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Abstract

Coreset is an important tool to effectively extract information from large amount
of data by sampling only a few elements from it, without any substantial loss
of the actual information. An ε-coreset is defined as a weighted set C obtained
from an universe X, so that for any solution set Q for a problem (referred to as
a query in coreset literature), |Cost(X,Q)− Cost(C,Q)| ≤ ε · Cost(X,Q).
Our work is an attempt to generalize the solution provided in the paper “k-
Means Clustering of Lines for Big Data” (Marom and Feldman, NIPS, 2019),
and explore if it is possible to extend to k-flats in Rd as well. Following the ap-
proach used in the paper mentioned, we will attempt at building a deterministic
algorithm to compute an ε-coreset whose size is near logarithmic of the input
size for a j-dimensional affine subspace in Rd.
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Thesis Organization

We have divided this thesis into three broad parts. Chapter 1 is mostly dedicated
to the explanation of a coreset , the usefulness of the coreset , its importance
, and yet not having any standard universal definition as of yet. We provide a
small example of a coreset to show how efficient coresets can be.

In Chapter 2 , we move to our specific problem; coresets for K-means. Chap-
ter 2 covers a lot of previous work in detail , coresets for K-means for points in
Rd . We try to explain the little tricks that ultimately builds an efficient coreset.

Chapter 3 is a compilation of our own work. We try to extend the idea of
coresets for K-means for flats and hyperplanes in Rd. We follow one simple ap-
proach, if there exists some general procedure to map flats ( of any dimension)
or hyperplanes to points, then effectively we can use the previous techniques
to build our coreset. Our work indeed makes it possible to extend it to flats,
hyperplanes and even a combination of them in Rd, but only if K = 1 , that is
for the 1-center problem.

Despite this major drawback, this work stands apart from previous attempts,
where the method could be used for K-means, but only for lines in Rd , putting
a constraint on the dimensions of the objects being clustered.
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Chapter 1

Introduction to Coresets

1.1 Introduction
A coreset, defined in very broad and informal terms is a small subset of data that
captures the key features of the data set that we care about. With the generation
of huge volumes of data every day by billions of users, it becomes difficult in
both space and time parameters to store and extract relevant information when
the volume of the data is so huge. Consequently, we carefully sample certain
data points only, using some intelligent distribution, that extracts all relevant
information, when we run our algorithms on this smaller data set. This helps
us facilitate fast approximation algorithms for various geometric optimization
problems.

In this article, we talk mainly about building coresets for the K-means prob-
lem for data in Rd. There have been substantial work in coresets for points in
Rd, with the coreset size being lower bounded by d, the number of dimensions,
k, the number of clusters and ε, the parameter for accuracy of the approxima-
tion. Work had also been done in coresets for lines in Rd . In this thesis, we try
to extend on the previous work, and attempt to find a coreset for k-flats in Rd.

Since our work will mostly revolve around the K-means problem, our def-
inition of coresets will be modified accordingly. However, it is important for
us to take up a simple example of a coreset to fully appreciate its power. For
this, we next look at the coreset for a minimum enclosing ball for a set of points
[ Badoiu and Clarkson [2008]] .

1.2 Coreset for MEB for points in Rd

Definition 1.2.1 (MEB)
The minimum enclosing ball (MEB) for a set of points P in Rd is the radius of
the smallest sphere that contains all the points of P .

Definition 1.2.2 (Coreset for MEB)
Given a set of points P ⊂ Rd and a value ε > 0, a coreset S ⊂ P has the
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property that the MEB containing S is within ε of the MEB containing P . That
is, if the smallest ball containing S is expanded by 1 + ε, then the expanded ball
contains P .

The algorithm to construct the coreset is surprisingly simple, a greedy algo-
rithm is sufficient for the construction. The coreset is of size at most 2/ε, where
ε is the factor in the definition above.

Algorithm 1 (Coreset for MEB)
1. Choose a random point x ⊂ P
2. Include x in S, S being initialized as an empty set.
3. for i = 1 to 2/ε

Let c be the center of S
Find p ∈ P such that ∀p′ ∈ P , ||p− c||2 ≥ ||p′− c||2 , where ||.||2 denotes

the second norm.
S ← S ∪ {p}

4. Return S

The time complexity of the above algorithm is exponential in d, the number
of dimensions and linear in n, the number of points. By treating S, as a multiset,
it is possible, using the same algorithm, to construct a coreset with a slightly
lower time complexity, but the coreset size increases to at most 1/ε2.

We do not present a correctness proof and analysis for the above algorithm,
since it was used as a simple example of a construction. We are more interested
in building coresets for K-means clustering. We next look at the construction
of efficient coresets for a point set in Rd.
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Chapter 2

Coresets for points in Rd for
K-means clustering

Before we look at the actual ideas for the construction of coresets for points, we
need to know a few definitions that will come in handy.

2.1 Definitions
Definition 2.1.1 (Cost(P,C))
Consider a set of weighted points P ⊂ Rd, with weights wi, i ∈ [|P |], where
[A], A ∈ Z+ indicates the set 1, 2, . . . , A and a set of centers C ⊂ Rd, |C| = k.
Then Cost(P,C) = Σi∈[|P |] wifQ(pi), pi ∈ P , where
fQ(pi) = ||cj , pi||2, cj ∈ C such that ∀ck ∈ C; ck 6= cj, ||cj , pi||2 ≤ ||ck, pi||2
Definition 2.1.2 (K-means clustering for weighted points)
Consider a set of weighted points P ⊂ Rd, with weights wi, i ∈ [|P |], and a
family of sets ζ, where each C ∈ ζ is set of centers, that is, C ⊂ Rd, |C| =
k. Note that ζ contains all possible set of centers in Rd. Then the K-means
algorithm returns to us the optimal center set such that if the set C ∈ ζ is
returned then:
∀C ′ ∈ ζ, C ′ 6= C, Cost(P,C ′) ≥ Cost(P,C)

Definition 2.1.3 (Coreset)
Let ε > 0, and ζ be a family of sets such that each C ∈ ζ is a set of centers,
that is C ⊂ Rd. As before ζ contains all possible set of centers in Rd. Then X
is an ε-coreset of P , if:
∀C ∈ ζ, |Cost(P,C)− Cost(X,C)| ≤ ε Cost(P,C)
The above is the definition of a strong coreset. If the inequality holds only for
C∗, the optimal set of centers, then X is called a weak coreset of P .

Note that a direct result from the definition of coreset is that if P is the
point set and X is the coreset of P with CP and CX being the optimal center
sets for P and X respectively, then Cost(P,CX) ≤ (1 + 3ε)Cost(P,CP )
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2.2 A Simple Unsuccessful Attempt
We look at some simple and unsuccessful attempts to build a coreset. The
trivial coreset is the point set P itself, but we are interested in building smaller
coresets. Our first attempt is to sample points with a uniform probability of
1/|P |. Intuitively, we may be able to see that why this is problematic. The
spatial distribution of the chosen points will be a function of the density of
clusters or sub clusters inside what should have been optimally a larger cluster.
Therefore, under representation of certain points from low density clusters may
take place, significantly changing the cluster formation. To counter this, we
may have to sample impractically large number of points, defeating our whole
aim.
Let us now formally look at the analysis of uniform sampling. For simplicity,
assign weights to points in P as ∀i, i ∈ [|P |]wi = 1/|P |.
This implies that the cost for any set of centers C for the point set P is

Cost(P,C) = Σi∈[|P |] (1/|P |)fQ(pi) = Ep[fQ(p)] (1)

Now suppose we set the weights of the points in the coreset to be 1/m, |X| = m.
Then we can see that the cost for the same set of centers, that is C is :

E[Cost(X,C)] = Σp∈X (1/m)Ex[fQ(p)] = Cost(P,C)
Note: This holds because each data point has been sampled with probability of
1/|P |

We see that Cost(X,C) is an unbiased estimator of Cost(P,C), which shows
that theoretically it is possible for us to build a coreset by using a uniform dis-
tribution for sampling. However, as discussed before, there are some caveats.

V ar[Cost(X,C)] = V ar[Σp∈X (1/m)fQ(p)]
= [m.(1/m2)V ar[fQ(p)]
= (1/m)V ar[fQ(p)] ≤ (1/m)E[fQ(p)2]

= (1/mn)Σp∈P fQ(p)2 ≤ (1/mn)Σp∈P fQ(p)
2

= (n/m)Cost(P,C)2

where n is the number of points in P .

Again, we are met with success. The variance is finite, so using the weak law of
large numbers, we know that we can make Cost(X,C) converge to its expected
value. Let us use Chebyshev inequality to get a bound on the number of points
required.

Pr[|Cost(X,C)−E[Cost(X,C)]| > εCost(P,C)] ≤ V ar2[Cost(X,C)]/ε2Cost(P,C)2.
Knowing that E[Cost(X,C)] = Cost(P,C), we get the desired probability as
n/(ε2m). Hence, to get a probability of δ, we need n/(ε2δ) number of points.
This exceeds the initial number of points!
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Our initial intuition was true, uniform sampling does not help much. We need
a different type of sampling, a more careful one, that takes into account the
less dense areas of our point set. This type of sampling is called importance
sampling.

2.3 Importance Sampling: Concept of Sensitivity
The difference between equality and equity is that equality aims to provide
equal opportunities for everyone, irrespective of the initial conditions. Equity is
more about making sure that everybody has the same footing in the end. We
tried providing equality to all the data points, but unfortunately, owning to the
initial conditions, representatives of sparse clusters were, on expectation, less
to be selected. Hence, it is important that we now provide equity to all the
data points. It is here that the concept of sensitivity comes in. Sensitivity is a
measure of how "hard hit", a point can be, due to the choice of centers, i.e., the
cost for that point in the worst chosen center set. Obviously, we do not want
our points to be the worst hit. Hence, intuitively, if we define a distribution
that gives us some kind of ratio between the total sensitivity and the sensitivity
of a point, then we know how much “sensitive” the point is in comparison to
the other points, and get a guess on how much increment in cost can the point
cause in case a bad center is chosen. A more “sensitive” point (relative to the
other points) must be, quite naturally, given more preference.
For a mathematical intuition of how sensitivity should be calculated, let us as-
sume some distribution I(p) is used to sample points. If WP (p) is the weight
of the point p in P , if sampled, the weight of p is modified to WX(p) =
WP (p)/(mI(p)), where m is the number of points in the coreset X. We verify
that using this modified weight, the sampling scheme is unbiased.

E[Cost(X,C)] = E[Σx∈X WX(x)fQ(x)]
= E[Σx∈X fQ(x)WP (x)/(mI(x))]
= E[fQ(x)WP (x)/I(x)] [∵ E[E[x]] = E[x]]
= Σx∈P WP (x)fQ(x) [∵ I(x) is the distribution]
= Cost(P,C)

Now, we turn to the variance. The variance must be reduced to the minimum.
What if we try to reduce the variance for a single center set, C ? Can we get
an indication of what I(p) in the process of reducing the variance?

V ar[Cost(P,C)] = (1/m)V ar[WP (x)fQ(x)/I(x)]
The above statement is true because the points are independently sampled ac-
cording to the distribution I(x) Therefore, we have:

V ar[Cost(P,C)] = 1/m(E[WP (x)2fQ(x)2/I(x)2]− E2[WP (x)fQ(x)/I(x))
= (1/m)Σx∈P WP (x)2fQ(x)2/I(x)−(1/m)Σx∈P WP (x)2fQ(x)2

= (1/m)Σx∈P WP (x)2fQ(x)2/I(x)− (1/m)Cost(P,C)2
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The minimum variance is obtained when the expression for I(x) is:

I(x) = WP (x)fQ(x)/Σx′inP (WP (x′)fQ(x′))

The expression shows that we are practically checking how bad can the increase
in cost be due to x, with respect to the other points if our center set C that we
chose is not a good one. This is where we first see a mathematical expression
for sensitivity. Note that this concept provides for equity, the more “sensitive”
a point is, the greater the probability of it getting sampled.

It is time for us to get introduced with the concepts of sensitivity formally.
Using this we shall try figuring out the optimal distribution for all center sets.

2.3.1 A Measure of Sensitivity
Langberg and Schulman [2010] formalized the concept of sensitivity by showing
that to find a good distribution, we needed to consider the worst impact a point
could have due to a bad center set. They defined sensitivity analogous, but
slightly different, from what we proved just before:

σ(x) = supremum C∈ζ fQ(x)/Σx′∈P (WP (x′)fQ(x′))

Notice how similar this is to the previous expression we derived. Here, how-
ever, we choose the worst case scenario for each point, instead of a fixed center
set.

It might not be feasible for us to determine the exact sensitivity; that would
require the knowledge of the spatial orientation of the points, therefore, we
resort to a upper bound on the value of σ.

Let s(x) = O(σ(x)), and define S = Σx∈PWP (x).s(x). Consider the follow-
ing sampling distribution:

I(x) = WP (x).s(x)/S(x)

Intuitively, we see that this is almost like the expression we derived earlier in
section 2.3, except that fQ(x) has been replaced by s(x), the (upper bound on)
sensitivity. This makes sense, because earlier, we had just a single center set,
so we did not have to worry about the worst case scenario for a point. Whereas
earlier, we just to take into account the cost of each point from an appropriate
center for a single center set, we now need to take into account the worst case
scenario of each point, which may arise from different center sets for each point.
Hence, the justifiable change in the expression. Let us now look at the analysis
a little more formally, although the proper proof will be discussed later.

For all C ∈ ζ and for all points x, we define GC(x) as :

GC(x) = Wp(x)fQ(x)/(Cost(P,C)I(x)S)
= fQ(x)/(Σx′∈P (WP (x′)fQ(x′))s(x))
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Above expression must always be less than 1 and greater than 0, because s(x)
will cancel out the numerator, by definition. Since the value is always between
0 and 1 we may use Hoeffding bounds, which will prove to be useful. We will
use precisely this form:

If X1, X2, . . . , Xn are independent random variables such that their values
are bounded by [0, 1], then let us define X = (1/n)Σni=1Xi. Then the Hoeffding
inequality (the form we require) states:

Pr(|E[X]−X| ≥ t) ≤ 2e−2nt
2

We have E[GC(x)] = Σx∈P I(x)WP (x)fQ(x)/(Cost(P,C)I(x)S)
= (1/Cost(P,C))Σx∈P WP (x)fQ(x)/S
= 1/S [∵ ΣWP (x)fQ(x) = Cost(P,C) ]

We also have (1/m)Σx∈X GC(x), as Cost(X,C)/SCost(P,C), replacing I(x)
by its expression.

Therefore, using Hoeffding inequality now, we get:

Pr(|Cost(P,C)− Cost(X,C)| ≥ tSCost(P,C)) ≤ 2e−2mt
2

From here we see that X is a good coreset for any single query with proba-
bility 1− δ if the number of samples required are:

m ≥ (S2/(2ε2)log(2/δ)

A slightly depressing observation is that the bound is dependent on S2, the
square of the sum of the upper bound on sensitivities. This means that if we
have a loose upper bound, we might end up needing absurd number of samples.
If we choose the trivial bound s(x) = n and WP (x) = 1/n, then we end up with
a uniform distribution scheme. In this case, note that the number of samples
required is lower bounded by n2, leading to the same absurd result we talked
about in the beginning of the report. This leads to the question, do we really
have a tight bound on Sensitivity? The answer, fortunately, is yes. We first
try to find an approximation of the K-means clustering problem, with some
approximation algorithm that returns us a set of not necessarily k centers, and
a approximate bound on the cost. Such algorithms are called α-β algorithms or
bi-criteria algorithms. And we have a great one at our disposal.

2.3.2 Bi-Criteria Approximation Algorithm : D2 sampling
If we are given a point set P and asked to guess a cluster center, given the
location of a previous cluster center, our instinct would be to pick a cluster
center far away from the existing cluster center, because we would hope that
the existing center “takes care” of the points near it. The D2 sampling method
is built on the same principle. This algorithm returns to us βk cluster centers
such that for the set of βk centers, let us call it B, satisfies:
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Cost(P,B) ≤ αCost(P,OPT ),
where OPT is the Optimum center set, |OPT | = k. The algorithm, due to
Arthur and Vassilvitskii [2007] is provided below:

Algorithm 2 (D2 Sampling)
1. Sample p ∈ P using a uniform distribution. Add it to empty set B
2. for i = 2 to k

Sample pi with probability WP (pi)d(pi, B)2/(Σp′∈PWP (p′)d(p′, B)2 and
add to B.
3. Return B

Here d(p,B) means distance of point p from the point in B to which it is closest.

It can be shown that this algorithm is O(log(k)) competitive, that is

E[Cost(P,B)] ≤ 8(log2 k + 2)Cost(P,OPT )

Now, by Markov Inequality, we say that:

Pr(Cost(P,B) > 16(log2 k+2)Cost(P,OPT )) ≤ E[Cost(P,B)]/16(log2 k+
2) ≤ 1/2.

Therefore, if we have t trials of the experiment, and the center set with the
lowest cost be B∗, then if Cost(P,B∗) > 16(log2 k + 2)Cost(P,OPT ), that
means all the other trials had failed too. This happens with a probability of
less than (1/2)t. Then if (1/2)t = δ, then t = log(1/δ).

Therefore, if we ran the experiment log(1/δ) times, and chose the center set
with the lowest cost, then: Pr(Cost(P,B∗) ≤ 16(log2 k+2)Cost(P,OPT )) >
1− δ

From this we get that α = 16(log2 k + 2) and β = 1.

2.3.3 Bounding the Sensitivity using bi-criteria approxi-
mation

Any bi-criteria approximation can be used for sensitivity. We present a previ-
ously proven theorem on the bound of the sensitivity (σ(.)) for (α, β) approxi-
mation algorithms.

Theorem 1 (Sensitivity Bound )
Let P ⊂ Rd be a point set, |P | = n, WP (pi) = 1/n,∀pi ∈ P . Let B ⊂ Rd
be the center set returned by an α-β algorithm for K-means clustering using
squared Euclidean distance. Let for p ∈ P , bp ∈ B denote the cluster center of
the cluster it is assigned to. Let d(x, y) denote the Euclidean distance between
points x and y. Let d(x, Y ) denote the distance between x and the most appro-
priate center from x from the center set Y . Also let Pp be the set of all points
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belonging to the cluster with cluster center bp. Then the sensitivity of a point p
for the function fQ(p) = min dc∈C(p, c)2 is bounded for all p ∈ P by the function:

s(p) = (2αd(p, bp)
2/cB) + (4αΣp′∈Pp

d(p′, bp)
2/(|Pp|cB)) + (4n/|Pp|)

where cB = 1/nΣp′∈P d(p′, B)

Also, the total sensitivity is bounded by:

S = (1/n)Σp∈P s(p) = 6α+ 4β

Proof of the above theorem:

Consider a point p ∈ P , and a center set C ∈ ζ, chosen arbitrarily, and set:

cC = (1/n)Σp′∈P d(p′, C)
cB = (1/n)Σp′∈P d(p′, B)

Using the Minkowski inequality (this inequality proves that Lp spaces are normed
spaces) for p = 2 1, we get:

d(p, C)2 ≤ 2d(p, bp)
2 + 2d(bp, C)2

In a similar fashion, ∀p′ ∈ P we have,

d(bp, C)2 ≤ 2d(p′, bp)
2 + 2d(p′, C)2

Summing over all points p′ ∈ P , we have:

d(bp, C)2 ≤ (2/|Pp|)Σp′∈P [d(p′, bP )2 + d(p′, C)2]

Now, we somehow need to get the expression for σ(p) in the left. In the right,
we have a upper bound on the left side expression, hence it serves our purpose
as s(p).

Note that d(p, C)2 = (fQ(p)/Σ((1/n)2fQ(p′)))((1/n)Σd(p′, C). It follows from
the definition of σ(p) that

σ(p) ≤ (2/cC)[d(p, bp)
2 + d(bp, C)2]

We are almost there. All we need to do now is to find the relationship be-
tween cC and cB and we will be done with a trick. By definition, we know that

1Not to be confused with our convention of denoting a point as p sometimes
2This is the weight, check theorem 1
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cC ≥ 1/αcB and cC ≥ (1/|X|)Σp′∈P d(p′, C)2. From these, and from the second
Minkowski inequality [see above], we have :

σ(x) ≤ (2d(p, bp)
2/cC) + 4(Σp′∈Pp

[d(p′, bp)
2 + d(p′, C)2]/(PpcC))

≤ (2αd(p, bp)
2/cB) + ((4αΣp′∈Pp

d(p, bp)
2)/(PpcB)) + (4n/Pp)

This is the value of s(p) since it upper bounds σ(p). Furthermore, we can
now derive the value of S.

S = (1/n)Σp∈P s(p) = 6α+ 4β

2.4 From Single Center Set to All Center Sets
Up until now, we had put aside the problem of the coreset property holding for
all center sets; we have in previous sections used the Hoeffding inequality very
cleverly to get to satisfy the coreset property for a single center set, C ∈ ζ. It
is now important for us to build an ε-coreset that satisfies the coreset property
for all center sets.

On the top of our heads, we might want to apply the union bound on all center
sets. But the caveat is there are infinite of them. We really can not have a
success, unless we have some way to bound the number of queries. Our aim is
to show that if some property ( not necessarily the ε-coreset property) holds for
a small subset of center sets, our required condition ( the ε-coreset property)
holds for all center sets. Fortunately, we do have such a tool; it is possible
to show that if for a subset ζ∗ ⊂ ζ, the coreset X satisfies the strong coreset
property, with the error factor as ε/2, then all center sets satisfy the coreset
property with error factor ε.

2.4.1 Some More Definitions (And One Theorem)
Before we proceed further, we will need to look at (and understand) some more
definitions. Let us look at them at one by one.

Definition 2.4.1 (Shattering)
Consider a family of functions F and a set of points P ⊂ Rd . Now let f ∈ F.
Geometrically the function divides the space into two parts, say A and B. Let
us label all points in A as + and all in B as −. Therefore, if we consider all
points as distinct, we get a sequence of + and −. If there exists at least one
way of placing the points , such that every combination of this sequence can be
generated by some function f ∈ F, then we say F shatters P .

Definition 2.4.2 (VC Dimension)
The maximum value of |P | for which F shatters it is called the VC dimension
of F. If arbitrarily large sets can be shattered by F, then its VC Dimension is
infinity.
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Definition 2.4.3 (Pseudo Dimension)
Pseudo-dimension is in one way the extension and generalization of VC di-
mension. Consider a countably infinite domain X and a family of functions
F : X → [0, 1]. Suppose x1, x2, . . . , xt are all elements of X, and we also have a
set of thresholds th1, th2, . . . , tht ∈ [0, 1] . Let bi, i ∈ [t] take values + or −, i.e.,
bi = + if and only if for any f ∈ F, f(xi) > thi. If t is the greatest cardinality,
such that for all combinations of bis , we have a function f ∈ F that generates
the sequence, then t is the pseudo-dimension of F

Theorem 2 ( Haussler [1995])
Packing theorems deal with the number of distinct vectors that can be packed in a
cube of [0, 1]n, when the vectors are dissimilar on at least k indices. Haussler’s (
generalized) packing lemma says that “For any set X, any probability distribution
P on X, any set I, of P-measurable functions3 on X taking values in the interval
[0, 1], with the pseudo-dimension of I being d < ∞, and an ε > 0, then the ε
packing number is O(ε−d)”.

2.4.2 Some More Intuition, And Working on Them
Haussler’s lemma directly hints at what we want. We know that GC(x) takes
values between 0 and 1, and that for each center set, when we consider the
coreset X, the values of GC(x) occupies a point in the cube [0, 1]m. But clearly,
we now know that O(ε−d) center sets (giving us equal number of GC(x)) can
be used to pack up the space. The elements of ζ can be covered up to a L1

distance of ε/2 by a set ζ∗ ∈ ζ of ε−d points. This is exactly what we wanted,
a small set of center sets, so that we may use the union bound!

This set ζ∗ is special, if a coreset X follows the strong coreset property with
an error of ε/2 for ζ∗, it follows the strong coreset property with an error ε for
the rest of the center sets in ζ.

Let us now state the theorem directly that we get by applying these ideas,
before we go on to a proof sketch of them:

Theorem 3 (Coreset Size)
Let ε > 0 and δ ∈ (0, 1), P , a weighted data set, ζ be the set of all center sets, and
fQ(x) a cost function as defined previously. Let X; |X| = m be the coreset sam-
pled with replacement from P following the distribution I(x) = WP (x)s(x)/S.
Let the weights of the points in the coreset be changed toWX(x) = WP (x)/(mI(x))
. Let d be the pseudo-dimension of GC(x). Then X is a coreset for P with prob-
ability at least 1− δ for

3Random Variable in this context
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m ∈ Ω((S2/ε2)(d+ log(1/δ)))

Proof sketch of the above theorem:

The actual proof involves the chaining technique of proving. We will provide a
proof that is 1/ε close to the result in Theorem 3.

Remember how we used the Hoeffding bounds previously? We will do the same
this time to determine a size of the coreset.

Pr(∃C ∈ ζ : |Cost(P,C)− Cost(X,C)| ≥ εCost(P,C))
≤ Pr(∃C∗inζ∗ : |Cost(P,C∗)− Cost(X,C∗)| ≥ (ε/2)Cost(P,C∗))

≤ 2|ζ∗|e−mε2/(2S2)

Where the last inequality comes from an union bound inequality and previ-
ous results from the Hoeffding bound.

We know that |ζ∗| = ε−d, where d is the pseudo-dimension of GC(x)

From this we get that if the set X is a coreset with probability 1− 1/δ, then :

m ∈ Ω((S/ε)2(d log(1/ε) + log(1/δ))

2.4.3 The Formal Proof
Theorem 4 ( Li et al. [2001])
Let α > 0, ν > 0, δ > 0, and let P be a fixed countable infinite domain, and I(.)
be any probability distribution over X. Let F : X → [0, 1], pseudo-dimension
of F = d. Let X a coreset sampled according to I(.) and |X| = m. Now if
m ∈ Ω((1/(α2ν))(d log(1/ν)+log(1/δ)), then with a probability of 1−δ, it holds
that:

∀f ∈ F : dν(Σp∈P I(p)f(p), (1/|X|)Σp∈X f(p)) ≤ α

where dν = |a− b|/(a+ b+ ν)

We proceed by choosing ν = 1/2 and α = ε/(3S). Applying the above
theorem to the family of functions GC(.), this means for m ∈ Ω((S2/ε2)(d +
log(1/δ))), with probability 1− δ

(|Σp∈P I(p)GC(p)−(1/|X|)Σp∈X GC(p)|) / (Σp∈P I(p)GC(p)+(1/|X|)Σp∈X GC(p)+
(1/2)) ≤ α
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Since I(p)GC(p) and (1/|X|)Σp∈XGC(p) are both bounded by 1, we can write

|Σp∈P GC(p)I(p)− (1/|X|)Σp∈X GC(p)| ≤ 3α = ε/S

By definition of GC(.), we have:

Σp∈P I(p)GC(p) = 1/S and (1/m)Σp∈X GC(p) = Cost(X,C)/(SCost(P,C))

Multiplying with SCost(P,C) implies:

∀C ∈ ζ, |Cost(P,C)− Cost(X,C)| ≤ εCost(P,C)

which completes the proof.

2.5 The Construction of The Coreset
We are now ready to build the coreset for points in Rd for K-means clustering.
One may notice that the pivot of the coreset construction is the intelligently de-
signed function GC(.). This function gave us not only the correctness proof for a
single center set, but also made sure that it had properties by virtue we could use
the packing theorem, and consequently contained a major hurdle, the problem
of infinite center sets. But the question remains, what is the pseudo dimension
of GC(.) ? We take a look at one of the bounds of the pseudo dimension of GC(.).

If D is the number of dimensions, and d is the pseudo-dimension of GC(.),
then d = Dk log k . We are now absolutely ready to build our coreset.

Before we go the formal algorithm, let us take an informal look at how to
build a coreset in general.

We first start by defining a sensitivity of the points, and then define a dis-
tribution which depends on the sensitivity of the points. This helps us choose
points with equity.

In order to bound this sensitivity, so that it can be efficiently used to define
the distribution, we use a bi-criteria approximation and bound the sensitivity
based on its results.

We then define an intelligent function, that preferably takes values between
[0, 1]. This function is constructed out of both the distribution we use to sam-
ple points, as well as the center set used (this is why GC(.) takes the cost into
account as well). The function serves two purposes:
For a single query, the function gives us a bound on the difference between the
cost due to the coreset, and this function, being bounded, can be used to invoke
the packing lemma, allowing us to use properties for a finite number of center
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sets.
Note that since the function depends on Cost, it ultimately depends on the cen-
ter set. Since it also depends on the sampling distribution, it actually encodes
both the properties of the point set P and the center set ζ in itself. This is why
this function is so important.

Invoking the packing theorem, we build our coreset, based on a finite num-
ber of center sets.

We now present a theorem and the algorithm of the coreset following it:

Theorem 5
If ε ∈ (0, 1/4), δ > 0, k ∈ N, P ⊂ Rn, B ⊂ P , such that B is the center set with
the smallest quantization error in 1/δ runs of the following algorithm. Let X be
the output of the following algorithm with

|X| ∈ Ω((nk3 log k + k2 log(1/δ)/ε2)

Then, with probability at least 1− δ, the set X is a ε-Coreset for P

Proof follows from all the previous works we have done. 4

Algorithm 3 (Coresets for K-means for points)
Input : P, k,B,m
Output :X
1. α← 16(logk + 2)
//Preparing to bound the sensitivity. Form all clusters first.
2. for each bi in B

Bi ← Set of all points whose cluster center is bi
3. c← (1/|P |)(Σp′∈P d(p′, B))
//Now calculating s, the upper bound of σ(.)
4. for each bi ∈ B and p ∈ Bi

s(x)← (αd(p,B)/c)+(2α(Σp′∈Bi
d(p′, B))/(Bic))+(4|P |/Bi) // Bounded

5. for each p ∈ P
//Forming the distribution

I(p)← s(p)/(Σp′∈P s(p
′))

//Once sampling is done, we now pick points and assign them appropriate new
weights so that the cost is reduced. Note that our original set was an unweighted
set of points.
6. X ← Sample m points by using the distribution I(p). Assign to each sampled
point the weight 1/(mI(p))
7. Return X

4A good reference for the topic and methods discussed above can be found in
Olivier Bachem [2017]
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Chapter 3

Coresets for Flats and
Hyperplanes: Our Attempts

In the previous section, we talked about coresets for points; but data may not
always be simple points. It may be the case that some attribute values are
missing; these points would not be a point in Rd, these would be hyperplanes
and flats. It is important that we develop clusters for such objects too.

Marom and Feldman [2019] developed a theory for coresets for lines; but they
used their own general framework[ Feldman and Langberg [2011]], that made
the calculations complicated. Their solution was specific to lines only, and they
left an open problem at the end of their paper for coresets for k−flats in general.

In our attempts to solve the problem, we noticed two features on the previ-
ously used methods: There was no general function GC(.), that could be used,
in fact, the nature of GC(.) should be such that the sampling distribution must
be embedded into the function. However, the sampling distribution itself de-
pended on a bi-criteria approximation, that was unique for each flat, and could
also depend on the total number of dimensions. This makes constructing a gen-
eral coreset for any flat extremely difficult using this process.

What we have tried to do is to use some kind of reduction technique. In-
deed, if we could have a function that mapped the flats to specific points; we
could attempt to use the Coreset building technique for points for any flat in
any dimension. That has been our primary aim, although this would result in
an overhead due to the mapping and inverse mapping of the flats to points.

Algorithms and proofs provided in this section are mostly for lines, but they
can be easily generalized to any flats. Also, before we start working on coresets
for flats, we may need a few theorems and definitions that can come in handy.
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Definition 3.0.1 (1-center or center)
For a set of hyperplanes or flats F in Rd, the 1-center or simply center (used in-
terchangeably unless where mentioned explicitly as a footnote) is a point p ∈ Rd
such that

∀p′ ∈ Rd, p′ 6= p,Σf∈F dist(f, p) ≤ Σf∈F dist(f, p
′)

where dist(a, b) denotes the Euclidean distance between the flat a and the point
b.

Theorem 6
Lines in Rn in general position have their 1 − center inside the convex hull
formed by the points due to the intersection of the lines.

Proof: Before we go to the proof, a few lemmas will come in handy

Lemma 1
Consider a line l passing through an intersection point i. Then if p and p′ are
two points on l, such that p′ is closer to i than p, then p′ is closer to the lines
forming the intersection point i than p.

Proof: Trivial

Lemma 2
Consider two points p and p′ which are contenders for being the 1-center of the
lines in Rn. Then p′ is a better contender for the 1-center of the lines than p
if p′ is or at least as close or closer than p to all points i ∈ I, the set of all
intersecting points, and that for at least one i ∈ I, p′ is closer to i than p.

Proof follows from previous lemma.

Note: The lemma says point p′ must be closer to all intersection points, rather
than a specific point or a subset of points, because only then can we ignore the
number of lines intersecting at an intersection point i.

Lemma 3
The 1-center for k points in R lies between the leftmost and rightmost point,
i.e., inside the convex hull of the points.

Proof: (By contradiction) Suppose that there was a point outside the convex
hull of the k points, which is the optimum 1-center. Without loss of generality,
we assume that this point p is to the left of all the k points. Let us denote
the leftmost point of this k points as i. Draw a perpendicular to the axis on
which the k points are situated, passing through i. Take the reflection of point
p against this perpendicular. Let the reflected point be p′. There can be two
probable places where p′ can lie:
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p′ lies to the right of all the k points. Clearly, this means that p is too far
to the left from the k points and exists a point which is closer to all the k
points. Hence, p is not an optimum 1-center.

p′ lies inside the convex hull of the k points. Clearly, p′ is a better choice
for the 1-center, since if k1 and k2 are the leftmost points among the k points
whose 1-center we want to find, and distance of p to k1 is d, and distance be-
tween k1 and k2 is d′, then |pk1| = d and |pk2| = d + d′, but |p′k1| = d and
|p′k2| = d − d′. Using similar arguments we can show that p′ is closer to all
k points than p. From lemma 2, p′ is a better contender than p to be the
1− center.

Lemma 4
Let p be a point outside the convex hull of a set of k points. Let f be the face of
the polytope where p is incident. Let p′ be the image of p against f . Consider
a point q which forms another face f ′ and q is not a part of the face f . Then
|pq| > |pq′|.

Proof: Drop a perpendicular from q to the line joining p and p′. Let the in-
tersection point of the perpendicular and the line joining p and p′ be r. Then
there can be two cases:

Let r lie inside pp′. Then let ∠qpr = φ and ∠qp′r = θ. Then tanφ = qr/pr and
tan θ = qr/rp′. Since pr must be greater than rp′ (because p′ is a reflection of p
and the face is equidistant from p and p′ and r must be inside the convex hull due
to convexity), we get θ > φ. Now consider ∆pqp′. Since θ > φ, we have pq > p′q.

Let r lie outside pp′. Then ∠pp′q > π/2 (Consider ∆p′qr, since ∠p′rq = π/2, we
have ∠qp′r < π/2, hence ∠pp′q > π/2), while ∠qpp′ < π/2 (since ∠prq = π/2,
and considering ∆pqr). Now consider ∆pp′q and we are done.

3.1 Proof of Theorem 6: Center Lies Inside Con-
vex Hull

The proof of the theorem follows by induction on the number of dimensions.

Base case : See lemma 3

Let the theorem be true till d dimensions. The proof requires to show that
it is true for d + 1 dimensions. Consider k points in d + 1 dimensions. Let us
now project these k points on d dimensions. By the strong induction assump-
tion, we know that the 1-center lies inside the convex hull of these k points in
d dimensions. Let this 1-center be p.
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Now add back the (d+ 1)th dimension. Clearly, the position of p with respect
to the previous d dimensions do not change; however, it has a new component
in its position in the (d + 1)th dimension. By lemma 3, we know that this
component of p must lie between the two most extreme (d + 1)th components
of the k points. If p lies inside the convex polytope of the k points, we are done.

Let p not lie inside the convex hull. Then consider its reflection p′ against
the face f it is incident on. We know from Lemma 4 that for points on the
adjoining faces of f , and not a part of f , the distance from p′ is lesser than that
of p. For all other points lying on other faces on the visible side (from p) of the
convex hull, a similar argument will provide similar results. For points on the
non-visible side p′ is definitely closer than p. From Lemma 2, we are done.

Once we have proven this, we now move on to find the 1-center or simply center
of a set of flats or hyperplanes in Rd

3.2 Center by descent
We try to determine the center, or 1-center of a set of flats or hyperplanes in
Rd. We use a descent algorithm to converge on the 1-center. We then attempt
to find the 1-center for flats or hyperplanes using a random walk, but we show
that it is not feasible. Our algorithm and proofs are for lines, however, it is
scalable and can be used for flats and hyperplanes of any dimension.

We first look at some definitions, and the set of inputs that we will provide
to the algorithm.

3.2.1 Definitions
L: The set of lines in R2

C(p): The cost of point p with respect to the set of lines.

d(p1, p2): The Euclidean distance between points p1 and p2

D(p, l): The L2 distance between the line l and the point p

I(L): The set of intersection points of the lines in L

CH(I): Convex hull of I
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Cr(p, r): The circle of radius r and center1 at p

3.2.2 Inputs
L, the set of lines.

r, the parameter denoting the radius of a circle.

t, the number of divisions;

k, the cost parameter

Algorithm 4 (Center by Descent)
1: p ← A random point in CH(I).

2: Construct Cr(p, r).

3: Divide Cr(p, r) into t parts such that all the arcs formed by the division
are of equal length. Let these set of points defining the arcs be P

4: Find p1 ∈ P , such that C(p1) ≤ C(pi), pi ∈ P , i ∈ [1, |P |]. In other
words, p1 is the point ∈ P with the lowest cost. Let p2 ∈ P and p3 ∈ P be the
two neighbouring points of p1 ∈ P .

5: if ( C(p1) < C(p)− k )
p← p1
return to Step 2

// else:

6: Divide arc p3p1p2 into t equal parts. Find the point p′1 which has the most
reduction in cost. (Similar to step 4), let p′2 and p′3 be its neighboring points.

7: if ( C(p′1) < C(p)− k )
p← p′1
return to Step 2

// else:

8: Output : p.

1This center is not the 1-center ; this is the center of a circle
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3.2.3 Analysis
Correctness

By our definition of the cost function, it is clearly a convex function. Therefore,
there is only one local as well as global minima. Therefore, if p1 ∈ P is the
point with the least cost, and p2 ∈ P and p3 ∈ P are the neighbouring points,
then one of the two things might happen:

Either, C(p1) < C(p) − k. In this case, we choose p1 as the new center of
the circle, and we move towards the optimum center.

Or, C(p1) ≥ C(p)−k. This means that there are again two sub possibilities here:

1. The cost difference between p and the optimal 1-center is less than k,
and therefore, no point on the circle has a cost k lower than the cost for p. In
this case, p is a good approximation of the optimal 1-center.

2. The other possibility is that when we chose the points in P , we neglected
a point x /∈ P . Due to convexity, we claim that if such points exist, then it must
lie in the arc p3p1p2, because since our function is convex and p1 is of a lesser
cost than both p2 and p3, hence either p1 is the local (as well as global) minima
or the minima lies in the arc p3p1p2.

. To reduce our error probability, we further divide the arc p3p1p2 further
into t equal parts, just like we did before. We again look for the point with
minimum cost and compare it with the current cost. If still, we find that the
reduction in cost is less than k, we return the point p. Here, we can have the
following analysis:

The maximum cost reduction can be due to a point that lies between p′2p′1p′3.
This is a length of 2πr/t2. However, given that the lines are placed randomly,
and therefore, the location of the point with minimum cost is random, the prob-
ability that the optimal point lies in this area is (Let E be the event that the
optimal point lies in this arc)

Pr(E) = 1/t2

Hence with probability 1−(1/t2), we can say that the optimal center lies within
a distance of k from the point p.

Note that t need not be a large constant. If t = 10, the algorithm provides
the correct output with 99 percent accuracy.

Also note that the success of our algorithm is independent of both r and k.
However, r and k are not independent of each other; a bad value of k can fail
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the algorithm decisively.

Analysis of Convergence

Theorem 7
The algorithm “Center by Descent” converges to the optimal 1-center within an
error range of k for appropriate values of k, as the number of trials i→∞. By
appropriate values, we mean that k is upper bounded by |L|2r/2, where r is the
radius of the circles used in the algorithm and |L| is the number of lines in L.

To analyse the convergence, we first claim that the cost function C(x) is Lips-
chitz. Indeed if p and q are two points such that they are r distance apart, then
|C(p)− C(q)| ≤ |L|r, where for the specific problem, |L| is a constant.

We also claim that the Cost function is not differentiable. Indeed, this can
be easily seen; if there is only one line l ∈ R2 and a point moves towards in a
line perpendicular to l, then the cost function follows a C(x) = |x| curve.

Our third claim is that the convergence algorithm is exactly like a gradient
descent algorithm except that the cost function is non differentiable. It is easy
to see how: in each step of a gradient descent algorithm, the algorithm must
move the function towards the global minimum, i.e., the after each iteration,
the value of the function must decrease. This is exactly how our algorithm is.
In every iteration, we move the point by a distance of r only in the direction
where there is a decrease of cost by at least k 2. Our algorithm advances with
a fixed step of step size r.

The implication of the previous statement is that we will be unable to use
gradients in our analysis, we instead use subgradients, defined by Shor, that is
exactly like a gradient (and hence also unique) when the function is differen-
tiable, but where it is not, it gives us all the tangent lower bounding the function
at that point.

With these observations3, we are now ready to do an analysis of convergence of
our algorithm. Our algorithm iterates in the following manner:

x(i+1) = xi − αigi

Here gi is one of the many subgradients at point t. Note that in general where
2Note the difference with Stochastic gradient descent. If a random walk algorithm provided

us with any kind of guarantee to reach the center, it would be equivalent to SGD
3Note that the Cost function is also not strongly convex. However, we do not need this

observation in this analysis.
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the function is differentiable, the subgradient is unique and equal to the gra-
dient. By the definition of our algorithm, we choose the direction where the
cost reduction is maximum, with a probability of at least (t− 1)/t and at most
(t2 − 1)/t2. The value of C(x) that we get at this best direction at the ith
iteration, we call it Cibest(x). For our algorithm, the choice of αt is constant and
independent of i, it is equal to r.

For such convergence with fixed steps, we have a standard result that says
that if C∗(x) is the optimal minimum cost, then we have a guarantee that

limi→∞ Cibest(x)− C∗(x) < k

which is what we want. Therefore, we know that the algorithm converges with
surety. If the step size was not constant, it would be possible for an algorithm
to exactly hit the minima without an error range.

However, we are also interested in the rate of convergence, i.e, how close x
is to the argmin after t iterations. Note that our function is Lipschitz, which
means that the subgradients are bounded by some constant. Let G be this up-
per bound on the subgradient. Then we have another result that says:

Ckbest(x)− C∗(x) ≤ (d(x(1), x∗)2 +G2r2i)/(2ri)

Note that as t → ∞, the difference between the Ckbest(x) and C∗ converges
to G2r/2. This shows us that we converge decisively as t increases.

The proof of this convergence is omitted here, and can be found in many texts;
Bubeck [2015] and Stephen Boyd [2003] covers the proof in details, as well as
provides some insight into subgradients.

Relationship between k and r

We have earlier said that there needs to be some relationship between k and
r. Arbitrary values may not converge at all; or more precisely, may have such
a large convergence bound that the algorithm gets useless. In other cases, it
might happen that the radius is so small that it does not even find any point
with decrease in cost equal to or more than k, and give us a wrong result. We
need to look at all scenarios while determining the relationship.

Note that our algorithm converges to within G2r/2 of the optimum minima;
but we need this to be within k. Therefore, we have

G2r/2 = k

Now, in the previous section, we found a Lipschitz bound for the Cost func-
tion |L|r, if two points are r distance away. This bound is tight, if we have
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parallel lines and a point approaching towards them, such that there is a hy-
perplane that separates all the lines and the point, then moving a distance of r
towards the optimum does indeed decrease the cost by |L|r.

This also implies that all subgradients are bounded by |L|. Therefore, we have

|L|2r/2 = k

However, we can not have a too large value for k, it might be the case that
when we have the circle, the value of k is too large for any point on the circle
to actually have that amount of decrease. Therefore, we merely have an upper
bound on k, which is

k ≤ |L|2r/2

Do we have a lower bound on k? We need not have one. The smaller the
value of k, the more probable it is that within a radius of r, a point with a de-
crease of k is found. Note that this will effect the rate of convergence; however,
we know that it will ultimately converge. It is best to choose k as a hyperpa-
rameter with an upper bound, with multiple “guesses” to what the correct value
of k should be.

3.2.4 Discussion and Scalability
The algorithm can be easily extended for lines or flats in Rn, where we take
the hypersphere Sn instead of a circle. The correctness of this algorithm can be
easily proven like above, the convergence rate will not change either.

If we are dealing with hyperplanes in Rn, we know that there is a convex poly-
tope formed by the intersection points, where the center must lie. In this case,
we choose x(1), the initial point to be a point inside this convex polytope. How-
ever, if we are dealing with flats, there are no such guarantees. This implies
that the starting point can be anywhere, and therefore, the convergence may
take a longer time.

3.2.5 Time Complexity
Each step of the algorithm must check the Cost for O(2t) points, until the
convergence occurs. Each operation costs O(|L|) time. Hence, if there are s
iterations, the time complexity is O(|L|t).

3.3 A random walk attempt to find the center
Can a random walk using concepts from the above algorithm find the center?
As we will see, it is not, in general, feasible.
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3.3.1 Modifications to algorithm 4
Let us change our previous deterministic algorithm as follows: As earlier, we
divide the circle in sectors, but for simplicity we discard the fine tuning that we
have done in the previous algorithm, in case a optimum point was not found in
the first set of points on the circle. In this case, if we do not find an optimum
point, we return the center of the circle.

In order to not compromise on the probability, we increase the number of sec-
tors; for demonstration, let us take the number of sectors to be 40. Then, if
no optimal point is found on the circle, we declare the center of the circle is at
least k cost close to the optimal center, with a probability of 0.95 4

3.3.2 The Random Walk
Suppose, if we took only the optimal paths, we would require n circles (steps)
to reach the optimal point. Now clearly, we leave the realm of deterministic
algorithm and use a random walk approach; the computer chooses any of the 40
points on the circles with uniform probability (of 1/40). We compute the cost
of this point, then build another circle and repeat the process.

What we want is that after repeating this process for some x times, we claim
that the point with the lowest cost is the k-optimal center. The problem then
becomes to find an expected value of x, and to check if we are bound to get to
get the k-optimal center ultimately, regardless of other factors.

3.3.3 Probability of reaching the center from n steps away
Let Pn represent this probability. Then we choose the optimal point on the
circle with probability 1/40 and the rest 39/40 is the probability of choosing the
non optimal points. This brings us to the recurrence relation:

Pn = 1/40Pn−1 + 39/40Pn+1, with the boundary conditions :
P0 = 1 and P∞ = 0 5

Solving this relation, we get the corresponding probability Pn

Pn = (1/39)n

4Note that this is not the random walk algorithm, that comes in the next section
5Technically we can write Pb, b → ∞
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Note that not all optimal points are taking us away from the center. The
optimal point is surely the best, but there are other points that can bring us
closer to the center as well. Therefore, it is better for us to write Pn > (1/39)n

3.3.4 Expected number of steps to reach the center
Let Xn be the expected number of steps to reach the center when the point is
n steps away. Then, we have the following recurrence relation (The 1 is added
for the current step )6

Xn = 1 + (1/40)Xn−1 + (39/40)Xn+1 with the boundary conditions
X0 = 0, X∞ =∞

Solving, we get X → ∞! (One of the co-efficients get to infinity on provid-
ing the boundary condition)

An issue maybe raised here, that although not the optimum, but if the ran-
dom walk chooses points that bring us closer to the center, would the expected
amount of steps be still infinity? Indeed it will still be infinity. Let us consider
that the circle is simply divided into two parts, one half of the circle closer to the
center, and the other half away from it. Let any point chosen in the optimum
half be equivalent to moving one step closer to the center, and any point chosen
on the other half be equivalent to a negative step. Note that no point in the
non-optimum half brings us closer to the center.

With this setting, our probability of going one step ahead towards the cen-
ter is equal to the probability of going away one step from the center. However,
even here, we find that the expected time goes to infinity, using similar recur-
rence relations.

However, we have a crucial piece of information, the center must lie in the
convex hull of the intersection points. If we modify our boundary conditions,
that once the walk moves outside the convex hull, we stop the random walk,
then technically we get a finite expected number of steps. However this expected
number is the time before the random walk stops, which may be because the
point moves outside the convex hull.

If d is the largest distance (in number of steps) to the boundary of the con-
vex hull from the center, then we have a modified condition:

Xd = 0

6The following result is derived from total Expectation and linearity of expectation
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Using these modified boundary conditions: Xn = O(n)7

Note again, that this is not an indication of the expected amount of time taken
to reach the center, rather for the walk to end.

Note here that d is the largest distance from the center to the convex hull,
so the actual expected time of the ending of the walk should be less than the
value calculated here. This also solves another problem, every step that is not
optimum is a step towards the convex hull, so all of them count as failures.

3.3.5 Scaling for higher dimensions
Flats in Rd may not necessarily intersect, therefore, wherever the boundary of
convex hull was used, they will not hold any longer. However, all other calcu-
lations hold. Everything should also hold fine for hyperplanes in Rd, because
hyperplanes will necessarily intersect and give us a convex polytope.

3.4 Coreset For 1-center for flats and hyperplanes
in Rd

We are now prepared for an algorithm for a coreset in Rd for 1−center only. As
usual, we provide an algorithm for lines in Rd, and present a scalable algorithm,
that can be extended to flats in Rd

Algorithm 5 (Coresets for lines for 1− center)
Input: L, m
1. p← Algorithm 4 (L, r, t, k)
2. P ← φ, O ← φ
3. for every line l ∈ L

Draw perpendicular from p to l . Let oi be the point where the perpendic-
ular from p meets li

P ← P ∪ {oi}
4. B ←Algorithm 2 (P, 1)
5. O ←Algorithm 3 (P, 1, B,m)
6. for each point o in O

Output← Output∪ line corresponding to o
7. Return Output

7The solution is exactly analogous to the unfair Gambler’s ruin.
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We clearly see what is being done here. We choose certain appropriate points
from each of the lines, then proceed to build the coreset for the points, following
which we map the points in the coreset back to the lines they came from.

The algorithm is clearly scalable in dimensions. For d dimensions, and k−flats,
one simply needs to get the appropriate points for each of the flats.

3.4.1 Analysis
Correctness

Theorem 8
The algorithm “Coresets for lines for 1-mean” returns, for a defined value of ε,
the ε-coreset for the set of lines L in Rd. Furthermore, the time complexity of
the algorithm exceeds that of the time complexity of the algorithm to determine
ε-coresets for points by only the time complexity to determine the 1-center of
the set of lines in L.

It is evident that when we choose a point perpendicular to the line l from the
center p (let it be o), the distance between l and p is the same as the distance
between o and p.

Note that when the coreset is built, the approximate center is away from the
actual center, so the distance from the points change, and hence in the line set,
the distance from the lines change too. However, for all lines, this change in dis-
tance from each line must be bounded by |r|, if r is the amount the approximate
center is shifted from the optimum center. The change in cost in the line set
must therefore, be less than or equal to the change in cost for the corresponding
point set. Therefore, the property of ε-coresets hold.

A problem may arise, because the center we developed for the line set is not the
exact optimal, rather within a range of k cost from the optimal. Therefore, we
know that the coreset we built can have at most εCost(L,C)+k error. This can
be easily overcome, by using an ε′ < ε-coreset for the points, to get an ε-coreset
for the lines.
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Time Complexity and Overhead

The only overhead for building the coreset is getting to the approximate center
of the set of the lines. The rest is exactly same as building the coreset for points.
The excess time complexity too, is only due to this overhead.

3.4.2 Discussion and Scalability
Clearly, since Algorithm 4 is scalable in the number of dimensions, and can be
easily modified for both hyperplanes and flats, and since the argument of getting
the points of intersection from the point to the flat being the set of points whose
ε-coreset gives us the ε-coreset of the set of flats holds, we can assert that the
algorithm is scalable in dimensions.

Similar to Algorithm 4, Algorithm 5 has a better time complexity if the coreset
is built for hyperplanes rather than flats, since Algorithm 4 converges faster for
hyperplanes.
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Future Work

While we have been able to build the 1-center coreset for flats and hyperplanes
in any dimension, the problem of generalizing this to K-means still remain. The
k-center problem is NP-Hard; a divide and conquer heuristic approach by us to
get the approximate k-center so that we could use a similar algorithm to get
the coreset did not yield any significant result.

We were looking at using the Frank-Wolfe algorithm for this purpose; how-
ever, we could not make any progress.

While the dissertation is being submitted at this stage of the work, we will
continue to work on the actual problem of generalizing the problem of coresets
to any number of clusters.
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