
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Saturated limb representation. In this case η = ω. So, each of the ω-bit words
w0, w1, . . . , wκ−2 are “saturated” in the sense that there are no leading redundant
bits in these words. The ω-bit word wκ−1 is saturated or unsaturated depending
on whether ν = η or ν < η respectively.

Unsaturated limb representation. In this case η < ω. So, each of the ω-bit words
w0, w1, . . . , wκ−1 are “unsaturated” in the sense that they contain some leading re-
dundant bits. The word wκ−1 contains the same or more leading redundant bits
according to whether ν = η or ν < η respectively.

Remark 4.2. In this work, we will consider 64-bit arithmetic and so ω = 64. The general
ideas of the algorithms apply to arbitrary values of ω. The actual value of ω = 64 is used at some
places in the (non-)overflow analysis of the correctness proofs.

The primes p that we consider are of the form

p = 2m − δ, (4.3)

where δ is sufficiently small. Given (κ, η, ν)-representation of m-bit integers, we have

2η(κ−1)+ν = 2m ≡ δ mod p. (4.4)

For future reference, we define

cp = 2η−νδ. (4.5)

The different values of m, δ, κ, η and ν for the various primes p considered in this
work are given in Table 4.3 2. For each prime, two sets of values of κ, η and ν are pro-
vided, one using saturated limb representation and the other using unsaturated limb
representation.

4.2.1 Saturated versus Unsaturated Limb Representation

For processors which provide support for maax instructions, field arithmetic using the
saturated limb representation is more efficient than using unsaturated limb represen-
tation. On the other hand, for older processors which have support for only maa type
instructions, field arithmetic using saturated limb representation becomes quite com-
plex due to the problem of handling carries. For such processors, in general, using the
unsaturated limb representation turns out to be more efficient.

4.2.2 Representation of Primes

Suppose m-bit integers have a (κ, η, ν)-representation and θ = 2η . The prime p = 2m − δ
is represented as the polynomial p(θ), defined as

p(θ) = p0 + p1θ + · · ·+ pκ−1θκ−1, (4.6)

where p0 = 2η − δ(δ < 2η), p1 = p2 = · · · = pκ−2 = 2η − 1, and pκ−1 = 2ν − 1.

2For the prime 2414 − 17 an unsaturated limb representation with (κ = 7, η = 60, ν = 54) is also possi-
ble. The corresponding multiplication, squaring and inversion algorithms are then mulUSLa, sqrUSLa and
invUSLa respectively. We discuss this idea in Section 4.7.1.
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prime m δ
unsaturated limb saturated limb

κ η ν κ η ν

2127 − 1 127 1 3 43 41 2 64 63

2221 − 3 221 3 4 56 53 4 64 29

2222 − 117 222 117 4 56 54 4 64 30

2251 − 9 251 9 5 51 47 4 64 59

2255 − 19 255 19 5 51 51 4 64 63

2256 − 232 − 977 256 232 + 977 5 52 48 4 64 64

2266 − 3 266 3 5 54 50 5 64 10

2382 − 105 382 105 7 55 52 6 64 62

2383 − 187 383 187 7 55 53 6 64 63

2414 − 17 414 17 8 52 50 7 64 30

2511 − 187 511 187 9 57 55 8 64 63

2512 − 569 512 569 9 57 56 8 64 64

2521 − 1 521 1 9 58 57 9 64 9

2607 − 1 607 1 10 61 58 10 64 31

Table 4.3: The primes considered in this work and their saturated and unsaturated limb representations.

An element in Fp is represented as a polynomial f (θ) of degree at most κ− 1, defined
as

f (θ) = f0 + f1θ + · · ·+ fκ−1θκ−1, (4.7)

where 0 ≤ f0, f1, . . . , fκ−1 < 2η and 0 ≤ fκ−1 < 2ν.

4.2.3 Unique Representation of Field Elements

It should be noted that the expressions f (θ) are in one-one correspondence with the in-
tegers 0, 1, . . . , 2m − 1. This leads to a non-unique representation of δ elements in Fp, i.e.,
the elements 0, 1, . . . , δ− 1 are also represented as 2m− δ, 2m− δ+ 1, . . . , 2m− 1. The non-
unique representation does not affect the correctness of the computations. At the end of
the computation, the final result is converted to a unique representation by subtracting
the prime p from the field element and discarding the result if a carry is generated after
the subtraction. This conditional subtraction has been implemented in constant time.

4.2.4 Inversion in Fp

Fermat’s little theorem states that for a prime p and any non-zero a ∈ Fp, a(p−1) ≡
1 mod p. So, a(p−2) is the inverse of a in Fp. Thus, the computation of inverse of any
non-zero element in Fp reduces to the problem of exponentiating a to the power (p −
2). The standard way to compute this exponentiation is to use the square-and-multiply
algorithm which can be implemented through a addition chain. Usually, we can design
better addition chain algorithms than the default one by careful inspections. Since, the
value (p − 2) is fixed, the numbers of squarings and multiplications are fixed and do
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not depend on the value of a. So, if squaring and multiplication in Fp are constant time
algorithms, then the exponentiation based inversion is also a constant time algorithm.

For (pseudo-)Mersenne primes, the binary representation of (p − 2) is sparse. So,
only a few multiplications are required in the square-and-multiply algorithm to compute
a(p−2). It is due to this reason that the FLT-based inversion is attractive for (pseudo-
)Mersenne primes. For dense primes, the number of multiplications can be reduced by
classical recoding techniques which only leak the exponent (p− 2), that is already public.

Till recently, FLT based inversion was considered to be the more efficient of the two
methods for inversion in (pseudo-)Mersenne prime order fields. On the face of it, this
seems counter-intuitive since the Fermat based approach uses multiplications and squar-
ings, whereas the Euclid based approach uses only additions and logical shifts. The rea-
son for Fermat based approach being faster for (pseudo-)Mersenne primes seems to be
based on two factors, namely, the number of iterations in the Euclid based approach is
higher and the availability of very fast multiplication instructions in modern processors.
Defying this reasoning, a recent work by Bernstein and Yang [BY19] showed that the
Euclid based approach could indeed be faster for (pseudo-)Mersenne primes.

Remark 4.3. The integer multiplication and squaring algorithms considered in this paper are
based on the schoolbook method. For larger primes, it may be more efficient to consider Karat-
suba’s algorithm to implement integer multiplication and squaring. Deciding upon a Karatsuba
strategy would require determining how to divide the operand and the recursion depth after which
schoolbook would be applied. So, determining the best Karatsuba strategy would depend on the
specific prime and also the target architecture. We note, on the other hand, that the reduction
algorithms that we describe do not depend on whether schoolbook or Karatsuba strategy is used
for integer multiplication and squaring.

As a case study, we have implemented the field operations for the prime p = 2607 − 1 fol-
lowing a (5 + 5)-Karatsuba decomposition using the maax instructions in Skylake; for the sub-
problems of size 5 we apply directly the schoolbook method. The obtained timings for field multi-
plication, squaring and inversion are (175, 142, 86292). In contrast, the timings (159, 129, 74442)
obtained using a schoolbook method over 10 limbs are better. So, it is not necessarily true that a
Karatsuba strategy will be faster for larger primes.

In the rest of the paper, we will focus entirely on field multiplication and squaring. In compar-
ison, field addition, negation and subtraction are much faster. We note one important difference
in these operations which arises from the representation of the elements. For saturated limb rep-
resentations, field addition/negation/subtraction can be implemented using add/adc/sub/sbb.
On the other hand, for unsaturated limb representations, implementation of these operations also
require shift operations.

4.3 Overview of the Algorithms

All algorithms in this work are described keeping 64-bit arithmetic in mind.

4.3.1 Meanings of Various Abbreviations

SL : saturated limb;
USL : unsaturated limb;
SCC : single carry chain;
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DCC : double (independent) carry chains;
MP : Mersenne prime;
PMP : pseudo-Mersenne prime.

Brief descriptions of the tasks of the different algorithms that we consider are given
below.

4.3.2 Algorithms for the Saturated Limb Representation

mulSCC: Multiply a word whose value is less than 264 to an integer given by a saturated
limb representation using a single carry chain.

mulSLDCC: Multiply two integers given in saturated limb representations using double
(independent) carry chains.

sqrSLDCC: Square an integer given in saturated limb representation using double carry
chains.

reduceSLMP: Reduction algorithm to be applied to the outputs of mulSLDCC or sqrSLDCC
when the underlying prime is a Mersenne prime.

reduceSLPMP: Reduction algorithm to be applied to the outputs of mulSLDCC or sqrSLDCC
when the underlying prime is a pseudo-Mersenne prime.

reduceSLPMPa: A partial reduction algorithm to be applied to the outputs of mulSLDCC
or sqrSLDCC when the underlying prime is a pseudo-Mersenne prime.

mulSLa: Multiply two integers given in saturated limb representations and perform an
initial step of the reduction.

sqrSLa: Square an integer given in saturated limb representation and perform an initial
step of the reduction.

reduceSL: A generic reduction algorithm to be applied to the outputs of mulSLa/sqrSLa.

farith-SLa: Denotes the algorithm triplet which computes a field multiplication, squar-
ing and inverse using mulSLa, sqrSLa and reduceSL.

farith-SLMP: Denotes the algorithm triplet which computes a field multiplication, squar-
ing and inverse using mulSL, sqrSL and reduceSLMP. See the remark below for
mulSL and sqrSL.

farithx-SLMP: Denotes the algorithm triplet which computes a field multiplication, squar-
ing and inverse using mulSLDCC, sqrSLDCC and reduceSLMP.

farithx-SLPMP: Denotes the algorithm triplet which computes a field multiplication,
squaring and inverse using mulSLDCC, sqrSLDCC and reduceSLPMP.

Remark 4.4. The output of mulSLDCC is the product of the two integers and the output of
sqrSLDCC is the square of an integer. Algorithms mulSLDCC/sqrSLDCC utilize double carry
chains to perform the computations. The product of two integers in the saturated limb represen-
tation can also be performed without using double carry chains and similarly, the square of an
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integer in the saturated limb representation can be performed without using double carry chains.
For the prime 2255 − 19, the 4-limb algorithms in [BDL+12] perform such computations. The
4-limb algorithms in [BDL+12] can be extended to work for arbitrary limb representations. We
will denote the resulting multiplication and squaring algorithms by mulSL and sqrSL. Note that
mulSL/sqrSL are different from mulSLa/sqrSLa since mulSLa/sqrSLa also perform an initial step
of reduction while this is not done by mulSL/sqrSL.

4.3.3 Algorithms for the Unsaturated Limb Representation

mulUSL: Multiply two integers given in unsaturated limb representations and perform
an initial step of the reduction.

sqrUSL: Square an integer given in unsaturated limb representation and perform an
initial step of the reduction.

mulUSLa: Multiply two integers given in unsaturated limb representations and perform
an initial step of the reduction. This is a variant of mulUSL which is to be used when
mulUSL leads to overflows.

sqrUSLa: Square an integer given in unsaturated limb representation and perform an
initial step of the reduction. This is a variant of sqrUSL which is to be used when
sqrUSL leads to overflows.

reduceUSL: A generic reduction algorithm to be applied to the outputs of mulUSL/sqrUSL
or mulUSLa/sqrUSLa.

reduceUSLA: An algorithm to be applied to the outputs of mulUSL/sqrUSL or mulUSLa/
sqrUSLa when the prime is of type A. For such primes, reduceUSLA is more efficient
than reduceUSL.

reduceUSLB: An algorithm to be applied to the outputs of mulUSL/sqrUSL or mulUSLa/
sqrUSLa when the prime is of type B. For such primes, reduceUSLB is more efficient
than reduceUSL or reduceUSLA.

farith-USL: Denotes the algorithm triplet which computes a field multiplication, squar-
ing and inverse using mulUSL, sqrUSL and reduceUSL.

farith-USLA: Denotes the algorithm triplet which computes a field multiplication, squar-
ing and inverse using mulUSLA, sqrSLA and reduceUSLA.

farithx-USLB: Denotes the algorithm triplet which computes a field multiplication, squar-
ing and inverse using mulUSLB, sqrUSLB and reduceUSLB.

farithx-USLa: Denotes the algorithm triplet which computes a field multiplication, squar-
ing and inverse using mulUSLa, sqrUSLa and reduceUSLA.

The implementations of the various algorithms are divided into two groups.

Algorithms in the maa setting. The algorithms farith-SLa, farith-USL, farith-USLA, farith-
USLB and farith-USLa have been implemented in assembly using only the instruc-
tions mul, imul, add and adc to do arithmetic. These implementations are down-
ward compatible with previous generations of Intel processors.
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Algorithms in the maax setting. The implementations of the algorithms farithx-SLMP
and farithx-SLPMP also use the instructions mulx, adcx and adox for doing arith-
metic. These implementations work on the Broadwell and later generation proces-
sors.

4.3.4 Descriptions of the Algorithms

We describe a number of algorithms. The descriptions of the algorithms are at a fairly
high level. They are provided in a form which make it easy to understand the algorithms
and present the proofs of correctness. For the various reduction algorithms, the input is
considered to be a polynomial h(0)(θ), with θ = 2η , and the output is h(k)(θ) for some
k ≥ 1, such that

h(0)(θ) ≡ h(1)(θ) ≡ · · · ≡ h(k)(θ) mod p.

Conceptually, the algorithm proceeds in stages where the i-th stage computes h(i)(θ)
from h(i−1)(θ) for i = 1, 2, . . . , k. The proofs of correctness show that h(i)(θ) ≡ h(i−1)(θ)
mod p and also provide precise bounds on the coefficients of h(i)(θ). In order to define
the polynomials h(i)(θ), the algorithms use certain statements which simply copy some
of the coefficients of h(i−1)(θ) to h(i)(θ). Also, for ease of reference in the proofs, cer-
tain temporary variables are indexed by the loop counter creating the impression that a
number of such variables are required, whereas in actual implementation one variable is
sufficient.

For actual assembly implementation, it is desirable to use the registers as much as
possible and also to avoid using load/store instructions to the extent possible. As such,
the strict distinction between the various stages of the algorithm is not maintained so
that some of the copy statements become redundant and are not implemented. Also,
the use of temporary variables is minimized as much as possible and such variables are
reused whenever feasible. Modulo such routine simplifications, the implementations
follow the general flow of the algorithms. For each of the algorithms, we provide efficient
assembly implementations for a number of primes. Studying the code together with the
algorithm descriptions will make the associations between them clear and lead to a better
understanding of the code.

4.4 Integer Multiplication/Squaring for Saturated Limb Repre-
sentation Using Independent Carry Chains

Let c be an η-bit constant, θ = 2η and f (θ) be a polynomial in θ of degree at most
d − 1 whose coefficients are from Zθ . A basic step in the multiplication and squaring
algorithms is the computation c · f (θ). The result is a polynomial h(θ) of degree at most
d and whose coefficients are from Zθ . Function mulSCC given in Algorithm 4.1 performs
this computation.

The multiplication in Step 4 of mulSCC can be completed using a single mulx op-
eration. The for loop in Steps 6-9 uses an interleaved sequence of multiplications and
additions. The additions involve a carry propagation through the variable c. Step 7 can
be completed using a single mulx instruction while Step 8 can be completed using an
adc instruction. The single bit value of the carry variable c is carried through CF. Note
that mulx does not affect CF and so it is possible to use adc instructions to implement the
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Algorithm 4.1 Multiply f (θ) with an η-bit constant c; θ = 2η , η = 64.

1: function mulSCC( f (θ), c)
2: input: f (θ) = f0 + f1θ + · · · + fd−1θd−1, c, where 0 ≤ c, f0, f1, . . . , fd−1 < 2η and

d ≥ 1.
3: output: h(θ) = h0 + h1θ + · · ·+ hdθd = c · f , where 0 ≤ h0, h1, . . . , hd < 2η .
4: t← c · f0; h0 ← t mod 2η ; h1 ← bt/2ηc
5: c← 0
6: for i← 1 to d− 1 do
7: t← c · fi; hi+1 ← bt/2ηc; `← t mod 2η

8: t← hi + `+ c; hi ← t mod 2η ; c← bt/2ηc
9: end for

10: hd ← hd + c
11: return h(θ) = h0 + h1θ + · · ·+ hdθd

12: end function.

carry chain. Since the mul instruction affects CF, using mul instead of mulx would not
have allowed an efficient implementation of the carry chain using adc instructions.

The single carry chain of mulSCC is pictorially depicted in Figure 4.1. The horizontal
rectangular boxes denote the two η-bit quantities arising out of the multiplication shown
at the left end of the corresponding row. The vertical oval shape encapsulates the quan-
tities that are added using the adc instruction. These consist of two η-bit quantities and
the carry c whose value is available in the CF flag.

In general, it is required to multiply two integers written as polynomials f (θ) and
g(θ) having degrees d and e respectively. This is performed using Function mulSLDCC
given in Algorithm 4.2. The algorithm is written in a manner so that there are two inde-
pendent carry chains in action which can exploit the two different flags CF and OF of the
Intel architecture through the adcx and adox instructions. This is illustrated in Figure 4.2.

c · f0: h0 h1
c · f1: • h2

�



�
	

h1 h2
cHHj

c · f2: • h3

�



�
	

h2 h3
cHHj

c · f3: • h4

�



�
	

h3 h4
cHHj

Figure 4.1: Single carry chain for mulSCC.

The multiplications in mulSLDCC are independent and can be performed simultane-
ously. The two additions are also independent and can be performed simultaneously.
The additions, however, depend on the result of the previous multiplication. The mulx
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g0 · f : h0 h1 h2 h3 h4 h5 h6
g1 · f0: • •
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Figure 4.2: Two independent carry chains for mulSLDCC.

Algorithm 4.2 Multiply f (θ) and g(θ); θ = 2η , η = 64.

1: function mulSLDCC( f (θ), g(θ))
2: input: f (θ) = f0 + f1θ + · · ·+ fd−1θd−1 and g(θ) = g0 + g1θ + · · ·+ ge−1θe−1, where

0 ≤ f0, f1, . . . , fd−1, g0, g1, . . . , ge−1 < 2η , and d ≥ e ≥ 2.
3: output: h(θ) = h0 + h1θ + · · ·+ hd+e−1θd+e−1 = f · g, where 0 ≤ h0, h1, . . . , hd+e−1 <

2η .
4: h0 + h1θ + · · ·+ hdθd ← mulSCC( f (θ), g0)
5: for i← 1 to e− 1 do
6: c1 ← 0; c2 ← 0
7: for j← 0 to d− 1 do
8: t← gi · f j
9: r ← hi+j + (t mod 2η) + c1

10: s← hi+j+1 + bt/2ηc+ c2
11: hi+j ← r mod 2η ; c1 ← br/2ηc
12: hi+j+1 ← s mod 2η ; c2 ← bs/2ηc
13: end for
14: hi+j+1 ← hi+j+1 + c1
15: end for
16: return h(θ) = h0 + h1θ + · · ·+ hd+e−1θd+e−1

17: end function.

instruction is used to perform the multiplications. This instruction does not affect either
CF or OF. The two independent carry chains arising in Function mulSLDCC (and as il-
lustrated in Figure 4.2) are implemented using a sequence of adcx and adox instructions.
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The adcx instruction uses CF to propagate the carry while the adox instruction uses OF
to propagate the carry.

Algorithm 4.3 Square f (θ); θ = 2η , η = 64.

1: function sqrSLDCC( f (θ))
2: input: f (θ) = f0 + f1θ + · · ·+ fd−1θd−1 such that 0 ≤ f0, f1, . . . , fd−1 < 2η .
3: output: h(θ) = h0 + h1θ + · · ·+ h2d−1θ2d−1 = f 2 such that 0 ≤ h0, h1, . . . , h2d−1 < 2η .
4: h1 + h2θ + · · ·+ hdθd ← mulSCC( f1 + f2θ + · · ·+ fd−1θd−2, f0)
5: for i← 1 to d− 3 do
6: hd+i ← 0
7: end for
8: for i← 1 to d− 3 do
9: c1 ← 0; c2 ← 0

10: for j← i + 1 to d− 1 do
11: t← fi · f j
12: r ← hi+j + (t mod 2η) + c1; s← hi+j+1 + bt/2ηc+ c2
13: hi+j ← r mod 2η ; c1 ← br/2ηc
14: hi+j+1 ← s mod 2η ; c2 ← bs/2ηc
15: end for
16: hi+j+1 ← hi+j+1 + c1
17: end for
18: t← fd−1 · fd−2
19: r ← h2d−3 + (t mod 2η); h2d−3 ← r mod 2η

20: c← br/2ηc; h2d−2 ← bt/2ηc+ c
21: h2d−1 ← bh2d−2/2η−1c
22: for i← 2d− 1 down to 2 do
23: hi ← (2hi mod 2η) + bhi−1/2η−1c
24: end for
25: h1 ← 2h1 mod 2η

26: t← f0 · f0
27: h0 ← t mod 2η ; t← h1 + bt/2ηc
28: h1 ← t mod 2η ; c← bt/2ηc
29: for i← 1 to d− 1 do
30: t← fi · fi
31: r ← h2i + (t mod 2η) + c; h2i ← r mod 2η ; c← br/2ηc
32: r ← h2i+1 + bt/2ηc+ c; h2i+1 ← r mod 2η ; c← br/2ηc
33: end for
34: return h(θ) = h0 + h1θ + . . . + h2d−1θ2d−1

35: end function.

Intel processors have multiple ALUs. So, the independent additions can be simulta-
neously executed on two separate ALUs. Further, subject to availability, the independent
multiplications can be scheduled on separate ALUs and the multiplications and addi-
tions can be scheduled in a pipelined manner on separate ALUs such that the time for
addition does not cause any delay in the overall computation.

Squaring an integer of the form f (θ) can be performed by setting both inputs in
mulSLDCC to be equal to f (θ). On the other hand, it is possible to reduce the number
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of multiplications. Function sqrSLDCC given in Algorithm 4.3 squares f (θ). It consists
of three phases. In the first phase, the cross product terms are computed; in the second
phase, these are multiplied by 2 (which is a doubling operation); and in the third phase,
the squares of the coefficients of f (θ) are computed. Multiplications are performed in
the first and the third phase. In the first phase, two independent carry chains arise in
a manner similar to that of mulSLDCC. These two chains are implemented using the
instructions mulx, adcx and adox. In the third phase, there is a single carry chain which
is implemented using the instructions mulx, add and adc in a manner similar to that
used in mulSCC.

4.5 Reduction Using Saturated Limb Representation

For p = 2m − δ, elements of Fp are m-bit integers and have a (κ, η, ν)-representation. In
this section we consider saturated limb representation and so η = 64. As mentioned
earlier, a multiplication/squaring in Fp consists of an integer multiplication/squaring
followed by a reduction. The integer multiplication and squaring operations are respec-
tively performed by the functions mulSLDCC and sqrSLDCC described in Section 4.4.
In both cases two m-bit integers having (κ, η, ν)-representations are multiplied and the
product is a 2m-bit integer having (κ′, η, ν′)-representation where the values of κ′ and ν′

are given by Proposition 4.1. The task of the reduction is to reduce the product modulo p
to an m-bit integer which again has a (κ, η, ν)-representation. Such a reduction maintains
the bit-sizes of all the limbs of the reduced field element and would be termed as full re-
duction. It has to be noted that the elements might not be unique after full reduction and
should be converted to a unique representation as discussed in Section 4.2.3.

We provide two reduction algorithms using the saturated limb representation, namely
reduceSLMP which works for Mersenne primes and reduceSLPMP which works for pseudo-
Mersenne primes. A Mersenne prime is also a pseudo-Mersenne prime and so reduceSLPMP
also works for Mersenne primes, but for such primes it will be slower than reduceSLMP.
On the other hand, reduceSLMP does not work for pseudo-Mersenne primes.

4.5.1 Mersenne Primes

Let p = 2m − 1 and suppose m-bit integers have a (κ, η, ν)-representation. Function
reduceSLMP given in Algorithm 4.4 takes as input the output of either mulSLDCC or
sqrSLDCC and outputs an m-bit integer in an (κ, η, ν)-representation which is congruent
to the input modulo p.

The following result states the correctness of reduceSLMP.

Theorem 4.1. Let p = 2m − 1 be a Mersenne prime and let κ ≥ 2, η and ν be such that m-
bit integers have a (κ, η, ν)-representation. Suppose that the input h(0)(θ) to reduceSLMP is
the output of either mulSLDCC( f (θ), g(θ)) or sqrSLDCC( f (θ)) where f (θ) and g(θ) represent
m-bit integers having (κ, η, ν)-representations. Then the output h(3)(θ) of reduceSLMP has a
(κ, η, ν)-representation and h(3)(θ) ≡ h(0)(θ) mod p.

Proof. Since m-bit integers have a (κ, η, ν)-representation, we have m = η(κ − 1) + ν
with 0 < ν ≤ η. If ν = η then m = κη and so p = 2m − 1 = 2κη − 1 = (2κ)η − 1, which
has a factor 2κ − 1 contradicting that p is a prime. So, if p is a Mersenne prime then it
necessarily follows that ν < η.
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Algorithm 4.4 Reduction for saturated limb representation. Performs reduction modulo
p, where p = 2m − 1 is a Mersenne prime; θ = 2η .

1: function reduceSLMP(h(0)(θ))
2: input: h(0)(θ).
3: output: h(3)(θ).
4: for i← 2κ − 1 down to κ do
5: h(1)i ← (2η−νh(0)i ) mod 2η + bh(0)i−1/2νc; h(1)i−κ ← h(0)i−κ
6: end for
7: h(1)κ−1 ← h(1)κ−1 mod 2ν

8: t← h(1)0 + h(1)κ ; h(2)0 ← t mod 2η ; c← bt/2ηc
9: for i← 1 to κ − 2 do

10: t← h(1)i + h(1)κ+i + c; h(2)i ← t mod 2η ; c← bt/2ηc
11: end for
12: h(2)κ−1 ← h(1)κ−1 + h(1)2κ−1 + c

13: t← h(2)0 + bh(2)κ−1/2νc; h(3)0 ← t mod 2η ; c← bt/2ηc
14: for i← 1 to κ − 2 do
15: t← h(2)i + c; h(3)i ← t mod 2η ; c← bt/2ηc
16: end for
17: h(3)κ−1 ← h(2)κ−1 mod 2ν + c

18: FULL REDUCTION: return h(3)(θ) = h(3)0 + h(3)1 θ + · · ·+ h(3)κ−1θκ−1

19: end function.

The input h(0)(θ) to reduceSLMP is the product of two m-bit integers each having a
(κ, η, ν)-representation. From Proposition 4.1, the 2m-bit integer h(0)(θ) has a (κ′, η, ν′)-
representation where the values of κ′ and ν′ are given by Proposition 4.1. Using these
values we have the following bounds on the coefficients of h(0)(θ).

0 ≤ h(0)0 , h(0)1 , . . . , h(0)2κ−3 < 2η ; and
0 ≤ h(0)2κ−2 < 22ν, h(0)2κ−1 = 0 if 0 < ν ≤ η/2;
0 ≤ h(0)2κ−2 < 2η , 0 ≤ h(0)2κ−1 < 22ν−η if η/2 < ν < η.

(4.8)

The input h(0)(θ) can be written as

h(0)(θ) = h(0)0 + h(0)1 θ + · · ·+ h(0)κ−1θκ−1 + h(0)κ θκ +

h(0)κ+1θκ+1 + · · ·+ h(0)2κ−1θ2κ−1,

= (h(0)0 + h(0)1 θ + · · ·+ h(0)κ−1θκ−1) +

(h(0)κ + h(0)κ+1θ + · · ·+ h(0)2κ−1θκ−1)θκ,

≡ (h(0)0 + h(0)1 θ + · · ·+ h(0)κ−1θκ−1) +

(h(0)κ + h(0)κ+1θ + · · ·+ h(0)2κ−1θκ−1)2η−ν mod p, (4.9)

since δ = 1 and using (4.4) we have θκ = 2κη = 2(κ−1)η+ν · 2η−ν = 2m · 2η−ν ≡ 2η−ν mod
p. For j = κ − 1, κ, . . . , 2κ − 2, define

h(0)j = h(0)j,0 + h(0)j,1 2ν, where h(0)j,0 = h(0)j mod 2ν, and h(0)j,1 = bh(0)j /2νc. (4.10)
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Using (4.8), we have the following bounds on h(0)j,0 and h(0)j,1 .

Claim 4.1. 0 ≤ h(0)j,0 < 2ν for j = κ − 1, κ, . . . , 2κ − 2; 0 ≤ h(0)j,1 < 2η−ν for j = κ −
1, κ, . . . , 2κ − 3; and 0 ≤ h(0)2κ−2,1 < 2ν if 0 < ν ≤ η/2; 0 ≤ h(0)2κ−2,1 < 2η−ν if η/2 < ν < η.

Substituting (4.10) in (4.9) we obtain

h(0)(θ)

≡ (h(0)0 + h(0)1 θ + · · ·+ h(0)κ−2θκ−2 + (h(0)κ−1,0 + h(0)κ−1,12ν)θκ−1) +

((h(0)κ,0 + h(0)κ,12ν) + (h(0)κ+1,0 + h(0)κ+1,12ν)θ + · · ·+ (h(0)2κ−2,0 + h(0)2κ−2,12ν)θκ−2 +

h(0)2κ−1θκ−1)2η−ν mod p

= (h(0)0 + h(0)1 θ + · · ·+ h(0)κ−2θκ−2 + h(0)κ−1,0θκ−1) +

(h(0)κ−1,12((κ−1)η+ν) + h(0)κ,02η−ν + h(0)κ,12η + h(0)κ+1,022η−ν + h(0)κ+1,122η + · · ·+

h(0)2κ−2,02(κ−1)η−ν + h(0)2κ−2,12(κ−1)η + h(0)2κ−12κη−ν) [using θ = 2η] (4.11)

≡ (h(0)0 + h(0)1 θ + · · ·+ h(0)κ−2θκ−2 + h(0)κ−1,0θκ−1) +

(h(0)κ−1,1 + 2η−νh(0)κ,0) + (h(0)κ,1 + 2η−νh(0)κ+1,0)θ + (h(0)κ+1,1 + 2η−νh(0)κ+2,0)θ
2 + · · ·+

(h(0)2κ−3,1 + 2η−νh(0)2κ−2,0)θ
κ−2 + (h(0)2κ−2,1 + 2η−νh(0)2κ−1)θ

κ−1 mod p
[using (4.4) and δ = 1]. (4.12)

Steps 4-7 of reduceSLMP perform the computations in (4.12) giving us

h(0)(θ) ≡ (h(1)0 + h(1)1 θ + · · ·+ h(1)κ−1θκ−1) + (h(1)κ + h(1)κ+1θ + · · ·+ h(1)2κ−1θκ−1)︸ ︷︷ ︸
through Steps 4-7

mod p

= h(1)(θ), (4.13)

where h(1)j = h(0)j for j = 1, 2, . . . , κ − 2, h(1)κ−1 = h(0)κ−1,0, h(1)j = 2η−νh(0)j,0 + h(0)j−1,1 for j =

κ, κ + 1, . . . , 2κ − 2 and h(1)2κ−1 = 2η−νh(0)2κ−1,0 + h(0)2κ−2,1.

In (4.13) it directly follows that 0 ≤ h(1)0 , h(1)1 , . . . , h(1)κ−2 < 2η and h(1)κ−1 < 2ν. The

bounds on h(1)κ , h(1)κ+1, . . . , h(1)2κ−1 are given by the following result.

Claim 4.2. 0 ≤ h(1)κ , h(1)κ+1, . . . , h(1)2κ−2 < 2η and 0 ≤ h(1)2κ−1 < 2ν.

Proof. Using Claim 4.1, for j = κ, κ + 1, . . . , 2κ − 2 we have

0 ≤ h(1)j = bh(0)j−1/2νc+ (2η−νh(0)j ) mod 2η

= h(0)j−1,1 + (2η−νh(0)j,0 + 2ηh(0)j,1 ) mod 2η

= h(0)j−1,1 + 2η−νh(0)j,0 ,

which implies 0 ≤ h(1)j < 2η−ν + 2η−ν(2ν − 1) = 2η . The argument for the bounds on

h(1)2κ−1 is in two cases.
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Case 1. 0 < ν ≤ η/2. From (4.8) and Claim 4.1, h(1)2κ−1 = 2η−νh(0)2κ−1 + h(0)2κ−2,1 < 2ν.

Case 2. η/2 < ν < η. From (4.8) and Claim 4.1, h(1)2κ−1 = 2η−νh(0)2κ−1 + h(0)2κ−2,1 <

2η−ν(22ν−η − 1) + 2η−ν = 2ν.

In Steps 8-12 we pairwise add the coefficients of θ0, θ1, . . . , θκ−1 sequentially in (4.13)
by forwarding the 1-bit carry to the subsequent pair to get an intermediate κ-limb poly-
nomial h(2) as

h(1)(θ) = (h(1)0 + h(1)κ ) + (h(1)1 + h(1)κ+1)θ + · · ·+ (h(1)κ−1 + h(1)2κ−1)θ
κ−1,

= h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1θκ−1︸ ︷︷ ︸
through Steps 8-12

= h(2)(θ). (4.14)

From the computation done in the Steps 8-11 it follows that

0 ≤ h(2)0 , h(2)1 , . . . , h(2)κ−2 < 2η . (4.15)

Also, since 0 ≤ h(1)κ−1, h(1)2κ−1 ≤ 2ν − 1 and 0 ≤ c ≤ 1, we have

0 ≤ h(2)κ−1 = h(1)κ−1 + h(1)2κ−1 + c ≤ 2ν+1 − 1 (4.16)
≤ 2η − 1 (using ν < η). (4.17)

From (4.13), (4.14), (4.15) and (4.16), we have h(2)(θ) ≡ h(0)(θ) mod p and h(2)(θ) has a
(κ, η, ν + 1)-representation.

Equation (4.17) proves that Step 12 does not lead to an overflow. Define

h(2)κ−1 = h(2)κ−1,0 + h(2)κ−1,12ν, where

h(2)κ−1,0 = h(2)κ−1 mod 2ν and h(2)κ−1,1 = bh(2)κ−1/2νc. (4.18)

From (4.16) it follows that 0 ≤ h(2)κ−1,0 < 2ν and 0 ≤ h(2)κ−1,1 ≤ 1. We write

h(2)(θ) = h(2)0 + h(2)1 θ + · · ·+ h(2)κ−2θκ−2 + (h(2)κ−1,0 + h(2)κ−1,12ν)θκ−1

= h(2)0 + h1θ + · · ·+ h(2)κ−2θκ−2 + h(2)κ−1,0θκ−1 + h(2)κ−1,12(κ−1)η+ν

≡ (h(2)0 + h(2)κ−1,1) + h(2)1 θ + · · ·+ h(2)κ−2θκ−2 + h(2)κ−1,0θκ−1 mod p

[using (4.4) and δ = 1]. (4.19)

The following result is crucial in arguing that the carry will be absorbed at some point in
the computation.

Claim 4.3. If h(2)κ−1,1 = 1, then it is impossible to simultaneously have h(2)0 = h(2)1 = · · · =
h(2)κ−2 = 2η − 1 and h(2)κ−1,0 = 2ν − 1.
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Proof. Suppose h(2)κ−1,1 = 1 and if possible, let h(2)0 = h(2)1 = · · · = h(2)κ−2 = 2η − 1, h(2)κ−1,0 =

2ν − 1. So, from (4.18) we have h(2)κ−1 = h(2)κ−1,0 + h(2)κ−1,12ν = 2ν+1 − 1. In this case the
polynomial h(2)(θ) is given as follows.

h(2)(θ) = h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1θκ−1

= (2η − 1) + (2η − 1)2η + · · ·+ (2ν+1 − 1)2(κ−1)η

= 2(κ−1)η+ν+1 − 1

= 2m+1 − 1 [using (4.4)]. (4.20)

From (4.14) h(2)(θ) is obtained by adding the polynomials (h(1)0 + h(1)1 θ + · · ·+ h(1)κ−1θκ−1)

and (h(1)κ + h(1)κ+1θ + · · ·+ h(1)2κ−1θκ−1), where 0 ≤ h(1)0 , h(1)1 , . . . , h(1)κ−2, h(1)κ , . . . , h(1)2κ−2 < 2η

and 0 ≤ h(1)κ−1, h(1)2κ−1 < 2ν. So, the maximum possible value of each of the polynomials
is 2m − 1 and hence the bounds of h(2)(θ) should be 0 ≤ h(2)(θ) < 2m+1 − 1, which
contradicts what is obtained in (4.20). Hence the result.

The computation h(3)0 = (h(2)0 + bh(2)κ−1/2νc) mod 2η in (4.19) is performed in Step 13
and the 1-bit c is forwarded to the subsequent terms for addition, which are performed
in Steps 14-17 producing the values of h(3)1 , h(3)2 , . . . , h(3)κ−1. Hence, (4.19) can be written as

h(2)(θ) ≡ h(3)0 + h(3)1 θ + · · ·+ h(3)κ−1θκ−1︸ ︷︷ ︸
through Steps 14-17

mod p = h(3)(θ). (4.21)

We now argue that either the c out of Step 13 is 0 or it is absorbed in one of the subsequent
additions in Step 15 or in the addition of Step 17. If h(2)κ−1,1 = 0 then the c out of Step 13

itself is 0. So, suppose that h(2)κ−1,1 = 1. From Claim 4.3 it follows that either there is a

j ∈ {0, 1, . . . , κ − 2} such that h(2)j < 2η − 1 or h(2)κ−1,0 < 2ν − 1. In the former case, c is
absorbed by one of the additions in Step 15; if this does not happen, then the later case
arises and the carry is absorbed by the addition in Step 17.

This shows that the algorithm terminates without any overflow and at the end of the
algorithm we have 0 ≤ h(3)0 , h(3)1 , . . . , h(3)κ−2 < 2η and 0 ≤ h(3)κ−1 < 2ν and so h(3)(θ) has
a (κ, η, ν)-representation. Combining (4.13), (4.14), (4.19) and (4.21) we have h(3)(θ) ≡
h(0)(θ) mod p which proves the statement of the theorem on full reduction.

4.5.2 Pseudo-Mersenne Primes

Let p = 2m − δ and suppose m-bit integers have a (κ, η, ν)-representation. Function
reduceSLPMP given in Algorithm 4.5 takes as input the output of either mulSLDCC or
sqrSLDCC and outputs an m-bit integer in an (κ, η, ν)-representation which is congruent
to the input modulo p.

As in the case of reduceSLMP, for the correctness of reduceSLPMP, it is not required
to have η = 64. The value of η = 64 is used for 64-bit implementation and the algorithm
can equally well be used with η-bit arithmetic for any value of η (say η = 32 or η = 128).

We note that reduceSLMP does not work if δ > 1. This may not be immediately ob-
vious from the description of reduceSLMP. To see that reduceSLMP does not work when
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Algorithm 4.5 Reduction for saturated limb representation. Performs reduction modulo
p, where p = 2m − δ is a pseudo-Mersenne prime; cp = 2η−νδ, 2α−1 ≤ δ < 2α, ν′ =
2(1− bν/ηc) and θ = 2η .

1: function reduceSLPMP(h(0)0 (θ))
2: input: h(0)(θ).
3: output: h(3)(θ) or h(4)(θ).
4: for i← 0 to κ − 1 do
5: h(1)i ← h(0)i
6: end for
7: h(1)κ + h(1)κ+1θ + · · ·+ h(1)2κ θκ ← mulSCC(h(0)κ + h(0)κ+1θ + · · ·+ h(0)2κ−1θκ−1, cp)

8: t← h(1)0 + h(1)κ ; h(2)0 ← t mod 2η ; c← bt/2ηc
9: for i← 1 to κ − 1 do

10: t← h(1)i + h(1)κ+i + c; h(2)i ← t mod 2η ; c← bt/2ηc
11: end for
12: h(2)κ ← h(1)2κ + c

13: r ← 2η−νh(2)κ + bh(2)κ−1/2νc; h(2)κ−1 ← h(2)κ−1 mod 2ν

14: u← h(2)0 + δr; h(3)0 ← u mod 2η ; q← bu/2ηc
15: v← h(2)1 + q; h(3)1 ← v mod 2η ; c← bv/2ηc
16: for i← 2 to κ − 2 do
17: t← h(2)i + c; h(3)i ← t mod 2η ; c← bt/2ηc
18: end for
19: h(3)κ−1 ← h(2)κ−1 + c

20: PARTIAL REDUCTION: return h(3)(θ) = h(3)0 + h(3)1 θ + · · ·+ h(3)κ−1θκ−1

21: t← h(3)κ−1; h(3)κ−1 ← t mod 2η ; c← bt/2ηc; h(3)κ ← c

22: s← 2η−νh(3)κ + bh(3)κ−1/2νc; h(3)κ−1 ← h(3)κ−1 mod 2ν

23: z = h(3)0 + δs
24: if max(2η−ν+α, 22α+ν′) + 2η−ν+α − 2α ≤ 2η−1 then
25: h(4)0 ← z; h(4)1 ← h(3)1
26: else
27: h(4)0 ← z mod 2η ; c← bz/2ηc; h(4)1 = h(3)1 + c
28: end if
29: for i← 2 to κ − 1 do
30: h(4)i ← h(3)i
31: end for
32: FULL REDUCTION: return h(4)(θ) = h(4)0 + h(4)1 θ + · · ·+ h(4)κ−1θκ−1

33: end function.

δ > 1, one needs to consider the proof of correctness of the algorithm. In the proof of
Theorem 4.1, the step from (4.11) to (4.12) uses 2(κ−1)η+ν = 2m ≡ δ mod p. In the case of
Mersenne primes, δ = 1 and so the step from (4.11) to (4.12) works; for δ > 1, this step
does not work. Instead, we consider a multiplication of the upper half of the input by
cp = 2η−νδ at the very beginning and then the resulting polynomial is reduced in several
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steps. Due to this multiplication, the number of iterations required to obtain the com-
plete reduction in reduceSLPMP is one more than that required in reduceSLMP. Also, the
termination argument (that after a certain stage there is no carry) is more complicated.

Remark 4.5. The boolean condition in Step 24 of reduceSLPMP does not depend on the input
h(0)(θ) and is determined entirely by η, ν and α. So, once the prime and the values of η and ν
are fixed, either the ‘then’ part of the ‘if’ statement will be required or, the ‘else’ part of the ‘if’
statement will be required. Among the primes considered in Table 4.3, the ‘else’ part is required
only for the prime 2256 − 232 − 977.

We state a simple result which will be useful in arguing about the termination of
reduceSLPMP.

Lemma 4.1. Let x, y1 and y2 be two integers such that 0 ≤ x < 2η and 0 ≤ y1, y2 ≤ 2η−1.
Then either x + y1 < 2η or y2 + (x + y1 mod 2η) < 2η .

Proof. If 0 ≤ x < 2η − y1, then x + y1 < 2η and so the result holds. Otherwise, assume
that 2η − y1 ≤ x < 2η . In this case, 2η ≤ x + y1 < 2η + y1. So, 0 ≤ x + y1 mod 2η <
y1 ≤ 2η−1. Consequently, y2 ≤ y2 + (x + y1 mod 2η) < y2 + 2η−1 ≤ 2η , which proves the
result.

The following result states the correctness of reduceSLPMP.

Theorem 4.2. Let p = 2m− δ be a prime and let κ ≥ 2, η and ν be such that m-bit integers have
a (κ, η, ν)-representation. Let α be such that 2α−1 ≤ δ < 2α and α < min (ν + 1, η − 2(1− bν/ηc)).
Suppose that the input h(0)(θ) to reduceSLPMP is the output of either mulSLDCC( f (θ), g(θ))
or sqrSLDCC( f (θ)) where

• f (θ) and g(θ) are m-bit integers having (κ, η, ν)-representations, if ν = η;

• f (θ) and g(θ) are (m + 1)-bit integers having (κ, η, ν + 1)-representations, if ν < η.

Then the following holds.

1. In the case of partial reduction for ν < η, the output h(3)(θ) of reduceSLPMP has a
(κ, η, ν + 1)-representation and h(3)(θ) ≡ h(0)(θ) mod p.

2. In the case of full reduction, the output h(4)(θ) of reduceSLPMP has a (κ, η, ν)-representation
and h(4)(θ) ≡ h(0)(θ) mod p.

Proof. Note that since p = 2m − δ is a prime, for δ > 1, δ cannot be a power of 2. Let
ν′ = 2(1 − bν/ηc) and so ν′ = 0 if ν = η and ν′ = 2 for 0 < ν < η. From α <
min (ν + 1, η − ν′), we have

α ≤ α + ν′ ≤ η − 1 < η. (4.22)

Also, since δ < 2α and α ≤ ν, we have δ < 2ν. Using 2α−1 ≤ δ < 2α,

2η−ν+α−1 ≤ cp = 2η−νδ < 2η−ν+α (4.23)
≤ 2η (since α ≤ ν)

So, cp < 2η and hence can be considered to be an η-bit word.
The input h(0)(θ) is the product of two m-bit integers each having a (κ, η, ν)-representation.

As in the proof of Theorem 4.1, using Proposition 4.1 we have the following bounds on
the coefficients of h(0)(θ).
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Case 1. ν < η.

0 ≤ h(0)0 , h(0)1 , . . . , h(0)2κ−3 < 2η ; and
0 ≤ h(0)2κ−2 < 22(ν+1), h(0)2κ−1 = 0 if 1 < ν + 1 ≤ η/2;
0 ≤ h(0)2κ−2 < 2η , 0 ≤ h(0)2κ−1 < 22(ν+1)−η if η/2 < ν + 1 ≤ η.

Case 2. ν = η.

0 ≤ h(0)0 , h(0)1 , . . . , h(0)2κ−1 < 2η .

For the case 0 < ν + 1 ≤ η/2, we have 0 ≤ h(0)2κ−2 < 22ν+2 ≤ 2η . The above cases can be
merged and the following bounds can be stated for all 0 < ν ≤ η.

0 ≤ h(0)0 , h(0)1 , . . . , h(0)2κ−2 < 2η ; 0 ≤ h(0)2κ−1 < max(1, 22ν−η+ν′). (4.24)

Using θ = 2η and p = 2m − δ we have

θκ = 2κη = 2(κ−1)η+ν · 2η−ν = 2m · 2η−ν ≡ 2η−νδ mod p = cp. (4.25)

The input h(0) to reduceSLPMP can be written as

h(0)(θ) = h(0)0 + h(0)1 θ + · · ·+ h(0)κ−1θκ−1 + h(0)κ θκ +

h(0)κ+1θ(κ+1) + · · ·+ h(0)2κ−1θ(2κ−1)

= (h(0)0 + h(0)1 θ + · · ·+ h(0)κ−1θκ−1) +

(h(0)κ + h(0)κ+1θ + · · ·+ h(0)2κ−1θκ−1)θκ

≡ (h(0)0 + h(0)1 θ + · · ·+ h(0)κ−1θκ−1) +

(h(0)κ + h(0)κ+1θ + · · ·+ h(0)2κ−1θκ−1)cp mod p. (4.26)

Step 7 computes the product (h(0)κ + h(0)κ+1θ + · · ·+ h(0)2κ−1θκ−1)cp of (4.26) using mulSCC,

obtaining the output as (h(1)κ + h(1)κ+1θ + · · ·+ h(1)2κ θκ). Steps 4-6 simply copies the values

of h(0)i to h(1)i , for i = 0, 1, . . . , κ − 1. This defines the polynomial h(1)(θ) and from (4.26)
we have

h(0)(θ) ≡ (h(1)0 + h(1)1 θ + · · ·+ h(1)κ−1θκ−1)︸ ︷︷ ︸
through Steps 4-6

+ (h(1)κ + h(1)κ+1θ + · · ·+ h(1)2κ θκ)︸ ︷︷ ︸
through Step 7

mod p

= h(1)(θ). (4.27)

Limb bounds of h(1)(θ). The bounds on h(0)j are given in (4.24). So, by Steps 4-6, 0 ≤
h(1)j < 2η , j = 0, 1, . . . , κ− 1. Let X(θ) = h(0)κ + h(0)κ+1θ + · · ·+ h(0)2κ−1θκ−1 and Y(θ) = h(1)κ +

h(1)κ+1θ + · · ·+ h(1)2κ θκ. Using (4.24), the size of the integer represented by X(θ) is at most
(κ − 1)η + 2ν− η + ν′ bits. The integer represented by Y(θ) is obtained by multiplying
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X(θ) by the constant cp. From (4.23), the size of cp is at most (η − ν + α) bits. Hence, the
number of bits in the integer represented by Y(θ) is at most

(κ − 1)η + 2ν− η + ν′ + (η − ν + α) = (κ − 1)η + ν + α + ν′.

If ν + α + ν′ ≤ η then Y(θ) has a (κ, η, ν + α + ν′)-representation. Suppose that ν + α +
ν′ > η. Since 0 < ν ≤ η and from (4.22) α + ν′ < η, we have α + ν′ < ν + α + ν′ <
2η. Writing (κ − 1)η + (ν + α + ν′) = κη + (ν + α + ν′ − η), in this case, Y(θ) has a
(κ + 1, η, ν + α + ν′ − η)-representation. Combining the two cases the limb bounds for
Y(θ) = (h(1)κ + h(1)κ+1θ + · · ·+ h(1)2κ θκ) are 0 ≤ h(1)j < 2η , j = κ, κ + 1, . . . 2κ − 1, 0 ≤ h(1)2κ <

max(1, 2ν+α+ν′−η). Hence, the limb bounds of h(1)(θ) can be stated as

0 ≤ h(1)0 , h(1)1 , . . . , h(1)2κ−1 < 2η , 0 ≤ h(1)2κ < max(1, 2ν+α+ν′−η). (4.28)

Through Steps 8-12, we pairwise add the coefficients of θ0, θ1, . . . , θκ−1 given in (4.27)
sequentially by forwarding the 1-bit carry, and in Step 12 we add the last carry to h(1)2κ

producing the (κ + 1)-limb polynomial h(2)(θ). Hence, from (4.27) we have

h(1)(θ) = (h(1)0 + h(1)κ ) + (h(1)1 + h(1)κ+1)θ + · · ·+ (h(1)κ−1 + h(1)2κ−1)θ
κ−1 + h(1)2κ θκ,

= h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1θκ−1 + h(2)κ θκ︸ ︷︷ ︸
through Steps 8-12

= h(2)(θ). (4.29)

Limb bounds of h(2)(θ). Using the bounds in (4.28) the bounds on the limbs of h(2)(θ)
defined in (4.29) are given by

0 ≤ h(2)0 , h(2)1 , . . . , h(2)κ−1 < 2η ; 0 ≤ h(2)κ ≤ max(1, 2ν+α+ν′−η). (4.30)

In Step 13 r = 2η−νh(2)κ + bh(2)κ−1/2νc is computed and the product δr is used in Step 14.
The bounds on r and δr are obtained as follows.

Bounds on r and δr. From (4.30) we have 0 ≤ h(2)κ−1 < 2η and so bh(2)κ−1/2νc < 2η−ν i.e.,

bh(2)κ−1/2νc ≤ 2η−ν− 1. Also, from (4.30) we have 0 ≤ h(2)κ ≤ max(1, 2ν+α+ν′−η). From the
definition of r we obtain

0 ≤ r ≤ max(2η−ν, 2α+ν′) + 2η−ν − 1

⇒ 0 ≤ δr < max(2η−ν+α, 22α+ν′) + 2η−ν+α − 2α [since δ < 2α]. (4.31)

If the boolean condition in Step 24 holds, then we have

0 ≤ δr < 2η−1. (4.32)

Otherwise, a bound on δr is obtained by continuing the computation of (4.31) as follows.

⇒ 0 ≤ δr < max(22η−ν−1, 22η−2) + 22η−ν−1 − 2η−1

[since from (4.22) we have α, α + ν′ ≤ η − 1]
⇒ 0 ≤ δr < 22η−2 + 22η−ν−1 − 2η−1 [since ν ≥ 1]
⇒ 0 ≤ δr < 22η−1 − 2η−1 [again since ν ≥ 1]. (4.33)
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So, (4.33) holds irrespective of whether the boolean condition in Step 24 holds or not.
The variable u is defined in Step 14. From (4.30) and (4.33) an upper bound on u is as
follows.

u = h(2)0 + δr < 2η − 1 + 22η−1 − 2η−1. (4.34)

Define h(2)κ−1 = h(2)κ−1,0 + h(2)κ−1,12ν where h(2)κ−1,0 = h(2)κ−1 mod 2ν and h(2)κ−1,1 = bh(2)κ−1/2νc.
Then we have

h(2)(θ) = h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1θκ−1 + h(2)κ θκ

= h(2)0 + h(2)1 θ + · · ·+ (h(2)κ−1,0 + h(2)κ−1,12ν)θκ−1 + h(2)κ θκ

= h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1,0θκ−1 + h(2)κ−1,12η(κ−1)+ν + h(2)κ θκ

= h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1,0θκ−1 + h(2)κ−1,12m + h(2)κ θκ

≡ h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1,0θκ−1 + h(2)κ−1,1δ + h(2)κ cp mod p
[using (4.4) and (4.23)]

= h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1,0θκ−1 + (h(2)κ−1,1 + h(2)κ 2η−ν)δ [using (4.23)]

= (rδ + h(2)0 ) + h(2)1 θ + · · ·+ h(2)κ−1,0θκ−1 [from Step 13]

= u + h(2)1 θ + · · ·+ h(2)κ−1,0θκ−1 [from Step 14]

≡ h(3)0 + h(3)1 θ + · · ·+ h(3)κ θκ︸ ︷︷ ︸
through Steps 14-21

mod p = h(3)(θ). (4.35)

The analysis of the rest of the algorithm, i.e., Steps 14-30 is divided into two cases de-
pending on whether u < 2η or u ≥ 2η .

Case 1. u < 2η . In this case q = bu/2ηc = 0, and so from Steps 15-18 we have 0 ≤
h(3)j = h(2)j < 2η for j = 1, 2, . . . , κ − 2. Also, we have 0 ≤ h(3)κ−1 = h(2)κ−1 < 2ν, because

in Step 13 we have already updated h(2)κ−1 by h(2)κ−1 mod 2ν. By Step 14 we have h(3)0 =

u mod 2η < 2η , and Step 21 gives h(3)κ = 0. So, in this case h(3)(θ) returned at Step 20
has a (κ, η, ν)-representation irrespective of whether ν < η or ν = η. By (4.27), (4.29)
and (4.35) we have h(3)(θ) ≡ h(0)(θ) mod p. This proves the statement of the theorem on
partial reduction for Case 1.

Further, we have s = 0 by Step 22, and so by the remaining steps of the algorithm we
have 0 ≤ h(4)j = h(3)j < 2η for j = 0, 1, . . . , κ − 2 and 0 ≤ h(4)κ−1 = h(3)κ−1 < 2ν, i.e., h(4)(θ)

has a (κ, η, ν)-representation. It follows that h(4)(θ) = h(3)(θ) and using (4.27), (4.29)
and (4.35), we have h(4)(θ) ≡ h(0)(θ) mod p which proves the statement of the theorem
on full reduction for Case 1.
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Case 2. u ≥ 2η . Step 14 defines q to be q = bu/2ηc. Since in this case u ≥ 2η , the
bounds on q are given by

1 ≤ q ≤
⌊

2η − 1 + 22η−1 − 2η−1

2η

⌋
[using (4.34)]

⇒ 1 ≤ q ≤
⌊

1− 1
2η

+ 2η−1 − 1
2

⌋
⇒ 1 ≤ q ≤ 2η−1 +

⌊
1
2
− 1

2η

⌋
⇒ 1 ≤ q ≤ 2η−1 < 2η − 1. (4.36)

In Step 15 the algorithm computes v = h(2)1 + q. There are two sub cases to consider
depending on whether v < 2η or v ≥ 2η .

Subcase 2a. v < 2η . Step 15 defines c = bv/2ηc and so c = 0 at this step. This simplifies
the analysis and the rest of the proof is similar to that of Case 1.

Subcase 2b. v ≥ 2η . This is the non-trivial case and it is required to argue that there
are no overflows. In this case, using (4.30) and (4.36) we have

2η ≤ v = h(2)1 + q < 2η + 2η − 1 = 2η+1 − 1. (4.37)

So, 2η ≤ v ≤ 2η+1− 2 = 2η + 2η − 2 implying v mod 2η ≤ 2η − 2 < 2η − 1. After Step 15
we have

h(3)1 = v mod 2η < 2η − 1 and 0 ≤ c ≤ 1.

Consider h(3)(θ) as given in (4.35).

• By Step 14 we have 0 ≤ h(3)0 < 2η .

• Since c ≤ 1, considering Step 17 for i = 2, 3, . . . , κ − 2, shows 0 ≤ h(3)j < 2η for j =
2, 3, . . . , κ − 2.

• Recall that h(2)κ−1,0 = h(2)κ−1 mod 2ν ≤ 2ν − 1 and consider Step 17 for i = κ− 1. Since

c ≤ 1, we have h(3)κ−1 ≤ 2ν and so h(3)κ−1 is a (ν + 1)-bit integer.

Consequently, if ν < η then h(3)(θ) has a (κ, η, ν + 1)-representation and by (4.27), (4.29)
and (4.35) we have h(3)(θ) ≡ h(0)(θ) mod p. This proves the statement of the theorem on
partial reduction for Subcase 2b.

On the other hand, if ν = η then h(3)κ−1 will be an (η + 1)-bit string (equivalently,
h(3)(θ) will be an (m + 1)-bit integer) and further reduction is required to ensure that the
number of limbs in the final result is κ. So, for ν = η partial reduction is not useful. The
general analysis for obtaining the final reduction irrespective of whether ν < η or ν = η
is given below.
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In Steps 22-23 the algorithm computes s = 2η−νh(3)κ + bh(3)κ−1/2νc and z = h(3)0 + δs

respectively. Define h(3)κ−1 = h(3)κ−1,0 + h(3)κ−1,12ν where h(3)κ−1,0 = h(3)κ−1 mod 2ν and h(3)κ−1,1 =

bh(3)κ−1/2νc. Then

h(3)(θ) = h(3)0 + h(3)1 θ + · · ·+ h(3)κ−1θκ−1 + h(3)κ θκ

= h(3)0 + h(3)1 θ + · · ·+ (h(3)κ−1,0 + h(3)κ−1,12ν)θκ−1 + h(3)κ θκ

= h(3)0 + h(3)1 θ + · · ·+ h(3)κ−1,0θκ−1 + h(3)κ−1,12η(κ−1)+ν + h(3)κ θκ

= h(3)0 + h(3)1 θ + · · ·+ h(3)κ−1,0θκ−1 + h(3)κ−1,12m + h(3)κ θκ

≡ h(3)0 + h(3)1 θ + · · ·+ h(3)κ−1,0θκ−1 + h(3)κ−1,1δ + h(3)κ cp mod p
[using (4.4) and (4.23)]

= h(3)0 + h(3)1 θ + · · ·+ h(3)κ−1,0θκ−1 + (h(3)κ−1,1 + h(3)κ 2η−ν)δ [using (4.25)]

= (sδ + h(3)0 ) + h(3)1 θ + · · ·+ h(3)κ−1,0θκ−1 [from Step 22]

= z + h(3)1 θ + · · ·+ h(3)κ−1,0θκ−1 [from Step 23]. (4.38)

Claim 4.4. The value of s computed in Step 22 is at most 1.

Proof. The value of s is 2η−νh(3)κ + bh(3)κ−1/2νc. In Step 13 h(2)κ−1 is set to h(2)κ−1 mod 2ν and so

after this step we have 0 ≤ h(2)κ−1 < 2ν. Consider Steps 19 and 21. We have 0 ≤ h(2)κ−1 < 2ν

and so the value of t at Step 21 is at most 2ν.

• The value of h(3)κ−1 is set to be equal to t mod 2η . So, if ν < η then 0 ≤ h(3)κ−1 ≤ 2ν,

while if ν = η then 0 ≤ h(3)κ−1 < 2η .

• The updated value of c is bt/2ηc and this can be equal to 1 only if ν = η. This value
of c is assigned to h(3)κ in Step 21. So, h(3)κ = 1 only if ν = η.

If ν < η then h(3)κ = 0 and bh(3)κ−1/2νc ≤ 1 implying that s ≤ 1. On the other hand, if

ν = η then 2η−νh(3)κ = h(3)κ ≤ 1 and bh(3)κ−1/2νc = bh(3)κ−1/2ηc = 0 again implying that
s ≤ 1.

If s = 0 then z = h(3)0 implying h(4)0 = h(3)0 and c at Step 27 is 0. So, h(4)0 = h(3)0 and
h(4)1 = h(3)1 hold for both branches of the ‘if’ statement in Step 24. From Step 30 it follows
that h(4)(θ) = h(3)(θ).

If s = 1 then z = h(3)0 + δ. The termination arguments for the two branches of the ‘if’
statement at Step 24 are different.

First suppose that the boolean condition of the ‘if’ statement evaluates to true. We
apply Lemma 4.1 with x = h(2)0 , y1 = δr and y2 = δ. From (4.32) we have 0 ≤ δr < 2η−1

which also implies 0 < δ < 2η−1. In Step 14 u is computed as u = h(2)0 + δr = x + y1 and
h(3)0 = u mod 2η = x + y1 mod 2η . In Step 25 h(0)4 = z = h(3)0 + δ = y2 + (x + y1 mod 2η).
In Case 2 u ≥ 2η , i.e., x + y1 ≥ 2η . Then from Lemma 4.1 we have h(0)4 = y2 + (x +
y1 mod 2η) < 2η . So, the procedure terminates.
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Now consider the case that the boolean condition of the ‘if’ statement evaluates to
false. By Step 22 we have 0 ≤ h(3)κ−1 < 2ν and 0 ≤ h(4)0 < 2η by Step 27. The value of c

in Step 27 can be at most 1, and since the bound of h(3)1 is 0 ≤ h(3)1 < 2η − 1, hence after
Step 27 we have 0 ≤ h(4)1 < 2η .

So, after both branches of the ‘if’ statement in Step 24, the limb bounds of h(4)(θ) are
0 ≤ h(4)j < 2η for j = 0, 1, . . . , κ − 2, and 0 ≤ h(4)κ−1 < 2ν. From (4.38) we can write

h(3)(θ) ≡ h(4)0 + h(4)1 θ + · · ·+ h(4)κ−1θκ︸ ︷︷ ︸
through Steps 22-30

mod p = h(4)(θ). (4.39)

Combining (4.27), (4.29), (4.35) and (4.39) we have h(4)(θ) ≡ h(0)(θ) mod p, which
proves the statement of the theorem on full reduction for Subcase 2b.

4.5.3 Usefulness of Partial Reduction

The statement of Theorem 4.2 identifies two cases. If ν < η then the input to reduceSLPMP
is considered to be a (2m+ 2)-bit integer, whereas if ν = η then the input to reduceSLPMP
is considered to be a 2m-bit integer. This is the consequence of whether partial reduc-
tion is used or not. In the case of ν < η a partial reduction strategy is used whereas for
ν = η such a strategy is not used. For the partial reduction strategy, the output h(3)(θ)
returned by reduceSLPMP is an (m + 1)-bit integer. So, if partial reduction strategy is
used throughout then the inputs to mulSLDCC and sqrSLDCC will also be (m + 1)-bit
integers and so their outputs will be (2m + 2)-bit integers. Subsequent applications of
reduceSLPMP will have to handle (2m + 2)-bit integers. This is the reason why the state-
ment of Theorem 4.2 specifies the input to reduceSLPMP to be a (2m + 2)-bit integer
for the case ν < η. On the other hand, for ν = η partial reduction is not used and so
the output h(4)(θ) of reduceSLPMP is an m-bit integer and consequently, the outputs of
mulSLDCC and sqrSLDCC will be 2m-bit integers.

Partial reduction is useful since it avoids the computation required to reduce h(3)(θ)
to h(4)(θ). All intermediate computations are performed using partially reduced results
and the full reduction is invoked only once at the end. This strategy leads to substantial
savings in the number of operations and hence on the consequent speed of computation.

There does not seem to be an efficient way in which the partial reduction strategy can
be made to work for Mersenne primes. A possible partially reduced result in reduceSLMP
would be h(2)(θ). It can be shown that when the input to reduceSLMP is the product of
two m-bit integers each having (κ, η, ν)-representation, then h(2)(θ) has a (κ, η, ν + 1)-
representation, i.e., it is an (m+ 1)-bit integer. So, mulSLDCC and sqrSLDCC will produce
as output (2m + 2)-bit integers. Feeding such an integer as the input of reduceSLMP
results in h(2)(θ) having a (κ, η, ν + 3)-representation. In other words, the size of the last
limb grows. This can be brought down, but doing this requires additional computation
and results in the partial reduction being less efficient than the full reduction that we
have described. In the case of pseudo-Mersenne primes the partial result returned by
reduceSLPMP avoids such growth of the last limb.

Remark 4.6. Step 7 of reduceSLPMP performs a mulSCC call. As described in Section 4.4, this
call can be implemented using a single carry chain by using the mulx, add and adc instructions.
In reduceSLPMP Steps 8-11 add the output of mulSCC to the initial κ limbs of the input h(0). It
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is possible to consider a strategy whereby the multiplications and the additions within mulSCC
are done simultaneously with the additions in Steps 8-11. It is possible to organize the code such
that two independent carry chains arise so that one of the addition chains is implemented using
adcx and the other using adox. We have implemented this strategy, but the gain in speed is not
significant and so we do not describe the details.

4.5.4 A Variant of reduceSLPMP

Bernstein et al [BDL+12] have used an algorithm for partial reduction using a 4-limb
representation of 2255 − 19. Function reduceSLPMPa in Algorithm 4.6 provides a gener-
alization of this algorithm which works for a large class of pseudo-Mersenne primes.

Algorithm 4.6 Partial reduction for saturated limb representation. Performs reduction
modulo p, where p = 2m − δ is a pseudo-Mersenne prime; cp = 2η−νδ and θ = 2η .

1: function reduceSLPMPa(h(0)0 (θ))
2: input: h(0)(θ).
3: output: h(4)(θ).
4: for i← 0 to κ − 1 do
5: h(1)i ← h(0)i
6: end for
7: h(1)κ + h(1)κ+1θ + · · ·+ h(1)2κ θκ ← mulSCC(h(0)κ + h(0)κ+1θ + · · ·+ h(0)2κ−1θκ−1, cp)

8: t← h(1)0 + h(1)κ ; h(2)0 ← t mod 2η ; c← bt/2ηc
9: for i← 1 to κ − 1 do

10: t← h(1)i + h(1)κ+i + c; h(2)i ← t mod 2η ; c← bt/2ηc
11: end for
12: h(2)κ ← h(1)2κ + c

13: r ← h(2)κ · cp

14: u← h(2)0 + r; h(3)0 ← u mod 2η ; c← bu/2ηc
15: for i← 1 to κ − 1 do
16: t← h(2)i + c; h(3)i ← t mod 2η ; c← bt/2ηc
17: end for
18: h(3)κ ← c

19: s← h(3)κ · cp

20: z = h(3)0 + s;
21: if max(2η−ν+α, 22α+ν′) ≤ 2η−1 then
22: h(4)0 ← z; h(4)1 ← h(3)1
23: else
24: h(4)0 ← z mod 2η ; c← bz/2ηc; h(4)1 = h(3)1 + c
25: end if
26: for i← 2 to κ − 1 do
27: h(4)i ← h(3)i
28: end for
29: PARTIAL REDUCTION: return h(4)(θ) = h(4)0 + h(4)1 θ + · · ·+ h(4)κ−1θκ−1

30: end function.
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Similar to reduceSLPMP, the boolean condition in Step 21 of reduceSLPMPa does not
depend on the input h(0)(θ) and is determined entirely by η, ν and α. So, either the ‘then’
part of the ‘if’ statement will be required or, the ‘else’ part of the ‘if’ statement will be
required. Among the primes considered in Table 4.3, the ‘else’ part is required only for
the prime 2256 − 232 − 977.

The following result states the correctness of reduceSLPMPa.

Theorem 4.3. Let p = 2m− δ be a prime and let κ ≥ 2, η and ν be such that m-bit integers have
a (κ, η, ν)-representation. Let α be such that 2α−1 ≤ δ < 2α. Suppose that the input h(0)(θ)
to reduceSLPMPa is the output of either mulSLDCC( f (θ), g(θ)) or sqrSLDCC( f (θ)) where
f (θ) and g(θ) are κη-bit integers having (κ, η, η)-representations. Then the output h(4)(θ) of
reduceSLPMPa has a (κ, η, η)-representation and h(4)(θ) ≡ h(0)(θ) mod p.

Proof. The proof is similar to the proof of Theorem 4.2. The inputs to reduceSLPMP and
reduceSLPMPa are of different sizes. On the other hand, Steps 4-12 of reduceSLPMPa is
exactly the same as that of reduceSLPMP. So, the bounds on the limbs of h(2)(θ) can be
derived in a manner similar to the bounds obtained in (4.30) and are as follows: 0 ≤
h(2)j < 2η for j = 0, 1, . . . , κ − 1, and 0 ≤ h(2)κ ≤ max(1, 2ν+α−η). Since r is computed

as r = h(2)κ · cp = h(2)κ · 2η−νδ < 2η−ν+α, we have 0 ≤ r ≤ max(2η−ν+α, 22α). The upper
bound on r gives rise to the boolean condition in Step 21. The rest of the argument
proceeds along the same lines as that of Theorem 4.2 and is in fact a bit simpler. The ‘if’
statement in Step 21 determines whether the last addition takes place at limb number 0
(which is the ‘then’ part), or, whether it takes place at limb number 1 (which is the ‘else’
part). The ‘else’ part is required only if the addition to limb number 0 can produce a
carry. This part of the argument is similar to the argument for termination corresponding
to s = 1 in the proof of Theorem 4.2.

4.5.5 Comparison of reduceSLPMP and reduceSLPMPa

We note the following points.

1. Full reduction can be obtained using reduceSLPMP, but reduceSLPMPa always per-
forms partial reduction. So, if reduceSLPMPa is used, then the last reduction is to
be done by reduceSLPMP, or, the final output of reduceSLPMPa is to be further re-
duced using some other method. On the other hand, if ν < η and reduceSLPMP
is used then partial reduction will be done for all but the last invocation, and the
last invocation will perform full reduction. No other code is required to ensure full
reduction.

2. The computation of r in reduceSLPMP is slightly more expensive than the compu-
tation of r in reduceSLPMPa. Using partial reduction for reduceSLPMP avoids gen-
erating h(4)(θ) from h(3)(θ) saving a few instructions. Compared to reduceSLPMPa,
saving these instructions more or less balances the extra cost of generating r.

3. We have implemented both reduceSLPMP and reduceSLPMPa as part of the various
inversion algorithms. It has been found that the assembly implementations using
reduceSLPMP performs better than the assembly implementations using reduceSLPMPa
in the Skylake architecture.
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Remark 4.7. The outputs of mulSLDCC and sqrSLDCC can also be computed without using
double carry chains. Let us call such algorithms as mulSL and sqrSL respectively. Theorems 4.1,
4.2 and 4.3 will also hold if the algorithms mulSL and sqrSL are used instead of mulSLDCC and
sqrSLDCC respectively.

4.6 Saturated Limb Computation Without Double Carry Chains

In Section 4.4 we have described how the saturated limb representation can be exploited
in combination with two independent carry chains to obtain fast squaring and multipli-
cation algorithms. Implementation of these algorithms require the use of the instructions
mulx, adcx and adox. For processors which do not provide these instructions, the algo-
rithms in Section 4.4 cannot be implemented. In this section we describe algorithms for
saturated limb representation which do not use double carry chains and can be imple-
mented on previous generation processors.

As before, let p = 2m − δ where m-bit integers have (κ, η, ν)-representation. Since
we consider the saturated limb representation, we have η = 64. As before, θ = 2η and
cp = 2η−νδ. Let f (θ) and g(θ) be two elements of Fp written as

f (θ) = f0 + f1θ + · · ·+ fκ−1θκ−1,
g(θ) = g0 + g1θ + · · ·+ gκ−1θκ−1,

where 0 ≤ fi, gi < 2η , i = 0, 1, . . . , κ − 2, and 0 ≤ fκ−1, gκ−1 < 2ν. The schoolbook
product of f (θ) and g(θ) modulo p can be written as h(θ) = h0 + h1θ + · · ·+ hκ−1θκ−1

where

h0 = f0g0 + cp( f1gκ−1 + f2gκ−2 + · · ·+ fκ−2g2 + fκ−1g1),
h1 = f0g1 + f1g0 + cp( f2gκ−1 + · · ·+ fκ−2g3 + fκ−1g2),

· · · · · · · · · · · · · · · · · · · · · · · · (4.40)
hκ−2 = f0gκ−2 + f1gκ−3 + f2gκ−4 + · · ·+ fκ−2g0 + cp fκ−1gκ−1,
hκ−1 = f0gκ−1 + f1gκ−2 + f2gκ−3 + · · ·+ fκ−2g1 + fκ−1g0.

Since we are working with η = 64, the coefficients hi are not guaranteed to fit within 128
bits. We show how to tackle this problem. Define

fi · gj = ui,j + vi,j2η = ui,j + vi,jθ for i, j = 0, 1, . . . , κ − 1. (4.41)

Using θκ = 2κη ≡ 2η−νδ mod p = cp and (4.41) in (4.40), we have h(θ) ≡ z(θ) mod p
where z(θ) = z0 + z1θ + · · ·+ zκ−1θκ−1 and

z0 = u0,0 + cp(u1,κ−1 + u2,κ−2 + · · ·+ uκ−2,2 + uκ−1,1 +
v0,κ−1 + v1,κ−2 + v2,κ−3 + · · ·+ vκ−2,1 + vκ−1,0),

z1 = u0,1 + u1,0 + v0,0 + cp(u2,κ−1 + · · ·+ uκ−2,3 + uκ−1,2 +
v1,κ−1 + v2,κ−2 + · · ·+ vκ−2,2 + vκ−1,1),

· · · · · · · · · · · · · · · · · · · · · · · ·
zκ−2 = u0,κ−2 + u1,κ−3 + u2,κ−4 + · · ·+ uκ−2,0 + v0,κ−3 +

v1,κ−4 + · · ·+ vκ−3,0 + cp(uκ−1,κ−1 + vκ−2,κ−1 + vκ−1,κ−2),
zκ−1 = u0,κ−1 + u1,κ−2 + u2,κ−3 + · · ·+ uκ−2,1 + uκ−1,0 +

v0,κ−2 + v1,κ−3 + v2,κ−4 + · · ·+ vκ−2,0 + cpvκ−1,κ−1.

(4.42)
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For all the primes in Table 4.4, it can be ensured that 0 ≤ z0, z1, . . . , zκ−1 < 2127.
Substituting g = f , we get similar equations for squaring. Denote the resulting multipli-
cation and squaring algorithms by mulSLa and sqrSLa respectively.

Next we describe how to reduce z(θ). Function reduceSL in Algorithm 4.7 performs
the required computation. The following results states the correctness of reduceSL. The

Algorithm 4.7 Generic reduction algorithm using saturated limb representation for the
primes in Table 4.4. It performs reduction modulo p = 2m − δ and m-bit integers have a
(κ, η, ν)-representation with η = 64; θ = 2η .

1: function reduceSL(h(0)(θ))
2: input: h(0)(θ).
3: output: h(2)(θ) or h(3)(θ).
4: h(1)0 ← h(0)0 mod 2η ; r0 ← bh(0)0 /2ηc
5: for i← 1 to κ − 2 do
6: ti ← h(0)i + ri−1; h(1)i ← ti mod 2η ; ri ← bti/2ηc
7: end for
8: tκ−1 ← h(0)κ−1 + rκ−2; h(1)κ−1 ← tκ−1 mod 2ν; rκ−1 ← btκ−1/2νc
9: t← h(1)0 + δrκ−1; h(2)0 ← t mod 2η ; c0 ← bt/2ηc

10: for i← 1 to κ − 2 do
11: t← h(1)i + ci−1; h(2)i ← t mod 2η ; ci ← bt/2ηc
12: end for
13: h(2)κ−1 ← h(1)κ−1 + cκ−2

14: PARTIAL REDUCTION: return h(2)(θ) = h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1θκ−1

15: h(3)κ−1 ← h(2)κ−1 mod 2ν; cκ−1 ← bh(2)κ−1/2νc
16: t← h(2)0 + δcκ−1; h(3)0 ← t mod 2η ; c0 ← bt/2ηc
17: h(3)1 ← h(2)1 + c0
18: for i← 2 to κ − 2 do
19: h(3)i ← h(2)i
20: end for
21: FULL REDUCTION: return h(3)(θ) = h(3)0 + h(3)1 θ + · · ·+ h(3)κ−1θκ−1

22: end function.

proof is similar to the proofs of the previous results and hence we skip the proof.

Theorem 4.4. Let p = 2m − δ be a prime in Table 4.3 and m be such that m-bit integers
have (κ, η, ν)-representation where η = 64. Suppose the input h(0)(θ) = h(0)0 + h(0)1 θ + · · ·+
h(0)κ−1θκ−1 to reduceSL is such that 0 ≤ h(0)i < 2128 for i = 0, 1, . . . , κ − 1.

1. For partial reduction, the output h(2)(θ) of reduceSL has a (κ, η, ν+ 1)-representation and
h(2)(θ) ≡ h(0)(θ) mod p.

2. For full reduction, the output h(3)(θ) of reduceSL has a (κ, η, ν)-representation and h(3)(θ) ≡
h(0)(θ) mod p.

Remark 4.8. The squaring algorithm has some disadvantages using the above strategy. For the
primes satisfying ν < η − 1, the doubling involved in the squaring operation can efficiently
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compute the terms 2 fκ−1 · f j for j = 0, 1, . . . , κ − 1, by first computing 2 fκ−1, through a shift
and then multiplying by f j. For reduction, we can opt for partial reduction, keeping an extra bit
in the last limb, but then we cannot take the advantage in the doubling operation. For the primes
satisfying ν = η, we do not get any advantage with the doubling operation in the squaring
algorithm and also full reduction is required.

4.7 Multiplication Using Unsaturated Limb Representation

The unsaturated limb representation has been very effectively used in the various im-
plementations of Curve25519 [Ber06b, BS12, BDL+12, Cho15].

In the case of saturated limb representation, the tasks of integer multiplication/squaring
and reduction are completely separate, i.e., the integer multiplication step simply multi-
plies two integers while the integer squaring step simply squares an integer without any
reference to the prime which will be used to perform the reduction step. In the case of
unsaturated limb representation, the multiplication/squaring step is not simply an inte-
ger multiplication/squaring. It uses the underlying prime to return an intermediate re-
duced result which is then provided as input to the reduction algorithm. Two strategies
are described below. The first strategy is a generalization of a strategy used for the prime
2255 − 19 in the implementation of Curve25519 [BDL+12] to arbitrary pseudo-Mersenne
primes. For some primes however, this strategy leads to overflow in the intermediate
result. To handle such cases, we describe a modified strategy which works for a larger
class of primes. To the best of our knowledge, this modified strategy has not appeared
earlier in the literature either in its general form or for any particular prime.

As in Section 4.2, let p = 2m − δ, θ = 2η , and cp = 2η−νδ. Since we are working with
the unsaturated limb representation, η < 64. Let f (θ) and g(θ) be two elements of Fp
written as

f (θ) = f0 + f1θ + · · ·+ fκ−1θκ−1,
g(θ) = g0 + g1θ + · · ·+ gκ−1θκ−1,

where 0 ≤ fi, gi < 2η for i = 0, 1, . . . , κ− 2, and 0 ≤ fκ−1, gκ−1 < 2ν. The product of f (θ)
and g(θ) modulo p can be written as the polynomial h(θ) = h0 + h1θ + · · ·+ hκ−1θκ−1

where the coefficients hi are given by (4.40). Substituting g = f , we get similar equations
for squaring and during the squaring computation, each cross-product term is computed
only once. We have

hmax = max(h0, h1, . . . , hκ−1). (4.43)

If hmax < 2128, then each of the coefficients hi, i = 0, 1, . . . , κ − 1 fit in two 64-bit words.
In such cases, the above strategy for multiplication/squaring is feasible. We denote the
resulting algorithm for multiplication (resp. squaring) as mulUSL (resp. sqrUSL). We note
that for some primes, hmax is significantly below 2128 and this plays a role in the efficient
implementation of the subsequent reduction algorithm.

4.7.1 Modified Multiplication Strategy

In the case where hmax ≥ 2128, the coefficients in (4.40) do not fit within two 64-bit words.
For example, such a situation arises for the prime 2256 − 232 − 977. In this case, δ =
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232 + 977, κ = 5, η = 52 and ν = 48 so that cp = 16(232 + 977) is a 37-bit integer. With
these values, it can be verified that hmax ≥ 2128. To handle situations where hmax ≥ 2128,
we describe a simple modification of the previous strategy. Define

u0 = f1gκ−1 + f2gκ−2 + · · ·+ fκ−2g2 + fκ−1g1,
u1 = f2gκ−1 + · · ·+ fκ−2g3 + fκ−1g2,

· · · · · · · · · · · · · · · · · · · · · · · · (4.44)
uκ−2 = fκ−1gκ−1,

where max(u0, u1, . . . , uκ−2) = u0 ≤ umax with umax = (2η − 1)2 (κ − 1) . For i = 0, 1, . . . ,
κ − 2, let ui,0 = ui mod 2η , uj,1 = buj/2ηc, so that

uj = uj,0 + uj,12η = uj,0 + uj,1θ. (4.45)

Then for f (θ) · g(θ) = h(θ) = h0 + h1θ + · · ·+ hκ−1θκ−1 such that the coefficients h0, h1 . . . ,
hκ−1 are given by (4.40), we have h(θ) = h′(θ) = h′0 + h′1θ + · · ·+ h′κ−1θκ−1 where

h′0 = f0g0 + cpu0,0,
h′1 = f0g1 + f1g0 + cp(u1,0 + u0,1),
· · · · · · · · · · · · · · · · · · · · · · · · (4.46)

h′κ−2 = f0gκ−2 + f1gκ−3 + · · ·+ fκ−2g0 + cp(uκ−2,0 + uκ−1,1),
h′κ−1 = f0gκ−1 + f1gκ−2 + · · ·+ fκ−1g0 + cpuκ−2,1.

Let

h′max = max(h′0, h′1, . . . , h′κ−1). (4.47)

If umax < 2128 and h′max < 2128, then each of the coefficients ui, i = 0, 1, . . . , κ − 2 and
also each of the coefficients hj, j = 0, 1, . . . , κ− 1 fit in two 64-bit words. So, even if some
coefficient of h(θ) is greater than or equal to 2128, it is still feasible to compute h′(θ) us-
ing 64-bit arithmetic without any overflow. We denote the resulting multiplication and
squaring algorithms by mulUSLa and sqrUSLa respectively.

Remark 4.9. The rationale for obtaining h′0, h′1, . . . , h′κ−1 is that h0, h1, . . . , hκ−1 are not 128-bit
quantities. For certain primes, it may happen that there is an i ∈ {0, 1, . . . , κ − 1} such that
h0, h1, . . . , hi are greater than 2128 − 1 while hi+1, hi+2, . . . , hκ−1 are each at most 2128 − 1. In
such cases, it would be sufficient to use h′0, h′1 . . . , h′i, hi+1, . . . , hκ−1.

In [KS20], a different strategy was used to tackle the situation when hmax ≥ 2128. This
strategy consists of ‘expanding’ u0, u1, . . . , uκ−2 to κ, η-bit quantities u0, u1, . . . , uκ−2 and then
adding cpu0 to f0g0; cpu1 to f0g1 + f1g0 and so on. In the present case, this strategy turns out
to be less efficient than the strategy used to obtain h′0, h′1, . . . , h′κ−1.

4.7.2 Dovetailing with Reduction Algorithms

The outputs of the multiplication/squaring algorithms are fed as inputs into the reduc-
tion algorithms and the outputs of the reduction algorithms are fed as inputs to the
multiplication/squaring algorithms. In the (κ, η, ν)-representation of an m-bit integer,
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each of the first κ − 1 limbs is η bits long and the last limb is ν bits long. So, one may
consider the goal of the reduction algorithms to ensure that the output indeed has a
(κ, η, ν)-representation. It is however, more efficient to obtain a partial reduction, where
some of the coefficients of the output of the reduction algorithms may have one extra bit.
Such a strategy is feasible, if the multiplication/squaring/addition algorithms applied
to such inputs do not lead to any overflow. Based on such criterion, we describe three
reduction algorithms.

Let f (θ) = f0 + f1θ + · · ·+ fκ−1θκ−1 and g(θ) = g0 + g1θ + · · ·+ gκ−1θκ−1.

General reduction algorithm. Let f(θ) = f0 + f1θ + · · ·+ fκ−1θκ−1. Define a predicate
genCond(f) to be true if and only if

0 ≤ f0, f2, . . . , fκ−2 < 2η ;
0 ≤ f1 < 2η+1;
0 ≤ fκ−1 < 2ν.

(4.48)

Consider the following conditions.

1. The inputs f (θ) and g(θ) to mulUSL/sqrUSL or mulUSLa/sqrUSLa satisfy genCond( f )
and genCond(g).

2. Let the output of mulUSL/sqrUSL or mulUSLa/sqrUSLa on such f (θ) and g(θ) be
h(θ) or h′(θ) respectively. Suppose that hmax < 2127 or h′max < 2127 as the case may
be.

3. κ ≥ 3.

If the above conditions hold, then we describe the reduction algorithm reduceUSL which
takes as input either h(θ) or h′(θ) as the case may be and produces an output for which (4.48)
holds.

Reduction algorithm for primes of Type A. Let f(θ) = f0 + f1θ + · · ·+ fκ−1θκ−1. Define
a predicate condA(f) to be true if and only if

0 ≤ f1, f2, . . . , fκ−2 < 2η ;
0 ≤ f0 < 2η+1;
0 ≤ fκ−1 < 2ν.

(4.49)

Consider the following conditions.

1. The inputs f (θ) and g(θ) to mulUSL/sqrUSL or mulUSLa/sqrUSLa satisfy condA( f )
and condA(g).

2. Let the output of mulUSL/sqrUSL or mulUSLa/sqrUSLa on such f (θ) and g(θ) be
h(θ) or h′(θ) respectively. Suppose that hmax < 2` or h′max < 2` as the case may be
and ` < 63 + ν.

3. κ ≥ 3.

If the above three conditions hold, then we describe the reduction algorithm reduceUSLA
which takes as input either h(θ) or h′(θ) as the case may be and produces an output for
which (4.49) holds. The primes for which reduceUSLA applies have been identified as Type A
in Table 4.4.
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Reduction algorithm for primes of Type B. Let f(θ) = f0 + f1θ + · · ·+ fκ−1θκ−1. Define
a predicate condB(f) to be true if and only if

0 ≤ f0, f1, . . . , fκ−2 < 2η+1;
0 ≤ fκ−1 < 2ν+1.

(4.50)

Consider the following conditions.

1. The inputs f (θ) and g(θ) to mulUSL/sqrUSL or mulUSLa/sqrUSLa satisfy condA( f )
and condA(g).

2. Let the output of mulUSL/sqrUSL or mulUSLa/sqrUSLa on such f (θ) and g(θ) be
h(θ) or h′(θ) respectively. Suppose that hmax < 2` or h′max < 2` as the case may be
and 64 + ν < ` ≤ 128.

3. κ ≥ 3.

If the above three conditions hold, then we describe the reduction algorithm reduceUSLB
which takes as input either h(θ) or h′(θ) as the case may be and produces an output for
which (4.50) holds. The primes for which reduceUSLB applies have been identified as Type B in
Table 4.4. There are two such primes. Note that the condition ` < 63 + ν used to identify
Type A primes and the condition 64 + ν < ` ≤ 128 used to identify Type B primes are
non-exhaustive. They do not cover the values of ` = 63 + η and ` = 64 + η. None of the
primes in Table 4.3 correspond to such values of ` and so this is not an issue.

For the three primes identified as Type G in Table 4.4, the conditions required to apply
either reduceUSLA or reduceUSLB do not hold. It is possible to consider further conditions
to develop an algorithm for the Type G primes and we have indeed implemented such
an algorithm. This algorithm however, turns out to be slower than the generic reduceUSL
and so we do not describe the details of it.

prime 2127 − 1 2221 − 3 2222 − 117 2251 − 9 2255 − 19 2256 − 232 − 977 2266 − 3

type A A A A A A A

prime 2382 − 105 2383 − 187 2414 − 17 2511 − 187 2512 − 569 2521 − 1 2607 − 1

type B B A G G A G

Table 4.4: Classification of primes for application of reduceUSL, reduceUSLA or reduceUSLB.

4.8 Reduction Using Unsaturated Limb Representation

In this section, we describe several reduction algorithms which work with the unsatu-
rated limb representation. The first of this is Function reduceUSL and is shown in Algo-
rithm 4.8.

Theorem 4.5 below states the correctness of reduceUSL. The correctness is based on
two assumptions both of which are valid for all the primes considered in this work.

Theorem 4.5. Let p = 2m − δ and m be such that m-bit integers have (κ, η, ν)-representation
with κ ≥ 3 and δ < 22η+ν−129. Suppose the input h(0)(θ) = h(0)0 + h(0)1 θ + · · ·+ h(0)κ−1θκ−1 to

reduceUSL is such that 0 ≤ h(0)i < 2128 − 2128−η for i = 0, 1, . . . , κ − 1.
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Algorithm 4.8 Reduction for unsaturated limb representation. Performs reduction mod-
ulo p = 2m − δ; m-bit integers have a (κ, η, ν)-representation with η < 64; θ = 2η .

1: function reduceUSL(h(0)(θ))
2: input: h(0)(θ).
3: output: h(1)(θ) or h(2)(θ).
4: u← h(0)0 mod 2η ; r0 ← bh(0)0 /2ηc
5: t1 ← h(0)1 + r0; v← t1 mod 2η ; r1 ← bt1/2ηc
6: for i← 2 to κ − 2 do
7: ti ← h(0)i + ri−1; h(1)i ← ti mod 2η ; ri ← bti/2ηc
8: end for
9: tκ−1 ← h(0)κ−1 + rκ−2; h(1)κ−1 ← tκ−1 mod 2ν; rκ−1 ← btκ−1/2νc

10: t← u + δrκ−1; h(1)0 ← t mod 2η ; r0 ← bt/2ηc
11: h(1)1 ← v + r0

12: PARTIAL REDUCTION: return h(1)(θ) = h(1)0 + h(1)1 θ + · · ·+ h(1)κ−1θκ−1

13: w← h(1)1 mod 2η ; c1 ← bh(1)1 /2ηc
14: for i← 2 to κ − 2 do
15: t← h(1)i + ci−1; h(2)i ← t mod 2η ; ci ← bt/2ηc
16: end for
17: t← h(1)κ−1 + cκ−2; h(2)κ−1 ← t mod 2ν; cκ−1 ← bt/2νc
18: t← h(1)0 + δcκ−1; h(2)0 ← t mod 2η ; c0 ← bt/2ηc
19: t← w + c0; h(2)1 ← t mod 2η ; c← bt/2ηc
20: h(2)2 ← h(2)2 + c

21: FULL REDUCTION: return h(2)(θ) = h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1θκ−1

22: end function.

1. For partial reduction, the output of reduceUSL is h(1)(θ) = h(1)0 + h(1)1 θ + · · ·+ h(1)κ−1θκ−1,

where 0 ≤ h(1)1 < 2η+1, 0 ≤ h(1)0 , h(1)2 , . . . , h(1)κ−2 < 2η and 0 ≤ h(1)κ−1 < 2ν satisfying
h(1)(θ) ≡ h(0)(θ) mod p.

2. For full reduction, the output h(2)(θ) of reduceUSL has a (κ, η, ν)-representation and
h(2)(θ) ≡ h(0)(θ) mod p.

Proof. Since 0 ≤ h(0)0 < 2128 − 2128−η , after Step 4 the bounds on u and r0 are 0 ≤ u < 2η

and 0 ≤ r0 < 2128−η respectively. In Step 5 t is set to h(0)1 + r0 implying 0 ≤ t < 2128.
Consequently we have 0 ≤ v < 2η and 0 ≤ r1 < 2128−η respectively. After Steps 4-5
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h(0)(θ) can be written as

h(0)(θ) = h(0)0 + h(0)1 θ + · · ·+ h(0)κ−1θκ−1

= (u + r0θ) + h(0)1 θ + · · ·+ h(0)κ−1θκ−1

= u + (h(0)1 + r0)θ + · · ·+ h(0)κ−1θκ−1

= u + t1θ + h(0)2 θ2 + · · ·+ h(0)κ−1θκ−1

= u + (v + r1θ)θ + h(0)2 θ2 + · · ·+ h(0)κ−1θκ−1

= u + vθ + (h(0)2 + r1)θ
2 + · · ·+ h(0)κ−1θκ−1. (4.51)

The coefficients h(1)2 , h(1)3 . . . , h(1)κ−1 are computed in Steps 6-9 as follows.

h(1)j = (h(0)j + rj−1) mod 2η

rj = b(h(0)j + rj−1)/2ηc, j = 2, 3, . . . , κ − 2,

h(1)κ−1 = (h(0)κ−1 + rκ−2) mod 2ν,
rκ−1 = b(h(0)κ−1 + rκ−2)/2νc

(4.52)

where 0 ≤ rj < 2128−η and 0 ≤ rκ−1 < 2128−ν. Continuing from (4.51) and using (4.52),
the effect of Steps 6-9 can be written in the following manner.

h(0)(θ) = u + vθ + (h(0)2 + r1)θ
2 + · · ·+ h(0)κ−1θκ−1

= u + vθ + t1θ2 + h(0)3 θ3 + · · ·+ h(0)κ−1θκ−1

= u + vθ + (h(1)2 + r2θ)θ2 + h(0)3 θ3 + · · ·+ h(0)κ−1θκ−1

= u + vθ + h(1)2 θ2 + (h(0)3 + r2)θ
3 + · · ·+ h(0)κ−1θκ−1

· · · · · · · · · · · · · · · · · · · · ·
= u + vθ + h(1)2 θ2 + · · ·+ h(1)κ−2θκ−2 + (h(0)κ−1 + rκ−2)θ

κ−1

= u + vθ + h(1)2 θ2 + · · ·+ h(1)κ−2θκ−2 + tκ−1θκ−1

= u + vθ + h(1)2 θ2 + · · ·+ h(1)κ−2θκ−2 + (h(1)κ−1 + rκ−12ν)θκ−1

= u + vθ + h(1)2 θ2 + · · ·+ h(1)κ−1θκ−1 + rκ−12(κ−1)η+ν [since θ = 2η]

≡ u + vθ + h(1)2 θ2 + · · ·+ h(1)κ−1θκ−1 + rκ−1δ mod p [using (4.4)] (4.53)

where 0 ≤ u, v, h(1)2 , h(1)3 , . . . , h(1)κ−2 < 2η and 0 ≤ h(1)κ−1 < 2ν. The bounds on δrκ−1 are
0 ≤ δrκ−1 < 22η+ν−129 · 2128−ν = 22η−1. In Step 10 t is assigned to u + δrκ−1 and so
0 ≤ t < 22η . By the remaining two instructions of Step 10 we get 0 ≤ h(1)0 < 2η and
0 ≤ r0 < 2η . By Step 11 we have 0 ≤ h(1)1 < 2η+1. Hence, from (4.53) through Steps 10
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and 11 we obtain

h(0)(θ) ≡ (u + δrκ−1) + vθ + h(1)2 θ2 + · · ·+ h(1)κ−1θκ−1 mod p

= t + vθ + h(1)2 θ2 + · · ·+ h(1)κ−1θκ−1

= (t mod 2η + bt/2ηcθ) + vθ + h(1)2 θ2 + · · ·+ h(1)κ−1θκ−1 [since θ = 2η]

= h(1)0 + (v + r0)θ + h(1)2 θ2 + · · ·+ h(1)κ−1θκ−1

= h(1)0 + h(1)1 θ + h(1)2 θ2 + · · ·+ h(1)κ−1θκ−1 = h(1)(θ), (4.54)

where 0 ≤ h(1)1 < 2η+1, 0 ≤ h(1)0 , h(1)2 , . . . , h(1)κ−2 < 2η , and h(1)κ−1 < 2ν. From (4.54) we have
h(1)(θ) ≡ h(0)(θ) mod p which proves the statement on partial reduction.

To ensure full reduction another pass over the limbs is required. This is performed
in Steps 13-20. First assume that h(2)2 computed in Step 20 satisfies 0 ≤ h(2)2 < 2η . Then,
it is routine to argue in a manner similar to above that the final computed h(2)(θ) is such
that h(2)(θ) ≡ h(0)(θ) mod p and 0 ≤ h(2)i < 2η for i = 0, 1, . . . , κ − 2 and 0 ≤ h(2)κ−1 < 2ν.

We now show that h(2)2 computed in Step 20 satisfies 0 ≤ h(2)2 < 2η . Since h(1)1 < 2η+1,
this implies c1 ≤ 1. In the first iteration of the loop in Steps 14-17 c1 is added to h(1)2 to
obtain t. From this t h(2)2 is obtained as t mod 2η and c2 is obtained as c = bt/2ηc. So,
c2 ≤ 1. Since h(1)2 < 2η , c2 = 1 if and only if h(1)2 = 2η − 1 and in this case h(2)2 = 0. The
following observations can be noted.

1. ci, c ≤ 1 for i = 0, 1, . . . , κ − 1.

2. If c2 = 0, then ci = 0 for i = 3, 4, . . . , κ − 1 and c0 = c = 0.

So, if c2 = 0, then c = 0 and so the value of h(2)2 computed in Step 20 is equal to the
value of h(2)2 computed in Step 15. Since the value of h(2)2 computed in this step satisfies
0 ≤ h(2)2 < 2η so does the value of h(2)2 computed in Step 20. On the other hand, if c2 = 1
then the value of h(2)2 computed in Step 15 is 0 and so, the value of h(2)2 computed in
Step 20 is equal to c ≤ 1. So, in both cases the bounds 0 ≤ h(2)2 < 2η hold.

4.8.1 An Important Implementation Issue

In Steps 4, 5, 7, 9 and 10, the operations w mod 2τ and bw/2τc are performed on a 128-
bit quantity w where τ is either η or ν. The operation bw/2τc heavily influences the
overall performance of the algorithm. We describe the implementation of the operations
w mod 2τ and bw/2τc in more details. The 128-bit quantity w is stored in two 64-bit
words w0 and w1 such that w = w0 + w1264. There are two cases to consider.

Case 1. 0 ≤ w < 2128−τ. In this case 0 ≤ w1 < 264−τ, i.e., w1 is at most a (64− τ)-
bit word. So, it is possible to left shift w1 by τ bits and at the same time move in the
τ most significant bits of w0 into the τ least significant bits of w1. The assembly level
Intel instruction for doing this is shld and the two operations w mod 2τ and bw/2τc are
executed as follows.
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shld 64− τ, w0, w1
and 2τ − 1, w0.

After executing these two steps, w1 stores bw/2τc and w0 stores w mod 2τ.

Case 2. w ≥ 2128−τ. In this case, 0 ≤ w1 < 264−τ and the length of w1 in bits is more than
64− τ bits. So, left shifting w1 by τ bits will result in loss of information and the strategy
of Case 1 does not work. Further, the result of bw/2τc is more than 64 bits in length and
requires two 64-bit words to be stored. The strategy in this case is the following. First
copy w0 to another 64-bit location x0. Right shift τ bits of w0 while moving in τ least
significant bits of w1 into the most significant bits of w0. (The Intel instruction for doing
this is shrd.) Then, right shift w1 by τ bits. The two operations w mod 2τ and bw/2τc
are executed as follows.

mov w0, x0
and 2τ − 1, x0
shrd τ, w1, w0
shr τ, w1.

After executing the above steps, x0 stores w mod 2τ; w0 stores the 64 least significant bits
of bw/2τc and the (64− τ) least significant bits of w1 stores the (64− τ) most significant
bits of bw/2τc.

Clearly Case 2 is more time consuming than Case 1. The applicability of Case 1 and
Case 2 to the primes that we have considered are as follows.

1. For primes identified as type A in Table 4.4, Case 1 can be applied, except for the
prime 2222 − 117 where Case 2 needs to be applied only for Step 4 of reduceUSL.

2. For primes identified as type B in Table 4.4, Case 2 needs to be applied.

4.8.2 A Computational Bottleneck

The various computations b·/2τc in reduceUSL are strictly sequential. Correspondingly,
the operations shld or shrd as the case may be, are not independent and have to be exe-
cuted in sequence. These are relatively high-latency operations and so the strict sequen-
tial execution of these operations have a negative impact on the overall performance of
the algorithm.

We next describe two other reduction algorithms. The main motivation of these algo-
rithms is to try and ensure that the operations shld or shrd are independent. Achieving
such independence comes at the cost of increasing the total number of operations. Even
then, for certain primes, the independence of these operations result in an overall faster
algorithm.

Remark 4.10. Steps 13-19 also use the operation b·/2τc, but these are on 64-bit quantities and
can be efficiently implemented using the shr instruction.
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Algorithm 4.9 Improved reduction algorithm for primes identified as type A in Table 4.4
using unsaturated limb representation. Performs reduction modulo p = 2m − δ and
m-bit integers have a (κ, η, ν)-representation with η < 64; θ = 2η .

1: function reduceUSLA(h(0)(θ))
2: input: h(0)(θ).
3: output: h(2)(θ) or h(3)(θ).
4: r ← h(0)0 mod 2η

5: for i← 1 to κ − 2 do
6: h(1)i ← h(0)i mod 2η + bh(0)i−1/2ηc
7: end for
8: h(1)κ−1 ← h(0)κ−1 mod 2ν + bh(0)κ−2/2ηc
9: s← bh(0)κ−1/2νc; h(1)0 ← r + δs

10: u← h(1)0 mod 2η ; r0 ← bh(1)0 /2ηc
11: for i← 1 to κ − 2 do
12: ti ← h(1)i + ri−1; h(2)i ← ti mod 2η ; ri ← bti/2ηc
13: end for
14: tκ−1 ← h(1)κ−1 + rκ−2; h(2)κ−1 ← tκ−1 mod 2ν; rκ−1 ← btκ−1/2νc
15: h(2)0 ← u + δrκ−1

16: PARTIAL REDUCTION: return h(2)(θ) = h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1θκ−1

17: v← h(2)0 mod 2η ; c0 ← bh(2)0 /2ηc
18: for i← 1 to κ − 2 do
19: t← h(2)i + ci−1; h(3)i ← t mod 2η ; ci ← bt/2ηc
20: end for
21: t← h(2)κ−1 + cκ−2; h(3)κ−1 ← t mod 2ν; cκ−1 ← bt/2νc
22: t← v + δcκ−1; h(3)0 ← t mod 2η ; c← bt/2ηc
23: h(3)1 ← h(3)1 + c

24: FULL REDUCTION: return h(3)(θ) = h(3)0 + h(3)1 θ + · · ·+ h(3)κ−1θκ−1

25: end function.

4.8.3 Improved Reduction for Type A Primes

Function reduceUSLA in Algorithm 4.9 describes a reduction algorithm which improves
upon reduceUSL for primes identified as type A in Table 4.4.

The following result states the correctness of reduceUSLA.

Theorem 4.6. Let p = 2m − δ be a type A prime as identified in Table 4.4; m be such that
m-bit integers have (κ, η, ν)-representation and δ < 22η+ν−130. Suppose the input h(0)(θ) =

h(0)0 + h(0)1 θ + · · ·+ h(0)κ−1θκ−1 to reduceUSLA is such that 0 ≤ h(0)i < 2` for i = 0, 1, . . . , κ− 1
where ` < 63 + ν.

1. For partial reduction, the output of reduceUSLA is h(2)(θ) = h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1θκ−1,

where 0 ≤ h(2)0 < 2η+1, 0 ≤ h(2)1 , h(2)2 , . . . , h(2)κ−2 < 2η and 0 ≤ h(2)κ−1 < 2ν satisfying
h(2)(θ) ≡ h(0)(θ) mod p.



74 4.8. Reduction Using Unsaturated Limb Representation

2. For full reduction, the output h(3)(θ) of reduceUSLA has a (κ, η, ν)-representation and
h(3)(θ) ≡ h(0)(θ) mod p.

Proof. Note that for all the primes identified as type A in Table 4.4, we have η < 62.
Steps 4-9 convert the h(0)(θ) to h(1)(θ) ensuring h(1)(θ) ≡ h(0)(θ) mod p and Steps 10-15
convert h(1)(θ) to h(2)(θ) ensuring h(2)(θ) ≡ h(1)(θ) mod p. Define

h(0)j = h(0)j,0 + h(0)j,1 2η where h(0)j,0 = h(0)j mod 2η , h(0)j,1 = bh(0)j /2ηc,
for j = 0, 1, . . . , κ − 2; and

h(0)κ−1 = h(0)κ−1,0 + h(0)κ−1,12ν where h(0)κ−1,0 = h(0)κ−1 mod 2ν, h(0)κ−1,1 = bh(0)κ−1/2νc.

Clearly, 0 ≤ h(0)j,0 < 2η < 262 and 0 ≤ h(0)j,1 < 2`−η for j = 0, 1 . . . , κ − 2; 0 ≤ h(0)κ−1,0 < 2ν

and 0 ≤ h(0)κ−1,1 < 2`−ν. Using ` < 63 + ν and η ≥ ν, we have 0 ≤ h(0)j,1 < 262 for
j = 0, 1, . . . , κ − 1.

In Step 4, r is assigned the value h(0)0,0 ; for i = 1, 2, . . . , κ − 2, the i-th iteration of

the loop in Steps 5-7 assigns the value (h(0)i,0 + h(0)i−1,1) to h(1)i ; Step 8 assigns the value

(h(0)κ−1,0 + h(0)κ−2,1) to h(1)κ−1; Step 9 assigns the value h(0)κ−1,1 to s. So, 0 ≤ r < 2η and 0 ≤ s <

2`−ν. Note that 2(κ−1)η+ν = 2m ≡ δ mod p and so 0 ≤ δs < 22η+`−130 < 22η−2, since
δ < 22η+ν−130 and ` < 63 + ν < 128. Step 9 assigns the value r + δs to h(1)0 . The bounds
on h(1)i are

0 ≤ h(1)0 < 22η−1 and 0 ≤ h(1)i < 263 for i = 1, 2, . . . , κ − 1. (4.55)

Using θ = 2η , we can write h(0)(θ) as

h(0)(θ) = h(0)0 + h(0)1 θ + · · ·+ h(0)κ−1θκ−1

= (h(0)0,0 + h(0)0,1 θ) + (h(0)1,0 + h(0)1,1 θ)θ + · · ·+ (h(0)κ−1,0 + h(0)κ−1,12ν)θκ−1

= h(0)0,0 + (h(0)0,1 + h(0)1,0 )θ + · · ·+ (h(0)κ−2,1 + h(0)κ−1,0)θ
κ−1 + h(0)κ−1,12(κ−1)η+ν

≡ (r + δs) + h(1)1 θ + · · ·+ h(1)κ−1θκ−1 mod p [using (4.4)]

= h(1)0 + h(1)1 θ + · · ·+ h(1)κ−1θκ−1 = h(1)(θ). (4.56)

The argument that Steps 10-14 computes h(2)(θ) such that h(2)(θ) ≡ h(1)(θ) mod p
and the limbs of h(2)(θ) satisfy the stated bounds for partial reduction is similar to the
proof of Theorem 4.5. The points to be noted are the following.

1. Since 0 ≤ h(1)0 < 22η−1, the value of u and r0 computed in Step 10 satisfies 0 ≤ u <
2η and 0 ≤ r0 < 2η−1 respectively.

2. Since 0 ≤ h(1)i < 263 for i = 1, 2, . . . , κ − 2, and η < 64, in Step 12 we have 0 ≤ ti <

264, 0 ≤ h(2)i < 2η and 0 ≤ ri < 264−η for i = 1, 2, . . . , κ − 2.

3. Since 0 ≤ h(1)κ−1 < 263, in Step 14 we have 0 ≤ tκ−1 < 264, 0 ≤ h(2)κ−1 < 2ν and
0 ≤ rκ−1 < 264−ν.
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4. Since 0 ≤ δ < 22η+ν−130 and 0 ≤ r(1)κ−1 < 264−ν, in Step 15 we have 0 ≤ δrκ−1 <

22η−66 < 2η for all the primes identified as type A in Table 4.4. This, along with
0 ≤ u < 2η implies 0 ≤ h(2)0 < 2η+1 in Step 15.

The effect of Steps 10-15 on h(1)1 (θ) can be written as

h(1)(θ) = h(1)0 + h(1)1 θ + · · ·+ h(1)κ−1θκ−1

= (u + r0θ) + h(1)1 θ + · · ·+ h(1)κ−1θκ−1

= u + (h(1)1 + r0)θ + · · ·+ h(1)κ−1θκ−1

= u + t1θ + h(1)2 θ2 + · · ·+ h(1)κ−1θκ−1

= u + (h(2)1 + r1θ)θ + h(1)2 θ2 + · · ·+ h(1)κ−1θκ−1

= u + h(2)1 θ + (h(1)2 + r1)θ
2 + · · ·+ h(1)κ−1θκ−1

· · · · · · · · · · · · · · · · · · · · ·
= u + h(2)1 θ + h(2)2 θ2 + · · ·+ h(1)κ−2θκ−2 + (h(0)κ−1 + rκ−2)θ

κ−1

= u + h(2)1 θ + h(2)2 θ2 + · · ·+ h(1)κ−2θκ−2 + tκ−1θκ−1

= u + h(2)1 θ + h(2)2 θ2 + · · ·+ h(1)κ−2θκ−2 + (h(1)κ−1 + rκ−12ν)θκ−1

= u + h(2)1 θ + h(2)2 θ2 + · · ·+ h(1)κ−1θκ−1 + rκ−12(κ−1)η+ν [since θ = 2η]

≡ (u + rκ−1δ) + h(2)1 θ + h(2)2 θ2 + · · ·+ h(1)κ−1θκ−1 mod p [using (4.4)]

= h(2)0 + h(2)1 θ + h(2)2 θ2 + · · ·+ h(1)κ−1θκ−1 = h(2)(θ). (4.57)

Using the points 1-4 mentioned before, we have the desired bounds on the limbs of
h(2)(θ) as 0 ≤ h(2)0 < 2η+1, 0 ≤ h(2)1 , h(2)2 , . . . , h(2)κ−2 < 2η and 0 ≤ h(2)κ−1 < 2ν. Combining
(4.56) and (4.57) we have h(2)(θ) ≡ h(0)(θ) mod p which proves the statement of partial
reduction.

The statement on full reduction can be proved in a manner which is very similar to
that of Theorem 4.5.

Function reduceUSLA makes two passes over the limbs compared to reduceUSL which
makes a single pass over the limbs. So, the total number of operations required by re-
duceUSLA is more than that of reduceUSL. Even then, for primes of type A, it turns out
that reduceUSLA is faster than reduceUSL. The reason is explained below.

4.8.4 Independent Double Word Shifts

The computations b·/2ηc in Steps 6 and 8 are on `-bit quantities with ` < 63 + η. This
computation falls under Case 1 discussed after the proof of Theorem 4.5 and can be
completed using a single shld instruction. The important difference between reduceUSL
and reduceUSLA is that in the later case, the shld instructions are independent. So, these
can be appropriately pipelined and may also be simultaneously scheduled on separate
ALUs. It is this feature that leads to the speed up of reduceUSLA over reduceUSL. For
example, on the Intel Skylake processor, for p = 2255 − 19, reduceUSLA takes 25 cycles
whereas reduceUSL takes 37 cycles.
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Function reduceUSLA has another set of shift operations in Step 14. These operations
are on 64-bit words and hence can be computed using the shr instruction. This is true
for all the primes except for 2222− 117, for which the first two limbs of h(1)(θ) have more
than 64 bits and hence the shld instruction has to be applied to extract the required
leading bits of these limbs. The latency of shr instruction is smaller than the latency of
shld instruction. The independence of the shld instructions in reduceUSLA more than
compensates for the extra shr operations.

It is possible to avoid shld instruction and instead implement the desired function-
ality with the four instructions shl, mov, shr and or. We have implemented this strategy
to try and speed up reduceUSL, but the resulting speed is still slower than that of re-
duceUSLA.

4.8.5 Improved Reduction for Type B Primes

There are two primes identified as type B in Table 4.4. If reduceUSLA is applied to these
two primes, then the sizes of all the coefficients of h(1)(θ) will be more than 64 bits.
So, the subsequent steps of reduceUSLA will require application of shld instead of shr.
Further, these shld instructions would not be independent. To avoid this situation, it is
possible to make an extra pass over the limbs as in Steps 4-9 of reduceUSLA. This results
in Function reduceUSLB which is given in Algorithm 4.10. Each limb of the partially
reduced output of reduceUSLB has an extra bit. As mentioned in Section 4.7.2, only
those primes are identified as type B for which this does not lead to an overflow in the
multiplication and squaring algorithms.

The following result states the correctness of reduceUSLB.

Theorem 4.7. Let p = 2m − δ be a type B prime as identified in Table 4.4; m be such that m-bit
integers have (κ, η, ν)-representation; and δ < 22η+ν−130. Suppose the input h(0)(θ) = h(0)0 +

h(0)1 θ + · · ·+ h(0)κ−1θκ−1 to reduceUSLA is such that 0 ≤ h(0)i < 2128 for i = 0, 1, . . . , κ − 1.

1. For partial reduction, the output of reduceUSLB is h(2)(θ) = h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1θκ−1,

where 0 ≤ h(2)0 , h(2)1 , . . . , h(2)κ−2 < 2η+1 and 0 ≤ h(2)κ−1 < 2ν+1 satisfying h(2)(θ) ≡
h(0)(θ) mod p.

2. For full reduction, the output h(4)(θ) of reduceUSLB has a (κ, η, ν)-representation and
h(4)(θ) ≡ h(0)(θ) mod p.

Proof. The first iteration of the loop in Steps 4-11 converts h(0)(θ) to h(1)(θ). The correct-
ness of this conversion can be argued in a manner similar to the first part of the proof of
Theorem 4.6. In particular, we obtain

h(0)(θ) = h(0)0 + h(0)1 θ + · · ·+ h(0)κ−1θκ−1

≡ h(1)0 + h(1)1 θ + · · ·+ h(1)κ−1θκ−1︸ ︷︷ ︸
through first iteration of Steps 4-11

mod p = h(1)(θ). (4.58)

Proceeding in a manner similar to the first part of the proof of Theorem 4.6, it can be
shown that 0 ≤ h(1)0 < 22η−1 and 0 ≤ h(1)1 , h(1)2 , . . . , h(1)κ−1 < 2129−η .



4. Efficient Arithmetic in (Pseudo-)Mersenne Prime Order Fields 77

Algorithm 4.10 Improved reduction algorithm for primes identified as type B in Table 4.4
using unsaturated limb representation. Performs reduction modulo p = 2m − δ and m-
bit integers have a (κ, η, ν)-representation with η < 64; θ = 2η .

1: function reduceUSLB(h(0)(θ))
2: input: h(0)(θ).
3: output: h(2)(θ) or h(4)(θ).
4: for λ← 0 to 1 do
5: r ← h(λ)0 mod 2η

6: for i← 1 to κ − 2 do
7: h(λ+1)

i ← h(λ)i mod 2η + bh(λ)i−1/2ηc
8: end for
9: h(λ+1)

κ−1 ← h(λ)κ−1 mod 2ν + bh(λ)κ−2/2ηc
10: s← bh(λ)κ−1/2νc; h(λ+1)

0 ← r + δs
11: end for
12: PARTIAL REDUCTION: return h(2)(θ) = h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1θκ−1

13: for λ← 2 to 3 do
14: h(λ+1)

0 ← h(λ)0 mod 2η ; c← bh(λ)0 /2ηc
15: for i← 1 to κ − 2 do
16: t← h(λ)i + c; h(λ+1)

i ← t mod 2η ; c← bt/2ηc
17: end for
18: t← h(λ)κ−1 + c; h(λ+1)

κ−1 ← t mod 2ν; c← bt/2νc
19: h(λ+1)

0 ← h(λ+1)
0 + δc

20: end for
21: t← h(4)0 ; h(4)0 ← t mod 2η ; c← bt/2ηc
22: h(4)1 ← h(4)1 + c

23: FULL REDUCTION: return h(4)(θ) = h(4)0 + h(4)1 θ + · · ·+ h(4)κ−1θκ−1

24: end function.

The second iteration of the loop in Steps 4-11 converts h(1)(θ) to h(2)(θ). The correct-
ness of this argument is also similar to the first part of the proof of Theorem 4.6. The only
thing required is to argue that the coefficients of h(2)(θ) satisfy the stated bounds.

Step 5 of the second iteration provides r satisfying 0 ≤ r < 2η . We have bh(1)i−1/2ηc <
2129−2η , h(1)i mod 2η < 2η for i = 1, 2, . . . , κ − 2, and h(1)κ−1 mod 2ν < 2ν < 2η . The follow-
ing three observations hold for both the primes identified as type B in Table 4.4. Their
consequences are also mentioned.

1. 129− 2η = 129− 2 · 55 = 129− 110 = 19 < ν < η. Consequently, after Steps 6-9
of the second iteration are 0 ≤ h(2)1 , h(2)2 , . . . , h(2)κ−2 < 2η+1 and 0 ≤ h(2)κ−1 < 2ν+1.

2. δ < 28. Consequently, after Step 10, δs < 28 · 2129−2ν = 2137−2ν.

3. 137 − 2ν ≤ 137 − 2 · 52 = 137 − 104 = 33 < η. Consequently, after Step 10,
0 ≤ h(2)0 < 2η+1.



78 4.9. Implementations and Timings

So, we have

h(1)(θ) = h(1)0 + h(1)1 θ + · · ·+ h(1)κ−1θκ−1

≡ h(2)0 + h(2)1 θ + · · ·+ h(2)κ−1θκ−1︸ ︷︷ ︸
through second iteration of Steps 4-11

mod p = h(2)(θ), (4.59)

where 0 ≤ h(2)0 , h(2)1 , . . . , h(2)κ−2 < 2η+1 and 0 ≤ h(2)κ−1 < 2ν+1. Combining (4.58) and (4.59)
we have h(2)(θ) ≡ h(0)(θ) mod p, which proves the statement on partial reduction.

The statement on full reduction can be proved routinely. The only point to be noted
is that a single pass over the limbs is not sufficient to ensure termination and instead two
passes are required.

4.9 Implementations and Timings

Timings on Haswell and Skylake are shown in Tables 4.5, 4.6 and 4.7 respectively.

field
implementation type - maa

previous this work algorithm sup

F2127−1 (32, 32, 2797) [BCLS14] (32, 30, 2503) farith-SLMP (0, 10.3, 10.5)

F2221−3 -
(54, 45, 8082) farith-USLA

-
(57, 56, 9957) farith-USL

F2222−117 -
(58, 46, 8385) farith-USLA

-
(64, 55, 10798) farith-USL

F2251−9 (72, 55, 12202) [KS20]
(52, 46, 11245) farith-SLa

(27.8, 16.35, 7.8)
(78, 55, 11803) farith-USLA

F2255−19
(72, 51, 12359) [BDL+12, 5-limb] (71, 50, 11854) farith-USLA

(1.4, 2.0, 4.1)
(77, 64, 15880) [BDL+12, 4-limb] (62, 54, 12393) farith-SLa

F2256−232−977 (86, 62, 20209) [SEC]
(55, 51, 12809) farith-SLa

(36.0, 17.7, 36.6)
(70, 63, 17202) farith-USL

F2266−3 (72, 52, 12705) [KS20]
(71, 51, 12413) farith-USLA

(1.4, 2.0, 2.3)
(85, 50, 14892) farith-USL

F2382−105 -
(119, 100, 33437) farith-USLB

-
(127, 102, 39722) farith-USL

F2383−187 -
(119, 101, 33699) farith-USLB

-
(127, 102, 39825) farith-USL

F2414−17 -
(161, 117, 43218) farith-USLA

-
(130, 109, 44239) farith-USLa

F2511−187 - (199, 144, 72804) farith-USL -
F2512−569 - (199, 144, 73771) farith-USL -

F2521−1 (210, 166, 76298) [GS15]
(177, 129, 62244) farith-USLA

(15.7, 22.3, 18.4)
(178, 132, 71546) farith-USL

F2607−1 - (230, 156, 94149) farith-USL -

Table 4.5: Comparison of timings of various field arithmetic algorithms on Haswell. The work [BDL+12] was targeted
for the Intel’s Nehalem/Westmere CPUs.

For the maa implementations, all applicable algorithms have been implemented and
timings recorded. To simplify the presentation, we provide timings for farith-USL. Here,
the notation farith-USL denotes the algorithm triplet which computes a field-multiplication,
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field-squaring and field-inverse using mulUSL, sqrUSL and reduceUSL. Similar interpre-
tation applies for the other notations used in the tables. If the algorithm invUSL of farith-
USL is not the fastest, then the timing of the triplet is provided which has the fastest time
for inversion. The speed-up percentage corresponds to the faster of the two timings.

For the prime 2127 − 1, the maa type implementation is done using farith-SLMP. This
is basically an optimized version of the implementation by Bernstein et al [BCLS14].

Based on Tables 4.5 to 4.7, we make the following observations.

1. Among the primes considered in this work, only the prime 2255− 19 has a previous
maax type implementation. For the other primes, we provide the first maax type
implementations.

2. For each prime, where a previous maa implementation is available, we report a
faster maa implementation. On both processors, the speed-up percentage varies
from 2% to about 36%.

3. In comparison to previous work, we provide the fastest implementations for all
the primes that are considered in this work. The speed-up is significant for some
important primes. For the latest processors, the maax type implementations are
faster than maa type implementations. Apart from the prime 2255 − 19, for all the
other primes we provide the first maax type implementations.

field
implementation type - maa

previous this work algorithm sup

F2127−1 (27, 26, 2505) [BCLS14] (26, 24, 2263) farith-SLMP (3.7, 7.7, 9.7)

F2221−3 -
(58, 41, 7949) farith-USLA

-
(60, 43, 8936) farith-USL

F2222−117 -
(55, 42, 8033) farith-USLA

-
(60, 44, 10067) farith-USL

F2251−9 (66, 65, 13632) [KS20]
(50, 46, 11783) farith-SLa

(24.2, 29.2, 13.6)
(65, 52, 12415) farith-USLA

F2255−19
(67, 48, 13223) [BDL+12, 5-limb] (65, 47, 12671) farith-USLA

(3.0, 2.1, 4.2)
(67, 58, 13901) [BDL+12, 4-limb] (57, 52, 12906) farith-SLa

F2256−232−977 (74, 54, 18391) [SEC]
(52, 49, 13242) farith-SLa

(29.7, 9.3, 28.0)
(74, 63, 15565) farith-USLa

F2266−3 (66, 50, 14472) [KS20]
(65, 48, 13350) farith-USLA

(1.51, 4.0, 7.8)
(71, 48, 14651) farith-USL

F2382−105 -
(107, 92, 30419) farith-USLB

-
(115, 93, 35465) farith-USL

F2383−187 -
(107, 92, 30680) farith-USLB

-
(115, 93, 35552) farith-USL

F2414−17 -
(127, 98, 38096) farith-USLA

-
(126, 97, 39371) farith-USLa

F2511−187 - (179, 131, 66039) farith-USL -
F2512−569 - (179, 131, 66808) farith-USL -

F2521−1 (184, 142, 64924) [GS15]
(150, 116, 54790) farith-USLA

(18.5, 18.3, 15.6)
(162, 121, 63938) farith-USL

F2607−1 - (202, 137, 83587) farith-USL -

Table 4.6: Comparison of maa-timings of various field arithmetic algorithms on Skylake. The work [BDL+12] was
targeted for the Intel’s Nehalem/Westmere CPUs.
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field
implementation type - maax

previous this work reduction sup

F2127−1 - (26, 24, 2154) farithx-SLMP -
F2221−3 - (62, 43, 7728) farithx-SLPMP -
F2222−117 - (64, 40, 7967) farithx-SLPMP -
F2251−9 - (54, 47, 8784) farithx-SLPMP -
F2255−19 (62, 49, 12170) [OLH+17] (54, 42, 9301) farithx-SLPMP (12.9, 14.3, 23.6)
F2256−232−977 - (65, 53, 11501) farithx-SLPMP -
F2266−3 - (65, 53, 12938) farithx-SLPMP -
F2382−105 - (81, 69, 24549) farithx-SLPMP -
F2383−187 - (81, 69, 24628) farithx-SLPMP -
F2414−17 - (97, 80, 30972) farithx-SLPMP -
F2511−187 - (118, 101, 47062) farithx-SLPMP -
F2512−569 - (125, 106, 49713) farithx-SLPMP -
F2521−1 - (128, 108, 53828) farithx-SLMP -
F2607−1 - (159, 129, 74442) farithx-SLMP -

Table 4.7: Comparison of maax-timings of various field arithmetic algorithms on Skylake.

Timings for field multiplications and squarings are given in Tables 4.5 to 4.7. A field
multiplication/squaring consists of an integer multiplication/squaring and a reduction
step. The reduction step requires a significant amount of the total time. To provide an
idea of the time required by the reduction step, we have obtained timings for integer
multiplication/squaring operations in the maax setting. These timings are shown in Ta-
ble 4.8. Comparing the timings for integer multiplication/squaring in Table 4.8 to the
timings for field multiplication/squarings in Table 4.7 provides an idea of the time re-
quired for the reduction steps.

field(s) (mult, sqr)

F2127−1 (14, 13)
F2221−3, F2222−117 (27, 23)
F2251−9, F2255−19, F2256−232−977 (30, 25)
F2266−3 (42, 33)
F2382−105, F2383−187 (59, 50)
F2414−17 (73, 65)
F2511−187, F2512−569 (90, 82)
F2521−1 (109, 96)
F2607−1 (143, 113)

Table 4.8: Timings for integer multiplication and squaring in the maax setting on Skylake.

4.10 Conclusion

In this chapter, we have considered efficient algorithms for multiplication and squaring
over (pseudo-)Mersenne prime order fields. Our contributions have been two fold. On
the theoretical side, we provide various algorithms for multiplication/squaring and re-
duction. The correctness of the reduction algorithms have been rigorously proven. On
the practical side, we provide efficient assembly implementation of the various algo-
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rithms for modern Intel processors. For well known primes our implementations are
faster than the previous works. We have made all our source codes publicly available.



C H A P T E R 5

Reduction Modulo 2448− 2224− 1

5.1 Introduction

Let p = 2448 − 2224 − 1. The implementation of elliptic curve operations require arith-
metic in the underlying field Fp. Specifically, addition, subtraction, multiplication and
squaring are required. Additionally, to implement the Montgomery ladder for Curve448,
it is required to implement multiplication by a small constant. For 64-bit architecture, an
element of Fp can be represented using 7 limbs where each limb is a 64-bit quantity.
Such a representation can be considered to be a packed or saturated limb representation
of the elements of Fp. All the field operations require reduction modulo p while deal-
ing with saturated limb representation of field elements. Alternatively, elements of Fp
may be represented using 8 limbs where each limb is a 56-bit quantity stored in a 64-bit
word. Such a representation can be considered to be a redundant or unsaturated limb
representation. For modern Intel processors such as Skylake and later processors, the
implementation of field arithmetic using the saturated limb representation turns out to
be faster than that of the unsaturated limb representation.

We deal with both saturated and unsaturated limb representations of elements of Fp.
The field elements are represented using 7 limbs for saturated limb representation and
8 limbs for unsaturated limb representation. Our focus is on the reduction algorithms
which are required to implement field arithmetic operations in Fp. We present explicit
reduction algorithms along with their proofs of correctness for all the field arithmetic
operations required to implement Diffie-Hellman key agreement using Curve448. The
algorithms proceed over several iterations successively reducing the size of the input.
As part of the proof of correctness, it is required to argue that the algorithms terminate
without any overflow. The termination argument has a certain amount of subtlety. To the
best of our knowledge, no previous work had considered the issue of proof of correct-
ness. Without a formal argument about termination, a reduction strategy may turn out
to be incomplete or may perform redundant operations; we provide a short discussion
of these possibilities.

5.1.1 Efficient 64-bit Assembly Implementations of X448

The computation of the Diffie-Hellman key agreement over the curve Curve448 is based
on the computation of scalar multiplication over Curve448. This computation has been

82
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named as X448 in [LH16]. Implementation of scalar multiplication requires implementa-
tion of field arithmetic over the underlying field. We have implemented field arithmetic
over Fp, and based on it we have developed efficient assembly implementations of the
X448 function of Curve448. The performances of our 64-bit implementations for shared
secret computation and key generation are faster than the previously best known 64-bit
implementations. We have made our software publicly available at the link

https://github.com/kn-cs/x448.

5.1.2 Related Work

Efficient implementation of elliptic curve cryptography requires efficient implementa-
tion of arithmetic in the underlying finite field. Good introductions to implementa-
tion of field arithmetic can be found in [CFA+05, MvOV96]. Many important elliptic
curves have been defined over prime order fields. There have been a number of pro-
posal where the field order is either a Mersenne or a pseudo-Mersenne prime. Exam-
ples are the prime 2521 − 1 used for a NIST curve and the prime 2255 − 19 used for the
famous Curve25519 [Ber06b]. There are a number of works in the literature which ex-
plore various aspects of implementation of field arithmetic in the context of implemen-
tations of Curve25519 [Ber06b, Cho15, DHH+15, FL15]. Algorithms for implementing
field arithmetic over Mersenne and pseudo-Mersenne primes have been discussed in
Chapter 4. The literature also contains proposals of elliptic curves defined over prime
order fields where the prime is not a (pseudo-)Mersenne prime. For such fields, use of
Montgomery arithmetic [Mon85] is generally found to be helpful for efficient implemen-
tations [BM17]. An implementation of NIST P-256 based using Montgomery arithmetic
has been reported in [GK15]. The NIST P-256 prime is a Montgomery-friendly prime
and so reduction is faster than usual in Montgomery arithmetic.

5.2 Arithmetic in Fp using Saturated Limb Representation

Let p = 2448 − 2224 − 1 and θ = 264. For d ≥ 0, define the polynomial

f (θ) = f0 + f1θ + · · ·+ fdθd (5.1)

where f0, f1, . . . , fd are non-negative integers. Following usual convention, we will call
the fi’s to be limbs of f (θ).

As mentioned above, we consider the 7-limb representation of the elements of Fp. So,
elements of Fp can be represented as a polynomial f (θ) = f0 + f1θ + · · ·+ f6θ6 where
0 ≤ f0, f1, . . . , f6 < θ. Note that the set of all such f (θ) is in one-one correspondence
with the set of integers {0, 1, . . . , 2448 − 1}. Since, p < 2448 − 1, a degree-6 polynomial
f (θ) with 0 ≤ f0, f1, . . . , f6 < θ is not necessarily reduced modulo p. So, some elements
of Fp have non-unique representation. This, however, is a not a problem for intermediate
quantities in an elliptic curve computation. It is only the final result that is reduced to
have a unique representation modulo p. Avoiding obtaining unique representations for
the intermediate quantities leads to an overall faster algorithm for performing the elliptic
curve computation. Consequently, given a polynomial h(θ) = h0 + h1θ + · · · + hdθd,
with d > 0, by reduction modulo p, we will denote the task of obtaining a polynomial
f (θ) = f0 + f1θ + · · ·+ f6θ6 with 0 ≤ f0, f1, . . . , f6 < θ such that f (θ) ≡ h(θ) mod p.

https://github.com/kn-cs/x448
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For i ≥ 2, let x and y be two 64i-bit integers. Suppose, it is required to compute
the integer product x · y. If x = y, then this corresponds to the squaring operation,
while if x 6= y, then a general multiplication operation is required. Intel processors
from Broadwell (launched in 2014) onwards provide a special set of 64-bit multiplication
and addition instructions which allow very fast computation of the product x · y. For
i = 4, the multiplication and squaring algorithms have been illustrated using diagrams
in two Intel white papers [OGGF12, OGG13]. Explicit descriptions of the squaring and
multiplication algorithms in the general case have been provided in Chapter 4.

A field multiplication/squaring in Fp consists of the following two broad steps. Sup-
pose that f (θ) and g(θ) are two 7-limb integers from the set {0, 1, . . . , 2448 − 1} repre-
senting elements of Fp. In the first step, the integer product of f (θ) and g(θ) is obtained
in h(θ). The quantity h(θ) can be written as a 14-limb quantity h(θ) = h0 + h1θ + · · ·+
h13θ13, where 0 ≤ h0, h1, . . . , h13 < 264. The second step consists of reducing h(θ) to a
7-limb integer which is congruent to h(θ) modulo p.

The Montgomery ladder [Mon87] algorithm for Curve448 requires multiplying a 7-
limb quantity f (θ) by the constant c = 39082 (note, 215 < c < 216 and so c is a 16-bit
quantity). The integer product c · f (θ) can be computed much faster than a general
integer multiplication of two 7-limb quantities. The result c · f (θ) can be written as an
8-limb quantity where all the limbs are 64-bit quantities. A reduction algorithm is to
be applied to this 8-limb quantity to reduce it to a 7-limb quantity which represents an
element of Fp.

The integer addition of two 7-limb integers f (θ) and g(θ) results in an 8-limb integer.
In this case, the last limb is a single bit. Nevertheless, the result of the addition has to be
reduced to a 7-limb quantity.

Subtraction of two elements f (θ) and g(θ) in Fp is more problematic. The integer
operation f (θ)− g(θ) can turn out to be negative. To avoid handling negative numbers
a suitable multiple of p is added to the result. This creates subtleties in the reduction
algorithm.

5.3 Reduction in Fp using Saturated Limb Representation

In Section 5.3.1 below, we describe the method for reducing a 14-limb quantity to a 7-limb
quantity. As part of this algorithm, it is required to reduce an 8-limb quantity to a 7-limb
quantity. Correspondingly, this part can be used to reduce the result obtained either
after multiplication by a 64-bit constant or after addition of two 7-limb quantities 1. This
is pointed out in Section 5.3.2. The case of subtraction in Fp is described in Section 5.3.3.

5.3.1 Reduction from 14-Limb to 7-Limb

Let h(θ) be the 14-limb polynomial which is to be reduced. The polynomial h(θ) rep-
resents an integer z of 2 · 448 = 896 bits. A formal description of the algorithm to re-
duce h(θ) is given in Function reducep448 7L of Algorithm 5.1. All the operations in
reducep448 7L can be performed using 64-bit arithmetic instructions available in modern

1Knowing that the eighth limb is single bit in the case of addition doesn’t provide any advantage in
reduction.
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processors. For showing correctness of the algorithm it is required to argue that the out-
put is indeed congruent to the input modulo p. Further, it is also required to argue that
the procedure terminates without any overflow.

Let h(0)(θ) = h(θ). Function reducep448 7L takes the 14-limb polynomial h(0)(θ) as
input and reduces it through the intermediate polynomials h(1)(θ), h(2)(θ) finally pro-
ducing the 7-limb output polynomial h(3)(θ). A summary of the properties of the poly-
nomials h(1)(θ), h(2)(θ) and h(3)(θ) and the different steps of reducep448 7L that produces
these polynomials are as follows:

• h(1)(θ) has 8 limbs. The last limb is at most 2 bits long. The computation of h(1)(θ)
from h(0)(θ) is achieved by Steps 4-26.

• h(2)(θ) has 8 limbs. The last limb is at most 1-bit long and further, if h(2)7 = 1, then
h(2)4 = h(2)5 = h(2)6 = 0. The computation of h(2)(θ) from h(1)(θ) is achieved by
Steps 27-33.

• h(3)(θ) has 7 limbs where each limb is a 64-bit quantity. The computation of h(3)(θ)
from h(2)(θ) is achieved by Steps 34-38.

The properties of h(1)(θ), h(2)(θ) and h(3)(θ) stated above are formally proved in The-
orem 5.1. In particular, we note that the second property stated above is required to
argue that the procedure terminates without any overflow in the next iteration.

Theorem 5.1. Suppose the input h(0)(θ) = h(0)0 + h(0)1 θ + · · ·+ h(0)13 θ13 to reducep448 7L is
such that 0 ≤ h(0)i < 264 for i = 0, 1, . . . , 13. Then the output h(3)(θ) of reducep448 7L is such
that h(3)(θ) = h(3)0 + h(3)1 θ + · · ·+ h(3)6 (θ) with 0 ≤ h(3)j < 264 for j = 0, 1, . . . , 6. Further,

h(3)(θ) ≡ h(0)(θ) mod p.

Proof. Let η = 64. We have the prime p = 2448 − 2224 − 1 and since θ = 264 = 2η , we
have

2448 = θ7 ≡ 2224 + 1 = 2η/2θ3 + 1 mod p. (5.2)

Reduction from h(0)(θ) to h(1)(θ). The input h(0)(θ) to reducep448 7L can be written as

h(0)(θ) = (h(0)0 + h(0)1 θ + · · ·+ h(0)6 θ6) + (h(0)7 θ7 + h(0)8 θ8 + · · ·+ h(0)13 θ13),

= (h(0)0 + h(0)1 θ + · · ·+ h(0)6 θ6) + (h(0)7 + h(0)8 θ + · · ·+ h(0)13 θ6)θ7,

≡ (h(0)0 + h(0)1 θ + · · ·+ h(0)6 θ6) + (h(0)7 + h(0)8 θ + · · ·+ h(0)13 θ6)2η/2θ3 +

(h(0)7 + h(0)8 θ + · · ·+ h(0)13 θ6) mod p [using (5.2)],

= (h(0)0 + h(0)1 θ + · · ·+ h(0)6 θ6) + (h(0)7 + h(0)8 θ + · · ·+ h(0)13 θ6) +

(h(0)7 + h(0)8 θ + · · ·+ h(0)13 θ6)θ32η/2. (5.3)

Steps 4-8 add the two polynomials (h(0)0 + h(0)1 θ + · · ·+ h(0)6 θ6) and (h(0)7 + h(0)8 θ + · · ·+
h(0)13 θ6) limb-wise by forwarding the 1-bit carry, producing the polynomial (r(0)0 + r(0)1 θ +
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Algorithm 5.1 Reduction from 14-limb to 7-limb in Fp. In the algorithm, η = 64.

1: function reducep448 7L(h(0)(θ))
2: input: h(0)(θ) = h(0)0 + h(0)1 θ + · · ·+ h(0)13 θ13 such that 0 ≤ h(0)i < 2η for i = 0, 1, . . . , 13.

3: output: h(3)(θ) = h(3)0 + h(3)1 θ + · · ·+ h(3)6 θ6 such that 0 ≤ h(3)i < 2η for i = 0, 1, . . . , 6
and h(3)(θ) ≡ h(0)(θ) mod p.

4: t← h(0)0 + h(0)7 ; r(0)0 ← t mod 2η ; carry← bt/2ηc
5: for i← 1 to 6 do
6: t← h(0)i + h(0)i+7 + carry; r(0)i ← t mod 2η ; carry← bt/2ηc
7: end for
8: r(0)7 ← carry

9: s(0)0 ← r(0)0 ; s(0)1 ← r(0)1 ; s(0)2 ← r(0)2

10: t← r(0)3 + 2η/2bh(0)10 /2η/2c; s(0)3 ← t mod 2η ; carry← bt/2ηc
11: for i← 4 to 6 do
12: t← r(0)i + h(0)i+7 + carry; s(0)i ← t mod 2η ; carry← bt/2ηc
13: end for
14: s(0)7 ← r(0)7 + carry
15: for i← 0 to 2 do
16: t(0)i ← 2η/2(h(0)i+11 mod 2η/2) + bh(0)i+10/2η/2c
17: end for
18: t(0)3 ← 2η/2(h(0)7 mod 2η) + bh(0)13 /2η/2c
19: for i← 4 to 6 do
20: t(0)i ← 2η/2(h(0)i+4 mod 2η/2) + bh(0)i+3/2η/2c
21: end for
22: t← s(0)0 + t(0)0 ; h(1)0 ← t mod 2η ; carry← bt/2ηc
23: for i← 1 to 6 do
24: t← s(0)i + t(0)i + carry; h(1)i ← t mod 2η ; carry← bt/2ηc
25: end for
26: h(1)7 ← s(0)7 + carry

27: t← h(1)0 + h(1)7 ; h(2)0 ← t mod 2η ; carry← bt/2ηc
28: t← h(1)1 + carry; h(2)1 ← t mod 2η ; carry← bt/2ηc
29: t← h(1)2 + carry; h(2)2 ← t mod 2η ; carry← bt/2ηc
30: t← h(1)3 + 2η/2h(1)7 + carry; h(2)3 ← t mod 2η ; carry← bt/2ηc
31: t← h(1)4 + carry; h(2)4 ← t mod 2η ; carry← bt/2ηc
32: t← h(1)5 + carry; h(2)5 ← t mod 2η ; carry← bt/2ηc
33: t← h(1)6 + carry; h(2)6 ← t mod 2η ; h(2)7 ← bt/2ηc

34: t← h(2)0 + h(2)7 ; h(3)0 ← t mod 2η ; carry← bt/2ηc
35: t← h(2)1 + carry; h(3)1 ← t mod 2η ; carry← bt/2ηc
36: t← h(2)2 + carry; h(3)2 ← t mod 2η ; carry← bt/2ηc
37: h(3)3 ← h(2)3 + 2η/2h(2)7 + carry

38: h(3)4 ← h(2)4 ; h(3)5 ← h(2)5 ; h(3)6 ← h(2)6

39: return h(3)(θ) = h(3)0 + h(3)1 θ + · · ·+ h(3)6 θ6

40: end function.
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· · ·+ r(0)7 θ7). Hence, from (5.3) we write

h(0)(θ) ≡ (r(0)0 + r(0)1 θ + · · ·+ r(0)7 θ7)︸ ︷︷ ︸
through Steps 4-8

+

(h(0)7 + h(0)8 θ + · · ·+ h(0)13 θ6)θ32η/2 mod p, (5.4)

where 0 ≤ r(0)0 , r(0)1 , . . . , r(0)6 < 2η , and 0 ≤ r(0)7 < 2.

For j = 7, 8, . . . , 13, define

h(0)j = h(0)j,0 + h(0)j,1 2η/2, where h(0)j,0 = h(0)j mod 2η/2, and h(0)j,1 = bh(0)j /2η/2c. (5.5)

Using (5.5) for j = 10 we can write (5.4) as

h(0)(θ) ≡ (r(0)0 + r(0)1 θ + · · ·+ r(0)7 θ7) + (h(0)7 + h(0)8 θ + h(0)9 θ2) +

(h(0)10,0 + h(0)10,12η/2)θ3 + h(0)11 θ4 + h(0)12 θ5 + h(0)13 θ6)θ32η/2 mod p,

which can be further written as

h(0)(θ) ≡ (r(0)0 + r(0)1 θ + · · ·+ r(0)7 θ7) + (h(0)7 + h(0)8 θ + h(0)9 θ2 + h(0)10,0θ3)θ32η/2 +

(h(0)10,1 + h(0)11 2η/2 + h(0)12 θ2η/2 + h(0)13 θ22η/2)θ7 mod p,

≡ (r(0)0 + r(0)1 θ + · · ·+ r(0)7 θ7) + (h(0)7 + h(0)8 θ + h(0)9 θ2 + h(0)10,0θ3)θ32η/2 +

(h(0)10,1 + h(0)11 2η/2 + h(0)12 θ2η/2 + h(0)13 θ22η/2)(θ32η/2 + 1) mod p [using (5.2)],

= (r(0)0 + r(0)1 θ + · · ·+ r(0)7 θ7) + (h(0)10,1 + h(0)11 2η/2 + · · ·+ h(0)13 θ22η/2)θ32η/2 +

(h(0)10,1 + h(0)11 2η/2 + · · ·+ h(0)13 θ22η/2) + (h(0)7 + h(0)8 θ + h(0)9 θ2 + h(0)10,0θ3)θ32η/2,

= (r(0)0 + r(0)1 θ + · · ·+ r(0)7 θ7) + (2η/2h(0)10,1θ3 + h(0)11 θ4 + · · ·+ h(0)13 θ6) + (h(0)10,1 +

h(0)11 2η/2 + · · ·+ h(0)13 θ22η/2) + (h(0)7 + h(0)8 θ + · · ·+ h(0)10,0θ3)θ32η/2. (5.6)

Steps 9-14 add the two polynomials (r(0)0 + r(0)1 θ + · · ·+ r(0)7 θ7) and (2η/2h(0)10,1θ3 + h(0)11 θ4 +

h(0)12 θ5 + h(0)13 θ6) to produce the polynomial (s(0)0 + s(0)1 θ + · · ·+ s(0)7 θ7). Hence, from (5.6)
we write

h(0)(θ) ≡ (s(0)0 + s(0)1 θ + · · ·+ s(0)7 θ7)︸ ︷︷ ︸
through Steps 9-14

+ (h(0)10,1 + h(0)11 2η/2 + h(0)12 θ2η/2 + h(0)13 θ22η/2) +

(h(0)7 + h(0)8 θ + h(0)9 θ2 + h(0)10,0θ3)θ32η/2 mod p, (5.7)



88 5.3. Reduction in Fp using Saturated Limb Representation

where 0 ≤ s(0)0 , s(0)1 , · · · , s(0)6 < 2η , and 0 ≤ s(0)7 ≤ 2. Using the definitions of (5.5) we can
further write (5.7) as

h(0)(θ) ≡ (s(0)0 + s(0)1 θ + · · ·+ s(0)7 θ7) + h(0)10,1 + (h(0)11,0 + h(0)11,12η/2)2η/2 +

(h(0)12,0 + h(0)12,12η/2)θ2η/2 + (h(0)13,0 + h(0)13,12η/2)θ22η/2 + (h(0)7,0 + h(0)7,1 2η/2)θ32η/2 +

(h(0)9,0 + h(0)9,1 2η/2)θ52η/2 + (h(0)8,0 + h(0)8,1 2η/2)θ42η/2 + h(0)10,0θ62η/2 mod p,

= (s(0)0 + s(0)1 θ + · · ·+ s(0)7 θ7) + (h(0)10,1 + h(0)11,02η/2) + (h(0)11,1 + h(0)12,02η/2)θ +

(h(0)12,1 + h(0)13,02η/2)θ2 + (h(0)13,1 + h(0)7,0 2η/2)θ3 + (h(0)7,1 + (h(0)8,0 2η/2)θ4 +

(h(0)8,1 + h(0)9,0 2η/2)θ5 + (h(0)9,1 + h(0)10,02η/2)θ6,

= (s(0)0 + s(0)1 θ + · · ·+ s(0)7 θ7) + (t(0)0 + t(0)1 θ + · · ·+ t(0)6 θ6)︸ ︷︷ ︸
through Steps 15-21

. (5.8)

Steps 22-26 add the two polynomials (s(0)0 + s(0)1 θ + · · ·+ s(0)7 θ7) and (t(0)0 + t(0)1 θ + · · ·+
t(0)6 θ6) limb-wise by forwarding the 1-bit carry, producing the polynomial (h(1)0 + h(1)1 θ +

· · ·+ h(1)7 θ7). Hence, from (5.8) we can write

h(0)(θ) ≡ (s(0)0 + s(0)1 θ + · · ·+ s(0)7 θ6) + (t(0)0 + t(0)1 θ + · · ·+ t(0)6 θ6) mod p,

= (h(1)0 + h(1)1 θ + · · ·+ h(1)7 θ7)︸ ︷︷ ︸
through Steps 22-26

= h(1)(θ), (5.9)

where 0 ≤ h(1)0 , h(1)1 , . . . , h(1)6 < 2η , and 0 ≤ h(1)7 < 22. In the rest of the proof, we use the
looser bound h(1)7 < 216 = 2η/4. This does not cause any problem. The advantage is that,
later we can refer to the subsequent part of the proof to argue about the correctness of
the reduction of the quantity obtained after multiplying by the 16-bit curve constant.

Reduction from h(1)(θ) to h(2)(θ). The polynomial h(1)(θ) can further be written as

h(1)(θ) ≡ h(1)0 + h(1)1 θ + · · ·+ h(1)6 θ6 + h(1)7 (2η/2θ3 + 1) mod p [using (5.2)],

= (h(1)0 + h(1)1 θ + · · ·+ h(1)6 θ6) + (h(1)7 + 2η/2h(1)7 θ3). (5.10)

Steps 27-33 add the polynomial (2η/2θ3 + 1)h(1)7 = (h(1)7 + 2η/2h(1)7 θ3) to the polyno-
mial (h(1)0 + h(1)1 θ + · · · + h(1)6 θ6), which produces (h(2)0 + h(2)1 θ + · · · + h(2)7 θ7), where
0 ≤ h(2)0 , h(2)1 , · · · , h(2)6 < 2η , and 0 ≤ h(2)7 < 2. Hence, from (5.10) we write

h(1)(θ) ≡ (h(1)0 + h(1)1 θ + · · ·+ h(1)6 θ6) + (h(1)7 + 2η/2h(1)7 θ3) mod p,

= (h(2)0 + h(2)1 θ + · · ·+ h(2)7 θ7)︸ ︷︷ ︸
through Steps 27-33

= h(2)(θ), (5.11)

where 0 ≤ h(2)0 , h(2)1 , · · · , h(2)6 < 2η , and 0 ≤ h(2)7 < 2. Note that in Steps 27-33, the value
of carry is at most 1. In Step 33, h(2)7 = 1 if and only if h(1)6 = 2η − 1 and carry = 1 which
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implies h(2)6 = t mod 2η = 2η mod 2η = 0. Moving one step backward, in Step 32 the
output carry is 1 if and only if the conditions h(1)5 = 2η − 1 and the input carry = 1 hold,
which results in setting h(2)5 to 0. Moving another step backward, in Step 31, the output
carry is 1 if and only if the conditions h(1)4 = 2η − 1 and the input carry = 1 hold, which
results in setting h(2)4 to 0. Moving one more step backward, in Step 30, the output carry
is 1 if and only if the conditions h(1)4 = 2η − 1 and the input carry = 1 hold, and so the
value of h(2)3 is bounded above by (2η − 1 + 2η/4 · 2η/2 + 1) mod 2η = 23η/4. Hence, if
h(2)7 = 1, the conditions

h(2)3 < 23η/4, h(2)4 = h(2)5 = h(2)6 = 0. (5.12)

have to hold.

Reduction from h(2)(θ) to h(3)(θ). Polynomial h(3)(θ) can further be written as

h(2)(θ) ≡ h(2)0 + h(2)1 θ + · · ·+ h(2)6 θ6 + h(2)7 (2η/2θ3 + 1) mod p [using (5.2)],

= (h(2)0 + h(2)1 θ + · · ·+ h(2)6 θ6) + (h(2)7 + 2η/2h(2)7 θ3). (5.13)

If h(2)7 = 0, then after Steps 34-38 we get h(3)j = h(2)j , j = 0, 1, . . . , 6; else, if h(2)7 = 1, then
using (5.12) we can say that the reduction surely terminates by the addition in Step 37.
Using the bound of h(2)3 < 23η/4 from (5.12) the maximum possible value of h(3)3 through
Step 37 is 23η/4 + 2η/2 + 1 < 2η . This implies after Steps 34-38 0 ≤ h(3)j < 2η , j = 0, 1, 2, 3,

and h(3)4 = h(3)5 = h(3)6 = 0. Hence, in any case from (5.13) it follows that

h(2)(θ) ≡ (h(2)0 + h(2)1 θ + · · ·+ h(2)6 θ6) + (h(2)7 + 2η/2h(2)7 θ3) mod p,

= (h(3)0 + h(3)1 θ + · · ·+ h(3)6 θ6)︸ ︷︷ ︸
through Steps 34-38

= h(3)(θ), (5.14)

where 0 ≤ h(3)0 , h(3)1 , · · · , h(3)6 < 2η . Also, by combining (5.9), (5.11) and (5.14) we have
h(3)(θ) ≡ h(0)(θ) mod p, which proves the theorem.

Remark 5.1. Note that for a non-negative integer x and a positive integer µ, the operation
x mod 2µ extracts the µ least significant bits of x, while the operation bx/2µc returns an integer
obtained by dropping the µ least significant bits of x. There are efficient ways to implement these
operations using assembly instructions. In particular, the operations involved in Steps 15-21 of
Algorithm 5.1 concatenate the 32 least significant bits of a limb with the leading 32 bits of the
predecessor limb to create a block of 64 bits. In the assembly implementation, this is fulfilled using
the shrd instruction. For a detailed understanding of how this is done, we refer to the last two
paragraphs of Appendix 5.4.

5.3.2 Reduction from 8-Limb to 7-Limb

Integer addition of two field elements in Fp will produce an 8-limb quantity, the eighth
limb of which has a size of at most 1 bit. Multiplying a field element by a field con-
stant will also produce an 8-limb quantity. Considering Curve448, the field constant with
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which a multiplication of a field element arises in the Montgomery ladder is (A+ 2)/4 =
(156326 + 2)/4 = 39082 < 216 = 2η/4. Hence, given an 8-limb quantity, the reduction to
7-limb can be performed as follows. Consider the 8-limb quantity to be h(1)(θ) and apply
the part of reducep448 7L which reduces h(1)(θ) to h(3)(θ). The correctness of the reduc-
tion is guaranteed by the part of the proof of Theorem 5.1 which argues the correctness
of the reduction from h(1)(θ) to h(2)(θ) and from h(2)(θ) to h(3)(θ).

5.3.3 Subtraction

Let f (θ) and g(θ) be 7-limb quantities representing elements of Fp. The requirement is
to compute ( f (θ) − g(θ)) mod p. Function subp448 7L of Algorithm 5.2 performs this
computation. The description of subp448 7L uses the instruction sub which is defined as
follows. Let x and y be 64-bit quantities and b0 be a bit. The instruction sub(x, y, b0) pro-
duces as output the pair (z, b1) where z is a 64-bit quantity and b1 is a bit. The definitions
of z and b1 are as follows.

z =

{
x− (y + b0) if x ≥ y + b0,
264 + x− (y + b0) if x < y + b0;

(5.15)

b1 =

{
0 if x ≥ y + b0,
1 if x < y + b0.

(5.16)

The assembly instruction sub can be used to implement sub(x, y, 0) while the assembly
instruction sbb can be used to implement the more general sub(x, y, b0).

The correctness of subp448 7L is stated in the following theorem.

Theorem 5.2. The output h(2)(θ) = h(2)0 + h(2)1 θ + · · · + h(2)6 θ6 of subp448 7L satisfies 0 ≤
h(2)i < 264 for i = 0, 1, . . . , 6 and h(2)(θ) ≡ ( f (θ)− g(θ)) mod p.

Proof. The limbs h(2)i , i = 0, 1, . . . , 6 are obtained as the first components of the outputs
of some invocations of the sub instruction. Consequently, it follows that all of these
are 64-bit quantities. This settles the point about the bounds on these limbs. So, we
have to argue two things. First, h(2)(θ) = ( f (θ) − g(θ)) mod p and second that the
procedure terminates without any overflow. The congruency argument is obtained from
the following observations.

1. Let δ = 2224 + 1. Steps 8-16 of subp448 7L correspond to the subtraction of δ from
the integer represented by h(0)(θ). Similarly, Steps 17-22 correspond to the subtrac-
tion of δ from the integer represented by h(1)(θ).

2. Suppose f (θ) ≥ g(θ) (as integers). Then, after Step 7, we have h(0)(θ) = f (θ) −
g(θ) and b = 0. As a consequence of b = 0 at Step 7, it follows that h(0)(θ) =
h(1)(θ) = h(2)(θ) establishing the result for this particular case.

3. In view of the previous point, assume f (θ) < g(θ). In this case, after Step 7, we
have that h(0) represents the integer 2448 + f (θ) − g(θ) and b = 1. Steps 10-16
subtract δ from h(0)(θ) = 2448 + f (θ)− g(θ).
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Algorithm 5.2 Subtraction in Fp.

1: function subp448 7L(( f (θ), g(θ)))
2: input: 7-limb quantities f (θ) and g(θ) such that 0 ≤ fi, gj < 264 for i, j = 0, 1, . . . , 6.

3: output: h(2)(θ) = h(2)0 + h(2)1 θ + · · ·+ h(2)1 θ6 such that 0 ≤ h(2)i < 264 for i = 0, 1, . . . , 6
and h(2)(θ) ≡ ( f (θ)− g(θ)) mod p.

4: b← 0
5: for i← 0 to 6 do
6: (h(0)i , b)← sub( fi, gi, b)
7: end for

8: d← b; d′ ← d� 32
9: b← 0

10: (h(1)0 , b)← sub(h(0)0 , d, b)
11: (h(1)1 , b)← sub(h(0)1 , 0, b)
12: (h(1)2 , b)← sub(h(0)2 , 0, b)
13: (h(1)3 , b)← sub(h(0)3 , d′, b)
14: (h(1)4 , b)← sub(h(0)4 , 0, b)
15: (h(1)5 , b)← sub(h(0)5 , 0, b)
16: (h(1)6 , b)← sub(h(0)6 , 0, b)

17: d← b; d′ ← d� 32
18: b← 0
19: (h(2)0 , b)← sub(h(1)0 , d, b)
20: (h(2)1 , b)← sub(h(1)1 , 0, b)
21: (h(2)2 , b)← sub(h(1)2 , 0, b)
22: (h(2)3 , b)← sub(h(1)3 , d′, b)
23: h(2)4 ← h(1)4 ; h(2)5 ← h(1)5 ; h(2)6 ← h(1)6

24: return h(2)(θ) = h(2)0 + h(2)1 θ + · · ·+ h(2)6 θ6

25: end function.

(a) If h(0)(θ) ≥ δ, then after Step 16, h(1)(θ) represents the integer h(0)(θ)− δ =
2448 + f (θ)− g(θ)− δ = p+ f (θ)− g(θ) ≡ ( f (θ)− g(θ)) mod p and b = 0. As
a consequence of b = 0 at Step 16, it follows that h(2)(θ) = h(1)(θ) establishing
the result for this case.

(b) If h(0)(θ) < δ, then after Step 16, h(1)(θ) represents the integer 2448 + h(0)(θ)−
δ = 2448 + 2448 + f (θ)− g(θ)− δ = 2448 + p+ f (θ)− g(θ) and b = 1. Steps 19-
22 subtract δ from h(1)(θ) = 2448 + p+ f (θ)− g(θ) to obtain h(2)(θ) = h(1)(θ)−
δ = 2448 + p + f (θ)− g(θ)− δ = 2p + f (θ)− g(θ) ≡ ( f (θ)− g(θ)) mod p.

It only remains to argue that b produced by the sub instruction in Step 22 is necessar-
ily 02If the value of d′ in Step 17 is 0, then it follows that the value of b in the output of

2An earlier version of this argument had an error. Thanks to Timothy Shelton [She21] for correcting it.
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Step 22 is also 0. So, suppose that the value of d′ in Step 17 is 232. In this case, a sufficient
condition for the value of b produced by the sub call in Step 22 to be 0 is h(1)3 ≥ 232 + 1.
The value of d′ in Step 17 is 232, only if the value of b produced by the sub call in Step 16
is 1. Arguing backwards, the value of b produced by the sub call in Step 13 must be 1.
Denote by b0 (resp. b1) the value of b in the input (resp. output) of Step 13. By the pre-
vious argument, we have b1 = 1. From the definition of sub, b1 = 1 occurs if and only if
h(0)3 < d′ + b0 and in this case h(1)3 = 264 + h(0)3 − (d′ + b0). Since d′ ≤ 232 and b0 ≤ 1, it
follows that h(1)3 ≥ 232 + 1 as required.

5.4 Comparison to the Reduction of [OLH+17]

Page 17 of [OLH+17], provides an abstraction of the reduction strategy used to convert
the integer z represented by the 14-limb polynomial h(0)(θ) to a reduced integer in Fp
which is given below.

z ← (z mod 2672) + (2448 + 2224)bz/2672c, (5.17)
z ← (z mod 2448) + (2224 + 1)bz/2448c, (5.18)
z ← (z mod 2448) + (2224 + 1)bz/2448c. (5.19)

The first two steps (5.17) and (5.18) convert the 14-limb input quantity h(0)(θ) to the 8-
limb quantity h(1)(θ), such that the size of the eighth limb of h(1)(θ) is at most 2 bits long.
Step (5.17) reduces h(0)(θ) to an 11-limb polynomial, say f (θ) = f0 + f1θ + · · ·+ f10θ10

and Step (5.18) reduces f (θ) to h(1)(θ). Step (5.19) further reduces h(1)(θ) to h(2)(θ) which
is also an 8-limb quantity whose final limb is at most 1 bit long. The final reduction
round that converts h(2)(θ) to h(3)(θ), which is a 7-limb quantity is missing. As a re-
sult, the reduction strategy suggested in [OLH+17] is incomplete. An example of the
incompleteness in reduction has been discussed in the Appendix of [NS19].

5.4.1 Reduction Algorithms Used in the Code Accompanying [OLH+17]

We have studied the latest version3 of the implementation corresponding to [OLH+17].
The reduction algorithm used in this code is different from the strategy outlined in the
paper. While the strategy suggested in the paper is incomplete, the algorithms imple-
mented in the code are indeed complete. They, however, perform some redundant oper-
ations. Recall that in the final round which reduces h(2)(θ) to h(3)(θ), Algorithm 5.1 pro-
ceeds only up to the fourth limb. Theorem 5.1 shows that this is sufficient. The present
version of the code corresponding to [OLH+17] performs the additions till the last limb.
The three extra additions in the final round are redundant. Similar redundancies are also
present in addition, subtraction and multiplication by the field constant.

5.4.2 An Efficiency Issue While Reducing h(0)(θ) to h(1)(θ)

Define φ = θ32η/2 = 2224, which implies φ2 ≡ φ + 1 using (5.2). We can also view h(0)(θ)
as an equivalent polynomial h(0) in base φ defined as h(0)(φ) = a + bφ + cφ2 + dφ3,

3Program code from https://github.com/armfazh/rfc7748_precomputed/blob/master/src/fp448_

x64.c was accessed on June 25, 2020.

https://github.com/armfazh/rfc7748_precomputed/blob/master/src/fp448_x64.c
https://github.com/armfazh/rfc7748_precomputed/blob/master/src/fp448_x64.c
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where a, b, c, d < φ. Under such a consideration, the reduction from h(0)(θ) to h(1)(θ)
of Algorithm 5.1 can be described as a reduction from h(0)(φ) to h(1)(φ) through the
following steps.

h(0)(φ) = a + bφ + cφ2 + dφ3

= (a + bφ) + (c + dφ)φ2

≡ (a + bφ) + (c + dφ)(φ + 1) mod p
= (a + bφ) + (c + dφ) + cφ + dφ2 mod p
≡ (a + bφ) + (c + dφ) + cφ + dφ + d mod p
= (a + bφ) + (c + dφ) + dφ + (d + cφ) mod p

= h(1)(φ) mod p.

Algorithm 5.1 computes h(1)(φ) from h(0)(φ) by first adding (c + dφ) to (a + bφ) through
Steps 4-8. Then it adds dφ to the result through Steps 9-14. Finally, (d + cφ) is computed
through Steps 15-21 and added to the previous result through Steps 22-26 to produce
h(1)(φ). The x86 architecture has 15 64-bit registers (keeping aside the stack pointer reg-
ister rsp) to work with. To store the value of the product h(0)(φ) = (a + bφ + cφ2 + dφ3)
we need 14 64-bit registers. So, the polynomial (a + bφ) is stored in 7 registers and
(c + dφ) is stored in another 7. We need d to compute (d + cφ), so it is better to keep
d undisturbed until we compute the value of (d + cφ). We first add the register values
of (c + dφ) to the registers of (a + bφ). The register values of (a + bφ) gets updated to
produce the temporary sum and the register values of (c + dφ) remain unchanged. Af-
ter that, we only copy the middle limb of (c + dφ) to a temporary register and mask off
its lower 32 bits to achieve the first 32 bits of d. The remaining 192 bits are easily ob-
tained from the last three register values of (c + dφ) without any extra operations. Now,
we have d and add it to the previous sum to get a modified sum. Finally, we compute
(d + cφ) from (c + dφ) through shrd instructions which works in a circular manner and
add the obtained value to the previous sum to get the final value.

An alternative way to compute h(1)(φ) would be to first add (c+ 2dφ) to (a+ bφ) and
then add (d + cφ) to the result. The code corresponding to [OLH+17] uses this method.
However, depending on the number of available 64-bit registers in the x86 architectures,
this is going to be less efficient. This is because computing 2d from d will require extra
operations to back up d for computing (d + cφ) later on. As a result, the number of
load/stores will increase.

5.4.3 Inline Assembly Code of Reduction from [OLH+17]

We produce below the inline assembly code of reduction after integer multiplication/squaring
from the implementation of [OLH+17].

1 void red_EltFp448_1w_x64(uint64_t *c, uint64_t *a) {
2

3 __asm__ __volatile__(

4

5 /**

6 * ( ,2C13,2C12,2C11,2C10|C10,C9,C8, C7) + (C6,...,C0)

7 * (r14, r13, r12, r11, r10,r9,r8,r15)

8 */
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9 "movq 80(%1),%%rax; movq %%rax,%%r10;"

10 "movq $0xffffffff00000000, %%r8;"

11 "andq %%r8,%%r10;"

12

13 "movq $0,%%r14;"

14 "movq 104(%1),%%r13; shldq $1,%%r13,%%r14;"

15 "movq 96(%1),%%r12; shldq $1,%%r12,%%r13;"

16 "movq 88(%1),%%r11; shldq $1,%%r11,%%r12;"

17 "movq 72(%1), %%r9; shldq $1,%%r10,%%r11;"

18 "movq 64(%1), %%r8; shlq $1,%%r10;"

19 "movq $0xffffffff,%%r15; andq %%r15,%%rax; orq %%rax,%%r10;"

20 "movq 56(%1),%%r15;"

21

22 "addq 0(%1),%%r15; movq %%r15, 0(%0); movq 56(%1),%%r15;"

23 "adcq 8(%1), %%r8; movq %%r8, 8(%0); movq 64(%1), %%r8;"

24 "adcq 16(%1), %%r9; movq %%r9,16(%0); movq 72(%1), %%r9;"

25 "adcq 24(%1),%%r10; movq %%r10,24(%0); movq 80(%1),%%r10;"

26 "adcq 32(%1),%%r11; movq %%r11,32(%0); movq 88(%1),%%r11;"

27 "adcq 40(%1),%%r12; movq %%r12,40(%0); movq 96(%1),%%r12;"

28 "adcq 48(%1),%%r13; movq %%r13,48(%0); movq 104(%1),%%r13;"

29 "adcq $0,%%r14;"

30

31 /**

32 * (c10c9,c9c8,c8c7,c7c13,c13c12,c12c11,c11c10) + (c6,...,c0)

33 * ( r9, r8, r15, r13, r12, r11, r10)

34 */

35 "movq %%r10, %%rax;"

36 "shrdq $32,%%r11,%%r10;"

37 "shrdq $32,%%r12,%%r11;"

38 "shrdq $32,%%r13,%%r12;"

39 "shrdq $32,%%r15,%%r13;"

40 "shrdq $32, %%r8,%%r15;"

41 "shrdq $32, %%r9, %%r8;"

42 "shrdq $32,%%rax, %%r9;"

43

44 "addq 0(%0),%%r10;"

45 "adcq 8(%0),%%r11;"

46 "adcq 16(%0),%%r12;"

47 "adcq 24(%0),%%r13;"

48 "adcq 32(%0),%%r15;"

49 "adcq 40(%0), %%r8;"

50 "adcq 48(%0), %%r9;"

51 "adcq $0,%%r14;"

52

53 /**

54 * ( c7) + (c6,...,c0)

55 * (r14)

56 */

57 "movq %%r14,%%rax; shlq $32,%%rax;"

58 "addq %%r14,%%r10; movq $0,%%r14;"

59 "adcq $0,%%r11;"

60 "adcq $0,%%r12;"

61 "adcq %%rax,%%r13;"
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62 "adcq $0,%%r15;"

63 "adcq $0, %%r8;"

64 "adcq $0, %%r9;"

65 "adcq $0,%%r14;"

66

67 "movq %%r14,%%rax; shlq $32,%%rax;"

68 "addq %%r14,%%r10; movq %%r10, 0(%0);"

69 "adcq $0,%%r11; movq %%r11, 8(%0);"

70 "adcq $0,%%r12; movq %%r12,16(%0);"

71 "adcq %%rax,%%r13; movq %%r13,24(%0);"

72 "adcq $0,%%r15; movq %%r15,32(%0);"

73 "adcq $0, %%r8; movq %%r8,40(%0);"

74 "adcq $0, %%r9; movq %%r9,48(%0);"

75 :

76 : "r"(c), "r"(a)

77 : "memory", "cc", "%rax", "%r8", "%r9", "%r10", "%r11", "%r12",

78 "%r13", "%r14", "%r15");

79 }

In the inline assembly code given above, the input operand a refers to the 14-limb
input polynomial, and c refers to the 7-limb reduced output polynomial. Within the
code the limbs of the input operand c are accessed through the notation %1 and the limbs
of the output operand are accessed though the notation %0.

Steps 9-20 of the code computes (c + 2dφ) and it uses the more costly shld instruc-
tions for the purpose. Through Step 11 the 32 least significant bits of the middle limb
held in %%r10 is masked off to produce the first 32 bits of d in the leading 32 bits of
%%r10. Then through the instructions shld and shl of Steps 14-18, 2d is computed in
the registers %%r10, %%r11, %%r12, %%r13, %%r14. After that in Step 19, the leading
32 bits of the middle limb of (c + dφ) is concatenated just before 2d. The first 3 limbs of
c are simply read through the mov instructions of Steps 17,18 and 20 and we finally have
(c + 2dφ) in the registers %%r15, %%r8, %%r9, %%r10, %%r11, %%r12, %%r13, %%r14.
Steps 22-29 adds (c + 2dφ) to (a + bφ) to produce a temporary sum. Steps 35-42 gener-
ates (d + cφ) from (c + dφ) through the shrd instructions. The polynomial (d + cφ) is
then added to the previous sum through Steps 44-51 to produce an 8-limb polynomial in
the registers %%r10, %%r11, %%r12, %%r13, %%r15, %%r8, %%r9, %%r14. The eighth
limb of this 8-limb polynomial is at most 1 bit long and is stored in the register %%r14.
Steps 57-74 further reduce the polynomial through the method discussed in Section 5.3.2.
However, the operations in Steps 72, 73 and 74 in the code are redundant according to
Theorem 5.1.

5.4.4 Assembly Code of Reduction from the Implementations of this Work

We now provide the assembly code from our implementation which performs the re-
duction following the steps of Algorithm 5.1. Please note that here a 64-bit register r is
accessed using the notation %r instead of the notation %%r used while writing code using
inline assembly.

The code given below performs the reduction on the 14-limb product polynomial
which is held by the 14 registers %rax, %rbx, %rcx, %rdx, %rbp, %rsi, %r8, %r9,

%r10, %r11, %r12, %r13, %r14, %r15 and is part of a larger assembly function that
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performs field multiplication/squaring. Steps 1-9 adds the polynomial (c + dφ) to (a +
bφ) to produce a temporary sum to which d is further added through Steps 16-20 which
produces the next temporary sum. The assembly constant mask32h holds the 64 bit value
0xffffffff00000000 which is used to mask off the lower 32 bits of the middle limb of
(c + dφ) held by the register %rax as a temporary. Steps 22-29 generates (d + cφ) from
(c + dφ) through the shrd instructions. The polynomial (d + cφ) is then added to the
the previous sum through Steps 30-37 to produce the 8-limb polynomial in the regis-
ters %r12, %rbx, %rcx, %rdx, %rbp, %rsi, %r8, %rdi. After this Steps 39-58 further
reduces the polynomial to produce the final 7-limb output polynomial in the registers
%r12, %rbx, %rcx, %rdx, %rbp, %rsi, %r8.

Our code has only one memory-store operation in Step 11 which is indispensable in
the context. We did not find a more efficient way to implement Algorithm 5.1 using the
available 15 registers in assembly. By comparing the two implementations of reduction
it is easy to see that the number of instructions in our assembly is much smaller than the
code of [OLH+17].

1 xorq %rdi,%rdi

2 addq %r9, %rax

3 adcq %r10, %rbx

4 adcq %r11, %rcx

5 adcq %r12, %rdx

6 adcq %r13, %rbp

7 adcq %r14, %rsi

8 adcq %r15, %r8

9 adcq $0, %rdi

10

11 movq %rax, 536(%rsp)

12

13 movq %r12, %rax

14 andq mask32h, %rax

15

16 addq %rax, %rdx

17 adcq %r13, %rbp

18 adcq %r14, %rsi

19 adcq %r15, %r8

20 adcq $0, %rdi

21

22 movq %r12, %rax

23 shrd $32, %r13, %r12

24 shrd $32, %r14, %r13

25 shrd $32, %r15, %r14

26 shrd $32, %r9, %r15

27 shrd $32, %r10, %r9

28 shrd $32, %r11, %r10

29 shrd $32, %rax, %r11

30 addq 536(%rsp), %r12

31 adcq %r13, %rbx

32 adcq %r14, %rcx

33 adcq %r15, %rdx

34 adcq %r9, %rbp

35 adcq %r10, %rsi

36 adcq %r11, %r8

37 adcq $0, %rdi

38

39 movq %rdi, %r13

40 shlq $32, %r13

41

42 xorq %r14, %r14

43 addq %rdi, %r12

44 adcq $0, %rbx

45 adcq $0, %rcx

46 adcq %r13, %rdx

47 adcq $0, %rbp

48 adcq $0, %rsi

49 adcq $0, %r8

50 adcq $0, %r14

51

52 movq %r14, %r13

53 shlq $32, %r13

54

55 addq %r14, %r12

56 adcq $0, %rbx

57 adcq $0, %rcx

58 adcq %r13, %rdx

5.5 Arithmetic in Fp using Unsaturated Limb Representation

In this case the algorithms for the non-linear operations, i.e, field multiplication and field
squaring are of major interest and we mainly focus on them.
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5.5.1 Multiplication and Squaring in Fp

A field element is represented as the polynomial in base θ = 256 as the 8-limb polynomial
f (θ) = ∑7

i=0 fiθ
i, where 0 ≤ fi < θ, i = 0, 1, . . . , 7. The product of two elements f (θ) and

g(θ) is given by the polynomial h(θ) = ∑7
i=0 hiθ

i, where

h0 = f0g0 + f1g7 + f2g6 + f3g5 + f4g4 + f5g3 + f6g2 + f7g1 + f5g7 + f6g6 + f7g5,
h1 = f0g1 + f1g0 + f2g7 + f3g8 + f4g5 + f5g4 + f6g3 + f7g2 + f6g7 + f7g6,
h2 = f0g2 + f1g1 + f2g0 + f3g7 + f4g6 + f5g5 + f6g4 + f7g3 + f7g7,
h3 = f0g3 + f1g2 + f2g1 + f3g0 + f4g7 + f5g6 + f6g5 + f7g4,
h4 = f0g4 + f1g3 + f2g2 + f3g1 + f4g0 + f1g7 + f2g6 + f3g5 + f4g4 + f5g3 + f6g2 +

f7g1 + 2 f5g7 + 2 f6g6 + 2 f7g5

h5 = f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 +

f7g2 + 2 f6g7 + 2 f7g6

h6 = f0g6 + f1g5 + f2g4 + f3g3 + f4g2 + f5g1 + f6g0 + f3g7 + f4g6 + f5g5 + f6g4 +

f7g3 + 2 f7g7

h7 = f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f4g7 + f5g6 + f6g5 +

f7g4,

and 0 ≤ hi < 2128. The equations are found by multiplying the polynomials f (θ) and
g(θ) and applying an immediate reduction using the congruence θ8 ≡ θ4 + 1 mod p. If
we set gi ← fi for i = 0, 1, . . . , 7 in the above equations then we get the corresponding
equations for h(θ) = f 2(θ).

The polynomial h(θ) is reduced using function reduce448 8L given in Algorithm 5.3.
For the reduction algorithm, the input is considered to be a polynomial h(0)(θ), and the
output is h(2)(θ) or h(3)(θ), such that

h(0)(θ) ≡ h(1)(θ) ≡ h(2)(θ) ≡ h(3)(θ) mod p.

The following result states the correctness of reducep448 8L. The proof of correctness
shows that h(i)(θ) ≡ h(i−1)(θ) mod p and also provide precise bounds on the coefficients
of h(i)(θ).

Theorem 5.3. Let the elements in Fp have 8-limb representation in base θ = 256. Suppose the
input h(0)(θ) = h(0)0 + h(0)1 θ + · · ·+ h(0)7 θ7 to reducep448 8L is such that 0 ≤ h(0)i < 2128 for
i = 0, 1, . . . , 7.

1. For partial reduction, the output of reducep448 8L is h(2)(θ) = h(2)0 + h(2)1 θ + · · · +
h(2)7 θ7, where 0 ≤ h(2)0 , h(2)4 < 257, 0 ≤ h(2)1 , h(2)2 , h(2)3 , h(2)5 , h(2)6 , h(2)7 < 256 satisfying
h(2)(θ) ≡ h(0)(θ) mod p.

2. For full reduction, the output of reducep448 8L is h(3)(θ) = h(3)0 + h(3)1 θ + · · ·+ h(3)7 θ7,
where 0 ≤ h(3)0 , h(3)1 , · · · , h(3)7 < 256 satisfying h(3)(θ) ≡ h(0)(θ) mod p.
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Algorithm 5.3 Reduction in Fp.

1: function reducep448 8L(h(0)(θ))
2: input: h(0)(θ).
3: output: h(2)(θ) or h(3)(θ).

4: h(1)0 ← h(0)0 mod 256

5: for i← 1 to 7 do
6: h(1)i ← h(0)i mod 256 + bh(0)i−1/256c
7: end for
8: h(1)0 ← h(1)0 + bh(0)7 /256c; h(1)4 ← h(1)4 + bh(0)7 /256c

9: h(2)0 ← h(1)0 mod 256

10: for i← 1 to 7 do
11: t← h(1)i + bh(1)i−1/256c; h(2)i ← t mod 256

12: end for
13: h(2)0 ← h(2)0 + bh(1)7 /256c; h(2)4 ← h(2)4 + bh(1)7 /256c

14: PARTIAL REDUCTION: return h(2)(θ) = h(2)0 + h(2)1 θ + · · ·+ h(2)7 θ7

15: h(3)0 ← h(2)0 mod 256

16: for i← 1 to 7 do
17: t← h(2)i + bh(2)i−1/256c; h(3)i ← t mod 256

18: end for
19: t← h(3)0 + bh(2)7 /256c; h(3)0 ← t mod 256; h(3)1 ← h(3)1 + bt/256c
20: t← h(3)4 + bh(2)7 /256c; h(3)4 ← t mod 256; h(3)5 ← h(3)5 + bt/256c

21: FULL REDUCTION: return h(3)(θ) = h(3)0 + h(3)1 θ + · · ·+ h(3)7 θ7

22: end function.

Proof. Define

h(0)j = h(0)j,0 + h(0)j,1 256 where h(0)j,0 = h(0)j mod 256, h(0)j,1 = bh(0)j /256c, j = 0, 1, . . . , 7.(5.20)

As η = 56, we have the bounds 0 ≤ h(0)j,0 < 256 and 0 ≤ h(0)j,1 < 2128−56 = 272 for

j = 0, 1 . . . , 7. We can write h(0)(θ) as

h(0)(θ) = h(0)0 + h(0)1 θ + · · ·+ h(0)7 θ7

= (h(0)0,0 + h(0)0,1 θ) + (h(0)1,0 + h(0)1,1 θ)θ + · · ·+ (h(0)7,0 + h(0)7,1 θ)θ7

= h(0)0,0 + (h(0)0,1 + h(0)1,0 )θ + · · ·+ (h(0)6,1 + h(0)7,0 )θ
7 + h(0)7,1 θ8

≡ h(0)0,0 + (h(0)0,1 + h(0)1,0 )θ + · · ·+ (h(0)6,1 + h(0)7,0 )θ
7 + h(0)7,1 (θ

4 + 1) mod p (5.21)

[using θ8 ≡ θ4 + 1 mod p ]

= (h(0)0,0 + h(0)7,1 ) + (h(0)0,1 + h(0)1,0 )θ + · · ·+ (h(0)3,1 + h(0)4,0 + h(0)7,1 )θ
4 + · · ·+

(h(0)6,1 + h(0)7,0 )θ
7 (5.22)

Steps 4-8 of reducep448 8L performs the additions in (5.21) and we have

h(0)(θ) ≡ h(1)0 + h(1)1 θ + · · ·+ h(1)7 θ7 mod p = h(1)(θ), (5.23)
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where 0 ≤ h(1)0 , h(1)1 , h(1)2 , h(1)3 , h(1)5 , h(1)6 , h(1)7 < 273 and 0 ≤ h(1)4 < 274. Define

h(1)j = h(1)j,0 + h(1)j,1 256 where h(1)j,0 = h(1)j mod 256, h(1)j,1 = bh(1)j /256c, j = 0, 1, . . . , 7.(5.24)

from which we have the bounds 0 ≤ h(1)j,1 < 273−56 = 217 for j = 0, 1, 2, 3, 5, 6, 7 and

0 ≤ h(1)4,1 < 274−56 = 218. Using these bounds in Steps 9-13 which converts the polynomial
h(1)(θ) to h(2)(θ), we have

h(1)(θ) ≡ h(2)0 + h(2)1 θ + · · ·+ h(2)7 θ7 mod p = h(2)(θ), (5.25)

where 0 ≤ h(2)1 , h(2)2 , h(2)3 , h(2)5 , h(2)6 , h(2)7 < 256 and 0 ≤ h(2)0 , h(2)4 < 257. Combining (5.23)
and (5.25) we have h2(θ) ≡ h0(θ) mod p and this completes the proof for partial reduc-
tion.

Now, if there is a significant one-bit carry from the first and/or fourth limb of h2(θ),
it gets absorbed in the second and/or fifth limb of h3(θ) through Steps 15-20, otherwise
the limbs of h2(θ) and h3(θ) are same. In both the cases the limbs of h3(θ) satisfy 0 ≤
h(3)i < 256, i = 0, 1, . . . , 7. Also, we have h3(θ) ≡ h0(θ) mod p and this completes the
proof for full reduction.

5.5.2 Multiplication With a Small Constant in Fp

The small field constant is c = 39082, which is of 16 bits. The obvious algorithm to mul-
tiply a field element by c and then use the reduction algorithm reducep448 8L. But, the
64-bit assembly implementation of reducep448 8L uses the high-latency shld instructions,
which can be avoided in the present context using a different method that performs bet-
ter. The method is formalized in Algorithm 5.4, which performs limb-wise multiplication
and reduction in an interleaved way. We have developed the algorithm using the idea
applied to multiply with the small constant 121666 in the unsaturated limb implementa-
tion of scalar multiplication of Curve25519 [BDL+12].

In the assembly implementation of mulcp448 8L we don’t have to do anything extra
for the operations b·/264c; the result is found in the %rdx register after the multiplication
operation which is performed using the mul instruction. The operations b·/28c can be
efficiently implemented using the shr instruction. The limbs of the output polynomial
h(1)(θ) have one bit extra and this doesn’t produce any overflow situation for any integer
multiplication which is done further. A formal proof of the algorithm is straight-forward
and we skip this.

5.5.3 Addition and Subtraction in Fp

Within the Montgomery ladder two elements f (θ) and g(θ) are limb-wise added to per-
form the addition. To subtract an element g(θ) from f (θ) we compute ( f (θ) + 2p(θ)−
g(θ)). To do this, we use the pre-computed 8-limb value of 2p(θ). The added or sub-
tracted 8-limb value is kept unreduced within the ladder computation as it does not
produce any overflow situation for the integer multiplication algorithm given in Sec-
tion 5.5.1.
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Algorithm 5.4 Multiplication with small constant in Fp.

1: function mulcp448 8L(h(0)(θ))
2: input: h(0)(θ).
3: output: h(1)(θ).

4: c′ ← c · 28

5: t← h(0)0 · c′; r ← t mod 264

6: h(1)0 ← br/28c; h(1)1 ← bt/264c
7: for i← 1 to 6 do
8: t← h(0)i · c′; r ← t mod 264

9: h(1)i ← h(1)i + br/28c; h(1)i+1 ← bt/264c
10: end for
11: t← h(0)7 · c′; r ← t mod 264

12: h(1)7 ← h(1)7 + br/28c; h(1)0 ← h(1)0 + bt/264c; h(1)4 ← h(1)4 + bt/264c

13: PARTIAL REDUCTION: return h(1)(θ) = h(1)0 + h(1)1 θ + · · ·+ h(1)7 θ7

14: end function.

5.6 Implementations and Timings

We present two 7-limb (maax-type and mxaa-type) and one 8-limb (maa-type) 64-bit im-
plementations for shared secret computation phase of the X448 function. We first discuss
about the performance of our 7-limb implementations.

5.6.1 Performance of 7-limb Implementations

Implementation of X448 requires implementation of field arithmetic over Fp. Field mul-
tiplication and squaring are done in two steps. The first step multiplies two 7-limb
field elements (considered as integers) to obtain a 14-limb integer. The second step
reduces the 14-limb integer to a 7-limb integer. For the reduction, we have used the
function reducep448 7L while for the integer multiplication/squaring we have used Al-
gorithms 4.2 and 4.3. Implementations of field addition, subtraction and multiplication
by the curve constant are as described in Sections 5.3.2 and 5.3.3. Overall, the implemen-
tation of X448 requires an implementation of the Montgomery ladder. The shared secret
was computed using the left-to-right Montgomery ladder given in Algorithm 3.6 and the
key generation was computed using the right-to-left Montgomery ladder given in Algo-
rithm 5 of [OLH+17]. We have made a careful constant-time assembly implementations
of the Montgomery ladder. A major goal of the implementations have been to make ef-
ficient use of the available registers so that a minimal number of load/store instructions
are required. Below, we provide timing results for the new implementations. The tim-
ing experiments were carried out on single cores of the Haswell and Skylake processors.
The TurboBoost c© and Hyper-Threading c© features were turned off while measuring the
CPU-cycles.

Timings in the form of CPU-cycles are provided in Table 5.1. For comparison we
have considered the timings of the most efficient (to the best of our knowledge) pub-
licly available 64-bit implementation of Curve448, which is the software implementation
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Operation Haswell Skylake Reference Implementation Type

Shared secret

732013 587389 [OLH+17] mxaa, inline assembly

- 530984 [OLH+17] maax, inline assembly

719217 461379 this work mxaa, assembly

- 434831 this work maax, assembly

Key generation

423703 356113 [OLH+17] mxaa, inline assembly

- 315890 [OLH+17] maax, inline assembly

420453 278743 this work mxaa, assembly

- 261683 this work maax, assembly

Table 5.1: CPU-cycle counts for shared secret computation and key generation on
Curve448 using 7-limb representation. Computation of key generation has been done

using Algorithm 5 of [OLH+17].

corresponding to the work [OLH+17]4. This implementation produces code targeting
the Haswell and Skylake architectures. We downloaded the mentioned software and
measured the CPU-cycles on the same platforms on which we have measured the CPU-
cycles of our implementations. This has been done to keep the comparisons consistent.
We summarize the following observations from the timings of Table 5.1.

• On Skylake, the new implementations are substantially better than the the previous
implementations. For shared secret computation a speed-up of about 18% and 22%
are obtained for the maax-type and mxaa-type implementations respectively. For
key generation a speed-up of 17% is obtained for the maax-type implementation,
and a speed-up of about 22% is obtained for the implementation of the mxaa-type.

• On Haswell the new mxaa-type implementation for computing the shared secret is
better than the previous implementation by about 13K CPU-cycles; for key gen-
eration the new mxaa-type implementation is nominally better. While these are
improvements, they are not substantial as it has been achieved on Skylake.

While the reduction algorithms that we have described avoid certain redundant oper-
ations performed by the code corresponding to [OLH+17], and consequently, do con-
tribute to the speed improvement, it is not the only reason for the speed-up. A major
reason for the speed improvement is a very careful assembly implementation making
judicious use of the available registers so that the number of load/store operations is
minimal.

The key generation has also been computed using the left-to-right Montgomery lad-
der of Algorithm 3.6. However, the timings of these implementations reported in Ta-
ble 5.2 are slower in comparison to the timings reported in Table 5.1.

4Program code from https://github.com/armfazh/rfc7748_precomputed was accessed on June 25,
2020.

https://github.com/armfazh/rfc7748_precomputed
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Operation Haswell Skylake Reference Implementation Type

Key generation
653035 427058 this work mxaa, assembly

- 396583 this work maax, assembly

Table 5.2: CPU-cycle counts for shared secret computation and key generation on
Curve448 using 7-limb representation. Computation of key generation has been done

using Algorithm 3.6.

5.6.2 Performance of 8-limb Implementations

The performances of the 8-limb maa-type implementations are slower than the maax-type
and mxaa-type implementations. Hence, we report the timings of the maa-type imple-
mentations separately in Table 5.3. Both the computations of shared secret and key gen-
eration have been done using Algorithm 3.6. We did not find any 8-limb implementation
of the x448 function in literature.

Operation Haswell Skylake Implementation Implementation Type

Shared secret 721044 558740 this work maa, assembly

Key generation 644288 504808 this work maa, assembly

Table 5.3: CPU-cycle counts for shared secret computation and key generation on
Curve448 using 8-limb representation. Computation for both has been done using

Algorithm 3.6.

5.7 Conclusion

In this work we have presented reduction algorithms and their proofs of correctness
required for computation in the field Fp where p = 2448 − 2224 − 1. Based on these
algorithms and other previously known techniques, we have made efficient 64-bit as-
sembly implementations of the X448 function of Curve448 leading to new speed records
for 64-bit implementations. While our work has concentrated entirely on the prime
2448 − 2224 − 1, we note that the ideas involved can be applied to other primes having
a similar form such as the prime 2480 − 2240 − 1.



C H A P T E R 6

Efficient Field Arithmetic Using 4-way Vector
Instructions

6.1 Introduction

Computation of cryptographic primitives over elliptic curves require arithmetic in the
underlying field Fp. The primary operation of interest is the field multiplication whose
cost mainly depends on the number of involved word multiplications needed at the basic
level of the operation.

Advanced Vector Extensions (AVX) are extensions to the x86 instruction set architec-
ture for microprocessors from Intel and AMD proposed by Intel in March 2008 and first
supported by Intel with the Sandy Bridge processor shipping in Q1 2011 and later on by
AMD with the Bulldozer processor shipping in Q3 2011. AVX provides new features,
new instructions and a new coding scheme. AVX2 expands most integer commands to
256 bits and introduces fused multiply-accumulate (FMA) operations. They were first
supported by Intel with the Haswell processor, which shipped in 2013. For details one
may follow [AVX]. The AVX2 instruction set architecture enables 4-way vectorized com-
putation with 64-bit words. While computing the field multiplication using 4-way vector
instructions available in the modern Intel architectures, the 32-bit multiplier vpmuludq is
used to multiply two words of at most 32-bits. But, in the vectorized setup there are no
facilities to keep track of the generated carries. As a reason an unsaturated limb repre-
sentation of elements in Fp is used to accumulate the summands involved in an integer
multiplication. We will be using AVX2 instructions to vectorize multiple independent Fp
operations instead of implementing a single Fp operation.

We introduce a notation to denote the primes. For example, the prime 2251 − 9 will
be denoted as p251-9 and similar notation applies for the other primes of the for 2m −
δ. The prime 2448 − 2224 − 1 will be denoted as p448-224-1. The different primes with
which vectorized arithmetic have been done in this thesis are p251-9 ,p255-19, p444-17,
p448-224-1, p506-45, p510-75 and p521-1.
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6.2 Representation of Field Elements and Primes

6.2.1 Representation of Field Elements

Let m = dlog2 pe. Elements of Fp can be represented as m-bit strings using κ words
called limbs, where m = η(κ − 1) + ν such that 1 ≤ ν ≤ η < 32. So, the first (κ − 1)
limbs are η bits long, while the size of the last limb is ν which lies between 1 and η.

The representations of field elements over the various fields are summarized in Ta-
ble 6.1. For the elements of F2255−19 we consider two different representations, one using
9 words and the other using 10 words. The representation of a field element A ∈ F2255−19
using 10 words is the standard representation introduced by Bernstein [Ber06b] given
by A = ∑9

i=0 ai2d25.5ie where 0 ≤ a0 ≤ 226 − 19, 0 ≤ a2, a4, a6, a8 < 226 and 0 ≤
a1, a3, a5, a7, a9 < 225.

6.2.2 Representation of the Primes

A pseudo-Mersenne prime p having κ limbs (except p255-19 with κ = 10) is represented
as a polynomial P in base θ = 2η given by

P =
κ−1

∑
i=0

piθ
i, where p0 = 2η − δ, p1, p2, . . . , pκ−2 = 2η − 1, pκ−1 = 2ν − 1.

The prime p255-19 having κ = 10 limbs is represented as

P =
9

∑
i=0

pi2d25.5ie, where p0 = 226 − 19; p2, p4, p6, p8 = 226 − 1; p1, p3, p5, p7, p9 = 225 − 1.

The prime p448-224-1 is represented as

P =
9

∑
i=0

piθ
i, where p0, p1, . . . , p7, p9, . . . , p15 = 228 − 1; p8 = 228 − 2.

Security level Field m κ η ν η − ν

128-bit
F2251−9 251 9 28 27 1

F2255−19 255 9 29 23 6

224-bit
F2444−17 444 16 28 24 4

F2448−2224−1 448 16 28 28 0

256-bit

F2506−45 506 18 29 13 16

F2510−75 510 18 29 17 12

F2521−1 521 18 29 28 1

Table 6.1: Representations of field elements for vectorized arithmetic.
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6.3 Multiplication and Squaring in Fp

6.3.1 Applying Schoolbook

The 9-limb multiplication for p251-9 is done using the schoolbook method. The equa-
tions for integer multiplication with immediate reduction are formed using the equa-
tions (4.40). Following this method we directly get a k-limb product polynomial H =
h(θ) in a semi-reduced form whose limb-values are less than 264. For p255-19, the equa-
tions due to 10-limb integer multiplication that produces the limbs of the product poly-
nomial H are according to the equations provided in [BS12, Cho15]. The polynomial
H needs to be reduced further which should satisfy certain computation-friendly limb-
bounds. The algorithm for this is known as a reduction chain and we discuss about this
after the following section.

6.3.2 Applying Karatsuba

For p255-19 with κ = 9 and all other primes at the 128-bit and 256-bit levels we apply the
Karatsuba multiplication algorithm for integer multiplication. The 9-limb multiplication
of p255-19 is done using the (5+4)-Karatsuba strategy and for all other primes we make
use of the (κ/2, κ/2)-Karatsuba strategy with one level of recursion in which the integer
multiplication of the subproblems are done following the schoolbook method. Integer
squaring is also done using the same Karatsuba strategies except for the 9-limb squaring
of p255-19, for which, we apply the schoolbook method directly instead of dividing it.
Let θ = 2η and φ = θκ/2. Then a field element A(θ) = A ∈ Fp can be represented as

A = a0 + a1θ + · · ·+ aκ−1θκ−1

= (a0 + a1θ + · · ·+ aκ/2−1θκ/2−1) + (aκ/2 + aκ/2+1θ + · · ·+ aκ−1θκ/2−1)θκ/2

= U + Vφ, (6.1)

where U = a0 + a1θ + · · · + aκ/2−1θκ/2−1 and V = aκ/2 + aκ/2+1θ + · · · + aκ−1θκ/2−1.
For a uniform mathematical treatment we will consider the field element as a 10-limb
polynomial such that the last limb is 0 in case of p255-19 with κ = 9. Like A, let us
consider another field element B(θ) = B ∈ Fp such that B = W + Zφ. Then the product
of A and B can be written as

C = AB
= (U + Vφ)(W + Zφ)

= UW + (UZ + VW)φ + VZφ2, (6.2)

which provides the (2κ − 1)-limb product polynomial. For reduction, C needs to be
transformed to an equivalent κ-limb polynomial which is achieved through two phases.
In the first phase the (2κ − 1)-limb product polynomial C is converted to an equivalent
k-limb polynomial H = h(θ) whose limbs-values are less than 264. In the second phase,
H needs to be further reduced which satisfy certain well-defined computation-friendly
limb-bounds. This is done using the reduction chain as mentioned for the previous case.
We first discuss about the arithmetic to achieve the κ-limb polynomial H whose limbs
values are less than 264. The mathematical treatment to do so for the primes p448-224-1
and p521-1 are addressed next as two specific cases.
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Case of the prime p448-224-1. For this prime κ = 16, θ = 228, φ = θ8 and we have the
identity φ2 ≡ φ + 1 mod p. Applying the identity on (6.2) as the first step of reduction
we get

C = UW + (UZ + VW)φ + VZφ2

≡ (UW + VZ) + (UZ + VW + VZ)φ mod p
= (UW + VZ) + ((U + V)(W + Z)−UW))φ. (6.3)

We now compute the three products UW, VZ and (U + V)(W + Z) with the schoolbook
method using 3× 8× 8 = 192 limb-multiplications and combine the results to find the
product C. This gives us a saving of 64 limb-multiplications as compared to the school-
book method when applied to the entire 16-limb polynomials A and B. We can find the
similar equation for squaring as

C = A2 ≡ (U2 + V2) + ((U + V)2 −U2))φ mod p. (6.4)

The product UW is computed as the polynomial R = UW = ∑14
j=0 rjθ

j, where

rj =
j

∑
i=0

aibj−i, for j = 0, 1, . . . , 7; (6.5)

rj+7 =
7

∑
i=j

aib7−i+j, for j = 1, 2, . . . , 7. (6.6)

Similarly, let the products VZ and (U + V)(W + Z) be denoted by S = ∑14
j=0 sjθ

j and
T = ∑14

j=0 tjθ
j respectively. Then we can write

C ≡ (R + S) + (T − R)φ mod p
= E + Fφ, (6.7)

where E = ∑14
j=0 ejθ

j and F = ∑14
j=0 f jθ

j, such that 0 ≤ ej, f j < 264, j = 0, 1, . . . , 14.
To perform the first phase of reduction on the product C = E + Fφ, we perform some

carry-less additions with specific coefficients of the polynomial C to arrive to a certain
polynomial on which the second phase of the reduction can be applied. These carry-less
additions do not lead to any overflow conditions. We describe the method below.

C ≡ E + Fφ mod p

=
14

∑
j=0

ejθ
j +

14

∑
j=0

f jθ
j+8

=
7

∑
j=0

ejθ
j +

14

∑
j=8

(ej + f j−8)θ
j +

22

∑
j=15

f j−8θ j

=
7

∑
j=0

(rj + sj)θ
j +

14

∑
j=8

(rj + sj + tj−8 − rj−8)θ
j +

22

∑
j=15

(tj−8 − rj−8)θ
j

=
22

∑
j=0

gjθ
j (say). (6.8)
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From (6.8) we can further write

C ≡
6

∑
j=0

(gj + gj+16)θ
j + g7θ7 +

14

∑
j=8

(gj + gj+8)θ
j + g15θ15 mod p

=
6

∑
j=0

(rj + sj + tj+8 − rj+8)θ
j + (r7 + s7)θ

7 +

14

∑
j=8

(sj + tj−8 + tj − rj−8)θ
j + (t7 − r7)θ

15

=
15

∑
j=0

hjθ
j = h(θ) = H (say), (6.9)

which gives the desired 16-limb polynomial for the prime p448-224-1.

Case of the prime p521-1. For this prime κ = 18, θ = 229, φ = θ9 and we have the
identity φ2 ≡ 2φ mod p. Applying the identity on (6.2) as the first step of reduction we
get

C = AB
≡ (UW + 2VZ) + (UZ + VW)φ mod p
= (UW + 2VZ) + ((U + V)(W + Z)− (UW + VZ))φ. (6.10)

For squaring the equation becomes

C = A2 ≡ (U2 + 2V2) + ((U + V)2 − (U2 + V2))φ mod p. (6.11)

We compute the three products UW, VZ and (U + V)(W + Z) with the schoolbook
method using 3× 9× 9 = 243 limb-multiplications and combine the results to find the
product C. This gives us a saving of 81 limb-multiplications as compared to the school-
book method when applied to the entire 18-limb polynomials A and B. Similar to the pre-
vious case, the product UV is computed as the polynomial r = r(θ) = UW = ∑16

j=0 rjθ
j.

Let the products VZ and (U +V)(W + Z) be denoted by S = ∑16
j=0 sjθ

j and T = ∑16
j=0 tjθ

j

respectively. Then, we can write

C ≡ (R + 2S) + (T − R− S)φ mod p
= E + Fφ mod p (say)

=
16

∑
j=0

ejθ
j +

16

∑
j=0

f jθ
j+9

=
8

∑
j=0

ejθ
j +

16

∑
j=9

(ej + f j−9)θ
j +

25

∑
j=17

f j−9θ j

=
8

∑
j=0

(rj + 2sj)θ
j +

16

∑
j=9

(rj + 2sj + tj−9 − rj−9 − sj−9)θ
j +

25

∑
j=17

(tj−9 − rj−9 − sj−9)θ
j

=
25

∑
j=0

gjθ
j, (say). (6.12)
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From (6.12) we can further write

C ≡
7

∑
j=0

(gj + 2gj+18)θ
j +

17

∑
j=8

gjθ
j mod p

=
7

∑
j=0

(rj + 2sj + 2tj+9 − 2rj+9 − 2sj+9)θ
j + (r8 + 2s8)θ

8 +

16

∑
j=9

(rj + 2sj + tj−9 − rj−9 − sj−9)θ
j + (t8 − r8 − s8)θ

17

=
17

∑
j=0

hjθ
j = h(θ) = H (say), (6.13)

which gives the desired 18-limb polynomial for the prime p521-1.

Cases of the remaining primes. For the remaining cases we will have the congruency
relationship φ2 ≡ 2η−νδ mod p. Since for these cases the difference (η− ν) and the value
of δ is relatively large, it is not possible to apply a reduction step like (6.3) and (6.10)
without loosing information. To manage the situation, first an expansion of the (2κ− 1)-
limb product polynomial C is done which converts C to an equivalent 2κ-limb polyno-
mial D such that the values of the last κ limbs of D are small enough to afford a limb-
multiplication with the constant cp = 2η−νδ and no loss of information occurs. After this,
the last κ-limbs of D are added consecutively to the first κ limbs D, which gives the re-
duced polynomial H = h(θ) obtained after the first phase of the reduction. The method
is actually the multe algorithm due to [KS20] which is re-versioned in Algorithm 6.1. In
the algorithm, it has to be assured that we don’t have any overflows while performing
the additions in Steps 8, 9, 12 and 13.

The multiplication algorithm which multiplies two field elements A and B and pro-
duces the product H will be called as mul(A, B). The squaring algorithm will be termed
as sqr(A).

6.3.3 Reduction Chain

The limbs of the polynomial H(θ) found after integer multiplication/squaring needs
to be reduced further by a method which is usually known as the reduction chain. The
reduction chain can be simple or interleaved, applications of which comes out to be
efficient for different primes.

Simple reduction chain. The simple reduction chain for the pseudo-Mersenne primes
is essentially the method for partial reduction provided in Algorithm 4.8. This is more
popularly denoted by

h0 → h1 → · · · → hκ−2 → hκ−1 → h0 → h1.

A single carry step is denoted by hj mod κ → h(j+1) mod κ which perform the following
operations.
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Algorithm 6.1 Expansion of product polynomial.

1: function EXPAND(C, cp)
2: input: C is a (2κ− 1)-limb product polynomial having coefficients from Fp and cp =

2η−νδ.
3: output: H = h(θ), a κ-limb equivalent polynomial having coefficients from Fp.

4: for i← 0 to κ − 1 do
5: di ← ci

6: end for
7: for i← κ to 2κ − 3 do
8: ci+1 ← ci+1 + dci/2ηe ; t← ci mod 2η

9: di ← cp · t; hκ−i ← di−κ + di

10: end for
11: r← dc2κ−2/2ηe; s← c2κ−2 mod 2η

12: d2κ−2 ← cp · r; hκ−2 ← dκ−2 + d2κ−2

13: d2κ−1 ← cp · s; hκ−1 ← dκ−1 + d2κ−1

14: return H
15: end function.

• Logically right shift the 64-bit word in hj mod κ by η bits. For j = κ − 1 the amount
of shift is ν bits. Let this amount be c.

• Add c to h(j+1) mod κ.

• Mask out the most significant (64− η) bits of hj mod κ. For j = κ − 1 the masking
amount is (64− ν) bits.

The modified polynomial H obtained after the chain is applied, satisfies the limb-bounds
0 ≤ h0, h2, h3 . . . , hκ−2 < 2η , 0 ≤ h1 < 2η+1 and 0 ≤ hκ−1 < 2ν. Note that the second limb
is relaxed with an extra bit and so the reduction is partial. This doesn’t usually create
any overflow problems while doing the computations. A full reduction can be done on
the polynomial H by applying the reduction chain one more time.

For the prime p448-224-1 the simple reduction chain is a little different and is denoted
by

h0 → h1 → · · · → h15 → (h0, h8)→ (h1, h9),

which performs a partial reduction on the coefficients of H, by keeping one bit extra in
the limbs h1 and h9 of the reduced polynomial. Here the notation (h0, h8) → (h1, h9)
means performing the reductions h0 → h1 and h1 → h9 sequentially.

Interleaved reduction chain. The interleaved reduction chain for the pseudo-Mersenne
primes is the working of two reduction sub-chains which does not have any dependen-
cies and is denoted by

h0 → h1 → · · · → hκ/2−1 → hκ/2 → hκ/2+1,
hκ/2 → hκ/2+1 → · · · → hκ−1 → h0 → h1.
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In this case the limbs h1 and hκ/2+1 have one bit extra. For p251-9 and p255-19 with κ = 9,
the interleaved chains are

h0 → h1 → · · · → h3 → h4 → h5,
h4 → h5 → · · · → h8 → h0 → h1.

For p448-224-1 the interleaved chains are

h0 → h1 → · · · → h7 → h8 → h9,
h8 → h9 → · · · → h15 → (h0, h8)→ (h1, h9).

The reduction algorithm which reduces H will be called as reduce1(H) in general.

Application of simple and interleaved chains. The simple chains have been applied
to the primes at 128-bit and 224-bit security level and found to be slightly advantageous.
For the primes at 256-bit security level we apply the simple reduction chain as it per-
forms better than the interleaved chains.

6.4 Multiplication by a Small Constant in Fp

Let A ∈ Fp have a κ-limb representation 〈a0, a1, . . . , aκ−1〉. Let c be a small element in Fp,
which can be represented using a single limb. Then multiplication of A by c provides the
κ-limb polynomial represented by the tuple 〈h0, h1, . . . , hκ−1〉 = 〈a0 · c, a1 · c, . . . , aκ−1 · c〉.
This needs to be reduced. Here also we apply the reductions chains discussed in the
previous section. However, the applied chains are short by length one in which the last
reduction step is avoided. This can be done because the values of the limbs obtained by
the products ai · c are much smaller than 264 as the constant c is small. The reduction
algorithm will be called reduce2 and the algorithm to multiply with a small constant will
be termed as mulc.

6.5 Dense Packing of Field Elements

Let A = ∑κ−1
i=0 aiθ

i. Consider that every limb ai is less than 232 and is stored in a 64-bit
word. Then it is possible to pack abκ/2cwith a0, abκ/2c+1with a1, . . . , a2bκ/2c−1with abκ/2c−1,
so that every pair can be represented using a 64-bit word without losing any informa-
tion. If κ is odd then aκ−1 can be left alone. We denote this operation as dense packing
of limbs. In general limb v is densely packed with limb u to produce the packed limb
u using a left-shift and an or operation through u ← u | (v � 32). The 32-bit val-
ues can be extracted by splitting a 64-bit limb u through the operations v ← u � 32
and u ← u and 132. Using dense packing of limbs we can think that a κ-limb quantity
is represented using dκ/2e limbs. We define the dense packing operation as N2D(A)

which returns A ← ∑dκ/2e−1
i=0 aiθ

i, where adκ/2e−1 = aκ−1 if κ is odd. To convert back a
densely packed element to a normally packed element we use the operation D2N(A),
which returns A = ∑κ−1

i=0 aiθ
i.
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6.6 Linear Operations in Fp

Let A = ∑κ−1
i=0 aiθ

i, B = ∑κ−1
i=0 biθ

i be two elements in Fp. Using the operation N2D on A
and B we obtain the densely packed elements A ← ∑dκ/2e−1

i=0 aiθ
i and B ← ∑dκ/2e−1

i=0 biθ
i

respectively. The linear operations can be applied over both normal and densely packed
field elements.

6.6.1 Addition

The addition ci ← ai + bi adds the two limbs ai and bi and stores the result in ci for
i = 0, 1, . . . , κ − 1. This addition is simply over normally packed field elements.

While computing with densely packed field elements we can exploit 2-way paral-
lelism to compute a field addition. The addition ci ← ai + bi computes the additions
ci ← ai + bi and cdκ/2e+i ← adκ/2e+i + bdκ/2e+i simultaneously for i = 0, 1, . . . , dκ/2e − 1.
The quantity cκ−1 ← aκ−1 + bκ−1 can be computed as a single addition if κ is odd.

6.6.2 Negation

Here we wish to compute −A mod p. Let n be the least integer such that all the coeffi-
cients of (2nP− A) are non-negative. The negation of the element A is then defined by
negate(A) = 2nP− A = C in unreduced form, while reducing C modulo p gives us the
desired value in Fp.

Let C = ∑κ−1
i=0 ciθ

i so that ci = 2npi − ai ≥ 0 ∀i. The ci’s are computed using 2’s
complement subtraction. The result of a subtraction can be negative. By ensuring that
the ci’s are non-negative, this situation is avoided. Let α be a quantity such that α = 32
or α = 64. Considering all values to be α-bit quantities, the computation of ci is done as

ci = ((2α − 1)− ai) + (1 + 2npi) mod 2α.

The operation (2α− 1)− ai is equivalent to taking the bitwise complement of ai, which is
equivalent to 1α ⊕ ai. When α = 64, the operation in applied over normally packed field
elements. When α = 32, the operation can be done over the densely packed element
A = ∑dκ/2e−1

i=0 aiθ
i in parallel similar to addition. Usually, it is sufficient to consider n = 1

for the computations. But, while applying over normally packed field element obtained
after an application of unreduced-mulc, the value of n has to be determined accordingly
depending on the bit-sizes of the input-limbs.

6.6.3 Subtraction

Subtraction is done by first negating the subtrahend B and then adding to the minuend
A. This operation can also be done over A and B simultaneously similar to addition.

6.6.4 Reduction after Linear Operations

After the addition/subtraction operation the bit-sizes of the output limbs are at most
two more than the bit-sizes of the input limbs which can be further reduced, if required.
While computing with normally packed limbs reduce2 is used.
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But, while computing with densely packed elements we take the benefit of reducing
the elements in parallel through the reduction chain

(c0, cd(κ−1)/2e)→ (c1, cd(κ−1)/2e+1)→ · · · → (cd(κ−1)/2e−1, c2d(κ−1)/2e−1)

Here, the notation (ci, cj)→ (ck, c`) means performing the reductions ci → ck and cj → c`
simultaneously. Some carry chain steps are performed sequentially if required. For ex-
ample p255-19, the reductions c3 → c4, c7 → c8, c8 → c0 when κ = 9 and the reduc-
tions c4 → c5, c9 → c0 when κ = 10 can be done sequentially if required. Similarly,
for p448-224-1 the reductions c7 → c8, c15 → (c0, c8) can also be done sequentially, if
required. We name this reduction operation applied over densely packed elements as
reduce3.

6.6.5 Hadamard Transformations

Let A, B be two elements in Fp and A, B be their dense representations. The Hadamard
transformH(A, B) outputs the pair 〈C, D〉 where

C = reduce3(A + B), and
D = reduce3(A + negate(B)).

The transformation can also be applied to densely packed elements which is denoted as
H(A, B) which the pair 〈C, D〉 where

C = reduce3(A + B), and
D = reduce3(A + negate(B)).

The Hadamard transform H1(A, B) outputs the pair 〈D, C〉, where C, D are defined
as above. The transformH2(A, B) outputs the pair 〈C, D〉 where

C = reduce3(B), and
D = reduce3(A + negate(B)).

We define the operation unreduced-H(A, B) which is the same asH(A, B) except that
the reduce3 operation is dropped. Similarly, unreduced-H1(A, B) and unreduced-H2(A, B)
are defined.

6.7 Vector Operations

SIMD instructions in modern processors allow parallelism where the same instruction
can be applied to multiple data. To take advantage of SIMD instructions it is convenient
to organize the data as vectors. The Intel instructions that we target apply to 256-bit reg-
isters which are considered to be 4 64-bit words (or, as 8 32-bit words). So, we consider
vectors of length 4.

Notation: In the following sections, for uniformity of description, we use expressions of
the form ∑h

i=` fiθ
i. While dealing with arithmetic based on the 10-limb representation

p255-19, θi should be considered as 2d25.5ie.
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6.7.1 Vector Representation of Field Elements

Define A = 〈A0, A1, A2, A3〉where Ak = ∑κ−1
i=0 ak,iθ

i ∈ Fp. Hence, A is a 4-element vector.
Each ak,i is stored in a 64-bit word, and conceptually one may think of A to be given by a
κ × 4 matrix of 64-bit words. If we consider Ak, i.e., densely packed form of Ak, then we

have A = 〈A0, A1, A2, A3〉 where Ak = ∑dκ/2e−1
i=0 ak,iθ

i. Then we can conceptually think
of A as a dκ/2e × 8 matrix of 32-bit words. This visualization helps to 2-way parallelize
the vector Hadamard transformations and other linear operations within the ladder. We
will observe this explicitly in the final algorithm.

We can also visualize A and A by the following alternative representation. Let ai =
〈a0,i, a1,i, a2,i, a3,i〉. Define aiθ

i = 〈a0,iθ
i, a1,iθ

i, a2,iθ
i, a3,iθ

i〉. Then, we can write A = ∑κ−1
i=0 aiθ

i.
Each ai is stored as a 256-bit value. Similarly, let ai = 〈a0,i, a1,i, a2,i, a3,i〉. Define aθi =

〈a0,iθ
i, a1,iθ

i, a2,iθ
i, a3,iθ

i〉. Then, we can write A = ∑dκ/2e−1
i=0 aiθ

i. Like ai, each ai is stored
as a 256-bit value.

6.7.2 Dense Packing of Vector Elements

Let 〈A0, A1, A2, A3〉 = ∑κ−1
i=0 aiθ

i, where Ak = ∑κ−1
i=0 ak,iθ

i. The vectorized normal to dense
packing operation PACK-N2D(〈A0, A1, A2, A3〉) returns the 4-tuple 〈A0, A1, A2, A3〉 =
∑dκ/2e−1

i=0 aiθ
i, where Ak = N2D(Ak), such that Ak = ∑dκ/2e−1

i=0 ak,iθ
i.

Let 〈A0, A1, A2, A3〉 = ∑dκ/2e−1
i=0 aθi, where Ak = ∑dκ/2e−1

i=0 ak,iθ
i. The vectorized dense

to normal operation PACK-D2N(〈A0, A1, A2, A3〉) returns the 4-tuple 〈A0, A1, A2, A3〉 =
∑κ−1

i=0 aiθ
i, where Ak = D2N(Ak), such that Ak = ∑κ−1

i=0 ak,iθ
i. A similar packing strat-

egy called squeeze/unsqueeze has been used earlier in [BCLS14, HEY20]. In Figure 6.1
and Figure 6.2 we provide diagrammatic representation of normally and densely packed
vector elements for the prime p = 2255 − 19.

a0,9a1,9a2,9a3,9

a0,8a1,8a2,8a3,8

a0,7a1,7a2,7a3,7

a0,6a1,6a2,6a3,6

a0,5a1,5a2,5a3,5

a0,4a1,4a2,4a3,4

a0,3a1,3a2,3a3,3

a0,2a1,2a2,2a3,2

a0,1a1,1a2,1a3,1

a0,0a1,0a2,0a3,0

063127191255

Figure 6.1: Normally packed vector field elements for the prime p = 2255 − 19 stored in
10 256-bit registers. The 32-bit wide white blocks are free.
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a0,4a0,9a1,4a1,9a2,4a2,9a3,4a3,9

a0,3a0,8a1,3a1,8a2,3a2,8a3,3a3,8

a0,2a0,7a1,2a1,7a2,2a2,7a3,2a3,7

a0,1a0,6a1,1a1,6a2,1a2,6a3,1a3,6

a0,0a0,5a1,0a1,5a2,0a2,5a3,0a3,5

063127191255

Figure 6.2: Densely packed vector field elements for the prime p = 2255 − 19 stored in
5 256-bit registers. All 32-bit blocks are used.

6.7.3 Vector Reduction

There are three type of vector reduction operations will be used, namely REDUCE1,
REDUCE2 and REDUCE3 out of which REDUCE3 will be used on densely packed limbs
after the Hadamard transformations. We define them below.

• REDUCE1(〈A0, A1, A2, A3〉): This is used in the vectorized field multiplication and
squaring algorithms which returns 〈reduce1(A0), reduce1(A1), reduce1(A2), reduce1-
(A3)〉.

• REDUCE2(〈A0, A1, A2, A3〉): This is used in the vectorized algorithm for multi-
plication by a field constant which returns 〈reduce2(A0), reduce2(A1), reduce2(A2),
reduce2(A3)〉. The same reduction is also used after addition of two vector ele-
ments.

• REDUCE3(〈A0, A1, A2, A3〉): This is used in the vectorized algorithms for Hadamard
transformations which returns 〈reduce3(A0), reduce3(A1), reduce3(A2), reduce3(A3)〉.
Details of reduce3 will be defined later in the context of vectorized Hadamard trans-
formation.

6.7.4 Vector Multiplication and Squaring

Vector multiplication and squaring are done over normally packed field elements which
are defined as below.

• MUL(〈A0, A1, A2, A3〉, 〈B0, B1, B2, B3〉): returns C = ∑κ−1
i=0 ciθ

i such that C = RED-
UCE1(〈C0, C1, C2, C3〉), where Ck = mul(Ak, Bk).

• SQR(〈A0, A1, A2, A3〉): returns C = ∑κ−1
i=0 ciθ

i, such that C = REDUCE1(〈C0, C1, C2,
C3〉), where Ck = sqr(Ak).

6.7.5 Vector Multiplication by a Field Constant

Vector multiplication by a field constant is done with a normally packed field element.
The function is defined as MULC(〈A0, A1, A2, A3〉, 〈d0, d1, d2, d3〉), which returns C =

∑κ−1
i=0 ciθ

i, such that C = REDUCE2(〈C0, C1, C2, C3〉). Here d0, d1, d2, d3 ∈ Fp and Ck =
mulc(Ak, dk). The MULC operation without reduction is called as UNREDUCED-MULC.
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6.7.6 Vector Addition

The vectorized Montgomery ladder has a vector addition which is done over normally
packed field elements. The operation is defined as ADD(〈A0, A1, A2, A3〉, 〈B0, B1, B2, B3〉)
which returns REDUCE2(〈C0, C1, C2, C3〉), where

Ck = Ak + Bk =
κ−1

∑
i=0

(ai + bi)θ
i =

κ−1

∑
i=0

ciθ
i.

Algorithms for vector Hadamard operations. For a normally packed 256-bit vector
quantity a = 〈a0, a1, a2, a3〉 we define copy1(a) = 〈a0, a0, a2, a2〉 and copy2(a) = 〈a1, a1, a3,
a3〉. Similarly, for a densely packed 256-bit quantity a = 〈a0, a1, a2, a3〉we define copy3(a)
= 〈a0, a0, a2, a2〉 and copy4(a) = 〈a1, a1, a3, a3〉. The copy operations can be implemented
using the assembly instruction vpshufd. The instruction vpshufd uses an additional pa-
rameter known as the shuffle mask, whose values for copy1(·) is 68 and for copy2(·) is
238. The vector Hadamard operation DENSE-H-H1 and DENSE-H2-H are described in
Algorithm 6.2 and Algorithm 6.3 respectively. DENSE-H-H1 implements the transforma-
tionH-H1 and DENSE-H2-H implementsH2-H. Due to the extra Step 5 in Algorithm 6.3,
the function DENSE-H2-H is slightly more costly than DENSE-H-H1.

Algorithm 6.2 Vector Hadamard transformation.

1: function DENSE-H-H1(〈A0, A1, A2, A3〉)
2: Input: 〈A0, A1, A2, A3〉 = ∑dκ/2e−1

i=0 aiθ
i.

3: Output: C = ∑dκ/2e−1
i=0 ciθ

i representing 〈A0 + A1, A0− A1, A2− A3, A2 + A3〉, where
each component is reduced modulo p1 or p2 depending on the chosen prime.

4: for i← 0 to dκ/2e − 1 do
5: s← copy3(ai)
6: t← copy4(ai)

7: t← t⊕ 〈032, 032, 132, 132, 132, 132, 032, 032〉
8: t← t + 〈032, 032, 2pi + 1, 2pi+dκ/2e + 1, 2pi + 1, 2pi+dκ/2e + 1, 032, 032〉
9: ci ← s + t

10: end for
11: return REDUCE3(C)
12: end function.

6.7.7 Vector Duplication

For the 256-bit quantity a = 〈a0, a1, a2, a3〉 let us define the operation copy3(a) = 〈a0, a1, a0,
a1〉, which can be implemented using the assembly instruction vpermq. The instruc-
tion vpermq uses an additional parameter known as the shuffle mask, whose value for
copy3(·) is 68. Let A = ∑dκ/2e−1

i=0 aiθ
i. Define the operation DENSE-DUP(A) to return

∑dκ/2e−1
i=0 copy3(ai)θ

i. If A represents 〈A0, A1, A2, A3〉, then DENSE-DUP(A) = 〈A0, A1,
A0, A1〉.
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Algorithm 6.3 Vector Hadamard transformation.

1: function DENSE-H2-H(〈A0, A1, A2, A3〉)
2: Input: 〈A0, A1, A2, A3〉 = ∑dκ/2e−1

i=0 aiθ
i.

3: Output: C = ∑dκ/2e−1
i=0 ciθ

i representing 〈A1, A0− A1, A2 + A3, A2− A3〉, where each
component is reduced modulo p1 or p2 depending on the chosen prime.

4: for i← 0 to dκ/2e − 1 do
5: s← copy3〈ai〉
6: s← s and 〈064, 164, 164, 164〉
7: t← copy4(ai)

8: t← t⊕ 〈032, 032, 132, 132, 032, 032, 132, 132〉
9: t← t + 〈032, 032, 2pi + 1, 2pi+dκ/2e + 1, 032, 032, 2pi + 1, 2pi+dκ/2e + 1〉

10: ci ← s + t
11: end for
12: return REDUCE3(C)
13: end function.

6.7.8 Vector Blending

For the 256-bit quantities a = 〈a0, a1, a2, a3〉 and b = 〈b0, b1, b2, b3〉 define the operation
mix(a, b, b0b1b2b3) = 〈c0, c1, c2, c3〉 such that

ck ←
{

ak if bk = 0,
bk if bk = 1.

mix(a, b, b0b1b2b3) can be implemented using the assembly instruction vpblendd. Let
A = ∑κ−1

i=0 aiθ
i. Define the operation BLEND(A, B, b0b1b2b3) to return ∑κ−1

i=0 mix(ai, bi,
b0b1b2b3)θi. If A represents 〈A0, A1, A2, A3〉, then BLEND(A, B, b0b1b2b3) = 〈C0, C1, C2, C3〉
such that

Ck ←
{

Ak if bk = 0,
Bk if bk = 1.

The blending function BLEND can also be used over the densely packed operands A, B,
and the working of the function does not change from the one defined above. We will
call such a function as DENSE-BLEND.

6.7.9 Vector Swapping

Let a = 〈a0, a1, a2, a3〉 and b be a bit. We define an operation swap(a, b) as

swap(a, b) ←
{
〈a0, a1, a2, a3〉 if b = 0,
〈a2, a3, a0, a1〉 if b = 1.

The operation swap(a, b) is implemented using the assembly instruction vpermd. Let A =

∑dκ/2e−1
i=0 aiθ

i. We define the operation DENSE-SWAP(A, b) to return ∑dκ/2e−1
i=0 swap(ai, b)θ

i.
If A represents the vector 〈A0, A1, A2, A3〉, then

DENSE-SWAP(A, b) ←
{
〈A0, A1, A2, A3〉 if b = 0,
〈A2, A3, A0, A1〉 if b = 1.
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The following summary classifies the different vector operations in terms of the type
of packing of the operands.

• MUL, SQR, MULC, ADD, BLEND, PACK-N2D are applied to normally packed field
elements.

• DENSE-SWAP, DENSE-H-H1, DENSE-H2-H, DENSE-DUP, DENSE-BLEND, PACK-
D2N are applied to densely packed field elements.

6.8 Conclusion

In this chapter we have formalized the different algorithms of field operations which
can be computed using 4-way vector instructions. These algorithms will be used in the
4-way vectorized implementations of the Montgomery ladder which we address next.



C H A P T E R 7

Efficient 4-way Vectorizations of the
Montgomery Ladder

This chapter is dedicated to the memory of Peter Lawrence Montgomery.

7.1 Introduction

Due to the practical importance of Curve25519 and also Curve448, the efficient imple-
mentations of X25519 and X448 are of major interest. The first efficient implementa-
tion of X25519 was provided by Bernstein himself in the paper which introduced the
curve [Ber06b]. Since then, there has been a substantial amount of work on implement-
ing X25519 on a variety of architectures [BS12, Cho15, CS09, DHH+15, FL15, FHLD19,
FA17, HEY20, HS13, Moo15, OLH+17]. Several works have also provided efficient im-
plementations of X448 [OLH+17, FHLD19].

Modern processor architectures provide support for single instruction multiple data
(SIMD) operations. This allows performing the same operation on a vector of inputs.
Vectorization leads to efficiency gains. Arguments in favor of vectorization have been
put forward by Bernstein1.

Scalar multiplication on Montgomery form curves is performed using the so-called
Montgomery ladder algorithm. This is an iterative algorithm where each iteration or
ladder-step performs a combined double and differential addition of curve points. The
ladder-step is the primary target for vectorization. The idea behind such vectorization
is to form groups of independent multiplications so that the SIMD instructions can be
applied to the groups. To the best of our knowledge, the first work which considered
grouping together four independent multiplications was by Costigan and Schwabe [CS09].
Subsequent work by Bernstein and Schwabe [BS12] and Chou [Cho15] considered group-
ing together two independent multiplications. A modification of the algorithm of Chou
[Cho15], also grouping together two independent multiplications was proposed by Faz-
Hernández and López [FL15]. Even though the algorithm grouped together two in-
dependent multiplications, in [FL15] it was implemented using the 4-way SIMD in-
structions. An improved implementation of the same algorithm has been reported in

1https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/mmsH4k3j_1g/m/JfzP1EBuBQAJ, ac-
cessed on March 10, 2020.
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[FHLD19]. Recently, the work [HEY20] proposed a vectorization strategy which groups
together four independent multiplications and provided its implementation using 4-way
SIMD instructions.

Modern processors provide support for 4-way SIMD instructions. To fully exploit
this feature, it is required to form groups of four independent multiplications. As men-
tioned above, the only previous works to consider this are [CS09, HEY20]. For vari-
able base scalar multiplication, the vectorization strategy of [HEY20] is faster than that
of [CS09], while for fixed base scalar multiplication, the vectorization strategy of [CS09]
is faster than that of [HEY20].

In this work, we present new 4-way vectorizations of the Montgomery ladder-step.
The first algorithm that we propose consists of two general multiplication rounds (one
round consisting of two squarings and two multiplications and the other round consist-
ing of three multiplications), one squaring round (consisting of two squarings) and a
round which performs a multiplication by a curve constant. The second algorithm has
two groups of four multiplications, one multiplication by the curve constant and one
multiplication by the x-coordinate of the base point. In the case where the base point is
fixed and its x-coordinate is small, the second strategy is faster than the first strategy.

For variable base scalar multiplication, a comparison of our first algorithm with
[HEY20] shows a trade-off. While [HEY20] does not require the round consisting of
multiplication by a constant, it requires several extra non-multiplication operations. It
has been observed through our concrete implementations that the advantage of avoid-
ing the multiplication by constant is outweighed by the overhead of the additional non-
multiplication operations. For fixed base scalar multiplication, our second algorithm is
shown to be clearly faster than [CS09].

We provide efficient constant time assembly implementations of both our vectorized
algorithms for X25519 and X448. For X25519, an Intel intrinsics based implementation
has been reported in [HEY20]. We provide improved implementation of the vectorized
algorithm of [HEY20] for X25519; the improvement comes in two parts – an assembly
implementation and faster multiplication/squaring. For X448, we provide the first effi-
cient assembly implementation of the vectorized algorithm of [HEY20]. We have made
the source codes of all our implementations publicly available at the link

https://github.com/kn-cs/vec-ladder.

Timing results on the Skylake and Haswell processors have been obtained for all the
implementations that we have made. For comparison, we have measured the perfor-
mance of previous codes [FHLD19, HEY20, OLH+17] on the same computers where we
measured our code. For variable base scalar multiplication, the new algorithm proposed
here shows a major improvement in speed over [FHLD19, OLH+17] and a modest, but
noticeable improvement in speed over [HEY20]. These results indicate that for practical
implementations of shared secret generation phase of ECDH protocol over Curve25519
and Curve448, the new vectorized algorithm proposed in this work is preferable over
previous works.

For fixed base scalar multiplication, the second vectorized algorithm that we present
significantly improves upon the speed of variable base scalar multiplication. If imple-
mentation of the key generation phase of the ECDH protocol is to be done over Mont-
gomery curves, then this is the algorithm of choice.

https://github.com/kn-cs/vec-ladder
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7.2 The 4-way Vectorization of [HEY20]

In [HEY20], the computation of (X′2 : Z′2) was done in a manner different from that
shown in (2.1). Retracing the computation of (X′2 : Z′2) given in Figure 1 of [HEY20]
shows that the following formula was used.

(X′2 : Z′2) =
(
2((X2 + Z2)2 + (X2 − Z2)2)2 − (4X2Z2)2

: 2((X2 + Z2)2 + (X2 − Z2)2)4X2Z2 + A(4X2Z2)2) .

}
(7.1)

Assuming that 4X2Z2 is computed as mentioned above, the computations of (X′3 : Z′3)
using (2.1) and of (X′2 : Z′2) using (7.1) require 4 multiplications, 6 squarings and one
multiplication by the curve constant A. The total number of multiplications and squar-
ing is one more than that required for computation of (2.1). For a sequential computation
this would be inefficient, but for 4-way vectorization, the extra operation does not neces-
sarily lead to a less efficient method. Note that 2((X2 + Z2)2 + (X2 − Z2)2)2 − (4X2Z2)2

can also be computed more simply as 4(X2 + Z2)2(X2 − Z2)2. We have investigated this
possibility and it turns out that the resulting 4-way vectorization is somewhat less effi-
cient than the 4-way vectorization obtained using (7.1).

7.3 New 4-way Vectorizations of the Montgomery Ladder

In this section, we present two new vectorization strategies for the Montgomery ladder
algorithm.

Before describing the new algorithms, we introduce some notation. By 0 and 1, we
will denote the additive and the multiplicative identities of Fp respectively. The lad-
der algorithm uses the constant (A + 2)/4. For practical curves like Curve25519 and
Curve448, the value of this constant is small and the constant can be represented using
a single 64-bit word. We denote the constant by a24.

The batching strategies for the Montgomery ladder-step proposed in this work are
shown in Figures 7.1 and 7.2. It is not difficult to verify that the computations done
in Figures 7.1 and 7.2 are essentially different ways of computing the formulas given
in (2.1). So, the new algorithms provide different ways of computing the Montgomery
ladder-step. The figures only show groupings of multiplications and other operations.
To obtain vectorized algorithms, it is required to convert the algorithms using 4-way vec-
tor operations. For this, we need to introduce some top-level vector operations. Later we
discuss how these vector operations can be realized with the 4-way SIMD instructions.

For a, b ∈ Fp, define H(a, b) = (a + b, a − b), H1(a, b) = (a − b, a + b), H2(a, b) =
(0 + b, a − b). The following vector operations will be used to provide top-level de-
scriptions of the different vectorization strategies. The vector 〈A0, A1, A2, A3〉 repre-
sents 4 field elements A0, A1, A2, A3, where each Ai is represented using κ limbs. Sim-
ilar interpretation holds for the vectors 〈B0, B1, B2, B3〉 and 〈C0, C1, C2, C3〉. The vector
〈c0, c1, c2, c3〉 represents the 4 single limb quantities c0, c1, c2 and c3.

• H-H(〈A0, A1, A2, A3〉) = 〈A0 + A1, A0 − A1, A2 + A3, A2 − A3〉.

• H-H1(〈A0, A1, A2, A3〉) = 〈A0 + A1, A0 − A1, A2 − A3, A2 + A3〉.

• H2-H(〈A0, A1, A2, A3〉) = 〈A1, A0 − A1, A2 + A3, A2 − A3〉.
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X2 Z2

H1 Batched Add, Sub

X3 Z3

T1 T2 T4 T3
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T5 T6 T7 T8
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T9 T10 T11 T12
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T15 T16

∗ ∗ Batched Mul
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∗
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∗

Z2X2 X3 Z3

Figure 7.1: A batching strategy for computing the formulas in (2.1)
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X2 Z2

H1 Batched Add, Sub

X3 Z3

T1 T2 T4 T3

∗ ∗ ∗ ∗ Batched Sqr, Mul

T5 T6 T7 T8

H2 H Batched Add, Sub

T9 T10 T11 T12

∗ ∗ Batched Mul∗

∗
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T13

T14
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T16T15 T17 T18

∗∗ ∗ ∗

11 1 X1

Batched Mul

Z2X2 X3 Z3

Figure 7.2: A batching strategy for computing the formulas in (2.1)
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• ADD(〈A0, A1, A2, A3〉, 〈B0, B1, B2, B3〉) = 〈A0 + B0, A1 + B1, A2 + B2, A3 + B3〉.

• SUB(〈A0, A1, A2, A3〉, 〈B0, B1, B2, B3〉) = 〈A0 − B0, A1 − B1, A2 − B2, A3 − B3〉.

• MUL(〈A0, A1, A2, A3〉, 〈B0, B1, B2, B3〉) = 〈A0 · B0, A1 · B1, A2 · B2, A3 · B3〉.

• SQR(〈A0, A1, A2, A3〉) = 〈A2
0, A2

1, A2
2, A2

3〉.

• MULC(〈A0, A1, A2, A3〉, 〈c0, c1, c2, c3〉) = 〈c0 · A0, c1 · A1, c2 · A2, c3 · A3〉.

• DUP(〈A0, A1, A2, A3〉) = 〈A0, A1, A0, A1〉.

• SHUFFLE(〈A0, A1, A2, A3〉) = 〈A1, A0, A3, A2〉.

• BLEND(〈A0, A1, A2, A3〉, 〈B0, B1, B2, B3〉, b0b1b2b3) = 〈C0, C1, C2, C3〉), where Ci =
Ai if bi = 0 and Ci = Bi if bi = 1.

Vectorized descriptions of Figures 7.1 and 7.2 are provided in Algorithms 7.1 and 7.2
respectively. For the purpose of comparison, in Algorithms 7.3 and 7.4 we provide the 4-
way vectorization strategies obtained from the descriptions given in [CS09] and [HEY20]
respectively. We note that Algorithms 7.1, 7.2 and 7.3 implement the formulas given
by (2.1), whereas Algorithm 7.4 implements the formulas given by (2.1) as modified
in (7.1).

Algorithm 7.1 4-way vectorization of Montgomery ladder-step corresponding to Fig-
ure 7.1.

1: function VECTORIZED-LADDER-STEP(〈X2, Z2, X3, Z3〉, 〈0, 0, 1, X1〉)
2: 〈T1, T2, T4, T3〉 ← H-H1(〈X2, Z2, X3, Z3〉)
3: 〈T1, T2, T1, T2〉 ← DUP(〈T1, T2, T4, T3〉)
4: 〈T5, T6, T7, T8〉 ← MUL(〈T1, T2, T4, T3〉, 〈T1, T2, T1, T2〉)
5: 〈T9, T10, T11, T12〉 ← H2-H(〈T5, T6, T7, T8〉)
6: 〈T9, T10, 1, X1〉 ← BLEND(〈0, 0, 1, X1〉, 〈T9, T10, T11, T12〉, 1100)
7: 〈0, T13, 0, 0〉 ← MULC(〈T9, T10, T11, T12〉, 〈064, a24, 064, 064〉〉
8: 〈T5, T14, T7, T8〉 ← ADD(〈0, T13, 0, 0〉, 〈T5, T6, T7, T8〉)
9: 〈∗, ∗, T15, T16〉 ← SQR(〈T9, T10, T11, T12〉)

10: 〈T5, T14, T15, T16〉 ← BLEND(〈T5, T14, T7, T8〉, 〈∗, ∗, T15, T16〉, 0011)
11: 〈X2, Z2, X3, Z3〉 ← MUL(〈T5, T14, T15, T16〉, 〈T9, T10, 1, X1〉)
12: return 〈X2, Z2, X3, Z3〉
13: end function.

The numbers of various vector operations required by the Algorithms 7.1, 7.2, 7.3
and 7.4 are shown in Table 7.1. In the table, the numbers corresponding toHAD are the
counts ofH-H,H-H1, orH2-H operations.

While the vector multiplications are indeed the most time consuming operations, the
other operations can also take a significant amount of time. Regarding these other op-
erations, we note that Algorithm 7.4 requires the maximum number of such operations
and Algorithms 7.1 and 7.2 require the least. Among the non-multiplication operations,
the HAD operations require the maximum amount of time. We note that three HAD
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Algorithm 7.2 4-way vectorization of Montgomery ladder-step corresponding to Fig-
ure 7.2.

1: function VECTORIZED-LADDER-STEP(〈X2, Z2, X3, Z3〉, 〈1, 1, 1, X1〉)
2: 〈T1, T2, T4, T3〉 ← H-H1(〈X2, Z2, X3, Z3〉)
3: 〈T1, T2, T1, T2〉 ← DUP(〈T1, T2, T4, T3〉)
4: 〈T5, T6, T7, T8〉 ← MUL(〈T1, T2, T4, T3〉, 〈T1, T2, T1, T2〉)
5: 〈T9, T10, T11, T12〉 ← H2-H(〈T5, T6, T7, T8〉)
6: 〈0, T13, 0, 0〉 ← MULC(〈T9, T10, T11, T12〉, 〈064, a24, 064, 064〉〉
7: 〈T5, T14, T7, T8〉 ← ADD(〈0, T13, 0, 0〉, 〈T5, T6, T7, T8〉)
8: 〈T5, T14, T11, T12〉 ← BLEND(〈T9, T10, T11, T12〉, 〈T5, T14, T7, T8〉, 1100)
9: 〈T15, T16, T17, T18〉 ← MUL(〈T5, T14, T11, T12〉, 〈T9, T10, T11, T12〉)

10: 〈X2, Z2, X3, Z3〉 ← MUL(〈T15, T16, T17, T18〉, 〈1, 1, 1, X1〉)
11: return 〈X2, Z2, X3, Z3〉
12: end function.

Algorithm 7.3 4-way vectorization of Montgomery ladder-step obtained from [CS09].

1: function VECTORIZED-LADDER-STEP(〈X2, Z2, X3, Z3〉, 〈1, 1, 1, X1〉)
2: 〈T1, T2, T4, T3〉 ← H-H1(〈X2, Z2, X3, Z3〉)
3: 〈T1, T2, T1, T2〉 ← DUP(〈T1, T2, T4, T3〉)
4: 〈T5, T6, T7, T8〉 ← MUL(〈T1, T2, T4, T3〉, 〈T1, T2, T1, T2〉)
5: 〈T9, T10, 0, 0〉 ← MULC(〈T5, T6, T7, T8〉, 〈a24, a24− 1, 064, 064〉)
6: 〈∗, T11, T13, T14〉 ← H-H(〈T5, T6, T7, T8〉)
7: 〈∗, T12, ∗, ∗〉 ← H-H(〈T9, T10, 0, 0〉)
8: 〈T5, T11, T13, T14〉 ← BLEND(〈T5, T6, T7, T8〉, 〈∗, T11, T13, T14〉, 0111)
9: 〈T6, ∗, ∗, ∗〉 ← SHUFFLE(〈T5, T6, T7, T8〉)

10: 〈T6, T12, ∗, ∗〉 ← BLEND(〈T6, ∗, ∗, ∗〉, 〈∗, T12, ∗, ∗〉, 01dd)
11: 〈T6, T12, T13, T14〉 ← BLEND(〈T6, T12, ∗, ∗〉, 〈T5, T11, T13, T14〉, 0011)
12: 〈X2, Z2, X3, T15〉 ← MUL(〈T5, T11, T13, T14〉, 〈T6, T12, T13, T14〉)
13: 〈X2, Z2, X3, Z3〉 ← MUL(〈X2, Z2, X3, T15〉, 〈1, 1, 1, X1〉)
14: return 〈X2, Z2, X3, Z3〉
15: end function.

operations are required by Algorithm 7.3 while two HAD operations are required by
the other algorithms.

Step 13 of Algorithm 7.3 and Step 11 of Algorithm 7.2 perform the product of 〈X2, Z2,
X3, T15〉 and 〈1, 1, 1, X1〉. In Table 7.1, this multiplication has been counted as a general
field multiplication. On the other hand, if X1 is a small constant, then this multiplication
should be counted as multiplication by a small field constant. Based on this distinction,
to compare between the algorithms based on the operation counts given in Table 7.1, we
consider two situations.
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Algorithm 7.4 4-way vectorization of Montgomery ladder-step obtained from Figure 1
in [HEY20].

1: function VECTORIZED-LADDER-STEP(〈X2, Z2, X3, Z3〉, 〈0, A, 1, X1〉)
2: 〈T1, T2, T3, T4〉 ← H-H(〈X2, Z2, X3, Z3〉)
3: 〈T1, T2, T2, T1〉 ← DUP(〈T1, T2, T3, T4〉)
4: 〈T5, T6, T7, T8〉 ← MUL(〈T1, T2, T3, T4〉, 〈T1, T2, T2, T1〉)
5: 〈T9, T10, T11, T12〉 ← H-H(〈T5, T6, T7, T8〉)
6: 〈T10, T9, T12, T11〉 ← SHUFFLE(〈T9, T10, T11, T12〉)
7: 〈T10, A, 1, X1〉 ← BLEND(〈0, A, 1, X1〉, 〈T10, T9, T12, T11〉, 1000)
8: 〈T13, T14, T15, T16〉 ← SQR(〈T9, T10, T11, T12〉)
9: 〈T14, T13, T16, T15〉 ← SHUFFLE(〈T13, T14, T15, T16〉)

10: 〈X2, ∗, ∗, ∗〉 ← SUB(〈T13, T14, T15, T16〉, 〈T14, T13, T15, T16〉)
11: 〈T9, T14, T15, T16〉 ← BLEND(〈T9, T10, T11, T12〉, 〈T13, T14, T15, T16〉, 0111)
12: 〈T17, T18, X3, Z3〉 ← MUL(〈T10, A, 1, X1〉, 〈T9, T14, T15, T16〉)
13: 〈T19, ∗, ∗, ∗〉 ← ADD(〈T17, T18, X3, Z3〉, 〈T17, T18, X3, Z3〉)
14: 〈∗, T19, ∗, ∗〉 ← SHUFFLE(〈T19, ∗, ∗, ∗〉)
15: 〈∗, Z2, ∗, ∗〉 ← ADD(〈T17, T18, X3, Z3〉, 〈∗, T19, ∗, ∗〉)
16: 〈X2, Z2, ∗, ∗〉 ← BLEND(〈X2, ∗, ∗, ∗〉, 〈∗, Z2, ∗, ∗〉, 01 )

17: 〈X2, Z2, X3, Z3〉 ← BLEND(〈X2, Z2, ∗, ∗〉, 〈T17, T18, X3, Z3〉, 0011)
18: return 〈X2, Z2, X3, Z3〉
19: end function.

Vector Operations Algorithm 7.1 Algorithm 7.2 Algorithm 7.3 Algorithm 7.4

MUL 2 3 3 2
SQR 1 - - 1
MULC 1 1 1 -

HAD 2 2 3 2
ADD 1 1 - 2
SUB - - - 1
DUP 1 1 1 1
BLEND 2 1 3 4
SHUFFLE - - 1 3

Table 7.1: Comparison of the vector operations required by different algorithms.

7.3.1 Variable Base Scalar Multiplication

In this case, the quantity X1 is a general element of the field. Clearly, from Table 7.1
we see that both Algorithms 7.2 and 7.3 will be slower than either of the Algorithms 7.1
or 7.4. So, for variable base scalar multiplication, the comparison is really between Al-
gorithms 7.1 and 7.4. Both require 2 MUL+1 SQR. The trade-off between the two
algorithms is that Algorithm 7.1 requires 1MULC whereas Algorithm 7.4 requires quite
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a few extra non-multiplication operations. So, from the operation count itself it is not im-
mediately clear which of the two algorithms will be faster. The implementation results
that we report later show that in practice Algorithm 7.1 turns out to be faster on the Intel
processors we have benchmarked.

7.3.2 Fixed Base Scalar Multiplication

In this case, the quantity X1 is small. In Algorithms 7.2 and 7.3, the product of 〈X2, Z2, X3,
T15〉 and 〈1, 1, 1, X1〉 is to be counted asMULC instead ofMUL. In this case, the number
of vector multiplications performed by Algorithms 7.2 and 7.3 will be 2MUL + 2MULC
operations. The resulting cost of Algorithms 7.2 and 7.3 will be lower than that of Al-
gorithms 7.1 and 7.4. From Table 7.1, a comparison between Algorithms 7.2 and 7.3
shows that the number of non-multiplication steps required by Algorithm 7.2 is smaller
than that of Algorithm 7.3. In particular, the number of HAD operations is two for
Algorithm 7.2 while it is three for Algorithm 7.3. So, for fixed base scalar multiplica-
tion, Algorithm 7.2 will be faster than Algorithm 7.3 and also faster than Algorithms 7.1
and 7.4.

7.4 Vectorized Montgomery Ladder

Algorithm 7.5 describes the vectorized Montgomery ladder. For variable base scalar
multiplication, Algorithm 7.6 describes a single step of the ladder. The x-coordinate X1
of the point P is represented as a κ-limb quantity (Recall that κ = 9 or 10 for p1 and
κ = 16 for p2). The variables X2 and Z3 are initialized with the κ-limb representation
of 1. The variable Z2 is initialized with the κ-limb representation of 0 and the variable
X3 is initialized with the κ-limb representation of X1. So, the vector 〈X2, Z2, X3, Z3〉 is
represented by a κ × 4 matrix. We use the pre-calculated 4-tuple 〈0, 0, 1, X1〉 as a fixed
value before the ladder-loop starts.

Algorithm 7.6 is an optimized version of Algorithm 7.1. The steps of Algorithm 7.6
can be easily related to the various steps of Algorithm 7.1. The operation DENSE-H-H1
of Step 2 realizes the Hadamard operation H-H1 and DENSE-H2-H of Step 8 realizes
H2-H. The operation DENSE-DUP of Step 4 realizes the operation DUP and the op-
eration DENSE-BLEND of Step 9 realizes the BLEND operation of Step 6. All these
operations are performed on densely packed operands. The BLEND operation of Step 15
realizes the BLEND of Step 10 with normally packed operand. The operationsMUL,
SQR, MULC and ADD of Algorithm 7.1, which are performed on normally packed
operands are realized respectively by Steps 6,16,14,12,13 of Algorithm 7.6.

Below we mention a few important points regarding the implementations of Algo-
rithm 7.6 for Curve25519 and Curve448.

1. For Curve25519 with κ = 10, the outputs of the vector Hadamard transformations
in Steps 2 and 8 of the VECTORIZED-LADDER-STEP can be kept unreduced. This
is so because, a size increment by at most 2 bits in the limbs does not produce any
overfull in the integer multiplication/squaring algorithm for p1.

2. For Curve25519 with κ = 9, the outputs of the vector Hadamard transformations
cannot be kept unreduced. In this case a size increment by at most 2 bits in the
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Algorithm 7.5 Montgomery ladder with 4-way vectorization. In the algorithm m =
dlg pe.

1: function VECTORIZED-MONT-LADDER(X1, n)
2: input: A point P = (X1 : · : 1) on EM,A,B(Fp) and an m-bit scalar n.
3: output: x0(nP).

4: X2 = 1; Z2 = 0; X3 = X1; Z3 = 1
5: prevbit← 0
6: 〈0, 0, 1, X1〉 ← PACK-N2D(〈0, 0, 1, X1〉)
7: 〈X2, Z2, X3, Z3〉 ← PACK-N2D(〈X2, Z2, X3, Z3〉)
8: for i← m− 1 down to 0 do
9: bit← bit at index i of n

10: b← bit⊕ prevbit

11: prevbit← bit

12: 〈X2, Z2, X3, Z3〉 ← DENSE-SWAP(〈X2, Z2, X3, Z3〉, b)
13: 〈X2, Z2, X3, Z3〉 ← VECTORISED-LADDER-STEP(〈X2, Z2, X3, Z3〉, 〈0, 0, 1, X1〉)
14: 〈X2, Z2, X3, Z3〉 ← PACK-N2D(〈X2, Z2, X3, Z3〉)
15: end for
16: 〈X2, Z2, X3, Z3〉 ← PACK-D2N(〈X2, Z2, X3, Z3〉)
17: 〈X2, Z2, X3, Z3〉 ← REDUCE2(〈X2, Z2, X3, Z3〉)
18: return X2 · Zp−2

2

19: end function.

limbs produces overfull in the integer multiplication/squaring algorithm. We ap-
ply the reduction chain (c0, c4) → (c1, c5) → (c2, c6) → (c3, c7) in parallel over
densely packed field elements. The reductions c3 → c4, c7 → c8 and c8 → c0 are
applied sequentially.

3. For Curve448 the outputs of the vector Hadamard transformations cannot be kept
unreduced since in this case also, a size increment by at most 2 bits in the limbs
produces overfull in the integer multiplication/squaring algorithm for p2. On the
other hand, it is sufficient to use only the reduction steps covered by the parallel
reduction chain (c0, c8) → (c1, c9) → · · · → (c7, c15). Such a reduction keeps at
most 3 extra bits in the limbs at index 7 and 15 of the field element and this does
not lead to any overfull for the multiplication/squaring algorithm applied further.
The sequential reduction steps c7 → c8, c15 → (c0, c8) can be skipped and this
provides some time saving in the computation.

4. The output of MULC operation in Step 12 is kept unreduced.

5. The PACK-D2N operation can be implemented using the vpsrlq and vpand in-
structions. On the other hand, for the implementation of Algorithm 7.6 it is suf-
ficient to use only the vpsrlq instruction, which helps to extract the lower dκ/2e
limbs of the field elements from the densely packed limbs. It is not necessary to
mask off the upper 32-bits of the densely packed limbs because the vpmuludq in-
struction is not dependent on the values stored in the upper 32-bits. This makes
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Algorithm 7.6 Vectorized algorithm of Montgomery ladder-step corresponding to Algo-
rithm 7.1.

1: function VECTORIZED-LADDER-STEP(〈X2, Z2, X3, Z3〉, 〈0, 0, 1, X1〉)
2: 〈T1, T2, T4, T3〉 ← DENSE-H-H1(〈X2, Z2, X3, Z3〉)
3: 〈T1, T2, T4, T3〉 ← PACK-D2N(〈T1, T2, T4, T3〉)
4: 〈T1, T2, T1, T2〉 ← DENSE-DUP(〈T1, T2, T4, T3〉)
5: 〈T1, T2, T1, T2〉 ← PACK-D2N(〈T1, T2, T1, T2〉)
6: 〈T5, T6, T7, T8〉 ← MUL(〈T1, T2, T4, T3〉, 〈T1, T2, T1, T2〉)
7: 〈T5, T6, T7, T8〉 ← PACK-N2D(〈T5, T6, T7, T8〉)
8: 〈T9, T10, T11, T12〉 ← DENSE-H2-H(〈T5, T6, T7, T8〉)
9: 〈T9, T10, 1, X1〉 ← DENSE-BLEND(〈0, 0, 1, X1〉, 〈T9, T10, T11, T12〉, 1100)

10: 〈T9, T10, 1, X1〉 ← PACK-D2N(〈T9, T10, 1, X1〉)
11: 〈T9, T10, T11, T12〉 ← PACK-D2N(〈T9, T10, T11, T12〉)
12: 〈0, T13, 0, 0〉 ← UNREDUCED-MULC(〈T9, T10, T11, T12〉, 〈064, a24, 064, 064〉)
13: 〈T5, T14, T7, T8〉 ← ADD(〈0, T13, 0, 0〉, 〈T5, T6, T7, T8〉)
14: 〈∗, ∗, T15, T16〉 ← SQR(〈T9, T10, T11, T12〉)
15: 〈T5, T14, T15, T16〉 ← BLEND(〈T5, T14, T7, T8〉, 〈∗, ∗, T15, T16〉, 0011)
16: 〈X2, Z2, X3, Z3〉 ← MUL(〈T5, T14, T15, T16〉, 〈T9, T10, 1, X1〉)
17: return 〈X2, Z2, X3, Z3〉
18: end function.

the PACK-D2N operation less costly than PACK-N2D.

6. The DENSE-DUP operation in Step 4 is applied to the densely packed elements
〈T1, T2, T4, T3〉 instead of 〈T1, T2, T4, T3〉. This is done considering the latency of the
vpermq instruction. Doing so, needs dκ/2e vpermq and bκ/2c vpsrlq instructions
to produce the vector 〈T1, T2, T1, T2〉. This is slightly advantageous compared to ap-
plying the DUP operation to 〈T1, T2, T4, T3〉, which will need κ vpermq instructions.

7.4.1 Constant Time Conditional Swap

The conditional swap is performed over densely packed vector elements 〈X2, Z2, X3, Z3〉.
To perform the swapping in constant time we make use of the vpermd assembly instruc-
tion. First, a swapping index is created using the value of the present bit of the scalar
and stored in a 256-bit ymm register. This index is then used by vpermd to swap the limbs
of 〈X2, Z2〉 and 〈X3, Z3〉. The function DENSE-SWAP calls dκ/2e vpermd instructions to
swap the field elements represented by the pairs 〈X2, Z2〉 and 〈X3, Z3〉.

7.4.2 Optimizing the Squaring in Ladder-step.

The instruction 〈∗, ∗, T15, T16〉 ← SQR(〈T9, T10, T11, T12〉) in Step 14 of Algorithm 7.6 com-
putes the four squarings T2

9 , T2
10, T2

11 and T2
12 simultaneously. The squares T2

9 , T2
10 are not

needed by the algorithm and hence has been denoted as ∗ in the vector 〈∗, ∗, T15, T16〉.
Some crucial optimization can be done on this squaring operation. Considering the in-
put 〈T9, T10, T11, T12〉 as a κ× 4 matrix, of 64-bit integers, it can be considered that the first
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two columns of the inputs are not required for computing the squares. This feature can
be efficiently exploited while computing T2

11 and T2
12 via the last two columns of the input

matrix while using the Karatsuba technique. The idea is to use the symmetry involved in
the integer squarings of the subproblems while applying Karatsuba. We provide some
details of the optimization technique that we have used for X448.

For convenience of notation, let us denote the vector 〈T9, T10, T11, T12〉 as A = 〈A0, A1,
A2, A3〉. So, we have A2 = T11 and A3 = T12. As defined before, considering aiθ

i =
〈a0,iθ

i, a1,iθ
i, a2,iθ

i, a3,iθ
i〉, we can then write A = ∑15

i=0 aiθ
i. In the 16× 4 matrix the values

a2,i and a3,i are significant in the context and the values a0,i and a1,i can be ignored. The
limbs a2,8, a2,9, . . . , a2,15 and a3,8, a3,9, . . . , a3,15 constitute the upper sub-problems of the
field elements A2 and A3 respectively. We can copy these upper sub-problems to the
first two columns of the matrix using 8 vpermq and 8 vpblendd instructions. Upon doing
so, the entire limb information of the field elements A2 and A3 can be kept in a 8× 4
matrix lying within A = ∑7

i=0 aiθ
i, where aiθ

i = 〈a2,8+iθ
i, a3,8+iθ

i, a2,iθ
i, a3,iθ

i〉. Now, the
integer squaring of the lower sub-problems and upper sub-problems of A2 and A3 can
be done simultaneously using 36 vpmuludq instructions instead of 72. Along with this
we also have a saving in reduced number of vpaddq instructions for accumulating the
limb products.

We can also optimize the computation of the combined sub-problems using a similar
technique. The combined sub-problems are denoted by the 8× 4 matrix lying within A =

∑7
i=0 aiθ

i, where aiθ
i = 〈(a0,i + a0,8+i)θ

i, (a1,i + a1,8+i)θ
i, (a2,i + a2,8+i)θ

i, (a3,i + a3,8+i)θ
i〉.

As before, the values (a2,i + a2,8+i) and (a3,i + a3,8+i) are of interest and the values (a0,i +
a0,8+i) and (a1,i + a1,8+i) can be ignored. In this situation we copy the values of the com-
bined sub-problem in the order from bottom to top to the unused slots in the first two
columns of the 8× 4 matrix to get A = ∑7

i=0 aiθ
i, where aiθ

i = 〈(a2,7−i + a2,15−i)θ
i, (a3,7−i +

a3,15−i)θ
i, (a2,i + a2,8+i)θ

i, (a3,i + a3,8+i)θ
i〉. This is done using 8 vpermq and 8 vpblendd in-

structions. With such a setup, we can compute the integer squaring of the combined sub-
problem using 20 vpmuludq instructions instead of 36. Here also we have an additional
saving in reduced number of vpaddq instructions for accumulating the limb-products.

So, the integer squaring of A2 and A3 can be done using 56 vpmuludq instructions
instead of 108. It is to be noted that the values of the accumulated limb-products has to
brought back to the last two columns from the first two columns of the matrix for both
the above cases to perform the linear operations needed for reduction. This is done by
a total (15 + 7) = 22 vpermq instructions. So, the total number of vpermq instructions
needed for achieving the speed-up due to the optimization is (16 + 22) = 38, whereas,
the total number of vpblendd instructions needed is 16.

The above optimization technique can also be applied to the 9-limb implementation
of X25519, but we did not find any benefit after applying it. The latency of the vpermq

instruction plays a dominant role over here which neutralizes the benefit obtained due
to the optimization. If the latency of vpermq gets minimized in future architectures, then
applying the optimization strategy while computing the ladder-step for X25519 might
produce some speed-up benefits.

7.4.3 Comparison of Algorithm 7.6 with the Vectorization of [HEY20]

The vectorization strategy given in Algorithm 7.4 has been derived from Figure 1 of
[HEY20] and the corresponding implementation. This algorithm can be converted to
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vectorized algorithm in the manner that Algorithm 7.1 has been converted to Algo-
rithm 7.6. The trade-off between the two algorithms can be understood based on the
following points.

Operation count: An operation level comparison between Algorithms 7.1 and 7.4 has
been shown in Table 7.1. Both the algorithms require 2MUL and 1 SQR opera-
tions. The trade-off in the operation counts is that Algorithm 7.4 does not require
aMULC operation, but requires extra non-multiplication operations consisting of
1 ADD, 1 SUB, 2 BLEND and 3 SHUFFLE operations. The subtraction SUB
is implemented by adding 2p to the minuend and then subtracting the subtrahend
from the sum.

Conversions: Due to the extra non-multiplication operations in Algorithm 7.4, the num-
ber of conversions between normal and dense packings also increases.

Unreduced Hadamard: The outputs of the Hadamard operations of Algorithm 7.4 need to
be reduced for the 9-limb implementation of X25519 and 16-limb implementation
of X448. For the 10-limb implementation of X25519, the outputs of the Hadamard
operations of Algorithm 7.4 can be kept unreduced. But, to afford this, the output
of the ladder-step has to be reduced, as otherwise, the output of the first Hadamard
operation of Algorithm 7.4 cannot be kept unreduced. For the 10-limb implementa-
tion of X25519, this reduction comes out to be extra in Algorithm 7.4, in comparison
to Algorithm 7.1.

Optimizing the squaring step: As explained above, in Algorithm 7.1 there is the possibility
of utilizing the free lanes in the squaring step to speed up the squaring operation.
This has been seen to be advantageous for X448. There is no scope of applying such
an optimization to a vectorized algorithm based on Algorithm 7.4. This is because
the squaring step in Algorithm 7.4 simultaneously squares four elements and there
are no free lanes.

The above discussion suggests that for Algorithm 7.4, the advantage of not having a
singleMULC operation is outweighed by the extra computations that need to be done.
Timing results obtained from actual implementations support this observation.

7.4.4 Fixed Base Scalar Multiplication

Algorithm 7.7 shows the vectorized ladder-step for fixed base scalar multiplication. It
is an optimized version of Algorithm 7.2. As before, the steps of Algorithm 7.7 can also
be easily related to the various steps of Algorithm 7.2. It is to be noted that Step 16 in
Algorithm 7.7 is MULC instead of MUL because X1 is small. Hence the second parameter
to MULC, which is 〈1, 1, 1, X1〉 is a vector constant of 4 64-bit words.

7.4.5 Possible Optimization of the Multiplication Operations Using 512-bit
zmm Registers

A similar kind of optimization discussed for squaring can be applied to the multiplica-
tions in Steps 6 and 16 of VECTORIZED-LADDER-STEP. For the fields where we apply the
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Algorithm 7.7 Vectorized algorithm of Montgomery ladder-step corresponding to Algo-
rithm 7.2.

1: function VECTORIZED-LADDER-STEP-FB(〈X2, Z2, X3, Z3〉, 〈1, 1, 1, X1〉)
2: 〈T1, T2, T4, T3〉 ← DENSE-H-H1(〈X2, Z2, X3, Z3〉)
3: 〈T1, T2, T4, T3〉 ← PACK-D2N(〈T1, T2, T4, T3〉)
4: 〈T1, T2, T1, T2〉 ← DENSE-DUP(〈T1, T2, T4, T3〉)
5: 〈T1, T2, T1, T2〉 ← PACK-D2N(〈T1, T2, T1, T2〉)
6: 〈T5, T6, T7, T8〉 ← MUL(〈T1, T2, T4, T3〉, 〈T1, T2, T1, T2〉)
7: 〈T5, T6, T7, T8〉 ← PACK-N2D(〈T5, T6, T7, T8〉)
8: 〈T9, T10, T11, T12〉 ← DENSE-H2-H(〈T5, T6, T7, T8〉)
9: 〈T9, T10, T11, T12〉 ← PACK-D2N(〈T9, T10, T11, T12〉)

10: 〈0, T13, 0, 0〉 ← UNREDUCED-MULC(〈T9, T10, T11, T12〉, 〈064, a24, 064, 064〉)
11: 〈T5, T14, T7, T8〉 ← ADD(〈0, T13, 0, 0〉, 〈T5, T6, T7, T8〉)
12: 〈T5, T14, T11, T12〉 ← BLEND(〈T9, T10, T11, T12〉, 〈T5, T14, T7, T8〉, 1100)
13: 〈T15, T16, T17, T18〉 ← MUL(〈T5, T14, T11, T12〉, 〈T9, T10, T11, T12〉)
14: 〈X2, Z2, X3, Z3〉 ← MULC(〈T15, T16, T17, T18〉, 〈1, 1, 1, X1〉)
15: return 〈X2, Z2, X3, Z3〉
16: end function.

Karatsuba technique for multiplication, the upper sub-problems can be copied to the up-
per half of the zmm registers using vpermq and vpblendmd instructions. Upon doing this,
the integer multiplications for both the lower and upper sub-problems can be done si-
multaneously. Using the same technique, we can also avoid roughly 50% of the vpmuludq
operations while computing the integer multiplication of the combined sub-problem.
Also since there are a total of 32 registers of 512 bits, the present implementations can
also be optimized for the load/store instructions to achieve higher speed.

7.5 Implementations and Timings

We have developed constant-time assembly implementations for the following targeting
the modern Intel architectures.

Variable base scalar multiplication:

1. Implementations of Algorithm 7.6 have been made for both X25519 and X448.

2. Implementations of the vectorization strategy from [HEY20] given in Algo-
rithm 7.4 have been made for both X25519 and X448.

For X25519, two implementations were done for both the above cases – one with 9-
limb representation using (5+4)-Karatsuba for multiplication and schoolbook for
squaring; the other one with 10-limb representation using schoolbook method.
In [HEY20], a field element is represented as A = a0 + a1285 + a22170, such that each
ai is represented by 3 limbs of sizes 29, 28 and 28 bits. Multiplication and squar-
ing have been done using a Karatsuba strategy based on a (3+3+3)-decomposition.
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For 9-limb representation, we have found that the (5+4)-Karatsuba strategy de-
scribed above turns out to be more efficient than the method described in [HEY20].
For Skylake, the CPU-cycles for field multiplication and squaring, using (5+4)-
Karatsuba are 112 and 91, whereas, the CPU-cycles of field multiplication and
squaring from [HEY20] are 119 and 96 respectively. So, we did not make any im-
plementation using the representation suggested in [HEY20].

Fixed base scalar multiplication: Implementations of Algorithm 7.7 have been made for
both X25519 and X448.

In [HEY20], a field element is represented as A = a0 + a1285 + a22170, such that each
ai is represented by 3 limbs of sizes 29, 28 and 28 bits. Multiplication and squaring have
been done using a Karatsuba strategy based on a (3+3+3)-decomposition. For 9-limb rep-
resentation, we have found that the (5+4)-Karatsuba strategy described above turns out
to be more efficient than the method described in [HEY20]. For Skylake, the CPU-cycles
for field multiplication and squaring, using (5+4)-Karatsuba are 112 and 91, whereas,
the CPU-cycles of field multiplication and squaring from [HEY20] are 119 and 96 respec-
tively.

For comparison, we also obtained the numbers of CPU-cycles required by the im-
plementations corresponding to previous works [FHLD19, HEY20, OLH+17]. The work
[FHLD19] uses AVX2 instructions to implement a 2-way SIMD algorithm. The imple-
mentations corresponding to [OLH+17] do not use SIMD instructions; they use 64-bit
arithmetic based on the instructions mulx, adcx, adox for Skylake, and the instruc-
tions mulx, add, adc for Haswell. The implementations in [HEY20] implement a 4-way
SIMD algorithm using AVX2 instructions. We have found the timings of the 9-limb and
10-limb implementations of [HEY20] as 104519 and 124077 CPU-cycles respectively on
a Skylake i7-6500U machine, which has been reported as 98484 and 116654 respectively
in [HEY20] on a Skylake i9-7900X machine. The difference in the timings is due to the
difference in the CPU architectures of the two Skylake machines. Similarly, we note that
the timings reported in [FHLD19] and [OLH+17] are lower than those given in Table 7.2
and these differences are also attributable to the differences in the actual processors.

The work [HEY20] mentions that the inversion code that is used in their implementa-
tions is the maax-type implementation for p255-19 from Chapter 4. This inversion code is
for Skylake and does not run on Haswell. To obtain performance results for the code
of [HEY20] on Haswell, we replaced the inversion code with the inversion code for
Haswell which is the maa-type implementation for p255-19 from Chapter 4.

The numbers of CPU-cycles required by X25519 and X448 for the shared secret com-
putation phase of the ECDH protocol are given in Table 7.2. The number given in the
gray cells of the table are the best speeds for X25519 and X448.

The first point to note from Table 7.2 is that as expected, 4-way vectorization using
AVX2 provides faster speed than maax or 2-way vectorization using AVX2. So, the compar-
ison is between the vectorization strategy in [HEY20] and the strategy proposed in the
present work.

One may note the following points from Table 7.2.

• On Haswell, the best performance of X25519 is obtained using a 9-limb representa-
tion and (5+4)-Karatsuba for multiplication, schoolbook for squaring while on Sky-
lake, the best performance is obtained using a 10-limb representation and school-
book multiplication.
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Operation Haswell Skylake κ Strategy Reference Implementation Type

X25519

143956 118231 4 64-bit seq, [OLH+17] [OLH+17] mxaa,maax, assembly

146363 128202 10 2-way SIMD, [FHLD19] [FHLD19] AVX2, intrinsics

140996 104519 9 4-way SIMD, [HEY20] [HEY20] AVX2, intrinsics

174129 124077 10 4-way SIMD, [HEY20] [HEY20] AVX2, intrinsics

121539 99898 9 4-way SIMD, [HEY20] this work AVX2, assembly

126521 97590 10 4-way SIMD, [HEY20] this work AVX2, assembly

120108 99194 9 4-way SIMD, Alg. 7.6 this work AVX2, assembly

123899 95437 10 4-way SIMD, Alg. 7.6 this work AVX2, assembly

X448

720698 536362 7 64-bit seq, [OLH+17] [OLH+17] mxaa,maax, assembly

518467 421211 16 2-way SIMD, [FHLD19] [FHLD19] AVX2, intrinsics

462277 373006 16 4-way SIMD, [HEY20] this work AVX2, assembly

441715 357095 16 4-way SIMD, Alg. 7.6 this work AVX2, assembly

Table 7.2: CPU-cycle counts on Haswell and Skylake processors required by X25519 and
X448 for variable base scalar multiplication.

• On both Haswell and Skylake, the 10-limb implementation of X25519 using Al-
gorithm 7.6 is noticeably better than the implementation using the vectorization
strategy in [HEY20]. This is mainly due to the extra reduction needed at the end of
the ladder-step of [HEY20], which can be avoided in Algorithm 7.6.

• The implementation in [HEY20] is slower than our implementation of the vector-
ization in [HEY20]. One reason for this is a change from intrinsic to assembly. For
the implementation using 9-limb representation, a reason for the speed improve-
ment is our use of (5+4)-Karatsuba in comparison to the (3+3+3)-Karatsuba used
in [HEY20].

• On both Haswell and Skylake, the 16-limb implementation of X448 using Algo-
rithm 7.6 is noticeably better than the implementation using the vectorization strat-
egy in [HEY20]. This is mainly due to the benefit earned by optimizing the squar-
ing operation of Algorithm 7.6, which is not possible while using the vectorization
strategy of [HEY20].

Overall, from the timing information provided in Table 7.2 we see that for both
X25519 and X448, the vectorization given by Algorithm 7.6 provides better performance
compared to all previous works on both Haswell and Skylake. Compared to [FHLD19,
OLH+17], major speed improvements are obtained by Algorithm 7.6. On the other hand,
the performance differences of Algorithm 7.6 to our optimized assembly implementation
of the vectorization strategy of [HEY20] are modest but nonetheless noticeable. Given
that both X25519 and X448 are part of TLS version 1.3 and are likely to extensively used,
a noticeable speed improvement is of practical interest. So, for practical deployment, in
comparison to previous algorithms, it is preferable to use Algorithm 7.6 for implement-
ing variable base scalar multiplication on Curve25519 and Curve448.
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The speed-ups achieved by our assembly implementations of variable base scalar
multiplication using Algorithm 7.6 over the existing vectorized implementations of X255-
19 and X448 are given below.

1. In Skylake, our 9-limb implementation of X25519 is 22.6% faster than the 10-limb
implementation of [FHLD19], 20.1% faster than the 10-limb implementation of
[HEY20] and 5.1% faster than the 9-limb implementation of [HEY20]. In Haswell
the corresponding improvements are 18%, 31% and 14.8% respectively.

2. In Skylake, our 10-limb implementation of X25519 is 25.6% faster than the 10-
limb implementation of [FHLD19], 8.9% faster than the 10-limb implementation
of [HEY20] and 23% faster than the 9-limb implementation of [HEY20]. In Haswell
the corresponding improvements are 15.3%, 28.8% and 12.1% respectively.

3. In Skylake, our 16-limb implementation of X448 is 15.2% faster than the 16-limb
implementation of [FHLD19] and in Haswell the corresponding improvement is
14.8%.

Operation Haswell Skylake κ Strategy Reference Implementation Type

X25519
100127 86885 9 4-way SIMD, Alg. 7.7 this work AVX2, assembly

106190 84047 10 4-way SIMD, Alg. 7.7 this work AVX2, assembly

X448 381417 317778 16 4-way SIMD, Alg. 7.7 this work AVX2, assembly

Table 7.3: CPU-cycle counts on Haswell and Skylake processors required by X25519 and
X448 for fixed base scalar multiplication.

For fixed base scalar multiplication, neither Algorithm 7.6 nor the vectorization strat-
egy in [HEY20] can take advantage of the fact that X1 is small. The previous 4-way vec-
torized algorithm from [CS09] can indeed take advantage of this point. As discussed
in Section 7.3, Algorithm 7.2 is faster than the algorithm in [CS09]. So, we did not im-
plement the vectorized algorithm from [CS09]. Algorithm 7.7 is the detailed vectorized
algorithm corresponding to Algorithm 7.2. Timing results for Algorithm 7.7 are given
in Table 7.3. It may be noted that compared to the best timings for variable base scalar
multiplication given in Table 7.2, there is a speed improvement of about 12% to 15% for
both X25519 and X448.

Reasons for improvement. The reported performance improvement can be attributed
to three factors, namely, vectorization strategy, algorithm design and code optimization.
For the improvement in vectorization strategy, we refer to Table 7.1 and the detailed
discussion based on this table in Section 7.3. For certain operations, careful algorithm
design has been helpful. Examples are the proper choices of the numbers of limbs to
represent the elements of the field and the issue of availing free lanes to speed up squar-
ing for 2448 − 2224 − 1. Finally, we have developed hand-written assembly. Due to this
we had complete control over the available 4-way SIMD registers and was able to appro-
priately schedule the instructions so as to minimize the load/store instructions as much
as possible.
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7.6 Conclusion

In this chapter we have described new and efficient vectorization strategies for imple-
menting the Montgomery ladder for both variable base and fixed base scalar multipli-
cations. Constant time assembly implementations have been made for Curve25519 and
Curve448. For fixed base scalar multiplication, the new algorithm is shown to be clearly
faster than previous work. Timing results on the Haswell and the Skylake processors
show that for variable base scalar multiplication, the new vectorization strategy provides
speed improvements over all previous implementations of the Montgomery ladder.



PART II

NEW CURVES AND SECURITY/EFFICIENCY TRADE-OFF





C H A P T E R 8

Security and Efficiency Trade-off of ECDH
over Prime Order Fields

8.1 Introduction

One of the most extensively used modern cryptographic primitives is the Diffie-Hellman
(DH) [DH76] key agreement protocol. Koblitz [Kob87] and Miller [Mil85] have inde-
pendently shown that the DH protocol can be instantiated using cyclic groups aris-
ing from the theory of elliptic curves. Since their introduction, a large body of litera-
ture has developed around the theory and application of elliptic curves in cryptogra-
phy. Presently, elliptic curve cryptography is widely used in practical systems. Sev-
eral standards and proposals have been put forward by a number of influential organi-
zations [Braa, Cur99, Res10, NUM]. Among the various models of elliptic curves, the
Montgomery form [Mon87] provides the most efficient model for implementing DH key
agreement over prime order fields. The famous and widely deployed curve known as
Curve25519 [Ber06b] is a Montgomery form curve.

The Transport Layer Security (TLS) Protocol, Version 1.3 [TP18] has been proposed
by the Internet Engineering Task Force. This includes RFC 7748 [LH16] which specifies
two elliptic curves, namely Curve25519 and Curve448, for DH key agreement. As part of
the Transport Layer Security (TLS) protocol, Version 1.3 [TP18], RFC 7748 [LH16] spec-
ifies Curve25519 provides security at the 128-bit security level and Curve448 provides
security at the 224-bit security level. The document specifies Montgomery form curves
and their birationally equivalent twisted Edwards form curves.

We use the notation for primes introduced in Chapter 6. For the different curves
we use the following notation. A Montgomery curve EM,A,1 will be denoted as M[[A]],
an Edwards curve EE,1,d will be denoted as E[[d]], and a twisted Edwards curve EE,−1,d

will be denoted as Ẽ[[d]]. If we wish to emphasize the underlying field Fp, we will write
M[[p, A]], E[[p, d]] and Ẽ[[p, d]] instead of M[[A]], E[[d]] and Ẽ[[d]] respectively. In terms of
this naming convention, the parameters of the new curves and those in RFC 7748 are
shown in Table 8.1.

We work at the 128-bit, 224-bit and 256-bit security levels. At 128-bit we work with
the primes p251-9, p255-19, at 224-bit security level we work with p444-17, p448-224-1
and at the 256-bit security level we work with the primes p506-45, p506-75, p521-1.

138
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8.2 Curves Proposed in RFC 7748

Over p255-19: The birationally equivalent pair (M[[486662]], Ẽ[[121665/121666]]) has been
proposed. The curve M[[486662]] is the famous Curve25519 and was introduced
in [Ber06b]. The curve Ẽ[[121665/121666]] is the famous Ed25519 curve and was
introduced in [BDL+12].

Over p448-224-1: The curves M[[156326]], E[[39082/39081]] and E[[39081]] have been pro-
posed. The curve M[[156326]] has been named Curve448 in [LH16]. The curve
E[[39081]] was proposed in [Ham15] where it was named Ed448-Goldilocks, and
in [LH16] it has been called Edwards448. The isogenies between M[[156326]] and
E[[39081]] and the birational equivalence between M[[156326]] and E[[39082/39081]]
have been identified in [LH16].

Curve25519 and Ed25519 are targeted at the 128-bit security level while Curve448 and
Edwards448 are targeted at the 224-bit security level.

8.3 Our Contributions

One of our contribution is to provide new and the presently most efficient 64-bit im-
plementations of Diffie-Hellman shared secret computations using Curve25519. These
implementations are targeted at Intel processors. Compared to the previous best im-
plementations [OLH+17], on the Skylake processor, the new implementations provide
about 17% speed-up compared to [OLH+17]; for the previous generation Haswell pro-
cessor, the improvement is nominal. The major speed improvement in Skylake makes
the new implementation attractive for practical applications.

The main contribution of the paper is to propose new curves at the 128-bit, 224-bit
and 256-bit security levels. Similar to Curve25519 and Curve448, we consider prime
order fields and pairs of birationally equivalent curves. In particular the following pairs
of curves are introduced.

Over p251-9: (M[[4698]], E[[1175/1174]]).

Over p444-17: (M[[4058]], E[[1015/1014]]).

Over p506-45: (M[[996558]], E[[249140/249139]]).

Over p510-75: (M[[952902]], E[[−238225/238226]]).

Over p521-1: (M[[1504058]], E[[376015/376014]]).

The prime p251-9 was considered in [BHKL13] in which the curve u2 + v2 = 1 −
1174u2v2 was introduced and named Curve1174. The Montgomery curve (4/1175)y2 =
x3 + (4/1175− 2)x2 + x with base point (4, ·) was considered as birationally equivalent
to Curve1174; the corresponding base point on Curve1174 is (·, 3/5). Using the isogenies
given in [CN15], it can be shown that M[[p251-9, 4698]] is 4-isogenous to Curve1174 which
was introduced in [BHKL13].

To the best of our knowledge, neither M[[p251-9, 4698]] nor E[[p251-9, 1175/1174]]
has been earlier considered in the literature. The prime p444-17 has been mentioned
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Security
Prime Mont (h, hT) (k, kT) Security

Mont
Ed

Ed

Level Base Pt Base Pt

128-bit
p251-9 M[[4698]] (4, 4) (`− 1, `T−1

2 ) 124.5 (3, ·) E[[ 1175
1174 ]] (·, 2)

p255-19 M[[486662]] (8, 4) ( `−1
6 , `T−1

2 ) 126 (9, ·) Ẽ[[ 121665
121666 ]] (·, 4/5)

224-bit
p444-17 M[[4058]] (4, 4) ( `−1

3 , `T − 1) 221 (3, ·) E[[ 1015
1014 ]] (·, 2)

p448-224-1 M[[156326]] (4, 4) ( `−1
2 , `T−1

4 ) 223 (5, ·) E[[ 39082
39081 ]] (·,−3/2)

256-bit

p506-45 M[[996558]] (4, 4) ( `−1
17 , `T − 1) 252 (3, ·) E[[ 249140

249139 ]] (·, 2)

p510-75 M[[952902]] (8, 4) ( `−1
17 , `T − 1) 253.5 (4, ·) Ẽ[[−238225

238226 ]] (·, 3/5)

p521-1 M[[1504058]] (4, 4) ( `−1
2 , `T−1

4 ) 259.5 (8, ·) E[[ 376015
376014 ]] (·, 9/7)

Table 8.1: Parameters of the curves. In the table, M[[486662]] is Curve25519 and
M[[156326]] is Curve448. See Section 2.2.1 for the definition of the parameters.

in a CFRG mailing list [ma], but neither the curve M[[p444-17, 4058]] nor E[[p444-17,
1015/1014]] have been considered in the literature.

Table 8.1 compares the parameters of the newly proposed curves with those in RFC-
7748. Note that the curve coefficients of the new curves are quite small. Also, the
fixed base points for the new Montgomery and Edwards curve are also very small.
In fact, the fixed base point over three new Edwards curves is (·, 2). As we explain
later, this has an effect on the speed of fixed base point scalar multiplication over such
curves. From Table 8.1, we observe that M[[p506-45, 996558]], M[[p510-75, 952902]] and
M[[p521-1, 1504058]] provide 29, 30.5 and 36.5 bits more security compared to M[[p-448-
224-1, 156326]] (i.e., Curve448).

Curves at 128-bit and 224-bit security levels. For 64-bit implementations of the Mont-
gomery ladder, scalar multiplication over the new curves at 128-bit and 224-bit security
levels is faster than that over Curve25519 and Curve448. The improvement arises due
to working with a slightly smaller prime. Suppose m = dlog2 pe and elements of Fp are
represented using κ 64-bit words. We show that if 64κ − m ≥ 3, then it is possible to
omit performing the reduction step on the outputs of all the addition/subtraction opera-
tions in the ladder step. This is the major reason for obtaining faster ladder computation
modulo p251-9 compared to p255-19 and for obtaining faster ladder computation mod-
ulo p444-17 compared to p448-224-1. Using 64-bit implementations, for both the 128-bit
and 224-bit security levels, compared to Curve25519 and Curve448, the new curves pro-
vide about 10% speed-up on the Haswell and the Skylake processors.

Recently, a 4-way vectorization strategy of the Montgomery ladder has been pro-
posed in [HEY20]. We have provided an improved 4-way vectorized algorithm of the
Montgomery ladder in Chapter 7. We have provided several vectorized implementa-
tions for the new curves. At the 128-bit level, M[[4698]] provides about 4% speed-up over
Curve25519. The situation for the 224-bit level is different. For 4-way vectorized imple-
mentation using 256-bit registers, the representation of field elements has 16 limbs. This
makes Karatsuba multiplication more efficient than schoolbook multiplication. Since
p448-224-1 is particularly efficient for Karatsuba multiplication, the vectorized imple-
mentation of Curve448 turns out to be faster than that of M[[4058]]. We note that future
availability of wider vector operations would reduce the number of limbs and would
possibly lead to schoolbook becoming faster than Karatsuba and consequently, M[[4058]]
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being faster than Curve448. So overall, the new curves provide efficient alternatives to
Curve25519 and Curve448.

Motivation for the new curves at 128-bit and 224-bit security levels. The adoption
of Curve-25519 and Curve448 as part of TLS version 1.3 will lead to widespread imple-
mentation and deployment of these curves. Nevertheless, the scientific spirit of looking
for alternative curves endures. It is in this spirit that the present work has been under-
taken. The new curves that have been introduced here provide an engineering trade-off
of improved speed at the cost of about two bits of security. This leads to an expansion of
the portfolio of secure curves that may be used in practice. In our opinion, the question
of whether the improved speed is worth the two bits loss in security is best left to the
judgment and discretion of the users and standardization bodies. Standard are not rigid
documents and can expand over time. One such example is the addition of Ed25519 and
Ed448 to the signature standards of NIST of USA1. Further, international standardiza-
tion bodies (such as IEEE or ISO) other than the IETF as well as standardization bodies
of various nations may consider all available options when determining their respective
standards. We are hopeful that future work by researchers will further highlight the
attractiveness of the new curves which may lead standardization bodies to expand ex-
isting standards to include these curves, or consider these curves for inclusion in future
standards.

Curves at 256-bit security level. The prime p521-1 has been considered earlier in the
work [ABGR13] which introduced the curve E[[p521-1,−376014]] (and named it E-521)
as part of a suite of general purpose high security elliptic curves. This prime provides
a few bits more security than our target 256-bit security level. So, we considered some
pseudo-Mersenne primes which are less than 2512. For efficiency reasons, we wished
to have δ small. Due to this reason, we chose not to work with the prime 2511 − 187
suggested in [ABGR13]. We found two other pseudo-Mersenne primes less than 2512

which may be considered for 256-bit security. These are p506-45 and p510-75. Using
the isogenies given in [CN15], it can be shown that E-521 is 4-isogenous to M[[1504058]]
shown in Table 8.1. To the best of our knowledge, neither of the curves M[[1504058]] or
E[[376015/376014]] appear earlier in the literature. Also, to the best of our knowledge,
the primes p506-45 and p510-75 have not been considered earlier in the literature and so
the question of proposing curves over the corresponding fields do not arise.

The curve E[[p506-45, 249140/249139]] which is birationally equivalent to the curve
M[[p506-45, 996558]] can be used for the key generation phase. The small base point on
the curve E[[p506-45, 249140/249139]] is helpful for fixed base scalar multiplication. Also,
the curve E[[p506-45, 249140/249139]] can be used to implement a signature scheme fol-
lowing the approach used for EdDSA [BDL+12]. Similarly, if M[[p510-75, 952902]] is used
for shared secret computation of the DH protocol, then Ẽ[[p510-75, −238225/238226]]
which is birationally equivalent to M[[p510-75, 952902]] can be used for key generation
and also for instantiation of a signature scheme following [BDL+12].

We have also made sequential and vectorized implementations of the ladder for all
the newly proposed Montgomery curves at the 256-bit security level. If security around

1https://csrc.nist.gov/CSRC/media/Presentations/NIST-Status-Update-on-Elliptic-Curves-and-Post-
Qua/images-media/moody-dustin-threshold-crypto-workshop-March-2019.pdf.
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this level is desired, the curves M[[p506-45, 996558]], M[[p510-75, 952902]] or M[[p521-1,
1504058]] provide us with an idea of the trade-off between speed and security in com-
parison to the standard curve at the 224-bit security level, Curve448. A proper study of
this idea have not appeared earlier in literature. We have made the source code of all our
implementations publicly available at the links

https://github.com/kn-cs/nice-curves,
https://github.com/kn-cs/mont256-dh,
https://github.com/kn-cs/mont256-vec.

8.3.1 Related Work

In this work, we consider elliptic curves over large prime order fields. We note that
elliptic curves over composite order fields have been proposed in the literature [CL15,
HKM09]. Cryptography over hyper-elliptic curves was proposed by Koblitz [HKM09]
and there have been concrete proposals for cryptography in genus 2 [BCLS14, BCHL16,
GS12]. For the same security level, computations over these proposals are faster than
over genus one prime order field curves. On the other hand, the security perception for
composite order fields and genus two curves is different from that of elliptic curves over
prime order fields. It is perhaps due to this perception issue that elliptic curves over
prime order fields remain to be of primary interest.

Variable base scalar multiplication over Kummer lines associated with Legendre form
elliptic curves have been proposed in the literature [GL09]. These have very efficient
vectorized implementations [KS20]. So, if applications are targeted primarily for vector
implementations, then the curves proposed in [KS20] will be the primary choice. On the
other hand, for non-vectorized implementations, Montgomery curves will be faster.

8.4 Montgomery and (Twisted) Edwards Form Elliptic Curves

Let p be a prime and Fp be the finite field of p elements. Following TLS, Version 1.3,
we consider elliptic curves over Fp, where p is a large prime. Montgomery curve EM,A,B
and twisted Edwards curve EE,a,d have already been defined. In our applications, we will
have B = 1 and a to be either 1 or −1. If a = 1, then the corresponding curve is simply
called an Edwards form curve (instead of twisted Edwards form curve). If a is a square
and d is not a square in Fp, then the addition formula in EE,a,d is complete [BBJ+08]. In
this case, EE,a,d is called a complete twisted Edwards curve. Further, if a = −1, then
particularly efficient addition formulas are known [HWCD08].

If p ≡ 1 mod 4,−1 is a square modulo p. In this case, if d is a non-square, the addition
formula over EE,−1,d is both complete and the fastest. On the other hand, if p ≡ 3 mod 4,
−1 is a non-square modulo p and so the addition formula over EE,−1,d is not guaranteed
to be complete. In this case, one considers the Edwards curve EE,1,d with d a non-square
so that the addition formula is complete. It is not, however, the fastest. If the base point
on EE,1,d is small, then the difference in the number of operations between the addition
formulas on EE,−1,d and EE,1,d is small. More concretely, if the base point on EE,1,d is (·, 2),
then this difference is just two left shifts.

For p ≡ 3 mod 4, addition formula over EE,−1,d is not guaranteed to be complete
making constant time implementation of scalar multiplication problematic. On the other

https://github.com/kn-cs/nice-curves
https://github.com/kn-cs/mont256-dh
https://github.com/kn-cs/mont256-vec
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hand, for the verification phase of a signature scheme based on the EdDSA template
[BDL+12], constant time implementation is not an issue. For this application, one may
move from EE,1,d to EE,−1,d′ , for some d′ (see below) using a birational equivalence and
perform the main computation of signature verification over EE,−1,d′ .

We refer to [Mon87, BL17, CS18] for background theory and further details about
Montgomery form curves. For (twisted) Edwards curves, we refer to [Edw07, BL07a,
BBJ+08].

In the following discussion, a full field multiplication (resp. squaring) in Fp will
be denoted as [M] (resp. [S]); if one of the multiplicands is a constant, the resulting
multiplication will be denoted as [C].

8.4.1 Addition on Complete (Twisted) Edwards Curves

Following [HWCD08], the extended affine coordinate system is (u, v, t) with t = uv. The
projective version of this coordinate system is (U, V, T, W) where u = U/W, v = V/W
and t = T/W. Suppose, it is required to add (U1 : V1 : T1 : W1) and (U2 : V2 : T2 : W2) to
obtain (U3 : V3 : T3 : W3). The formulas for U3, V3, T3 and W3 are as follows [HWCD08].

U3 = (U1V2 + V1U2)(W1W2 − dT1T2)
V3 = (V1V2 − aU1U2)(W1W2 + dT1T2)
T3 = (U1V2 + V1U2)(V1V2 − aU1U2)

W3 = (W1W2 + dT1T2)(W1W2 − dT1T2).

 (8.1)

1. Computing V1V2 and U1U2 and then computing U1V2 + V1U2 as (U1 + V1)(U2 +
V2)− (U1U2 + V1V2) leads to an algorithm for computing U3, V3, T3 and W3 using
9[M]+2[C] operations, where the multiplications by the two constants are by a and
d. If a = 1, then the number of operations is 9[M]+1[C].

2. If a = −1, then by first computing α = (V1 +U1)(V2 +U2), β = (V1−U1)(V2−U2)
and then computing 2(V1V2 + U1U2) = α + β and 2(V1U2 + U1V2) = α − β, the
number of operations can be brought down to 8[M]+1[C] [HWCD08], where 1[C]
corresponds to a multiplication by d. The relevant formula becomes the following.

4U3 = 2(U1V2 + V1U2)(2W1W2 − 2dT1T2) = (α− β)(2W1W2 − 2dT1T2)
4V3 = 2(V1V2 + U1U2)(2W1W2 + 2dT1T2) = (α + β)(2W1W2 + 2dT1T2)
4T3 = 2(U1V2 + V1U2)2(V1V2 + U1U2) = (α− β)(α + β)

4W3 = (2W1W2 + 2dT1T2)(2W1W2 − 2dT1T2).

(8.2)

If W1 = 1, the number of operations required is 7[M]+1[C] [HWCD08].

3. For a = −1, suppose (U1 : V1 : T1 : W1) is a fixed base point with W1 = 1.
By pre-computing and storing (V1 −U1, V1 + U1, 2dT1) the number of operations
can be brought down to 7[M] [BDL+12]. The multiplication by d becomes part of
the pre-computed quantity 2dT1. In this formula, since the multiplication by d is
part of the pre-computed quantity 2dT1, the efficiency of the computation is not
affected by whether d is small or large. Also, the efficiency of the computation is
not affected by whether V1 (or U1) is small or large.

Consider (8.1) for a = 1 and suppose (U1 : V1 : T1 : W1) is a fixed base point where
W1 = 1. Further suppose that V1 is small and U1 + V1 and dT1 are pre-computed and
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stored as part of (U1, V1, U1 + V1, dT1). In (8.1), by directly computing U1V2, V1U2, U1U2
and V1V2, (dT1)T2 along with the other four multiplications, the formulas in (8.1) can be
computed using 7[M]+2[C], where 2[C] counts the multiplications V1U2 and V1V2. The
efficiency of the computation following this strategy is not affected by whether d is small
or large. For the curves that we introduce, V1 is equal to 2 as can be seen from Table 8.1.
So, for fixed base multiplication, the difference in the cost between a = −1 and a = 1 is
essentially two multiplications by very small constants.

For dedicated (not unified) addition in Ẽ[[p, d]], it has been shown in [HWCD08] that
8[M] operations are sufficient without the assumption that (U1 : V1 : T1 : W1) is a
fixed base point. The corresponding formulas do not involve d. Further, Section 4.3
of [HWCD08] shows how to perform efficient scalar multiplication using fast formulas
for dedicated addition and dedicated doubling that do not involve d. The resulting scalar
multiplication is not necessarily constant time and can be used only when the scalars are
not secret.

Summary:

Role of d: For the fastest formulas, the size of d does not play a role.

• For fixed base point scalar multiplication, the fastest complete addition for-
mulas over both E[[d]] and Ẽ[[d]] do not depend on the size of d.

• For scalar multiplication with non-secret scalars, the fastest formulas do not
involve d.

Size of fixed base point:

• For Ẽ[[p, d]], the fastest formula for complete and unified addition does not
depend on the size of any of the components of the fixed base point. The
number of operations required is 7[M].

• For E[[p, d]], the fastest formula for complete and unified addition is achieved
when V1 is small. The number of operations required is 7[M]+2[C], where
2[C] counts two multiplications by very small constants. In particular, for
both E[[p251-9, 1175

1174 ]] and E[[p444-17, 1015
1014 ]], (·, 2) is a base point. So, the mul-

tiplication by constant is the operation of multiplying an element of Fp by
2.

8.4.2 Birational Equivalences of Montgomery and Edwards Curves

RFC7748 [LH16] of TLS, Version 1.3 specifies both Montgomery and Edwards form curves
for a given security level. In the present state of knowledge, the shared secret computa-
tion of the DH key agreement is performed best on a Montgomery form curve. On the
other hand, the key generation phase as well as the computations required for an elliptic
curve signature scheme based on the template in [BDL+12] are performed best on an
Edwards form curve.

Edwards and Montgomery curves can be connected by either birational equivalences
or by isogenies. For example, for the 128-bit security level, Curve25519 and Ed25519 are
birationally equivalent. Similarly, at the 224-bit security level, Curve448 (i.e., M[[p448-



8. Security and Efficiency Trade-off of ECDH over Prime Order Fields 145

224-1, 156326]]) and E[[p448-224-1, 39082/39081]] are birationally equivalent. Addition-
ally, Curve448 is 4-isogenous to E[[p448-224-1,−39081]] [LH16]. The curve E[[p448-224-1,
−39081]] was proposed in [Ham15] where it was named Ed448-Goldilocks and it has
been called Edwards448 in [LH16].

We provide below some explicit birational equivalences between Montgomery and
Edwards form curves. These can be obtained by composing the elementary birational
equivalences provided in [BL07a, BBJ+08]. The verification of these birational equiva-
lences, on the other hand, can be done by direct substitution.

Case p ≡ 3 mod 4. Let EM,A,B : By2 = x3 + Ax2 + x be a Montgomery curve and
EE,1,d : u2 + v2 = 1 + du2v2 be an Edwards curve over Fp. Note that −1 is not a square
in Fp.

1. If (A + 2)/B is a square in Fp, then the map

(x, y) 7→ (u, v) = (δx/y, (x− 1)/(x + 1)), (8.3)

where δ2 = (A + 2)/B, is a birational equivalence from EM,A,B to EE,1,d with excep-
tional points y = 0 and x = −1. Conversely, the map

(u, v) 7→ (x, y) = ((1 + v)/(1− v), δ(1 + v)/(u(1− v))), (8.4)

is a birational equivalence from EE,1,d to EM,A,B with exceptional points u = 0 and
v = 1. The relation between A and d is (A + 2)/4 = 1/(1− d).

2. If (A− 2)/B is a square in Fp, then the map

(x, y) 7→ (u, v) = (δx/y, (x + 1)/(x− 1)), (8.5)

where δ2 = (A− 2)/B, is a birational equivalence from EM,A,B to EE,1,d with excep-
tional points y = 0 and x = 1. Conversely, the map

(u, v) 7→ (x, y) = ((v + 1)/(v− 1), δ(v + 1)/(u(v− 1))), (8.6)

is a birational equivalence from EE,1,d to EM,A,B with exceptional points u = 0 and
v = 1. The relation between A and d is (A− 2)/4 = 1/(d− 1).

Suppose that d is not a square so that the addition formula over EE,1,d is complete. Since
both d and −1 are not squares, −d is a square. So, the map

(u, v) 7→ (û, v̂) = (γu, 1/v), (8.7)

where −γ2 = d, is a birational equivalence with exceptional points v = 0 from the
Edwards curve EE,1,d : u2 + v2 = 1 + du2v2 to the twisted Edwards curve EE,−1,−1/d :
−û2 + v̂2 = 1 + (−1/d)û2v̂2.

Case p ≡ 1 mod 4. Let EM,A,B : y2 = x3 + Ax2 + x be a Montgomery curve and EE,−1,d :
−u2 + v2 = 1 + du2v2 be an Edwards curve over Fp. Note that −1 is a square in Fp.
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1. If (A + 2)/B is a square in Fp, then the map

(x, y) 7→ (u, v) = (δx/y, (x− 1)/(x + 1)), (8.8)

where −δ2 = (A + 2)/B, is a birational equivalence from EM,A,B to EE,−1,d with
exceptional points y = 0 and x = −1. Conversely, the map

(u, v) 7→ (x, y) = ((1 + v)/(1− v), δ(1 + v)/(u(1− v))), (8.9)

is a birational equivalence from EE,−1,d to EM,A,B with exceptional points u = 0 and
v = 1. The relation between A and d is (A + 2)/4 = 1/(1 + d).

2. If (A− 2)/B is a square in Fp, then the map

(x, y) 7→ (u, v) = (δx/y, (x + 1)/(x− 1)), (8.10)

where −δ2 = (A − 2)/B, is a birational equivalence from EM,A,B to EE,−1,d with
exceptional points y = 0 and x = 1. Conversely, the map

(u, v) 7→ (x, y) = ((v + 1)/(v− 1), δ(v + 1)/(u(v− 1))), (8.11)

is a birational equivalence from EE,−1,d to EM,A,B with exceptional points u = 0 and
v = 1. The relation between A and d is (A− 2)/4 = −1/(d + 1).

The above birational equivalences can be obtained using the elementary birational
equivalences in [BL07a, BBJ+08]. On the other hand, verification of these birational
equivalences can be done by direct substitution.

8.5 Concrete Curves

The parameters of the new curves are given below.

8.5.1 Curves over F2251−9

Let p = 2251 − 9 ≡ 3 mod 4. The minimum positive value of A for which the curve
M[[p251-9, A]] attains the optimal value of (h, hT) is A = 4698. We have that A− 2 is a
square in Fp. Using the birational equivalences given by (8.5) and (8.6), we obtain the
pair (M[[4698]], E[[1175/1174]]) of birationally equivalent curves. The quantity 1175/1174
is a non-square modulo p251-9 and so the addition formula over EE,1,1175/1174 is complete.
The parameters for M[[p251-9, 4698]] are given in Figure 8.1.

The point (·, 2) is a point of order ` on EE,1,1175/1174; the corresponding point on
EM,4698,1 is (3, ·).

The set of scalars for EM,4698,1 is set to be 4(2248 + {0, 1, . . . , 2248− 1}). Given a 32-byte
scalar a, the clamping function clamp(a) is defined as follows (assuming that the first byte
is the least significant byte of a): clear bits 0 and 1 of the first byte; set bit number 2 of the
last byte and clear bits numbered 3 to 7 of the last byte.



8. Security and Efficiency Trade-off of ECDH over Prime Order Fields 147

n = 3618502788666131106986593281521497120369356141117981896093957\
` = 0470945719024049046256971665327767466483203803742800923390352\

79495474023489261773642975601,
log2 ` = 249,

h = 4,
k = `− 1,

nT = 3618502788666131106986593281521497120460017900484553356372141\
`T = 9533999987000769046256971665327767466483203803742801150044751\

21138339093035488349999675019,
log2 `T = 249,

hT = 4,
kT = (`T − 1)/2,
D = −124191225018039974503432777870156724737999714622904784214776\

46400945935050060,
dlog2(−D)e = 253.

Figure 8.1: Parameters for the curve M[[p251-9, 4698]]

8.5.2 Curves over F2444−17

Let p = 2444 − 17 ≡ 3 mod 4. The minimum positive value of A for which the curve
M[[p444-17, A]] attains the optimal value of (h, hT) is A = 4058. We have that A − 2 is
a square in Fp. Using the birational equivalences given by (8.5) and (8.6), we obtain the
pair (M[[4058]], E[[1015/1014]]) of birationally equivalent curves. The quantity 1015/1014
is a non-square modulo p444-17 and so the addition formula over EE,1,1015/1014 is com-
plete. The parameters for M[[p444-17, 4058]] are given in Figure 8.2.

The point (·, 2) is a point of order ` for EE,1,1015/1014; the corresponding point on
EM,4058,1 is (3, ·).

The set of scalars is set to be 4(2441 + {0, 1, . . . , 2441 − 1}). Given a 56-byte scalar a,
the clamping function clamp(a) is defined as follows (assuming that the first byte is the
least significant byte of a): clear bits 0 and 1 of the first byte; set bit number 3 of the last
byte and clear bits numbered 4 to 7 of the last byte.

Remark 8.1. Using the isogenies given in [CN15], it can be shown that M[[p444-17, 4058]] is
4-isogenous to E[[p444-17,−1014]]. Also, it has been mentioned earlier that M[[p251-9, 4698]] is
4-isogenous to Curve1174. Connecting Montgomery and Edwards using these isogenies can be
a problem, since a small base point on one of these curves does not translate to a small base point
on the other.
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n = 4542742026847543065933273799300028339710258504295737876759313\
7448788478822109994887784723325457774857125204145126361050201\
810186649452,

` = 1135685506711885766483318449825007084927564626073934469189828\
4362197119705527498721946180831364443714281301036281590262550\
452546662363,

log2 ` = 442,
h = 4,
k = (`− 1)/3,

nT = 4542742026847543065933273799300028339710258504295737876759313\
7448791432192064745527989158013762670837970111055656911191490\
015016927348,

`T = 1135685506711885766483318449825007084927564626073934469189828\
4362197858048016186381997289503440667709492527763914227797872\
503754231837,

log2 `T = 442,
hT = 4,
kT = (`T − 1),
D = −179529082551495772995169173795355205464077533317179178742876\

8650737402994958967759616343419869098585308883585466645039376\
73912260606892,

dlog2(−D)e = 446.

Figure 8.2: Parameters for the curve M[[p444-17, 4058]]

8.5.3 Curves over F2506−45

Let p = 2506 − 45. We ran a search program to find Montgomery curves M[[p, A]] satis-
fying the security criteria given in Section 2.2.1. The minimum positive value of A for
which (h, hT) = (4, 4) and the other parameters mentioned in Section 2.2.1 are large is
A = 996558. This gives the curve M[[p506-45, 996558]]. The curve E[[p506-45, 249140/
249139]] is birationally equivalent to M[[p506-45, 996558]] using the birational equiva-
lences given by (8.5) and (8.6). The quantity 249140/249139 is a non-square modulo
p506-45 and so the addition formula over E[[p506− 45, 249140/249139]] is complete. The
parameters for M[[p506-45, 996558]] are given in Figure 8.3.

The point (3, ·) is a point of order ` on the Montgomery curve M[[p506-45, 996558]];
the corresponding point on the Edwards curve E[[p506-45, 249140/249139]] is (·, 2). The
set of scalars is defined to be 4(2503 + {0, 1, . . . , 2503 − 1}). Given a 64-byte scalar a, as-
suming the least significant byte ordering, the clamping function clamp(a) is defined as
follows: clear bits 0 and 1 of the first byte; set bit number 1 of the last byte and clear bits
numbered 2 to 7 of the last byte.
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n = 2094969989053530796808441405969663457418650909467561465269306\
4755815256296991875915250634273539623584422884898906005755971\
9826245562055728669755385685788,

` = 5237424972633826992021103514924158643546627273668903663173266\
1889538140742479689788126585683849058961057212247265014389929\
956561390513932167438846421447,

log2 ` = 504,
h = 4,
k = (`− 1)/17,

nT = 2094969989053530796808441405969663457418650909467561465269306\
4755815256296987958387255222908231949627108464657926763152945\
9982592311274582156296145754252,

`T = 5237424972633826992021103514924158643546627273668903663173266\
1889538140742469895968138057270579874067771161644816907882364\
995648077818645539074036438563,

log2 `T = 504,
hT = 4,
kT = (`T − 1),
D = −4543123557506175626449202213951075823120804418252321163949549\

47347794195928828008585501771008503667515913450626856090280190\
174101869082725988805571050252,

dlog2(−D)e = 508.

Figure 8.3: Parameters for the curve M[[p506-45, 996558]]

Remark 8.2. Let α = (A + 2)/4 = 249140. The curves M[[p506-45, 4α− 2]] and E[[p506-45,
1− α]] can be shown to be 4-isogenous using the isogenies given in [CN15]. Further, using the
fact that −α is a square in Fp, the curves M[[p506-45, 2 − 4/α]] and E[[p506-45, 1 − α]] are
birationally equivalent using the birational equivalences given by (8.5) and (8.6).

8.5.4 Curves over F2510−75

Let p = 2510 − 75. We ran a search program to find Montgomery curves M[[p, A]] sat-
isfying the security criteria given in Section 2.2.1. The minimum positive value of A
for which an optimal value of (h, hT) is obtained is A = 793638. In this case, neither
(A + 2) nor (A − 2) are squares in Fp. So, the birational equivalences in Section 8.4.2
for connecting Montgomery and Edwards curves cannot be applied. One may consider
a quadratic twist of EM,A,1. Since 2 is not a square, EM,A,2 is a quadratic twist of EM,A,1.
Then EM,A,2 can be connected to EE,−1,d using either of the birational equivalences given
by (8.8), (8.9) or, (8.10), (8.11). The form of d in these two cases are (A − 2)/(A + 2)
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n = 3351951982485649274893506249551461531869841455148098344430890\
3609304410075184066286961346517802595011914050510795685878995\
33308565663507699101693245950696,

` = 4189939978107061593616882811939326914837301818935122930538612\
9511630512593980082858701683147253243764892563138494607348744\
1663570707938462387711655743837,

log2 ` = 507,
h = 8,
k = `− 1,

nT = 3351951982485649274893506249551461531869841455148098344430890\
3609304410075183668597048024973031922126536108780136744375273\
43632840309777274115131257091204,

`T = 8379879956214123187233765623878653829674603637870245861077225\
9023261025187959171492620062432579805316340271950341860938183\
5908210077444318528782814272801,

log2 `T = 508,
hT = 4,
kT = `T − 1,
D = −325310369051208815436075592806876377044871206601624247034270\

6968344597409733540363731905345344680202931632877146434661966\
320053215029078010832342319114820,

dlog2(−D)e = 510.

Figure 8.4: Parameters for the curve M[[p510-75, 952902]]

and (A + 2)/(A− 2) respectively. Since both (A + 2) and (A− 2) are not squares, both
(A− 2)/(A + 2) and (A + 2)/(A− 2) are squares. Consequently, the completeness of
the addition formula over EE,−1,d is not ensured. Since p ≡ 1 mod 4, it is desirable to
use birational equivalences to connect a Montgomery curve to a twisted Edwards form
curve having a complete addition formula. For A = 793638, this does not seem to be
possible using the birational equivalences in Section 8.4.2.

The next value of A for which an optimal value of (h, hT) is obtained is A = 952902.
In this case, we obtain the curves M[[p510-75, 952902]] and Ẽ[[p510-75,−238225/238226]]
which are birationally equivalent using the birational equivalences given by (8.8) and
(8.9). The quantity−238225/238226 is a non-square modulo p510-75 and so the addition
formula over Ẽ[[p510-75,−238225/238226]] is complete. The parameters for M[[p510-75,
952902]] are given in Figure 8.4.

The point (4, ·) is of order ` on the Montgomery curve M[[p510-75, 952902]]; the cor-
responding point on the twisted Edwards curve Ẽ[[p510-75,−238225/238226]] is (·, 3/5).
The set of scalars is set to be 8(2510 + {0, 1, . . . , 2510 − 1}). Given a 64-byte scalar a, as-
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suming the least significant byte ordering, the clamping function clamp(a) is defined as
follows: clear bits 0, 1 and 2 of the first byte; set bit number 5 of the last byte and clear
bits numbered 6 and 7 of the last byte.

Remark 8.3. Let α = (A+ 2)/4 = 238226, which is a square. The curves M[[p510-75, 4α− 2]]
and Ẽ[[p510-75, α − 1[[ can be shown to be 4-isogenous using the isogenies given in [CN15].
Further, M[[p510-75, 4/α − 2]] and Ẽ[[p510-75, α − 1]] are birationally equivalent using the
birational equivalences given by (8.8) and (8.9). M[[p510-75, 2− 4/α]] and Ẽ[p510-75, α− 1]
are birationally equivalent using the birational equivalences given by (8.10) and (8.11).

8.5.5 Curves over F2521−1

The curve E-521 [ABGR13] is same as the curve E[[p521-1,−376014]]. Using the isogenies
given in [CN15], the curve E[[p521-1,−376014]] is 4-isogenous to M[[p521-1, 1504058]].
This gave us M[[p521-1, 1504058]]. Since the birational equivalences in Section 8.4.2 are
simpler than the isogenies in [CN15], we obtained the Edwards form curve E[[p521-1,
376015/376014]] which is birationally equivalent to M[[p521-1, 1504058]]. The birational
equivalences are given by (8.5) and (8.6). The quantity 376015/376014 is a non-square
modulo p521-1 and so the addition formula over E[[p521-1, 376015/376014]] is complete.
The parameters for M[[p521-1, 1504058]] are given in Figure 8.5.

The point (8, ·) is a point of order ` on the Montgomery curve M[[p521-1, 1504058]];
the corresponding point on the Edwards curve E[[p521-1, 376015/376014]] is (·, 9/7).

The set of scalars for EM,1504058,1 is set to be 4(2518 + {0, 1, . . . , 2518 − 1}). Given a
65-byte scalar a, assuming the least significant byte ordering, the clamping function
clamp(a) is defined as follows: clear bits 0 and 1 of the first byte; set bit number 0 of
the last byte and clear bits numbered 1 to 7 of the last byte.

Remark 8.4. Let α = (A+ 2)/4 = 376015. The curves M[[p521-1, 2− 4/α]] and E[[p521-1, 1−
α]] are birationally equivalent using the birational equivalences given by (8.5) and (8.6).

8.6 Implementation Details

We consider Montgomery form curves. Let P be a generator of the prime order cyclic
subgroup of the elliptic curve over which cryptography is to be done. For all the curves
considered in this work, the point P can be chosen such that its x-coordinate is small.
Such a fixed point is called the base point of the corresponding curve. The base points
of the curves considered in this paper are given in Table 8.1. For a point Q ∈ 〈P〉 and a
non-negative integer a which is less than the order of P, the task of computing the a-fold
product aQ is called scalar multiplication. In the case, Q = P, we will call the operation
aP to be fixed base scalar multiplication, while when Q is an arbitrary element of 〈P〉, we
will call the operation aQ to be variable base scalar multiplication. In the Diffie-Hellman
protocol, variable base scalar multiplication is required for the shared secret phase, while
fixed base scalar multiplication is required for the key generation phase. Our primary
focus will be variable base scalar multiplication for the shared secret phase.

The Montgomery ladder [Mon87] is an x-coordinate only algorithm which can be
used to compute the x-coordinate of the result of a scalar multiplication. The ladder
computation is performed using projective coordinates and at the end, the result is con-
verted to affine coordinates. When the scalar a in the scalar multiplication aQ is a secret,
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n = 6864797660130609714981900799081393217269435300143305409394463\
4591855431833976547019035066066546313985467746362609365704172\
77131794810169271973685174680434092,

` = 1716199415032652428745475199770348304317358825035826352348615\
8647963857958494136754758766516636578496366936590652341426043\
19282948702542317993421293670108523,

log2 ` = 519,
h = 4,
k = `− 1,

nT = 6864797660130609714981900799081393217269435300143305409394463\
4591855431833976574023416126746682777114078179865220251456569\
66844204623118353174371407549680212,

`T = 1716199415032652428745475199770348304317358825035826352348615\
8647963857958494143505854031686670694278519544966305062864142\
41711051155779588293592851887420053,

log2 `T = 519,
hT = 4,
kT = `T − 1,
D = −256360991493463887298108185526313986556096537835271988322515\

6029512739349840149810402763183578852246400006757283129006946\
2218128904642355069855506040176465004,

dlog2(−D)e = 523.

Figure 8.5: Parameters for the curve M[[p521-1, 1504058]]

for secure computation, it is important that the computation be implemented in constant
time. There are known ways to implement the Montgomery ladder in constant time. A
detailed treatment of the Montgomery ladder has been addressed in [BL17, CS18].

Intel processors provide two kinds of 64-bit integer multiplication operations, namely
mul and mulx, where mul modifies both the carry and overflow flags, but mulx does
not modify either of these flags. The add and adc instructions perform addition and
addition-with-carry using the carry flag respectively and modifies both the carry and the
overflow flags; the instruction adcx performs addition-with-carry using the carry flag,
but does not modify the overflow flag, while the instruction adox performs addition-
with-carry using the overflow flag, but does not modify the carry flag. By maa we will
denote implementations which use only the mul, add and adc instructions and not any
of mulx, adcx or adox; mxaa will denote implementations which use mulx, add and adc

instructions; while maax will denote implementations which use mulx, adcx and adox.
The maa type implementations are supported across a wide range of Intel processors, the
mxaa type implementations are supported from the Haswell processor onwards, while
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the maax type instructions are supported on modern generation Intel processors such as
Skylake.

The previously best known maa, mxaa and maax type implementations of Curve25519
are available in [OLH+17]. For all three types, we provide new implementations of
Curve25519 which are faster than the implementations in [OLH+17]. For Curve448,
mxaa and maax type implementations are available from [OLH+17]. Improved imple-
mentations of similar type have been discussed in Chapter 5 We provide a new maa type
implementation for Curve448.

Intel processors from Haswell onwards provide AVX2 instructions which support
4-way SIMD on 256-bit registers. This allows vectorized implementations. For the
Montgomery ladder, 4-way vectorized algorithms have been described in [HEY20] and
Chapter 7. Vectorized implementations of the Montgomery ladder for Curve25519 and
Curve448 are known.

We provide maa, mxaa and maax type implementations for the new curves. We also
provide vectorized implementations of the new curves which following the method dis-
cussed in Chapter 7.

8.6.1 64-bit Implementations

All 64-bit implementations of the Montgomery ladder are done using Algorithm 3.6. The
implementations are done using both saturated limb and unsaturated limb representa-
tions. The details of the implementations are discussed below.

I Implementations Using Saturated Limb Representation

Let m = dlog2 pe. Elements of Fp can be represented as m-bit strings which will be
represented as κ 64-bit words. Conventionally, each such word is called a limb. We will
consider packed or saturated limb representation. In this representation, m is written as
m = 64(κ − 1) + ν with 1 ≤ ν ≤ η ≤ 64. In other words, the first (κ − 1) limbs are 64
bits long, while the size of the last limb is ν which lies between 1 and η.

Representation of field elements. The representations of the four primes of interest
to this work are given in Table 8.2. Note that for p251-9. p444-17, p506-45 and p521-1,
η− ν ≥ 3 (equivalently, the last limb has three or more “free” bits), for p510-75, η− ν = 2
(equivalently, the last limb has two “free” bits), for p255-19, η − ν = 1 (equivalently, the
last limb has one “free” bit) and for p448-224-1, η = ν (equivalently, the last limb has
no “free” bits). These have significant effect on the ladder computation as we will see
below.

Integer multiplication/squaring. The maax operations can be used to perform fast in-
teger multiplication using two independent carry chains. For multiplication/squaring
of 256-bit numbers, this technique has been explained in the Intel white papers [OGG13,
OGGF12]. A general algorithmic description for multiplication/squaring of 64κ-bit num-
bers, κ ≥ 4 is given in Chpater 4. Saturated limb multiplication/squaring algorithms
can also be implemented using a single carry chain with the help of the instructions
mulx/add/adc. Such sequential implementations are applicable for the Haswell proces-
sor where the instruction mulx is available but the instructions adcx/adox are not.
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Prime m κ η ν η − ν

p251-9 251 4 64 59 5

p255-19 255 4 64 63 1

p444-17 444 7 64 60 4

p448-224-1 448 7 64 64 0

p506-45 506 8 64 58 6

p510-75 510 8 64 62 2

p521-1 521 9 64 9 55

Table 8.2: Saturated limb representations of field elements.

Reduction. Integer multiplication/squaring of κ-limb quantities produces a 2κ-limb
output. The reduction step reduces this output modulo the prime p. A full reduction will
reduce the output to a value less than p. For the purposes of efficiency a full reduction
is not carried out in the intermediate steps of the computation. Instead a size reduction
is done. The size reduction can be of two types, namely, reduction to an (m + 1)-bit
integer and reduction to an m-bit integer (note than an m-bit integer is not necessarily
fully reduced since it is not necessarily less than p). The former is more efficient than
the later. Further, the reduced quantity should again be a κ-limb quantity. If ν < 64,
i.e., the last limb has at least one free bit, then reduction to an (m + 1)-bit integer is a
κ-limb quantity. On the other hand, if ν = 64, i.e., the last limb has no free bits, then
it is a necessity to reduce to an m-bit integer to obtain a κ-limb quantity. Among the
primes in Table 8.2, the prime 2448 − 2224 − 1 has no extra bits in the last limb and the
reduction for this prime has to be to an m-bit integer. For the other primes, it is possible
to reduce to an (m + 1)-bit integer without any overfull. The size reductions to (m + 1)
bits modulo 2251− 9 and 2444− 17 have been done following the algorithm reduceSLPMP
of Chapter 4.

Addition and subtraction. Other than multiplication/squarings, the ladder algorithm
also uses field addition and subtraction. In the ladder algorithm, the inputs to an ad-
dition/subtraction operation are outputs of multiplication/squaring operations and the
outputs of addition/subtraction operations are inputs to multiplication/squaring oper-
ations. In particular, the outputs of addition/subtraction are never inputs to another
addition/subtraction.

We have mentioned that the outputs of multiplication/squaring are size reduced to
either m bits or to (m + 1) bits. So, the inputs to addition/subtraction operations are
either m bits or (m + 1) bits. We require the outputs of the addition/subtraction oper-
ations to be κ-limb quantities so that the integer multiplication/squaring algorithm can
be applied to these outputs. So, it is not always required to size reduce the outputs of
addition/subtraction operations to m or (m + 1) bits. Depending upon the sizes of the
inputs to the addition/subtraction operation and the relative values of η and ν, various
cases may arise. We discuss the cases of addition and subtraction separately.

ADDITION. A field addition is typically an integer addition followed by a possible re-
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duction operation. The integer addition operation increases the size of the output by one
bit compared to the sizes of the inputs.

Case p448-224-1: In this case, there is no leeway in the last limb and the output of integer
addition must necessarily be reduced to obtain a κ-limb quantity.

Case p255-19: If the inputs to the addition are m-bit quantities, then it is possible to omit
applying the reduction step to the output of the integer addition operation. On the
other hand, if the inputs to the addition are (m + 1)-bit quantities, then the reduc-
tion step has to be applied to the output of the integer addition operation. The in-
puts to the addition operation are the outputs of previous multiplication/squaring
operations. So, whether the output of the integer addition needs to be reduced de-
pends on whether the outputs of the multiplication/squaring operation have been
reduced to m bits or to (m + 1) bits.

Cases p251-9, p444-17, p506-45, p510-75 and p521-1: In these cases, it is possible to reduce
the outputs of multiplication/squaring to (m + 1) bits and omit the reduction step
after the integer addition operation.

SUBTRACTION. A field subtraction is of the type a− b mod p. To avoid handling nega-
tive numbers, a suitable multiple of p is added to a so that the result is guaranteed to be
positive. Since the result will be reduced modulo p, the correctness of the result is not
affected by adding a multiple of p.

Cases p255-19, p448-224-1 and p510-75: The reduction operation must be performed on
the output of each subtraction operation to ensure that the result fits in κ limbs.

Cases p251-9, p444-17, p506-45 and p521-1: The operation a− b mod p is performed as
follows. Note that both a and b are (m + 1)-bit quantities. The operation 4p + a− b
is guaranteed to be an (m + 3)-bit non-negative integer. So, instead of performing
a− b mod p, the operation (4p + a)− b is computed. Since the result is at most an
(m + 3)-bit quantity, it fits within κ limbs. Consequently, no reduction operation is
performed on this result.

Remark 8.5. We have discussed the issue of avoiding reduction with respect to 64-bit arithmetic.
The general idea, on the other hand, holds for saturated limb representations using 32-bit (or,
lower) arithmetic. The implementation benefits of p251-9 over p255-19 and of p444-17 over
p448-224-1 also holds for 32-bit arithmetic.

Optimizations of the ladder step. Based on the description in Section 8.6, the following
strategy may be adopted for implementing the ladder step for the various primes.

Case p448-224-1: The outputs of all multiplication/squaring operations are to be size
reduced to m bits. Outputs of all addition/subtraction operations are to be size
reduced to m bits.

Case p510-75: The outputs of all multiplication/squaring/addition operations are to
be size reduced to m + 1 bits. Outputs of all subtraction operations are to be size
reduced to m bits.
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Case p255-19: The outputs of all multiplication/squaring operations are to be size re-
duced to (m + 1) bits. Outputs of all addition/subtraction operations are to be size
reduced to m or (m + 1) bits.

Cases p251-9, p444-17, p506-45 and p521-1: The outputs of all multiplication/squaring
operations are to be size reduced to (m+ 1) bits. Outputs of all addition/subtraction
operations are left unreduced.

The above strategy has direct consequences to the efficiencies of the ladder step for
the various primes. We summarize these below.

4-limb representations: For both F2251−9 and F2255−19, field elements have 4-limb represen-
tations. So, the integer multiplication/squaring operations take the same time in
both cases. Due to the ability to avoid reductions, the ladder step is significantly
faster modulo 2251 − 9 compared to 2255 − 19.

7-limb representations: For the fields F2444−17 and F2448−2224−1, field elements have 7-limb
representations. So, the integer multiplication/squaring operations take the same
time in both cases. Due to the ability to avoid reductions, the ladder step is signifi-
cantly faster modulo 2444 − 17 compared to 2448 − 2224 − 1.

8-limb representations: For both F2506−45 and F2510−75, field elements have 8-limb repre-
sentations. So, the integer multiplication/squaring operations take the same time
in both cases. Due to the ability to avoid reductions in the subtraction operation
for F2510−75, the ladder step is faster modulo 2506 − 45 compared to 2510 − 75.

I Implementations Using Unsaturated Limb Representation

Representation of field elements. 64-bit implementations of the Montgomery ladder
using unsaturated limb representation of field elements have been explored for the Mont-
gomery curves over F2251−9, F2444−17 and F2448−2224−1. The elements of F2251−9 are repre-
sented using 5 words, i.e., we consider values of κ as 5. The elements of F2444−17 and
F2448−2224−1 are represented using 8 words, and here the value of κ is 8. The details of the
representations are provided in Table 8.3. For the curves at 224-bit security level we have
observed that vectorized implementations perform much better than the 64-bit unsatu-
rated limb implementations. As a reason we have left out 64-bit implementations of the
ladder using unsaturated limb representation for the curves over F2506−45, F2510−75 and
F2521−1 at 256-bit security level.

Prime m κ η ν η − ν

p251-9 251 5 51 47 4

p444-17 444 8 56 52 4

p448-224-1 448 8 56 56 0

Table 8.3: Unsaturated limb representations of field elements.
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Field operations. We discuss below in brief the field operations for the primes pro-
vided in Table 8.3.

Integer multiplication/squaring: For the primes p251-9 and p444-17, integer multiplication
and squaring have been done using the algorithm discussed in Section 4.7 and
reduction after integer multiplication/squaring is done using Algorithm 4.8. For
the prime p448-224-1 we use the algorithms discussed in Section 5.5.

Addition/subtraction: Addition and subtraction are performed limb-wise ignoring the
carry and the results are kept unreduced.

Multiplication by a small constant: For the primes p251-9 and p444-17 multiplication by
a small constant is done using the method applied in the unsaturated limb imple-
mentation of Curve25519 in [BDL+12]. A similar method has been applied for the
prime p448-224-1.

8.6.2 Vectorized Implementation

4-way vectorized implementations of the Montgomery ladder are based on Algorithms 7.5
and 7.6. We have done vectorized implementations for all the new curves M[[4698]],
M[[4058]], M[[996558]], M[[952902]], M[[1504058]] and also for the standard curves Curve25519
and Curve448. The details of the field operations used within the ladder are as described
in Chapter 6.

8.6.3 Inversion in Fp

The final output of the ladder algorithm needs to compute a modular inverse. The com-
putation of the inverse is done through exponentiation, which needs squaring and mul-
tiplication in Fp. The relevant algorithms for field arithmetic from Chapter 4 have been
used for computing the inversions.

8.7 Implementations and Timings

For the four curves at 128-bit and 224-bit security levels saturated limb implementa-
tions of both maax-type and mxaa-type of the ladder have been done, whereas for the
three curves at 256-bit security level we have developed only maax-type implementa-
tions. The saturated limb implementations of maa-type have been developed only for
the two curves at 128-bit security level. The vectorized implementations have been done
using the AVX2 instructions.

The timings of different implementations for variable base scalar multiplication are
populated in Table 8.4. For comparison, we report the timings of the previously most
efficient (to the best of our knowledge) and publicly available sequential and vector-
ized implementations. For 64-bit implementations of Curve25519 and Curve448 we re-
fer to [OLH+17] and for vectorized implementations of Curve25519 we refer to [HEY20].
The timing results show that the maa-type implementations are uniformly slower than
the mxaa-type and the maax type implementations. Due to this, we report the timings of
the maa type implementations in seperately in Table 8.4. The performance analyses for
variable base scalar multiplication at different security levels are described below.
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Curve Haswell Skylake κ Strategy Reference Implementation Type

Curve25519

161045 148291 5 64-bit seq [BDL+12] maa, assembly

179124 147823 4 64-bit seq [BDL+12] maa, assembly

170381 137453 4 64-bit seq [OLH+17] maa, inline assembly

167170 128843 4 64-bit seq [Alg. 3.6] this work maa, assembly

143956 126940 4 64-bit seq [OLH+17] mxaa, inline assembly

143369 113481 4 64-bit seq [Alg. 3.6] this work mxaa, assembly

- 118231 4 64-bit seq [OLH+17] maax, inline assembly

- 98694 4 64-bit seq [Alg. 3.6] this work maax, assembly

140996 104519 9 4-way SIMD, [HEY20] [HEY20] AVX2, intrinsics

121539 99898 9 4-way SIMD [HEY20] Table 7.2 AVX2, assembly

126521 97590 10 4-way SIMD [HEY20] Table 7.2 AVX2, assembly

120108 99194 9 4-way SIMD [Alg. 7.6] Table 7.2 AVX2, assembly

123899 95437 10 4-way SIMD [Alg. 7.6] Table 7.2 AVX2, assembly

M[[4698]]

154455 132255 5 64-bit seq [Alg. 3.6] this work maa, assembly

143282 118019 4 64-bit seq [Alg. 3.6] this work maa, assembly

129732 102570 4 64-bit seq [Alg. 3.6] this work mxaa, assembly

- 87807 4 64-bit seq [Alg. 3.6] this work maax, assembly

114937 91203 9 4-way SIMD [Alg. 7.6] this work AVX2, assembly

Curve448

721044 558740 8 64-bit seq [Alg. 3.6] Table 5.3 maa, assembly

732013 587389 7 64-bit seq [OLH+17] mxaa, inline assembly

719217 461379 7 64-bit seq [Alg. 3.6] Table 5.1 mxaa, assembly

- 530984 7 64-bit seq [OLH+17] maax, inline assembly

- 434831 7 64-bit seq [Alg. 3.6] Table 5.1 maax, assembly

462277 373006 16 4-way SIMD [HEY20] Table 7.2 AVX2, assembly

441715 357095 16 4-way SIMD [Alg. 7.6] Table 7.2 AVX2, assembly

M[[4058]]

681257 597240 8 64-bit seq [Alg. 3.6] this work maa, assembly

644791 423042 7 64-bit seq [Alg. 3.6] this work mxaa, assembly

- 384905 7 64-bit seq [Alg. 3.6] this work maax, assembly

476866 401809 16 4-way SIMD [Alg. 7.6] this work AVX2, assembly

M[[996558]]
- 558957 8 64-bit seq [Alg. 3.6] this work maax, assembly

674354 574985 18 4-way SIMD [Alg. 7.6] this work AVX2, assembly

M[[952902]]
- 566088 8 64-bit seq [Alg. 3.6] this work maax, assembly

683419 580096 18 4-way SIMD [Alg. 7.6] this work AVX2, assembly

M[[1504058]]
- 689588 9 64-bit seq [Alg. 3.6] this work maax, assembly

651934 545670 18 4-way SIMD [Alg. 7.6] this work AVX2, assembly

Table 8.4: CPU-cycle counts for variable base scalar multiplication on Montgomery
curves at 128-bit, 224-bit and 256-bit security levels.
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I Performances at 128-bit Security Level

New implementations of Curve25519. Table 8.4 shows the timing results for the new
implementations of Curve25519 that have done in the context of the present work. The
new maax-type implementation is about 17% faster over the previous best implemen-
tation [OLH+17] on Skylake. On Haswell, the performance improvement of the new
mxaa-type implementation over the mxaa-type implementation of [OLH+17] is small. We
would like to mention two issues.

1. For reduction we have used the algorithm reduceSLPMP of Chapter 4, while the
algorithm used by [OLH+17] is the same as algorithm reduceSLPMPa of Chapter 4.
To assess the effect of the reduction algorithm, we made an assembly implementa-
tion (note that the code of [OLH+17] uses inline assembly) using reduceSLPMPa. It
turns out that using reduceSLPMP leads to a faster code.

2. The field operations in the implementations of [OLH+17] have been developed
using inline assembly and then integrated through a high level function in the
Montgomery ladder-step. In contrast, we have developed the entire Montgomery
ladder-step as a single hand-optimized assembly code, in which we have judi-
ciously used the available 64-bit registers to minimize the overall load/store op-
erations. The timings indicate that such a strategy to develop the assembly code
provides a substantial gain in efficiency on the Skylake processor, while on Haswell
the gain is nominal.

From Table 8.4, we note that the performance of the new maax implementation of Curve-
25519 lies between the performances of the 9-limb and 10-limb 4-way SIMD implemen-
tations.

Comparison to other related works. In Table 8.4 we have compared the performance
of the new 64-bit implementation of variable base ladder computation on Curve25519
to that of [OLH+17].An AVX2 based implementation of the ladder computation has been
reported in [FHD19]. This work predates the introduction of 4-way vectorization of
the Montgomery ladder reported in Chapter 6 and [HEY20], and so the use of AVX2

instructions in [FHD19] is sub-optimal. The presently best known AVX2 implementation
is available from our work given in Chapter 6.

A recent line of work has considered verified implementations of various crypto-
graphic functionalities [EPG+19, PPF+20]. While the verified 64-bit implementation of
the ladder for Curve25519 in [PPF+20] is reasonably fast, the timing does not appear to
be competitive with the timing reported in Table 8.4. The paper [PPF+20] reports a tim-
ing of 113614 cycles on the Kaby Lake processor. In comparison, on the earlier generation
Skylake processor our fastest 64-bit implementation requires 98649 cycles.

A different approach has considered the use of AVX2 instructions for four simulta-
neous ladder computations [CGT+21]. This approach is useful for applications which
require a number of ladder computations to be simultaneously performed. Since our fo-
cus is on a single scalar multiplication, it is not meaningful to compare our timings with
that of [CGT+21].
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Comparison between M[[4698]] and Curve25519. From Table 8.4, we see that M[[4698]]
is faster than Curve25519 for all the types of implementations, though the speed-up
percentages vary. For mxaa type implementations, the speed-ups on both Haswell and
Skylake are about 9.5%; for maax type implementations the speed-up (on Skylake) is
about 11%. The 64-bit maax type and mxaa type implementations of Curve25519 and
EM,4698,1 targeting the Skylake micro-architecture have been developed similarly using
hand-written assembly. We have tried our best to optimize both the implementations
fairly for a neat comparison of the performances of shared-secret computation between
the two curves. The cost of the 64-bit assembly stubs used for field multiplication, field
squaring and multiplication by a field constant operations are same over both the fields
F2251−9 and F2255−19. The major reason for the speed gain of the curve EM,4698,1 over
Curve25519 is actually obtained due to the linear field operations involved in the Mont-
gomery ladder which can be kept unreduced due to the sufficiently available free bits in
the last limb of a field element, while working over the field F2251−9. Unfortunately, we
do not have this advantage, while working over F2255−19. For the AVX2 type implementa-
tions the speed-ups on both Haswell and Skylake are about 4.3%.

I Performances at 224-bit Security Level

Comparison between M[[4058]] and Curve448. From Table 8.4, we observe that M[[4058]]
is faster than Curve448 for mxaa and maax implementations; for mxaa implementations,
the speed-ups are 10.3% and 8.3% respectively on Haswell and Skylake, while for maax,
the speed-up is 11.5 % (on Skylake). For AVX2 implementations, compared to Curve448,
M[[4058]] has slowdowns of 7.4% and 11% on Haswell and Skylake respectively.

The explanation for the above observations is as follows. The number of limbs for
both Curve448 and M[[4058]] are the same. For AVX2 implementations (using 256-bit
registers) the number of limbs is 16, whereas for mxaa and maax type implementations
the number of limbs is 7. As a result, for AVX2 type implementations the underlying
integer multiplication is faster using Karatsuba rather than schoolbook, while for the
other two implementations schoolbook is faster than Karatsuba. The prime p448-224-1
on which Curve448 is based has been chosen such that Karatsuba is particularly effi-
cient. So, whenever the underlying integer multiplication is faster using Karatsuba than
schoolbook, Curve448 will be faster than M[[4058]]. In a similar vein, due to the reasons
explained in Section 8.6, whenever the underlying multiplication is faster using school-
book than Karatsuba, M[[4058]] will be faster than Curve448. Future availability of wider
vector operations would lead to a reduction in the number of limbs. This may result
in schoolbook becoming faster than Karatsuba and consequently, M[[4058]] being faster
than Curve448.

Comparison between maax and mxaa type implementations. The mxaa type assembly
implementations of Curve25519 and Curve448 which are suited for the Haswell micro-
architecture have not demonstrated substantial improvements. It has to be noted that the
same implementations provide a better speed-gain in the Skylake micro-architecture. We
have found this behavior to be a little strange and have devoted a substantial amount
of time to find out a good reason behind this. But unfortunately, we could not find any.
It has to be noted that we have not developed the mxaa type implementations based
on the Skylake micro-architecture. We believe that writing 64-bit programs using hand-
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written assembly and inline assembly does not produce much difference in performance
when executed in the Haswell micro-architecture.

Remark 8.6. It is interesting to note that for both M[[4698]] and M[[4058]], the best timings
are obtained for the maax implementation rather than the AVX2 implementation. It is expected
that the support for AVX2 operations will improve in future processors which should lead to AVX2
implementations outperforming maax implementations on such processors.

Curve Haswell Skylake κ Strategy Reference Implementation Type

Curve25519

153754 119958 4 64-bit seq [Alg. 3.6] this work maa, assembly

132162 106725 4 64-bit seq [Alg. 3.6] this work mxaa, assembly

- 93247 4 64-bit seq [Alg. 3.6] this work maax, assembly

100127 86885 9 4-way SIMD [Alg. 7.7] this work AVX2, assembly

106190 84047 10 4-way SIMD [Alg. 7.7] this work AVX2, assembly

M[[4698]]

141965 121265 5 64-bit seq [Alg. 3.6] this work maa, assembly

133346 109989 4 64-bit seq [Alg. 3.6] this work maa, assembly

120599 96683 4 64-bit seq [Alg. 3.6] this work mxaa, assembly

- 82116 4 64-bit seq [Alg. 3.6] this work maax, assembly

96419 79770 16 4-way SIMD [Alg. 7.7] this work AVX2, assembly

Curve448

644288 504808 8 64-bit seq [Alg. 3.6] Table 5.3 maa, assembly

653035 427058 7 64-bit seq [Alg. 3.6] Table 5.2 mxaa, assembly

- 396583 7 64-bit seq [Alg. 3.6] Table 5.2 maax, assembly

381417 317778 16 4-way SIMD [Alg. 7.7] Table 7.3 AVX2, assembly

M[[4058]]

612225 540766 8 64-bit seq [Alg. 3.6] this work maa, assembly

573782 389371 7 64-bit seq [Alg. 3.6] this work mxaa, assembly

- 359597 7 64-bit seq [Alg. 3.6] this work maax, assembly

403697 335314 16 4-way SIMD [Alg. 7.7] this work AVX2, assembly

M[[996558]] 567250 481140 18 4-way SIMD [Alg. 7.7] this work AVX2, assembly

M[[952902]] 573751 485203 18 4-way SIMD [Alg. 7.7] this work AVX2, assembly

M[[1504058]] 556410 477765 18 4-way SIMD [Alg. 7.7] this work AVX2, assembly

Table 8.5: CPU-cycle counts for fixed base scalar multiplication on Montgomery curves
at 128-bit, 224-bit and 256-bit security levels.

IPerformances at 256-bit Security Level

Vectorized implementations of Montgomery curves at 256-bit security level. The tim-
ing results for the new implementations of variable base scalar multiplication of the
Montgomery curves at 256-bit security level are shown in Table 8.4. We achieve the
following speed-ups.

1. The vectorized implementation of M[[1504058]] is 21% faster in Skylake over the
64-bit maax-type sequential implementation of M[[1504058]].
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2. The vectorized implementation of M[[996558]] and M[[952902]] are about 3% slower
in Skylake over the 64-bit maax-type sequential implementation of the curves.

3. The vectorized implementations of the Montgomery curves at the 128-bit and 224-
bit security levels outperform the sequential implementations in Haswell. On the
basis of this we have left out exploring the sequential implementations of the Mont-
gomery curves at 256-bit security level targeting the Haswell architecture.

8.7.1 Fixed Base Scalar Multiplication

Key generation. We have also developed assembly code for fixed base scalar multipli-
cation using Montgomery ladder. This corresponds to the key generation phase of the
Diffie-Hellman protocol. The timings are reported in Table 8.5.

Remark 8.7. Sequential implementations of Algorithm 3.6 were not done to compute the fixed-
base scalar multiplication over the curves at 256-bit security level. It can be observed from the
timings reported in Table 8.5 that the vectorized implementations using Algorithm 7.7 outper-
form the sequential implementations using Algorithm 3.6 to compute the fixed-base scalar mul-
tiplications at 128-bit and 224-bit security levels.

8.7.2 Complete Diffie-Hellman Protocol

Each user chooses a secret key and computes the corresponding public key using the key
generation algorithm of the DH protocol. Two users agree upon a shared secret key by
following the shared secret computation phase of the DH protocol. In static DH protocol,
the same public key may be used with multiple shared secret computations. In such a
protocol, the key generation is a less frequent operation compared to the shared secret
computation. In ephemeral DH protocol, users choose new secret keys and compute
corresponding public keys for each execution of the shared secret computation. So, for
ephemeral DH protocol, each execution of the protocol between two parties require both
the key generation and the shared secret computation phases. As a result, the compu-
tation time for ephemeral DH protocol consists of the sum of the times required for key
generation and shared secret computation. Given a particular type of implementation
(i.e., maax, mxaa, or AVX2), time estimate for a complete DH computation can be obtained
by adding the figures in Table 8.4 with the corresponding figures in Table 8.5.

The timings for key generation phase that are provided in Table 8.5 are for fixed base
Montgomery ladder computation. Key generation, on the other hand, will be faster if
the scalar multiplication is done by moving to the corresponding birationally equivalent
Edwards curve, performing fixed base scalar multiplication on Edwards curve, and then
transferring the result back to the Montgomery curve. Since we have not implemented
scalar multiplication on Edwards curve, we are unable to report the timings for key
generation using this approach.

8.8 Conclusion

In this chapter we introduced three pair of Montgomery-Edwards curves for performing
cryptography at the 128-bit, 224-bit and 256-bit security levels. Compared to the curves
proposed in IETF RFC 7748, the new curves provide 1.5 to 2 bits less security. We have
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performed various kinds of implementations of the Montgomery ladder for the new
curves. At the 128-bit level, the new curve is faster than Curve25519 for all the types of
implementations that we have considered. At the 224-bit level, the new curve is faster
when the underlying integer multiplication is faster using schoolbook than Karatsuba.
Our work provides a wider picture of the efficiency/security trade-off at the 128-bit,
224-bit and 256-bit security levels.



C H A P T E R 9

Conclusion

9.1 Summary

In this thesis our broad focus has been in two areas - design and analysis of efficient field
arithmetic and proposal of efficient curves at various security levels.

First, we have studied design of efficient sequential algorithms for multiplication and
squaring over fields related to the primes of the form 2m − δ and the Goldilocks prime
2448 − 2224 − 1. On the theoretical side, we provide various algorithms for multiplica-
tion/squaring and reduction. The correctness of the reduction algorithms have been
rigorously proven. On the practical side, we provide efficient constant-time assembly
implementation of the various algorithms for modern Intel processors. For well known
primes our implementations are faster than the previous works. The algorithmic ideas
proposed and discussed for the prime 2m − δ can be extended for the primes of the form
2m + δ. Similarly, the ideas proposed for the Goldilocks prime 2448− 2224− 1 can be used
to design and analyze algorithms for the primes of the form 22m − 2m − 1. An example
of a similar prime is 2480 − 2240 − 1.

The Montgomery ladder is used to compute the shared secret over Montgomery
curves through variable-base scalar multiplication. The ladder primarily consists of a
ladder-step which contains a sequence of field operations. We have designed an effi-
cient algorithm of the Montgomery ladder which vectorizes the field-operations of the
ladder-step with 4-way vector instructions. Along with this we also propose a 4-way
vectorized ladder which can compute the fixed-base scalar multiplication. Our designs
are applicable to any Montgomery curve and efficient constant-time implementations of
the ladder have been done for all the seven Montgomery curves considered in this work.

Second, we have proposed new Montgomery curves and Kummer lines at the 128-
bit, 224-bit and 256-bit security levels and have made a wide range of sequential and
vectorized implementations of the ECDH protocol over the proposed curves. For a very
tight comparison of our curves we have also implemented the ECDH computation over
the standard curves Curve25519 and Curve448. At 128-bit security level we provide
Montgomery curves and Kummer lines which outperform the speed-performance of
Curve25519 for shared secret computation. At 224-bit security level the sequential im-
plementation of the proposed curve performs better than the sequential implementation
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of Curve448 but the vectorized implementation is found to be slower. The ECDH com-
putation over the Kummer lines at 128-bit security level has been found to be largely
better than the previous work. Overall, the computation of ECDH over Kummer lines
have been found to be better than Montgomery curves. We have made the source codes
of all our implementations publicly available for use and further research.

9.2 Future Work

Efficient key-generation and signature generation/verification can also be done on the
curves which have been proposed in this thesis. Finding out how the new curves per-
form with respect to the existing state-of-art while computing these cryptographic prim-
itives is left out for future work. The results of prime field arithmetic from this thesis
can also be applied in other areas like, pairing-based-cryprography and isogeny-based-
cryptography where primes of similar shapes are employed in the underlying design.
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