
Estimation of Error Bound for k-Nearest
Neighbor Classifier on Multi Class Data Sets

Kushal Bose

Estimation of Error Bound for k-Nearest
Neighbor Classifier on Multi Class Data

Sets.

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in

Computer Science

by

Kushal Bose
[Roll No: CS-1714]

under the guidance of

Dr. Swagatam Das
Associate Professor

Electronics and Communication Sciences Unit

Indian Statistical Institute
Kolkata-700108, India

July 2019

To my parents and my guide

”Imagination is more important than Knowledge”

- Albert Einstein

CERTIFICATE

This is to certify that the dissertation entitled “Estimation of Error Bound for k-
Nearest Neighbor Classifier on Multi Class Data Sets” submitted by Kushal
Bose to Indian Statistical Institute, Kolkata, in partial fulfillment for the award of
the degree of Master of Technology in Computer Science is a bonafide record
of work carried out by him under my supervision and guidance. The dissertation
has fulfilled all the requirements as per the regulations of this institute and, in my
opinion, has reached the standard needed for submission.

Dr. Swagatam Das
Associate Professor,
Electronics and Communication Sciences Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.

Acknowledgments

I would like to show my highest gratitude to my advisor, Associate Prof. Dr. Swa-
gatam Das, Electronics and Communication Sciences Unit, Indian Statistical Insti-
tute, Kolkata, for his guidance and continuous support and encouragement. He has
literally taught me how to do good research, and motivated me with great insights
and innovative ideas.

My deepest thanks to all the teachers of Indian Statistical Institute, for their valuable
suggestions and discussions which added an important dimension to my research work.

Finally, I am very much thankful to my parents and family for their everlasting
supports.

Last but not the least, I would like to thank all of my friends for their help and
support. I thank all those, whom I have missed out from the above list.

Kushal Bose
Indian Statistical Institute

Kolkata - 700108 , India.

Abstract

A motivational problem that arises in machine learning is to estimate out-of-sample
error rate of a k-nearest neighbor classifier. Without having any prior knowledge of
distribution or any assumption of distribution it is required to estimate the maximum
probability of misclassification of an unlabeled sample. Previous works include the
assumption on data distribution as identical and independent distribution (i.i.d.).
This method works for binary classification only. Our proposed algorithm is applicable
for any data sets without having any knowledge of the underlying data distribution.
Our algorithm will search the misclassification region in the data set and calculate
the bound for an unlabeled test sample. Our method will always detect the class
overlapping region within the data set irrespective of balanced and imbalanced. Our
method is also designed for both two-class and multi-class data sets. Our experiments
includes the bound validation for different scenarios. We have tested for random k
value and fixed range of k. Also verified for balanced and imbalanced data sets.
We also demonstrated to find optimal sets of k values where classifier error will be
minimized.

Keywords: Error Bound, Penalty Function, Penalty Matrix, Distance Weighted
Score (DWS), Additive Score, Misclassification Region.

1

Contents

Certificate iv

Acknowledgments v

Abstract 1

List of Figures 4

List of Tables 5

1 Introduction 7
1.1 Problem Statement . 7
1.2 Brief Survey on k-NN Classifier . 7
1.3 Thesis Overview . 8

2 Preliminaries 9
2.1 k-Nearest Neighbor Algorithm . 9
2.2 Pros and Cons of k-NN Classifier . 9

2.2.1 Pros . 9
2.2.2 Cons . 10

2.3 Validation Phase of k-NN Classifier 10
2.4 Two Different Types of k-NN Classifier 11

2.4.1 Distance Weighted k-NN (DWkNN) 11
2.4.2 Fuzzy k-NN (FkNN) . 11

2.5 Optimal Data Structures for k-NN Algorithm 11
2.5.1 Kd Tree . 11
2.5.2 Ball Tree . 11

3 Related Work and Our Contribution 12
3.1 Related Work . 12
3.2 Motivation . 13
3.3 Our Contribution . 13

2

CONTENTS 3

4 Proposed Approach for Error Bound Estimation 14
4.1 Introduction . 14
4.2 Overview of Proposed Algorithm . 14
4.3 Detailed Analysis of Proposed Approach 15

4.3.1 Target Sample Selection . 15
4.3.2 Penalty Function . 15
4.3.3 Penalty Matrix Generation . 18
4.3.4 Misclassification Probability for Each Sample 18
4.3.5 Sorting of Misclassification probability 19
4.3.6 Error Bound Calculation . 19

5 Error Bound Estimation : Two-Class and Multi-Class Algorithms 22
5.1 Two-Class Algorithm . 22
5.2 Multi-Class Algorithm . 25
5.3 Complexity Analysis . 28
5.4 Algorithms on Large Data Sets . 29

6 Experimental Study of Error Bound Algorithms 31
6.1 Calculation of Experimental Error Bound 31
6.2 Data Set Source Details . 32
6.3 Experimental Results . 32

6.3.1 Bound Validation for Random k Value 32
6.3.2 Bound Validation for Imbalanced Data Sets 35
6.3.3 Bound Validation for Overlapping Classes 39
6.3.4 Bound Validation for Range of k 42

6.4 Optimal Values of k . 45

7 Conclusion and Future Work 47
7.1 Conclusion . 47
7.2 Scope for Future Work . 48

Bibliography 49

List of Figures

2.1 Calculating neighbor set for two class problem 10

4.1 Distance weighted score for neighbors 16
4.2 Scenario where additive scores are required 17
4.3 Overlapping Region . 19

6.1 Bound Validation for Random k Values 35
6.2 Bound Validation for Synthetic Imbalanced Data Sets 38
6.3 Bound Validation for Overlapping Classes 41
6.4 Bound Validation for Range of k Values 45
6.5 Set of Optimal k Values . 46

4

List of Tables

1 List of Notations Used in Thesis . 6

6.1 KEEL Real Life Data Sets . 32
6.2 Results Achieved for Random Values of k 33
6.3 Synthetic 2-D Imbalance Data Sets 35
6.4 Synthetic 2-D Class Overlapping Data 39
6.5 KEEL Real World Data Sets . 42
6.6 Results Obtained for Range of k . 42

5

6 LIST OF TABLES

Table 1: List of Notations Used in Thesis

D A Multi-Class Data Set
n Number of Samples in data set
R Number of Class Labels
k Number of Neighbors
d Dimension of Each Sample
nq Number of Samples in Cq Label
frac Fraction of Samples
V Validation Set
T Target Set
N Neighbor Set
Penalty(.) Penalty Function
label(.) Label of a Sample
M Misclassification Region
Pn×R Penalty Matrix
Z Unlabeled Test Sample
prob(i) Misclassification probability of ith Sample
Th Bound Theoretical Error Bound
Exp Bound Experimental Error Bound
EBi Theoretical Error Bound in ith Iteration

Chapter 1

Introduction

1.1 Problem Statement

We have a data set D and we want to apply k-NN classifier to determine label
of test sample using training samples of D. Our objective is to find error bound of
this k-NN classifier. Simply, we want to estimate the maximum probability of
misclassification of an unlabeled test sample.

During validation phase some training examples are removed which is known as
Validation Set V and this samples are tested on the rest of the training samples.
Therefore, selection of V is done randomly and uniformly. So, it is not guaranteed
that the V will be selected from most overlapping region. For that reason error rate
in validation set may not ensure the error bound. Therefore, we desire to estimate
error bound in an alternative way.

1.2 Brief Survey on k-NN Classifier

In machine learning, a set of labeled training examples is used to develop a clas-
sifier. Each example consists of an input and a class label. The primary objective
is to learn the features using the labels associated with it. This type of learning is
called Supervised Learning. k-Nearest Neighbor algorithm is an example of super-
vised learning.

k-nearest neighbor is used to classify labeled examples. kNN algorithm works
based on the majority voting of neighbor examples. It does not require any training
phase [1]. Therefore, it is a lazy learner. It does not require any assumption of
data distribution. So, it is a non-parametric classifier. It is also an example of
instance based learning. For any unlabeled sample it calculates neighbor set and
then determine the label.

In kNN classifier the only parameter is k where k is the number of nearest neigh-
bors. Selection of k value is very important while applying k-NN classifier. Randomly

7

8 1. Introduction

selection of k either can give good accuracy or it may lead to bad performance. Guo
et al. [2] showed the dependency of performance on k. They also showed that value
of k is automatically determined which is varied for different data, and is optimal in
terms of classification accuracy. The construction of the method reduces the depen-
dency on k and makes classification faster. Bhattacharya et al. [3] showed value of k
can be large as

√
n where n is the number of samples in data set.

Use of kNN is limited due to high storage of all training samples and requirement
of intensive computation. Behaviour of kNN rule under some situation described by
Sanchez et al. [4]. They described the situations like class overlapping, feature space
dimensionality and class density. Hinneberg et al [5] discussed about the effect of high
dimensionality. They suggested to select only important features and reject others as
well. This will increase performance and reduces time complexity.

If data set contains categorical features then k-NN is not applicable. If the feature
values are categorical then evaluation of metrics are not possible. It only works if all
feature values are either integer or real numbers or both.

One important thing is that kNN classifier has dependency on the relative po-
sitions of points. This classifier works taking majority voting of nearest neighbors.
The different arrangement of data points may change the neighbors position. The
decision of majority voting also changes. This can affect the performance. Either the
performance will be better or worse.

kNN algorithm can helps to extract information from imbalanced data distribu-
tion. Ahang et al. [6] showed the effect of under sampling on the kNN approach and
stated different methods of choosing negative training examples.

Moreover when a data set and there is no prior information about the distribution
of the data then k nearest neighbor classifier comes to rescue. This classifier does
not require or assumption of any distribution of the data points. it just considers its
nearest neighbors and majority voting.

1.3 Thesis Overview

The rest of the thesis is organized as follows -
Chapter 2: We briefly discuss about preliminaries and k-nearest neighbor algorithm.
Chapter 3: We discuss related work, motivation and our contribution to solve chal-
lenges.
Chapter 4: We discuss about brief overview of proposed error bound estimation
algorithms and detailed analysis related to every step used in the algorithms.
Chapter 5: Error Bound estimation algorithms for Two -Class and Multi-Class data
sets are discussed along with pseudo codes.
Chapter 6: We exhibit different types of experiments on various real life data sets
(small and large) and how to find optimal set of k values of a kNN classifier.
Chapter 7: We summarize our work and discuss about future scope to improve the
work.

Chapter 2

Preliminaries

2.1 k-Nearest Neighbor Algorithm

k-nearest neighbor algorithm is a non-parametric lazy learning algorithm [7]. The
label of an unlabeled sample is determined by majority voting of the k nearest neigh-
bors. k-NN is mostly applied when there is little or no prior knowledge about the
distribution of data.

Suppose t is an unlabeled sample whose class label is to be determined. First
calculate k nearest neighbors using Euclidean distance metric. Consider the neighbor
set is N = {n1, n2, ..., nk}. Now count the number of samples in each label we get as
mi,∀i = 1, 2, .., R where mi is the count of number of samples of ith class from the
neighbor set. Find the class label whose count is maximum. Assign that class label
to that unlabeled sample t. Break ties randomly. In this way k-NN algorithm works.

The distance which is measured between samples can be of different metric. May
be it is Euclidean, Manhattan or it is Minkowski. By using different metric results
may vary [8]. In whole thesis we will use Euclidean Distance as our distance metric.

Consider the following two class example - The green colored sample need to
classify (see Figure 2.1). For k = 1, the nearest neighbor has class label of class
1(green color). So, the unlabeled sample will assign to class 1. For k = 3, the
nearest neighbors are two samples from class 2(red color) and one sample from class
1. Therefore, class label will be class 2.

Applications of k-NN can be handwritten character recognition, image recognition,
video recognition. k-NN can also classify a voter either ”will vote” or ”will not vote”.

2.2 Pros and Cons of k-NN Classifier

2.2.1 Pros

• Simple Algorithm

9

10 2. Preliminaries

Figure 2.1: Calculating neighbor set for two class problem

• No assumption about data

• Versatile - Useful for Classification and Regression

2.2.2 Cons

• High Memory Requirement - Stores all training data

• For high dimensional data k-NN algorithm takes long time

• Sensitive to irrelevant features and the scale of the data

2.3 Validation Phase of k-NN Classifier

As discussed in the introduction of previous chapter k-nearest neighbor requires
no training phase. It has only validation phase and test phase. First from the
set of samples D select randomly n × frac number of samples and store them in
validation set V . Generally frac is 10%, 15%, 20% of all samples. For each v ∈ V
find neighbors from D \ v and apply majority voting. Then assign the label. If
predicted label matched with actual label then it is properly classified if not then it
is misclassified. Store the samples which are classified in the set V ′. Do this for all
samples in validation set. Then accuracy will be V ′

V
.

2.4. Two Different Types of k-NN Classifier 11

Remark 1 Observe that accuracy will change every time because the set V is selected
randomly from the data set. So, accuracy increases or decreases abruptly. So, we need
to an error bound to confirm the error rate.

2.4 Two Different Types of k-NN Classifier

2.4.1 Distance Weighted k-NN (DWkNN)

In normal KNN the the final label is determined by counting the number of samples
from each class and then find the label having maximum count. But in DWKNN [9]
an additional weight is assigned that is inverse distance between unlabeled sample
and its nearest neighbors. While counting of number samples for a particular class
just add the inverse distances i.e.

∑
i

1
wi

. Repeat this for all class labels. Then assign
final label which class label has maximum value.

2.4.2 Fuzzy k-NN (FkNN)

In FKNN [10] every unlabeled sample will belong to every class label to some
fractional value that is Fuzzy value. In general k-NN algorithm every sample belongs
to exactly one class. But in this case every unlabeled sample is assigned a fractional
value fi for ith class. So,

∑
i fi = 1. The value fi depends on the position of samples

from that class label.

2.5 Optimal Data Structures for k-NN Algorithm

k-NN algorithm takes time to find k nearest neighbors. First algorithm calculates
all distances between test sample and all other neighbors. This takes O(n) time. To
optimize this there are many data structures are there -

2.5.1 Kd Tree

This method uses tree like structure. It divides the higher dimensional feature
space into equal halves recursively w.r.t each dimension once. While calculating test
sample compares distance between two halves and which one is larger this half is fully
rejected [11]. In this way searching reduces to O(log n).

2.5.2 Ball Tree

This also divides like kd tree but in spherical structures. The higher dimensional
space is recursively divided into equal halves w.r.t each dimension once. While search-
ing the one sphere is fully rejected [12]. It also takes O(log n) time.

Chapter 3

Related Work and Our
Contribution

3.1 Related Work

There are many approaches are taken to estimate error bounds for k-nearest neigh-
bor classifier. Bax [13] evaluated Probably Approximately Correct or PAC Bound for
out of sample error rate of k-NN classifier. Bax showed in his paper that the PAC
bound works for samples which are drawn from known identical and independent
distribution (i.i.d.). Also it assumes of binary classification problem. One class is
positive class and another class is negative. This method holds some training sam-
ples as validation set. This classifier is called holdout classifier. If all training
samples are used then it is termed as full classifier. First bound the error rate
of the holdout classifier. Now evaluate the bounding difference between holdout
and full classifier. Combining this two bounds is the final error bound for Full
Classifier. Experiments are done with 10,000 samples randomly drawn from [0, 1]3.
Class label is determined by octant centered at (1

2
, 1
2
, 1
2
). Author showed the bound

for different k values. The bound is getting looser with increasing with the value of
k. Finally the expected error bound is in the range of O((k/n)

2
3)

Yunwen Lei et al. [14] showed the data dependent generalization error bound
which has low dependency on number of classes. They developed new structural
results for multi class Gaussian complexities and l∞ covering numbers which exploit
the Lipschitz continuity of the loss function with respect to the l2 and l∞ norm,
respectively. They establish data-dependent error bounds in terms of complexities of
a linear function class defined on a finite set induced by training examples, for which
they show tight lower and upper bounds.

Another significant work by Devroe et al. [15] showed that k-NN produces an

exponential error bound with range O((k
n
)
1
3).

12

3.2. Motivation 13

3.2 Motivation

In the review while evaluating error bound there are many constraints such as
assumption of distribution, number of classes should be two etc. There also exists
dependency on number of class labels in the error bound. Real life data sets may
not guarantee that it should follow some particular distribution and it can be of
multi classes. Also data set can be imbalance. Therefore, this methods work in very
limited cases. Therefore, we took this as a challenge and proposed our error bound
estimation algorithms. Our algorithms will estimate the maximum probability of
misclassification of an unlabeled test sample without any assumption. We developed
two different methods - one for two class and another for multi classes. Apart from
error bound calculation we also generate the optimal values of k for which error rate
will be minimized.

3.3 Our Contribution

Our contributions are summarized as follows -

• We have developed two different algorithms for error bound estimation - one
for two-class and another for multi-class data sets.

• Using these algorithms we have detected overlapping regions lies within the data
set.

• We have calculated the maximum probability of misclassification of an unlabeled
test sample.

• We have done complexity analysis for both algorithms

• We performed several types of experiments on various real life data sets.

• From different error bound for different values of k we assure some optimal sets
of k for which error rate is minimized.

Chapter 4

Proposed Approach for Error
Bound Estimation

4.1 Introduction

In this chapter we will discuss every step of our proposed algorithms along with
the theories. There will be theorems, lemmas etc to justify our work. This will
establish the correctness of our proposed algorithms.

4.2 Overview of Proposed Algorithm

Input: A data set D = {x1, x2, . . . , xn} of n samples with R class labels. A k-NN
classifier with predefined k value.

Output: Return the maximum value of probability of misclassification for that k
value.

Step 1: Select some/all training samples from data set and termed them as Target
samples.

Step 2: Consider xi from the set of target sample set and find its k nearest neighbors
from the set D \ xi.

Step 3: Update penalty value for nearest neighbors for each target samples

Step 4: Calculate probability of misclassification for each sample using these penalty
values.

Step 5: Sort this samples according to misclassification probability values.

Step 6: For class label Ci evaluate weighted mean probability of top k samples.
Repeat this for all class and consider the maximum of them as final error bound.

14

4.3. Detailed Analysis of Proposed Approach 15

4.3 Detailed Analysis of Proposed Approach

4.3.1 Target Sample Selection

Target sample means this set of samples to be selected to find their nearest neigh-
bors from the data set. Consider collection target samples as set T . For small data
set means number of samples may be less than 1000, then T = n. For large data set
where number of samples is more than 5000, then T = n ∗ frac. Here frac is user
given parameter. Value of frac is fraction of samples to be selected uniformly and
randomly. So, frac can be 0.60, 0.70 etc. Therefore |T | ≤ n.

4.3.2 Penalty Function

Literally penalty means imposing some fine for doing wrong deeds. Here wrong
deed means ’Misclassification’. Also ’Classification’ is wrong deed but lesser penalty
from misclassification. Penalty functions produces penalty values which are assigned
to the neighbors of a target sample irrespective of classification / misclassification.
Penalty function consists of two different scores -

(1) Distance Weighted Score (DWS)

(2) Class Wise Sample Count in Neighbor Set (Label Count)

Distance Weighted Score

This score is assigned according to the distance of the neighbor from the target
sample. After calculating k nearest neighbors sort them w.r.t increasing order of
distance from target sample. Then DWS will be following -

DWS(x) = k − Pos(x) (4.1)

where Pos(x) = index of sample x in corresponding neighbor set

Now consider t is a target sample (see Figure 4.1) and k = 3, Therefore, it has 3
nearest neighbors which are p,q,r. Sort them w.r.t. increasing order of distance then
neighbor set will looks like N = {p, q, r}. Now Pos(p) = 0, Pos(q) = 1, Pos(r) = 2.
Their DWS will be following -

DWS(p) = k - Pos(p) = k - 0 = k

DWS(q) = k - Pos(q) = k - 1

DWS(r) = k - Pos(r) = k - 2

It can be observed that DWS is assigned such a way that more nearer to the target
sample higher the score is. For a fixed k, the contribution towards misclassification
is measured how the neighbors is nearer to the target sample. If a sample is more
nearer to the t more its contribution to the misclassification.

16 4. Proposed Approach for Error Bound Estimation

Figure 4.1: Distance weighted score for neighbors

Class Wise Sample Count in Neighbor Set

From the neighbor set calculate the number of samples from each class label.
Number of samples from Ci is denoted as Label Count[Ci]. It is a part of penalty value
because more the number of samples of a particular class label higher the probability
that target sample will be classified to that label. So, higher the sample count of
class label more contribution towards misclassification or classification. Therefore,
combining this two score components the penalty function will looks like -

Penalty(x) = DWS(x) + Label Count[label(x)] (4.2)

where x neighbor of any target sample and label(.) denotes class label of the sample.

Proposition 1 Adding DWS and Label Count scores will lead to more accurate
Penalty function

Proof:
In penalty value two scores DWS and Label Count are added. The obvious ques-

tion may arise about the justification of adding two terms(Additive Scores). Consider
t is a target sample from the data set and k = 3 (see Figure 4.2). The neighbors are
{p, q, r}. Sort them w.r.t. ascending order of distance from t we get {p, r, q}. Sample

4.3. Detailed Analysis of Proposed Approach 17

p has class label 1 where sample r and q has class label 2. So, Pos(p) = 0, Pos(q)
= 2, Pos(r) = 1. Let target sample t has class label 1. Applying k-NN t will be
classified as class 2. So, it is a misclassification.

Figure 4.2: Scenario where additive scores are required

Now penalty will be assigned as misclassification occurs.
DWS(p) = k - Pos(p) = 3 - 0 = 3
DWS(q) = k - Pos(q) = 3 - 2 = 1
DWS(r) = k - Pos(r) = 3 - 1 = 2

The label counts are like below -
Label Count[C1] = 2
Label Count[C2] = 1

Samples q and r are highly responsible for the misclassification of target sample t. So,
eventually they should get higher penalty value. But DWS are lesser than expected
for q and r but adding DWS and Label Count both will enhance the penalty values
to the expectation. So, adding these two score we get final penalty value -

Penalty(p) = DWS(p) + Label Count[l(p)] = 3 + 1 = 4
Penalty(q) = DWS(q) + Label Count[l(q)] = 1 + 2 = 3
Penalty(r) = DWS(r) + Label Count[l(r)] = 2 + 2 = 4

Observation is that the meaningful change in penalty values after using additive score
technique. Sample q is farthest from all others and initially it has low penalty value

18 4. Proposed Approach for Error Bound Estimation

but it should have higher penalty value as it contributes more to misclassification.
Using additive score this will give 3 points where sample p is nearest has 4 penalty
points i.e. difference is 1. But initially this difference is 2 but now difference is 1.
That is the improvement has occurred. For sample r initially penalty value is 2 which
is lesser than penalty value of sample p. But r should have higher value than p. After
using additive scores penalty value of r becomes 4 which is same as penalty value of
p. So, it is justifiable why to use additive scores. �

4.3.3 Penalty Matrix Generation

Penalty Matrix is a matrix which will store the penalty value of the nearest neigh-
bors of a target sample. Penalty matrix is P has dimension of n× R where n = no
of samples, R = number of classes.

Initially all values of P will be zero.

Pn×R =

0 0 · · · 0
0 0 · · · 0
· · ·
0 0 · · · 0

Select any target sample xi from T . Find its k nearest neighbors from data set

D\xi. Let its neighbor set is N = {n1, n2, ..., nk}. If xi misclassified then its neighbors
are going to get some penalty value. If xi got classified then its neighbor samples will
get less penalty values. This values will be stored in penalty matrix.

Suppose we will find k nearest neighbors of xi. Assume it got misclassified and N
will be the set of neighbors. So, penalty update will be like this -

Let N = {n1, n2, ..., nK}
for each h ∈ N

if label(h) = j then

Update P [i][j] += Penalty(h)

Where P [i][j] is the penalty value of a neighbor whose class label is j of ith target
sample.

4.3.4 Misclassification Probability for Each Sample

Using penalty matrix we can calculate the probability of misclassification of each
sample lies in the data set. Two different ways are proposed for two class and multi
class problem separately. This will be described in details in next chapter (Chapter
4).

4.3. Detailed Analysis of Proposed Approach 19

4.3.5 Sorting of Misclassification probability

From previous step, we have misclassification probability value for each sample.
Sort them in ascending order. Higher the probability means that sample is highly
probable to misclassify a sample.

4.3.6 Error Bound Calculation

Before calculating the error bound let us define the following term -

Definition 1 Misclassification Region

Assume a data set as a collection of points in higher dimensional space (i.e. feature
space). The region where two or more class labels overlaps is termed as Misclassifica-
tion Region. If any test sample appears in this region then chance of misclassification
increases as there are lots of samples from different class labels will become mem-
ber of neighbor set. The dominance of other class labels will increase which lead to
misclassification.

Figure 4.3: Overlapping Region

Consider an example (see Figure 4.3) where two class labels exists (red and blue label).
The elliptical curve is bounding the class overlapping region. In every sample in this
region will be mostly misclassified as label dominance will increase. For simplicity
for every sample we select from misclassification region, its neighbor set will contain
samples from both class label almost equally. So, probability of misclassification of
those selected sample will increase. But if we move towards left the neighbor set
will contains more more red labeled sample thus misclassification probability reduces.
Same argument is applicable for moving towards right.

20 4. Proposed Approach for Error Bound Estimation

Our proposed method will find this misclassification regions and identify samples
whose misclassification probability is high. For multi class data set there can be more
complex misclassification regions. But this method will always detect this regions
accurately.

Theorem 1 Samples having higher misclassification probabilities tends to be closer
than samples having lower probabilities.

Proof:
Suppose M is a region within the data set where samples are of high probabilities.

Probability is high means the sample participates in more misclassifications than a
sample whose probability is lower than it. So, this region is a collection of samples
which participates more misclassification than classification. Therefore, this region is
Misclassification Region.

Assume M contains some set of samples M ′ ⊂M whose probability is very lower
than others samples in M \M ′. Samples in M ′ participates in some classifications.
So, there are classifications occurred with some samples. But it is a misclassification
region. So, it is a contradiction, Thus high probability valued samples will be cluster
together. If we move away from misclassification region the value of the probability
will decrease and probability of classification will increase. �

Theorem 2 For any sample x in data set Penalty(x) ∈ [2, 2k]

Proof:
Penalty function is defined as

Penalty(x) = DWS(x) + Label Count(label(x))
The DWS(x) score will vary from 1 to k. It implies

1 ≤ DWS(x) ≤ k (4.3)

The Label Count[label(x)] score can have 0 to k number of samples. Therefore,

0 ≤ Label Count(label(x)) ≤ k (4.4)

Adding inequalities 4.3 and 4.4 we get

DWS(x) + Label Count(label(x)) ≤ 2k

Penalty(x) ≤ 2k (4.5)

The upper bound is proved. Now its time to show the lower bound. Its simply can
be 1 but we will show that penalty value can never be 1. If any sample x is member
of neighbor set then its Label Count(x) will be 1. Also minimum value of DWS(x)

4.3. Detailed Analysis of Proposed Approach 21

is 1 when Pos(x) will be (k− 1) that is sample x is the farthest neighbor in neighbor
set. So, minimum value of Penalty(x) will be 2.

Penalty(x) ≥ 2 (4.6)

Hence both side is proved. �
In last step we are going to evaluate error bound. Assume Z is an unlabeled test

sample whose label will be determined using the given training samples by applying
kNN algorithm. We are interested to find the maximum probability of misclassifica-
tion of sample Z. Using Theorem 1 top k probabilities will be nearer to each other
thus Z have a chance to get them as its nearest neighbors. The probability will be
maximum if Z has neighbor set containing the samples whose probabilities
are top most k.

Assume Z has neighbor set N = {n1, n2, ..., nk}. Each ni will be from top k
probability. We already have the sorted list of probabilities. There are R class labels
are there. So, actual label can be of Z is Ci but it can be misclassified as Cj ∀j 6= i.

For class label C1 consider top k probabilities. But in top k samples there are
many other samples whose class labels are different from C1. Therefore, take a count
for each label and check if number of samples from C1 is at least bK

R
c+1 then calculate

the error bound (for details refer Chapter 4), otherwise reject. In this way consider
all possibilities where misclassified class label will be C1. Then repeat this process
for all other classes . Store this R different error bounds for each class and return
the maximum of all. The maximum value is the desired maximum probability of
misclassification of Z.

Chapter 5

Error Bound Estimation :
Two-Class and Multi-Class
Algorithms

We have designed two different approach for two-class and multi-class data sets.
Both algorithms differ in penalty update, probability calculation which will be dis-
cussed in detail in following two sections.

5.1 Two-Class Algorithm

When it is a case of binary classification this algorithm will help to estimate error
bound when k-NN classifier is applied. Let’s assume the classes are C1 and C2. Now
below steps are shown -

Step 1 : Select the set of target samples. Refer 4.3.1 for details

Step 2 : In this step penalty values will be updated for the neighbors of the target
samples. Declare the penalty matrix P in the following way

Pn×2 =

0 0
0 0
· · ·
0 0

The first column stores penalty values and second column stores the number of
times the samples participates in misclassification or classification. As in two
class problem one sample can either be classified or misclassified. There is no
any other possibility.

22

5.1. Two-Class Algorithm 23

We assume ’Classification’ is a complement of ’Misclassification’. So, whatever
the penalty will give for misclassification its complement penalty will be assigned
for classification.

Previously we have defined DWS(x) = k - Pos(x). Now define

DWS(x) = 1 + Pos(x) (5.1)

As Pos(x) is the index of x in sorted neighbor set. So, Pos(x) will vary from 0
to (k − 1). Then DWS(x) will vary from 1 to k. Similarly DWS(x) will vary
from 1 to k. Add them it will be -

DWS(x) +DWS(x) = k + 1 (5.2)

which is constant. If DWS increases then DWS decreases and vice-versa. It
implies that misclassification penalty should always greater than classification
penalty value. Therefore, DWS is used in misclassification and DWS is for
classification.

Another penalty component is Label Count which is simply count of samples
of a fixed class label in the neighbor set. So, it will vary 0 to k. Now, define
complement of this will be

Label Count(x) = k − Label Count(x) (5.3)

Higher the value of Label Count lower the value of Label Count. Due to the
same reason stated above it is justified to use Label Count in misclassification
and Label Count in classification.

Therefore, for each misclassification assign penalty to its each neighbors -

Penalty(x) = DWS(x) + Label Count(x) (5.4)

For each classification assign penalty to its each neighbor

Penalty(x) = DWS(x) + Label Count(x) (5.5)

Let t is a ith target sample. Its neighbor set is N = {n1, n2, ..., nk}. Assume
label of t is C1. Now apply k-NN and update penalty values shown in below
algorithm for both classification and misclassification

24 5. Error Bound Estimation : Two-Class and Multi-Class Algorithms

Algorithm 1 Penalty Update for Two Class Problem

1: if t.MISCLASSIFIED = True then
2: for h ∈ N do
3: P [i][0]← P [i][0] + k − Pos(h) + Label Count(label(h))
4: P [i][1]← P [i][1] + 1
5: end for
6: end if
7: if t.CLASSIFIED = True then
8: for h ∈ N do
9: P [i][0]← P [i][0] + 1 + Pos(h) + k − Label Count(label(h))
10: P [i][1]← P [i][1] + 1
11: end for
12: end if

Step 3 : Using penalty values from Penalty matrix, we will calculate sample wise
misclassification probability. To calculate the misclassification probability of
each sample first we need to calculate the probability of a sample which its
contributes in either classification or misclassification. Using Theorem 2 the
maximum value of Penalty is 2k.

Probability in each participation = Penalty(x)
2k

Probability of misclassification of each sample is

Total probability of all participations
Total number of participations

Denote prob(i) as probability of ith sample

prob(i) =
P [i][0]

P [i][1] ∗ (2k)
(5.6)

Step 4 : Sort the probabilities in ascending order along with the label associated
with it. Store it in the array sorted prob.

Step 5 : in this step we will estimate maximum probability of misclassification of
the unlabeled test sample Z. Sample Z can be misclassified as either class label
C! or C2. Assume Z will be misclassified as C2. So, consider top k probabilities
from sorted prob array with the condition that in top k values the number of
samples of class label C2 should be at least bk

2
c + 1. Either Z will not get the

label C2. Consider all such scenarios by increasing the number of samples of
label C2 by one and calculate total probabilities for each such scenario. The
probability is calculated as below

weighted prob(C2) =

∑
j sorted prob[j](k − j)∑

j(k − j)
(5.7)

5.2. Multi-Class Algorithm 25

There will be (k − bk
2
c − 1) number of iterations. In each iteration store the

obtained weighted prob value. After loop ends report the maximum value as
bound(C2). Do same for class C!. Store bound as bound(C1).

Therefore, final error bound is

Th Bound = max{bound(C1), bound(C2)}

5.2 Multi-Class Algorithm

For multi-class data sets this algorithm will assist to estimate the error bound.
Data have R class labels as C1, C2, , , , , CR.

Step 1 : Select set of target samples. For details refer 4.3.1

Step 2 : To update penalty matrix first we need to build a new type of penalty
matrix. In new penalty matrix as usual there are n rows and R columns.

Pn×R =

[0,0] [0, 0] ... [0, 0]
[0, 0] [0, 0] ... [0, 0]
· · ·

[0, 0] [0, 0] ... [0, 0]

Each P[i][j] is an ordered pairs [0,0] which are initialized by zeros.

P[i][j][0] = Penalty is added here when a sample of class label Cj becomes a
nearest neighbor in a misclassification of ith sample in data set.

P[i][j][1] = Penalty is added here when a sample of class label Cj becomes a
nearest neighbor in a classification of ith sample in data set.

The penalty function and complement scores DWS , DWS, Label Count,
Label Count all will be same as discussed in section 4.1 of previous algorithm.

Let t is a ith target sample and apply k-NN algorithm. We got N as its neigh-
bor set N = {n1, n2, ..., nk}. There can be two possibilities either t will be
misclassified or classified. Lets see how to update penalty for both cases.

26 5. Error Bound Estimation : Two-Class and Multi-Class Algorithms

Algorithm 2 Penalty Update for Multi Class Problem

1: if t.MISCLASSIFIED = True then
2: for h ∈ N do
3: if label(h) = label(t) then
4: P [i][label(t)][1]+ = 1 + Pos(h) + k − Label Count(label(h))
5: else
6: P [i][label(t)][0]+ = k − Pos(h) + Label Count(label(h))
7: end if
8: end for
9: end if
10: if t.CLASSIFIED = True then
11: for h ∈ N do
12: if label(h) = label(t) then
13: P [i][label(t)][1]+ = 1 + Pos(h) + k − Label Count(label(h))
14: else
15: P [i][label(t)][0]+ = k − Pos(h) + Label Count(label(h))
16: end if
17: end for
18: end if

Step 3 : In this step we will calculate misclassification probability of each from
penalty matrix. As all penalty values are positive if P[i][j][0] is greater than zero
then at least once xi participates in misclassification. Also if P[i][j[1] greater
than zero then sample xi participates in classification for at least once.

For ith sample xi has class label Cp. We will consider ith row of the penalty
matrix P. Total penalty of the class label other than Cp is sum of ordered pairs
of a column which is -

penalty(Cq) = P [i][q][0] + P [i][q][1]∀q 6= p (5.8)

The probability of misclassification of a sample Cp which participates in the
misclassification of a target sample of class label Cq is represented as -

prob[label(xi) = Cp|label(t) = Cq] =
P [i][q][0]

P [i][q][0] + P [i][q][1]
(5.9)

Simplifying it becomes -

prob[Cp|Cq] =
P [i][q][0]

P [i][q][0] + P [i][q][1]
(5.10)

Total probability of sample xi is represented as prob(i). Observe that a class
label Cp can misclassify all (R-1) other classes. So, applying total probability
theorem -

5.2. Multi-Class Algorithm 27

Prob(A) =
∑

j P (A|Bj)P (Bj)

prob(i) =
∑
q 6=p

prob(Cp|Cq)P (Cq) (5.11)

Therefore, sample wise probability of misclassification will be -

prob(i) =
∑
q 6=p

P [i][q][0]

P [i][q][0] + P [i][q][1]
(
nq

n
) (5.12)

where P [i][q][0] + P [i][q][1] 6= 0, P (Cq) is the probability of a sample of qth class
label occurring in the data set and nq is the number of samples of qth class label.

Step 4 : Sort the sample wise misclassification probability in ascending order. Store
it in a array sorted prob along with the corresponding class labels.

Step 5 : This step is involved to estimate the error bound. Consider Z as an unla-
beled test sample. The actual class label can be either C1 or C2 ,... or CR. If
actual label is C1 then it can misclassified as C2, C3, ..., CR rest (R-1) classes.

Suppose Z has actual label of Cp. So, it can misclassify other (R - 1) classes.
We will find error bound for each R classes. Suppose we want to find error
bound for class C1.

• First consider top k probabilities along with labels.

• Create an array l count of size R to store the count of samples from each
class. All values are initialized with zero.

• Initialize a variable count = b k
R
c+ 1 to store the count for samples of class

C1.

• In every iteration, increase count by 1 and search for top count number of
samples of class label C1 from sorted prob. After searching this find other
top (k - count) samples of other class labels (not from C1) again from the
beginning. Here store the count of samples from other class labels in l count
array. Check whether maximum from l count is crossing count value. If
this happens reject this step and go to next iteration with increasing the
count variable by 1.

• The number of iterations will be (k − b k
R
c − 1).

• The probability is calculated in each iteration below -

weighted prob(C1) =

∑
j sorted prob[j](k − j)∑

j(k − j)
(5.13)

where j will run from 0 to (k - 1). Here an additional weight (k - j) is given
to assure priority to top misclassification probability and also there will be
dependency on k.

28 5. Error Bound Estimation : Two-Class and Multi-Class Algorithms

• After the loop is over report the maximum of all values of weighted prob(C1).

• Repeat the above steps for all other classes and store estimated bound in
the array bound of size R.

• Now assign one class to Z and add rest of the bounds. If C1 is the
actual bound then sum the other (R - 1) bound value to the variable
bound(C1). In this way calculate bound for other classes. This will looks
like {bound(C1), bound(C2), ..., bound(CR)}.
• Normalize these bound value by dividing (R-1). it becomes bound(Ci)

(R−1) ∀i ∈
[1, R] . The required error bound i.e. maximum probability of misclassifi-
cation of unlabeled sample Z is

Th Bound = max{bound(Ci)

(R− 1)
}∀i ∈ [1, R]

5.3 Complexity Analysis

We will analysis performance of the both algorithms -

Two-Class Algorithm

1. First generate target set which is T

2. For every t ∈ T we need to find k neighbors and then sorting of neighbor set. To
find k nearest neighbors first it will calculate distance with all other neighbors
and then sorting will be done . Distance calculation may take O(d) where d is
number of features. If d ≥ n then time complexity will be O(nd+ n log n). For
simplicity we consider d << n then time complexity becomes O(n+ n log n) ≈
O(n log n).

3. Now penalty matrix will be updated. The outer loop will continue for |T | times.
Within this loop the loop in step 2 will occur. Also we are checking every
target sample either classified or misclassified and updating penalty values of
their k neighbors. So, this will take time O(k). The total complexity will be
O(k|T |n log n)

4. Now we will calculate misclassification probability. For every sample in data
set we will calculate probability, Therefore complexity will be O(n)

5. We will sort this probability values. This will take time of O(n log n)

6. We will calculate final error bound considering top k probabilities. First loop
will run k − b k

R
c − 1. Within this loop we will search top k samples along with

other class too (details in 4.1). In worst case the inner loop can go up to O(n)
time

5.4. Algorithms on Large Data Sets 29

7. Combining steps (4), (5), (6) the time complexity will be O(n+ n log n+ n) ≈
O(n log n). Combining steps (2) and (3) we get O(n log n + k|T |n log n) ≈
O(k|T |n log n). Combining above two finally we will getO(n log n+k|T |n log n) ≈
O(k|T |n log n). If we consider all samples initially then |T | = n. Complexity
will be O(n2k log n)

Multi-Class Algorithm

The steps are discussed for two class algorithm are same for multi class algorithm.
There are some difference in penalty update and data structures rest is same. Loop
runs exactly same range as two class. Therefore time complexity will be the same.
The penalty update and probability calculation are of O(1) time i.e. constant time
operation. So, final time complexity will be O(k|T |n log n). If we use all training
samples then |T | = n and complexity will be O(n2k log n).

5.4 Algorithms on Large Data Sets

Problem

Section 4.1 and 4.2 have discussed about the algorithms for two and multi class
data sets separately along with pseudo code. According to complexity analysis in
Section 4.3 it can be observed that it depends on the number of samples in the data
set. If the number of samples is above 5000 or more than it then the algorithm
may takes several minutes. Sometimes long duration is not desired. So, the obvious
question arises that how to resolve this issue.

Suggested Solution

In both of the algorithms many steps are in common such as

1. Target Sample Selection

2. Update the Penalty matrix

3. Sample Wise Misclassification Probability Calculation

4. Bound Calculation

Each of these steps takes time due to large number of training samples in the data
set. So, if we can select some part of the training samples randomly and uniformly
from the data set and repeating this step again and again until it converges.
Let’s discuss this in detail

• First take two user input of num iteration and frac. The first one means how
many iteration the algorithm will run. The second input is the what fraction of
samples to use in the algorithm.

30 5. Error Bound Estimation : Two-Class and Multi-Class Algorithms

• In every iteration the algorithm will output a error bound as expected. Assume
in ith iteration the error bound is EBi and in (i+ 1)th iteration the error bound
is EBi+1.

• For a pre-defined ε the convergence criteria will be -

EBi+1 − EBi< ε (5.14)

• One thing to remember that satisfaction of convergence criteria is not always
perfect solution because error curve is not a monotonic curve. It can sud-
denly increase or decrease. Suppose in some iterations it converges but in stead
of stopping if we continue some more iterations error bound can increase. So,
convergence does not guarantee perfect solution.

Remark 2 Using all samples in the algorithm may give you accurate result but it can
take very long time which is not expected. So, taking randomly some samples and run
the algorithm again and again may not yield perfect result but can give approximate
result which is time saving too. The estimated bound can be accurate by changing
num iteration and frac variables which is totally experimental.

Chapter 6

Experimental Study of Error
Bound Algorithms

To check performance of proposed algorithms we have done four types of experi-
ments and from results we infer optimal set of k values

• Bound Validation for Random k Value

• Bound Validation for Imbalanced Data Sets.

• Bound Validation for Overlapping Classes

• Bound Validation for Range of k

6.1 Calculation of Experimental Error Bound

Bound validation implies that the estimated error bound will always be greater
than or equal to experimental error bound. First we will discuss the method to
estimate experimental error bound. For experiment with k-NN classifier, python
based inbuilt package is used. The inbuilt model takes input size of validation set
which will be taken out from data set itself by using a train− test− split() function.
Another input is value of k. Let V is set of validation set and k-NN is applied. the
error rate is calculated as

erri =
no of classified samples

|V |
(6.1)

where erri = error rate in ith iteration. The experimental error rate will be calculated
over many iterations. Suppose number of iterations is I. So, average error rate will
be

exp bound =

∑I
i=1 erri
I

(6.2)

31

32 6. Experimental Study of Error Bound Algorithms

In experiment, |V | is taken as 0.10, 0.15, 0.20 portion of total samples. For each value
of V we have considered I as 100, In this way we evaluated experimental error bound.

6.2 Data Set Source Details

Whatever results will be shown below are tested over 50 different real life data
sets which are taken from KEEL [16], UCI [17] data set repository. We will exhibit
the results for some of them (10 data sets) which are chosen randomly from all tested
data sets.

6.3 Experimental Results

In this section we will discuss details of our performed experiments along with
figures, tables and observations.

6.3.1 Bound Validation for Random k Value

For a data set D applying proposed algorithm we got theoretical bound as Th bound
and experimental bound Exp bound. In this case value of k will be chosen randomly
between [1, n/2]. For data sets details see Table 6.1

Table 6.1: KEEL Real Life Data Sets

No Name Samples Features Classes
1 Bupa 345 6 2
2 Haberman 306 3 2
3 Heart 270 13 2
4 Shuttle-6 230 9 2
5 Poker-9 244 10 2
6 Wine 178 13 3
7 Glass 214 9 7
8 Ecoli 336 7 8
8 Led7digit 500 7 10
10 Vowel 990 13 11

Estimated Theoretical Bound and Experimental Bound are given below. For
details Refer Table 6.2

6.3. Experimental Results 33

Table 6.2: Results Achieved for Random Values of k

No Name Th Bound Exp Bound Deviation Value of K
1 Bupa 53.04 35.08 17.96 87
2 Haberman 60.62 25.71 34.91 43
3 Heart 53.72 34.19 19.53 113
4 Shuttle-6 36.41 4.04 32.37 97
5 Poker-9 46.72 3.52 43.20 37
6 Wine 69.78 28.33 41.45 37
7 Glass 73.4 63.64 9.80 103
8 Ecoli 78.68 34.15 43.53 123
8 Led7digit 80.0 43.44 46.56 178
10 Vowel 90.88 86.42 4.46 399

((a)) Bupa ((b)) Haberman

((c)) Heart ((d)) Shuttle-6

34 6. Experimental Study of Error Bound Algorithms

((e)) Poker-9 ((f)) Wine

((g)) Glass ((h)) Ecoli

Observation

From the figures the theoretical bound is always greater than the average exper-
imental bound. The experimental error rate is measured 100 times. Every time the
bound abruptly changes which we can not predict. Actually we cant assert about
what will be the error rate in the next iteration. But the theoretical bound is fixed
for all iterations. Here is the success of the theoretical bound. We guarantee that
how many iterations can we run but it will never cross the theoretical value. So, user
will get an idea about how the k-NN algorithm will behave if we use that k value.

6.3. Experimental Results 35

((i)) Led7digit ((j)) Vowel

Experimental Bound
Theoretical Bound

Figure 6.1: Bound Validation for Random k Values

6.3.2 Bound Validation for Imbalanced Data Sets

handling imbalance data sets are very challenging problem in Machine Learning
or Deep learning. So, We also verified how our proposed algorithm will perform
on different imbalanced data sets. We carried out the experiments by considering
two classes. The samples of Class 1 is fixed and number of samples of Class 2 are
varied such that imbalance ratio will vary from 2 to 80. For every case theoretical
and experimental bounds are calculated. Refer Table 6.3 for randomly generated
imbalance data

Table 6.3: Synthetic 2-D Imbalance Data Sets

Class1 Class2 Imbalance
Ratio

Th Bound Exp Bound Deviation

400 200 2 70 15 55
400 150 2.67 65 13 52
400 100 4 73 13 60
400 50 8 65 8 57
400 25 16 65 5 60
400 15 26.67 63 3 60
400 10 40 51 3 48
400 5 80 33 1 32

36 6. Experimental Study of Error Bound Algorithms

Observation

The various types of imbalance data sets are tested and results are given below.
Every plot of theoretical bound and experimental bound the pattern is identical. The
curve structure is independent of imbalance ratio. The imbalance ratio gradually
increasing but curve patterns are still same. In the beginning bound deviation is high
and when value of k will increase deviation will gradually decreases. This is happening
due to the detection of misclassification region. The algorithms will search the high
error probability region whatever may be the imbalance ratio. For high imbalance
ratio if the overlapping region is small but still proposed algorithm will identify this
region properly.

((a)) Imbalance Data 1 ((b)) Plot 1

((c)) Imbalance Data 2 ((d)) Plot 2

6.3. Experimental Results 37

((e)) Imbalance Data 3 ((f)) Plot 3

((g)) Imbalance Data 4 ((h)) Plot 4

((i)) Imbalance Data 5 ((j)) Plot 5

38 6. Experimental Study of Error Bound Algorithms

((k)) Imbalance Data 6 ((l)) Plot 6

((m)) Imbalance Data 7 ((n)) Plot 7

((o)) Imbalance Data 8 ((p)) Plot 8

Experimental Bound
Theoretical Bound

Figure 6.2: Bound Validation for Synthetic Imbalanced Data Sets

6.3. Experimental Results 39

6.3.3 Bound Validation for Overlapping Classes

Assume this is a two class problem. Samples of classes are in spherical shape.
Suppose distance between centers of their spherical clusters is increased then how the
bound deviation will vary. Class 1 has 500 samples and Class2 has 450 samples. For
data set details refer Table 6.4

Table 6.4: Synthetic 2-D Class Overlapping Data

Distance of
Centers

Th Bound Exp Bound Deviation

2 87 16 71
2.5 73 9 64
3.5 66 3 63
4 49 2 47
4.5 38 1 37
5 18 0 18

Observation

In the below results there are six different scenarios are described. Gradually we
are increasing the distance between the mean of two spherical type clusters. Then
for each case we calculated error bounds both theoretical and experimental. value of
k lies between [1,

√
n]. It can be observed that by increasing the distances between

means of two spherical clusters the deviation of bounds are getting more tighter.

The reason behind this is class overlapping data sets. If two class means are
more away then data set is easily separable. If separability is high means the classifier
can be more accurately built. So, this will create less errors. But if class means are
more closer then classifier can not works so well. Then error rate will be high.

Another thing to notice that higher the distance between means the error rate is
going to low to lower. This is because more the distance lesser the size of overlapping
of two classes. If size of the overlapping region grows then misclassification region
also grows. greater size of misclassification region more will be the error rate. If
misclassification region size is less then error rate will decreases. That’s the reason
the experimental error rate gradually goes to zero.

40 6. Experimental Study of Error Bound Algorithms

((c)) Random Data 2 ((d)) Plot 2

((e)) Random Data 3 ((f)) Plot 3

((a)) Random Data 1 ((b)) Plot 1

6.3. Experimental Results 41

((g)) Random Data 4 ((h)) Plot 4

((i)) Random Data 5 ((j)) Plot 5

((k)) Random Data 6 ((l)) Plot 6

Experimental Bound
TheoreticalBound

Figure 6.3: Bound Validation for Overlapping Classes

42 6. Experimental Study of Error Bound Algorithms

6.3.4 Bound Validation for Range of k

In this stage we will check bound validation for a whole range of k values. Here
we used range as k ∈ [1,

√
n]. Refer Table 6.5 for data set details.

Table 6.5: KEEL Real World Data Sets

No Name Samples Features Classes
1 Bupa 345 6 2
2 Haberman 306 3 2
3 Heart 270 13 2
4 Spectfheart 267 44 2
5 Sonar 208 60 2
6 Wine 178 13 3
7 Glass 214 9 7
8 Ecoli 336 7 8
9 Led7digit 500 7 10
10 Hayes-Roth 132 4 3
11 Tae 151 5 3

For results and bound deviation Refer Table 6.6

Table 6.6: Results Obtained for Range of k

No Name Th bound Exp Bound Deviation
1 Bupa 67.72 33.83 33.89
2 Haberman 69.03 26.09 42.94
3 Heart 69.49 32.94 36.45
4 Spectfheart 68.32 25.0 43.32
5 Sonar 69.56 25.26 44.30
6 Wine 68.34 30.78 37.56
7 Glass 63.69 35.26 28.43
8 Ecoli 49.45 15.10 34.35
9 Led7digit 62.39 29.40 32.99
10 Hayes-Roth 66.73 41.73 25.00
11 Tae 67.29 57.74 9.55

Observation

For bound validation consider below plots. Observe that theoretical error bound
is always greater than experimental error bound. The monotonic nature of curve of
theoretical bound varies with the value of k. So, theoretical bound has dependency

6.3. Experimental Results 43

on k value. Experimental error bound varies with the change of k. In the initial stage
the gap between theoretical bound and experimental bound i.e. bound deviation is
higher. But after increasing of the value of k the deviation gradually converges.

((a)) Bupa ((b)) Haberman

((c)) Heart ((d)) Spectfheart

44 6. Experimental Study of Error Bound Algorithms

((e)) Sonar ((f)) Wine

((g)) Glass ((h)) Ecoli

((i)) Led7digit ((j)) Hayes-Roth

6.4. Optimal Values of k 45

((k)) Tae

Experimental Bound
Theoretical Bound

Figure 6.4: Bound Validation for Range of k Values

6.4 Optimal Values of k

The main problem of using k-NN classifier is the value of k. While using k-NN
algorithm but there is no idea what value of k or set of values of k to choose. So, we
are keen to solve this problem. The solution will not provide a single optimal value
of k but it will generate a set(s) of k values. If we select a value of k from this set
our error rate will be minimal. This is achieved by estimating error bound plots.

Suggested Solution

• Plot the theoretical bound values with respect to values of k where k ∈ [1,
√
n].

• The theoretical error bound curve varies monotonic nature with change of value
of k. So, for a fixed k we can assure that error bound is fixed and experimental
error bound will not cross this value.

• By observing the theoretical error bound curve, the curve sometimes becomes
decreasing or sometimes increasing. So, it creates local minima. We can track
for what value(s) of k the curve attains local minima, this k value will give
minimal error rate. These set of values of are called Optimal k Values.

Example

We have a data set ”Spectfheart” which has 267 samples, 44 features, 2 class
labels. After running the algorithm we got the following results

46 6. Experimental Study of Error Bound Algorithms

((a)) Multiple Optimal Values ((b)) Single Optimal Value

Figure 6.5: Set of Optimal k Values

In the first example (see Figure 6.5) three local minima are identified as Point A,
Point B, Point C. At this points we will get minimized error rate. Let f(.) is the
function which represents the theoretical error curve. Therefore,

f(k = 5) ≈ 69%
f(k = 9) ≈ 62%
f(k = 11) ≈ 61%

From the above values we can see that minimal error rate is achieved at three
points. Those k values are {5, 9, 11}. So, with respect to the range k ∈ [1, 16], the
optimal set is {5, 9, 11}. The optimal set size can vary if the range of k varies.

There can be another scenario if there is no local minima or having global minima
at lower value of k. Then we can use that k value also. Let see the second example
(see Figure 6.5) which is generated by using a data set named ”Wine” having 178
samples, 13 features, 3 class labels and imbalance ratio is 1.5.

For k = 1 theoretical error bound is about 40%. But after k ≥ 2 the error rate is
fixed at approximately 70%. So, user can select k = 1 as its optimal choice. Here we
have two optimal sets {1} and {k|k ≥ 2}

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Our motto is to overcome the limitations of prevailing error bound algorithms.
We have developed two different algorithms to estimate maximum probability of
misclassification of an unlabeled test sample by using k-nearest neighbor classifier.
This algorithms take only input data set, number of class labels and value of k.
input data set can be any type of data set. Algorithms also work for two-class and
multi-class data sets. Therefore, we overcome the challenges.

Our algorithms will also applicable to standard and imbalance data sets. It will
detect the misclassification or overlapping region within the data set. Whatever may
be the size of this region our proposed algorithm will detect properly. There can be
many overlapping regions depending on number of class labels in the data set.This
will also be detected.

We have performed different types of experiments and got expected results. There
are very few data sets where bounds fails but almost all data sets showing satisfying
result. We can get estimate of bound on probability of misclassification which has
high importance in real life. In many cases we have a data set. We can not visualize
data in higher dimensional feature space. So, there is no idea how the k-NN will
behave on that data set but now our algorithms will come to rescue.

We also solves the problem of choosing value of k. Plotting of theoretical bound
with k values the local minima will be optimal k values. So, using those set of k
values will lead to better accuracy.

Our implemented codes can be found in github link. The code is fully written
using python programming language. In github repository the ReadMe file provides
guidance to utilize the code for the users’ own data sets. The link is given below

https://github.com/kushalbose92/error-bound-knn

47

https://github.com/kushalbose92/error-bound-knn

48 7. Conclusion and Future Work

7.2 Scope for Future Work

The algorithms are working finely but still it has some problems which are listed
below. This problems can be assumed as our future work.

Tight The Bound : In previous chapter the several experiments are shown. Some
data sets performs well but some are not satisfactory.Now our first target should
be to reduce the bound deviation which is (Th Bound − Exp Bound). This
should be more tighter. Otherwise the algorithm will not be meaningful to use.

Reduce Time Complexity : As discussed in complexity analysis part that time
complexity is dependent to number of samples in the data set. So, if number
of samples becomes higher then expected completion of time will also be much
higher. In real life scenario long duration is not desirable. In the section 5.4
one solution already discussed to handle large data sets. But results will be
approximate. So, it is a major challenge to reduce the time complexity of our
algorithms.

Bibliography

[1] Thomas M Cover, Peter E Hart, et al. Nearest neighbor pattern classification.
IEEE transactions on information theory, 13(1):21–27, 1967.

[2] Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. Knn model-
based approach in classification. In OTM Confederated International Confer-
ences” On the Move to Meaningful Internet Systems”, pages 986–996. Springer,
2003.

[3] Gautam Bhattacharya, Koushik Ghosh, and Ananda S Chowdhury. An affinity-
based new local distance function and similarity measure for knn algorithm.
Pattern Recognition Letters, 33(3):356–363, 2012.

[4] José Salvador Sánchez, Ramón Alberto Mollineda, and José Mart́ınez Sotoca. An
analysis of how training data complexity affects the nearest neighbor classifiers.
Pattern Analysis and Applications, 10(3):189–201, 2007.

[5] Alexander Hinneburg, Charu C Aggarwal, and Daniel A Keim. What is the
nearest neighbor in high dimensional spaces? In 26th Internat. Conference on
Very Large Databases, pages 506–515, 2000.

[6] Inderjeet Mani and I Zhang. knn approach to unbalanced data distributions:
a case study involving information extraction. In Proceedings of workshop on
learning from imbalanced datasets, volume 126, 2003.

[7] Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

[8] Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large
margin nearest neighbor classification. Journal of Machine Learning Research,
10(Feb):207–244, 2009.

[9] Sahibsingh A Dudani. The distance-weighted k-nearest-neighbor rule. IEEE
Transactions on Systems, Man, and Cybernetics, (4):325–327, 1976.

[10] James M Keller, Michael R Gray, and James A Givens. A fuzzy k-nearest neigh-
bor algorithm. IEEE transactions on systems, man, and cybernetics, (4):580–585,
1985.

49

50 BIBLIOGRAPHY

[11] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor
search using gpu. In 2008 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, pages 1–6. IEEE, 2008.

[12] Yi-Ching Liaw, Maw-Lin Leou, and Chien-Min Wu. Fast exact k nearest neigh-
bors search using an orthogonal search tree. Pattern Recognition, 43(6):2351–
2358, 2010.

[13] Eric Bax. Validation of k-nearest neighbor classifiers. IEEE Transactions on
Information Theory, 58(5):3225–3234, 2011.

[14] Yunwen Lei, Ürün Dogan, Ding-Xuan Zhou, and Marius Kloft. Data-dependent
generalization bounds for multi-class classification. IEEE Transactions on Infor-
mation Theory, 2019.

[15] Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern
recognition, volume 31. Springer Science & Business Media, 2013.

[16] Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo, Joaqúın Derrac, Salvador
Garćıa, Luciano Sánchez, and Francisco Herrera. Keel data-mining software
tool: data set repository, integration of algorithms and experimental analysis
framework. Journal of Multiple-Valued Logic & Soft Computing, 17, 2011.

[17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

	Certificate
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Brief Survey on k-NN Classifier
	Thesis Overview

	Preliminaries
	k-Nearest Neighbor Algorithm
	Pros and Cons of k-NN Classifier
	Pros
	Cons

	Validation Phase of k-NN Classifier
	Two Different Types of k-NN Classifier
	Distance Weighted k-NN (DWkNN)
	Fuzzy k-NN (FkNN)

	Optimal Data Structures for k-NN Algorithm
	Kd Tree
	Ball Tree

	Related Work and Our Contribution
	Related Work
	Motivation
	Our Contribution

	Proposed Approach for Error Bound Estimation
	Introduction
	Overview of Proposed Algorithm
	Detailed Analysis of Proposed Approach
	Target Sample Selection
	Penalty Function
	Penalty Matrix Generation
	Misclassification Probability for Each Sample
	Sorting of Misclassification probability
	Error Bound Calculation

	Error Bound Estimation : Two-Class and Multi-Class Algorithms
	Two-Class Algorithm
	Multi-Class Algorithm
	Complexity Analysis
	Algorithms on Large Data Sets

	Experimental Study of Error Bound Algorithms
	Calculation of Experimental Error Bound
	Data Set Source Details
	Experimental Results
	Bound Validation for Random k Value
	Bound Validation for Imbalanced Data Sets
	Bound Validation for Overlapping Classes
	Bound Validation for Range of k

	Optimal Values of k

	Conclusion and Future Work
	Conclusion
	Scope for Future Work

	Bibliography

