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Abstract

From playing games to driving cars, deep learning has achieved great success
in the recent past.In this dissertation, we apply deep learning to recognize
sports videos. We have implemented state of the art VGG3D model on
different challenging state of the art video datasets. In this paper , we com-
municate our findings.



Contents

1 Introduction 4
1.1 What is action recognition? . . . . . . . . . . . . . . . . . . . 4
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Deep Learning 6
2.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Multi Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Convolutional Neural Network . . . . . . . . . . . . . . . . . . 9
2.5 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Why dropout ? . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Architecture 11
3.1 Developing Architecture . . . . . . . . . . . . . . . . . . . . . 11
3.2 Architecture Description . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 VGG16 . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Concatenation . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 FC Layers . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Architecture Methodology . . . . . . . . . . . . . . . . . . . . 12

4 Datasets 15
4.1 UCF-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 KTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 UCF Sports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Action Quality Assessment . . . . . . . . . . . . . . . . . . . . 18
4.5 Sports Videos in the Wild . . . . . . . . . . . . . . . . . . . . 19

2



5 Implementation 22
5.1 Train Test Split . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Computational Details . . . . . . . . . . . . . . . . . . . . . . 23

6 Result 24
6.1 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 UCF-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 KTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4 UCF-Sports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.5 Action Quality Assessment Performance . . . . . . . . . . . . 25
6.6 Sports Videos in the Wild Performance . . . . . . . . . . . . . 25

7 Related Work 27
7.1 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 UCF-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3 KTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.4 UCF Sports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.5 Action Quality Assessment . . . . . . . . . . . . . . . . . . . . 28
7.6 Sports Videos in the Wild . . . . . . . . . . . . . . . . . . . . 29

8 Conclusion 31
8.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9 Appendix 32
9.1 Train Test Split Code . . . . . . . . . . . . . . . . . . . . . . . 32
9.2 PreProcessing Code . . . . . . . . . . . . . . . . . . . . . . . . 34
9.3 Training and Evaluation Code . . . . . . . . . . . . . . . . . . 38

References 44

3



Chapter 1

Introduction

From the advent of computer, researchers have always wondered about mak-
ing it intelligent so that it can do our work. Over the past few decades,
artifical intelligence was a interesting topic and many activities have been
tried to teach the computer.From winning chess against grandmaster Garry
Kasparov to answering questions, artificial intelligence showed a way to ful-
filling the dream. But due to lack of computational power and lack of data,
it was not being used in much in real life scenario.

In the last 20 years, internet era and progress in computational technolo-
gies broke those barriers. Now terabytes of data is being generated everyday
and computational facilities such as GPU computing, Cloud computing are
available to researchers.This encouraged researchers to apply deep learning,
a section of artificial intelligence to real world problems. Within a few years,
deep learning based algorithms showed immense success in most of the Ma-
chine learning tasks. Specially in computer vision, deep neural network based
algorithms won the prestigious Imagenet competition. Not only in image
recognition, segmentation, localization, deep learning showed promising re-
sults in other domains also. In this thesis, we apply deep learning in videos,
and we show how it is providing good results to a challenging video action
recognition task.

1.1 What is action recognition?

Action recognition is a computer vision task involves the identification of
different actions from video clips (a sequence of 2D frames) where the action
may or may not be performed throughout the entire duration of the video.
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Action recognition is a important topic having a great many benefits.Sports
action recognition can help us build a software that automatically recognizes
an uploaded sports video and index it so that it will come up during appro-
priate query.
Though it seems similar to image recognition task, over the years image
recognition has achieved immense success, while video action recognition is
not.Some of the difficulties are :

• Huge Computational Cost A simple convolution 2D net for classifying
101 classes has just approx 5M parameters whereas the same architec-
ture when inflated to a 3D structure results in approx 33M parameters.

• Capturing long context Action recognition involves capturing spatio
temporal context across frames. Additionally, the spatial information
captured has to be compensated for camera movement.

• Designing classification architectures Designing architectures that can
capture spatiotemporal information involve multiple options which are
non-trivial and expensive to evaluate.

1.2 Objective
Our objective is to develop a deep neural network architecture than can rec-
ognize a given sports video in one of the given classes. To show the robustness
of the network, we will train and test the architecture on several standard
dataset. At the end, we compare our findings with other techniques.We also
conduct some analysis to explain our findings.

1.3 Outline
In the next chapter we briefly go through the topics of deep learning we will
be using in our thesis. In chapter 3, we present a detailed presentation of the
architecture we are using. In the subsequent chapter, we describe the datasets
that we are using. Chapter 5 comprises of implementation details. Chapter
6 conveys the results that have been found by us. In the next chapter, we
compare our finding to other works. Lastly, in chapter 8, we conclude the
thesis.
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Chapter 2

Deep Learning

We provide brief introduction to deep learning.A good resource is the book
written by Goodfellow et al [2].This will be helpful to understand the model
architecture. It will also explain the reason we choose the architecture.

2.1 Perceptron

Perceptron [6] was the simplest model of neural network.It was proposed by
Minsky and Papert in 1969.It consists of only one computational neuron. It
takes inputs x1, x2, . . . , xn with labels 0, 1 and outputs y which is a function
of weighted sum of inputs. The goal is to learn the weights so that it can
classify them accurately. Notice that perceptron model can correctly classify
only the datapoints that are linearly separable.

Figure 2.1: Perceptron Model

The perceptron weights are learned via the following algorithm:
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Figure 2.2: Learning Algorithm

2.2 Multi Layer Perceptron

It was noticed in the same article [6] that perceptron cannot even learn
XOR.So, in search of more advanced architecture, multilayer perceptron
model(MLP), or which we know by the name of neural networks, was found.
The main principle is backpropagation algorithm, which was discovered by
Geofrey Hinton in 1986.

The main idea is that the input goes through a multiple layers of neurons
and provides an output. Then there is a loss function which calculates the
error. The error is then backpropagated to the neurons where weights are
adjusted using gradient descent update rule. This whole process is called
one epoch. The algorithm stops when error is within predefined tolerance
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Figure 2.3: MLP

level or a predefined number of epochs has been passed or the network is has
stopped learning.

2.3 Deep Neural Network

By the discovery of the Universal Approximation Theorem [3], it was
shown that any given function can be approximated by neural network with
sufficient number of neurons.This encouraged the researchers to go for more
complicated networks. The layers between input layer and output layer are
called hidden layers in MLP. When the number of layers are large, the net-
work is called deep neural network.

2.3.1 Limitations

The main limitation was the requirement of huge computational resource
needed to train those network.
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Figure 2.4: Deep neural Network

2.4 Convolutional Neural Network

The convolutional neural networks was invented to solve the problem. Th
idea is to use multiple filters and convolve with the input to learn represen-
tations of data capturing the underlying principle. The convolutional neural
network has two advantages :

• Parameter Sharing : A filter is used over all of the parts of the input.
For example, a filter which detects vertical edge can be used in all of
the picture to detect vertical edge.

• Sparsity of Connections : In each of the layers, a neuron in con-
nected to selected neurons from the previous layer, where in DNN, each
neuron is connected to all the neurons in previous layer.

2.5 Dropout

Dropout is a training technique invented by Hinton et al [15]. It works during
training as follows :

• Choose a number p between 0 and 1, generally 0.5 is chosen.
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• In each layer, p fraction of neurons are randomly chosen and given 0
weight so that they do not take part in learning.

• During test time, dropout is not used but the output of the neurons
are multiplied by 1 - p, since it is the expected time that neuron took
part in training.

2.5.1 Why dropout ?

Dropout forces the neurons not to rely on other neurons, thus forces to learn
the hidden representation. Also dropout implements ensemble of different
neural networks without high computational cost. Dropout thus prevents
overfitting and gives way to learn.

2.6 Transfer Learning
Transfer learning is the process of using an already learned network to learn
a similar task. This is useful in mainly two cases :

Less Computational Resource : The transfer learning technique pro-
vides already some expertise to the network in task, which means network
needs fewer training to be done.

Less Data : If the data is scarce for the particular task, then using
transfer learning, network inherits some of the underlying representations
already.
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Chapter 3

Architecture

3.1 Developing Architecture
After reading a few research papers regarding video action recognition, we
pointed out two main underlying principles :

• Increasing number of layers on CNN, which is one of the main philos-
ophy behind VGGNet [12].

• Using a pretrained model on image dataset(available online).

Since , we also have computational constraints and storage limitations, we
decided to use an architecture which enjoys the advantages of transfer learn-
ing. We avoided heavy computation based algorithms such as incorporating
optical flow. Also, we wanted the main underlying principle behind the ar-
chitecture to be simple, so we have avoided LSTM or RNN based algorithms
for now.

Based on those underlying principles, we decided to go with the following
architecture [4].

3.2 Architecture Description
The architecture can be divided into 3 parts.

3.2.1 VGG16

VGG is the model developed by Karen et al [12]. The architecture of the
VGG model is a specific combination of convolutional layers, fully connected
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Figure 3.1: VGG3D

layers. This is the architecture of VGG :

This is the first part of the architecture. We feed extracted frame to
VGG16 model. We remove the last 7 layers of VGG. The reason is that after
passing through this modified VGG we will get a representation of the image
as a vector.

3.2.2 Concatenation

In this step, we concatenate all the frames representation vector together.
This concatenated vector represents one video to the last part of the deep
neural network.

3.2.3 FC Layers

In the third stage, the architecture contains a series of convolution layer,
two fully connected layer each followed by dropout. Finally, there is a fully
connected layer of size K for multiclass classification.

3.3 Architecture Methodology

The architecture works as follows :

• Take a video.

• Sample N frames from it.

• Feed them through different vgg16 models and get a representation.

• Concatenate those representations.
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• Pass them through conv3D layer of size 256× 3× 3× 3

• Pass them through fully connected layers of size 4096 and 1024.

• Finally pass through output layer withK nodes, whereK is the number
of classes.

13



Figure 3.2: VGG Architecture
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Chapter 4

Datasets

4.1 UCF-101
UCF-101 dataset is an action recognition dataset collected from YouTube.
It was developed in University of Central Florida [13]. The dataset contains
13320 videos from 101 action classes, making it quite a large dataset to
work with.Not only the action classes are diverse, but also the dataset has
large variance in camera motion, object appearance and pose, object scale,
viewpoint, cluttered background, illumination conditions etc. So, it is a
challenging dataset.

UCF -101 is the base dataset where authors of the architecture trained the
network.

4.2 KTH
KTH [11] is an old sports video dataset.The summary of KTH dataset is :

• There are six types of human actions :walking, jogging, running, boxing,
hand waving and hand clapping.

• Actions are performed several times by 25 subjects in four different sce-
narios: outdoors, outdoors with scale variation, outdoors with different
clothes and indoors.

• There are 2391 sequences in the database. All sequences were taken
over homogeneous backgrounds with a camera with 25fps frame rate.

• The sequences were downsampled to the spatial resolution of 160×120
pixels. The video lengths are four seconds in average.
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4.3 UCF Sports

UCF Sports dataset [14] [9] has the following features :

• It contains 10 sports action classes.

• The dataset includes a total of 150 sequences with the resolution of
720× 480.
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• The collection represents a natural pool of actions featured in a wide
range of scenes and viewpoints.

• The dataset has been used for numerous applications such as: action
recognition, action localization, and saliency detection.

4.4 Action Quality Assessment

Action quality assessment [7] is yet another useful dataset for sports action
recognition.

• This is developed by Real-Time Intelligent Systems (RTIS) Laboratory.

• Contains 7 type of actions : singles diving-10m platform, gymnas-
tic vault, big air skiing, big air snowboarding,synchronous diving-3m
springboard, synchronous diving-10m platform, and trampoline.

• There are 1106 samples.
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4.5 Sports Videos in the Wild
Sports Videos in the Wild [10] or SVW has the following properties :

• SVW contains 4200 videos captured using smartphones by users of
Coach’s Eye smartphone app, a leading app for sports training devel-
oped by TechSmith corporation.

• SVW includes 30 categories of sports and 44 different actions.

• Due to imperfect practice of amateur players and unprofessional captur-
ing by amateur users, SVW is very challenging for automated analysis.

• SVW can be used in : genre categorization, action recognition, action
detection, and spatio-temporal alignment.
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Figure 4.2: SVW Classes
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Chapter 5

Implementation

In this chapter we carefully provide detailed training and testing methodol-
ogy.

5.1 Train Test Split

UCF-101 provides train - test split file, so we have used them.For other
datasets, we decide the ratio of train test split to be 70− 30 or 80− 20. For
each class, we randomly split the videos into train and test folder according
to the ratio. Scikit-Learn’s traintestsplit package was extremely useful.

5.2 Preprocessing

We have resized every frame to 224 × 224 since vgg16 accepts input of the
same size. For preprocessing, we transformed every pixel value within range
of 0− 1 by dividing them by 255.

5.3 Training

The training procedure aims to optimize the CrossEntropy loss with stochas-
tic gradient descent. We have limited ourselves withN = 4 for computational
limitations, that is, we sampled 4 frames uniformly from each video.The
learning rate is kept at 0.001.The Dropout ratio is kept at 0.5.

We used pretrained vgg16 networks, which provides us with a strong start-
ing point. After each epoch of training, we monitor the test accuracy. We
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stop training when we observe the accuracy on both training and testing is
nonincreasing.

5.4 Testing
For testing, we use top-1 accuracy method.For each video, we select N frames
uniformly,resize them to 224 × 224, then pass them through our trained
model,consider argmax of the probabilities and compare with the correct
label.

5.5 Computational Details
We have implemented the model in python using PyTorch framework.We
have used the CSSC computational GPU server for training and testing.Also,
in the preprocessing stage, we have extracted frames beforehand to save time
and memory space during execution of training process. Depending on the
dataset, training time ranges from 1 hr to 30 hr using single NVIDIA GPU.
Due to unavailability of GPU memory in most of the time, we ran training
process on CPU also, which significantly increased the training time by at
least 10x− 20x.
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Chapter 6

Result

6.1 Evaluation Metric

We have used accuracy as the evaluation metric for every model, since accu-
racy is the standard metric in deep learning community.

6.2 UCF-101

We have run 15 epochs with N = 4, lr = 0.001 using SGD.
Training accuracy : 99.21% and test accuracy 59.74%

Figure 6.1: UCF-101 Train Figure 6.2: UCF-101 Test

6.3 KTH

We have run 20 epochs with N = 4, lr = 0.001 using SGD.
Training accuracy : 70.15% and test accuracy 60%
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Figure 6.3: KTH Train Figure 6.4: KTH Test

6.4 UCF-Sports
We ran for 25 epochs with the same hyper-parameters and algorithm.
Training accuracy : 100%, test accuracy : 68.97%

Figure 6.5: UCF-Sports Train Figure 6.6: UCF-Sports Test

6.5 Action Quality Assessment Performance
We ran for 20 epochs with the same hyper-parameters and algorithm.
Training accuracy : 100%, test accuracy : 97.51%

6.6 Sports Videos in the Wild Performance
We ran for 25 epochs with the same hyper parameters and algorithm.
Training accuracy : 100%, test accuracy : 74.56%
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Figure 6.7: AQA Train Figure 6.8: AQA Test

Figure 6.9: SVW Train Figure 6.10: SVW Test
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Chapter 7

Related Work

7.1 Comparison

We now start comparing our model with others. A few points regarding this
:

• For each of the dataset, we find some papers.

• Find and compare the results they have obtained.

• Since people have used different metrics for evaluating their models, it
is difficult to decide whether their model is actually better or it is due
to the evaluation metric.

• We only report top papers that we have came across while searching.
The sources of the informations are referenced.

7.2 UCF-101

We found the following comparison chart provided by [1]. Our Approach:
Test accuracy 59.74%

7.3 KTH

We have come across with the following chart [16] : Our Approach: Test
accuracy 60%
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Figure 7.1: UCF-101 Comparison

7.4 UCF Sports

The following result is from the paper [5]. Our Approach: Test accuracy :
68.97%

7.5 Action Quality Assessment

This dataset is very recent and people haven’t applied it for action recog-
nition. The main paper [8] gives the following table : Our Approach: Test
accuracy : 97.51%
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Figure 7.2: KTH

Figure 7.3: The average accuracy for static, motion and static+motion ex-
perimental strategy is 74.5%, 79.6% and 84.5% respectively.

7.6 Sports Videos in the Wild
The main paper [10] who prepared the dataset reports highest accuracy of
61.53% .The following result is from Stanford :

Our Approach: Test accuracy : 74.56%

29

http://cs231n.stanford.edu/reports/2017/posters/715.pdf
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Chapter 8

Conclusion

8.1 Performance
We find that though in some cases our results are not in par with current
state of the art, our results are quite satisfactory in comparison with other
Machine Learning/Deep Learning models. The main reason is computational
capacity, which bottlenecks our architecture. But, with this limited source of
computational facility, our architecture is able to perform good in datasets
such as Sports Videos in The Wild, which is a good achievement.

8.2 Future Work
In future, we plan to extend our architecture and experiment with larger
datasets.
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Chapter 9

Appendix

9.1 Train Test Split Code

1

2 # coding : utf−8
3

4 # In [ 2 0 ] :
5

6

7 import os
8 from sk l e a rn . mode l_se lect ion import t r a i n_te s t_sp l i t
9

10

11 # In [ 2 1 ] :
12

13

14 PATH = ’SVW/Videos / ’
15

16

17 # In [ 2 2 ] :
18

19

20 os . makedirs ( ’ Train ’ )
21 os . makedirs ( ’ Test ’ )
22

23 l i s t_o f_ l ab e l s = os . l i s t d i r (PATH)
24 video_path = os . path . j o i n ( os . getcwd ( ) ,PATH)
25

26 X = [ ]
27 y = [ ]
28 f o r l a b e l in l i s t_o f_ l ab e l s :
29 os . makedirs ( ’ Train/ ’ + l a b e l )
30 os . makedirs ( ’ Test / ’ + l a b e l )
31 path_to_label = os . path . j o i n ( video_path , l a b e l ) + ’ / ’
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32

33 #pr in t ( path_to_label )
34 l i s t_o f_ labe l l ed_v ideo = os . l i s t d i r ( path_to_label )
35 f o r v ideo in l i s t_o f_ labe l l ed_v ideo :
36 path_to_video = os . path . j o i n ( path_to_label , v ideo )
37 pr in t ( path_to_video , l a b e l )
38 X. append ( path_to_video )
39 y . append ( l a b e l )
40

41

42 # In [ 2 3 ] :
43

44

45 X_train , X_test , y_train , y_test = t r a i n_te s t_sp l i t (X, y ,
t e s t_s i z e =0.3 , random_state=42, s t r a t i f y=y)

46

47

48 # In [ 2 4 ] :
49

50

51 f o r i in range ( l en ( y_test ) ) :
52

53 f i le_name = X_test [ i ] . s p l i t ( ’ / ’ ) [−1]
54 copy_to_path = os . getcwd ( ) + ’ / ’ + ’ Test / ’ + y_test [ i ] + ’ / ’

+ fi le_name
55 pr in t ( X_test [ i ] , copy_to_path )
56 os . rename ( X_test [ i ] , copy_to_path )
57

58

59 # In [ 2 5 ] :
60

61

62 f o r i in range ( l en ( y_train ) ) :
63

64 f i le_name = X_train [ i ] . s p l i t ( ’ / ’ ) [−1]
65 copy_to_path = os . getcwd ( ) + ’ / ’ + ’ Train/ ’ + y_train [ i ] + ’ /

’ + fi le_name
66 pr in t ( X_train [ i ] , copy_to_path )
67 os . rename ( X_train [ i ] , copy_to_path )
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9.2 PreProcessing Code

1 import os
2 import s h u t i l
3 import cv2
4 import matp lo t l i b . pyplot as p l t
5 import numpy as np
6 import p i c k l e
7

8 de f extractFrames ( pathIn , pathOut ) :
9 """

10 This code takes abso lu t e path o f the v ideo ( pathIn ) and
re tu rn s the frames o f the v ideo in the f o l d e r pathOut .

11 I f the f o l d e r i s not present , i t w i l l be c rea ted .
12 """
13 os . makedirs ( pathOut , exist_ok=True )
14

15 cap = cv2 . VideoCapture ( pathIn )
16 count = 0
17

18 cap . read ( )
19 whi le ( cap . isOpened ( ) ) :
20

21 # Capture frame−by−frame
22 ret , frame = cap . read ( )
23

24 i f r e t == True :
25 #pr in t ( ’ Read %d frame : ’ % count , r e t )
26 cv2 . imwrite ( os . path . j o i n ( pathOut , " { : d } . jpg " . format (

count ) ) , frame ) # save frame as JPEG f i l e
27 count += 1
28 e l s e :
29 break
30

31 # When everyth ing done , r e l e a s e the capture
32 cap . r e l e a s e ( )
33 cv2 . destroyAllWindows ( )
34

35

36 # In [ 6 ] :
37

38

39 de f extract_dataset ( folder_name = ’ / user1 / student /mtc/mtc2017/
cs1706 / d i s s e r t a t i o n / ’ , frame_dir = ’ / user1 / student /mtc/mtc2017
/ cs1706 / d i s s e r t a t i o n /Extracted_Frames_test/ ’ ,N=4) :

40 """
41 folder_name conta in s the path to t r a i n i n g f o l d e r .
42 frame_dir conta in s the f o l d e r where the ext rac t ed frames o f

the v ideos w i l l be s to r ed .
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43 N i s the number o f frames we need from each video .
44 """
45 l i s t_ = [ ]
46 l i s t_ = os . l i s t d i r ( folder_name ) #conta in s name o f a l l the

l a b e l s
47 #pr in t ( ’ l i s t_ ’ , l i s t_ )
48 d ic t_o f_labe l s = {} #s t o r e s the path to the ext rac t ed frames

o f an video as key and the l a b e l as va lue .
49 #l i s t s t o r e s c l a s s names
50 f o r i in l i s t_ :
51 tmp = folder_name + ’ / ’ + i # i i s the l a b e l o f v ideo
52 #pr in t ( ’ i = ’ , i )
53 _l i s t = os . l i s t d i r (tmp) # s t o r e s the name o f the v ideos

in the c l a s s .
54 f o r vid in _ l i s t :
55 pathIn = tmp + ’ / ’ + vid
56 #pr in t ( ’ tmp − vid ’ , tmp , vid )
57 pathOut = frame_dir + i + ’_’ + vid + ’_jpg ’
58 d ic t_o f_labe l s [ pathOut ] = i
59 #pr in t ( ’ pathin−out ’ , pathIn , pathOut )
60 # Extract ing frames from the video and s t o r i n g to the

r equ i r ed d e s t i n a t i on
61

62 extractFrames ( pathIn , pathOut )
63 # To s e l e c t the frames we need
64 l i s t _ o f _ f i l e s = os . l i s t d i r ( pathOut )
65 num_frames = len ( l i s t _ o f _ f i l e s ) # counts the number

o f frames
66 se l ec ted_frame_ind ices = np . l i n s p a c e ( s t a r t =0, stop=

num_frames ,num=N+1,dtype=np . i n t ) [ : −1 ]
67 selected_frame_names = [ s t r ( x ) + ’ . jpg ’ f o r x in

se l ec ted_frame_ind ices ]
68 #pr in t ( selected_frame_names )
69 # Dele t ing the unnecessary frames
70 f o r f i l e in l i s t _ o f _ f i l e s :
71 i f f i l e in selected_frame_names :
72 pr in t ( ’ the f o l l ow i ng f i l e remains ’ , f i l e )
73 e l s e :
74 #pr in t ( ’ t h i s should be de l e t ed : ’ , f i l e )
75 os . remove ( os . path . j o i n ( pathOut , f i l e ) )
76

77 #pr in t ( _ l i s t )
78 re turn d i c t_o f_labe l s
79

80

81 # In [ 8 ] :
82

83

84 de f dict_save ( f r ame l i s t , path = ’ / user1 / student /mtc/mtc2017/
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cs1706 / d i s s e r t a t i o n / ’ , f i l e = ’ d i c t . save ’ ) :
85 """
86 Ut i l i t y func t i on To save the d i c t_o f_labe l s in a f i l e f o r

f u tu r e use .
87 """
88 with open ( path+f i l e , ’wb ’ ) as f :
89 p i c k l e . dump( f r ame l i s t , f )
90

91 de f dict_load ( path = ’ / user1 / student /mtc/mtc2017/ cs1706 /
d i s s e r t a t i o n / ’ , f i l e = ’ d i c t . save ’ ) :

92 """
93 Ut i l i t y func t i on To load the d i c t_o f_labe l s from a f i l e f o r

f u tu r e use .
94 """
95 with open ( path+f i l e , ’ rb ’ ) as f :
96 f r ame l i s t = p i c k l e . load ( f )
97 re turn f r ame l i s t
98

99 de f get_numeric_labels ( path=’ Action/Test / ’ ) :
100 """
101 Provides numeric l a b e l s f o r each o f the c l a s s . The path to

datase t i s input .
102 Outputs a d i c t conta in ing the s t r i n g l a b e l s as keys and

numeric l a b e l s as va lue s .
103 """
104 l i s t_o f_ l ab e l s = os . l i s t d i r ( path )
105 l abe l_d i c t = {}
106 i = 0 ;
107 f o r l a b e l in l i s t_o f_ l ab e l s :
108 l abe l_d i c t [ l a b e l ] = i
109 i += 1
110

111 f o r key , item in l abe l_d i c t . i tems ( ) :
112 pr in t ( key , item )
113 re turn l abe l_d i c t
114

115 l abe l_d i c t = get_numeric_labels ( )
116 PATH = os . getcwd ( ) + ’ / ’
117 dict_save ( labe l_dic t , path = PATH, f i l e = ’ d i c t_o f_labe l s . save ’ )
118 d i c t_ l abe l s = dict_load (PATH, ’ d i c t_o f_labe l s . save ’ )
119

120 # In [ 9 ] :
121

122

123 train_folder_name = os . path . j o i n ( os . getcwd ( ) , ’ Action/Train/ ’ )
124 train_frame_dir = os . path . j o i n ( os . getcwd ( ) , ’

Extracted_Frames_train/ ’ )
125 pr in t ( train_folder_name , train_frame_dir )
126 test_folder_name = os . path . j o i n ( os . getcwd ( ) , ’ Action/Test / ’ )
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127 test_frame_dir = os . path . j o i n ( os . getcwd ( ) , ’ Extracted_Frames_test/
’ )

128 pr in t ( test_folder_name , test_frame_dir )
129

130

131 # In [ 1 1 ] :
132 d i c t_te s t = extract_dataset ( test_folder_name , test_frame_dir )
133 dict_save ( d ic t_test , os . getcwd ( ) + ’ / ’ , f i l e=’ d i c t_te s t . save ’ )
134 pr in t ( ’ Test datase t s u c c e s s f u l l y preproce s s ed ’ )
135

136 d i c t_tra in = extract_dataset ( train_folder_name , train_frame_dir )
137 dict_save ( d ict_tra in , os . getcwd ( ) + ’ / ’ , f i l e=’ d i c t_tra in . save ’ )
138 pr in t ( ’ Train datase t s u c c e s s f u l l y preproce s s ed ’ )
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9.3 Training and Evaluation Code

1 import os
2 import s h u t i l
3 import cv2
4 import matp lo t l i b . pyplot as p l t
5 import numpy as np
6 import p i c k l e
7 import torch
8 import t o r c hv i s i o n . models as models
9

10

11

12 de f dict_save ( f r ame l i s t , path = ’ / user1 / student /mtc/mtc2017/
cs1706 / d i s s e r t a t i o n / ’ , f i l e = ’ d i c t . save ’ ) :

13 """
14 Ut i l i t y func t i on To save the d i c t_o f_labe l s in a f i l e f o r

f u tu r e use .
15 """
16 with open ( path+f i l e , ’wb ’ ) as f :
17 p i c k l e . dump( f r ame l i s t , f )
18

19 de f dict_load ( path = ’ / user1 / student /mtc/mtc2017/ cs1706 /
d i s s e r t a t i o n / ’ , f i l e = ’ d i c t . save ’ ) :

20 """
21 Ut i l i t y func t i on To load the d i c t_o f_labe l s from a f i l e f o r

f u tu r e use .
22 """
23 with open ( path+f i l e , ’ rb ’ ) as f :
24 f r ame l i s t = p i c k l e . load ( f )
25 re turn f r ame l i s t
26

27

28 # Assuming N = 4 , we c r e a t e 4 vgg16 models
29 mod1=models . vgg16 ( p r e t r a in ed=True )
30 mod2=models . vgg16 ( p r e t r a in ed=True )
31 mod3=models . vgg16 ( p r e t r a in ed=True )
32 mod4=models . vgg16 ( p r e t r a in ed=True )
33

34

35 # In [ 1 7 ] :
36

37

38 # Taking out the l a s t 7 l a y e r s
39 mod1 . c l a s s i f i e r=mod1 . c l a s s i f i e r [ : −7 ]
40 mod2 . c l a s s i f i e r=mod2 . c l a s s i f i e r [ : −7 ]
41 mod3 . c l a s s i f i e r=mod3 . c l a s s i f i e r [ : −7 ]
42 mod4 . c l a s s i f i e r=mod4 . c l a s s i f i e r [ : −7 ]
43
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44

45 # In [ 1 8 ] :
46

47

48 output_l i s t = [ ]
49 models = [mod1 , mod2 , mod3 , mod4 ] #putt ing models to a l i s t
50

51

52 # In [ 1 9 ] :
53

54

55 c l a s s PartC ( torch . nn . Module ) :
56 de f __init__( s e l f , num_frames , n_classes =10) :
57 super (PartC , s e l f ) . __init__ ( )
58

59 s e l f . num_frames = num_frames
60 ke rne l_s i z e = 3
61 fc_input = 256 ∗ ( s e l f . num_frames − ke rne l_s i z e + 1) ∗ 5

∗ 5
62 s e l f . conv3d = torch . nn . Conv3d (512 , 256 , k e rne l_s i z e )
63 s e l f . r e l u1 = torch . nn .ReLU( )
64 s e l f . f c 1 = torch . nn . Linear ( fc_input , 4096)
65 s e l f . r e l u2 = torch . nn .ReLU( )
66 s e l f . dropout1 = torch . nn . Dropout ( )
67 s e l f . f c 2 = torch . nn . Linear (4096 , 1024)
68 s e l f . r e l u3 = torch . nn .ReLU( )
69 s e l f . dropout2 = torch . nn . Dropout ( )
70 s e l f . f c 3 = torch . nn . Linear (1024 , n_c lasses )
71 #s e l f . softmax = torch . nn . Softmax (dim=−1)
72

73

74 de f forward ( s e l f , x ) :
75 x = s e l f . conv3d (x )
76 x = s e l f . r e l u1 (x )
77 x = x . view (1 , −1)
78 x = s e l f . f c 1 ( x )
79 x = s e l f . r e l u2 (x )
80 x = s e l f . dropout1 (x )
81 x = s e l f . f c 2 ( x )
82 x = s e l f . r e l u3 (x )
83 x = s e l f . dropout2 (x )
84 x = s e l f . f c 3 ( x )
85 #x = s e l f . softmax (x )
86 re turn x
87

88

89 # In [ 2 0 ] :
90

91
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92 c l a s s VGG3d( torch . nn . Module ) :
93 de f __init__( s e l f , A, C) :
94 super (VGG3d, s e l f ) . __init__ ( )
95

96 s e l f .A = torch . nn . ModuleList (A)
97 s e l f .C = C
98

99 de f forward ( s e l f , v ideo ) :
100 output_l i s t = [ ]
101

102 f o r i in range ( l en ( s e l f .A) ) :
103 out = s e l f .A[ i ] ( v ideo [ i ] . unsqueeze (0 ) )
104 output_l i s t . append ( out )
105

106 B = torch . cat ( output_l i s t ) . t ranspose (1 , 0) #
Concatenation

107 f ina l_output = s e l f .C(B. unsqueeze (0 ) )
108 re turn f ina l_output
109

110

111 # In [ 2 1 ] :
112

113

114 dev i c e = ’ cuda : 2 ’
115 cuda1 = torch . dev i c e ( dev i c e )
116

117

118 # In [ 2 2 ] :
119

120

121 #In s t an c i a t i o n o f the model . . cuda ( cuda1 ) i s added to move the
model i n to GPU memory .

122 models = [mod1 . f e a t u r e s . cuda ( cuda1 ) , mod2 . f e a t u r e s . cuda ( cuda1 ) ,
mod3 . f e a t u r e s . cuda ( cuda1 ) , mod4 . f e a t u r e s . cuda ( cuda1 ) ]

123 C = PartC (num_frames=4, n_classes =30)
124 vgg3d = VGG3d( models , C) . cuda ( cuda1 )
125

126

127 # In [ 1 0 ] :
128

129

130 de f image_res ize ( f i l ename , shape =(224 ,224) ) :
131 """
132 Ut i l i t y func t i on to r e s i z e an image to (224 ,224 ,3 ) which i s

the input s i z e needed to f e ed in to the model
133 """
134 image = cv2 . imread ( f i l ename )
135 new_img = cv2 . r e s i z e ( image , shape )
136 re turn new_img
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137

138

139 # In [ 1 1 ] :
140

141

142 de f get_frame_from_one_video ( fo lder_path ) :
143 """
144 This u t i l i t y func t i on loads frames o f an video , a f t e r

r e s i z i n g them to (224 ,224 ,3 ) format
145 Input i s path to f o l d e r where the frames o f the v ideo i s

s to r ed .
146 Returns a numpy array o f s i z e (N,3 , 224 , 224 )
147 """
148 f r ame_l i s t = [ ]
149 l i s t _ o f _ f i l e s = os . l i s t d i r ( fo lder_path )
150

151 f o r frame_name in l i s t _ o f _ f i l e s :
152 temp_path = os . path . j o i n ( folder_path , frame_name)
153 temp_img = image_res ize ( temp_path )
154 temp_img = np . array ( temp_img , np . f l o a t 3 2 )
155 f r ame_l i s t . append (temp_img .T)
156 re turn np . array ( f rame_l i s t )
157

158

159 # In [ 1 2 ] :
160

161

162 de f t r a i n i n g ( vgg3d , epochs=1) :
163

164 c r i t e r i a = torch . nn . CrossEntropyLoss ( ) . cuda ( cuda1 )
165 opt imize r = torch . optim .SGD( vgg3d . parameters ( ) , l r =0.001)
166 saved_l i s t = dict_load ( ’ / user1 / student /mtc/mtc2017/ cs1706 /

d i s s e r t a t i o n / ’ , ’ d i c t_tra in . save ’ )
167 saved_l i s t_te s t = dict_load ( ’ / user1 / student /mtc/mtc2017/

cs1706 / d i s s e r t a t i o n / ’ , ’ d i c t_te s t . save ’ )
168 get_labe l = dict_load ( ’ / user1 / student /mtc/mtc2017/ cs1706 /

d i s s e r t a t i o n / ’ , ’ d i c t_o f_labe l s . save ’ )
169 #epochs = 10
170 f o r epoch in range ( epochs ) :
171 c o r r e c t = 0
172 t o t a l = 0
173 vgg3d . t r a i n ( )
174 l = np . random . permutation ( l en ( saved_l i s t ) )
175 f o r pos in l :
176 key , item = l i s t ( saved_l i s t . i tems ( ) ) [ pos ]
177 #pr in t ( v ideo )
178 i f l en ( os . l i s t d i r ( key ) ) >= 4 :
179 t o t a l += 1 # fo r t r a i n i n g accuracy
180 path_to_video = key
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181 #pr in t ( path_to_video , item )
182 temp_list = get_frame_from_one_video (

path_to_video )
183 f r ame_l i s t = [ ]
184 #pr in t ( f rame_l i s t .max( ) , f rame_l i s t . min ( ) )
185 #pr in t ( ’ cur rent epoch = ’ , epoch )
186 f o r i in range ( temp_list . shape [ 0 ] ) :
187 temp = temp_list [ i ] . astype ( f l o a t ) /255 .0
188 f r ame_l i s t . append ( temp)
189 #pr in t ( i , f r ame_l i s t [ i ] . dtype )
190 f r ame_l i s t = np . array ( f rame_l i s t , np . f l o a t 6 4 )
191 inp = torch . from_numpy( f rame_l i s t ) . type ( torch .

FloatTensor )
192 inp = inp . cuda ( cuda1 )#f o r running in gpu
193

194 #pr in t ( ’ len_frame : ’ , f r ame_l i s t . shape )
195 #pr in t ( ’ inp_shape : ’ , inp . shape )
196

197 #pr in t ( ’ inp_0_shape : ’ , inp [ 0 ] . shape )
198 vgg3d . zero_grad ( )
199 p r ed i c t i on = vgg3d ( inp ) . cuda ( cuda1 )
200 #pr in t ( p r ed i c t i on . shape )
201 t a r g e t = get_labe l [ item ]
202 #For t r a i n i n g accuracy
203 pred i c t ed_labe l = p r ed i c t i on . argmax ( )
204 #pr in t ( pred i c t ed_labe l . item ( ) , target , co r r e c t ,

t o t a l )
205 i f p r ed i c t ed_labe l == ta rg e t :
206 c o r r e c t += 1
207 t a r g e t = torch . t enso r ( t a r g e t )
208 t a r g e t = ta rg e t . unsqueeze (0 ) . type ( torch .

LongTensor ) . cuda ( cuda1 )
209 #pr in t ( ’ p r ed i c t i on t a r g e t ’ , p r ed i c t i on . shape ,

t a r g e t . shape , type ( p r ed i c t i o n ) , type ( t a r g e t ) )
210 #pr in t ( p r ed i c t i on . argmax ( ) , t a r g e t )
211 l o s s = c r i t e r i a ( p r ed i c t i on , t a r g e t )
212 l o s s . backward ( )
213 opt imize r . s t ep ( )
214 #e l s e :
215 # pr in t ( ’ has l e s s than 4 frames ’ , key )
216

217 pr in t ( ’ t r a i n accuracy a f t e r epoch i s ’ , epoch , c o r r e c t /
t o t a l )

218

219

220 co r r e c t_te s t = 0
221 t o t a l_t e s t = 0
222 vgg3d . eva l ( )
223 f o r key , item in saved_l i s t_te s t . i tems ( ) :
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224 i f l en ( os . l i s t d i r ( key ) ) >= 4 :
225 t o t a l_t e s t += 1 # fo r t r a i n i n g accuracy
226 path_to_video = key
227 temp_list = get_frame_from_one_video (

path_to_video )
228 f r ame_l i s t = [ ]
229 f o r i in range ( temp_list . shape [ 0 ] ) :
230 temp = temp_list [ i ] . astype ( f l o a t ) /255 .0
231 f r ame_l i s t . append ( temp)
232 #pr in t ( i , f r ame_l i s t [ i ] . dtype )
233 f r ame_l i s t = np . array ( f rame_l i s t , np . f l o a t 6 4 )
234 inp = torch . from_numpy( f rame_l i s t ) . type ( torch .

FloatTensor )
235 inp = inp . cuda ( cuda1 )#f o r running in gpu
236

237 p r ed i c t i on = vgg3d ( inp ) . cuda ( cuda1 )
238 t a r g e t = get_labe l [ item ]
239 pred i c t ed_labe l = p r ed i c t i on . argmax ( )
240 i f p r ed i c t ed_labe l == ta rg e t :
241 co r r e c t_te s t += 1
242 #e l s e :
243 # pr in t ( ’ has l e s s than 4 frames ’ , key )
244 #pr in t ( pred i c t ed_labe l . item ( ) , target , co r r ec t_tes t

, t o t a l_t e s t )
245 pr in t ( ’ t e s t i n g accuracy a f t e r epoch i s ’ , epoch ,

c o r r e c t_te s t / t o t a l_t e s t )
246

247 re turn vgg3d
248

249

250 # In [ 1 3 ] :
251

252

253 vgg3d = t r a i n i n g ( vgg3d , 25)
254

255

256 # In [ 1 4 ] :
257

258

259 PATH = os . getcwd ( ) + ’ /saved_gpu_dict . pth ’
260 torch . save ( vgg3d . s ta t e_d i c t ( ) ,PATH)
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