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ABSTRACT

Nowadays, cloud computing and storage services have become crucial in everyone’s life either
directly or indirectly. However, data stored in untrusted cloud servers is prone to attacks by the
server itself. In case, the client’s data is sensitive or confidential, the outsourced data need to be
stored in an encrypted form. But data encryption poses a challenge for querying over the encrypted
outsourced data. Queryable encryption (QE) schemes on encrypted data allow clients to request a
query over the encrypted data stored in the cloud. This cloud can be either honest-but-curious or
malicious. There might be different types of data and different types of queries over them. One of
the primary targets of a QE scheme is to keep the data and queries confidential. Moreover, queries
should be efficient even for large data with update support.

Dynamic Searchable Encryption (DSE) is a queryable encryption that deals with dynamic text
data. In a forward private DSE scheme, adding a keyword-document pair does not reveal any
information about the previous search result with that keyword. Whereas, a backward private DSE
scheme ensures that search queries do not reveal the information about the deleted file identifiers.
To be protected from file-injection attacks, a DSE scheme is desired to be forward and backward
private.

In this thesis, at first we propose a new and efficient DSE scheme Trids, based on an efficient
data structure, for cloud data that achieves better security guarantees and improved efficiency com-
pared to popular DSE schemes. Then, we propose a generic publicly verifiable DSE scheme Srica
that makes any forward private DSSE scheme verifiable without losing forward privacy. Moreover,
we design a forward private DSE scheme Blasu that supports conjunctive keyword search. At the
heart of the construction is our proposed data structure called DIA Tree which is an authentication
tree that efficiently returns both membership and non-membership proofs.

When the data is a graph, we study the secure link prediction that predicts which new in-
teractions between members are most likely to occur in the near future. We use the number of
common neighbors for prediction. We present three algorithms for the secure link prediction prob-
lem. Finally, we address the problem of computing clustering coefficient securely. The clustering
coefficient is a measure of the degree, to which, the nodes in a graph cluster or associate with one
another. We design a scheme Gopas to perform the query on an outsourced encrypted appendable
graph data.

All the above-mentioned proposed schemes are provably secure. Moreover, we implement
prototypes of most of the schemes and tested them with real-life data. The implementation results
show that the schemes are practical even for a large database.
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Chapter 1

Introduction

Nowadays, with the growing volume of data, cloud storage has become an important requirement
where the cloud users (clients) can outsource their bulk data to the cloud servers (cloud). Cloud
computing and storage services have become crucial in everyone’s life either directly or indirectly.
Google Cloud Platform, Microsoft Azure, Amazon Web Services (AWS), etc. offer outsourced
computing to their clients having less computational power for various algorithms on stored data.
People, who have less storage and are required to store a large amount of data and search over
them, uses cloud storage services like IBM Cloud, Google Drive, Dropbox, Microsoft Onedrive,
etc. As technology is spreading all over the world fast, the size of data is increasing very fast. If we
consider only graph data, [4] shows a historical development of large-scale graph algorithms till
2016. It is quite difficult to store the data in local machines. So the data owner needs to outsource
it to the cloud service providers.

Traditionally, the data is transferred from the data owner to the cloud service provider using
end-to-end encryption schemes like symmetric key encryption. In such a scenario, “no informa-
tion” (except the leakage allowed by the encryption scheme) is leaked to a listener of the channel.
However, data is completely revealed to the cloud service provider.

Data stored in untrusted cloud servers are prone to attacks by the server itself. If the data is
sensitive, confidential, and valuable like medical records, defense data, personal and biometric in-
formation, etc., it can be misused by the cloud service providers. CyberSecurity Watch Survey [23]
shows that 53% of cyberattacks, reported in 2012, were a result of an insider attack. According
to the report, 63% of the attacked data was due to unintentional exposure of private or sensitive
data. Again, the cloud storage may be hacked by outside hackers as it happened. [23] shows 53%
of electronic crime events were by outside-hackers while in 17% case attackers were unknown.
These can be prevented only if the data owner uploads only encrypted data.

In order to protect confidential information, clients need to outsource data in encrypted form.
This makes searching on data quite challenging. Data encryption poses a challenge for computation
and searches over encrypted data. For example, trivially the data owner can upload all data in
encrypted form to the cloud. Whenever some data-related query is needed, the data owner can
download all data, does necessary computations, and re-uploads the re-encrypted data. But this is
very inefficient and does not serve the purpose of cloud service. Thus, we need to keep the data
stored in the cloud in encrypted form and as well as keep a mechanism to compute the required
computation on the cloud.

1



2 Introduction

1.1 Queryable Encryption (QE)

Queryable Encryption (QE) schemes on encrypted data allow a client to request a query over the
encrypted data outsourced to the cloud. There might be different types of data and different types
of queries over them. However, in a typical queryable encryption scheme, there are three entities
in general– owner, cloud, and user (see Figure 1-1). We describe them as follows.

Owner is an entity that owns the data. It generates the required keys and encrypts the data with a
suitable data structure. Later it uploads the encrypted data to the cloud server.

Cloud is the storage and computational service provider. It stores the encrypted data and performs
a query over it on request from the user.

User is an entity that performs a query on the encrypted data. It requests a query to the cloud and
gets the required result and decrypts it if necessary. The owner also can be a user.

Moreover, we assume that there is a secure communication channel between any two entities.

Owner

Cloud

User

1. Encrypted Graph

2. Token request
3. Query Token

4. 
Query

 To
ken

5. 
Resu

lt

Figure 1-1: The system model of a typical queryable encryption scheme

1.1.1 Adversarial model

In the setting of queryable encryption schemes, the communication between the entities is assumed
to be done via a secure channel. However, the entities are assumed to have different power.

The Owner of the database is assumed to be honest and trusted throughout this thesis.

The User is also assumed to be trusted. It only uses the services provided by the cloud and the
owner.

The Cloud stores the encrypted data and it wants to know about the database and queries. The
assumption of the cloud being honest is not preferred. This is because even if the cloud is honest,
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the data can be hacked by some other third-party attacker. However, in the case of sensitive data,
it is desirable not to consider the cloud to be honest. In this thesis, the cloud is considered either
honest-but-curious or malicious. Moreover, we assume the cloud is the only adversary.

An honest-but-curious cloud stays honest and executes the protocol correctly. However, it
wants to learn about the database from the leakage information it gets by executing the queries. A
malicious cloud server also wants to learn about the database. But it may not follow the protocol
and still remains undetected to its clients (owner and users). In both cases, the cloud is assumed to
have probabilistic polynomial-time execution power.

1.1.2 Goal of a queryable encryption scheme

Confidentiality One of the primary targets of a queryable encryption scheme is to keep the data
and queries confidential. When the data is being uploaded to the cloud server in encrypted form,
the cloud server should not get any meaningful information about the data. Moreover, the cloud
server should not get any meaningful information from the queries as well.

Scalability While a queryable encryption scheme has confidentiality, the cloud, directly or indi-
rectly, cannot use the data to sell them in any form. To provide the service, the cloud server has
to charge from owner/users. Since “There ain’t no such thing as a free lunch”, the owner will al-
ways want the capability to outsource a large amount of data. So, any queryable encryption should
support outsourcing large data and querying over that.

Efficiency is another concern of a queryable encryption scheme. Keeping the data and the queries
confidential is not enough. We consider the client to be computationally weak, but the cloud has a
large amount of storage and high computational power. A queryable encryption scheme should be
efficient for both clients and cloud servers for large databases.

Update support In most enterprises, data is dynamic. It changes very frequently over time. Sup-
porting the updates over outsourced encrypted data is necessary and quite challenging without
leaking much meaningful information about the queries and the data.

In the next sections of this chapter, we categorize queryable encryption schemes with different
aspects.
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1.1.3 QE with different update type

It is easier to design a queryable encryption scheme when the data is static. In most cases, the
expected result may be pre-computed. However, nowadays, in many applications, data is not static
and requires to be changed over time. So it is important to consider if data may be updated. Such
data is called dynamic data.

The second important consideration is what type of updates are permissible. Appendable
schemes allow only the append of new entries. An encryption scheme that can support the deletion
of some existing data together with append is called a dynamic encryption scheme. Moreover,
there are queryable encryption schemes that allow only the edit of some entries.

1.1.4 QE with different number of owners, users, and servers

A database might have either single or multiple owners. They are able to update the data if required.
Secondly, it is important who can query. For an online database of an enterprise, there might be
multiple managers of the database, we can say each of them is an owner. Similarly, there might be
multiple employees who can request queries over it. In such a scenario, owners can also perform
queries over the encrypted data. So, the presence of multiple owners and multiple users is very
much practical. In some schemes, only the owners are allowed to request a query. Some of them
are single-owner schemes. In some other types of applications, the owner or the user can be added
or revoked.

The number of servers is also important. In some schemes, the owner uploads its data to
multiple servers for load balancing, robustness, and privacy. The data is distributed on several
servers. This keeps a major portion of the data hidden from a server. A server that mainly keeps the
data, is called a cloud server (CS) or cloud service provider. In some cases, instead of distributing
data, the computation is distributed. This type of server is called proxy server (PS) [97] which is a
computational service provider. There may be a good amount of interaction between these cloud
and proxy servers [83].

1.1.5 QE with different Encryption techniques

As symmetric key encryption (SKE) schemes are comparatively faster than public-key encryption
(PKE) schemes with the same security, SKE schemes are preferable. Again, in queryable en-
cryption, since we generally try to outsource large data, the application of SKE schemes is more
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practical. However, there are many queries (for example, Order-Preserving Encryption [92]) on
many types of data, where it is hard to provide a scheme using SKE schemes only. Sometimes,
using PKE schemes makes the queryable scheme simpler with greater security.

For example, if the data is a set of numbers and the query is finding the shortest one, an order
revealing encryption scheme is preferable. When a verifiable conjunctive search is considered
over dynamic data, it is difficult to design such a scheme with SKE. Again, for single keyword
search schemes in text data, SKE schemes are used in general. As we see that, in a queryable
encryption scheme for text data, all documents in the source data are always encrypted with some
SKE schemes. However, the encrypted index for query may be generated with either SKE ([32,
48, 46]) or PKE ([11, 61]) or mix of both ([44, 6, 45, 97]). For other types of data also, the use of
PKE schemes is quite popular.

1.1.6 QE with different data and query type

The design of a queryable encryption scheme highly depends on data and query type. There might
be different types of data and different types of queries over them. For example, when data is a
set of documents, where each document consists of a set of keywords, we can query for the set of
documents containing a single keyword, or a set of keywords, or some combination of them. In
case, when the data is a set of numbers, we can search for a certain range. When data is a graph,
one can ask to execute graph algorithms, and so on.

QE on Text data The type of data is very crucial for a queryable encryption scheme. Depending
on the type of data, specific data structures are used. The type of query also depends on the data.
Most of the works on queryable encryption are on text data. The text data consists of a set of
documents, where each document consists of a set of keywords from a dictionary. In most of the
paper, this dictionary is considered to be predefined and fixed, whereas in a few, it is considered
flexible to be any string [74].

Searchable encryption (SE) schemes on encrypted data allow a client (data owner) to search
for documents (or files) matching given keywords over a collection of encrypted documents stored
in the cloud. In a typical SE scheme, a client encrypts a set of documents and uploads them
to the cloud server. Later, the client sends the (encrypted) search query for a keyword to the
cloud server, and the server replies with the query results (i.e., the encrypted documents containing
that particular keyword). Finally, the client decrypts the encrypted documents. Thus searchable
encryption is queryable encryption that deals with text data.
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In general, when data is uploaded to the cloud server in unencrypted form (like dropbox, google
drive, etc.), they are sent via a secure communication channel. The server can read all data, it can
make search indices corresponding to them. So, in that case, the server can respond to a query
very fast. However, it is not reasonable to outsource plaintext to the malicious cloud as it learns
the complete data. But, when a client sends encrypted data, the cloud cannot read it, cannot
make a search index and looses the ability to search. So, in a searchable encryption scheme, the
data owner has to make the search index. These search indices are in encrypted form and send
together with the encrypted set of documents. For text data, the documents are encrypted with
some symmetric encryption scheme, and then an encrypted search index is generated with the
identifiers of the documents. So, most of the searchable encryption schemes deal with encrypted
search index generation.

One of the primary objectives of designing an SE scheme for cloud data is to reveal as little
information to the cloud server as possible. A naive solution is the following. For every search
query, the client downloads the complete encrypted data, decrypts them, and performs the search
on the data. If some update is needed, then do the same on the downloaded data and uploads it
back. However, downloading the whole data for each search query is impractical and defeats the
purpose of outsourcing data to the cloud server. SE schemes on encrypted data handle keyword
searches more efficiently than this naive solution.

When an SE scheme is designed with symmetric key encryption it is called Searchable Sym-
metric Encryption (SSE), whereas it is designed with public key encryption it is called Search-
able Public-key Encryption (SPE). However, since public-key encryption requires greater com-
putational power than symmetric key encryption, the use of public-key encryption is generally
avoided while designing a searchable encryption scheme.

QE on Dynamic text data We can see that uploading data to the cloud in an encrypted form
is not enough. In the case of dynamic data, the client may need to add or delete data. In such a
scenario, the SSE scheme should be able to support database updates. An SE (or SSE) scheme,
that supports such updates, is called a Dynamic SE (Dynamic SSE) scheme.

A DSE scheme can have the following leakages.

1. Access Pattern Leakage: This reveals the set of document identifiers accessed by a query. For
example, the cloud server can know the set of document identifiers containing the searched
keyword from a search query.

2. Search Pattern Leakage: This reveals the relation between two keywords being searched.
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For example, the search pattern indicates whether a search query is repeated or not.

3. Size Pattern Leakage: This tells the size of the encrypted documents stored in the database.

For any DSSE scheme, it is desirable to reduce these leakages. However, most of the schemes have
size pattern leakage as it leaks very little information.

There are plenty of works on SSE ([32], [86], [26], [93], [27]) as well as DSSE ([87], [42],
[21], [35], [47], [100], [79], [60], [15], etc.).

DSE schemes are designed depending upon the type of data and query. When the data is a set
of documents, each containing a set of keywords, some popular queries over them include single
keyword search, conjunctive or Boolean search on a set of keywords, etc. In a single keyword
search SE (or SE) scheme, given a keyword, the cloud returns the set of documents that contains
it. In a conjunctive keyword search SE (or conjunctive SE) scheme, given a set of keywords, the
cloud returns the set of documents that contains all of them.

Query over Encrypted Graph Social networks have become an integral part of our lives. These
networks can be represented as graphs with nodes being entities (members) of the network and
edges representing the association between entities (members). As the size of these graphs in-
creases, it becomes quite difficult for small enterprises and business units to store the graphs in-
house. So, there is a desire to store such information in cloud servers.

It is a good challenge to execute graph algorithms on an encrypted graph without revealing
the graph structure and other information. This is because, in most of the graph algorithm, it
is required to visit random nodes. Sometimes, it is required to visit all nodes in the graph, for
example, in Kruskal’s algorithm to find a minimum spanning tree. If each node of the graph is
encrypted separately, information to decrypt any node should be given.

The process can be interactive as well. After each step client and cloud can communicate and
the client gives only the necessary information for the next round. However, this might require a
huge communication cost. From a security point of view, it is better than revealing all of the graph.
However, the second approach does not work for all types of graphs.

In order to protect the privacy of individuals (as is now mandatory in EU and other places), data
is often anonymized before storing in remote cloud servers. However, as pointed out by Backstrom
et al. [7], anonymization does not imply privacy. By carefully studying the associations between
members, a lot of information can be gleaned. Thus, encryption of graph is necessary before
outsourcing to a third-party cloud server.
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Since, in this active world, the relationships among individuals are changing continuously, the
graphical structures need to be updated. In such a scenario, the addition of new edges or nodes, and
the deletion of old ones are very frequent. This increases the complexity of social networks and
makes it highly dynamic. Thus, the design of a graph encryption scheme should support dynamic
updates efficiently.

A client can request different queries on the encrypted graph. Its target is to get as much
information as possible, leaking as little information as possible to the cloud server. There are
some basic queries that we think fundamental queries of a graph. Irrespective of the type of graph
a client can query them over the outsourced database. For example, some basic queries include the
following.

• Neighbor query: In this query, given a vertex, the cloud returns the set of vertices adjacent
to it.

• Vertex query: Given a vertex, the cloud returns whether the vertex is present or not.

• Edge query: In this query, given two vertices, the cloud returns whether the edge between
them is present or not. The query is also called adjacency query.

• Degree query: In this query, given a vertex, the cloud returns the number of vertices adjacent
to it.

There are many other graph algorithms that are queried. For example, Shortest Distance queries
where, given two vertices, the cloud returns the shortest distance between them. In some other
variants, the cloud returns the shortest path together with the shortest distance. Shortest distance
query, has been studied in different ways in [84], [65], [97], etc.

Chase and Kamara [27] studied adjacency queries on graphs and focused subgraph queries on
labeled graphs which returns all the vertices that are connected either to or from the given vertex.

Lai and Chow [34] presented a bipartite graph encryption scheme. Since, assuming two dis-
tinct sets– the set of keywords and the set of documents, they mapped searchable encryption to a
bipartite graph encryption problem and provided a solution to a single keyword search scheme.

Other types of data In applications, such as social networks, the data may be of mixed type.
Each node may contain some set of information that is kept as a document set. Chase and Ka-
mara [27] studied query on data.
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Sometimes, the data may be an ordered set of elements, for example, a set of integers, a set
of words. In such a scenario, range query [113] is quite popular where given two elements, all
members of the set between them are returned.

1.1.7 QE with different type of adversaries

Semi-honest Server and Forward Privacy Most of them consider the cloud server to be semi-
honest, in other words, honest-but-curious. An honest-but-curious cloud server follows the pro-
tocol correctly, but it wants to extract information about the plaintext data and the queries. In
presence of a semi-honest cloud server, in a DSE scheme, updating the database may reveal the
relation between the updated set of keywords and the previous search result. In such a scenario, the
file injection attack ([110]) can be performed by a curious cloud server. In this attack, the client en-
crypts and stores files sent by the server. From these added files, the server recovers keywords from
future queries. However, forward privacy can protect a DSE scheme from file injection attacks. A
forward private DSE scheme does not leak any information about the previous search results when
new documents are added. This attack has forced researchers to think about DSE schemes to be
forward private.

Backward Privacy The backward privacy of a searchable encryption scheme ensures that search
queries do not reveal information about the deleted identifiers. Bost et al. [18] defines three variants
of backward privacy with different measures of security. The categorization is only for text data
which consists of a set of documents each containing a set of keywords. Thus the categorization
is valid only for dynamic searchable encryption schemes. Given a keyword w and a time interval
between two search queries on w, we give their definitions according to [113] as follows.

Type-I backward privacy. It leaks information about when new files containing w were inserted
and the total number of updates on w.

Type-II backward privacy. It leaks information of Type-I. It additionally leaks when all updates
(including deletion) related to w occurred.

Type-III backward privacy. Apart from the leakages of Type-II, it also leaks exactly when a
previous addition has been canceled by which deletion.

In addition, [113] gives another kind of backward privacy Type-I− backward privacy which is
stronger than Type-I backward privacy.

Type-I− backward privacy. Given the same information as above, it leaks the files that currently
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match w and the total number of updates for w.

Malicious Cloud Server and Verifiable Query However, if a curious cloud server becomes
malicious, it does not follow the protocol correctly. In the context of search, it can return only a
subset of results, instead of all the records of the search. It can also return incorrect information if
the client does not check. Explicitly, it might think a document contains a certain keyword. It may
not return the actual search result for monetary or other benefits. For example, if some large sets of
documents are not accessed by the client for a long period of time, then the cloud server can delete
them from the database which can reduce the cost of storage as well as the cost of computation.
So, there is a need to verify the results returned by the cloud to the user. The results should be
derived from the actual state of the database and complete.

A verifiable searchable encryption scheme guarantees correctness and completeness of the
search result even when the cloud server is malicious. A cloud server not only sends the search
result but also proof that the result is correct. An SSE scheme for static data where the query results
are verifiable is called Verifiable SSE (VSSE). Similarly, if the data is dynamic the scheme is said
to be a verifiable dynamic SSE (VDSSE).

There are single keyword search VSSE schemes that are either new constructions supporting
verifiability or design techniques to achieve verifiability on the existing SSE schemes by proposing
generic algorithms. VSSE with single keyword search has been studied in [24], [28], [63], [62],
etc. In [91], [95], [96] etc., VSSE scheme with conjunctive query has been studied. Moreover,
there are also works that give VDSSE scheme for both single keyword search ([66]) as well as
complex query search including fuzzy keyword search ([112]) and Boolean query ([44]). Most of
them are privately verifiable. A VSSE or VDSSE scheme is said to be privately verifiable if the
only user, who receives the search result, can verify it. On the other hand, a VSSE or VDSSE
scheme is said to be publicly verifiable if any third party, including the database owner, can verify
the search result without knowing its content.

There is also literature on public verifiability. Soleimanian and Khazaei [85] and Zhang et
al. [109] have presented SSE schemes that are publicly verifiable. VSSE with Boolean range
queries has been studied by Xu et al. [102]. Though their verification method is public, since
the verification is based on blockchain databases, it has an extra monetary cost. Besides, Monir
Azraoui [6] presented a conjunctive search scheme that is publicly verifiable. In the case of dy-
namic database, the publicly verifiable scheme by Jiang et al. [44] supports Boolean Query and
that by Miao et al. [66] supports single keyword search.
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1.2 Organization of Thesis and Our Contribution

The rest of the chapters of the thesis are organized as follows.

We discuss the required preliminary topics in Chapter 2. In this chapter, we give a short description
of the notations and cryptographic tools used in the next chapters. Other notations and tools specific
to a chapter are mentioned in the respective chapter.

Then, In Chapter 3, we provide a detailed survey of the existing literature on queryable encryp-
tion schemes.

We summarize our contribution in other chapters of this thesis as follows.

1. A Dynamic Symmetric Searchable Encryption Scheme We see that, searchable encryp-
tion schemes enable a client to search and retrieve the cloud data (based on the keywords
present in the data) when the data is encrypted. Whereas dynamic searchable encryption
schemes allow the client to search over the encrypted cloud data even when new documents
are added to or deleted from the encrypted data. There is a trade-off between security (that is
measured in terms of information leaked to the cloud) and the efficiency of dynamic search-
able encryption schemes. Stronger security guarantees often come at a cost of less efficiency.

In Chapter 4, we propose a new and efficient dynamic searchable encryption scheme Trids
for cloud data that achieves better security guarantees and improved efficiency compared to
popular dynamic searchable encryption schemes. Our scheme Trids uses an efficient data
structure that reduces storage, lookup (search) time, and database modification time. We
build a prototype of our scheme and experiment on large real-life datasets. We show that our
scheme Trids performs better than the existing schemes which provide similar (or weaker)
security.

2. A Forward Secure Verifiable DSSE Scheme When the data supports update, in a search-
able encryption scheme, the information leakage increases which makes the scheme vul-
nerable to the cloud. A scheme can be protected from this vulnerability, only if it must be
forward private in which adding a keyword-document pair does not reveal any information
about the previous search result with that keyword. Again in the SSE setting, when the cloud
server is malicious, meaning that it can alter the data, it becomes difficult to achieve forward
privacy. Verifiable dynamic SSE requires the cloud server to give proof of the result of the
search query. The data owner can verify this proof efficiently.
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In Chapter 5, we propose a generic publicly verifiable dynamic SSE scheme Srica that makes
any forward private DSSE scheme verifiable without losing forward privacy. The proposed
scheme Srica does not require any extra storage at the owner-side and requires minimal
computational cost as well for the owner. Moreover, in this chapter, we compare our scheme
Srica with the existing results and show that our scheme is practical. The work presented in
this chapter has been accepted in a conference proceeding [82].

3. A Forward Secure Verifiable Conjunctive Search Scheme There has been a fair deal
of work on designing forward private DSE schemes in presence of honest-but-curious cloud
servers. However, a malicious cloud server might not run the protocol correctly and still
want to be undetected. In a verifiable DSE, the cloud server not only returns the result of
a search query, but also provides proof that the result was computed correctly. The client
accepts a result from a malicious cloud only when this proof is efficiently verified.

In Chapter 6, we design a forward private DSE scheme Blasu that supports conjunctive
keyword search. At the heart of the construction is our proposed data structure called DIA
Tree. DIA Tree is an accumulator-based authentication tree that efficiently returns both
membership and non-membership proofs. Using the DIA tree, we can convert any single
keyword forward private DSE scheme to a verifiable forward private DSE scheme that can
support conjunctive query as well. Our proposed scheme Blasu has the same storage as
the base DSE scheme and minimal computational overhead at the client-side. We show
the efficiency of our design by comparing it with existing conjunctive DSE schemes. The
comparison also shows that our scheme is suitable for practical use.

4. The Secure Link Prediction In searchable encryption, generally the data is a set of col-
lection of documents and the queries are some form of keywords. When the data is a graph,
the queries also becomes different. Since, in this century, we belong to one or more com-
munities and connected with peoples around. To represent these connections, we use graph
structures that help to analyze the community. When small enterprises, with low storage and
computational power, want to outsource their data and computation to a third-party cloud,
only the anonymization does not help to protect individual data privacy. Moreover, fear of
getting the data leak and misuse by unauthorized persons forces the data to be encrypted be-
fore outsourcing which makes the cloud difficult to perform queries on it. It is necessary to
bring a technique that allows queries to be performed on encrypted outsourced data without
leaking meaningful information.

The link prediction problem, which predicts which new interactions between members are
most likely to occur in the near future, is a well-studied problem for graph data. In Chapter 7,
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we study the secure link prediction in encrypted outsourced graph, using the number of
common neighbors for prediction. We present three algorithms for the secure link prediction
problem. In this chapter, we design prototypes of the schemes and formally prove their
security. Moreover, we execute our algorithms in real-life datasets. The work presented in
this chapter has been accepted as a journal article [83].

5. The Secure Clustering Coefficient Query in Outsourced Encrypted Dynamic Data When
the data is social network data, the clustering coefficient is such a property that quantifies
the abundance of connected triangles in a network. In Chapter 8, we introduce the cluster-
ing coefficient query and design a scheme Gopas to perform the query on an outsourced
encrypted appendable graph data. We show that the designed scheme Gopas is secure un-
der the chosen-query attack. Moreover, we implement a prototype of the scheme and tested
it with real-life data. The implementation results show that the scheme is practical even
for a large database. The work presented in this chapter has been accepted in a conference
proceeding [81].

1.3 List of Publications and Manuscripts

1. Laltu Sardar, Binanda Sengupta and Sushmita Ruj. Efficient Keyword Search on Encrypted
Dynamic Cloud Data. Submitted to a journal

2. Laltu Sardar and Sushmita Ruj. FSPVDsse: A Forward Secure Publicly Verifiable Dynamic
SSE scheme. Provable Security - 13th International Conference, ProvSec 2019, pages
355-371, 2019.

3. Laltu Sardar and Sushmita Ruj. Verifiable and Forward private Conjunctive keyword Search
from DIA Tree. Manuscript Submitted,

4. Laltu Sardar and Sushmita Ruj. The Secure Link Prediction Problem. Advances in Mathe-
matics of Communications, 13(4):733-757, 2019.

5. Laltu Sardar, Gaurav Bansal, Sushmita Ruj and Kouichi Sakurai. Securely Computing
Clustering Coefficient for Outsourced Dynamic Encrypted Graph Data. ComsNets 2021-
13th International Conference on COMmunication Systems & NETworkS, pages 465–473,
2021.
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Chapter 2

Preliminaries

In this chapter, we briefly discuss some preliminaries and cryptographic tools used in this thesis.

2.1 Notations

The set of n-bit strings is denoted by {0, 1}n, whereas {0, 1}∗ is the set of all finite length bit
strings. |S| denotes the cardinality of the finite set S. For a positive integer n, [n] denotes the set
{1, 2, . . . , n}. By out ← A(in), we mean a probabilistic algorithm A, on input in, outputs out.
x

$←− X denotes that x is chosen uniformly at random from the set X . Some notations used in the
thesis are given in the Table 2.1.

Table 2.1: Notations

Symbols Meaning
W A set of keywords/ dictionary
λ The security parameter

µ(λ) A negligible function over λ
[n] The set of integers {1, 2, . . . , n}
Σ A dynamic searchable encryption scheme

Σs A result revealing static SSE scheme
Σf A forward private dynamic searchable encryption scheme
Ψs A generic verifiable static SSE scheme
Ψf A verifiable forward private dynamic SSE scheme

2.2 Stateful algorithm

Definition 2.1 (Stateful algorithm). An algorithm is said to be a stateful algorithm if it stores its
previous states and use them to compute the current state.

15
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2.3 Negligible function

A negligible function is used to show the security of a scheme. A scheme is secure if the success
probability of some formally specified type attack, carrying out by every probabilistic polynomial-
time (PPT) adversary, is negligible.

Definition 2.2 (Negligible function). A function µ : N ← R is said to be negligible [50], if
∀c ∈ N, ∃Nc ∈ N such that ∀n > Nc, µ(n) < n−c.

2.4 Cryptographically secure pseudo-random number genera-
tor (CSPRNG)

Cryptographic algorithms require long random numbers which can be regenerated. Random num-
bers, from the source of like time, movement of cursor, etc., are difficult to regenerate. However, a
random number that can be regenerated, is no longer complete random. So, with little compromise
of uniform randomeness, psuedo-random number generators (PRNG) generate longer, “uniform-
looking” (or “pseudo-random”) output string from a shorter uniform string seed. If outputs of a
PRNG stay indistinguishable from true random numbers, except with negligible probability, it is
said to cryptographically secure. Formally, we define it as follow.

Definition 2.3 (CSPRNG). A deterministic polynomial-time algorithm G : {0, 1}λ → {0, 1}p(λ),
for some polynomial p, is said to be a cryptographically secure pseudo-random number generator
(CSPRNG) [50], if

1. It stretches the length of its input i.e., p(λ) > λ for any λ,

2. Its output is computationally indistinguishable from true randomness, i.e. for any PPT algo-
rithm A, here is a negligible function µ such that∣∣∣∣ Pr

s←{0,1}λ
[A(G(s)) = 1]− Pr

r←{0,1}p(λ)
[A(r) = 1]

∣∣∣∣ < µ(λ)

We call l the expansion factor of G and an input s the seed of it. Throughout, we denote
a cryptographically secure pseudo-random number generator simply as a PRG (pseudo-random
generator).
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2.5 Psuedo-random function (PRF)

Let F : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be a two input function, where the first input is the key denoted
by k. When the key is fixed, it becomes a single input function Fk : {0, 1}∗ → {0, 1}∗ defined
by Fk(x) = F (k, x). If the length of the key is fixed to some integer n then input and output has
length l(n). Let Funcn be the set of all functions mapping l(n)-bit strings to l(n)-bit strings.

Thus, a keyed function F is said to be a pseudorandom function if, for any key k of length n,
Fk is indistinguishable from any function f chosen at random from Funcn. We define formally as
follows.

Definition 2.4 (Psuedo-random function). A collection of functions {Fk : {0, 1}l(|k|) → {0, 1}l(|k|)}k∈0,1∗ ,
where l : N→ N, is said to be psuedo-random ([39, 50]) if the following two conditions holds.

1. Efficiency: Given any k and x such that |x| = l(|k|), Fk(x) can be computed in polynomial-
time .

2. psuedo-randomness: For any polynomial-time distinguisher D, ∃ a negligible function µ

such that: ∣∣∣∣∣ Pr
k

$←−{0,1}n
[DFk(.)(1n) = 1]− Pr

f
$←−Funcn

[Df(.)(1n) = 1]

∣∣∣∣∣ < µ(λ)

2.6 Psuedo-random permutation (PRP)

The definition of psuedo-random permutation is similar to that of psuedo-random function (Def. 2.4).
The only differences are that the function Fk is bijective, and is indistinguishable from permuta-
tion f chosen uniformly at random from Funcn, where Funcn is the set of all permutations from
{0, 1}l(n) to {0, 1}l(n). The definition can be given formally as follows.

Definition 2.5 (Psuedo-random permutation). A collection of permutations {Fk : {0, 1}l(|k|) →
{0, 1}l(|k|)}k∈0,1∗ , where l : N → N, is said to be psuedo-random ([39, 50]) if the following two
conditions holds.

1. Efficiency: Given any k and x such that |x| = l(|k|), Fk(x) can be computed in polynomial-
time .



18 Preliminaries

2. psuedo-randomness: For any polynomial-time distinguisher D, ∃ a negligible function µ

such that: ∣∣∣∣∣ Pr
k

$←−{0,1}n
[DFk(.)(1n) = 1]− Pr

f
$←−Permn

[Df(.)(1n) = 1]

∣∣∣∣∣ < µ(λ)

2.7 Hash function

A Hash function is a computationally efficient function that maps arbitrary length bit-strings to
some fixed length bit-strings, called hash-values.

Definition 2.6 (Hash function). A pair of probabilistic polynomial time algorithms (Gen,H) is
said to be a hash function (with output length l) [50] if it satisfies the following.

1. Gen probabilistically outputs a key k, after taking a security parameter λ as input.

2. H takes as input a key k and a string x ∈ {0, 1}∗ and outputs a string Hs(x) = {0, 1}l(λ)

In cryptographic application, hash functions are generally used having a fixed key and a fixed
output length. This makes the function looks like H : {0, 1}∗ → {0, 1}λ. So, unless stated we
assume has functions to be unkeyed (or fixed keyed).

A hash function H : {0, 1}∗ → {0, 1}λ can have the following properties.

1. Collision resistance: A hash function H is collision resistant if, for any PPT adversary, it is
computationally infeasible to find x, x′ such that x 6= x′ and H(x) = H(x′).

2. Second-preimage resistance: A hash function H is second preimage resistant if, given a
uniform x, it is computationally infeasible, for any PPT adversary, to find x′ 6= x such that
H(x′) = H(x)

3. Preimage resistance: A hash function H is preimage resistant if, given a uniform y, it is
computationally infeasible for any PPT adversary to find a value x such that H(x) = y.

The Cryptographic hash functions considered throughout are unkeyed (or fixed keyed) and
collision resistant. SHA-1, SHA-256, etc. are some example of cryptographic hash functions.
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2.8 Message Authentication Codes (MACs)

When two parties want to communicate secretly, message authentication codes (MACs) generate
tags that provides both message integrity as well as authenticity.

Definition 2.7 (Message Authentication Codes). A message authentication code (or MAC) consists
of three PPT algorithms (Gen, Mac, Vrfy) as follows.

1. k ← Gen(1λ): On input the security parameter 1λ, this key-generation algorithm outputs a
key k with |k| ≥ λ.

2. t ← Mack(m): On input a key k and a message m ∈ {0, 1}∗, this tag-generation algorithm
outputs a tag t.

3. b← Vrfyk(m, t): On input a key k, a message m, and a tag t, the deterministic verification
algorithm Vrfy outputs a verification bit b, where b = 1 means valid and b = 0 means
invalid.

A MAC is said to be correct if, for every λ, every key k ← Gen(1λ), and every m ∈ {0, 1}∗, the
condition Vrfyk(m, Mack(m)) = 1 holds.

The security of a MAC lies in the fact that from a set of message-tag pairs {(m1, t1), (m2, t2), . . . , (mn, tn)}
it is computationally infeasible to find another pair (m′, t′) such that m′ /∈ {m1,m2, . . . ,mn} and
Vrfyk(m

′, t′) = 1.

There are different ways to construct MACs. XOR MAC, CMAC, etc. are examples of pseudo-
random function based MAC whereas HMAC is based on cryptographic hash functions.

2.9 HMAC

HMACs are message authentication codes based on keyed-hash. It is used to verify both message
integrity and authenticity. SHA-256 or SHA-3, SHA-1 some example of HMACs.

2.10 Dynamic hash table

Hash tables are dictionary or table like data structures, based on hash functions, that stores and re-
trieve certain data efficiently. The data is stored as key-value pair, where key indicates the position
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in the table. A hash table mainly supports look-ups of elements belong to a set.

Definition 2.8 (Dynamic hash table). [76] A hash table is a tuple of three algorithms HT =

(Insert, Search,Delete) as follows.

• HT.Insert(T, (key, val)): It takes inputs a key-value pair (key, val) and store it as T[key]←
val. We say as inserting key-value pair (key, val) to the hash table T. For simplicity we say
T is the hash table.

• HT.Search(T, key): Given key, it look-up in T and returns val ← T[key]. If no such value
exists then it returns val = null. We say it as searching key in the hash table T .

• HT.Delete(T, key): Given a key key, it sets T[key]← null if T[key] exists.

There are different of implementations of hash tables. If we consider [30], then for a set of N
elements, it usesO(N) space andO(1) expected amortized cost for elements insertions or deletions
and have O(1) expected query time for (non-)membership queries.

2.11 Multiset hash

A multiset is a finite unordered group of elements where an element can occur as a member more
than once. A multiset hash outputs a single hash value for an unordered set of elements. Instead of
giving multiple hash value for a set of strings, giving single hash value makes the communication
shorter and storage requirement lesser.

Definition 2.9 (Multiset Hash ). [29]. Let by M @ B we mean a multiset M of elements of
a countable set B. Let multiset union of two multisets M = {m1,m2, . . . ,m|M |} and M ′ =

{m′1,m′2, . . . ,m′|M ′|, } be defined as

M tM ′ = {m1,m2, . . . ,m|M |,m
′
1,m

′
2, . . . ,m

′
|M ′|}.

A triplet (H,+H,≡H) of PPT algorithms is said to be a multiset hash on B with security pa-
rameter λ when it satisfies the following properties:

1. H(M) ∈ {0, 1}λ, ∀M @ B (compression)

2. H(M) ≡H H(M), ∀M @ B (comparability)
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3. H(M tM ′) ≡H H(M) +H H(M ′), ∀M,M ′ @ B (incrementality)

Clarke et al. [29] presented an incremental multiset hash function which is set-collision resis-
tant.

2.12 Gap Diffie-Hellman (GDH) group

Definition 2.10 (GDH group ). [13]. Let G be a multiplicative cyclic group with prime order
p. For a, b, c,∈ Zp, given g, ga, gb, gc ∈ G, deciding whether c = ab is called Decisional Diffie-
Hellman (DDH) problem in G. Again, For a, b,∈ Zp, given g, ga, gb ∈ G, computing gab ∈ G

is called Computational Diffie-Hellman (CDH) problem in G. The group G is said to be a Gap
Diffie-Hellman (GDH) group if, the CDH problem is hard, but the DDH problem is easy in G.

Definition 2.11 ((τ, t, ε)-GDH group ). [13]. The group G is said to be (τ, t, ε)-GDH group if, the
DDH problem on G can be solved in at most time τ and no algorithm which runs in time at most t
can break CDH on G with probability ≥ ε.

2.13 Bilinear Map

Let G1, G2 and GT be three (multiplicative) cyclic groups of prime order p. Let g1 be a generator
of G1 and g2 be a generator of G2 i.e., G1 =< g1 > and G2 =< g2 >. A map ê : G1 × G2 → GT is
said to be an admissible non-degenerate bilinear map if–

1. ∃ bilinearity i.e., ê(ua, vb) = ê(u, v)ab, ∀u ∈ G1, ∀v ∈ G2 & ∀a, b ∈ Zp

2. ∃ non-degeneracy i.e., ê(g1, g2) 6= 1, and

3. ∃ efficiency i.e., ê can be computed efficiently.

In our case, we consider G1 = G2 = G, and G =< g >. For our scheme we require the group G to
be a GDH group. Let us consider the following bilinear map generating algorithms .

(p,G,GT, g, ê) ← BMGen(1λ): It is a PPT algorithm (bilinear map generator) that takes a secu-
rity parameter λ as input and outputs a uniquely random tuples (p,G,GT, g, ê) of bilinear pairing
parameters.
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(p,G,GT, g, ê) ← BMGGen(1λ): It is a PPT algorithm (bilinear map generator) that takes a secu-
rity parameter λ as input and outputs a uniquely random tuples (p,G,GT, g, ê) of bilinear pairing
parameters where G is a GDH group.

2.14 Bilinear Pairings and Computational Problems

2.14.1 Discrete Logarithm Assumption

Definition 2.12 (Discrete Logarithm Assumption). Let λ be a security parameter and (p,G,GT , ê, g)

be a uniformly randomly generated tuple of bilinear pairing parameters from BMGen(1λ). It is said
to be hold discrete logarithm assumption if, given g, ga (where a $←− Z∗p), any probabilistic polyno-
mial time adversary A can find a only with negligible probability, namely

AdvDLogA (λ) = Pr
a

$←−Z∗p

[A(g, ga) = a] ≤ µ(λ)

i.e., no PPT algorithm A can output a with more than a negligible advantage.

2.14.2 Decisional Bilinear Diffie-Hellman (DBDH) Assumption

Definition 2.13 (Decisional Diffie-Hellman Assumption). Let λ be a security parameter and
(p,G,GT , ê, g) be a uniformly randomly generated tuple of bilinear pairing parameters from BMGen(1λ).
We say that decisional Diffie-Hellman assumption holds in BMGen(1λ) if, for any security parame-
ter λ, and any probabilistic polynomial time (PPT) adversary A

AdvDBDHA (λ) = Pr[A(ga, gb, gc, ê(g, g)abc) = 1]− Pr[A(ga, gb, gc, ê(g, g)y) = 1] ≤ µ(λ)

where a, b, c, y ∈ Zp and µ(λ) is a negligible over λ;

Thus, DBDH holds if, there is no probabilistic polynomial-time adversary can distinguish
[ga, gb, gc, ê(g, g)abc] from [ga, gb, gc, ê(g, g)z] with non-negligible advantage.
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2.14.3 Computational Diffie-Hellman Assumption

Definition 2.14 (Computational Diffie-Hellman Assumption). Let λ be a security parameter
and (p,G,GT , ê, g) be a uniformly randomly generated tuple of bilinear pairing parameters from
BMGen(1λ). It is said to be hold computational Diffie-Hellman assumption if, given ga, gb where
a, b

$←− Z∗p, any probabilistic polynomial time adversary A can compute gab ∈ G only with negligi-
ble probability, namely

AdvCDHA (λ) = Pr
a,b

$←−Zp

[A(g, ga, gb) = gab] ≤ µ(λ)

i.e., no PPT algorithm A can output gab ∈ G with more than a negligible advantage.

2.14.4 q-Strong Diffie-Hellman Assumption

Definition 2.15 (q-Strong Diffie-Hellman Assumption). [76]. Let λ be a security parameter
and (p,G,GT , ê, g) be a uniformly randomly generated tuple of bilinear pairing parameters from
BMGen(1λ). Given an upper bound q, an element s $←− Z∗p and the set {g, gs1 , gs2 , . . . , gsq}, it is
said to be hold q-strong Diffie-Hellman (q-SDH) assumption if, any probabilistic polynomial time
(PPT) adversary A can find a pair (c, g

1
x+c ) only with negligible probability, namely

Advq-SDH
A (λ) = Pr

[
A(g, gs, gs

2

, · · · , gsq)→ (s, g
1
s+c )
]
≤ neg(λ),

where c ∈ Zp.

2.15 Signature Based on GDH Groups

Boneh et al. [13] first presented a signature scheme based on bilinear map over GDH Group. Let
H : {0, 1}∗ → G \ {1} be a full-domain one-way hash function. The security analysis viewsH as
a random oracle. The scheme can be described as follows.

Definition 2.16 (BLS signature scheme). Let ê : G × G → GT be a bilinear map where |G| =

|GT| = p, a prime and G =< g >. A BLS signature scheme S=(KeyGen, Sign, Verify) is given
as a tuple of three algorithms as follows.

• (sk, pk) ← KeyGen: It selects α $←− Zp. It keeps the private key sk = α and publishes the
public key pk = gα.
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• σ ← Sign(sk,m): Given sk = α, and some message m, it outputs the signature σ =

(H(m))α.

• {0/1} ← Verify(pk,m, σ): For a message m, signature σ with public key pk, it check
whether g, pk,H, σ is a Diffie-Hellman tuple by verifying equality between ê(σ, g) and
ê(H(m), pk), where ê : G× G→ GT is a bilinear map.

2.15.1 Security of BLS signature scheme

Definition 2.17 (Secure BLS signature scheme). Let S=(KeyGen, Sign, Verify) be a bilinear
signature scheme as described above. Let us consider the existential unforgeability under a chosen-
message attack game SigA between a challenger and an adversary A as follows.

1. The challenger runs (sk, pk)← KeyGen. A is given pk.

2. A requests signature for qs messages m1,m2, . . . ,mqs ∈ {0, 1}∗, chosen adaptively, and
gets responses σ1, σ2, . . . , σqs .

3. Eventually, A outputs (m,σ) and wins the game if (1) m /∈ {m1,m2, . . . ,mqs}, and (2)
Verify(pk,m, σ) = valid.

We define AdvSigSA to be the probability that A wins in the above game, taken over the coin
tosses of KeyGen and of A.

Let, a forger A(t, qs, qH , ε) runs in time at most t, makes at most qs signature queries, at most
qH hash queries. S is said to be secure from existential unforgeability under a chosen-message
attack, if for all such adversary A, AdvSigSA < ε

Theorem 2.1. Let G be a (τ, t′, ε′)-GDH group of prime order p. Then the BLS signature scheme
S = (KeyGen, Sign, Verify) is (t, qs, qH , ε)-secure against existential forgery under an adaptive
chosen-message attack in the random oracle model, ∀t, ε satisfying

ε ≥ e(qs + 1).ε′ and t < t′ − cG(qH + 2qs)

where, cG is a constant that depends on G, and e is the base of the natural logarithm.

Proof of the above theorem is given in [13].
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2.16 BGN Encryption Scheme

Boneh et al. [12] proposed a homomorphic encryption scheme (henceforth referred to as BGN
encryption scheme) that allows an arbitrary number of additions and one multiplication. Before
presenting the scheme we first briefly describe the subgroup decision problem as follows.

2.16.1 The subgroup decision problem

Definition 2.18 (subgroup decision assumption). [12]. G is a polynomial algorithm which, given
a security parameter λ ∈ Z+ as input, outputs as follows.

1. Generate two random λ− bit primes q1, q2 and sets n = q1q2 ∈ Z.

2. Generate (n,G,G1, g, ê)← BMGen as described in Section 2.13, where G is a bilinear group
of order n, ê : G× G→ G1 is a biliear map.

3. Finally, it outputs (q1, q2,G,G1, e)

Now given (n,G,G1, ê), without knowing the factorization of n, the subgroup decision problem
is to decide if an element x ∈ G is in a subgroup of G. We say G satisfies subgroup decision
assumption when the uniform distribution on G is indistinguishable from the uniform distribution
on a subgroup of G .

2.16.2 The scheme description

A BGN encryption scheme consists of three algorithms- Gen(), Encrypt() and Decrypt() .

Algorithm 1: Gen(1λ)

1 (q1, q2,G,G1, e)← G(λ)
2 n← q1q2

3 g
$←− G; r $←− [n]

4 u← gr; h← uq2

5 sk ← q1; pk ← (n,G,G1, e, g, h)
6 return (pk, sk)

Key generation: This takes a security parameter λ as input and outputs a public-private key pair
(pk, sk) (see Algo. 1). Here, pk = (n, G, G1, e, g, h) and sk = q1. In pk, e is a bilinear map
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from G × G to G1 where both G and G1 are groups of order q1. Note that, given λ, G returns
(q1, q2, G, G1, e) (see [12]) where q1 and q2 are two large primes, and G and G1 are groups of
order n = q1q2.

Algorithm 2: EncryptG(pk, a)

1 (n,G,G1, e, g, h)← pk

2 r
$←− [n]

3 c← gahr

4 return c

Algorithm 3: DecryptG(pk, sk, c)

1 (n, G, G1, e, g, h)← pk; q1 ← sk
2 c′ ← cq1; ĝ = gq1

3 s = D logĝ c
′

4 return s

Encryption: An integer a is encrypted in G using Algo. 2. Let a1 and a2 be two integers that are
encrypted in G as c1 and c2. Then, the bilinear map e(c1, c2), belongs to G1, gives the encryption of
(a1a2). Note that arbitrary addition of plaintext is also possible in the group G1. If g is a generator
of the group G, e(g, g) acts as a generator of the group G1. Thus, the encryption of an integer a is
possible in G1 in similar manner (see Algo. 4).

Algorithm 4: EncryptG1
(pk, a)

1 (n,G,G1, e, g, h)← pk

2 r
$←− [n]

3 g1 ← e(g, g); h1 ← e(g, h)
4 c← (g1)a(h1)r

5 return c

Algorithm 5: DecryptG1
(pk, sk, c)

1 (n,G,G1, e, g, h)← pk
2 q1 ← sk
3 c′ ← cq1; ĝ1 = e(g, g)q1

4 s = D logĝ c
′

5 return s

Decryption: At the time of encryption each entry is randomized. The secret key q1 eliminates the
randomization. Then, it is enough to find discrete logarithm D log of the rest. Algo. 3 and Algo. 5
describes the decryption in G and G1 respectively. In decryption algorithms, D log computation
can be done with expected time O(

√
n) using Pollard’s lambda method [64]. However, it can be

done in constant time using some extra storage ([12]).

Let BGN be an encryption scheme as described above. Then, it is a tuple of five algorithms (Gen,
EncryptG, DecryptG, EncryptG1

, DecryptG1
) as described in Algo. 1, 2, 3, 4 and 5 respectively.

2.16.3 Security of the BGN Encryption Scheme

The security of the BGN encryption scheme lies on the subgroup decision assumption (see Defini-
tion 2.18) of G. For the security of BGN scheme, we have the following theorem.
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Theorem 2.2. The public key system BGN is semantically secure assuming G satisfies the subgroup
decision assumption.

2.17 Dynamic universal accumulator

Cryptographic accumulators are used to prove membership/non-membership of elements in a set.
A client uses accumulator when it wants to outsource the set to a third party cloud server but
keeping the ability of membership query. When the size of the set is large, proof generation and
(or) proof size becomes expensive. Accumulation tree enable a client to outsource large set in an
efficient manner. Though the existing accumulator scheme like [76] can build accumulation tree
for static database which can provide the proof of membership as well as non-membership, it is
efficient for dynamic set. Au et al. [5] presented a scheme that dealt with dynamic set that generates
membership proofs efficiently. They extended their scheme with an additional authenticated tree
that allows non-membership check. However, this structure does not support update. (Verify)

A dynamic universal accumulator (DUA) allows one to outsource a set of elements with ability
to query the existence of an element together with a functionality to verify the result and way to
update the set.

There are two kinds of widely used accumulators– RSA accumulator and bilinear map accu-
mulator. The binlinear map accumulators generates shorter proof of membership compare to RSA
accumulators. In our case, we take bilinear map accumulators.

Let us consider a DUA proposed by Au et al. [5]. Let AC = (Init, Gen, Update, MemWitGen,
MemWitVer) be such a DUA described as follows.

Initialization. (s, tup)← AC.Init(λ):
Given a security parameter λ, let us consider a uniformly generated tuple tup = (p,G,GT , g, ê) of
bilinear pairing parameters generated with BMGGen. Then ê : G × G → GT be a bilinear pairing
such that |G| = |GT | = p for some λ-bit prime p and G =< g >. Let q be the maximum number
of elements to be accumulated. Then a uniformly random element s $←− Z∗p is selected. s is treated
as secret key.

Accumulator Generation. Acc(Y )← AC.Gen(Y, s):
Given a set Y = {y1, . . . , yk} ∈ Z∗p . Let v(s) =

∏
y∈Y (y + s) (mod p) be a polynomial of degree

k ≤ q. Then the accumulator is Acc(Y ) = gv(s), which can be computed efficiently.

Updating accumulator Acc(Y ′) ← AC.Update(Acc(Y ), s, ȳ, op = add or delete): Let Acc(Y )
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be the accumulator value for a set of elements Y = {y1, . . . , yk} ∈ Gp. If an element ȳ is added,
the new accumulator value will be Acc(Y ′) = Acc(Y )ȳ+s, where Y ′ = Y ∪ {ȳ}. Similarly, if an
element ȳ is deleted, the accumulator changes to Acc(Y ′) = Acc(Y )

1
ȳ+s , where Y ′ = Y \{ȳ}. For

both case, the secret value s is needed to compute updated value.

Membership witness generation wt(ȳ)← AC.MemWitGen(PG, Y, ȳ):
For a set of elements Y = {y1, . . . , yk} ∈ Z∗p , a membership witness wt(ȳ) for the element

ȳ ∈ Y is given by wt(ȳ) =
[
g
∏k
i=1(yi+s)

] 1
ȳ+s

= [Acc(Y )]
1
ȳ+s . This witness also can be computed

without the knowledge of s as follows. Expanding the polynomial
∏k

i=1,i 6=j(yi + s), it can be

written as
∑i=k−1

i=0 uis
i. Then, the witness is computed as wt(ȳ) = g

∏k
i=1,i 6=j(yi+s) = g

∑i=k−1
i=0 uis

i
=∏i=k−1

i=0 gs
iui =

∏i=k−1
i=0 guii ∈ G.

Since, in our scheme, only the client, who has the key s, generates witnesses, we only consider
first method.

Membership witness verification bv ← AC.MemWitVer(Acc(Y ), ȳ, wt(ȳ)):
Membership witness is verified by checking whether ê(Acc(Y ), g) = ê(wt(ȳ), gȳ+s). Finally, a
verification bit bv is returned where bv = 1 if equality holds and bv = 0 otherwise.

The correctness of membership verification is given as follows.

ê(wt(ȳ), gȳ+s) = ê(g
∏
y∈Y,y 6=ȳ(y+s), gȳ+s) = ê(g

∏
y∈Y (y+s), g) = ê(Acc(Y ), g)

Non-membership witness AccNonMemWitGen(PG, Y, ȳ).
For a set of elements Y = {y1, . . . , yk} ∈ Gp, a non-membership witness wtn(ȳ) = (c, d), for
some ȳ /∈ Y , can be computed without the knowledge of s as well, where d =

∏k
i=1 (yi + s) (mod ()ȳ + s)

and c = g

∏k
i=1 (yi+s)−d

ȳ+s ∈ G.

Let v(s) =
∏k

i=1(yi + s). Since, ȳ 6= yi for all i, there exists a degree k − 1 polynomial c(s)
and a constant d such that v(s) = c(s)(s+ ȳ) + d. Expand c and write it as c(s) =

∑i=k−1
i=0 (uis

i).
Therefore c = gc(s) = g

∑i=k−1
i=0 (uis

i) =
∏k−1

i=0 g
uis

i
=
∏k−1

i=0 g
ui
i

Non-membership witness verification
AccNonMemWitVer(Acc(Y ), wtn(ȳ) = (c, d), ȳ).

Membership witness can be verified by checking the equality between ê(Acc(Y ), g−d) and
ê(c, gȳ+s). The correctness of the verification can be given as
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ê(c, gȳ+s) = ê(gc(s), gȳ+s)

= ê(gc(s)(ȳ+s), g)

= ê(gv(s)−d, g)

= ê(gv(s), g−d)

= ê(Acc(Y ), g−d)

Security of the accumulator The security of the above construction lies on the strong Diffie-
Hellman assumption given in Definition 2.15. See [5] for the details.

Theorem 2.3. Let λ be a security parameter and (p,G,GT , ê, g) be a uniformly randomly gener-
ated tuple of bilinear pairing parameters. Given an upper bound q and the set S = {g, gs1 , gs2 , . . . , gsq},
for some randomly chosen s from Z∗p, the probability a PPT adversary A can find another set
S ′ 6= S (|S ′|) such that Acc(S) = Acc(S ′) is neg(λ).

See [76] for the detail proof.

2.18 Garbled Circuit (GC)

Let us consider two parties, with input x and y respectively, who want to compute a function
f(x, y). Then, a garbled circuit [105, 59] allows them to compute f(x, y) in such a way that none
of the parties get any ‘meaningful information’ about the input of the other party and none, other
than the two parties, is able to compute f(x, y). However, every function can be converted into a
Boolean circuit. A Garbled circuit is a garbled version of the Boolean circuit.

We can briefly summarize the main ideas of the protocol of a garbled circuit as follows. A
garble circuit consists of two algorithms CreatGC and EvalGC. There are a constructor and an
evaluator, in general, they are cloud server and client respectively. The constructor creates a garbled
circuit GC of a circuit using the algorithm CreatGC. For each wire Wi of the circuit, it chooses
two garbled values w0

i and wii randomly and selects one of them at random as garble value of Wi.

In the next phase, corresponding to each gate Gi, the constructor creates a garbled table Ti.
Given a set of garbled input values corresponding to Gi, evaluator is only allowed to recover
nothing but the garbled value of the corresponding Gi ’s output from Ti. After the construction,
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the constructor sends the garbled tables to the evaluator. Thereafter, the evaluator obliviously gets
the garbled inputs corresponding to inputs of both parties.

Then, using the algorithm EvalGC, it evaluates the garbled circuit on the garbled inputs. Using
the garbled tables Ti, it obtains the garbled outputs simply by evaluating the garbled circuit gate
by gate, . Finally, it gets output values given for the respective players by transforming the garbled
outputs.

Kolesnikov et al. [52] introduced an optimization of garbled circuit that allows XOR gates to
be computed without communication or cryptographic operations [97]. Kolesnikov et al. [51] pre-
sented efficient GC constructions for several basic functions using the garbled circuit construction
of [52]. In this paper, we use garbled circuit blocks for subtraction (SUB), comparison (COMP) and
multiplexer (MUX) functions from [52].



Chapter 3

Literature Survey

In this chapter of the thesis, at first we categorize queryable encryption schemes with different
aspects. Then we discuss a short survey of existing literature. Rest of the chapter is organized as
follows.

In Section 3.1, we discuss the literature on queryable encryption over text data i.e., searchable
encryption. At first, we briefly describe schemes over static data in Section 3.1.1. Then in Sec-
tion 3.1.2, we move to dynamic searchable encryption schemes that support updates. After that,
in Section 3.1.3, we discuss some important attacks over those schemes. Then in Section 3.1.4
we go into forward and backward private schemes that are secured from those attacks. Thereafter,
in Section 3.1.5, we talk about verifiable schemes that are resilient even in presence of malicious
adversaries Finally, in Section 3.2, we discuss queryable encryption schemes over graph data.

3.1 Queryable Encryption on text data

We see that Queryable encryption is called Searchable Encryption when the data is text data. In
this section, we describe some of the important works on searchable encryption.

3.1.1 Searchable Symmetric Encryption (SSE)

Song et al. [86] first introduce a database encryption method where a keyword search query can
be performed. The scheme is for static databases and is provably secure. The scheme allows the
cloud servers to search only for the authorized words i.e., for a fixed dictionary. Before giving
the final scheme, they proposed three more techniques one by one, each is an improvement of the
previous. In all schemes, each document was encrypted separately. The encryption of a document
was individual encryption of the words in it. When a client needs to search a document, it sends
the cloud server the corresponding information so that the cloud server gets the encrypted words
in the documents and returns the results if present.

The designed schemes are quite simple and easy to compute. However, in all of them, during
a search, every keyword of every file has to be decrypted. This is decrypting the entire database for

31
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each search query. When the number of documents is high then the scheme becomes inefficient.

In the technique [86] to search on encrypted data, the owner encrypts each file keyword by
keyword. Instead, Eu-Jin Goh [38], uses a secure index which is an encrypted index make
specifically for searching. The actual documents are encrypted differently and kept separately.
The search index keeps an identifier of the documents. While searching, the search index returns
the set of identifiers, and then the cloud returns the documents. He defines secure index formally
and formulates a security model for the indexes.

Later, he presents a search scheme based on the bloom filter. Briefly say, he keeps a bloom
filter for every document and uses multiple hash functions that map each document-keyword pair
to the bloom filter. While searching for a keyword, the cloud visits the bloom filter corresponding
to each document and then searches if all the hashes match. If it matches all, then the cloud returns
the document in the result set. Though the scheme looks very fast as it uses only symmetric
key encryption scheme and hash functions, the search cost linearly grows with the number of
documents. So, it becomes inefficient when the number of documents is large. Moreover, the
scheme was only for static data.

Chang and Mitzenmacher [26] design a scheme for keyword search on encrypted data. They
consider the clients to be lightweight like a mobile device. In their scheme, they do not encrypt
each file separately. Instead, they consider a bit-string of the length of the dictionary for each file
where an entry bit is 1 if the corresponding keyword is present. Then each bit is masked with a
pseudo-random bit generated with a pseudo-random generator. While searching for a keyword, it
reveals all corresponding positions in all strings. So, in the scheme, the search complexity is linear
in the number of documents which is highly inefficient when the number of documents is large.

Curtmola et al. [32] first introduce the notion of searchable encryption for single keyword
search. They formally define it and show that they are provably secure. Instead of encrypting
each file separately as in [86, 26], they use inverted-index. For each keyword, the set of the file
identifiers containing the keyword is kept in a linked list. Then they encrypt the link list and search
over it when required. In doing so, the computational complexity for searching is reduced to the
order of size of search results which is also a huge reduction. The communication complexity for
searching also is reduced to only one round. Moreover, they present the leakage of a searchable
scheme formally. Though they used only symmetric key encryption techniques in their scheme,
the scheme is only for static databases.
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3.1.2 Dynamic Searchable Symmetric Encryption (DSSE)

Inverted index based schemes Searching over encrypted data with updates is first considered
by Kamara et al. [48]. The scheme is an improvement over Curtmola et al.[32]. It is an inverted
index-based searchable encryption and uses two indices– an inverted index and a general index.
The inverted index is used for search and addition while the general index is used for deleting
documents. Both indices are linked with each other. In the inverted index, corresponding to each
keyword, there is a linked list that stores the identifiers of the documents containing the keyword.
In the general index, corresponding to each document, there is a linked list that stores addresses
of the containing keywords. Though the second type of index is not required during a search, an
update operation requires both of them to be modified.

This scheme also uses only symmetric encryption schemes, and they claim that the scheme has
optimal search time. Their implementation result also ensures its good performance. However,
since each node of the linked lists is taken from a random location of a large array, the search or
update operation becomes sequential.

Red-black tree based dynamic schemes We see, previously in [48], the search or the update
operation was sequential. Kamara and Papamanthou [47] try to improve that. They use a tree-
based multi-map data structure, called keyword red-black tree (KRB tree), and propose a new
single keyword search scheme where the search or update operations can be done with parallel
computation.

KRB Tree is a m-ary tree where each leaf node corresponds to a document. Briefly speaking,
the internal nodes are the path to the documents and store information about the keywords that are
contained in the documents below them. To keep all the keywords, each internal node contains a
bit-string of the size of keyword-dictionary. While adding a document, all internal nodes in the
path to the document keep the keywords, that are not already there. In a similar way, the deletion
can be done.

Their scheme has an extra advantage in leakage. In the scheme, the client does not leak infor-
mation about the keywords that are contained in a newly updated document.

Oblivious Cross-Tags (OXT) protocol Cash et al. [22] propose an SE scheme that supports
conjunctive as well as Boolean queries. They present the concept of T -Set that allows one to
associate a list of fixed-sized data tuples with each keyword in the database. Later, it enable them
to issue keyword-related tokens to retrieve those lists. Since T -Set is similar to encrypted inverted
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index, it can be used as a single keyword search SE scheme, Later they propose two protocols–
Basic Cross-Tags (BXT) protocol and Oblivious Cross-Tags (OXT) protocol.

In BXT protocol, For each w ∈ W , a value xtrap = F (KX , w) is computed where KX is a
PRF key. Then for each ind ∈ DB(w) a value xtag = f(xtrap, ind) is computed and added to
XSet where f can be a PRF. During search for (w1, . . . , wn), the protocol chooses the estimated
least frequent keyword, say w1 , finds single keyword search w1, say the result is Rw1 . Then for
each files ind in Rw1 , it recomputes xtag = f(xtrap, ind), where xtags are given in search token.
For a file if all such xtag exists in corresponding TSet then the file is included in the final result.

We see that since xtraps are given for the queried keywords, the cloud server can store them.
Later when some document ind is revealed, the cloud server can check whether the keyword
corresponding to the xtrap is present in file ind by simply checking the presence of f(xtrap, ind)

in XSet. Note that, BXT reveals the keys from which the cloud server able to compute f(xtrap, .)

itself. This makes the attack possible.

In OXT protocol xtags are computed differently as xtag = gxtrap.xind which is function of
xtrap and xind instead of xtrap and ind. Where, xind is encrypted ind. To decrypt xind, an
extra information y = xind.z−1 is kept in the tuple set together with another encrypted version e
of xind, where z = Fp(KZ , w||c) and c is a counter. During search, client recomputes xtoken =

gxtrap.Fp(KZ ,w||c) sends them to the cloud. The cloud matches the xtokeny with xtag. Since
the client does not store the counters, it sends continuously until matched. So, the number of
interactions becomes unbounded here.

Later, they show that their OXT scheme is semantically secure against adaptive adversarial
attacks. They present a prototype of their scheme, run it on several large real-world data sets
and show the performance. Moreover, the scheme is first to give conjunctive search results in
sublinear time.

Keyword search scheme using blind storage Naveed et al. [72] propose the concept of blind
storage which is a scheme that allows a client to outsource a set of documents in such a way that the
individual size and the number of the documents remains hidden from the cloud. A blind storage
is an array of blocks where the cloud only can update and returns blocks requested by the client.
The cloud does not need any computation.

The basic idea of the scheme is as follows. Like inverted index, the client prepares a list of
documents which is then divided into a set of blocks which are then mapped to random locations
in the blind storage blocks. While searching for a keyword, the corresponding blocks are accessed
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together with some extra noise blocks. The concept of these noise blocks hides the size of the
actual size of the data. The client rearranges the blocks and gets the actual result.

Though in the scheme the leakage is reduced and is satisfies a fully adaptive security model, the
client has to perform all computational work. The cloud becomes a storage service provider. This
increases the computational cost of the client a lot. So the scheme is not suitable for lightweight
clients.

Parallelizable keyword search Cash et al. [21] introduced first scheme that allows parallelism
in input/output in large scale. The parallelism enables the system to work with ten billion keyword
file pairs. The scheme doesn’t claim space after deletion though it is an append-only scheme.
However, they consider only the cases where deletions are rare. Moreover, they consider the cloud
server cannot add duplicate file-identifiers or delete currently non-existing file identifiers, or delete
a keyword from a file identifier that doesn’t match it.

In their scheme, as an add query, instead of a keyword-document pair, a file as a whole is added
and this prevents it to modify a document. In addition, in their proposed dynamic scheme Πdyn

bas ,
either the client has to store the dictionary of size |W| or it can outsource in encrypted form. In the
latter case, the client has to download the dictionary in each session. This causes an extra round of
communication. Though the scheme is dynamic, it is not forward or backward secure.

History-based keyword search At a similar time, Hahn and Kerschbaum [42] proposed a history-
based dynamic searchable encryption scheme. The scheme can be briefly described as follow.

Initially, for each document f , the client extracts the set of keywords w1, w2, . . . , w|f |. Then
for each keyword wi a random bit string ci = Hτwi

(si)||si is generated where H is a hash function,
τwi = Fk1(wi) and the sis are generated with a pseudo-random number generator and fixed for all
documents. Finally, all such strings ci’s are stored in a list corresponding to the file.

During search, given τwi the cloud searches all ci = li||ri and checks if li = Hτwi
(ri) and

makes a list of corresponding document identifiers. This is done only when a keyword is searched
the first time. Thereafter the list is stored as history either. The list is either stored at client-side
or cloud-side. Keeping the searched history stored saved the same further computational cost can
be avoided. During adding a new document or deleting an existing one, the cloud checks the
containing keywords are already searched. If so, the cloud edits historical lists corresponding to
the keywords.

Though the initial search time is linear in the number of document-keyword pairs, they show
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that it amortizes over multiple searches and a theoretic upper bound for amortization in O((|W|)2)

where W is the set of keywords. However, the concept of keeping the previous search history
stored on the cloud side is applicable effective for any queryable encryption scheme at the cost of
extra cloud storage.

Boolean search with worst-case sub-linear complexity The keyword search scheme by Cash
et al. [22] has sublinear search time for conjunctive queries and linear search time for the arbitrary
disjunctive and Boolean queries. Improving the result, Kamara et al. [46] present a scheme that
has worst-case sublinear search complexity disjunctive and Boolean keyword search in presence
of optimal communication complexity.

They presented three schemes–IEX, ZMF, and DIEX. A single keyword SE scheme is used, in
the main construction IEX, as a black-box multi-map. There are an encrypted global multi-map
and an encrypted dictionary in the construction. Those maps every keyword w, respectively, to its
document identifiers DB(w), and to a local multi-map for w. All the keywords v that co-occur
with a keyword w are mapped, by the local multi-map of w, to the identifiers of the documents that
contain both v and w. During disjunctive search for {w1, w2, . . . , wn}, DB(w1) can be recovered
from encrypted global multi-map and then w2 to wn encrypted local multi-map can be recovered.
Finally, from local multi-map the common identifiers can be found. These common identifiers
help to find disjunctive query results in worst-case sub-linear time. For the Boolean query, before
processing, the query is converted in CNF form. Then first inner disjunctions are found, and then
outer conjunctions are found.

The second scheme ZMF relies on a new single keyword SSE scheme and is adaptively secure.
It is inspired from [38] and produces a collection variable-sized encrypted Bloom filters, called
Matryoshka filter, which are adaptively secure. In the scheme, local multi-maps are replaced with
a Matryoshka filter. It is instantiated in different ways. The first instantiation IEX-2Lev uses [87]
as black-box. At the cost of storage overhead, is optimized for search. The second instantiation
IEX-ZMF uses their own construction ZMF. At the cost of efficiency, it is optimized for storage,
and still achieves asymptotically sub-linear search.

The third scheme, DIEX is the dynamic version of IEX. It supports sub-linear time Boolean
search queries.

Outsourcing query to blockchain Adkins et al. [2] discuss three schemes LSX, TRX, PAX.
This is not a typical searchable encryption scheme. Instead, they provide secure databases for
keeping key-value pairs i.e., label-value pairs. The value is a single value for dictionary and set of
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values i.e., tuples.

The first scheme stores values in a tuple one by one in the BC database. Each value stores the
address of the previous value. The final value is stored on the client-side. These form a link list.
The difference between LSX & [32] is that in [32] address of the nodes are controlled by the client,
but in the LAX by the public ledger. In TRX, a virtual tree structure is considered for blocks. Each
layer, starting from leaves, is uploaded at a time and their addresses are kept in the next upper
layer. The root address is stored on the client-side.

LSX & TRX both are append-only schemes. The blockchain database itself does not sup-
port deletion. So, in PAX, we skip deleted entries. The required information is kept in a patch
dictionary. PAX is stored with LSX with an additional data structure.

Finally, the scheme only gives storage for multi-maps. So, searchable encryption schemes are
done only client-side in blocks. So we think, the blockchain database is not required to do so. Any
cloud service provider can be used. They did not show any application except storing multi-maps

Query in presence of multiple clients Xu et al. [103] proposed a DSE scheme for medical
databases. They considered a multi-client model in presence of a trusted central authority that
manages access control of the data among clients. There is a cloud service provider that keeps
encrypted data as well as encrypted search index and performs search and updates whenever they
are needed.

The idea of the scheme is as follows. In the beginning, each client collects secret keys (skS, skw)

corresponding to its attributes S and the set of authorized keywords respectively. The keys are used
for searching.

During building, for a keyword w, a file identifier id is encrypted with an HBE scheme and
again encrypted with some random string fixed for that pair (w, id). Then it is kept in a table at a
position that depends on the pair (w, id)

During a search, given an authorized keyword w, the cloud server first finds the positions, in
the table, of the identifiers belonging toDB(W ). Then decrypts them and sends them to the client.
In this set, all identifiers are encrypted with attributes. The client can decrypt them if it has a
satisfying set of attributes. Later, from the result set of identifiers, the client can request the files
that it wants.

However, the setW of keywords need to be authorized by the central authority beforehand that
prevents free searching over the database. When the size of the set increases, the time to generate
token increases for the client. Besides, the scheme is a single keyword search scheme only. Since



38 Literature Survey

it is a result hiding scheme, it requires two rounds of communication to get the search result.

Top-k nearest keyword search queries A queryable encryption scheme, that supports top-k
nearest keyword search queries, has been proposed by Liu et al. [60]. They have made an encrypted
index using order-preserving encryption for searching. Together with lightweight symmetric key
encryption schemes, homomorphic encryption is used to compute over encrypted data.

In the ‘top-k nearest keyword’ query supporting scheme, Liu et al. [60], have used order-
preserving encryption that contains homomorphic encryption.

3.1.3 Attacks on Queryable Encryption over text data

Besides different SE schemes, few papers on the attacks on SSE schemes have been published
since the last decade. We describe them briefly as follows.

Access pattern disclosure Islam et al. [43] presented the first paper on the attack on Searchable
Encryption (SE). They investigated different types of attacks due to access pattern disclosure in SE
schemes, formalized a query identity inference attack model based on access pattern disclosure,
and proposed a noise addition technique to mitigate such an attack. In query identity inference
attacks, by combining leakage with publicly-available information [71], the adversary tries to re-
cover information about the data or queries.

The attack assumes the adversary has access to some prior knowledge on the document set.
The adversary has full access to the communication channel and observes a sequence of l queries
Q = Q1,Q2, . . . ,Ql and sequence of their responses RQ = RQ1 , RQ2 , . . . , RQl . Secondly, it
knows the underlying keywords for k of the queries in the sequence, and the m×m co-occurrence
matrix where m is the number of possible keywords and (i, j)th entry is the probability of co-
occurrence of ith and jth keywords. The attack is based on frequency analysis that shows the attack
is possible even when k � l. Finally, to prevent this attack they propose to add false-positive
results in the pre-processing stage. Adding false positives makes it difficult to the adversary to
compare the frequencies between the co-occurrence matrix and the query results.

Inference attacks Naveed et al. [71] studies inference attacks. They propose frequency analysis
attack and l2-optimization attack for deterministic encryption (DTE) encryption schemes and sort-
ing attack and cumulative attack for order-preserving encryption (OPE) schemes. The attacks lie
on certain assumptions i.e., prior knowledge of the database.
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Frequency analysis attack is traditional, since DTE schemes have a bijection from the key-
words to its encrypted version, frequencies can be compared. This type of attack is applicable for
schemes like [86] only if the distribution of plain text keywords are is known to the adversary.
l2-optimization attack is similar to the frequency analysis. However, it uses the lp optimization
problem with a histogram to match frequencies.

In sorting attack, the order can be computed over an OPE-encrypted dense column c over
cipher-text space Ck. So, the adversary simply sorts c and plain-text space Mk. Then it outputs
a function that maps each ciphertext c ∈ c to the element of the message space with the same
rank. Given an OPE-encrypted column, in cumulative attack, the adversary is able learn both the
frequencies and the relative ordering of the encrypted values. Combining orders with frequencies,
the adversary can easily tell for each ciphertext c what fraction of the encrypted values are less
than c.

Leakage-Abuse attacks Cash et al. [20] study the leakage of SE schemes. They first present a
characterization of the leakage profiles of SE schemes. They divide the leakages in four categorizes–
L4, L3, L2 and L1. In L4 leakage, the adversary has full plaintext information under deterministic
word-substitution cipher. It learns two kind of information. The first is the pattern of locations in
the text where each word occurs and the second is its total number of occurrences. Moreover, it gets
frequencies of the unique indexed keywords, lengths of the ciphertexts, and the order of appeared
keyword, immediately upon upload. Thus it reveals a co-occurrence pattern and is vulnerable to
frequency analysis.

In L3 leakage, the adversary fully gets occurrence pattern with keyword order which reveals
the pattern of keyword occurrences in the documents, in the order of their first appearance, but not
the occurrence counts within a document. In L2 leakage, the adversary fully gets an occurrence
pattern. This is similar to L3, however, in L2 document order is not revealed. The L1 leakage is
the strongest one. It is similar leakage as L1, but only for terms that have been queried.

For the SE schemes having L3 and L2 leakage pattern, they finally show plain-text can be
recovered partially when the adversary has knowledge of a set of documents. From the partial
knowledge of the database, they show queried keywords can be recovered from the SE schemes
having L1 leakage.

File-injection attacks Zhang et al. [110] studied file-injection attacks that focus to recover key-
words from future queries. The idea was to construct a set of files with certain properties depending
on attack strategies, inject them into the server database add query and learn from the leakages.
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However, if the initial set of keywords is large, then the attacker needs to inject an exponential
number of large files which makes the attacks weak.

In the first type of attack, i.e., binary search attack, it inserts logK number of files where
K = |W|. The ith file contains exactly the keywords having ith most significant bit as 1. If a
keywordw is searched and returns then it matches returned files with its injected ones. The number
of required files to be inserted can be reduced by considering a targeted keyword set smaller than
W . Later they proposed several advanced attacks. In a hierarchical-search attack, the adversary
makes a partition of W and executes a binary search attack for each partition. This significantly
reduces the number of files injected.

In the above attacks, the adversary does not have prior knowledge of its plain text. When the
adversary has partial knowledge of plain-text information such as the co-occurrence matrix, the
number of required injected files is reduced further with significant accuracy. Later they suggest
padding each file with extra keywords that protect a SE scheme from such attacks. The attacks are
applicable to conjunctive search SE schemes too.

The file injection attack considers that the adversary is able to force the owner to inject its
selected set of documents. However, the attacks can be prevented when the scheme is forward pri-
vate where a newly added document cannot be related to any past search result until the next search
occurs. The attack forces SE schemes to be forward private where file injection is applicable.

Passive leakage-abuse attacks In 2017, Giraud et al. [37] refine leakage profiles L4, L3, L2

and L1 given in [20]. Then they present three partial plaintext recovery attacks on L4, L3, and
L2 leakage profiles which are claimed to be more practical than [20]. The attacks assume the
knowledge of some amount of sample plaintexts. We briefly describe them as follows.

The first attack is Mask attack on L4-SSE schemes. Here, the adversary can find encryption of
a file by just looking at the appearance of the keywords in an existing encrypted document. From
this, it can match plaintext and their encrypted versions. In the second attack, i.e., Co-mask attack
on L4-SSE schemes, the adversary matches co-occurrences of the known plaintext documents with
the encrypted documents.

In the third attack, i.e., PowerSet attack on L2-SSE schemes, where Co-mask attack can no be
performed as the order of the keywords are not preserved here, it works in two different ways–
associates documents to its identifiers and associates keywords to its tokens.
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3.1.4 Forward and backward secure search schemes

A forward private DSE scheme does not leak any information about the previous search results
when new documents are added. We have seen that a dynamic search scheme should be forward
private in order to be protected from file-injection attacks. The concept of forward privacy is
introduced by Stefanov et al. [87]. Previous to their scheme, Chang and Mitzenmacher [26] gave
a forward secure scheme which was published way ago. Though Stefanov et al. [87] introduced a
forward secure scheme, their proposed scheme was ORAM-based.

ORAM-based schemes Goldreich and Ostrovsky [41] first introduced Oblivious RAM (ORAM).
Naveed et al. [71] developed a methodology to study how ORAM can be used is DSSE schemes,
reducing access pattern leakage. They showed that it is not possible to completely eliminate leak-
age in an SSE scheme without downloading the entire outsourced data. Besides ORAM based
search scheme proposed by Rizomiliotis and Gritzalis [79], Garg et al. [36] proposed a TWORAM
and Path-ORAM based SSE scheme they proposed a scheme that does not leak the search pattern.
In 2004, Boneh et al. [11] presented a searchable encryption scheme using public-key encryption
techniques for static data. Due to the higher complexity of the public-key encryption scheme, it
has high computational costs.

Trapdoor permutation based forward private keyword schemes Bost [16] proposed a scheme∑
oϕoς that was not ORAM based. The scheme is designed with the help of trapdoor permutation.

He proposes two schemes, a basic version
∑

oϕoς-B that supports addition only and
∑

oϕoς
that supports deletion too with extra cost.

∑
oϕoς-B uses two tables W (kept in client) and T

(outsourced to cloud server). W keeps a counter c and the state information STc corresponding to
each keyword. Initially c = 0 and ST0 are chosen at random by the client. A keyword-document
pair (w, id) is added in T as T [UTi] ← id ⊕ H2(Kw, STi) where UTi ← H1(Kw, STi) and
STi+1 = Πsk(STi), where Πsk is a random permutation. For searching, the client sendsKw, STc, c.

For deleting a document, the client needs to know the keywords of the file to be deleted. So,
before deletion, the deleted file should be downloaded and decrypted by the client. This adds an
extra round of communication. Moreover, they proposed another version

∑
oϕoς-ε in which a tag

corresponding to the each keyword w is stored makes the scheme verifiable. However, it is not
clear how to store compute tags in

∑
oϕoς-ε, and has no formal proof of verifiability. The scheme

also does not have any description of how the verification will work in the case of a dynamic
database. It can use multiset hashing for the same which makes the scheme dynamic. In that case,
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the owner doesn’t have to search for the existing file identifiers while adding a keyword. Moreover,
the client needs to store the tag of the set of identifiers corresponding to each keyword.

Backward privacy A backward privacy (see Section 1.1.7) do not reveal the information about
the deleted identifiers.

So far, though the forward privacy has been explored by many researchers, not so is with the
backward privacy. This might be because there is no formal attack for a scheme that is forward
private but not backward private.

Forward and backward privacy together Bost et al. [18] explore backward privacy extensively.
They define three kinds of backward privacy- Type-I, Type-II, and Type-III. A Type-I backward
private scheme leaks the documents identifiers that currently contains the searched keyword, the
insertion time, and the count of updates on the keyword. A Type-II backward private scheme
leaks when all the updates on w happened in addition. However, the contents of the updates are
hidden here. A Type-III backward private scheme leaks which deletion update canceled which
insertion update in addition to the leakage by a Type-II backward private scheme. Thus Type-I is
the strongest and Type-III is the weakest notion of privacy among them.

Bost et al. [18] present several schemes that achieves both forward privacy and different types
of backward privacy. They first describe a generic backward private scheme B′(Σ), where Σ is an
arbitrary SSE scheme, with the cost of one extra round of communication during the search. The
main idea of the scheme is that when a keyword is searched, the returned keyword-document pairs
are re-encrypted with a new version of the key corresponding to the searched keyword, and then
the new encrypted pairs are uploaded. Thus it does not keep previous search results and hence no
leakage with updates. They instantiate Σ with different schemes. For example, when Σ is a result-
hiding scheme B′ achieves Type-II backward privacy. Its TWORAM [36] instantiation, Moneta,
achieves Type-I backward privacy, whereas its

∑
oϕoς [16] instantiation, Fides, achieves that of

Type-II.

Then Bost et al. [18] define the Forward Secure-Range Constrained PRF (FS-RCPRF) frame-
work that builds a single-keyword forward-private SSE scheme from any range constrained PRFs
(CPRF). Diana, the GGM [40] instantiation of CPRF, is a forward-private scheme whereas its
modified versions Dianadel, that supports deletion, is a two-roundtrips Type-III backward-private
scheme. Finally using the puncturable encryption schemes, they design another framework Janus,
with incremental update property, which is forward-private as well as achieves Type-III backward
privacy.
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Forward and Type-I− backward privacy Zuo et al. [114] later introduce Type-I− backward
privacy that is stronger than Type-I backward privacy. Given a time interval between two search
queries for a keyword w, a Type-I− backward private SSE scheme leaks the files that currently
match w and the total number of updates for w. Unlike Type-I schemes, it does not leak when the
files are inserted. Later they present a forward and backward private DSSE (FB-DSSE) scheme
which is forward-private as well as Type-I− backward private. The scheme is based on

∑
oϕoς

[16] and is designed by leveraging simple symmetric encryption with homomorphic addition and
bitmap index.

Their proposed scheme only returns identifiers of the result files. However, in searchable en-
cryption schemes, retrieval of the result files and leakage due to retrieve are considered. This
separates their scheme from other DSSE schemes.

Forward privacy in conjunctive queries Wu and Li [99] propose an efficient conjunctive search
scheme that achieves forward privacy, called virtual binary tree or VBTree. The tree is inspired
from KRB Tree [47] and IBTree [56]. As in the KRB tree, the files identifiers are mapped with
integers from zero in ascending order. Then a binary tree is prepared where file identifiers are kept
in the leaves. The set of keywords belonging to a file are kept in all internal nodes in the path of
the file. Note that, in the VBTree construction, an internal node does not need to store the same
keyword if more than one file below the node contains it. Also, this reduces the cost of storage
compare to the KRB tree.

The mechanism to keep keywords in internal nodes is inspired from [56]. When some file is
added, a keyword belonging to the file is added only in the internal nodes in the path from the
root to the leaf where the keyword is not present before. So, when a new file is added, the addition
process does not leak information until the next search. This makes the scheme unique and forward
private.

Secondly, the VBTree is stored only conceptually as a tree, but the tree structure is completely
hidden. The cloud sees only a set of key-value pairs, nothing more than that. However, when some
search is performed, some controlled part of the tree is revealed to the cloud. Moreover, the use
of only symmetric key encryption schemes makes the scheme efficient and practical.

Other forward and backward private schemes Bost et al. [18] have formalized definitions for
three forms of backward privacy and provided a solution for each of them using constrained PRFs.
Thereafter, Chamani et al. [25] have formalized leakage function for those forms. They have pro-
posed a non-interactive backward-secure search scheme from symmetric puncturable encryption
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which is an improvement over [18]. At the same time, Sun et al. [90] have introduced symmetric
puncturable encryption and using it proposed another improved backward secure scheme that can
revoke a cloud server’s searching ability on deleted data.

3.1.5 Verifiable Searchable Encryption schemes

In most of the works, the cloud service providers are considered semi-honest i.e., honest to follow
the protocol but curious about the data and queries. That is why they become vulnerable when the
cloud server behaves maliciously. Being verifiable, an SE or a DSE scheme becomes protected
from such cloud servers. Here we describe some of the works on verifiability.

Verifiable query over static data Chai and Gong [24] first introduce verifiable SE schemes. The
scheme is for single keyword search and supports only static data. For verification, it uses a trie-
like dictionary data structure where the search is performed in logarithm time in terms of length
of the keywords. In the tree, each leaf node indicates some keyword. In the verifiable SE scheme,
a leaf node stores all the identifiers that contain the corresponding indicating keyword. A keyed
hash function is used that binds the file identifiers with the parent node in the path to the keyword.
The cloud returns the path to the client with the search results. Since the client stores the key, it
can easily recompute the hashes and can verify if any data changed in the path.

Later Wang et al. [96] propose a verifiable search scheme that works for conjunctive search.
The scheme is like Cash et al. [21] scheme. An accumulator is generated for each keyword which
helps to prove whether a returned result really exists. An authentication tag is also generated that
ensures that the list of encrypted identifiers corresponding to a keyword is unchanged. Finally, an
accumulator is generated for a set of size |W|, and another accumulator of the size of the number
of keyword-document pairs is generated.

However, the scheme is only for static data. It assumes the keywords to be unique primes.
Generating this large number of primes is a hard task. It has referred Sun et al. [89] to find such
primes. It considers the least frequent keywords while answering a query. However, it has not
mentioned how keyword frequency record is kept and retrieved during a query. So, as in [21], it
either requires extra storage at the client-side or requires an extra round of communication before
every query.

In most of the SSE schemes, the set of keywords i.e., the dictionary is fixed. In case, while
searching a keyword out of the dictionary, the cloud may not return the correct proof of non-
existence. Ogata and Kurosawa [74] propose a single keyword search generic verifiable SE scheme
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that returns correct proof for any searched keyword string. The scheme supports only static
databases and uses a cuckoo hash table in which search time is constant. It uses two tables and
two hash functions for them but keeps the value in only one table that is determined by the cuckoo
hashing algorithm.

The main idea of the scheme is that, for each keyword w, a keyed hash of the keyword w is
computed. Then another keyed hash ofDB(w) bounded with the hash of the keyword is computed.
During the search, Both values are returned from their stored values in the cuckoo hash table. If
the keyword is present, the cloud server returns correct values from the cuckoo hash table and the
client can verify. If the keyword is not present. Then there will be a failure to match keyed hashes.

Multi-set hashing and Merkle tree based verification The scheme by Chai and Gong [24] is
not forward private. Bost et al. [17] first study the searchable encryption schemes from the the-
oretical point of view. They give lower bounds on the computational complexity of search and
update queries. The bounds are intuitive for semi-honest adversaries. In presence of such adver-
saries, they show the search cannot be done in less than Ω(m) where m is the number of results for
a query, and the update has to run in Ω(1) per modified document/keyword pair computationally.
From a storage point of view, they show that if the client’s private storage is not linear in |W| in the
database, the verification of an SSE scheme has to have a logarithmic overhead for either search or
update queries. They present two generic solutions that match these lower bounds.

The first solution is based on multi-set hashing and Merkle tree-like data structures. They
present the idea of the verifiable hash table (VHT) which has performance like a normal hash
table, however, it additionally returns proof that the search returns the correct result. The key idea
of a VHT is that it sorts all key-value pairs, then computes the MAC of each pair together with rank
in the sorted list. During the search, the cloud returns the pairs before and after of the searched one
together with rank. From this information, the client can verify easily. The generic construction
GSV of verifiable SE uses a multiset hash for each keyword. The hashes are then kept in a VHT.
They also compared the performance of a GSV with accumulator-based VHT. Though the scheme
achieves good performance, it is not verifiable. Finally, using VHT they extend Stefanov et al. [87]
to be verifiable keeping forward privacy property unchanged.

Verifiable conjunctive keyword search According to Wang et al. [96], they are the first to de-
sign a Static Verifiable SSE scheme that supports conjunctive keyword search and can handle
large database. The scheme is an extension of Cash et al. [22] and Sun et al. [89] schemes. The
verification process of the scheme is based on Bilinear-map Accumulator.
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The idea of the scheme is as follows. For each keyword, a list of identifiers of documents
are encrypted individually and kept in a table TSet where all such encrypted document identifiers
are kept. Then for the list, an accumulator value is generated. The accumulator value together
with its authentication tag is kept in the table TSet. Besides, corresponding to either a keyword-
document pair, an xtag-value is computed and kept in a table XSet. Similarly, corresponding to
every keyword, a tag value stag is computed and kept in a table Stag. Finally, an accumulator is
computed for each of the tables.

During the search, given a set of keywords {w1, w2, . . . , wn}, the cloud at first finds the list of
identifiers Rw1 containing w1 and checks its authenticity. Then for each identifier in Rw1 checks
whether all other searched keywords are present or not. For the same, it regenerates xtag-values
for the keyword-document pairs. From the accumulator values, the cloud returns proof of either
existence or non-existence of the pairs.

The search cost of their scheme depends on the number of documents matching with the least
frequent keyword. The scheme can achieve verifiability of the search result with constant size
communication overhead between the client and cloud server. The security of their scheme is
based on q-SDH assumption (see Definition 2.15). However, the scheme works only for static
databases. They assume that each keyword should be a prime, which led to O|W| extra cost of
keeping the list of the primes together keywords at the client-side.

UC-secure verifiable conjunctive search Sun et al. [91] present a verifiable conjunctive key-
word search (VKCS) scheme which is based on bilinear map accumulator and accumulation tree.
The basic idea of the scheme, to generate the secure index, is as follows. It considers an m × n
matrix where m is the number of unique keywords and n is the files. Each row and column cor-
responds to a keyword and a file respectively. Thus an entry is 1 if the keyword-file pair exists,
otherwise zero. Each entry is then encrypted with some pseudo-random bit. Then for each key-
word, an accumulator is generated for the entries with value 1 i.e., for the files containing the
keywords. Finally, an accumulation tree is prepared for the accumulators. During the search, the
rows of the searched keywords are recovered, decrypted, and then computed intersection. From
the stored accumulator and accumulation tree, the verification can be done publicly. To add, delete
or modify a file, the client does the same for the corresponding column.

Later, they show the scheme is UC-secure against a malicious adversary. Though the scheme
supports dynamic updates, it is not forward private. The scheme is easier to implement. For each
file, it takes constant space of |W|-bits in the secure index. So, if the dictionary size is large, and
the files are small, then the matrix become sparse resulting good amount of storage expansion.
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Verifiable search with forward privacy Using algebraic PRF, Yoneyama, and Kimura [107]
propose a verifiable SSE scheme that is dynamic as well as forward private. The APRF is a
special type of PRF such that certain algebraic operations on these outputs can be computed more
efficiently with the secret salt than computing separately. The general idea of verifiable schemes is
to make a tag of the identifiers, corresponding to each keyword, containing that keyword. However,
tag generation algorithms are different. [107] uses APRF for tag generation on top of [16] keeping
the forward private property unchanged.

For each keyword w it generates verification tag V erc+1 ← AF (KV , (c(w) + 1, w, ind)) for the
file ind containing it, where KV is the verification key and cw is used as counter. The client sends
them to the cloud together with keyword-file pairs of the base scheme [16]. During search, the
cloud collects all such tags for the searched keyword and sends V erw =

∏c
i=0 V eri to the client

together with set of identifiers DB(w) = {indi, 0 ≤ i ≤ c}. From the result identifiers and the
aggregated product V erw of verification tags, the client can efficiently check the validity of the
result as it stores the counter as the state of the database. Since the client does not store any tags
at its own place, the storage cost is reduced here from the earlier single keyword search verifiable
scheme. However, in the scheme, server-side storage is increased while achieving the above.

bilinear map accumulator and Merkle hash based conjunctive search verification Li et
al. [57] propose a scheme conjunctive keyword search scheme. It uses a bilinear map accumu-
lator and a Merkle hash tree for verification. The basic idea of the scheme is inspired from [48]
where two types of indices are used for searching- inverted index and general index. However,
the scheme is only for a single keyword search. Li et al. [57] generalize the scheme that supports
conjunctive search with verifiability.

During building, first, a search index is generated similarly as [48]. Then for every keyword,
an accumulator is generated for the set of file identifiers containing the keyword. A Merkle hash
tree is generated that ensures the integrity of such accumulators.

On a search request, the cloud performs the single keyword query search for all keywords in the
query. Then the intersection of the result is computed. Finally, the cloud server gives the proof of
two things; subset and completeness. The result set i.e., intersection set, is the subset of all single
keyword search results. The cloud gives proof of membership of the intersection set in all resulted
sets. This is possible as for every keyword, an accumulator is saved for all documents containing
the keyword. The proof of completeness is given using the extended Euclidean algorithm for
polynomials.

Despite the scheme uses the symmetric key encryption scheme for search and supports dynamic
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updates, the use of the public key encryption for search result verifiability makes the scheme heav-
ier. Another drawback of the scheme is that it has to perform a single keyword search for all
keywords in a conjunctive query.

Publicly verifiable Boolean query Jiang et al. [45] present a good Boolean search scheme that
is publicly verifiable too. The base of the scheme is based on OXT protocol [22]. For verification,
they use accumulators together with a special Merkle hash tree where the information for verifica-
tion is stored. The Merkle hash tree converts a Boolean keyword search operation in a DSE to a
set operation.

As OXT protocol, for each keyword-document pair, a unique key-value pair is created and
stored in a table. Then the search and update protocol for searching is similar as [22]. For verifi-
ability, each pair is mapped to an element in a bilinear group. Then, an accumulator is generated
for such keywords belonging to the same document. Such accumulators become elements of the
next-level accumulators. Thus, any non-leaf node is an accumulator of its children, whereas a leaf
node corresponds to some keyword-document pair. During verification of a search result, with the
help of the root of the tree, that is the digest of the tree, the client can verify easily.

In this scheme, an update requires two rounds, which is a drawback of the scheme. However,
any accumulator-based scheme requires two rounds of communications if the owner does not store
the state information of the database.

Other verifiable search schemes Cheng et al. [28] have presented a VSSE scheme for static data
based on the secure indistinguishability obfuscation. Their scheme also supports Boolean queries
and provides publicly verifiability on the return result. With a multi-owner setting, Liu et al. [63]
have presented a VSSE with aggregate keys. Miao et al. [68] presented a VSSE in the same multi-
owner setting. All of those schemes are for static databases and are privately verifiable where the
VSSE schemes by Soleimanian and Khazaei [85] and Zhang et al. [109] are publicly verifiable.

There are some works that deal with complex queries when the data is static. Conjunctive
query on static data has been studied by Miao et al. [69], Wang et al. [96], Miao et al. [67] etc.
These schemes have private verifiability. [102] is a blockchain-based scheme that supports Boolean
range queries keeping the encrypted data index and queries on a blockchain having a good amount
of monetary cost for each search whereas [6] only supports conjunctive search.

Dynamic verifiable SSE with complex queries also has been studied. Zhu et al. [112] presented
a dynamic fuzzy keyword search scheme that is privately verifiable and Jiang et al. [44] has studied
Publicly Verifiable Boolean Query on dynamic databases. For dynamic data, a dynamic fuzzy
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keyword search scheme was proposed by Zhu et al. [112] which is privately verifiable. Again,
publicly verifiable dynamic SE scheme by Jiang et al. [45] allows the query to be Boolean where
Sun et al. [91] allows only conjunctive searches.

3.2 Queryable Encryption on graph data

Graph algorithms are well studied when the graph is not encrypted. Since the necessity of out-
sourcing graph data in encrypted form is increasing very fast and encryption makes it difficult to
work those algorithms, a study is required to enable them. There are only a few works that deal
with the ‘query’ on ‘outsourced encrypted graph’.

Encrypting static graph Chase and Kamara [27] discuss graph encryption while introducing
the notion of structured encryption as a generalization of searchable symmetric encryption (SSE)
proposed by Song et al. [86]. They present queryable encryption schemes for the queries that
include lookup queries on matrices, search queries on labeled data, neighbor queries and adjacency
queries on graphs, focused subgraph queries on labeled graphs.

Given a pair (α, β) lookup queries on matrices M returns the value of M [α, β]. The encryption
of such matrix consists of permutations of rows and columns and encrypting individual entries. For
example, the entry i = M [α, β] is kept atM ′[α′, β′] = π(i)⊕Fk1(α, β) where, F is a PRF,M ′ is the
new encrypted matrix, (α′, β′) is a pseudo-random permutation of (α, β) and π(i) is an encrypted
value of i using a symmetric key encryption. In case the graph is labeled i.e., (i, vi) = M [α, β],
the new entry will be M ′[α′, β′] = (π(i), vi)⊕ Fk1(α, β).

In the case of a neighbor query, instead of storing the encrypted values in M ′, all of them
corresponding to a vertex are stored as a tuple. The tuple is stored in a dictionary where the key
of the key-value pair is generated from the vertex. For a directed graph, given a vertex, a focused
subgraph query returns all the vertices that are connected either to or from the given vertex. For a
focused subgraph query, they keep two encrypted graphs- one only for the to vertices and the other
for the from vertices. On query, the cloud server returns combining both the results.

In all of their proposed schemes, the graph is considered as an adjacency matrix and each
entry is encrypted separately using symmetric key encryption. So, the scheme is inefficient for a
large sparse graph as the storage requirement grows faster. Moreover, the scheme is only for static
graphs.
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Privacy preserving queries Different types of privacy-preserving queries on encrypted graphs
are studied by Cao et al. [19], Zhang et al. [108]. SPARQL query on encrypted graphs is studied
by Kasten et al. [49]. Based on [32], Xu et al. [104] proposed a scheme to find all paths, from
a source to a destination vertex, in a privacy-preserving manner. Lai et al. [54] proposed a graph
encryption scheme with the ability of social search which allows users to search the content of
interests created by their friends. Xie and Xing [101] have studied clustering coefficient. They
encrypt each entry of the adjacency matrix, using homomorphic encryption, making the scheme
inefficient for large datasets and frequent queries.

Besides, Zheng et al. [111] proposed link prediction in decentralized social networks preserv-
ing privacy. Their construction split the link score into private and public parts and applied sparse
logistic regression to find links based on the content of the users. However, the graph data was not
considered to be encrypted in the privacy-preserving link prediction schemes.

Approximate shortest distance queries Sketch-based oracles are useful to find an approximate
shortest distance between two vertices, with some error bound. Meng et al. [65] study the same for
encrypted outsourced graphs. They consider static graphs only. They compute most of the steps
at the pre-processing stage where the client computes the sketches for every vertex that is useful
for efficient shortest distance query. Instead of encrypting the graph directly, they encrypted the
pre-processed data.

They use two sketch-based oracles. However, the concept is the same for both. For each vertex
v, a set of vertex-distance pairs {(wz, δz) : z = 1, . . . , λ} is found, where wzs are representative
nodes with δzs being the distance from v. During a search, given two vertices, a common node
is found between the sketches of them. The sum of distances of the common vertices is returned
as result. To encrypt the distances in the vertex-distance pairs in a sketch, they use a somewhat
homomorphic scheme that enables adding the values without decrypting them. The client can
decrypt the approximate shortest distance from the encrypted result.

However, the encryption scheme only encrypts the required sketches and does not preserve the
graph structure. Thus, in their scheme, there is no chance of getting information about the original
graph. The basic queries like vertex queries or edge queries cannot be performed here.

Exact shortest distance queries The previous work [65] finds an approximate shortest distance
between two points. It does not ensure if we found two common nodes in their sketches and then
no result can be found. Wang et al. [97] try to solve the problem and find the exact distance
between two points in encrypted weighted graphs. Moreover, the scheme is dynamic.
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Their scheme is inspired from [48] that allows it to be dynamic. They use Dijkstra’s algorithm
to find the shortest distance. If we see [48], given a search query token, the cloud can traverse only
to its adjacent vertices. However, Dijkstra’s algorithm requires the cloud to traverse any depth until
it reaches the destination vertex. So, the search token for all the adjacent vertices is stored with the
adjacent vertex set information. Thus, given a vertex, the cloud can return any vertex connected to
it.

The cloud has to compare the weight of the edges that are encrypted. To compare them, the
client uses another proxy server and gives it a partial key to decrypt the weights. The cloud and
the proxy server compares the weights using a garbled circuit (see Section 2.18) without knowing
them.

However, one of the major disadvantages is that in a single query, the scheme leaks all the nodes
reachable from the queried vertex which is a lot of information about the graph. For example, if
the graph is complete, it reveals the whole graph. Though the scheme uses private key encryption
for all, it requires the help of an extra proxy server that computes the garbled circuit and makes the
scheme heavy for the cloud.

Forward private search over encrypted labeled bipartite graphs Lai and Chow [34] construct
two forward private DSE schemes over labeled bipartite graphs. The schemes are a generalization
of single keyword search SE schemes. The first is a generic construction from any DSE, and the
other is a concrete construction from scratch. Besides neighbor queries, our schemes support flex-
ible edge additions and intelligent node deletions. The cloud server can delete all edges connected
to a given node, without having the client specify all the edges. The scheme makes any DSE
scheme forward private and inspired from [42]. And we see that the problem of single keyword
search is similar to find adjacent vertices in a bipartite graph where two distinct sets are the set of
keywords and the set of documents. The main idea is to locally maintain a table γ of PRF keys Kx

and counters cx for each query q = x so that adding an edge (x, y, w) updates the counter and the
key used for the query is a function of both Kx and the counter. So, there is no repeatation for the
same keyword.

They design a novel data structure called cascaded triangles in which traversals can be per-
formed in parallel while updates only affect the local regions around the updated nodes. They
present the second scheme using cascaded triangles. The main idea is that instead of keeping the
set of neighbor in a single linked list, they are put it in a complete binary tree. This enables the
search, in a different branch, to be performed in parallel.
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Approximate constrained shortest distance queries Shen et al. [84] propose an approximate
constrained shortest distance (CSD) query scheme Connor in encrypted graphs which finds the
shortest distance with a constraint such that the total cost does not exceed a given threshold.

They use a somewhat homomorphic encryption scheme and order revealing encryption scheme.
They design a tree-based ciphertexts comparison protocol, which helps to determine the relation-
ship of the sum of two integers and another integer over their ciphertexts with controlled disclosure.

The main difference between [84] and [65] is that, in [84], for each node in and out vertices
are stored in different structures. Given a node, the cloud can traverse in both directions whereas
it can go in out directions only in [65]. Sketches are used in pre-processing stage for both of them.
Secondly, instead of Dijkstra’s algorithm, it [84] traverse in a tree structure called cost constraint
tree. For comparison, they used order revealing encryption that helps to compare the distances and
find the approximated shortest one.

Parallelizable graph encryption A parallel secure computation framework GraphSC has
been designed and implemented by Nayak et al. [73]. This framework computes functions like
histogram, PageRank, matrix factorization, etc. To run these algorithms, GraphSC introduced par-
allel programming paradigms to secure computation. The parallel and secure execution enable the
algorithms to perform even for large datasets. However, they adopt Path-ORAM [88] based tech-
niques which is inefficient if the client has little computation power or the client doesn’t use very
large size RAM.



Chapter 4

Efficient Keyword Search on Encrypted Dy-
namic Cloud data

One of the primary objectives of designing an SSE scheme for cloud data is to reveal as little
information to the cloud server as possible. A naive solution is the following. For every search
query, the client downloads the complete encrypted data, decrypts them, and performs the search on
the data. However, downloading the whole data for each search query is impractical and defeats the
purpose of outsourcing data to the cloud server. SSE schemes on encrypted data handle keyword
searches more efficiently than this naive solution. On the other hand, uploading data to the cloud
in an encrypted form is not enough. In the case of dynamic data, the client may need to add or
delete data. In such a scenario, the SSE scheme should be able to support database updates. An
SSE scheme that supports such updates is said to be a Dynamic SSE (DSSE) scheme.

A DSSE scheme can have the access pattern leakage, search pattern leakage, etc. (see Sec-
tion 1.1.6). For any DSSE scheme, it is desirable to reduce these leakages. Although some DSSE
schemes [79, 36] based on oblivious RAM [41] provide maximum privacy (i.e., minimum leak-
age), they require huge bandwidth and storage — which makes these schemes inefficient. Some
other DSSE schemes, like [48, 42, 21], compromise privacy at the cost of efficiency.

With search pattern leakage, Zhang et al. [110] showed a file-injection attack (see Section 3.1.3)
can recover queried keywords with high efficiency. In such an attack, the adversaries can force
the clients to add any number of files of its choice. Forward private schemes, where previously
searched keywords are not revealed during adding a new file, are protected from such attacks. So
far, there is no practical attack over the schemes which have only forward privacy but not backward
privacy (3.1.4). In a backward private DSSE scheme, within any period, if two search queries on
the same keyword happened, it does not leak information about the files that have been previously
added and later deleted [18].

However, the file-injection attacks [110] rely on the assumption that the adversary (cloud) can
inject files in the encrypted database using the owner’s key which is the same as giving the key
to the cloud or stealing by the adversary. The first case can be avoided simply by not considering
such email-like databases where key is given to the adversary. In the second case, it is difficult to
protect if not any encryption scheme if the secret key is stolen by the adversary. Hence making a
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scheme forward or backward private is not always necessary by increasing the other costs.

Our contribution We summarize our contribution in this chapter as follows.

• We present a DSSE scheme Trids for cloud data that

– has a keyword search time linear in the number of documents containing the searched
keyword.

– has a file update time linear in the number of keywords present in the file — which is
optimal in the sense that the list of files corresponding to each of these keywords must
be accessed and updated accordingly.

– requires less storage overhead than the existing schemes like [48].

– does not leak, in case of file deletion, the keywords that have not been searched previ-
ously.

A detailed comparison with existing DSSE schemes (based on these parameters) for cloud
is given in Section 4.3.

• Our design exploits efficient data structures that significantly reduce the storage, search time,
and update time. We provide a simulation-based security proof of our DSSE scheme Trids.

• We build a prototype of our scheme and run experiments on real-life data sets [33]. For
the results, we observe that even with a dictionary having 450,000 keywords and 2,300,000
keyword-file pairs, search time is only around 300 µs — which shows the efficiency of our
DSSE scheme Trids.

We also compare the performance of our scheme Trids with those of other DSSE schemes found in
the literature (see Section 4.3). For a quick review, we refer to Table 4.2 and Table 4.3 that provide
a comparison between Trids and other DSSE schemes based on different parameters. From these
tables, we observe the following.

• The scheme presented in [42] has a smaller index size compared to our scheme Trids. How-
ever, in Trids the client stores no data (except the private key), whereas [42] has to store a
search history of size O(N) at the client’s end.

• Although the DSSE scheme presented in [87] has less leakage, it hasO(logN) communica-
tion rounds with high bandwidth and large client-side storage which makes the scheme less
desirable.
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• Although [16] has less index size compared to us, it has large client-side storage even with a
good amount of cloud side computational cost.

• We note that other DSSE schemes [18, 90, 25] have been proposed recently which are for-
ward and backward private and protect the schemes from file-injection attack [110]. How-
ever, the requirement of large client storage (at least O(|W |)) makes the schemes inappro-
priate for lightweight clients.

• Our scheme Trids has significantly less storage and less leakage than the “state-of-the-art”
DSSE scheme [48].

Organization The rest of the chapter is organized as follows. We give some preliminary defini-
tions in Section 4.1. We describe our proposed scheme in Section 4.2. In Section 4.3, we discuss
a comparative study of our scheme with existing similar schemes. The security of our proposed
scheme is described in Section 4.4. We evaluate the performance of our scheme in Section 4.5.

4.1 Preliminaries

Let f = {f1, f2, . . . , fn} be a collection of n documents or files. cfi is the encrypted version of fi
and c = cf1 , cf2 , . . . , cf|f| is the collection of encrypted files.

For each file f , there is a file identifier id′(f). Instead of the original name, a keyed hash
function id′ is used where the key is secret to the client. This is because sometimes the name of a
file leaks information about the content of the file. Similarly, instead of dealing with the keywords
directly, a keyed hash function id is used and identifiers of them are generated. The set of files
containing a keyword w is denoted by fw and Iw refers to the set of file identifiers containing a
keyword w. Table 4.1 contains the notations used in the chapter.

4.1.1 DSSE Scheme

Initially, in a DSSE scheme, the client takes a set of files f and generates an encrypted inverted
index γ and a set of encrypted files c. Inverted index is a type of data structure where for each
keyword, the set of identifiers of the documents, that contains the keyword, is kept. Then the client
uploads (γ, c) to the cloud server. Later, the client generates tokens for adding (or deleting) files
or searching for keywords. A token is an encrypted trapdoor that is generated using the client’s
secret key and a query (either search or add or delete query). It helps the cloud server to perform
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Table 4.1: Notations used for proposed keyword search scheme

Symbols Meaning
F PRP {0, 1}λ × {0, 1}log |W | → {0, 1}log |W |

F ′ PRP {0, 1}λ × {0, 1}log lmax → {0, 1}log lmax

G PRG {0, 1}λ × {0, 1}∗ → {0, 1}log |W |

G′ PRG {0, 1}λ × {0, 1}∗ → {0, 1}log lmax

N A cell of the array A
L, R, D Pointer to the left/ right/ down node in TDL

W Set of all possible keywords/ Dictionary
id(w), id′(f) Identifier corresponding to the keyword w / file f

P (, ) A PRG {0, 1}λ × {0, 1}∗ → {0, 1}λ
ta, ts, td Add, search and delete token respectively

λ The Security parameter
f̂ Set of distinct keywords in the file f
Hi Standard hash function like SHA-256 (i = 1(1)5)

kw, kf Key corresponding to the keyword w/ file f
lmax Maximum #files that can be stored by the cloud

the query on the encrypted index γ without knowing the query. Finally, the cloud server sends the
query results to the client and updates (γ, c) accordingly. We define an index-based DSSE scheme
in Definition 4.1 which follows from [48].

Definition 4.1 (DSSE scheme). An index-based Dynamic Symmetric Searchable Encryption
Scheme Σ is a tuple Σ =(KeyGen, Enc, Build, AddToken, Add, SearchToken, Search,
DeleteToken, Delete, Dec) of algorithms defined as follows.

• K ← KeyGen(1λ): is a client-side PPT (probabilistic polynomial-time) algorithm that
takes λ as security parameter and outputs a secret key K.

• cf ← Enc(K, f): is a client-side PPT algorithm that takes a secret key K and a file f as
input and outputs the encrypted file cf of f .

• (c, γ) ← Build(K, f): is a client-side PPT algorithm that takes a key K and a set of files f
as input and outputs the encrypted set of files c and an encrypted inverted index γ.

• ta ← AddToken(K, f): is a client-side PPT algorithm that takes a secret key K and a file
f as input and outputs an add token ta.

• (c′, γ′) ← Add(ta, c, c, γ): is a server-side PPT algorithm that takes an add token ta, an
encrypted file c, a set of encrypted files c and an inverted index γ as input and outputs
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updated c′ and γ′.

• ts ← SearchToken(K,w): is a client-side PPT algorithm that takes the secret key K and
a keyword w as input and outputs a search token ts.

• Iw ← Search(ts, γ): is a server-side PPT algorithm that takes a search token ts and the
index γ as input and outputs Iw. It contains the identifiers of the files that contain w.

• td ← DeleteToken(K, id′(f)): is a client-side PPT algorithm that takes the key K and a
file identifier id′(f) and outputs a delete token td.

• (c′, γ′) ← Delete(td, c, γ): is a server-side PPT algorithm that takes a delete token td, a
set of encrypted files c and an inverted index γ as input and outputs updated c′ and γ′ after
deletion.

• f ← Dec(K, c): is a client-side PPT algorithm that takes the secret keyK and an encrypted
file c as input and outputs the decrypted file f .

Correctness: A DSSE scheme Σ is said to be correct if ∀λ ∈ N, ∀K generated usingKeyGen(1λ)

and all sequences of add, delete and search operations on γ, every search operation outputs the
correct set of file identifiers, except with a negligible probability.

Security: In the ideal scenario, a DSSE scheme should have the following two properties.

1. From (γ, c) given initially, the server should not learn any information about files in f.

2. From a sequence of tokens (search, add or delete) t1, t2, . . . , tn, the server should learn noth-
ing about corresponding queries and file collection f.

Goldreich [41] first introduced an oblivious RAM (ORAM)-based search scheme that had these
properties. However, this scheme is not practically implementable due to its high computation
complexity.

Definition 4.2 (CKA2-security of a DSSE scheme). [48] Let Σ = (KeyGen,Enc,AddToken,
Add, Build, SearchToken, Search, DeleteToken, Delete, Dec) be an inverted index-based
DSSE scheme. Let A be a stateful adversary, C be a challenger, S be a stateful simulator and
L = (Lbld,Lsrch,Ladd, Ldel) be a stateful leakage algorithm. Let us consider the following two
games.

RealA(λ):
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1. The challenger C generates a key K ← Gen(1λ).

2. A generates a set of files f and sends it to C.

3. C computes (γ, c)← Build(K, f) and sends (γ, c) to A

4. A makes a polynomial number of adaptive queries. In each query A sends either a search
query for a keyword w or an add query for a file f1 or a delete query for a file f2 to C.

5. Depending on the query, C returns either the search token ts ← SearchToken(K,w) or the
add token ta ← AddToken(K, f1) or the delete token td ← DelToken(K, f2) to A.

6. Finally A returns a bit b that is output by the experiment.

IdealA,S(λ):

1. A generates a set of files f. It gives f and Lbld(f) to S.

2. On receiving Lbld(f), S generates (γ, c) and sends it to A

3. A makes a polynomial number of adaptive queries q ∈ {w, f1, f2}. For each query, S is
given either Lsrch(w, f) or Ladd(f1, f) or Ldel(f2, f).

4. Depending on the query q, S returns to A either search token ts or add token ta or delete
token td.

5. Finally A returns a bit b that is output by the experiment.

We say Σ is L-secure against adaptive dynamic chosen-keyword attacks if for any PPT (proba-
bilistic polynomial-time) adversary A, there exists a simulator S such that

|Pr[RealA(λ) = 1]− Pr[IdealA,S(λ) = 1]| ≤ µ(λ) (4.1)

4.2 Our proposed scheme Trids

Scheme overview: We use a one-dimensional array A and two hash tables T and T ′. The client
starts with a collection of documents f = {f1, f2, . . . , fn}. A tri-directional linked list (TDL) is
created taking the cells from A as shown in Fig. 4-1. Each entry in T corresponds to a keyword
w ∈ W and that in T ′ corresponds to a file f ∈ f.
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Figure 4-1: Internal data structure of TDL

Each node in the TDL has pointers to three directions: right, down, and left. Right pointers are
used for searching while down pointers are used during the deletion of a file and left pointers for
modifying the list after deletion.

The client takes a set of files and builds an encrypted inverted index. The index together with
encrypted files are sent to the cloud server. Later, the client generates tokens for search, add or
delete query, and the cloud server returns the corresponding results (if any) after processing the
queries.

In order to construct the index, for each keyword, the number of files containing the keyword
is calculated. The same number of cells are chosen at random from A. A TDL is created with
the chosen cells and each node is filled with a file identifier. A dummy node is then added to the
beginning of the linked list. Finally, a pointer to the dummy node is kept in the row of T indexed
by the keyword. Nodes belonging to the same file identifier are linked with down pointers. The
head pointer of that list is kept in the table T ′ corresponding to the position of the file in encrypted
form. However, this linking is done simultaneously while building the TDL.

A search token consists of an index in T , its decryption key, and some extra information.
This extra information helps the cloud to decrypt the nodes. Similarly, for adding or deleting, the
position of the file in T ′, its decryption keys are sent with the corresponding token. The cloud
server traverses through the TDL and modifies it (if required) as per the requested token.

4.2.1 Description of our proposed scheme Trids

Our main idea is to construct a DSSE scheme based on an efficient inverted index. The efficiency
of our scheme is compared with existing schemes in Section 4.3. In the beginning, an encrypted
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inverted index corresponding to a set of documents is built and then uploaded to the cloud server.
Later, on request of the client, the cloud server performs a search or add or delete on the index and
returns the results. It updates the index as per client requests.

Our proposed scheme Trids consists of the algorithmsKeyGen(),Enc(),Build(),AddToken(),
Add(), SearchToken(), Search(), DeleteToken(), Delete() and Dec(). For file encryption, a
CPA-secure1 symmetric encryption scheme SE = (SEgen, SEenc, SEdec) is used.

Algorithm 6: KeyGen(λ)

1 k1, k′1, k2, k′2, k3
$←− {0, 1}λ

2 k ← SEgen(1λ)

3 K = (k, k1, k
′
1, k2, k

′
2, k3)

4 return K

In KeyGen() (see Algo. 6), a secret key of length λ is
generated. The initial inverted index γ is built using Build()

function corresponding to a set of files f and a secret key K.
γ is a tri-directional linked list (TDL) which is built with the
help of two hash tables T and T ′ and an one dimensional array
A of structures of size |W |, lmax and lw.lmax2 respectively.

The array A is an array of structures. Each element of A is said to be a cell that is used in
TDL. Each node of the TDL is a 6-tuple (L, R, D, Rs, id′(f), r) where L = L ⊕ H1(Kf , r),
R = R⊕H2(Kf , r),D = D⊕H3(Kf , r),Rs = Rs⊕H4(Kw, r) and id′(f) = id′(f)⊕H5(Kw, r).
L,R,D andRs are the addresses of the nodes on the left, right, down, and right respectively. These
addresses are not disk memory locations but the position indices inA. For example, the left pointer
L indicates the (L + 1)th entry of A, i.e., A[L]. id′(f) is the identity of the file f . r is a random
number of length λ. R and Rs have the same value while R and Rs are different. The address Rs
is used for searching on TDL while L, R, and D are used for updating a file. Kf and Kw are
the keys corresponding to the file f and the keyword w respectively.

For an integer i in range |A|, for writing simplicity, we denote A[i].L, A[i].R, A[i].D, A[i].Rs,
A[i].id′(f), and A[i].r as A[i][0], A[i][1], A[i][2], A[i][3], A[i][4], and A[i][5] respectively.

It can be observed that if we consider only right pointers corresponding to a keyword w, then it
visits the files which contain the keyword w. On the other hand, if we traverse through only using
down pointers corresponding to a file f , we visit all keywords of f .

Let W be the set of all keywords. T (or T ′) is a hash table of length |W | (or lmax). A function
F (or F ′) maps each keyword (file) identifier id(w) (or id′(f)) to a distinct entry of T (or T ′).
Thus, T [F (id(w))] (or T ′[F ′(id′(f))]) is the entry corresponding to w (or f ) which stores the head
of the linked list for w (or f ). A secret key is used by the client in id and id′ to make functions
private. It prevents the cloud server to learn about a keyword/file name from its identifiers.

1CPA-security is defined as indistinguishability under chosen plaintext attack or IND-CPA [10]
2lw is the average number of distinct keywords in a file.
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There is a dummy node in front of each linked list corresponding to each keywordw (see Fig. 4-
1). For example, for a keyword w, a random node is taken and its address is kept in T [F (id(w))]

encrypted using G(id(w)). The node is dummy because it does not keep any file identifier stored
in it. While deleting the lastly added file, it helps not to leak information about the keywords not
searched before. A dummy node is added to the linked list for every keyword when it is added for
the first time in the database. Dummy nodes added during Build() process are chosen randomly
from the empty cells, and those added during Add() are chosen from Lfree, a list of free cells from
A.

A free list Lfree is a sequence of random nodes from A where the first node of the sequence is
A[0]. In the list, each node keeps the address of the next node. The selection of randomness is done
by the client. The list is at the end of Build() process. Algorithm Lfree.in() (see Algo. 15) and
Lfree.out (see Algo. 14) are the only operations defined to access the list. When a file is deleted,
the deleted nodes are added to the list using Lfree.in() and at the time of addition of a new file,
new nodes are taken from Lfree using Lfree.out.

Initially, the client passes a set of files f and a secret key K to the Build() function (see
Algo. 7). Then an inverted index γ is initialized with A, T and T ′. For each w ∈ W , a linked list
is made with the randomly chosen cells from A. Each entry corresponding to a keyword w stores
the identifiers of the files that contain the keyword w. The file identifiers are kept in an encrypted
form. At the end of Build() process the empty cells in A are chosen at random and linked to form
a singly linked list. The first pointer of the list is kept in A[0]. This list is the free list and denoted
by Lfree. Finally, the updated γ, together with the set of encrypted files c, is uploaded to the cloud
server by the client.

We see that before building the encrypted index, the client requires some computations. We
assume that the client uses a large computing device for this. Since the computation is a one-time
process, the client can do it easily.

To add a file f , an add token ta is generated using AddToken() (see Algo. 8). The client sends
ta together with the encrypted version c of the file f . File encryption is done using Enc() (which
is SEenc()). Dec() (i.e., SEdec()) is used later to decrypt retrieved encrypted files. γ is updated
with every call of Add() (see Algo. 9). When add token is received by Add(), the set of keyword
identifiers are then sorted.

For each keyword w in f̂ , an unused node is taken from Lfree and added in front of the dummy
node of the linked list corresponding to w. If there is no dummy node, a node is taken from Lfree

and is made as a dummy node. Then another node corresponding to the keyword is taken and
added. Thus, entries of the table T and dummy nodes are updated. All new entries are also linked



62 Efficient Keyword Search on Encrypted Dynamic Cloud data

Algorithm 7: Build(K, f)
1 c← φ
2 Allocate T , T ′ and A of size |W |, lmax and lw.lmax
3 γ ← (A, T, T ′)
4 for each file f ∈ f do
5 f̂ ← set of distinct keywords ∈ f
6 sf ← {id(w) : w ∈ f̂} where the set is sorted
7 Choose |f̂ | unused cells from A
8 Store id′(f) in the chosen cells
9 Make downward linked list

10 Add the linked list in TDL
11 If a keyword w appears first time add dummy nodes and

update corresponding entry at T [F (id(w))].
12 Encrypt each node according to the structure
13 Keep the first node of the downward linked list in

T ′[F ′(id′(f))] encrypted with G′(K[4], id′(f)).
14 end
15 Choose unused cells of A and make free list Lfree
16 Keep head of the linked list at A[0].
17 return (c, γ)

Algorithm 8: AddToken(K, f)

1 Parse (k, k1, k
′
1, k2, k

′
2, k3)← K

2 f̂ ← {w1, w2, . . . , w|f̂ |}, set of distinct keywords in f .
3 sf ← {id(w) : w ∈ f̂} where the set is sorted
4 kf ← P (k3, id

′(f))
5 for id(wi) ∈ sf do
6 ri

$←− {0, 1}λ; kwi ← P (k3, id(w))
7 h1 ← H1(kf , ri); h2 ← H2(kf , ri)
8 h3 ← H3(kf , ri)
9 h4 ← H4(kwi , ri); h5 ← id′(f)⊕H5(kwi , ri)

10 pi← (Fk1(id(wi)), Gk2(id(wi)), h1, h2, h3, h4, h5, ri)
11 end
12 ta ← (F ′k′1

(f), G′k′2
(f), p1, p2, . . . , p|f̂ |)

13 return ta

Algorithm 9: Add(ta, c, c, γ)

1 (A, T, T ′)← γ

2 for i = 0 to |f̂ | do
3 N ← Lfree.out()
4 N2 ← T [pi[0]]⊕ pi[1]
5 N1 ← A[N2][3]⊕ pi[1]
6 A[N ][0]← N2 ⊕ pi[2]
7 A[N ][1]← pi[3]; A[N ][3]← pi[5]
8 A[N ][4]← pi[6]; A[N ][5]← pi[7]
9 A[N2][3]← A[N2][3]⊕N1⊕N2

10 if N1! = 0 then
11 A[N1][0]← A[N1][0]⊕N ⊕N2

12 end
13 if i = 0 then
14 T ′[ta[0]]← N ⊕ ta[1]
15 end
16 else
17 A[N ′][2]← A[N ′][2]⊕N
18 end
19 A[N ][2]← pi[4]
20 N ′ ← N

21 end
22 γ′ ← (A, T, T ′); c′ ← {c} ∪ c
23 return (c′, γ′)

Algorithm 10: SearchToken(K,w)

1 Parse (k, k1, k
′
1, k2, k

′
2, k3)← K

2 kw ← P (k3, id(w))
3 ts ← (Fk1(id(w)), Gk2(id(w)), kw)
4 return ts

Algorithm 11: Search(ts, γ)

1 (A, T, T ′)← γ
2 ptr ← T [ts[0]]⊕ ts[1]
3 Iw ← {}
4 while ptr ! = Null do
5 N ← ptr
6 ptr ← H4(ts[2], A[N ][5])⊕ A[N ][3]
7 b← H5(ts[2], A[N ][5])⊕ A[N ][4]
8 if A[N ] is not a dummy node then
9 Iw ← Iw ∪ {b}

10 end
11 end
12 return Iw

Algorithm 12: DeleteToken(K, f)

1 Parse (k, k1, k
′
1, k2, k

′
2, k3)← K

2 kf ← P (k3, id
′(f))

3 td ← (F ′k′1
(id′(f)), G′k′2(id′(f)), kf )

4 return td

Algorithm 13: Delete(td, γ, c)

1 (A, T, T ′)← γ
2 N ← T ′[td[0]]⊕ td[1]
3 idf ← H4(td[2], A[N ][5])⊕ A[N ][4]
4 while N ! = Null do
5 r ← A[N ][5]
6 L← A[N ][0]⊕H1(td[2], r)
7 R← A[N ][1]⊕H2(td[2], r)
8 D ← A[N ][2]⊕H3(td[2], r)
9 if R! = Null then

10 A[R][0]← A[R][0]⊕N ⊕ L
11 end
12 A[L][1]← A[L][1]⊕N ⊕R
13 A[L][3]← A[L][3]⊕N ⊕R
14 Fill A[N ] with random string
15 Lfree.in(N)
16 N ← D

17 end
18 T ′[td[0]]← td[1]
19 γ′ ← (A, T, T ′)
20 c′ ← c after deleting file pointed by idf
21 return (γ′ , c′)

Algorithm 14: Lfree.out()
1 N ← A[0][3]
2 if N == 0 then
3 return 0
4 end
5 A[0][3]← A[N ][3]
6 return N

Algorithm 15: Lfree.in(N)

1 h← A[0][3]
2 A[0][3]← N
3 A[N ][3]← h
4 return 1
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downward whose first entry is kept in T ′[F ′(id′(f))]. Fig. 4-2 shows the addition of a node while
adding a file. Note that while adding a file, a node corresponding to the keyword is always added
just after the dummy node.

Figure 4-2: Addition of a node in TDL Figure 4-3: Deletion of a node in TDL

To search the files containing a keywordw, the client generates a search token ts using SearchToken()

(see Algo. 10) and sends it to the cloud server. The search token contains the position F (id(w)) in
the table T and its decryption key G(id(w)). So, the cloud server can find the head of the linked
list. However, with the help of kw, the cloud server can traverse the list and decrypt the file iden-
tifiers as described in Algo. 11. Finally, the cloud server returns the set of identifiers of the files
containing w using Search().

To delete a file, the client sends td = (F ′k′1
(id′(f)), G′k′2

(id′(f)), kf ), the delete token generated
using DeleteToken() (see Algo. 12) to the cloud server. In Fig. 4-1, it can be seen that nodes
corresponding to a file are in a linked list directed downwards. After receiving the delete token the
cloud server runs Delete() (see Algo. 13). It finds head of that linked list in T ′[(F ′k′1(id′(f))] by
decrypting using G′k′2(id′(f)).

Then the cloud server traverses through the linked list downwards and adds each node to the
free list Lfree (see Algo. 15). Before adding to Lfree, the content of the node is replaced by some
random values. While making each node free, its right and left nodes in TDL are also updated.
Fig. 4-3 shows the deletion of a node where red arrows show new linking after deletion.

Why dummy nodes are required? If there are no dummy nodes, then the addresses of the new
nodes will be directly added to T . After uploading the inverted index to the cloud server, if the
client sends a query to delete the last added file, the cloud server has to update corresponding
entries in T as the first node has been changed. Keeping dummy nodes prevents the cloud server
to get any information about table T while deleting. The pointers in dummy nodes are updated
instead of entries in T while deleting the last added file.
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4.2.2 Example

We illustrate our scheme with an example. Let T , T ′ and A be of length 6, 10 and 20 respec-
tively. Let W = {w1, w2, w3, w4, w5} and f = {f1, f2, f3}. Let F (id(w1)) = 3, F (id(w2)) = 0,
F (id(w3)) = 4, F (id(w4)) = 2, F (id(w5)) = 5, F ′(id′(f1)) = 5, F ′(id′(f2)) = 3, F ′(id′(f3)) =

7. f̂1 = {w1, w3, w4}, f̂2 = {w2, w3} and f̂3 = {w1, w2, w4}.

Figure 4-4: Example of the TDL built with W and f

In Build process, let the set of locations {17, 12, 1}, {4, 14} and {5, 18, 9} are selected from
the array A for the files f1, f2 and f3 respectively. Addresses 15, 7, 13 and 2 of A are selected
randomly for dummy nodes corresponding to the keywords w1, w2, w3 and w4 respectively.

Fig. 4-4 shows structure after Build(). Color blue indicates the cells are chosen for a keyword-
file pair, gray indicates dummy nodes. For example, 18 has been chosen for (w2, f3) and 7 for
w2. Green indicates remaining cells which are used to make free list Lfree which is as follows.
A[0][3] = 8, A[8][3] = 11, A[11][3] = 16, A[16][3] = 19, A[19][3] = 3, A[3][3] = 10.

Thus, entries corresponding to the keywords in table T are T [F (id(w1))] = 15 ⊕ G(id(w1)),
T [F (id(w2))] = 7⊕G(id(w2)), T [F (id(w3))] = 13⊕G(id(w3)), T [F (id(w4))] = 2⊕G(id(w4)).
Similarly entries of T ′ are T ′[F (id′(f1))] = 17 ⊕ G′(id′(f1)), T ′[F (id′(f2))] = 4 ⊕ G′(id′(f2))

and T ′[F (id′(f3))] = 5⊕G′(id′(f3)).

If we add a file f4 = {w1, w3, w5}, then there will be a new entry for the new keyword w5 in
Table T as T [F (id(w5))] = 6 ⊕ G(id(w5)), and the entries of the free list becomes A[0][3] = 19,
A[19][3] = 3, A[3][3] = 10. Fig. 4-5 shows the changed structure after addition. There will be a
new entry in T ′ as T ′[F (id′(f4))] = 8⊕G′(id′(f4)).
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Figure 4-5: Example of an addition of a file Figure 4-6: Example of a deletion of a file

The deletion of a file does not affect T . The links of the nodes corresponding to the file being
deleted are changed and the entry in T ′ becomes null. Then, the deleted nodes are added to the
free list. Fig. 4-6 shows the deletion of f2 from the built index (see Fig.4-4).

4.3 Comparison of Trids with existing DSSE schemes

We have used a TDL to design our scheme. It consists of an array A and two hash tables T and
T ′. We now compare our proposed scheme with some well known DSSE schemes and show that
the design of our scheme gives better results in many directions. The comparison is summarized
in Table 4.2 and Table 4.3.

Inverted Index-Based DSSE Kamara et al. [48] first presented a DSSE scheme that uses the
concept of the inverted index with linked lists. They used two arrays and two hash tables where we
have used only one array. Let a be the size of an address of A, b be the size of a file identifier
and random numbers be of λ-bits. Then, [48] requires (7a + 2b + 2λ)-bits storage corresponding
to each cell. For our case, we require only (4a+ b+ λ)-bits. Thus, we have approximately halved
the storage requirement for the encrypted index.

Secondly, instead of accessing two tables simultaneously, accessing only one table reduces the
access cost, especially when the tables reside in different storage locations. Thus, in our case, the
search is faster.

Finally, compared to [48], our scheme decreases the leakage Ldel (see Eqn. 4.2) while deletion.
For each entry corresponding to the keywords belonging to the deleted file, [48] reveals file ids
stored in both left and right cells and also reveals that these two files have a common keyword. In
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Table 4.2: Comparison among DSSE schemes based on client-side costs

Scheme Communication bandwidth† Computation Client
Search Add Delete Search Add Delete storage

HK [42] O(1) O(|f̂ |) O(1) O(1) O(|f̂ |) O(1) O(N)

SPS [87] O(|fw|+ logN) O(logN) O(logN)O(4.min{α + logN,O(|f̂ |. log2N)O(|f̂ | log2N) O(Nβ)
rounds∗ rounds∗ rounds∗ |fw| log3N})

Bost [16] O(1) O(fw) rounds∗ - O(1) O(4|f̂ |) - O(|W |(log |f|+ λ))

KPR [48] O(1) O(|f̂ |) O(1) O(1) O(|f̂ |) O(1) O(1)

Our scheme O(1) O(|f̂ |) O(1) O(1) O(|f̂ |) O(1) O(1)

N ≡ number of keyword-file pairs, W ≡ set of all possible keywords, fw ≡ set of files containing
a keyword w, f̂ ≡ set of distinct keywords in f , f ≡ set of files in the database, |.| ≡ cardinality,
0 < β < 1, aw ≡ # times the queried keyword w was historically added to the database, r ≡ one
ORAM read in TWORAM, dw ≡ the number of times the searched for keyword has been added
or deleted, p ≡ # processors, Ō ≡ order avoiding log logN , computation includes ORAM access.
a ≡ length of keyword-file storage, b ≡ max. supported length of file id, λ = security parameter.

† This amount of bandwidth (measured per keyword-file storage) is required by the client to request
the cloud server to perform different tasks.
∗ Communication bandwidth is very high due to the large number of communication rounds
needed.

our case, the deletion of a file only leaks information about the file identifiers stored in immediate
neighboring nodes if they are previously queried. Other leakages are the same for both.

History-Based DSSE Hahn and Kerschbaum [42] presented a DSSE scheme based on search
history. They used two types of indices: regular index3 and inverted index. Initially, the regular
index is constructed and an entry corresponding to a keyword is added into the inverted index on
the first search of the keyword.

This scheme has asymptotically optimal search time for the long-running system. Initial search
time is linear in twice the total number of stored keywords (it is counted twice if a keyword belongs
to a file). Subsequent search times are close to constant. In our scheme, all searches take constant
time in the number of keywords, and it is linear in the number of files it belongs to. Thus, [42]
performs better for a particular search only if it has σ(|W |2) repetitions.

Blind Storage-Based DSSE Naveed et al. [72] proposed Blind Storage and implemented a
DSSE scheme via Blind Storage. We recall the scheme is described in Section 3.1.2 of Chap-
ter 3. Instead of cloud computation, their scheme is based on a cloud storage service. The cloud
server only keeps data uploaded to it and sends specific stored data as requested by the client.

3A regular index contains a table of files and the corresponding keywords for each file.
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Table 4.3: Comparison among DSSE schemes based on server-side costs

Scheme Computation Storage
Search Add Delete Index size

HK [42] O(N) for first search O(|f̂ |)O(|W |) O(N.(a+ 2b))
O(1) for subsequent search

SPS [87] - - - O(N.(3a+ b))

Bost [16] O(2|fw|) O(|f̂ |) - O(N)

KPR [48] O(|fw|) O(|f̂ |) O(|f̂ |) O(N.(7a+ 2b+ 2λ))

Our scheme O(|fw|) O(|f̂ |) O(|f̂ |) O((N + |W |).(4a+ b+ λ))

However, the scheme has higher communication and storage costs. It requires several rounds of
communication for most of the queries. In our scheme, each query requires only one round of com-
munication. Secondly, in their scheme, all computations are done by the client. In our scheme,
most of the computations, except the token generation, are done at the server-side.

Oblivious-sort Based DSSE Stefanov et al. [87] proposed a DSSE scheme using oblivious
sorting. They reduced the leakage by making the scheme forward private. However, [87] requires
RAM as large as the size of the database. Moreover, it has a search complexity of O(|f̂ |. log3N)

withO(logN) rounds of communication, and it needs client storageO(N). Our scheme hasO(|f̂ |)
search complexity and does not require a RAM of such a large size. However, a larger RAM in our
scheme can process a query faster.

Sophos Bost [16] proposed a forward private scheme Sophos-B that relies on trapdoor permuta-
tions. However, the scheme does not support delete operations although Sophos can be extended
to support deletion at the cost of storage and computation. However, our scheme supports efficient
deletion.

Others Recent forward and backward private DSSE schemes, [18, 90, 25], require significant
amount of client storage (at least O(|W |)) which makes the schemes inappropriate for lightweight
clients.

4.4 Security Analysis

In this section, we discuss different types of leakages that are made due to the initial database
uploads and query tokens. After building the initial encrypted database with the inverted index, the
client uploads both of them to the cloud server except the secret key K. Let Lbld, Lsrch, Ladd, Ldel
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be the leakages associated with build, search, add and delete respectively. We define the leakage
function L as a 4-tuple of the above leakages, i.e., L ≡ (Lbld,Lsrch,Ladd,Ldel).

Description of leakage function L: We define leakage functions as follows.

• From the initial database and encrypted inverted-index, the cloud server can get the size of
the array A and each encrypted file, the set of all possible keyword identifiers, set of all
possible file identifiers. Since the free list Lfree is kept in an unencrypted form, it is also
revealed to the cloud server. We define Lbld as follows.

Lbld(f) = {|A|, |T |, |T ′|, {|cf | : f ∈ f}, {id(w) : w ∈ W}, {id′(f) : f ∈ f}, Lfree}

• When a client sends a search query token to the cloud server for a keyword w and the cloud
server executes the query, it gets the identifier of w as well as the set of identifiers of the
files that contain w. We define search leakage Lsrch as Lsrch(w, f) = {id(w), Iw}, where
Iw = {id′(f) : w ∈ f ∧ f ∈ f}, i.e., Iw is the set of identifiers of the files containing w.

• From an addition query, the cloud server gets information about identity of the added file
and set of identifiers of the keywords belonging to the file. It also gets the information if the
keyword identifiers are previously searched or added. Leakage from addition Ladd is defined
as

Ladd(f, f) = {id′(f), {(id(w), apprs(w))}w∈f̂ , Lfreeadd}

where apprs(w) = 1 if w (∈ f̂ ) appeared in any previous add or search query, otherwise
apprs(w) = 0, i.e., apprs(w) = 1 if w ∈ Qsa and 0 otherwise. By Qsa, we denote the
set of id(w)’s which are previously searched or added. Lfreeadd is the sequence of indices
taken from Lfree at the time of addition. Note that, in the leakage, the keyword identifiers
are there, not the keywords.

• From deletion of a file, the cloud server only gets the identifier of the deleted file, length
of the deleted file and the set of identifiers of those keywords of the deleted file that were
previously searched. The leakage from deletion Ldel is defined as

Ldel(f, f) = {id′(f), |f̂ |, acc(w), Lfreedel} (4.2)

where acc(w) = {id(w) : w ∈ f̂ ∩ Qs}, By Qs, we denote the set of id(w)’s which are
previously searched only. Lfreedel is the set of indices added to Lfree at the time of deletion.
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Theorem 4.1. If SE is CPA-secure and F , F ′ are PRP, G, G′ and P are PRG, then the DSSE
scheme Σ is L-secure against adaptive dynamic chosen-keyword attack.

Proof. To prove the above theorem, it is sufficient to show that there exists a simulator S such that
for every PPT (probabilistic polynomial-time) adversaryA, the output of RealA(λ) and IdealA,S(λ)

are computationally indistinguishable. We will construct such a simulator S which adaptively sim-
ulates an encrypted inverted index γ̃ = (Ã, T̃ , T̃ ′), a sequence of simulated ciphertexts c̃, a se-
quence of poly(λ) simulated queries q = (q1, q2, . . .) and a sequence of poly(λ) simulated tokens
t̃1, t̃2, . . . (where t̃i is either a search or add or delete token) as follows.

• (Set up data structures) Given Lbld(f)

1. Key generation: S first generates k ← SEgen(1λ) for encrypting files. Then, ∀i ∈
[|W |], it randomly chooses a λ-bit key Kid(wi), associated with keyword identifier
id(wi). Then, ∀j ∈ [|f|], it chooses a λ-bit key Kid′(fj), uniformly at random, asso-
ciated with file identifier id′(fj).

2. Simulate ciphertexts: For all f ∈ f, S computes c̃f ← SEenc(k, 0
|f |). Then, it sets

c̃← {c̃f : f ∈ f}
3. Simulate A: S generates an array Ã of size |A|. It fills each cell of Ã with random

bit-strings of the form (L,R,D,Rs, idf, r) where L,R,D andRs are of length log |A|,
idf is of length log |c| and r is of length λ. Then marks all empty cells in Ã as unused.

4. Simulate T : S generates a dictionary T̃ of size |W |, and for all w ∈ W , S stores a
random bit-string vw of length log |A| as T̃ [id(w)] = vw. Then it copies T̃ in T̃c.

5. Simulate T ′: S generates a dictionary T̃ ′ of size |f |. Then, in each entry of T̃ ′, S
stores a random bit-string of length log lmax.

6. Make L̃free in Ã as Lfree. Here S generates a free list according to the given leakage.

• (Simulating search token ts) Given Lsrch(w, f), S checks whether id(w) has appeared before
in the previous leakages. It takes a set Qsa (initially empty) of id(w)’s which are previously
searched or added.

Case 1: If id(w) /∈ Qsa,

If (Iw = φ), S selects an unused cell index α0 ∈ [|Ã|], takes α1 ←⊥ and links the
chosen cell as T̃ [id(w)] = α0 and Ã[α0][1] =⊥. Moreover, Ã[α0] is marked as the
dummy node for id(w).
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Else if (Iw 6= φ), S selects |Iw|+1 number of unused cell indices α0, α1, α2, . . . , α|Iw| ∈
[|Ã|] at random and mark them for id(w). File identifiers from the leakage are stored
in Ã[αi]’s for i = 1(1)n and Ã[α0] is marked as the dummy node. The cells are then
linked as

* T̃ [id(w)]← α0

* Ã[αi][1]← αi+1, 0 ≤ i < |Iw|, Ã[α|Iw|][1]←⊥
* Ã[αi][0]← αi−1, 0 < i ≤ |Iw|, Ã[α0][0]←⊥

Case 2: If id(w) ∈ Qsa,

1. If Ã[T̃ [id(w)]][1] =⊥, then id(w) is previously searched but is not present in any
file. For this case, α0 ← T̃ [id(w)] and α1 ←⊥.

2. If Ã[T̃ [id(w)]][1] = α1(6=⊥), S searches for the cells marked with id(w)s and
collects set of id′(f)s from these cells. If any of the id′(f) is in the deleted list,
eliminate that id′(f) from the collection and eliminate the cell with that id′(f) and
relink the cells accordingly.

S returns, t̃s = (γ(id(w)), T̃c[γ(id(w))]⊕ α0, Kid(w)), where γ : T̃ → T̃c is a PRP.

• Simulating add token ta: Given Ladd(f, f)

1. If T̃ ′[id′(f)] 6=⊥, then the file is already added and not deleted. In this case S returns
the previous token ta.

2. If T̃ ′[id′(f)] =⊥, S adds the file and simulates the internal data structures as follows.

(a) ∀i ∈ [|f̂ |], (wi’s are chosen according to the order in the leakage), S chooses a cell
from the free list Lfree (L gets it from Lbld(f) ) in Ã at the location α and does the
followings.

i. α0 ← T̃ [id(wi)]

ii. α1 ← Ã[α0][1]

iii. Ã[α].[0]← α0; Ã[α][1]← α1

iv. If α1 6=⊥, Ã[α1][0]← α

v. Ã[α1][1]← α.

vi. Mark Ã[α] with id′(f).

vii. If i = 1, store α in T̃ ′[id′(f)] and α in α′

else Ã[T̃ [id(wi−1)]][2]← α

If i = |f̂ |, set Ã[T̃ [id(wi)]][2]←⊥
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(b) ∀i ∈ [|f̂ |],
i. Let pi = (γ(id(wi)), T̃ [γ(id(wi))], r

1
i , r

2
i , r

3
i , r

4
i , r

5
i , ri), where r1

i , r
2
i , r

3
i and

r4
i are random bit-strings of length log |A|, r5

i is a random bit-string of length
log lmax, ri is a random bit-strings of length λ.

ii. Ã′[βi]← (L⊕r1
i , R⊕r2

i , D⊕r3
i , Rs⊕r4

i , id
′(f)⊕r5

i , ri) where βi is the index
to the cell in Ã which was chosen while wi added, L = Ã[βi][0], R = Ã[βi][1],
D = Ã[βi][2] and Rs = Ã[βi][3]

(c) S returns t̃a = (γ′(id′(f)), T̃ ′[γ′(id′(f))] ⊕ α′, p1, p2, . . . , p|f̂ |) , the add token,
where γ : T̃ ′ → T̃ ′c is a PRP.

• Simulating delete token td: Given Ldel(f, f)

1. If the file with id′(f) is not previously added.

(a) For the all previous searched queries id(w), S checks whether the entries corre-
sponding to id(w) contains id′(f). If contains, for some id(w) in cell Ã[N ], S
adjusts the links of the right and left cell appropriately from Ã to delete Ã[N ],
adds Ã[N ] to L̃free and increases mf counter by 1, where initially mf = 0.

(b) S selects (|f̂ | − mf ) number of random unused cells from Ã and adds them to
L̃free according to Lfreedel.

2. If the file with id′(f) was previously added, then all cell with id′(f) can be found by
down links. So, S adds the cells from Ã and the corresponding nodes from Ã′ to their
free lists.

3. Return token t̃d = (id′(f), T̃ ′[id′(f)], Kid′(f))

• Simulating random oracle queries

1. (Answering H1, H2 and H3 queries) Given query Hi(K, r), i = 1, 2, 3, S checks
whether K is associated with some keyword identifier id(w).

(a) If not, it returns a random bit-string v of length log |A| and sets ROi[(K, r)] ← v

to maintain consistency with future queries.

(b) If so, S finds all entries in Ã marked with id(w) and checks whether any of them
has randomness r. If no such cell in Ã exists, return v as above. If such a cell in Ã
exists, S returns v ← ROi[(K, r)]

2. (Answering H4 and H5 queries) Given query (K, r), S checks whether K is associated
with some keyword (file ) identifier id(w) ( id′(f)).
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(a) If not, it returns a random bit-string v′ of length log |A| ( log |lmax|) and sets
RO4[(K, r)]← v′ ( RO5[(K, r)]← v′) to stay consistence with future queries.

(b) If yes, S finds all entries in Ã marked with id(w) ( id′(f) ) and checks whether
any of them in Ã has randomness r. If no such cell in Ã exists, return v′ as above.
If such a cell in Ã exists, S returns v′ ← RO4[(K, r)] ( v′ ← RO5[(K, r)])

Now, sinceA and Ã are indistinguishable as they are distributed identically, indistinguishability
of T ( T ′) and T̃ (T̃ ′) follows from the pseudo-randomness of G ( G′), c and c̃ are indistinguishable
as SE is CPA secure, indistinguishability of ts, ta, td with respect to t̃s, t̃a, t̃d follows from the
pseudo-randomness of F , F ′, G, G′ and P .

�

4.5 Performance evaluation

To demonstrate the performance of our algorithm, we implemented a prototype of our DSSE
scheme Trids. The main code for Trids was written with C. All libraries were open source. For
data pre-processing, we have used both Python and C. For file encryption, we have used AES
where SHA-256 is taken as a hash function. We used a desktop with 8 GB DDR3 RAM, Intel
Xeon E3-1200 Core i7-4770, and 1TB HDD.

To show the correctness and scalability of our algorithm we have compared our scheme with
[48]. We note that they implemented with Intel Xeon CPU 2.26 GHz (L5520) running Windows
Server 2008 R2. We have taken Enron e-mail dataset [33] to run our experiment. This dataset
is publicly available. The downloaded data is 9.3 GB in pst format. The size of the data after
extraction is 10.93 GB. The dataset consists of different categories like sent items, inbox, etc. We
have considered only the content of the emails of each category for our experiments.

Experiment: The main functions of our experiments are written in C. In the pre-processing step,
we have extracted the content of each email. Each of these extracted emails has a set of distinct
keywords. We have considered the union of all these sets as the set of keywords W . We have
tested our algorithms with random files taken from the Enron dataset. We have considered 6000 to
25000 random files (incrementing 1000 files each time). Every experiment is tested 100 times.

Time taken per keyword-file pair: Since index size is different as the different number of files
has been added, the time taken by the total queries is different and proportional to the number of
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files. However, we have observed that the time taken is constant with respect to per keyword-file
pair. In Table 4.4, we have shown time taken per pair.

Table 4.4: Time Taken per keyword-file pair

Functions Build AddTkn Add SearchTkn Search DeletTkn Delete
Time (µs/pair) 7.9368 7.1995 0.1190 0.0139 1.2162 0.1050 3.4868
Std. deviation 0.2852 0.1875 0.0017 0.0021 0.0028 0.0134 0.0427

According to the results shown in Table 4.4, the most expensive operation in the algorithms is
hash calculation. Other operations have a very negligible effect as the standard deviation is very
low. Except Build() function, only Add() has maximum execution time. This is because it has the
maximum number of hash computation which is 5|f̂ |, for a file f . On the other hand, the search
token has taken minimum time as it has only 3 hash computation which is constant. Thus, it
can be seen that if the execution time for any operation increases as soon as the number of files or
database size increases in the system.

Time taken per query: We have analyzed the time taken per query. The time taken to generate
tokens is independent of the size of the index and it is a client-side process. AddToken() takes
approximately 625 µs per query whereas SearchToken() and DeleteToken() take 2.68 µs and
5.88 µs per query respectively. This is because each of the files has 106 distinct keywords on an
average. So, each AddToken query computes approximately 1000 hashes where SearchToken()

or DeleteToken() has to compute only 3 hashes each. The average time to add a file to the index
is 10.33 µs which is constant with respect to the size of the index but proportional to the number
of distinct keywords contained in the file.

Table 4.5: Time Taken by per query

Functions AddTkn Add SearchTkn DeletTkn Delete
Time (µs/query) 625.0 10.33 2.685 5.876 197.9

Std. deviation 16.28 0.146 0.013 0.117 24.53

Similarly, deletion time is proportional to the number of distinct keywords corresponding to the
deleted file. Each deletion takes 369 µs on an average where the average number of distinct key-
words in a file is 106. The deletion has to compute hashes thrice the number of distinct keywords
which is 318 on an average. Table 4.5 shows the time taken by each query.

In our case, SearchToken() and DeleteToken() has the same amount of computation, but the
search token takes less time because we have used a dictionary for the function F .
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Only search time varies with the index size. Whenever the number of files increases, the
number of keyword-file pairs increases. Thus, for the same query, the number of files increases
in search query results. As we see in Fig. 4-7, the search time grows at a constant rate which is
1.2× 10−4µs/pair.
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Figure 4-7: Number of keyword-file pairs
vs. Search query time per search
query
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Figure 4-8: Number of files vs. Search
query time per search query

Moreover, we have taken the number of added files into consideration. Fig. 4-8 shows that
search time increases at an almost constant rate with the number of files in the database. The rate
is 1.15 × 10−2µs per file. Thus, adding a file in the database increases each search query time by
1.15× 10−2µs.

Build time: Initial building time depends on the size of the database. We have analyzed Build
time with the database size. The database size is measured with respect to the number of keyword-
file pairs, the number of files, and the size of the files.

From Fig. 4-9, we observe thatBuild time increases proportionally with the number of keyword-
file pairs in the database, though this time is almost constant with respect to each keyword-file pair.
Build time changes with respect to varying file-sizes (in MB) are shown in Fig. 4-10. Fig. 4-11
shows variations in Build time with variable number of files. The line of regression is shown in
the figure that indicates that the points are very close to the line.

4.5.1 Comparison with dynamic keyword search scheme by Kamara et al. [48]

In our test dataset, we only have considered the contents of the emails except for headers, footers,
etc. We have compared the results of our scheme with those in the DSSE scheme proposed by
Kamara et al. [48] (here, we call this scheme “KPR”). We have considered [48] for comparison as
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Figure 4-9: Number of pairs vs. Build time
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Figure 4-10: Size of the files vs. Build time
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Figure 4-11: Number of files vs. Build time
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it the closest to our scheme. We have taken the same size of the dataset, i.e., 4MB, 11 MB, and
16MB. We have compared the client-side Build() function and the server-side Add(), Search()

and Delete() functions. Since a client does not send a large number search or delete queries at
once and token generation takes constant time for any size of database or files, we have ignored
time to generate search tokens or delete tokens.
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Figure 4-12: Build time comparison between
KPR[48] and our scheme
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Figure 4-13: Search time comparison between
KPR and our scheme

In Fig. 4-12, we have compared the Build time in our scheme with that in [48]. We see that
the building time grows very slowly in our scheme. However,in Fig. 4-13, while comparing search
time, [48] gives different results. This may be due to implementing differently. With respect to
computation, both the schemes have the same number of hash computations which is the only
expensive operation.
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Figure 4-14: Add time comparison between
KPR and our scheme
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Figure 4-15: Delete time comparison between
KPR and our scheme

Add() time and Delete() time are shown in the Fig. 4-14 and Fig. 4-15 respectively. To add a
file into the database, the cloud server needs to update the links of the nodes equivalent to the size
of the distinct keyword sets of that file. So, it proportional to the size of the files. AgainAdd() does
not have any hash computations which makes the taken time lower. Delete() has hash computation
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thrice the number of the distinct keyword sets of that file. However, this gives a higher level of
privacy.

Conclusion
In this chapter, we have proposed an efficient DSSE scheme that has optimal search time with

less deletion leakage compared to other DSSE schemes. In the next chapter, we study the DSSE
schemes in the presence of malicious cloud servers. We propose a single keyword search DSSE
scheme that is verifiable.
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Chapter 5

A Forward private Publicly Verifiable Dy-
namic SSE scheme

As we have seen in Chapter 4, searchable symmetric encryption (SSE) scheme enables a client
or data owner to store its data in a cloud server without losing the ability to search over them.
Most of the SSE schemes like [32], [86], [26], [93], [27], etc. and the DSSE schemes like [87],
[42], [21], [35], [47], [100], [79], [60], etc. considers the cloud server to be honest-but-curious.
An honest-but-curious cloud server follows the protocol but wants to extract information about
the plaintext data and the queries. However, if the cloud itself is malicious, it does not follow the
protocol correctly. In the context of search, it can return only a subset of results, instead of all the
records of the search. So, there is a need to verify the results returned by the cloud to the user. An
SSE scheme for static data where the query results are verifiable is called Verifiable SSE (VSSE).
Similarly, if the data is dynamic the scheme is said to be a verifiable dynamic SSE (VDSSE).

There are single keyword search VSSE schemes that are either new constructions supporting
verifiability or design techniques to achieve verifiability on the existing SSE schemes by proposing
generic algorithms. VSSE with single keyword search has been studied in [24], [28], [63]. In [91],
[96] etc., VSSE scheme with conjunctive query has been studied. Moreover, there are also works
that construct VDSSE schemes for both single keyword search ([66]) as well as complex query
search including fuzzy keyword search ([112]) and Boolean query ([44]). However, most of them
are privately verifiable. A VSSE or VDSSE scheme is said to be privately verifiable if the only
user, who receives the search result, can verify it. On the other hand, a VSSE or VDSSE scheme is
said to be publicly verifiable if any third party, including the database owner, can verify the search
result without knowing its content.

There is also literature on public verifiability. Soleimanian and Khazaei [85] and Zhang et
al. [109] have presented SSE schemes that are publicly verifiable. VSSE with Boolean range
queries has been studied by Xu et al. [102]. Though their verification method is public, since
the verification is based on blockchain databases, it has an extra monetary cost. Besides, Monir
Azraoui [6] presented a conjunctive search scheme that is publicly verifiable. In the case of dy-
namic database, the publicly verifiable scheme by Jiang et al. [44] supports Boolean query, whereas
Miao et al. [66] supports single keyword search.

79
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However, file-injection attack [110], in which the client encrypts and stores files sent by the
cloud server, recovers keywords from future queries, has forced researchers to think about dynamic
SSE schemes to be forward private where adding a keyword-document pair does not reveal any
information about the previous search result with that keyword. We have already discussed file
injection attacks in Section 3.1.3 of Chapter 3.

Besides, in presence of a malicious cloud server, the owner can outsource the verifiability
to a third-party auditor to reduce its computational overhead. The only forward private single
keyword search VSSE scheme is proposed by Yoneyama and Kimura [107]. However, the scheme
is privately verifiable and the owner requires a significant amount of computation for verification.

5.0.1 Our contribution

In this chapter, we have contributed the following in the literature of VSSE.

1. We have formally defined a verifiable DSSE scheme. Then we have proposed a generic
publicly verifiable SSE scheme Aris which is very efficient and easy to integrate.

2. We have proposed a generic publicly verifiable dynamic SSE scheme Srica. Our proposed
scheme is forward private. This property is necessary to protect a DSSE scheme from file
injection attacks. However, no previous publicly verifiable scheme is forward private. In
fact, only forward private scheme [107] is privately verifiable.

3. We have presented formal security proofs for these schemes and show that they are adap-
tively secure in the random oracle model.

On the owner side, both of the schemes do not use any more storage more than the underlying
schemes from which they are derived. Thus, for a resource-constrained client, the schemes are
very effective and efficient.

In Table 5.1, we have compared our proposed schemes with existing ones.

Table 5.1: Different verifiable SSE schemes

Data Type static dynamic
Query Type single complex single complex
Verification private public private public private public private public

Schemes [24], [28], [74], [63], Aris [85] [96], [57], [102] [85] [107], [17] [66], Srica [112] [44]
Forward private not applicable [107], Srica



Preliminaries 81

5.0.2 Organization

We have discussed the required preliminary topics in Section 5.1. In Section 5.2, we have presented
a generic approach of verifiable SSE scheme. In Section 5.3, we have present our proposed generic
construction of publicly verifiable DSSE scheme in details. We have compared its complexity with
similar publicly verifiable schemes in Section 5.4.

5.1 Preliminaries

5.1.1 System model

In this section, we briefly describe the system model considered in this chapter. In our model of
verifiable SSE, there are three entities–Owner, Auditor and Cloud. The system model is shown in
the Fig. 5-1. We briefly describe them as follows.

Figure 5-1: The system model of the a verifiable dynamic SSE scheme

1. Owner: Owner is the owner as well as user of the database. It is considered to be trusted.
It builds an secure index, encrypts the data and then outsources both to the cloud. Later, it
sends encrypted query to the cloud for searching. Therefore, it is an user as well. It is the
client who requires the service.

2. Cloud: Cloud or the cloud server is the storage and computation service provider. It stores
the encrypted data sent from the owner and gives result of the query requested by it. The
cloud is assumed to be malicious. It can deviate from protocol by not only computing on, or
not storing the data but also making the user fool by returning incorrect result.
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3. Auditor: Auditor is an honest-but-curious authority which does not collude with the cloud.
Its main role is to verify whether the cloud executes the protocol honestly. It tells the user
whether the returned result is correct or not.

5.1.2 Design goals

Assuming the above system model, we aim to provide a solution to the verifiability problem of
existing forward private schemes. In our design, we take care to achieve confidentiality, scalability,
efficiency, and update support over the encrypted outsourced data, as described in Section 1.1.2.

Moreover, since it is observed previously that a DSSE scheme without forward privacy is vul-
nerable to even an honest-but-curious adversary. So, our target is to make a publicly verifiable
DSSE scheme without losing its forward privacy property.

5.1.3 Definitions

D be the space of document identifiers and DB be the set of documents to be outsourced. Thus,
DB ⊆ D. For each keyword w ∈ W , the set of document identifiers that includes w is denoted by
DB(w) = {idw1 , idw1 , . . . , idwcw}, where cw = |DB(w)| and idwi ∈ DB. Thus,

⋃
w∈W

DB(w) ⊆ DB.

Let DB = {cid : id ∈ D} where cid denotes the encrypted document that has identifier id.

We assume that there is a one-way function H ′ that maps each identifier id to certain random
numbers. These random numbers are used as document names corresponding to the identifier.
The function is can be computed by both the owner and cloud. However, from a document name,
the identifier cannot be recovered. Throughout, we use identifiers. However, when we say cloud
returns documents to the owner, we assume the cloud performs the function on every file identifier
before returning them.

Let, H : {0, 1}∗ → {0, 1}λ be a cryptographic hash function, H be a bilinear hash, R :

{0, 1}∗ → {0, 1}∗ be a PRNG and F : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a HMAC.

5.1.4 Verifiable Dynamic Searchable Symmetric Encryption (VDSSE)

An SSE scheme allows a client to outsource a dataset it owns to a cloud service provider in en-
crypted form without losing the ability to perform queries over the data. The most popular query is
the keyword search where the dataset is a collection of documents. The client can retrieve partially
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encrypted data without revealing any meaningful information to the cloud. Throughout we take a
query as a single keyword search query.

A dynamic SSE (DSSE) scheme is an SSE scheme that supports updates. A Verifiable DSSE
(VDSSE) scheme is a DSSE scheme together with verifiability. The verification can be done
either by an external auditor or the owner. The primary reason to bring an auditor is to reduce
computational costs of verifiability at the owner-side. This allows an owner to be lightweight.

Though a VDSSE scheme supports updates, we do not verify whether the cloud updates the
database correctly or not. We only want to get the correct result with respect to the current state
of the database. If the cloud updates the database incorrectly, it cannot give the actual result. Due
to verifiability, it will be failed in the verification process to the auditor. We define a verifiable
DSSE scheme formally as follows.

Definition 5.1 (Verifiable Dynamic SSE). A verifiable dynamic SSE (VDSSE) scheme Ψ is a tuple
(VKeyGen, VBuild, VSearchToken, VSearch, VUpdateToken, VUpdate) of algorithms defined as
follows.

• K ← VKeyGen(1λ): It is a probabilistic polynomial-time (PPT) algorithm run by the owner.
Given security parameter λ it outputs a key K.

• (DB, γ) ← VBuild(K,DB): The owner run this PPT algorithm. Given a key K and a set
of documents DB, it outputs the encrypted set of documents DB and an encrypted index γ.

• τs ← VSearchToken(K,w): On input a keyword w and the key K, the owner runs this PPT
algorithm to output a search token τs.

• (Rw, νw)← VSearch(ts, γ): It is a PPT algorithm run by the cloud and the auditor collab-
oratively that returns a set of document identifiers result Rw to the owner with verification
bit νw.

• τu ← VUpdateToken(K, id): It is a owner-side PPT algorithm that takes the key K and a
document identifier id and outputs a update token τu.

• (DB
′
, γ′) ← VUpdate(τu, op, γ,DB): It is a PPT algorithm run by the cloud. It takes

an update token τu, operation bit op, the encrypted document set DB and the index γ and
outputs updated (DB

′
, γ′).

Computational Correctness A VDSSE scheme Ψ is said to be correct if ∀λ ∈ N, ∀K generated
using KeyGen(1λ) and all sequences of search and update operations on γ, every search outputs
the correct set of identifiers, except with a negligible probability.
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Verifiability Note that, when we are saying a scheme is verifiable, it means that it verifies whether
the search result is from the currently updated state of the database according to the owner. During
an update query, it does not verifies whether the update is correctly done by the cloud or not.
Instead, it verifies during the search and checks whether the search result is from the updated
database. For example, if an owner added a document with some keywords and the cloud does not
update the database. Later, if the owner searches with some keywords present in the document,
and it should get the identifier of the document in the result set. Then, the result can be taken as
verified.

5.1.5 Security definitions

We follow the security definition of [85]. There are two parts in the definition– confidentiality
and soundness. We define security in an adaptive adversary model where the adversary can send
queries depending on the previous results. Typically, most of the dynamic SSE schemes define
their security in this model.

A DSSE, that does not consider verifiability, considers honest-but-curious (HbC) cloud server.
In these cases, the owner of the database allows some leakage on every query made. However, it
guarantees that no meaningful information about the database is revealed other than the allowed
leakages. Soundness definition ensures that the results received from the cloud server are cor-
rect.

5.1.5.1 Confidentiality

Confidentiality ensures that a scheme does not give any meaningful information other than it is
allowed. In our model, we have considered the cloud to be malicious. However, the auditor is
HbC. Since verifiability has some monetary cost for the owner, it wants verifiability only when it
is required. Also, the auditor does not have the database and ability to search. Given the proof,
it only verifies the result. Thus, if the scheme is secure from the cloud, it is so from the auditor.
Again, we have assumed that the cloud and the auditor do not collude. Hence, we do not consider
the auditor in our definition of confidentiality.

Definition 5.2 (CKA2-Confidentiality of a verifiable DSSE scheme). Let Ψ = (VKeyGen,
VBuild, VSearchToken, VSearch, VUpdateToken) be a verifiable DSSE scheme. LetA, C and S
be a stateful adversary, a challenger and a stateful simulator respectively. LetL=(Lbld,Lsrch,Lupdt)
be a stateful leakage algorithm. Let us consider the following two games.
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RealA(λ):

1. The challenger C generates a key K ← VKeyGen(1λ).

2. A generates and sends DB to C.

3. C builds (DB, γ)← VBuild(K,DB) and sends (DB, γ) it to A.

4. A makes a polynomial number of adaptive queries. In each of them, it sends either a search
query for a keyword w or an update query for a keyword-document pair (w, id) and opera-
tion bit op to C.

5. C returns either a search token τs ← VSearchToken(K,w) or an update token τu ←
VUpdateToken(K, id) to A depending on the query.

6. Finally A returns a bit b that is output by the experiment.

IdealA,S(λ):

1. A generates a set DB of documents and gives it to S together with Lbld(DB).

2. S generates (DB, γ) and sends it to A

3. A makes a polynomial number of adaptive queries q. For each query, S is given either
Lsrch(w,DB) or Lupdt(op, w, id) depending on the query.

4. S returns, depending on the query q, to A either search token τs or update token τu.

5. Finally A returns a bit b′ that is output by the experiment.

We say Ψ is L-secure against adaptive dynamic chosen-keyword attacks if ∀ PPT adversaryA,
∃ a simulator S such that

|Pr[RealA(λ) = 1]− Pr[IdealA,S(λ) = 1]| ≤ µ(λ) (5.1)

where µ(λ) is negligible in λ.
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5.1.5.2 Soundness

The soundness property ensures that if a malicious cloud tries to fool the owner by returning
incorrect result it will be caught to the auditor. We present game-based definition of soundness as
follows.

Definition 5.3 (Soundness of a verifiable DSSE scheme). Let Ψ be a verifiable DSSE scheme
with Ψ = (VKeyGen, VBuild, VSearchToken, VSearch, VUpdateToken). Let us consider the
following game.

soundA,Ψ(λ):

1. The challenger C generates a key K ← VKeyGen(1λ).

2. A generates and sends DB to C.

3. C computes (DB, γ)← VBuild(K,DB) and sends (DB, γ) to A.

4. A makes a polynomial number of adaptive queries. In each of them, it sends either a search
query for a keyword w or an update query for a keyword-document pair (w, id) and opera-
tion bit op to C.

5. C returns either a search token τs ← VSearchToken(K,w) or an update token τu ←
VUpdateToken(K, id) to A depending on the query.

6. After making polynomial number of queries, A chooses a target keyword w and send search
query to C.

7. C returns a search token τs. A executes and gets (Rw, νw) where νw = accept is verification
bit from C.

8. A generates pair (R∗w) for a keyword w and gets verification bit ν∗w = accept.

9. If ν∗w = accept even when R∗w 6= DB(w), A returns 1 as output of the game, otherwise
returns 0.

We say that Ψ is sound if ∀ PPT adversaries A, Pr[soundA,Ψ(λ) = 1] ≤ µ(λ).



Verifiable SSE with static data 87

5.2 Verifiable SSE with static data

Since, in a verifiable SSE scheme, there is no update, it does not have VUpdate or VUpdateToken
operation. We present a generic scheme that that converts an SSE scheme to a VSSE scheme. Our
target is to achieve verifiability, in presence of malicious cloud server, without loosing any other
security property with minimal communication and computational costs.

5.2.1 Issues with the existing verifiable SSE schemes

There are works that considered static SSE schemes and suggested authentication tag generation
using MAC to protect the integrity of the search result. For each keyword w, they generate a tag
tagw = H(idw1 ||idw2 || . . . ||idwcw) where H is a one-way hash function. Trivially, if the tags are
stored at the owner’s side then the scheme becomes privately verifiable. In that case, when a search
is required, the owner can check integrity after receiving the result from the cloud.

However, this integrity checking does not protect the SSE scheme from malicious adversary if
the tags are outsourced to the cloud. Checking integrity provides security only from honest-but-
curious cloud servers. Let us consider an example. Suppose a keyword w ∈ W is searched and
cloud gets the resultRw = {idw1 , idw2 , . . . , idwcw , tagw}. Later, if some other keywordw′ is searched,
the cloud can return the same result and will pass the integrity checking.

5.2.2 A generic verifiable SSE scheme without client storage

Since it is desirable to outsource the data as well as tags to the cloud, the above result shows that
checking integrity in the above way cannot be considered. It is easy to see that the scheme with
checking the integrity of the result identifiers is not enough because there is no binding of the
keyword with the tags. Here, we present a generic idea that makes any SSE scheme verifiable.

Scheme Description Let Σs = (KeyGen, Build, SearchToken, Search) be a result revealing
static SSE scheme. We present a VSSE scheme Ψs=(VKeyGen, VBuild, VSearchToken, VSearch)

for static database as follows.

LetH be a one-way hash function and a keyK ′ is chosen at random. For each keywordw ∈ W ,
a key kw = H(K ′, w) is generated. kw is then used to bind the keyword with corresponding tag
tagw = H(kw||idw1 ||idw2 || . . . ||idwcw). Finally, for each keyword w, {idw1 , idw2 , . . . , idwcw , tagw} is
encrypted at build phase. Thus, while performing search with a keyword w, as search result, the
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owner receives {id′w1 , id′w2 , . . . , id′wcw , tag′w}. The owner accepts it if the regenerated tag tag′w from
the received identifiers is matched with the received one.

So, the main idea of the scheme is that instead of generating tags only with identifiers, they are
bound with kw which is dependent on w and can be computed by the owner only. After the search,
if the cloud returns an incorrect set of document identifiers then the tag won’t get matched. The
scheme is shown in Fig. 5-2. We call the scheme Aris.

Ψs.VKeyGen(1λ)

1. KΣs ← Σs.KeyGen(1λ)

2. K ′ $←− {0, 1}λ

3. Return KΨs = (K ′, KΣs)

Ψs.VBuild(DB, KΨs)

1. (K ′, KΣs)← KΨs

2. for each w ∈ W

(a) kw ← H(K ′||w)

(b) tagw ← H(kw||idw1 ||idw2 || . . . ||idwcw)

(c) DB′(w)← DB(w) ∪ {tagw}

3. DB′ ← ∪w∈WDB′(w)

4. (γ,DB)← Σs.Build(DB′, KΣs)

5. Return (γ,DB)

Ψs.VSearchToken(w,KΣs)

1. τΣs ← Σs.SearchToken(w,KΣs)

2. Return τΣs

Ψs.VSearch(γ, τΣs)

1. (K ′, KΣs)← KΨs

2. τΣs ← Σs.SearchToken(w,KΣs)

3. Rw ← Σs.Search(γ, τΣs)

4. kw ← H(K ′||w)

5. {id′w1 , id′w2 , . . . , id′wcw , tag′w} ← Rw

6. tagw ← H(kw||id′w1 ||id′w2 || . . . ||id′wcw)

7. Accept Rw if tag′w = tagw

Figure 5-2: Algorithm for generic verifiable SSE scheme Aris

Note that, for the static case, tag computation is enough to validate a result. Since one-way
hash computation is very efficient and requires a small amount of resources, we do not consider
any external authority like an auditor for verifiability. So, the scheme is privately verifiable.

Cost for verifiability The cloud storage is increased by |W| tags. However, depending on the
scheme the actual increment might be less than |W| tags but still it is asymptoticallyO(|W|). The
communication cost for verification is only increased by one tag from the cloud to the owner. If we
consider computation, to verify a search result, the owner only has to compute a hash value which
is very little.
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Soundness In case the cloud does not want to perform a search properly, then it cannot get the
identifiers and the corresponding tag. So, it has to send either random identifiers or identifiers
corresponding to some other searched keyword. In both cases, It cannot be passed verifiability test
to the owner.

Confidentiality The confidentiality of our proposed scheme follows from the security of the
embedded SSE scheme.

5.3 Our proposed Forward private Publicly Verifiable DSSE
scheme

In this section, we propose a simple generic dynamic SSE scheme Srica which is forward private
as well as verifiable. Let Σf = (KeyGen, Build, Search, SearchToken, Update, UpdateToken )

be a result revealing forward private dynamic SSE scheme.

It is to be noted that any forward private SSE scheme stores the present state of the database
on the client-side. Corresponding to each keyword, most of them stores the number of documents
containing it. Let C = {cw : w ∈ W} be the list of such numbers.

Since it considers any forward private scheme Σf , it only adds an additional encrypted data
structure to make the scheme verifiable. The algorithms of our proposed scheme Srica, denoted
by Ψf , are given in Figure 5-3. They are divided into three phases– initialization, search and
update.

Initialization phase: In this phase, secret and public keys are generated by the owner, and there-
after the encrypted searchable structure is built. During key generation, three types of keys are
generated– KΣf for the Σf ; (sk, pk) for the bilinear signature scheme; and two random strings
Ks, Kt for seed and tag generation respectively.

Thereafter, a signature table Tsig is generated, before building the secure index γ and encrypted
database DB, to store the signature corresponding to each keyword-document pair. For each pair
(w, idwi ), the position poswi = F (tagw, id

w
i ||i) is generated with a HMAC F . The position is

actually act as key of a key-value pair for a dictionary. The document identifier is bounded with
poswi together with tagw = F (Kt, w). The tagw is fixed for a keyword and is given to the cloud
server to find poswi . The signature σwi for the same pair is also bounded with random number rwi
which can only be generated from PRG R with the seed sw. Then (σwi , pos

w
i ) pair is added in the
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4 F. Author et al.

Ψf .VKeyGen(1λ)

1. KΣf ← Σf .KeyGen(1λ)

2. (sk, pk)← S.Setup(1λ)
3. Ks ← {0, 1}λ
4. Kt ← {0, 1}λ
5. Return KΨf = (Kt,Ks, sk, pk,KΣf )

Ψf .VBuild(DB,KΨf )

1. Tsig ← empty list of size |W|
2. for w ∈ W

(a) sw ← F (Ks, w); tagw ←
F (Kt, w)

(b) for i = 1 to cw(= |DB(w)|)
i. rwi ← R(sw||i);

ii. mw
i ← rwi .id

w
i mod q

iii. σwi ← S.Sign(sk,mw
i )

iv. poswi ← F (tagw, id
w
i ||i)

v. Tsig[pos
w
i ]← σwi

3. (γ,DB)← Σf .Build(DB,KΣf )

4. Return (γ,DB, Tsig) to the cloud

Ψf .VSearchToken(w,KΨf )

1. (Kt,Ks, sk, pk,KΣf )← KΨf

2. τΣf ← Σf .SearchToken(w,KΣf )
3. tagw ← F (Kt, w);

4. τ
Ψf
s ← (τΣf , tagw)

5. Return τ
Ψf
s to cloud

Ψf .VSearch(γ, τ
Ψf
s )

Cloud:

1. Receive τΨf = (τΣf , tagw) from
Owner

2. {id′w1 , . . . , id′wc′w} ← Σf .Search(γ, τΣf )

3. for i = 1 to c′w
(a) poswi ← F (tagw, id

′w
i ||i)

(b) σ′
i ← Tsig[pos

w
i ];

4. σ′ ←
∏c′w
i=1 σ

′
i

5. Rw ← {id′w1 , id′w2 , . . . , id′wc′w}
6. pfc ← σ′

7. Return pfc to auditor and Rw to
Owner

Owner:

1. Receives Rw
2. cw ← C[w]
3. If cw 6= c′w Return reject bit.
4. sw ← F (Ks, w)
5. for i = 1 to cw do

(a) rwi ← R(sw||i)
(b) mw

i ← id′wi .r
w
i mod q

6. m =
∑cw
i=1m

w
i mod q

7. Send pfo = m to the auditor

Auditor:
1. Receives pfo = m from owner and

pfc = σ′ from cloud
2. bv ← S.Verify(pk,m, σ′)
3. If bv = failure, Return reject

Ψf .VUpdateToken(KΨf , w, id)

1. τu ← Σf .UpdateToken(KΣf , w, id)
2. Return τu

Ψf .VUpdate(Ttag, γ, τu)

Owner:
1. {w1, w2, . . . , wnid} ∈ id
2. for i = 1 to nid

(a) τu ← Ψf .VUpdateToken(KΨf , wi, id)
∀i ∈ [cw]

(b) bv ← Σf .Update(γ, τu)
(c) if bv 6= succsess Return

3. for i = 1 to nid
(a) tagwi ← F (Kt, wi)
(b) cwi ← C[wi]
(c) sw ← F (Ks, w);
(d) r ← R(sw||(cwi + 1))
(e) m← id.r mod q
(f) σi ← S.Sign(sk,m)
(g) posi ← F (tagwi , id||(cwi + 1))
(h) C[w] = C[w] + 1

4. pos← {pos1, pos2, . . . , posnid}
5. σ ← {σ1, σ2, . . . , σnid}
6. send τ

Ψf
u = (pos, σ) to cloud

Cloud:
1. {pos1, pos2, . . . , posnid} ← pos
2. {σ1, σ2, . . . , σnid} ← σ
3. Tsig[posi]← σi, ∀i ∈ [nid]

Figure 5-3: Generic verifiable dynamic SSE scheme Srica without extra client storage
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table Tsig as key-value pair. After the building process, the owner outsources γ, DB and Tsig to
the cloud.

Search Phase: In this phase, the owner first generates a search token τΣf to search on Σf . Then,
it regenerates tagw and the seed sw and then, sends them to the cloud.

The cloud performs search operation according to Σf and use the result identifiers {id1, id2, . . . idc′w}
to gets the position in Tsig corresponding to each pair. It is not able to generate the positions if it
does not search for the document identifiers. It collects the signatures stored in those positions,
multiplies them, and sends multiplication results to the auditor as its part pfc of the proof. It sends
the search result to the owner.

The owner first generates random numbers {r1, r2, . . . rc′w} and regenerates aggregate message
m =

∑i=c′w
i=1 ri.id

w
i (mod q) of the identifiers and sends m to the auditor as pfo, owner’s part of

the proof. After receiving pfc and pfo, the auditor only computes S.Verify(pk,m, σ′). It outputs
accept if signature verification returns success. We can see that no information about the search
results is leaked to the auditor during verification.

Update Phase: In our scheme, while adding a document, instead of being updated only a keyword-
document pair, we assume that all such pairs corresponding to the document are added. To add a
document with identifier id and keyword set {w1, w2, . . . , wnid}, the owner generates the position
and the corresponding signature for each containing keyword. The cloud gets them from the owner
and adds them in the table Tsig.

Correctness For correctness it is enough to check the following.

ê(H(m), pk) = ê(gm, gα) = ê(gα
∑
mi , g) = ê(

∏
gαmi , g) = ê(

∏
σi, g) = ê(σ, g)

Cost for verifiability We achieve, forward privacy as well as public verifiability without client
storage in Ψf , our proposed scheme Srica. This increases the cloud storage by O(N), where N is
the number of document-keyword pairs. The proof has two parts one from the client and another
from the owner. For a keyword, w, the sizes of them are one group element and one random λ-bit
string only. Thus Auditor receives one element from both. The owner has to compute Rw integer
multiplication and addition and then has to send one element.

Forward privacy We can see that while adding a document, it only adds some keyword-document
pair, in the form of key-value pairs. So, During addition, the cloud server is adding key-value pairs
in the dictionary. From these pairs, it cannot guess the keywords present in it. Again, when it
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performs searches, it gets about the key (i.e., position on the table) only when it gets the identifiers.
The one possibility to get the newly added key-value pair linked with the previous is if the added
document gives the identifier of it. Since the one-way function, H ′ gives the document-name of
the adding document, the cloud server cannot linked it with the previously searched keywords.

5.3.1 Security

The security of the scheme is shown in two parts– confidentiality and soundness.

Soundness The cloud server can cheat the owner in three ways by sending–

1. Incorrect number of identifiers– but it is not possible as the owner keeps the number of
identifiers.

2. Same size result of other keywords– m is generated with a random number which can be
generated only with the searched keyword and signatures are bound with that. So, the signa-
ture verification will be failed.

3. Result with some altered identifiers– since signatures are bounded with keywords and the
random number, altering any will change m and similarly, the signature verification will be
failed.

Thus the owner always will get the correct set of document identifiers.

5.3.1.1 Confidentiality

Let LΣf = (LΣf
bld,L

Σf
srch,L

Σf
updt) the leakage function of Σf . Let LΨf = (LΨf

bld ,L
Ψf
srch,L

Ψf
updt) be the

leakage function of Ψf , given as follows.

LΨf
bld(DB) = {LΣf

bld(DB), |Tsig|}
LΨf
srch(w) = {LΣf

srch(w), {(idwi , poswi , σwi ) : i = 1, 2, . . . , cw}}
LΨf
updt(f) = {id, {(LΣf

updt(wi, id), poswi , σwi) : i = 1, 2, . . . , nid}}

We show that Ψ is LΨf -secure against adaptive dynamic chosen-keyword attacks in the random
oracle model, in the following theorem.

Theorem 5.1. If F is a PRF, R is a PRG and Σf is LΣf -secure, then Ψf is LΨf -secure against
adaptive dynamic chosen-keyword attacks.
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Proof. To prove the above theorem, it is sufficient to show that there exists a simulator SimΣf

such that ∀ PPT adversary A, the output of RealA(λ) and IdealA,SimΣf
(λ) are computationally

indistinguishable.

We construct such a simulator SimΣf which adaptively simulates the extra data structure Tsig
and query tokens. Let SimΣf be the simulator of the Σf . We simulate the algorithms as follows.

Simulating F : We simulate R with a table RO. Given (x, y), If RO[(x, y)] = ⊥, then do
RO[(x, y)]← {0, 1}λ and return RO[(x, y)], else return the existing value RO[(x, y)].

Simulating Build: Leakage function is given by LΨf
bld(DB) = {LΣf

bld(DB), |Tsig|}. Let Sbld be
returned by the simulator SimΣf . Let us consider a table T̃tag. For each keyword w it stores a
random λ-bit string. On input w, it returns t̃agw ← T̃tag(w). SimΨf keeps an extra table T̃ ′sig such
that it indicates whether the entry is queried or not. The simulation is done as follows.

1. Take empty tables T̃sig and T̃ ′sig

2. For each i = 1 to i = |Tsig| do

(a) posi
$←− {0, 1}λ; r′i

$←− {0, 1}λ

(b) vali
$←− gr

′
i

(c) T̃sig[posi]← vali

(d) T̃ ′sig[posi]← 0

3. Simulate Σf with Sbld ← SimΣf (DB)(LΣf
bld(DB))

4. return (Sbld, T̃sig) and keeps T̃ ′sig

Simulating Search token: Leakage function for a queried keyword w is given by LΨf
srch(w) =

{LΣf
srch(w), {(idwi ) : i = 1, 2, . . . , cw}}.
We keep a table RO where (t̃agw, id, i) is the key and pos is the value. Given search leakage

corresponding to the keyword w, SimΨf does the following things.

1. If T̃tag[w] is null, i.e, the keyword is searched first time

(a) t̃agw
$←− {0, 1}λ

(b) T̃tag[w]← t̃agw
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Else

(a) t̃agw ← T̃tag[w]

2. If RO[(t̃agw, id
w
i , i)] is not null,

(a) posi ← RO[(t̃agw, id
w
i , i)]

Else

(a) posi ← a random posi such that T̃ ′sig[posi] = 0

(b) RO[(t̃agw, id
w
i , i)]← posi

(c) T̃ ′sig[posi]← 1

3. Simulate Σf with τ̃Σf ← SimΣf (L
Σf
srch(w))

4. return τ̃Ψf
s = (τ̃Σf , t̃agw)

Simulating Update token: Leakage function to add a document f with identifier id containing
keyword set {w1, w2, . . . , wnw} is given by

LΨf
updt(f) = {H ′(id), {(LΣf

updt(wi, id)) : i = 1, 2, . . . , nid}}.

1. For each keyword wi ∈ f

(a) τ̃ iu ← SimΣf (L
Σf
updt(w, id))

(b) If T̃tag[wi] is null, i.e, the keyword is searched first time

i. t̃agwi
$←− {0, 1}λ

ii. T̃tag[wi]← t̃agw

Else

i. t̃agwi ← T̃tag[wi]

(c) cwi ← C[wi] + 1

(d) If RO[(t̃agwi , id, (cwi + 1))] is not null,

i. p̃osi ← RO[(t̃agwi , id, (cv + 1))]

Else

i. p̃osi ← a random posi such that T̃sig[posi] is null
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ii. RO[(t̃agwi , id, (cwi + 1))]← p̃osi

iii. T̃ ′sig[posi]← 1

(e) σ̃i
$←− G

2. p̃os← {p̃os1, p̃os2, . . . , p̃osnid}

3. σ̃ ← {σ̃1, σ̃2, . . . , σ̃nid}

4. Return τ̃Ψf
u = (p̃os, σ̃)

Since, in each entry, the signature generated in Tsig is of the form gαmr and corresponding entry
in T̃sig is of the form gαr

′ , where r is pseudo-random (as R is so) and r′ is randomly taken, we can
say that power of g in both are indistinguishable. Hence, Tsig and T̃sig are indistinguishable.

Besides, the indistinguishability of τ̃Ψf
u , τ̃Ψf

s with respect to τΨf
s , τΨf

u respectively follows from
the pseudo-randomness of F . �

5.3.2 Deletion support

Srica, i.e., Ψf can be extended to deletion support by duplicating it. Together with Ψf for addition,
a duplicate Ψ′f can be kept for deleted files. During the search, the auditor verifies both separately.
The client gets results from both Ψf and Ψ′f , accepts only if both are verified, and gets the final
result calculating the difference.

5.4 Performance evaluation

Our generic VSSE Aris requires only one hash-value computation to verify a search which is
optimal. Again, during building, the owner requires 2|W| extra hash-value computation twice of
the optimal. We can take that much computation to protect the scheme from malicious cloud server
without any extra client storage.

We have compared our verifiable DSSE scheme Srica with verifiable dynamic schemes by
Yoneyama and Kimura [107], Bost and Fouque [17], Miao et al. [66], Zhu et al. [112] and Jiang
et al. [44]. The comparison is shown in Table 5.2. From the table, it can be observed that Srica
is very efficient with respect to low resource owner. Extra computation needed by the owner, to
verify the search, is only |Rw| multiplication which is very less than the others. The owner also
does not require any more storage than the built-in forward private DSSE scheme.
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Table 5.2: Comparison of verifiable dynamic SSE schemes

Scheme Forward Public Extra Storage Extra Computation Extra Communication
Name privacy verifiability owner cloud owner cloud auditor owner auditor

Yoneyama and Kimura [107] X × O(|W|) O(|W|log|DB|) O(|Rw|) O(|Rw|) – O(1) –
Bost and Fouque [17] × × O(|W|) O(|W|) O(|Rw|) O(1) – O(1) –

Miao et al. [66] × X O(|W|) O(N + |W|) O(|Rw|) O(|Rw|) – O(1) –
Zhu et al. [112] × × O(1) O(1) O(|Rw|) O(|Rw|+N) – O(|Rw|) –
Jiang et al. [44] × X O(1) O(|W|) O(log |W|) O(|Rw|+N) – O(1) –

Srica X X O(1) O(N) O(|Rw|) O(|Rw|) O(1) O(1) O(1)

Where N is the #keyword-doc pairs. Here extra storage is calculated over all storage, extra
communication and computation are for a single search.

Conclusion
In this chapter, we have proposed a privately verifiable SSE scheme and a publicly verifiable

DSSE scheme. However, the scheme is only for single keyword search queries. There are many
other complex queries too. In the next chapter, we study conjunctive keyword search. We try to
design a scheme that is forward private and verifiable.



Chapter 6

Forward Private and Verifiable Conjunctive
Search Scheme

Sensitive data is often encrypted before storing it in outsourced servers (clouds). This makes
searching difficult. In this chapter, we consider the problem of keyword search. As we have seen
in Chapter 4 and Chapter 5, a searchable encryption (SE) scheme allows a cloud server to search
on encrypted data and return the results of the search query to the client.

In the previous chapter, we have addressed verifiable single keyword DSSE. In this chapter,
we will study a conjunctive SE scheme with both forward privacy and verifiability. We present
a generic scheme that converts any forward private DSE scheme to a verifiable conjunctive DSE
scheme preserving its forward privacy. For verifiability, we propose a new cryptographic accumu-
lator called dynamic interval accumulation tree (DIA Tree).

Cryptographic accumulators are used for proving membership as well as non-membership of
elements in a set. When the size of the set is large, proof generation and (or) proof size becomes
expensive. Though the existing accumulator scheme like [5] can build an accumulation tree for a
static database that can provide the proof of membership as well as non-membership, it is ineffi-
cient for a dynamic set. Papamanthou et al. [76] presented a scheme that dealt with the dynamic
set that generates membership proofs efficiently. They extended their scheme with an additional
authenticated tree that allows non-membership checks. However, this additional structure does not
support updates.

In this chapter, we have proposed a Dynamic Interval Accumulation tree (DIA tree) that
efficiently works for both membership and non-membership witnesses and returns proofs even on
large dynamic dataset efficiently. We have used the DIA Tree in our conjunctive DSE scheme for
verifiability. Please note that DIA trees are of independent interest and can be applied to the other
applications not just constructing DSE schemes.

Our contributions In this work, we make the following contributions.

• We propose an accumulator using a new data structure called Dynamic Interval Accumula-
tion tree (DIA tree) that supports efficient proofs of membership and non-membership. To
the best of our knowledge, there is no previous scheme in the literature that provides a single

97
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authentication data structure supporting both membership and non-membership proofs effi-
ciently together with update support. We provide formal security proof for the accumulator.

• We propose a generic verifiable conjunctive search DSE scheme Blasu that converts any
forward private conjunctive DSE scheme to a verifiable forward private conjunctive DSE
scheme, without losing its forward privacy property and without using any extra client stor-
age for verifiability. To the best of our knowledge, our proposed scheme is the first forward
private as well as verifiable conjunctive SE scheme in a dynamic setting. Moreover, we
have given security proof of the scheme. We have shown that the proposed scheme Blasu is
secure against adaptive chosen query attack.

• We compare our proposed scheme Blasu with the existing schemes and show that the
scheme is practical.

Organization We summarize our work in the chapter as follows. We briefly introduce the re-
quired cryptographic tools in Section 6.1. We propose an authenticated data structure DIA tree
in Section 6.2, together with its security proof. Using the tree, in Section 6.3, we propose a DSE
scheme Blasu that provides verifiability without extra client storage. In Section 6.4, we compare
our scheme Blasu with a few of the existing similar schemes.

6.1 Preliminaries

6.1.1 System model

In our model of conjunctive verifiable DSE, there are three entities– client, cloud and auditor. The
system model is shown in Figure 6-1. Here, we briefly describe the system model as follows.

• Client: The client owns the database and requires outsourcing its data. It is assumed to
be a trusted party. Before outsourcing the data, it builds a secure search index. Then, it
encrypts and sends the data together with the index. It is the user of the database as well. For
every query made, it generates an encrypted query token and sends it to the cloud. Finally it
receives the result from the cloud.

• Cloud: The entity cloud is assumed to be malicious. It provides both storage and computa-
tion services. It stores the encrypted data. When a search query is given, it computes over
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Figure 6-1: The system model of a conjunctive verifiable DSE scheme

1. Client sends encrypted data, 2. Client sends query token to the Cloud, 3. After searching, Cloud sends
Result, 4. Cloud sends proof to the Auditor, 5. Client sends proof of received result, 6. Auditor sends

verification result.

the data and returns result to the client. It also sends proof of its correct execution to the
auditor.

• Auditor: The entity auditor is an authority that tells, verifying the proof received from the
client and the cloud, whether the returned result is correct or not. Any party, including the
client, can be an auditor.

6.1.2 Design goals

While designing such a scheme, assuming the above system model and aiming to provide a solution
toward a verifiable conjunctive search DSE scheme, with keeping it forward private, we achieve
confidentiality, scalability, efficiency and update support over the encrypted outsourced data, as
described in Section 1.1.2.

Moreover, Since a DSE scheme, without forward privacy, is vulnerable to even honest-but-
curious adversary, it is desirable the scheme to be forward private while achieving public verifia-
bility for a conjunctive search result.
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6.1.3 Definitions and terminologies

6.1.3.1 Notations

Let identifiers of the documents belong to the space of document identifiers D. Let DB ⊆ D.
Let each document contains some keywords belonging to a keyword spaceW . For each keyword
w ∈ W , let DB(w) = {idw1 , idw2 , . . . , idwnw} be the set of document identifiers that contains w,
where nw = |DB(w)| and idwi ∈ DB is the ith identifier. nw is also called the frequency of the
keyword w ∈ W . Thus,

⋃
w∈W DB(w) ⊆ DB.

Let EDB = {cid : id ∈ D} where by cid we mean the encrypted document that has id
as identifier. Let us consider the existence of a one-way function which maps every document
identifier to a random number. However, when we say cloud returns documents to the client, we
assume the cloud performs the function on every identifier before returning them.

Let, R : {0, 1}∗ → {0, 1}∗ be a PRNG and F : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a PRP.

In Table 6.1, we have shown some notations used in this chapter.

Table 6.1: Notations used in our conjunctive verifiable search scheme

Symbol Meaning Symbol Meaning
S Set of elements from {0, 1}∗ DT DIA tree
Bi ith bucket d root of DT
Si sorted set of elements in Bi s secret key of client for DT
li lower bound of Bi ai ith accumulators
ri upper bound of Bi W the keyword set
Soi Si ∪ {li, ri} wi ith keyword inW
G a bilinear group x, x′, x′′ elements of G
ê a bilinear map wt(x) membership witness of x
e an elements from {0, 1}∗ wtn(x) non-membership witness of x
g a generator of G idwj jth file that contains w
H a one-way hash φ(v) membership proof of v

{0, 1}∗ → G \ {1} SL(v) set of siblings of v

6.1.3.2 Dynamic Searchable Encryption (DSE) scheme

A dynamic searchable encryption (DSE) scheme Σ consists of algorithms (KeyGen, Build, SrchTkn,
Search, UptdTkn, Update), between a client and a cloud server, briefly described as follows.
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KΣ ← KeyGen(1λ): is a PPT algorithm run by the client that takes a security parameter 1λ and
outputs the secret key KΣ.

(ξ, EDB)← Build(DB, KΣ): is a client-side PPT algorithm that takes the dataset and the secret
key as input and outputs a pair (ξ, EDB) where EDB the encrypted database, and ξ an encrypted
index.

τΣ
w ← SrchTkn(w,KΣ): is also a client-side PPT algorithm that generates an encrypted search

trapdoor τΣ
w for a keyword w with the help of KΣ.

Rw ← Search(ξ, τΣ
w ): with this PPT algorithm, the cloud server perform search over ξ for τΣ

w and
returns the search result Rw to the client.

τΣ
u ← UptdTkn(KΣ, w, id): Given a keyword-document pair (w, id) the client generates an token,

encrypted with KΣ, for update with the help of this PPT algorithm.

ξ′ ← Update(ξ, τΣ
u , op) is a cloud-side algorithm that updates ξ according to the op for the update

token τΣ
u , and keeps the updated index ξ′.

Definition 6.1 (CKA2-security of a DSE scheme). [48] Let Σ =(KeyGen, Build, SrchTkn,
Search, UptdTkn, Update) be a DSE scheme. Let A be a stateful adversary, C be a challenger,
S be a stateful simulator and LΣ = (LbldΣ ,LsrchΣ ,LupdtΣ ) be a stateful leakage algorithm. Let us
consider the following two games.

RealΣA(λ): At first C generates a key KΣ ← KeyGen(1λ). In the same time, A chooses a set of
documents DB and sends it to C. Then, C computes (ξ, EDB) ← Build(DB, KΣ) and sends
(ξ, EDB) to A. During search phase, A makes a polynomial number of adaptive queries. In
each query A sends either a search query for a keyword w or an update query for (id, op) for
a document with identifier id operation op. Depending on the query, C returns either the search
token tΣw ← SrchTkn(w,KΣ) or the update token tΣu ← UptdTkn(KΣ, w, id) to A. Finally A
returns a bit b that is output by the experiment.

IdealΣA,S(λ): At first, A generates DB and gives it to S together with and LbldΣ (DB). On receiving
LbldΣ (DB), S generates (ξ, EDB) and sends it to A. A makes a polynomial number of adaptive
queries q ∈ {w, (id, op)}. For each query, S is given either LsrchΣ (w) or LupdtΣ (id, op). Depending
on the query q, S returns to A either search token tΣw or update token tΣu . Finally A returns a bit b
that is output by the experiment.

We say Σ is LΣ-secure against adaptive dynamic chosen-keyword attacks if for any PPT (prob-
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abilistic polynomial-time) adversary A, there exists a simulator S such that

|Pr[RealΣA(λ) = 1]− Pr[IdealΣA,S(λ) = 1]| ≤ µ(λ) (6.1)

Correctness: The correctness of a DSE scheme ensures that the every search protocol must return
the correct result for every query, except with negligible probability.

A DSE scheme Σ that does not leak any information about the previous search results, is said to
be forward private.

The schemes [17], [16], etc., are good examples of a forward private DSE schemes. In our
proposed scheme, we use any forward private DSE scheme Σ as a black box. We assume the black
box scheme Σ is correct and LΣ-secure against adaptive dynamic chosen-keyword attacks.

6.1.3.3 Verifiable Dynamic Conjunctive Searchable Encryption (VDCSE)

A dynamic conjunctive SE (DCSE) scheme supports conjunctive keyword search in dynamic database,
i.e., given a set of keywords, it returns the set of documents containing all keywords. In the pres-
ence of a malicious adversary, a verifiable dynamic conjunctive SE scheme provides the ability to
verify whether the returned result is consistent with the updated database. After a search is per-
formed, both the client and client give their part of the proof. An auditor or any third party can
verify the result from the proofs. We define a VDCSE scheme formally as follows. A dynamic
conjunctive SE (DCSE) scheme supports conjunctive keyword search in dynamic database. In the
presence of a malicious adversary, a verifiable dynamic conjunctive SE scheme provides the ability
to verify whether the returned result is consistent with the updated database. We define a VDCSE
scheme formally as follows.

Definition 6.2 ( Verifiable Dynamic Conjunctive Searchable Encryption). A verifiable dy-
namic conjunctive searchable encryption (VDCSE) scheme Ψ is a tuple (VCKeyGen, VCBuild,
VCSrchTkn, VCSearchCD,VCSearchCT, VCUpdtTkn, VCUpdate) of algorithms defined as follows.

• KΨ ← VCKeyGen(λ): Given a security parameter λ, this PPT algorithm, run by the client,
outputs a key KΨ.

• (st, EDB, γ, I ) ← VCBuild(DB, KΨ): This is PPT algorithm run by the client. Given
KΨ and a set of documents DB, it outputs the encrypted set of documents EDB together
with an encrypted search index γ and an auxiliary data structure I for verifiability. It also
outputs state st of the database.
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• τΨ
s ← VCSrchTkn(KΨ, ŵ, st): Given KΨ, st and a set of keywords ŵ, the client runs this

PPT algorithm and outputs a search token τΨ
s .

• (pfc, R̂ŵ, Xŵ) ← VCSearchCD(γ, I, tΨs ): Given γ, I and τΨ
s , in this cloud-run PPT algo-

rithm, the cloud returns result set R̂ŵ of document ids, a proof pfc.

• (pfu) ← VCSearchCT(R̂ŵ, t
Ψ
s ): Given R̂ŵ, in this client-run PPT algorithm, the client

returns a proof pfu.

• νŵ ← VCVerify(d, pfu, pfc, R̂ŵ) This is a PPT algorithm that takes the proofs pfu, pfc
together with the result R̂ŵ and outputs the verification bit νŵ

• (τΨ
u , st

′) ← VCUpdtTkn(K, id, st): Taking a key KΨ, a document identifier id and the
present state st, the cloud runs this PPT algorithm and outputs an update token τΨ

u and a
new state st′.

• (EDB′, γ′, I ′) ← VCUpdate(γ,EDB, I, τΨ
u , op): It is a cloud-run PPT algorithm which

takes an update token τΨ
u , operation bit op, EDB, the index γ and the auxiliary information

I and outputs updated (EDB′, γ′, I ′).

Correctness A VDCSE scheme Ψ is said to be correct if ∀λ ∈ N, ∀KΨ generated using KeyGen(λ)

and all sequences of search and update operations, every search outputs the correct set of identi-
fiers, except with a probability neg(λ).

Verifiability By verification, we mean verification of a search result. We verify whether the search
is performed on the current state of the database. We do not include verification of updates on the
cloud-side. If the cloud cheats, and updates incorrectly, it will fail verification test when a search
result includes such updated information.

6.1.3.4 Security definitions

We follow security definition of [85]. Security of a VDCSE scheme is divided into two parts–
confidentiality and soundness, described as follows. Confidentiality ensures the cloud does not get
any extra meaningful information other than this is allowed. On the other hand, the soundness
property ensures that the client gets the correct result. If some malicious cloud wants to return an
incorrect result, the verifier can detect it.

Confidentiality: We have considered the cloud to be malicious. It can misuse the data if it can
get information about the actual data. So, in a VDCSE, the cloud server should not know more
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information than it is allowed for. This property protects the client to leak only allowed amount of
information, not more than that. We define the confidentiality of a VDCSE as follow.

Definition 6.3 (CKA2-confidentiality of a VDCSE scheme). Let Ψ = (VCKeyGen, VCBuild,
VCSrchTkn, VCSearchCD, VCSearchCT, VCUpdtTkn, VCUpdate) be a verifiable dynamic con-
junctive searchable Encryption scheme. Let A, C and S be a stateful adversary, a challenger and
a stateful simulator respectively. Let LΨ=(LbldΨ ,LsrchΨ ,LupdtΨ ) be a stateful leakage algorithm. Let
us consider the following two games.

RealΨA(λ): At first, a key KΨ ← VCKeyGen(λ) is generated by the challenger C. Then a database
DB is chosen by the adversary A and sent to C. The encrypted database EDB is built and an
encrypted search index is generated by C as (st, EDB, γ, I) ← VCBuild(DB, KΨ) and then
(EDB, γ, I) is sent toA. In the next phase a polynomial number of adaptive queries are made by
A. In each of them, either a search query for a keyword set ŵ or an update query for a keyword-
document pair (w, id) and operation bit op is sent to C by it. In sequence, C returns either a
search token τΨ

s ← VCSrchTkn(KΨ, ŵ, st) or an update token τΨ
u ← VCUpdtTkn(K, id, st) to

A. Finally, a bit b, that is output of the experiment, is returned by A.

IdealΨA,S(λ): At first, a database DB is chosen by A and is given to S together with LbldΨ (DB).
Then, a simulated database and index (EDB, γ) is generated by S and sent to A. Then a poly-
nomial number of adaptive queries are made by A. For each query, either LsrchΨ (ŵ,DB) or
LupdtΨ (op, w, id), depending on the query, is given to S. Accordingly, S returns either search token
τΨ
s or update token τΨ

u to A. Finally, a bit b′, that is output of the experiment, is returned by A.

We say Ψ is LΨ-secure against adaptive dynamic chosen-query attacks if ∀ PPT adversary A,
∃ a simulator S such that

|Pr[RealΨA(λ) = 1]− Pr[IdealΨA,S(λ) = 1]| ≤ µ(λ) (6.2)

where µ(λ) is negligible in λ.

Soundness Since, the cloud has to provide computational as well as storage resources which has
a good amount of monetary cost, the cloud server can skip by giving incomplete or incorrect result.
In such a scenario, the soundness property ensures the client gets complete result with respect to the
present state of database. The game-based definition of soundness property of a VDCSE scheme
is given as follow.
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Definition 6.4 (Soundness of a VDCSE scheme). Let Ψ be a VDCSE scheme with Ψ =

(VCKeyGen, VCBuild, VCSrchTkn, VCSearchCD, VCSearchCT, VCUpdtTkn, VCUpdate). Let us
consider the following game.

soundΨ
A(λ): At first, a key KΨ ← VCKeyGen(λ) is generated by the challenger C. Then, a

database DB is chosen by the adversary and sent to C. The encrypted database is computed
as (st, EDB, γ, I)← VCBuild(DB, KΨ) by C and then (EDB, γ, I) is sent to A. A polynomial
number of adaptive queries are made by A. In each of them, either a search query, for a keyword
set ŵ, or an update query, for a keyword-document pair (w, id) and operation bit op, is sent to C.
In response, depending on the query, either a search token τΨ

s ← VCSrchTkn(KΨ, ŵ, st) or an
update token τΨ

u ← VCUpdtTkn(K, id, st) is returned to A.

In the challenge phase, a target keyword set ŵ is chosen by A and a search query for ŵ is sent
to C. In response, a search token τΨ

s is returned from which (Rŵ, νŵ) is searched by A, where
νŵ = accept is verification bit from C. Finally, a pair (R∗ŵ, ν

∗
w) for a keyword set ŵ is generated by

A. If ν∗ŵ = accept even when R∗ŵ 6=
⋂
w∈ŵDB(w), A returns 1 as output of the game, otherwise

returns 0.

We say that Ψ is sound if ∀ PPT adversaries A, Pr[soundΨ
A(λ) = 1] ≤ µ(λ).

6.2 Dynamic Interval Accumulation tree (DIA Tree)

If we consider membership witnesses, they cannot be updated without the secret key. However, the
client computes them initially by itself and stores them in the cloud. It fetches and updates them
each time a new element is added or deleted. For a given set of elements, if only one accumulator
is generated for the set, then the generating membership witness for a new element x becomes
inefficient. This is because the membership witness generation considers all elements belong to
the set in the computation i.e., computational complexity grows with the size of the set. If the set
is too large, the computation of the witness becomes impractical.

This is why, instead of generating a single accumulator, the set is divided into buckets and
a separate accumulator is generated for every bucket. In the next level, this set of accumulators
becomes input set and another set of accumulators is generated for them. The process continues
until only one element, i.e., the root is left. The generated tree is an accumulation tree.

Papamanthou et al. [76] studied the above approach previously in their work of authenticated
hash table. Though this scheme is good for membership-proof and supports updates, it has a serious
issue. For non-membership poof, the scheme considers an additional accumulation tree which is
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based on intervals. This tree does not support deletion. This makes the tree an append-only tree.

We take a different interval approach and construct DIA tree. The tree gives the ability to
perform both membership and non-membership in a single tree, even in case the set is dynamic
and large.

Before describing the construction of diatree formally, we give an example.

6.2.1 Example of a DIA tree

Let us consider a 3-ary tree with height h = 3. Then there are h + 1 levels where Level-0 is the
root. Then Level-2 has 9 elements. Each node at Level-2 can hold at most 5 elements. Then, all
possible elements can be mapped in [0,44]. The ith element at Level-2 corresponds to the bucket
[5i, 5(i+1)−1]. However, for construction, we want them to be in some open interval which allows
any operation to effect one bucket only. So, we take ith interval as Ii = (li, ri) = (5i− 1, 5(i+ 1))

(see Figure 6-2).

Now, given a set S = {6, 7, 9, 13, 21, 24}, we consider the following 15 (open) intervals,
(−1, 5), (4, 6), (6, 7), (7, 9), (9, 10), (9, 13), (13, 15), (14, 20), (19, 21), (21, 24), (24, 25), (24, 30),
(29, 35), (34, 40), (39, 45). Let Ii be the ith interval. Then we take hash xi = H(Ii), for each i, to
map them as an element of G. Then the 2nd Level-2 node stores {x2, x3, x4, x5}, 5th Level-2 node
stores {x9, x10, x11}, 6th stores x12 etc.

x1

Level-0

1

2(0,4) (5,9) (10,14) (15,19) (20,24) (25,29) (30,34) (35,39) (40,44)

x3

x2 x4
x5

x9 x10 x11x6
x7

x8 x12 x13 x14 x15

Figure 6-2: DIA tree for the set S

Level-0

1

2(0,4) (5,9) (10,14) (15,19) (20,24) (25,29) (30,34) (35,39) (40,44)

x1 x3

x2 x4
x5

x9 x10 x11x6
x7

x8 x12 x13 x14 x15
returned x9 and x10 while searching for e=21

returned x6while searching for e=10

Figure 6-3: search for e = 21 and e = 10

In addition, any node, except leaves, stores accumulator for its set of children. Moreover, any
node, except the root, stores witness of membership in the parent node.

Search: To search an element e = 21, at first, its corresponding interval is searched. Let its
boundaries be l = 19 and r = 25. And then it searches two elements e′ = 13 and e′′ = 24 in S
such that e′ < e < e′′. Finally, it sets e′ = max{e′, l} and e′′ = min{e′′, r}. This is equivalent to
say that we are choosing two elements e′ and e′′ in the left and the right of e respectively from the
bucket corresponding to e (see Figure 6-3).

Since, 21 is in S, it considers the intervals as I ′ = (e′, e) = (19, 21) and I ′′ = (e, e′′) =
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(21, 24). Then calculate the hashes x′ = H(I ′) and x′′ = H(I ′′). We see that both x′ and x′′

are in the tree. So, for each of them, with the result, cloud returns proof of their existence. The
proof contains accumulators and witnesses stored in every node from leaf to root in the path of the
bucket.

Similarly, if 10 is searched, the proof for the interval (9, 13) is returned. This is because if some
element belongs to S, it appears in two intervals– in one as the right boundary and in another as
the left boundary. When it is not in S, there exists an interval that contains the searched element.

Update: When we want to add e = 11, we find e′ = 9 and e′′ = 13, such that, e′ < e < e′′,
in the bucket corresponding to 3 (see Fig. 6-4a). Then we just remove x6 corresponding to the
interval I = (9, 13) and then add two intervals I ′ = (9, 11) and I ′′ = (11, 13). For that we remove
x6 = H(I) and add both x′ = H(I ′) and x′′ = H(I ′′). After doing the same, accumulators in the
path of the bucket from leaf to root and and witnesses for each of their children are updated.

Level-0

1

2

x’
x7x’’

removed x6, inserted x’ and x’’

(0,4) (5,9) (10,14) (15,19) (20,24) (25,29) (30,34) (35,39) (40,44)

x9 x10 x11x8 x12 x13 x14 x15x1 x3

x2 x4
x5

(a) Adding e = 11

x1

Level-0

1

2

x
x2

x5
x6

x7 removed x3, x4; and inserted x

(0,4) (5,9) (10,14) (15,19) (20,24) (25,29) (30,34) (35,39) (40,44)

x9 x10 x11x8 x12 x13 x14 x15

(b) Deleting e = 7

Figure 6-4: Updating the tree

Again, we delete an element only if it exists in S. So, in that case, given an element e = 7, we
can find two intervals I ′ and I ′′ where e is left and right bound i.e., I ′ = (6, 7) I ′′ = (7, 9). So,
e′ = 6 and e′′ = 9 (see Fig. 6-4b). Let I = (e′, e′′) = (6, 9). To delete the element e = 7, we
remove both x′ = H(I ′) and x′′ = H(I ′′), and then add x = H(I) and update the tree accordingly.

6.2.2 DIA Tree construction

For a given set S, in our proposed DIA tree construction, the set is stored separately. A tree is
constructed to give proof of whether an element exists in the given set S. We describe a DIA tree
scheme DIAT as a tuple (Init, BuildTree, Search, Update) of algorithms as follows.

Initialization [(s, tup)← DIAT.Init(1λ)]: Given a security parameter λ, a tuple (p,G,G, ê, g)←
BMGen(1λ) is generated. Let tup = (p,G,G, ê, g). An element s is chosen randomly from Z∗p and
finally (tup, s) is returned.
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Building the Tree [(DT, d) ← DIAT.BuildTree(tup, s, S)]: We consider in the given set S =

{e1, e2, . . . , en}, each ei is of fixed length and sorted. Let the complete range of elements be [0, 2λ).
We divide the range into b half-open intervals, each of size 2η. Then the number of intervals will
be b = 2λ−η. Let the ith intervals be [2i−1, 2i) and it corresponds to the ith bucket Bi. Finally,
we take range of bucket Bi as closed intervals [2i−1 − 1, 2i]. Let Si = {ei,1, ei,2, . . . , ei,ni} be the
sorted set of elements from S, falls into the bucketBi. We consider Soi = Si∪{li, ri}, i = 1, . . . , b,
where li = 2i−1 − 1, ri = 2i, ∀i = 1, . . . , b, and l0 = −∞ and rni = +∞. Now, we treat each Soi
separately as follow.

Let Ii,j = (ei,j, ei,j+1),∀j = 0, . . . , ni, where ei,0 = li and ei,ni = ri. Then, we map each of
the intervals in G as xi,j = H(Ii,j), whereH : {0, 1}∗ → G that brings each interval to an element
in G. Let S̄i = {(xi,j) : j = 0, . . . , ni}. Thus, the set of elements belongs to Si transfers to the set
of S̄i.

Finally, we get the sets S̄1, S̄2, . . . , S̄b and make accumulators for each of them. The elements
of the set S̄i are kept in the leaves, say at Level-h, where h is the height of the tree. For each
set S̄i, the accumulator is generated as ai ← AC.Gen(S̄i, s) where ai = g

∏
x∈S̄i

(H′(x)+s) ∈ G and
H′ : G→ Z∗p.

Next, we start from the set {a1, a2, . . . , ab}, recursively make an m-ary tree, above the leaves,
until we reach only one accumulator, say d, the digest of the tree. If h is the height of the tree
then mh−1 = b. Thus, every internal node of the tree DT stores the accumulator corresponding
to its set of children. Moreover, every node, including leaf nodes and excluding the root, contains
membership proof with respect to its parent. Thus if v is a node, it keeps membership proof as
φ(v) = g

∏
x∈SL(v)(H′(x)+s) ∈ G where SL(v) is the set of siblings of v. We can see that the each

internal node has same number of children, whereas Level-(h− 1) nodes stores random number of
children. Finally, the accumulation tree DT is returned to the cloud, and the client stores d.

Search [(bx, we) ← DIAT.Search(DT, e)]: Given an element e, this algorithm tells whether it
exists together with a witness. This is done as follows.

Let Bk be the bucket for e. If e /∈ Sk, it finds other two elements e′, e′′ ∈ Sok such that
e′ < e < e′′ in the bucket corresponding to e. Then it computes x ← H(I) where I = (e′, e′′).
Then it gives membership witness wt(x) = πI for x in DT . Let v0, v1, . . . , vh nodes in the path
corresponding to the node x where vh is the root of the tree. Then, wt(x) is of the form (e′, e′′, πI)

where πI = (π1, π2, . . . , πh) and each πi is a pair (αi, βi) defined as

αi = Φ(vi−1) and βi = g
∏
u∈SL(vi−1)(H(Φ(u))+s)

, i = 1, 2, . . . , h (6.3)
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Note that, in our proposed scheme, we pre-compute both αi and βi.

Now, if e ∈ Sk, it finds another two elements e′, e′′ ∈ Sok such that e′ < e < e′′. Then
the witness of non-existence of x is given by wtn(x) = (e′, e′′, πI′ , πI′′) where I ′ = (e′, e) and
I ′′ = (e, e′′).

be = 1 indicates existence and we = wt(x) is set whereas bx = 0 indicates the opposite and
we = wtn(x) is set.

Verify Search [b ← DIAT.VerifySearch(d, be, we, e)]: If be = 1, verifier verifies whether
β
H(αi−1)+s
i = αi, ∀i = 1, 2, . . . , h. It recomputes the element x = H′(e′, e′′) and computes αi = x.

Then, it verifies
ê(αi, g) = ê(βi−1, g

(H(αi−1)+s)), i = 1, 2, . . . , h,

Additionally, it is checked if ê(d, g) = ê(βl, g
(H(αh)+s)) where d is the root digest. The result is

accepted if all are verified correctly.

If be = 0, it recomputes the element x1 = H′(e′, e) and x2 = H′(e, e′′). verifies the same for
both intervals. It returns accept if, witnesses are verified for both intervals. verification is done
similarly as above.

Update [d′ ← DIAT.Update(DT, T, s, d, e, op)]: Given an element e let Bk be its bucket. Then
it finds two elements e′, e′′ ∈ Sok, such that e′ < e < e′′. Then x′ ← H′(e′, e), x′′ ← H′(e, e′′)
and x ← H′(e′, e′′) are computed. Let v1, v2, vh be the path above them. Let φ(v), wt(v) denotes
accumulator and witness stored in v resp. Now, for op = add, we do the following.

1. At level h, x′, x′′ are inserted and x is removed. The client can calculate and upload their

witnesses as wt(x′)← {φ(v1)}
(H(x′)+s)
(H(x)+s) and wt(x′′)← {φ(v1)}

(H(x′′)+s)
(H(x)+s)

2. For v1, client computes φ1(v1)← {φ(v1)}H(x′)+s, φ2(v1)← {φ1(v1)}H(x′′)+s and φ0(v1)←
{φ2(v1)} 1

H(x)+s .
It computes φ1(vi)← (φ(vi))

(H(φ0(vi−1))+s) and φ0(vi)← (φ1(vi))
1

(H(φ(vi−1))+s) , for other vis.
Thus, the new accumulator values along the path are φ0(v1), φ0(v2), . . . , φ0(vh).

3. For each child u of v1, cloud server computes updated witness wt0(u) without using s di-
rectly as follow.

(a) Compute wt1(u)← φ(v1).(wt(u))(H(x′)−H(u))

(b) Compute wt2(u)← φ1(v1).(wt1(u))(H(x′′)−H(u))
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(c) compute wt0(u)←
(
wt2(u)

φ0(v1)

) 1
H(x)−H(u)

4. Finally for any other child u of vi new witnesses computed by the cloud server are wt1(u)←

φ(v1).(wt(u))H(φ0(vi))−H(u) and wt0(u)←
(
wt1(u)

φ0(v1)

) 1
H(φ(vi))−H(u)

5. The client keeps d′ = φ(vh) as the new digest of the root

The client needs to keep the new digest only. Verification of the update is not required. If the cloud
server changes something, no search result will be verified correctly.

If op = delete, the tree can be updated in a similar way. The only changes in the algorithm are
membership witnesses update of the leaf nodes (of the same bucket) and updating φ(v1). During
deletion, at Level-h, x is inserted and x′, x′′ are removed and the tree is updated accordingly as
follows.

1. For v1, client computes updated witness φ0(v) of φ(v) as

φ1(v1) ← {φ(v1)}(H(x)+s),

φ2(v1) ← {φ1(v1)} 1
H(x)+s , and

φ0(v1) ← {φ2(v1)}
1

H(x′′)+s .

For 1 < i <= h, similarly as in delete, it computes the new accumulator values φ0(v1), φ0(v2), . . . , φ0(vh).

2. For each child u of v1, cloud server computes updated witness wt0(u) without using s di-
rectly as follow.

(a) Compute wt1(u)← φ(v1).(wt(u))(H(x)−H(u))

(b) Compute wt2(u)←
(
wt1(u)

φ2(v1)

) 1
H(x′)−H(u)

(c) compute wt0(u)←
(
wt2(u)

φ0(v1)

) 1
H(x′′)−H(u)

3. Additionally, at Level-h, x is inserted and x′, x′′ are removed. Client computes the witnesses
wt(x)← {φ(v1)}

1‘
(H(x′)+s)(H(x′′)+s) .
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4. Finally, for any other child u of vi (i > 1) new witness wt0(u) computed similarly as

wt0(u)←
(
wt1(u)

φ0(v1)

) 1
H(φ(vi))−H(u)

where

wt1(u) = φ(v1).(wt(u))(H(φ0(vi))−H(u))

5. The client keeps d0 = φ(vh) as the new digest of the root

6.2.3 Advantages of DIA tree

We have seen how the system works in a DIA tree, using on interval-approach. For a given set
S, in both of [76] and our proposed DIA tree construction, the set is stored separately. In [76],
leaf nodes stores H(x),∀x ∈ S where H maps each element in a bilinear group G. However, in
our case, we store maps of the open intervals as H((x, y));x, y ∈ S. It allows us to design the
accumulation tree having both membership and non-membership proofs in a single structure.

They used a used an interval-based approach for non-membership proof only. They store ....

Papamanthou et al. [76] used an interval-based approach for non-membership proof only. They
have to maintain two trees, one for membership proof and another for non-membership proof where
the second one works only when the given set S is static. Secondly, they store the given set S, and
an accumulation tree corresponding to the open intervals. However, there is no formal description
of how it works.

Our proposed accumulation tree, DIA tree, gives proof of membership as well as non-membership
even when the set S is dynamic. Moreover, it uses a single tree, resulting in reduction of cloud
storage. We achieve those at the cost of computation. In DIA tree, the update time is thrice, and
the search time is at most twice than that in [76]. However, the required time is asymptotically the
same for both. We give computational complexity of DIA tree in Section 6.2.4.

There is another basic difference between the two constructions. In [76], the computation of
witnesses is done by the cloud server when verification is required. This is useful when the fre-
quency of the search is very low. However, if the search is frequent, we have to return only proofs
fast. So, in the DIA tree we pre-compute all witnesses which enable the frequent search. For the
same, the client has to update the O(mh) witnesses during each interval update.

Moreover, we can see that the sorted Merkle tree can solve the problem of both membership
and non-membership proof with very efficiently. However, one downside of sorted Merkle hash
trees is that even if a single element in the data set S is changed, that element may need to move
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to a different leaf, and the entire hash tree will need to be recomputed from scratch. This can take
O(|S|) hash computations. Dia tree not only provides all the functionalities of Merkle tree but also
supports an efficient update, requiring at most O(log|S|) calculations to update an element.

6.2.4 Storage and computation complexity of DIA tree

Let h be the height of the tree. Since, the leaves store elements in G corresponding to the intervals,
parents of the leaves store different numbers of elements. However, the tree is a complete m-ary
tree from Level-0 to Level-(h− 1), i.e., without leaves.

Storage Cost: Since, the tree is an m-ary tree without the leaves, it can hold upto b = m(h−1)

elements in Level-(h − 1) and each node at Level-(h − 1) can hold at most 2λ

m(h−1) elements.
However, there may be some nodes at Level-(h − 1) that may not contain only one element. If
the size of the set is n, then the number of leaves is n + 1 + m(h−1). Now, each node stores an
accumulator of its children and a witness of its parent. The root only keeps an accumulator and
every leaf keeps an element in G corresponding to its interval. Number of internal nodes, from
root to Level-(h− 1) is m(h−1) + m(h−2) + . . . + 1 = (m(h) − 1)/(m− 1). Thus, the number of
elements the DIA tree store is 2(m

h−1
m−1

+m(h−1) + 1 + n)− 1. This is stored at the cloud-side. The
client keeps only the root and the secret key.

Building Cost: The numbers of accumulators at internal nodes is mh−1
m−1

. Among them, m(h−1)−1
m−1

accumulators, in the Level above h − 1, are for set of size m each. The accumulators at Level-
(h − 1) are for the set of average size n−1

mh
. Besides, the number of witnesses to be generated is

(m
h−1
m−1

+ m(h−1) + 1) + (n − 1) = mh−1
m−1

+ m(h−1) + n The above cost is a one time client-side
cost.

Search Cost: During a search, the cloud has to return the accumulators and witnesses in the paths
corresponding to the given intervals. The cloud can retrieve them O(2(h + 1)) or O(h + 1) time
depending on whether the search element exists or not. Thereafter, the cloud returns 4(h + 1)

group elements if the searched element exists, else returns 2(h+ 1) group elements.

Verification Cost: To verify the result, the verifier needs to compute 4(h+ 1) and 2h powers in G.
The cost is half if the searched element does not exist.

Update Cost: During an update, an interval, the client retrieves all nodes in the path corresponding
to the interval and all witnesses that are affected due to this change. The client only retrieves and
updates 2(m(h−1)+1) accumulators and sends them back to the cloud. The cloud stores them and
updates the witnesses to their children. The number of such witnesses is m(h − 1) for the nodes
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above Level-h. Other than that, there can have 2λ/b witnesses at the bottom at most whereas the
number is |S|/b on average . The cost is double when the searched interval exists in the database.

6.2.5 Security of a DIA tree

We see that Φ(v) gives an accumulation tree corresponding to the subset of the set S rooted at v.
Thus, Φ(v) is also called the bilinear digest of the tree rooted at v.

Theorem 6.1 (Acc tree security). Given a security parameter λ and a set U= {x1, x2, . . ., xn},
xi ∈ G, let DT be the accumulation tree constructed with AC.Gen() as above. Under the q-strong
Diffie-Hellman assumption, the probability that a PPT adversary A, knowing only the bilinear
pairings parameters (p,G,G, ê, g) and the elements {g, gs1 , gs2 , . . . , gsq}, of G, for some randomly
chosen s from Z∗p and n ≤ q, can find another set V , with elements from G, such that V 6= U and
Φ(V ) = Φ(U) is neg(k).

Proof. Follows from the proof of Papamanthou et al. [76]. �

Theorem 6.2 (Security of our construction). Given a security parameter λ and a set S = {e1, e2,
. . ., en}, where ei ∈ {0, 1}∗, let DIAT be the accumulation tree constructed as above. Under the
q-strong Diffie-Hellman assumption, the probability that a PPT adversary A, knowing only the
bilinear pairings parameters (p,G,G, ê, g) and the elements {g, gs1 , gs2 , . . . , gsq} of G, for some
randomly chosen s from {0, 1}∗ and n ≤ q, can find another set S ′, with elements from G, such
that S ′ 6= S and Φ(S ′) = Φ(S) is neg(λ).

Proof. Here, we use Theorem 6.1 with reduction method. We show that if Theorem 6.2 is false,
then so is Theorem 6.1. But, since Theorem 6.1 is true, it implies Theorem 6.2 is true.

The main difference between our DIAT and Papamanthou et al. [76] is that our scheme supports
efficient updates.

Since H is public, if S = {e1, e2, . . ., en} is given then so is S̄ = {x1, x2, . . ., xn}. Let us
consider Theorem 6.2 does not hold, then there exists a PPT algorithm A, which finds another set
S ′ = {e′1, e′2, . . ., e′n′} such that Φ(S ′) = Φ(S) with probability ≥ neg(λ).

Let U = S̄ and V = S̄ ′ where S̄ ′ = {H(I ′0),H(I ′1), . . . ,H(I ′n′)} and I ′i = (e′i, e
′
i+1),∀i. Thus,

given U , we have found a PPT adversary A that finds another set V with probability ≥ neg(λ).
This contradicts Theorem 6.1. Thus our assumption that Theorem 6.2 does not hold is false.
Hence Theorem 6.2 is true.

�
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6.3 Our proposed VDCSE scheme

In this section, we propose our scheme which is forward private and verifiable. Our scheme does
not use any extra storage for verification. Before discussing our scheme, we show that verifiability
with O(|W |) client storage is very easy for any single, conjunctive as well as Boolean keyword
search schemes

DSE with O(|W |) extra storage for verifiability: For single keyword searches [82] shows
that when there is client storage of O(|W |), verifiability can be achieved with any hash function
for static data. Whereas, the same can be achieved with multiset hash (see Definition 2.9) when
the data is dynamic. These schemes are for single keyword search only. Besides, for dynamic
data, when forward privacy is concerned, the solution [107, 82] shows how forward privacy can
be achieved without extra client storage and still with keeping them verifiable. We see that if for
every keyword w ∈ W , the client is able to store a digest of the set of identifiers DB(w), then
any multiset hash H solves the problem of verifiability for a single keyword search. The client can
compute an aggregated hash using multiset hashing, which can be updated with every update done
by the client. The client can recompute the aggregated hash when receives search results for the
keyword and can match with the stored one. In such a scenario, since all computations are done
by the client and nothing is outsourced to the cloud, there is no forgery. Thus, with O(|W |) client
storage, the client is able to verify the result, using multiset hashing, in any single keyword search
DSE scheme, without affecting the forward or backward privacy.

A conjunctive forward private keyword search scheme can be either static or dynamic. A
dynamic conjunctive search may have forward privacy. With non-trivial solution1, [45] deals with
verifiability when data is static and [91, 107] deal when they are dynamic. However, when forward
privacy is concerned, the above solutions are not applicable. Also, they used at least O(|W |) client
storage as well. In a conjunctive dynamic SE scheme, if the client is able to store the accumulator
corresponding to each keyword w ∈ W , then the client is able to verify the received result. It
can verify whether all resulted identifiers are present in a keyword or not. Since this requires
extra computation the client can outsource this computation to a proxy server too. Thus, the extra
O(|W |) client storage makes the scheme easier to verify the search result for any conjunctive
dynamic SE scheme without effecting its forward or backward privacy if there is any.

DSE without O(|W |) extra storage: We see that O(|W |) client storage can make any conjunc-

1A trivial solution is downloading search results for all keywords present in a conjunctive query and taking the
intersection of them at client-side



Our proposed VDCSE scheme 115

tive as well as single and Boolean keyword search scheme verifiable. So, we are interested in the
verifiability without this extra client storage. In this section, we propose a forward private con-
junctive DSE scheme with verifiability that does not use any extra client storage for verifiability.

Trivially, if the client issues a single keyword search token for each keyword in the conjunctive
query and cloud server returns the search result for each of them, then it can compute the intersec-
tions of them to get the final result. This can also be done using [82] without extra client storage.
However, the trivial approach has two issues. Firstly, it leaks the complete result for each keyword
instead of the required. Secondly, searching for identifiers containing each keyword requires extra
computation power. Thus, it is inefficient for a conjunctive search.

Difficulty in extending existing schemes to a VDCSE scheme: Previous conjunctive DSE
schemes are either verifiable without forward privacy ([96]) or are forward private without verifia-
bility ([99]). There are other conjunctive schemes which are neither forward private nor conjunc-
tive. An obvious question is whether existing conjunctive DSE without forward privacy [99] or
without verifiability [96] can be extended with having both.

The key point of [99] is that modification of documents is not allowed here and the files are
always unchanged. So, if we keep the accumulators at the leaf node of VBTree corresponding
to every document, the accumulators will be always unchanged. However, the solution is not
complete. If we keep the accumulators in the leaf then, for membership or non-membership proof,
it must reveal what are the elements in the set. Thus the tree structure will be revealed and the
scheme cannot be forward private anymore. The cloud sends which tuple is not present in a node
in the path. So we have to keep the accumulators in the nodes of the tree. However, if some new
file is added then the complete path of the file may be revealed to add new elements in the nodes.
Thus, it is hard to extend [99] to be verifiable without extra client storage.

Besides, [96] is for static data. So forward privacy is not applicable to it. If we extend the
scheme to be dynamic then we can only try to make it forward private. We can see that it keeps
the accumulator corresponding to every keyword on the cloud-side. When an update happens,
the cloud has to update the accumulators too, and updating it reveals whether the keyword was
searched previously. So, its extension to forward private is not possible in this way.

6.3.1 Overview of our proposed scheme Blasu

In this section, we present a generic forward private conjunctive DSE scheme with verifiability that
makes any forward private single keyword search scheme to conjunctive one. However, we want
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to reduce this extra client storage for verifiability. Our proposed forward private conjunctive DSE
scheme with verifiability does not use any extra client storage for verifiability. Here, we give a
short overview of our scheme Blasu.

In most of the conjunctive schemes, including ours, the least-frequency method is considered
(exception [99]). In this method, the least frequent keyword is taken and its result is found. Then
for each resulting document, the presence of all other keywords is checked. For example, given
a query ŵ = {w1, w2, . . . , wk}, let Rw1 = {idw1

1 , idw1
2 , . . . , idw1

nw1
} be the single keyword query

result for the lowest frequent keywordw1. The frequency of a keyword is the number of documents
that contain it. The cloud server computes Rw1 and checks if id1

i , for 1 ≤ i ≤ nw1 , contains all the
keywords in ŵ \ {w1} and includes it in the search result Rŵ, in the case does.

Our proposed scheme Blasu uses a forward private DSE scheme Σ as a black box.At the
time of building two data structures, a hash table, and a DIA tree are built in addition to the
encrypted index. For each keyword-document pair, a unique element is created. The element
stores a signature generated using the corresponding keyword and the document identifier. It is
kept in the hash table that gives it efficient access. After all the elements are generated, a DIA tree
is built on them.

To search, we use the least-frequency approach. The client first generates a search token and
sends it to the cloud. The cloud performs a search using Σ for a minimal frequent keyword. Then,
for each document identifier in the result, the cloud checks its existence of other keywords. It
returns the documents, each of which contains all searched keywords together with proof of its
correct execution. The elements and DIA tree help the cloud to return the proof. To update a new
keyword-document pair, the client generates the corresponding element and sends it to the cloud,
which then updates both the table and the tree accordingly.

6.3.2 Technical details

There are three phases in our proposed VDCSE scheme Blasu, denoted by Ψ, which is a tuple
(VCKeyGen, VCBuildIndex, VCSrchTknGen, VCSearchCD, VCSearchCT, VCUpdtTknGen, VCUpdate)–
initialization, search and update. In the first phase, the client generates keys and builds encrypted
search index. Then it generates the DIA tree. In the search phase, the client generates search token
and sends it to the cloud. Then the cloud performs search over the data and generates proof and
sends the result to the client. The client generates some proof from the result it gets so that any-
one can verify the proofs. The interaction between the entities, during those phases, are shown in
Fig 6-5. The phases are described as follows.
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1. Generates KΨ
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Figure 6-5: Interaction between entities in different phases
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Initialization: It is divided into two parts– key generation and building an encrypted search index,
given as below.

Key Generation: is given Algo. 16. Let E = (Enc, Dec) be a CPA-secure symmetric encryption
scheme with key-space {0, 1}λ. Given some security parameter λ, the key KΣ is generated for Σ.
Moreover, three λ-bit stings Ks, Kt and Ks̄ are picked at random to use them as secret.

Algorithm 16: Ψ.VCKeyGen(1λ)

1 KΣ ← Σ.KeyGen(1λ) ; (sk, pk)← S.KeyGen(1λ) ;
2 Ks, Kt, Ks̄ ← {0, 1}λ; s← {0, 1}λ /*for DIAT*/;
3 return KΨ = (Ks, Kt, Ks̄, sk, pk,KΣ, s);

For each keyword, Ks is used as a key, together with the keyword, for generating a seed.
This seed is used to generate a sequence of random numbers. Similarly, for each keyword, Kt

helps to generate a tag that helps to find some random positions in a table (Tsig). Whereas Ks̄

generates a unique key for the symmetric encryption scheme E . A BLS signature scheme S =

(KeyGen, Sign, Verify) is generated together with a tuple tup = (p,G,G, ê, g) and a key pair
(sk, pk). A λ-bit secret key s is chosen for DIA tree DT . Finally, KΨ = (Ks, Ks̄, Kt, sk, pk,KΣ)

is returned

Encrypted Index Building: is given in Algo 17. Instead of DB(w), for each w ∈ W , we
consider DB(w) ∪ {idw0 }, where {idw0 } is a random unassigned identifier. Doing so prevents the
cloud server to return an empty set of identifiers. Whenever the cloud returns the actual file it
neglects the first identifier. Without loss of generality, we take DB(w) = DB(w) ∪ {idw0 } and
DB = {DB(w) ∪ {idw0 } : w ∈ W}. In rest of the chapter, we consider the same.

To generate an encrypted search index, the client takes an empty hash table Tsig where it keeps
a key-value pair (poswi , (σ

w
i , v

w
i )) for each keyword-doc pair (w, idwi ). The key poswi indicates

the position in the table where value (σwi , v
w
i ) keeps two things– a signature σwi for the pair and

encrypted file-sequence-number vwi for the keywords. A symmetric key encryption scheme Enc
can be taken to get vwi . Finally, the client builds a DIA tree DT for the set P of all such positions.
The treeDT is constructed with DIAT.BuildTree(tup, s, P ) as described in Section 6.2. The root
of the tree is kept at client-side. Moreover, the documents are kept encrypted. The encrypted index
ξ for them is generated using Σ. Here γ = {ξ, TSig} and I = DT .

Search Phase: The search phase consists of three steps. At first, the client generates a search
token to search for a set of keywords and sends it to the cloud server. Then, the cloud server
performs a search on the encrypted database and generates a proof of the search result. The client
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Algorithm 17: Ψ.VCBuild(DB, KΨ)

1 Tsig ← An empty list of size |W| ;
2 for w ∈ W do
3 sw ← F (Ks, w); tagw ← F (Kt, w); s̄w ← F (Ks̄, w);
4 for i = 0 to cw(= |DB(w)|) do
5 rwi ← R(sw||i);
6 mw

i ← rwi .id
w
i (mod q); poswi ← F (tagw, id

w
i ||i);

7 σwi ← S.Sign(sk,mw
i ) ; vwi ← E .Enc(s̄w, i) ;

8 Tsig[pos
w
i ]← (σwi , v

w
i );

9 end
10 end
11 P = {poswi : w ∈ W and i = 0, 1, . . . , nw};
12 (DT, d)← DIAT.BuildTree(tup, s, P );
13 DB = {DB(w) : w ∈ W};
14 (ξ, EDB)← Σ.Build(DB, KΣ) ;
15 Client keeps the root digest d;
16 return (ξ, EDB, Tsig, DT ) to cloud;

also generates a proof of the received result and gives it to the auditor. Finally, an auditor verifies
the result and the proofs.

Search token generation: Given a query ŵ = {w1, w2, . . . , w|ŵ|}, the client first generates
search token τΣ

w1
for w1 (the lowest frequent keyword), according to the base searchable encryp-

tion scheme Σ (Algo. 18). This helps to find file identifiers that contain w1. Then, it generates
corresponding set of tags {tagw1 , tagw2 , . . . , tagw|ŵ|} for all keywords. These tags help to find
whether the keyword-document pairs exist without revealing the actual keyword. Additionally,
sŵ = {sw1 , sw2 , . . . , sw|ŵ|} and s̄ŵ = {s̄w1 , s̄w2 , . . . , s̄w|ŵ|} are generated by the client. Finally, τΨ

s

= (τΣ
w1
, tagw1 , tagw2 , . . . , tagw|ŵ|) is issued as a search token for the cloud and sŵ, s̄ŵ are stored at

client-side.

Search and proof generation: After receiving the search token τΨ
s from the client, at first, the

cloud finds single keyword search result Rw1={idw1
0 , idw1

1 , . . . , idw1
nw1
} for the keyword w1 using

Σ. Then from Rw1 and the tag tagw1 , it finds the position of the keyword-file pairs corresponding
to w1 and retrieves signatures of them from the table Tsig. After that, it multiplies them as an
aggregate signature for w1 which is treated proof pf (0)

c for w1.

Then, for each file in Rw1 , it checks whether other keywords are present in the file by verifying
the existence of the keyword-file pairs. To verify them, corresponding positions are regenerated
and checked whether the table Tsig contains them. If for some jth file id, the position does not exist,
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Algorithm 18: Ψ.VCSrchTknGen(ŵ,KΨ)

1 {w1, w2, . . . , w|ŵ|} ← ŵ, where w1 is minimal frequent ;
2 (Ks, Kt, Ks̄, sk, pk,KΣ, s)← KΨ;
3 τΣ

w1
← Σ.SearchToken(w1, KΣ);

4 for i = 1 to i = |ŵ| do
5 tagwi ← F (Kt, wi); swi ← F (Ks, wi); s̄wi ← F (Ks̄, wi);
6 end
7 τΨ

s ← (τΣ
w1
, tagw1 , . . . , tagw|ŵ|);

8 sŵ ← (sw1 , sw2 , . . . , sw|ŵ|); s̄ŵ ← (s̄w1 , s̄w2 , . . . , s̄w|ŵ|);
9 return τΨ

s for cloud and (sŵ, s̄ŵ) only for client;

the cloud computes non-membership proof pf (i)
c for that positions. If all keywords are contained in

jth file, then the product of their signatures is returned as proof corresponding to the keyword, and
the set a(j)

c of vji s are returned to the client. R̂ŵ keeps the identifiers that contain all keywords.

Thus, for each file in Rw1 , if it is in R̂ŵ, then the cloud returns the product of the signatures
corresponding to the keyword file pairs and the set of vji s. In case a file in Rw1 is not present in R̂ŵ,
it returns a non-membership proof for the position corresponding to a non-existing keyword-file
pair. Finally, the cloud server returns its part of the proof pfc and (R̂ŵ, Xŵ) to the client where
Xŵ = (Rw1 , ac) and ac is the auxiliary information from cloud.

After receiving(R̂ŵ, Xŵ = (Rw1 , ac)), the client generates its part of the proof pfu. For w1, it
regenerates all the random numbers mw1

i for each of the files in Rw1 . Then it generates the product
of them as m0 =

∑nw1
i=0 m

w1
i (mod p) (see step 3 to step 10 in in Algo. 20).

For each file id ∈ Rw1 \ {w1}, if id ∈ R̂ŵ, the client decrypts the encrypted numbers vji s,
generates random numbers corresponding to each keyword and calculates the product mi of them
as pf (i)

u . This acts as membership proof of all the keywords in the file. So, we do not have to
generate a separate proof for all keyword-file pairs. In case, id /∈ R̂ŵ, the client keeps pf (i)

u as
null. This is because the cloud already keeps non-membership proof for them.

The auditor (or any third party) verifies the search result by taking pfc from the cloud, and pfu,
R̂ŵ and d form the client. The algorithm is given in Algo. 20.

Verification: The auditor verifies forw1 as well as for each files inRw1 . There are two cases in ver-
ification. For the identifiers∈ R̂ŵ, containing all keywords, it verifies S.Verify(pk, pfu[k][1], pfc[k]).
For the identifiers /∈ R̂ŵ that does not contains some keyword, non-membership proof, for corre-
sponding pos, is verified with DIAT.VerifySearch. auditor returns accept only when all get
success (see Algo. 21).
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Algorithm 19: Ψ.VCSearchCD(γ, τΨ
s )

1 Cloud Receives τΨ
s from client ;

2 (τΣ
w1
, tagw1 , tagw2 , . . . , tagw|ŵ|)← τΨ

s ;
3 Rw1 ← Σ.Search(ξ, τΣ

w1
);

4 {idw1
0 , idw1

1 , . . . , idw1
nw1
} = Rw1;

5 for i = 0 to nw1 do
6 posw1

i ← F (tagw1 , id
w1
i ||i);

7 σ′i ← Tsig[pos
w1
i ][0]; ;

8 end
9 pf

(0)
c = σ′ ←∏nw

i=0 σ
′
i; R̂ŵ ← Φ;

10 if |ŵ| = 1 return (Rw1 , pf
(1)
c )

11 for j = 1 to nw1 do
12 flag = 0;
13 for i = 2 to |ŵ| do
14 poswij ← F (tagwi , id

w1
j );

15 if [Tsig[pos
wi
j ]] = ⊥ then

16 pf
(j)
c ← DIAT.Search(DT, poswij );

17 a
(j)
c ← poswij ; flag = 1 ;

18 break;
19 end
20 (σij, v

i
j)← Tsig[pos

wi
j ];

21 end
22 if flag = 0 then
23 pf

(j)
c ←

∏|ŵ|
i=2 σ

i
j; a

(j)
c ← (v2

j , . . . , v
|ŵ|
j );

24 R̂ŵ ← R̂ŵ ∪ {idw1
j };

25 end
26 end
27 pfc = (pf

(0)
c , pf

(1)
c , . . . , pf

(nw1 )
c );

28 ac = (a
(1)
c , a

(2)
c , . . . , a

(nw1 )
c ) ; Xŵ = (Rw1 , ac);

29 return pfc and (R̂ŵ, Xŵ) ;
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Algorithm 20: Ψ.VCSearchCT(γ, τΨ
s )

1 Client Receives (R̂ŵ, Xŵ = (Rw1 , ac)) ;

2 (a
(1)
c , a

(2)
c , . . . , a

(nw1 )
c )← ac;

3 {idw1
0 , idw1

1 , . . . , idw1

n′w1
} ← Rw1; nw1 ← C[w1] ;

4 if nw1 6= n′w1
then return reject;

5 {sw1 , sw2 , . . . , sw|ŵ|} ← sŵ (see Algo. 18);
6 for i = 0 to nw1 do
7 rw1

i ← R(sw1 ||i);
8 mw1

i ← idw1
i .r

w1
i (mod p);

9 end
10 pf

(0)
u = m0 =

∑nw1
i=0 m

w1
i (mod p) ;

11 for j = 1 to nw1 do
12 if idw1

j /∈ R̂ŵ then pf
(i)
u = (0, a

(j)
c ) ;

13 else
14 (v2

j , v
3
j , . . . , v

|ŵ|
j )← a

(j)
c ;

15 for i = 2 to |ŵ| do
16 ki ← E .Dec(s̄wi , v

i
j);

17 rji ← R(swi ||ki);
18 mj

i ← R̂ŵ[i].rji (mod p);
19 end
20 mj =

∑|ŵ|
i=2 m

j
i (mod p);

21 pf
(j)
u = (1,mj)

22 end
23 end
24 return pfu = {pf (0)

u , pf
(1)
u , . . . , pf

(nw1 )
u };

Algo. 21: Ψ.Verify(d, pfu, pfc, R̂ŵ)

1 Receives pfu from client and pfc from cloud;
2 for k = 0 to nw1 do
3 if pfu[k][0] = 0 then
4 bv = DIAT. VerifySearch(d, pfc[k][0], pfc[k][1], pfu[k][1])
5 else
6 bv ← S.Verify(pk, pfu[k][1], pfc[k])
7 end
8 if bv = failure return reject;
9 end

10 return accept ;
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Updating the database: Given a new file f with a new identifier id, the client first generates
an update token. From f , it extracts the set of keywords {w1, w2, . . . , wnid}, where nid is the
number of keywords present in f . It computes update token τΣ

u of the file according to Σ. For each
keyword-doc pair, during update, corresponding entries in Tsig and the DIA tree DT are updated.
Since, the client stores the frequencies of the keywords as the state, it retrieves them to compute
key-value pairs for the table Tsig.

For each keyword wi, it generates tag tagwi , swi and s̄wi with the secret key. Then it gen-
erates key-value pair (posi, vali) for every keywords wi as given in Algo. 23. Finally, it returns
τΨ
u = (τΣ

u , pos, val) to the cloud.

Algo. 22: Ψ.VCUpdtTkn(KΨ, st, f)

1 {w1, w2, . . . , wnid} ∈ f ;
2 (Kt, Ks, sk, pk,KΣ)← KΨ ;
3 τΣ

u ← Σ.UpdateToken(KΣ, wi, id) ∀i ∈ [nid];
4 for i = 1 to nid do
5 swi ← F (Ks, wi); tagwi ← F (Kt, wi);
6 s̄wi ← F (Ks̄, wi); nwi ← C[wi];
7 ri ← R(swi ||(nwi + 1)); C[wi] = C[wi] + 1;
8 mi ← ri.id (mod p); vi ← E .Enc(s̄w, cw + 1);
9 σi ← S.Sign(sk,mwi

i );
10 posi ← F (tagwi , id); vali = (σi, vi)

11 end
12 pos← {pos1, pos2, . . . , posnid};
13 val← {val1, val2, . . . , valnid};
14 return τΨ

u = (τΣ
u , pos, val)

During the update phase, the cloud updates the file f according to Σ. Then it inserts key-value
pairs in the table Tsig. Finally, after updating them in the database, it updates DT for each posi
and returns corresponding proof of update for each position.

Extra cost for verifiability: Building the index requires O(N) key-value pairs computation and a
DIA tree for a set of sizeN . During the search, the cloud server has to computeO((|ŵ|+1).|Rw1|)
key-value pair, O(|R̂ŵ|.|Rw1 |) multiplications in G. It also has to compute O(|ŵ|.(|Rw1| − |R̂ŵ|))
key-value pairs together with proofs of their non-membership. To generate proof at the client-side,
the client only generates random numbers and computes the product of them which makes them
very efficient for lightweight clients.
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Algo. 23: Ψ.VCUpdate(Ttag, γ, op, f)

1 (τΣ
u , pos, val) = τΨ

u ;
2 Σ.Update(ξ, τΣ

u , op) ;
3 {pos1, pos2, . . . , posn} ← pos; {val1, val2, . . . , valn} ← val;
4 for i = 1to i = n do
5 if (op=add) then Tsig[posi]← vali;
6 else remove Tsig[posi];
7 inpt← (DT, s, posi, op, d) ;
8 d′ ← DIAT.Update(inpt)

9 end
10 Client keeps updated d′;
11 return

6.3.3 Security of our proposed scheme

6.3.3.1 Confidentiality

We see that the DIA tree is just an additional data structure that is get searched (updated) when the
key of a key-value pair is searched (updated). So, it does not give any extra information about the
encrypted database. (At the time of simulation, the simulator can also keep a similar tree based
on the simulated database. The simulator only gives existential proof. So, in our security proof,
we have not taken the accumulator part.) Else, suppose we have stored with a list of entries, then
we build a simulator corresponding to that simulated database. In either case, the simulator must
be there and so is the DIA tree. Since a verification phase is there, we cannot return the random
element in that case of the DIA tree. So, we can eliminate DT from leakage, but we should keep
it with valid proof.

Leakage function: Let LΣ = (LbldΣ ,LsrchΣ ,LupdtΣ ) be the leakage function of Σ, then the leakage
function LΨ = (LbldΨ , LsrchΨ , LupdtΨ ) of Ψ is given as follows.

LbldΨ (DB) = {LbldΣ (DB), |Tsig|}
LsrchΨ (ŵ) = {LsrchΣ (w1), {(idw1

i , pos
w1
i , σ

w1
i ) : i = 1, 2, . . . , nw1},

{(posij, σij) : ∀idj ∈ Rwi , wi ∈ ŵ, i 6= 1}}
LupdtΨ (w, id) = {id,LupdtΣ (w, id), posw, σw}

Since we consider any forward private DSE scheme Σ which LΣ-secure against adaptive cho-
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sen keyword attack, we have the following theorem.

Theorem 6.3. Let Σ = (KeyGen, Build, SearchToken, Search, UpdateToken, Update) be
the forward private correct DSE scheme with leakage function LΣ = (LbldΣ ,LsrchΣ ,LupdtΣ ). If Σ

is LΣ-secure against adaptive chosen keyword attack, under random oracle model, then for any
adversary AΣ, there exists a simulator SΣ which simulates Σ.

The proof of the above theorem depends on the scheme Σ and can be seen in the corresponding
paper (for example; [16]). However, assuming the theorem we will proof confidentiality of Ψ.
We show that Ψ is LΨ-secure against adaptive dynamic chosen-query attacks in the random oracle
model. The proof of confidentiality is given as follows.

Theorem 6.4. If F is a PRF, R is a PRG and Σ is LΣ-secure against adaptive dynamic chosen-
query attacks in the random oracle model, then Ψ is LΨ-secure against adaptive dynamic chosen-
query attacks, under q-SDH assumption, in random oracle model.

Proof. We give the proof of the above theorem, according to Definition 6.3. It is sufficient to show
that, for any PPT adversary AΨ, there exists a simulator SΨ, for which, the output of RealΨAΨ

(λ)

and IdealΨAΨ,SΨ
(λ) are computationally indistinguishable.

LetAΣ be the part ofAΨ for Σ, then by Theorem 6.3, there exists a simulator SΣ that simulates
Σ. Therefore, it is to remain to construct a simulator SΨ to simulated extra data structure Tsig and
query tokens (both search and update). Then, SΨ simulates as follows.

Simulating F : Simulation of the PRF F is done using a table TF in random oracle model. For a
given pair (x, y) of elements in G, if TF [(x, y)] = ⊥, i.e. the corresponding entry does not exists, a
random entry is kept as TF [(x, y)]← {0, 1}λ and finally TF [(x, y)] is returned.

Simulating Build: Given the leakage LbldΨ (DB) = {LbldΣ (DB), |Tsig|}, S simulates two data struc-
ture EDB and the table Tsig. The DIA tree always accumulates the keys of the key-value pairs
of Tsig. Again, Tsig is simulated with a table T̃sig. While simulating, let SΣ returns D̃B while
simulating EDB.

To keep the tags, a table T̃tag taken by SimΨ. It stores a random λ-bit string for every keyword
w. It acts as random oracle and returns t̃agw ← T̃tag[w]. A table T̃ ′sig is also kept by SimΨ to
indicate whether an entry T̃sig is queried or not.

The building of the data structures are simulated as follows.

1. T̃sig ← Φ and T̃ ′sig ← Φ

2. For i = 1 to i = |Tsig| do
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(a) posi
$←− {0, 1}λ; vali

$←− {0, 1}λ

(b) T̃sig[posi]← vali; T̃ ′sig[posi]← 0

3. D̃B ← SΣ(LbldΣ (DB))

4. tup = (p,G,G, ê, g)← BMGen(1λ) is generated for D̃T.

5. s← {0, 1}λ

6. D̃IAT.build(tup, s, {posi : i = 1, . . . , |Tsig|})

7. return (D̃B, T̃sig, D̃T) and keeps (T̃ ′sig, s, p)

Simulating search token: Let the search leakage LsrchΨ (ŵ) is given.

A table TF is taken to keep the positions for each keyword-file pair. Given a tuple (t̃agw, id, i)

it returns a position in the table. If the position is searched before, then it returns the previous one,
else it allocate a new and return that. These table is kept at SΨ. Let {w1, w2, . . . , wn} ∈ ŵ where
w1 has least frequency. The complete simulation of search token is done by SΨ as follows.

1. Receives τΨ
s from client ;

2. τΣ
w1
← SimΣ.SimSearch(LΣ

srch(w1));

3. For i = 1 to n′w1

(a) t̃agwi
o←− T̃tag[wi];

(b) posw1
i

o←− TF [(t̃agw1
, idw1

i ||i)];
(c) σ′i

o←− T̃sig[p̃os
w1

i ];

4. pf (1)
c = σ′ ←∏nw

i=1 σ
′
i;

5. For j = 1 to n′w1

(a) For i = 2 to nq
i. p̃oswij

o←− TF [(t̃agwi , id
w1
j )];

ii. If (Tsig[pos
wi
j ] == ⊥)

• T̃sig[p̃os
wi
j ]← ⊥

• pf (j)
c ← DIAT.Search

(D̃T , poswij )

• a(j)
c ← null;

• continue for next i;

iii. (σij, v
i
j)← T̃sig[pos

wi
j ];

(b) pf (j)
c = σj ←

∏|ŵ|
i=1 σ

i
j;

(c) a(j)
c ← (v1

j , v
2
j , . . . , v

|ŵ|
j );

6. pfc = (pf
(1)
c , pf

(2)
c , . . . , pf

(nw1 )
c );

7. ac = (a
(1)
c , a

(2)
c , . . . , a

(nw1 )
c );

8. Return pfc and (Rw1 , R̂ŵ, ac) ;

9. return τ̃Ψ
s = (τ̃Σ, t̃agw)

Here, oracle access is indicated by “ o←−”, if the elements is not empty, then it is returned, else a
random element is allocated and then returned.
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Simulating Update token Leakage function to add a document f with identifier id containing
keyword set {w1, w2, . . . , wnw} is given by

LΨ
updt(f) = {H ′(id), {(LΣ

updt(wi, id)) : i = 1, 2, . . . , nid}}.

1. For each keyword wi ∈ f

(a) τ̃ iu ← SimΣ(LΣ
updt(w, id))

(b) t̃agwi
o←− T̃tag[wi]

(c) nwi ← C[wi] + 1

(d) If TF [(t̃agwi , id||(nwi + 1))] is not null,

i. p̃osi ← TF [(t̃agwi , id||(cv + 1))]

Else

i. p̃osi ← a random posi such that T̃sig[posi] is null

ii. TF [(t̃agwi , id||(nwi + 1))]← p̃osi

iii. T̃ ′sig[posi]← 1

(e) σ̃i
$←− G

2. p̃os← {p̃os1, p̃os2, . . . , p̃osnid}

3. σ̃ ← {σ̃1, σ̃2, . . . , σ̃nid}

4. Return τ̃Ψ
u = (p̃os, σ̃)

Since, in each entry, the signature generated in Tsig is of the form gαmr and corresponding entry
in T̃sig is of the form gαr

′ , where r is pseudo-random (as R is so) and r′ is randomly taken, we can
say that power of g in both are indistinguishable. Hence, Tsig and T̃sig are indistinguishable.

Besides, the indistinguishability of τ̃Ψ
u , τ̃Ψ

s with respect to τΨ
s , τΨ

u respectively follows from the
pseudo-randomness of F .

�

6.3.3.2 Soundness

We see that the cloud server can cheat the cloud in four ways only, by returning– (1) incorrect
number of identifiers in Rw1 , (2) some altered identifier in Rw1 , (3) some result Rw′ of other
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keyword set w1 instead of Rw1 or (4) some subset of R̂ŵ. However, for each case, the cheating will
be detected as follows.

1. Since, the client stores the frequency of each keyword as in the state of the database, it can
identify incorrect frequency.

2. If any identifier is altered, mj
i in Step 18 of Algo. 20 does not match and consequently,

signature verification will be failed.

3. Signature is bounded with keywords by sw. During proof generation at the client-side, it is
regenerated. So signature verification will be failed if result set is changed.

4. Finally, if some subset of R̂ŵ is returned, there will be some identifier id ∈ R̂ŵ that is skipped
in the returned set. So, the cloud server has to find at least one w ∈ ŵ, such that (id, w) pair
does not exist. However, since this is not true, the cloud server cannot give non-membership
proof for any such pair.

6.4 Performance evaluation

Here we discuss a few previous schemes and compare them with our proposed one. Since we
have shown that it is trivial to get a conjunctive scheme with client storage, we are considering the
schemes that have no extra client storage for verifiability. We have summarized the comparison in
Table 6.2.

We see that most of the works for verifiability are based on accumulators. The static scheme
[96] used two types of accumulators: One for each keyword and another for the total keyword
file pair. When the size of the member set increases, generating non-membership proof takes
enormous time. Thus it becomes impractical for a large database. Moreover, it does not support
dynamic data. Moreover, to verify, the client needs to compute |Rw1| × |R̂ŵ| number of power of
g and needs two round of communications.

The static scheme [67] used bilinear map for verifiability. Due to the existence of an audi-
tor, the client does not need to compute anything for verification. However, during search token
generation requires O(|W|) amount of storage as well as communication which is large when the
keyword set os large.

Mio et al. [69] is a static verifiable scheme that uses an interactive challenge-response method
for verification. However, it requires O(|W|.|DB|) cloud storage which is very large. Moreover,
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in verification, it requires 2 rounds of communication. It does not discuss the case when a subset
of the result is returned.

The static scheme [6] used the cuckoo hashing [75]. It similarly keeps an accumulator for each
keyword and uses polynomial interpolation to prove the set intersection.

Table 6.2: Comparison with existing conjunctive search SE schemes

Scheme Is ForwardVerifiable client Comm client Comp client Comm client Comp
name Dyn? Secrecy Cost to verify cost to verify Cost to update cost to update

[96] × – X O(|W|.|DB|) + 2R O(|Rw1|.|R̂ŵ|)Ex – –
[67] × – X O(|W|) + 1R O(|Rŵ|)(Ex + Hs) – –
[69] × – X O(|Rŵ|) + 2R O(|Rŵ|)(Ex + Bm) – –
[6] × – X O(|ŵ| log |W|) + 1R O(|ŵ| log |W|)(Ex + Bm + Hs) – –

[99] X X × – – O(|f |) + 1R O(|f |)Hs
[57] X × X O(2|ŵ|(logN + 1)) + 2R O(3|ŵ| logN)M + O(3|ŵ|)Ex O(|f |) +1R O(|f |)Ex
[45] X × X O(|ŵ| logN) +1R O(|ŵ| logN)(Ex + Bm) O(|f | logN)+2R O(|f | logN)Ex

Our Scheme X X X O(|Rw1|) + 1R O(|ŵ|.|Rw1|)Hs O(|f |) + 1R O(|f |)Hs + O(|f |)Ex
M– number of multiplications in GT , Ex– number of exponentiations in G, R– number of rounds of
communication, Hs– number of hashes. Bm– number of pairing operations. ∗ in the complexities

we considered most expensive operations only.

The dynamic scheme Li et al. [57] used an accumulator for each keyword. The accumulators
are stored in the cloud in a Merkle tree that ensures the integrity of them. Updates of accumulators
are not discussed. One big difference of [57] with us is that [57] computes membership proofs
on the go when it requires. So, if the number of searches is high, this scheme will become slow.
As in most of the verifiable dynamic schemes, it also has two rounds of communication during an
update. Though [99] is forward private, it is not verifiable. It is also difficult to extend it to be
verifiable.

[45] is a good dynamic scheme with verifiable support. It keeps an accumulator for each
keyword and makes an accumulator tree for them. To verify whether the returned intersection set
is correct it uses polynomial interpolation with FFT. This makes the computational cost higher
(O(N log2N)) for the cloud server and makes the scheme unsuitable when the number of searches
is high. Moreover, the scheme is not forward private too.

In our scheme, the verification can be done via any auditor, so if the client wants, it can out-
source it. So, in the table bilinear map computation is ignored. Moreover, we see that most of the
schemes use no extra client storage for verifiability, but they have different cloud storage require-
ments.

The works, including [45], [6], etc., that use intersection method, have higher complexity as
they have to find all results first. The proof includes related information which increases commu-
nication cost too.
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Conclusion
In this chapter, we have proposed a conjunctive DSE scheme that is verifiable too. The design

is based on another designed authentication tree DIA tree which is an efficient one. Moreover, till
now in the last three chapters, we have considered data as a collection of text documents.

In the next chapters, we consider graph data. We study different queries query over encrypted
outsourced graphs.



Chapter 7

The Secure Link Prediction Problem

Social networks have become an integral part of our lives. These networks can be represented as
graphs with nodes being entities (members) of the network and edges representing the association
between entities (members). As the size of these graphs increases, it becomes quite difficult for
small enterprises and business units to store the graphs in-house. So, there is a desire to store such
information in cloud servers.

In order to protect the privacy of individuals (as is now mandatory in EU and other places), data
is often anonymized before storing in remote cloud servers. However, as pointed out by Backstrom
et al. [7], anonymization does not imply privacy. By carefully studying the associations between
members, a lot of information can be gleaned.

The data owner, therefore, has to store the data in encrypted form. Trivially, the data owner
can upload all data in encrypted form to the cloud. Whenever some query is made, data owner has
to download all data, do necessary computations and re-upload the re-encrypted data. This is very
inefficient and does not serve the purpose of cloud service. Thus, we need to keep the data stored
in the cloud in encrypted form in such a way that we can compute efficiently on the encrypted data.

Some basic queries for a graph are neighbor query (given a vertex return the set of vertices ad-
jacent to it), vertex degree query (given a vertex, return the number of adjacent vertices), adjacency
query (given two vertices return if there is an edge between them) etc. It is important that when
an encrypted graph supports some other queries, like shortest distance queries, it should not stop
supporting these basic queries.

Nowell and Kleinberg [58] first defined the link prediction problem for social networks. The
link prediction problem states that given a snapshot of a graph whether we can predict which new
interactions between members are most likely to occur in the near future. For example, given a
node A at an instant, the link prediction problem tries to find the most likely node B with which
A would like to connect at a later instant. Different types of distance metrics are used to measure
the likelihood of the formation of new links. The distances are called scores ([58]). Nowell and
Kleinberg, in [58], considered several metrics including common neighbors, Jaccard’s coefficient,
Adamic/Adar, preferential attachment, Katzβ etc. For example, if A and B (with no edge between
them) have a large number of common neighbors they are more likely to be connected in future. In

131
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this chapter, for simplicity, we have considered common neighbors metric to predict the emergence
of a link.

Though there is a large body of literature on link prediction, to the best of our knowledge the
secure version of the problem has not been studied to date. Secure Link Prediction (SLP) problem
computes link prediction algorithms over secure i.e., encrypted data.

Our Contribution We introduce the notion of secure link prediction and present three construc-
tions. In particular, we ask and answer the question, “Given a snapshot of a graph G ≡ (V,E) (V
is the set of vertices andE ⊆ V ×V ) at a given instant and a vertex v ∈ V , which is the most likely
vertex u (such that uv /∈ E), such that, u is a neighbor of v at a later instant and vu /∈ E”. The
score-metric we consider is the number of common neighbors of the two vertices v and u. This
can be used to answer the question, “Given a snapshot of a graph G = (V,E) at a given instant
and a vertex v ∈ V , which are the k-most likely neighbors of v at a later instant such that none of
these k vertices were neighbors of v in G.”

Note that the data owner outsources an encrypted copy of the graph G to the cloud and sends
an encrypted vertex v as a query. The cloud runs the secure link prediction algorithm and returns
an encrypted result, from which the client can obtain the most likely neighbor of v. The cloud
knows neither the graph G nor the queried vertex v.

It is to be noted that the client has much less computational and storage capacity. We propose
three schemes, (SLP-I, SLP-II and SLP-III), in all of which, the client takes the help of a proxy
server which makes it efficient to obtain query results. At a high level:

1. SLP-I: is the most efficient with almost no computation at client-side and leaks only the
scores to the proxy server.

2. SLP-II: has a little more communication at client-side compared to SLP-I but leaks the
scores of a subset of vertices to the proxy server.

3. SLP-III: is a very efficient scheme with almost no computation and communication at the
client-side and leaks almost nothing to the proxy. This is achieved with an extra computa-
tional and communication cost between the cloud and the proxy.

In all three schemes, the client does not leak anything, to the cloud, except the number of vertices
in the graph.

We have designed the scheme in such a way that it supports link prediction query as well as
basic queries. Each of the previous schemes on encrypted graph are designed to support a specific
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query (for example, shortest distance query, focused subgraph query etc.). However, we have
designed more general schemes that support not only link prediction query but also basic queries
including neighbor query, vertex degree query, adjacency query etc.

All our schemes have been shown to be adaptively secure in real-ideal paradigm.

Further, we have analyzed the performance of the schemes in terms of storage requirement,
computation cost and communication cost, and counted the execution time of the schemes as-
suming benchmark implementations of some underlying cryptographic primitives. we have im-
plemented prototypes for the schemes SLP-I and SLP-II, and measured the performance with
different real-life datasets to study the feasibility.

From the experiment, we see that they take 12.15s and 13.75s to encrypt whereas 8.87s and
8.59s process query for a graph with 102 vertices.

Organization The rest of the chapter is organized as follows. Preliminaries and cryptographic
tools are discussed in Section 7.1. Section 7.2 describes our proposed scheme for SLP-I. Two
improvements of SLP-I, SLP-II and SLP-III, are discussed in Section 7.3 and Section 7.4 respec-
tively. In Section 7.5, a comparative study of the complexities of our proposed schemes is given.
In Section 7.6, details of our implementation and experimental results are shown. A variant of link
prediction problem SLPk is introduced in Section 7.7.

7.1 Preliminaries

Let G = (V,E) be a graph and A = (aij)N×N be its adjacency matrix where N is the number of
vertices and A[i][j] = aij . Let λ be the security parameter. Set of positive integers {1, 2, · · · , n} is
denoted by [n]. By x $←− X , we mean to choose a random element from the set X . D log denotes
the discrete logarithm. id : {0, 1}∗ → {0, 1}logN gives the identifiers corresponding to the vertices.
Let negl(n) be a negligible function (see Section 2.3) over n.

We consider two PRPs (see Section 2.6) , Fkperm and πs, where kperm and s are their keys (or
seeds) respectively.

7.1.1 The Link Prediction Problem

Given G = (V,E), let Nv denotes the set of vertices incident on v ∈ V . Let score(v, u) be
a measure of how likely the vertex v is connected to another vertex u in the near future, where
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vu /∈ E. A variant of the Link Prediction problem states that given v ∈ V , it returns a vertex
u ∈ V (vu /∈ E) such that score(v, u) is the maximum in {score(v, u) : u ∈ V \ (Nv ∪ {v})} i.e.,

score(v, u) ≥ score(v, u′),∀u′ ∈ V \ (Nv ∪ {v}) (7.1)

Thus, given a vertex v, we find most likely vertex to connect with. There are various metrics to
measure score like the number of common neighbors, Jaccard’s coefficient, Adamic/Adar metric
etc.

In this chapter, we consider score(v, u) as the number of common nodes between v and u i.e.,
score(v, u) = |Nv ∩Nu|. Let A be the adjacency matrix of the graph G. If iv and iu are the rows
corresponding to the vertices v and u respectively then, the score is the inner product of the rows
i.e., score(v, u) =

∑N
k=1A[iv][k].A[iu][k]. In this chapter we have used BGN encryption scheme

to securely compute this inner product.

7.1.2 System overview

Here, we describe the system model considered for the link prediction problem and goals which
we want to achieve.

System Model: In our model (see Fig. 7-1), there is a client, a cloud server, and a proxy server.
Each of them communicates with others to execute the protocol.

Figure 7-1: The system model of a secure link prediction scheme

• The client is the data owner and is considered to be trusted. It outsources the graph in
encrypted form to the cloud server and generates link prediction queries. Given a vertex v,
it queries for the vertex u which is most likely to be connected in the future.
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• The cloud server (CS) holds the encrypted graph and computes over the encrypted data
when the client requests a query. We assume that the cloud server is honest-but-curious . It
is curious to learn and analyze the encrypted data and queries. Nevertheless, it is honest and
follows the protocol.

• The proxy server (PS) helps the cloud server and the client to find the most likely vertex se-
curely. It reduces computational overhead of the client by performing decryptions. However,
the proxy server is assumed to be honest-but-curious.

All channels connecting the client, the cloud and the proxy servers are assumed to be secure.
An adversary can eavesdrop on channels but cannot tamper messages sent along it. However, we
assume, the cloud and the proxy servers do not collude.

This system model is to outsource as much computation as possible without leaking the infor-
mation about the data, assuming the client has very low computation power (like mobile devices).
This kind of model to outsource computation previously used by Wang et al. [97] for secure com-
parison. Assumption of the proxy and cloud server do not collude is a standard assumption.

Design Goals: In this chapter, under the assumption of the above system model, we aim at pro-
viding a solution for the secure link prediction problem. In our design, we want to achieve con-
fidentiality, scalability, efficiency and update support over the encrypted graph, as described in
Section 1.1.2.

Moreover, the client should efficiently perform neighbor query, vertex degree query or adja-
cency query. These are the basic query that every graph should support. The client should leak as
little information as possible.

7.1.3 Secure Link Prediction Scheme

Secure Link Prediction (SLP) problem computes link prediction algorithms over secure i.e., en-
crypted data. In this section, we present definition of link prediction scheme for a graph G and its
security against adaptive chosen-query attack.

Definition 7.1 (Secure link prediction scheme). A secure link prediction (SLP) scheme for a
graphG is a tuple (KeyGen, EncMatrix, TrapdoorGen, LPQuery, FindMaxVertex) of algorithms
as follows.

• (PK,SK)← KeyGen(1λ) : is a client-side PPT algorithm that takes λ as a security param-
eter and outputs a public key PK and a secret key SK.



136 The Secure Link Prediction Problem

• T ← EncMatrix(G,SK,PK) : is a client-side PPT algorithm that takes a public key PK,
a secret key SK and a graph G as inputs and outputs a structure T that stores the encrypted
adjacency matrix of G.

• τv ← TrapdoorGen(v,SK) : is a client-side PPT algorithm that takes a secret key SK and
a vertex v as inputs and outputs a query trapdoor τv.

• ĉ← LPQuery(τv, T ) : is a PPT algorithm run by a cloud server that takes a query trapdoor
τv and the structure T as inputs and outputs list of encrypted scores ĉ with all vertices.

• ires ← FindMaxVertex(pk, sk, ĉ) : is a PPT algorithm run by a proxy server that takes pk,
sk and ĉ as inputs and outputs the most probable vertex identifier ires to connect with the
queried vertex.

Correctness: An SLP scheme is said to be correct if, ∀λ ∈ N, ∀(PK,SK) generated using
KeyGen(1λ) and all sequences of queries on T , each query outputs a correct vertex identifier except
with negligible probability.

Adaptive security: An SLP scheme should have two properties:

1. Given T , the cloud servers should not learn any information about G and

2. From a sequence of query trapdoors, the servers should learn nothing about corresponding
queried vertices.

The security of an SLP is defined in real-ideal paradigm. In real scenario, the challenger C
generates keys. The adversary A generates a graph G which it sends to C. C encrypts the graph
with its secret key and sends it to A. Later, q times it finds a query vertex based on previous
results (i.e., adaptive) and receives trapdoor for the current. Finally A outputs a guess bit b. In
ideal scenario, on receiving the graph G, the simulator S generates a simulated encrypted matrix.
For each adaptive query of A, S returns a simulated token. Finally A outputs a guess bit b′. The
security definition (Definition 7.2) ensures A cannot distinguish C from S.

We have assumed that the communication channel between the client and the servers are secure.
Since the CS and the PS do not collude, they do not share their collected information. So, the
simulator can treat CS and PS separately.

In our scheme, the proxy server does not have the encrypted data or the trapdoors. During
query operation, it gets a set of scrambled scores of the queried vertex with other vertices. So, we
can consider only the cloud server as the adversary (see [14]). Let us define security as follows.
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Algorithm 24: RealSLPA (λ)

1 (PK,SK)← KeyGen(1λ)
2 (G, stA)← A0(1λ)
3 T ← EncMatrix(G,SK,PK)
4 (v1, stA)← A1(stA, T )
5 τv1 ← TrapdoorGen(v1,SK)
6 for 2 ≤ i ≤ q do
7 (vi, stA)←

Ai(stA, T, τv1 , . . . , τvi−1
)

8 τvi ← TrapdoorGen(vi,SK)

9 end
10 τ = (τv1 , τv2 , . . . , τvq)
11 b← Aq+1(T, τ, stA), where
b ∈ {0, 1}

12 return b

Algorithm 25: IdealSLPA,S(λ)

1 (G, stA)← A0(1λ)
2 (stS , T )← S0(Lbld(G))
3 (v1, stA)← A1(stA, T )
4 (τv1 , stS)← S1(stS ,Lqry(v1))
5 for 2 ≤ i ≤ q do
6 (vi, stA)← Ai(stA, T, τv1 , . . . , τvi−1

)
7 (τvi , stS)←

Si(stS ,Lqry(v1), . . . ,Lqry(vi−1))

8 end
9 τ = (τv1 , τv2 , . . . , τvq)

10 b′ ← Aq+1(T, τ, stA), where b′ ∈ {0, 1}
11 return b′

Definition 7.2 (Adaptive semantic security (CQA2) of a link prediction scheme). Let SLP
= (KeyGen, EncMatrix, TrapdoorGen, LPQuery, FindMaxVertex) be a secure link prediction
scheme. Let A be a stateful adversary, C be a challenger, S be a stateful simulator and L =

(Lbld,Lqry) be a stateful leakage algorithm. Let us consider two games- RealSLPA (λ) (see Algo. 24)
and IdealSLPA,S(λ) (see Algo. 25).

The SLP is said to be adaptively semantically L-secure against chosen-query attacks (CQA2)
if, ∀ PPT adversaries A = (A0,A1, . . . ,Aq+1), where q = poly(λ), ∃ a PPT simulator S =

(S0,S1, . . . ,Sq), such that

|Pr[RealSLPA (λ) = 1]− Pr[IdealSLPA,S(λ) = 1]| ≤ negl(λ) (7.2)

7.1.4 Overview of our proposed schemes

A graph can be encrypted in several ways like adjacency matrix, adjacency list, edge list etc. Each
of them has advantages and disadvantages depending on the application. In our scheme, we have
defined score as the number of common neighbors that can be calculated just by computing inner
product of the rows corresponding to the calculating vertices. The basic idea is that, given a vertex,
to predict the most probable vertex to connect with, we compute scores with all other vertices and
sort them according to their score. However, calculating the inner product and sorting them in
cloud server are expensive operations and there is no scheme that provides all of the functionality
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to be computed over encrypted data. So, we have used BGN homomorphic encryption scheme
that enables us to compute inner product on encrypted data. Choosing BGN, gives power to the
client for querying not only link prediction query but also neighbor query, degree of a vertex query,
adjacency query etc.

Besides, the score computation, the score decryption and sorting the score in encrypted form is
non-trivial keeping in mind that the client has low computation power. So, we have proposed three
schemes that perform score computations as well as sorting on encrypted data with the help of a
honest-but-querious proxy server which does not collude with the cloud server. The three schemes
show tread-off between the computation cost, communication cost and leakage in order to compute
the vertex most probable to connect with.

7.2 Our proposed protocol for SLP

In this section, we propose an efficient scheme SLP-I and analyze its security. The scheme is
divided into three phases– key generation, data encryption, and query phase. The client first gen-
erates required secret and public keys. Then it encrypts the adjacency matrix of the graph in a
structure and uploads it to the CS. To query for a vertex, the client generates a query trapdoor and
sends it to the CS. The CS computes encrypted score (i.e., inner products of the row corresponding
to the queried vertex with the other vertices on the encrypted graph). The PS decrypts the scores,
finds the vertex with highest score and sends the result to the client.

Key Generation: In this phase, given a security parameter λ, the client chooses a bilinear map
e : G× G → G1. Then, the permutation key kperm is chosen at random for the PRP F : {0, 1}∗ ×
{0, 1}logN → {0, 1}logN . It executes BGN.Gen() to get sk and pk. After generating private key SK
and public key PK, a part sk of SK is shared with the PS. This part of the key helps the PS to
compute secure comparisons. Key generation is described in Algo. 26.

Algorithm 26: KeyGen(1λ)

1 kperm
$←− {0, 1}λ

2 (pk, sk)← BGN.Gen(1λ)
3 PK ← pk; SK ← (sk, kperm)
4 return (PK,SK)

Data Encryption: In this phase, the client encrypts the adjacency matrix with its private key and
uploads the encrypted matrix to the CS (see Algo. 27). Each entry aij in the adjacency matrix A of
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G is encrypted using Algo. 2. Let M = (mij)N×N be the encrypted matrix. Then, each row of M
is stored in the structure T . The PRP F gives the position in T corresponding to vertices. Finally,
the structure T is sent to the CS.

Algorithm 27: EncMatrixI(A,SK,PK)

1 (n,G,G1, e, g, h)← PK
2 (q1, kperm)← SK
3 for i = 1, j = 1 to i = N, j = N do
4 mij ← BGN.EncryptG(PK.pk, aij)
5 end
6 Construct a structure T of size N .
7 for i = 1 to i = N do
8 ind← Fkperm(id(vi))
9 T [ind]← (mi1,mi2, . . . ,miN).

10 end
11 return T

Algorithm 28: TrapdoorGenI(v,SK)

1 (sk, kperm)← SK
2 i′ ← Fkperm(id(v)); s $←− {0, 1}λ
3 τv ← (i′, s)
4 return τv

Algorithm 29: LPQueryI(τv, T )

1 N ← |T |; (i′, s)← τv
2 (mi′1,mi′2, . . . ,mi′N)← T [i′]
3 for i = 1 to i = N do
4 r

$←− {0, 1}λ
5 if i 6= i′ then
6 (mi1,mi2, . . . ,miN)← T [i]

7 ci ← e(g, h)r.
∏N

k=1 e(mi′k,mik)

8 else
9 ci′ ← e(g, g)0.e(g, h)r

10 end
11 end
12 πs ← permutation with key s.
13 ĉ← (cπs(1), cπs(2), . . . , cπs(N))
14 m̂← (mπs(1),mπs(2), . . . ,mπs(N)),

15 where mi ← mi′i.h
ri , ri

$←− {0, 1}λ
16 return (ĉ, m̂) to the PS

Query: In the query phase, the client sends a query trapdoor to the CS. The CS finds encrypted
scores with respect to the other vertices and sends them to the PS. The PS decrypts them and sends
the identifier of the vertex with highest score to the client.

To query for a vertex v, the client first chooses a secret key s $←− {0, 1}λ for the PRP πs that
is not known to the PS (see Algo. 28). Then it finds the position i′ = Fkperm(id(v)). Finally, the
client sends the trapdoor τv = (i′, s) as query trapdoor to the CS.

On receiving τv, the CS computes the encrypted scores (c1, c2, . . . , cN) (see Algo. 29) and
computes (m1,m2, . . . ,mN) corresponding to the queried vertex. Using πs, the CS shuffles the
order of the encrypted scores and mi’s. Finally, the CS sends the shuffled encrypted scores and the
scrambled queried-row entries (mπs(1),mπs(2), . . . ,mπs(N)) to the PS.

Since, the PS has sk (= q1), it can decrypt all c̄is and m̄is. It decrypts m̄i first and then
decrypts c̄i only if corresponding decrypted value of m̄i is 0. Then, it takes an ires such that sires is
the maximum in the set {si : i ∈ [N ]} and sends it to the client (see Algo. 30). Finally, the client
finds the resulting vertex identifier vres as vres ← π−1

s (ires).
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Algorithm 30: FindMaxVertexI(sk, ĉ, m̂)

1 (c̄1, c̄2, . . . , c̄N)← ĉ
2 (m̄1, m̄2, . . . , m̄N)← m̂
3 for i = 1 to i = N do
4 si ← BGN.DecryptG1

(pk, sk, c̄i)
5 ai ← (BGN.DecryptG(pk, sk, m̄i)) mod 2

6 end
7 ires ← i : (ai = 0) ∧ (si = max{sj : j ∈ [N ]})
8 return ires to the client

Correctness: For any two rows T [i] and T [j], if cij is the encryption of the score sij then, cij =

e(g, h)r
∏N

k=1 e(mik,mjk). Again, since e(g, g)q1q2 = 1, we get (cij)
q1 = (e(g, g)q1)

∑N
k=1 aikajk =

ĝsij , where ĝ = e(g, g)q1 .

Thus, D log of (cij)
q1 to the base ĝ gives sij . If powers of ĝ are pre-computed, the score sij

can be found in constant time. However, Pollard’s lambda method [64] can be used to find discrete
logarithm of c′ij base ĝ.

Security analysis

In the security definition, a small amount of leakage has been allowed. The adversary knows the
algorithms and possesses the encrypted data and queried trapdoors. Only SK is unknown to it. The
leakage function L is a pair (Lbld,Lqry) (associated with EncMatrix and LPQuery respectively)
where Lbld(G) = {|T |} and Lqry(v) = {τv}.

Theorem 7.1. If BGN is semantically secure and F is a PRP, then SLP-I is L-secure against adap-
tive chosen-query attacks.

Proof. The proof of security is based on the simulation-based CQA-II security (see Definition 7.2).
Given the leakage Lbld, the simulator S generates a randomized structure T̃ which simulates the
structure T of the challenger C. Given a query trapdoor τv, S returns simulated trapdoors τ̃v
maintaining system consistency of the future queries by the adversary. To prove the theorem, it is
enough to show that the trapdoors generated by C and S are indistinguishable to A.

• (Simulating the structure T ) S first generates (SK,PK)← BGN.Gen(1λ). Given Lbld(A), S
takes an empty structure T̃ of size |T |.
Finally, it takes m̃ij ← BGN.Encrypt{mathbbG}(PK.pk, 0λ), (i, j) ∈ [N ] × [N ] where
N = |T |.
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• (Simulating query trapdoor τv) S first takes an empty dictionaryQ. GivenLsrch(v), S checks
whether v is present in Q. If not, it takes a random logN -bit string τ̃v, stores it as Q[v] = τ̃v

and returns τ̃v. If v has appeared before, it returns Q[v].

Semantic security of BGN guarantees that m̃ij and mij are indistinguishable. Since F is a PRP, τ̃v
and τv are indistinguishable. This completes the proof. �

7.3 SLP-II with less leakage

Though the SLP-I scheme is efficient, it has few disadvantages. Firstly, in SLP-I, the number
of common nodes between the queried vertex and all other vertices are leaked to the PS which
provides partial knowledge of the graph to it. Since, the server PS is semi honest, we want to leak
as little information as possible. In this section, we propose another scheme SLP-II that hides most
of the scores from the PS which results in leakage reduction.

Secondly, the client has high communication cost with PS while processing a link prediction
query. Our proposed SLP-II scheme has an advantages over this with reduced communication
cost from CS to PS is. We achieve these by using extra storage of size of the matrix M and extra
bandwidth from the PS to the CS of O(N).

7.3.1 Proposed protocol

In SLP-II, after computing the scores, the CS increases that of the incident vertices randomly from
maximum possible score i.e., degree of the queried vertex. For example, let s be a score in the form
gs1, then a random number r, greater than or equal to the degree, is added with it. Then the scores
is increased as gs1.g

r
1 = g

(s+r)
1 . Since lower bound of r is known to the client, it can eliminate the

scores with adjacent vertices. The PS only derypts the scores and sends the sorted list to the client.
Since the degree is hidden from PS and known to the client, it can eliminate the vertices with score
larger than degree. The algorithms are as follows.

Key Generation: Same as Algo. 26.

Data Encryption: In SLP-II, data encryption is similar to Algo. 27. Together withM = (mij)N×N ,
another matrix M ′ = (m′ij)N×N is generated by encrypting a matrix B (see Algo. 31). The matrix
B = (bij)N×N where bij = t, (deg vi < t < N − deg vi) if vi and vj are connected, else bij = 0.
Now, m′ij = e(g, g)bij .e(g, h)rij , where notations are usual. Finally, The matrices M and M ′ are
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uploaded to the CS together in structures T and T ′ respectively. Rows of M and M ′ corresponding
to the vertex v are stored in T [Fkperm(id(v))] and T ′[Fkperm(id(v))] respectively. Note that, entries
of M are in the group G whereas that of M ′ are in G1.

Algorithm 31: EncMatrixII(A,SK,PK)

1 (n,G,G1, e, g, h)← PK;
(q1, kperm)← SK

2 Construct matrix B from A
3 for i = 1, j = 1 to i = N, j = N do
4 mij ← BGN.EncryptG(PK.pk, aij)
5 m′ij ← BGN.EncryptG1

(PK.pk, bij)
6 end
7 Construct structures T and T ′ of size N
8 for i = 1 to i = N do
9 indi ← Fkperm(id(vi))

10 T [indi]← (mi1,mi2, . . . ,miN)
11 T ′[indi]← (m′i1,m

′
i2, . . . ,m

′
iN)

12 end
13 return (T, T ′)

Algorithm 32: LPQueryII(τv, T )

1 N ← |T |; (i′, s)← τv
2 (mi′1,mi′2, . . . ,mi′N)← T [i′]
3 for i = 1 to i = N do
4 r

$←− {0, 1}λ
5 if i 6= i′ then
6 (mi1,mi2, . . . ,miN)← T [i]

7 ci ← e(g, h)r.
∏N

k=1 e(mi′k,mik)

8 else
9 ci ← e(g, g)0.e(g, h)r

10 end
11 ci = ci.m

′
i′i

12 end
13 m←∏i=N

i=1 mi′i

14 πs ← permutation with key s.
15 ĉ← (cπs(1), cπs(2), . . . , cπs(N))

16 return d̂ to PS and m to the client

Query: As in the previous scheme, the client sends query trapdoor τv = (i′, s) to the CS for a
vertex v. Let ĉ = (c1, c2, . . . , cN) be the set of encrypted scores computed in step 7 of Algo. 32.
In addition, for each i, ci is updated as ci = ci.m

′
i′i. Then ĉ = (cπs(1), cπs(2), . . . , cπs(N)) is sent

to the PS. Instead of sending m̂ to the PS, m =
∏i=N

i=1 mi′i is sent to the client, which results the
encryption of the degree of the vertex v. SLP-II query is described in Algo. 32.

The PS decrypts ĉ as s′1, s
′
2, . . . , s

′
N and sorts them. Then, the PS sends (s′i1 , i1), (s′i2 , i2), . . .,

(s′iN , iN) where s′ij ’s are in sorted order and ij’s are their indices in ĉ (see Algo.33).

The client takes the first index ires = ij such that s′ij ≤ deg v. The client gets deg v by
decrypting m. Finally, the client can find the resulting vertex identifier vres as vres ← π−1

s (ires).

Correctness: For all i, the decrypted entry s′i (line 3, Algo. 33) is equals to si + bi′i where si is
the actual score. Since si ≤ deg v and bi′i is zero, when vi′ and vi are connected, we can see that,
s′i becomes greater than deg v when vi′ and vi are connected. So, the client can eliminate these
entries from the list.
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Algorithm 33: FindMaxVertexII(sk, c̄, m̄)

1 (d̄1, d̄2, . . . , d̄N)← d̂
2 for i = 1 to i = N do
3 s′i ← BGN.DecryptG1

(pk, sk, d̄i)
4 end
5 Sorting s′is gets ((s′i1 , i1), (s′i2 , i2), . . . , (s′iN , iN))
6 return ((s′i1 , i1), (s′i2 , i2), . . . , (s′iN , iN))

Security analysis

SLP-II does not leak any extra information to the CS than SLP-I. The leakage L = (Lbld,Lqry) is
same as it is in SLP-I.

Theorem 7.2. If BGN is semantically secure and F is a PRP, then SLP-II is L-secure against
adaptive chosen-query attacks.

Proof. As we have seen the proof of Theorem 7.1, The simulator requires to simulate the T , T ′ and
τv. To simulate the structure T ′, given Lbld(A), S takes an empty structure T̃ ′ of size |T ′|. Finally,
it takes m̃′ij ← BGN.EncryptG1

(PK.pk, 0λ), (i, j) ∈ [N ]× [N ]. Rest of the proof is similar as that
of Theorem 7.1. �

7.4 SLP scheme using garbled circuit (SLP-III)

In SLP-II, the PS is still able to get scores with many vertices and there is a good amount of
communication cost from PS to the client. In this section, we propose SLP-III in which PS
does not get any scores. Besides, the proxy needs to send only result to the client which reduces
communication overhead for the client.

7.4.1 Protocol description

In SLP-III, after generating the keys, the client encrypts the adjacency matrix of the graph and
uploads it to the CS. At the same time, it shares a part of its secret key with the PS. In the query
phase, the CS computes the encrypted scores on receiving query trapdoor from the client. How-
ever, it masks each score with random number selected by itself before sending them to the PS.
The PS decrypts the masked scores and evaluates a garbled circuit, constructed by the CS (as de-
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scribed in Section 7.4.2), to find the vertex with maximum score. Finally, the PS returns the index
corresponding to the evaluated identifier of the vertex with maximum score.

Key Generation: Same as Algo. 26.

Data Encryption: Same as Algo. 27.

Query: To query for a vertex v, the client generates a query trapdoor tv = (i′, s) (see Algo. 28)
and sends it to the CS. On receiving τv, the CS computes the encrypted scores (c1, c2, . . . , cN).
It then considers the row T [i′] = (mi′1,mi′2, . . . ,mi′N) corresponding to the queried vertex.
Then, with random ri and r′i, it computes, c̄i ← cπs(i).BGN.EncryptG1

(PK.pk, ri) and m̄i ←
mi′πs(i).BGN.EncryptG(PK.pk, r′i), for all i. If the encrypted scores are sent directly, the PS can
decrypt the scores directly as it has the partial secret key sk. That is why the CS chooses random
ris and r′is to mask them.

Algorithm 34: LPQueryIII(τv, T )

1 N ← |T |; (i′, s)← τv
2 (mi′1,mi′2, . . . ,mi′N)← T [i′]
3 for i = 1 to i = N do
4 if i 6= i′ then
5 (mi1,mi2, . . . ,miN)← T [i]

6 ci ←
∏N

k=1 e(mτvk,mik)

7 else
8 r

$←− {0, 1}λ
9 ci′ ← e(g, g)0.e(g, h)r

10 end

11 end
12 πs ← permutation with key s.
13 for i = 1 to i = N do
14 ri, r

′
i, xi, x

′
i

$←− {0, 1}λ
15 c̄i ← cπs(i).e(g, g)ri .e(g, h)xi

16 m̄i ← mi′πs(i).g
r′i .hx

′
i

17 end
18 ĉ← (c̄1, c̄2, . . . , c̄N)
19 m̂← (m̄1, m̄2, . . . , m̄N)
20 Computes MGC
21 return (ĉ, m̂, MGC) to PS

To find the vertex with highest score, the CS builds a garbled circuit MGC (see Fig. 7-2) as
described in Section 7.4.2. The CS sends ĉ = (c̄1, c̄2, . . . , c̄N) and m̂ = (m̄1, m̄2, . . . , m̄N) together
with a garbled circuit MGC. The CS-side algorithm is described in Algo. 34.

The PS receives ĉ and m̂. ∀i, let s̄i and āi be the decryption of c̄i and m̄i respectively (see
Algo. 35). Then, the PS evaluates MGC. During evaluation, the PS gives all s̄is and ais and
corresponding indices is as input where ai = (āi mod 2). The CS gives ris and r′′i s where r′′i =

(r′i mod 2), ∀i (see Section 7.4.2).

From MGC, the PS gets an index ires which is sent to the client. Finally, the client finds the
resulting vertex identifier vres as vres ← π−1

s (ires).
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Algorithm 35: FindMaxVertexIII(sk, ĉ, m̂, GC)

1 (c̄1, c̄2, . . . , c̄N)← ĉ
2 (m̄1, m̄2, . . . , m̄N)← m̂
3 for i = 1 to i = N do
4 s̄i ← BGN.DecryptG1

(pk, sk, c̄i)
5 āi ← (BGN.DecryptG(pk, sk, m̄i))
6 ai ← āi mod 2

7 end
8 Evaluates MGC with s̄i and ais as its inputs.
9 ires ← output of the MGC evaluation

10 return ires to the client

7.4.2 Maximum Garbled Circuit (MGC)

We want minimum information to be leaked to both the servers. Without the knowledge of values,
it is hard to find the maximum value because it is an iterative comparison process and requires
several round of communication if we use only secure comparison. However, building a maximum
garbled circuit allows cloud and proxy servers to find the maximum without knowing the value by
anyone.

Kolesnikov and Schneider [51] first presented a garbled circuit that computes minimum from
a set of distance. In their scheme, one party holds a set of points and the second party holds a
single point. They used homomorphic encryption to compute the distances from the single points
to the set of points and sort them using the garble circuit. However, the original value of the
points belongs to them were known to them. In this chapter, we have introduced a novel maximum
garbled circuit (MGC) by which one party computes the maximum from a set of numbers, without
the knowledge their values, with the help of another party without leaking them to it. Given a set
of scores MGC outputs only the identity of the vertex with maximum score.

Computing vertex with max score: In SLP-III, the CS computes a garbled circuit MGC (an
example is shown in Fig. 7-2) for each query to find the maximum scored vertex identifier. Before
computingMGC, in SLP-III, the PS gets (s̄1, s̄2, . . . , s̄N) and (a1, a2, . . . , aN) (Algo. 35). The CS
keeps (r1, r2, . . . , rN) and (r′′1 , r

′′
2 , . . . , r

′′
N) which are used as input in MGC. During construction,

it keeps the indices in the MGC such a way that MGC outputs only the index of the resulted
maximum score.

MGC is required to find the index corresponding to the maximum scored vertex. The circuit
is constructed layer by layer. The idea is to compare pair of scores every time in a layer and pass
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the result for the next until the resulted vertex is found. If |V | = N , MGC has (logN + 1) layers
starting from 0 to N . In the 0th layer, there are N number of NSS blocks and the rest of the blocks
are Max block. The NSS blocks is for the 1st layers and computes the scores securely without
knowing them. Thus, each NSS block corresponds to some vertex. Max computes the maximum
score and corresponding index without knowing them. Example of aMGC, to compute maximum,
assuming N = 7 and using Max blocks and NSS blocks, is shown in Fig. 7-2. MGC for any N is
constructed similarly.

Figure 7-2: Example of a Maximum circuit with N = 7

Max blocks There are 4-types of Max blocks to compute the maximum- Max1, Max2, Max3 and Max4

(see Fig. 7-3). The blocks are made different to handle extreme cases. These blocks use COMP and
MUX blocks (see Section 2.18).

(a) Max1 block (b) Max2 block (c) Max3 block (d) Max4 block

Figure 7-3: Different max blocks used in MAXIMUM circuit

NSS blocks: Each NSS block has four inputs s̄i, ri, ai and r′′i . The inputs ri and r′′i comes from
the CS while s̄i and ai comes from the PS. It first subtracts ri from s̄i using SUB block to get the
score si. Then, using SUB′ block, it finds the flag bit that tells whether the vertex is adjacent to the
queried vertex. MUL block (see Fig 7-4b) is used in NSS block as shown in Fig. 7-4a to make the
score si zero if the vertex is adjacent else keeps the score si same.

Elimination of scores for adjacent vertices: It can be seen from encryption that s̄i = si + ri,
where si is the actual score corresponding to ith row and ri randomizes the score. Each bit r′′i is



SLP scheme using garbled circuit (SLP-III) 147

(a) NSS block (b) MUL block (c) SUB′ block

Figure 7-4: Few circuit blocks

taken to indicate whether r′i is odd or even. On the other hand, each bit ai indicates whether the
decrypted āi is odd or even. Inequality of r′′i and ai indicates that the vertex corresponding to ith
row is connected with the queried vertex. In that case, we consider the score si = 0.

The block SUB′, in Fig. 7-4c, finds outputs 1 if they are equal, else outputs 0. Since, (s̄i − ri)
gives the score, SUB block (see Section. 2.18) is used in MGC to compute the scores where the PS
gives s̄i and CS gives ri. It can be seen that SUB′ subtract only one bit which is very efficient.

7.4.3 Security analysis

In SLP-III (as descried in Section 7.4.1), though the PS has almost no leakage, the CS has a
little more leakage than SLP-I. This extra leakage occurs when it interacts with the PS through OT
protocol to provide encoding corresponding to the input of PS. Since OT is secure and does not leak
any meaningful information, we can ignore this leakage. In SLP-III, the leakage L = (Lbld,Lqry)
is same as it is in SLP-I.

Theorem 7.3. If BGN is semantically secure and F is a PRP, then SLP-III is L-secure against
adaptive chosen-query attacks.

Proof. The proof is the same as that of Theorem 7.1. �

7.4.4 Basic queries

All the three schemes support basic queries which includes neighbor query, vertex degree query
and adjacency query.

Neighbor query: Given a vertex, neighbor query is to return the set of vertices adjacent to it. It is
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to be noted that, since we have encrypted adjacency matrix of the graph, it is enough for the client
if it gets the decrypted row corresponding to the queried vertex,

To query neighbor for a vertex v, the client generates τv = (i′, s) as in Algo. 28 and sends
it to the CS. The CS permutes rows corresponding to row i′ and send the permuted row m̂ ←
(mπs(1),mπs(2), . . . ,mπs(N)) to the PS. The PS decrypts them and send the decrypted vector (a1, a2, . . . , aN)

to the client. The client can compute inverse permutation for the entries for which the entries are
1. Here, the CS gets only the queried vertex and the PS gets the degree of the vertex.

Vertex degree query: To query degree of a vertex v, similarly, the client sends τv = i′ to the
CS. The CS computes encrypted degree as m ← ∏i=N

i=1 mi′i and sends m to the proxy. The proxy
decrypts m and sends the result to the client. s is not needed as permuting the elements of some
row is not required.

Here, the degree is leaked to the PS which can be prevented by randomizing the result. The CS
can randomize the encrypted degree and send the randomization secret to the client. The client can
get the degree just by subtracting the randomization from the result by the PS.

However, this leakage can be avoided easily, without randomizing the encrypted degree, if the
client performs the decryption.

Adjacency Query: Given two vertices, adjacency query (edge query) tells wither there is an edge
between them. If the client wants to perform adjacency query for the pair of vertices v1 and v2, the
client sends (i′1, i

′
2) (as generated in Algo. 28) to the CS. The CS returns mi′1i

′
2
. The client can get

either the randomized result from the PS or it can decrypt mi′1i
′
2

by itself.

7.5 Performance analysis

In this section, we discuss the efficiency of our proposed schemes. The efficiency is measured
in terms of computations and communication complexities together with storage requirement and
allowed leakages. A summary is given in Table 7.1. Since there is no work on the secure link
prediction before, we have not compared complexities of our schemes with any other similar en-
crypted computations.
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Table 7.1: Complexity Comparison Table

Param Entity SLP-I SLP-II SLP-III
Leakage CS |V |, τv1 , τv2 , . . . |V |, τv1 , τv2 , . . . |V |, τv1 , τv2 , . . .

PS Sv, ires S ′v, ires ires
client λ bits λ bits λ bits

Storage CS |V |2ρ bits 2|V |2ρ bits |V |2ρ bits
PS ρ bits ρ bits ρ bits

client |V |2(M + A) |V |2(M + A + M1 + A1) |V |2(M + A)
Compu- CS |V |2 P + |V | E |V |2 P + |V |2 P + 4|V | E
tation + (|V |2 + |V |) M (|V |2 + 2|V |) M + (|V |2 + 3|V |) M +

MGCconst(log |V |, |V |)
PS |V |log|V |(M + C + M1 + C1) |V |(M1 + C1) + |V |(M + C + M1 + C1)+

+|V |log|V |C +|V |log|V |C MGCeval(log |V |, |V |)
client→CS |V |2ρ bits 2|V |2ρ bits |V |2ρ bits

Commu- CS→PS 2|V |ρ bits |V |ρ bits 2|V |ρ bits + |V |OT (log |V |+1)
snd +

nication MGCsize(log |V |, |V |) bits
PS→CS - - |V |OT (log |V |+1)

rcv

PS→client log |V | bits 2|V | log |V | bits log |V | bits

Sv - Set of scores of v with all other vertices, S ′v- a subset of Sv, ρ- length of elements in G or G1,
C- comparison in G, C1- comparison in G1, M- multiplication in G, M1- multiplication in G1, E-
exponentiation in G, E1- exponentiation in G1, P- pairing/ bilinear map computation,
MGCsize(log |V |, |V |)- size of MGC with |V | log |V |-bit inputs, MGCconst(log |V |, |V |)- MGC
contraction with |V | log |V |-bit inputs, MGCeval(log |V |, |V |)- MGC evaluation with |V |
log |V |-bit inputs, OT (log |V |+1)

snd - information to send for (log |V |+ 1)-bit OT , OT (log |V |+1)
rcv -

information to receive for log |V |-bit OT .
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7.5.1 Complexity analysis

Let the graph be G = (V,E) and N = |V |. Let BGN encryption outputs ρ-bit string for every
encryption. We describe the complexities as bellow.

Leakage Comparison: As we see the Table 7.1, each scheme leaks, to the CS, same amount of
information which is the number of vertices of the graph and the query trapdoors. However, none
of the schemes leaks information about the edges in the graph to the CS. In SLP-I, since the PS has
the power to decrypt the scores, it gets to know Sv = {score(v, u) : u ∈ V }. However, SLP-II
reveals only a subset S ′v of Sv and SLP-III manages to hide all scores from the PS. SLP-I cannot
hide scores from the PS which results in maximum leakage to the PS.

Storage Requirement: One of the major goals of secure link prediction scheme is that the client
should require very little storage. All our designed schemes have very low storage requirement for
the client. The client has to only store a key which is of λ bits. For all schemes, the PS stores only
a part of the secret key which is of λ bits.

In SLP-I, the CS is required to store |V |2ρ bits for the structure T where the PS is required to
store only the secret key. While reducing the leakage in SLP-II, the CS storage becomes doubled.
However, SLP-III requires the same amount of storage as SLP-I.

Computation Complexity: In all schemes, the client computes |V |2 number of BGN encryption
to encrypt A while SLP-II additionally computes |V |2 number of the same to encrypt B. To
compute each of |V | encrypted scores, the CS requires |V | bilinear map (e) computation and |V |
multiplications.

Additionally, SLP-I randomizes the encrypted entries corresponding to the row that has been
queried. This requires |V | exponentiations and |V | multiplications. SLP-II randomizes the en-
crypted scores. This requires |V |multiplications and computes the encrypted degree of the queried
vertex which requires |V | multiplications. Apart from computations of encrypted scores, in SLP-
III, the CS computes a garbled circuit MGC.

In all, the PS decrypts |V | scores. Each decryption requires log |V | multiplications on average.
To find the vertex with maximum score, in SLP-I and SLP-II, the PS compares |V | numbers. The
|V | encrypted entries are decrypted by the PS in SLP-I and SLP-III. In addition, the PS evaluates
the garbled circuit MGC in SLP-III.

Communication Complexity: To upload the encrypted matrices, SLP-I and SLP-III requires
|V |2ρ bits and SLP-II requires 2|V |2ρ bits of communications. To query, it sends only the trapdoor



Experimental evaluation 151

of size 2ρ bits (aprx.).

The CS sends 2|V | entries to the PS, in case of SLP-I and SLP-III. For SLP-II, the CS sends
only |V | entries. Each of these entries is of ρ bits. In addition, SLP-III sends the garbled circuit
MGC. PS to CS communication happens only when the PS evaluates MGC. For SLP-I and SLP-
III, the PS sends only ires which is of log |V | bits to the client. However, the PS sends 2|V | log |V |
bits to the client.

Complexity for GC Computation: It can be observed that log |V |-bit SUB, 1-bit SUB′, log |V |-bit
MUL, log |V |-bit COMP and log |V |-bit MUX blocks consist of (4 log |V |XOR-gates and log |V |AND-
gates), (4 XOR-gates and 1 AND-gate), (log |V | AND-gates), (3 log |V | XOR-gates and log |V |
AND-gates) and (2 log |V | XOR-gates and log |V | AND-gates) respectively. Thus, log |V |-bit NSS
and log |V |-bit Max blocks consist of ((4 log |V | + 4) XOR-gates and (2 log |V | + 1) AND-gates)
and (7 log |V | XOR-gates and 3 log |V | AND-gates) respectively.

In our designed garbled circuitMGC, there are (|V |−1) Max blocks and |V | NSS blocks. Thus,
MGC requires |V |(11 log |V | + 4) XOR-gates and |V |(5 log |V | + 1) AND-gates. However, the
PS receives |V |(log |V |+ 1) bits through OT for the first layer.

Thus,MGCsize(log |V |, |V |) is the size of |V |(11 log |V |+4) XOR-gates and |V |(5 log |V |+1)

AND-gates, whereasMGCconst(log |V |, |V |) andMGCeval(log |V |, |V |) are computational cost to
construct and evaluate.

7.6 Experimental evaluation

In this section, the experimental evaluations of our designed schemes, SLP-I and SLP-II, are
presented. In our experiment, we have used a single machine for both the client and the server.
All data has been assumed to be residing in main memory. The machine is with an Intel Core
i7-4770 CPU and with 8-core operating at 3.40GHz. It is equipped with 8GB RAM and runs an
Ubuntu 16.04 LTS 64-bit operating system. The open source PBC [77] library has been used in
our implementation to support BGN. The code is in the repository [80].

7.6.1 Datasets

For our experiment, we have used real-world datasets. We have taken the datasets from the SNAP
datasets [55]. The collection consists of various kinds of real-world network data which includes
social networks, citation networks, collaboration networks, web graphs etc.
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Table 7.2: Detail of the graph datasets

Dataset Name #Nodes #Edges
bitcoin-alpha 3,783 24,186
ego-facebook 4,039 88,234
email-Enron 36,692 183,831
email-Eu-core 1,005 25,571
Wiki-Vote 7,115 103,689

For our experiment, we have considered the undirected graph datasets- bitcoin-alpha, ego-
Facebook, Email-Enron, email-Eu-core and Wiki-Vote. The number of nodes and the edges of the
graphs are shown in Table 7.2.

Instead of the above graphs, their subgraphs have been considered. First fixed number of
vertices from the graph datasets and edges joining them have been chosen for the subgraphs. For
example, for 1000, vertices with identifier < 1000 have been taken for the subgraph.

7.6.2 Experiment results

In our experiment, five datasets have been taken. The experiment has been done for each dataset
taking extracted subgraphs with vertices 50 to 1000 incremented by 50. The number of edges in
the subgraphs is shown in Fig. 7-5. For the pairing, 128, 256 and 512 bits prime-pairs are taken.
In our proposed schemes, the most expensive operation for the client is encrypting the matrix
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Figure 7-5: Number of vertices and edges of the subgraphs

(EncMatrix). For the cloud and the proxy, score computing (LPQuery) and finding maximum
vertex (FindMaxVertex) are the most expensive operations respectively. Hence, throughout this
section, we have discussed mainly these three operations.
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As we have seen, in the proposed protocols, encrypting each entry of the adjacency matrix is
the main operation of the encryption, the number of edges does not affect the encryption time for
both SLP-I and SLP-II. This is because, irrespective of SLP schemes, the number of operations
are independent of number of edges.

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

Number of vertices

T
im

e
 t

a
k
e

n
 t

b
y
 t

h
e

 c
lie

n
t 

(s
)

 

 

SLP-I
SLP-II

(a) Encryption time taken by the client
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(b) Encrypted score computation times
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(c) Score decryption and sorting times

Figure 7-6: comparison between SLP-I and SLP-II w.r.t. computation time when the primes are
of 128 bits each

Similarly, time required by the cloud to compute score is independent of number of edges
and depends on number of entries in the adjacency matrix i.e., N2. Time taken for each of the
operations is shown in Fig. 7-6. In the figure, we have compared time for both SLP-I and SLP-II
taking primes 128 bits each.

However, the time taken by the proxy to decrypt the scores is depends on the number of vertices.
In SLP-I, the proxy has to decrypt |V | entries in G as well as |V | scores in G1 where in SLP-II, it
decrypts only in |V | scores in G1. So proxy takes more time in SLP-I than in SLP-II. This can be
observed in Fig. 7-6c.
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Figure 7-7: Time taken by the proxy in SLP-II for different datasets considering 128-bit primes

For a query, in SLP-II, the proxy decrypts scores only for corresponding vertices that are not
incident to the vertex queried for. So, only in this case, the computational time depends on the
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number of edges in the graph. As density of edges in a graph increases the chance of decreasing
computational time for the graph increases. In Fig. 7-7 we have compared computational time
taken by the proxy in SLP-II for different datasets.

In the above figures, we have considered only 128-bit primes. It can be observed from the
experiment, the computational time depends on the security parameter. As we increase the size
of the primes, the computational time grows exponentially. We have compared the change of
computational time for all of the client, cloud and proxy for both SLP-I and SLP-II (see Fig. 7-8
and Fig. 7-9 respectively). However, in practical, as we keep the security bit fixed, keeping the
security bits as low as possible improves the performance.
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(a) Client time in SLP-I
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(b) Cloud time in SLP-I
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(c) Proxy time in SLP-I

Figure 7-8: Computational time in SLP-I with 128, 256 and 512-bit primes
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(a) Client time in SLP-II
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(b) Cloud time in SLP-II
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Figure 7-9: Computational time in SLP-II with 128, 256 and 512-bit primes

7.6.3 Estimation of computational cost in SLP-III

In the previous section, we have shown the experimental results for SLP-I and SLP-II. In this
section, we have estimated the computational cost for SLP-III. Encryption algorithm of SLP-III
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is same as SLP-I. So both required same amount of time for encryption for the same dataset. To
estimate query time, we have considered a random graph with 103 vertices.

Query Time: In SLP-III the cloud computes encrypted scores and the proxy decrypts the scores
as well as random numbers. The number of decryption in each group is same as SLP-I. However,
in SLP-III, it requires an extra garbled circuit computation. For this, 1000 OT for 128-bit security
of ECC is required which takes 138 ∗ 1000ms = 138s aprx. ([3, 70]). In addition to that, the PS
evaluates the GC with 1000 ∗ (11 ∗ 257 + 4) = 2831000 XOR-gates and 1000 ∗ (5 ∗ 257 + 1) =

1286000 AND-gates. Assuming that the encryption used in each GC circuit is AES (128-bit), GC
evaluation requires 2 AES decryption and the CS requires 8 encryption. As we see in [1], it requires
0.57 cycles per byte for AES. Thus, for evaluation in a single core processor, the PS requires
(2*(1286000*256/8)*0.57) cycles = 46913280 cycles that takes (46913280/(2.5 ∗ 109)) = 0.019s.
Similarly, The CS requires 0.078s to construct the GC.

The estimated costs are measured with respect to a single core 2.5 GHz processor. However, in
practice, the CS provides a large number of multi-core processors. As we see all the computations
can be computed in parallel, the query cost can be reduced dramatically. Each of the above-
mentioned costs can be improved to cost

p
s with p processors and cost is cost.

7.7 Introduction to SLPk

Let us define another variant of secure link prediction problem SLPk. Instead of returning the vertex
with highest score, an SLPk returns indices of k number of top-scored vertices.

Let, a graph G = (V,E) is given. Then, the top-k Link Prediction Problem states that given
a vertex v ∈ V , it returns a set of vertices {u1, u2, . . . , uk} such that score(v, ui) is among top-k
elements in Sv. The top-k link prediction scheme is said to be secure i.e., a secure top-k link
prediction problem scheme (SLPk) if, the servers do not get any meaningful information about G
from its encryption or sequence of queries.

Our proposed schemes, SLP-I and SLP-II, can be extended to support SLPk queries. In SLP-I,
the only change is that instead of returning only the index of the vertex with highest score, the
proxy has to return the indices of the top-k highest scores to the client.

Conclusion
In this chapter, we have presented three schemes supporting secure link prediction query with

different trade-off. In the next chapter, we study clustering coefficient computation on dynamic
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data. We propose a novel scheme that allows the local clustering coefficient to be queried over the
outsourced encrypted graphs.



Chapter 8

Securely Computing Clustering Coefficient
for Outsourced Dynamic Encrypted Graph
Data

In Chapter 7, we have seen that nowadays multiple communities are connected and their connection
can be represented as graphs with nodes being entities (members) of the social community and
edges representing the association between entities (members). We have also seen that Small and
Medium-sized Enterprises (SMEs) outsource the graph data to some cloud servers due to its cost-
effectiveness and security effectiveness [78]. Outsourcing them enables the enterprises not only
easier to process requests and faster to respond but also increases the data survivable probability.
Moreover, to protect from misuse of the data stolen by some unauthorized person, data needs to be
encrypted before outsourcing [83, 84] without losing the ability to query. Since direct encryption
prevents the cloud to perform queries, there is a need for a different encryption technique that
allows queries to be performed on a controlled portion of the data.

In most real-world networks, nodes tend to create tightly knit groups characterized by a rela-
tively high density of ties [98]. The nodes belonging to such a group have a higher probability to
be connected in the future. The clustering coefficient is a measure of the degree to which nodes in
a graph cluster or associate with one another [98]. It is an important measure metric to determine
the structural properties of the graph. Like degree, betweenness, and centrality, it plays an impor-
tant role to study the robustness of the network. Nodes with a high clustering coefficient are more
prone to targeted attacks [53], hence need more protection. Similarly, networks with a high global
clustering coefficient are less susceptible to targeted attacks.

Previously, in encrypted graphs, basic queries like vertex degree query, adjacency query, etc.
have been studied [27]. If we consider complex queries, the link prediction has been studied in
[83]. The shortest distance query, that returns shortest distance between two given points, has been
studied in different ways in [84], [65], [97] etc. Xie and Xing [101] studied clustering coefficient
on encrypted graph. However, they used a public-key encryption scheme, which makes the scheme
inefficient for large datasets.

157
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Keeping above all in mind, in this chapter, we have designed a novel graph encryption scheme
Gopas that allows the local clustering coefficient to be queried over the outsourced encrypted
graphs with update support. We have used only symmetric key encryption that makes the scheme
Gopas efficient for large datasets. The scheme Gopas not only supports basic queries like edge
query, vertex query, neighbor queries, etc., but it also allows the client to add new vertices and
edges.

Our contribution In this chapter, we contribute to the following works.

1. We design a novel graph encryption scheme Gopas, called Dynamic clustering coeffi-
cient queryable Encryption (DCCE) scheme, supporting that performs clustering coefficient
query on an outsourced encrypted appendable graph. The design is based on symmetric key
encryption only. It allows performing neighbor queries as well as edge queries on the same
encrypted graph. Moreover, it allows a new edge or vertex to be appended, making the
scheme suitable for dynamic data.

2. We define the security of the clustering coefficient finding problem in the random oracle
model. We show that the designed scheme Gopas is provably secure under the chosen-
query attack.

3. We implement a prototype of the scheme Gopas and tested with multiple real-life SNAP [55]
datasets. The implementation results show that the scheme Gopas is practical even for a
very large database. For example, in a graph with 196,591 vertices and 950,327 edges, it
takes only 1.2s approx for clustering coefficient query.

Organization We summarize our work in the chapter as follows. We discuss the system model,
required cryptographic tools, etc. in Section 8.1. We present our proposed scheme, in Section 8.2,
for static database and then we extend the scheme to support dynamic updates. In Section 8.3, we
discuss the prototype of our scheme and its result.

8.1 Preliminaries

8.1.1 Clustering coefficient

Clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster together.
These are of two types- local and global. Two versions of this measure exist; the global and
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the local. The global version was designed to give an overall indication of the clustering in the
network, whereas the local gives an indication of the embeddedness of single nodes. We define
them as follows.

Let G = (V,E) be an unweighted graph where V is the set of vertices and E is the set of
edges between them. Let the edges between two vertices vi and vj is denoted by eij or vivj . Let
us consider Nvi be the neighborhood of the vertex vi ∈ V and defined as Nvi = {vj : (eij ∈
E) ∨ (eji ∈ E)}.

Definition 8.1 (Clustering Coefficient in Directed Graph ). [98] For the unweighted graph
G = (V,E), if the graph is directed, local clustering coefficient for a node vi ∈ V is denoted by
ĈCi and defined as

C̃Ci =
# pairs of closed neighbours of v

# pairs of neighbours of v

=
|{ejk : (vj, vk ∈ Nvi) ∧ (ejk ∈ E)}|

|Nvi |(|Nvi | − 1)

Definition 8.2 (Clustering Coefficient in Undirected Graph). If the unweighted graph G =

(V,E) is undirected, local clustering coefficient for a node vi ∈ V is denoted by CCi and defined
as

CCi =
|{ejk : (vj, vk ∈ Nvi) ∧ (ejk ∈ E)}|

|Nvi |(|Nvi| − 1)/2

Let, a vertex v has neighborhoods Nv = {v1, v2, . . . , vnv}. Let for each vi ∈ Nv, Nvi =

{vi1, vi2, . . . , vinvi} be the neighborhood of vi. Then we can see that, if vij is in some triangle, then
it must be present in Nv. So, the number of such closed triangles can be given as |{vij : vij ∈
Nv \ {vi}}|.

Since, in the set each triangle is counted twice in an undirected graph, |{vij : vij ∈ Nv \
{vi}}|/2 is the number of such triangles. Then the local clustering coefficient is given by CCi =
|{vij :vij∈Nv\{vi}}|/2

nv(nv−1)/2
. Note that, for a complete graph CCi = 1. It has been proved that in a classical

random network CCi → 0.

Definition 8.3 (Global Clustering Coefficient). In an unweighted graphG = (V,E), global clus-
tering coefficient, for a node vi ∈ V , is 1

|V |
∑

v∈V C̃Cv, if G is directed and 1
|V |
∑

v∈V CCv, if G is undirected.

In this chapter, we are interested in the local clustering coefficient.
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8.1.2 System model

In our system model, there are three entities– owner, cloud, and user. They are shown in Figure 8-1
and briefly described as follows.

Owner is a trusted entity who owns the database. It generates the required keys and encrypts the
graph data and uploads it to the cloud. It also has the ability to request queries.

Cloud is the cloud storage and computation service provider. It stores the encrypted graph data
and performs a search over it on request from the user. It is considered to be honest-but-curious
adversary who runs the protocol correctly but wants to learn information from the query.

User is an entity who wants to perform a query on the encrypted graph. It takes a token from the
owner and then requests a search to the cloud.

Moreover, we assume that communication between the entities is done via secure channels.

Owner

Cloud

User

1. Encrypted Graph

2. Token request
3. Query Token

4. 
Query

 To
ken

5. 
Resu

lt

Figure 8-1: System model of the secure clustering coefficient computation

8.1.3 Design goals

Considering the above system model, we want to achieve confidentiality, scalability, efficiency,
update support as described in Section 1.1.2. In addition, we want the followings.

Ability to query: In the design, along with the clustering coefficient query, the ability to perform
the basic queries of a graph should be present. The basic queries include vertex query, edge query,
and neighbor query. Given a vertex vi, a vertex query returns whether vi ∈ V . Given two vertices
vi and vj , an edge query returns whether the edge eij present in the graph i.e., whether eij ∈ E.
Given a vertex vi, a neighbor query returns the set Nvi of vertices adjacent to vi.
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Suitability: In the scheme, the user should do as less computation as possible to perform query so
that it is suitable for lightweight devices. Moreover, the owner should require as less local storage
as possible.

8.1.4 Definitions

Definition 8.4 (CCE). We define a graph encryption scheme supporting clustering coefficient query
(CCE) scheme as a tuple of algorithms Ψs = (KeyGen, Encrypt, CCQueryTkn, CCQuery) de-
scribed as follows.

• K ← KeyGen(λ) : Given a security parameter λ, the owner runs this probabilistic polyno-
mial time (PPT) algorithm and outputs secret key K of the scheme.

• EG ← Encrypt(G,K): This is a PPT algorithm run by the owner. Given the key K and
the graph G, it outputs the encrypted graph EG.

• τ c ← CCQueryTkn(v,K): This is a PPT algorithm, run by the owner. It outputs a token τ cv
for clustering coefficient query after taking a vertex v and the key K.

• CCv ← CCQuery(EG, τ c): This is a cloud-side PPT algorithm that takes a query token
τ cv and the encrypted graph EG as input and outputs the clustering coefficient CCv of the
vertex v.

The above definition is for static database. We extend the definition to support updates as
follows.

Definition 8.5 (Dynamic CCE). We define a dynamic graph encryption scheme supporting cluster-
ing coefficient query (DCCE) as a CCE scheme with additional update support. It has additional
algorithms UpdtVertexTkn, UpdtVertex, UpdtEdgeTkn and UpdtEdge described as follows.

• τ v ← UpdtVertexTkn(v,K, op): It is a owner-side PPT algorithm that takes the key K, a
vertex v and an operation bit op and returns a vertex update token τ v.

• EG′ ← UpdtVertex(EG, τ v): It is a cloud-side PPT algorithm that takes a token τ v, and
the encrypted graph EG and returns the updated encrypted graph EG′.

• τ e ← UpdtEdgeTkn(v1, v2, K, op): It is a owner-side PPT algorithm that takes the key K,
two vertices v1 and v2 and a bit op and returns an edge update token τ e.
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• EG′ ← UpdtEdge(EG, τ e): It is a cloud-side PPT algorithm that takes a token τ e, and the
encrypted graph EG and returns the updated encrypted graph EG′.

Correctness A scheme DCCE is said to be correct if ∀λ ∈ N , ∀K generated using KeyGen(1λ)

and all sequence of vertex and edge updates, every clustering coefficient query returns correct
result except with a negligible probability.

8.1.5 Security

In our model, the cloud is considered to be the adversary A and the client is considered to be
the challenger C which is simulated by a simulator S. We define the security of a DCCE is in
real-ideal paradigm as follows.

Algorithm 36: RealDCCEA (λ)

1 K ← KeyGen(1λ) [C]
2 (G, stA)← A0(1λ)
3 EG← Encrypt(G,K)
4 (q1, stA)← A1(stA, EG)
5 for 1 ≤ i ≤ q do
6 if qi is CC query for v then
7 ti ← CCQueryTkn(v,K)
8 else if qi is vetex update for v and op then
9 ti ← UpdtVertexTkn(v,K, op)

10 else if qi is edge update for v1, v2 and op then
11 ti ← UpdtEdgeTkn(v1, v2, K, op)
12 end
13 if i < q then
14 (qi, stA)← Ai(stA, EG, t1, . . . , ti−1)
15 end
16 end
17 t = (t1, t2, . . . , tq)
18 b← Aq+1(EG, t, stA), where b ∈ {0, 1}
19 return b

Definition 8.6 (Adaptive semantic security (CQA2) of a DCCE scheme). Let DCCE be a dy-
namic graph encryption scheme supporting as Definition 8.5. Let A be a stateful adversary, C be
a challenger, S be a stateful simulator and L = (Le,Lc,Lvu,Leu) be a stateful leakage algorithm.
Let us consider two games- RealDCCEA (λ) (see Algo. 36) and IdealDCCEA,S (λ) (see Algo. 37).
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Algorithm 37: IdealDCCEA,S (λ)

1 (G, stA)← A0(1λ)
2 (stS , EG)← S0(Le(G))
3 (q1, stA)← A1(stA, EG)
4 for 1 ≤ i ≤ q do
5 if qi is a CC query token then
6 Li ← Lc(q1)
7 else if qi is vetex update for v1 and op then
8 Li ← Lvu(v1, op)
9 else if qi is edge update for v1, v2 and op then

10 Li ← Leu(v1, v2, op)
11 end
12 (ti, stS)← Si(stS ,L1, . . . ,Li)
13 if i < q then (qi, stA)← Ai(stA, EG, t1, . . . , ti−1)

14 end
15 t = (t1, t2, . . . , tq)
16 b′ ← Aq+1(EG, t, stA), where b′ ∈ {0, 1}
17 return b′

The DCCE is said to be adaptively semantically L-secure against chosen-query attacks (CQA2)
if, ∀ PPT adversaries A = (A0,A1, . . . ,Aq+1), where q = poly(λ), ∃ a PPT simulator S =

(S0,S1, . . . ,Sq), such that

|Pr[RealDCCEA (λ) = 1]− Pr[IdealDCCEA,S (λ) = 1]| ≤ negl(λ) (8.1)

Thus, the security definition (Definition 8.6) ensures A cannot distinguish C from S.

8.2 Our Proposed Protocol

In this section, we have proposed a secure DCCE scheme based on the hash table. The scheme
securely computes local clustering coefficient in random undirected graphs.

8.2.1 Overview

For the graph G = (V,E), two tables TV and TE (corresponding to V and E resp.) are main-
tained. There is an entry in TV for each vertex v ∈ V , called vertex-node. It contains a left key lov
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and a right key rov– initially both are kept encrypted. Moreover, it keeps auxiliary information av
and nvo .

For every vertex v, its adjacency list is kept as a link list where list-nodes are stored in TE
and called edge-nodes. Each edge-node, corresponds to a adjacent vertex, say u (except the last
node which is Θ), stores two information– 1. address nu of the vertex-node and 2. its key lu that
can decrypt lou, av and nvo . The address nu and lu are kept encrypted with lou and lou resp. The
auxiliary information av and nvo helps to traverse through the adjacency list. The decryption key
rv to decrypt rov can only be generated by the owner. Finally, the encrypted graph EG = (TV , TE)

is outsourced to the cloud.

To search for a vertex v, the user gives the cloud server (nv, lv, rv). Cloud decrypts vertex-
node at nv completely with (lv, rv). It traverses its adjacency list with the help of av and nvo and
decrypts them (edge-nodes) with fully with lov, r

o
v. For an edge from v to u, the cloud then get nu

and left-key lu. So, in the next level it can only get nw for all vertices w adjacent to u and cannot
go further levels.

Traversing so, the cloud can find {nu, {nw : w ∈ Nu} : u ∈ Nv}} from which the cloud can
compute the clustering coefficient easily (see Section 8.1.1). We show an example of clustering
coefficient computation for a small graph as follows.

Example: Let us take an example of a graph with 5 vertices {v1, v2, v3, v4, v5}with set of neighbors
as {{v2, v3, v5}, {v1, v3, v4, v5}, {v1, v2}, {v2}, {v1, v2}} (see Figure 8-2) respectively. The figure
shows how the vertex-nodes (yellow) and edge-nodes (gray) are linked.

To search clustering coefficient for v3 owner gives lv3 and rv3 to the cloud. The cloud gets
(av3 , l

o
v3
, nov3

) and rv3 . It gets Nv3 = {nv1 , nv2} with the help of (av3 , n
o
v3

) and gets lv1 and lv2

with the help of rv3 . Then it goes to vertex node nv1 and finds similarly Nv1 = {nv2 , nv3 , nv5}.
Since, nv2 ∈ Nv1 and nv2 ∈ Nv3 \ {nv1} the triangle counts to 1. Similarly, the cloud gets Nv2 =

{nv1 , nv3 , nv4 , nv5} and gets 1 more triangle. Thus the cloud returns local clustering coefficient
2

2(2−1)
= 1.

8.2.2 Scheme description

Here we propose a DCCE scheme Ψs, suitable for the static database. It is divided into three
phases– key generation, encryption, and query phases. We describe them as follows.

Key generation phase: In this phase, given the security parameter be λ, the owner first generates
key K = (kn, ka, kl, kr, k

o
l , k

o
r , ks) for the scheme, each of which, except kn, is a λ-bit string
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Figure 8-2: An example of what nodes store (before encryption)

chosen at random. The part kn is generated as SE.Gen(1λ) where SE = (Gen, Enc, Dec) is a
symmetric key encryption scheme.

Encryption phase: In this phase, the owner takes a graph G = (V,E) and encrypts it to EG with
the key K as given in Algo 38. At first, the owner takes two hash tables TV and TE corresponding
to the set V and E respectively. Since both TV and TE are hash tables, it stores key-value pairs.

It takes a PRP P : {0, 1}λ × {0, 1}λ → {0, 1}λ, a PRG F : {0, 1}λ → {0, 1}3λ, and a hash
function H : {0, 1}∗ → {0, 1}λ.

From the top, the owner stores each vertex and their adjacency lists in them. For a vertex
v ∈ V , its encrypted identifier nv of v is used as the key while storing it in TV and the value is the
encrypted (with F (lv) and rv ) information of its adjacency list. The value also stores information
(lov, r

o
v) to decrypt the list. As the information of the adjacency list, the encrypted address nvo of the

first node of the list is stored together with av that helps to find the address of the nodes in the list.

The adjacency list is stored as a linked list. Each entry of the list stores nvi that helps to find
the address of the next entry. It stores an additional information lvi that can decrypt the entry
corresponding to vi in TV partially. Each entry of the adjacency list corresponds to an edge and is
stored in TE .

Note that, the last neighbor of a vertex is stored in the list SV hidden with H(ks, nv) in the
position gv. A hash function G is used to find the position in the table SV . However, this table SV
is required only when the data is dynamic.
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Algorithm 38: Encrypt(G = (V,E), K)

1 (kn, ka, kl, kr, k
o
l , k

o
r , ks)← K

2 Initialize empty hash table TV and TE .
3 for v ∈ V do
4 lv ← P (kl, v); rv ← P (kr, v)
5 lov ← P (kol , v); rov ← P (kor , v)
6 nv ← SE.Enc(kn, v); av ← P (ka, v)

7 key ← nv; nvo
$←− {0, 1}λ

8 val← ((av, l
o
v, nvo)⊕ F (lv), r

o
v ⊕ rv)

9 TV [key]← val; d← deg(v)
10 for i = 1 to i = d+ 1 do
11 if i > d then
12 nvi ← null; lvi ← null; n′vd = nvi;

13 else
14 nvi ← SE.Enc(kn, vi); lvi ← P (kl, vi)
15 end
16 keyo ← H(av, nvi−1

)
17 valo ← (nvi ⊕H(lov, nvi−1

), lvi ⊕H(rov, nvi−1
))

18 TE[keyo]← valo

19 end
20 gv = G(v); SV [gv]← n′vd ⊕H(ks, nv);

21 end
22 return EG = (TV , TE); EG = (TV , TE, SV )



Our Proposed Protocol 167

Query phase: As we see in Section 8.1.1, to clustering coefficient of a vertex v, it is enough to
find neighbors of neighbors of v. So, we first find a way to find neighbors of a vertex.

Neighbor Query: Each entry, in each adjacency list Lv of v, is stored in TE and has two parts–
encrypted neighbor vertex and an additional decryption information. To find adjacency list, only
the first information is enough. It can be computed only if lv (= P (kl, v)), which is stored in nv
(= SE.Enc(kn, v)). So, token τn = (nv, lv) is returned to search neighbors of v.

Algorithm 39: NeighborQuery(TE, TV , τn)

1 (nv, lv)← τn
2 val← TV [nv]
3 if val =⊥ then
4 return φ
5 end
6 (av, l

o
v, nvo)← val[0]⊕ F (lv); i = 0

7 while 1 do
8 keyo ← H(av, nvi−1

)
9 valo ← TE[keyo]

10 nvi ← valo[0]⊕H(lov, nvi−1
)

11 if (nvi = null) then
12 break;
13 else
14 i = i+ 1;
15 end
16 end
17 return {nv1 , nv2 , . . . , nvi}

To search the set of neighbors (see Algo 39), the cloud, at first, decrypts the left-right parts
of the corresponding node in TV . This gives (av, l

o
v, nvo) which helps to find the address of the

neighbors in TE . It can be seen that the right parts of the entries in TE cannot be decrypted and
hence cloud cannot go to the next level.

Clustering Coefficient Query: The main difference of the CC query from the neighbor query is
that, in the CC query, the entry in TV corresponding to the queried vertex is completely decrypted.
So, given a vertex v, a token τc = (nv, lv, rv) is returned where nv ← SE.Enc(kn, v), lv ← P (kl, v)

and rv ← P (kr, v). The owner generates the token and gives it to the user. The user sends it to the
cloud whenever requires. rv allows to decrypt rov (see Algo 40) that is used to decrypt right parts
of the neighbors stored in TE . In the first round, the cloud computes neighbors of v completely.
In the next round, for each neighbor vi, the cloud performs neighbor queries which allows it to
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Algorithm 40: CCQuery(EG = (TE, TV ), τc)

1 (nv, lv, rv)← τc
2 val← TV [nv]
3 if val =⊥ then
4 return φ
5 end
6 (av, l

o
v, nv0)← val[0]⊕ F (lv)

7 rov ← val[1]⊕ rv
8 i = 0
9 while 1 do

10 keyo ← H(av, nvi−1
)

11 valo ← TE[keyo]
12 nvi ← valo[0]⊕H(lov, nvi−1

)
13 lvi ← valo[1]⊕H(rov, nvi−1

)
14 if ((nvi = null) ∧ (lvi = null)) then
15 break
16 else
17 i = i+ 1
18 end
19 end
20 R0 ← {nv1 , nv2 , . . . , nvi}
21 d = i ; s = 0
22 for i = 1 to i = d do
23 τn ← (nvi , lvi)
24 Ri ← NeighborQuery(TE, TV , τn)
25 s← s+ |R0 ∩Ri|
26 end
27 cc← s

d(d−1)

28 return cc
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decrypt only the right parts of them. These prevent the cloud to go further levels. Finally, the cloud
matches the set of neighbors of v with the neighbors of neighbors and outputs the desired result.

Additional Queries: Though we have shown how to find neighbors, we see that checking
whether a vertex or edge exists or not is a basic operation of a graph. Our proposed scheme
Ψs allows both with constant time. To check whether a vertex v is present or not, it is enough to
check whether entry in TV , corresponding to key nv = SE.Enc(kn, v), is present or not. To check
whether an edge uv exists, it is enough to check whether the corresponding entry H(au, nv) is
present in TE or not, where au = P (ka, u) and nv = SE.Enc(kn, v).

8.2.3 Computing Clustering Coefficient in Dynamic graphs

We extend the CCE scheme Ωs to DCCE scheme Ωd that have additional update support. Updat-
ing a graph means mainly updating some vertex or updating some edge. In this section, we show
how we add a new vertex or edge.

In Ωd, key generation and query algorithms are the same as Ωs. In Encrypt, corresponding to
each vertex v, the owner just stores the last added neighbor nvd in a hash table SV as SV [g(v)]←
nvd , where g is a one-way hash function only computed by the owner. The table SV it outsourced
to the cloud. The additional steps are shown in boxes in Algorithm 38.

Adding a vertex: To add a vertex v, the owner generates a corresponding entry in TV which
is a key-value pair (key, val) (see Algo 41). It initializes an adjacency list with key-value pair
(keyo, valo) for TE . Finally, the pair (g(v), sv) is computed to add it in SV . Then the pairs are
returned as token. The cloud adds them to their respective table when it receives the token (see
Algo 42). We see that adding a vertex is a half-round process where the owner just sends a set of
key-value pairs.

Adding an edge: (See Algo 43 and Algo 44). Since we have considered the graph to be undirected,
adding an edge u-v means adding both the edges u-v and v-u. To add an edge u-v, we have to
append a pair (keyu, valu) (See Algo 43) in the adjacency list of u in TE . Since the list is a link
list, the last link should be updated. The update is done by the pair (keyu′ , valu′). Similarly, it is
done with vertex v with the pairs (keyv, valv) and (keyv′ , valv′). The owner computes and sends
the pairs as token τae. While computing the pairs, owner requires an extra round of communication
to access the list SV . Finally, all the four pairs are added in TE (see Algo 44) by the cloud.
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Algorithm 41: AddVertexToken(K, v)

1 (kn, ka, kl, kr, k
o
l , k

o
r , ks)← K

2 nv ← SE.Enc(kn, v); av ← P (ka, v); nvo
$←− {0, 1}λ

3 lv ← P (kl, v); rv ← P (kr, v);
4 lov ← P (kol , v); rov ← P (kor , v); gv ← g(v)
5 key ← nv; val← ((av, l

o
v, nvo)⊕ F (lv), r

o
v ⊕ rv)

6 keyo ← H(av, nv0);
7 valo ← (null ⊕H(lov, nv0), null ⊕H(rov, nv0))
8 gv ← G(v); sv ← nv0 ⊕H(ks, nv);
9 return τav = [(key, val), (keyo, valo), gv, sv]

Algorithm 42: AddVertex(EG = (TE, TV ), τav)

1 [(key, val), (keyo, valo), gv, nv0 ]← τav
2 TV [key]← val; TE[keyo]← valo; SV [gv]← sv
3 return

Algorithm 43: AddEdgeToken(K, u, v)

1 (kn, ka, kl, kr, k
o
l , k

o
r , ks)← K

2 au ← P (ka, u); av ← P (ka, v)
3 rou ← P (kor , u); lou ← P (kol , u)
4 rov ← P (kor , v); lov ← P (kol , v)
5 lu ← P (kl, u); lv ← P (kl, v)
6 nu ← SE.Enc(kn, u); nv ← SE.Enc(kn, v)
7 gu ← G(u); gv ← G(v)
8 su ← SV [gu]; sv ← SV [gv]
9 nu′ ← su ⊕H(ks, nu); nv′ ← sv ⊕H(ks, nv)

10 keyu ← H(au, nv); keyv ← H(av, nu)
11 keyu′ ← H(au, nu′); keyv′ ← H(av, nv′)
12 valu ← (null ⊕H(lou, nv), null ⊕H(rou, nv))
13 valv ← (null ⊕H(lov, nu), null ⊕H(rov, nu))
14 valu′ ← (nv ⊕ null, lu ⊕ null)
15 valv′ ← (nu ⊕ null, lv ⊕ null)
16 s′u = su ⊕ nu′ ⊕ nv; s′v = sv ⊕ nv′ ⊕ nu
17 return τae = [(keyu, valu), (keyu′ , valu′), (keyv, valv), (keyv′ , valv′), (gu, s

′
u), (gv, s

′
v)]

Correctness: The correctness of the scheme follows from the construction and the pseudo-randomness
of the function P andH for the table TV and TE respectively. The scheme returns the correct result
only if P or H returns unique identifiers for each unique vertex or unique edge. The uniqueness
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Algorithm 44: AddEdge(TE, τae)

1 [(keyu, valu), (keyu′ , valu′), (keyv, valv), (keyv′ , valv′), (gu, s
′
u), (gv, s

′
v)]← τadd

2 TE[keyu′ ]← TE[keyu′ ]⊕ valu′; TE[keyu]← valu
3 TE[keyv′ ]← TE[keyv′ ]⊕ valv′; TE[keyv]← valv
4 SV [gu]← s′u; SV [gv]← s′v
5 return

follows from the property of a dynamic hash table.

8.2.4 Security analysis

Leakage due to initial dictionary construction is Le(G) = {|TE|, {nv : v ∈ V }, {sv : v ∈ V }}, due
to neighbor query is Ln(v) = {nv, dv, {nvi : i = 0, . . . , dv}}. The leakage in a clustering coeffi-
cient query isLc(v) = {nv, dv, {(nvi , dvi ,Ln(vi)) : vi ∈ Nv}}. The leakage due to add a vertex and
add an edge areLav(v) = {key, keyo, gv} andLae(u, v) = {keyu, key′u, gu, keyv, key′v, gv,Ln(u),Ln(v)}
respectively. Thus we have the leakage function L = {Le,Ln,Lc,Lae,Lav}.

Theorem 8.1. If F , P , G, H and SE is a PRG, a PRP, a PRP, a hash functions and a CPA-secure
symmetric key encryption respectively, then DCCE is L-secure against adaptive dynamic chosen-
query attacks, in random oracle model.

Proof. According to the Definition 8.6, for any PPT adversary A, it is sufficient to show that, ∃ a
simulator S which cannot distinguish the output of RealDCCEA (λ) and IdealDCCEA,S (λ) computationally.
To show them indistinguishable, it is enough to show that so is the query tokens in the two worlds.
We construct such a simulator S as follows.

Simulating H: Given a pair (x, y) of λ-bit strings, it finds rs ← ROH [(x, y)]. If rs 6= ⊥, then
it returns rs. Otherwise, it takes a λ-bit random λ-bit string rp

$←− {0, 1}λ, save it in the table as
ROH [(x, y)]← rs and return rs.

Simulating F : Given a λ-bit string x, it returns rs ← ROF [(x)], in case rs 6= ⊥. Otherwise, it
selects a random 3λ-bit string rs, save it in the table as ROF [(x)]← rs and finally returns rs.

Simulating P : The PRP P is used in DCCE with 5 different keys, which are fixed throughout.
So, S takes a table ROP that stores 5-tuples (a, r, l, ro, lo) of λ-bit strings, for every λ bit input x.
Given x, it finds rs ← ROP [x]. If rs 6= ⊥, then it returns rs = (a, r, l, ro, lo). Otherwise, it takes
a 5λ-bit random number rs

$←− {0, 1}5λ, save it in the table as ROP [x] ← rs and return rs. Note
that, the elements in the tuple corresponds to the key ka, kr, kl, kor , , k

o
l .
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Simulating Encryption: Given the leakage Le(G) = {|TE|, {nv : v ∈ V }, {sv : v ∈ V }}, S builds
simulated tables T̃V , T̃V and S̃V . S takes a one-way bijective map M : {0, 1}λ → {0, 1}λ that
maps each λ-bit string nv to an another λ-bit string ñv = SE.Enc(k̃n, 0

λ), where k̃n is randomly
taken. Since the keys in table TV are nv, S keeps ñv = M(nv) as the corresponding key in T̃V .
Each value in TV is a tuple of 4 completely random λ-bit strings. Thus for each nv, T̃V [ñv] ←
(bs1, bs2, bs3, bs4) where each bit string bsi is a λ-bit string taken at random.

S takes a bijective map M ′ that maps each element gv to g̃v i.e., M ′(gv) = g̃v. Then it takes a
table S̃V of size |V | and stores random λ-bit string s̃v corresponding to g̃v as S̃V [g̃v] = s̃v. It takes
the table T̃E to simulate TE , having same length. T̃E consists of |TE| key-value pairs where keys
are λ-bit strings whereas values are 2λ-bit strings. The strings are chosen at random.

Simulating neighbor query: Given the leakage Ln(v) = {nv, dv, {nvi : i = 0, . . . , dv}}, S finds
ñv ← M(n) and ñvi ← M(nvi), ∀i = 0, . . . , dv. It first finds (ãv, r̃v, l̃v, r̃

o
v, l̃

o
v) ← ROP [ñv]. If nv

is searched before by either neighbor query or cc query, then it returns τ̃n = (ñv, l̃v). As earlier if
ROP returns ⊥, then a random string is appended in ROP and returns the same. Then it assigns
ROF [l̃v]← val[0]⊕ (ãv, l̃v, ñvo) where val = T̃V [ñv].

Now, for each i = 1 to i = dv, if ROH [ãv, ñvi−1
] is not searched before, then S takes an unused

pair (keyo, valo) from T̃E , and updates ROH as ROH [(ãv, ñvi−1
)] = keyo and ROH [(l̃ov, ñvi−1

)] =

valo[0] ⊕ ñvi . Then, S assigns ROH [(ãv, ñvdv )] = keyo and ROH [(l̃ov, ñvdv )] = valo[0] ⊕ null.
Finally, S returns the simulated token τ̃n = (ñv, l̃v).

Simulating CC query: Given leakage Lc = {nv, dv, {(nvi , dvi ,Ln(vi)) : vi ∈ Nv}}, it computes
ñv ← M(nv). and then finds (ãv, r̃v, l̃v, r̃

o
v, l̃

o
v) ← ROP [ñv]. If nv is searched before either in

clustering query or neighbor query, it finds val← T̃V [ñv] and set ROF [l̃v]← val[0]⊕ (ãv, l̃v, ñvo).
If nv is searched before either in clustering query, the token τ̃c = (ñv, r̃v, l̃v) is returned. If nv is
not searched before in clustering query, then it does the followings.

1. ∀i = 0, . . . , dv, compute ñvi ←M(nvi)

2. For ∀i = 1, . . . , dv, if ROH [(ãv, ñvi)] is searched before then returns the corresponding
(keyo, valo) pair from T̃E where keyo = ROH [(ãv, ñvi)], else it takes a random unused pair
(keyo, valo) from from T̃E . Finally, it assigns ROH [(ãv, ñvi)] = keyo, ROH [(l̃v, ñvi)] ←
valo[0]⊕ ñvi+1

, and ROH [(r̃v, ñvi)]← valo[1]⊕ l̃vi+1
. Here, ñvdv = null and l̃vdv = null

3. For ∀i = 1, . . . , dv, S simulates neighbor queries for the leakages as Ln(vi).

Simulating add vertex query: Given leakage Lav(v) = {key, keyo, gv}, S computes ñv ←M(nv).
It selects 5 λ-bit strings (ãv, r̃v, l̃v, r̃

o
v, l̃

o
v) and append it in ROP as ROP [ñv] = (ãv, r̃v, l̃v, r̃

o
v, l̃

o
v).
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The it takes another random string ñv0

$←− {0, 1}λ
val = ((ãv, r̃v0 , ñv0)⊕ROF [r̃v], l̃

o
v ⊕ l̃v)

ROF [r̃v]← val[0]⊕ (ãv, r̃v0 , ñv0); ROH [(ãv, ñv0)] = key0

ROH [(l̃v, ñv0)]← valo[0]⊕ null
ROH [(r̃v, ñv0)]← valo[1]⊕ null
g̃v = M ′(gv); s̃v = S̃V [g̃v]; ROHs(ñv) = s̃v ⊕ ñv
Finally, S returns τ̃av = [(k̃ey, ṽal), (k̃ey

o
, ṽal

o
), g̃v, ñv0 ]

Simulating add edge query: Given the leakageLae(u, v) = {keyu, key′u, gu, keyv, key′v, gv,Ln(u),Ln(v)},
S does the followings.

1. nv = valu′ ⊕ null; nu = valv′ ⊕ null

2. ñu = M(nu); ñv = M(nv)

3. (ãu, r̃u, l̃u, r̃
o
u, l̃

o
u)← ROP [ñu]

4. (ãv, r̃v, l̃v, r̃
o
v, l̃

o
v)← ROP [ñv]

5. k̃eyu ← ROH [(ãu, ñv)]; k̃eyv ← ROH(ãv, ñu)

6. ṽalu ← ((ROH [(l̃u, ñv)]), ROH [(r̃u, ñv)])

7. ṽalv ← ((ROH [(l̃v, ñu)]), ROH [(r̃v, ñu)])

8. ROH [(l̃u, ñv)] = ṽalu ⊕ null

9. ROH [(r̃u, ñv)] = ṽalv ⊕ null

10. T̃E[k̃eyu] = ṽalu; T̃E[k̃eyv] = ṽalv

11. Simulate neighbor queries for nu and nv, from which nu′ and nv′ can be found.

12. k̃eyu′ ← ROH [(ãu, ñu′)]; k̃eyv′ ← ROH [(ãv, ñv′ ])

13. g̃u = M ′(gu); g̃v = M ′(gv)

14. s̃u = S̃V [g̃u]; s̃v = S̃V [g̃v]

15. If nu is appearing first time either in add edge or add vertex or neighbor query thenROHs(ñu) =

s̃u ⊕ ñu′
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16. If nv is appearing first time either in add edge or add vertex or neighbor query thenROHs(ñv) =

s̃v ⊕ ñv′

17. s̃′u = s̃u ⊕ ñu′ ⊕ ñv; s̃′v = s̃v ⊕ ñv′ ⊕ ñu

S returns τ̃ae = [(k̃eyu, ṽalu), (k̃eyu′ , ṽalu′), (k̃eyv, ṽalv), (k̃eyv′ , ṽalv′), (g̃u, s̃
′
v), (g̃v, s̃

′
u)].

Indistinguishability: nv and ñv are indistinguishable as SE is CPA-secure. Indistinguishability of
SV and S̃V follows from the fact that a random string is indistinguishable from the output of G.
Similarly, TV and TE are indistinguishable from T̃V and T̃E respectively as both P and F are
pseudo-random.

�

8.3 Performance analysis

In this section, we describe the experimental result of our scheme DCCE. We have designed
a prototype [9] using C++. For both the cloud and the client, we have used a single machine,
equipped with Intel Core i7-4770 CPU and with 8-core operating at 3.40GHz. It runs an Ubuntu
16.04 LTS 64-bit operating system with 8GB RAM.

There are three library functions P , F , H together with a symmetric key encryption scheme in
our proposed DCCE and we have used HMAC, Salsa20, SHA-256, and AES for them respectively
from cryptopp [31] library.

Datasets: For our experiment, we have taken real-world SNAP [55] datasets which is a collection
of different types of large networks. We have chosen ‘ca-HepPh’, ‘email-Enron’, ‘loc-Gowalla’,
and ‘roadNet-CA’ each of which is undirected. The number of nodes and edges of them is given
in Table 8.1

Table 8.1: Number of nodes and edges

dataset #Nodes #Edges Network type
ca-HepPh 12,008 118,521 Collaboration network
email-Enron 36,692 183,831 Email communication network
loc-Gowalla 196,591 950,327 location based social network
roadNet-CA 1,965,206 2,766,607 Road network

Experimental Results: We have tested our prototype with all four types dataset as in Table 8.1.
We can see that the time taken to encrypt the graph data is approximately proportional to Me =
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(|V | + 2|E|). Since the main operations to generate the encrypted matrix are the computation of
hashes, and random numbers, etc., the result is so. Me vs encryption time is shown in Figure 8-3.
This shows for each Me the client takes 53.3µs.
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Figure 8-3: Encryption Time on different datasets

For the clustering coefficient query, 1000 random vertices are chosen for each dataset. Since
each vertex has a different number of neighbors, query time is different for different vertices.
But from experiment, we have seen that query time for a vertex v, is proportional to Mc =

(4|Nv| +
∑

u∈Nv |Nu|). We have shown query time in Figure 8-4 for all four datasets. Since
roadNet data is very sparse, query time is lesser here. From the result, it can be seen that the
average values of Mcs are 11.33µs, 11.72µs, 11.32µs, and 10.76µs respectively for ‘ca-HepPh’,
‘email-Enron’, ‘loc-Gowalla’ and ‘roadNet-CA’.

Thus, with 196,591 vertices and 950,327 edges, it takes only 1.2s whereas with 62 vertices
and 159 edges, a CC search requires 18.77s in [101]. This huge improvement is due to use of
symmetric key encryption scheme and efficient data structure.

In addition, we have measured time for neighbor query taking random 1000 vertices: Figure 8-
5 shows the time taken by the cloud with respect to Mn where Mn = |Nv| for a chosen vertex v.
For each dataset, the value of Mn is 10.40µs, 10.46µs, 10.54µs, and 23.68µs respectively. For
roadnet data Mn = 26.64µs, if we take average before computing line of regression.

Finally, while the addition of a vertex is a concern, the time taken should be and is constant for
any vertex. Adding edge is also requires constant time for both the client and the cloud. The time
taken to add a vertex and an edge are 69µs and 124µs respectively for the client.
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Figure 8-4: CC Query time on different datasets
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Chapter 9

Conclusion and Future Work

In this chapter of the thesis, we conclude with a summary of the observations found from the works
and give a future research direction towards the field of dynamic searchable symmetric encryption.

Dynamic searchable symmetric encryption (DSSE) schemes enable cloud users to search over
their encrypted documents uploaded to a cloud server as well as allow them to add new documents
or delete some of the existing documents later. In Chapter 4, we have proposed an efficient DSSE
scheme Trids which has optimal search time with less deletion leakage compared to other DSSE
schemes. We have provided a simulation-based security proof for our scheme Trids. We have
implemented a prototype of our scheme Trids and done experiments on real-time datasets to show
the efficiency of our DSSE scheme.

In Chapter 5, we have seen that we have successfully presented a publicly verifiable dynamic
SSE scheme Srica which is are simple and easy to integrate. Moreover, the VDSSE scheme Srica
achieves forward secrecy. In the scheme, we have achieved our target to make efficient for low-
resource owner. Due to low computational and communication cost of the owner, we do need
an auditor. The presence of the auditor, who verifies the search result, reduces workload of the
owner. Our proposed scheme Srica is only for single keyword search queries. There are many
other complex queries too. As a future work, one can design complex queried verifiable DSSE
scheme. On the other hand, while designing, keeping them forward secret is also a challenging
direction of research.

In Chapter 6, we first designed efficient authentication tree DIA tree. Then, we have proposed
conjunctive DSE scheme Blasu that is verifiable too. The scheme Blasu uses a forward private
single keyword DSE scheme as base. Moreover, our scheme does not use any extra client-storage
for verifiability. We have used our designed DIA tree for verifiability. Later, we have shown that
the scheme is practical comparing with existing schemes. We can see that most of the verifiable
conjunctive search schemes, including ours, use public key encryption for verifiability though
some single keyword verifiable schemes use symmetric one. Solving the same problem with with
symmetric key encryption technique is still a good open problem in this direction.

In Chapter 7, we have introduced the secure link prediction problem and discussed its security.
We have presented three constructions of SLP. The first proposed scheme SLP-I has the least

177
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computational time with maximum leakage to the proxy. The second one SLP-II reduces the
leakage by randomizing scores. However, it suffers high communication cost from proxy to the
client. The third scheme SLP-III has minimum leakage to the proxy. Though the garbled circuit
helps to reduce leakage, it increases the communication and computational cost of the cloud and
the proxy servers.

Performance analysis shows that they are practical. We have implemented prototypes of first
two schemes and measured the performance by doing experiment with different real-life datasets.
We also estimated the cost for SLP-III. In the future, we want to make a library that support
multiple queries including neighbor query, edge query, degree query, link prediction query etc.

It is to be noted that the cost of computation without privacy and security is far better. The
performance has been degraded since we have added security. The performance comes at the cost
of security. Throughout this chapter, we have considered unweighted graph. As a future work
the schemes can be extended to weighted graphs. Moreover, we have initiated the secure link
prediction problem and considered only common neighbors as score metric. As a future work,
we will consider the other distance metrics like Jaccard’s coefficient, Adamic/Adar, preferential
attachment, Katzβ etc. and compare the efficiency of each.

In Chapter 8, we have designed a graph encryption scheme Gopas that allows performing clus-
tering coefficient queries over encrypted data. Moreover, our solution Gopas allows performing
basic queries including vertex query, edge query, and neighbor query. The solution also supports
the addition of a new vertex or edges in the encrypted graph. The results of our prototype, run on
real-life data, shows it is efficient and practical.

However, our proposed DCCE scheme Gopas does not support the deletion of a vertex or
edges which makes it an append-only scheme. As future work, it is desirable to make such a
scheme with both addition and deletion support without compromising the efficiency. Another,
interesting direction of research is to enable more types of queries, for example, finding shortest
paths, betweenness, etc., on a single encrypted graph. Then, in the future, we can get more general
frameworks that allow multiple complex queries or perform other graph queries. In presence of
malicious cloud server, developing verifiable versions of the graph problem is also a challenging
problem.

Besides the efficiency, it is necessary to discuss scalability when the queries become complex.
Though multiple schemes on single keyword search and even multi-keyword search on text data
are scalable to very large datasets, when it comes to complex queries, most of the schemes are
limited to small datasets only. In complex queries, like fuzzy keyword search, similarity search,
substring search, multi-keyword ranked search, etc., public-key encryption schemes are used. This
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forces them to have higher execution time and unfit for large databases. Even when the queries
become complex or multiple queries are required for a single user, it is desirable to make them
scalable for practical large databases. So, designing similar schemes in symmetric-key settings is
necessary and very challenging.

Finally, in parallel to the software-based solutions, recent special purpose hardware-based
trusted execution environments are helping us to achieve effective and efficient execution of the
protocols. Intel Software Guard Extensions (SGX), Intel Trusted Execution Technology (TXT),
Trusted Platform Module (TPM), Trusted Computing Base (TCB), ARM TrustZone, etc. are some
such hardware. They not only execute with enhanced security but also provide confidentiality and
integrity of the applications. Thus designing schemes with them can improve the performance
significantly. Though there are few works, like [8], [106], [94], etc., considering such special
hardware environments, they are mainly over single keyword search schemes on collection on
documents. So, exploring a software and hardware combined approach to address the challenging
secure search problem, especially when the queries are complex, is still a new, interesting and
necessary direction of research.
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