
Imbalanced Image Classification Using
Adaptive Dynamic Oversampling

Framework in Deep Feature Space

Sourav Karmakar

Imbalanced Image Classification Using
Adaptive Dynamic Oversampling

Framework in Deep Feature Space

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in

Computer Science

by

Sourav Karmakar
[Roll No: CS-1721]

under the guidance of

Dr. Swagatam Das
Associate Professor

Electronics and Communication Sciences Unit

Indian Statistical Institute
Kolkata-700108, India

July 2019

To my family, friends and my guide

CERTIFICATE

This is to certify that the dissertation entitled “Imbalanced Image Classifica-
tion Using Adaptive Dynamic Oversampling Framework in Deep Fea-
ture Space” submitted by Sourav Karmakar to Indian Statistical Institute,
Kolkata, in partial fulfillment for the award of the degree of Master of Technol-
ogy in Computer Science is a bonafide record of work carried out by him under
my supervision and guidance. The dissertation has fulfilled all the requirements as
per the regulations of this institute and, in my opinion, has reached the standard
needed for submission.

Swagatam Das
Associate Professor,
Electronics and Communication Sciences Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.

Acknowledgments

I would like to show my highest gratitude to my advisor, Dr. Swagatam Das, Asso-
ciate Professor, Electronics and Communication Sciences Unit, Indian Statistical
Institute, Kolkata, for his guidance and continuous support and encouragement.
He has literally taught me how to do good research, and motivated me with great
insights and innovative ideas.

I would also like to thank Mr. Sankha Subhra Mullick, Senior Research Fellow,
Indian Statistical Institute, Kolkata, for his valuable suggestions and insightful
discussions.

My deepest thanks to all the teachers of Indian Statistical Institute, for their
valuable suggestions and discussions which added an important dimension to my
research work.

Finally, I express my profound gratitude to my mother for her everlasting support
and continuous encouragement throughout my years of study.

Last but not the least, I would like to thank all of my friends for their help and
support. I thank all those, whom I have missed out from the above list.

Sourav Karmakar
Indian Statistical Institute

Kolkata - 700108 , India.

Abstract

In real world applications, it is very common to encounter data with high class
imbalance. Imbalanced dataset is a challenging issue in practical classification
problem, as the classifier gets biased towards the majority classes.

The traditional techniques like synthetic minority oversampling have great suc-
cess in traditional machine learning problems with class imbalance, however these
techniques fail to perform well in the field of complex, structured and very high
dimensional data like images.

In our work we propose a novel dynamic oversampling framework, which is broadly
subdivided into three parts. The first step is the representation learning of the
dataset, where a Convolutional Neural Network is used to map the raw input
training data into a new feature space. In the second step a modified minority
oversampling technique is implemented with adaptive k -NN based search between
in-class samples in deep feature space. Finally a dense neural classifier is trained on
the augmented dataset. To increase the discriminating power of the final classifier
we have trained it with modified sample weights.

We have also supplemented our work with empirical studies on publicly avail-
able benchmark image datasets and have shown that our technique provides a
good countermeasure to handle imbalanced image datasets and provides superior
performance than existing techniques.

Keywords: Imbalanced Classification, Representation Learning, Adaptive-kNN,
Minority Oversampling

1

Contents

1 Introduction 8

1.1 Problem Statement . 8

1.2 A Motivational Example . 10

1.2.1 Dataset and Imbalanced Settings 10

1.2.2 Performance and Observation 10

1.3 Our Contribution . 11

1.4 Thesis Outline . 11

2 Preliminaries 12

2.1 Convolutional Neural Network (CNN) 12

2.2 VGG-16 Architecture . 13

2.3 Representation Learning: Supervised Deep Feature Extraction us-
ing Deep Neural Network (DNN) 14

2.4 The k -Nearest Neighbour Algorithm 15

2.5 Class Weighting Scheme . 15

2.6 Performance Metrics . 16

3 Related Works on Deep Learning with Class Imbalance 19

3.1 Data Level Methods . 19

3.1.1 Random Over Sampling (ROS) 19

3.1.2 Random Under Sampling (RUS) 20

3.1.3 ROS + RUS . 20

3.1.4 Synthetic Minority Oversampling TEchnique (SMOTE) . . . 20

3.2 Algorithmic Level Methods . 21

3.2.1 Focal Loss . 21

3.2.2 Cost Sensitive Deep Neural Network 22

3.3 Hybrid Level Methods . 22

3.3.1 Large Margin Local Embedding (LMLE) 22

3.3.2 Deep Over-Sampling Framework (DOS) 23

2

CONTENTS 3

4 Our Proposed Technique 24

4.1 Mathematical Notations . 24

4.2 Step by Step walk through the Technique 25

4.2.1 Training of Supervised Feature Extraction Model 25

4.2.2 Extraction of features . 26

4.2.3 Adaptive Dynamic Over-Sampling Algorithm 26

4.2.4 Training of final classifier . 32

4.3 Complexity Analysis of Our Proposed Method 33

5 Description of the Datasets 35

5.1 MNIST-back-rotation Images (MNISTrb) 35

5.1.1 Data Augmentation . 35

5.1.2 Imbalanced Settings . 35

5.2 Fashion-MNIST Dataset . 36

5.2.1 Imbalanced Settings . 36

5.3 CIFAR-10 Dataset . 37

5.3.1 Imbalanced Settings . 37

5.4 Street View House Number (SVHN) Dataset 37

5.4.1 Imbalanced Settings . 38

5.5 Re-sampled ImageNet Dataset . 39

6 Neural Network Architectures and Training 40

6.1 Feature Extracting Architecture for MNISTrb and Fashion-MNIST
Dataset . 40

6.2 Feature Extracting Architecture for CIFAR-10 and SVHN Dataset . 42

6.3 Feature Extracting Architecture for Re-sampled ImageNet Dataset . 42

6.4 Training Schemes . 43

7 Experimental Results 44

7.1 Results on MNISTrb dataset . 45

7.2 Results on Fashion-MNIST dataset 48

7.3 Results on CIFAR-10 dataset . 51

7.4 Results on SVHN dataset . 54

7.5 Results on Re-sampled ImageNet dataset 57

8 Conclusion and Scope of Future Work 58

8.1 Conclusion . 58

8.2 Scope of Future Work . 58

List of Tables

1.1 Effect of imbalance in handwritten digit recognition using MNIST
dataset . 10

4.1 Mathematical Notations . 25

6.1 Dataset-specific Feature Extracting CNN training scheme 43

7.1 Performance comparison of different methods on the imbalanced
MNISTrb dataset of different imbalance ratio 45

7.2 Performance comparison of different methods on the imbalanced
Fashion-MNIST dataset of different imbalance ratio 48

7.3 Performance comparison of different methods on the imbalanced
CIFAR-10 dataset of different imbalance ratio 51

7.4 Performance comparison of different methods on the imbalanced
SVHN dataset of different imbalance ratio 54

7.5 Performance comparison of different methods on the Resampled
Imagenet dataset. 57

4

List of Figures

1.1 Long-tail distribution of SUN-397 dataset 9

2.1 Block Diagram of Convolutional Neural Network (CNN) 12

2.2 How VGG-16 works . 13

2.3 Representation Learning by CNN 15

3.1 How SMOTE works . 21

3.2 Focal Loss for different values of hyper-parameter γ 21

3.3 The DOS Framework: (a) Basic CNN Architecture for supervised
feature learning and (b) The Deep Feature Overloading Framework 23

4.1 Choosing the value of k adaptively using linear heuristic 27

4.2 The working principle of ADOS . 30

5.1 A glimpse of MNISTrb dataset . 35

5.2 Class names and example images of Fashion MNIST dataset 36

5.3 Class names and example images of CIFAR-10 Dataset 37

5.4 A glimpse of SVHN dataset . 38

5.5 Class Distribution of SVHN Dataset 39

5.6 Class distribution of Re-sampled ImageNet dataset 39

6.1 CNN used as Supervised Feature Extractor 41

6.2 Supervised Feature Extracting CNN for MNISTrb and Fashion-
MNIST dataset . 41

6.3 Supervised Feature Extracting CNN for CIFAR-10 and SVHN dataset 42

6.4 Flattened VGG-16 architecture . 43

6.5 Fine-tuned VGG-16 architecture for feature extraction of Re-sampled
ImageNet dataset . 43

7.1 Average recall of minority classes on MNISTrb dataset 46

7.2 Average recall of all classes (ACSA) on MNISTrb dataset 46

5

6 LIST OF FIGURES

7.3 F1 score averaged over all classes on MNISTrb dataset 47

7.4 GMean on MNISTrb dataset . 47

7.5 Average recall of minority classes on Fashion-MNIST dataset 49

7.6 Average recall of all classes (ACSA) on Fashion-MNIST dataset . . 49

7.7 F1 score averaged over all classes on Fashion-MNIST dataset 50

7.8 GMean on Fashion-MNIST dataset 50

7.9 Average recall of minority classes on CIFAR-10 datset 52

7.10 Average recall of all classes (ACSA) on CIFAR-10 datset 52

7.11 F1 score averaged over all classes on CIFAR-10 datset 53

7.12 GMean on CIFAR-10 datset . 53

7.13 Average recall of minority classes on SVHN datset 55

7.14 Average recall of all classes (ACSA) on SVHN datset 55

7.15 F1 score averaged over all classes on SVHN datset 56

7.16 GMean on SVHN datset . 56

7.17 Performance comparison of different methods on resampled Ima-
geNet dataset . 57

List of Algorithms

1 Get k Nearest Neighbours (x, S, k) 15
2 Class Weight Calculation (X) . 16
3 Compute Pairwise Distance (S) . 28
4 Get Number of Nearest Neighbours (x, S, kmax, kmin) 28
5 Adaptive Dynamic Over Sampling 31

7

Chapter 1

Introduction

1.1 Problem Statement

In general the pattern classification problem can be mathematically viewed as
learning a function g(.) from a set of patterns X to a set of class labels C = {1, 2,
3,..., C} [1, 2]. Each data points in set X is a D-dimensional vector (i.e. X ⊆ RD).

If there are only two classes (i.e. |C| = 2) then it is called binary classification
problem. If there are more than two classes (i.e.|C| > 2 then it is called multi-class
classification problem.

A classifier is designed to perform the task of classification [1]. During training a
subset of the original dataset Xtrain ⊂ X, called the training dataset are fed to
classifier in order to estimate the property of the function g : X → C. Let there
are total n number of training samples (i.e. |Xtrain| = n). At this stage for each
training sample xi ∈ Xtrain, where i = 1, 2, ..., n the true value of g(xi) are known
to the classifier. During testing phase the classifier is expected to predict correct
class-label of unseen test samples. i.e. for a new unseen data point xj ∈ Xtest,
where j = 1, 2, ...,m the classifier is expected to provide correct values of g(xj).
Here, Xtest ⊂ X called the test dataset and |Xtest| = m.

Definition 1.1. Imbalanced Classification: Consider a classification problem.
If one or few of the classes have significantly less number of training samples
as compared to the other classes then it is called a Imbalanced Classification
problem. The under-represented classes are called minority classes and rest are
called majority classes.

Class imbalance is intrinsic in many classification problems, e.g. medical diag-
noses problem where the majority of patients are healthy. Extrinsic imbalance, on
the other hand, is introduced through external factors, e.g. collection or storage
procedures [3].

Let nc denotes the number of training sample pertaining to class-c (c ∈ C) and∑|C|
c=1 nc = n. We define Class Imbalance Ratio as following.

8

1.1. Problem Statement 9

Definition 1.2. Class Imbalance Ratio (ρ)

ρ =
max {nc | c = 1, 2, ..., |C|}
min {nc | c = 1, 2, ..., |C|}

Definition 1.3. Let nmax = max {nc | c = 1, 2, ..., |C|}. Then, we define Minority
Classes (Cmin) and Majority Classes (Cmjr) as following:

Cmin = {c | c ∈ C and nc ≤
1

ρ′
× nmax} and Cmaj = C \ Cmin ,

where, ρ′ (≤ ρ) usually depends on user’s discretion and specific to the dataset
under consideration.

Images are highly structured, spatially coherent, and complex high dimensional
datapoints. Consider a tiny RGB image of spatial dimension 32 × 32. If we
consider each pixel to be a different attribute, then the overall dimensionality of
such images is 3072. Convolutional Neural Network (CNN) (sec: 2.1) has proven
its excellence in classifying structured data like Images than traditional classifiers
[4]. Image dataset also contains intrinsic long-tail or skewed distribution of classes,
e.g. Scene UN derstanding dataset SUN-397 [5].

Figure 1.1: Long-tail distribution of SUN-397 dataset
Figure taken from reference: [6]

Despite its success in image classification problem, CNN suffers from the class
imbalance issue and like traditional classifiers it is also prone to get biased towards
the majority classes, resulting in poor performance in minority classes [7]. Our
task is to develop an algorithm that will boost the performance of CNN based
image classifier in the presence of class imbalance in the dataset. Let’s first see an
example to understand the effect of class imbalance in deep learning.

10 1. Introduction

1.2 A Motivational Example

In this section we shall see an example where the performance of CNN gets dete-
riorated with class imbalance.

1.2.1 Dataset and Imbalanced Settings

MNIST handwritten digit recognition dataset is a very popular benchmarking
dataset in machine learning [8]. There are total 10 classes pertaining to 10 digits.
The dataset contains 60000 training images and 10000 test images.

The dataset is not inherently imbalanced. We have randomly chosen 4 classes as
minority classes (digit-0, 2, 5 & 8). The data from the minority classes are dropped
randomly to achieve the desired class imbalance ratio (ρ = 10, 20, 40 &100).

Recall with
Balanced Data

Recall with Imbalanced Data

Digits
ρ = 1 ρ = 10 ρ = 20 ρ = 40 ρ = 100

0* 0.993 0.978 0.981 0.933 0.861

1 0.998 0.998 0.999 0.997 0.993

2* 0.997 0.933 0.930 0.823 0.804

3 0.995 0.998 0.991 0.993 0.994

4 0.994 0.999 0.993 0.986 0.994

5* 0.987 0.950 0.946 0.879 0.826

6 0.990 0.995 0.992 0.996 0.991

7 0.992 0.988 0.982 0.993 0.998

8* 0.982 0.927 0.899 0.899 0.846

9 0.981 0.970 0.991 0.991 0.991

* marks digits belong to minority classes

Table 1.1: Effect of imbalance in handwritten digit recognition using MNIST
dataset

1.2.2 Performance and Observation

We have tested the performance of the CNN (sec: 6.1) on imbalanced MNIST data
of different imbalance ratio (ρ = 10, 20, 40 &100) and compared the performance
with the balanced data. The performance metric being Class Specific Recall (sec:
2.6). It has been observed (Table 1.1) the steady deterioration of the performance
of CNN pertaining to the test samples in minority classes with the increase in
class imbalance ratio (ρ).

1.3. Our Contribution 11

This example helps us to understand the effect of class imbalance on the perfor-
mance of CNN.

1.3 Our Contribution

Our contributions are summarized as follows:

• We have proposed a new synthetic oversampling technique for minority
classes in deep feature space obtained by the CNN’s representation learn-
ing.

• We have analyzed the complexity of our algorithm.

• We have also proposed a sample wise re-weighting scheme to improve the
discriminating power of the final classifier.

• We have tested our proposed method for some bench-marking dataset as well
as for a new synthetic dataset which was obtained by sub-sampling original
ImageNet dataset of ILSVRC’12.

1.4 Thesis Outline

The rest of the thesis is organized as follows:

• In Chapter-2, we briefly discussed about the preliminaries, like: CNN,
VGG-16 architecture, k -NN and Ada-k -NN algorithm and different perfor-
mance metrics.

• In Chapter-3, we have discussed about the other related work that has
been already done in this field.

• In Chapter-4, we have described our proposed framework with details.

• In Chapter-5, the datasets being used are briefly described along with
detailed testing procedure.

• In Chapter-6, different CNN architectures used for representation learning
are thoroughly discussed.

• In Chapter-7, the performance evaluation of our proposed framework is
carried out on different datasets.

• Finally, we have concluded our discussion in Chapter-8 after discussing the
scope of future work.

Chapter 2

Preliminaries

2.1 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN or ConvNet) [4] is a class of deep neural
network mostly applied to visual recognition task, e.g. classification of images.
They are also known as Shift Invariant or Space Invariant Artificial Neural Net-
works (SIANN), based on their shared-weights architecture and translation in-
variance characteristics. It has shown superior performance over Multi-Layered
Perceptron [9] in visual recognition task [10]. A Convolutional Neural Network
comprises of following building blocks [11].

Figure 2.1: Block Diagram of Convolutional Neural Network (CNN)
Source: https://res.mdpi.com/entropy/entropy-19-00242/article deploy/

• Convolutional Layer:
Convolutional layer is the basic building block of CNN. Each convolutional
layer should have the following attributes:

– Input is a tensor with shape (number of images) × (image width) ×
(image height) × (image depth).

12

https://res.mdpi.com/entropy/entropy-19-00242/article_deploy/html/images/entropy-19-00242-g001.png

2.2. VGG-16 Architecture 13

– A set of learnable Convolutional Kernels whose width and height are
hyper-parameters, and whose depth must be equal to that of the image.
Convolutional layers convolve across the width and height of the input
volume and pass its result to the next layer.

Each convolution operation is usually succeeded by ReLU activation [10].

• Pooling Layer:
Another important concept of CNNs is pooling, which is a form of non-
linear down-sampling. There are several non-linear functions to implement
pooling among which max pooling is the most common. It partitions the
input image into a set of non-overlapping rectangles and, for each such sub-
region, outputs the maximum.

• Fully Connected Layer
After several convolutional and max pooling layers, the high-level reasoning
in the neural network is done via fully connected layers (also known as Dense
layers).

• Classification Layer
This is the final output layer of the CNN where the actual output is compared
with the predicted output and the loss is calculated in supervied learning
framework. The loss is optimized by updating the learnable parameters
through backpropagation learning algorithm [9]

2.2 VGG-16 Architecture

VGG-16 [12] is a deep CNN architecture developed by Visual Geometry Group
(VGG) at Oxford University in the year 2014 for ILSVRC’14 competition [13].

Figure 2.2: How VGG-16 works
Source: http://www.cs.toronto.edu/ frossard/post/vgg16/

http://www.cs.toronto.edu/~frossard/post/vgg16/

14 2. Preliminaries

It comprises of 16 number of intermediate weight layers and 1 Classification (or
Softmax layer).

• 13 convolutional layers

• 3 fully connected layers

The model achieves 92.7% top-5 test accuracy in ILSVRC’14 competition. The
number of trainable parameters of VGG-16 is approxiately 138.36 million.

2.3 Representation Learning: Supervised Deep

Feature Extraction using Deep Neural Net-

work (DNN)

Definition 2.1. Representation learning is the process of using machine learn-
ing to map raw input data features into a new representation, i.e. a new feature
space, for the purpose of improving detection and classification tasks. This map-
ping from raw input data to new representations is achieved through non-linear
transformations of the input data. [14]

Let the original data points belong to D dimensional space. Through representa-
tion learning we are learning a function f(.) which shall map (embed) the original
data points into d dimensional space (also known as feature space). Usually d� D,
thus representation learning is a technique used for dimensionality reduction and
feature extraction

The mapping f : RD → Rd should preserve the neighbourhood information of the
original datapoints as much as possible.

Thus with representation learning classification task g : X → C (as described in
sec: 1.1) becomes a two step process.

• Find the representation of the original datapoints (X) in feature space using
function f(.).

f : X → X̃, (X ⊆ RD and X̃ ⊆ Rd)

• Use these representation of the original dataset (X̃) to learn another function
h(.) which shall map these feature space to the set of classes (C).

h : X̃ → C

As data passes through the hidden layers of a Deep Neural Network (DNN), it
is transformed by each layer into a new representation. Given sufficient data,
DNNs are able to learn high-level feature representations of inputs through the
composition of multiple hidden layers.[15]

We have employed basic CNN to perform the task of representation learning as
shown above. The CNN is trained on labelled training dataset to learn the em-
bedding function f(.) from input feature space to deep feature space. Thus this
procedure is also known as Supervised Feature Extraction.

2.4. The k -Nearest Neighbour Algorithm 15

Figure 2.3: Representation Learning by CNN

2.4 The k-Nearest Neighbour Algorithm

k -Nearest Neighbour (k -NN) algorithm is a very well known non-parametric pat-
tern classification algorithm [16]. Because of its simplicity it has found its applica-
tions almost in every domain of pattern classification. Following is the algorithm
to find the k nearest neighbours of a datapoint x from a dataset S.

Algorithm 1 Get k Nearest Neighbours (x, S, k)

Require: The set of Data S and the point x and number of neighbours k

1: Let |S \ {x}| = n− 1
2: dist = [] . Initialize list of distances
3: for i = 1 to n− 1 do
4: d← Euclidean Distance between x and ith point of S \ {x}
5: dist.append(d) . Adding the distance computed to the end of list
6: end for
7: neigh← argsort(list, k) . Sort w.r.t. index and return indices of k-smallest

values
8: return neigh

2.5 Class Weighting Scheme

One of the effective way of handling class imbalance is to use class specific weights.
Usually in this method the learning algorithm is highly penalized in the event
of misclassification of minority class samples. A folklore technique is to assign
the class weight of a particular class to be inversely proportional to the prior
probability of the class. Following Class Weighting Scheme (Algorithm: 4) shall
be used to compute class weights of some labelled dataset X.

16 2. Preliminaries

Algorithm 2 Class Weight Calculation (X)

Require: The labeled dataset X

1: Let |X| = n
2: Let the set of class labels C = {1, 2, ..., C}
3: Let g(x), ∀x ∈ X denotes the class label of datapoint x, i.e. g(x) ∈ C
4: Xc ← {x | x ∈ X and g(x) = c} ∀c ∈ C
5: nc ← |Xc|
6: Initialize ClassWeights ∈ R|C| . Initialize Global Class Weight vector
7: Z ← 0 . Initialize normalization constant
8: for c = 1 to |C| do
9: pc ← (nc/n) . pc is the prior probability of class c ∈ C
10: ClassWeights[c]← (1/pc)
11: Z ← Z + ClassWeights[c]
12: end for
13: ClassWeights← ClassWeights /Z . This step normalizes the class weight

vector
14: return ClassWeights

2.6 Performance Metrics

Performance of a classifier on a C-class classification problem can be expressed in
the form of a matrix called the Confusion Matrix, which is defined as follows:

Definition 2.2. A Confusion Matrix over a test set Xtest for a C-class classi-
fication problem can be defined as MC = [mij]C×C , where mij represents the
number of points which actually belong to ith class but are predicted as a member
of class j, ∀i, j ∈ C. Thus, the diagonal elements (i.e.mii) are those instances
of class i which are correctly classified while the rest are different misclassifica-
tions. Each entry in the confusion matrix must be a non-negative integer i.e.
mij ∈ Z+ ∪ {0}; ∀i, j ∈ C

There are some important properties of the Confusion Matrix as discussed follow-
ing:

1. The sum of the entries of the confusion matrix is denoted by ni (i.e.
∑C

j=1mij =

ni; ∀i ∈ C), which is the number of test points belong to the ith class. We
assume ni > 0.

2. The sum of the entries in the jth column of the confusion matrix denoted by
lj (i.e.

∑C
i=1mij = lj; ∀j ∈ C), which is the number of test points predicted

as jth class by the classifier.

3. The total number of test points =
∑C

i=1

∑C
j=1mij; ∀i, j ∈ C.

To summarize the performance of a classifier we define following performance
metrics, whose values are easily obtainable from the Confusion Matrix.

2.6. Performance Metrics 17

• Precision: Precision (denoted by α) for ith class is defined as:

αi =
mii

li
; ∀i ∈ C . (2.1)

Average Precision is calculated as:

ᾱ =
1

|C|

|C|∑
i=1

αi . (2.2)

Average Precision for majority and minority classes are calculated as:

αmaj =
1

|Cmaj|
∑

c ∈ Cmaj

αc and αmin =
1

|Cmin|
∑

c ∈ Cmin

αc . (2.3)

• Recall: Recall (denoted by β) for ith class is defined as:

βi =
mii

ni
; ∀i ∈ C. (2.4)

Average Recall (also known as Average Class Specific Accuracy, ACSA) is
calculated as:

β̄ =
1

|C|

|C|∑
i=1

βi . (2.5)

Average Recall for majority and minority classes are calculated as:

βmaj =
1

|Cmaj|
∑

c ∈ Cmaj

βc and βmin =
1

|Cmin|
∑

c ∈ Cmin

βc . (2.6)

• F1 Score: F1 score for ith class is defined as:

Fi =
2αiβi
αi + βi

. (2.7)

Average F1 score is calculated as:

F̄ =
1

|C|

|C|∑
i=1

Fi . (2.8)

Average F1 score for majority and minority classes are calculated as:

Fmaj =
1

|Cmaj|
∑

c ∈ Cmaj

Fc and Fmin =
1

|Cmin|
∑

c ∈ Cmin

Fc . (2.9)

18 2. Preliminaries

• GMean: GMean (denoted by γ) is calculated as:

γ =

 |C|∏
i=1

βi

 1
|C|

=

 |C|∏
i=1

mii

ni

 1
|C|

. (2.10)

GMean for majority and minority classes are calculated as:

γmaj =

 ∏
c ∈ Cmaj

βc

 1
|Cmaj |

and γmin =

(∏
c ∈ Cmin

βc

) 1
|Cmin|

. (2.11)

• Accuracy: Accuracy (denoted by η) is calculated as:

η =
trace(Mc)

sum(Mc)
=

∑|C|
i=1mii∑|C|

i=1

∑|C|
j=1mij

(2.12)

Chapter 3

Related Works on Deep Learning
with Class Imbalance

Addressing class imbalance has been extensively studied over past few decades.
Johnson and Khoshgoftaar [14] published a comprehensive review of different tech-
niques used in the context of class imbalance both in the fields of traditional ma-
chine learning and deep learning. Researcher have shown that in class imbalanced
scenarios, the length of the minority class’s gradient component is much smaller
than the length of the majority class’s gradient component. In other words, the
majority class is essentially dominating the net gradient that is responsible for
updating the model’s weights[17].

All the techniques used in order to increase the classifier’s performance in the
presence of imbalanced data can be grouped into Data Level Methods, Algorithmic
Level Methods and Hybrid Methods.

In this section we shall briefly discuss the different techniques used for handling
class imbalance in Deep Learning.

3.1 Data Level Methods

These kind of techniques mainly deals with different methods of re-sampling the
training data to make it to-some-extent balanced.Various Data Level methods in
the context of deep learning are following:

3.1.1 Random Over Sampling (ROS)

In this method all minority classes were over-sampled until class balance was
achieved, where any class smaller than the largest class size is considered a minority
class. Masko and Hensman [18] explored the effects of class imbalance and ROS
using deep CNNs.

19

20 3. Related Works on Deep Learning with Class Imbalance

3.1.2 Random Under Sampling (RUS)

All majority classes were under-sampled until class balance was achieved, where
any class larger than the smallest class size is considered a majority class. RUS
performs poorly when compared to baseline as because of under-sampling the
classifier looses much of the information, which may be crucial for pattern classi-
fication. Buda et al. [19] performed a two phase training procedure where in the
first phase the CNN is trained with balanced data produced by RUS and in the
second phase the CNN is fine tuned with the original data.

3.1.3 ROS + RUS

Let, ρa is the actual class imbalance ratio in the dataset and ρd is the desired class
imbalance ratio (ρa > ρd). Then in this method the majority classes were under-
sampled and minority classes are over-sampled to achieve the desired imbalance
ratio ρd. Buda et al. [19] compared ROS and RUS using three multi-class image
data sets and deep CNNs.

3.1.4 Synthetic Minority Oversampling TEchnique (SMOTE)

Synthetic Minority Oversampling Technique is a powerful method that has shown
a great deal of success in various applications [20]. The SMOTE algorithm creates
artificial data based on the feature space similarities between existing minority
examples. The SMOTE algorithm in short is described below.

− Let x
(c)
i denotes ith sample of a minority class c (c ∈ Cmin).

− Let {x(c)i1 , x
(c)
i2 , ..., x

(c)
ik } denotes a set of k nearest neighbours of x

(c)
i for some

predefined value k (k ∈ N).

− Choose one of the k nearest neighbours. Let’s call it x̂
(c)
i .

− For some random number δ ∈ [0, 1], a new synthetic sample
∗
xi

(c)
is generated

in class c using the following formula:

∗
xi

(c)
= x

(c)
i +

(
x̂
(c)
i − x

(c)
i

)
× δ. (3.1)

The working principle of SMOTE algorithm has been pictorially depicted in figure:
3.1. There are other variants of SMOTE like borderline-SMOTE [21] and safe-
level-SMOTE [22] which improve upon original algorithm.

Khan et al. [23] used SMOTE to compare with the results obtained by their
method. We have also used SMOTE to compare with the results produced by our
algorithm on different dataset.

3.2. Algorithmic Level Methods 21

(a) Example of k-NN of xi (k = 6). (b) Synthetic sample generated.

Figure 3.1: How SMOTE works
Figure taken from reference: [3]

3.2 Algorithmic Level Methods

These type of techniques mainly focuses on modifying the model’s underlying
learning or decision process to increase sensitivity towards the minority group.Various
Algorithmic Level methods in the context of Deep Learning are discussed below.

3.2.1 Focal Loss

Lin et al. [24] proposed a model that effectively addresses the extreme class im-
balance commonly encountered in object detection problems, where positive fore-
ground samples are heavily outnumbered by negative background samples.

Figure 3.2: Focal Loss for different values of hyper-parameter γ
Figure taken from reference: [24]

22 3. Related Works on Deep Learning with Class Imbalance

To combat the extreme imbalances, focal loss re-shapes the cross entropy (CE) loss.
This is achieved by multiplying the CE loss by a modulating factor, αt(1− pt)γ.

FL(pt) = −αt(1− pt)γ log(pt). (3.2)

Hyper parameter γ ≥ 0 adjusts the rate at which majority classes are down
weighted, and αt ≥ 0 is a class-wise weight that is used to increase the importance
of the minority class. Easily classified examples (i.e. the majority class sam-
ples), where pt → 1, cause the modulating factor to approach 0 and reduce the
sample’s impact on the loss. Though the idea was originally proposed for binary
classification problem, the same can be extended for multi-class classification as
well.

3.2.2 Cost Sensitive Deep Neural Network

In Cost Sensitive Deep Neural Network (CSDNN) the loss function was modified
to incorporate a pre-defined cost matrix, forcing the network to minimize mis-
classification cost. Cost sensitive method has outperformed many other existing
methods of deep learning in case of imbalanced classification. Wang et al. [25] has
employed a CSDNN method to detect hospital re-admissions, a class imbalanced
problem where a small percentage of patients are readmitted to a hospital shortly
after their original visit.

3.3 Hybrid Level Methods

Data level and algorithm level methods are combined in several ways and applied
to the problem of imbalance learning. These type of composite methods are labeled
as Hybrid Methods. Among various existing Hybrid Level methods following two
methods are very useful in the context of deep learning for imblanced classification.

3.3.1 Large Margin Local Embedding (LMLE)

Huang et al. [26] proposed the Large Margin Local Embedding (LMLE) method
for learning more discriminative deep representations of imbalanced image data.
The method is motivated by the observation that minority groups are sparse and
typically contain high variability, allowing the local neighborhood of these minor-
ity samples to be easily invaded by samples of another class. By combining a new
informed quintuplet sampling method with a new triple-header hinge loss func-
tion, deep feature representations that preserve same class locality and increase
inter-class discrimination are learned from imbalanced image data. These deep
feature representations, which form well-defined clusters, are then used to label
new samples with a fast cluster-wise k-NN classification method. The proposed
LMLE method is shown to achieve state-of-the-art results on the CelebA [27] data
set, which contains high imbalance levels up to ρ = 49.

3.3. Hybrid Level Methods 23

3.3.2 Deep Over-Sampling Framework (DOS)

Ando and Huang [28] introduced over-sampling to the deep feature space produced
by CNNs in their DOS framework. The DOS framework consists of two simulta-
neous learning procedures, optimizing the lower layer and upper layer parameters
separately. The lower layers are responsible for acquiring the embedding function,
while the upper layers learn to discriminate between classes using the generated
embeddings. In order to learn the embedding features, the CNN’s input is pre-
sented with both a class label and a set of deep feature targets, an in-class nearest
neighbor cluster from deep feature space. Then the micro-cluster loss computes
the distances between each of the deep feature targets and their mean, constrain-
ing the optimization of the lower layers to shift deep feature embeddings towards
the class mean.

Figure 3.3: The DOS Framework: (a) Basic CNN Architecture for supervised
feature learning and (b) The Deep Feature Overloading Framework

Figure adopted from reference: [28]

The deep over-sampling component is the process of selecting k in-class neighbours
from deep feature space. In order to address class imbalance, the number of in-
class neighbours to select should vary between classes. For example, using k = 3
for the minority class, and k = 0 for the majority class, will supplement the
minority class with additional embeddings while leaving the majority class as is.

Chapter 4

Our Proposed Technique

In this chapter we shall discuss about our proposed framework. We call it Adap-
tive Dynamic Over-Sampling (ADOS) Framework.

4.1 Mathematical Notations

Following are the list of mathematical notations used to describe our work.

C Set of Classes
Cmaj Set of Majority Classes
Cmin Set of Minority Classes
Xtr ∈ Rn×D Training Dataset
Xte ∈ Rm×D Test Dataset
n Number of training samples
m Number of test samples
nc Number of training sample pertaining to class-c, ∀c ∈ C
nmax max {nc : c ∈ {1, 2, ..., |C|}}
nmin min {nc : c ∈ {1, 2, ..., |C|}}

ytr = {yi}ni=1

A set of one-hot-encoded class labels for training dataset.
yi ∈ [0 : 1]|C|, ∀i ∈ {1, 2, ..., n}

yte = {yi}mi=1 A set of one-hot-encoded true class labels of test dataset

ŷte = {ŷi}mi=1

A set of class labels of test dataset predicted by the classifier.
ŷi ∈ (0, 1)|C|, ∀i ∈ {1, 2, ..., m} gives empirical posterior
probability distribution P (c|xi), where, xi ∈ Xte and ∀c ∈ C

f : RD → Rd Embedding function which maps input feature space of
dimension D to extracted deep feature space of dimension d

h : Rd → (0, 1)|C|
Final classification function which maps deep feature space
to class conditional probability distribution

g : RD → (0, 1)|C|
Overall classifier which maps input feature space to class
conditional probability distribution. g(x) ≈ h(f(x))

X̃tr ∈ Rn×d Embedding of training dataset in deep feature space.
This embedding is obtained from embedding function f(.)

24

4.2. Step by Step walk through the Technique 25

X̃te ∈ Rm×d Embedding of test dataset in deep feature space
This embedding is obtained from embedding function f(.)

k
(c)
i

number of nearest neighbours of ith sample of class-c
obtained by ada-kNN algorithm

k
(c)
max

Maximum number of nearest neighbours pertaining to any
point in class-c

k
(c)
min

Minimum number of nearest neighbours pertaining to any
point in class-c

νmax max {k(c)max : c ∈ {1, 2, ..., |C|}} (User Specified)

νmin min {k(c)max : c ∈ {1, 2, ..., |C|}} (User Specified)

x̃
(c)
ij

jth nearest neighbour of ith training sample of class-c, in

deep feature space. j = 1, 2, ..., k
(c)
i and i = 1, 2, ..., nc

w
(c)
ij

Weight of jth nearest neighbour of ith training sample of
class-c

x̂
(c)
i

Generated new neighbour of x
(c)
i as combination of other

neighbours in deep feature space.
∗
x
(c)

i Generated new sample by x
(c)
i in deep feature space

X̃aug
Augmented dataset in deep feature space.
This is generated by our proposed framework.

Table 4.1: Mathematical Notations

4.2 Step by Step walk through the Technique

Following is the step by step procedures of our novel oversampling framework.

4.2.1 Training of Supervised Feature Extraction Model

We have already described the architecture of the CNN used for Supervised feature
extraction in Chapter 6. To train the CNN we used weighted categorical cross-
entropy [29] loss function. The weights are calculated using the Class Weighting
Scheme as described by the Algorithm 4.

λ = Class Weight Calculation(Xtr), where Xtr is the original training dataset

λ = {λ(c)}|C|c=1 is the l1-normalized weight vector for |C| classes. The weighted
categorical cross-entropy loss function is defined as following:

Lλ = − 1

n

n∑
i=1

|C|∑
c=1

λ(c) y
(c)
i log(ŷ

(c)
i) (4.1)

The feature extracting CNN learns the embedding function f(.) by optimizing the
loss through Back-propagation. This is also called Representation Learning.

26 4. Our Proposed Technique

4.2.2 Extraction of features

After the feature extracting CNN learns the embedding function f(.) we obtain
the embedded representation of training and test datasets.

X̃tr = {x̃ | x̃ = f(x), ∀ x ∈ Xtr} and X̃te = {x̃ | x̃ = f(x), ∀ x ∈ Xte}.

CNN as feature extractor

Convolutional neural network is very useful in extracting features from the struc-
tured, high-dimensional and spatially coherent data like images. Wiatowski and
Bölcskei gave a rigorous mathematical treatise on how complex features embedded
in higher dimensional manifold are getting extracted by Deep Convolutional Neu-
ral Networks (DCNN) [30]. Wang and Raj also described how complex features
are getting classified by non-linear mapping produced by different layers of deep
neural network [31].

Motivation behind Feature Extraction

Our proposed algorithm is a k-NN based algorithm. We know that k-NN performs
poorly in higher dimensional space (curse of dimensionality [32]). It is expected
that, k-NN shall perform better in the deep feature space rather than the original
input space, as the dimensionality of deep feature space is much less as compared
the original input space. Hence, this representation learning followed by deep
feature extraction from both training and test samples are necessary.

4.2.3 Adaptive Dynamic Over-Sampling Algorithm

In a nutshell our proposed algorithm does following:

− Find the k numbers of in-class nearest neighbours of a minority class sample.
The number of neighbours (k) to consider is point specific and obtained from
a linear heuristic inspired from Ada-kNN2 method [33].

− Take a weighted combination of these neighbours to create a synthetic neigh-
bour.

− New synthetic sample pertaining to that minority class is a random convex
combination of the original sample and that synthetic sample.

− Add this new synthetic sample to the augmented dataset and repeat the
procedure until certain number of minority samples are generated (this is
determined by the desired class imbalance ratio).

Our algorithm adaptively chooses the point specific number of nearest neighbours
for each minority class samples, generates synthetic samples and also dynami-
cally updates the dataset. Hence the name Adaptive Dynamic Over-Sampling
(ADOS).

4.2. Step by Step walk through the Technique 27

Now we shall touch upon the critical aspects of our algorithm.

Motivation for adaptively choosing the number of nearest neighbours

Bhattacharyya and Chakrabarti [34] and Mullick et al. [33] showed that the local
density around a point bears a inverse relation to the expected nearest neighbour
distance. That means for a particular point lesser value of nearest neighbour dis-
tance indicates a dense locality around the point, whereas a large nearest neighbour
distance indicates sparse locality.

Figure 4.1: Choosing the value of k adaptively using linear heuristic

As the distribution of classes are not known apriori, choosing a global k for all
points in the dataset stands a risk of ignoring the local distribution of the neigh-
bourhood of each point. Moreover, finding a good global value of k using exhaus-
tive search is almost an impossible task. Hence, a heuristic approach is taken to
find-out the more appropriate value of k for each point. In our work, we have
considered a linear heuristic, originally proposed by Mullick et al. [33] to find the
locality sensitive number of nearest neighbours to consider for each point. The
heuristic is duly modified to suit the need of our present work.

Once we get the value of parameter k for a specific point we can find out its
k nearest neighbours using Algorithm 1. Another supplementary algorithm to
compute pairwise distances between the points of a given dataset is shown also
below (Algorithm 3).

28 4. Our Proposed Technique

Algorithm 3 Compute Pairwise Distance (S)

Require: The dataset S

1: Let |S| = n
2: Initialize D ∈ Rn×n . D is the pairwise distance matrix
3: for i = 1 to n do
4: for j = 1 to n do
5: if i == j then
6: D[i, i]← (−1)
7: else
8: D[i, j]← Euclidean Distance between ith and jth datapoints
9: end if
10: end for
11: end for
12: return D

Algorithm 4 Get Number of Nearest Neighbours (x, S, kmax, kmin)

Require: The dataset S, the test-point x, maximum number of neighbours kmax
and minimum number of neighbours kmin

1: Let D ← Compute-Pairwise-Distance(S) . Using Algorithm 2
2: dmin ← minimum{d | d ∈ D and d > 0}
3: dmax ← maximum{d | d ∈ D and d > 0}
4: dist = [] . Initialize list of distances
5: Let |S \ {x}| = n− 1
6: for i = 1 to n− 1 do
7: d← Euclidean Distance between x and ith point of S \ {x}
8: dist.append(d) . Adding the distance computed to the end of list
9: end for
10: Let dx = minimum(dist)
11: if d ≤ dmin then
12: k = kmin
13: else if d ≥ dmax then
14: k = kmax
15: else
16: k =

⌊
kmax − (kmax−kmin)

(dmax−dmin)
(dx − dmin)

⌋
17: end if
18: return k

On choosing the value of k
(c)
max

In our work we have considered that, the maximum number of neighbours we
shall look upon for a particular data-point depends on which class it belongs.
This approach is particularly important when we have different number of training
images in different classes. It is kind of intuitive that we shall look upon more
number of neighbours in the class with more number of training samples.

4.2. Step by Step walk through the Technique 29

We assume a relationship of the form:

k(c)max = a . nbc ,

where, a& b are some positive constants particular to the dataset.

Now, the following conditions have to satisfied:

if nc = nmax then, k
(c)
max = νmax and if nc = nmin then, k(c)max = νmin

Solving for a& b we get the following values:

b = log

(
νmax
νmin

)/
log

(
nmax
nmin

)
and a =

(
νmax
nbmax

)
(4.2)

Putting the values of a and b we get the following formula:

k(c)max =

⌊
νmax ×

(
nc
nmax

)b⌋
(4.3)

In our study we have assumed νmin = 10 and νmax = 20

Example 4.1. Let, there are four classes (viz. 1, 2, 3, 4). Let, the number of
training samples per classes are 200, 400, 600 and 1000 respectively. Let, νmax = 20
and νmin = 10.

Thus from equation 6.3, b = log(2)/ log(5) ≈ 0.431.

Hence, k
(2)
max =

⌊
20×

(
400
1000

)0.431⌋
= 13. Similarly, k

(3)
max = 16.

Generating Synthetic Sample

x̃
(c)
i is ith sample of class-c in deep feature space. We find its k

(c)
i neighbours.

Let, d
(c)
ij is the euclidean distance between x̃

(c)
i and its jth neighbour x̃

(c)
ij .

i.e. d
(c)
ij =

∥∥∥x̃(c)i − x̃(c)ij ∥∥∥
2
, for j = 1, 2, ..., k

(c)
i . (4.4)

Let, d
(c)
imax

= max
{
d
(c)
ij | j = 1, 2,k

(c)
i

}
. Then, w

(c)
ij , the weight associated with

jth neighbour of ith sample of class-c is:

w
(c)
ij =

1

Z
exp

(
− d(c)ij /d

(c)
imax

)
, for j = 1, 2, ..., k

(c)
i . (4.5)

Z is a l1-normalization constant. i.e. Z =
∑k

(c)
i
j=1 exp

(
− d(c)ij /d

(c)
imax

)
.

We now generate a synthetic neighbour in deep feature space pertaining to ith

sample of class-c as weighted combination of its neighbours:

30 4. Our Proposed Technique

x̂
(c)
i =

k
(c)
i∑
j=1

w
(c)
ij x̃

(c)
ij . (4.6)

Hence further the neighbour, lesser will be its contribution to generate this syn-
thetic neighbour because of the weight associated with it.

Now for some random value δ ∈ [0, 1] the new generated synthetic sample

(
∗
x
(c)

i

)
in deep feature space corresponding to ith sample of class-c is:

∗
x
(c)

i = δ x̃
(c)
i + (1− δ) x̂(c)i . (4.7)

(a) Example of k
(c)
i -NN of x̃

(c)
i . (b) Synthetic neighbour generated.

(c) Synthetic sample generated.

Figure 4.2: The working principle of ADOS

This synthetic sample is augmented to the dataset. Generation of synthetic sample
in our proposed framework is pictorially depicted in Figure 4.2. The complete
algorithm is shown below.

4.2. Step by Step walk through the Technique 31

Algorithm 5 Adaptive Dynamic Over Sampling

Require: X̃tr, ytr, C, Number of samples in each class {nc}|C|c=1, Actual Imbalance

Ratio (ρa), Desired Imbalance Ratio (ρd)

1: X̃aug ← X̃tr . Initialize the augmented dataset

2: yaug ← ytr . Initialize the augmented labels

3: nmax ← max {nc}
4: Cmin ←

{
c | nc ≤ nmax

ρd

}
. The set of minority classes

5: for c in Cmin do

6: n
(c)
gen =

⌈
nmax

ρd

⌉
− nc . No. of samples to be generated for class-c

7: X̃
(c)
tr ← {x̃ | x̃ ∈ X̃tr ∧ x̃ belongs to class-c}

8: X̃
(c)
gen ← ∅ . Initialize generated set of samples of class-c

9: y
(c)
gen ← ∅ . Initialize generated labels of class-c

10: Calculate k
(c)
max using the the Equation 6.3

11: for i = 1 to n
(c)
gen do

12: k
(c)
i ← Get Number of Nearest Neighbours (x

(c)
i , X̃

(c)
tr

⋃
X̃

(c)
gen , k

(c)
max, 2)

13:

{
x̃
(c)
ij

}k(c)i

j=1
← Get k Nearest Neighbours(x̃

(c)
i , X̃

(c)
tr

⋃
X̃

(c)
gen , k

(c)
i)

14: Calculate {wij}
k
(c)
i
j=1 using Equation 6.5

15: Calculate x̂
(c)
i using Equation 6.6 . Generate synthetic neighbour

16: δ ← Random[0, 1] . A random number between 0 to 1

17: Calculate
∗
x
(c)

i using Equation 6.7 . Generate synthetic sample

18: X̃
(c)
gen ← X̃

(c)
gen

⋃ {
∗
x
(c)

i

}
19: y

(c)
gen ← y

(c)
gen

⋃
one hot encode(c)

20: end for

21: X̃aug ← X̃aug

⋃
X̃

(c)
gen

22: yaug ← yaug
⋃
y
(c)
gen

23: end for

24: return X̃aug, yaug

32 4. Our Proposed Technique

4.2.4 Training of final classifier

The final classifier is a neural classifier with input dimension same as the dimension
of the feature space and the final dimension is number of classes.

We train the neural classifier with a proposed sample specific re-weighting scheme
which is explained below.

Sample Specific re-weighting scheme

Let, the number of training samples in a minority class-c(c ∈ C) before oversam-
pling is nc and after oversampling is n′c. Let,

∑
c ∈ C nc = n and

∑
c ∈ C n

′
c = n′

Then prior probability of class-c before oversampling is pc = nc/n and after over-
sampling the same is p′c = n′c/n

′

Now, we have already discussed that a folklore technique is to assign the class
weight of a particular class to be inversely proportional to the prior probability of
the class (sec: 2.5). Hence before oversampling the weight of particular minority
class-c is wc ∝ pc and after oversampling the same is w′c ∝ p′c.

We propose that all the original sample of minority class-c shall get sample specific
weight equal to wc (i.e. the class weight before oversampling) and all the new
synthetically generated sample shall have sample specific weight equal to w′c (i.e.
the class weight after oversampling). Following is an example to better understand
the proposed sample weighting scheme.

Example 4.2. Consider a binary classification problem with one class having 2000
samples and other class contains 100 samples producing an actual class imbalance
ratio (ρa) = 20. Let, our desired class imbalance ratio (ρd) is 4.

Then we have to synthetically generate additional 400 samples for class-2.

Now prior probabilities of the classes before oversampling are: p1 = 20
21
and p2 = 1

21

Hence the class-weights (normalized) prior to oversampling are:

w1 =
21/20

(21/20) + (21)
=

1

21
and w2 =

21

(21/20) + (21)
=

20

21

Prior probabilities of the classes after oversampling is: p′1 = 4
5
and p′2 = 1

5

Hence the class-weights (normalized) after oversampling are:

w′1 =
5/4

(5/4) + (5)
=

1

5
and w′2 =

5

(5/4) + (5)
=

4

5

According to our sample specific re-weighting scheme all the newly generated sam-
ples of class-2 shall have weights w′2 while the original samples of class-2 will have
the same weights w2. The weights of the samples of class-1 remain unchanged.

The intuition behind this technique is we are assigning lesser importance to the
synthetically generated samples as compared to the original one in minority classes.
This type of weighting scheme is particularly important when the synthetic sam-
ples in the minority class has high variance.

4.3. Complexity Analysis of Our Proposed Method 33

4.3 Complexity Analysis of Our Proposed Method

Here we shall discuss about the time complexity of our proposed algorithm Adap-
tive Dynamic Over-Sampling technique.

Assumptions

We have made following assumptions while analysing the complexity of our pro-
posed oversampling technique.

− Let us consider a binary classification problem.

− The positive class is denoted as C+ and the negative class is denoted as C− .

− |C+| = n and |C−| = N .

− In the context of class imbalance let us further assume, N > n. Class
imbalance ratio ρ = N

n
.

− The dimensionality of deep feature space is d.

− In our algorithm we find the number of nearest neighbours specific to a point
using the linear heuristic described in our algorithm. The exact value of k
is difficult to determine analytically without knowing the distribution of the
data points in deep feature space. Hence we consider k̂ as expected value of
the number of nearest neighbours for all points of minority class.

k̂ = E[k].

The value of k̂ shall lie between kmax and kmin which are user defined pa-
rameters.

− We shall consider the desired imbalance ratio = 1. That means after over-
sampling both the classes shall contain same number of samples.

Complexity of the generation of first synthetic sample

To generate first synthetic sample of minority class, we have to go through the
following steps.

− Calculation of distance matrix. Complexity of this step is O(n2d), as there
are n number of d -dimensional data-points in the minority class (in deep
feature space). We have assumed that claculating distance between two
points in d-dimensional space takes O(d) time.

− To find k̂ number of nearest neighbours from the distance matrix will take
O(nk̂) time.

− Weight calculation of each individual neighbours shall take O(k̂) time.

− New synthetic point generation. Complexity of this step is O(k̂d).

34 4. Our Proposed Technique

Complexity of the generation of subsequent synthetic samples

Now after we augment the dataset with this newly created sample we need not to
recompute the distance matrix again. We can simply append a row and a column
to the already calculated distance matrix. Hence, assuming that there are already
t many samples in the minority class at some point (n < t < N) following steps
are required to create a new synthetic minority sample.

− Appending a row and column to the already calculated distance matrix,
takes O(td) time.

− To find k̂ number of nearest neighbours from the distance matrix will take
O(tk̂) time.

− Weight calculation of each individual neighbours shall take O(k̂) time.

− New synthetic point generation. Complexity of this step is O(k̂d).

Note that, the last two operations are same for all points.

Complexity of total algorithm

Hence, the total time complexity of our proposed algorithm is:

O(n2d) +
N−1∑

t = n+1

O(td) +
N−1∑
t = n

O(tk̂) +
N−1∑
t = n

(
O(k̂) +O(k̂d)

)
Now, O(n2d) +

∑N−1
t = n+1O(td) = O(N2d).

Now if we assume N � n, which is very reasonable in the context of high class
imbalance, we have

N−1∑
t = n

O(tk̂) ≈ O(N2k̂) and

N−1∑
t = n

(O(k̂) +O(k̂d)) ≈ O(Nk̂d)

.

Finally, the overall complexity reduces to: O(N2d) + O(N2k̂) + O(Nk̂d). With
further reasonable assumptions like, k̂ � d� N , the complexity of the algorithm
further reduces to:

O(N2d),

where, N is the number of data-points in the majority class (≈ total number of
training data-points, assuming high class imbalance) and d is the dimension of the
feature space.

Chapter 5

Description of the Datasets

To test our models we have used various datasets. Following are the description
of the datasets.

5.1 MNIST-back-rotation Images (MNISTrb)

The MNIST-back-rotation-image (MNISTrb) [35] is an extension of the MNIST
dataset contains 28×28 gray-scale images of rotated digits over randomly inserted
backgrounds. The default training and test set consist of 12000 and 50000 images,
respectively.

Figure 5.1: A glimpse of MNISTrb dataset
Figure taken from reference: [35]

5.1.1 Data Augmentation

As the number of training samples are less, we have augmented each of the images
of MNISTrb training dataset with additional 9 images produced by different trans-
formations (like: rotation, flipping etc.) of the original image. After augmentation
the training dataset contains 120000 images.

5.1.2 Imbalanced Settings

This augmented dataset as well as the original MNISTrb dataset is not inherently
imbalanced. To make it imbalanced we have randomly chosen 4 classes out of

35

36 5. Description of the Datasets

10 as minority class. We have randomly dropped the training samples from mi-
nority classes to make achieve desired imbalance ratio (ρ). Thus we have made
imbalanced dataset of ρ = 10, 20, 40 and 100 from augmented MNISTrb dataset.

5.2 Fashion-MNIST Dataset

Fashion MNIST [36] is a MNIST like dataset of gray-scale images of dimension
28× 28. Like MNIST, it also consists of 10 classes, 60000 training and 10000 test
images. However, as the name suggests the classes in Fashion-MNIST dataset are
fashion items.

Figure 5.2: Class names and example images of Fashion MNIST dataset
Figure taken from reference: [36]

5.2.1 Imbalanced Settings

Fashion-MNIST dataset is also not inherently imbalanced. We make it imbalanced
by first selecting 4 minority classes, followed by removing random samples from the
minority classes to achieve predefined imbalance ratio (ρ). Thus we have prepared
imbalanced dataset of ρ = 10, 20, 40 and 100 from Fashion-MNIST dataset.

5.3. CIFAR-10 Dataset 37

5.3 CIFAR-10 Dataset

The CIFAR-10 dataset [37] consists of 32 × 32 RGB images. A total of 60,000
images in 10 categories are split into 50,000 training and 10,000 testing images.

5.3.1 Imbalanced Settings

Like the previous two datasets described CIFAR-10 dataset is also originally a
balanced dataset. We make it imbalance by first choosing 4 minority classes
and randomly removing images from the minority classes until we achieve certain
imabalnce ratio (ρ). We have prepared imbalanced CIFAR-10 dataset of ρ =
10, 20, 40 and 100.

Figure 5.3: Class names and example images of CIFAR-10 Dataset
Source: http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/

5.4 Street View House Number (SVHN) Dataset

The Street View House Numbers (SVHN) dataset [38] consists of 73,257 images
for training and 26,032 images for testing. The images are in 32×32 RGB format.
There are 10 classes, 1 for each digit. Digit ’1’ has label 1, ’9’ has label 9 and ’0’
has label 10.

http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/

38 5. Description of the Datasets

Figure 5.4: A glimpse of SVHN dataset
Source: https://sigopt.com/blog/unsupervised-learning-with-even-less-

supervision-using-bayesian-optimization/

5.4.1 Imbalanced Settings

The class distribution of SVHN dataset shows that it is not inherently balanced.
The highest number of images belong to class-1 (13861) and the lowest number
of images belong to class-9 (4659), producing an inherent class imbalance ratio
ρ = 13861

4659
≈ 3.

However for our work we have taken 4 number of randomly chosen classes as
minority classes and reduced images from those classes randomly until we achieve
specified imbalance ratio (like ρ = 10, 20, 40 and 100)

Remark. For our convenience we have re-labelled digit ’0’ to 0.

https://sigopt.com/blog/unsupervised-learning-with-even-less-supervision-using-bayesian-optimization/
https://sigopt.com/blog/unsupervised-learning-with-even-less-supervision-using-bayesian-optimization/

5.5. Re-sampled ImageNet Dataset 39

Figure 5.5: Class Distribution of SVHN Dataset

5.5 Re-sampled ImageNet Dataset

This dataset is created as an artificial benchmark data to demonstrate the scalabil-
ity of our algorithm. Original ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [13] consists of around 14 million images distributed into 1000 classes.

Figure 5.6: Class distribution of Re-sampled ImageNet dataset

We have randomly sampled a 100 classes out of those 1000 classes. To create
imbalance we have randomly selected from 30 to 1200 samples in each classes in
the multiple of 30. Fig: 5.6 shows the class distribution.

There are total 64,740 number of training samples in this dataset. We have manu-
ally selected 2000 test samples (20 samples per class). The inherent class imbalance
ratio of this dataset is 1200

30
= 40.

Chapter 6

Neural Network Architectures
and Training

In this chapter we shall discuss about the deep neural network Architectures that
we are going to use for our study. Our whole process involves three steps as
discussed following.

• First step is Supervised Feature Learning . A CNN is used for this
purpose (fig: 6.1). After learning of features we have to extract the features
from training and test dataset using the trained CNN.

• Second step is populate more synthetic samples using our proposed
algorithm (Chapter: 4)

• The final step being to build a classifier and train it with our populated
dataset.

As discussed in the following sections the models used as feature extraction are
different for different datasets.

6.1 Feature Extracting Architecture for MNISTrb

and Fashion-MNIST Dataset

The feature extraction models for these datasets are taken from the Deep Over-
Sampling (DOS) paper and we used the same setting as discussed in that paper[28].
The architecture of the CNN that used as feature extracting model for these
datasets is pictorially described in the figure: 6.2.

The input layer of this CNN accepts a batch of gray-scale (single-channel) images
of spatial dimension 28 × 28. Followed by input layer there is a Convolutional
Block which consists of a Convolutional Layer with number of output filters = 6
and filter dimension: 5×5, followed by a Batch Normalization, Activation (ReLU),
and Max Pool Layer (with stride: 2).

40

6.1. Feature Extracting Architecture for MNISTrb and Fashion-MNIST Dataset41

Figure 6.1: CNN used as Supervised Feature Extractor

After this, there is another Convolutional Block with number of output filters =
16. Then output of final Max-Pool layer is flattened and connected to a Dense (or
Fully Connected) layer of dimension 120. This layer is our Embedding Layer.
This layer is finally connected to Classification Layer of dimension 10, as there
are 10 number of classes.

Figure 6.2: Supervised Feature Extracting CNN for MNISTrb and Fashion-
MNIST dataset

The loss function is computed at the final classification layer. We shall brief about
the loss function at the chapter: 4. The loss function is optimized using Back-
propagation [9] learning algorithm. There are total 52186 number of trainable
parameters in this model.

42 6. Neural Network Architectures and Training

6.2 Feature Extracting Architecture for CIFAR-

10 and SVHN Dataset

The architecture of the CNN that used as feature extracting model for these
dataset is pictorially described in the figure: 6.3.

Figure 6.3: Supervised Feature Extracting CNN for CIFAR-10 and SVHN dataset

The input layer of this CNN accepts a batch of RGB (3-channels) images of spatial
dimension 32×32. Followed by input layer there is a Convolutional Block which
consists of a Convolutional Layer with number of output filters = 20 and filter
dimension: 5×5, followed by a Batch Normalization, Activation (ReLU), and Max
Pool Layer (with stride: 2).

After this, there is another Convolutional Block with number of output filters
= 50. Then output of final Max-Pool layer is flattened and connected to a Dense
(or Fully Connected) layer of dimension 500. Which is then connected to another
Dense layer of dimension 120. This layer is our Embedding Layer. This layer is
finally connected to Classification Layer of dimension 10, as there are 10 number
of classes.

There are total 7, 14, 780 no. of trainable parameters in the model.

6.3 Feature Extracting Architecture for Re-sampled

ImageNet Dataset

We have used fine-tuned model of VGG16 architecture (sec: 2.2) to extract the
features from the images of this dataset. We have modified the top layer of the
network. Most of the previous convolutional blocks are remained frozen except
few at the last.

There are total 14, 473, 516 number of trainable parameters in this model.

6.4. Training Schemes 43

Figure 6.4: Flattened VGG-16 architecture

Figure 6.5: Fine-tuned VGG-16 architecture for feature extraction of Re-sampled
ImageNet dataset

6.4 Training Schemes

Following table (6.1) illustrates the training scheme of the feature extracting CNN
for various datasets.

Dataset |C| n m
Input Image
Dimension

Encoded
Dimension

Batch
Size

Epochs

MNISTrb 10 12000 50000 28 × 28 × 1 120 40 5
Fashion MNIST 10 60000 10000 28 × 28 × 1 120 40 5

CIFAR-10 10 50000 10000 32 × 32 × 3 120 60 5
SVHN 10 73257 26032 32 × 32 × 3 120 60 5

Resampled ImageNet 100 64740 2000 224 × 224 × 3 1024 128 30

Table 6.1: Dataset-specific Feature Extracting CNN training scheme

All the networks were build in python programming language using Keras [39]
package with tensorflow [40] back-end. The models were trained with NVIDIA
TITAN-XP GPU.

Chapter 7

Experimental Results

This chapter is the summary of the results produced by experimental studies on
different dataset. We have considered following metrics for evaluating our model’s
performance.

− Recall averaged over minority classes

− Recall averaged over all the classes, also known as Average Class Specific
Accuracy (ACSA)

− F1 score averaged over all the classes

− GMean

− Accuracy

We have compared following methods for each dataset over varying class imblance
ratio (ρ) = 10, 20, 40, and 100:

• BL: Baseline model

• BL+CW: Baseline model with class-weighting scheme

• BL+ROS-RUS: Baseline model along with Random Over-Sampling and
Random Under-Sampling techniques.

• SMOTE: SMOTE algorithm applied in feature-space

• DOS: Deep Over-Sampling technique

• ADOS: Adaptive Dynamic Over-Sampling (Our proposed method)

44

7.1. Results on MNISTrb dataset 45

7
.1

R
e
su

lt
s

o
n

M
N

IS
T

rb
d
a
ta

se
t

T
h
e

re
su

lt
s

ob
ta

in
ed

fo
r

d
iff

er
en

t
m

et
h
o
d
s

in
d
iff

er
en

t
im

b
al

an
ce

d
se

tt
in

gs
on

M
N

IS
T

rb
d
at

as
et

is
sh

ow
n

b
el

ow
.

B
as

el
in

e
B

as
el

in
e

+
C

la
ss

W
ei

gh
t

B
as

el
in

e
+

R
O

S
-

R
O

S
F

S
-S

M
O

T
E

D
O

S
A

D
O

S
(P

ro
po

se
d

M
et

ho
d)

Im
b

R
at

io
C

la
ss

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

R
e

F
1

R
e

F
1

G
M

ea
n

10
M

a
j

0.
83

1
0.

71
3

0.
82

8
0.

70
1

0.
71

8
0.

68
9

0.
75

1
0.

71
7

0.
74

3
0.

83
2

0.
75

1
0.

83
1

0.
7

0.
73

0.
81

3
0.

76
5

0.
81

0

M
in

0.
38

6
0.

52
2

0.
34

7
0.

71
5

0.
68

7
0.

70
6

0.
66

6
0.

71
0

0.
65

3
0.

57
2

0.
69

2
0.

55
7

0.
73

0.
66

0
.7

3
0

0.
73

2
0.

72
2

A
ve

ra
ge

0.
65

3
0.

63
7

0.
58

5
0.

70
6

0.
70

6
0.

69
5

0.
71

7
0.

71
5

0.
70

6
0.

72
8

0.
72

7
0.

70
8

0.
71

2
0.

70
2

0
.7

8
0

0
.7

5
2

0
.7

7
4

20
M

a
j

0.
83

7
0.

68
2

0.
83

5
0.

71
0

0.
68

5
0.

70
2

0.
74

2
0.

67
2

0.
73

6
0.

82
7

0.
73

3
0.

82
5

0.
68

7
0.

69
7

0.
80

6
0.

74
4

0.
80

2

M
in

0.
19

3
0.

26
1

0.
09

1
0.

57
0

0.
63

5
0.

55
5

0.
52

0
0.

61
6

0.
49

7
0.

49
5

0.
61

9
0.

46
7

0.
61

5
0.

63
0

0
.6

2
6

0.
68

3
0.

61
2

A
ve

ra
ge

0.
57

9
0.

51
3

0.
34

4
0.

65
4

0.
66

5
0.

63
9

0.
65

3
0.

64
9

0.
62

9
0.

69
4

0.
68

7
0.

65
7

0.
66

9
0.

67
0

0
.7

3
4

0
.7

1
9

0
.7

2
0

40
M

a
j

0.
83

2
0.

66
7

0.
83

0
0.

67
7

0.
65

1
0.

66
6

0.
75

3
0.

64
2

0.
74

8
0.

80
5

0.
66

9
0.

80
3

0.
64

0.
69

0.
79

3
0.

68
3

0.
79

0

M
in

0.
11

4
0.

16
5

0.
02

2
0.

38
1

0.
54

4
0.

32
7

0.
32

7
0.

43
5

0.
26

9
0.

26
4

0.
38

0
0.

20
9

0
.5

3
2

0.
63

0.
52

1
0.

49
1

0.
48

6
A

ve
ra

ge
0.

54
5

0.
46

6
0.

19
3

0.
55

9
0.

60
8

0.
50

1
0.

58
2

0.
55

9
0.

49
7

0.
58

8
0.

55
4

0.
46

8
0.

59
7

0
.6

6
6

0
.6

8
4

0.
60

6
0
.6

5
0

10
0

M
a
j

0.
82

9
0.

66
4

0.
82

7
0.

60
4

0.
56

4
0.

59
1

0.
74

9
0.

61
4

0.
74

4
0.

75
9

0.
61

4
0.

75
7

0.
72

8
0.

63
4

0.
71

3
0.

60
8

0.
70

8

M
in

0.
11

7
0.

15
9

0.
00

0
0.

35
9

0.
40

3
0.

31
8

0.
21

3
0.

28
3

0.
11

6
0.

14
8

0.
21

5
0.

06
9

0.
44

9
0.

52
1

0
.4

6
9

0.
40

8
0.

45
3

A
ve

ra
ge

0.
54

4
0.

46
2

0.
00

0
0.

50
6

0.
49

9
0.

46
1

0.
53

4
0.

48
1

0.
35

4
0.

51
5

0.
45

5
0.

29
1

0.
61

4
0
.5

3
7

0
.6

1
5

0.
52

8
0
.5

9
2

T
ab

le
7.

1:
P

er
fo

rm
an

ce
co

m
p
ar

is
on

of
d
iff

er
en

t
m

et
h
o
d
s

on
th

e
im

b
al

an
ce

d
M

N
IS

T
rb

d
at

as
et

of
d
iff

er
en

t
im

b
al

an
ce

ra
ti

o

46 7. Experimental Results

Figure 7.1: Average recall of minority classes on MNISTrb dataset

Figure 7.2: Average recall of all classes (ACSA) on MNISTrb dataset

7.1. Results on MNISTrb dataset 47

Figure 7.3: F1 score averaged over all classes on MNISTrb dataset

Figure 7.4: GMean on MNISTrb dataset

48 7. Experimental Results

7
.2

R
e
su

lt
s

o
n

F
a
sh

io
n
-M

N
IS

T
d
a
ta

se
t

T
h
e

re
su

lt
s

ob
ta

in
ed

fo
r

d
iff

er
en

t
m

et
h
o
d
s

in
d
iff

er
en

t
im

b
al

an
ce

d
se

tt
in

gs
on

F
as

h
io

n
-M

N
IS

T
d
at

as
et

is
sh

ow
n

b
el

ow
.

B
as

el
in

e
B

as
el

in
e

+
C

la
ss

W
ei

gh
t

B
as

el
in

e
+

R
O

S
-

R
O

S
F

S
-S

M
O

T
E

A
D

O
S

(P
ro

po
se

d
M

et
ho

d)

Im
b

R
at

io
C

la
ss

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

10
M

a
j

0.
91

4
0.

83
8

0.
91

2
0.

84
4

0.
83

7
0.

83
2

0.
85

8
0.

84
7

0.
84

8
0.

91
9

0.
87

6
0.

91
7

0.
90

8
0.

88
0

0.
90

5

M
in

0.
62

0
0.

71
9

0.
55

4
0.

83
2

0.
84

2
0.

82
5

0
.8

3
8

0.
85

3
0.

83
1

0.
79

6
0.

86
4

0.
78

8
0.

83
6

0.
88

0
0.

83
0

A
ve

ra
ge

0.
79

6
0.

79
0

0.
74

7
0.

83
9

0.
83

9
0.

82
9

0.
85

0
0.

85
0

0.
84

1
0.

87
0

0.
87

1
0.

86
3

0
.8

7
9

0
.8

8
0

0
.8

7
4

20
M

a
j

0.
92

7
0.

83
3

0.
92

5
0.

85
1

0.
83

6
0.

83
5

0.
87

1
0.

83
6

0.
86

4
0.

91
7

0.
85

6
0.

91
5

0.
90

3
0.

86
0

0.
90

0

M
in

0.
55

6
0.

66
8

0.
48

2
0.

76
8

0.
84

1
0.

75
6

0.
77

3
0.

83
1

0.
76

4
0.

71
4

0.
80

7
0.

69
1

0
.8

2
6

0.
84

1
0.

81
9

A
ve

ra
ge

0.
77

8
0.

76
7

0.
71

3
0.

81
8

0.
83

8
0.

80
2

0.
83

2
0.

83
4

0.
82

2
0.

83
5

0.
83

6
0.

81
7

0
.8

7
2

0
.8

5
3

0
.8

6
7

40
M

a
j

0.
91

2
0.

81
1

0.
91

0
0.

82
1

0.
79

4
0.

79
8

0.
89

2
0.

81
6

0.
88

8
0.

92
6

0.
84

2
0.

92
4

0.
91

0
0.

85
8

0.
90

7

M
in

0.
51

5
0.

63
4

0.
42

8
0.

74
0

0.
80

0
0.

76
3

0.
63

5
0.

74
4

0.
60

9
0.

63
3

0.
75

0
0.

60
1

0
.7

6
4

0.
81

7
0.

71
8

A
ve

ra
ge

0.
75

3
0.

74
0

0.
67

3
0.

79
8

0.
79

6
0.

78
3

0.
78

9
0.

78
7

0.
76

4
0.

80
9

0.
80

5
0.

77
8

0
.8

4
2

0
.8

4
1

0
.8

2
6

10
0

M
a
j

0.
92

3
0.

79
3

0.
92

2
0.

74
7

0.
73

7
0.

68
3

0.
89

1
0.

80
9

0.
88

8
0.

92
5

0.
82

2
0.

92
4

0.
90

8
0.

82
7

0.
90

6

M
in

0.
33

0
0.

41
9

0.
15

5
0.

68
9

0.
75

2
0.

73
7

0.
56

7
0.

68
9

0.
53

9
0.

51
3

0.
64

3
0.

46
0

0
.7

4
6

0.
72

8
0.

67
0

A
ve

ra
ge

0.
68

6
0.

64
4

0.
45

1
0.

74
7

0.
74

3
0.

70
5

0.
76

1
0.

76
1

0.
72

7
0.

76
0

0.
75

0
0.

69
9

0
.8

2
0

0
.7

8
7

0
.8

0
3

T
ab

le
7.

2:
P

er
fo

rm
an

ce
co

m
p
ar

is
on

of
d
iff

er
en

t
m

et
h
o
d
s

on
th

e
im

b
al

an
ce

d
F

as
h
io

n
-M

N
IS

T
d
at

as
et

of
d
iff

er
en

t
im

b
al

an
ce

ra
ti

o

7.2. Results on Fashion-MNIST dataset 49

Figure 7.5: Average recall of minority classes on Fashion-MNIST dataset

Figure 7.6: Average recall of all classes (ACSA) on Fashion-MNIST dataset

50 7. Experimental Results

Figure 7.7: F1 score averaged over all classes on Fashion-MNIST dataset

Figure 7.8: GMean on Fashion-MNIST dataset

7.3. Results on CIFAR-10 dataset 51

7
.3

R
e
su

lt
s

o
n

C
IF

A
R

-1
0

d
a
ta

se
t

T
h
e

re
su

lt
s

ob
ta

in
ed

fo
r

d
iff

er
en

t
m

et
h
o
d
s

in
d
iff

er
en

t
im

b
al

an
ce

d
se

tt
in

gs
on

C
IF

A
R

-1
0

d
at

as
et

is
sh

ow
n

b
el

ow
.

B
as

el
in

e
B

as
el

in
e

+
C

la
ss

W
ei

gh
t

B
as

el
in

e
+

R
O

S
-

R
O

S
F

S
-S

M
O

T
E

A
D

O
S

(P
ro

po
se

d
M

et
ho

d)

Im
b

R
at

io
C

la
ss

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

10
M

a
j

0.
74

8
0.

61
9

0.
73

1
0.

60
5

0.
57

4
0.

58
8

0.
66

9
0.

60
3

0.
65

8
0.

76
2

0.
65

4
0.

75
8

0.
73

1
0.

67
1

0.
72

5

M
in

0.
24

9
0.

32
7

0.
15

8
0.

44
4

0.
48

8
0.

43
5

0
.4

2
6

0.
49

9
0.

37
9

0.
33

5
0.

44
2

0.
28

6
0.

47
9

0.
54

0
0.

44
6

A
ve

ra
ge

0.
54

8
0.

50
2

0.
39

6
0.

54
1

0.
54

0
0.

52
1

0.
57

2
0.

56
1

0.
52

8
0.

59
1

0.
56

9
0.

51
3

0
.6

3
0

0
.6

1
9

0
.5

9
7

20
M

a
j

0.
74

7
0.

59
2

0.
74

2
0.

57
2

0.
56

4
0.

55
9

0.
68

8
0.

56
6

0.
67

9
0.

74
9

0.
62

3
0.

74
7

0.
73

6
0.

63
7

0.
73

2

M
in

0.
10

8
0.

17
0

0.
03

3
0.

35
7

0.
45

2
0.

33
4

0.
23

6
0.

32
0

0.
16

6
0.

25
1

0.
36

2
0.

22
2

0
.4

7
5

0.
42

1
0.

47
0

A
ve

ra
ge

0.
49

1
0.

42
3

0.
21

4
0.

48
6

0.
51

9
0.

45
5

0.
50

7
0.

46
7

0.
38

6
0.

55
0

0.
51

9
0.

46
0

0
.6

3
2

0
.5

5
1

0
.6

1
3

40
M

a
j

0.
75

4
0.

59
5

0.
75

0
0.

51
8

0.
48

4
0.

45
7

0.
70

2
0.

56
6

0.
69

6
0.

74
4

0.
60

8
0.

74
2

0.
72

3
0.

61
3

0.
71

8

M
in

0.
07

4
0.

11
6

0.
00

0
0.

27
7

0.
36

1
0.

23
2

0.
16

9
0.

24
7

0.
10

6
0.

19
4

0.
29

0
0.

14
8

0
.4

3
3

0.
37

0
0.

37
8

A
ve

ra
ge

0.
48

2
0.

40
3

0.
00

0
0.

42
1

0.
43

5
0.

34
8

0.
48

9
0.

43
8

0.
32

8
0.

52
4

0.
48

0
0.

38
9

0
.6

0
7

0
.5

1
6

0
.5

5
6

10
0

M
a
j

0.
74

5
0.

56
9

0.
73

9
0.

42
7

0.
38

5
0.

36
3

0.
70

3
0.

54
8

0.
69

7
0.

70
2

0.
54

4
0.

69
7

0.
66

7
0.

56
2

0.
66

2

M
in

0.
00

6
0.

01
2

0.
00

0
0.

25
0

0.
26

7
0.

09
0

0.
08

4
0.

14
0

0.
05

0
0.

06
0

0.
10

6
0.

04
0

0
.3

0
3

0.
27

2
0.

20
3

A
ve

ra
ge

0.
44

9
0.

34
6

0.
00

0
0.

35
6

0.
33

8
0.

20
8

0.
45

5
0.

38
5

0.
24

3
0.

44
5

0.
36

9
0.

22
3

0
.5

2
1

0
.4

4
6

0
.4

1
2

T
ab

le
7.

3:
P

er
fo

rm
an

ce
co

m
p
ar

is
on

of
d
iff

er
en

t
m

et
h
o
d
s

on
th

e
im

b
al

an
ce

d
C

IF
A

R
-1

0
d
at

as
et

of
d
iff

er
en

t
im

b
al

an
ce

ra
ti

o

52 7. Experimental Results

Figure 7.9: Average recall of minority classes on CIFAR-10 datset

Figure 7.10: Average recall of all classes (ACSA) on CIFAR-10 datset

7.3. Results on CIFAR-10 dataset 53

Figure 7.11: F1 score averaged over all classes on CIFAR-10 datset

Figure 7.12: GMean on CIFAR-10 datset

54 7. Experimental Results

7
.4

R
e
su

lt
s

o
n

S
V

H
N

d
a
ta

se
t

T
h
e

re
su

lt
s

ob
ta

in
ed

fo
r

d
iff

er
en

t
m

et
h
o
d
s

in
d
iff

er
en

t
im

b
al

an
ce

d
se

tt
in

gs
on

S
V

H
N

d
at

as
et

is
sh

ow
n

b
el

ow
.

B
as

el
in

e
B

as
el

in
e

+
C

la
ss

W
ei

gh
t

B
as

el
in

e
+

R
O

S
-

R
O

S
F

S
-S

M
O

T
E

D
O

S
A

D
O

S
(P

ro
po

se
d

M
et

ho
d)

Im
b

R
at

io
C

la
ss

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

R
e

F
1

G
M

ea
n

R
e

F
1

R
e

F
1

G
M

ea
n

10
M

a
j

0.
88

9
0.

83
4

0.
88

8
0.

84
5

0.
84

4
0.

84
4

0.
86

9
0.

82
7

0.
86

7
0.

89
2

0.
83

4
0.

89
1

0.
79

0
0.

81
0

0.
88

7
0.

84
9

0.
88

6

M
in

0.
74

3
0.

83
5

0.
74

1
0.

82
4

0.
86

5
0.

82
3

0.
80

5
0.

86
6

0.
80

3
0.

77
0

0.
85

2
0.

76
8

0.
82

0
0.

72
0

0
.8

6
5

0.
87

3
0.

86
5

A
ve

ra
ge

0.
83

1
0.

83
4

0.
82

6
0.

83
7

0.
85

2
0.

83
6

0.
84

3
0.

84
3

0.
84

1
0.

84
3

0.
84

1
0.

84
0

0.
80

2
0.

77
4

0
.8

7
8

0
.8

5
9

0
.8

7
7

20
M

a
j

0.
89

2
0.

79
0

0.
89

0
0.

79
2

0.
79

7
0.

78
9

0.
75

9
0.

74
0

0.
75

6
0.

81
6

0.
74

3
0.

81
2

0.
69

0
0.

78
0

0.
85

1
0.

80
2

0.
84

8

M
in

0.
59

7
0.

73
8

0.
59

3
0.

78
1

0.
82

3
0.

78
0

0.
76

4
0.

74
4

0.
76

3
0.

64
8

0.
74

3
0.

64
3

0.
79

7
0.

55
0

0
.8

4
0

0.
85

1
0.

84
0

A
ve

ra
ge

0.
77

4
0.

76
9

0.
75

7
0.

78
7

0.
80

7
0.

78
5

0.
76

1
0.

74
2

0.
75

9
0.

74
9

0.
74

3
0.

73
9

0.
73

3
0.

68
8

0
.8

4
7

0
.8

2
1

0
.8

4
4

40
M

a
j

0.
89

1
0.

79
9

0.
88

9
0.

78
2

0.
74

5
0.

78
0

0.
86

4
0.

79
2

0.
86

2
0.

87
5

0.
77

9
0.

87
3

0.
74

0
0.

77
9

0.
86

3
0.

79
6

0.
86

2

M
in

0.
59

4
0.

73
5

0.
59

0
0.

71
8

0.
72

8
0.

71
3

0.
67

1
0.

78
4

0.
66

6
0.

59
7

0.
73

5
0.

59
3

0
.7

2
7

0.
58

0
0.

71
9

0.
80

6
0.

71
6

A
ve

ra
ge

0.
77

2
0.

77
3

0.
75

4
0.

75
6

0.
73

8
0.

75
2

0.
78

7
0.

78
8

0.
77

7
0.

76
3

0.
76

2
0.

74
8

0.
73

5
0.

69
9

0
.8

0
5

0
.8

0
0

0
.8

0
0

10
0

M
a
j

0.
88

3
0.

70
9

0.
88

1
0.

90
2

0.
74

6
0.

90
1

0.
88

5
0.

74
1

0.
88

4
0.

88
2

0.
76

0
0.

88
1

0.
89

2
0.

77
6

0.
85

8
0.

76
1

0.
85

5

M
in

0.
27

2
0.

41
4

0.
24

3
0.

36
3

0.
52

7
0.

35
8

0.
33

0
0.

48
4

0.
31

8
0.

47
5

0.
63

0
0.

46
5

0.
51

6
0.

66
8

0
.5

5
0

0.
69

5
0.

54
8

A
ve

ra
ge

0.
63

9
0.

59
1

0.
52

7
0.

68
6

0.
65

9
0.

62
3

0.
66

3
0.

63
8

0.
58

7
0.

71
9

0.
70

8
0.

68
2

0
.7

4
2

0.
73

3
0.

73
5

0
.7

3
5

0
.7

1
6

T
ab

le
7.

4:
P

er
fo

rm
an

ce
co

m
p
ar

is
on

of
d
iff

er
en

t
m

et
h
o
d
s

on
th

e
im

b
al

an
ce

d
S
V

H
N

d
at

as
et

of
d
iff

er
en

t
im

b
al

an
ce

ra
ti

o

7.4. Results on SVHN dataset 55

Figure 7.13: Average recall of minority classes on SVHN datset

Figure 7.14: Average recall of all classes (ACSA) on SVHN datset

56 7. Experimental Results

Figure 7.15: F1 score averaged over all classes on SVHN datset

Figure 7.16: GMean on SVHN datset

7.5. Results on Re-sampled ImageNet dataset 57

7.5 Results on Re-sampled ImageNet dataset

The results obtained for Re-sampled ImageNet dataset is shown below.

Baseline
Baseline +

Class Weight
Baseline +
ROS-RUS

FS-SMOTE
ADOS

(Proposed Method)

min pr 0.150 0.142 0.119 0.125 0.220

min re 0.044 0.215 0.243 0.221 0.274
min F1 0.059 0.158 0.160 0.138 0.222
maj pr 0.148 0.141 0.153 0.155 0.174
maj re 0.177 0.142 0.124 0.142 0.232
maj F1 0.140 0.129 0.112 0.134 0.193
avg pr 0.149 0.141 0.146 0.149 0.184
avg re 0.149 0.157 0.156 0.159 0.234
avg F1 0.123 0.135 0.122 0.134 0.199
test acc 0.369 0.384 0.351 0.386 0.402
train acc 0.434 0.435 0.446 0.581 0.687

Table 7.5: Performance comparison of different methods on the Resampled Ima-
genet dataset.

Graphically the performance on re-sampled imagenet dataset is following.

Figure 7.17: Performance comparison of different methods on resampled ImageNet
dataset

Chapter 8

Conclusion and Scope of Future
Work

8.1 Conclusion

From the results obtained from our experimental study it has been observed that:

• Our proposed method Adaptive Dynamic Over-Sampling (ADOS) Tech-
nique has performed significantly well as compared to other state-of-the-art
technique.

• With the increased value of class imbalance ratio our proposed method
(ADOS) has shown relatively smaller decline in the performance. Hence,
our proposed algorithm is more resilient to class imbalance problem.

Hence we can say that our proposed method is a better technique to handle
the class imbalance problem, as per the results produced by testing on different
dataset.

8.2 Scope of Future Work

Despite its good performance, this method has few shortcomings. One of the short-
comings is that this method has an additional overhead of finding point specific
number of nearest neighbours, thus it becomes computationally expensive. Ex-
tending our proposed methodology, following are list (not exhaustive) of research
areas those can be explored:

• A comparative study can be made between supervised feature learning and
unsupervised feature learning (using deep auto-encoders)

• Different kinds of weighting functions (like: radial basis function, wedge
shaped function etc.) can be explored while creating synthetic neighbour for
a datapoint.

58

8.2. Scope of Future Work 59

• The idea of Borderline-SMOTE can be entangled with our proposed method-
ology to create samples near to the class boundary and thereby creating more
discriminating power to the classifier.

• A study on the performance of our proposed method as compared to the
existing ones for classifying general (not image) imbalanced datasets can be
done.

• The idea of manifold learning can be intertwined with our proposed Over-
Sampling algorithm to produce more locality sensitive synthetic samples.

• Some clever data structure can be proposed to improvise the overall time
complexity of our proposed oversampling algorithm.

Bibliography

[1] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Elsevier,
2013.

[2] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[3] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE
Transactions on Knowledge & Data Engineering, (9):1263–1284, 2008.

[4] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings of the IEEE, 86
(11):2278–2324, 1998.

[5] Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude
Oliva. Sun database: Exploring a large collection of scene categories. Inter-
national Journal of Computer Vision, 119(1):3–22, 2016.

[6] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the
tail. In Advances in Neural Information Processing Systems, pages 7029–7039,
2017.

[7] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Learning deep
representation for imbalanced classification. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 5375–5384, 2016.

[8] Yann LeCun Chris Burges, Corinna Cortes. The mnist database. URL http:

//yann.lecun.com/exdb/mnist/.

[9] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning
representations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural infor-
mation processing systems, pages 1097–1105, 2012.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[12] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

60

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

BIBLIOGRAPHY 61

[13] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, et al. Imagenet large scale visual recognition challenge. International
journal of computer vision, 115(3):211–252, 2015.

[14] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with
class imbalance. Journal of Big Data, 6(1):27, 2019.

[15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[16] Keinosuke Fukunaga and L Hostetler. Optimization of k nearest neighbor
density estimates. IEEE Transactions on Information Theory, 19(3):320–326,
1973.

[17] Rangachari Anand, Kishan G Mehrotra, Chilukuri K Mohan, and Sanjay
Ranka. An improved algorithm for neural network classification of imbalanced
training sets. IEEE Transactions on Neural Networks, 4(6):962–969, 1993.

[18] David Masko and Paulina Hensman. The impact of imbalanced training data
for convolutional neural networks, 2015.

[19] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study
of the class imbalance problem in convolutional neural networks. Neural
Networks, 106:249–259, 2018.

[20] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal
of artificial intelligence research, 16:321–357, 2002.

[21] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new
over-sampling method in imbalanced data sets learning. In International
conference on intelligent computing, pages 878–887. Springer, 2005.

[22] Chumphol Bunkhumpornpat, Krung Sinapiromsaran, and Chidchanok
Lursinsap. Safe-level-smote: Safe-level-synthetic minority over-sampling tech-
nique for handling the class imbalanced problem. In Pacific-Asia conference
on knowledge discovery and data mining, pages 475–482. Springer, 2009.

[23] Salman H Khan, Munawar Hayat, Mohammed Bennamoun, Ferdous A Sohel,
and Roberto Togneri. Cost-sensitive learning of deep feature representations
from imbalanced data. IEEE transactions on neural networks and learning
systems, 29(8):3573–3587, 2017.

[24] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988, 2017.

62 BIBLIOGRAPHY

[25] Haishuai Wang, Zhicheng Cui, Yixin Chen, Michael Avidan, Arbi Ben Ab-
dallah, and Alexander Kronzer. Predicting hospital readmission via cost-
sensitive deep learning. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB), 15(6):1968–1978, 2018.

[26] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Learning deep
representation for imbalanced classification. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 5375–5384, 2016.

[27] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face
attributes in the wild. In Proceedings of the IEEE international conference
on computer vision, pages 3730–3738, 2015.

[28] Shin Ando and Chun Yuan Huang. Deep over-sampling framework for classi-
fying imbalanced data. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 770–785. Springer, 2017.

[29] Robert A Dunne. A statistical approach to neural networks for pattern recog-
nition, volume 702. John Wiley & Sons, 2007.

[30] Thomas Wiatowski and Helmut Bölcskei. A mathematical theory of deep
convolutional neural networks for feature extraction. IEEE Transactions on
Information Theory, 64(3):1845–1866, 2017.

[31] Haohan Wang and Bhiksha Raj. On the origin of deep learning. arXiv preprint
arXiv:1702.07800, 2017.

[32] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages 604–613. ACM, 1998.

[33] Sankha Subhra Mullick, Shounak Datta, and Swagatam Das. Adaptive
learning-based k-nearest neighbor classifiers with resilience to class imbal-
ance. IEEE transactions on neural networks and learning systems, (99):1–13,
2018.

[34] Pratip Bhattacharyya and Bikas K Chakrabarti. The mean distance to the
nth neighbour in a uniform distribution of random points: an application of
probability theory. European Journal of Physics, 29(3):639, 2008.

[35] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and
Yoshua Bengio. An empirical evaluation of deep architectures on problems
with many factors of variation. In Proceedings of the 24th international con-
ference on Machine learning, pages 473–480. ACM, 2007.

[36] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

BIBLIOGRAPHY 63

[37] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Technical report, Citeseer, 2009.

[38] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y Ng. Reading digits in natural images with unsupervised feature
learning. 2011.

[39] François Chollet et al. Keras, 2015.

[40] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Is-
ard, et al. Tensorflow: A system for large-scale machine learning. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pages 265–283, 2016.

	Introduction
	Problem Statement
	A Motivational Example
	Dataset and Imbalanced Settings
	Performance and Observation

	Our Contribution
	Thesis Outline

	Preliminaries
	Convolutional Neural Network (CNN)
	VGG-16 Architecture
	Representation Learning: Supervised Deep Feature Extraction using Deep Neural Network (DNN)
	The k-Nearest Neighbour Algorithm
	Class Weighting Scheme
	Performance Metrics

	Related Works on Deep Learning with Class Imbalance
	Data Level Methods
	Random Over Sampling (ROS)
	Random Under Sampling (RUS)
	ROS + RUS
	Synthetic Minority Oversampling TEchnique (SMOTE)

	Algorithmic Level Methods
	Focal Loss
	Cost Sensitive Deep Neural Network

	Hybrid Level Methods
	Large Margin Local Embedding (LMLE)
	Deep Over-Sampling Framework (DOS)

	Our Proposed Technique
	Mathematical Notations
	Step by Step walk through the Technique
	Training of Supervised Feature Extraction Model
	Extraction of features
	Adaptive Dynamic Over-Sampling Algorithm
	Training of final classifier

	Complexity Analysis of Our Proposed Method

	Description of the Datasets
	MNIST-back-rotation Images (MNISTrb)
	Data Augmentation
	Imbalanced Settings

	Fashion-MNIST Dataset
	Imbalanced Settings

	CIFAR-10 Dataset
	Imbalanced Settings

	Street View House Number (SVHN) Dataset
	Imbalanced Settings

	Re-sampled ImageNet Dataset

	Neural Network Architectures and Training
	Feature Extracting Architecture for MNISTrb and Fashion-MNIST Dataset
	Feature Extracting Architecture for CIFAR-10 and SVHN Dataset
	Feature Extracting Architecture for Re-sampled ImageNet Dataset
	Training Schemes

	Experimental Results
	Results on MNISTrb dataset
	Results on Fashion-MNIST dataset
	Results on CIFAR-10 dataset
	Results on SVHN dataset
	Results on Re-sampled ImageNet dataset

	Conclusion and Scope of Future Work
	Conclusion
	Scope of Future Work

