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Abstract

Master of Technology

Probabilistic and information theoretic interpretation of quantum
measurement

by Shreyas GUPTA

In this thesis, I have given a brief overview to the answers of two central
questions in quantum computation. How much information can be en-
coded in quantum systems, and how efficiently can this information be
extracted. Manipulation of quantum information through manipulating
quantum states is relatively well studied topic. This is usually achieved
by unitary transformations. In this thesis, after giving a brief overview
of fundamentals of quantum computation, basic quantum information
theory is briefly discussed. After that, the main question about how to
estimate a quantum state has been looked into more carefully. Given a
finite ensemble of a particular quantum state, say N copies, firstly a score is
defined to measure how accurately the state is estimated. Then a bound for
this score is calculate and is shown to be N+1

N+2 , for a finite ensemble. In my
work, with estimated state, I have tried to define quantum measurement
in a more general fashion.
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Preface

The main purpose of this thesis is to look more carefully at the question,
how efficiently can information be extracted from a quantum states? I have
very briefly reviewed the basics and postulates of quantum mechanics.
One is assumed to be familiar with the basic theory of quantum computa-
tion. John Preskill’s notes on the subject, especially the first 6 chapters, is
good source to get acquainted with ths subject, which can be found here1.
More advanced topics like POVM have been discussed in more detail.

In this thesis, I start with defining states and qubits. Postulates of quantum
mechanics are discussed after that which dictate the laws that these states
follow. After that, quantum measurement is discussed in detail and POVM
is introduced. After a brief review of basic topics in quantum information
theory, we turn to the main section on how accurately an unknown state
can be estimated.

1http://www.theory.caltech.edu/people/preskill/ph229/

http://www.theory.caltech.edu/people/preskill/ph229/
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Chapter 1

Models of computation

1.1 Church Turing thesis and the nature of quan-

tum model of computation

Quantum computers pose a serious challenge to the strong Church-Turing
thesis, which states that every physically realizable computation device,
can be simulated by a Turing machine with atmost polynomial slowdown.
The famous Shor’s algorithm is one example, where a quantum computer
may be able to factorize numbers with exponential speed up as compared
to any classical algorithm.

Very little knowledge of physics is needed to understand the central results
of quantum computing. There are two results, which are more or less
enough to explain the model. Firstly, the physical parameters of small
enough systems seem to be quantized, i.e., they only take values from
a discrete set. And secondly, the values of these physical parameters, at
any moment in time, is not a unique value, but rather is a probability
distribution on the set of all possible values. This distribution depends on
the state of the system. The parameter only takes a definite value when it
is measured by an observer. It is this last point that makes the quantum
world interesting. Since the parameter dont have a unique value associated
with it before observing, any changes done to the system has to give rise
to a consistent probability distribution for the final value of the parameter.
This results in the vast parallelism in the quantum computation. This vast
parallelism is tightly regulated by the laws of quantum mechanics.
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1.2 Qubits

Computation is essentially manipulation of information. This information
is expressed, in case of turing machine, by an alphabet. This alphabet is
often taken to be binary, consisting of only two letters, namely, 0 and 1.
Since quantum computation is about manipulating state of a system, we
will encode our information in these states of the system. The simplest
type of system to consider again has two possible states, and is often called
a two-level system. This state of a two level system is known as qubit,
motivated from the classical case, where it is called a bit. But this qubit
works in little different way. As we know, the state of the system is not
uniquely determined, until it is observed. The state of the system is actually
a probability distribution on the two possible state of the system that can
be observed. This phenomena is known as superposition. Therefore, if we
name our two possible states as |0〉 and |1〉, then a state of system is not
simply any one of it, but a probability distribution over it.

1.3 Representation of qubit

A qubit is not usually just represented as a probabilistic function over the
state space. This is due to many properties that can be measured for a
system. All these properties can not usually be observed at the same time.
Different properties of a system can have different probability distributions
when the system is in a particular state. And we should be able to obtain
all these probability distributions given the state. Hence we need a way to
represent the state of a system, such that these probability distributions
can be recovered from it. This can be achieved in a complex Hilbert space.
A (pure) state of a quantum system is denoted by a vector |ψ〉 with unit
length, i.e., 〈ψ|ψ|〉 = 1 in a complex Hilbert space H. We call it a pure state
to distinguish it from a more general type of quantum states, known as
mixed states. Here it should be noted that 〈ψ| is the dual vector of |ψ〉.
Given vectors and the dual vectors, we can define operators in the form
O = |ψ〉 〈φ|.
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1.4 Mixed states

The vectors, |ψ〉, can also be expressed projector operators that project
onto the one dimensional space of the state vector. This is denoted by
ρψ = |ψ〉 〈ψ|, and is called the density matrix. Unless specified, the symbol
ρ represents that we are talking about the physical state, rather than an
arbitrary operator. Here the normalization condition becomes tr(ρ) = 1.
These density matrices are used to define the more general type of states.
A mixed state is a mixture of pure states. If ρ is a mixed state, it can be
written as:

ρ =
N

∑
k=1

pk |ψk〉 〈ψk| (1.1)

and the normalization condition means that
N
∑

k=1
pk = 1. Intuitively, one

may feel tempted to think that a mixed state represents a probabilistic
pure state. But one must note that the summation form to represent the
mixed state is not unique. To see this consider an ensemble of spin-1

2

particles, with half particles in the state |0〉 and other half in state, |1〉. Let
us represent the density matrix of a particle, taken at random from this
ensemble, by ρ. Then,

ρ =
1
2
|0〉 〈0|+ 1

2
|1〉 〈1| (1.2)

Now let us write this state in another basis. Let |+〉 = 1√
2
|0〉+ 1√

2
|1〉, and

|−〉 = 1√
2
|0〉 − 1√

2
|1〉. One can easily check that this forms another basis

of the Hilbert space. Writing ρ, in this basis, we get

ρ =
1
2
|+〉 〈+|+ 1

2
|−〉 〈−| (1.3)

which gives a different probability distribution for the state ρ.

In next section, we will study the postulates of quantum mechanics, which
describe how to represent a state of a system, how to modify the state of a
system, and finally how to make an observation on a system in a particular
state. With these postulates, we can manipulate the information encoded
in a state of system or qubits.
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1.5 Axioms of quantum mechanics

• Each physical quantum system is associated with a complex Hilbert
space H with inner product 〈ψ|φ〉. Rays (that is, subspaces of complex
dimension 1) in H are associated with (pure) quantum states of
the system. In other words, quantum states can be identified with
equivalence classes of vectors of length 1 in H, where two vectors
represent the same state if they differ only by a phase factor. A
general (mixed) state is represented as described in the previous
section.

• The Hilbert space of a composite system is the Hilbert space tensor
product of the state spaces associated with the component systems.
For a non-relativistic system consisting of a finite number of dis-
tinguishable particles, the component systems are the individual
particles.

• Physical symmetries act on the Hilbert space of quantum states uni-
tarily.

• Physical observables are represented by Hermitian matrices on H. A
generalization of this will be discussed in the next chapter.

• The expectation value (in the sense of probability theory) of the
observable A for the system in state represented by the unit vector
ψ ∈ H is 〈ψ | A | ψ〉

• By spectral theory, we can associate a probability measure to the
values of A in any state ψ. We can also show that the possible values
of the observable A in any state must belong to the spectrum of A. In
the special case A has only discrete spectrum, the possible outcomes
of measuring A are its eigenvalues. More precisely, if we represent the
state ψ in the basis formed by the eigenvectors of A, then the square
of the modulus of the component attached to a given eigenvector is
the probability of observing its corresponding eigenvalue.

• More generally, a state can be represented by a so-called density
operator, which is a trace class, nonnegative self-adjoint operator ρ
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normalized to be of trace 1. The expected value of A in the state ρ is
tr(Aρ)

• If ρψ is the orthogonal projector onto the one-dimensional subspace
of H spanned by | ψ〉, then tr(Aρψ) = 〈ψ | A | ψ〉

• Density operators are those that are in the closure of the convex
hull of the one-dimensional orthogonal projectors. Conversely, one-
dimensional orthogonal projectors are extreme points of the set of
density operators. Physicists also call one-dimensional orthogonal
projectors pure states and other density operators mixed states.

Now that we know how states are represented and modified, let us study
the next part, i.e., measurement in more detail.
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Chapter 2

Quantum Measurement

2.1 What is quantum measurement operator?

Till now, almost all attention has been focused on discussing the state
of a quantum system. As we have seen, this is most succinctly done by
treating the package of information that defines a state as if it were a vector
in an abstract Hilbert space. One of the most difficult and controversial
problems in quantum mechanics is the so-called measurement problem.
Opinions on the significance of this problem vary widely. At one extreme
the attitude is that there is in fact no problem at all, while at the other
extreme, the view is that the measurement problem is one of the great
unsolved puzzles of quantum mechanics. The issue is that quantum me-
chanics only provides probabilities for the different possible out-comes
in an experiment – it provides no mechanism by which the actual, finally
observed result, comes about. Of course, probabilistic outcomes feature
in many areas of classical physics as well, but in that case, probability
enters the picture simply because there is insufficient information to make
a definite prediction. In principle, that missing information is there to
be found, it is just that accessing it may be a practical impossibility. In
contrast, there is no ‘missing information’ for a quantum system, what we
see is all that we can get, even in principle, though there are theories that
say that this missing information resides in so-called ‘hidden variables’.
But in spite of these concerns about the measurement problem, there are
some features of the measurement process that are commonly accepted as
being essential parts of the final story.
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2.2 Projective measurement

Let us begin to review the theory of measurement in quantum mechanics.
In the formalism where a state is denoted by a unit vector in a Hilbert
space, the very first notion of measurement was associated to a self adjoint
operator in the Hilbert space and the outcome of measurement is associated
with one of the eigenvalue of this hermitian operator. It is often referred
to as a projective measurement, or von Nuemann measurement. A self
adjoint operator can be represented as follows:

M̂ = ∑
m

mP̂m (2.1)

where {m} are eigenvalues of M̂, and {P̂m} are the orthogonal1 projector
on the corresponding eigenspace. There are two reasons why M̂ is chosen
to be hermitian. All the eigenvalues of a hermitian operator are real and
its eigenvectors form an orthonormal basis of the Hilbert space. So the
following are true:

∀m, P̂m is hermitian (2.2)

∀m, m′, P̂mP̂m′ = δm,m′ P̂m (2.3)

And the probability of measuring m, when the state of the system is |ψ >

is:
pψ(m) =< ψ|P̂m|ψ > (2.4)

and the state of the system soon after measuring m is:

P̂m|ψ >√
< ψ|P̂m|ψ >

(2.5)

Applying total probability theorem to 2.4, we get:

∑
m

P̂M = I (2.6)

1Eigenvectors of a hermitian operator form an orthnormal basis of the corresponding
vector space
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The expectation value of M̂, for the system in state |ψ > is:

Eψ(M̂) = ∑
m

mpψ(m)

= ∑
m

< ψ|P̂m|ψ >

=< ψ|
(

∑
m

mP̂m

)
|ψ >

=< ψ|M̂|ψ >

2.3 POVM

The notion of measurement has been generalized, just as the notion of
states. Here, we define the most general form of measurement used, posi-
tive operator valued measurement. We consider the set of operators {Êm}.
The above description of projective measurement turns out to be too re-
strictive. There are measurements that can be performed on a system that
cannot be described within this formalism.
A generalised measurement in quantum mechanics is described by a col-
lection of positive operators Ei ≥ 0 that satisfy ∑

i
Ei = I. We denote such a

measurement as M = {Ei}. Each Ei is associated with an outcome of the
measurement and since Ei ≥ 0, it has a decomposition Ei = M†

i Mi. For a
state ρ, the probability of obtaining the result associated with Ei is:

Pr(i) = tr(ρEi) (2.7)

And the state of the system, soon after obtaining result associated with Ei

is:

ρ→
MiρM†

i
tr(ρEi)

(2.8)

It should be noted here that the projective measurements defined above
is a special case of POVM, where Mi = M†

i = Pi, and Ei = P†
i Pi = Pi. The

only difference being that POVM elements do not have to be orthogonal. In
the next chapter, we will see how these POVM’s can be physically realized.
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Chapter 3

Implementing POVM

3.1 Motivation

How do we actually implement POVMs? The physical realisation of
POVMs is guaranteed be the Neumark’s theorem. Neumrak’s theorem
states that the non orthogonality of the different outcomes of a POVM can
be lifted by an operator of the form V†(.)V to a projective measurement
in a higher dimensional Hilbert space. Let us see this with the help of an
example. Suppose M is a POVM, in three dimensional Hilbert space, with
following Ei’s:

E1 =

√
2√
3
|0〉+ 1√

3
|2〉

E2 = − 1√
6
|0〉+ 1√

2
|1〉+ 1√

3
|2〉

E3 = − 1√
6
|0〉 − 1√

2
|1〉 − 1√

3
|2〉

And let us take our state |ψ〉 to be in the two dimensional subspace of this
Hilbert space, spanned by |0〉 and |1〉.
The probability of the obtaining E1 is∣∣∣∣∣

(√
2√
3
〈0|+ 1√

3
〈2|
)
|ψ〉
∣∣∣∣∣
2

(3.1)
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or ∣∣∣∣∣
√

2√
3
〈0|ψ〉

∣∣∣∣∣
2

(3.2)

since |0〉 is orthogonl to |2〉. If we define the unnormalized quantum states:

|e1〉 =
√

2
3
|0〉

|e2〉 = −
√

1
6
|0〉+

√
1
2
|1〉

|e3〉 = −
√

1
6
|0〉 −

√
1
2
|1〉

(3.3)

Then we can immediately see that probability of obtaining the result corre-
sponding to Ei is

| 〈ei|ψ〉 |2 (3.4)

3.2 Physical realisation of POVM

Suppose we have a number of these unnormalized vectors |ei〉, when can
the above rule for choosing probabilities form a measurement? A necessary
condition is that the total probabilities add up to 1.

k

∑
i=1
| 〈ei|ψ〉 |2 = 1 (3.5)

⇒
k

∑
i=1
〈ψ|ei〉 〈ei|ψ〉 = 1 (3.6)

⇒〈ψ|
(

k

∑
i=1
|ei〉 〈ei|

)
|ψ〉 = 1 (3.7)

It turns out that this is necessary and sufficient condition for a collection of
un-normalised vectors |ei〉 to be a POVM (with all elements of rank 1).
In the above discussion, we worked out in reverse direction by reducing
the dimension of a higher dimensional Hilbert space. Next I will show that
if we have a collection of such |ei〉’s, we can achieve the above outcome
probabilities by a projective measurement in higher dimensional Hilbert
space.
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Suppose we have k un-normalised quantum states |ei〉 in n-dimensions,
k ≥ n, such that:

k

∑
i=1
|ei〉 〈ei| = I (3.8)

Therefore, we have a k× n matrix as follows:

M =


〈1|e1〉 〈1|e2〉 . . . 〈1|ek〉
〈2|e1〉 〈2|e2〉 . . . 〈2|ek〉

. . . . . . . . . . . .
〈n|e1〉 〈n|e2〉 . . . 〈n|ek〉

 (3.9)

Now consider the scalar product of row i and j:

k

∑
m=1
〈i|em〉 〈em|j〉 = 〈i|

(
k

∑
m=1
|em〉 〈em|

)
|j〉 = 〈i|j〉 = δi,j (3.10)

Therefore, we have n orthonormal rows in k dimensional Hilbert space.
Using Gram-Schmidt, we can extend this to a set of k orthonormal rows.
Now any square matrix whose rows are orthonormal is a unitary matrix,
hence has orthonormal columns, therefore, the columns of this new k× k
matrix correspond to a projective measurement. If this measurement is
restricted to act on the n dimensional subspace given by the first n basis
vectors, this becomes a POVM.
This procedure is usually realised by coupling the system to be measured
with ancilla, and then doing projective measurement of the ancilla. To
formally see this, consider system to be measured in a pure state |ψ〉. If
this system is coupled with an ancilla, in state |φ〉, and the whole system
of state to be measured and the ancilla is evolved with USA, the resulting
state of whole system is USA |ψ〉s ⊗ |φ〉A. Now assume we do a projective
measurement of this system on the ancilla in the basis |mi〉A 〈mi|, for
i = 1, 2, . . . , the probability of getting result i is:

pi = (〈ψ|S ⊗ 〈φ|A)U†
SA [I⊗ |mi〉A 〈mi|]USA (|ψ〉s ⊗ |φ〉A) (3.11)
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And the state of the whole system, after recording the measurement of i
on the ancilla, is:

|ψ〉S ⊗ |φ〉A →
(Mi |ψ〉S)⊗ |mi〉√

pi
(3.12)

where Mi is the operator acting on the system to be measured only, that
takes the form:

Mi |ψ〉S ≡ 〈mi|USA (|ψ〉s ⊗ |φ〉A) (3.13)

This operator depends on |φ〉A , |mi〉 and USA, and defines a generalised
measurement on the system. Note that this generalised measurement can
be tuned by choosing three things:

• The initial state of the ancilla, |φ〉A

• The unitary operation that couples the system and the ancilla, USA

• The basis that ancilla is measured in {|mi〉}
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Chapter 4

Information in quantum states

4.1 How many bits are in a qubit?

The next question we will try to answer is exactly how much accessible
information can be encoded in a qubit. Suppose there are two parties, Alice
and Bob, and Alice wants to send a string x ∈ {0, 1}n. Suppose Alice does
some computation, on x, to create |ψx〉 ∈ Cd. Note that the scheme only
works perfectly if d ≥ 2n, otherwise there will exist two non-orthogonal
vectors |ψx〉 and

∣∣ψy
〉
, with x 6= y

To answer the question about how much information is actually transmit-
ted, we need to be more careful. Firstly, we need to quantify how much
Bob already knows about the string x. To do this, let us assume that Alice
samples x ∈ {0, 1}n with probability p(x). Also, Alice need not send a
pure state, but instead she could send a mixed state. Lastly, Bob need not
perform a projective measurement, he could perform the more general
POVM. To be specific, let us consider the following scenario:

• Alice samples X ∈ Σ ⊆ {0, 1}n, where X = x with probability p(x)

• Alice sends σX ∈ Cd

• Bob picks POVM {Ey}y∈Γ, where Γ ⊆ {0, 1}n

• Bob measures σX, and receives output Y ∈ Γ, where Y = y given
X = x with probability tr(σxEy)
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4.2 Accessible information

Now Bob wants to infer X from Y. Let us first see how much information
is encoded in X. To measure this, we will use shannon entropy.
Definition [shannon entropy] The shannon entropy of a random variable X,
distributed on a set Σ is

H(X) = − ∑
x∈Σ

p(x) log p(x)

where p(x) = Pr[X = x]

In general, if we have two random variables X and Y supported on the sets
Σ and Γ respectively with joint distribution p(x, y) = Pr[X = x, Y = y],
we have:

H(X, Y) = − ∑
x∈Σ,y∈Γ

p(X, Y) log p(X, Y) (4.1)

Here, it is easy to note that if the two random variables X and Y are
independent, then p(X, Y) = p(X)× p(Y) and hence H(X, Y) = H(X) +

H(Y). And, if the two random variables are perfectly correlated, then
p(X, Y) = p(X) = p(Y) and hence H(X, Y) = H(X) = H(Y)
Definition [Mutual information] The mutual information I(X, Y) between two
random variables X and Y is

I(X, Y) = H(X) + H(Y)− H(X, Y)

This mutual information is the best Bob can do. This is the most amount of
accessible information for Bob.
Definition [Accessible information] The accessible information is

Iacc(σ, p) = max
over all POVMs{Ey}y∈Γ

I(X, Y)

This the best Bob can do given Alice’s choice of the σx. The overall best
that both can achieve is:

max
{σx}x∈Σ

Iacc(σ, p)

This is upper bounded by H(X) ≤ log |Σ|. Now we will relate this accessi-
ble information to the amount of quantum information in the σ’s. Suppose
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we have a mixed state:
|ψ1〉with probability p1

|ψ2〉with probability p2
...

(4.2)

In this case, defining H by taking p to be distribution over |ψi〉’s is not well
defined. This is because the representation of a mixed state is not unique.
The correct analogue of classical entropy in this case was given by von
Neumann, which is following
Definition [Quantum Entropy] Given a mixed state, with density matrix ρ, we
define:

H(ρ) = −
d
∑

i=1
αi log αi

where αi’s are the eigenvalues of ρ. This can also be represented as:

H(ρ) = −tr(ρ log ρ) (4.3)
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Chapter 5

Detection of quantum
information

5.1 A general definition of measurement

Measurement, in quantum mechanics, is a function that takes a quantum
state |ψ〉 and a measurement operator M as an input, and gives the out-
come of M on ψ which is in accordance with the postulates of quantum
mechanics.

f : B× S −→ {λm} (5.1)

where, B is the Bloch sphere, the state space in quantum mechanics, S is
the space of measurement operators, and {λm} is the set of eigen values of
the measurement operator.
One section of this measurement function is defined in the postulates of
quantum mechanics, namely, when |ψ〉 ∈ B is fixed.

f|ψ〉 : S −→ {λm} (5.2)

Here, I will try to define the other section of this function, namely

fM : B −→ {λm} (5.3)

where M ∈ S. And hence I will try to define the function f.
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5.2 Measurement for one qubit

In this section, I will consider the state space to be the space of one qubit
space, namely the Bloch Sphere, and the space of measurement operators
to be the space of self adjoint operators acting on Bloch Sphere.In this
specific case of one dimensional Hilbert space of a qubit, space of measure-
ment is relatively easy to define.
The measurement function is a probability density function, and it gives a
probability of each outcome, i.e. the eigen value of the measurement oper-
ator. But according to the axioms of quantum mechanics, this probability
density function only depends on the eigen vectors of the measurement
operator and not on the specific eigen values.
Let ∼ be a relation between two measurement operators. I will call two
measurement operators, M1 and M2, related by ’∼’ if they have same set
of eigen vectors.
Theorem:’∼’ is an equivalance relation.
Proof:1. Reflexive: M and M have same set of eigen vectors.
2. Symmetric: Let M1 ∼ M2, therefore M1 and M2 have same set of eigen
vectors. Hence M2 ∼ M1.
3. Transitive: Let M! ∼ M2 and M2 ∼ M3. Therefore, M1, M2 have same
set of eigen vectors and M2, M3 have same set of eigen vectors. Therefore,
M1, M3 have same set of eigen vectors. Hence M1 ∼ M3.
Therefore, ∼ partitions S, the space of measurement operators. For our
purpose here, it is enough to study S∼. Also note that for a one dimen-
sional Hilbert space of single qubit system, each state vector has a unique
orthogonal state vector. Therefore, to represent a measurement operator in
S∼, it is enough to know one of its eigen vector. We therefore have S∼ is
homeomorphic to B, the bloch sphere, i.e. S∼ ∼= B.
So, to study measurement in general, I will take a general eigen state |ψ〉
and a general measurement operator M, and will define this probability
density according to the postulates.
A general state on a Bloch sphere is as follows:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (5.4)
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Now note that in order to consider a general measurement operator, we
only need to consider another general state on the Bloch sphere. Let M be
a general measurement operator with one of the eigen state, |m〉 as follows:

|m〉 = cos
ζ

2
|0〉+ eiξ sin

ζ

2
|1〉 (5.5)

Also, Let λm be the eigen value of M corresponding to the eigen vector |m〉
of the measurement operator M. With these assumptions, the probability
of getting the outcome λm is as follows:

p(λm) = || cos
θ

2
cos

ζ

2
+ ei(φ−ξ) sin

θ

2
sin

ζ

2
||2

= || cos
θ

2
cos

ζ

2
+ cos(φ− ξ) sin

θ

2
sin

ζ

2
+ i sin(φ− ξ) sin

θ

2
sin

ζ

2
||2

= cos2 θ

2
sin2 ζ

2
+ cos2(φ− ξ) sin2 θ

2
sin2 ζ

2
+ 2 sin

θ

2
cos

θ

2
sin

ζ

2
cos

ζ

2
cos(φ− ξ)

+ sin2(φ− ξ) sin2 θ

2
sin2 ζ

2

= cos2 θ

2
cos2 ζ

2
+ sin2 θ

2
sin2 ζ

2
+ 2 sin

θ

2
cos

ζ

2
sin

ζ

2
cos

ζ

2
cos(φ− ξ)

= cos2 θ

2
cos2 ζ

2
+ (1− cos2 θ

2
) sin2 ζ

2
+

1
2

sin θ sin ζ cos(φ− ξ)

= sin2 ζ

2
+ cos2 θ

2
(cos2 ζ

2
− sin2 ζ

2
) +

1
2

sin θ sin ζ cos(φ− ξ)

= sin2 ζ

2
+

cos ζ

2
+

cos ζ

2
cos θ +

1
2

sin ζ sin θ cos(φ− ξ)

Therefore, we see that the measurement function that we defined earlier, is
a function of 4 parameters:

f (θ, φ, ζ, ξ) = sin2 ζ

2
+

cos ζ

2
+

cos ζ

2
cos θ +

1
2

sin ζ sin θ cos(φ− ξ) (5.6)

Now, given n-copies of an unknown state vector, we want to estimate the
state with as much accuracy as possible by making n-observations to it.
Here, the assumption will be that the measurement operator, and hence
ζ and ξ are known, and we want to estimate θ and φ.The function f can
be thought of as a surface and with each observation, we get the value of
f at particular ζi and ξi. Given these n-points on the surface, we want to
estimate the values of θ and φ.
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5.3 State estimation

The question of how well the state, |ψ〉, of a physical system can be es-
timated is an important one. A state contains all the information about
the quantum state and hence the probability distributions of any measure-
ments can be calculated. But can we reconstruct a quantum state from a
set of probability distributions?
It is definitely possible if we are given infinitely many identical copies of
the system. Ours basic assumption in quantum mechanics is that if an
infinite ensemble of identically prepared quantum states is given, then it
can be determined exactly. But in practice, we never have such an infinite
ensemble. Given a finite ensemble, the state can be known only approxi-
mately. How much knowledge can be extracted from a finite ensemble?
What strategies furnish the maximum knowledge? We will try to answer
this question in the rest of the thesis.

5.4 Ensemble of identically prepared states

It is well known that a composite system of non interacting particles can
possess non local properties. A composite system can exhibit correlations
which can not yet be explained by any theoretical model that involves only
variables belonging to each subsystem separately.
Let us define a simple quantum game to formalize this problem. The
game consists of many rounds. In each round, a player receives N qubits
with same state. The player knows that the state of all N qubits is same.
The player is allowed to do any measurement that he wants and is finally
required to guess the state. The score of each round is cos2(α/2), where α is
the angle between the original state and the guessed state. As the game has
been defined, the score is the number between 0 and 1. If no measurement
is performed and the state is measured randomly, the expected score
obtained is 1/2. Therefore, the improvement over 1/2 represents the gain
in information.
Let us denote the state of the system to be measured by |ψ〉, and we
will follow the POVM measurement procedure, described in the previous
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chapter. So, we will couple this system with an ancilla. Let the initial state
of the ancilla be |φ〉. Then,

|ψ〉S |φ〉A → USA |ψ〉S |φ〉A (5.7)

Let us describe the action of USA. Let {|i〉} denote an orthonormal basis of
the Hilbert space of system to be measured. Then, let the following denote
the action of USA on this orthonormal basis:

|i〉 |φ〉A
USA−−→∑

i, f
| f 〉
∣∣∣φi

f

〉
A

(5.8)

where,
∣∣∣φi

f

〉
= Ui

f |φ〉, when USA = ∑
i, f
(| f 〉 〈i|)⊗Ui

f . Therefore, we have:

|ψ〉s |φ〉a →∑
i, f
〈i|ψ〉 | f 〉

∣∣∣φi
f

〉
(5.9)

Here, note that we have no restriction on the space of ancilla or the in-
teraction. The wavefunctions

∣∣∣φi
f

〉
are not necessarily normalized, nor

orthogonal. The only restriction they obey is:

∑
f

〈
ψi

f

∣∣∣ψi
f
′
〉
= δi,i′ (5.10)

The next step is a projective measurement on ancilla. Let the orthonormal
basis corresponding to this projective measurement on ancilla be

∣∣mξ

〉
.

The probability of outcome being ξ, the eigenvalue corresponding to
∣∣mξ

〉
,

when the initial state of the system to be measured is |ψ〉 is:

pξ(ψ) = ∑
i,i′, f

〈
ψ
∣∣i′〉 〈i|ψ〉 〈φi

f
′
∣∣∣mξ

〉 〈
mξ

∣∣∣φi
f

〉
(5.11)

When the observation of ξ has been recorded, some information is obtained
about the state. This information could be expressed as a function S(ξ, ψ).
The average value of S is:

S = ∑
ξ

∫
Dψpξ(ψ)S(ξ, ψ) (5.12)
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We need to maximize S for the game we had defined initially. The com-
bined Hilbert space of this combined system can be written as direct sum of
different subspaces with total spin = N/2, N/2-1, ... .A detailed discussion
of this Hilbert space can be found in appendix. Now, we have n copies of
same state, therefore it will belong to the subspace with the highest spin.
So we will specify measuring interaction in this subspace. A basis of this
subspace is |m〉, m = −N/2, . . . , N/2. Let the unitary evolution of the N
particles and the ancilla be specified as below:

|m〉 |φ〉 USA−−→ |vm〉 =
2N

∑
f=1
| f 〉
∣∣∣φm

f

〉
(5.13)

Here {| f 〉} is the complete basis of the Hilbert space of n-qubits. The
probability to obtain the result ξ is:

pξ(ψ) =
N/2

∑
m,m′=−N/2

2N

∑
f−1
〈ψ|m〉

〈
φm

f

∣∣∣eξ

〉
×
〈

eξ

∣∣∣φm′
f

〉 〈
m′
∣∣ψ〉 (5.14)

Now, after measuring the ancilla in state ξ, suppose we make a guess,
∣∣ψξ

〉
,

for the state, such that the score is S(|ψ〉 ,
∣∣ψξ

〉
). And, we know that |ψ〉

lives on Bloch sphere, hence, we can rewrite eqn (5.7) for this case as:

SN = ∑
ξ

∫ sin θdθdφ

4π
pξ(|ψ〉)S(|ψ〉 ,

∣∣ψξ

〉
) (5.15)

With |ψ〉 = cos(θ/2) |0〉 +iφ sin(θ/2) |1〉 and
∣∣ψξ

〉
= cos

(
θξ/2

)
|0〉 +iφξ

sin
(
θξ/2

)
|1〉. and the constaints:

〈
vm
∣∣∣vm′

〉
= ∑

ξ

2N

∑
f=1

〈
φm

f

∣∣∣eξ

〉 〈
eξ

∣∣∣φm′
f

〉
= δmm′ (5.16)

It convenient to work with only the following constraint:

N/2

∑
m=−N/2

〈vm|vm〉 =
N/2

∑
m=−N/2

∑
f

∑
ξ

〈
φm

f

∣∣∣eξ

〉 〈
eξ

∣∣∣φm
f

〉
= N + 1 (5.17)
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Upon adding to SN the constraint in eqn (5.12) multiplied by the Lagrange
multiplier λ and varying with respect to

〈
φm

f

∣∣∣eξ

〉
, one obtains the follow-

ing equation:

∑
m′

〈
eξ

∣∣∣φm′
f

〉
[Mmm′(θξ , φξ)− λδmm′ ] = 0 (5.18)

where

Mmm′(θξ , φξ) =
∫ sin θdθdφ

4π
〈ψ|m〉

〈
m′
∣∣ψ〉× S(|ψ〉 ,

∣∣ψξ

〉
) (5.19)

Solving these equations, we get SNextreme = λ(N + 1). Eqn (4.13) has
non-trivial solution only if λ is an eigenvalue of M(θξ , φξ). It follows that
eigenvalues of M(θξ , φξ) are independent of θξ , φξ , with largest eigenvalue
λ = 1/(N + 2). Therefore, the maximum score for this problem is (N +

1)/(N + 2).





27

Appendix A

Combined Hilbert space of N
spin-1

2 particles

A.1 Angular Momentum

Classically, the angular momentum vector~L is defined by the cross product
of of the position~r, and momentum ~p

~L =~r× ~p (A.1)

In quantum mechanics, for every observable there is an operator, we have
the operators, L̂x, L̂y and L̂z for each component of the angular momentum
vector. But these operators do not commute with each other and hence can
not be simultaneously observed.

[L̂i, L̂j] = i}εijk L̂k (A.2)

The operator for the square of the magnitude of the angular momentum,
L̂2 commutes with each operator for a particular component and hence
L̂2 and one of the components, say z, L̂z can be simultaneously observed.
This means that the eigenbasis of L̂z is also an eigenbasis of L̂2. The eigen
values of L̂2 are l(l + 1)}2 and eigenvalues of L̂z are m = −l, . . . , l, and
let the common eigenvectors be represented by |l, m〉. The spin angular
momentum is an intrinsic property, that is not due to motion in position
space but it has been observed to follow same commutation relations.
Let us denote the spin operators by S, then, for spin half particles, the
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2 particles

following are true:

Ŝx =
}
2

σx Ŝy =
}
2

σy Ŝz =
}
2

σz (A.3)

where σ’s are the Pauli matrices. Similarly, we will denote the common
eigenvectors of Ŝ2 and Ŝz by |s, ms〉. Now suppose we have N spin-1

2

particles.

A.2 Hilbert space of combined system

We would like to think how we could describe our system of N parti-
cles, each of spin 1

2 , in way that emphasizes the composite system rather
than the individual particles. For each individual subsystem, we have
a total two possible states, for ms = ±1

2 , therefore for N particles, we
have 2N such states. Let us see this with an example. Let N = 2. Then
the basis vectors of the four dimensional product space in the uncou-
pled representation are

∣∣∣ms1 =
1
2

〉
⊗
∣∣∣ms2 =

1
2

〉
,
∣∣∣ms1 =

1
2

〉
⊗
∣∣∣ms2 = −1

2

〉
,∣∣∣ms1 = −1

2

〉
⊗
∣∣∣ms2 =

1
2

〉
and

∣∣∣ms1 = −1
2

〉
⊗
∣∣∣ms2 = −1

2

〉
. On the other

hand, if we can use the coupled representation and find the total spin
quantum number of the two particles together, then s is either 1

2 +
1
2 = 1

or 1
2 −

1
2 = 0. When the total spin quantum number is 1, the quantum

number ms can be −1, 0, 1. And when the total spin quantum number
is 0, ms can only be 0. Therefore the basis for the system in this cou-
pled representation is |s = 1, ms = −1〉, |s = 1, ms = 0〉, |s = 1, ms = 1〉
and |s = 0, ms = 0〉. Therefore, if Hn denote the Hilbert space for spin-

n particle, thenHn1 ⊗Hn2 =
n1+n2⊕

k=|n1−n2|
Hk
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