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ABSTRACT

Quantum key distribution (QKD) has raised some promise for more secured communica-
tion than its classical counterpart. It allows the legitimate parties to detect eavesdropping
which introduces error in the channel. If disturbed, there are ways to distill a secure key
within some threshold error-rate. The amount of information gained by an attacker is
generally quantified by (Shannon) mutual information. Knowing the maximum amount
of information that an intruder can gain is important for post-processing purposes, and we
mainly focus on that side in the thesis. Rényi information is also useful especially when
post-processing is considered.

The scope of this thesis is to first describe some relevant ingredients for QKD and
then study some open-ended issues. We mostly focus on the BB84 protocol and some
issues relating optimal eavesdropping on it when each information-carrying particles are
attacked individually. However, our results and techniques can also be applied for other
protocols and different eavesdropping strategies. We felt a few other eavesdropping tech-
niques worthy to analyze in that line, despite limitations to achieve newer results.

First we study the optimal eavesdropping technique on the BB84 protocol and show
that the optimal information can be achieved in infinitely many different ways to interact
and measure the information-carriers. Although they are mathematically equivalent in
some sense, that variety may help when designing the eavesdropping setup.

However, it was not clear whether more such optimal interactions exist or not. This
has lead us to derive them through a chain of necessary and sufficient conditions (NSC),
which are shown to be in a one-to-one correspondence with the earlier interactions. In
this process we arrive at a new NSC restricting attackers particles to a specific orienta-
tion, establishing the geometry of the attack more explicitly than earlier. Some explicit
connections are shown with other modes of gleaning information like cloning.

Nevertheless, for practical purposes all an attacker requires is the evolution that en-
tangles her ancilla with the senders particle, and the corresponding measurement that will
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lead her to optimal information gain. This is generally neglected in the literature as they
exhibit a specific interaction. In our case, having infinitely many options to interact, we
felt it better to address the issue of findings optimal evolutions.

Overall, we have added more mathematical structures in the framework of optimal
eavesdropping. We wanted to analyze the more generalized ways to attack, where a whole
chunk of information-carrying particles can be evolved and then measured at a go. The
process becomes complex to tackle when the chunks go bigger. Yet, we have explained
the mathematical details of some of the existing results to point out the difficulties.
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CHAPTER 1

INTRODUCTION

The thesis provides a structured mathematical model for optimal eavesdropping for quan-
tum key distribution (QKD). The optimal attack is characterized completely in the form of
optimal post-interaction states, optimal measurements, and the optimal unitary evolution.
Some connections with other aspects of QKD became more explicit here.

The power of quantum theory [Eng13] is better manifested through the manipulation
of quantum information for secure electronic communication [ZBB+05]. There is a vast
literature developed over time on QKD. For a first reader interested to get a broad survey
on the applications of QKD in quantum cryptography can read [ABB+14] and a the re-
lated ones. That quantum cryptography is possible in practice with a single photon source
is given by [BBG+02]. Leaving those aside, let’s get directly into the thesis content.

Thesis organization

We have first discussed the preliminary ideas in Chap. 2 that appeared useful for our
purpose, the basic QKD protocols and eavesdropping models are also introduced therein.
An optimal attack due to [FGG+97] is explained elaborately in Chap. 3.

In Chap. 4 we have shown that the optimal information can be attained in infinitely
many ways. We proved it further as a necessary and sufficient condition in Chap. 5. The
corresponding optimal unitary evolutions are characterized completely in Chap. 6. Some
of the relevant ingredients of Chap. 4 are moved in Chap. 3 to retain the flow of ideas.

We provide a basic sketch of the ingredients for classical post-processing in Chap. 7,
where we also compare the bipartite informations across protocols. Finally, we have
explained the notion of the generalized attack as a coherent model in Chap. 8.

We conclude the thesis work in Chap. 9 by discussing the motivations behind choosing
the problems while summarizing the results, and by mentioning some further scopes.
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1.1 Characterizing the Optimal Interactions

An eavesdropper can perform the interaction in many ways, but not all of them are op-
timal. We are concerned about the optimal interactions that provide maximum possible
(Shannon) information. Given an interaction, she needs a suitable measurement to extract
that information. Again, not all measurements provide the maximum information of the
signal. The ones providing maximum information consists the optimal measurements.
Thus, characterizing the optimal interactions includes the specification of the optimal
measurement along with the interaction. However, when an interaction is optimal, that
information is extractable irrespective of whether we know the right measurement or not.

Once she knows the reconciled bases, a suitable measurement provides some outcome
from which she can infer the identity of Alice’s signal using some strategy. That inference
is also an integral part of the characterization process.

The maximum information can be obtained by various interactions. We have done
the characterization to the maximum extent [AP17, AP21]. However, the difficulty to
derive such interaction lies in the fact that specification of each optimal IV should also
accompany the specification of its optimal measurement and there could be infinitely
many such optimal IVs. However, the trick to tackle the problem is not too difficult once
get noticed. First, we noted that the measurement setup is integral part of the interactions.
Thus, if we express the IVs w.r.t. measurement directions, then we can calculate the
probability components which in turn defines the information. To start the derivation with
a general expression of the IVs, It is helpful to note that Eve’s IVs form two mutually
orthogonal sets. The rest is merely calculations to compare the corresponding IGs with
the optimal value and figure out the optimal IVs. They also satisfy the necessary and
sufficient condition for optimality, as expected.

In an arbitrary measurement basis, all the optimal IVs look same. Once we specify a
measurement basis, we get the corresponding optimal IVs. Various choices of measure-
ment setup provides variety of optimal IVs. The two specific instances from [FGG+97]
are two such special cases of our generalized expression. For the IVs [FGG+97] with
equal rates, no optimal measurement was specified. Although one can calculate them by
diagonalizing the corresponding observable, it follows directly once we compare those
with our general form.

Unlike [FGG+97], we do not need a separate analysis for equal or unequal error rate.
We did the derivation for unequal error rates to cover the general scenario, while the equal
error cases follow trivially from it. In practice, at Bob’s end, the disturbance in the channel
may not appear same across the bases unless all the experimental setups including the
channel are perfect. That delta differences could be covered easily with our generalized
approach.
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1.2 A new necessary and sufficient condition for opti-
mality and deriving optimal interaction vectors

Although the above-mentioned approach identify infinitely many optimal interactions,
those didn’t appear out of a necessary and sufficient condition which might certify the
population to be exhaustive. With this dissatisfaction, we started further with the NSC
in [FGG+97] and derived a chain of NSCs for optimality which finally provided the ex-
pression of the optimal IVs. However, the expression didn’t look same as those in [AP17],
and raised a question whether newer IVs could be found. But, we could establish an one-
to-one correspondence between the populations in [AP17] and those in [AP21].

In the above derivation, as a byproduct, we got a special NSC that mentions the restric-
tion on the spatial orientation of Eve’s IVs to be optimal. Note that the NSC in [FGG+97]
involves both Alice and Eve’s Hilbert space, while our byproduct involves only Eve’s
Hilbert space. The two unequal overlaps should be same and equal to the difference
between the fidelity and disturbance introduced in the Alice-Bob’s channel due to eaves-
dropping. This optimal overlap is quite important as it has a deep connection with the
amount of CHSH violation for an equivalent entanglement-based protocol. A similar
connection is found with cloning mechanism as well.

1.3 Characterizing the optimal unitary evolutions

All we found so far in the name of optimal interactions are only Eve’s optimal IVs.
However, for practical purposes, all an attacker need to know is the unitary evolution
on Alice-Eve’s joint system that she needs to perform during the interaction. The as-
sociated optimal measurement is already there. Given a specific set of IVs, getting the
corresponding unitary evolution may not be that difficult, one can always try numerical
approach. However, once the expressions are parametric, or more general to include all of
them in a generalized measurement basis, It is worthy to find the unitary as a generalized
form which we have done indeed.

Getting the initial motivation to tackle that generalized approach was not so easy. We
could come up with a hack to get the optimal unitary that works with a specific initial
state (IS) of Eve’s ancilla. Interestingly, this particular unitary appeared the simplest one
out of all the others that we could comprehend. However, even for this particular IS, there
could be infinitely many other optimal unitaries (up to some unitary factor) that produces
the same IVs: the unitary factor was also specified then. This is due to an interesting
observation that an optimal unitary is actually the product of two unitaries: one rotates
the space of the IS, while the other rotates the space of the post-interaction joint states.
The later (PIJSs) actually is described in terms of the measurement directions. Thus, it
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supports the intuition that the optimal unitary has two degrees of freedom: the choice
of the IS (its orientation) and the choice of the measurement directions. That is to say,
an unitary evolution automatically specifies the IS and the measurement, and vice versa
(although this direction has various alternate choices of the unitary). For the sake of
theoretical completeness, we have shown how the choice of a different IV or the choice
of a different measurement can easily be tackled from a known case (e.g., the initial hack
that we had).

The work may look merely a theoretical framework, but, getting an (Unitary evolution,
IS, measurement) specification suitable to design for practical purposes is altogether a
different challenge. The majority of its theoretical backbone is provided here.

1.4 Post-processing and Comparative study

Once the legitimate parties (Alice and Bob) have arrived with a sifted key, they look for
the possibility to filtrate from it a shared secret on which Eve has virtually no knowledge.
The possibility depends on a threshold disturbance. So far they are within the threshold,
they can go further to post-process it with the help of a classical channel.

They can identify the disturbance level by considering a random subsequence of their
bit-stream and publicly tally the bits. Without eavesdropping, they should always agree
with their bits. But, if eavesdropped, some of the bits at Bob’s end will flip, and are in
disagreement with those of Alice. The fraction of mismatches will provide them a rough
estimate of the error rate. Depending on that rate, they can design their post-processing
methodology.

Let’s think about the remnant sifted key having some possible disagreement without
a knowledge of where could they be. The objective is to identify the locations and either
remove those corrupted bits or correct them. If they publicly discuss the whole content,
then Eve may listen to that as well. However, they can do a bit better. They may divide
the string into blocks (possibly containing one error at most) and tally the XOR (parity)
of the blocks publicly. If there is an error in a block, the XOR will disagree. In that case,
they can perform a binary search to locate the error. Thus, with some sacrifice, they can
reconcile into a common string from the disagreed strings.

Although their key-strings are now in sync, Eve might have gained some knowledge
due to her measurements and from later public discussions. The legitimate parties should
eliminate that knowledge before they call it a shared secret. In this case, they can simply
replace various blocks of the sting by the XOR value (on which Eve has literally no
knowledge). In practice, there are better efficient (may look complex) methods to do the
task.

The key-rate (ratio of the final key to that of the sifted key) depends on the disturbance
level and the method that they employed. However, there are theoretical limits that they
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can achieve at best within their capacity. The literature seems a bit cryptic to address
those ends with clarity while some differences are observed. We have tried to address
some of the parameters within our capacity.

1.5 Coherent eavesdropping

There are various varieties with the eavesdropping techniques. One of the advanced model
is to attack a whole chunk of information carrying particles (qubits) at a go. She may
evolve them jointly, measure them jointly if possible, and even may defer the measure-
ment till she gets the full knowledge of all the public discussions. This coherent way
of learning the key is discussed to some extent. Mostly, we addressed some derivations
minutely where we could feel difficulties. The main challenge remains to classify the
number of free parameters to describe the unitary, as those defined the success probabil-
ity, mutual information, key-rate etc. The description of the unitary ultimately boils down
to the description of different overlaps between Eve’s post-interaction states. The com-
plexity increases with the size of the chunk to be attacked. To have tried to exhibit the
difficulty during our involved calculations. We have considered the 4s protocol through-
out to allow the similarities and differences to be noticed. The analysis could easily be
extended for the 6s protocol as well.

We have explained the attack on a chuck of size two. An unitary evolution entangles
her ancilla with Alice’s qubit pairs. Thus, an incoming chunk can get into a superposition
of all the four possible states, and so does Eve’s ancilla. The four different states with
Alice can then produce sixteen (16) different post-interaction states for Eve and four (4)
for Bob. Eve is thus left with 256 overlaps among her states (compared to only four for
incoherent attack). However, mutual orthogonality favors the initial step to reduce the
number of different overlaps. For a given chunk of Alice, all the 4 states with Eve are
mutually orthogonal. Further, all the 16 states can be classified into four groups based
on the number of errors introduced and their location. Within each group, some of the
overlaps may be same. If the attack model is considered same error across the bases, the
rules of symmetry help reduce the number of parameters further. While attacking a two-
qubit chunk, the unitary is ultimately characterized by only five (5) real parameters. We
have discussed that reduction process with minute details in the thesis.

A 2-qubit attack on the 6s protocol is characterized by only 2 real parameters due to
more symmetry in the protocol itself. A 3-qubit attack doesn’t improve Eve’s Shannon
information or her chance for correct guess except that she learns fully the states that Bob
receives undisturbed.





CHAPTER 2

BACKGROUND KNOWLEDGE

Here we discuss some of the relevant basic ideas from quantum mechanics and quantum
information alongwith the mathematical pre-requisites. One can consult the book [NC11],
while wikipedia is always a good resource to get a first impression on such topics.

Quantum information is described by the states of a quantum system which in turn is
represented by a wave-function in quantum mechanics. A quantum measurement allows
an wave-function to collapse into a specific quantum state that we ultimately observe to
study the system. Over time, depending on the nature of the environmental perturbations,
the system is evolved towards a newer wave-function. Further measurement reveals a
state of the evolved system.

The basics of quantum mechanics typically starts with a few postulates. However, to
understand these postulates, one needs to have a minimal knowledge on the mathematical
pre-requisites which we discuss first.

2.1 Elements of quantum information processing

The classical methods of electronic communication restricts to cbits (classical bits) as
the information carrier. However, the advent in quantum mechanics has raised the com-
munication prospect by introducing qubits (quantum bits) as the information carrier that
can encode multiple cbits in superposition – a quantum measurement can then extract the
classical information out of the transmission.

The role of quantum information processing is all about to store, process (evolve), and
retrieve (measure) the quantum information.
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2.1.1 Qubits, Unitary, Gates, Measurements

A qubit is a quantum system that can encode the classical bits 0, 1 as a pair of mutually
orthogonal normalized quantum states |0〉 := (1,0)T , |1〉 := (0,1)T , respectively. These
two quantum states form a computational basis in a two dimensional space. However, a
quantum system can do more – it can conceal both the cbits simultaneously in a quantum
state as a superposition of these two basis states.

|ψ〉 = α0|0〉+α1|1〉.

The co-efficients α0,α1, which can consume a complex value in general, are the ampli-
tudes of the two basis states satisfying ∑

1
b=0 |αb|2 = 1.

When a quantum measurement is performed, for instance in the computational basis
itself, it collapses to one of these basis states, leading to the corresponding cbits. It is not
known apriori which of the two outcomes it will produce. However, the frequency to get
an outcome is already known if the description of the state is known. A measurement will
reveal the state |b〉 with probability |αb|2. Measurements in succession on the copy of
such a state will reveal this statistics for large number of trials.

A qubit is physically the state of an elementary particle, like polarized photon, spin of
electron etc. For communication purposes, for instance, optical fibers serve the purpose
to carry the photons.

One can prepare a quantum register to store multiple such states. For instance, a
3-qubit register storing |011〉 which in turn is a tensor product |0〉 ⊗ |1〉 ⊗ |1〉 of three
basis states, will encode the classical state 011 = 3. However, the power of quantum
mechanics allows the register to store multiple such classical states simultaneously. For
instance, the 3-qubit register in state 1√

2
(|011〉+ |101〉) will store both the classical states

3 and 5 simultaneously. Similarly, one can store all the classical digits from 0 to 7 as

a superposition
7
∑

b=0
|b〉 (ignored scaling) of 8 different basis states |0〉 to |7〉 in a single

register.

The strength of quantum information processing lies in its ability to start from an el-
ementary basis state and evolve it unitarily into a superposition of more and more basis
states (orthonormal) that could later be used to perform quantum computations and mea-
surements. The unitary evolution is done by elementary quantum logic gates. The most
common such gate is the Hadamard gate that transforms the computational basis states
|0〉, |1〉 into the Hadamard states 1√

2
(|0〉+ |1〉) and 1√

2
(|0〉− |1〉), respectively. It creates

superposition, which is better understood involving many qubits. For instance, one can
start with |00〉 as a basis state and apply the Hadamard on both the qubits to generate a su-
perposition |0〉+ |1〉+ |2〉+ |3〉 of all the four basis states. In general, one may start with
an n-cbit register and grow it to a state to store all the 2n different cbits simultaneously in
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superposition. A measurement in the computational basis on each register will reveal one
of these 2n digits.

Creating entanglement: A powerful aspect of quantum systems (two or more) is en-
tanglement. For instance, a 2-qubit state can be prepared into the following superposition

1√
2
(|00〉+ |11〉) which cannot be written as a tensor product of two single-qubit states.

That is, the information in the two registers are no more independent of each other.

Hadamard alone cannot serve the purpose, it only creates a superposition within a sin-
gle qubit. To entangle the two qubits, one needs a 2-qubit quantum gate like C-NOT, i.e.,
the controlled-NOT gate that flips the second bit (target) only when the first bit (control)
is Boolean YES (=1).

C-NOT : |c〉|t〉 7→ |c〉|t + c〉.

Clearly, until the control bit is in superposition, we won’t get the entanglement. The
superposition is done by the Hadamard gate. Thus,

|0〉|0〉 H⊗17−−−→ 1√
2
(|0〉+ |1〉)|0〉 C-NOT7−−−−−→ 1√

2
(|00〉+ |11〉).

It is tempting to conclude at the first place that a C-NOT gate can successfully make
a carbon copy of a given quantum state owing to the following:

C-NOT : |c〉|0〉 7→ |c〉|c〉, for c = 0,1.

However, it fails to copy an arbitrary state α|0〉+β |1〉 in superposition to its replica, rather
it entangles them. This is described in the well-known no cloning theorem [WZ82], that
allows quantum communication to identify an attempt for eavesdropping, which is not
possible in the classical domain.

2.2 Mathematical framework

2.2.1 Hilbert space

A Hilbert space is a real or complex vector space having an inner product and is complete.

For instance, the space Cn of n-dim Complex numbers. We’ll mostly deal with C2,
realizing the state of a qubit.

We do not need much to bother about the second criterion for our purposes, so we just
address it informally. Completeness means that every Cauchy sequence of its elements
converges to a unique element (limit point) of that space under consideration.

Completeness in general is defined on a set having some norm (metric) to measure
distance between any two elements of the set. For instance, consider the closed interval
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[0,1] ∈ R with Euclidean distance. The sequence {1− 1
r }

∞
r=2 is Cauchy that converges to

the limit point 1 which indeed belongs to the set. It can be verified that any such Cauchy
sequence defined in this interval indeed converges to an element of that set, certifying
completeness.

Triangle inequality: For any three elements x,y,z in a set with a metric ‘dist’,

dist(x,z) ≤ dist(x,y)+dist(y,z).

Remember the usual triangle inequality for three 2-dim vectors in R2. One can extend it
for usual dot products in Rn, and for complex inner product in Cn.

Cauchy-Schwarz inequality: Any two elements x,y of an inner product space (IPS)
or a Hilbert space (HS) satisfy [Ste04, WW]

|〈x|y〉| ≤ ‖x‖‖y‖ .

2.2.2 Quantum operators: Hermitian, Unitary, Normal, positive op-
erators

An operator is a rule to transform a function to another function, e.g., derivative operator.
In quantum mechanics, it transforms kets to kets, thereby is expressed as a matrix.

Observables are physical properties that can be measured, e.g., momentum. There is
an operator associated with an observable.

For our purposes, operators are matrices. Some useful operators are defined here.

Hermitian matrix A Hermitian (or self-adjoint) matrix is a complex square matrix that
is equal to its own conjugate transpose. Both A†,A∗ are used to denote conjugate transpose
(i.e., AT) of A.

Thus, in a Hermitian matrix, the i j-th element and the ji-th element are the complex
conjugate of each other.

A is Hermitian ⇐⇒ A = AT ⇐⇒ ai j = a ji.

Positive and positive semi-definite operators An operator A over some Hilbert space
H is positive, if

〈ψ|A|ψ〉 ≥ 0, ∀ |ψ〉 ∈ H.

Eigenvalues of such operator are non-negative. They are useful to construct POVMs.
Definite means strictly positive.
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Unitary operator An operator U is unitary, if it produces the identity matrix (1) when-
ever (pre and post) multiplied by its conjugate transpose, i.e.,

UU† = 1 = U†U .

The rows (or column) are normalized and are mutually orthogonal. Thereby, they form
an orthonormal basis for the associated Hilbert space.

It is useful to describe the time evolution of a quantum state.

Normal operator An operator A is normal, if

AA† = A†A.

Thus, a normal operator commutes with its adjoint. Hermitian and unitary operators are
normal.

Eigenvalue and eigenvector of an operator A state (vector) |ψ〉 is an eigenstate
(eigenvector) of an operator A, if A|ψ〉= λ |ψ〉, for some scalar λ aka eigenvalue.

For instance, σz has eigenstates |0〉, |1〉 with eigenvalues +1 and -1 respectively.

Spectral decomposition theorem A normal operator is diagonalizable (i.e., a diagonal
matrix) in some basis of that Hilbert space. That is, a normal operator A can be written
as [NC11]

A =
n

∑
i=1

λi|ei〉〈ei|=
n

∑
i=1

λiEi,

for eigenstates |ei〉 with eigenvalues λi. The projectors Ei := |ei〉〈ei| satisfy the complete-
ness relation ∑i Ei = 1.

For instance, the Pauli operators are normal. σz = |0〉〈0| − |1〉〈1| has eigenstates
|0〉, |1〉 with eigenvalues +1,-1 respectively.

Note that, quantum measurements deal with the Hermitian operators for which the
above result is quite straightforward to prove since the eigenspace form an orthonormal
basis for the underlying Hilbert space.

Projection operators An operator P of the form |ψ〉〈ψ| is called projection operator.
Any such operator is Hermitian (self-adjoint). For a normalized state |ψ〉, we have P2 =P.

For instance, the operator P =
n
∑

s=1
|s〉〈s| projects onto the subspace spanned by the kets

|1〉, |2〉, · · · , |n〉.
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Expected value of an operator The expectation of an operator A is the mean or aver-
age value 〈ψ|A|ψ〉 for a given quantum state |ψ〉. It indicates the average value of the
outcomes of a measurement A when applied many times on copies of a given quantum
state.

2.2.3 Pauli Matrices

Pauli matrices are a set of 2 × 2 complex Hermitian and unitary matrices.

σ1 = σx :=

0 1
1 0

 ,

σ2 = σy :=

0 −i

i 0

 ,

σ3 = σz :=

1 0
0 −1

 .

Together with the identity matrix 1 (or, σ0), the Pauli matrices form an orthogonal basis,
in the complex Hilbert space of all 2×2 matrices.

It is easy to find the following algebraic properties of these matrices.

• They are self-inverse:

σ
2
1 = σ

2
2 = σ

2
3 = 1 = −iσ1σ2σ3.

They anti-commute:

σiσ j = −σ jσi.

• Their determinant is -1, and are traceless.

detσi =−1, tr σi = 0, ∀i ∈ {1,2,3}.
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Therefore (together with σ2
i = 1), they have eigenvalues ±1 with the eigenvectors

ψx+ =
1√
2

1
1

= |0〉x , ψx− =
1√
2

 1
−1

= |1〉x,

ψy+ =
1√
2

1
i

= |0〉y , ψy− =
1√
2

 1
−i

= |1〉y,

ψz+ =
1√
2

1
0

= |0〉z , ψz− =
1√
2

0
1

= |1〉z.

Thus, any of them can be written as

σs = |0s〉〈0s|− |1s〉〈1s|,

while the eigenprojectors span the 2-dimensional Hilbert space.

|0s〉〈0s|+ |1s〉〈1s|= 1.

Therefore, each Pauli matrix represents an observable with two outcomes +1 and
-1. In quantum mechanics, such an observable depicts the spin of a spin-1

2 particle
in the three spatial directions.

Result 1. The 4 Hermitian matrices constitute a linear vector space. A basis in this

space can be chosen using the tensor products σi⊗σ j involving the 2-dim Pauli matrices.

Therefore, all operators involving two-qubit observables can be expanded over this basis.

One can similarly extend the idea for higher dimensions.

2.2.4 Bloch vector representation of a quantum state

Given an orthonormal basis, any pure state |ψ〉 of a two-level quantum system can be
written as a superposition of the basis vectors |0〉 and |1〉, where the coefficient or amount
of each of the two basis vector is a complex number.

|ψ〉 := α|0〉+β |1〉, for α,β ∈ C with |α|2 + |β |2 = 1.

This means that the state is described by four real numbers. However only the relative
phase between the coefficients of the two basis vectors has any physical meaning, so that
there is redundancy in this description. We can take the coefficient of |0〉 to be real and
non-negative. This allows the state to be described (up to a global phase) by only three real
numbers, giving rise to the three dimensions of the Bloch sphere. The logic is developed
as follows.
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Up to a global phase, the state can also be written as 1

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉,

where, θ ∈ [0,π], φ ∈ [0,2π)

≡ e−iφ/2 cos
θ

2
|0〉+ e+iφ/2 sin

θ

2
|1〉.

However, a state can be identified by a suitable observable. One can verify that the above
state is an eigenstate of the following observable σr corresponding to the eigenvalue +1.

σr = r̂ · σ̂ = xσx + yσy + zσz,

with the unit vector

r̂ = (x,y,z) = (sinθ cosφ ,sinθ sinφ ,cosθ).

The other eigenstate for eigenvalue −1 is

|ψ⊥〉 = −e−iφ/2 sin
θ

2
|0〉+ e+iφ/2 cos

θ

2
|1〉.

The direction r̂ can be mapped to a point on the surface of a sphere. That sphere is
known as the Bloch sphere, while the direction r̂ is called the Bloch vector. Thus, any
2-d quantum state corresponds to a Bloch vector defined by three Cartesian variables and
alternately by two angles θ ,φ on the Bloch sphere. Here, θ is the angle that the direction
r̂ makes with the z-axis, while its projection on the xy plane creates the azimuthal angle φ

with the x-axis. One can orient the measurement apparatus in a Stern-Gerlac experiment
towards the direction r̂ and let the state collapse to one of the eigenstates with outcome as
the eigenvalue ±1.

For mixed states, one considers the density operator. Any two-dimensional density
operator ρ can be expanded using the identity 1 and the Hermitian, traceless Pauli matri-
ces ~σ , which together defines a orthogonal basis of a 2-dimensional Hilbert space.

ρ :=
1
2
(1+~r ·~σ), ||~r|| ≤ 1.

While~r having unit norm represents pure states, other cases cover the mixed states living
inside the sphere.

A projective measurement P± := 1
2(1+ m̂ ·~σ) results in an outcome ±1 with proba-

bility Tr(ρP±) = 1
2(1+ m̂ ·~r) leaving the post-measurement state

P±ρP±

Tr(ρP±)
.

1Unlike a classical bit that can take one of two states at a time, a qubit can in principle have infinitely
many possible states parametrized by the continuous variables α,β , or equivalently, by the angles θ ,φ .
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Result 2. Denoting the two eigenstates |ψ〉 and |ψ⊥〉 as |+〉r and |−〉r, respectively, one

can write

|+〉r|−〉r − |−〉r|+〉r =
1√
2
(|01〉− |10〉) =: |ψ−〉.

for all possible Bloch vectors r̂.

Result 3. When Alice and Bob share a singlet |ψ−〉 and measures their particles in the

directions â and b̂ respectively, one can show that

E(â, b̂) := 〈ψ−|σA
a ⊗σ

B
b |ψ−〉 = −â · b̂.

This is the expected value that Alice and Bob measure σa and σb respectively and gets the

eigenstates â and b̂ respectively.

Proof. First, note that

E(â, b̂) =
1
2
〈01−10|σA

a ⊗σ
B
b |01−10〉

=
1
2
[〈01|σA

a ⊗σ
B
b |01〉−〈01|σA

a ⊗σ
B
b |10〉

−〈10|σA
a ⊗σ

B
b |01〉+ 〈10|σA

a ⊗σ
B
b |10〉].

Since 〈i j|σA
a ⊗σB

b |kl〉= 〈i|σA
a |k〉〈 j|σB

b |l〉, we use the following observations

〈0|σr|0〉 = z, 〈1|σr|1〉 =−z,

〈0|σr|1〉 = x− iy, 〈1|σr|0〉 = x+ iy.

to get the desired result.

2.2.5 Mixed states

A pure quantum state can be described by a single ket. A mixed quantum state is a
statistical ensemble (a probability distribution of states that some particles can be found
in) of pure states. Mixed states inevitably arise from pure states when, for a composite
quantum system H1⊗H2 with an entangled state on it, the part H2 is inaccessible to the
observer. The state of the part H1 is expressed then as the partial trace over H2.

A mixed state cannot be described with a single ket vector. Instead, it is described by
its associated density matrix, usually denoted ρ . Moreover, a mixed quantum state on a
given quantum system described by a Hilbert space H can be always represented as the
partial trace of a pure quantum state on a larger bipartite system H⊗K for a sufficiently
large Hilbert space K.
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The density matrix describing a mixed state is defined to be an operator of the form

ρ = ∑
s

ps|ψs〉〈ψs|

where ps is the fraction of the ensemble in each pure state |ψs〉.

A simple criterion to check whether a given density matrix describes a pure or mixed
state is that the trace of ρ2 must be 1 if the state is pure, and less than 1 if mixed. Another
equivalent criterion is that the von Neumann entropy is 0 for a pure state, and strictly
positive for a mixed state.

The rules for measurement in quantum mechanics becomes simple when stated in
terms of density matrices. For instance, the ensemble average (expectation value) of a
measurement corresponding to some observable A is given by

〈A〉= ∑
s

ps〈ψs|A|ψs〉= ∑
s

∑
i

psai|〈αi|ψs〉|2 = tr(ρA)

where |αi〉, ai are eigenkets and eigenvalues, respectively, for the operator A.

2.2.6 Density matrix

A density matrix is a matrix that describes the statistical state, whether pure or mixed,
of a system in quantum mechanics. The probability for any outcome of any well-defined
measurement upon a system can be calculated from the density matrix for that system.
The extreme points in the set of density matrices are the pure states, which can also be
written as state vectors or wavefunctions. Density matrices that are not pure states are
mixed states. Any mixed state can be represented as a convex combination of pure states.

Describing a quantum state by its density matrix is a fully general alternative formal-
ism to describing a quantum state by its state vector (its "ket") or by a statistical ensemble
of kets. However, in practice, it is often most convenient to use density matrices for calcu-
lations involving mixed states, and to use kets for calculations involving only pure states.
Mixed states arise in situations where the experimenter does not know which pure state
the system is in. For instance, in an entangled system, each subsystem must be treated as
a mixed state even if the complete system is in a pure state.

A density matrix is self-adjoint (i.e., Hermitian), positive semi-definite, and of trace
one. Thereby, its eigenvalues are non-negative and sum to one, defining a probability
distribution.

A density operator describes a pure state if it is a rank one projection. A necessary
and sufficient condition for a density matrix ρ describes a pure state if and only if ρ = ρ

2.
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2.2.7 Partial Trace and reduced density matrices

When two parties share a pure entangled state, the state of the individual subsystems
is no more a pure state. It is possible though to trace out one of the subsystem and
get the density of the other one as a mixed state. Thus, for a pure state |ψ〉AB, shared
between Alice and Bob, considering ρAB as the joint density operator, ρA = TrB(ρAB) and
ρB =TrA(ρAB) are the density operators with Alice and Bob, respectively. Mathematically
speaking, for a tensor product A⊗B of two matrices, TrB(A⊗B) := A ·Tr(B) traces out
Bob’s subsystem.

For example, consider the Bell state 1√
2
(|00〉+ |11〉)AB, which has the following den-

sity

ρAB =
1
2
(
|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|

)
=

1
2 ∑
(a,b)∈{0,1}×{0,1}

|a〉〈b|⊗ |a〉〈b|.

Now, use the property that Tr(|a〉〈b|) = 〈a|b〉= 1,0, depending on whether the two states
are same, or, are orthogonal, respectively. Then,

ρA =
1
2 ∑

a=b ∈{0,1}
|a〉〈b|,

which is a mixed state. Bob’s local state is same as that of Alice in this case.

However, the calculations go difficult when the state with one or both the parties are
themselves in superposition disrupting orthogonality. In such situations, Schmidt decom-
position becomes useful to express a bipartite state in orthogonal bases with each of the
parties.

2.2.8 Schmidt Decomposition

For any bipartite pure state |ψ〉AB ∈ HA⊗HB with d = min{dimHA,dimHB}, there are
orthonormal bases {|αi〉A}d

i=1 ∈HA and {|βi〉B}d
i=1 ∈HB, such that

|ψ〉AB =
d

∑
i=1

√
νi |αi〉A|βi〉B, with νi ≥ 0,

d

∑
i=1

νi = 1.

The frequencies
√

νi are called the Schmidt co-efficients, while the number of non-zero
νi’s is called the Schmidt rank of the bipartite state. For example, the Bell pair under
consideration is already Schmidt decomposed, with Schmidt co-efficients 1√

2
, 1√

2
and

Schmidt rank 2.

A pure state is separable iff it has Schmidt rank 1, and is maximally entangled if
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λ j = 1/d,∀ j.

2.2.9 Information content: Entropy, Mutual information

Entropy is a way to quantify the amount of information in a signal. Roughly speaking,
entropy indicates how much is unknown about the signal, while information means the
left-over unknown due to some learning on the signal 2. We elaborate it mathematically
in the following.

Entropy: Let a random variable (r.v.) can take finitely many values x with probability
p(x). Then, the Shannon entropy of X is defined as

H(X) := −∑
x

p(x) log2 p(x),

expressed in bits. It is a concave function. When the r.v. takes n different values, the
maximum value of the entropy is log2 n that occurs for uniform distribution p(x) = 1/n ∀x.
Increasing entropy indicates decreasing knowledge about the random variable. Thus, it
quantifies the uncertainty of the r.v.

A frequently useful entropy function is the binary entropy function

H2(X) =−p(x) log2 p(x)− (1− p(x)) log2(1− p(x)) =: h(p(x)).

It can reach the maximum (=1 bit) for x = 1
2 . The concavity can be visualized from the

figure 3.1.
In quantum communications, when one measures a quantum state, the outcomes de-

fine a random variable. One can estimate the information gained out of the measurement
by computing the entropy of the r.v.

Similarly, for two random variables X ,Y , one can get a distribution p(x,y) of the
sample points (x,y), for which the joint Shannon entropy is defined as

H(X ,Y ) := − ∑
(x,y)

p(x,y) log p(x,y).

The conditional entropy of X given the knowledge on the r.v. Y is defined as any of the
following

H(X |Y ) := H(X ,Y )−H(Y ) =− ∑
(x,y)

p(x,y) log p(x|y)

= ∑
y

p(y)H(X |y) =−∑
y

p(y) log p(x|y).

2The quantification is done in the log scale. Generally, logarithms are considered to the base 2, and
these information quantifiers are thus measured in bits.
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It reflects the remaining uncertainty about X due to the knowledge of Y .

von Neumann entropy It determines the amount of entropy in a quantum state. For a
quantum-mechanical system described by a density matrix ρ , the von Neumann entropy
is defined as

S := − tr(ρ lnρ).

ρ being Hermitian is diagonalizable in its eigenbasis |1〉, |2〉, |3〉 . . . :

ρ = ∑
j

η j| j〉〈 j|.

Thereby, a measurement in the eigenbasis gives rise to the classical eigenvalues as out-
comes and the von Neumann entropy is merely 3

S = −∑
j

η j lnη j.

In this form, S can be seen as the information theoretic Shannon entropy.

Mutual information The mutual information between two random variables X ,Y is
defined as any of the following

I(X ,Y ) := H(X)+H(Y )−H(X ,Y )

= H(X)−H(X |Y )

= H(Y )−H(Y |X).

It is thus symmetric in X ,Y . It reflects the amount of knowledge common in the two
random variables. The last two expressions read as the reduction in entropy (uncertainty)
of a r.v. due to the knowledge on the other r.v.

Rényi entropy and Rényi information It is an one-parametric extension of the Shan-
non entropy.

Rényi entropy of order α (> 0, 6= 1) is defined as

Rα(X) =
1

1−α
log2 ∑

a
(p(x))α .

It is maximized (= logN) for the uniform distribution p(x) = 1/N ∀x.

3The catch here is that for logarithm of diagonal matrices, the logarithm transcends to the diagonal itself.
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There is no generally accepted definition of conditional Rényi entropy, but it can be
considered similar to the conditional Shannon entropy. Following it, one can consider
Rényi (mutual) information of order α between the two random variables A,E to be de-
fined as follows.

IR
α(X ,Y ) = Rα(X)−Rα(X |Y )

=
1

1−α
log2 ∑

x
(p(x))α − 1

1−α
∑
y

p(y) log2 ∑
x
(p(x|y))α .

However, unlike Shannon information, it’s not symmetric, and a proper choice of α is
often not clear. Moreover, conditional Rényi entropy doesn’t follow the chain rule, and
thereby, the Rényi MI cannot be thought in general as reduction in uncertainty due to the
knowledge of the other.

Rényi information of order α > 1 is an upper bound on the Shannon mutual informa-
tion. Sometimes, α = 2 is of special interest and is used here.

2.2.10 Expected value

The expected value of a random variable A is defined as

E(A) := ∑
a

aPA(a).

The expected value of the product of two random variables are defined as

E(AB) := ∑
a,b

abPAB(a,b).

Variance The variance of a random variable is defined as

Var(A) := E(A−E(A))2 = E(A2)− (E(A))2.

S.D. The standard deviation of a random variable is defined as the square root of variance.

σ(A) =
√

Var(A) :=
√

E(A2)− (E(A))2.

Covariance The covariance of two random variables is defined as

Covar(A,B) := E[(A−E(A))(B−E(B))] = E(AB)−E(A)E(B).

Correlation coefficient The correlation coefficient between two random variables is de-
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fined as

ρ(A,B) := Covar(A,B)/σ(A)σ(B).

When two random variables take values from +1 and -1, then

E(AB) = ∑
a,b=±1

PAB(a = b)−PAB(a 6= b),

E(A) = 0 = E(B), E(A2) = 1 = E(B2), σA = σB = 1, ρ(A,B) = E(AB).

This result will be useful in CHSH violation.

2.3 Quantum Mechanics

2.3.1 Interpretations of Quantum Mechanics

There are various schools of interpretations to explain quantum mechanics. The standing
one that is used in quantum communication is the Copenhagen interpretation. Therefore,
a few relevant facts on it are added here.

Copenhagen interpretation: The wave-function has no reality. Nature is only
probabilistic and only a measurement forces it to choose a state, before this there is
no realism. The process of measurement causes a collapse of the wave function and
the result corresponds with the eigenvalue of the measurement operator: mapping the
operator to a real value. Furthermore Heisenberg’s uncertainty principle prevents us
of knowing all parameters of a system at once. Nowadays, most physicists prefer the
Copenhagen interpretation of quantum mechanics.

Some of the other schools of interpretations are: i) hidden-variable theories, e.g.,
Bohmian mechanics. ii) many-worlds interpretation, etc.

2.3.2 Quantum operators do not commute

Properties in the quantum world correspond to operators that do not commute. This basic
feature of the formalism is at the root of the observation that orders of measurements
matter. It is also the key to the understanding that it does not make sense in quantum
theory to think of two different quantities corresponding to non-commuting observables
to “take specific values”. They do not. This does not mean, of course, that no two
observables necessarily commute.
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Two observables are compatible if they commute. Then it is possible to know
precisely the value of both observables at the same time.

For non-commuting observables, measuring one randomizes the other.

2.3.3 Uncertainty principle

Uncertainty is a statistical measure (standard deviation) of the spread of measurements
about the mean. For some measurement operator A, it is given by

∆A :=
√
〈A2〉−〈A〉2,

where, 〈A〉 := 〈ψ|A|ψ〉 denotes the mean value of the outcomes to measure the state |ψ〉,
while 〈A2〉 := 〈ψ|A2|ψ〉 is the 2nd order moment.

Then, for two measurement operators A,B, the product of the uncertainties satisfies
the following inequality

∆A∆B ≥ 1
2
|〈AB−BA〉|.

For incompatible observables (i.e., non-commutative: AB 6= BA), if one of the uncertain-
ties go smaller, the other one go larger – both cannot be measured simultaneously with
high precision [NC11].

1. One cannot “know the values of two non-commuting observables at once”.

2. measurement of one observable makes the outcome of another non-commuting ob-
servable less certain.

3. know the value of A precisely, then the measurement of B will be a lot disturbed.

For instance, for the state |0〉 and observables σz,σx, we get ∆σz∆σx ≥ 1.

2.3.4 Postulates and quantum measurements

Postulates of quantum mechanics [NC11] broadly describes the following:

1. how the states of a physical system are described.

2. how measurements work.

3. how the evolution of a physical system is described.

Postulate 1: Quantum states The state of a quantum system is a vector |ψ〉 in a Hilbert
space. A qubit is a 2-dimensional state. We consider generally normalized states. Linear
combination (superposition) of two states is another state.
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Postulate 2: Quantum measurements A quantum measurement corresponds to an ob-
servable which is Hermitian and thereby has a spectral decomposition in an eigenbasis.
The eigenvalues are the outcomes, while the eigenstates are the post-measurement state
of the system.

Let the observable is an Hermitian operators A having spectral decomposition A =

∑a aΠa with orthonormal eigenprojectors Πa = |a〉〈a| and eigenvalues a. As the eigenba-
sis spans the Hilbert space, it satisfies the completeness relation ∑a Πa = 1.

Given a state |ψ〉, the measurement outcome a occurs with probability (Born’s rule)

pa = 〈ψ|Πa|ψ〉= Tr(Πaρψ) = |〈ψ|a〉|2.

The state of the system after the measurement is 1√
pa

Πa|ψ〉= |a〉.
The expected value (average) of the observable A w.r.t. |ψ〉 is then

〈A〉 = ∑
a

a〈ψ|Πa|ψ〉= ∑apa.

The observable in such cases is a collection of projection operators {Πa} satisfying the
completeness relation, known as (von Neumann) measurement. There are generalized
measurements like POVMs that we’ll discuss shortly.

The state of the system may not be pure. For an arbitrary density ρ , the Born’s rule
and the post-measurement state needs be upgraded as follows.

pa = Tr(ΠaρΠa) = Tr(Π2
aρ) = Tr(Πaρ).

and the post-measurement state becomes

ρa =
1
√

pa
ΠaρΠa.

The projectors Πa in this case called detection operators.

Postulate 3: Evolution Dynamical evolution of a closed system corresponds to an uni-
tary operator that transform a quantum state to another state. It preserves the length and
the overlap between two states.

POVM For projective measurements, the number of outcome is limited by the dimen-
sion of the Hilbert space due to orthogonality restriction on the projectors. However, in
circumstances, it is often desirable that the number of outcomes exceed the dimension of
the Hilbert space while keeping positivity and normalization of the probability distribu-
tion, which is possible by relaxing the orthogonality restriction.
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The trick to play is with the Born’s rule. So far P2
a is a positive (semi-definite) operator,

it generates non-negative probabilities. It need not be a projector then.

So, we can introduce a set of positive operators Pa ≥ 0 generating the probabilities
pa = Tr(ρPa). To make it a distribution, it should satisfy normalization ∑a Pa = 1. This
collection {Pa} is known as positive operator valued measure (POVM).

The detection operators need not be the projectors. Denoting them as Ma, the Born’s
rule can be written as

pa = Tr(MaρM†
a) = Tr(ρPa).

Thus, the POVM elements can be considered as Pa = M†
aMa, which is a positive operator.

A good example could be the POVMs used in [BBM92] to distinguish two non-
orthogonal states |a0〉, |a1〉. The POVM {B0,B1,B?} is defined as follows.

B0 := (1−|a1〉〈a1|)/(1+ 〈a0|a1〉),

B1 := (1−|a0〉〈a0|)/(1+ 〈a0|a1〉),

B? := (1−B0−B1).

Note that the operators are Hermitian, but mutually non-orthogonal, and thereby are not
projection operators. However, they are positive (only eigenstate |a⊥〉 with eigenvalue
+1), and sum to identity.

If Alice sends some |as〉, Bob gets either |as〉, or inconclusive result (i.e., B? clicked),
but never |as+1〉. Any Bs detects s ∈ {0,1,?} w.p. 1−|〈a0|a1〉|2

1+〈a0|a1〉 = 1−〈a0|a1〉.

To summarize, a projective measurement is a collection of mutually orthogonal pro-
jection operators {Πm} satisfying the completeness relation ∑m Πm = 1.

And a POVM is a collection of positive operators {Eλ} that sum to the identity. Note
that positivity makes it Hermite.

2.3.5 Entanglement and non-locality

An entangled state cannot be written as a product of separate states. For instance, consider
the famous EPR-pair

1√
2
(|00〉+ |11〉).

Suppose such a pair of particles are distributed between two parties, say, Alice and Bob. If
one of them measures and get an outcome x∈{0,1}, then the state automatically collapses
to |xx〉. Thereby, whenever the other party measures, both of their results agree. It seems
that the action of the measurement by the first party instantaneously effect the outcome
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of the other party. However, the EPR pair doesn’t violate the so-called local-realism. In
1960s, John Bell’s entanglement-based experiment exhibited quantum non-locality that
cannot be reproduced by any local realistic theory.

2.3.5.1 Bell states

For a 2-qubits (4-dimensional) Hilbert space, one can define an orthonormal basis con-
sisting of four Bell states each of which is a maximally entangled state. The basis states
map two bits a,b ∈ {0,1} into two entangled qubits as follows.

|βab〉 :=
1√
2

(
|0,b〉+(−1)a|1,b+1〉

)
.

These two-particle maximally entangled states are often symbolized as follows:

|φ+〉 :=
1√
2
(|00〉+ |11〉) =: |β00〉,

|ψ+〉 :=
1√
2
(|01〉+ |10〉) =: |β01〉,

|φ−〉 :=
1√
2
(|00〉− |11〉) =: |β10〉,

|ψ−〉 :=
1√
2
(|01〉− |10〉) =: |β11〉.

The preparation of the Bell states are given in Fig. 2.3.

The singlet |ψ−〉, being a spin-0 particle, exhibits an interesting property: that it is
invariant w.r.t. rotation of the measurement apparatus. Up to a global phase, they are all
equivalent.

|ψ−〉 =
1√
2
(|0z1z〉− |1z0z〉)

= − 1√
2
(|0x1x〉− |1x0x〉)

= −i
1√
2
(|0y1y〉− |1y0y〉).

Therefore, measuring the state in any arbitrary direction provides the same measurement
outcomes. This is useful to establish the Bell-CHSH inequality.

Note that, |φ+〉 also looks same along Z and X directions.

2.3.5.2 Locality and realism

For a shared system of particles A, B, locality means that measuring one particle shouldn’t
disturb the state of the other particle. Realism means that the values of measurable proper-
ties of each subsystem are objectively real: they have definite values even before the mea-



26 Chapter 2. Background knowledge

surement. Thus local realism represent classical view of the world. However, in quantum
world, the wave-function assumes reality only after measurement. In experiments with
bipartite systems, the measurements are local and a classical communication is allowed
to tabulate the measurement statistics and do some computations. Such computations are
known as local operations and classical communication (LOCC).

2.3.5.3 Bell-CHSH inequality [CHSH69]

John Bell (1964) shown that no local realistic (i.e., classical) model can explain all quan-
tum predictions, pointing to the difference between quantum and classical world. Some
conditions necessary for the local realistic models are given by CHSH inequality which
is defined on the local measurement statistics on a bipartite system.

Consider a joint bipartite system of particles in state |ψ〉AB is pre-shared between Alice
and Bob. Each of them are allowed to perform one of the two possible measurements on
their respective subsystem: A0,A1 with Alice and B0,B1 with Bob respectively. Let the
corresponding measurement outcomes are A0,A1,B0,B1 ∈ {+1,−1}, respectively.

Let them repeat the bipartite measurements Ai⊗B j on various identical states |ψ〉AB

and tabulate the outcomes (Ai,B j), and their products AiB j. They can compute the average
{〈AiB j〉}i, j∈{0,1} of these four different products and compute the following correlation
co-efficient, known as CHSH sum

〈SCHSH〉 := 〈A0⊗B0〉+ 〈A0⊗B1〉+ 〈A1⊗B0〉−〈A1⊗B1〉.

If the shared system is a separable state, they will find |〈SCHSH〉| ≤ 2. But, if it is en-
tangled, they’ll find (for some suitable measurement) 2 < |〈SCHSH〉| ≤ 2

√
2. This agrees

both in theory and in practice. Following is a theoretical justification. The two cases are
considered separately. The first one is known as the CHSH inequality and is explained
below.

Note that the joint measurement will generate a pair of outcomes following some
probability distribution {p(AiB j|Ai⊗B j)}. So far the system is entangled, the outcomes
exhibit some correlation and thus, won’t factorize. But, as they go separable, the outcomes
are independent and the probabilities factorize as p(AiB j|Ai⊗B j) = p(Ai|Ai)p(B j|B j).
This is the reason why we find the difference in the CHSH sum.

The expected value of the joint observable is defined as

〈Ai⊗B j〉 = 〈ψAB|Ai⊗B j|ψAB〉= ∑
Ai=±1,B j=±1

AiB j p(Ai,B j).
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For a separable state, it reduces to

〈Ai⊗B j〉 = ∑
Ai=±1,B j=±1

AiB j p(Ai)p(B j)

= ∑
Ai=±1

Ai p(Ai) ∑
B j=±1

B j p(B j) = 〈Ai〉〈B j〉.

Note that, 〈Ai〉= ∑
Ai=±1

AiPr(Ai) = Pr(Ai =+1)−Pr(Ai =−1) ∈ [−1,+1].

Thereby, the CHSH sum becomes

〈SCHSH〉 := 〈A0〉〈B0〉+ 〈A0〉〈B1〉+ 〈A1〉〈B0〉−〈A1〉〈B1〉

= 〈A0〉[〈B0〉+ 〈B1〉]+ 〈A1〉[〈B0〉−〈B1〉]

= 〈A0[B0 +B1]+A1[B0−B1]〉

The last equality follows due to the linearity of the expected values and the independence
of the random variables. Note that, one of B0±B1 is 2, while the other one is 0. Thus, for
a specific bi-partite measurement, SCHSH =±2. Then, for a finitely many such measure-
ments, the outcome statistics satisfy the following inequality

−2≤ 〈SCHSH〉 ≤ 2.

The extreme ends are achieved when all the experiments provide the same value of S:
either +2, or, -2.

However, this classical view of the outcomes statistics in not true in entanglement
driven quantum mechanics as the joint distribution exhibits some dependence.

2.3.5.4 Bell-violation by Quantum mechanical entanglement

Let Alice and Bob share some entangled state state |ψ〉AB. Their outcomes are mutually
dependent based on the quality of entanglement, e.g., with maximally entangled states,
the outcomes are completely correlated. Since the distribution is no more factored, the
above approach doesn’t help to get the inequality.

Let, Alice’s observables corresponds to the Bloch vectors â0, â1, while Bob’s direc-
tions are b̂0, b̂1. Then,

〈Ai⊗B j〉 = 〈ψAB|Ai⊗B j|ψAB〉= 〈ψAB|âi ·~σ ⊗ b̂ j ·~σ |ψAB〉.

When they share the EPR pair 1√
2
(|01〉− |10〉), the expected value becomes

〈Ai⊗B j〉 = −âi · b̂ j =−cosθi j.
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Here, θi j is the angle between the two directions âi, b̂ j.

Thus, the CHSH correlation coefficient becomes

|〈SCHSH〉| := |〈A0⊗B0〉+ 〈A0⊗B1〉+ 〈A1⊗B0〉−〈A1⊗B1〉|

= cosθ00 + cosθ01 + cosθ10− cosθ11.

One can choose the angles properly to violate the CHSH inequality.

For instance, consider Alice using A0 =σz,A1 =σx, and Bob using B0 =−σz+σx√
2

,B1 =
σz−σx√

2
. Then, the CHSH expected values of the joint measurements Ai⊗B j become

〈Ai⊗B j〉= (−1)i j 1√
2
.

Thereby, the average value of the CHSH sum becomes 2
√

2 > 2. Thus, quantum mechan-
ical entanglement violates the Bell-CHSH inequality, which is not possible in its classical
counterpart due to factored states. If the shared state is not maximally entangled (possibly
due to eavesdropping), the CHSH sum drops a bit, but remain above 2 so far the joint state
is not separable.

Thereby, Bell-CHSH violation is an way to demarcate classical and quantum world.
In quantum communication with EPR pairs, one can check whether the shared state is
indeed entangled or factored. In the later case, the system is distinguishable perfectly by
an eavesdropper which is equivalent to a classical communication. The amount of Bell
violation indicates the extent of entanglement degradation, from which they can decide
whether further filtration is possible.

2.3.5.5 Tsirelson’s inequality [Cir80]

In the above case, we have considered a particular quantum system – a maximally entan-
gled EPR pair. However, choice of the joint system could be many. The question is, what
is the maximum CHSH-violation in the quantum domain? The answer is 2

√
2.

2.4 Quantum gates

In classical computation, any sequence of elementary operations (e.g., NAND and COPY)
allows one to build up any complex computation. Similarly, in quantum computation, any
unitary operation in the Hilbert space of n qubits can be decomposed into one-qubit and
two-qubit elementary gates.

Here we discuss some useful and relevant quantum gates. Some common 1-qubit gates
are Hadamard, bit-flip, phase-flip etc. Some relevant 2-qubit gates are C-NOT, SWAP etc.
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2.4.1 Hadamard gate

It is useful to create superposition. It corresponds to the following unitary transformation

H :=
1√
2

1 1
1 −1

 .

It transforms the computational basis states |0〉, |1〉 into the Hadamard states 1√
2
(|0〉+ |1〉)

and 1√
2
(|0〉− |1〉), respectively. In general, an arbitrary state |s〉 can be transformed as

follows:

H : |s〉 7→ |s〉+(−1)s|1− s〉.

Hadamard transforms the computational basis into the Hadamard basis and vice versa.
The later part is true because Hadamard matrix is self-invertible owing to H2 = 1. It is
Hermitian as well, because H† = H, i.e., the conjugate transpose is same as the transfor-
mation matrix as well. Thereby, it can be considered both for unitary evolution, and for
measurement purposes. It is useful to note that H = 1√

2
(σx +σz).

2.4.2 C-NOT gate

It is a 2-qubit gate that flips the second bit only when the first bit is Boolean YES. It is
often useful to create entanglement between two qubits.

A NOT-gate (i.e., σx) simply flips the input bit: 0/1 7→ 1/0. A C-NOT gate flips (or
not) the target-bit (here, second) only when the control-bit (here, first) is Boolean YES
(or NO), i.e.,

C-NOT : |0〉|x〉 7→ |0〉|x〉
|1〉|x〉 7→ |1〉|x+1〉.

and, in general,

C-NOT : |c〉|t〉 7→ |c〉|t + c〉.

Clearly, until the control bit is in superposition, we won’t get the entanglement. The
superposition is done by the Hadamard, for instance. Thus,

|0〉|0〉 H⊗17−−−→ 1√
2
(|0〉+ |1〉)|0〉 C-NOT7−−−−−→ 1√

2
(|00〉+ |11〉).

The matrix representation of the C-NOT gate and a circuit diagram is as follows.

Since, C-NOT2 = 1, it is self-invertible.

One can generalize the concept by considering a controlled-Unitary, where the target
qubit is evolved by the unitary only when the control-bit is Boolean YES (=1).



30 Chapter 2. Background knowledge

Figure 2.1 | C-NOT gate: matrix representation and circuit.

The C-NOT operator corresponds to 12⊗σx. The circuit has in input lines a control
qubit |c〉 and a target qubit |t〉.

C :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


|c〉

|t〉

|c〉

|c+ t〉

2.4.3 SWAP gate

Another useful 2-qubit gate is the SWAP-gate that swaps the 2-qubits states |x〉|y〉 7→
|y〉|x〉. The transformation matrix is as follows.

Figure 2.2 | SWAP gate: matrix representation and circuit.

The SWAP operator exchanges the input lines |a〉 and |b〉.

Sw :=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
|a〉

|b〉

|b〉

|a〉

Mathematically, it corresponds to the permutation Π1324.

A Toffoli gate is a C2NOT gate, which applies a NOT operation to the target qubit
only when the two control qubits are set to 1.

2.4.4 Preparation of the initial state

Preparation of a general state in general is not efficient in quantum domain, as the number
of gates grow exponentially in the number of qubits.

However, in special cases, an wave function can be prepared efficiently, i.e., number of
gates required is polynomial in the number of qubits. For instance, an equal superposition
of all the states in some n-dim computational basis is obtained by applying n Hadamard
gates to the state |0〉⊗n.

For 3-qubit unitary in translucent attack model, there seems to be a trade-off between
preparing the 2-qubit initial state and the 3-qubit unitary.
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2.4.5 Preparation of Bell states

The preparation of the Bell states are given in Fig. 2.3. Mathematically, the mapping is as
follows

C-NOT(H⊗1) : |ab〉a,b∈{0,1} 7→ |βab〉.

Figure 2.3 | A circuit to prepare Bell states.

For inputs a,b ∈ {0,1}, Hadamard on the first line creates a superposition, and the
CNOT creates the entanglement.

H

CNOT

|a〉

|b〉
|βab〉

2.5 What secures quantum communication?

The following features are the integral part of the security of quantum communication.

• No cloning theorem forbids an eavesdropper to copy non-orthogonal states per-
fectly.

• Uncertainty principle forbids her to measure two incompatible properties precisely
at a go. For instance, measuring both the z-spin and the x-spin are not feasible with
certainty, i.e., measuring σz with certainty means σx randomizes the outcomes.
Mainly the p&m schemes get the security following this principle.

• For eb schemes, Bell-violation certifies security. On the other hand, p&m schemes
typically depend on the estimated error-rate without a Bell test.

2.5.1 No cloning theorem [WZ82]

Unlike classical world, where copying classical bits is feasible without being caught, in
quantum world, copying an arbitrary state is not possible [WZ82] other than an inferior
copy.

Let |ψ〉 is the state to be copied, |b〉 is the blank copy. Then, assuming copying is
possible by some unitary U , we have

U|ψ〉⊗ |b〉= |ψ〉⊗ |ψ〉.
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Now, one can come up with a CNOT gate that can copy two mutually orthogonal states
perfectly as follows.

C-NOT : |0〉|0〉 7→ |0〉|0〉
|1〉|0〉 7→ |1〉|1〉.

However, it cannot copy a linear combination of these two states

C-NOT : (α|0〉+β |1〉)|0〉 = α|0〉|0〉+β |1〉|0〉
7→ α|0〉|0〉+β |1〉|1〉.

The later one is an entangled state, and not a copy of the input state.

One can apply the same logic as the above and gets

U|0〉|b〉= |0〉|0〉,

U|1〉|b〉= |1〉|1〉.

But,

U(|0〉+ |1〉)⊗|b〉 = U|0〉|b〉+U|1〉|b〉

= |0〉|0〉+ |1〉|1〉.

Clearly, although it can copy two mutually orthogonal states perfectly, it cannot copy an
arbitrary state.

The inability to perfectly copy an unknown state restricts the capacity of an eaves-
dropper in quantum domain than in classical cases, assuring some security. However,
there are cloning machines indeed that can copy an arbitrary state up to some fidelity, if
not perfect. We’ll discuss it later.

2.6 Some Frequently Useful Results

We often use |a〉|b〉 in place of |a〉⊗ |b〉.

Result 2.6.1. |a〉|b〉 〈c|〈d|= |a〉〈c|⊗ |b〉〈d|

Result 2.6.2.
(

Ô1⊗ Ô2

)(
|c〉⊗ |d〉

)
=
(

Ô1|c〉
)
⊗
(

Ô2|d〉
)

Result 2.6.3. Tr
(
|a〉〈b|

)
= 〈b|a〉

Result 2.6.4. For two density operators ρA,ρB with two parties Alice and Bob,

TrA
(
ρA⊗ρB

)
= Tr

(
ρA
)

ρB,

TrB
(
ρA⊗ρB

)
= ρATr

(
ρB
)
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Result 2.6.5. For elements |z1〉, |z2〉 ∈ C×C,

〈z1|z2〉+ 〈z2|z1〉 = 2Re〈z1|z2〉,

〈z1|z2〉−〈z2|z1〉 = i ·2Re〈z1|z2〉.

2.7 Quantum Key Distribution

The existing classical way of communicating secret information depends mainly on the
RSA cryptosystem where the security is based on the hardness of factorization etc. How-
ever, Shor’s algorithm can efficiently break the RSA encryption. As soon as a quantum
computer is realized, the current way of communication is no more secure. On the other
hand, QKD has shown the promise to establish secret keys among two parties, albeit a bit
inefficient in terms of key-rate etc.

From its inception, this particular discipline has come up with some protocols
to allow two legitimate parties share some secret key bit-stream. It started with
BB84 [BB84, BB14] which is a prepare-and-measure type scheme. It uses two con-
jugate bases to encode a classical bit into a quantum bit. Later, Bruß [Bru98, 6s] ex-
tended it with a third basis for encoding spanning the whole Bloch sphere. Bennett made
a simplification to his 4s protocol to come up with a 2s protocol using only two non-
orthogonal bases [Ben92, 2s]. Ekert provided an entanglement based protocol [Eke91,
eb] that certifies security via Bell violation. Bennett et al. further (being a bit critic) con-
nected [BBM92] this eb protocol to BB84 and shown that Bell violation is not essential
to provide security in QKD.

Subsec. 2.7.1 provides a brief overview of the BB84 protocol and the encoding model.
The basic structure for classical post-processing to filter a secret key from a partially secret
and erroneous key is also briefed therein. Subsec. 2.7.2 discusses the other protocols as
mentioned above. Subsec. 2.7.3 describes a broad overview of the eavesdropping models
with some illustrations.

2.7.1 The BB84 protocol [BB84, p&m]

The BB84 protocol [BB84] can establish an information-theoretically secure secret key
between two distant parties. Alice encodes a stream of classical bits (cbits) into an en-
semble of quantum bits (qubits) using two mutually unbiased bases (MUBs). She then
transmits the qubits one-by-one over a quantum channel. Bob, at the receiving end, mea-
sures individually in one of the encoding bases, chosen randomly. Later they reconcile
bases publicly over an authenticated classical channel to filtrate a sifted key.

However, the quantum channel may introduce errors in the flying qubits. Or, an eaves-
dropper may try to listen to the channel. She may either measure the qubit in some basis
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(that may not match that of Alice) and resend the resulted qubit to Bob. Or, she may attach
some ancilla qubit with it, evolve the joint system unitarily, and release the carrier qubit
towards Bob, and measures her qubit later. In any case, her attempt to learn the state of the
qubit introduces an error, which is detectable by the legitimate parties by estimating the
error rate. Here comes the advantage of quantum mechanics over classical cryptography.
Masking a classical bit by a basis state does the job difficult for Eve to choose a correct
basis. A wrong choice randomizes the state where Bob may get the error.

Alice uses two bases, indexed 0,1: basis 0 is the computational basis {|0〉, |1〉}, while
basis 1 is the Hadamard basis {|+〉, |−〉}. Fig. 2.4 captures the encoding process. A more
details of the encoding is given at the end of this section.

Table 2.1 | BB84 exemplified.

Alice encodes cbits 0,1 in randomly chosen bases z,x. Bob measures in randomly chosen
bases z,x. For matching bases, he gets the outcome in sync that defines the raw key.
For mismatching bases, his outcomes are randomized (?) and are disregarded. This is
the scenario with no eavesdropping.

Alice cbits 0 1 0 0 1 0 1 1 1 0 0
bases z x x x z x z z x z z
qubits |0〉z |1〉x |0〉x |0〉x |1〉z |0〉x |1〉z |1〉z |1〉x |0〉z |0〉z

Bob bases z z x z x x z x z z x
cbits 0 ? 0 ? ? 0 1 ? ? 0 ?



2.7. Quantum Key Distribution 35

Let’s describe the protocol briefly. An example in Table 2.1 may help to better under-
stand the steps of the protocol.

1. Alice wants to share a bit-string a1a2 . . .an with Bob, where each bit is cho-
sen randomly. She chooses another random bit-string β1β2 . . .βn, where each bit
stands for her choice of the encoding basis. She then prepares the qubit-stream
|a1〉β1|a2〉β2 . . . |an〉βn and sends the qubits one-by-one over the quantum channel to
Bob. For instance, if ai = 1 = bi, she sends |−〉.

2. Bob chooses a base-string β ′1β ′2 . . .β
′
n randomly and measures the received qubits

one-by-one in those bases. The resulting bit-string a′1a′2 . . .a
′
n is called the raw key.

3. They publicly compare their base-strings. For the mis-matched positions, they dis-
card the bits in their own bit-string. The remaining bit-string is called the sifted key.
Since Bob may choose roughly half of the bases wrong, the length of the sifted key
is half of the raw key.

4. The sifted keys match only in error-free channel. For an erroneous channel, they
need to estimate the error-rate from their sifted key. They choose half of the po-
sitions randomly and compare their respective bits publicly. The fraction of the
mismatches provides a good estimate of the error-rate for a large key. If the error-
rate is crosses some threshold, they abort the protocol, as no further filtering is
possible beyond that. Otherwise, the continue further with a refined string where
the compared bits are discarded. Again, the key-length is halved.

5. The remaining bit-string contains errors, but at unknown locations. They now per-
form classical post-processing of their respective bit-strings. Information reconcil-

iation allows them to discard or remove the errors and filtrate an identical shared
string. Although error-free, Eve may have partial knowledge on this string which
could be essentially eliminated using some privacy amplification procedure.

Classical post-processing

Eavesdropping introduces disturbance in the quantum channel. Thus, the sifted key with
Bob may not match that of Alice. They can estimate the error-rate by publicly com-
paring some part of it. If it is within a threshold value, they can perform the classical
post-processing. First, they should remove or rectify the errors to come up with a com-
mon string. But, Eve still may have some knowledge on it, that could be eliminated by
shortening the string intelligently. Some more details can be found in Chap. 7.
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2.7.1.1 More about the transmission

The MUBs and the states Alice and Bob want to share a secret key using BB84 pro-
tocol. To encode a classical bit into a quantum bit, Alice randomly chooses a basis from
Bxy = {|x〉, |y〉} and Buv = {|u〉, |v〉}, where

|x〉= 1√
2

(
|u〉+ |v〉

)
, |y〉= 1√

2

(
|u〉− |v〉

)
, (2.1)

i.e., the bases are conjugate to each other. She encodes 0 into either |x〉, or, |u〉 depending
on whether she has randomly chosen a basis xy, or, uv, respectively. Similarly, she encodes
1 into |y〉, or, |v〉. The encoding bases are better understood from Fig. 2.4.

Alice encodes her key-bits, each as a polarized photon, and sends it to Bob.

Figure 2.4 | Two encoding bases of BB84.

Two encoding bases for the sender, conjugate to each other: the computational basis
{|x〉, |y〉}, and the Hadamard basis {|u〉, |v〉}. 0 is encoded by |x〉, or |u〉; 1 is encoded
by |y〉, or |v〉.

|x〉0

|y〉

1 |u〉
0

|v〉
1

Receiving end Upon receiving a signal, Bob measures it randomly in one of the bases
xy, or, uv and registers the outcome cbit. Once done with all the transmitted signals, he is
left with a bit-stream, called the raw key.

Then, the legitimate parties use the public classical channel for basis reconciliation.
Both the legitimate parties makes their choice of bases public. Wherever they agree,
the corresponding cbits are retained and the rest of the bits due to mismatched bases are
thrown out. Approximately half of the bit-stream gets wasted. The remaining bit-stream
is called the sifted key.

Then, they use the classical channel to estimate the error-rate of the quantum channel.
For that, they choose a stipulated sequence of bits from the sifted key and publicly tally
their bits for those positions. The amount of mismatches are noted down, and the fraction
of mismatches is denoted the quantum bit error rate (QBER).
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A classical post-processing is done on the sifted key, if the error rate is within a toler-
able limit.

Alice’s encoding For encoding, Alice uses two orthonormal bases conjugate to each
other: the computational basis, and the Hadamard basis. The basis states correspond to
the eigenstates of the phase-flip operator σz and bit-flip operator σx, respectively. The
following notations for the bases and their states are used interchangeably throughout the
thesis.

Table 2.2 | Different symbols to denote Alice’s encoding.

Alice uses two conjugate bases each having two basis states to encode the key-bits.

Computational basis Hadamard basis

Basis States Basis States

+ {|0〉, |1〉} × { |0〉+|1〉√
2

, |0〉−|1〉√
2
}

Various labellings used

xy {|x〉, |y〉} uv {|u〉, |v〉}
0 {|0〉0, |1〉0} 1 {|0〉1, |1〉1}
Z {|+z〉, |−z〉} X {|+x〉, |−x〉}

= {|0z〉, |1z〉} = {|0x〉, |1x〉}

β̄ denotes the conjugate of a basis β . The Hadamard transform H := 1√
2

(
σz +σx

)
flips the bases (H : β 7→ β̄ ) while the basis states can be written with respect to the com-
putational basis elements as |a〉β = Hβ |a〉 for a = 0,1. The orthogonal counterpart of a
state |a〉 is denoted by |a⊕ 1〉 or |ā〉. Alice encodes the cbit 0 into a qubit in state |x〉 or
|u〉, and encodes 1 into |y〉 or |v〉.

2.7.2 Other protocols

2.7.2.1 6s protocol [Bru98, p&m]

It considers 3 mutually unbiased bases for encoding two bits.

|0z〉 := |0〉, |1z〉 := |1〉,
|0x〉 := 1√

2
(|0〉+ |1〉), |1x〉 := 1√

2
(|0〉− |1〉),

|0y〉 := 1√
2
(|0〉+ i|1〉), |1y〉 := 1√

2
(|0〉− i|1〉).

The bases are also denoted in short as Z,Y,X , respectively. In the QKD protocol, the prior
probability to randomly choose one such basis is 1

3 .
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Figure 2.5 | Measurement bases for E-91 protocol.

Alice and Bob uses two measurement setups, as in left and right, respectively. The
measurement directions with Alice are â1, â2, â3, corresponding to azimuthal angles
φa = 0, π

4 ,
π

2 . Bob uses directions b̂1, b̂2, b̂3, with angles φb =
π

4 ,
π

2 ,
3π

4 . The matching
directions lead to the key, while the mismatched directions allow to test CHSH violation.

x
â1

y

â3
â2

x

y

b̂2
b̂1

b̂3

The 6s protocol provides more symmetry than its 4s counterpart when the Bloch
sphere representation is considered. The three bases describe the three mutually orthog-
onal directions that span the entire Bloch sphere. While, for the BB84 protocol, the two
bases covers only two orthogonal directions and span a great circle on the Bloch sphere.
That symmetry for the 6s protocol often found to provide less number of parameters to
describe an optimal attack, reduces Eve’s maximum information on the transmitted states,
and greatly simplifies the security analysis. For an IR-attack, the 6s protocol can tolerate
a QBER of 33%, compare to 25% of the 4s protocol.

2.7.2.2 E-91 protocol [Eke91, eb]

It is an eb scheme that uses an EPR-pair to encode a classical bit and distribute the two
particles to the two legitimate parties.

1. Let’s choose the EPR-pair (either distributed by a source, or by Alice) as the fol-
lowing maximally entangled Bell state.

|ψ−〉AB :=
1√
2
(|01〉− |10〉)β .

It is worthy to note that the state looks same in any orthonormal basis β .

2. As in Fig. 2.5, each of Alice and Bob use three measurement directions âi, and b̂ j

(i, j = 1,2,3), respectively, with outcomes ±1 . They publicly tally their measure-
ment choices. The outcomes can be divided into two groups as follows:

(a) For mismatched directions, they make the outcomes public, which allows
them to test the CHSH inequality. So far the inequality is violated, there is
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some entanglement remained and they can perform classical post-processing
on their strings to come up with a shared secret key. The inequality is de-
scribed below.
Let pλ ,µ(âi, b̂ j) denotes the probability that Alice-Bob chooses measurement
direction âi, b̂ j and get outcome λ ,µ ∈ {+1,−1}. Define the correlation co-
efficients (i.e., expected value of the outcomes in this case)

E(âi, b̂ j) := p+,+(âi, b̂ j)+ p−,−(âi, b̂ j)− p+,−(âi, b̂ j)− p−,+(âi, b̂ j).

Then, the CHSH correlation coefficient is defined as 4

S := E(â1, b̂1)−E(â1, b̂3)+E(â3, b̂1)+E(â3, b̂3).

In absence of any disturbance (eavesdropping), the quantum measurement will
find the value S = −2

√
2, which violates the CHSH inequality |S| ≤ 2. Pres-

ence of noise leaves it in the range 2 < |S|< 2
√

2. If |S|< 2, the shared state
is no more entangled.

(b) For matched directions, their measurements along the same axis are anti-
correlated, i.e.,

E(â2, b̂1) = E(â3, b̂2) =−1.

The outcomes for these measurements are the raw key, once Bob flips his bits.
They can perform classical post-processing on their strings to come up with a
shared secret key.

An attempt to eavesdropping actually introduces elements of physical reality to perturb
the orientation of the particle and reduces the quantum value of S.

Compare with the BB84 protocol: E-91 protocol provides less throughput than
BB84, as the fraction of reconciled bases is lower than that of BB84. But, eavesdropping
causes higher error rate for E91. For instance, IR attack introduces 33% error than 25%
for BB84. The maximum information that Eve learns is also less than that for BB84. The
symmetry of the qubit states simplifies the security analysis.

Note 2.1. A lot of similar results are observed among the E-91 protocol and the BB84

protocol, that points to an interesting connection between these two protocols. Note that,

while E-91 protocol deals with two qubits for distributing data, the BB84 protocol uses

only one. Thereby, any unitary evolution (that realizes the noise in the channel) that may

evolve the two qubits in the earlier scheme, have a counterpart unitary evolution to work

4The only negative sign corresponds to the two directions making 145◦angle, all other angles are 45◦.
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on only one of the qubits as desired by the later scheme.

U1⊗U2|φ−〉 = 1⊗U2U†
1 |φ
−〉.

However, Bell test is not essential to certify security and a simpler measurement can
serve the purpose as follows.

2.7.2.3 BBM92 protocol [BBM92, connects p&m to eb]

It is a p&m protocol to complement eb E91. A source distributes legitimate parties halves
of EPR-pairs. The legitimate parties measure only two MUBs (Z,X). It makes BBM92
more efficient than E91 which uses three bases. During basis reconciliation, their raw
key consists of the bits for matched bases where they obtain correlated measurement
outcomes. A part of it is then sacrificed to publicly estimate the QBER.

BBM92 actually connects E91 to BB84, while being a critic of the former. If Alice is
to distribute the data, her measurement (Z/X) would collapse the EPR state to a product
state, as if she prepared the state for Bob and sent to him. That’s precisely the scenario
for BB84 which doesn’t need a Bell test to certify security. This observation is the base
for eb version of the p&m protocols, useful to prove the security.

The security argument is as follows. An eavesdropper cannot gain any information
without introducing disturbance which is detectable. Suppose, Eve interacts via a probe,
which was in state |E〉 before interaction. For Alice’s arbitrary two states |s〉, |t〉, let the
unitary interaction go as follows:

|s〉|E〉 7→ |s〉|Es〉,

|t〉|E〉 7→ |t〉|Et〉.

Unitarity preserves the inner product:

〈s|t〉〈E|E〉 = 〈s|t〉〈Es|Et〉.

If the Alice’s two states are non-orthogonal, they have a non-zero overlap. Then, the over-
lap between Eve’s two post-interaction states must be 1, leaving them indistinguishable.

In order to distinguish them, she must introduce an error. Then, the PIJS cannot be
a product state, it goes entangled. The legitimate parties can detect it by comparing a
subsequence of the raw key.



2.7. Quantum Key Distribution 41

2.7.2.4 2s protocol [Ben92, p&m]

In 1992, Bennett suggested a simplification on his celebrated BB84 protocol by incorpo-
rating only two non-orthogonal states for encoding. It serves the purpose that an eaves-
dropper cannot distinguish them unambiguously. Although it allowed the experiments to
become easier, it is performance is quite poor than BB84, e.g., the noise tolerance level.
The protocol is as follows, illustrated for a special case.

1. Alice encodes cbits 0, 1 into qubits |a0〉, |a1〉, respectively. The qubits are non-
orthogonal to forbid Eve getting full information. For simplicity, let’s consider

|a0〉= |0z〉 |a1〉= |0x〉.

2. Bob randomly measures σz or σx.
Note that, σz detects |a0〉 perfectly, while randomizes |a1〉. On the other hand, σx

detects |a1〉 perfectly, while randomizes |a0〉. The distribution of Bob’s outcome is
given below.

H
HHH

HHA
B σz σx

0z 1z 0x 1x

0z 1 0 1/2 1/2

0x 1/2 1/2 1 0

Table 2.3 The probabilities P(B = b|A = a).

Comes to Bob’s strategy to interpret, consider the probabilities P(A = a|B = b).

P(A = 0x|B = 1z) = P(A = 0z|B = 1x) = 1.

Thus, whenever Bob gets 1z, he interprets Alice’s bit as 1, and whenever Bob gets
1x, he interprets Alice’s bit as 0. The remaining outcomes are labeled inconclusive.

3. Bob intimates Alice publicly the inconclusive positions and individually discard
those bits. The conclusive remnant should agree with probability 1 in absence of
eavesdropping, which consists the raw key.

4. To detect any eavesdropping that might have altered the states, the legitimate parties
can publicly tally a fraction of their supposed-to-be identical bits (and later discard)
to estimate the error rate, that may follow a classical post-processing.
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2.7.3 Eavesdropping strategies

As Alice’s qubits moves through the quantum channel, Eve has the liberty to attack the
qubits in various ways, and measure till she can maintain her register. Some categorization
can be considered as follows.

• Individual attack: Eve can interact as well measure each qubit separately.

• Coherent attack: Eve can interact as well measure a whole chunk of qubits at a go.

• Collective attack: Eve can interact individually, but measures a whole chunk of
qubits. It leads to more information than individual attack.
The measurement timing for Eve is also a factor. She can measure either immedi-
ately, or after post-processing, or anywhere in between depending on her capacity
to store her ancilla system.

The first kind of attack model itself may be considered with different varieties.

• Intercept-Resend: Eve measures each qubit on the fly. She may measure in the
same bases as that of the legitimate parties.

• Measure in the Intermediate basis: Eve measures each qubit on the fly. She may
choose her own orthonormal bases for measurement. An optimal attack corresponds
to the measurement in the Breidbart basis [BBBW82].

• Translucent attack: Eve can attach an ancilla with Alice’s qubit, evolve the joint
system unitarily to glean some information from Alice’s qubit into her ancilla, and
measures later until bases reconciliation is done by the legitimate parties. For in-
stance, [FGG+97] falls into that category.

In any of such category or sub-category of eavesdropping under consideration, one of
the important objective remains is to figure out those attacks which leads to maximum
information gain among all others. Our objective in this thesis is to study such attacks in
the name of optimal eavesdropping. Any such optimal attack corresponds to a strategy
that interprets Eve’s measurement outcomes as the best guess on Alice’s signal: such a
strategy is called optimal strategy.

For individual attacks, all the three parties are left with a classical random variable out
of their measurement results, and the joint distribution can directly be analyzed for the
classical post-processing.

We discuss in this section the first two of the individual attacks. The translucent
attack will be discussed in detail in the subsequent chapters. We’ll also discuss coherent
attacks later in a dedicated chapter as well. The protocol that we’ll consider as BB84 for
consistency and comparison of results. But, the results for the corresponding six-state
protocol will also be briefed for completeness.
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2.7.3.1 Intercept-Resend attack

In this attack model, Eve introduces a fixed QBER of 25% in the channel between Alice
and Bob. It is so because, Eve measures in the matching basis 50% of the time, and ran-
domizes the state in other 50% of the cases. In the former case, (after basis reconciliation,
Bob’s base is same as that of Alice,) Bob’s base matches both of Alice and Eve leading
Bob get the correct result always. In the later case, as Eve has altered the state, Bob gets
wrong result in half the cases, leading to the QBER.

We’ll show here that Eve gains an information that amounts to 1/2 bpsp (bits per send
photon), with success probability 3/4.

The MI among Alice and Eve is defined as follows

IAE = H(A)−H(A|E).

It indicates the drop in entropy in Alice’s random variable due to measurement knowledge
of Eve. The above two entropies are defined on the prior and the posterior probability dis-
tribution, respectively. Since Alice’s distribution is uniform, H(A) = 1. The later entropy
is defined as follows

H(A|E) = ∑
e

P(E = e)H(A|E = e),

H(A|E = e) = −∑
a

P(a|e) log2 P(a|e).

The posterior probability P(a|e) that Eve actually gets Alice’s bit a, given that Eve’s
outcome is e, can be given by the Baye’s rule

P(a|e) =
P(e|a)P(a)

P(e)
,

P(e) = ∑
a

P(e|a)P(a).

The distribution of Alice-Eve is given as below For any state from Alice, Eve can get one

HH
HHHHA

E
0z 1z 0x 1x

0z 1 0 1/2 1/2

1z 0 1 1/2 1/2

0x 1/2 1/2 1 0
1x 1/2 1/2 0 1

1/2 1/2 1/2 1/2

Table 2.4 The probabilities P(E = e|A = a). Last row indicates the probabilities P(E = e).

of the four states 0z,1z,0x,1x. Let, due to basis reconciliation, (w.l.o.g.) Alice and Bob
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agrees with the basis Z. Then, we get

P(A = 0z|E = 0z) = 1, P(A = 0z|E = 0x) = 1/2, P(E = e) = 1/2.

Therefore,

IAE = 1− 1
2

h(1)− 1
2

h
(

1
2

)
=

1
2
.

However,

IAB = 1−h
(

1
4

)
≈ 0.19 < 0.5 = IAE.

Since Bob’s information is less than Eve’s information on Alice’s bit, an OWCPP is un-
faithful.

2.7.3.2 Measure in the Intermediate basis [BBBW82]

In this case, Eve measures in an intermediate basis than what Alice uses. The optimal
attack stands for the Breidbart basis that is the clockwise π/8 rotation of the computational
basis.

Figure 2.6 | Attacking BB84 with intermediate basis: optimal for Breidbart ba-
sis [BBBW82].

Two MUBs for Alice to encode the bitstream: the computational basis {|x〉, |y〉}, and
the Hadamard basis {|u〉, |v〉}. 0 is encoded by |x〉, or |u〉; 1 is encoded by |y〉, or
|v〉. Eve uses an intermediate basis |E0〉θ , |E1〉θ which is the clockwise θ rotation
of the computational basis. The optimal attack stands for the Breidbart basis which
corresponds to clockwise π/8 = 22.50 rotation.

|x〉0

|y〉

1
|u〉

0

|v〉
1

|E0〉θ

|E1〉θ

θ

θ
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Eve’s probability of correct guess is

Pc = cos2(π/8) =
1
2

(
1+

1√
2

)
= 0.854,

corresponding to

QBER = 2Pc(1−Pc) = 25%,

and Shannon information gain

IE = 1−H(Pc) = 0.399.

Here we provide a brief outline of the proof.

Eve measures with the projectors

E0 := |E0〉〈E0|, E1 := |E1〉〈E1| with E0 +E1 = 1,

where the measurement directions correspond to anti-clockwise θ rotation of the compu-
tational basis, defined as follows

|E0〉 = cosθ |x〉− sinθ |y〉,

|E1〉 = sinθ |x〉+ cosθ |y〉. (2.2)

As visible in Fig. 2.6, |E0〉 is close to |x〉, |v〉, while |E1〉 is close to |y〉, |u〉. Thus, Eve’s
strategy will be to interpret outcome 0 as |x〉, |v〉 and outcome 1 as |y〉, |u〉. Her probability
of success is then

FE = Pr(success) =
1
4
(
〈x|E0|x〉+ 〈v|E0|v〉+ 〈y|E1|y〉+ 〈u|E1|u〉

)
=

1
4

(
|〈x|E0〉|2 + |〈v|E0〉|2 + |〈y|E1〉|2 + |〈u|E1〉|2

)
.

For the defined measurement directions, we get

FE =
1
2
+

1
4
(cos2θ + sin2θ) .

The maximum takes place (by equating its first derivative to zero) when tan2θ = 1, i.e.,
at θ = π/8 = 22.50. The corresponding basis is called the Breidbart basis. In that case,
the QBER with Bob is also minimized, as Eve measures and passes the states |E0〉, |E1〉
to Bob.

Bob commits an error, when say, Alice sends x, Bob gets y etc. (other cases are
symmetric), irrespective of whatever state (E0,E1) is send by Eve. Due to Eve’s strategy,
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when Alice sends |x〉, Eve gets |E0〉 with proportion FE, and she gets |E1〉 with proportion
1−FE. Thus, Bob experiences a QBER

D = FE〈E0|By|E0〉+(1−FE)〈E1|By|E1〉

= FE|〈y|E0〉|2 +(1−FE)|〈y|E1〉|2

= FE sin2
θ +(1−FE)cos2

θ ,

when Bob’s projector By = |y〉〈y| clicks. It is enough to consider this case, as the other
prior probability weightings of |x〉, |y〉 are all equal. It turns out that

D = 2FE(1−FE),

D =
1
4
.

So, the legitimate parties can detect Eve if they find a quarter of the data incorrect.
However,

IAB = 1−h
(

1
4

)
≈ 0.19 < 0.39 = IAE.

Since Bob’s information is less than Eve’s information on Alice’s bit, an OWCPP is un-
faithful.



CHAPTER 3

EXISTING WORKS ON OPTIMAL
EAVESDROPPING

The framework of optimal eavesdropping using ancillary probe on the BB84 proto-
col [BB84] was addressed in [FGG+97]. The attacker applies a suitable unitary evolution
to entangle her probe with the senders signal, and the joint system is later measured by
a specific POVM. The amount of information gathered by Eve is quantified by two func-
tions: IG, and MI. The maximum amount of information is then calculated for both the
quantifiers for each of the signal basis. An optimal interaction is suggested there that can
achieve the maximum of information. The associated optimal measurement is specified as
well. Verification of optimality is subjected to satisfying a set of necessary and sufficient
conditions.

An attackers presence gets detected by estimating the amount of error introduced and
is calculated for each of the bases. The above analysis considered the general scenario
with asymmetric error rate for the two bases. Generally, for practical purposes, the error
rate becomes equal across the two bases. Such a symmetric attack is further discussed.
Another optimal interaction is specified therein.

Such an attack can withstand some level of disturbance in the channel, beyond which
a key distillation is not possible. That critical value is calculated following a logic that the
receivers information must dominate that of the attacker. The key-rate can be calculated
from the difference between these two informations, and we have plotted it within the
tolerable error limit.

Some generalizations are done in [AP17], and we have placed some of that discussion
here only to retain the flow of thoughts.
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3.1 Brief overview

3.1.1 Eavesdropping

A third party (Eve) is allowed to tamper the quantum channel. However, any approach to
learn the state of the qubit introduces an error which is further detectable by the recipient.
The legitimate parties can estimate the quantum bit error rate (QBER) by discussing over
the public channel on a part of the sifted key. Within a threshold value QBER?, a classical
post-processing (CPP) is faithful to filter a shared secret on which Eve has virtually no
information.

3.1.2 The attack model by Fuchs et al. [FGG+97]

An advanced eavesdropping model [FGG+97] is to extract the information of a transmit-
ted qubit via an ancilla qubit by interacting unitarily. Given that the attacker is allowed to
defer her measurement until after basis reconciliation, an one-way (OW) CPP is faithful
if the estimated QBER remains below the critical value 0.1464 where the secret key-rate
becomes zero. The authors could estimate the maximum knowledge gain (KG) by an
attacker that eventually appeared a tight bound due to an witness interaction. Nonethe-
less, there could be infinitely many such saturating candidates (interactions) which are
unitarily equivalent [AP17]. In that attack model, a candidate interaction must pass a for-
mal verification of optimality, viz., a necessary and sufficient condition(NSC) [FGG+97]
involving the joint Hilbert space of the sender and the attacker.

Chapter organization

The section wise work-flow is as follows. Sec. 3.3 is dedicated to discuss the attack model
provided by [FGG+97]. Sec. 3.3.9 presents the excerpts of the attack: a circuit diagram,
some practical sides of the eavesdropping like key-rate etc. All the detailed calculations
and ideas are deferred to Sec. 3.4. The chapter ends with a brief conclusion and by
mentioning the further scopes to explore.

The main results are briefly described in Sec. 3.3. It includes the mathematical frame-
work of optimal eavesdropping, the functions to be optimized, a necessary and sufficient
condition for optimality, an optimal interaction and its optimal POVM. Some technical
details are provided in Sec. 3.3.11. The main results are however proved in Sec. 3.4 with
the proofs in between the lines placed at the end.
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3.2 Notations and some results in use

Notation: For a function parametrized by an index i, argmax of the function is that par-
ticular index for which the functional value is maximum among all other indices. Mathe-
matically, argmax

i∈I
f (i) = j ∈ I : f ( j) = max

i
f (i).

3.2.1 Some useful results

Theorem 3.1 (Jensen’s inequality). If f (x) is a concave function of x, then a convex

combination of its functional values never exceeds the functional value of the same convex

combination of its arguments, i.e.,

∑qx f (x)≤ f
(
∑qxx

)
.

Equality occurs when all the x’s are equal.

In the domain x ∈ [0,1], we consider the concavity of some functions as below.

Lemma 3.1. z(x) :=
√

x(1−x) is a concave function of x.

Hint: Observe that its double derivative is negative:

z′′(x) =− 1
4z3(x)

< 0.

Lemma 3.2. The following function

φ(x) = (1+ x) ln(1+ x)+(1− x) ln(1− x)

is m.i., and non-concave.

Hint: The reason is that its first derivative is non-negative:

φ
′(x) = ln

(
1+ x
1− x

)
≥ ln1 = 0.

Result 4. It is useful to define 0ln0 := 0, i.e.,

lim
x→1

x lnx = 0.
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3.2.2 Concavity-diagram: Entropy, IG-max, MI-max, phiFunc

We plot here the following four functions to visualize their concavity in the domain x ∈
[0,1].

z(x) =
√

x(1−x)

φ(x) = (1+ x) ln(1+ x)+(1− x) ln(1− x)
1
2
·φ(2z(x))

H(x) = −x log(x)− (1− x) log(1− x).

Note that, while φ(x) is m.i., but, non-concave, φ(z(x)) is concave. We’ll see later that
2z(x) corresponds to IG-max, while 1

2φ(2z(x)) corresponds to MI-max for error-rate x in
the range of [0,1].

Figure 3.1 | Plotted: four functions for concavity: 2z(x), φ(x), 1
2 φ(2z(x)), H(x).

All are concave except φ(x) which is m.i.
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3.3 Broad overview: Our reformulation of Optimal inco-
herent Eavesdropping

Optimal eavesdropping means that an eavesdropper performs the interaction and the mea-
surement in such a way that she can extract maximum information about the signal sent
by Alice, ensuring that the disturbance at Bob’s end remains bounded by a suitable thresh-
old. In the QKD literature, it is interpreted as maximizing the information gain by Eve
or mutual information between Alice and Eve. For BB84 protocol, considering the inter-
action to be unitary and restricted to equal prior (px =

1
2 = py), Fuchs et al. [FGG+97]

provided an upper bound on information gain and mutual information over all possible
interaction-POVM pairs. A criterion to achieve the bounds was provided there. To show
that these bounds are attainable, an interaction-POVM pair for unequal error rates and
another for equal error rates were provided therein. These results are discussed briefly in
this section. Since these results hold for equal prior, the subsequent sections follow the
same assumption unless explicitly mentioned.

The analysis done here is kept close to [FGG+97] for easy comparison. However,
we have incorporated our own approach to tackle some of the problems and some results
of [AP17] are placed here to allow the overall concept become more clearer.

3.3.1 Basic ingredients

3.3.1.1 Mathematical modeling of eavesdropping

Suppose, an eavesdropper Eve interferes the communication and involve a probe to inter-
act unitarily with the qubit that was transmitted by Alice.

Suppose Alice has picked up a signal, say, |x〉 (corresponding density operator being
ρA

x = |x〉〈x| ), in the basis Bxy. Eve’s probe was initially in state |ψ0〉 (corresponding
density operator ρE

0 = |ψ0〉〈ψ0|). It interacts unitarily (the unitary operator U) with the
qubit sent by Alice. The post-interaction joint state |X〉 between Alice and Eve’s system
is an entangled state 1 realized by

|x〉⊗ |ψ0〉
U−−→ |X〉.

Thus, the state received by Bob is no more pure, but a simple mixture of the two basis
states (here Bxy) chosen by Alice. So, Bob’s density matrix is diagonal in the basis chosen
by Alice. Thus, the Schmidt decomposition of the post-interaction joint state |X〉 can be
written as

|X〉=
√

α |x〉|ξx〉+
√

1−α |y〉|ζx〉,

1If order to gain some information of Alice’s state, Eve must disturb it, allowing the joint system go
entangled.
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such that
|ξx〉 ⊥ |ζx〉, (3.1)

where |ξx〉, |ζx〉 are component of Eve’s part of the joint state post interaction.

Similarly, when Alice sends |y〉, the post-interaction state |Y 〉 must be of the form

|Y 〉=
√

β |y〉|ξy〉+
√

1−β |x〉|ζy〉,

such that
|ξy〉 ⊥ |ζy〉. (3.2)

The density operator for the post-interaction state |X〉 is given by

ρ
AE
x = |X〉〈X |= U

(
ρ

A
x ⊗ρ

E
0

)
U†. (3.3)

Eve’s description of her system will be

ρx := ρ
E
x = trA

(
ρ

AE
x

)
= trA

(
|X〉〈X |

)
, (3.4)

where trA represents the partial trace over Alice’s qubit.

Since the interaction is done unitarily, it follows from Eqs. (2.1, 3.3) that

|X〉= 1√
2

(
|U〉+ |V 〉

)
, |Y 〉= 1√

2

(
|U〉− |V 〉

)
. (3.5)

3.3.1.2 Eve’s measurement

Before performing any measurement on her ancilla, Eve waits until Alice’s declaration of
her choice of basis.

Eve’s measurement is considered to be a POVM [Fuc96, NC11]: {Eλ} or {Fλ} de-
pending on whether Alice’s choice is xy or uv basis. Denote them commonly as {Mλ}β .

For the BB84 protocol, for the [FGG+97] attack model, and for a reconciled basis, Eve
need to distinguish four states after an interaction. She needs to incorporate a generalized
measurement with four outcomes labeled by λ ∈ {0,1,2,3}.

She then interprets the outcome following a strategy which is a rule for Eve to assign
a guess for the state of the signal sent by Alice.

3.3.1.3 The probability space

Assume, Alice sends a signal in xy (or, uv) basis with the prior probabilities px, py (or,
pu, pv) respectively. As Alice reveals her basis to be xy, Eve uses a POVM {Eλ} to
measure her probe. Considering A,B,E as the random variables corresponding to the
signal sent by Alice, the signal received by Bob, and, the measurement outcome of Eve,
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the conditional probability of occurrence of various outcomes λ of that measurement for
an input state is given as follows.

Pλx := Pr[E = λ |A= x] = tr
(
ρxEλ

)
= 〈X |1⊗Eλ |X〉, (3.6)

Pλy := Pr[E = λ |A= y] = tr
(
ρyEλ

)
= 〈Y |1⊗Eλ |Y 〉. (3.7)

The probability that Eve gets an outcome λ , while Alice uses xy basis is therefore

qxy(λ ) := Pr[E = λ ] = Pλx px +Pλy py.

She needs to interpret the signal. Looking at outcome λ , Eve assigns a guess on the signal
sent by Alice guided by some strategy. The posterior probability Qxλ (or Qyλ ) of the event
that Alice had sent the signal x (or y) given that Eve has observed an outcome λ is given
by Bayes’ theorem.

Qxλ := Pr[A= x|E = λ ] =
Pλx px

qxy(λ )
,

Qyλ := Pr[A= y|E = λ ] =
Pλy py

qxy(λ )
.

3.3.1.4 Quantifying Eve’s information gain

A simple approach that Eve can utilize these likelihoods in order to to perform a guess
realized by the following function.

argmax{Qxλ ,Qyλ}=

x, if Qxλ > Qyλ ,

y, if Qyλ > Qxλ .

A convenient measure of Eve’s information gain for an outcome λ , as proposed in
[FGG+97], is

Gxy(λ ) :=
∣∣∣Qxλ −Qyλ

∣∣∣ .
On average, Eve’s information gain over all outcomes is

Gxy := ∑
λ

qxy(λ )Gxy(λ ) = ∑
λ

∣∣∣Pλx px−Pλy py

∣∣∣ .
In particular, for equiprobable signals,

Gxy =
1
2 ∑

λ

∣∣∣Pλx−Pλy

∣∣∣ .
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A more sophisticated way to process her outcome-statistics is mutual informa-
tion [CT06] that keeps track of all the qλ and Qiλ of her observations. For equal prior
probabilities of the input signals, this is given by

Ixy := ln2+∑
λ

qxy(λ )
(

Qxλ lnQxλ +Qyλ lnQyλ

)
.

Similarly, one can define Guv, Iuv,Duv while considering Alice’s signal was prepared in uv

basis. For simplicity, we drop the subscripts xy and uv, and use G, I, when both the bases
to be considered in discussion.

3.3.1.5 Eve’s strategy and probability of success Pr(success) on a correct guess

Definition 3.1. A strategy S of Eve is a function S(λ ) which assigns a unique guess of the

signal sent by Alice given the measurement outcome λ of Eve.

Definition 3.2. Given an observation λ , if Eve’s guess matches the signal sent by Alice,

i.e., S(λ ) = A, we call the event a success.

Definition 3.3. The conditional success probability of Eve is given by

Pr(success|E = λ ) := Pr
[
S(λ ) = A|E = λ

]
and the success probability of Eve is given by

Pr(success) := ∑
λ

Pr
[
E = λ

]
.Pr
[
S(λ ) = A|E = λ

]
Definition 3.4. Among all possible strategies, the one providing the maximum success

probability is called2 the optimal strategy Sopt and the corresponding success probability

is called the optimal success probability Propt(success).

Eve’s probability of success and failure to recognize Alice’s states correctly are de-
noted as FE

xy, and DE
xy := 1−FE

xy respectively. Those depends actually on the overlap of
her non-orthogonal states.

Eve’s objective is to achieve maximum of these parameters: IG, MI, PS, whenever
possible. We’ll show a relation between the optimal values of these parameters.

2We use ’opt’ and ? interchangeably to demarcate optimal quantities.
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3.3.1.6 Disturbance at Bob’s end

Eve’s unitary interaction creates entanglement, and thereby, introduces disturbance to
the signal sent by Alice which is detectable by Bob. Considering the signal sent in xy

basis, the disturbance introduced by Eve could be described by

Dxy := ∑
λ

qxy(λ )dxy(λ ),

where, dxy(λ ) is the average error for Bob to read the signal that was sent by Alice while
Eve finds an outcome λ . For equal prior,

dxy(λ ) :=
1
2

(
dλx +dλy

)
,

where, dλx is the error for Bob as Alice sends x and Eve detects λ (i.e., Bob reads y), i.e.,

dλx := Pr[B = y|(A= x,E = λ )],

and dλy is the error for Bob as Alice sends y and Eve detects λ (i.e., Bob reads x), i.e.,

dλy := Pr[B = x|(A= y,E = λ )].

Clearly, Dxy is the observable error rate that Bob experiences in order to read the signal
sent by Alice prepared in xy basis. Fxy = 1−Dxy is the fraction of correctly received
states.

The presence of Eve introduces an error Dxy in the channel between the two legitimate
parties. The channel works like a binary symmetric channel with bit-flip rate Dxy. On the
other hand, Eve creates for herself another binary symmetric channel with bit-flip rate
DE

xy.

3.3.2 Eve’s max. information: Maximum IG and MI

For equal prior, Fuchs et al. [FGG+97] deduced an upper bound on the information gain
(G). It was then used to provide another upper bound on the mutual information (I).
A necessary and sufficient condition to achieve the maximum values was also provided
therein. We recollect these results here.

Proposition 3.1. (An upper bound on information gain (G)) [FGG+97, Eqs. (23,24)]

Gxy ≤ 2
√

Duv(1−Duv), (3.3.2.1)

Guv ≤ 2
√

Dxy
(
1−Dxy

)
. (3.3.2.2)
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To be more individual, for a measurement outcome λ with Eve, the bound on information

gain [FGG+97, Eq. (20)] is expressed by the following inequality

Gxy(λ ) ≤ 2
√

duv(λ )
[
1−duv(λ )

]
. (3.3.2.3)

Interestingly, while Eve’s information gain corresponds to signals sent in the xy basis,
Bob’s error rate corresponds to signals sent in the uv basis and vice versa.

Proposition 3.2. (An Upper Bound on Mutual Information (I)) [FGG+97, Eqs. (31,32)]

Ixy ≤
1
2

φ

[
2
√

Duv(1−Duv)
]
, (3.3.2.4)

Iuv ≤
1
2

φ

[
2
√

Dxy
(
1−Dxy

)]
, (3.3.2.5)

where φ(z) = (1+ z) ln(1+ z)+(1− z) ln(1− z).

The basis-subscripts in the inequations emphasize that the mutual information and the
error rate in the upper bound refer to signals sent in two different bases. We’ll use bpsp

(bits per send photon) to scale mutual information among two parties.

3.3.3 Certify optimality: a necessary and sufficient condition

Proposition 3.3. (Necessary and Sufficient Conditions to Achieve G?)3 [FGG+97,
Eqs. (38,39)]
The necessary and sufficient conditions for equality in Eq. (3.3.2.1) are

|Vλu〉 = ελ

√
Duv

1−Duv
|Uλu〉 (3.3.3.1)

and

|Uλv〉 = ελ

√
Duv

1−Duv
|Vλv〉, (3.3.3.2)

where

ελ = ±1 = sgn
(

Qxλ −Qyλ

)
(3.3.3.3)

3q? denotes optimal (maximum) value for any quantity q.
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and

|Uλu〉= Bu⊗
√

Eλ |U〉, |Vλu〉= Bu⊗
√

Eλ |V 〉,

|Uλv〉= Bv⊗
√

Eλ |U〉, |Vλv〉= Bv⊗
√

Eλ |V 〉,

Bu = |u〉〈u|, Bv = |v〉〈v|, with Bu +Bv = 1. (3.3.3.4)

Similar conditions hold for a signal prepared in uv basis to attain the equality in

Eq. (3.3.2.2).

It is quite worthy to note that the set of conditions that optimize the info-gain G also
optimizes the mutual info I. Therefore, the necessary and sufficient conditions for equality
in Eqs. (3.3.2.4, 3.3.2.5) becomes the same as those in Proposition 3.3. That is to say, for
a signal sent in xy basis, an interaction-POVM tuple that attains the bound in Eq. (3.3.2.1)
does the same in Eq. (3.3.2.4) and vice versa. Moreover, for the other basis, similar
statement holds for Eqs. (3.3.2.2) and (3.3.2.5).

3.3.4 The postinteraction joint states

Eve’s objective is to maximize the functions G or I, irrespective of what MUB was
used by Alice for encoding. Both the bounds (3.3.2.4, 3.3.2.5) [and therefore the
bounds (3.3.2.1, 3.3.2.2)] could be achieved simultaneously while fixing Dxy,Duv inde-
pendently. One of the conditions that must hold to achieve the bounds in xy basis is the
following [FGG+97, Eq. (33)]:

dλu = dλv = duv(λ ) = Duv, ∀λ .

An analogous condition holds good for signals sent in the uv basis.

Thus, for a signal sent in xy basis, the Schmidt decomposition of the postinteraction
states are

|X〉 =
√

1−Dxy |x〉|ξx〉+
√

Dxy |y〉|ζx〉,

|Y 〉 =
√

1−Dxy |y〉|ξy〉+
√

Dxy |x〉|ζy〉. (3.3.4.1)

Assuming that all inner products 〈ξi|ζ j〉 are real, the restrictions (3.1, 3.2) on |ξi〉, |ζ j〉
becomes more restricted as

{|ξx〉, |ξy〉} ⊥ {|ζx〉, |ζy〉}. (3.3.4.2)
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Similarly, for a signal sent in uv basis, the post-interaction states are

|U〉 =
√

1−Duv |u〉|ξu〉+
√

Duv |v〉|ζu〉,

|V 〉 =
√

1−Duv |v〉|ξv〉+
√

Duv |u〉|ζv〉. (3.3.4.3)

From the orthogonality relation (3.3.4.2), one can conclude that Eve’s probe lives in a
Hilbert space having dimension at most four, and thereby is safe to consider 2 qubits (4
states). It is thus convenient to introduce the same bases (xy and uv, used by Alice) for
each of Eve’s qubits.

3.3.4.1 Interrelation between Eve’s post-interaction states across the two bases

Since the bases Bxy and Buv are conjugate to each other, one can expect a relationship
between |ξi〉, |ζ j〉 in uv basis and those in xy basis which is described below.

2
√

1−Duv|ξu〉=
√

1−Dxy(|ξx〉+|ξy〉)+
√

Dxy(|ζx〉+|ζy〉),

2
√

Duv|ζu〉=
√

1−Dxy(|ξx〉−|ξy〉)+
√

Dxy(|ζy〉−|ζx〉). (3.3.4.4)

Similarly,

2
√

1−Duv|ξv〉=
√

1−Dxy(|ξx〉+|ξy〉)−
√

Dxy(|ζx〉+|ζy〉),

2
√

Duv|ζv〉=
√

1−Dxy(|ξx〉−|ξy〉)−
√

Dxy(|ζy〉−|ζx〉). (3.3.4.5)

3.3.5 Optimal interaction, optimal POVM

The main interest now will be focused to understand the nature of the interaction vectors
ξ ,ζ , the associated measurements, and the amount of information that Eve can achieve
out of that.

An interaction is optimal if the IVs leads to maximum possible information with all
possible POVMs. Needless to say, not all interactions are optimal. It is interesting to
identify an (preferably all) optimal interaction(s). Unfortunately, in a general setting, this
is a difficult problem to tackle with. Here we concentrate only on finding the optimal

interaction vectors. But, finding the associated unitary is important for practical purposes
– we’ll address that issue in a separate chapter to find optimal unitary evolutions.

Given an interaction, one can extract varying amount of information out of various
POVMs applied for measurement. One (or, some) of them lead to maximum amount of
information out of all possible POVMs, and is called an optimal POVM. This is rather an
easier problem to tackle with and is addressed below.
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3.3.6 Optimal measurement (POVM): maximizes both IG and MI
for a given interaction

Finding an optimal POVM for such IVs correspond to a rather easier optimization prob-
lem: maximize IG over all POVMs [Fuc96]. An upper bound exists and is achievable in
each of the encoding bases. In xy basis, the maximum IG is attained by the orthonormal
eigenprojectors {Eλ := |Eλ 〉〈Eλ |} of the Hermitian 1

2

(
ρx−ρy

)
. For equal prior (and not

necessarily for unequal prior), the same measurement optimizes both IG and MI for an
optimal interaction.

Relevant details to derive the optimal POVM and the Hermitian can be found in
Sec. 3.4.2.

3.3.7 Optimal interaction: A specific choice

We need an interaction that achieves optimal information (i.e., attains G? or I?).
In [FGG+97, Sec. III: Eqs. (50,51)], one such specific choice was provided for unequal
error rates, which was shown to be a valid candidate (as it leads to optimality). Simi-
larly, for equal error rates, another specific instance was introduced in [FGG+97, Sec. IV,
Eq. (69)]. Whether there are alternate candidates or not was remained open-ended issue.

3.3.7.1 For unequal error rates, i.e., Dxy 6= Duv

Equations (50, 51) of [FGG+97, Sec. III] are restated here. Consider a canonical basis for
Eve’s probe as {|E0〉, |E1〉, |E2〉, |E3〉}. Without loss of generality,

|E0〉= |x〉|x〉, |E1〉= |y〉|x〉, |E2〉= |x〉|y〉, |E3〉= |y〉|y〉. (3.3.7.1)

The states |ξi〉, |ζ j〉 with Eve were described in the Bell Basis (w.r.t. Alice’s encoding
basis xy) which are defined as follows.

|Φ±xy〉 :=
1√
2

(
|x〉|x〉±|y〉|y〉

)
=

1√
2

(
|E0〉± |E3〉

)
,

|Ψ±xy〉 :=
1√
2

(
|x〉|y〉±|y〉|x〉

)
=

1√
2

(
|E2〉± |E1〉

)
. (3.3.7.2)

In terms of the Bell-basis states to describe Eve’s probe, the interaction was chosen as

|ξx〉 =
√

1−Duv |Φ+
xy〉+

√
Duv |Φ−xy〉,

|ξy〉 =
√

1−Duv |Φ+
xy〉−

√
Duv |Φ−xy〉,

|ζx〉 =
√

1−Duv |Ψ+
xy〉−

√
Duv |Ψ−xy〉,

|ζy〉 =
√

1−Duv |Ψ+
xy〉+

√
Duv |Ψ−xy〉. (3.3.7.3)
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The corresponding optimal POVM [FGG+97, Eqs. (55,56)] are the eigenprojectors

Eλ = |Eλ 〉〈Eλ |,

where
|E0〉= |E0〉, |E1〉= |E1〉, |E2〉= |E2〉, |E3〉= |E3〉. (3.3.7.4)

The above analysis works for a signal chosen in xy basis. A similar analysis holds for
the uv basis as well.

3.3.7.2 For equal error rates, i.e., Dxy = Duv = D

For equal error rates, [FGG+97, Sec. IV, Eq. (69)] comes up with another choice of
|ξi〉, |ζ j〉. We describe it as below.

|ξx〉 = |x〉|x〉,

|ξy〉 =
(
cosα|x〉+ sinα|y〉

)
|x〉

|ζx〉 = |x〉|y〉,

|ζy〉 =
(
cosβ |x〉+ sinβ |y〉

)
|y〉. (3.3.7.5)

Optimality of G (or I) is reached when

α = β and sinα = 2
√

D(1−D).

The corresponding optimal POVM can be calculated by diagonalizing the observable
ρx−ρy. We have mentioned it in our work as in the following chapter.

Although, both interactions (3.3.7.3, 3.4.8) lead to optimality, the way they were pro-
posed in [FGG+97] seems to be an intelligent guesswork. A derivation of the optimal
interactions from the first principle is done in our work as described in the following
chapter [ Chap. 4 ].

3.3.8 Optimal strategy

Once the interaction and measurements are over, Eve’s task remains to interpret her mea-
surement outcomes to assign a guess on the signal sent by Alice. The optimal strategy of
Eve can be described as follows.

As Alice declares her basis to be β ∈ {0,1}, Eve measures her ancilla in basis
{|Mλ 〉β}λ∈{0,1,2,3} and interprets her measurement outcome in terms of a guess on Al-
ice’s bit. For +ve outcome, which occurs for λ = 0,2, she bets on 0, whereas, for −ve
outcome, which occurs for λ = 1,3, she bets on 1.

To mount an optimal attack, Eve performs a suitable interaction unitarily, measures
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accordingly after basis reconciliation, and finally guesses the signal applying her strategy.
Her KG is maximum iff her IVs are optimal and her measurement is also optimal.

Fig. 3.2 provides a schematic view of the attack model.

3.3.9 Optimal Eavesdropping in a nutshell

Alice encodes each cbit a ∈ {0,1} by a randomly chosen basis β ∈ {0,1} into a qubit in
state |aβ 〉. Eve attaches a two-qubit probe having state |e〉with each of Alice’s qubit qubit.
She evolves the joint system unitarily (U) from the pre-interaction joint state |aβ 〉|e〉 to
the post-interaction joint state |Sβ

a 〉= U |aβ 〉|e〉.
After basis reconciliation, whenever the legitimate parties agree on a basis β ∈ {0,1},

Eve measures her ancilla with a suitable POVM {Mλ}
β

λ∈{0,1,2,3}. Eve interprets the out-
come following a strategy which is a rule to assign a guess for the state of the signal sent
by Alice. For +ve outcome, which occurs for λ = 0,2, she bets on 0, whereas, for −ve
outcome, which occurs for λ = 1,3, she bets on 1. Her guess aλ is thus the following
function

aλ =

0, if λ = 0,2

1, if λ = 1,3.

3.3.9.1 A schematic view of the eavesdropping model

Following is a circuit diagram illustrating the eavesdropping model in a nutshell.
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Figure 3.2 | A circuit diagram for an optimal eavesdropping on BB84 protocol.

Alice uses one of the two MUBs, β , to encode a cbit ‘a’ into a qubit |a〉β . Eve attaches
an ancilla |e〉 and evolves the joint system unitarily (Ue) that creates an entangled state
|Sa〉β . Bob measures the received qubit in basis β ′ to get the cbit b, and keeps it if the
bases are matched. After basis reconciliation, Eve measures her ancilla in the POVM
basis {|Mλ 〉β}. She interprets her outcome λ by a strategy and bet for aλ ∈ {0,1} to
guess Alice’s cbit. When Eves choices for the unitary and the measurement are optimal,
she guesses the key best while not forcing to abort the protocol.

cbit
a ∈ {0,1}

basis
β ∈ {0,1}

Alice encodes

|a〉βAlice sends

|e〉Eves ancilla
Ue

|Sa〉β

β ′ ∈ {0,1}
b sifted key

Basis reconciliation

{|Mλ 〉}β

λ
Strategy

aλ
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3.3.10 Practical eavesdropping

A practical eavesdropping should ideally leave the error rate symmetric across the two
basses, i.e., Dxy = Duv = D. Otherwise, the legitimate parties can detect the difference
during the error-estimation phase, and thereby detect the presence of a malevolent party.
For a QBER = D, the maximum amount of the IG in both the bases reaches 2

√
D(1−D),

and is achievable [FGG+97].

Due to symmetric eavesdropping, the quantum channel between Alice-Bob and that
between Alice-Eve can be interpreted as a binary symmetric channel with data-flipping
rate D and DE = 1

2 −
√

D(1−D), respectively. Thus, at error-rate D, the respective bi-
partite mutual informations become

MIAB = 1−H(D) =
1
2

φ (1−2D) ,

MIAE = 1−H(DE) =
1
2

φ

(
2
√

D(1−D)
)
,

when expressed in bits per sifted-photon (bpsp).

Following the optimal strategy, Eve can glean (1−H(DE)) bits per sifted-photon of
the transmission with fidelity 1−DE in lieu of introducing an error-rate D at Bob’s end.
The distinguishing advantage for an optimal attack is

√
D(1−D).

3.3.10.1 The secure zone and key-rate

These are the two most relevant parameters for any attack. The amount of QBER charac-
terizes the severity of the attack.

Definition 3.5 (Secure zone). The window of disturbance beyond which no (one-way)

classical post-processing can distill a secret key for the legitimate parties.

For the BB84 protocol, it is D ∈ [0,D? = 0.1464) for the attack model considered
in [FGG+97].

Definition 3.6 (Sifted key-rate). It is the ratio of the length of the sifted key and that of

the raw key.

It decreases as disturbance increases through the secure zone, as plotted in Fig. 3.3.
From disturbance beyond 14.64%, it becomes zero, leaving no scope to retrieve a secret
key with OW-CPP.

The sifted key-rate Ksi f is bounded below by the difference MIAB−MIAE. An optimal
attack achieves the maximum: for a QBER D, it amounts to Ksi f (D) = H(DE)−H(D)

bpsp. It decreases with growing QBER, and vanishes when the two MIs coincide which
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happens at the threshold [Fig. 3.3]

D? =
1
2

(
1− 1√

2

)
≈ 0.1464. (3.3.10.1)

Beyond this tolerable rate, an OW-CPP may not guarantee to filtrate a secure key. Within
the secure zone D ∈ [0,D?), key-filtration is guaranteed because Bob possess more infor-
mation on Alice’s bit than Eve does.

3.3.10.2 Sifted Key-rate, IG, MI(AB,AE)

Figure 3.3 | Sifted Key-rate for one-way classical post-processing.

Plotted: optimal Information Gain, bipartite Mutual Informations, and the secret key-
rate. The graph of MIAE reveals the information-disturbance trade-off. For QBER
D? = 0.1464, MIAB and MIAE coincides, and the key-rate drops to zero. Below this
error rate, an OW-CPP is faithful.
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3.3.10.3 Connecting Bell violation and cloning

There is a very deep connection between a prepare-and-measure (p&m) scheme and its
entanglement-based (eb) counterpart as well with cloning mechanisms to glean infor-
mation. Particularly, for an optimal attack, the connections between p&m scheme, its
eb counterpart, and optimal cloning mechanisms are quite clear. However, more deeper
analysis may actually reveal more intricate connections in general.
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In the eb protocol, the legitimate parties observe a Bell violation so far the estimated
QBER remains in the secure zone of the p&m scheme. An optimal attack with QBER D

reduces the CHSH correlation co-efficient to ηD2
√

2 for ηD := 1−2D. An optimal attack
also leaves Bob with the Bloch vectors contracted by a factor of ηD.

An optimal attack on the p&m scheme can also be achieved via an optimal phase-
covariant cloner [BCMDM00]4. The cloner is asymmetric since it creates two clones
of the senders state: a degraded copy for her own with fidelity (1

2 +
√

D(1−D)), and
a superior copy for Bob with fidelity 1−D. At the threshold QBER, both the fidelity
for Bob and Eve reaches the maximum of 1−D? = 1

2

(
1+ 1√

2

)
i.e., 85.36%, both in

cloning and in p&m scheme. Moreover, for the choice of the permuted measurement
basis {|E0〉, |E1〉, |E2〉, |E3〉} = {|00〉, |11〉, |01〉, |10〉}, the optimal PIJSs are in sync with
the outputs of an optimal pc-cloner [BCMDM00, Eq. (36)].

3.3.11 Practical eavesdropping related details

Here is some detail on a few aspects discussed in the earlier section.

3.3.11.1 Success probability of Eve’s state discrimination

An optimal attack on the p&m scheme leaves Eve with an optimal state-discriminate
problem. For a specific encoding basis, the four different post-interaction states of Eve’s
ancilla can be grouped into two mutually orthogonal sets: one with the two fidelity states,
and the other with the two disturbed states. Since Eve can discriminate these orthogonal
sets (whether disturbed or not), all she is left with is to distinguish the two states in a
set, e.g., distinguishing |ξa〉 from |ξā〉, or, distinguishing |ζa〉 from |ζā〉. Following the
optimal strategy, Eve can distinguish the two such parity states (fidelity or disturbed) with
probability [Hel69]

Fβ

E =
1
2
+

1
2

√
1−|〈ξ β

a |ξ β

ā 〉|2

=
1
2
+

1
2

√
1− (1−2D

β̄
)2

=
1
2
+
√

D
β̄
(1−D

β̄
).

Now, some results used in practical eavesdropping are elaborated here for better un-
derstanding.

4A pc-cloner can copy all the states |ψ〉= |0〉+eiφ |1〉 with equal fidelity 〈ψ|ρψ |ψ〉 for output clone ρψ .
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3.3.11.2 Secret-key rate

The secrecy capacity Cs of the quantum channel between Alice and Bob is defined [CK78]
as the optimum rate at which Alice can reliably send information to Bob leaving Eve’s
information on that data arbitrarily small. A necessary and sufficient condition for a
positive secret-key rate is not known, but a lower bound is known [CK78]. For a more
general scenario, considering the knowledge gain of Eve over Bob’s data (IBE) due to pub-
lic discussion over the supplementary classical channel, one can lower bound the secrecy
capacity [EHPP94] by the following formula

Cs ≥ max{IAB− IAE, IAB− IEB}.

Thus the legitimate parties should consider the channel unsafe and abort the transmission
whenever

IAB ≤ min{IAE, IEB}.

On the other hand, the legitimate parties can establish a secret key following some one-
way CPP, iff IAB > IAE or IAB > IEB. For an optimal symmetric attack, IAE = IEB. Therefore,
Alice and Bob lives in the secure zone whenever IAB > IAE. The difference IAB− IAE,
that captures the secret-key rate, remains same during the error correction and privacy
amplification. Thus, the condition transcends in order to establish a shared secret between
the two legitimate parties.

3.3.11.3 An optimal attack contracts the Bloch vectors

The state |a〉β of a two-level quantum system (qubit) corresponds to a Bloch vector ~aβ

on the surface of the Poincaré sphere. Alices’ density operator ρA = |a〉β 〈a| is a convex
combination 1

2

(
1+~aβ ·~σ

)
of the Pauli operators. For the BB84 protocol, the states in the

Z and the X bases correspond to the Bloch vectors (0,0,±1) and (±1,0,0), respectively.
Therefore, Alice sends the density operators 1

2 (1±σs) (for, s ∈ {z,x}) to Bob. But, due
to eavesdropping, Bob receives the density

ρB = F |a〉β 〈a|+D|ā〉β 〈ā|

= F · 1
2

(
12 +~aβ ·~σ

)
+D · 1

2

(
12−~aβ ·~σ

)
=

1
2

(
12 +(F−D)~aβ ·~σ

)
While Alice sends the density 1

2

(
1+~a ·~σ

)
, Bob receives 1

2

(
1+ηD~a ·~σ

)
with ηD =

1− 2D. To be specific, the density operators 1
2 (1±σs) (for, s ∈ {z,x}) from Alice get

perturbed to 1
2 (1±ηDσs) when it reaches Bob. Thus, eavesdropping shrinks the Bloch
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vectors by a factor of ηD = 1−2D.

3.3.11.4 Optimal state-discrimination vs Bell-violation

An optimal state-discrimination based attack on a p&m scheme has some intriguing con-
nection with Bell-violation in an equivalent eb scheme and is discussed here.

The p&m scheme has its equivalent eb counterpart where Alice prepares a maximally
entangled state |aa〉+|āā〉√

2
and send one of the particles to Bob. Both the parties measure

the observables σz,σx, chosen randomly.
The security of the eb scheme is linked to the tests of quantum nonlocality [FGG+97].

Presence of non-locality is a certificate for OW-CPP. The degree of non-locality depends
on the estimated value of the CHSH polynomial for which the legitimate parties sacrifice
a subset of their particles. Alice measures one of the observables σz,σx chosen randomly,
while Bob measures one of the observables σz+σx√

2
, σz−σx√

2
chosen randomly. The binary

measurement outcomes ai,b j ∈ {−1,+1} are used to estimate the CHSH correlation-
coefficient which in turn is the expected value of the product of the outcomes.

S := E(a1,b1)+E(a1,b2)+E(a2,b1)−E(a2,b2).

Due to some channel error D, each of the correlations E(ai,b j|D) get reduced from its
error-free counterpart E(ai,b j) by a factor of 1−2D:

E(ai,b j|D) = F ·E(ai,b j)−D ·E(ai,b j)

= (1−2D) ·E(ai,b j).

Consequently, SD = (1−2D)S0.
The CHSH inequality forbids the correlation coefficient S to exceed 2 for local oper-

ations and classical communication (LOCC). However, for an error-free quantum chan-
nel, this inequality is violated and the correlation amount reaches the maximum of 2

√
2.

Then, in a quantum channel with error D, the maximum amount of violation becomes
S?D = (1− 2D)2

√
2. In order to maintain quantum non-locality, this reduced sum must

exceed 2, which happens precisely for D < D? as in Eq. (3.3.10.1).
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3.4 Illustrated derivations on Optimal eavesdropping

3.4.1 The optimization problem

To learn a transmitted signal Eve performs two tasks – an interaction and a measurement.
Her objective is to maximize the information (IG, MI) on the the signal while not surpass-
ing a threshold error. For a signal prepared in xy basis, each of Gxy or Ixy is a function
of five parameters px, py,ρx,ρy,Eλ . The prior probabilities px, py should be fixed for a
given communication. Then, the optimization should be performed over remaining three
parameters ρx,ρy,Eλ .

A simpler version to get started with could be the following: given an interaction (i.e.,
the parameters ρx,ρy get fixed), maximize information gain Gxy over all measurements
Eλ . Under this restriction, it was shown in [Fuc96] that information gain is bounded
above, while the optimal bound G?

xy(ρx,ρy) has an analytical expression that could be
achieved by a POVM Eλ consisting of the eigenprojectors onto the orthonormal eigenba-
sis of a fairly simple Hermitian operator. The derivation is shown in Subsec. 3.4.2.

Unfortunately, under the same restriction on the parameter set, unlike optimal infor-
mation gain, optimal mutual information I?xy(ρx,ρy) over all measurements doesn’t have
any analytical expression [Fuc96]. For BB84 protocol, due to equal prior, a betterment
was done in [FGG+97] while optimizing over the entire parameter set ρx,ρy,Eλ . We
discuss it in the following section.

They derived an upper bound for Gxy and Ixy over the parameter set ρx,ρy,Eλ . An
upper bound for the information gain was achieved as

G?
xy = max

{(ρx,ρy,Eλ )}
Gxy(ρx,ρy,Eλ ) = 2

√
Duv(1−Duv).

The same set of conditions also optimize the mutual information.

I?xy = max
{(ρx,ρy,Eλ )}

Ixy(ρx,ρy,Eλ )

=
1
2

φ

[
2
√

Duv(1−Duv)
]
=

1
2

φ [G?
xy].

Then combining all the conditions that optimize Gxy (or Ixy), a necessary and sufficient
condition to achieve the bounds was derived there.
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3.4.2 Optimal measurement (POVM) to maximize information gain
(G) for a given interaction

Let’s consider the problem below: given an interaction,

maximize Gxy = ∑
λ

∣∣∣Pλx px−Pλy py

∣∣∣
over all POVMs {Eλ}.

In [Fuc96], an optimal observable (describing the optimal measurement) for this max-
imization was derived. The maximization was done on Kolmogorov Variational Dis-

tance [Fuc96, Eq. (130)]. The calculation can be found in [Fuc96, Appendix (Sec. 7)].
It shows that an optimal measurement corresponds to a Hermitian operator (observable)
given by [Fuc96, Eq. (21)] and the optimal POVM consists of the orthonormal eigenpro-
jectors of that operator. We describe the result in our own way with a proof in terms of
maximizing G.

Lemma 3.3. Given an interaction, an optimal POVM that achieves the maximum infor-

mation gain consists of the eigenprojectors {Eλ} onto the orthonormal eigenbasis {|Eλ 〉}
that diagonalizes the Hermitian operator

Γ̃xy := pxρx− pyρy, (3.4.2.1)

where ρx, as defined in Eq. (3.4.6.1), is the density with Eve, and is the partial trace (over

Alice’s qubit) of the post-interaction state |X〉. The maximum achievable information gain

is tr
∣∣∣Γ̃xy

∣∣∣.

Proof. Given an interaction (i.e., the density operators ρx,ρy get fixed), the associated
Γ̃xy being Hermitian is diagonalizable by an orthonormal eigenbasis {|γi〉}. Let the corre-
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sponding eigenvalues (all real) are {γi}. Then, over all POVMs {Eλ},

Gxy = ∑
λ

∣∣∣Pλx px−Pλy py

∣∣∣
= ∑

λ

∣∣∣pxtr
(
ρxEλ

)
− pytr

(
ρyEλ

)∣∣∣ , using Eqs. (3.6, 3.7)

= ∑
λ

∣∣∣∣tr(Γ̃xyEλ

)∣∣∣∣ , using Eq. (3.4.2.1)

= ∑
λ

∣∣∣∣∣∑i
γi 〈γi|Eλ |γi〉

∣∣∣∣∣ ,with the observable Γ̃xy = ∑γi|γi〉

≤ ∑
λ

∑
i

∣∣γi
∣∣ 〈γi|Eλ |γi〉

= ∑
i

∣∣γi
∣∣ 〈γi|∑

λ

Eλ |γi〉

= ∑
i

∣∣γi
∣∣= tr

∣∣∣Γ̃xy

∣∣∣ .
The upper bound is achievable by some POVM {Eλ} consisting of the projectors onto an
orthonormal eigenbasis of the observable Γ̃xy.

Remark 3.1. For BB84, due to equal prior, the Hermitian of (3.4.2.1) becomes

Γxy :=
1
2
(
ρx−ρy

)
(3.4.2.2)

and use it for our purposes in the contributory chapters.

Remark 3.2. Given an interaction, a POVM that is optimal for Gxy may not necessarily

be optimal for Ixy [FGG+97, Fuc96]. However, for equal prior probabilities, once the

bound tr
∣∣Γxy

∣∣ of Gxy in Lemma 3.3 becomes equal to the upper bound D2
uv−D2

uv of Gxy in

Eq. (3.3.2.1), the interaction is called optimal. In such situations, the interaction-POVM

pair also attains the upper bound (3.3.2.4) of Ixy.

3.4.3 Maximizing Information Gain Gxy

Here we provide a sketch of proving the upper bound on IG in xy basis, i.e., we prove
Eqs. (3.3.2.3, 3.3.2.1) saying Gxy(λ )≤

√
duv(λ )

(
1−duv(λ )

)
, and Gxy ≤

√
Duv(1−Duv).

The details in between the lines are deferred to Sec. 3.4.10.1. The basis information is
dropped for simplicity.
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Proof. For a given POVM {Eλ},

q(λ )G(λ ) =
1
2

{∣∣〈X |1⊗Eλ |X〉−〈Y |1⊗Eλ |Y 〉
∣∣}

Use:
√

2|X〉=|U〉+|V〉,
√

2|Y〉=|U〉−|V〉 [ Calc in Sec 3.4.10.1 ]

=
1
2

{∣∣〈U |1⊗Eλ |V 〉+ 〈V |1⊗Eλ |U〉
∣∣}

Use: 1=Bu+Bv: Bu=|u〉〈u|, Bv=|v〉〈v|; B2
u=Bu [ Calc in Sec 3.4.10.1 ]

=
∣∣Re〈U |Bu⊗Eλ |V 〉+Re〈V |Bv⊗Eλ |U〉

∣∣
Use:

Uλu = Bu⊗
√

Eλ |U〉 Vλu = Bu⊗
√

Eλ |V 〉
Uλv = Bv⊗

√
Eλ |U〉 Vλv = Bv⊗

√
Eλ |V 〉

[ Calc in Sec 3.4.10.1 ]

[ Ineq. 1 ] ≤
∣∣〈Uλu|Vλu〉

∣∣+ ∣∣〈Uλv|Vλv〉
∣∣

Use: Schwartz ineq: ‖ #»a · #»c ‖≤‖ #»a‖‖ #»c ‖
[ Ineq. 2 ] ≤

√
〈Uλu|Uλu〉〈Vλu|Vλu〉+

√
〈Uλv|Uλv〉〈Vλv|Vλv〉

Use: 〈Vλu|Vλu〉=〈V|Bu⊗Eλ |V〉=Pr(A=v,E=λ ,B=u)=Pλv dλv

=
√

PλuPλv︸ ︷︷ ︸(√(1−dλu)dλv +
√

dλu(1−dλv)
)

Use: GM ≤AM

[ Ineq. 3 ] ≤ 1/2 ·
(
Pλu +Pλv

)︸ ︷︷ ︸
=qλ

(√
(1−dλu)dλv +

√
dλu(1−dλv)

)
.

Thus,

Gλ ≤
√

dλu(1−dλv)+
√

(1−dλu)dλv

Use: dλu=dλ+w, dλv=dλ−w : dλ=(dλu+dλv)/2

=
√(

dλ +w
)(

1−dλ +w
)
+
√(

dλ −w
)(

1−dλ −w
)︸ ︷︷ ︸

Even fn, Max at w=0 [ Calc in Sec 3.4.10.1 ]

[ Ineq. 4 ] ≤ 2
√

dλ

(
1−dλ

)

So, the bound on Gxy is as follows.

Gxy = ∑
λ

qλ Gλ ≤ 2 ∑qλ

√
dλ

(
1−dλ

)︸ ︷︷ ︸
[ Ineq. 5 ] ≤ 2

√
∑qλ dλ

(
1−∑qλ dλ

)
= 2
√

D(1−D)

3.4.4 Maximizing Mutual Information Ixy

The bound on Gxy is used to bound Ixy. A proof sketch for Eq. (3.3.2.4) is as following.
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Proof.

Ixy = ln2+∑
λ

qλ ∑
i

Qiλ lnQiλ

= ln2+∑
λ

qλ

(
Qxλ lnQxλ +Qyλ lnQyλ

)
Use:

Qxλ = 1
2

(
1±Gλ

)
, Qyλ = 1

2

(
1∓Gλ

)
since, Qxλ +Qyλ = 1, Qxλ −Qyλ =±Gλ .

=
1
2 ∑qλ φ

(
Gλ

)
Use:

φ(z) is m.i. =⇒ φ(x)≤ φ(x+)

∴ Gλ ≤ 2
√

dλ

(
1−dλ

)
=⇒ φ(Gλ )≤ φ

[
2
√

dλ

(
1−dλ

)]
.

≤ 1
2 ∑

λ

qλ φ

[
2
√

dλ

(
1−dλ

)]
︸ ︷︷ ︸

≤ 1
2

φ

[
2
√

∑qλ dλ

(
1−∑qλ dλ

)]
=

1
2

φ

[
2
√

D(1−D)
]

Relation between Iopt and Gopt is read as

Iopt
β

=
1
2

φ(Gopt
β

), β ∈ {xy,uv}.

3.4.5 Necessary and Sufficient Conditions to achieve
Gopt , Iopt ,Propt(success)

Here we discuss the conditions under which the maximum of IG, MI are achieved.

3.4.5.1 Necessary and Sufficient Conditions to Achieve G?
xy

Given a set of PIJSs in xy basis, are they optimal, i.e., do they achieve G?
xy as in

Ineq. (3.3.2.1)? The NSC (3.3.3.1, 3.3.3.2) is nothing but the compact form of the con-
straints under which the equality is attained in each of the five inequalities while deriving
the bound on IG.

Proof. For five inequalities in the derivation of the upper bound on IG, the equality holds
when the following happens.

1. Equality in [ Ineq. 5 ] : all dλ ’s are equal.

2. Equality in [ Ineq. 4 ] : dλu = dλv = dλ = Duv
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3. Equality in [ Ineq. 3 ] : Pλu = Pλv = qλ

4. Equality in [ Ineq. 2 ] : 〈Uλu|Vλu〉,〈Uλv|Vλv〉 are real and same sign. Let their
sign be σλ .

5. Equality in [ Ineq. 1 ] : |Uλu〉 ‖ |Vλu〉, |Uλv〉 ‖ |Vλv〉, i.e.,

|Vλu〉=± µ |Uλu〉= ελ µ |Uλu〉, (3.4.5.1)

|Vλv〉=± ν |Uλv〉= ε
′
λ

ν |Uλv〉. (3.4.5.2)

These are the required NSCs while the following claims are also considered.

Claim 3.4.5.1. For the following claim, proof is given in Sec. 3.4.10.3.

σλ = sgn
(

Qxλ −Qyλ

)
, (3.4.5.3)

µ =

√
Duv

1−Duv
= ν , (3.4.5.4)

ελ = σλ = ε
′
λ
. (3.4.5.5)

Thus, using relations (3.4.5.4, 3.4.5.5, 3.4.5.3) in Eqs. (3.4.5.1, 3.4.5.2), we get:

|Vλu〉 = ελ µ |Uλu〉,

|Uλv〉 = ελ µ |Vλv〉.

Hence proved.

Note 3.1. Since, for optimality, dλ = Duv ∀λ , we get,

∀λ , Gopt
λ

= 2
√

Duv(1−Duv) = Gopt
xy (3.4.5.6)

Necessary and Sufficient Conditions to Achieve Iopt

When is the Iopt attained?

The proof for the upper bound of I essentially provides no extra condition than
those to achieve Gopt . Therefore, the necessary and sufficient conditions for equality
in Eq. (3.3.2.4) is same as in proposition 3.3, viz.,

Since the necessary and sufficient conditions to achieve Iopt is same as that of Gopt ,
therefore, any condition (thus any measurement, any strategy) that maximize G, will
also maximize I.



74 Chapter 3. Existing works on Optimal Eavesdropping

Necessary and Sufficient Conditions to Achieve Gopt , Iopt ,Propt(success) are same

Following conclusions in sections 3.4.5.1, 3.4.5.1 and 3.4.8, we note that,

• Necessary and sufficient conditions to achieve Gopt , Iopt ,Propt(success) are same,
viz., given by proposition 3.3.

• Hence, any measurement or strategy to maximize G, I or Pr(success) will remain
same.



3.4. Illustrated derivations on Optimal eavesdropping 75

3.4.6 Optimal Interaction and Optimal POVM to maximize
G, I,Pr(success)

Here, both Dxy and Duv are fixed independently.

3.4.6.1 Description of the Post-interaction States |X〉, |Y 〉

Let’s fix both Dxy and Duv independently. The Schmidt decomposition of the post-
interaction states must be of the form as in Eqs. (3.3.4.1, 3.3.4.3) for the respective bases.
According the rules of Smith decomposition, the normalized states |ξi〉, |ζi〉 follow the
orthogonality relation as below.

〈ξx|ζx〉= 〈ξy|ζy〉= 0 i.e., |ξi〉 ⊥ |ζi〉 ∀i ∈ {x,y},

and
〈ξu|ζu〉= 〈ξv|ζv〉= 0 i.e., |ξi〉 ⊥ |ζi〉 ∀i ∈ {u,v}

for the respective bases.
The remaining relations between the |ξi〉, |ζi〉 cannot be chosen arbitrarily. However,

under proper assumption, the space of ξ and the space of ζ states can be made mutually
orthogonal for each of the encoding bases. The relevant details are described below.

Remaining Relations between |ξi〉, |ζi〉:

Proposition 3.4.6.1. The orthogonality relation 〈X |Y 〉= 0 induces the following restric-

tion on the IVs.

〈ξx|ζy〉+ 〈ζx|ξy〉= 0.

Proposition 3.4.6.2. The conjugate relation between the two encoding bases induces a

relation between the IVs across the bases as given by Eq. (3.3.4.4). We prove the following

two relations in Sec. 3.4.10.4.

2
√

1−Duv |ξu〉 =
√

1−Dxy
(
|ξx〉+ |ξy〉

)
+
√

Dxy
(
|ζx〉+ |ζy〉

)
,

2
√

Duv |ζu〉 =
√

1−Dxy
(
|ξx〉− |ξy〉

)
+
√

Dxy
(
|ζy〉− |ζx〉

)
.

Proposition 3.4.6.3. Orthogonality between |ξu〉 and |ζu〉 in the above two equations then

induces further restrictions as following.

Re[〈ξx|ζy〉−〈ζx|ξy〉] = 0,(
1−Dxy

)
Im[〈ξy|ξx〉]+Dxy Im[〈ζx|ζy〉] = 0.

[ Proof can be found in Sec 3.4.10.4. ]
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Note 3.2. Now, assume all inner products 〈ξi|ζ j〉 are real. Then

〈ξi|ζ j〉= 0, ∀i, j i.e., {|ξx〉, |ξy〉} ⊥ {|ζx〉, |ζy〉}.

From this orthogonality relation, one can say that Eve’s probe lives in a Hilbert space
having dimension at most four. Thus, her ancilla can taken to be 2 qubits(4 states). It is
then convenient to introduce the same bases (xy and uv, used by Alice) for each of Eve’s
qubits.

3.4.6.2 Mixtures with Bob and Eve

The joint PIJSs are entangled. However, from the description of the PIJSs, it is possible
to describe Bob and Eve’s states as mixed state, viz., in terms of an density operator.

Bob’s states are

ρ
B
x := TrB

(
|X〉〈X |

)
= (1−Dxy)|x〉〈x|+Dxy|y〉〈y|,

ρ
B
y := TrB

(
|Y 〉〈Y |

)
= (1−Dxy)|y〉〈y|+Dxy|x〉〈x|.

Eve’s states are as follows.

ρx := TrA
(
|X〉〈X |

)
= (1−Dxy)|ξx〉〈ξx|+Dxy|ζx〉〈ζx|

= (1−Dxy)ξ̂x +Dxyζ̂x, (3.4.6.1)

ρy := TrA
(
|Y 〉〈Y |

)
= (1−Dxy)|ξy〉〈ξy|+Dxy|ζy〉〈ζy|

= (1−Dxy)ξ̂y +Dxyζ̂y. (3.4.6.2)

where

ξ̂x := |ξx〉〈ξx|, ζ̂x := |ζx〉〈ζx|;

ξ̂y = |ξy〉〈ξy|, ζ̂y := |ζy〉〈ζy|.

See [ Calc in Sec 3.4.10.4 ] how to trace-out Alice or Eve.

3.4.6.3 The optimal POVM for the Chosen Interaction

Suppose Alice announces that a signal from the x-y basis was sent to Bob with equal
prior probabilities. To achieve maximum G, Eve chooses an optimal POVM {Eλ} to
measure her probe (the post-interaction state |X〉).

Theorem 3.2. For the optimal interactions (3.3.7.3), the observable with Eve can be
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described as follows

Γxy = 2
√

Duv(1−Duv)
[
(1−Dxy)(E00−E33)+Dxy (E22−E11)

]
.

(3.4.6.3)

where the projectors Ei j := |Ei〉〈E j| correspond to the following states {Eλ}λ∈{0,1,2,3}.

|E0〉= |x〉|x〉, |E1〉= |y〉|x〉

|E2〉= |x〉|y〉, |E3〉= |y〉|y〉 (3.4.6.4)

Clearly, the corresponding optimal POVM for these IVs are the eigenprojectors Eλ =

|Eλ 〉〈Eλ |. Considering

γ1 = 2(1−Dxy)
√

Duv(1−Duv), γ2 = Dxyk = 2Dxy
√

Duv(1−Duv),

the eigenvalues and eigenvectors of Γxy are listed as below.

Eigenvalues: γ1 γ2 -γ2 -γ1

Eigenvectors: |E0〉 |E2〉 |E1〉 |E3〉

Proof. By theorem 3.3, the optimal POVM is an orthonormal eigenprojector of

Γxy := ρx−ρy

Using the density operators ρx,ρy of Eqs. (3.4.6.1, 3.4.6.2), we get

Γxy = (1−Dxy)
(

ξ̂x− ξ̂y

)
+Dxy

(
ζ̂x− ζ̂y

)
.

Now, for optimal IVs, i.e., for the choice of |ξx〉, |ξy〉, |ζx〉, |ζy〉 as in Eq. (3.3.7.3), we have
[ see Sec. 3.4.10.5 for calculations ]

ξ̂x := |ξx〉〈ξx|= D2
uvE00 +D2

uvE33 +
1
2
(1−2Duv)(E03 +E30),

ζ̂x := |ζx〉〈ζx|= D2
uvE11 +D2

uvE22 +
1
2
(1−2Duv)(E21 +E12).

Here, Ei j := |Ei〉〈E j|.Thus,

Γxy = 2
√

Duv(1−Duv)
[
(1−Dxy)(E00−E33)+Dxy (E22−E11)

]
.

which turns out to be a diagonal matrix. The eigenbasis that diagonalizes it are the
{|Eλ 〉}λ∈{0,1,2,3} and are described in the theorem statement.
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3.4.6.4 Optimality of the Interaction

Here, we prove that the choice of interactions(i.e., |ξi〉, |ζ j〉 in Eq. (3.3.7.3)) is indeed
optimal. We need to show that this specific interaction along with the optimal POVM
{Eλ} given by Eqs. (4.2.3, 3.4.6.4) for measurement achieves the bounds of G. For that,
we need only to prove the proposition below:

Proposition 3.4.6.4. The postinteraction states |X〉, |Y 〉 in Eq. (3.3.4.1) along with the

IVs |ξi〉, |ζ j〉 in Eq. (3.3.7.3), and the measurement (3.4.6.4), the necessary and sufficient

conditions (3.3.2.1, 3.3.2.2) are satisfied. Thereby, the interaction is optimal.

Proof. We prove the proposition for λ = 1 only. Other cases are similar.

Lemma 3.4.6.1.
√

Eλ = Eλ for the optimal Eλ chosen in Eq. (3.4.6.4).

It is due to the facts that 〈Eλ |Eλ 〉= 1, E2
λ
= Eλ .

Lemma 3.4.6.2. For the above choices, we can show that

|V1u〉 = ε1

√
Duv

1−Duv
|U1u〉

where
ε1 =+1

[ Proofsketch: ]We’ll prove that

|U1u〉 =
1√
2

√
1−Duv

√
Dxy |u〉|E1〉

|V1u〉 =
1√
2

√
Duv
√

Dxy |u〉|E1〉

and thus the above equation follows.

Proof.

|U1u〉 = Bu⊗
√

E1 |U〉

= Bu⊗E1 |U〉y Bu = |u〉〈u|,E1 = |E1〉〈E1|,eq 3.3.4.3
[ Calc in Sec 3.4.10.6 ]

=
√

1−Duv 〈E1|ξu〉|u〉|E1〉y [ Calc in Sec 3.4.10.6 ]

=
1√
2

√
1−Duv

√
Dxy |u〉|E1〉
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Similarly,

|V1u〉 = Bu⊗
√

E1 |V 〉= Bu⊗E1 |V 〉

=
√

Duv 〈E1|ζv〉|u〉|E1〉

=
1√
2

√
Duv
√

Dxy |u〉|E1〉

Note 3.3. It could be shown that

ε0 =+1, ε1 =+1, ε2 =−1, ε3 =−1 (3.4.6.5)

It completes the proof.

Summary of the subsection

In this subsection, we have described an optimal POVM {Eλ} given by Eq. 4.2.3 and
(3.4.6.4) to measure the post-interaction states |X〉, |Y 〉 given by Eq. (3.3.4.1) (where
choice of |ξx〉, |ξy〉, |ζx〉, |ζy〉 is as described in Eq. (3.3.7.3)). This optimal POVM leads
to maximization of G (and therefore I,Pr(success)) once we fix an optimal strategy for
Eve to assign a signal against a measurement outcome λ . In next section we fix the
optimal strategy.
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3.4.7 Eve’s optimal strategy: Guess the state send by Alice

Eve’s objective to maximize her information gained on the signal of Alice. It’s enough
to optimize IG, as it also optimizes MI and her probability of success. She must interpret
her measurement outcome in such an way that assigns the best guess, that is her optimal
strategy.

Mathematically, the task is to achieve Gopt , which in turn achieves Iopt and
Propt(success).

Let’s do it for the xy basis. She performs an optimal measurement Eλ on her ancilla
that is part of the optimal PIJS |X〉, |Y 〉. Looking at the outcome λ , she must assign either
x or y as a guess on Alice’s signal s.t. Gopt is attained. The optimal strategy is given by

Sopt(λ ) = argmax {Qxλ ,Qyλ}.

For the optimal states and the optimal measurement, we have to calculate these posterior
probabilities for each measurement outcome, and choose the largest one.

Note that, for equal prior (i.e., px = py = 1/2),

Qxλ =
Pλx

Pλx +Pλy
, Qyλ =

Pλy

Pλx +Pλy
.

In that case,
argmax {Qxλ ,Qyλ}= argmax {Pλx,Pλy}

We can apply the Born rule to calculate these probabilities in either of the following
forms

Pλx = 〈X |1⊗Eλ |X〉 = Tr(ρxEλ ),

Pλy = 〈Y |1⊗Eλ |Y 〉 = Tr(ρyEλ ).

We use the optimal PIJSs |X〉, |Y 〉 and the optimal measurements Eλ fromEq. (3.3.4.1),
and Eq. (3.4.6.4), respectively. It’s merely a matter of calculations that leads to the fol-
lowing results.
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Table 3.1 | Eve’s prior probabilities P(E|A) for the optimal states.

Values of Pλx,Pλy for the optimal states

λ Pλx Pλy Pλx +Pλy

0
(

1
2 +
√

Duv(1−Duv)
)(

1−Dxy
) (

1
2 −
√

Duv(1−Duv)
)(

1−Dxy
)

1−Dxy

3
(

1
2 −
√

Duv(1−Duv)
)(

1−Dxy
) (

1
2 +
√

Duv(1−Duv)
)(

1−Dxy
)

1−Dxy

2
(

1
2 −
√

Duv(1−Duv)
)

Dxy

(
1
2 +
√

Duv(1−Duv)
)

Dxy Dxy

1
(

1
2 +
√

Duv(1−Duv)
)

Dxy

(
1
2 −
√

Duv(1−Duv)
)

Dxy Dxy

∑λ 1 1 2

The posterior probabilities are then calculated below using table 3.1.

Table 3.2 | Eve’s posterior probabilities P(A|E) for the optimal states.

Values of Qxλ ,Qyλ for the optimal states

λ Qxλ Qyλ Sopt(λ )

0 1
2 +
√

Duv(1−Duv)
1
2 −
√

Duv(1−Duv) x

3 1
2 −
√

Duv(1−Duv)
1
2 +
√

Duv(1−Duv) y

2 1
2 −
√

Duv(1−Duv)
1
2 +
√

Duv(1−Duv) y

1 1
2 +
√

Duv(1−Duv)
1
2 −
√

Duv(1−Duv) x

Eve’s strategy: By the last column of the table 3.2, Eve’s strategy becomes

assign signal x against measurement outcome E0,E1

assign signal y against measurement outcome E2,E3

Measurement Outcome E0,E1 E2,E3

Eve assigns signal x y

Strategy of Eve remains same to attain optimality of G, I,Pr(success). For this optimal
strategy, optimal value of each of these parameters are tabulated below.



82 Chapter 3. Existing works on Optimal Eavesdropping

Gopt
xy Propt

xy (success) = 1
2 +

1
2Gopt

xy Iopt
xy = 1

2 φ(Gopt
xy )

2
√

Duv(1−Duv)
1
2 +
√

Duv(1−Duv)
1
2 φ

[
2
√

Duv(1−Duv)
]

An Interesting Observation: By Eq. (3.3.3.3),

ελ = ±1 = sgn
(

Qxλ −Qyλ

)
Thus,

ελ =+1 =⇒ argmax
(

Qxλ ,Qyλ

)
= x

ελ =−1 =⇒ argmax
(

Qxλ ,Qyλ

)
= y

which indicates that value of ελ has 1-1 correspondence with Sopt(λ ) =

argmax
(

Qxλ ,Qyλ

)
. To be precise,

λ = 0 1 2 3

ελ = +1 +1 −1 −1

Sopt(λ ) = argmax
(

Qxλ ,Qyλ

)
= x x y y

3.4.8 Relation between Gopt and Propt(success)

Theorem 3.3. Eve’s probability to successfully guess Alice’s signal in xy basis, for an

optimal attack, is the following.

Pr?xy(success) =
1
2
+
√

Duv(1−Duv) =
1
2
+

1
2

G?
xy. (3.4.8.1)

Therefore, the optimal states that optimize the IG (or MI), also optimize the success prob-

ability.

Proof.

Pr?xy(success) = Fxy ·Pr(success|undist)+Dxy ·Pr(success|dist).
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The probability to distinguish two states can be given by Helstrom formula. Since
the undisturbed states corresponds to |ξx〉, |ξy〉, and the disturbed states correspond to
|ζx〉, |ζy〉, we can write

Pr?xy(success) = Fxy ·
1
2

(
1+
√

1−|〈ξx|ξy〉|2
)
+Dxy ·

1
2

(
1+
√

1−|〈ζx|ζy〉|2
)
.

Note that, for the optimal states, both the inner products become 1− 2Duv. Since, Fxy +

Dxy = 1, we get

Pr?xy(success) =
1
2

(
1+
√

1− (1−2Duv)2
)
.

A simplification leads to the desired result.

3.4.9 Eavesdropping for equal error rates (i.e., Dxy = Duv = D)

So far, we have got the maximum information, whether IG or MI, across the two bases.
Maximum information in a basis is a function of the disturbance in the conjugate basis. A
natural question is how much information did she have for both the bases? Since each of
the bases are chosen 50% of times, we can consider the average IG and MI for an average
of the disturbances, i.e., the following functions.

Average Information Gain:
G =

1
2
(
Gxy +Guv

)
, (3.4.1)

Average Mutual Information:
I =

1
2
(
Ixy + Iuv

)
, (3.4.2)

Average Disturbance:
D =

1
2
(
Dxy +Duv

)
. (3.4.3)

The objective is now to know Eve’s best average information (IG, or, MI) for a fixed
average disturbance D across the two bases. This is shown to be achieved with equal error
rates, i.e., Dxy = Duv.

Proposition 3.4.1. Following upper bounds for average information are found.

G ≤ 2
√

D(1−D) (3.4.4)

I ≤ 1
2

φ

[
2
√

D(1−D)
]

(3.4.5)

Equality in each of the cases is achieved for Dxy = Duv = D.
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Proof. The idea is to use the concavity of the functions
√

x(1−x), and φ

[
2
√

x(1−x)
]
,

respectively.

G =
1
2
(
Gxy +Guv

)
≤ 2

[
1
2

√
Dxy
(
1−Dxy

)
+

1
2

√
Duv(1−Duv)

]
≤ 2

√
1
2
(
Dxy +Duv

)(
1−1

2
(
Dxy +Duv

))
,

due to concavity of
√

x(1−x).

Equality holds for Dxy = Duv = D.

= 2
√

D(1−D).

Similarly,

I =
1
2
(
Ixy + Iuv

)
≤ 1

2

[
1
2

φ

[
2
√

Dxy
(
1−Dxy

)]
+

1
2

φ

[
2
√

Duv(1−Duv)
]]

≤ 1
2

φ

2

√
1
2
(
Dxy +Duv

)(
1−1

2
(
Dxy +Duv

)),
due to concavity of φ

[
2
√

x(1−x)
]
.

Equality holds when Dxy = Duv = D.

=
1
2

φ

[
2
√

D(1−D)
]
.

The equality of the error rates match the intuition of a symmetrical attack.
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Now, to see how the bounds could be achieved, one needs to find the suitable sates
that can saturate the bound.

Consider the case when the legitimate parties agree with x-y basis. Eve is left with the
following two density operators that she must distinguish in order to identify the signal
sent by Alice.

ρx = (1−D)|ξx〉〈ξx|+D|ζx〉〈ζx| (3.4.6)

ρy = (1−D)|ξy〉〈ξy|+D|ζy〉〈ζy| (3.4.7)

Note that, the ξ -states occur w.p. (1−D), while the ζ -states occur w.p. D. Although,
these two states are mutually orthogonal, at that point, there is no way to distinguish them.

So, consider the ξ ,ζ -states in such a manner that the orthogonality constraint is met,
as well, some (real) non-zero overlap is consumed by the states within a set. Following
states may be considered (again, uniqueness is a question).

|ξx〉= |x〉|x〉, |ξy〉=
(
cosα|x〉+ sinα|y〉

)
|x〉;

|ζx〉= |x〉|y〉, |ζy〉=
(
cosβ |x〉+ sinβ |y〉

)
|y〉. (3.4.8)

Apart from orthogonality, note that 〈ξx|ξy〉= cosα,〈ζy|ζx〉= cosβ .

If Eve measures in computational basis the 2nd qubit for these states, she can dis-
tinguish ξ ,ζ : if she gets |x〉 (or, |y〉), she considers the state to be from ξ (or, ζ ) set.
Once distinguished the sets, she now wants to distinguish the states within a set, having
non-zero overlaps cosα and cosβ , respectively.

The averaged success probability to distinguish the states then become

Pr?xy(success) = F ·Pr(success|undist)+D ·Pr(success|dist)

= F · 1
2

(
1+
√

1−|〈ξx|ξy〉|2
)
+D · 1

2

(
1+
√

1−|〈ζx|ζy〉|2
)
,

by Helstrom rule

= F · 1
2
(1+ sinα)+D · 1

2
(1+ sinβ )

=
1
2
(1+F · sinα +D · sinβ ). (3.4.9)

Also, since the success probability in the individual states are 1
2(1+ sinα), and 1

2(1+
sinβ ), her MI for these two sets become

Iξ =
1
2
(1+sinα) ln(1+sinα)+

1
2
(1−sinα) ln(1−sinα) =

1
2

φ(sinα),

Iζ =
1
2
(
1+sinβ

)
ln
(
1+sinβ

)
+

1
2
(
1−sinβ

)
ln
(
1−sinβ

)
=

1
2

φ(sinβ ).
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The average MI over the two sets becomes

Iξ = F · Iξ +D · Iζ =
1
2
(
F ·φ(sinα)+D ·φ(sinβ )

)
. (3.4.10)

The maximum for both Eq. (3.4.9) and Eq. (3.4.10) occur for α = β , with
sinα = 2

√
D(1−D). We have shown the proof for the success probability, other one

would be similar. [ Proof can be found in Sec 3.4.10.7. ]

To prove it, it’s worth to note that the fidelity and disturbance can be written as a
function of the angles α,β . One can consider any of the interrelation between the IVs
across the two bases, and get the following relation.

Proposition 3.4.2. For the choice of ξi,ζ j in Eq. (3.4.8), we get

D =
1− cosα

2− cosα + cosβ
(3.4.11)

[ Proof can be found in Sec 3.4.10.7. ]

Remarks

Proposition 3.4.3. For small D, IAE ≤ 2D. At the other extreme, Imax
AE = ln2.

[ Proof can be found in Sec 3.4.10.7. ].

Proposition 3.4.4. One can verify easily the following

IAB = ln2+D lnD+(1−D) ln(1−D) =
1
2

φ(1−2D). (3.4.12)

Thus, the threshold noise level for a potentially safe channel can be derived now.

Proposition 3.4.5. The channel is considered inappropriate for key generation when the

key-rate becomes zero. It happens for error-rate D≥ 0.146447.

Proof. Key-rate becomes zero when IAB = IAE, i.e.,

1
2

φ(1−2D) =
1
2

φ

[
2
√

D(1−D)
]

=⇒ |1−2D|= 2
√

D(1−D)

=⇒ 8D2−8D+1 = 0

=⇒ D =
1
2
−
√

2
4
≈ 0.146447.
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3.4.10 Illustration between the lines (IBtL)

3.4.10.1 IBtL Sec. 3.4.3: Proving bounds for IG

Calculation 3.4.10.1.1. P.T.

∣∣〈X |1⊗Eλ |X〉−〈Y |1⊗Eλ |Y 〉
∣∣= ∣∣〈U |1⊗Eλ |V 〉+ 〈V |1⊗Eλ |U〉

∣∣ .
Use: |X〉= 1√

2

(
|U〉+ |V 〉

)
, |Y 〉= 1√

2

(
|U〉− |V 〉

)
Proof.

∣∣〈X |1⊗Eλ |X〉−〈Y |1⊗Eλ |Y 〉
∣∣

=
1
2

∣∣∣∣∣(〈U |+ 〈V |)(1⊗Eλ

)(
|U〉+ |V 〉

)
− (〈U |− 〈V |)

(
1⊗Eλ

)
(|U〉− |V 〉)

∣∣∣∣∣
=

1
2

∣∣∣(〈U |1⊗Eλ |U〉+ 〈V |1⊗Eλ |V 〉+ 〈U |1⊗Eλ |V 〉+ 〈V |1⊗Eλ |U〉
)

−
(
〈U |1⊗Eλ |U〉+ 〈V |1⊗Eλ |V 〉−〈U |1⊗Eλ |V 〉−〈V |1⊗Eλ |U〉

)∣∣∣
=

∣∣〈U |1⊗Eλ |V 〉+ 〈V |1⊗Eλ |U〉
∣∣

Calculation 3.4.10.1.2. P.T.

∣∣〈U |1⊗Eλ |V 〉+ 〈V |1⊗Eλ |U〉
∣∣= 2

∣∣Re〈U |Bu⊗Eλ |V 〉+Re〈V |Bv⊗Eλ |U〉
∣∣

Use: 1= Bu +Bv : Bu = |u〉〈u|, Bv = |v〉〈v| Note: B2
u = Bu

Proof.

∣∣〈U |1⊗Eλ |V 〉+ 〈V |1⊗Eλ |U〉
∣∣

=
∣∣〈U |(Bu +Bv)⊗Eλ |V 〉+ 〈V |(Bu +Bv)⊗Eλ |U〉

∣∣
=

∣∣∣[〈U |Bu⊗Eλ |V 〉+ 〈V |Bu⊗Eλ |U〉
]
+
[
〈U |Bv⊗Eλ |V 〉+ 〈V |Bv⊗Eλ |U〉

]∣∣∣
Use: 〈U |Bu⊗Eλ |V 〉+ 〈V |Bu⊗Eλ |U〉= 2Re〈U |Bu⊗Eλ |V 〉

= 2
∣∣Re〈U |Bu⊗Eλ |V 〉+Re〈V |Bv⊗Eλ |U〉

∣∣

Calculation 3.4.10.1.3. P.T.

∣∣Re〈U |Bu⊗Eλ |V 〉+Re〈V |Bv⊗Eλ |U〉
∣∣≤ ∣∣〈Uλu|Vλu〉

∣∣+ ∣∣〈Uλv|Vλv〉
∣∣ .
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Equality takes place when

1. Re〈U |Bu⊗Eλ |V 〉= 〈U |Bu⊗Eλ |V 〉, Re〈V |Bv⊗Eλ |U〉= 〈V |Bv⊗Eλ |U〉

2. Re〈U |Bu⊗Eλ |V 〉,Re〈V |Bv⊗Eλ |U〉 are of same sign.

Proof.

∣∣Re〈U |Bu⊗Eλ |V 〉+Re〈V |Bv⊗Eλ |U〉
∣∣

≤
∣∣〈U |Bu⊗Eλ |V 〉

∣∣+ ∣∣〈V |Bv⊗Eλ |U〉
∣∣

Equality: when Re〈U|Bu⊗Eλ |V〉=〈U|Bu⊗Eλ |V〉, Re〈V|Bv⊗Eλ |U〉=〈V|Bv⊗Eλ |U〉

and Re〈U|Bu⊗Eλ |V〉,Re〈V|Bv⊗Eλ |U〉 are of same signy Use: B2
u=Bu,B2

v=Bv

=
∣∣∣〈U |B2

u⊗Eλ |V 〉
∣∣∣+ ∣∣∣〈V |B2

v⊗Eλ |U〉
∣∣∣

=

∣∣∣∣〈U |(Bu⊗
√

Eλ

)(
Bu⊗

√
Eλ

)
|V 〉
∣∣∣∣+ ∣∣∣∣〈V |(Bv⊗

√
Eλ

)(
Bv⊗

√
Eλ

)
|U〉
∣∣∣∣y Use:

Uλu = Bu⊗
√

Eλ |U〉 Vλu = Bu⊗
√

Eλ |V 〉
Uλv = Bv⊗

√
Eλ |U〉 Vλv = Bv⊗

√
Eλ |V 〉

=
∣∣〈Uλu|Vλu〉

∣∣+ ∣∣〈Vλv|Uλv〉
∣∣ =

∣∣〈Uλu|Vλu〉
∣∣+ ∣∣〈Uλv|Vλv〉

∣∣ .

Proposition 3.4.10.1.1. P.T.

f (w) =
√(

dλ +w
)(

1−dλ +w
)
+
√(

dλ −w
)(

1−dλ −w
)

is maximum at w = 0.

Proof. Let
g(w) =

√
(π1 +w)(π2 +w) s.t. π1 +π2 = 1

Then,
f (w) = g(w)+g(−w), where, π1 = dλ ,π2 = 1−dλ

Let’s say,
f+(w) = g(w)+g(−w), f−(w) = g(w)−g(−w)

Claim 3.4.10.1.1.

1. g2(w) = π1π2 +w+w2

2. g′(w) =
1+2w
2g(w)

3. g′′(w) =
4π1π2−1

4g3(w)
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Clearly, for max f (w),

0 = f ′(w) = g′(w)−g′(−w)

=⇒ 2w =
f−(w)
f+(w)

(3.4.1)

Also,

2w = g2(w)−g2(−w) =
(
g(w)−g(−w)

)(
g(w)+g(−w)

)
= f−(w) f+(w)

(3.4.2)

From Eq. (3.4.1) and (3.4.2) we get,

0 = f−(w)
[
1− f 2

+(w)
]

(3.4.3)

Case 1:

0 = f−(w) =⇒ w = 0

Case 2:

1 = f 2
+(w) =⇒ 1 = 4π1π2

Thus f (w) is max at w = 0.

3.4.10.2 IBtL Sec. 3.4.4: Proving bounds for MI

We need to use the following two results:

1. z(x) =
√

x(1−x) is a concave function of x.

2. φ(z) = (1+ z) ln(1+ z)+(1− z) ln(1− z) is m.i.

Calculation 3.4.10.2.1. P.T. φ

[
2
√

x(1−x)
]

is a concave function of x.

Note 3.4. Observations:

1. z(x) = 2
√

x(1−x) is concave.

2. φ(z) = (1+ z) ln(1+ z) + (1− z) ln(1− z) is a non-concave function of z, since
d2φ

dz2 > 0.

Does it imply that φ(z(x)) is concave over x?

Hint 1. Let z(x) = 2
√

x(1−x). Then T.P.T.

φ(z) = (1+ z) ln(1+ z)+(1− z) ln(1− z) is a concave function of x.
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Proof. Derivatives of z(x):

z(x) = 2
√

x(1−x), z′(x) =
1−2x
z(x)

, z′′(x) =− 4
z3(x)

Derivatives of φ(z):

φ(z) = (1+ z) ln(1+ z)+(1− z) ln(1− z)
dφ

dz
= ln

(
1+ z
1− z

)
d2φ

dz2 =
2

1− z2

Thus, for φ = φ(z(x)),

d2φ

dx2 =
4
z3

[
2z− ln

(
1+ z
1− z

)]
=

4
z3 ψ(z), say.

But, ψ(z) is m.d., since ψ ′(z)< 0, while ψ(0) = 0.
Thus, ψ(z)< 0, ensuring d2φ

dz2 < 0 and thereby, φ(z(x)) is concave.

3.4.10.3 IBtL Sec. 3.4.5: Proving NSC for IG, MI

Calculation 3.4.10.1. P.T. σλ = sgn
(

Qxλ −Qyλ

)
.

Proof.

σλ = sgn
(
〈Uλu|Vλu〉+ 〈Uλv|Vλv〉

)
= sgn

(
qλ Gλ

)
= sgn

(
Pλx−Pλy

)
= sgn

(
Qxλ −Qyλ

)
(3.4.4)

Calculation 3.4.10.2. P.T. ελ = σλ = ε ′
λ

.

Proof.

|Vλu〉 = ελ µ︸︷︷︸
+ve

|Uλu〉

=⇒ 〈Uλu|Vλu〉︸ ︷︷ ︸
Real

σλ times +ve quantity

= ελ µ︸︷︷︸
+ve

〈Uλu|Uλu〉︸ ︷︷ ︸
+ve

=⇒ ελ = σλ

Similarly ε ′
λ

= σλ
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Calculation 3.4.10.3. P.T. µ =
√

Duv
1−Duv

= ν

Proof.

|Vλu〉=± µ |Uλu〉= ελ µ |Uλu〉

|Vλv〉=± ν |Uλv〉= ε
′
λ

ν |Uλv〉

=⇒ 〈Vλu|Vλu〉︸ ︷︷ ︸
= Pλvdλv
= q

λ
Duv

= µ
2 〈Uλu|Uλu〉︸ ︷︷ ︸

= Pλu(1−dλu)
= q

λ
(1−Duv)

=⇒ µ =

√
Duv

1−Duv
= ν

3.4.10.4 IBtL Sec. 3.4.6.1: PIJS

Proposition 3.4.10.4.1. P.T.

2
√

1−Duv |ξu〉 =
√

1−Dxy
(
|ξx〉+ |ξy〉

)
+
√

Dxy
(
|ζx〉+ |ζy〉

)
2
√

Duv |ζu〉 =
√

1−Dxy
(
|ξx〉− |ξy〉

)
+
√

Dxy
(
|ζy〉− |ζx〉

)
Proof. In the PIJSs |X〉, |Y 〉 of Eqs. (3.3.4.1) , (3.3.4.3), use the conjugate rela-
tions (2.1) ,(3.5).

Now, due to

1√
2

(
|U〉+ |V 〉

)
= |X〉=

√
1−Dxy |x〉|ξx〉+

√
Dxy |y〉|ζx〉

=
√

1−Dxy
1√
2

(
|u〉+ |v〉

)
|ξx〉+

√
Dxy

1√
2

(
|u〉− |v〉

)
|ζx〉,

we get,

|U〉+ |V 〉 = |u〉
(√

1−Dxy |ξx〉+
√

Dxy |ζx〉
)
+ |v〉

(√
1−Dxy |ξx〉−

√
Dxy |ζx〉

)
.

(3.4.5)

Similarly, due to

1√
2

(
|U〉− |V 〉

)
= |Y 〉=

√
1−Dxy |y〉|ξy〉+

√
Dxy |x〉|ζy〉

=
√

1−Dxy
1√
2

(
|u〉− |v〉

)
|ξy〉+

√
Dxy

1√
2

(
|u〉+ |v〉

)
|ζy〉
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we get,

|U〉− |V 〉 = |u〉
(√

1−Dxy |ξy〉+
√

Dxy |ζy〉
)
−|v〉

(√
1−Dxy |ξy〉−

√
Dxy |ζy〉

)
.

(3.4.6)

Adding equations (3.4.5) and (3.4.6) we get

2|U〉 = |u〉
(√

1−Dxy
(
|ξx〉+ |ξy〉

)
+
√

Dxy
(
|ζx〉+ |ζy〉

))
+

|v〉
(√

1−Dxy
(
|ξx〉− |ξy〉

)
+
√

Dxy
(
|ζy〉− |ζx〉

))
.

Using the expression of |U〉 in Eq. 3.3.4.3, we get

2
(√

1−Duv |u〉|ξu〉+
√

Duv |v〉|ζu〉
)

= |u〉
(√

1−Dxy
(
|ξx〉+ |ξy〉

)
+
√

Dxy
(
|ζx〉+ |ζy〉

))
+

|v〉
(√

1−Dxy
(
|ξx〉− |ξy〉

)
+
√

Dxy
(
|ζy〉− |ζx〉

))
.

Comparing co-eff of |u〉, |v〉 (they are l.i.) we get the desired expressions.
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Proposition 3.4.10.4.2. T.P.T.

Re[〈ξx|ζy〉−〈ζx|ξy〉] = 0(
1−Dxy

)
Im[〈ξy|ξx〉]+Dxy Im[〈ζx|ζy〉] = 0 (3.4.7)

Proof. Use the orthogonality 〈ξu|ζu〉= 0 with the relevant states from Eq. (3.3.4.4)

2
√

1−Duv |ξu〉 =
√

1−Dxy
(
|ξx〉+ |ξy〉

)
+
√

Dxy
(
|ζx〉+ |ζy〉

)
2
√

Duv |ζu〉 =
√

1−Dxy
(
|ξx〉− |ξy〉

)
+
√

Dxy
(
|ζy〉− |ζx〉

)
,

we get

0 = 2
√

1−Duv 2
√

Duv 〈ξu||ζu〉

=
[√

1−Dxy
(
〈ξx|+ 〈ξy|

)
+
√

Dxy
(
〈ζx|+ 〈ζy|

)][√
1−Dxy

(
|ξx〉− |ξy〉

)
+
√

Dxy
(
|ζy〉− |ζx〉

)]
=

(
1−Dxy

)〈ξx|ξx〉︸ ︷︷ ︸
=1

−〈ξx|ξy〉+ 〈ξy|ξx〉−〈ξy|ξy〉︸ ︷︷ ︸
=1


+Dxy

〈ζx|ζy〉−〈ζx|ζx〉︸ ︷︷ ︸
=1

+〈ζy|ζy〉︸ ︷︷ ︸
=1

−〈ζy|ζx〉



+
√

Dxy
(
1−Dxy

)
〈ξx|ζy〉︸ ︷︷ ︸

G1

−〈ξx|ζx〉︸ ︷︷ ︸
=0

+〈ξy|ζy〉︸ ︷︷ ︸
=0

−
G2︷ ︸︸ ︷
〈ξy|ζx〉



+

〈ζx|ξx〉︸ ︷︷ ︸
=0

−
G2︷ ︸︸ ︷
〈ζx|ξy〉+〈ζy|ξx〉︸ ︷︷ ︸

G1

−〈ζy|ξy〉︸ ︷︷ ︸
=0




y [Use: 〈z1|z2〉+ 〈z2|z1〉= 2Re〈z1|z2〉, 〈z1|z2〉−〈z2|z1〉= i ·2Re〈z1|z2〉]

= i
[(

1−Dxy
)

2Im
(
〈ξy|ξx〉

)
+Dxy 2Im

(
〈ζx|ζy〉

)]
+
√

Dxy
(
1−Dxy

)
2
[
Re〈ξx|ζy〉−Re〈ζx|ξy〉

]
Equating real and imag. parts we get the desired result.
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Calculation 3.4.10.4.1. P.T. ρx = TrAlice
(
|X〉〈X |

)
= (1−Dxy)|ξx〉〈ξx|+Dxy|ζx〉〈ζx|

Proof. With

|X〉 =
√

1−Dxy |x〉|ξx〉+
√

Dxy |y〉|ζx〉,

|X〉〈X | = (1−Dxy) |x〉〈x|⊗ |ξx〉〈ξx|+Dxy |y〉〈y|⊗ |ζx〉〈ζx|

+
√

Dxy(1−Dxy)
(
|x〉〈y|⊗ |ξx〉〈ζx|+ |y〉〈x|⊗ |ζx〉〈ξx|

)

TrAlice
(
|X〉〈X |

)
= (1−Dxy) Tr

(
|x〉〈x|

)
|ξx〉〈ξx|+Dxy Tr

(
|y〉〈y|

)
|ζx〉〈ζx|

+
√

Dxy(1−Dxy)
(
Tr
(
|x〉〈y|

)
|ξx〉〈ζx|+Tr

(
|y〉〈x|

)
⊗|ζx〉〈ξx|

)
Using

Tr
(
|x〉〈x|

)
= 〈x|x〉= 1 = 〈y|y〉= Tr

(
|y〉〈y|

)
,

Tr
(
|x〉〈y|

)
= 〈x|y〉= 0 = 〈y|x〉= Tr

(
|y〉〈x|

)
,

we get the desired result.

3.4.10.5 IBtL Sec. 3.4.6.3: Optimal POVM

Proposition 3.4.10.5.1. We’ll show that, for the given IVs, Eve’s observable becomes

Γxy = = (1−Dxy)ξ̂ +Dxyζ̂

With k := 2
√

Duv(1−Duv),

ξ̂ = |ξx〉〈ξx|− |ξy〉〈ξy| = k
[
|φ+

xy〉〈φ−xy|+ |φ−xy〉〈φ+
xy|
]

= k (E0−E3)

ζ̂ = |ζx〉〈ζx|− |ζy〉〈ζy| = k
[
|ψ+

xy〉〈ψ−xy|+ |ψ−xy〉〈ψ+
xy|
]

=−k (E1−E2)

Proof. For the first equality, we proceed as follows. With the IVs

|ξx〉=
√

1−Duv |Φ+
xy〉+

√
Duv |Φ−xy〉, |ξy〉=

√
1−Duv |Φ+

xy〉−
√

Duv |Φ−xy〉,

|ξx〉〈ξx| = (1−Duv) |φ+
xy〉〈φ+

xy|+Duv |φ−xy〉〈φ−xy|

+
√

Duv(1−Duv)
(
|φ+

xy〉〈φ−xy|+ |φ−xy〉〈φ+
xy|
)
,

|ξy〉〈ξy| = (1−Duv) |φ+
xy〉〈φ+

xy|+Duv |φ−xy〉〈φ−xy|

−
√

Duv(1−Duv)
(
|φ+

xy〉〈φ−xy|+ |φ−xy〉〈φ+
xy|
)
.
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|ξx〉〈ξx|− |ξy〉〈ξy| = 2
√

Duv(1−Duv)
(
|φ+

xy〉〈φ−xy|+ |φ−xy〉〈φ+
xy|
)
.

Similarly, with

|ζx〉=
√

1−Duv |Ψ+
xy〉−

√
Duv |Ψ−xy〉, |ζy〉=

√
1−Duv |Ψ+

xy〉+
√

Duv |Ψ−xy〉,

|ζx〉〈ζx| = (1−Duv) |ψ+
xy〉〈ψ+

xy|+Duv |ψ−xy〉〈ψ−xy|

−
√

Duv(1−Duv)
(
|ψ+

xy〉〈ψ−xy|+ |ψ−xy〉〈ψ+
xy|
)
,

|ζy〉〈ζy| = (1−Duv) |ψ+
xy〉〈ψ+

xy|+Duv |ψ−xy〉〈ψ−xy|

+
√

Duv(1−Duv)
(
|ψ+

xy〉〈ψ−xy|+ |ψ−xy〉〈ψ+
xy|
)
.

|ζx〉〈ζx|− |ζy〉〈ζy| = −2
√

Duv(1−Duv)
(
|ψ+

xy〉〈ψ−xy|+ |ψ−xy〉〈ψ+
xy|
)
.

For the second equality, i.e. to prove

|φ+
xy〉〈φ−xy|+ |φ−xy〉〈φ+

xy|= E0−E3; |ψ+
xy〉〈ψ−xy|+ |ψ−xy〉〈ψ+

xy|= E1−E2,

we proceed as follows.

We use

|Φ±xy〉 :=
1√
2

(
|x〉|x〉±|y〉|y〉

)
=

1√
2

(
|E0〉± |E3〉

)
,

Psixy± :=
1√
2

(
|x〉|y〉±|y〉|x〉

)
=

1√
2

(
|E2〉± |E1〉

)
.

Considering the notations Ei j := |Ei〉〈E j|,Ei := |Ei〉〈Ei|,

|φ+
xy〉〈φ−xy| =

1
2
(E00−E33−E03 +E30)

|φ−xy〉〈φ+
xy| =

1
2
(E00−E33 +E03−E30)

|ψ+
xy〉〈ψ−xy| =

1
2
(E11−E22 +E12−E21)

|ψ−xy〉〈ψ+
xy| =

1
2
(E11−E22−E12 +E21) .

3.4.10.6 IBtL Sec. 3.4.6.4: Optimality of the interactions

Calculation 3.4.10.6.1. P.T. Bu⊗E1 |U〉=
√

1−Duv 〈E1|ξu〉|u〉|E1〉
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Use: Bu = |u〉〈u|, E1 = |E1〉〈E1|, |U〉=
√

1−Duv |u〉|ξu〉+
√

Duv |v〉|ζu〉.

Proof.

Bu⊗E1 |U〉 = Bu⊗E1

(√
1−Duv |u〉|ξu〉+

√
Duv |v〉|ζu〉

)
=

√
1−Duv

(
Bu|u〉

)
⊗
(
E1|ξu〉

)
+
√

Duv
(
Bu|v〉

)
⊗
(
E1|ζv〉

)[
Use: Bu|u〉= |u〉, E1|ξu〉= |E1〉〈E1||ξu〉;Bu|v〉= 0.

]
=

√
1−Duv 〈E1|ξu〉|u〉|E1〉

Calculation 3.4.10.6.2. P.T. 〈E1|ξu〉= 1√
2

√
Dxy

Use: |ξu〉 =
√

1−Dxy |Φ+
uv〉 +

√
Dxy |Φ−uv〉, |Φ±uv〉 = 1√

2

(
|u〉|u〉±|v〉|v〉

)
=

1√
2

(
|F0〉± |F3〉

)
.

Then,

〈E1|F0〉=
1
2
, 〈E1|F3〉=−

1
2

=⇒ 〈E1|Φ+
uv〉= 0, 〈E1|Φ−uv〉=

1√
2
.

3.4.10.7 IBtL: Equal-error

Proposition 3.4.10.1. P.T.
D =

1− cosα

2− cosα + cosβ
.

Proof. We use the normalization constraint 〈ζu|ζu〉= 1, with the overlaps

〈ξx|ξy〉= cosα,〈ζy|ζx〉= cosβ ; 〈ξx|ζy〉= 0 = 〈ξy|ζx〉; 〈ξi|ξi〉= 1 = 〈ζ j|ζ j〉.

For equal error rates xy = Duv = D, consider the following relation

2
√

Duv |ζu〉 =
√

1−Dxy
(
|ξx〉− |ξy〉

)
+
√

Dxy
(
|ζy〉− |ζx〉

)
.

Then, taking inner product of both sides, we get

4D = (1−D) [2−2cosα]+D
[
2−2cosβ

]
= 2−2cosα +2D

(
cosα− cosβ

)
.

Simplifying, we get the desired relation.

Proposition 3.4.10.2 (Maximizing the success probability of Eve). The maximum for

Eq. 3.4.9 occur for α = β , with sinα = 2
√

D(1−D).

Proof. It’s enough to maximize the following function.

f (α,β ) := F · sinα +D · sinβ .
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Note that, sinα is concave in [0,π/2]. So,

f (α,β ) ≤ sin
(
F ·α +D ·β

)
.

Since the equality occurs for α = β ,

f ?(α,β ) := sinα.

In that case, the expression for disturbance becomes

D =
1− cosα

2
,

giving rise to

cosα = 1−2D, sinα = 2
√

D(1−D).

Proposition 3.4.10.3. 1. For small D,

IAE ≤ 2D

2. At the other extreme, Imax
AE = ln2

Proof. Consider D small.

Imax =
1
2

φ

[
2
√

D(1−D)
]

φ(z) = (1+ z) ln(1+ z)+(1− z) ln(1− z)

ln(1+ z) ≈ z− z2

2
, for small z

ln(1− z) ≈ −z− z2

2
, for small z

φ(z) ≈ (1+ z)

(
z− z2

2

)
+(1− z)

(
−z− z2

2

)
= 2z2− z2 = z2

φ

[
2
√

D(1−D)
]
≈ φ(2

√
D)≈ 4D

Imax ≈ 2D

At the other extreme, Imax
AE = ln2 and it occurs when D = 1/2 at α = π

2 = β .
In that case, choice of ξi,ζ j becomes

|ξx〉= |x〉|x〉, |ξy〉= |y〉|x〉, |ζx〉= |x〉|y〉, |ζy〉= |y〉|y〉.
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which is an orthonormal basis, i.e., optimal information gathering measurement is defined
by the 4-dim computational basis.

3.5 Conclusion

We have discussed the nuts-and-bolts of the optimal attack [FGG+97] on the BB84 pro-
tocol. It uses a two-qubit ancilla (four dimensional probe) to glean information from the
senders signal. The unitary evolution entangles the two systems which is later measured
in a suitable four-dimensional POVM. To quantify the amount of information gathered
by Eve, two functions are considered: IG, and MI. Both are maximized simultaneously
for the same optimal measurement. The attack can leave a further scope for secret key
distillation for a QBER up to 14.64%. The secret key-rate is plotted in this window of
disturbance.

The attack model is developed for the generalized asymmetric error rates across the
two MUBs. A symmetric attack is then considered separately. For the asymmetric model,
a necessary and sufficient condition is also given to testify optimality of any interaction.
The maximum information is shown achievable by a judiciously chosen interaction, each
in the asymmetric case and in the symmetric case.

Interestingly, such an optimal attack on the p&m scheme has clear connection with the
Bell violation in the equivalent entanglement-based scheme. We have shown explicitly
that the optimal states of the joint system can also be obtained by an optimal phase-
covariant cloning mechanism, and vice versa.

It is left open an exercise in [FGG+97] to find out the population of candidate interac-
tions (IVs) that can achieve the maximum amount of information. For practical purposes,
an eavesdropper requires the optimal unitary to evolve the joint system and the corre-
sponding measurement that she must perform to glean the optimal information. We will
discuss these issues in the subsequent chapters.



CHAPTER 4

CHARACTERIZING THE OPTIMAL
INTERACTIONS

We have already discussed a general framework of optimal eavesdropping on the 4s pro-
tocol owing to Fuchs et al. [FGG+97]. An upper bound for mutual information was
derived, that was shown to be achievable by a specific kind of interaction-measurement
combination.

However, it was left open-ended whether such an interaction is unique or not. We have
shown [AP17] that there are infinitely many such interactions which are all derived from
the first principle. They are however unique up to some kind of isomorphism that arise
due to various rotations of the same measurement setup in the four-dimensional space.
The specific choice for the optimal interaction by Fuchs et al. is shown to be a particular
instantiation of the generalized expression derived in our work.

We also discuss the optimal POVMs. We first consider the second interaction
from [FGG+97], which is shown to arise from our general expression due to a specific
choice of the measurement basis. Thereby we show by example how to find the opti-
mal POVM from a given interaction. Then, for the sake of illustration, we considered
some special instantiations from our generalized expression. We described the associated
optimal POVMs as well.

The properties of the Hermitian (observable) providing the optimal measurements are
discussed for more insight. We have described the expression of the Hermitian in the
measurement basis, found their eigenvalues. We also have connected the sign parameter
of the necessary and sufficient condition in [FGG+97] with the sign of these eigenvalues.

Overall, we have developed a mathematical framework to tackle the derivation of the
generalized optimal interactions from the scratch.
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4.1 A brief overview

Note that, Fuchs et al. [FGG+97] had an intelligent guess to come up with the expression
for optimal interaction. On the other hand, in the paper [AP17], we explicitly derived a
general form of the expression of any possible optimal interactions.

4.1.1 New notations

Following notations, viz., Dβ ,Dβ for the encoding bases β ∈ {xy,uv}, are useful to deal
with the interaction vectors.

Notations 4.1. For any basis β ∈ {xy,uv} we define the following notations.

Dβ :=

√
1−Dβ +

√
Dβ√

2
,

Dβ :=

√
1−Dβ −

√
Dβ√

2
. (4.1.1)

The square of the quantities form a probability distribution. The following relations ap-

pear to be useful.

Dβ ·Dβ =
1
2

(
1−2Dβ

)
,

D2
β
+D2

β
= 1,

D2
β
−D2

β
= 2

√
Dβ

(
1−Dβ

)
. (4.1.2)

4.1.2 Chapter organization

The content of this chapter is organized as follows. Section 4.2 contains the basic results
from [FGG+97] required for the derivations that we have done in [AP17]. Our results are
then explained in Sec. 4.3. Section 4.4 is devoted to discuss the connection of our results
with [FGG+97] and followed by a conclusion.

The main results are briefly described in Sec. 4.3. It includes the derivation of the opti-
mal IVs, the associated optimal POVMs, the measurement observable and its eigenvalues
etc. We tabulate the IV-POVM combinations for various instantiations.

4.2 Required ingredients

Let’s recollect the tools from [FGG+97] required to derive our results. We need the
probabilities: prior, posterior etc. The maximum amount of information (IG and MI), with
the IG-lets (IG for each measurement outcome). We require the NSC. We need to rewrite
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the optimal interactions and measurements using our own notations, one for unequal error
rates and yet another for same error rate. Since all these results hold for equal prior, the
rest of the sections follow the same assumption unless explicitly mentioned.

The following expressions will be useful in our derivation of the optimal interactions.

An upper bound on the information gain (G) from Eqs. (3.3.2.1, 3.3.2.2).

IG?
β

= 2
√

D
β̄

(
1−D

β̄

)
.

The following bound on the IG-lets from Eq. (3.3.2.3) will be useful.

G?
xy(λ ) = 2

√
duv(λ )

[
1−duv(λ )

]
∀λ .

The maximum IG upper bounds the mutual information (I), as in Eqs. (3.3.2.4, 3.3.2.5).

MI?
β

= 1
2 φ

(
IG?

β

)
,

for the concave function

φ(z) := (1+ z) ln(1+ z)+(1− z) ln(1− z) .

Subscripts in the bounds emphasize that the mutual information and the error rates corre-
spond to signals sent in two different bases.

A formal verification of the optimal interactions will require to testify the NSC as in
Eqs. (3.3.3.1, 3.3.3.2, 3.3.3.3, 5.2.1).

One of the conditions that must hold to achieve the upper bounds in xy basis is the
following [FGG+97, Eq. (33)]:

dλu = dλv = duv(λ ) = Duv, ∀λ .

An analogous condition holds good for signals sent in uv basis.

Then, the post-interaction state of the joint ancilla-signal system is as described in
Eqs. (3.3.4.1, 3.3.4.3) for the two encoding bases.

Eve uses a 2-qubit (4 states) ancilla. Thus, she has four IVs for each of the encoding
bases. For asymmetric error rates, Eq. (3.3.7.3) describes the four IVs in the xy basis.
Similarly, for equal rates, Eq. (3.4.8) serves the purpose. We rewrite these IVs in terms of
our notations Dβ ,Dβ for the encoding bases β ∈ {xy,uv}.

For unequal error rates (i.e., Dxy 6= Duv), the following vectors work. Consider a
canonical basis for Eve’s probe as {|E0〉, |E1〉, |E2〉, |E3〉}. Without loss of generality
(w.l.o.g.),

|E0〉= |x〉|x〉, |E1〉= |y〉|x〉, |E2〉= |x〉|y〉, |E3〉= |y〉|y〉. (4.2.1)
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To describe the interaction vectors |ξi〉, |ζ j〉, we introduce the new notations Duv,Duv to
rewrite Eq. (3.3.7.3) as below.

|ξx〉 = Duv |E0〉+Duv |E3〉,

|ξy〉 = Duv |E0〉+Duv |E3〉,

|ζx〉 = Duv |E2〉+Duv |E1〉,

|ζy〉 = Duv |E2〉+Duv |E1〉, (4.2.2)

The corresponding optimal POVM, as shown in [FGG+97, Eqs. (55,56)], is described
below.

Eλ = |Eλ 〉〈Eλ |,

where
|E0〉= |E0〉, |E1〉= |E1〉, |E2〉= |E2〉, |E3〉= |E3〉. (4.2.3)

Similar expression for the optimal IVs hold for uv basis as well.

For equal error rates (Dxy = Duv = D), another set of optimal IVs was described
in [FGG+97] as described below.

|ξx〉 = |E0〉,

|ξy〉 = 2DD |E0〉+
(
D2−D2

)
|E1〉,

|ζx〉 = |E2〉,

|ζy〉 = 2DD |E2〉+
(
D2−D2

)
|E3〉. (4.2.4)

However, the corresponding optimal POVM was not shown explicitly in [FGG+97],
which we establish in Sec. 4.3.1.4.

Given an interaction, to identify an optimal POVM is already known, as discussed
earlier. For an optimal interaction, the density operators ρx, ρy with Eve are such that a
set of the eigenprojectors {Eλ} onto the orthonormal eigenbasis {|Eλ 〉} of the Hermitian
operator Γxy := 1

2

(
ρx−ρy

)
becomes the optimal measurement. It optimizes both IG and

MI across the two MUBs.

Although, both interactions (4.2.2, 4.2.4) lead to optimality, the way they were pro-
posed in [FGG+97] seems to be a judicious guesswork. This leaves open a few interesting
questions:

1. Rather than guessing an interaction and verifying its optimality, can we derive it
from the first principle?

2. Are there alternate optimal interactions than the two specific ones?

3. If so, is it possible to characterize all the possible interactions?
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We answer these questions in the following section.

4.3 Our Results [AP17]

Here we derive a general expression for an interaction by Eve that leads to optimal infor-
mation gain. Eventually, we show that the expression is unique in the measurement basis.
Associated optimal POVMs follow automatically.

4.3.1 Optimal interaction to maximize information gain (G): A
generic form of optimal |ξi〉, |ζ j〉

4.3.1.1 The basic ingredients

We use the following result with equal priors to find an expression of |ξi〉, |ζ j〉 for optimal
interaction.

Lemma 4.1. Optimality conditions for Gxy ensure that each G?
xy(λ ) is equal to G?

xy and

the corresponding optimal value is given by

G?
xy = 2

√
Duv(1−Duv) = G?

xy(λ ), ∀λ . (4.3.1)

Proof. For signal sent in xy basis, the optimal information gain, by Eq. (3.3.2.1), is

G?
xy = 2

√
Duv(1−Duv).

By Eq. (3.3.2.3), for measurement outcome λ of Eve,

G?
xy(λ ) = 2

√
duv(λ )

[
1−duv(λ )

]
In order to satisfy optimality, the necessary and sufficient conditions in Proposition 3.3
must be satisfied. By [FGG+97, Eq. (33)], this requires

duv(λ ) = Duv, ∀λ

which ensures that the lemma is proved.

Note 4.1. As we considered equal prior probabilities, we use the following working for-

mula of Gxy(λ ) while we derive the general form of an optimal interaction,

Gxy(λ ) =
∣∣∣Qxλ −Qyλ

∣∣∣=
∣∣∣Pλx−Pλy

∣∣∣
Pλx +Pλy

. (4.3.2)
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Here we describe an expression of Pλx,Pλy in terms of |ξi〉, |ζ j〉 and a POVM {Eλ}.

Theorem 4.1. Given the postinteraction joint sates (3.3.4.1), and a POVM

{Eλ}λ∈{0,1,2,3},

Pλx = (1−Dxy)〈ξx|Eλ 〉2 +Dxy〈ζx|Eλ 〉2,

Pλy = (1−Dxy)〈ξy|Eλ 〉2 +Dxy〈ζy|Eλ 〉2. (4.3.3)

Proof. Using Eq. (3.3.4.1) in Eq. (3.4.6.1), we get,

ρx = TrA
(
|X〉〈X |

)
= (1−Dxy)ξ̂x +Dxyζ̂x, (4.3.4)

where
ξ̂x := |ξx〉〈ξx|, ζ̂x := |ζx〉〈ζx|.

By Eq. (3.6),

Pλx = Tr
(
ρxEλ

)
= (1−Dxy)Tr

(
ξ̂xEλ

)
+DxyTr

(
ζ̂xEλ

)
= (1−Dxy)〈ξx|Eλ 〉2 +Dxy〈ζx|Eλ 〉2.

Similarly, we can derive an expression for Pλy.

We now have all the required ingredients in place to derive the optimal interactions.

4.3.1.2 The main result

First we understand the difficulty to performing the derivation if we consider the inter-
action vectors in terms of the canonical basis {|Eλ 〉} states. We notice that the expres-
sions (4.3.3) of Pλx,Pλy dependent on the measurement directions |Eλ 〉. Thus, if we can
express the IVs |ξi〉, |ζ j〉 in terms of the measurement directions |Eλ 〉, then we can com-
pute the probabilities Pλx,Pλy, and thereby compute the IG. This is the main difficulty that
we resolve here.

With this understanding about the way of describing the interaction vectors, we start
with a general form (4.3.6) of the IVs |ξi〉, |ζ j〉 expressed in the associated orthonormal
measurement basis {|Eλ 〉}, while abiding by the orthogonality restriction (3.3.4.2). Sub-
sequently, we plug-in the expression (4.3.6) of the interaction vectors into Eq. (4.3.3) to
get the probabilities Pλx,Pλy. Then we substitute these probabilities into Eq. (4.3.2) to get
the values of Gxy(λ ). Finally, we compare these values with their optimal counterparts in
Eq. (4.3.1), and derive the general form of an optimal interaction |ξi〉, |ζ j〉 expressed in
the eigenbasis {|Eλ 〉}.
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This way of expressing interaction vectors (in measurement basis than in the compu-
tational basis) not only helps us deriving the optimal interactions, but, as we will realize
shortly, all the optimal interactions eventually lead to a unique expression.

Theorem 4.2. Let {|Eλ 〉} be an orthonormal eigenbasis of the observable Γxy pertaining

to the arbitrary choice of the interaction vectors |ξi〉, |ζ j〉 in Eq. (3.3.4.1) of the postinter-

action states while abiding by the orthogonality restriction (3.3.4.2). Then, for an inter-

action done optimally, the general form of the IVs |ξi〉, |ζ j〉 described in that measurement

basis becomes

|ξx〉 = Duv |E0〉+Duv |E1〉,

|ξy〉 = Duv |E0〉+Duv |E1〉,

|ζx〉 = Duv |E2〉+Duv |E3〉,

|ζy〉 = Duv |E2〉+Duv |E3〉, (4.3.5)

where Duv,Duv are as defined in Eq. (5.1.1).

Proof. First we need to fix an orthonormal basis to describe |ξi〉, |ζ j〉 following restric-
tion (3.3.4.2). For that purpose, there is no harm to choose the above eigenbasis to de-
scribe |ξi〉, |ζ j〉. Orthogonality restriction (3.3.4.2) is automatically satisfied if we choose
|ξi〉 ∈ span{|E0〉, |E1〉} and |ζ j〉 ∈ span{|E2〉, |E3〉} 1. So the general form of |ξi〉, |ζ j〉
becomes

|ξx〉 =
√

α |E0〉+
√

1−α |E1〉,

|ξy〉 =
√

β |E0〉+
√

1−β |E1〉,

|ζx〉 =
√

µ |E2〉+
√

1−µ |E3〉,

|ζy〉 =
√

ν |E2〉+
√

1−ν |E3〉. (4.3.6)

Using this form of |ξi〉, |ζ j〉 in Eq. (4.3.3), we find values of Gxy(λ ) as shown in Table 4.1.

By Lemma 4.1 , for optimal Gxy, the values of Gxy(λ ) are all equal. Equating
Gxy(0),Gxy(1) in Table 4.1, we get,

α +β = 1, Gxy(0) = Gxy(1) = |2α−1| .

Similarly, equating Gxy(2),Gxy(3) in Table 4.1, we get,

µ +ν = 1, Gxy(2) = Gxy(3) =
∣∣2µ−1

∣∣ .
1This is a choice. There are other orthogonality choices indeed. However, it doesn’t matter, as we

establish in the next chapter.
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Table 4.1 | Ingredients to derive optimal interactions.

For the general form of the IVs |ξi〉, |ζ j〉 as in Eq. (4.3.6), tabulated the values of
the probabilities Pλx,Pλy, and the IG-lets Gxy(λ ) for various measurement outcomes λ .
Here, F := 1−D.

λ Pλx Pλy Gxy(λ ) =

∣∣∣Pλx−Pλy

∣∣∣
Pλx +Pλy

0 Fxy〈ξx|E0〉2 = Fxyα Fxy〈ξy|E0〉2 = Fxyβ |α−β |/(α+β)

1 Fxy〈ξx|E1〉2 = Fxy(1−α) Fxy〈ξy|E1〉2 = Fxy(1−β ) |β−α|/(1−α+1−β)

2 Dxy〈ζx|E2〉2 = Dxyµ Dxy〈ζy|E2〉2 = Dxyν |µ−ν|/(µ+ν)

3 Dxy〈ζx|E3〉2 = Dxy(1−µ) Dxy〈ζy|E3〉2 = Dxy(1−ν) |ν−µ|/(1−µ+1−ν)

Together, equating Gxy(0),Gxy(2), we get,

µ = α, ν = β = 1−α. (4.3.7)

Thus,

G?
xy(0) = D2

uv−D2
uv = 2D2

uv−1 = |2α−1|

gives rise to

√
α = Duv,

√
1−α =Duv. (4.3.8)

Using Eqs. (4.3.8, 4.3.7) in Eq. (4.3.6), we get a generic form for optimal |ξi〉, |ζ j〉 as in
Eq. (4.3.5).

Analogous to Eq. (4.3.5), a set of optimal interaction vectors exist in the uv basis as
following.

|ξu〉 = Dxy |F0〉+Dxy |F1〉,

|ξv〉 = Dxy |F0〉+Dxy |F1〉,

|ζu〉 = Dxy |F2〉+Dxy |F3〉,

|ζv〉 = Dxy |F2〉+Dxy |F3〉. (4.3.9)

The most interesting aspect with the expression (4.3.5) of the optimal IVs is that it has
a unique form capturing all the optimal interactions while realized in the measurement
basis (orthonormal eigenbasis of the associated Γxy).
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Since any rotation (in general, unitary transformation) U of the canonical basis {|Eλ 〉}
produces an orthonormal basis {|Eλ 〉}, it can be considered as a measurement basis.

Remark 4.1. An optimal interaction for equal error rates could be described by an ex-

pression analogous to Eq. (4.3.5) while Duv,Duv are replaced by D ,D respectively.

4.3.1.3 The optimal observable

The general expression of the observable Γxy corresponding to the interactions (4.3.5)
along with the PIJSs (3.3.4.1) can easily be found.

Theorem 4.3. For an optimal interaction (4.3.5, 3.3.4.1), and its optimal POVM {Eλ},

Γxy =
1
2
(D2

uv−D2
uv) [(1−Dxy)(E0−E1)+Dxy(E2−E3)] (4.3.10)

Proof. By Eq. (4.3.4) and its analogue for signal y,

2Γxy = ρx−ρy = (1−Dxy)
(

ξ̂x− ξ̂y

)
+Dxy

(
ζ̂x− ζ̂y

)
.

Using expressions of |ξi〉, |ζ j〉 in Eq. (4.3.5), and denoting Ei j := |Ei〉〈E j|, we get,

ξ̂x = D2
uv E00 +D2

uv E11 +2DuvDuv (E01 +E10) ,

ξ̂y = D2
uv E00 +D2

uv E11 +2DuvDuv (E01 +E10) ,

ζ̂x = D2
uv E22 +D2

uv E33 +2DuvDuv (E23 +E32) ,

ζ̂y = D2
uv E22 +D2

uv E33 +2DuvDuv (E23 +E32) .

which leads to the desired form of Γxy.

Remark 4.2. The eigenvalues of the observable Γxy in (4.3.10) are

γ0 =
1
2

(
D2

uv−D2
uv

)(
1−Dxy

)
, γ1 =−γ0,

γ2 =
1
2

(
D2

uv−D2
uv

)
Dxy, γ3 =−γ2. (4.3.11)

Note 4.2. It is interesting to note here that, for the IVs in Eq. (4.3.5), the optimal value

D2
uv−D2

uv of Gxy in Eq. (3.3.2.1) agrees with the upper bound ∑
λ

∣∣γλ

∣∣ of Gxy in Lemma 3.3.

4.3.1.4 Optimal POVM for the optimal interaction of [FGG+97, equal error rates]

In [FGG+97], for equal error rates (i.e., Dxy = Duv = D), only the optimal states [as
described in Eq. (4.2.4)] were mentioned but not the associated optimal POVM. We show
here how to find it by simply comparing these states with our general expression (4.3.5).
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Theorem 4.4. For the optimal interaction (4.2.4) expressed in the computational ba-

sis (4.2.1), the optimal POVM {Eλ} corresponds to the eigenprojectors Eλ = |Eλ 〉〈Eλ |
defined in the following eigenbasis.

|E0〉= D |E0〉−D|E1〉, |E1〉=D|E0〉+D |E1〉,

|E2〉= D |E2〉−D|E3〉, |E3〉=D|E2〉+D |E3〉. (4.3.12)

Proof. Comparing a special form of |ξx〉, |ξy〉 given by Eq. (4.2.4) and the general form
of |ξx〉, |ξy〉 described in Eq. (4.3.5) but for equal error rates, we get

D |E0〉+D |E1〉 = |E0〉,

D |E0〉+D |E1〉 = 2DD |E0〉+
(
D2−D2

)
|E1〉.

Solving for |E0〉 and |E1〉, one can arrive at the first two expressions of Eq. (4.3.12). The
remaining two expressions of Eq. (4.3.12) can be derived by comparing the expressions
of the IVs |ζx〉, |ζy〉 in Eqs. (4.2.4, 4.3.5).

4.3.1.5 Interrelation between optimal POVMs

We have deduced infinitely many optimal interactions in the xy basis. Similarly, there
are infinitely many optimal interactions in the uv basis as well. There is an one-to-one
correspondence between them as the associated POVMs are interrelated. We provide an
interrelation between the optimal POVMs across the two MUBs in the next chapter. Here,
we provide a differently posed interrelation that serves the purpose of verifying the NSCs.

4.3.2 Verifying optimality of general interactions

The optimal interactions (4.3.5) in xy basis along with their counterpart in uv basis, should
lead to optimal information gain by virtue of our construction of optimal interactions.
Thereby, they saturate the upper bounds of IVs in Eqs. (3.3.2.1, 3.3.2.2), as well MI-
bounds in Eqs. (3.3.2.4, 3.3.2.5).

Thus, if the derivation is correct, the derived IVs should satisfy the necessary and suffi-
cient conditions for optimality given by Proposition 3.3. However, the verification process
demands the knowledge on the overlaps between the IVs in a basis with the POVMs in
the conjugate basis. To find the overlaps, say, 〈Eλ |ξu〉, we require to rewrite |ξu〉 in terms
of the eigenbasis |Eλ 〉 than in terms of |Fλ 〉. We do it fist before checking the NSCs.2

2One can also find the interrelation between the measurement directions across the two MUBs to ac-
complish the job, that we do later.
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4.3.2.1 Expressing the IVs of one basis w.r.t. the measurement direction in the
conjugate basis

Remark 4.3. We can rewrite the optimal IVs in Eq. (4.3.5) w.r.t. another orthonormal

basis {|Ẽλ 〉} as follows.

|ξx〉 =
√

1−Duv |Ẽ0〉+
√

Duv |Ẽ1〉,

|ξy〉 =
√

1−Duv |Ẽ0〉−
√

Duv |Ẽ1〉,

|ζx〉 =
√

1−Duv |Ẽ2〉+
√

Duv |Ẽ3〉,

|ζy〉 =
√

1−Duv |Ẽ2〉−
√

Duv |Ẽ3〉, (4.3.1)

Here, {|Ẽλ 〉} is nothing but the Bell basis over the eigenspace spanned by {Eλ}.

|Ẽ0〉=
1√
2

(
|E0〉+ |E1〉

)
, |Ẽ1〉=

1√
2

(
|E0〉− |E1〉

)
,

|Ẽ2〉=
1√
2

(
|E2〉+ |E3〉

)
, |Ẽ3〉=

1√
2

(
|E2〉− |E3〉

)
, (4.3.2)

Clearly, these IVs are analogous to [FGG+97, Eqs. (51) and (50)].

We can plug-in the IVs of Eqs. (4.3.1, 4.3.2) into the interrelation between the IVs
across the MUBs as in Eqs. (3.3.4.4, 3.3.4.5), and derive the IVs of uv basis expressed in
{|Ẽλ 〉} basis as follows.

Lemma 4.2. For achieving the maximum information gain, we must have

|ξu〉 =
√

1−Dxy |Ẽ0〉+
√

Dxy |Ẽ2〉

|ξv〉 =
√

1−Dxy |Ẽ0〉−
√

Dxy |Ẽ2〉

|ζu〉 =
√

1−Dxy |Ẽ1〉−
√

Dxy |Ẽ3〉

|ζv〉 =
√

1−Dxy |Ẽ1〉+
√

Dxy |Ẽ3〉 (4.3.3)

where the basis {|Ẽλ 〉} is as described in Eq. (4.3.2).

Remark 4.4. To get expressions of the IVs |ξi〉, |ζ j〉 in uv basis symmetric to those in xy

basis, e.g., like [FGG+97, Eq. (52)], one must consider the canonical basis states in the

order |E0〉= |x〉|x〉, |E1〉= |y〉|y〉, |E2〉= |x〉|y〉, |E3〉= |y〉|x〉, compatible with [FGG+97].

4.3.2.2 Verifying the NSCs

Theorem 4.5. The interaction given by Eqs. (4.3.5, 3.3.4.1) and a POVM correspond-

ing to the eigenbasis given by Eq. (3.4.6.4) satisfy the necessary and sufficient conditions

stated in Proposition 3.3 and therefore attain both the optimal information gain and opti-

mal mutual information.
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Proof. From Eq. (5.2.1), we have

|Uλu〉 = Bu⊗
√

Eλ |U〉= Bu⊗Eλ |U〉

=
√

1−Duv
(
Bu|u〉

)
⊗
(
Eλ |ξu〉

)
+
√

Duv
(
Bu|v〉

)
⊗
(
Eλ |ζv〉

)
,by Eq. (3.3.4.3).

Since Bu|u〉= |u〉,Bu|v〉= 0, and Eλ |ξu〉= 〈Eλ |ξu〉|Eλ 〉, we get,

|Uλu〉 =
√

1−Duv 〈Eλ |ξu〉|u〉|Eλ 〉.

Similarly,

|Vλu〉 =
√

Duv 〈Eλ |ζv〉|u〉|Eλ 〉.

Here, we want equality in magnitude between 〈Eλ |ξu〉 and 〈Eλ |ζv〉. Now, by Eq. (4.3.3),
〈Eλ |ξu〉 takes values

1√
2

√
1−Dxy,

1√
2

√
1−Dxy,

1√
2

√
Dxy,

1√
2

√
Dxy ;

whereas, 〈Eλ |ζv〉 takes values

1√
2

√
1−Dxy,−

1√
2

√
1−Dxy,

1√
2

√
Dxy,−

1√
2

√
Dxy ,

respectively for λ = 0,1,2,3. Therefore,

|Vλu〉 = ελ

√
Duv

1−Duv
|Uλu〉,

where,
ε0 =+1, ε1 =−1, ε2 =+1, ε3 =−1. (4.3.4)

Similarly, one may calculate to verify that

|Uλv〉 = ελ

√
Duv

1−Duv
|Vλv〉,

for the same combination of ελ as in Eq. (4.3.4). This completes the proof of the theorem.

4.3.2.3 Yet another signature of optimality

Further, we take the opportunity to establish a direct relation between the sign parameter
ελ as in the NSCs and the signs of eigenvalues γλ . It’s yet another indicator for optimality.



4.4. Generating some specific optimal IVs: Connecting [FGG+97] 111

Lemma 4.3. For optimal G,

ελ = sgn γλ . (4.3.5)

Proof. For optimal G, Γ is a diagonal matrix with diagonal entries γλ . Thus, for signals
sent in xy basis,

γλ = tr(ΓxyEλ )=
1
2
[tr(ρxEλ )−tr(ρyEλ )]=

1
2
(Pλx−Pλy).

By Eq. (3.3.3.3),

ελ = sgn
(

Qxλ −Qyλ

)
= sgn

(
Pλx−Pλy

)
= sgn γλ ,

which establishes the relation.

Remark 4.5. By Lemma 4.3, another cross-checking for optimality is that Eq. (4.3.4)
should match with the signs of the eigenvalues γλ of Γxy as in Eq. (4.3.11).

An interesting observation

• Given an interaction by Eve, if it is optimal, her IVs should carry the quality of
optimality themselves, irrespective of whether the optimal POVM is known or not.

• The optimal states in [AP17] exhibit an interesting property: the overlap between
the two ξ states (undisturbed counterpart) are same as the overlap between the two
ζ states (disturbed counterpart) and are equal to 2DD. We show in the next chapter
that this is precisely the criteria for an arbitrary set of IVs to be optimal.

4.4 Generating some specific optimal IVs: Connect-
ing [FGG+97]

Here we show that the instances of an optimal interaction presented in [FGG+97] is a
particular instance of the generalized unique expression of the optimal interactions that we
have derived. Moreover, for better understanding, we generate a new instance (different
from the two instances of [FGG+97]) of the optimal interaction.

Some orthogonal rotation of the computational basis {|Eλ 〉} [as in Eq. (4.2.1)] can be
considered as the measurement basis. An one-parametric family is considered here.

|E0〉=
√

a|E0〉−
√

1−a|E1〉,

|E1〉=
√

1−a|E0〉+
√

a|E1〉,

|E2〉=
√

a|E2〉−
√

1−a|E3〉,

|E3〉=
√

1−a|E2〉+
√

a|E3〉. (4.4.1)
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For this eigenbasis, the optimal IVs of Eq. (4.3.5) becomes

|ξx〉 =
(
Duv
√

a+Duv
√

1−a
)
|E0〉+

(
Duv
√

a−Duv
√

1−a
)
|E1〉,

|ξy〉 =
(
Duv
√

a+Duv
√

1−a
)
|E0〉+

(
Duv
√

a−Duv
√

1−a
)
|E1〉,

|ζx〉 =
(
Duv
√

a+Duv
√

1−a
)
|E2〉+

(
Duv
√

a−Duv
√

1−a
)
|E3〉,

|ζy〉 =
(
Duv
√

a+Duv
√

1−a
)
|E2〉+

(
Duv
√

a−Duv
√

1−a
)
|E3〉.

(4.4.2)

For unequal error rates, Eq. (4.2.2) is a special case (other than a permutation of
the measurement basis states) with a = 1 in Eq. (4.4.2). Similarly, for equal error rates
(Dxy = Duv = D), Eq. (4.2.4) is a specific instance with a = D2 in Eq. (4.4.2). One may
generate various optimal interactions along with the associated optimal POVM by tuning
the rotation parameter a in the range [0,1]. One such example is given here for unequal
error rates.

Example 4.1. Let a = 1
2 . Thus the optimal interaction in Eq. (4.4.2) becomes

|ξx〉 =
√

1−Duv |E0〉−
√

Duv |E1〉,

|ξy〉 =
√

1−Duv |E0〉+
√

Duv |E1〉,

|ζx〉 =
√

1−Duv |E2〉−
√

Duv |E3〉,

|ζy〉 =
√

1−Duv |E2〉+
√

Duv |E3〉, (4.4.3)

and the corresponding optimal POVM is captured by

|E0〉=
1√
2

(
|E0〉− |E1〉

)
, |E1〉=

1√
2

(
|E0〉+ |E1〉

)
,

|E2〉=
1√
2

(
|E2〉− |E3〉

)
, |E3〉=

1√
2

(
|E2〉+ |E3〉

)
. (4.4.4)

4.4.1 Sidewaytable: optimal interactions and optimal POVMs listed

Here, we enlist various optimal interactions and the corresponding optimal POVMs dis-
cussed throughout the chapter.

Table 4.2 describes the general form of the optimal interaction and also shows its
four specific instantiations, of which the first two coincide with those of [FGG+97]. The
associated optimal POVMs are also mentioned.

The first one represent our [AP17] general form of optimal interactions as in
Eq. (4.3.5).

The second and third ones are due to [FGG+97], for asymmetric and symmetric error
rate, respectively. These are indeed special cases for our generalized expression. The
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(interaction, POVM) tuples are given by Eqs. (4.2.2, 4.2.3), and Eqs. (4.2.4, 4.3.12).
Finally, we consider two special cases of our [AP17] generalized expression. The

first of them represents a set of optimal interactions as in Eq. (4.4.2) that depends on one
parameter, while the corresponding optimal POVMs are in Eq. (4.4.1). A specific instance
is then listed: the optimal interaction as in Eq. (4.4.3) along with its optimal POVM from
Eq. (4.4.4).

We could establish that there exists infinitely many possible instances of an optimal
interaction when represented in a canonical basis. However, they all have a unique repre-
sentation while expressed in the measurement basis. Feeding an optimal measurement to
the unique form of the optimal IVs produces a specific instance of an optimal interaction.

Clearly, the general expression of the optimal interaction vectors derived here yields
different choices of those in [FGG+97]. Moreover, the implementation is independent of
equal or unequal error rates.
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4.5 Conclusion

For the BB84 quantum protocol, we have established a unique form describing the op-
timal interaction vectors of Eve. The corresponding optimal measurements follow auto-
matically. To attain the optimal information gain for a given average disturbance, she can
perform such an interaction followed by the associated measurements signal by signal.
We have shown that the choice of optimal interaction in [FGG+97], for equal as well as
unequal error rates, is a special case of the optimal expression provided by us.

Although we have derived infinitely many candidate interactions for optimality, it is
arguably not clear whether they are the all possible optimal interactions. A more con-
vincing approach would be to derive them as part of a necessary and sufficient condition,
which we’ll discuss in the following chapter.





CHAPTER 5

A NEW NECESSARY AND
SUFFICIENT CONDITION FOR
OPTIMALITY AND DERIVING

OPTIMAL INTERACTION VECTORS

Given an arbitrary interaction, to check whether It is optimal or not require a certificate.
For example, a necessary and sufficient condition (NSC) by [FGG+97], where the veri-
fication involves the PIJSs in the joint Hilbert space. Here we suggest [AP21] a refined
NSC involving the states of Eve only that makes the verification easier.

It reveals that the optimal (non-zero) overlaps between the attackers post-interactions
states must be equal and numerically same as the difference between the fidelity and
the disturbance at the receiving end. That amount turns out to be same as the reduction
(factor) in Bell violation when estimated for the equivalent entanglement-based protocol.

We move further with these NSCs to derive the optimal IVs. Thus, those are unam-
biguously the only and all possible interactions. Surprisingly, they are unitarily equivalent
to the optimal interactions derived in [AP17]. We show that these optimal states are same
as the outputs of an optimal phase-covariant cloner.

Moreover, we also have established an interrelation between the optimal POVMs for
the two MUBs. These relations are useful for practical purposes, in the sense that when-
ever Eve chooses her measurement setups for the two MUBs corresponding to her suitable
choice of the unitary evolution.
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5.1 A brief overview

Fuchs et al. [FGG+97] provided with a necessary and sufficient condition(NSC) involv-
ing the joint Hilbert space of the sender and the attacker. On the other hand, we suggest
here a necessary and sufficient condition for optimality involving the Hilbert space of the
eavesdropper only. This newly proposed verification is easier to perform than the ear-
lier one [FGG+97]. When interpreted the physical significance, this new criteria depicts
explicitly the geometry of the optimal states with the attacker. We could figure out a di-
rect connection of the optimal overlap with the equivalent entanglement-based protocol
(reduction in Bell violation) and with optimal phase-covariant (pc) cloner [BCMDM00].

To be specific, an optimal incoherent attack is characterized by the non-zero overlaps
between various non-orthogonal post-interaction states of Eve’s ancilla. The amount of
optimal overlap must be equal to the difference between the fidelity and the disturbance
incurred at Bob’s end. We have shown that this amount equates the reduction (factor) in
the CHSH sum [CHSH69, Cir80] for the equivalent entanglement-based scheme. From
geometrical perspective, it amounts to the contraction in the Bloch vectors that Bob finds
in his received states due to eavesdropping affects.

We moved the process further through a chain of NSCs and derived infinitely many
optimal interactions as a NSC only. Therefore, without any ambiguity, the resulted IVs
are the only and all possible optimal interactions. These newly derived optimal IVs are
unitarily the same as the optimal states derived earlier by us [AP17]. As our optimal
states are described in terms of the measurement directions, an optimal PIJS clearly ex-
hibits an one-to-one correspondence with the optimal measurement of Eve. Thereby,
from mathematical perspective, specifying Eves measurement setup determines her IVs
and vice versa. A set of optimal IVs corresponding to one encoding basis is interrelated
with a set of optimal IVs in the conjugate basis: the associated relation between Eve’s
optimal measurements across the two MUBs are established. The optimal PIJSs (when
measured in the computational basis) are in sync with the outputs obtained by an optimal
pc-cloner [BCMDM00]. However, the states we derived are much more general in the
sense that it doesn’t depend on the specification of the measurement basis a priori.

Notations in use

To recall the optimal IVs from [AP17], we redefine the notations D+
uv and D−uv as follows.

D±
β

:=

√
1−Dβ ±

√
Dβ√

2
. (5.1.1)
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Chapter organization

The section-wise work-flow is as follows. Firstly, we recollect the required results from
the earlier chapters as described in Sec. 5.2. Then, we discuss the main results briefly
in Sec. 5.3. The derivations are later detailed in Sec. 5.5. We conclude the chapter by
summarizing the new findings and also discuss some further scopes to explore.

The new necessary and sufficient conditions along with the optimal states are dis-
cussed in Sec. 5.3. It starts from the existed NSC in [FGG+97], and moves through a
series of NSCs that finally ended by deriving the optimal IVs as part of the process. An
unitary equivalence with the earlier IVs [AP17] is established then. We also explain the
NSCs and their physical significance.

The optimal IVs for an encoding basis are related to their optimal counterpart in the
conjugate basis. We establish the one-to-one correspondence between the optimal states
across the two MUBs. The during in turn depicts an interrelation between the optimal
POVMs. We discuss these results in Sec. 5.4.

5.2 Required ingredients

In earlier chapter, we have derived infinitely many optimal interactions. We wish to know
whether they cover the whole population or not. Thus, we develop a series of NSCs to de-
rive the whole population of optimal interactions. Then we compare the newer population
with the earlier ones.

We recollect here the optimal interactions in terms of the new notations. We also need
to remember the NSC in [FGG+97].

5.2.1 The optimal states of Eve’s ancilla after an interaction

Let’s rewrite the optimal interactions from [AP17] in terms of the new notations D±
β

.

When Alice’s encoding basis is xy basis, the optimal IVs of Eve can be represented in
her orthonormal measurement basis {|Eλ 〉} as follows.

|ξ ?
x 〉=D+

uv|E0〉+D−uv|E1〉, |ξ ?
y 〉=D−uv|E0〉+D+

uv|E1〉,

|ζ ?
x 〉=D+

uv|E2〉+D−uv|E3〉, |ζ ?
y 〉=D−uv|E2〉+D+

uv|E3〉. (5.2.1)

Note that, any of the optimal IVs is a superposition of two (out of four) measurement
directions having amplitudes D+

uv and D−uv.

Similarly, the general expression of the optimal IVs in uv basis are as follows.

|ξ ?
u 〉=D+

xy|F0〉+D−xy|F1〉, |ξ ?
v 〉=D−xy|F0〉+D+

xy|F1〉,

|ζ ?
u 〉=D+

xy|F2〉+D−xy|F3〉, |ζ ?
v 〉=D−xy|F2〉+D+

xy|F3〉. (5.2.2)
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Any specification of the measurement basis {|Eλ 〉} (or {|Fλ 〉}) provides a specific
instance of the optimal IVs in terms of the computational basis: e.g., the optimal IVs due
to Fuchs et al. [FGG+97]. Due to various choices of the eigenbasis, there are infinitely
many configurations of the optimal IVs when expressed in the computational basis.

As expected, there is an one-to-correspondence between these optimal IVs across the
two MUBs. We discuss it to Sec. 5.4.

5.2.2 An existing Necessary and Sufficient Condition

An constraints of optimality of an interaction induces a restriction on the PIJSs and
thereby restricting the nature of the IVs. Optimal IVs must satisfy certain necessary and
sufficient conditions [FGG+97]. Given a set of IVs, this verification is a routine task.
However, deriving optimal IVs from these NSCs remained a harder task, and we have
tackled this issue herein.

Consider the optimality of the post-interaction states (3.3.4.1, 3.3.4.3). Denote Alices
state-symbol by aβ ∈{x,y,u,v}, and denote the PIJS symbol Sβ

a as X ,Y,U,V , respectively.
The existing NSC [FGG+97, Eqs. (38,39)] for optimality in the xy basis involves the
following four states defined over the joint Hilbert space of Bob and Eve.

|Wλa〉 := Ba⊗
√

Eλ |W 〉, (5.2.1)

with W ∈ {U,V} and a ∈ {u,v}; Bob uses the projective measurements Ba := |a〉〈a|.

For optimal knowledge gain in xy basis (KGxy), the inner products 〈Uλu|Vλu〉 and
〈Uλv|Vλv〉 must be real and have the same sign 1 ε0

λ
∈ ±1. Checking optimality is essen-

tially to verify the following parallelism:

|Uλu〉 ‖ |Vλu〉 and |Uλv〉 ‖ |Vλv〉.

To be more specific, the PIJSs |X〉, |Y 〉 are optimal for Eve having a POVM {Eλ}
iff the following equations are satisfied:√

Duv |Uλu〉= ελ

√
1−Duv |Vλu〉, (5.2.2.u)√

Duv |Vλv〉= ελ

√
1−Duv |Uλv〉. (5.2.2.v)

Similarly, analogous conditions hold for the optimality of the PIJSs in uv basis.

1Henceforth, we use the notations λ β and ε
β

λ
to denote the eigenvalues and their signs [AP17] in a basis

β .
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5.3 A new necessary and sufficient condition towards
completely characterizing Eve’s optimal states

Now, we move from this existing NSC to derive refined ones involving Eve’s system
only. In this pursuit, we move through a series of iff conditions which eventually derives
the optimal IVs w.r.t. the optimal measurement basis. One of these NSCs appeared to be
of utmost interest: the following observation will help finding that refined certificate for
optimality.

Lemma 5.1. The post-interaction states of Eve exhibit an interrelation involving the over-

lap between the two undisturbed states and that between the two disturbed states.

(
1−Dxy

)
〈ξx|ξy〉+Dxy〈ζx|ζy〉= 2D+

uvD
−
uv.

The result follows by considering the inter-relations (5.5.1) between the IVs across
the two MUBs, while imposing the normalization constraint on the IV |ξu〉.

In the following, we derive a series of iff conditions for an interaction to become
optimal. The following criteria are equivalent.

Theorem 5.1. The set of interaction vectors IVxy is optimal along with the projectors

Eλ := |Eλ 〉〈Eλ | for measurement iff any of the following conditions hold:

1. The overlap between the measurement direction |Eλ 〉 in xy basis and the IVs in uv

basis are related in the following way:

〈Eλ |ξu〉 = ε
0
λ
〈Eλ |ζv〉,

〈Eλ |ξv〉 = ε
0
λ
〈Eλ |ζu〉. (5.3.1)

Corollary 1 The overlap between the IVs in xy basis satisfy the following condi-

tion:

〈ξx|ξy〉= 〈ζx|ζy〉= 1−2Duv. (5.3.2)

2. The overlaps between the measurement direction |Eλ 〉 in xy basis and the IVs in the

same basis must maintain the following ratio:

〈Eλ |ξx〉
〈Eλ |ξy〉

=
〈Eλ |ζx〉
〈Eλ |ζy〉

=
D

(+,ε0
λ
)

uv

D
(−,ε0

λ
)

uv

=

(
D+

uv

D−uv

)ε0
λ

. (5.3.3)

Here, we improvise to the following notation

D
(σ ,ε0

λ
)

uv =
1√
2

(√
1−Duv +σε

0
λ

√
Duv

)
, (5.3.4)
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with the sign parameter σ =±1. It becomes D+
uv or D−uv, depending on whether the

product σε0
λ

becomes plus or minus, respectively.

3. The interaction vectors in the xy basis can be expressed in an orthonormal basis

{|E+
λξ
〉, |E−

λξ
〉, |E+

λζ
〉, |E−

λζ
〉} as follows:

|ξx〉 = D+
uv|E+

λξ
〉+D−uv|E−λξ

〉,

|ξy〉 = D−uv|E+
λξ
〉+D+

uv|E−λξ
〉,

|ζx〉 = D+
uv|E+

λζ
〉+D−uv|E−λζ

〉,

|ζy〉 = D−uv|E+
λζ
〉+D+

uv|E−λζ
〉. (5.3.5)

The basis vectors |E±
λξ
〉, |E±

λζ
〉 correspond to some unitary transform R± of those

two measurement directions |Eλ 〉 that provide ±ve outcomes.

In the above-said list of NSCs, It is worthy to notice the change of basis while de-
scribing the overlap between Eve’s measurement directions and the IVs. While Eve’s
measurements are considered in the xy basis, the IVs are considered in i) the uv basis for
Eq. (5.3.1), and ii) the xy basis for Eq. (5.3.3).

5.3.1 Workflow exhibiting the equivalence between the IFF condi-
tions

The four iff conditions as mentioned in Thm. 5.1 are equivalent in the sense that any
of them can be derived [see Sec. 5.5] from the other one: directly, or via some of the
remaining conditions. The inter-connections between them are sketched below in the
Workflow 1.

5.3.2 Explaining the iff conditions

Here we explain the gross essence of the four iff conditions described in Thm. 5.1 indi-
cating the optimality of the four IVs in the xy basis.

The 1st iff condition says that the overlap between a measurement direction |Eλ 〉 and
a fidelity state (Eve’s states corresponding to undisturbed counterpart of Bob’s state) cor-
responding to Alice’s signal u (or v) is same in magnitude as the overlap between that
measurement direction and the disturbed state (Eve’s states corresponding to disturbed
counterpart of Bob’s state) corresponding to Alice’s signal v (or u), except that they differ
in sign ε0

λ
.

The 2nd iff condition says that the ratio of the overlaps between a measurement di-
rection and Eve’s undisturbed component are same as the ratio of the overlaps between
that measurement direction and the disturbed component. The ratio becomes D+

uv/D−uv or its
inverse depending on whether the measurement outcome is positive or negative in sign.
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Workflow 1 | Workflow for Necc-suff-conditions and optimal IVs.

We started with the NSC due to [FGG+97] and derived two important things: i) a new NSC
involving the attackers Hilbert space only, and, ii) the optimal states with Eve. Both the results
are found through a series of NSCs. These IVs are shown to be equivalent to those found earlier
in Chap. 4.

NSC-Fuchs
for Optimality

Eqs. (5.2.2)
Thm. 5.1.1

Optimal IVs
in [AP17, Eq.(38)]

New NSC [Cor. 1]
for Optimality Thm. 5.1.2

Optimal IVs
in Thm. 5.1.3

≡

The 3rd iff condition provides the optimal interaction vectors, and therefore are the
only and all possible optimal IVs without ambiguity. They are proved to be unitarily
equivalent to those in [AP17, Eq.(38)]: see Sec. 5.5.2 for details.

The iff condition in Corollary 1, which is a byproduct of the 1st iff condition
of Thm. 5.1, restricts Eve’s optimal states to have a specific orientation in the four-
dimensional Hilbert space. To be more precise, when Alice encodes is the xy basis, the
overlap between the two fidelity states must be same as the overlap between the two dis-
turbed states and is equal to (1− 2Duv). This overlap-value appears in a lot many other
crucial aspects, that we’ll discuss shortly.

5.3.3 Physical significance of the new NSC

The necessary and sufficient condition in Corollary 1 can be used as a working formula to
verify whether a given set of IVs is optimal or not. It’s efficient due to easy verification,
it’s simple as it involves Eve’s states only than the joint Hilbert space as in [FGG+97], it’s
intuitive as it demands a specific configuration of the states in Eve’s Hilbert space.

An optimal attack is essentially characterized by the optimal overlap, called here as
optimal syndrome, that amounts to 1−2D for a symmetric (error-rate) attack. It exhibits
interesting links between various other aspects for eavesdropping. Although, the connec-
tion between Bell violation and optimal state discrimination is known [FGG+97], we find
the connection more explicit here with respect to the optimal syndrome. For a specific
error-rate D, the fraction of reduction in the optimal CHSH-sum in an eb scheme is pre-
cisely the optimal syndrome in the p&m scheme. On the other hand, the Bloch vectors at
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Bob’s end shrinks by the same factor (1−2D).

5.3.4 Equivalence between the optimal interactions found here and
found earlier

In this chapter, we wanted to find the optimal interactions as part of of a necessary and
sufficient condition, which is done so far. Therefore, these are the only and all possible
optimal interactions in the four dimensional Hilbert space.

The immediate question that comes to mind is whether these collection of IVs is more
than what we have found earlier in the previous chapter. Or, are they same up to some
isomorphism?

As it turns out, and surprising enough, that the OLD and the NEW collection of IVs are
same up to some unitary equivalence. We establish the equivalence between the optimal
IVxy in Eq. (5.2.1) and those in Eq. (5.3.5). The proof is given in Sec. 5.5.

Since they are found to be equivalent, we can now safely use the later whenever they
appear more handy to deal with. For instance, we use them in the very next section to
establish one-to-one correspondence between the optimal IVs across the two MUBs.

5.4 Interrelation between the optimal POVMs across the
two MUBs

Any specification of the orthonormal basis {|Eλ 〉} (or {|Fλ 〉}) provides a specific instance
of optimal IVs in computational basis, e.g., the optimal IVs due to Fuchs et al. [FGG+97].
Due to varied choices of the eigenbasis, there are infinitely many setups of the optimal
IVs when expressed in computational basis. A one-to-one correspondence between the
optimal IVs in each basis can be established (Sec. 5.5) since the optimal measurement
directions {|Eλ 〉} in xy basis are interrelated to the optimal measurement directions {|Fλ 〉}
in uv basis as follows:

2|F0〉 = |E0〉+ |E1〉+ |E2〉+ |E3〉,

2|F1〉 = |E0〉+ |E1〉− |E2〉− |E3〉,

2|F2〉 = |E0〉− |E1〉− |E2〉+ |E3〉,

2|F3〉 = |E0〉− |E1〉+ |E2〉− |E3〉. (5.4.1)

For instance, the measurement basis {|Eλ 〉} = {|00〉, |11〉, |10〉, |01〉} fixes the measure-
ment basis {|Fλ 〉} = {|0̄0̄〉, |1̄1̄〉, |1̄0̄〉, |0̄1̄〉} for Eve. These choice of the permuted com-
putational basis retains the symmetry in Eve’s measurement basis ({|Eλ 〉},{|Fλ 〉}) across
the two encoding bases (xy,uv). The corresponding IVs in Eqs. (5.2.1, 5.2.2) represent
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the optimal states chosen by Fuchs et al.

The proof is deferred to Sec. 5.5. The basic idea is to recall the interrelation
(Eq. (5.5.1)) between the optimal IVs across the two MUBs as provided by [FGG+97].
Then to feed the generic form of their candidates (Eqs. (5.2.1, 5.2.2)) across the two
MUBs into these relations. A little manipulation leads to the desired result.

The transformation matrix: It’s interesting to observe that the two measurement
setups in the conjugate bases are connected via the following unitary transformation

H̃2 :=
1
2


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 (5.4.2)

Note that, It is a permutation (1,3,4,2) of the columns of the Hadamard matrix H2 := H⊗2

of order four. The effect of the unitary evolution that entangles the joint system seems to
have some inner-connection to leverage that transformation.

5.4.1 Optimal PIJSs in the p&m scheme versus the output of an op-
timal phase-covariant cloner

For symmetric attack leveraging QBER=D, the PIJSs becomes

U|0〉|e〉 =
√

1−D|0〉
(
D+|E0〉+D−|E1〉

)
+
√

D|1〉
(
D+|E2〉+D−|E3〉

)
,

U|1〉|e〉 =
√

1−D|1〉
(
D−|E0〉+D+|E1〉

)
+
√

D|0〉
(
D−|E2〉+D+|E3〉

)
.

Now, the amplitude of each eigenstate at the max. tolerable disturbance
D? := 1

2

(
1− 1√

2

)
are calculated as follows.

√
1−D D+ = 1√

2

(
1−D+

√
D(1−D)

)
= 1

2

(
1+ 1√

2

)
,

√
1−D D− = 1√

2

(
1−D−

√
D(1−D)

)
= 1

2
√

2
,

√
D D+ = 1√

2

(
D+

√
D(1−D)

)
= 1

2
√

2
,

√
D D− = 1√

2

(
D−

√
D(1−D)

)
= 1

2

(
1− 1√

2

)
.
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Thus, at threshold D?, the optimal PIJSs w.r.t. a measurement basis are as follows.

U|0〉|e〉 =
1
2

(
1+

1√
2

)
|0〉|E0〉+

1
2
√

2

(
|0〉|E1〉+ |1〉|E2〉

)
+

1
2

(
1− 1√

2

)
|1〉|E3〉,

U|1〉|e〉 =
1
2

(
1+

1√
2

)
|1〉|E1〉+

1
2
√

2

(
|1〉|E0〉+ |0〉|E3〉

)
+

1
2

(
1− 1√

2

)
|0〉|E2〉.

For the measurement setup {|E0〉, |E1〉, |E2〉, |E3〉}= {|00〉, |11〉, |01〉, |10〉}, which in dis-
guise is the Fuchs basis (except the scuffle in last two) the optimal PIJSs can then be
written in the computational basis as follows.

U|0〉|e〉 =
1
2

(
1+

1√
2

)
|0〉|00〉+ 1

2
√

2

(
|0〉|11〉+ |1〉|01〉

)
+

1
2

(
1− 1√

2

)
|1〉|10〉,

U|1〉|e〉 =
1
2

(
1+

1√
2

)
|1〉|11〉+ 1

2
√

2

(
|1〉|00〉+ |0〉|10〉

)
+

1
2

(
1− 1√

2

)
|0〉|01〉.

They are same as the outputs of optimal phase-covariant cloner as in [BCMDM00,
Eq. (36)].

5.5 Technical Details

Here we sketch a broad outline to prove the claims in the earlier sections.

5.5.1 Proving the necessary and sufficient conditions

Here we prove Thm. 5.1. The following relations involving the amplitudes D+
uv and D−uv

defined in Eq. (5.1.1) are heavily used in the derivations here.

(D+
uv)

2−(D−uv)
2 = 2

√
Duv(1−Duv), (D+

uv)
2 +(D−uv)

2 = 1,

2D+
uvD

−
uv = 1−2Duv.

Proof of the iff condition 1 of Thm. 5.1. The catch here is to unfold the states in
Eq. (5.2.1) for the projectors Eλ while using the Schmidt form of the PIJSs, and use
them in Eq. (5.2.2). In Eq. (5.2.1), for a = u,

|Uλ 0u〉 = Bu⊗Eλ |U〉

=
√

1−Duv 〈Eλ |ξu〉
(
|u〉|Eλ 〉

)
.

|Vλ 0u〉 = Bu⊗Eλ |V 〉

=
√

Duv 〈Eλ |ζv〉
(
|u〉|Eλ 〉

)
.
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Feeding them back into Eq. (5.2.2.u) leads to the first of the equations (5.3.1). The other
relation can similarly be derived from the iff condition (5.2.2.v) while using the Schmidt
form of the PIJSs and unfolding the states in Eq. (5.2.1) for a = v.

Proof of the iff condition 2 of Thm. 5.1. The iff conditions in Eq. (5.3.1) can be grouped
as follows:

〈Eλ |(|ξu〉± |ξv〉) = ε
0
λ
〈Eλ |(|ζv〉± |ζu〉).

Now, we look back to the interrelations between the IVs in xy and uv basis, viz., use
Eqs. (5.5.2.F+, 5.5.2.D+). Taking the inner product of the IVs in each of these equations
with the measurement direction |Eλ 〉, and then taking the ratio of the like sides, we get,

〈Eλ |ξx〉+〈Eλ |ξy〉
〈Eλ |ξx〉−〈Eλ |ξy〉

=

√
Fuv√
Duv

〈Eλ |ξu〉+〈Eλ |ξv〉
〈Eλ |ζu〉+〈Eλ |ζv〉

=

√
Fuv√
Duv

ε
0
λ
.

By componendo and dividendo, we get,

〈Eλ |ξx〉
〈Eλ |ξy〉

=
D

(+ε0
λ
)

uv

D
(−ε0

λ
)

uv

=

(
Duv

Duv

)ε0
λ

.

We used here the improvised notation of Eq. (5.3.4). The ratio D
(+ε0

λ
)

uv /D
(−ε0

λ
)

uv becomes
Duv/Duv or its inverse depending on whether the sign ε0

λ
of the eigenvalue assumes +1 or

−1, respectively.

Similarly, to establish the other ratio 〈Eλ |ζx〉/〈Eλ |ζy〉 of Eq. (5.3.3), we consider
Eqs. (5.5.2.F–, 5.5.2.D–) and follow the same procedure as above.

Proof of the iff condition 3 of Thm. 5.1. The proof follows from the iff condition 2, viz.,
Eq. (5.3.3). The overlaps in the ratio 〈Eλ |ξx〉/〈Eλ |ξy〉 can be unfolded using some (complex)
constant of proportion rλ ,ξ as follows.

〈Eλ |ξx〉= rλ ,ξ D
(+ε0

λ
)

uv , 〈Eλ |ξy〉= rλ ,ξ D
(−ε0

λ
)

uv .

Note that, these overlaps constitute the components of the fidelity states when expressed
in the eigenbasis {|Eλ 〉}.

Similarly, in the ratio 〈Eλ |ζx〉/〈Eλ |ζy〉, the overlaps can be written, for some complex
number rλ ,ζ , in the following way.

〈Eλ |ζx〉= rλ ,ζ D
(+ε0

λ
)

uv , 〈Eλ |ζy〉= rλ ,ζ D
(−ε0

λ
)

uv .

These are the components of the disturbed states when expressed in the eigenbasis {|Eλ 〉}.
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Then we can write down the IVs with respect to the eigenbasis {|Eλ 〉} as follows.

|ξx〉 = ∑
λ

rλ ,ξ D
(+ε0

λ
)

uv |Eλ 〉,

|ξy〉 = ∑
λ

rλ ,ξ D
(−ε0

λ
)

uv |Eλ 〉,

|ζx〉 = ∑
λ

rλ ,ζ D
(+ε0

λ
)

uv |Eλ 〉,

|ζy〉 = ∑
λ

rλ ,ζ D
(−ε0

λ
)

uv |Eλ 〉.

But, we observe that, D
(+ε0

λ
)

uv = D+
uv,D

−
uv for ε0

λ
= +1,−1 respectively. Similarly,

D
(−ε0

λ
)

uv = D−uv,D
+
uv for ε0

λ
= +1,−1 respectively. Thereby, in the expression of the IVs,

we can group the basis vectors |Eλ 〉 according to the sign of the measurement outcome.
For instance, each of the fidelity states get two groups: |E±

λξ
〉 groups the measurement

directions for±ve outcomes. Similarly, the two groups for the disturbed states correspond
to |E±

λζ
〉. The following equation captures the grouping:

|E±
λξ
〉 := ∑

λ : ±ve outcomes

rλ ,ξ |Eλ 〉,

|E±
λζ
〉 := ∑

λ : ±ve outcomes

rλ ,ζ |Eλ 〉.

With these grouping, the IVs can be described as in Eq. (5.3.5). That the vectors
{|E+

λξ
〉, |E−

λξ
〉, |E+

λζ
〉, |E−

λζ
〉} form an orthonormal basis, can be argued as follows. As

defined, the states in E+
λ

:= {|E+
λξ
〉, |E+

λζ
〉} are mutually orthogonal to the states in E−

λ
:=

{|E−
λξ
〉, |E−

λζ
〉}. Then, the normalization constraint on the fidelity (or disturbed) states

together induces the normalization constraint on the states in E+
λ

(or E−
λ

). Moreover, the
orthogonality between the fidelity states and the disturbed states inherits the orthogonality
within the states in E+

λ
as well the orthogonality within the states in E−

λ
.

The final piece of the proof is the fact that each of the states
{|E+

λξ
〉, |E−

λξ
〉, |E+

λζ
〉, |E−

λζ
〉} can be expressed in terms of exactly two of the mea-

surement directions {|Eλ 〉}. It is so because, the sign of the measurement outcomes are
evenly distributed for an optimal interaction: two +ve outcomes, and two -ve outcomes.
Had it not been this way, then, w.l.o.g, let’s assume the possibility for only one +ve
outcome. Then, each of the states |E+

λξ
〉, |E+

λζ
〉 should have only one of the measurement

directions |Eλ 〉 in their description. While the normalization constraint on these states
indicate the coefficients rλ ,ξ ,rλ ,ζ to be unimodular, their mutual orthogonality enforces
one of these coefficients to be zero, leading to a contradiction.

Proof of Corollary 1 of Thm. 5.1. The proof follows from condition 1 of the same theo-
rem and Lem. 5.1.
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Clearly, an equality of the overlaps in Lem. 5.1 lead to the desired result (5.3.2). To
establish this equality, we consider the iff conditions (5.3.1), but for optimality in uv basis,
viz.

〈Fλ |ξx〉 = ε
1
λ
〈Fλ |ζy〉,

〈Fλ |ξy〉 = ε
1
λ
〈Fλ |ζx〉.

Multiplying the like sides of these two equations and adding over the measurement out-
comes λ in uv basis, we get,

∑λ 〈ξx|Fλ 〉〈Fλ |ξy〉= ∑λ 〈ζx|Fλ 〉〈Fλ |ζy〉.

Since the projectors Fλ consist a POVM, their completeness relation leads to the equality
between the two overlaps 〈ξx|ξy〉 and 〈ζx|ζy〉, and consequently the desired result follows
from Lem. 5.1.

5.5.2 The two representations of the optimal IVs are unitarily equiv-
alent

To establish the equivalence of the optimal IVxy in Eq. (5.2.1) and those in Eq. (5.3.5) we
make a matrix-vector representation of the IVs. We introduce a few notations for that in
Table 5.1. Here, OLD denotes IVs in Eq. (5.2.1) and NEW denotes IVs in Eq. (5.3.5).

Table 5.1 Notations for matrix-vector form of optimal IV

axy := (|ξx〉, |ξy〉, |ζx〉, |ζy〉),
MNEW

xy ≡ M+−+−
ξ ,ξ ,ζ ,ζ

:= (|E+
λξ
〉, |E−

λξ
〉, |E+

λζ
〉, |E−

λζ
〉),

M++−−
ξ ,ζ ,ξ ,ζ

:= (|E+
λξ
〉, |E+

λζ
〉, |E−

λξ
〉, |E−

λζ
〉),

M++−−
0,2,1,3 := (|E+

0 〉, |E
+
2 〉, |E

−
1 〉, |E

−
3 〉),

MOLD
xy ≡ M+−+−

0,1,2,3 := (|E+
0 〉, |E

−
1 〉, |E

+
2 〉, |E

−
3 〉),

Duv := 12⊗
(
D+

uv12 +D−uvσx
)
.

Those optimal IVs can be expressed in matrix-vector form as follows:

(a?xy)
OLD = MOLD

xy Duv,

(a?xy)
NEW = MNEW

xy Duv.
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To establish the equivalence, It is enough to show that MNEW
xy is unitarily equivalent to

MOLD
xy . The intermediate transformations are as follows:

MOLD
xy

≡

M+−+−
0,1,2,3

Sw−→ M++−−
0,2,1,3

R−→ M++−−
ξ ,ζ ,ξ ,ζ

Sw−→

MNEW
xy

≡

M+−+−
ξ ,ξ ,ζ ,ζ

All the three maps are post-multiplication to transform the column-space, e.g., M++−−
0,2,1,3 =

M+−+−
0,1,2,3 Sw etc. The swap operation Sw exchanges two qubit states.

The unitary R := diag(R+,R−) works on the measurement directions in order to af-
fect unitarily the two subspaces, one for positive outcomes and the other for negative
outcomes. To be specific, the measurement directions {|E±0 〉, |E

±
2 〉} go through an uni-

tary transformation R± in that subspace.

Therefore, we get the following interrelation between the POVMs associated with the
NEW and OLD optimal IVs.

MNEW
xy = MOLD

xy Sw R Sw.

Hence the equivalence follows.

5.5.3 Proving the interrelation between optimal POVMs

Here we sketch an outline to prove Eq. (5.4.1) that inter-relates two optimal POVMs
associated with the two MUBs. Note that the conjugate relation between the two encoding
bases gets inherited to a similar conjugate relation between the PIJSs across two MUBs.
The later conjugate relation in turn produces an inter-relation between the two sets of IVs
across the two MUBs [FGG+97]. In this relation, one can directly plug in the optimal
IVs as expressed in Eqs. (5.2.1, 5.2.2) and a simple algebra would eventually lead to
Eq. (5.4.1). The technical details are as follows.

Since the conjugate relation for the encoding bases inherits to the PIJSs, the IVs in
each of the encoding bases gets interrelated as follows.

2
√

Fuv|ξu〉=
√

Fxy(|ξx〉+|ξy〉)+
√

Dxy(|ζx〉+|ζy〉),

2
√

Fuv|ξv〉=
√

Fxy(|ξx〉+|ξy〉)−
√

Dxy(|ζx〉+|ζy〉),

2
√

Duv|ζu〉=
√

Fxy(|ξx〉−|ξy〉)+
√

Dxy(|ζy〉−|ζx〉),

2
√

Duv|ζv〉=
√

Fxy(|ξx〉−|ξy〉)−
√

Dxy(|ζy〉−|ζx〉).

(5.5.1)

The sum and difference between the fidelity states (and similarly for the disturbed states)
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in uv basis are written in terms of the Eve’s states in xy basis.√
Fuv
(
|ξu〉+ |ξv〉

)
=
√

Fxy
(
|ξx〉+|ξy〉

)
, (5.5.2.F+)√

Fuv
(
|ξu〉− |ξv〉

)
=
√

Dxy
(
|ζx〉+|ζy〉

)
, (5.5.2.F–)√

Duv
(
|ζu〉+ |ζv〉

)
=
√

Fxy
(
|ξx〉−|ξy〉

)
, (5.5.2.D+)√

Duv
(
|ζu〉− |ζv〉

)
=
√

Dxy
(
|ζy〉−|ζx〉

)
. (5.5.2.D–)

Now, we use the optimal IVs for xy and uv basis as in Eqs. (5.2.1, 5.2.2) to find the sum
and difference of the parity IVs (disturbed or undisturbed).

When Alice encodes in xy basis, Eve’s optimal IVs are grouped as follows: the sum
(difference) of the two fidelity states are proportional to the sum (difference) of the mea-
surement directions for outcomes 0,1. Similarly, the disturbed states exhibit the similar
relations involving the measurement directions for outcomes 2,3.

|ξ ?
x 〉+ |ξ ?

y 〉 = 2
√

Fuv
(
|E0〉+ |E1〉

)
,

|ξ ?
x 〉− |ξ ?

y 〉 = 2
√

Duv
(
|E0〉− |E1〉

)
,

|ζ ?
x 〉+ |ζ ?

y 〉 = 2
√

Fuv
(
|E2〉+ |E3〉

)
,

|ζ ?
x 〉− |ζ ?

y 〉 = 2
√

Duv
(
|E2〉− |E3〉

)
. (5.5.3)

Similarly, for optimal IVs in uv-basis, we get

|ξ ?
u 〉+ |ξ ?

v 〉 =
√

2
√

Fxy
(
|F0〉+|F1〉

)
,

|ξ ?
u 〉− |ξ ?

v 〉 =
√

2
√

Dxy
(
|F0〉−|F1〉

)
,

|ζ ?
u 〉+ |ζ ?

v 〉 =
√

2
√

Fxy
(
|F2〉+|F3〉

)
,

|ζ ?
u 〉− |ζ ?

v 〉 =
√

2
√

Dxy
(
|F2〉−|F3〉

)
. (5.5.4)

Finally, feeding back the Eqs. (5.5.3, 5.5.4) for optimal IVs into Eq. (5.5.2), we get the
following relations: and feed them back into Eq. (5.5.2) to get the following relations:

|F0〉+|F1〉= |E0〉+|E1〉, |F2〉+|F3〉= |E0〉−|E1〉,

|F0〉−|F1〉= |E2〉+|E3〉, |F2〉+|F3〉= |E3〉−|E2〉.

Finally, solving these equations, one can easily get the desired relation between the opti-
mal measurement directions as in Eq. (5.4.1).
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5.6 Conclusion

In this chapter, we have characterized the optimal individual attacks (i.e., characterizing
the optimal IVs) on the BB84 protocol exhaustively. For the analysis, we have considered
the generalized asymmetric error rates across the two MUBs in order to uncover all pos-
sible alternatives for an attacker, while a symmetric (error) attack automatically becomes
a special case. A series of necessary and sufficient conditions is derived here to testify
the optimality of an interaction performed by an eavesdropper. The NSCs involves the
attackers Hilbert space only. As it unveils, an optimal attack corresponds to a specific
configuration of the attacker’s post-interaction states: that the overlap between the two
disturbed states are same as the overlap between the two undisturbed states and is equal
to the difference between the fidelity and the disturbance at the receiving end. Interest-
ingly enough, the optimal overlap is same as the reduction (factor) in Bell violation in the
equivalent entanglement-based scheme. We have shown explicitly that the optimal states
of the joint system (when the measurement basis is the computational basis) can also be
obtained by an optimal phase-covariant cloning mechanism.

From practical implementation perspectives, It is important to know the optimal uni-
tary evolution that is required to evolve the joint system. We address this issue in the next
chapter.



CHAPTER 6

CHARACTERIZING THE OPTIMAL
UNITARY EVOLUTIONS

To mount an optimal attack on the BB84 protocol following the eavesdropping mech-
anism in [FGG+97], an eavesdropper first need to know the optimal unitary evolution
(apart from the optimal measurement) that she requires to evolve the joint system.

Given a specific set of interaction vectors, finding an optimal unitary is not that diffi-
cult a task to be addressed. One may consider a numerical approach. But, for parameter-
based IVs, we have discussed here a rudimentary basis-completion method [AP21] to get
an optimal unitary described in terms of the same parameter. However, this approach
sometimes face difficulty to find the unknown basis vectors in an eight-dimensional
Hilbert space out of a couple of known ones. Mainly, the parametric expressions need
some elegant algebraic manipulation. We remove such difficulty by developing new math-
ematical tools to deal with generalized parametric expressions of the IVs and can derive
parametric expressions of optimal unitary evolution in a general setup.

Some more generalizations are further addressed: like, finding all possible unitaries
from a given interaction (specified by IVs), finding an unitary for a different initial state
from a known unitary for a given IS, and tracking the changes in an unitary when mea-
surement setup changes.

These techniques can also be improvised for any other protocol with any attack model
where the optimal IVs are known. An interested reader may delve further towards that
direction.
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6.1 A brief overview

We consider the task of characterizing the optimal unitary attacks, i.e., to derive the opti-
mal unitary evolutions that will lead to the general expression of (infinitely many) optimal
interactions that we derived earlier. For that, it is enough to consider the optimal states in
one of the MUBs.

First, we describe the rudimentary approach to find an optimal unitary for a given pair
of optimal PIJSs, which faces some technical difficulties like basis completion issue in
an arbitrary measurement basis (not a specific instance, but variable) for Eve. We bypass
these hurdles in an elegant analytical approach to obtain an optimal unitary fit for an initial

state (IS) when Eve measures in the computational basis.

However, given a set of specific IVs, the corresponding joint unitary is not unique. We
have developed the methods to find any of its infinitely many siblings. Further, we explain
the ways to get optimal unitaries for arbitrary IS and then for arbitrary measurement basis
used by Eve. We exemplify these methods to understand the intricacies. Essentially we
have characterized the whole space of optimal unitary attacks.

Chapter organization

The section wise work-flow is as follows. The main results are briefly described in
Sec. 6.2, while their derivations are deferred until in Sec. 6.3. Sec. 6.2 deals with char-
acterizing optimal unitary evolutions. We conclude by summarizing the new findings and
also discuss further scopes to explore.

6.2 Characterizing optimal unitary evolutions

Given the optimal PIJSs |X?〉, |Y ?〉, the objective is to find an optimal unitary for a suit-
able initial state |ψ0〉 of Eve’s ancilla. Mathematically speaking, the task is to solve the
following two equations.

UAE
ψ0
|0〉A|ψ0〉E = |X?〉, UAE

ψ0
|1〉A|ψ0〉E = |Y ?〉. (6.2.1)

Although the same unitary serves the purpose in the conjugate basis, the measurement
setup generally differs.

Getting a specific optimal unitary Uψ0 from a given pair of PIJSs, i.e., solving the
Eq. (6.2.1), can be done by the following basis completion technique. By introducing
some auxiliary states, an unitary evolution Uψ0 can be viewed as a linear transformation
that maps an orthonormal basis {|0〉A|ψi〉E , |1〉A|ψi〉E}i∈{0,1,2,3} involving the IS to the or-
thonormal basis {|Xi〉, |Yi〉}i∈{0,1,2,3} involving the PIJSs, where |X0〉= |X?〉, |Y0〉= |Y ?〉.
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Thus, we get the following eight equations to solve.

Uψ0|0〉A|ψi〉E = |Xi〉, Uψ0 |1〉A|ψi〉E = |Yi〉,

∀i ∈ {0,1,2,3}.

Then, a solution for the optimal unitary can be expressed as follows

Uψ0 =
3

∑
i=0

(
|Xi〉〈0A|+ |Yi〉〈1A|

)
〈ψi|E . (6.2.2)

It can further be factored [see Sec. 6.3.2] in two unitaries as

Uψ0 = WAE
X ,Y (1A

2 ⊗WE†
ψ0

). (6.2.3)

The first unitaryWX ,Y , that depends on the PIJSs |X?〉, |Y ?〉, is defined as

WX ,Y :=
3

∑
i=0
|Xi〉〈0A|〈iE |+ |Yi〉〈1A|〈iE |, (6.2.4)

which has the following matrix representation

[
|X0〉, |X1〉, |X2〉, |X3〉, |Y0〉, |Y1〉, |Y2〉, |Y3〉

]
.

(6.2.4.Mat)

In the second unitary, the local unitaryW depends on the initial state |ψ0〉, and is defined
as follows

WE
ψ0

=
3

∑
i=0
|ψi〉〈iE |, (6.2.5)

which has the following matrix representation

[
|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉

]
. (6.2.5.Mat)

We observe from Eq. (6.2.3) that an optimal unitary is a product of two unitaries.
The individual effect of these unitaries are explained as follows. In order to evolve the
joint system from the initial state |a〉|e〉, the part of it (the 2nd part) first transforms Eve’s
initial state to |00〉 leaving Alice’s part invariant, and then the other part (1st component)
creates the required entanglement between Alice and Eve’s states.

Eqs. (3.3.4.1, 5.2.1) together depicts that Eve’s measurement setup M is in one-to-
one correspondence with the PIJSs |X〉M, |Y 〉M. Moreover, the factorization in Eq. (6.2.3)
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indicates that the joint unitary U depends on the initial state IS of Eve’s ancilla, and Eve’s
measurement setup M. While the earlier one (IS) controls the unitaryWψ0 , the later one
(M) determinesWX ,Y . Nevertheless, U ≡ UM

IS represent an infinite collection of unitaries.

When Eve measures in the four-dimensional computational basis
{|00〉, |01〉, |10〉, |11〉}, the corresponding optimal PIJSs are denoted by |X〉C , |Y 〉C

and are described in Table 6.1. Let’s consider the problem of getting an optimal unitary
that evolves an IS into these PIJSs. As discussed earlier, it corresponds to the problem
of basis completion: once in the eight dimensional space of optimal PIJSs, and once in
the four dimensional space of the initial state. To avoid any technical difficulty (e.g.,
numerical, or, trial-and-error approach) with basis completion, we address here briefly a
unique analytical approach.

The crux is to view the PIJSs |X〉C and |Y 〉C mathematically as an outcome of an action
of two sub-matrices Ux :=

(
|00〉 |11〉

)
⊗12 and Uy := (|10〉 |01〉)⊗σx, respectively, on

some specific initial state

|∆H〉E := |∆xy〉E1|∆
H
uv〉E2 , (6.2.6)

where

|∆β 〉 :=
√

Fβ |0〉+
√

Dβ |1〉,

|∆H
β
〉 := H|∆β 〉= D+

β
|0〉+D−

β
|1〉. (6.2.7)

The optimal unitary U eventually becomes the partitioned matrix
[
Ux Uy

]
, which, in its

block-matrix form, looks as follows

Uc
∆H =


12 · · ·
· · · σx

· · σx ·
· 12 · ·

 . (6.2.8)

Each of the constituent two-dimensional unitaries (e.g., σx) will operate on the second
qubit of Eve’s probe.

However, the same PIJSs |X〉C , and |Y 〉C can also be produced by some other unitary
(due to the choice of free variables) acting on the same joint initial states |0〉A|∆H〉E and
|1〉A|∆H〉E , respectively. Eventually, there are infinitely many such unitary evolutions for
the same PIJSs and the same IS, as evident from Eq. (6.2.3). The arbitration is two-
fold: onWX ,Y or onWψ0 , which in turn corresponds to various choices of the auxiliary
states {|Xi〉, |Yi〉}i=1,2,3 or |ψi〉i=1,2,3, respectively. The later arbitration, for instance, is
technically achieved by post-multiplying the unitary in Eq. (6.2.8) by some 12⊗Γ

ψ⊥0
,

where the local unitary Γ
ψ⊥0

leaves |ψ0〉 unchanged while considers new choices for the
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auxiliary states |ψi〉i=1,2,3. For instance, the following choice

Γ
ψ⊥0

=


1 · · ·
· 1√

2
· 1√

2

· · 1 ·
· 1√

2
· − 1√

2

 .

will affect the (2nd, 4th) and (6th, 8th) columns of the unitary UC
∆H . Naturally, the optimal

unitary in Eq. (6.2.8) is the simplest among its infinitely many siblings.

Moreover, the same PIJSs |X〉C , and |Y 〉C can be reproduced by a newer family of
unitary evolutions if we consider a different IS of Eve’s ancilla. Getting an optimal unitary
for a different IS corresponds to pin-point a local unitary that transforms the earlier IS to
the newer one, as formulated in Eq. (6.3.1). For instance, consider the task of finding
an optimal unitary for the IS |00〉E which in turn is a unitary tweak Axy⊗AuvH of the
IS in Eq. (6.2.6) for the 2-dimensional unitary Aβ =

√
1−Dβ σz +

√
Dβ σx. The desired

optimal unitary UC
00 is given in Table 6.4.1.

We can now interrelate our unique approach with the rudimentary basis completion
method. One can now directly read the auxiliary basis states {|Xi〉, |Yi〉} from the columns
of the unitary UC

00 by fixing the other auxiliary basis states {|ψi〉} to enforceW00 to be the
identity matrix. It is so because the unitary UC

00 represents the matrix in Eq. (6.2.4.Mat).

Finally, consider finding optimal unitaries in a different measurement basis other than
the computational basis. Eve’s new measurement basis {|Eλ 〉} is a unitary transformation
|Eλ 〉 = Mxy|λ 〉 of the computational basis. For instance, consider the unitary transfor-
mation Mxy = (|E0〉 |E1〉 |E2〉 |E3〉) =R, as mentioned in Eq. (6.4.1). Corresponding
optimal PIJSs (|X〉M, |Y 〉M) and an optimal unitary (UM) can be obtained by operat-
ing (12⊗Mxy) on those in the computational basis, and are described in Table 6.2 and
Eq. (6.4.1), respectively.

6.3 Technical Details

Here we sketch a broad outline to prove the claims in the earlier sections.

6.3.1 Getting an optimal unitary along with an initial state when Eve
measures in the computational basis

First, we find the optimal IVs and the optimal PIJSs as Eve measures in computational
basis.
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Her optimal IVs can be expressed as follows:

|ξ ?
x 〉C= |0〉E1 |∆

H
uv〉E2, |ξ ?

y 〉C=(1E1
2 ⊗σ

E2
x )|ξ ?

x 〉C ,

|ζ ?
x 〉C= |1〉E1 |∆

H
uv〉E2, |ζ ?

y 〉C=(1E1
2 ⊗σ

E2
x )|ζ ?

x 〉C .

Here the state |∆H
uv〉 is as defined in Eq. (6.2.7).

Therefore, the corresponding optimal PIJSAE
xy can be expressed as follows

|X?〉C = |Φ+
Dxy
〉AE1|∆

H
uv〉E2,

|Y ?〉C = |Ψ+
Dxy
〉AE1⊗σ

E2
x |∆H

uv〉E2.

where

|Φ+
Dxy
〉AE1 =

√
1−Dxy|00〉AE1+

√
Dxy|11〉AE1,

|Ψ+
Dxy
〉AE1 =

√
1−Dxy|10〉AE1+

√
Dxy|01〉AE1.

To get an optimal unitary out of these equations, we need to rewrite the PIJSs in
matrix-vector form. First, note that the entangled states from the subsystem AE1 can be
expressed in matrix-vector form as follows

|Φ+
Dxy
〉AE1 = W AE1

x |∆xy〉E1,

|Ψ+
Dxy
〉AE1 = W AE1

y |∆xy〉E1,

with the 4×2 matrices

WAE1
x = |00〉AE1〈0E1|+ |11〉AE1〈1E1 |,

WAE1
y = |10〉AE1〈0E1|+ |01〉AE1〈1E1 |.

Thereby, the optimal PIJSAE
xy can be expressed in matrix-vector form as follows:

|X?〉C = UAE
x |∆xy〉E1|∆

H
uv〉E2,

|Y ?〉C = UAE
y |∆xy〉E1|∆

H
uv〉E2,

with the 8×4 matrices

UAE
x = WAE1

x ⊗1E2
2 , UAE

y = WAE1
y ⊗σ

E2
x .

Then, for an initial state

|∆H〉E := |∆xy〉E1|∆
H
uv〉E2,
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an optimal unitary can be given as

UAE
∆H = UAE

x 〈0|A +UAE
y 〈1|A

= WAE1
x 〈0|A⊗1

E2
2 +WAE1

y 〈1|A⊗σ
E2
x

= (|00〉AE1〈00|+ |11〉AE1〈01|)⊗1E2
2

+(|10〉AE1〈10|+ |01〉AE1〈11|)⊗σ
E2
x .

6.3.2 Factorization of an optimal unitary

The optimal unitary in Eq. (6.2.2) can be factored into two in the following way

Uψ0 =
1

∑
a=0

3

∑
i=0
|Sa〉〈aA|〈ψi|E

=
1

∑
a=0

3

∑
i=0
|Sa〉〈aA|〈i|E |i〉〈ψi|E

=
1

∑
a=0

3

∑
i=0
|Sa〉〈aA|〈iE | ×

3

∑
i=0
12⊗|i〉E〈ψi|.

6.3.3 Alternate solutions for optimal unitaries for a fixed IS

Here we explain how to find alternate optimal unitaries for a given IS by already knowing
an optimal unitary for that IS. We completely characterize this bi-level arbitration.

Theorem 6.1. For a given initial state |ψ0〉, let an optimal unitary is known as Uψ0 . For

the same initial state, a new optimal unitary U ′ψ0
can be found in one of the following

ways.

1. A change in the auxiliary states spanning the orthogonal complement of the IS |ψ0〉,
such that

U ′ψ0
= Uψ0(12⊗Γ

ψ⊥0
).

The local unitary Γ
ψ⊥0

=

1 ·
· T †

ψ⊥0

 makes an alternate choiceW ′ψ0
forWψ0:

W ′ψ0
= Wψ0Γ

ψ⊥0
=
[
|ψ0〉 |ψ1〉′ |ψ2〉′ |ψ3〉′

]
.

The three dimensional unitary T
ψ⊥0

transforms the auxiliary states |ψi〉i=1,2,3 to a

newer one, while Γ
ψ⊥0

leaves |ψ0〉 intact.

2. Changing the auxiliary states spanning the orthogonal complement of the PIJSs
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|X?〉, |Y ?〉, such that

U ′ψ0
= W ′XY Wψ0 = WXY ΓX⊥Y⊥ Wψ0.

The global unitary

ΓX⊥Y⊥ = diag (ΓX⊥,ΓY⊥)

transforms UXY to a new one U ′XY = UXY ΓX⊥Y⊥ having the following matrix repre-

sentation [
|X?〉 |X ′1〉 |X ′2〉 |X ′3〉 |Y ?〉 |Y ′1〉 |Y ′2〉 |Y ′3〉

]
,

by changing the auxiliary states {|Xi〉, |Yi〉} 7→ {|X ′i 〉, |Y ′i 〉} for i = 1,2,3 while leav-

ing the optimal PIJSs |X?〉, |Y ?〉 intact.

3. due to a change in both of the above auxiliary states.

Note that, the first rule doesn’t require the knowledge of the factorization. In that case,
given an optimal unitary, an alternate solution can be found by simply post-multiplying
the former (known one) by 12⊗Γ

ψ⊥0
.

6.3.4 Finding an optimal unitary when Eve’s initial state changes

The global unitary evolves the joint system as follows:

UM
IS=e |a〉A|e〉E = |Sa〉MAE .

For a∈ {x,y}, the PIJSs Sa ∈ {X ,Y} gets fixed by fixing the measurement setup M. How-
ever, the same PIJS |S〉MAE can be produced for a different IS and by a different unitary:

UM
IS= f |a〉A| f 〉E = |Sa〉MAE .

Given an unitary UM
IS=e, one can find an unitary UM

IS= f by knowing the local unitary that
transforms |e〉 → | f 〉.

Theorem 6.2. If an unitary Ue is known for some initial state |e〉, one can find an unitary

U f for some other IS | f 〉, just by knowing the local unitary Te f that transforms |e〉 7→ | f 〉.

U f = Ue

(
1

A
2 ⊗T E†

e f

)
. (6.3.1)
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Proof. Since | f 〉= Te f |e〉, we get

U f |a〉A| f 〉E = |Sa〉AE = Ue |a〉A|e〉E
= Ue |a〉A⊗T †

e f | f 〉E

= Ue

(
1

A
2 ⊗T E†

e f

)
|a〉A| f 〉E .

And the result follows.

Let’s understand the theorem through some examples.

For instance, consider the task to find an optimal unitary for the IS |∆〉E :=
|∆xy〉E1|∆uv〉E2 , which is a small tweak Te f = 12⊗H : |∆H〉E 7→ |∆〉E of the earlier IS
|∆H〉E (6.2.6). Then, the global unitary is transformed as follows

UC
∆

= UC
∆H(1

A
2 ⊗1

E1
2 ⊗HE2).

The corresponding matrix is a tweak of the one in Eq. (6.2.8) while each inner sub-matrix
(12,σx) gets post-multiplied by the Hadamard transformation H.

A more involved example would be finding an optimal unitary for the IS |φ+
xy〉 :=

|00〉+|11〉√
2

which is maximally entangled Bell-state. Since this new state can be obtained
by applying an unitary T = c-σx · (H⊗12) (a Hadamard on the first qubit followed by
a CNOT operation) on the state |00〉, an optimal unitary for the former state (UC

φ+) can
be obtained from an optimal unitary for the later state (UC

00) by applying the following
unitary transform

1√
2

12 ·
· σx

12 12

12 −12

 =
1√
2

12 12

σx −σx

 .
6.3.5 Finding an optimal unitary when Eve’s measurement setup

changes

Here we wish to understand the change in the optimal unitary as Eve’s measurement setup
changes from the computational basis to a different one.

Theorem 6.3. Consider a different measurement basis {|Eλ 〉} which is a unitary trans-

formation |Eλ 〉 = Mxy|λ 〉 of the computational basis chosen earlier. Then, the following

retrospective effects could be observed on the optimal IVs, the optimal PIJSs, and the

optimal global unitary.

1. The optimal IVs of Eve are changed as follows:

|IV?
xy〉M = Mxy|IV?

xy〉C . (6.3.1)
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2. The optimal PIJSs are transformed as follows:

|Sa〉M = (12⊗Mxy)|Sa〉C , a = x,y. (6.3.2)

3. The global unitary gets tweaked as follows:

UM = (12⊗Mxy) UC . (6.3.3)

Proof. The first two claims are straight-forward, while the last claim is proved below.

UM |0〉A|ψ0〉E = |X〉M = (12⊗Mxy) |X〉C

= (12⊗Mxy) UC |0〉A|ψ0〉E .

We have used M and Mxy interchangeably for Eve’s measurement.

Note that, a permutation of the measurement basis (e.g., Mxy = [|00〉, |11〉, |10〉, |01〉])
or a phase shift (e.g., |Eλ 〉 7→ −|Eλ 〉) doesn’t change the measurement statistics, despite
such a small tweak (12⊗Mxy) on the optimal unitary. Thus, we consider the overall
effect due to such changes as equivalent. An effective change in the measurement basis
corresponds to those unitary transformations on the 4-dimensional computational basis,
which consists of at least a row having more than one non-zero entries.

6.4 Tables: PIJSs and Optimal unitaries

Consider the eavesdropping setup when the initial state of Eve’s ancilla is |00〉. For this
IS, consider two different (four-dimensional) measurement setups for Eve:

1. she measures in the computational basis, denoted by C

2. she measures in someR-rotated computational basis, denoted byM

The corresponding optimal PIJSs and the optimal unitaries are listed here for these two
different scenario.

The rotationR is chosen here as

R =



1
3 −

√
2

3 −
√

2
3

2
3

√
2

3
1
3 −2

3 −
√

2
3

√
2

3 −2
3

1
3 −

√
2

3

2
3

√
2

3

√
2

3
1
3


(6.4.1)

One can experiment with their own choices though.
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6.4.1 When Eve measures in the 4-d computational basis

The PIJSs and the optimal unitary is listed here.

6.4.1.1 The PIJSs when Eve measures in the computational basis

Consider the vectorial representation of the eight-dimensional PIJSs in xy basis in terms
of the QBER across the two bases.

Table 6.1 | The PIJSs when Eve measures in the computational basis.

The IS is |00〉. The PIJSs |X〉C , |Y 〉C are described in the xy basis.

|X〉C |Y 〉C

√
Fxy D+

uv√
Fxy D−uv

0

0

0

0√
Dxy D+

uv√
Dxy D−uv





0

0√
Dxy D−uv√
Dxy D+

uv√
Fxy D−uv√
Fxy D+

uv

0

0



6.4.1.2 The optimal unitary when Eve measures in the computational basis

An optimal unitary UC
00 for the IS as |00〉 and Eve measures in the four-dimensional com-

putational basis. Note that, it is parameterized in terms of the QBER across the two bases.
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These are the same parameters to describe the PIJSs.

UC
00 =



√
Fxy

D+
uv −D−uv

D−uv D+
uv

 √
Dxy

D+
uv −D−uv

D−uv D+
uv

 O2 O2

O2 O2
√

Dxy

D−uv D+
uv

D+
uv −D−uv

 −
√

Fxy

D−uv D+
uv

D+
uv −D−uv


O2 O2

√
Fxy

D−uv D+
uv

D+
uv −D−uv

 √
Dxy

D−uv D+
uv

D+
uv −D−uv


√

Dxy

D+
uv −D−uv

D−uv D+
uv

 −
√

Fxy

D+
uv −D−uv

D−uv D+
uv

 O2 O2


Here, O2 represents null submatrix of order 2.

One can now easily read the eight-dimensional PIJSs along with their auxiliary or-
thonormal counterparts in the same Hilbert space from the columns of the unitary. Or-
thonormality is an easy verification here.

6.4.2 When Eve measures in theR-rotated 4-d computational basis

The PIJSs and the optimal unitary is listed.

6.4.2.1 PIJSs when Eve measures in theR-rotated computational basis

Notice how the nature of the rotation on the measurement setup ensures that the PIJSs
share non-zero overlap with every direction in the eight-dimensional Hilbert space (i.e.,
the 8d-vector has more non-zero components due to complicated rotations). For such
PIJSs, it is quite difficult to merely guess their orthonormal auxiliary counterparts. We
have discussed earlier how to tackle such situations.
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Table 6.2 | The PIJSs when Eve measures in theR-rotated computational basis.

The IS is |00〉. The PIJSs |X〉M, |Y 〉M are described in the xy basis.

|X〉M |Y 〉M

√
Fxy (1

3D+
uv−

√
2

3 D−uv)√
Fxy (

√
2

3 D+
uv +

1
3D−uv)√

Fxy (
√

2
3 D+

uv− 2
3D−uv)√

Fxy (2
3D+

uv +
√

2
3 D−uv)√

Dxy (−
√

2
3 D+

uv +
2
3D−uv)√

Dxy (−2
3D+

uv−
√

2
3 D−uv)√

Dxy (1
3D+

uv−
√

2
3 D−uv)√

Dxy (
√

2
3 D+

uv +
1
3D−uv)





√
Dxy (−

√
2

3 D−uv +
2
3D+

uv)√
Dxy (−2

3D−uv−
√

2
3 D+

uv)√
Dxy (1

3D−uv−
√

2
3 D+

uv)√
Dxy (

√
2

3 D−uv +
1
3D+

uv)√
Fxy (1

3D−uv−
√

2
3 D+

uv)√
Fxy (

√
2

3 D−uv +
1
3D+

uv)√
Fxy (

√
2

3 D−uv− 2
3D+

uv)√
Fxy (2

3D−uv +
√

2
3 D+

uv)


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6.4.2.2 The optimal unitary when Eve measures in the R-rotated computational
basis

An optimal unitary UM
00 for IS |00〉 and Eve measures in the R-rotated computational

basis.

Let us rewrite the optimal unitary UC
00 as a block-matrix

UC
00 =

A B

C D


Then, we can express the optimal unitary UM

00 as the following block-matrix

UM
00 =

RA RB

RC RD

 (6.4.1)

For instance, the submatrixRA can be written as the following.

RA =



√
Fxy (

1
3D+

uv−
√

2
3 D−uv)

√
Fxy (−1

3D−uv−
√

2
3 D+

uv)
√

Dxy (
1
3D+

uv−
√

2
3 D−uv)

√
Dxy (−1

3D−uv−
√

2
3 D+

uv)√
Fxy (

√
2

3 D+
uv +

1
3D−uv)

√
Fxy (−

√
2

3 D−uv +
1
3D+

uv)
√

Dxy (
√

2
3 D+

uv +
1
3D−uv)

√
Dxy (−

√
2

3 D−uv +
1
3D+

uv)√
Fxy (

√
2

3 D+
uv− 2

3D−uv)
√

Fxy (−
√

2
3 D−uv− 2

3D+
uv)

√
Dxy (

√
2

3 D+
uv− 2

3D−uv)
√

Dxy (−
√

2
3 D−uv− 2

3D+
uv)√

Fxy (
2
3D+

uv +
√

2
3 D−uv)

√
Fxy (−2

3D−uv +
√

2
3 D+

uv)
√

Dxy (
2
3D+

uv +
√

2
3 D−uv)

√
Dxy (−2

3D−uv +
√

2
3 D+

uv)


Notice how the optimal unitary is now filled up with all non-zero entries, parameter-

ized by the QBERs. A symmetric attack is dealt trivially.

6.5 Conclusion

For practical purposes, all an eavesdropper requires in hand is i) the optimal unitary to
evolve the joint system and ii) the corresponding measurement that she must perform to
glean the maximum possible information within the error-threshold. We have developed
the methods to fully characterize the optimal unitaries and demonstrated the techniques
via examples. Our approach could figure out the simplest one out of the infinite family of
optimal unitaries in a most natural fashion.

As an optimal unitary is parameterized by the error-rate, an attacker may first fix the
QBER she wishes to introduce and accordingly design an optimal unitary (not unique) for
a specific choice of her measurement setup and the initial state (note that the measurement
for the other (conjugate basis) gets fixed automatically). An attacker would like to choose
such unitaries which, if feasible, is easier to design than its siblings, considering the IS-
unitary designing trade-off. As a further work, an interested reader may explore the design
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of the optimal unitaries in terms of universal quantum gates.
So far, including the earlier chapters, we essentially have characterized the optimal at-

tacks on the BB84 protocol exhaustively, where an attacker entangles a four dimensional
probe per transmitted qubit. An optimal attack consists of two main components: the
optimal unitary evolution, and the optimal measurement. The intermediate results for the
analysis purposes involve the study of optimal interaction vectors. We have characterized
all these components of an optimal attack exhaustively. We have considered the general-
ized asymmetric error rates across the two MUBs, while a symmetric attack automatically
becomes a special case.





CHAPTER 7

POST-PROCESSING AND
COMPARATIVE STUDY

If the disturbance D is within the threshold, the one-way classical post-processing can be
considered to filtrate into a secret key. Here, we calculate and plot some post-processing
related parameters for the sake of completeness. Although we have already calculated the
key-rate for the sifted key, the final key-rate is also relevant to compute. For our optimal
states [AP17, AP21, FGG+97] for incoherent eavesdropping on the 4s [BB84, BB14]
protocol, we have computed the related parameters. Then, we graphically compared them
with the 6s protocol [Bru98] as well.

7.0.1 Classical post-processing

It’s a two-step procedure as stated below.

Making Alice and Bob’s bit-streams in sync

The sifted key with Bob may disagree with that of Alice in the presence of noise (eaves-
dropping). A simple method is discussed here to locate such erroneous positions.1 They
may either discard or correct those bits.

1. They divide their strings into blocks of some agreed length. The length L is so cho-
sen that each block is unlikely to have more than one error (DL� 1, for QBER=D).
For each block, they locate an error as follows.

2. They compute the XOR (parity) of the bits in a block. If the parity disagree, they
know that an error occurred, and proceed as follows to locate it.

1More involved approach can be found in [BS94].
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3. They perform a binary search in the same manner as above until they locate an
error if any. They halve the block in two sub-blocks, compute the parity and tally
it publicly. In not matched, they continue with that sub-block for a binary search of
the erroneous bit. .

4. They locate any error in each of the blocks.

5. Several such rounds of varying block length may require to locate all the errors with
high probability.

If they can afford an encrypted authenticated communication, they can correct the errors
without leaking any information. Otherwise, they discard the errors. In case they correct
errors, Alice can simply send Bob a correct bit against each error-bit. For err-discard, as
their parity checking is public, they should discard a bit of the block under consideration
throughout the recursive process.

For QBER=D, Bob knows IAB = 1−h(D) fraction of Alice’s bit-string correctly. The
remaining H(D) fraction is erroneous due to Eve, and is either discarded or corrected. In
case of err-discard, they remove at least H(D) fraction of the sifted key. In practice, the
procedure reduces the string even more as they need to sacrifice some bits due to public
discussion.

Making Eve’s knowledge arbitrarily small

This is the last step of classical post-processing to virtually eliminate any knowledge
of Eve on the key. The estimated value of the QBER tells the legitimate parties about
the maximum amount of knowledge (in number of bits, say k) that Eve has on the key
(from IR

AE). For an n-bit key, the legitimate parties can then reduce the key to an (n−
k− s)-bit string on which Eve is left with merely O(2−s) bits of information. To be
precise [BBCM95],

Ifin
E ≤ log2(2

−s +1)≈ 2−s

ln2
.

Consequently, Eve’s information can be made arbitrarily small by tuning the security
parameter s. For s = 0, Eve still knows 1 bit of information. Thus, s > 0 is a safe choice.
Following is a simple way to compress the key. Alice and Bob can choose at random
n− k− s subsets of the key, and replace each subset by their XOR value to arrive at the
final key. Choosing the subsets is a challenge. In practice, choosing a hash function
randomly from a family of 2-universal hash function does the job well.

The key-rate for the final key, for individual attacks, depends on the two things: MIAB,
and the discarded fraction τ(D). The later one is defined by the amount of fraction dis-
carded during privacy amplification. It could be calculated from the collision probability
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Pc of the reconciled key as follows

τ(D) := 1+ log2〈Pc〉.

The average collision probability per bit of the reconciled key is defined on the posterior
distribution of the reconciled key as follows

〈Pc〉 := ∑Pr(outcome)∑P2
post .

Using the bounds on Pc, and expression for τ(D) one can calculate the key-rate for the
final key as follows.

Rcorr := IAB(D)− τ(D),

Rdisc := IAB(D)− (1−D)τ(D)−D,

IAB = 1−H(D).

To get the key-rate on the transmitted signal-stream, one can simply multiply the above
rates by 1

2 for B92,BB84, and by 1
3 for 6s protocol.

For individual attacks with err-discard, the tolerable error-rates become
4%,10.5%,12% for the three protocols respectively.

Note: Even when Bob’s information becomes less than that of Eve’s, there is some
scope to filter a secret key, albeit inefficient and leading to less throughput. The legitimate
parties can perform a two-way process called advantage distillation to allow Bob accumu-
lating more information than Eve. Then, they can perform the classical post-processing
as usual.

For instance, Alice can mask the bits in a block by a random bit and sends to Bob
who then XOR his block with that of Alice. The secret bit is then retrieved only when the
blocks are identical. In such cases the masking bits for various blocks define a secret key.
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7.1 Rényi information, Discarded Fraction, final Key-
rate [AP21]

The literature on the classical post-processing is found to lack clarity, and often encoun-
tered with conflicting ideas. We found that Rényi information is sometimes computed
apart from Shannon information without any further inference (e.g., [BPG99] etc). It
appears in the bound during privacy amplification. During classical post-processing, dis-

carded fraction (DF) is a parameter found in use, to be calculated in order to compute the
final key-rate.

Shannon information (SI) may not necessarily provide the whole picture of mutual in-
formation for quantum measurements [BZ01], and Rényi information [Rén61] is another
relevant measure. Some extra care is necessary to deal with it [BBCM95], as it looses
some usual notions like drop in entropy, symmetry etc. More alternatives can be found
in [Ras19].

7.1.1 Rényi information for the 4s and 6s protocols

Rényi information (RI) between Eve and Alice (or Bob) is defined as follows.

RI = R0−∑
λ

Pλ Rλ .

Here, R0 and Rλ denotes the Rényi entropy before and after Eve measures, respectively.
Pλ denotes the frequency of each outcome λ with Eve.

We consider here the Rényi information of order 2. When the signal was prepared in
the xy basis, R0 and Rλ are defined in terms of prior (ps) and posterior (Ps|λ ) probabilities
as follows.

R0 = − log2

(
p2

x + p2
y

)
,

Rλ = − log2

(
P2

x|λ +P2
y|λ

)
.

For 4s BB84 and 6s protocol, due to equal prior (px = py =
1
2 ), R0 = 1. Then,

RIxy = 1−∑
λ

Pλ Rλ .

For the 4s protocol with [AP21, FGG+97] optimal states in xy basis, the posterior
probabilities become

(Px|λ ,Py|λ ) =

(
1
2
±
√

Duv(1−Duv),
1
2
∓
√

Duv(1−Duv)

)
, ∀λ .



7.1. Rényi information, Discarded Fraction, final Key-rate [AP21] 153

Thus, the Rényi information between Eve and Bob becomes

RI(2)xy = 1+ log2

(
1
2
+2Duv(1−Duv)

)
= log2(1+4Duv−4D2

uv).

Figure 7.1 | Rényi Information (RI) for incoherent attack on 4s, 6s protocol.

Considered the optimal states of [AP21, FGG+97] for the 4s protocol and those for the
6s [BPG99] protocol. For 4s: the Rényi Information of order 2 meets the Lütkenhaus
bound for discarded fraction.
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For equal errors across the two MUBs, Rényi information of 2nd order between Eve
and Bob for 4s protocol with [AP21, FGG+97] optimal states becomes

RI(2)4s = log2(1+4D−4D2).
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For 6s [BPG99, Incoeh.] optimal states,

RI(2)6s = 1+(1−D) log2(p2
f + p2

s ),

p f =
1
2

[
1−

√
D(2−3D)

1−D

]
,

ps = 1− p f .

Here, p f , ps are failure and success probabilities of Eve.

The SI versus RI for optimal attack on 4s and 6s protocol are plotted in Fig. 7.1.

7.1.2 Discarded fraction for our optimal states

Denoted by τ , it is defined as the fraction by which the key is shortened during privacy
amplification. Based on a criteria for strong security [BBCM95], a condition on the DF
in order to reduce Eve’s knowledge (Shannon information) on the final key is as fol-
lows [HBHP08, Lüt96]. For individual attack, for an error-rate D, Eve knows less than

1
ln2 bits of the final key provided

τD ≥ 1+ log2〈P
(c)
2 〉.

Here, 〈P(c)
2 〉 is the maximum average collision probability of Eve’s knowledge per bit of

the reconciled key. When Alice prepares her signals in the xy basis, the collision proba-
bility of order 2 averaged over Eve’s measurement knowledge λ , is defined as follows.

〈P(c)
2 〉 = ∑

λ

Pλ

(
P2

x|λ +P2
y|λ

)
.

However, in the general scenario of individual attacks, the DF is bounded above by
Lütkenhaus bound [HBHP08, Lüt99]

τD ≤ log2(1+4D−4D2). (7.1.1)

Note that the lower bound on the discarded fraction coincides with the RI of order
2. Therefore, for the [AP21, FGG+97] optimal states, the maximum discarded fraction
saturates the Lütkenhaus bound.

Success probability on the final key Consider a simple post-processing strat-
egy [BPG99, 6s-coeh]. Let the legitimate parties consider blocks of size two. In the
reconciled key, they replace the two bits by their XOR sum. Eve’s probability to correctly
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guess the bit is

Pr(success) f in = P2
s +P2

f

= (
1
2
+
√

D(1−D))2 +(
1
2
−
√

D(1−D))2

=
1
2
(1+4D−4D2).

7.1.3 Final Key-rate for our optimal states

From the expression of τ(D) as calculated above, one can calculate the key-rate (scaled
w.r.t. raw-key-len) for the final key as follows.

Rcorr := IAB(D)− τ(D)

= 1−h(D)− log2(1+4D−4D2), for 4s protocol

Rdisc := IAB(D)− (1−D)τ(D)−D

= 1−h(D)− (1−D) log2(1+4D−4D2)−D, for 4s protocol.

With the bounds on τ(D) as calculated for the 4s and the 6s protocols, we have plotted here
the key-rates. As evident, the key-rates become the following: i) when error discarded:
10.5% for 4s, 12% for 6s, and ii) when error corrected: 11.5% for 4s, 13% for 6s.

These are plotted in Fig. 7.2.
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Figure 7.2 | Final key-rate for 4s and 6s protocols.
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A more closer view is plotted in Fig. 7.3.

Figure 7.3 | Final key-rate for 4s and 6s: close look.
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7.2 Comparative study: across protocols

Here we graphically compare the bipartite mutual informations (between Alice-Eve and
Alice-Bob) for the 4s and 6s protocols. Then, Rényi information of order 2 is also com-
pared for these two protocols.

7.2.1 Mutual information (AE,AB) for 4s, 6s, and 4MUBs with high-
dimensional states

We consider the following protocols to study the mutual information comparatively for a
given QBER D.

For BB84, maximum bipartite mutual information are as follows [FGG+97, 4s-Indv.]:

IAB = 1+D logD+(1−D) log(1−D),

IAE =
1
2

φ(2
√

D(1−D)),

where, φ(x) = (1− x) log(1− x)+(1+ x) log(1+ x).

For 6s protocol, maximum bipartite mutual information are as follows [Bru98, 6s-Indv.]:

IAB = 1+D logD+(1−D) log(1−D),

IAE = 1+(1−D)
[

f (D) log f (D)+(1− f (D)) log(1− f (D))
]
,

where, f (D) =
1
2

(
1− 1

1−D

√
D(2−3D)

)
.

For a protocol with 4 MUBs having d-dimensional states (qudits) in each basis, maximum
bipartite mutual information are as follows [BM02].

IAB = 1+D logd(
D

d−1
)+(1−D) logd(1−D),

IAE = 1+(1−D)

 fd(D) logd fd(D)+(1− fd(D)) logd

(
1− fd(D)

d−1

) ,
where, fd(D) =

d−2D+
√
(d−2D)2−d2(1−2D)2

d2(1−D)
.

So, more degrees of freedom by the legitimate parties decreases Eve’s mutual infor-
mation.
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Figure 7.4 | Comparative mutual informations for BB84, 6s protocol, and a protocol
with 4MUBs having d-dim bases.

Intersection of MIAB and MIAE provides the maximum tolerable disturbance for one-way
post-processing. Although the tolerance level increases as dimension d increases, the
key-rate also drops.
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CHAPTER 8

COHERENT EAVESDROPPING

8.1 Eavesdropping on 4s protocol

Let’s consider the four-state BB84 protocol. Now, consider Eve attacking two qubits at
a time, i.e., coherently with an ancilla. A symmetric attack (i.e., same QBER across all
bases) was first briefed in [CG97]. We sketch an outline of the attack, and then explain
elaborately some of the intermediate results, particularly characterizing the parameters
that defines the unitary. These are derivation of the results up to our understanding that
didn’t appear so straightforward.

Consider Eve attacking two qubits with an ancilla. In the incoherent case, while Eve
has four possible states in a specific encoding basis, in the two-qubit coherent case, Eve
has sixteen different states and therefore 256 inner products. However, we’ll see shortly
that the unitary is ultimately characterized by only five parameters. We’ll discuss in depth-
and-breath on that side.

The importance of that characterization lies on determining the optimal measurement
for Eve, her probability to successfully find the message, the strategy that gives her the
maximum amount of information etc.

8.2 Overview: the unitary is characterized by five real
parameters

An unitary is defined by its action on the states in some basis. For a 2-qubit state, four such
states are enough to be considered. Any such state, when evolved with some ancillary
state, it produces a superposition of four different states. Thus, the attack on the basis-
states produce sixteen possible states with Eve. The inner products between them define
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the unitary: 256 IPs are there.

Mere restriction of unitarity reduces the count to 240, not much useful. Like incoher-
ent attack, an orthogonal grouping is possible that reduces the count dramatically. Four
such groups, each with four states, produce 24 real IPs.

Then, the rules of the symmetry of the attack reduces the count to ten, and then further
to five.

256 → 24 → 10→ 5

We’ll first sketch an outline of those results and the detailed derivations will follow in a
separate section.

8.2.1 Notations and conventions

8.2.1.1 Alice’s bases and states

Alice uses one of the two bases z, and x. The states in these bases are denoted as
{|z〉, |−z〉}, and {|x〉, |−x〉}, respectively.

For a 2-qubit chunk, the states in the zz basis are then {|zz〉, |z− z〉, |−zz〉, |−z− z〉}.
One may consider the binary notations as well. In any case, a basis may be denoted

as β ≡ β1β2.

8.2.1.2 Bob’s and Eve’s states after an unitary interaction

For Alice’s pair of qubits in state |a1a2〉, due to the unitary entanglement, Bob receives
one of the basis states, say, |b1b2〉, and Eve’s ancilla is in one of the states |Ea1a2

b1b2
〉.

In decimal, the equivalent symbols are |a〉, |b〉, and |Ea
b〉, respectively.

Following [BPG99], it is sometimes useful to denote Eve’s post-interaction states in
the form of |ψSend

# Err, Err location〉 and symbolize as |ψa
d,q〉. Thus,

|ESend
Received〉 ≡ |ψSend

# Err, Err location〉

We’ll follow a more useful convention as we find suitable for calculations while at-
taching the orthogonal group with its name.

8.2.1.3 Naming convention

Consider the four states in any basis, on which the unitary will act when combined with
the ancillary system. Consider, for simplicity, the four-dimensional computational basis.
The four states are as follows.

|00〉, |10〉, |01〉, |11〉.
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Following the convention of [CG97], the ordering of the qubits are as follows.

|Q1〉|Q2〉.

Then, the decimal representation of the states will respectively be

|0〉, |1〉, |2〉, |3〉.

Now, consider an unitary interaction on any of these basis states and the resulting states
of Eve’s evolved ancilla.

8.2.2 Post-interaction states: attack 2 qubits coherently

An unitary attack U , coherently on 2 qubits, can completely be specified by its action on
the elements of any 2-dim orthonormal basis β = β1β2 that consists of 4 elements. (e.g.,
the basis β1β2 = 00):

Bβ := {|00〉β1β2 , |01〉β1β2, |10〉β1β2, |11〉β1β2}.

To attack one such pair of qubits in state |a〉β = |a1a2〉β1β2 , Eve attaches an ancilla
having initial state |E〉, and evolves the joint system unitarily with U . The resulting state
of the joint system is in superposition of 4 states.

U|a〉β |E〉 ≡ U|a1a2〉β1β2 |E〉 ( for each a1a2 ∈ {00,01,10,11} )

= ∑
d=0,1,2

|b1b2〉β1β2|ψa
d,q〉, ∀ b1b2 ∈ {00,01,10,11}

= ∑
b1b2∈{00,01,10,11}

|b1b2〉β1β2|Ea1a2
b1b2
〉.

Here, d indicates # disturbances; q indicates (only for single disturbance) which qubit is
disturbed.
Moreover, b1 = a1 + d1,b2 = a2 + d2 with d1,d2 ∈ {0,1}. Then, d = d1 + d2, and
q = 1d12d2 for d = 1 only.
Eve’s states |ψa

d,q〉 ≡ |E
a1a2
b1b2
〉 are not normalized.

To elaborate,

U|a〉β |E〉 ≡ U |a1a2〉β1β2|E〉

= |a1a2〉 |ψa
0 〉 +|a1+1,a2〉 |ψa

1,1〉 +|a1,a2+1〉 |ψa
1,2〉 +|a1+1,a2+1〉 |ψa

2 〉,

= |a1a2〉 |ea1a2
a1a2〉 +|a1+1,a2〉 |Ea1a2

a1+1,a2
〉 +|a1,a2+1〉 |Ea1a2

a1,a2+1〉 +|a1+1,a2+1〉 |Ea1a2
a1+1,a2+1〉.
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The basis stamp is dropped in the R.H.S.

Action of the unitary on 4 basis-states produces 16 post-interaction states (PIS) of Eve.

8.2.2.1 Action of the unitary on the zz basis, i.e., the basis β1β2 = 00.

Now, consider the action of the unitary on the four states {|zz〉, |z− z〉, |−zz〉, |−z− z〉} of
the basis zz. The action of the unitary on the basis states are described below, while Eve’s
states are represented like |ψSend

# Err, location〉.

U |zz〉|ψ〉 = |zz〉 |ψzz
0 〉+ |z-z〉 |ψzz

1,2〉+ |-zz〉 |ψzz
1,1〉+ |-z-z〉 |ψzz

2 〉,
U |z− z〉|ψ〉 = |z-z〉 |ψz−z

0 〉+ |zz〉 |ψz−z
1,2 〉+ |-z-z〉 |ψz−z

1,1 〉+ |-zz〉 |ψz−z
2 〉,

U |−zz〉|ψ〉 = |-zz〉 |ψ−zz
0 〉+ |-z-z〉 |ψ−zz

1,2 〉+ |zz〉 |ψ−zz
1,1 〉+ |z-z〉 |ψ−zz

2 〉,
U |−z− z〉|ψ〉 = |-z-z〉 |ψ−z−z

0 〉+ |-zz〉 |ψ−z−z
1,2 〉+ |z-z〉 |ψ−z−z

1,1 〉+ |zz〉 |ψ−z−z
2 〉.

We re-write the equations while considering the binary representation
{|00〉, |01〉, |10〉, |11〉} of Alice’s basis states prepared in the basis β = 00, while
Eve’s states are written as |ESend

Received〉 in binary. The basis stamp is dropped customarily.

U |00〉β=00|E〉 = |00〉 |E00
00〉+ |01〉 |E00

01〉+ |10〉 |E00
10〉+ |11〉 |E00

11〉,
U |01〉β=00|E〉 = |01〉 |E01

01〉+ |00〉 |E01
00〉+ |11〉 |E01

11〉+ |10〉 |E01
10〉,

U |10〉β=00|E〉 = |10〉 |E10
10〉+ |11〉 |E10

11〉+ |00〉 |E10
00〉+ |01〉 |E10

01〉,
U |11〉β=00|E〉 = |11〉 |E11

11〉+ |10〉 |E11
10〉+ |01〉 |E11

01〉+ |00〉 |E11
00〉.

One may re-order the R.H.S. according to the states received by Bob. Alice’s states
are prepared in the basis β = 00, while Eve’s states are written as |ESend

Received〉 in binary.

U |00〉β=00|E〉 = |00〉 |E00
00〉+ |01〉 |E00

01〉+ |10〉 |E00
10〉+ |11〉 |E00

11〉,
U |01〉β=00|E〉 = |00〉 |E01

00〉+ |01〉 |E01
01〉+ |10〉 |E01

10〉+ |11〉 |E01
11〉,

U |10〉β=00|E〉 = |00〉 |E10
00〉+ |01〉 |E10

01〉+ |10〉 |E10
10〉+ |11〉 |E10

11〉,
U |11〉β=00|E〉 = |00〉 |E11

00〉+ |01〉 |E11
01〉+ |10〉 |E11

10〉+ |11〉 |E11
11〉.

Sometimes, the decimal representation is useful for calculations, re-order according
to the states received by Bob.

U |0〉|ψ〉 = |0〉 |ψ0
0 〉+ |2〉 |ψ0

1,2〉+ |1〉 |ψ0
1,1〉+ |3〉 |ψ0

2 〉,
U |2〉|ψ〉 = |0〉 |ψ2

1,2〉+ |2〉 |ψ2
0 〉+ |1〉 |ψ2

2 〉+ |3〉 |ψ2
1,1〉,

U |1〉|ψ〉 = |0〉 |ψ1
1,1〉+ |2〉 |ψ1

2 〉+ |1〉 |ψ1
0 〉+ |3〉 |ψ1

1,2〉,
U |3〉|ψ〉 = |0〉 |ψ3

2 〉+ |2〉 |ψ3
1,1〉+ |1〉 |ψ3

1,2〉+ |3〉 |ψ3
0 〉.
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8.2.3 Reduction in number of IPs: 256→ 5

Characterize the Unitary ≡ characterize the IPs.

8.2.3.1 24 IPs from 4 orthogonal groups

The 16 post-interaction states with Eve can be classified into 4 mutually orthogonal sets
S0,S1,1,S1,2,S2 as follows. The subscripts indicate disturbance, while the superscript in
the states indicate the binary labeling for the state sent by Alice.

S0 := { |ψ00
0 〉, |ψ01

0 〉, |ψ10
0 〉, |ψ11

0 〉 },

S1,1 := { |ψ00
1,1〉, |ψ01

1,1〉, |ψ10
1,1〉, |ψ11

1,1〉 },

S1,2 := { |ψ00
1,2〉, |ψ01

1,2〉, |ψ10
1,2〉, |ψ11

1,2〉 },

S2 := { |ψ00
2 〉, |ψ01

2 〉, |ψ10
2 〉, |ψ11

2 〉 }.

With this representation, it is clear that the sets are classified for orthogonality according
to the number of disturbances. For instance, the first set contains those states which
correspond to no disturbance, etc. A hint towards arguing the orthogonality is given in
Sec. 8.4.1. An alternate representation for the groupings could be found therein.

It is clear that the 4 states in each grouping lead to 6 IPs when they are considered
real. Thus, there are total 24 IPs from 4 groupings.

We rename here the states of Eve by attaching the orthogonality label to the states and
calling them with the decimal representation.

Table 8.1 Relabeled states in 4 ⊥ groupings: S0,S1,1,S1,2,S2.

Alice send ↓ Eve’s states
|0〉 → |0〉S0 |0〉S1,1 |0〉S1,2 |0〉S2

|2〉 → |2〉S0 |2〉S1,1 |2〉S1,2 |2〉S2

|1〉 → |1〉S0 |1〉S1,1 |1〉S1,2 |1〉S2

|3〉 → |3〉S0 |3〉S1,1 |3〉S1,2 |3〉S2

With this new representation, we rewrite the action of the unitary considering Alice’s
states (2-qubits) in the zz basis.

U |0〉|E〉 = |0〉 |0〉S0 +|2〉 |0〉S1,2 +|1〉 |0〉S1,1 +|3〉 |0〉S2 ,

U |2〉|E〉 = |0〉 |2〉S1,2 +|2〉 |2〉S0 +|1〉 |2〉S2 +|3〉 |2〉S1,1,

U |1〉|E〉 = |0〉 |1〉S1,1 +|2〉 |1〉S2 +|1〉 |1〉S0 +|3〉 |1〉S1,2,

U |3〉|E〉 = |0〉 |3〉S2 +|2〉 |3〉S1,1 +|1〉 |3〉S1,2 +|3〉 |3〉S0 .

(8.2.1)

R.H.S. is ordered according to the states received by Bob.
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8.2.3.2 Further reduction: Rules of symmetry

IPs remain unchanged even after the following changes made:

Rule 1.1 [ 1̄, 2̄ ]
Bit flip (i.e., |0〉 ↔ |1〉) in one position

1̄. Bit flip in 1st position: |a1a2〉 → |a1 +1,a2〉.
e.g., 〈ψ00

0 |ψ01
0 〉= 〈ψ10

0 |ψ11
0 〉.

2̄. Bit flip in 2nd position: |a1a2〉 → |a1,a2 +1〉).
e.g., 〈ψ00

0 |ψ10
0 〉= 〈ψ01

0 |ψ11
0 〉.

Rule 1.2 [
↔
12 ]

Exchange of bits: |a1a2〉 ↔ |a2a1〉. e.g., 〈ψ00
0 |ψ01

0 〉= 〈ψ00
0 |ψ10

0 〉.

Rule 2 [z↔ x ]
Basis change: A basis looks like αβ s.t., α,β ∈ {z,x}. So, there are 4 possible
bases as follows.

zz ↔ zx ↔ xz ↔ xx.

Any mutual exchange among them can be considered.

e.g. 〈ψzz
0 |ψ

z−z
0 〉= 〈ψ

xx
0 |ψx−x

0 〉

i.e., 〈ψ00
0 |ψ01

0 〉00 = 〈ψ00
0 |ψ01

0 〉11

The outside superscript stands for the binary representation of a basis:

zz = 00, xx = 11, xz = 10, zx = 01.



8.2. Unitary: 5 parametric 167

8.2.3.3 10 IPs: 7 equivalence classes.
Rules of symmetry: bit-flip, bit-swap.

Three of them are due to normalization of the states in each orthogonal sets S0, S2, S1,1,
S1,2. Rest of the seven are due to applying rules of symmetry 1, i.e., bit flip (1̄, 2̄) and

exchange (
↔
12), in between two different states in each group. Two classes (A1, A2) from

S0, two (C1, C2) from S2, and another three (B1, B2, B3) from S1,1, S1,2. Thus, 24 IPs
from the four orthogonal sets form 7 equivalence classes: A1, A2, B1, B2, B3, C1, C2.

Table 8.2 Equivalence classes of the IPs

Sets # error # Eqv Cls Equivalence classes # IPs

S0 0 2 A1,A2 4,2
S2 2 2 C1,C2 4,2

S1,1, S1,2 1 3 B1,B2,B3 4,4,4

Applying the symmetric rules 1, i.e., bit flip (1̄, 2̄) and exchange (
↔
12), we get

A1 = 〈ψzz
0 |ψ

z−z
0 〉= 〈ψ

zz
0 |ψ

−zz
0 〉= 〈ψ

−z−z
0 |ψz−z

0 〉= 〈ψ
−z−z
0 |ψ−zz

0 〉,

A2 = 〈ψzz
0 |ψ

−z−z
0 〉= 〈ψz−z

0 |ψ
−zz
0 〉,

C1 = 〈ψzz
2 |ψ

z−z
2 〉= 〈ψ

zz
2 |ψ

−zz
2 〉= 〈ψ

z−z
2 |ψ

−z−z
2 〉= 〈ψ−zz

2 |ψ
−z−z
2 〉,

C2 = 〈ψzz
2 |ψ

−z−z
2 〉= 〈ψz−z

2 |ψ
−zz
2 〉,

B1 = 〈ψzz
12|ψ

−zz
12 〉= 〈ψ

z−z
12 |ψ

−z−z
12 〉= 〈ψzz

11|ψ
z−z
11 〉= 〈ψ

−zz
11 |ψ

−z−z
11 〉,

B2 = 〈ψzz
12|ψ

z−z
12 〉= 〈ψ

−zz
12 |ψ

−z−z
12 〉= 〈ψzz

11|ψ
−zz
11 〉= 〈ψ

z−z
11 |ψ

−z−z
11 〉,

B3 = 〈ψzz
12|ψ

−z−z
12 〉= 〈ψ−zz

12 |ψ
z−z
12 〉= 〈ψ

zz
11|ψ

−z−z
11 〉= 〈ψz−z

11 |ψ
−zz
11 〉.

A = 〈ψzz
0 |ψ

zz
0 〉= 〈ψ

z−z
0 |ψ

z−z
0 〉= 〈ψ

−zz
0 |ψ

−zz
0 〉= 〈ψ

−z−z
0 |ψ−z−z

0 〉,

B = 〈ψzz
1,1|ψ

zz
1,1〉= 〈ψ

z−z
1,1 |ψ

z−z
1,1 〉= 〈ψ

−zz
1,1 |ψ

−zz
1,1 〉= 〈ψ

−z−z
1,1 |ψ

−z−z
1,1 〉

= 〈ψzz
1,2|ψ

zz
1,2〉= 〈ψ

z−z
1,2 |ψ

z−z
1,2 〉= 〈ψ

−zz
1,2 |ψ

−zz
1,2 〉= 〈ψ

−z−z
1,2 |ψ

−z−z
1,2 〉,

C = 〈ψzz
2 |ψ

zz
2 〉= 〈ψ

z−z
2 |ψ

z−z
2 〉= 〈ψ

−zz
2 |ψ

−zz
2 〉= 〈ψ

−z−z
2 |ψ−z−z

2 〉.
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24 IPs w.r.t 10 parameters

Here, we write the 24 IPs w.r.t. 10 parameters.

Recall that Eve’s states are written as |a〉S , where a denotes the Alice’s pair of bits in
decimal, and S represents the orthogonal set.

Table 8.3 Eve’s 16 states as 4 ⊥ groupings.

Alice send ↓ Eve’s states
|0〉 → |0〉S0 |0〉S1,1 |0〉S1,2 |0〉S2

|2〉 → |2〉S0 |2〉S1,1 |2〉S1,2 |2〉S2

|1〉 → |1〉S0 |1〉S1,1 |1〉S1,2 |1〉S2

|3〉 → |3〉S0 |3〉S1,1 |3〉S1,2 |3〉S2

24 IPs can then be described in terms of the 7 parameters (from the last section).

Table 8.4 24 IPs → 7 groupings

Set IP1 IP2 IP3 IP4 IP5 IP6

S?,? 〈0|2〉 〈0|1〉 〈0|3〉 〈2|1〉 〈2|3〉 〈1|3〉
S0 A1 A1 A2 A2 A1 A1

S1,1 B3 B1 B2 B2 B1 B3
S1,2 B1 B3 B2 B2 B3 B1

S2 C1 C1 C2 C2 C1 C1

Details with other notations are tabulated in Sec. 8.4.3.

All the 16 IPs in each group are then expressed in terms of the 10 parameters as
follows.

Table 8.5 All 16 IPs in each ⊥ group

IPs within a grp IPs for S0 IPs for S2 IPs for S1,1 IPs for S1,2

0·0 0·2 0·1 0·3
2·0 2·2 2·1 2·3
1·0 1·2 1·1 1·3
3·0 3·2 3·1 3·3

A A1 A1 A2
A1 A A2 A1
A1 A2 A A1
A2 A1 A1 A

C C1 C1 C2
C1 C C2 C1
C1 C2 C C1
C2 C1 C1 C

B B3 B1 B2
B3 B B2 B1
B1 B2 B B3
B2 B1 B3 B

B B1 B3 B2
B1 B B2 B3
B3 B2 B B1
B2 B3 B1 B

8.2.3.4 5 IPs due to 5 equations. Rules of symmetry = Basis change.

So far, we could reduce 256 IPs to 10 following the symmetry rules. It is possible to
further reduce them to five, as five inter-relations between them follow due to the rules of
basis-change.
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Proposition 8.1. The following five relations between the 10 IPs hold.

A+2B+C = 1, (8.2.2)

A1 +B1 = A−B, (8.2.3)

B3 +C1 = B−C, (8.2.4)

B2 +B3 = A1−A2, (8.2.5)

C1 +C2 = B1−B2. (8.2.6)

However, it is not so easy to find out these interrelations, as it is not known which
basis-change rule will help. For instance, if we consider the basis-change zz 7→ xx, then
we do not get the desired relations. In fact easier relations exists due to other basis-
changes. Moreover, for a given basis change, which state of Alice should be considered
in another difficulty.

Here, we describe a possible approach to get these relations. The first relation follows
due to normalization restriction of any of the L.H.S.-states in Eq. (8.2.2). The remaining
relations emanate when we consider the basis change zz 7→ xz.

We consider Alice’s states (2 qubits) in the zz basis. Then, in this basis, we analyze
the evolution for Alice’s two states |0〉 and |2〉.

8.3 Eavesdropping on 6-st Protocol

The 6-st Protocol works with 3 bases in the 2-dim Hilbert space.

8.3.1 2-qubit attack

For a 2-qubit attack, learning the unitary is to study the action of the unitary on a basis
(e.g., zx basis), which contains 4 states. Again, 256 inner products are possible. It can
ultimately be reduced to only 2 real parameters.

256→ 10→ 2.

A 2-qubit attack slightly increases Eve’s chance to successfully guess the 2-qubits to-
gether than that for an incoherent attack. However, it doesn’t increase the Shannon mutual
information. However, it slightly increases the Rényi information.

8.3.2 3-qubit attack

A 3-qubit attack doesn’t improve Eve’s Shannon information, nor does it improve her
chance to guess correctly the bits that Bob receives correctly. However, for the bits those
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are received undisturbed by Bob, Eve gains full information, since all the eight states of
Eve in the ψ3 grouping are mutually orthogonal. Thus, the 3-qubit attack improves (not
negligible) the chance that Eve guesses all the 3 qubits correctly.

For attacking more qubits, the parametrization task goes arduous.

8.4 Details

Some detailed calculations of the earlier sections are placed here. The interesting one is
the orthogonal grouping where we find an alternative solution. It may not possibly change
the cryptographic bounds except possibly the way how things take place.

8.4.1 Orthogonal groupings (unpublished) of Eve’s states

16 states of Eve→ 4 mutually orthogonal groups, each having 4 states.

The binary-decimal representation of the send-received states are described in Ta-
ble 8.6.

Table 8.6 Send vs received bits in binary. Subscripts indicate decimal.

Alice Send Bob Received

000 000 011 102 113
011 011 000 113 102
102 102 113 000 011
113 113 102 011 000

Now, consider the decimal representation: a,b represents Alice and Bob’s bits. Then,

U|a〉|E〉 =
3

∑
b=0
|b〉|Eab〉,

U|a′〉|E〉 =
3

∑
b=0
|b〉|Ea′b〉.

Then, due to orthogonality of the above two states, we get

0 =
3

∑
b=0
〈Eab|Ea′b〉.

One way to make the expression zero is to consider each term to be zero, i.e., 〈Eab|Ea′b〉=
0 for each b. If a bin corresponds to an orthogonal grouping, then |Eab〉 and |Ea′b〉 cannot
occupy the same bin.

Following this logic, Table 8.7 explains the bin-allocation logic. The last row indicate
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the choice due to [CG97]. Table 8.8 shows an alternative allocation following a trial-and-
error approach. contains the two groupings.

Table 8.7 | Orthogonal groupings: natural.

Four bins are allocated for Eve’s four states as Alice sends 0. For the remaining 12
states, the corresponding bin is indicated by the restriction where it cannot go: e.g., all
the ∼ 3 need be replaced by different indices from 0,1,2 and so on. A natural allocation
then follows as in the last row, as chosen by [CG97].

Send Bob Bin# Bob Bin# Bob Bin# Bob Bin#

0 0 0 1 1 2 2 3 3
1 1 ∼ 1 0 ∼ 0 3 ∼ 3 2 ∼ 2
2 2 ∼ 2 3 ∼ 3 0 ∼ 0 1 ∼ 1
3 3 ∼ 3 2 ∼ 2 1 ∼ 1 0 ∼ 0

Allocation: 0 1 2 3

Table 8.8 Orthogonal groupings: alternative!

Send Bob Bin# Bob Bin# Bob Bin# Bob Bin#
0 0 0 1 1 2 2 3 3
1 1 3 0 2 3 1 2 0
2 2 1 3 2 0 3 1 0
3 3 0 2 3 1 2 0 1

The two different groupings are then listed. A grouping allocates Eve’s 16 states in 4
mutually orthogonal sets.

Natural grouping

Bin 0 Bin 1 Bin 2 Bin 3

|E0,0〉 |E0,1〉 |E0,2〉 |E0,3〉
|E1,1〉 |E1,0〉 |E1,3〉 |E1,2〉
|E2,2〉 |E2,3〉 |E2,0〉 |E2,1〉
|E3,3〉 |E3,2〉 |E3,1〉 |E3,0〉

Possible alternative!

Bin 0 Bin 1 Bin 2 Bin 3

|E0,0〉 |E0,1〉 |E0,2〉 |E0,3〉
|E1,2〉 |E1,3〉 |E1,0〉 |E1,1〉
|E2,1〉 |E2,2〉 |E2,3〉 |E2,0〉
|E3,3〉 |E3,0〉 |E3,1〉 |E3,2〉
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8.4.2 16 post-interaction states of Eve: 4 mutually orthogonal group-
ings

Action of the unitary on the basis elements in a basis β1β2 (e.g., zz basis) can be
seen as follows. Eve’s states after interaction are given in 3 different conventions:
|ψSend

# Err, Err location〉, |ESend
Received〉 in binary, |ESend,Received〉 in decimal, respectively in the first,

second and third rows for each of Alice’s states.

Alice’s 2 qubits Eve’s post-interaction states
|a1a2〉β1β2 0 err 1 err: Q1 1 err: Q2 2 err

|00〉β1β2 |ψ00
0 〉 |ψ00

1,1〉 |ψ00
1,2〉 |ψ00

2 〉
= |E00

00〉 |E00
10〉 |E00

01〉 |E00
11〉

|0〉 = |E0,0〉 |E0,1〉 |E0,2〉 |E0,3〉

|01〉β1β2 |ψ01
0 〉 |ψ01

1,1〉 |ψ01
1,2〉 |ψ01

2 〉
= |E01

01〉 |E01
11〉 |E01

00〉 |E01
10〉

|2〉 = |E2,2〉 |E2,3〉 |E2,0〉 |E2,1〉

|10〉β1β2 |ψ10
0 〉 |ψ10

1,1〉 |ψ10
1,2〉 |ψ10

2 〉
= |E10

10〉 |E10
00〉 |E10

11〉 |E10
01〉

|1〉 = |E1,1〉 |E1,0〉 |E1,3〉 |E1,2〉

|11〉β1β2 |ψ11
0 〉 |ψ11

1,1〉 |ψ11
1,2〉 |ψ11

2 〉
= |E11

11〉 |E11
01〉 |E11

10〉 |E11
00〉

|3〉 = |E3,3〉 |E3,2〉 |E3,1〉 |E3,0〉
S0 S1,1 S1,2 S2

One can classify these 16 states into 4 mutually orthogonal groupings: S0,S1,1,S1,2,S2,
as indicated in the last row.
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8.4.3 24 IPs: 6 from each set

Set IP1 IP2 IP3 IP4 IP5 IP6

A1 A1 A2 A2 A1 A1

S0 〈ψ00
0 |ψ01

0 〉 〈ψ00
0 |ψ10

0 〉 〈ψ00
0 |ψ11

0 〉 〈ψ01
0 |ψ10

0 〉 〈ψ01
0 |ψ11

0 〉 〈ψ10
0 |ψ11

0 〉

= 〈E00
00 |E01

01〉 〈E00
00 |E10

10〉 〈E00
00 |E11

11〉 〈E01
01 |E10

10〉 〈E01
01 |E11

11〉 〈E10
10 |E11

11〉

= 〈E0,0|E2,2〉 〈E0,0|E1,1〉 〈E0,0|E3,3〉 〈E2,2|E1,1〉 〈E2,2|E3,3〉 〈E1,1|E3,3〉

B3 B1 B2 B2 B1 B3

S1,1 〈ψ00
1,1|ψ01

1,1〉 〈ψ00
1,1|ψ10

1,1〉 〈ψ00
1,1|ψ11

1,1〉 〈ψ01
1,1|ψ10

1,1〉 〈ψ01
1,1|ψ11

1,1〉 〈ψ10
1,1|ψ11

1,1〉

= 〈E00
10 |E01

11〉 〈E00
10 |E10

00〉 〈E00
10 |E11

01〉 〈E01
11 |E10

00〉 〈E01
11 |E11

01〉 〈E10
00 |E11

01〉

= 〈E0,1|E2,3〉 〈E0,1|E1,0〉 〈E0,1|E3,2〉 〈E2,3|E1,0〉 〈E2,3|E3,2〉 〈E1,0|E3,2〉

B1 B3 B2 B2 B3 B1

S1,2 〈ψ00
1,2|ψ01

1,2〉 〈ψ00
1,2|ψ10

1,2〉 〈ψ00
1,2|ψ11

1,2〉 〈ψ01
1,2|ψ10

1,2〉 〈ψ01
1,2|ψ11

1,2〉 〈ψ10
1,2|ψ11

1,2〉

= 〈E00
01 |E01

00〉 〈E00
01 |E10

11〉 〈E00
01 |E11

10〉 〈E01
00 |E10

11〉 〈E01
00 |E11

10〉 〈E10
11 |E11

10〉

= 〈E0,2|E2,0〉 〈E0,2|E1,3〉 〈E0,2|E3,1〉 〈E2,0|E1,3〉 〈E2,0|E3,1〉 〈E1,3|E3,1〉

C1 C1 C2 C2 C1 C1

S2 〈ψ00
2 |ψ01

2 〉 〈ψ00
2 |ψ10

2 〉 〈ψ00
2 |ψ11

2 〉 〈ψ01
2 |ψ10

2 〉 〈ψ01
2 |ψ11

2 〉 〈ψ10
2 |ψ11

2 〉

= 〈E00
11 |E01

10〉 〈E00
11 |E10

01〉 〈E00
11 |E11

00〉 〈E01
10 |E10

01〉 〈E01
10 |E11

00〉 〈E10
01 |E11

00〉

= 〈E0,3|E2,1〉 〈E0,3|E1,2〉 〈E0,3|E3,0〉 〈E2,1|E1,2〉 〈E2,1|E3,0〉 〈E1,2|E3,0〉

There are total 24 IPs. But, there are 7 different IPs up to equivalence due to the rules of
symmetry: i) bit-flip, ii) bit-swap.

8.4.4 7+3 Equivalence Classes of 24 IPs

24 IPs from the four orthogonal sets S0, S2, S1,1, S1,2 form 7 equivalence classes. Two
classes (A1, A2) from S0, two (C1, C2) from S2, and another three (B1, B2, B3) from S1,1,

S1,2. Apply rules of symmetry: 1.1) bit flip (1̄, 2̄) and 1.2) exchange (
↔
12).
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Table 8.9 | 24 IPs→ 7+3 equivalence classes.

S0 → Two eqv. cls.: A1, A2 S2 → Two eqv. cls.: C1, C2

Class A1 Class C1

〈E0,0|E2,2〉
〈E00

00 |E01
01〉

〈ψzz
0 |ψ

z−z
0 〉

〈E0,0|E1,1〉
〈E00

00 |E10
10〉

〈ψzz
0 |ψ

−zz
0 〉

〈E1,1|E3,3〉
〈E10

10 |E11
11〉

〈ψ−zz
0 |ψ

−z−z
0 〉

〈E2,2|E3,3〉
〈E01

01 |E11
11〉

〈ψz−z
0 |ψ

−z−z
0 〉

↔
12

1̄ 2̄

↔
12

〈E0,3|E2,1〉
〈E00

11 |E01
10〉

〈ψzz
2 |ψ

z−z
2 〉

〈E0,3|E1,2〉
〈E00

11 |E10
01〉

〈ψzz
2 |ψ

−zz
2 〉

〈E1,2|E3,0〉
〈E10

01 |E11
00〉

〈ψ−zz
2 |ψ

−z−z
2 〉

〈E2,1|E3,0〉
〈E01

10 |E11
00〉

〈ψz−z
2 |ψ

−z−z
2 〉

↔
12

1̄ 2̄

↔
12

Class A2 Class C2

〈E0,0|E3,3〉
〈E00

00 |E11
11〉

〈ψzz
0 |ψ

−z−z
0 〉

〈E2,2|E1,1〉
〈E01

01 |E10
10〉

〈ψz−z
0 |ψ

−zz
0 〉

2̄
〈E0,3|E3,0〉
〈E00

11 |E11
00〉

〈ψzz
2 |ψ

−z−z
2 〉

〈E2,1|E1,2〉
〈E01

10 |E10
01〉

〈ψz−z
2 |ψ

−zz
2 〉

2̄

S1,1, S1,2 → 3 Eqv. Cls.: B1, B2, B3

Class B3

〈E0,1|E2,3〉
〈E00

10 |E01
11〉

〈ψzz
11|ψ

z−z
11 〉

〈E0,2|E1,3〉
〈E00

01 |E10
11〉

〈ψzz
12|ψ

−zz
12 〉

〈E1,0|E3,2〉
〈E10

00 |E11
01〉

〈ψ−zz
11 |ψ

−z−z
11 〉

〈E2,0|E3,1〉
〈E01

00 |E11
10〉

〈ψz−z
12 |ψ

−z−z
12 〉

↔
12

1̄ 2̄

↔
12

Class B1

〈E0,2|E2,0〉
〈E00

01 |E01
00〉

〈ψzz
12|ψ

z−z
12 〉

〈E0,1|E1,0〉
〈E00

10 |E10
00〉

〈ψzz
11|ψ

−zz
11 〉

〈E1,3|E3,1〉
〈E10

11 |E11
10〉

〈ψ−zz
12 |ψ

−z−z
12 〉

〈E2,3|E3,2〉
〈E01

11 |E11
01〉

〈ψz−z
11 |ψ

−z−z
11 〉

↔
12

1̄ 2̄

↔
12

Class B2

〈E0,2|E3,1〉
〈E00

01 |E11
10〉

〈ψzz
12|ψ

−z−z
12 〉

〈E0,1|E3,2〉
〈E00

10 |E11
01〉

〈ψzz
11|ψ

−z−z
11 〉

〈E1,3|E2,0〉
〈E10

11 |E01
00〉

〈ψ−zz
12 |ψ

z−z
12 〉

〈E2,3|E1,0〉
〈E01

11 |E10
00〉

〈ψz−z
11 |ψ

−zz
11 〉

↔
12

1̄ 2̄

↔
12

7+3 Equivalence Classes

A1 = {〈E0,0|E1,1〉,〈E0,0|E2,2〉,〈E2,2|E3,3〉,〈E1,1|E3,3〉}, A2 = {〈E0,0|E3,3〉,〈E2,2|E1,1〉}.

C1 = {〈E0,3|E1,2〉,〈E0,3|E2,1〉,〈E2,1|E3,0〉,〈E1,2|E3,0〉}, C2 = {〈E0,3|E3,0〉,〈E2,1|E1,2〉}.

B1 = {〈E0,2|E2,0〉,〈E0,1|E1,0〉,〈E1,3|E3,1〉,〈E2,3|E3,2〉},
B2 = {〈E0,2|E3,1〉,〈E0,1|E3,2〉,〈E1,3|E2,0〉,〈E2,3|E1,0〉},
B3 = {〈E0,1|E2,3〉,〈E0,2|E1,3〉,〈E1,0|E3,2〉,〈E2,0|E3,1〉}.

A = 〈Ea,a|Ea,a〉S0 , B = 〈Ea,a|Ea,a〉
S1,1
S1,2

, C = 〈Ea,a|Ea,a〉S2 , ∀a ∈ {0,2,1,3}.
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8.4.5 5 parameters: 4 inter-relations between the IPs due to basis
change

Five inter-relations between the 10 IPs follow due to the rules of basis-change. The fol-
lowing four are to be proved.

A1 +B1 = A−B,

B3 +C1 = B−C,

B2 +B3 = A1−A2,

C1 +C2 = B1−B2.

8.4.5.1 Action on zz basis, i.e., the basis β1β2 = 00 = zz.

Consider the Alice’s states (2 qubits) in the zz basis. Eve’s unitary evolves the joint system
as the following. The subscript (zz basis) for each state is same and thus dropped.

U |0〉|ψ〉 = |0〉 |0〉S0 +|2〉 |0〉S1,2 +|1〉 |0〉S1,1 +|3〉 |0〉S2

U |2〉|ψ〉 = |0〉 |2〉S1,2 +|2〉 |2〉S0 +|1〉 |2〉S2 +|3〉 |2〉S1,1

U |1〉|ψ〉 = |0〉 |1〉S1,1 +|2〉 |1〉S2 +|1〉 |1〉S0 +|3〉 |1〉S1,2

U |3〉|ψ〉 = |0〉 |3〉S2 +|2〉 |3〉S1,1 +|1〉 |3〉S1,2 +|3〉 |3〉S0

(8.4.1)

R.H.S. is ordered according to the states received by Bob.
Consider the evolution for Alice’s two states |0〉zz and |2〉zz with Eve’s initial state |E〉.

Then, apply the basis change zz 7→ xz.

8.4.5.2 zz 7→ xz basis change

It corresponds to the transformation H⊗12, and changes the basis states as follows.

√
2|0〉zz = |0〉xz + |1〉xz,
√

2|2〉zz = |2〉xz + |3〉xz,
√

2|1〉zz = |0〉xz−|1〉xz,
√

2|3〉zz = |2〉xz−|3〉xz. (8.4.2)
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8.4.5.3 |0〉zz evolved

Consider the evolution of |0〉zz with |E〉:

U|0〉zz|E〉 = |0〉zz|0〉S0
zz + |1〉zz|0〉

S1,1
zz + |2〉zz|0〉

S1,2
zz + |3〉zz|0〉S2

zz .

Use Eq. (8.4.2) to replace the basis elements |i〉zz in terms of the superposition of basis
elements |r〉xz.

U
(
|0〉xz + |1〉xz

)
|E〉

=
(
|0〉xz + |1〉xz

)
|0〉S0

zz +
(
|2〉xz + |3〉xz

)
|0〉S1,2

zz +
(
|0〉xz−|1〉xz

)
|0〉S1,1

zz +
(
|2〉xz−|3〉xz

)
|0〉S2

zz .

Then, using the expansion of various U|i〉xz|E〉 in the L.H.S., we get,

L.H.S. = |0〉xz |0〉S0
xz + |2〉xz |0〉

S1,2
xz + |1〉xz |0〉

S1,1
xz + |3〉xz |0〉S2

xz

+ |0〉xz |1〉
S1,1
xz + |2〉xz |1〉S2

xz + |1〉xz |1〉S0
xz + |3〉xz |1〉

S1,2
xz

Comparing the coefficients of various |i〉xx from both sides, we get

|0〉S0
zz + |0〉

S1,1
zz = |0〉S0

xz + |1〉
S1,1
xz , |0〉S1,2

zz + |0〉S2
zz = |0〉S1,2

xz + |1〉S2
xz ,

|0〉S0
zz −|0〉

S1,1
zz = |0〉S1,1

xz + |1〉S0
xz , |0〉S1,2

zz −|0〉S2
zz = |0〉S2

xz + |1〉
S1,2
xz .

Solving, we get,

2|0〉S0
zz = |0〉S0

xz + |1〉S0
xz + |0〉

S1,1
xz + |1〉S1,1

xz ,

2|0〉S1,1
zz = |0〉S0

xz −|1〉S0
xz −|0〉

S1,1
xz + |1〉S1,1

xz ,

2|0〉S1,2
zz = |0〉S1,2

xz + |1〉S1,2
xz + |0〉S2

xz + |1〉S2
xz ,

2|0〉S2
zz = |0〉S1,2

xz −|1〉
S1,2
xz −|0〉S2

xz + |1〉S2
xz .

Taking the inner products from both sides, we get,

4A = 2(A+A1)+2(B+B1),

4B = 2(A−A1)+2(B−B1),

4B = 2(B+B3)+2(C+C1),

4C = 2(B−B3)+2(C−C1).

Solving the first and third equations, we get two relations,

A1 +B1 = A−B, B3 +C1 = B−C.
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8.4.5.4 |2〉zz evolved

Consider the evolution of |2〉zz with |E〉:

U|2〉zz|E〉 = |0〉zz |2〉
S1,2
zz + |2〉zz |2〉S0

zz + |1〉zz |2〉S2
zz + |3〉zz |2〉

S1,1
zz .

Use Eq. (8.4.2) to replace the basis elements |i〉zz in terms of the superposition of basis
elements |r〉xz.

U
(
|2〉xz + |3〉xz

)
|E〉

=
(
|0〉xz + |1〉xz

)
|2〉S1,2

zz +
(
|2〉xz + |3〉xz

)
|2〉S0

zz +
(
|0〉xz−|1〉xz

)
|2〉S2

zz +
(
|2〉xz−|3〉xz

)
|2〉S1,1

zz .

Then, using the expansion of various U|i〉xz|E〉 in the L.H.S., we get,

L.H.S. = |0〉xz |2〉
S1,2
xz + |2〉xz |2〉S0

xz + |1〉xz |2〉S2
xz + |3〉xz |2〉

S1,1
xz

+ |0〉xz |3〉S2
xz + |2〉xz |3〉

S1,1
xz + |1〉xz |3〉

S1,2
xz + |3〉xz |3〉S0

xz

Comparing the coefficients of various |i〉xx from both sides, we get

|2〉S1,2
zz + |2〉S2

zz = |2〉S1,2
xz + |3〉S2

xz , |2〉S0
zz + |2〉

S1,1
zz = |2〉S0

xz + |3〉
S1,1
xz ,

|2〉S1,2
zz −|2〉S2

zz = |2〉S2
xz + |3〉

S1,2
xz . |2〉S0

zz −|2〉
S1,1
zz = |2〉S1,1

xz + |3〉S0
xz .

Solving, we get,

2|2〉S0
zz = |2〉S0

xz + |3〉S0
xz + |2〉

S1,1
xz + |3〉S1,1

xz ,

2|2〉S1,1
zz = |2〉S0

xz −|3〉S0
xz −|2〉

S1,1
xz + |3〉S1,1

xz ,

2|2〉S1,2
zz = |2〉S1,2

xz + |3〉S1,2
xz + |2〉S2

xz + |3〉S2
xz ,

2|2〉S2
zz = |2〉S1,2

xz −|3〉
S1,2
xz −|2〉S2

xz + |3〉S2
xz .

But, here, we do not find any new relation merely by taking the inner products from the
above equations. However, once we consider the states |0〉? from the earlier subsection
and compute the inner products with these |2〉? states, we get new relations. For instance,
taking the inner products between |0〉S0

zz , |2〉S0
zz , and between |0〉S1,1

zz , |2〉S1,1
zz , we get,

4A1 = 2(A1 +A2)+2(B2 +B3),

4B1 = 2(B1 +B2)+2(C1 +C2).

Thereby, we get two more relations:

B2 +B3 = A1−A2, C1 +C2 = B1−B2.





CHAPTER 9

CONCLUSION AND FINAL REMARKS

Here we conclude by summarizing the work done, and mentioning some possible future
works.

9.1 Summary of the Work Done

In this thesis, we have addressed some open-ended issues and have extended completeness
of some non-structured literature. For our working purpose, we have mainly considered
the attack model where each single information carrier is learned separately by the at-
tacker. From the attackers perspective, to mount and analyze the quality of the attack, it
is important to know certain parameters: like,

• the unitary evolution that entangles her information gleaning system (ancilla) with
Alice’s information career,

• the nature of the resultant entanglement, particularly, whether it carries optimal
information for Eve.

In our work, we started with the second problem first to characterize the optimality of
Eve’s states [AP17]. Using this information, we then focused on the first problem [AP21]
1. However, the second work actually is an amalgamation of two separate works, namely,

• finding a new necessary and sufficient condition, and

• characterizing the space of optimal unitary evolutions.

Those two works evolved separately, and ultimately been combined to satisfy the urge of
publishing timely. An expert can easily find some scars of that joint.

1For bravery, an enthusiast researcher may explore the other way round as well.
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Now, let’s try to understand the motive behind choosing the three different problems
as described in our two papers [AP17, AP21]. We also highlight the motive behind the
way we tackled the problems. We address them one-by-one.

9.1.1 Characterizing the optimal post-interaction joint states [AP17]

The motive to proceed with the generalization was actually from the paper [FGG+97]
itself. Firstly, they themselves posed the open-ended question whether their candidate
optimal interaction is a lone witness to saturate the upper bound on the maximum achiev-
able information. The answer-hint actually was hidden there in that paper itself, and was
obscured due to analyzing the attack separately for equal and unequal QBER across the
two MUBs. They basically did come up with two different optimal witnesses: one for
the equal-error analysis, another for the unequal-error analysis. Naturally, their doubt was
valid2.

We started attacking the issue by trying to construct new witnesses which in turn
exposed the individual bricks of the problem. With that insight, we tried to find them
analytically by considering a generalized possible expression for the optimal states. The
first inspection was that Eve’s state-space consists of two mutually orthogonal subspaces,
and thereby, if a basis-state is included to describe a state living in one of the subspaces,
the same basis-state can be excluded while describing a state living in its orthogonal
subspace 3. Then, if one describe Eve’s states in the measurement basis, then one can
calculate the probabilities to find a specific measurement outcome for a given signal from
Alice. These probabilies can then be used to calculate the information gain which can then
be compared with the optimal value. This approach, that started with some generalized
expression for the optimal states, could eventually expose an infinite collection of optimal
states. Nevertheless, for different rotations of the measurement apparatus, one can get
different witness for the optimal information. Two of them are in [FGG+97], for which
one needs to calculate the optimal measurement separately In our case, the optimal states
are described in terms of the measurement basis, and therefore doesn’t require calculating
the measurement directions, rather one just chooses a measurement direction to define
the optimal states. With these mathematical tools in hand, mounting an attack becomes
simpler: choose a measurement setup (which in turn defines the optimal states), and find
the associated optimal unitary evolution along with an initial state. The later problem is
described below.

2To gain that insight, the first requirement was to understand the delicate fabrics of the work [FGG+97]
completely by own hand-held calculations and create more examples owing to that insight. We have ded-
icated Chapter 3 entirely to consolidate that extensive journey. Some of our own results done for our first
work are placed in that chapter in order to maintain the flow of thoughts. So, it is a semi-contributory
chapter

3Now, one may argue whether it exhaust the state-space or not, which remained a part of the motivations
behind finding a new NSC [AP21] that in turn figures out the optimal states.
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9.1.2 Finding a new and efficient NSC [AP21]

The urge of finding a new NSC is two-fold.

Firstly, whether we can characterize the optimal states as the outcome of an NSC. In
that case, we can certainly conclude that those states exhaust the entire space of the
optimal states. We have done that part successfully which in turn establish our first
published work firmly 4.

Secondly, some deep thoughts following long-time works precipitated a few important
observations which demands a new NSC, and are described as follows. While cer-
tifying optimality of a given set of PIJSs, the earlier extant approach [FGG+97]
required the knowledge (specification) of the optimal measurement that in turn is
used to testify a set of necessary and sufficient conditions. Moreover, in that ap-
proach, to testify optimality for the states in a given basis, one needs to involve the
PIJSs in the conjugate basis. We felt strongly that both these specifications could
be avoided while the reason is as follows.

(i) Given a set of PIJSs, if they are optimal, the optimality exists irrespective of
whether one knows an optimal measurement or not. Therefore, specifying the
measurement can possibly be avoided.

(ii) The signature of optimality of the PIJSs for a given basis should be reflected
in the constituent IVs with Eve, and therefore, can be testified with these states
only. So, the involvement of the PIJSs or the IVs in the conjugate basis can be
avoided in order to verify the NSCs for the given pair of PIJSs.

Having these shortcomings in the back of the mind, we started the venture to come up with
a NSC that doesn’t involve any specification of the measurement apparatus and doesn’t
unnecessarily involve Eves states (or PIJSs) in the conjugate basis. Moreover, when the
signature of optimality in a pair of PIJSs are likely to be inherited in the constituent IVs,
why don’t we find a NSC involving these IVs only?

We have ultimately deduced such a NSC through a series of NSCs. Now, if one follow
those intermediate NSCs closely, one can notice that some of those initial NSCs involve
Eve’s states in the conjugate basis, which is a part of the transition that took place from
the then existing NSC to our desired NSC. The simplicity of that master NSC is that it
needs only to calculate the overlaps between the IVs. The ingenuity of the NSC is that it
depicts the geometry of the optimality, i.e., the orientation of the IVs in space. A more
interesting fact is that the optimal states automatically emanate out of these NSCs, thereby
characterizing the only and all of the optimal states.

4Although the approach in the first work [AP17] remained quite rudimentary, some pieces of the puzzle
still remained a bit illusive and that incompleteness was eminent in the end part of the paper. The clarity
was revealed a long later and is put in the prelude of the arxiv version of the second paper.
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9.1.3 Characterizing the optimal unitary evolutions [AP21]

To mount an optimal attack, all an attacker requires for practical purposes is a specification
of the following triplet:

( optimal unitary, ancilla-state, optimal measurement ).

An intermediate byproduct of the attack are the optimal states with Eve, that we already
have found exhaustively. We can then apply reverse-engineering to find the optimal
unitaries exhaustively for those optimal states.

Unfortunately, the literature is silent to tackle such problems. For a given quad
of optimal states, it is a mathematical problem from linear algebra to find the optimal
unitary. For another set of such states, one needs to approach afresh to get the associated
unitary. But, we have infinitely many such quad of IVs which in their general form
is parametric in choosing the describing (measurement) basis. Thus, the above-said
approach fails to tackle our infinite population of optimal states at a go. We had to face
a lot of troubles to tackle that problem. A prolonged effort culminated in an unusual
approach to get the first breakthrough (as in arxiv: the first version). However, it was not
enough to tackle some more degrees of generalizations. Then we had a more rudimentary
approach to tackle the problem again in a different way. Finally, we could link these two
seemingly different approaches which gradually answered all our questions in hand.

Note: It is also quite encouraging to mention that we could maintain the generalized
approach with error rates not necessarily same across the two bases. Although it didn’t
inculcate any immediate significant advantage (future will say whether there is any), it
surely provides much more sublime intricacies than the general trend (found in the exist-
ing literature) of considering the analysis with equal errors across the bases. To switch
from our generalized approach to the same-error mode, one can simply replace the two
error-rates by a single variable (QBER).

9.2 Future Work

Although we have studied extensively the issues in hand, we have noticed some more
complex problems that an interested researcher may explore.

Connections: Our work has established some connections involving various aspects of
quantum cryptography more explicitly, e.g., some deep connections between a
prepare-and-measure scheme and its entanglement-based counterpart, p&m scheme
and pc-cloner etc. But, it is strongly felt that much more such connections could
(and should) be established if one tries to approach differently the same problems,
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e.g., from the scratch. One can then literally represent the existing knowledge of
the QKD like a collage, by establishing more hidden connections between various
fields as a schematic view. This, however, seems to involve at least a researcher
who has understood the bottomline of the existing quantum cryptography.

Unitary-optimality: Although we have characterized the space of optimal unitary evolu-
tions, a broader question may be the following. Given an arbitrary unitary evolution,
how to certify whether it is optimal or not.

If we follow our approach, we can consider an ancilla having some specific
state, then calculate the resulted post-interaction joint states, and finally test for op-
timality using a necessary and sufficient condition. It is a bit calculation intensive
work for an attacker indeed.

It is interesting to explore whether the intermediate knowledge of the PIJSs is
essential or not in order to tackle this specific problem. As such the signature of the
optimality is content within the unitary itself. So, one may also try to come up with
some direct approach to certify the optimality of an unitary.

Given an arbitrary unitary, certifying optimality may address the following
questions.

• Is there an ancillary state that allows it to produce optimal PIJSs?

• If yes, are there other ancillary states that serves the same purpose?

• If yes, does an arbitrary ancillary state serve the purpose?

Circuit: Irrespective of the feasibility within the current experimental setup, at least for
the sake of theoretical quest, some domain specific researcher may consider the
problem of designing plausible circuits for an unitary attack. The main difficulty
here is due to the involvement of the eight dimensional space owing to three qubits.
Given an arbitrary optimal unitary, and an ancillary state, whether one can design
a circuit using universal quantum gates. Then one can consider the efficiency of
the design. Can one come up with some generalized approach to tackle an arbitrary
optimal unitary?

Generalize: In research, the scope to work on new issues is always there by trying to
generalize an work in various ways. For our work, following are some such scopes.

• We have considered Eve’s ancilla consisting of two qubits spanning four di-
mensions. One may wonder whether and how a single four-dimensional quan-
tum bit serves the purpose.

• What if Alice considers her quantum encoder as a higher dimensional object,
say, qudits. Can one come up with a necessary and sufficient condition for



184 Chapter 9. Conclusion and Final Remarks

optimality of the attack? Can one analyze the attack for unequal error-rates
across the encoding bases?

• What happens when the number of encoding bases are increased? For in-
stance, one can consider the six-state protocol involving three MUBs and try
to incorporate the ideas from our work in order to analyze it from general
perspective.

The above-mentioned problems seem to be quite challenging and remained out of our
scope and maturity to tackle. We wish all the best for the future generation to fiddle with
and pass quality time with those problems.
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