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ABSTRACT

Thermodynamics is one of the core disciplines of physics, and despite its long history it

happens to be a very active area of research till date. With the advent of quantum informa-

tion, we have perceived that it plays a crucial role to explain the various thermodynamic phe-

nomenon. The paradox of Maxwell’s demon was suitably explained with information theory.

Even computation theory, whose primary motivation is to optimize the cost of computation

has a direct connection with thermodynamics. The major component that a computer needs

to run a process is energy, i.e., the thermodynamic cost. It got its foundation in the seminal

work of Landauer, where it was commented that the computer spends kBTln2 amount of

energy to erase a bit of information (here T is the temperature of the system and kB repre-

sents the Boltzmann’s constant). Thermal machines, which is one of the primary focus of

thermodynamics are extensively explored for the last two centuries. It plays a major role in

the development of the modern era that started with the invention of the steam engine. With

the advancement in technology, we are now able to produce small devices in the nanoscale

domain. We have to consider the quantum effect while analyzing the systems in this do-

main. So, with the advancement of technology, the researchers got interested to analyze

thermal machines in the quantum domain, giving rise to the active research area of quantum

thermodynamics. In this thesis, we explore the interconnection of quantum information and

thermodynamics. Here we look at what kind of thermal devices can be constructed and how

quantum behavior will affect them.

In this thesis, we develop the bounds on the uncertainty relation for two incompatible ob-

servables for a quantum system. Having this preliminary finding, we proceed to explore the

Stirling engine with the information of the uncertainty relation of the quantum system that is

considered as the working medium. We are able to provide a tighter lower bound as well as

propose an upper bound on the efficiency of the engine with the help of uncertainty relation

without performing any measurement. We have obtained the better bounds than the previous

ones by optimizing the uncertainty relation over the complete set of bases. It is explored in

the non-relativistic as well as in the relativistic regime. We wanted to explore an alterna-

tive approach to solve the problem as proposed: whether the change in the space structure

can provide a boost to the efficiency and the coefficient of performance of thermal machines?

For this purpose, we consider different quantum systems at a deformed space structure which

is a generalization of the usual space structure. These quantum systems are considered as



x

the working medium for the analysis of thermal machines like the Stirling engine and Otto

engine. The prime focus has been to explore whether the change in the space structure pro-

vides an advantage to the efficiency of the thermal machines over the usual space. We have

done numerical analysis for deriving the solution of different equations in our work and have

simulated the efficiency as well the coefficient of performance of the different thermody-

namic cycles. Along with that, we have discussed a way to analyze thermodynamic cycles

in a quantum computer. For the investigation of thermal machines, we need to simulate the

fundamental thermodynamic process in a quantum computer. Finally, we have proposed a

way to understand the black hole information paradox with the help of the pseudo density

operator by simulating the system in the Rigetti quantum computer. Here in this work, we

have also provided a Gedanken experiment for the exploration of gravitational waves.
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1 Introduction

There is a say that crisis and curiosity have been the foundation of the invention. Aeolip-

ile [1], a device in Roman times was able to produce rotation from a jet of steam. This arose

the curiosity and, it was a portent of the things to come. It was Carnot, in the 19th century,

who desired to develop a steam engine that would help France to win the Napoleonic Wars

that gave birth to thermodynamics [2]. This happens to be an era-defining invention that was

adapted to provide power to machinery and has been a backbone for the industrial revolution

which foster our modern way of life. Since the advent of the steam engine, there has been

an endless quest to ameliorate the performance by using fewer resources. Thermodynam-

ics, without any argument, is the backbone of modern physics which is set as a benchmark

for novel physical theories. It not only delineates the functioning of engines, refrigerators,

power plants but also has its impact on explaining the basic mechanism of climate change,

chemical reactions. Even it is believed that thermodynamics can unravel the properties of

black hole [3–5] and provide a physical description to unfold the mystery of our universe.

We encounter a paradigm shift in the 20th century from the macro world (classical) to

the micro world (quantum) to unravel the aspects which were not explainable in the classical

regime. The counterintuitive aspects in the quantum world are the concept of uncertainty re-

lation, entanglement [6] and correlation [7]. Surprisingly, thermodynamics holds its success

and universality even after the advent of quantum mechanics. The story behind the success

is due to the fact that the concepts and the principle of thermodynamics were developed ir-

respective of any references to the microscopic mechanism. The framework is eventually

based on general axioms [8–11]. These axioms are conveyed as the laws of thermodynam-

ics. In this era of modern physics, it is an accepted fact that at the microscopic level the

physical reality is described by quantum mechanics. So, one needs to accept the fact that the

development of thermodynamics principles follows from quantum mechanics.

During the early stage of quantum mechanics, there was an idea of describing the quan-

tum system from a thermodynamic viewpoint [12,13]. Later on, this opened the field of quan-

1
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tum thermodynamics [14–18] which strives to understand how the quantum regime guided

the way to develop the classical thermodynamic concepts.

The advent of quantum information and computation theory has shed light on the various

aspects of quantum thermodynamics. Information theory, being in its incipient stage has

made a decisive contribution to solving an age-old problem of thermodynamics, the extrac-

tion of work by Maxwell’s demon [19, 20]. The demon is able to extract work from the sys-

tem which is under study by having the knowledge of the microscopic details of the system,

which apparently appears to violate the second law of thermodynamics. It was Leo Szilard

who pointed the significance of information in thermodynamics while analyzing Maxwell’s

demon problem for a single atom engine [21]. In the later phase, Landauer coined the con-

cept of “logical irreversibility" while examining the energy cost of erasing information [22],

which conveys that “Information is physical" [23]. Along with that Bennett conveyed in this

work [24], the amount of work that is required to erase the memory of the demon after the

execution of the process is exactly equivalent to the amount of work gained by the demon. So

it was Bennett and Landauer’s concept which bridged a connection between thermodynam-

ics and information theory. Even various aspects of statistical mechanics were explored from

the information-theoretic viewpoint [25, 26]. Surprisingly information theory has played a

crucial role in the formation of the framework of many important physical theories [27, 28]

though once considered as an independent theory.

The theory of “Information is physical" conveys that every real-world computational pro-

cess has some thermodynamic cost which means that, when we perform computation in the

real world, some physical changes (entropy production or some heat generation) occur in the

world which unfolds the physical consequences of computation processes. This bridges the

interconnection between thermodynamics and computation theory. It is generally conveyed

that every naturally occurring process like biological computers and even man-made com-

puters has a thermodynamic cost. Translation of RNAs into amino acids is one such natural

biological process where one encounters energy cost for the execution of the process. Work

in this direction [29], has shown that the thermodynamics cost of this biological process is

more efficient than the artificial process.

Out of all such artificial processes, one of the important ones is the existing digital com-

puter system. It can be considered as an engine that dissipates energy for performing math-

ematical and logical tasks. According to the earlier scientists, they had a notion that there

must be some fundamental thermodynamic limit to the efficiency of such engines irrespec-

tive of their hardware structure. According to Von-Neumann [30], a computer operated at a
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temperature T must dissipate at least kBT ln(2) amount of heat. The thought experiment of

Brillouin [31] boils down to the same conclusion as that of Von-Neumann with some error

probability. But now, it is a well-known fact that today’s computers can perform a large

amount of reliable computation per kBT of energy dissipation. Though reliable computation

can be executed per kBT , but today’s computer dissipates a vast quantity of energy compared

to kBT . Volatile memory devices (such as TTL flip-flops) are the reasons behind this huge

waste. The volatile devices dissipate energy even when they are not being used. The macro-

scopic nature of the existing computers is one of the basic reasons for the inefficiency in the

context of energy. Due to its macroscopic nature, the amount of energy required to trigger

the system is quantitatively high, and this energy is dissipated instead of reusing it for the

next pulse. It is similar to the case of applying brakes to stop a moving car than by saving

its kinetic energy. One of the spectacular thermodynamically reversible computation models

is the ballistic model, proposed by Fredkin and Toffoli [32]. Other models [33–35] were

developed which were more physically realistic than that of Fredkin’s version.

Now we provide a table 1.1 to get a clear picture of the contribution that we have made

in the field of quantum thermal machines.

Table 1.1. Contribution to the domain of research

Non-Commutative Space Commutative Space

Without With GUP Without With UR
Generalized Uncertainty

Non-relativistic Uncertainty (not yet Relation
relation explored) (UR) Present work
(GUP) [36]

Other’s work
Present work [37–39] Chapter 6

[40, 41]
Chapter 8, 9

Without With GUP Without With UR
GUP UR

Relativistic Present work Present work
(not yet [42] Other’s work [43]

explored) [44–46]
Chapter 10 Chapter 7
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1.1 Outline of the thesis

The thesis is organized as follows:

• In chapter 2, we give a brief description of field of thermodynamics in the quantum regime.

We first explore the developed classical thermodynamics and study quantum thermo-

dynamics by one-to-one correspondence with the classical thermodynamics. The laws

of thermodynamics in both the regime are discussed briefly. Along with that we have

discussed about the various aspects of thermodynamics that are being explored in this

domain. Followed by that we study the design of thermal machine in the nanoscale

level with different quantum mechanical mediums. For the analysis we have consid-

ered Stirling cycle and Otto cycle with harmonic oscillator and potential well as the

working substance. The basic intuition of uncertainty relation are described which are

utilized for the analysis of thermal machines. In chapter 3, we have explored the basic

aspects of commutation theory and then visualize the connection between thermody-

namics and the commutation theory. This is explained through the thermodynamic

interpretation of this computation models.

• In chapter 4, we give a brief introduction to the non-commutative space structure which is

the deformed space of the usual space or in other words this is the generalized structure

of the usual space. Along with that various quantum system (potential problems) are

analyzed in this space structure which are used as the working medium for the analysis

of thermal cycles. Along with that we have discussed briefly about the black hole

information paradox in this chapter.

• In chapter 5, we have explored the uncertainty relation in the non-commutative space.

Here we have proposed a upper and lower bound for the uncertainty relation and ex-

plored it with a quantum system in this space structure. With the help this intuition we

are able to explore thermal machine from uncertainty viewpoint which is explored in

chapter 6, and chapter 7. Here we have considered potential well as the quantum sys-

tem for the working medium of the thermal machine. Stirling cycle with this quantum

system is explore in non-relativistic as well as relativistic regime.

• A question whether the change in the space structure can provide any boost to the ther-

mal machines has been explored in chapter 8 to chapter 10. Here, we have considered
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thermal machines like Stirling and Otto cycles in the non-commutative space with

different quantum systems (like harmonic oscillator, coupled harmonic oscillator, po-

tential well) as the working medium. The concluding statement to this question for the

considered thermal machine that are studied is that the change in the space structure

provides a boost to the system.

• In the first phase of Chapter 11 we discuss the challenges to simulated a thermodynamic

process in a quantum computer, then we go through the alternative ways to simulate

some of the thermodynamics processes, which is the backbone for the analysis of ther-

mal machines. We then covey that if we are able to propose how to simulate the ther-

modynamic process in quantum computers, then we can have an experimental analysis

of thermal machines with the different working mediums in a quantum computer. In

the second phase of the chapter, we describe the analysis of the black hole information

paradox for the binary black hole system with a different formalism. Here, pseudo

density operators are considered for the analysis of the process. The proposed method

is simulated in a quantum computer to understand the information paradox. Along

with that, we have proposed a table-top experiment for the analysis of the gravitational

waves with the help of the quantum optical systems of the present technology.

• Finally, we conclude in chapter 12 with a brief description about the results in this thesis

along with future directions which are interesting to explore.

The chapters 5, 6, 7, 8, 9, 10 and 11 are based on original and published work by us.

1.2 Computational Tools Used

We have used both classical as well as quantum computational tools for our analysis purpose.

Classical Computing Tool

We have done numerical analysis for deriving the solution of different equations in our work.

We have used Mathematica and Python platform for the simulation purpose. Version 3.2 of

Python in Jupyter environment and Mathematica 11.2 version were considered for simulating

the results.
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Quantum Computing Tool

We have used Rigetti quantum computer (https://www.rigetti.com/) for our computing pur-

pose. We have used cloud based rigetti quantum computer.
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Thermodynamics is equivalent to deific if one considers physical theories to be folks.

Thermodynamics got unfolded over three centuries ago. Even since that, it has witnessed

many theories to rise and dwindle. And even surviving the revolution of physics like relativ-

ity and quantum mechanics. Einstein said that thermodynamics is “the only physical theory

of universal content, which I am convinced, that within the framework of applicability of its

basic concepts will never be overthrown." Every theory has to visit her for advice and abide

by the concepts set by her. So no theories ever dare to contradict the concepts of thermody-

namics. Even various aspects of modern physics like black hole entropy [47], gravity [48,49]

comes to her for advice. The resilience power of thermodynamics is due to its simplicity.

The concepts of thermodynamics happen to be the road map to exploit the said world like

developing engines, hard drive formatting, and so on. It never endeavors to explain the mys-

teries of the universe, nor it peeps into the microscopic details of the prescribed system. It

rather tries to perceive the operations which ease the cost of implementation.

Thermodynamics happens to be an operational theory. Such approaches are prominent in

computer science, economics, mathematics, and even in quantum information theory. This is

the reason why quantum information theory has brought so much in thermodynamics which

leads to the foundation of quantum thermodynamics. In this chapter, we will first describe

classical thermodynamics in brief and then its transitions to the quantum world.

2.1 Classical Thermodynamics

Classical thermodynamics laws are usually fabricated for the macro regime (i.e., large ob-

jects) where the system is at thermal equilibrium. The anecdote of the impact of thermo-

dynamics commences with the innovation of the steam engine. So, the foundation of this

theory was from experimental observation, and it leads to the formulation of the fundamen-

tal laws of thermodynamics. Out of all the existing physical laws, the thermodynamics laws

have the most influence on our daily life. These thermodynamic laws create the framework

where the thermodynamics processes are executed. The part of the universe where we will

execute our studies is conveyed as the ‘system’. While the remaining part of the universe
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which lies outside the system is defined as the environment. Though the boundary between

the system and the environment is well defined but in the case of a realistic scenario, the con-

cept is not yet clear. The environment is generally conveyed as a reservoir with infinite heat

capacity. Now we describe the thermodynamic laws [50–52] which provides the framework

to describe the physical quantities of a system like temperature, energy, entropy, and so on.

The thermodynamic laws are expressed as:

Zeroth law of thermodynamics:

Let us consider three systems A, B, and C. System A happens to be in thermal equilib-

rium with the system C, along with that if the system B is in thermal equilibrium with C,

then the system A and B with also be in thermal equilibrium with each other. So this con-

veys the concept of temperature, i.e., the systems in thermal equilibrium will have the same

temperature (T) (so it is an intensive variable). In other words, we can also convey that there

is no exchange of heat when the systems are in equilibrium.

First law of thermodynamics:

The first law of thermodynamics conveys that the energy of a closed system is constant.

The energy of the systems is of two types, one is heat which is uncontrollable and is wasted,

whereas the other form is the work which is controllable and useful. Mathematically the

change of the internal energy (U) of the system is depicted as:

dU = d̄Q + d̄W, (2.1.1)

where d̄Q and d̄W describes the changes in heat and work respectively and d̄ is used to

depict that it is a non-exact differential [53]. So, heat and work are not state functions. From

this law, one can infer that although heat and work represent disparate physical quantities, it

belongs to the same form of energy and they transfer to one another to conserve the energy

of the system.

Second law of thermodynamics:
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This law of thermodynamics is interpreted as one of the important and fundamental laws.

It describes the irreversibility of the thermodynamics process. It conveys that in the universe

the intensity of the disorder increases continuously, i.e., the system has a propensity to move

towards a random state from the ordered one. The second law of thermodynamics conveys

that heat will from the hot system to the cold one, not the other way round. The second

law of thermodynamics is described in different ways. Carnot developed the condition of

maximum extractable work from a heat engine when operated cyclically between two ther-

mal reservoirs. Clausius provided a different formulation for the second law. It states that

a spontaneous flow of heat is not possible from a cold to a hot system without any external

work. Kelvin proposed his statement where he conveyed that it is physically not possible for

any thermodynamic process to solely extract heat and convert it entirely into work from a

reservoir.

It can also be described as a function of entropy. The concept of entropy was coined by

Clausius, which measures the intensity of disorder that persists in the system. Mathemati-

cally it is described as:

dS =
d̄Q
T
, (2.1.2)

where dS is change in the entropy (d depicts the exact differential), d̄Q describes the amount

of heat transfer in a reversible process. This statement of the second law conveys that the

entropy of the system will either remain constant or increase with respect to time.

Third law of thermodynamics:

This thermodynamic law [54] provides the framework for the concept of absolute zero

temperature. The system at this temperature will possess a minimum amount of energy, and

so the available microstate at this point is only one. We know that the entropy of the system

has a direct connection with the number of microstate for the system. Now for this system,

the entropy S → 0 as the system moves towards absolute zero temperature. Another form of

this law which is popularly known as the Nernst theorem [55] conveys that it is physically

impossible for a system to reach absolute zero temperature within a finite time.
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2.2 Classical Thermal Machine

The laws of thermodynamics provide the required framework for the operation of thermal

machines. A heat engine will transfer heat into work whereas, in the case of a refrigerator

it will convert work into heat. Two thermal baths, a working medium, and a proper ther-

modynamic cycle are the basic ingredient to construct a heat engine. Out of which one of

the thermal baths acts as a source (hot bath) of heat and the other bath is a sink (cold bath)

of heat. Heat engines involve different cycles of operations. The working substance has a

crucial role in the working process of a heat engine. The working medium helps in transfer

of heat between the thermal baths during the operation of the thermodynamic cycle. One

can define the efficiency of a heat engine as the ability engine to convert heat into work,

mathematically we can define it as the ratio of “work-output" to “heat input". The pictorial

representation of a heat engine and refrigerator is shown in Fig. 2.1. From Fig. 2.1, we

can infer that the engine assimilates QH > 0 quantity of heat from the hot reservoir at TH

temperature to carry out a certain amount of work W > 0 and finally ejecting QC < 0 amount

of heat to the sink reservoir (cold reservoir) at TC temperature. The efficiency of the engine

is mathematically expressed as:

η =
W
QH

=
QH − |QC |

QH
. (2.2.1)

2.2.1 Classical Carnot Cycle

An ideal engine will convert heat into work with 100% efficiency. The pictorial representa-

tion of the Carnot cycle is shown in Fig. 2.2. It is a four-stroke engine. It was Carnot who

showed that for all reversible thermodynamic cycles the maximum attainable efficiency by

the engine is defined as:

η = 1−
TC

TH
. (2.2.2)

This form of efficiency is coined as Carnot efficiency, and it provides a bound on the ef-

ficiency of the engines. From Eq. (2.2.2), we can infer that the maximum efficiency is a

function of the temperature, i.e., it has no dependency on the working substance as well as

on the characteristics of the cycle.



12 Background on Thermodynamical Aspects of Quantum Systems

Hot Reservoir Hot Reservoir 

Cold Reservoir Cold Reservoir 

Engine Refrigerator

(a) (b)

W W

Figure 2.1. Schematic representation of a (a) heat engine and (b) refrigerator respectively.
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Figure 2.2. Schematic representation of the pressure vs. volume (P-V) diagram of a classical
Carnot engine.
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A refrigerator as depicted in Fig. 2.1 was a working principle that is just the reverse of

a thermal engine. In this case, the working medium gallops heat from the cold reservoir at

TC temperature under the influence of a certain amount of external work W and ejects the

energy to the hot reservoir at TH temperature. The coefficient of performance (COP) of this

model, that is coined as Carnot COP, sets an upper limit for the refrigerator as:

COP =
TC

TH −TC
. (2.2.3)

Now we will briefly discuss two of such engine models that have been analyzed in the

quantum realm.

2.2.2 Classical Otto Cycle

In this modern era of technology, one of the most important engines is the Otto cycle. It

was named after Nikolas A. Otto [56] who first proposed a successful four-stroke model of

the internal combustion engine in 1876 with the guidance of the cycle that was proposed by

Frenchman Alphonse Beau de Rochas in the year 1862. The Otto cycle is appropriate for the

spark-ignition reciprocating engines where the piston-cylinder commences the combustion

process of the fuel mixture. Otto engine is comprised of two isochoric and two adiabatic

strokes, where stokes describe the movement of the piston. Otto engine has a wide range of

applications in automobiles. The efficiency of this model of engine is bounded by the Carnot

efficiency, and the engine efficiency is lower than that of the Carnot engine. The working

substance for this engine model is the classical ideal gas, and the four strokes of the cycle

are characterized by the volume (V) and the temperature (T) of the working substance. The

classical Otto engine is pictorially represented by the P-V diagram in Fig. 2.3.

Now we will describe each stroke of the engine.

1st Stroke [Isochoric process (Hot), A (VH , T ′C) → B (VH , TH)] : This stroke is also

popularly known as Ignition stroke. Here volume VH and temperature T ′C describes the

initial state A of the engine. In this phase of the cycle, the working system is attached with

the hot reservoir at a constant volume having temperature TH . The system remains in this

phase until it attains equilibrium with the reservoir. So, during this stroke of the cycle, the

working system will absorb heat from the hot bath which is depicted as QH in the Fiq.2.3,
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Figure 2.3. Schematic representation of the pressure vs. volume (P-V) diagram of a classical
Otto engine.

and no work is executed in this process. The amount of heat absorbed can be expressed as

QH = mCV(TH−T ′C), where m and CV represent the mass of the gas particles and the specific

heat capacity for constant volume respectively. In the realistic scenario, we can compare this

stage to the rapid combustion of the fuel mixture.

2nd Stroke [Isentropic process (expansion), B (VH , TH) → C (VC , T ′H)] : This stroke is

popularly known as Expansion stroke. While this phase of the cycle is processed, the system

will undergo an adiabatic expansion. The system encounters a volume change from VH to

VC . There is no heat exchange with the reservoir, but we encounter that some of the work

is done in this phase of the cycle due to which there is a drop in the temperature from TH

to T ′H . In the realistic scenario, we can compare this stage with the power stroke of the

spark-ignition engine.

3rd Stroke [Isochoric process (Cold), C (VC , T ′H)→ D (VC , TC)] : This stroke is popularly

known as Exhaust stroke. While this phase of the cycle is processed, the system is connected

to the cold reservoir at a constant volume having temperature TC . The system is cooled in

this process, and it ejects QC amount of heat to the cold reservoir. Similar to the 1st stroke,

no work is performed in this phase of the cycle. The amount of heat rejected by the system

can be expressed as QH = mCV(TC −T ′H).

4th Stroke [Isentropic process (compression), D (VC , TC) → A (VH , T ′C)] : This stroke

is popularly known as Compression stroke. While this phase of the cycle is processed, the

system will undergo adiabatic compression. During this final phase of the cyclic process,

the system encounters a volume change from VC to its initial volume VH . There is no heat
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exchange with the reservoir, but we encounter that some of the work is done in this phase

of the cycle due to which there is a rise in the temperature from TC to T ′C . The system is

reconnected to the hot reservoir to complete the cycle.

From the energy conservation law (the first of thermodynamic), the total work done by

the system can be evaluated as:

W = QH + QC = mCV
(
TH + TC −T ′H −T ′C

)
. (2.2.4)

So, the efficiency of the engine can be evaluated as:

η =
W
QH

= 1−
(
VH

VC

)γ−1

, (2.2.5)

where γ =
CP
CV

is the specific heat ratio, and CP is the specific heat capacity at constant pres-

sure. From Eq. (2.2.5) we can infer that the Otto cycle efficiency has a dependence on the

compression ratio of the engine and the specific heat ratio of the working substance.

2.2.3 Classical Stirling Cycle

The Stirling cycle proposed by Robert Stirling in 1816 is a relatively old power cycle. It

was conceived as a replacement to the steam engines as the efficiency of the was high and

along with that has the ability to use any heat source. Similar to the Otto cycle, the Stirling

cycle is also a four-stroke thermal machine. Stirling engine is comprised of two isochoric

and two isothermal strokes. Similar to the Otto engine, the Stirling cycle has a wide range of

applications in automobile technology. The efficiency of the engine efficiency is equivalent to

that of the Carnot engine. The working substance for this engine model is the classical ideal

gas, and the four strokes of the cycle are characterized by the volume (V) and the temperature

(T) of the working substance. The classical Stirling engine is pictorially represented by the

P-V diagram in Fig. 2.4.

Now we will go through each stroke of the engine briefly.

1st Stroke [Isothermal process (expansion), A→ B] : This is the expansion stroke of the

cycle. While this phase of the cycle is processed, we encounter heat addition to the system

takes place externally. As the working substance gets heated, it expands simultaneously
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Figure 2.4. Schematic representation of the pressure vs. volume (P-V) diagram of a classical
Stirling engine.

keeping the temperature of the process constant (TH). The system encounters a volume

change and a drop in pressure during this stroke of the cycle.

2nd Stroke [Isochoric process (Cold), B→C] : This process is also known as heat removal

process. While this phase of the cycle is processed, the system is connected to the cold

reservoir at a constant volume having temperature TC . So the system encounters a decrease

in the temperature and pressure during this phase of the cycle.

3rd Stroke [Isothermal process (compression), C → D] : This stroke is also known as

compression stroke. In the third part of the cyclic process, heat is ejected by the system. As

the system gets cooled down, it gets compressed. So we encounter a decrease in the volume

and pressure at constant temperature TC during the process.

4th Stroke [Isochoric process (hot), D → A] : This is the last phase of the cycle. This

process is also known as the heat addition process. In this final phase of the cyclic process,

the system is reconnected to the hot reservoir at a constant volume. So the system encounters

an increase in the temperature and pressure during this phase of the cycle. The system is

reverted back to its initial state in this phase of the cycle.

The efficiency of the cycle is given by the Carnot efficiency.

2.3 Quantum Thermodynamics

In the 19th century, there was a quest for the development of more efficient steam engines.

The framework of various practical applications was a remarkable contribution from the
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phenomenological thermodynamic laws and various experimental concepts. In the latter half

of the 19th century, atomic theory [57] took the ground and it was statistical mechanics who

came to the rescue to explain the thermodynamic behavior of the macro world in terms of

its constituent atoms [58, 59]. With the advancement of technology, the capability for the

experimental analysis got enhanced, and it was possible to probe microscopic level systems

that are predominantly controlled by quantum mechanics. So now, a considerable effort

is dedicated to extending thermodynamics to the micro realm theoretically as well as with

experimental concepts. Extending thermodynamics to the quantum realm, it was generally

anticipated that new concepts will get surfaced. But one encountered a similarity of the

quantum version with the classical one. The Carnot efficiency limit applies to the quantum

realm [14,60,61] when the reservoirs are thermal. One also encountered the similarity in the

fluctuation theorem [62–64] in both the regimes.

So the field quantum thermodynamics studies thermodynamic properties like tempera-

ture, heat, work in the micro realm which includes analysis on thermal machines in mi-

croscopic level [15, 65–74], thermalization [75–77], algorithmic cooling [78–82], single

shot [83, 84] and so on. The deep connection between quantum information theory and

thermodynamics is analyzed in the works [84,85]. Along with that, the thermodynamic laws

for the quantum realm gained importance. The details of these laws in the quantum world

are thoroughly analyzed in the works [86–89]. One of the primary focuses of this domain

is the analysis of the subtle relationship between the standard and the non-equilibrium ther-

modynamics. Now we will briefly discuss some of the major research domains of quantum

thermodynamics. For the details regarding this domain, one can go through the review arti-

cles [27, 28].

Thermodynamic resource theory: Recently, the resource theoretic approach to quantum

thermodynamics [90–92] has gained importance. The generic approach to deal with valuable

resources like purity, entanglement is provided by resource theory. The primary focus of this

theory is to find out the class of operations which can or cannot be executed on a quantum

state. These constrained operations define a set of state which a given initial state can reach.

In this framework, thermal operations are the set of allowed operations on the quantum sys-

tem, which keep the total energy of the system constant as well as its thermal environment.

The non-equilibrium states are the valuable resource states. The defined allowed operations

should be consistent with the thermodynamic laws, and it is restricted that, one cannot extract

work from a single thermal reservoir by applying these operations. This resource theoretic

approach provides an innovative way, one can utilize to evaluate the amount of work that one
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can extract from the quantum system having coherence or correlation, or the amount of work

that is required to create quantum correlation or coherence. Resource theory of quantum

thermodynamics has a profound effect on the analysis of the quantum thermal machine as

well as on the efficiency of thermodynamic processes. Quantum information theory plays a

crucial role (it is omnipresent) in the resource theory of quantum thermodynamics. Along

with that, the resource theory of entanglement and coherence make a significant contribution

in the framework of the resource theory of quantum thermodynamics due to its structural

similarities.

Equilibration and thermalisation: It is an age-old matter where effort is given to the

formulation of statistical mechanics from the evolution of an isolated quantum system. Ac-

cording to thermodynamics, the entropy of the system is ever-increasing, whereas from the

concept of quantum mechanics we know that a system evolves unitarily, and so it preserves

its purity. So, one might come to the conclusion that thermodynamic and quantum theory

are incompatible. This apparent paradox can be bypassed by utilizing the concept of entan-

glement which was coined as “the spooky action at a distance" at the earlier stage. It was

observed that when the system gets entangled with the rest of the universe, the entropy of the

respective system increases. Through rigorous analysis, it has been conveyed that equilibra-

tion and thermalization are intrinsic to quantum mechanics [61]. Various works have shown

that the cause of equal a prior probability is due to the consequence of Hilbert space. This

domain is an active field of research.

Quantum fluctuation relations: The seminal works by Jarzynsi [93,94] and Crooks [95,

96] developed the relationship between the free energy and the work that is being executed

or extracted during the transformation among the physical states. Now researchers are in-

vestigating the quantum version of Jarzynski and Crook relations. From the investigation,

researchers were able to infer that these relations remain invariant under unitary quantum dy-

namics [97,98]. It also hold for open quantum dynamics [99,100]. In the seminal work [98],

they conveyed that work is not an observable. So, it is a necessary task to develop the fluc-

tuating quantum work as a two-point correlation function for closed dynamics to distinguish

the jarzynski relation. So this conveys that we have to perform projective measurement both

at the beginning as well as at the end of the process on an instantaneous eigenbasis of the

evolving system. This provides the required information about the change in the energy that

occurs during the evolution of the system, and so it provides the pathway for the develop-
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ment of the work distribution function. Some experimental verification in this direction has

also been analyzed, where a single trapped ion system is considered for the analysis of non-

equilibrium work distribution [101] and for quantum Jarzynski equality [102, 103]. Along

with all these approaches, a new measurement scheme is proposed based on the concept of

an interferometric scheme of phase estimation for quantum systems [104]. In this work,

they have shown that one can reconstruct the work distribution using this interferometric

scheme [28] (by virtue of ancilla) rather than executing two projective measurements. In this

scheme, the ancilla will interact with the system at the start and end of the process, so the

state of the system obtains a phase from this interaction. This phase has a connection with

the energy difference of the system, and one has to measure this ancilla to get the estimation

of the energy difference of the system. This has been implemented experimentally in a nu-

clear magnetic resonance (NMR) [105]. Along with that positive operator valued measures

(POVM) are also used for the study of quantum fluctuation relation and this has been ana-

lyzed experimentally using ultracold atoms [106].

Single shot thermodynamics: This is the domain of quantum thermodynamics which

tries to find the application of statistical mechanics to the strongly correlated quantum sys-

tems which is plunged in the hot bath [83, 107, 108]. Equivalent to entanglement theory,

the single-shot thermodynamics is also based on the concept of agents, i.e., a limited set of

operations are allowed in this process. In other words, we can express this as the prohibition

of multi-tasking, like extraction of work or handling the characteristics of coherence.

Quantum heat machines (QHMs) are another broad area of research in the field of quan-

tum thermodynamics. The focus of this thesis is based on QHMs and will be described in

detail.

2.3.1 Heat, Work and Entropy

Equipped with the knowledge of classical thermodynamics and its further development we

are all set to analyze heat and work for the quantum systems. Following the analogy of the

classical world, that all system is accompanied by energy which in the quantum regime is

described by the Hamiltonian of the system. Now, when one wants to measure the internal

energy of the system, it operates the observable to the state of the system which then col-

lapses to one of the eigenstates. The corresponding eigenvalue for this eigenstate provides

the output of the internal energy of the system [28]. In quantum mechanics, the measure-
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ment has probabilistic nature. So the internal energy U can take values Ei with probability pI

where i = 1,2, . . . ,n denotes the dimension of the states space [61]. From now on, whenever

we talk about the internal energy of the system we would simply mean the average internal

energy of the system. The internal energy is mathematically described as:

U = 〈H〉 = tr[ρH] =
∑

i

piEi, (2.3.1)

where H represents the Hamiltonian of the system, ρ is the state of the system. The energy

changes in the system can be described in two forms:

• Heat (Q): Heat is described as the flow of energy among the system and the environ-

ment when the system is attached to the environment.

• Work (W): Work is described as the change in energy of the system caused due to

external forces when acted on the system.

Now, the entropy of a system provides a measure of the uncertainty about the knowledge

of a system. If we consider a pure singlet state, then we have all the information of this state.

The entropy of such a state is zero. Now, if we consider a mixed state, then one cannot say

with certainty which is the exact state of the system, but one can convey about the state with

some probability. These states have some entropy. The lack of information in the quantum

realm is measured using Von Neumann entropy:

S (ρ) = − tr[ρ lnρ] = −
∑

i

λilnλi, (2.3.2)

where λi is the eigenvalues of the state ρ. Now, from the 2nd law of thermodynamics, we

know that for any heat flow there is an equivalent entropy flow in the system and is depicted

as:

∆S =
∑

i

∆Qi

Ti
. (2.3.3)

From Eq. (2.3.2) and (2.3.3), we can analyze that the entropy of the system is a function

of states, i.e., when the population of the system changes one will encounter a change in the

entropy of the system, whereas no change is observed with the change of eigenvalues.
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2.3.2 Thermodynamic laws in Quantum Regime

Here in this section, we are going to study the thermodynamic laws for quantum systems.

One should be aware and keep in mind that the laws should approach their classical defini-

tions within certain limits.

Zeroth law of thermodynamics:

As conveyed earlier in this chapter, the zeroth law of thermodynamics in the classical

domain describes that thermal equilibrium is equivalent to an equality relationship between

the states of the systems where the only parameter is the temperature which classifies the

different equivalence classes. Whereas in the micro-world, the case is different due to the

presence of quantum features. Quantum features like entanglement, quantum correlations

dispense new insight to this regime which we have never encounter in the classical world.

For any thermodynamic process, it is generally assumed that the system and the bath are

uncorrelated, but there is a high probability that the system gets correlated during the pro-

cess. If one considers the system to be correlated with the bath, then we will encounter the

violation of zeroth law. So to encounter this problem, we have to reinterpret the concept of

equilibrium. In the work [109], they have coined the general zeroth law of thermodynamics

which conveys that we can infer mutual thermal equilibrium for a set of states only when

no work is extractable from any combination of these states under the entropy-preserving

operation. To satisfy this condition, each of the states should be a thermal state with the

same temperature. For example, let us consider three systems where the states are defined as

ρC ⊗ρAB, where these states are marginal thermal states. Now, if A happens to be in thermal

equilibrium with B and B with C then all the systems have the same temperature. But if

we consider that any two of the system are correlated say A and B, then this state are not in

thermal equilibrium with each other.

First law of thermodynamics:

The model to analyze the internal energy of a system has been thoroughly explored in the

work [110]. We will consider this model for the analysis of the first law of thermodynamics,
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and a general system having a finite count of energy levels is considered as the working

medium. So the Hamiltonian can be expressed as:

H = En|En〉〈En|, (2.3.4)

where En is the eigen-energy and |En〉 describes the nth eigenstate. The internal energy of

the system is defined as:

U =
∑

n
PnEn, (2.3.5)

where Pn is the occupation probability of nth eigenstate. So the infinitesimal change in the

internal energy fromEq. (2.3.4) can be expressed as:

dU =
∑

n

(EndPn + PndEn) . (2.3.6)

So comparing with the definition of first law (as described in classical regime), we can equate

dQ =
∑

n
EndPn

dW =
∑

n
PndEn, (2.3.7)

in the quantum domain. Here dQ, dW describes the infinitesimal heat change and infinites-

imal work done respectively. Interestingly, the definition of dQ (as defined in Eq. 2.3.7) is

valid even if the working medium is not in thermal equilibrium, unlike the classical regime

where dQ = TdS (T , S defines the temperature and the entropy of the system) is applicable

only when the system is in thermal equilibrium.

We can describe these quantities in another way. Let us consider a quantum state which

is described by the density operator ρ, and the system Hamiltonian by H. The internal energy

can be described as the expectation value of the Hamiltonian as:

U = 〈H〉 = tr(ρH). (2.3.8)

The rate of change of internal energy can be evaluated as:

dU
dt

= tr(ρ̇H) + tr(ρḢ). (2.3.9)

Now for a closed system evolution the dynamics is controlled by the Hamiltonian of the
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system, so tr(ρ̇H) = 0. So no entropy is generated in this process as the system is isolated

and it follows the unitary evolution. So the remaining term in Eq. (2.3.9) describes the energy

flow in the system.

Now, if we consider the system to be weakly interlinked with the bath and the Hamilto-

nian to be time-independent, then we can convey that the energy flow is due to the fact that

there is a heat exchange between the system and the reservoir. As a consequence of this, the

first term of Eq. (2.3.9) exists, and the second term equates to zero. The first term describes

the heat current in the system. So this provides the alternative formalism to describe the first

law of thermodynamics in the quantum domain.

Second law of thermodynamics:

The second law of thermodynamics plays a vital role in a wide scale of application. This

law, when analyzed in the micro domain, produces fascinating outcomes. A different version

of the second laws of thermodynamics are developed based on application and are discussed

below.

Let us consider two density matrices ρ and σ which depicts two different states for a

k-dimensional system. Let λρj and λσj (where j = 1,2, . . . ,k) is used to denote the eigenvalues

of the states. We can convey that σ majorizes ρ [90, 111] if for all m = 1,2, . . . ,k

l∑
j=1

λ↓σj ≥

l∑
j=1

λ
↓ρ
j ,

l∑
j=1

λσj =

l∑
j=1

λ
ρ
j , (2.3.10)

where λ↓σj and λ
↓ρ
j are developed by rearranging the eigenvalues in the decreasing or-

der λ↓σ1 ≥ λ
↓σ
2 ≥ . . .λ

↓σ
j and λ

↓ρ
1 ≥ λ

↓ρ
2 ≥ . . .λ

↓ρ
j . So we can infer from this σ > ρ. So the

Shannon entropy of the density states should follow the relation S (ρ) ≥ S (σ). If the system

additionally follows the condition as mentioned in Eq. (2.3.10) we can describe ρ as:

ρ = PlUσU†Pl, (2.3.11)

where Pl described the projective operator for a certain eigenbasis and U is a unitary operator.

From Eq. (2.3.11) we can infer that by operating a projective operation followed by the

unitary evolution of the system, we can make a transition from a low entropic state to a

higher one. So it confirms that there is no way to reach a lower entropic state by a unitary
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process (like adiabatic process).

The second law, as conveyed earlier in this chapter (classical regime), states that the en-

tropy of the closed system will either remain the same or increase with time. In the seminal

work [112], they have shown if the system and the environment are not correlated, then the

entropy change of the total system is always positive. Using this concept we can define

the initial state (ρin
total) of the total system as a tensor product of the initial state of the sys-

tem (ρin
sys) and that of the environment (ρin

env) as ρin
total = ρin

sys ⊗ ρ
in
env. Now if we perform a

global unitary operation to the total system, the unitary evolution of the total system can be

expressed as ρ f in
total = U†ρin

totalU. So the change in the entropy can be expressed as:

∆S total = ∆S sys +∆S env =
(
S (ρ f in

sys)−S (ρin
sys)

)
+

(
S (ρ f in

env)−S (ρin
env)

)
=

(
S (ρ f in

sys) + S (ρ f in
env)

)
−

(
S (ρin

sys) + S (ρin
env)

)
, (2.3.12)

where ρ f in
sys and ρ f in

env describes the final state of the system and the environment respectively.

The basic assumption that is considered in the analysis is that there is no correlation between

the system and the environment. So we can express the second term of the Eq. (2.3.12) as(
S (ρin

sys) + S (ρin
env)

)
= S (ρin

total). We know that Von-Neumann entropy is invariant under any

unitary transformation so we can infer from this concept that S (ρin
total) = S (ρ f in

total). So the total

change in the entropy can be expressed as:

∆S total =
(
S (ρ f in

sys) + S (ρ f in
env)

)
−S

(
ρ

f in
total

)
= S

(
ρ

f in
total || ρ

f in
sys ⊗ρ

f in
eve

)
≥ 0. (2.3.13)

We have also considered the fact that the relative entropy of the system is a non-negative

quantity.

Third law of thermodynamics:

The third law of thermodynamics state that the entropy of the system is zero at absolute

zero temperature provided that the system is having non-degenerate ground states at equilib-

rium [113]. The quantum version of this law [114] is an exciting area of research. This has

gained importance in the context of thermodynamics [115–117] as cooling a system up to an

absolute zero temperature has been executed [118], where one encounters that the quantum
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fluctuation has a dominance over the thermal fluctuations.

2.4 Quantum Thermal Machine

The center stage of the field of thermodynamics was the development of thermal cycles.

In a thermodynamic cycle, the system has to execute a series of strokes (stroke is a time

span where one operation is executed like thermalization or extraction) which ultimately

affects the internal energy of the system, and finally, the system returns to its original state,

i.e., ρin = ρ f after the cycle is complete. Generally, there exist three types of engines with

two thermal reservoirs. They are four-stroke, two-stroke, and continuous engines. There is

various type of strokes a system can undergo [110]. Generally, two-stroke adjacent to each

other does not commute, if such a relationship exists among them then they can be combined

into a single stroke by just applying the operations simultaneously. Some of the notable

strokes are:

• Isothermal process: During this process, there is an exchange of heat with the envi-

ronment. The process is executed slowly enough so that the state of the system is a

thermal state even after evolution. Work is done to change the energy levels so that

thermalization is ensured.

• Adiabatic process: During this process, the system performs work by altering its

Hamiltonian of the system. In this process, the system is detached from the envi-

ronment. The process is executed slowly so that it can be adapted by the system, and

the population of the system remains unchanged [119, 120].

• Isochoric process: During this process, the system interacts with the environment and

exchanges heat without performing any work.

The thermodynamic cycle can be used repeatedly with a single system as the initial and

the final state of the system happens to be the same. Two of the most common thermal

machines are the thermal engine and the refrigerator. A thermal engine is a cyclic process

that produces work when there is a heat flow from the hot reservoir to the cold one. The

refrigerator is a cyclic process that is able to move work from a cold reservoir to the hot one.

The measure of performance of a thermal engine is described by efficiency η. Efficiency is

defined as the ratio of work produced by the system with the heat absorbed from the hot bath.
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η =
|W |

Qinput
=

Qout + Qinput

Qinput
. (2.4.1)

The measure of performance for a refrigerator is described by the coefficient of perfor-

mance. It is defined as the ratio of cooling with the work needed for that.

COP =
Q
|W |

. (2.4.2)

Various thermodynamic cycles have been analyzed [110, 121–125]. Here, we are going

to study about two such cycles, the Stirling cycle, and the Otto cycle.

2.4.1 Quantum Carnot Cycle

Carnot introduced the Carnot cycle which happens to be the efficient cycle and it gives an

upper bound to the performance of the engines. It is a four-stroke engine. The strokes of the

engine are described as follows:

• The first stroke of the engine is the isothermal process. During the execution of this

phase of the cycle, the system is attached to the hot bath at Th temperature.

• The second stroke of the engine is the adiabatic process. During the execution of

this phase of the cycle, the system is disconnected from the hot bath, and the system

Hamiltonian is changed (H→ H0) during this phase of the cycle.

• The third stroke of the engine is the isothermal process. During this phase, the system

is connected to the cold reservoir at Tc temperature.

• The fourth stroke of the engine is the adiabatic process. During the execution of the

final phase of the cycle, the system is disconnected from the cold bath, and the Hamil-

tonian of the system is changed from H0 to H.

The efficiency of the cycle is independent of the system parameters but depends only

on the temperature of the reservoirs η = 1− Tc
Th

. This is called the Carnot bound as it pro-

vides optimal efficiency. This is a reversible cycle, so there is no entropy production in

this process. If one reverses the cyclic process, the working machines turn the thermal en-

gine into a refrigerator. The measure of performance of the refrigerator, i.e., COP is solely

function of temperature of the reservoirs, COP =
Tc

Th+Tc
. Finite-time isothermal cycles has
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been analyzed [126], and different working mediums for Carnot cycles are proposed and ex-

plored [66,127–133]. With the utilization of non-equilibrium baths some engines are able to

surpass the Carnot bound [134].

2.4.2 Quantum Otto Cycle

The Otto cycle is a combustion cycle. It is also a four-stroke cycle and the process is as

follows:

• The first stage of the cycle is the adiabatic compression process. During the execution

of this phase of the cycle, the change in the Hamiltonian (H → H0) of the system

occurs.

• The second stage of the cycle is the isochoric heating stroke. During the execution of

this phase of the cycle, the system is attached to the hot reservoir at Th temperature.

• The third phase of the cycle is the adiabatic expansion process. During the execution of

this phase of the cycle, the change in the Hamiltonian (H0→ H) of the system occurs.

• The fourth stage of the cycle is the isochoric cooling stroke. During this final part of

the cyclic process, the system is attached to the cold bath at Tc temperature, where

Tc < Th.

Based on the order of the strokes one can develop an Otto engine or Otto refrigerator. The

efficiency of the cycle is a function of the parameters that change during the adiabatic com-

pression and the adiabatic expansion strokes. The ease to implement the isochoric process

over the isothermal process has made the Otto cycle a popular one for analysis [135–145].

2.4.3 Quantum Stirling Cycle

Stirling cycle [146, 147] is also a four-stroke engine. Here we will analyze the four strokes

of these cycles.

• The first stroke of the engine is the isothermal process. During this part of the cyclic

process, the system is attached to the hot reservoir at Th temperature. Change in the in

Hamiltonian takes place in this phase.
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• The second stroke of the engine is the isochoric process. During this part of the cyclic

process, the system will execute an isochoric heat exchange. The system is attached to

a reservoir with Tc temperature, so the heat gets released during this process.

• The third stroke of the engine is the isothermal process. During this phase, the system

remains connected to the cold reservoir at Tc temperature.

• And in the final part of the cyclic process, the system is reverted back to the hot reser-

voir with Th temperature.

The efficiency of this cycle is bounded by the Carnot efficiency. If one reverses the whole

cyclic process, one can turn this thermal process into a refrigerator process. This cycle is also

a reversible process.

2.5 Quantum Thermodynamic Processes

From classical thermodynamic, we are aware that there are four primary processes: isother-

mal process, adiabatic process, isobaric process, and isochoric process. Here, isothermal

process describes the evolution of the system with constant temperature, whereas for the

adiabatic process there is no heat exchange. Isobaric and isochoric process describes the

evolution with constant pressure and volume respectively. With these four basic processes,

one can develop various types of thermodynamic cycles like the Carnot cycle, the Otto cycle,

the Stirling cycle, the Brayton cycle, and so on. One of the prime objectives in the analysis

of quantum thermodynamics [17, 75, 148] is to extend the classical version in the quantum

regime. In this section, we will describe the quantum analogy of these four fundamental

processes in the thermodynamic process [121].

2.5.1 Quantum Isothermal process

In an isothermal process, the temperature of the system will remain the same. This process is

executed by connecting the system with an external thermal bath which helps the system to

maintain a constant temperature as that of the bath through heat exchange with the reservoir.

Similarly, in the quantum regime [110], the working medium is kept in contact with the

thermal bath at a constant temperature. The system can execute external work by absorbing

heat from the reservoir if the occupation probability of the system and its energy gaps change

simultaneously. This keeps the temperature of the system fixed at a particular temperature
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alike the classical one. For example, a two-level system is considered for analysis. The

state |−〉 and |+〉 describes the ground and the excited state respectively. The occupation

probability and the eigenenergy for the ground state are P− and E− and that of the excited

state is P+ and E+. To execute a quasistatic isothermal process the condition (E+(t)−E−(t))

needs to be satisfied, which conveys that the level spacing should change slowly with respect

to the time t. So the ratio of occupation probabilities will follow the Boltzmann distribution.

P+

P−
= e

E+(t)−E−(t)
kBT , (2.5.1)

where T describe the temperature of the reservoir.

2.5.2 Quantum Adiabatic process

In the classical regime of thermodynamics, the process where there is no heat exchange with

the environment by the system is defined as an adiabatic process. The first law conveys that

all the changes in the internal energy are due to the work done throughout the process. In the

quantum regime, the process should be executed quasistatically so that it satisfies the generic

adiabatic condition. So the evolution of the system parameter is quasistatic in nature.

We consider a system with eigenstate |n(0)〉 for the initial Hamiltonian at time t = 0.

While we execute the process, the system will be in the n-th eigenstate |n(t)〉 for the instanta-

neous Hamiltonian of the system to satiate the quantum adiabatic theorem. So the occupation

probability of the eigenstate |n(t)〉 is adiabatically invariant, i.e., work is done without any

exchange of heat. This condition is totally a quantum phenomenon. This condition is not

a mandatory condition in the classical regime. For example, if we execute the process fast

then the quantum adiabatic process will not be satisfied due to the presence of the internal

excitation in the system but without any heat exchange which is the required criteria to sat-

isfy the classical adiabatic condition. So, one can infer that the classicala counterpart of the

adiabatic process is more general than that of the quantum one.

In the analysis of quantum heat engines, the quantum adiabatic theorem is indispensable.

Due to this fact, we will study this briefly. For detailed analysis, one can look into [149]. Let

us consider a time-dependent Hamiltonian (H(t)). Hamiltonian for different time (t) will not

commute, i.e., the eigenstate for the Hamiltonian for different time is not the same. So we

can say that the eigenstate (ψn) and the eigenvalues (En) are time-dependent. So,

H(t)ψn(t) = En(t)ψn(t). (2.5.2)
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The Schrödinger equation for the state Ψ can be described as:

i}
∂Ψ (t)
∂t

= H(t)Ψ (t). (2.5.3)

The solution of Eq. (2.5.3) can be described as a linear combination of the eigenstates of

the Hamiltonian at time t, as:

Ψn(t) =
∑

n
Cn(t) ψn(t)eiΘn(t), (2.5.4)

where Θn(t) = −1
}

∫ t
0 En(t′)dt′ is the phase factor. Now using Eq. (2.5.4) in Eq. (2.5.3) we get

i}
(
Cnψ̇n + Ċnψn + iCnΘ̇

)
eiΘn =

∑
n

Cn H eiΘn . (2.5.5)

Using Eq. (2.5.2), and executing some algebraic manipulation, we have

∑
n

Ċnψn eiΘn =
∑

n
Cnψn eiΘn . (2.5.6)

Now we consider the inner product with the state Ψm, and then applying the orthonor-

mality condition, we get

Ċm(t) = −
∑

n
Cn〈Ψm|Ψn〉 ei(Θn−Θm). (2.5.7)

Now we will first execute the time derivative of Eq. (2.5.2), and then after that, we will

take the inner product with Ψm and using the Hermiticity of the Hamiltonian in Eq 2.5.7 we

have

Ċm(t) = −Cm 〈Ψm|Ψn〉−
∑

n
Cn
〈Ψm|Ḣ|Ψn〉

En−Em
ei(Θn−Θm). (2.5.8)

Considering the adiabatic approximation, which conveys the fact that H is quite small so

that we can equate the second term of the Eq. (2.5.8) to zero, so we have

Ċm(t) = −Cm 〈Ψm|Ψn〉. (2.5.9)

Solving the equation we have

Cm(t) = Cm(0) eiγm(t), (2.5.10)
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where γm(t) = i
∫ t

0 〈ψm(t′)|ψ̇m(t′)〉dt′. If Cn(0) = 1 and Cm(0) = 0 then we have

Ψn(t) = eiΘn(t) eiγn(t) ψn(t). (2.5.11)

From Eq. (2.5.11) one can infer that the system remains in its instantaneous eigenstate of the

Hamiltonian with some global phase factor.

2.5.3 Quantum Isochoric process

In a classical isochoric process, the volume remains constant. As the volume is the same

throughout the process, the system does not do any work. In this process, the system can

exchange heat with the hot reservoir. The pressure and the temperature of the system changes

during the evolution of the system in this process, and at the end of the process the system

will attain thermal equilibrium with the hot reservoir. With the same analogy the quantum

isochoric process, the system is kept in touch with the hot reservoir. During this process, the

system exchanges some amount of heat with the reservoir without performing any work. The

occupation probability Pn changes, although the energy spacing En will remain the same:

dW =
∑

n
PndEn = 0. (2.5.12)

The entropy of the system S will change until the system equilibrates with the hot reser-

voir at the end of the process, and the occupation probabilities in each eigenstate will satisfy

Boltzmann distribution. For example, if one considers a spin system as a working medium,

the analogy of the concept of volume can be described with the energy spacing of the system.

The spacing will remain constant throughout the process.

2.5.4 Quantum Isobaric process

In the classical regime, the isobaric process states that the pressure will remain constant

throughout the process. This is executed by controlling the volume (V) expansion or con-

traction so that it is able to neutralize the pressure changes that will occur due to the heat

exchange by the system with the reservoir. During this process, another parameter, i.e., the

temperature of the reservoir needs to be controlled. The system thus follows the condition

T ∝ V and the generalized force YN is defined as YN = − dW
dyN

, where yN is the generalized

coordinate. The first law for this process takes the form
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dU = dQ + dW = TdS + YNdyN , (2.5.13)

where S is the entropy of the system. Using this analogy, in the quantum regime, the force for

a one-dimensional quantum system is defined from the quantum first law of thermodynamics.

F = −
dW
dL

= −
∑

n
PN

dEN

dL
, (2.5.14)

where L describes the generalized coordinate system corresponding to the force F. This is

equivalent to the pressure in the quantum regime. To execute an isobaric process for the one-

dimensional quantum system the temperature of the system should be proportional to the

width of the potential, i.e., T ∝ L. This is equivalent to the condition T ∝ V in the classical

regime.

The comparative study of the classical and the quantum thermodynamic processes is

described in the table 2.1.

2.6 Uncertainty relation and connection to information

theory

Heisenberg, in his seminal work [150], analyzed a hypothetical observation of an electron

with photons and came out with a proposal that the product of the measurement error will be

governed by a relation:

∆a∆b ≥
}

2
, (2.6.1)

where a and b are two canonical observables. In quantum theory, two observables are called

canonical if they satisfy the commutation relation [a,b] = }/i (in this case it is x and p).

Kennard [151] and Weyl [152] inspired by this idea derived it mathematically and conveyed

that it is a constraint on the measurement outcome for an ensemble with identical systems.

Schrödinger [153] generalized Eq. (2.6.1) with a correlation term and Robertson [154, 155]

derived the relation for two non-commutative Hermitian operators. It is similar to the relation

proposed by Schrödinger. This relation is also known as the canonical uncertainty relation.

Now it is considered that it provides a fundamental limit on the properties of the quantum

systems. Eq. (2.6.1) is the bound which conveys that one cannot simultaneously attribute
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Table 2.1. Thermodynamic processes in macro and micro regime

Classical domain Quantum domain

Variant Invariant Variant Invariant

Isothermal Process Pressure, Internal energy, Internal energy, Temperature
Heat absorbed or Volume Temperature Eigenenergy,

released Occupation
distribution

Work done probability

Variant Invariant Variant Invariant

Adiabatic Process Pressure, Entropy Eigenenergy, Occupation
No heat Temperature, Effective distribution

exchange Volume Temperature probability

Work done

Variant Invariant Variant Invariant

Isochoric Process Pressure, Volume Effective Eigenenergy
Heat absorbed or Temperature Temperature,

released Occupation
distribution

No work done probability

Variant Invariant Variant Invariant

Isobaric Process Volume, Pressure Effective
Heat absorbed or Temperature Temperature,

released Eigenenergy, —
Occupation

Work done distribution
probability

definite values to the canonical observables.

According to Bohr [156], temperature and energy are complementary to each other as

that of position and momentum. It says that a definite temperature can only be attributed

to a system when submerged in a heat bath where we can neglect the energy fluctuations.

Similarly, we can assign definite energy to the system when it is thermally isolated which

simultaneously excludes the determination of temperature. Rosenfeld [157] extended this
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with quantum mechanics and obtained an uncertainty relation which is of the form:

∆U∆(1/T ) ≥ kB. (2.6.2)

This is called the thermodynamic uncertainty relation. Different forms of the thermo-

dynamic uncertainty relation are present in the literature which are developed for various

aspects. Here, in this thesis, we have transferred the better bounds that have been proposed

for canonical uncertainty relation to thermodynamic uncertainty relation, which will guide

us to propose a bound in the efficiency of the thermal machine.

In recent years quantum information theory has encountered rapid progress. It was in-

spired by the seminal work of Einstein, Podolsky, and Rosen (EPR) paradox [158]. Schrödinger

coined the term ‘entanglement’ [159] to explain the paradoxical feature that was proposed

by EPR. The position-momentum uncertainty relation was the first testable formalism for the

explanation of the EPR paradox. Quantum steering [160], which is the modern formalism

of EPR concept, is based on the violation of the steering inequality which gained its form

with the help of uncertainty relation of entropic form. This is similar to that of the Bell-type

inequality [161, 162].

With the advent of quantum information theory, the researchers were able to uncover

several other applications of uncertainty relations in this domain. It has been used as a

tool for the discrimination between separable and entangled states [163, 164]. Whereas,

the Robertson version of the uncertainty relation is used in the discrete variable domain to

discriminate between the pure and the mixed states of the bipartite and qutrit systems [165–

169]. One can utilize the uncertainty relation to explore the non-locality of the physical

systems [170]. It has been explored for bipartite [170] and tripartite [171] systems as well as

for biased non-local games [172]. In quantum cryptography, the uncertainty relation is the

backbone for security purposes. For example, the security of the quantum key distribution

protocols is based on quantum uncertainty relation [173]. One can visualize that the amount

of key that is extractable from each state has a direct link with the lower limit of the entropy

uncertainty relation [174,175]. So we can visualize the importance of the uncertainty relation

in quantum information processing and quantum computation.
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2.6.1 Uncertainty relation for a particle in a potential well

Here we are going to study the potential well problem in the relativistic as well as non-

relativistic regime and then analyze the uncertainty relation for the system in their respective

regimes. The UP (popularly known as Heisenberg’s uncertainty principle [176]) states that

no two canonically conjugate variables can be determined simultaneously with an accuracy

greater than the fundamental constant named as plack constant }. Mathematically, it can be

defined in terms of the standard deviations of the pair of variables [177]. For two of such

variables x and p which describes the position and momentum of a system, it is defined as

∆x∆p ≥
}

2
, (2.6.3)

There is a subtle difference in two closely associated terms, namely: UP and the UR. The

UP as stated in [154, 178–180], describes the inevitability of joint measurement for any two

canonical pair of variables. Whereas UR doesn’t convey the measurement-induced distur-

bances, rather, it refers to the state-induced spread in the measurement outcome.

One can find various forms of UR, which are developed over the years starting from

Heisenberg’s UR [176]. The most common form of the UR was given by Robertson [154]

as:

∆A∆B ≥
∣∣∣∣∣12〈[A,B]〉

∣∣∣∣∣ , (2.6.4)

where A and B are two incompatible observables. One can reproduce Eq. (2.6.3) from

the Robertson relation by substituting the corresponding commutation relation for [x, p].

Schrödinger is his UR form addaed an extra anti-commutator term [178, 179], which further

strengthened the bound

∆A2∆B2 ≥

∣∣∣∣∣12〈[A,B]〉
∣∣∣∣∣2 +

∣∣∣∣∣12 〈{A,B}〉− 〈A〉〈B〉
∣∣∣∣∣2 . (2.6.5)

With the evolution of quantum information, the essence and importance of uncertainty

relation in technology got enriched. It has various applications in quantum technology

like quantum cryptography [181–183], entanglement detection [184–187], even in quantum

metrology [188] and quantum speed limit [189–192]. In recent times, the work [193–195]
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have authenticated the uncertainty relation experimentally.

let us first revisit the one-dimensional potential well for the non-relativistic scenario. It is

an age-old textbook problem. The one-dimensional potential well is a well-known problem

in quantum mechanics [196, 197]. Here, we consider a particle of mass m inside a one-

dimensional potential box of length 2L. The wave-function of this system for the n-th level

is |ψn〉 =

√
1
L sin(nπx

2L ). So, when the wavefunction of the model under study is known, we

can calculate the eigenvalue of the system. Eigenvalues of 1-D potential well is En = n2π2}2

2m(2L)2 ,

where } is Planck’s constant.

With the wavefunction of the model in our hand, we are all set to derive the uncertainty

relation of the position and the momentum for this system. The uncertainty relation for our

model is described as [196, 197]

∆x∆p =
}

2

√( (nπ)2

3
−2

)
≥
}

2
, (2.6.6)

where ∆x2 = 〈x2〉 − 〈x〉2 and ∆p2 = 〈p2〉 − 〈p〉2 and we have 〈p〉 = 0 for all eigenstate. The

expectation values of 〈x〉, 〈x2〉 and 〈p2〉, can be easily evaluated by considering the defined

wavefunction of the considered system.

Unlike the potential well problem in non-relativistic quantum mechanics, the potential

well problem with a relativistic particle confined in it is not a textbook material traditionally.

Here, we will now revisit the analysis of uncertainty relation for a relativistic particle in a

potential well. For our convenience, we have used ‘≡’ for defining a new symbol or quantity.

Here, for the analysis, we have considered the relativistic potential well model as our

working substance. The solution of the free Klein-Gordon (KG) equation [198] using Feshbach-

Villars formalism [199] is

ψ±−→p
(−→x , t) ≡ A±


φ±(−→p )

η±(−→p )

e(∓Ept−−→p−→x )/}

= A±φ±(−→p )e(∓Ept−−→p−→x )/}, (2.6.7)

where ± represents the positive and negative energy solution respectively and

Ep =
√

p2c2 + m2c4, A± is the normalization constant and m, p, c is the mass, momentum

and the velocity (of the order of speed of light) of the particle respectively.
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The mathematical forms for φ±(−→p ) and η±(−→p ) of Eq. (2.6.7) are given by

φ±(−→p ) ≡
±Ep + mc2

2
√

mc2Ep

,

η±(−→p ) ≡
∓Ep + mc2

2
√

mc2Ep

.

The procedure we generally take to solve for a particle in a box in the relativistic case

leads to the ‘Klein paradox’. Klein paradox tells that the flux of the reflected plane wave in

the walls of the potential well is larger than that of the incident waves. The reason behind

this is the wavefunction which starts to pick up components from the negative energy states.

The way to solve this paradox is to presume the mass of the system as a function of x. So it

is defined as:

m(x) ≡

 m, x ∈ L,

M→∞, x < L,

where L is the length of the potential box. So, the wave function inside the box results in

Ψ (x) ≡

√
2
L
φ+(p) sin(p x/}). (2.6.8)

Here pL = nπ} and n = 1,2, · · · ,∞. The quantized energy of the system takes the form

En ≡

√
n2π2}2c2

L2 + m2c4

≈ mc2 +
n2π2}2

2mL2 + · · · , (2.6.9)

where in the last line a small p/(mc) = nπ}/(Lmc) expansion is made. The second term arises

by solving the Schrödinger equation. The mc2 term represents the rest energy, and the dots

represent second and higher-order terms of L which are being neglected for our analysis.

Now, for our purpose, we consider a relativistic particle of mass m inside a one-dimensional

potential box of length 2L with a bath at temperature T . We have considered the potential

box of length 2L for calculation convenience when we insert a partition in the middle of the

potential box. So, the wavefunction of the system for the n-th level, similar to the Eq. (2.6.8)

which takes the form
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ψ(x) =

√
1
L
φ+(p) sin(px/}), where p (2L) = nπ}. (2.6.10)

So, the quantized energy of the considered system takes the form similar to Eq. (2.6.9) as:

En =

√
n2π2}2c2

(2L)2 + m2c4

≈ mc2 +
n2π2}2

2m(2L)2 + · · · . (2.6.11)

Having the information about the wavefunction and the eigenvalues, we are all set to an-

alyze the uncertainty relation of the position and the momentum operator of the system. The

mathematical form of the uncertainty relation for the position and the momentum operator

of the system is

∆x∆p ≡ σxσp

=
}L
2
φ+(p)

[(1
3
−

2
(nπ)2 −φ

+2(p)
)
×

(π2n2

L2 +
8m2c2

}2

)] 1
2

≥
}

2
, (2.6.12)

where ∆x2 = 〈x2〉 − 〈x〉2 and in the case of momentum, ∆p2 can be defined similarly. The

mathematical form of the expectation values of 〈x〉, 〈p〉, 〈x2〉 and 〈p2〉 for the relativistic

particle confined in the potential well are

〈ψn|p|ψn〉 = 0

〈ψn|x|ψn〉 = Lφ+2(p) n = 1,2, · · ·

〈ψn|x2|ψn〉 = 4L2φ+2(p)
[1
3
−

1
2(nπ)2

]
n = 1,2, · · ·

〈ψn|p2|ψn〉 =
(π}n

2L

)2
+ 2m2c2, n = 1,2, · · · (2.6.13)

where we have considered the wavefunction ψn as shown is Eq. (2.6.10).

2.7 Thermal engine with different working medium

In this section, we are going to analyze different thermal engines like quantum Stirling engine

and quantum Otto engine with potential well and harmonic oscillator (HO) as the working

medium. Here we will provide the general idea of the engines with the working substance,
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the details based on the respective working medium will be analyzed later.

2.8 Stirling cycle with potential well

Here we are going to analyze the Stirling cycle with potential well as the working medium

in a generic way. A Stirling cycle [123, 146, 147, 200] is composed of four stages, two

isothermal processes, and two isochoric processes. During the first stage, we insert a barrier

isothermally in the middle of the well. While this quasi-static insertion process is being done,

the working medium stays at an equilibrium condition with a hot bath at a temperature T1.

During the second stage, we perceive an isochoric heat extraction of the working medium by

connecting it with a bath at a lower temperature of T2. In the next stage of the cycle, there is

an isothermal removal of the barrier where we retain the engine in equilibrium at temperature

T2. Now in the final stage, we bridge the engine to the hot bath at the temperature T1 and

this gives rise to isochoric heat absorption. It is represented pictorially in Fig. 2.5.

Figure 2.5. The figure shows the four stages(two isothermal and two isochoric process) of the
Stirling cycle modeled using potential well.

A detailed description of the phases of the cycle is described below:

(i) First stage of the Stirling cycle is the isothermal (A→B) process. In this phase, we

insert a barrier isothermally in the 1-D well, which divides the well into two equal halves.
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The positioning of the partition (i.e. barrier) in the middle of the infinite 1-D well converts it

to an infinite 1-D double potential well. In our analysis, we have taken into account that the

delta potential grows in strength from zero to that height, which would be enough to prevent

the tunneling process through the barrier. This provides us the assurance that the probability

tends to zero for the tunneling process considering that the time required for the execution

of the tunneling process is more than the time required for any thermodynamic processes to

complete. During this phase of the cycle, the working medium is attached to a hot bath with

a temperature T1. Throughout this process, the system remains at its equilibrium condition

when the quasi-static insertion of the barrier is being done.

(ii) The second phase: isochoric (B→C) process. In this stage of the cycle the working

medium experiences an isochoric heat extraction. The system is connected to the cold bath

at temperature T2 where T1 > T2.

(iii) The third phase: isothermal (C→D) process. In this stage of the cycle, we remove the

barrier from the 1-D well isothermally. The execution of this stage is carried out keeping in

mind that the tunneling probability tends to zero, and it remains in equilibrium at temperature

T2.

(iv) The fourth stage: isochoric (D→A) process. During this last phase of the cycle,

isochoric heat absorption is observed when the working medium is connected back to the

bath at a temperature T1. The schematic representation of the cycle is shown in Fig. (2.5).

2.8.1 Otto cycle with harmonic oscillator

We will briefly describe the quantum Otto engine proposed by Kieu [201]. It is also explored

with different mediums [61, 144]. For our analysis, we have adopted a quantum system,

namely, harmonic oscillator as the working substance for the engine cycle. The adiabatic

increase and decrease in the quantum realm are controlled by the change in the energy levels

which occurs due to the change in the frequency of the oscillator. The isochoric process in the

quantum version is represented by the thermalization processes, during which it exchanges

heat with the bath. Work is done during the adiabatic process of the cycle. The change in the

mean energies guides us to calculate the work and heat for the cycle, where mean energy for

the system is represented by the state ρ and the Hamiltonian H. It is defined as Tr[ρH]. his

is the general representation of the Otto cycle with harmonic oscillator [202] as the working

medium. The pictorial representation of the whole process is described in Fig. 2.6.



2.8 Stirling cycle with potential well 41

Tc T h

(1)

(2)

(3)

(4)

�1 �1

�2 �2

Figure 2.6. (Color online) The schematic representation of a quantum Otto cycle is shown. The
working substance of the cycle is a coupled harmonic oscillator. The first stage and the third
stage of the cycle are the thermalization processes, and the second phase and the fourth phase
corresponds to the adiabatic processes.

2.8.2 Stirling cycle with harmonic oscillator

We will analyze the Stirling cycle with coupled HO as the working substance. The isochoric

process in the quantum version is represented by the thermalization processes during which

it exchanges heat with the bath. The isothermal expansion and compression in the quantum

realm are controlled by the change in the energy levels due to the variation in the frequency

of the oscillators. The Stirling cycle is a quantum regime with coupled HO as the working

substance is depicted in Fig. (2.7). The four stages of the quantum Stirling cycle are

This is the generic representation of the Stirling engine with a harmonic oscillator as

the working medium. The detailed analysis of the engine with the different Hamiltonian

structures of our work is described later.
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Figure 2.7. Schematic representation of the Stirling cycle in quantum realm with harmonic os-
cillator as the working substance. ζ represents the coupling strength of the coupled harmonic
oscillator.
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3.7.3 Thermodynamics of algorithm 88

The contents in this chapter are based on the review article in Ref. [203].

From Landauer’s principle, we know that when a bit of information is written on a mem-

ory device the entropy of the system decreases by kBT ln(2), so at least the same amount of

work has to be done. In the works [24, 204], they have stated that we can have systems that

are able to compute with no lower bound with respect to the thermodynamic cost. With the

theoretical advancement of stochastic thermodynamics [205] and information thermodynam-

ics [206], a better understanding of the physical foundation of the information processing is

possible. Though these frameworks are concentrated on proto-computation [207–210], few

attempts are taken to apply information thermodynamics to computer science. However, the

works [211, 212], suggest that one can consider the fundamental limit to the thermodynam-

ics cost of computation while analyzing the system in the quasi-static limit. One can also

describe the thermodynamic cost for a computation process as a sum of the energy that is

required to provide an extra bit in the due course of the computation process, plus the en-

ergy required to destroy [24] the generated garbage bits. This part of the computation is

non-reversible, and so according to Landauer’s principle, this part of the computation pro-

cess dissipates heat. The “Fundamental Theorem" [213] provides the upper and the lower

bounds over the thermodynamic cost of the computation process. It is also stated that a slow

computational process releases less amount of energy [24]. In the article [214], they have

provided proof of the existence of this statement mathematically, that with the increase of the

time of computation, there exists a time-energy trade-of hierarchy for diminishing the energy

cost of the process. From real-life examples, we know that garbage needs to be compressed

and this needs time. Along with the increase of interest to investigate the connection of

thermodynamics with computation, connection with information-theoretic notions can gain

importance. Now, information theory is treated as a physical science, and the bridge be-

tween information theory and thermodynamics provides a trade route between them. The

investigation to connect thermodynamics with information theory is highly pursued.

We are going to first revisit the basics of computation and information theory in this

chapter. Then we will study some alternative models of computation that are thermodynamic

cost-friendly. Along with that, we will visualize the effect of thermodynamics in various

computation models, information theory, and its contribution to the algorithmic study.
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Now let us first define some mathematical variables that we will be considered throughout

this chapter. For any defined set S, the collections of the set of all finite strings of the elements

from S is denoted by S?. In computer, we use S = {0,1}. Here S? denotes the set of all binary

strings.

For the analysis, we are going to consider the output 1 as Boolean ‘TRUE’ and consider

the 0 output as ‘FALSE’. For any Boolean function g(a) the indicator function is expressed

as:

I(g) =

 1, g(a) = 1,

0, otherwise.
(3.0.1)

We will denote the length of a finite stringM as l(M). The concatenation of two stringsM

andM′ is defined asMM′. For ceiling operators, we will use d•e, and for flooring operators

b•c wherever required.

In probability theory, the random variables are described by upper case letters, and the

instances of these random variables are expressed by the lower case letters. Given a set A,

the distribution over this set can be expressed as p(a). Now, there exists any A′ ⊆ A for which

we can write p(A′) =
∑

a∈A′ p(a). For a distribution p over a set A the conditional distribution

π(y|a) is defined as:

(πp)y :=
∑
a∈A

π(y|a) p(a), (3.0.2)

where πp is the distribution over Y .

3.1 Basic Aspects of Computation Theory

Theoretical computer science covers different areas starting from the algorithm, data struc-

ture, computation to computational number theory. In this section, we are going to study

about two of the basic computation aspects of computer science. In the further section, we

will see the impact of thermodynamics on these aspects. From a computational perspective,

the system is defined in this form to describe that it is one of the members of the Chomsky

hierarchy [215].

3.1.1 Finite Automata

The formal definition of the finite automaton is as follows

Definition 1. A finite automaton is a 5-tuple M = (Q, Σ, δ, q, F), where,
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• Q represents a finite set of states.

• Σ also represents a finite set of symbols called the alphabet.

• δ : Q×Σ → Q represents the transition function where δ(q,a) = q′. Here q′ describes

the next state.

• q ∈ Q. It represents the start state.

• F ⊆ Q describes the set of final accepting states.

One can infer from the definition that, the transition function denoted by δ represents the

program of the finite automaton M = (Q, Σ, δ, q, F). The input words accepted by the au-

tomaton specifies a language that is described as a regular language, i.e., any finite language

(words of finite length) can be called a regular language. So, we can conclude that a finite

automaton has the power to compute input words of arbitrary length.

q0 q1 q2 q3 q4 q5
5 5 5 5 5

25

25
25

25

25

10101010

10

Figure 3.1. Transition diagram of the system.

We will first consider an example of an automaton that appears naturally. Let us consider

a toll gate. Now, we will design a computer that will control this toll gate. The gate from

the toll pass remains closed until the vehicle pays the required amount. For example, we

consider that when the driver pays 25 bucks the toll gate opens, and the driver is allowed to

go. We assume that there exist only three sets of coins: 5, 10, and 25 bucks. Whenever a

driver appears at the toll gate, he will insert coins into the machine. So, the machine decides

whether it will open the gate or not, in other words, whether the driver has fulfilled the

payment of the required amount (i.e., 25 bucks or more). The machine can be in any of the

six states based on which it will decide whether it will open the gate or not. The six states of

the machine during the execution of the process are:

• If the machine does not collect any money, the machine state is described by q0.
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• When the machine receives 5 bucks, the machine moves to the state q1.

• Now, when it gets 10 bucks, the state of the machine is q2.

• When it has 15 bucks, the state is q3.

• When it has 20 bucks, the state is q4.

• When it has 25 bucks, the state is q5.

Now, let us consider a situation where a vehicle comes to the toll gate, then the machine

will be at its initial state. Now the driver inserts 25 bucks in the sequence (5, 5, 10, 5). The

state of the machines evolves through the process as follows:

• After the driver inserts 5 bucks to the machine, the machine evolves from the state q0

to q1.

• Similarly, the driver inserts the next 5 bucks to the machine, the machine now moves

from the state q1 to the state q2.

• After that the driver inserts 10 bucks, the machine jumps by two steps and moves to

the state q4 from state q2.

• Finally, the driver inserts its last 5 bucks, the machine moves to its final state q5. The

toll gate opens up. We assume that the driver provides that exact amount else the

machine responds abort and restart the process.

The state diagram with all the combinations is shown in Fig. 3.1. Here, the state q5 is

depicted by two circles. The two circle state represents the final state of the system (or the

halt state). Now, if the machine reaches this state, the gate will open otherwise the gate

remains closed. In this case, one can observe that the machine only has to remember the

state where it belongs at any instant of time.

Finite automata have a great impact in different fields of studies which include computer

science, biology, mathematics, logic, linguistics, engineering, and even in philosophy. Finite

automaton has a wide scale of applications in computer science like designing hardware,

designing compilers, network protocols, and in computation.

Finite automata have different forms like deterministic and stochastic (alternatively called

“probabilistic automaton") finite automaton. In the stochastic automaton, the single-valued

transition function δ will be replaced by a conditional distribution. One can observe multiple
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accepted states which are described in the literature as ‘terminal states’ for the system. Even

one can encounter multiple start states in the process.

3.1.2 Turing Machine

Alan Turing in his seminal work [216], first coined the term Turing Machine (TM). He

conveyed that it is an abstract computation device, which will help to investigate the extent

and as well the limitation of what we can compute. It was devised mainly for the computation

of real numbers. So, the renowned form of the computational machine studied in computer

science is Turing machines [215, 217]. It is generally conveyed in the literature that one

can model every computational machine using a universal Turing machine [218]. Church-

Turing thesis [219] conveys the statement a bit formally, it states that “A function on the

natural numbers is computable by a human being following an algorithm, ignoring resource

limitations, if and only if it is computable by a Turing machine." It was further modified in

the ‘ Physical Church-Turing thesis’, where it has been conveyed that the set of functions

which one can compute by utilizing the mechanical algorithmic method, which abides by

the laws of physics [220–224], are also computable with the help of Turing machine.

Various forms of definitions of the Turing machine exist in the literature which is com-

putationally equivalent to each other. As the various definition are equivalent to each other,

computation done in one type of Turing machine can be executed equivalently in other forms

of the Turing machine. The formal definition of the Turing machine is

Definition 2. A Turing machine is defined by 7-tuple (Q, Λ, Γ, δ, q0, qa, qr), where

• Q is a finite set which describes the set of states.

• Λ is also a finite set that depicts the input alphabets.

• Γ ⊃ Λ represents a finite set of tape alphabet.

• δ : Q×Γ → Q×Γ×{L,R,S } is called the transition function.

• q0 represents the start state of the Turing machine.

• qa is called the accepted state or in other words, halting state.

• qr is called the rejected state.

Here, {L,R,S } describes the direction of the movement of the head of the tape. Based on

the command, the head moves left, right, or stays in that same position of the tape. In other
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equivalent computational definitions of the Turing machine, one can encounter multiple sets

of accepting states, in other words, halting states.

Tape

q

a

Tape
Head

Figure 3.2. A schematic of TM. The tape of a TM is an infinite tape whose state is specified by
q. The infinite tape is divided into equidistance square boxes filled with tape alphabets. The TM
will scan the tape with its tape head. The tape head has access to move to the left or right of the
tape.

At each step of the computation, the state of the TM reads the alphabet in the square

where the tape head is placed, and subsequently move on to a new state q′. It writes a new

alphabet (a′) on the tape, and then it moves its tape head either to the left or to the right.

This process is repeated until the system attains the accepted state. Mathematically this map

can be expressed as δ(q,a) = (q′,a′,d), where d denotes the right or left movement of the

tape head. For a given TM, the arguments of the transition states are called “instantaneous

description" (IDs) of the TM. One can also sometimes encounter TM’s with no halts.

A function f is called recursive, if there exist a TM with input alphabets x where x ∈ Γ?,

for which the TM computes f (x). Similarly, the function f is a partial recursive function,

if we are able to compute f (x) using a TM, where x is input alphabets of the TM. Turing

has conveyed in his work that all functions are not recursive, which remains a fundamental

limitation.

Turing machine has a great impact on the analysis of computational complexity [215,

225]. One of the profound open problems in mathematics that remains a concern for the

exploration of the Turing machine is whether P = NP [226]. The limitations of mathematics,

like Gödel’s incompleteness theorem [227], have a deep intimacy with the computational

device theory of the Turing machine, and even in some parts of philosophy as well [228].

As all devices are physical, it has been argued in some works [229, 230] that one might

bring some restriction to the foundation of physics by utilizing some properties of Turing

machines.
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It is a well-known fact that there exist many variants of TM like multitape, both way

tape etc. Here, we have described the formal definition for a single tape. One of the popular

variants of TM is the multiple tapes, where one of these tapes contains the input of the

computational model, and one of them contains the output of the TM when it reaches its

halting state. Other intermediate tapes in the multiple tape TM are called the ‘work tapes’

that are used as scratch pads. It is a complicated variant than that of the single tape. It is

used in the literature as it is easy to prove theorems than single tape TMs. The computational

power for all of these variants is equivalent. The interesting fact about these two variants is

that one can convert a multiple tape TM into a single tape TM and similarly a single tape TM

into a multiple one [218, 231, 232]. One of the variants of TM is the universal TM, which

has the computational power to compute any other TM. In general, it is considered that TM

is a formal structure of algorithm whereas a universal Turing machine (UTM) (which takes

other TM’s as input) is a formal structure of a computer.

3.2 Basics Aspects of Information Theory

In this section, we will discuss some basics concepts of information theory that are required

for our analysis, and then we move on to discuss the error correction theory for the classical

system as well as the quantum system. Thermodynamics has an impact on various aspects

of quantum information theory. Here we are concerned about the error correction as it has a

great impact on computational as well as communication aspects.

3.2.1 Notion on Information Theory

Here, we will guide ourselves through some of the basic aspects of information theory. The

Shannon entropy over a set T is defined as:

S (T ) = −
∑
t∈T

p(t) logb p(t),

where, for the cases when b = e (nats) it will be generally conveyed as ln throughout the

article. Here, p(t) is the probability of the event t. For other conditions like b = 2 (bits) and

so on it will specifically be mentioned in the analysis.

Using the above definition, we can describe the conditional entropy of a random variable

Xr, which is conditioned on another random variable Zr. The mathematical representation of
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conditional entropy is

S (Xr|Zr) =
∑
z∈Zr

p(z) S (Xr|z)

=
∑

z∈Zr, x∈X

p(z) p(x|z) ln p(x|z).

Similarly, one can define the mutual information for two random variables Xr and Zr as:

Ip(Xr;Zr) = S (Xr) + S (Zr)−S (Xr,Zr)

= S (Xr)− S (Xr|Zr).

We have described some of the basics definitions of information theory. Readers who are

interested to have a deep understanding of information theory (both in classical and quantum

systems) can go through the referred books [233–237].

3.2.2 Classical Error Correction

In a communication process, the data is transmitted from the sender to the receiver end

through a channel that is prone to noise, i.e., it is transmitted through a noisy channel. The

data string is a sequence of 0’s and 1’s. The string to be communicated is encoded with an

additional number of bits (redundant bits). On the receiver’s end, the receivers reconstruct

the actual message by decoding and examining the corrupted message. This reconstruction

process is conveyed as decoding.

In the late ’40s of the 20th century, the seminal work of Shannon [238] leads to the

foundation of this field and extended by Hamming in his work [239]. Since then, this field

has gained importance for developing better communication. The extent to which error cor-

rection of the missing bits is possible depends on the design of the error-correcting code.

Generally, there exists two types of error-correcting codes, they are block code and convo-

lutional code. We will be mainly focusing on the linear code of the block code. There are

other models of error correction codes that are not covered here, interested readers can go

through [240, 241] for further information.

The formal definition of the error correcting code is defined as:

Definition 3. The error correcting code can be defined as an injecting map form n symbols

(messages bits) to m symbols:

Enc : Λn→ Λm,
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where Λ represents the set of symbols.

• We define a variable a which describes the cardinality of our alphabet set (a = |Λ|). For

binary code system a = 2.

• The domain of the set, i.e., Λn represents the message space, and Λm represents the

message that will be transmitted from the channel. Here n denotes the message length.

• Block length: Block length is denoted by m, it describes the message which is mapped

to m-bit strings.

• Code: The message to be transmitted will be encoded with a codeword. This codeword

is called the code. In general , m ≥ n.

• Rate: It is defined as the ratio of n over m. it describes the efficiency of the protocol.

Now we move on to analyze the linear code protocol. A linear code is a type of error

correction code, where the linear combination of codewords also represents a codeword.

The channel through which we will communicate is a binary channel, generally known as a

binary symmetric channel. In this type of noisy channel, the bit gets affected independently.

The symmetric nature of the channels conveys that the channels cause error 0→ 1 and 1→ 0

with equal probability. Let us consider a message of n symbols as u = u1u2 . . .un which are

encoded into a codeword x = x1x2 . . . xm. Here, the first part of the codeword is the original

message (i.e. x1→m = u1u2 . . .un) to be transmitted and the remaining are the check symbols

(i.e. xn+1 . . . xm) which satisfies the condition:

Hp x = 0,

where the matrix Hp ((m−n)×m) is called the parity check matrix for the code [242].

This codeword is now transmitted through the noisy channel. The receiver at the re-

ceiver’s end, receives a different message say y = y1y2 . . .ym which is quite different from x.

Let us denote the error in the message as e = y− x = e1e2 . . .em. Here, e j = 0 with probability

1− p, will depict that the j symbols in the message is correct whereas, e j = 1 with probabil-

ity p conveys that the j symbol is incorrect. So in the decoding process, the receiver has to

identify the message u from the received message y, which actually boils down to identify

the error vector e. The decoder will try to choose the most likely error vector so that it can

reduce the probability of making a mistake in decoding the correct message. This is gener-
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ally defined as maximum likelihood decoding. The whole communication process is shown

in Fig 3.3.

UserDecoder

Channel

EncoderSource
u

Message x
Codeword

e
Error Vector

y 
Received message Estimated

message

Figure 3.3. A schematic representation of the whole process in a communication system is de-
picted here. The channel is the communication medium through which the message is transmitted
from the source to the receiver end.

So let us analyze how the decoder chooses the most likely error vector when it receives

the message. Before we proceed, we will discuss two important definitions.

Definition 4. Hamming distance: The hamming distance between two given vectors

x = x1x2 . . . xm and y = y1y2 . . .ym is described by number of positions the corresponding

vectors differs. It is mathematically denoted by:

Dis(x,y) = |k : yk , xk|.

Definition 5. Hamming weight: The hamming weight is defined as the number of non-

zero x j in a vector x. It is denoted by wt(x).

From the above two definitions, we can infer that Dis(x,y) = wt(y− x). Based on the

above-given definitions, we will formalize a parameter. The parameter is called the minimum

hamming distance of a code, which is defined as Dismin = min {Dis(x,y)} = min {wt(x− y)},

where x and y vary across all codewords. So the strategy of the decoder is to take that error

e, which will have the least weight. This process is called nearest neighbor decoding. The

decoder will compare the message y with all the possible combinations of the codewords,

and then select the closest one. This brute force process is fine for small n. If n is very large

this process becomes tedious, and coding theory aims to develop new schemes to decode

these messages faster.

A linear code is generally called a [m,n,d] code, where m describes the length of the

codeword, n denotes the length of the message string, and d describes the minimum hamming

distance.
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3.2.3 Quantum Error Correction

Here in this section, we will discuss error correction in the quantum regime. Classical er-

ror correction is a well-developed theory based on the demand for better communication

systems. One-to-one mapping from classical to quantum error correction is not possible

as the quantum world has some constraints of its own. Qubit (quantum bits) are bounded

by the no-cloning principle, which states that in quantum information theory one cannot

copy a state which is possible in the case of classical information theory. Another aspect

that we encounter in the quantum regime is that the wavefunction collapses when a mea-

surement is performed over the state. These constraints were the reasons which make the

quantum world unique over the classical, and these pose a challenge to the feasibility of

quantum computing. It was the seminal work of Peter Shor [243], where they proposed the

first quantum error correction protocol. Shor in his work has demonstrated that quantum

information can be encoded by exploiting the idea of entanglement of qubits. Works in this

direction [244–247], have demonstrated that one can suppress the error rate in the quantum

regime provided the qubits met some physical conditions. Interested readers can go through

the reviews [248–251] in this direction which covers quantum error correction and its sub-

fields. In this article, we will describe the basic intuition of quantum error correction that we

will explore in the latter half from a thermodynamics point of view.

Quantum errors in digitalize form

In the classical world, the units of information are bits, which belong to set S whereas, in

the case of quantum the units of information are the qubits. The general definition of a qubit

state is

|ψ〉 = α|0〉+β|1〉, (3.2.1)

where α and β represents complex number satisfying the condition |α|2 + |β|2 = 1. So, a qubit

has the power to encode in the superposition of the computational basis states which are

denoted by |0〉 and |1〉. The only error that is possible in the classical regime is the bit flip,

i.e., 0→ 1 or viz versa. In the quantum realm, the qubit state is continuous in nature. So,

this property of the qubits is the main challenge in developing the error correction code in

the quantum world. The qubits are subjected to an infinite number of errors.

To get a clear idea about the errors let us describe the qubit state defined in Eq. (3.2.1)
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as:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (3.2.2)

This is the geometric representation of the qubits. The condition of the probability amplitude

is maintained as defined. The qubit state in Eq. (3.2.2) is described by a point in the Bloch

sphere.

There can be errors due to a variety of physical processes. The rotation of the qubit from

one point to another in a Bloch sphere will cause an error. Mathematically one can denote

this type of error by a unitary operator U(∆θ,∆φ) which will evolve the qubit state expressed

in Eq. (3.2.2) to

U(∆θ,∆φ) |ψ〉 = cos
θ+∆θ

2
|0〉+ ei(φ+∆φ) sin

θ+∆θ

2
|1〉. (3.2.3)

The error that is caused by the rotation of the qubits shows that it is continuous in its

nature. But we are quite lucky that we can digitalize this error with the help of the Pauli

operators (i.e. Pauli matrices). The rotation process described in Eq. (3.2.3) can be described

in terms of the Pauli matrices as:

U(∆θ,∆φ) |ψ〉 = a0σ0 |ψ〉+ a1σ1 |ψ〉+ a2σ2 |ψ〉+ a3σ3 |ψ〉, (3.2.4)

where ai (i = 0,1,2,3) represents the coefficients, and σi (i = 0,1,2,3) the respective Pauli

operators. So, any error due to this rotation of the qubit can be described by the Pauli

operators [I,σx,σy(σxσz),σz]. The error correction code, which will have the computational

power to correct the error caused by the Pauli matrices will make the message flawless.

This procedure causes the digitalization of the error, which will have a great impact on the

quantum error correction code.

Types of Quantum error

The error counts in the quantum realm boil down to two fundamental errors due to the

digitization of the errors. The quantum code has to encounter these two types of errors. One

is the X-type error (X describes the Pauli matrix σx), and the other is the Zpau-type error

(Zpau describes the Pauli matrix σz). The X-type error is a bit flip error, which is similar to

the classical errors where the state |0〉 → |1〉 when operated by the Pauli X operator and viz

versa.
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The other error, i.e., Zpau-type error, causes a phase flip of the qubits. There is no classical

counterpart of this type of error. Phase flip of the qubit state is described as Zpau|0〉 = |0〉 and

Zpau|1〉 = −|1〉.

Though the digitalization of the errors has reduced the error counts, but we still have

some challenges in the quantum world which are unique and have no classical analog. One

of this challenge is that we cannot clone (xerox) a quantum state, i.e., we cannot construct a

universal unitary operator (universal xerox machine) Uc, which can xerox or copy a state as:

Uc|ψ〉 |0〉 = |ψ〉 |ψ〉.

Whereas, in the classical realm one has the power to copy a state as required.

The second challenge is that the message to be transmitted from quantum channels is

exposed to both bit-flip and phase-flip error simultaneously. So the quantum error correction

code should be able to detect both these errors simultaneously. Along with these challenges,

one has to keep in mind that in the quantum world measurement of a state causes wavefunc-

tion collapse, which we have no counterpart in classical theory. In classical systems, one has

access to measure arbitrary properties without compromising information loss.

Stabilizer Code

In this section, we will study how to create a [[m,n,d]] stabilizer code. Here m represents

the total count of qubits, the count of the logical qubits is given by n, and d describes the

code distance. The stabilizer represents an abelian subgroup of the m-fold Pauli group and

it encodes n logical qubits into m physical qubits. We have represented the notation of the

quantum codes in double brackets to differentiate it from the classical code, which is shown

by a single bracket.

The structure of an [[m,n,d]] stabilizer code is depicted in Fig. 3.4. From the Fig. 3.4,

we can infer that n qubits |ψ〉M are entangled with m−n qubits |0〉m−n by an encoding opera-

tion.The output state after this process is |ψ〉Out. So the data that was confined in |ψ〉M is now

distributed in the expanded Hilbert space. To detect the error that occurs during the commu-

nication, (m− n) stabilizer measurements are performed. For every stabilizer P j shown in

Fig. 3.4, the syndrome extraction process is described as:

|Ψ〉 |0〉m−n
syndrome extraction
−−−−−−−−−−−−−−−→

1
2

(1⊗n + P j)|Ψ〉|0〉A j
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Figure 3.4. A schematic representation of the circuital analysis of [[m,n,d]] stabilizer code is
depicted here. |ψ〉M represents the message, and |0〉m−n represents the ancilla qubits. H is the
Hadamard operator, and MA denotes the measurement.

+
1
2

(1⊗n−P j)|Ψ〉|1〉A j ,

where |Ψ〉 = E|ψ〉M. The commutation relation of the stabilizer P j with the error E provides

the measurement outcomes. If P j commutes with E the ancilla returns “0”, whereas when

it anti-commutes, we get “1” as the measurement outcome. The fabrication of a good code

boils down to the fact that we have to find stabilizers that anti-commutes with the errors.

Error correction with Stabilizer code

So we are left with the process of decoding the message. The process is to find the best

fitted unitary operation K, which would return the state to the codespace. The process of

decoding the message will be successful if the action of the error E, and K on the codes state

return the exact state, i.e., KE|ψ〉out = (+1)|ψ〉out, and fails if it returns KE|ψ〉out = S a|ψ〉out,

where S a represents a logical operator.

3.3 Alternative Computation Model

The computational models that are being explored in section 3.1 are not thermodynami-

cally efficient ones. In this section, we are going to analyze some alternative computational

systems which are thermodynamically more efficient, i.e., the thermodynamic cost for the
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computation is quite less due to its reversible nature. We will first discuss about the Ballistic

computer, which was proposed by Fredkin and Toffoli [32], and then describe its limita-

tion. Followed by that, we will analyze the Brownian computer which utilizes the thermal

fluctuation to perform a computational process.

For the analysis of the ballistic and Brownian computer, the programming style requires

a change in its form to irreversible operation from reversible one. The erasure principle

of overwriting of data by other data cannot be addressed for these models. Ballistic com-

puter fails totally to operate with irreversible operations but the Brownian computers have

the power to tolerate a small amount of irreversibility in the logical operation. But it fails

miserably for a large number of irreversible operations.

3.3.1 Ballistic Computer

The simple basic idea, that an idealized machine has the power to compute without dis-

sipating any amount of kinetic energy forms the principle of the “ballistic" computation

model [32]. This model consists of a hard-sphere that collides between themselves and with

a fixed reflective barrier. In the input side of this computer model, we have a “starting line"

from which a huge number of hard spheres are fired with equal velocity. We will be consid-

ering a ball in the starting line if we encounter a ‘1’ in the input, and in the cases where we

will get ‘0’, there will be no ball in the starting line. The computer has some mirrors inside

it with which it collides. Due to this collision process, the ball changes its direction and col-

lides with the other balls. All the collision processes are considered to be elastic in nature,

and between the collisions, the ball moves in a straight-line path with a constant velocity.

The balls after a finite number of collisions reach to its finishing point. This signifies the out-

put of the computer. The presence of a ball in the output line is considered as 1 in the output,

and the absence of it as 0. The mirror of this computer is equivalent to the logic gates of our

digital computers, and the balls are equivalent to the signals. The pictorial representation of

this computer is shown in Fig. 3.5.

We can infer that this computer is unable to compute non-conservative Boolean func-

tions. It has the power to implement functions whose output has an equal number of ones

as in input, and it can implement bijective functions. But Toffoli has shown that one can

transform any Boolean function into a conservative, bijective function. So, this model has

the power to compute all functions. Though it conveys to decrease the amount of cost in

energy, we encounter some drawbacks of this setup. Two main drawbacks of this system are
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Figure 3.5. A schematic representation of a Ballistic computer proposed by Toffoli is depicted.
The condition of having the same number of 1’s in the input and the output should be satisfied,
i.e., the boolean function should be conservative and reversible in nature.

its sensitivity to small perturbative change, and the second one is related to the collision of

the balls. It is quite difficult to make each collision elastic. A small error in the positions and

velocities gets amplified after each collision by a factor of 2, so the trajectory of the balls

becomes unpredictable after a few numbers of collisions. The stronger the noise source the

sooner the trajectory is spoiled. To get better performance we have to eliminate these noises.

One of the ways to overcome this collision problem is to correct the instability in the

velocity and position of the ball after the execution of each collision process. Though this

provides a solution but it makes the system thermodynamically irreversible one, but due to

its low energy cost it has some practical importance. To culminate the effect of noise one can

think of considering square balls instead of using spherical. It culminates the exponential

growth of the errors as the balls are always parallel to the wall and to each other. Although it

seems possible but it is quite unnatural as there is no proof of the existence of square atoms



60 Background on Thermodynamics of Computation and Information Theory

in nature. Quantum effects can stabilize the system from noise, but they will bring some new

instability. The wave-packet spreading causes instability in the system in the quantum realm.

Benioff [252] in his work has discussed about a quantum version of the ballistic computer,

where he has proposed a way to culminate the effect of the noise due to the wave packet

spreading by utilizing time-independent Hamiltonian.

3.3.2 Brownian computer

We can infer from the previous section that thermal randomization is inevitable, so it is

unavoidable and one can exploit this. Brownian computers [24] are such a model that

exploits these properties for computation. In this model, the trajectory of the dynamical part

of the system is influenced by thermal randomization in such a way that it attains Maxwell

velocity. The trajectory becomes equivalent to a random walk. Despite of the chaotic nature,

the Brownian computer is able to execute useful computations. The high potential barriers

prevent the trajectory to escape from the system. So, within these confined walls created

by the potential barriers, the system performs a random walk in the forward direction of the

computation.

The state transition for the Brownian computer happens due to the random thermal move-

ment of the part which carries the information with it. Due to its random nature, the tran-

sition can backtrace (move backward) in the computational process, undoing the transition

executed recently. In the macro regime, the execution of computation using a Brownian

computer seems counter-intuitive, but this is an obvious situation in the micro regime. In

the case of chemical reactions, we encounter such things where the Brownian motion of the

particle of the reactants orients the reactants as required for the execution of the reaction.

This is equivalent to the transition state for the computational process.

Bennett has shown that one can execute a Turing machine using this thermal randomness.

It is made up of clockwork which is frictionless, and rigid in form. The parts of the clockwork

Turing machine should be interlocked so that they have the freedom to jiggle around locally,

but restricted from moving an appreciable amount for the execution of a logical transition. In

computational complexity, Reif [253] considered a similar model to analyze P = PSPACE.

In Fig. 3.6, the framework of the Brownian Turing machine has been depicted. The head

of the Turing machine is scanning the square b of the tape. In this configuration, each tape

is interlocked with some E-shaped bit storage device denoted by (e) in the figure. If it is

placed up, then it represents 1, if down then 0. The device which is shown in the figure as
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Fig. 7. Brownian Turing machine made of rigid, frictionless, loosely fitting clockwork. This 
figure shows the Turing machine tape (a,b,c) and the read-write-shif t  equipment. The 
machine is scanning square b. Each tape square has a disk (d) which interlocks with several 
E-shaped bit-storage blocks (e), holding them in the up (1) or down (0) position. A framework 
(f) fits over the scanned tape square, engaging the disks of the two adjacent squares (via their 
grooves g), to keep them from rotating when they are not supposed to. After the bits are read 
(cf. next figure) they must in general be changed. In order to change a bit, its knob (k) is first 
grasped by the manipulator (m), then the notch (n) is rotated into alignment by the screwdriver 
(h) and the bit storage block (e) is slid up or down. The block is then locked into place by 
further rotating the disk, after which the manipulator can safely let go and proceed to grasp the 
next bit's knob. Each tape square has a special knob (q) that is used to help constrain the disks 
on nonscanned tape squares. In principle these might all be constrained by the framework (f), 
but that would require making it infinitely large and aligning it with perfect angular accuracy. 
To avoid this, the framework (f) is used only to constrain the two adjacent tape squares. All the 
remaining tape squares are indirectly constrained by pegs (p) coupled to the special knob (q) of 
an adjacent square. The coupling (a lever arrangement hidden under the disk) is such that, 
when any square's q knob is down, a peg (p) engages the rightmost of two openings (o r) on the 
next tape square to the left, and another peg disengages the leftmost (o 1) of two openings on 
the next tape square to the right. A q knob in the up position does the opposite: it frees the 
tape square to its left and locks the tape square to its fight. To provide an outward-propagating 
chain of constraints on each side of the scanned square, all the q knobs to its right must be up, 
and all the q knobs to its left must be down. The q knob on the scanned square can be in either 
position, but just before a right shift it is lowered, and just before a left shift it is raised. To 
perform the shift, the screwdriver rotates the scanned square's groove (g) into alignment with 
the framework, then the manipulator (m), by grasping some convenient knob, pulls the whole 
head apparatus (including m itself, as well as f, h, and parts not shown) one square to the left 
or right. 

Figure 3.6. Pictorial reprentation of Brownian Turing machine. The symbols (a, b, c) depicts the
Turing machine tape and the read, write and shift equipments is shown in the figure. [Adapted
from Ref. [24]. Copyright 1982, Springer Nature]

(f) restricts the movement of the two adjacent squares of the tape. To change the bits of the

system the knob (k) guides the way to slide the bit storage device (e) up or down with the

help of the manipulator (m). To constrain the disks on the square blocks of the tape that are

not scanned, a special knob (q) is attached to each square of the tape. To execute the shifting

operation in this model the screwdriver of the system allows the knob (g) to get aligned with

the framework (f). Now the manipulator of the framework grasps a knob and moves it to the

right or left of the scanned tape. In this whole set up no springs are allowed so as to prevent

friction in the system. Friction is not allowed in the system as it leads to thermodynamic

dissipation.

In Bennett’s model of Brownian computation, it is considered that each of the compu-

tational states will possess a unique antecedent state. A unique antecedent state is only

possible when the computer executes reversible operations like the NOT gate. So, the an-

tecedent state of the present state with memory 0 is 1, and vice versa. For a computer that

executed irreversible operations, the antecedent state can be 0 or 1 when the memory cells

have 0 value.

To acquire a unique antecedent state for each state of the system, the interlocking of the

device should be executed in such a way that the device has one degree of freedom, i.e., the

computational process of this device meander within this single degree of freedom. This

model has limitations like it requires a configuration space with a huge accessible portion.

Bennett, in his work, has presumed that the driving force to execute the computation re-

quires some energy gradient but, in the work [254], they have shown that one can sufficiently

drive the computation process with the entropic force.
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3.4 Finite state machine: Thermodynamic Interpretation

We are going to explore finite state machine (FSM) from a thermodynamics point of view [255]

in this section. For the analysis, we will consider two processes, which will be the funda-

mental blocks that will guide us to build physical models of FSM. These models help us to

describe FSM from a thermodynamic viewpoint. We will describe these two processes as

N− it setter and N− it flips. These two processes are the generalization of bit-set and bit-flip

operation. Here, we will consider three energy level systems with multiple numbers of states.

The schematic representation of these two processes is shown in Fig. 3.7.
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Figure 3.7. Schematic diagram of the N − it setter and N − it flip is shown in (a) and (b) respec-
tively for N = 4. The label states are depicted by circles, and the dynamic states are described
by squares. The favorable state is shown in brown color. For N − it, setter the final target state is
transferred from high energy level to the lower one whereas, in the case of N − it flip, the reverse
procedure is followed.

We will consider a two level system {c1,c2} to conceive the idea of bit-flip and bit-set.

Let us first explore about the bit-flip process. For this process, we consider the state of the

process is correlated with energy level {−∆En,0}. The system for this model will be kept in

contact with an heat bath at some constant temperature T . The probability that the system

in the state c1 after a long time is p(C1) = e∆En/kT/(1 + e∆En/kT ). For the allowed transitions

between the states of the system, the energy levels are depicted as rc1→c2 and rc2→c1 where
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rc1→c2 = r− and rc2→c1 = r+ initially. According to the proposed postulates in [256], we know

that the system should be balance, i.e., r+/r− = e∆En/kT . To execute the bit-flip operation the

energy level is raised to En1 = ∆En. So the transition states in this condition is rc1→c2 = r+

and rc2→c1 = r−. The work done to execute this whole process is:

〈Wa〉 =
2r+

r+ + r−
ln

(r+

r−
)
, (3.4.1)

and the entropy of the system is

S total =
r+− r−

r+ + r−
ln

(r+

r−
)
. (3.4.2)

Similarly, one can get the Gibbs free energy for the system from the entropy. Whereas, for

the bit-set operation the work done for the execution of the process can be described as

〈Wa〉 = −
1
2

ln
(r+

r−
)
, (3.4.3)

and the entropy of the system is

S total = ln
( r+ + r−

2
√

r+r−

)
. (3.4.4)

Now we will explore the process described as N− it setter and N− it flips from this simple

model analysis. First we will explore N− it setter, then we will move on to explore N− it flips.

Similar to the bit-flip and bit-set operation, here also we will alter the energy levels of the

systems. For this multiple level systems with N + 1 states, the operation is complicated than

that of the bit-flip operations. The multi-level states are denoted as {V0,V1,V2, . . . ,VN} with

energy levels {0,∆En,∆En, . . . ,∆En} at the initial stage. After the execution of the process

the energy level at the final stage is described as {0,∆En,∆En, . . . ,−∆En, . . . ,∆En} for the

states {V0,V1,V2, . . . ,Vi, . . . ,VN}. One can compute the probability of the state Vi for the

initial stage analogous to the bit-flip method as p(Vi) = e−∆En

1+Ne−∆En , and the probability of the

state Vi for the final stage is p(Vi) =
(r+)2

(r+)2+r+r−+(N−1)(r−)2 . So the work done for the execution

of the process is Wa = 2r−
r++Nr− ln

(
r+

r−
)
. Now one can compute the entropy of the system as

S total = 2r−
r++Nr− ln

(
r+

r−
)
+ log

(
1 r+

r− +
r−(N−1)

r+

)
− log

(
1 + Nr−

r+

)
.

We will now explore the second operation, i.e., N − it flip. Similar to the bit-flip and

bit-set operation, here also we will alter the energy levels of the systems. Similarly to the

N − it setter the states are described by {V0,V1,V2, . . . ,VN}. One can compute the probability
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of the state Vi for the initial stage analogous to the N − it setter as p(Vi) = e∆En

e∆En+1+Ne−∆En , and

the probability of the state Vi for the final stage is p(Vi) = r+

r++Nr− . So the work done for the

execution of the process is Wa =
(r+)2

(r+)2+r+r−+(N−1)(r−)2 ln
(

r+

r−
)
. So, one can compute the entropy

of the system as S total =
(r+)2

(r+)2+r+r−+(N−1)(r−)2 ln
(

r+

r−
)
+ log

(
1 + Nr−

r+

)
− log

(
1 r+

r− +
r−(N−1)

r+

)
.

Physical model for FSM

To analyze the thermodynamics of FSM, we have to construct a model for FSM which

is thermodynamically consistent. FSM is equivalent to an inhomogeneous Markov chain,

where the transitions depend on the tape symbol. To design a model for the physical imple-

mentation of FSM, one has to keep in mind about the transition based on the tape symbol.

First, we will consider a Markov chain model Mc, which is nothing but a naive translation of

FSM. But, the naive translation of FSM will not provide a sufficient mechanism to implement

the physical system. The naive transformation is done as follows:

1. The states of Mc are described as ϑi. These are equivalent to the states defined for

FSM.

2. The transition trani j from a state to another state, i.e, from ϑi to some ϑ j conditioned

that it is associated with an input symbol a.

3. When an internal transition takes place, the external tape executes a movement in

the forward direction, and then it takes the machine to the next tape element which has the

symbol a. During this transition, the transition rate ri j = 1 if and only if the machine is in the

tape with some input symbol.

Now, if we try to implement this model, we encounter some difficulties, and we will

need some helper states which are described as dynamic states [257]. The difficulties come

from the transition process. To see this, let us consider a transition from ϑi to ϑ j, where it is

assumed that this transition occurs with a low transition rate r− with an input symbol a. So,

the different transition form ϑi to ϑm is associated with the symbol a. For the execution of

this transition, the state ϑ j should be at a high energy level. Now, it might be possible that

there exists some transition from ϑk , ϑi to ϑ j with a transition rate r+, which demands ϑ j to

be at a lower energy level. Just by adjusting the energy levels, we are not able to tackle this

situation. To overcome this, helper states are required which is described as the ‘dynamic

state’.

For each logical state we will consider n number (n is the number of symbols) of dynamic

states which will keep a track of all transition even the self-transition. The dynamic states
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of the system for a input symbol a is defined as Dsa = {Ds1→1a
a , . . . ,DsM→Ma

a }, where M

denotes the number of internal states. Similarly, the dynamic states for the system correlated

with the label states ϑi is Dsi = {Ds1→1(a)
a ,Ds1→1(b)

b , . . . }. The changes in the modified form

of the Markov model from the pre-defined form is

1. Now for every label state, we have n number of dynamic states with tape symbols.

2. All the forms of transition are taken into account by these dynamic sets of states.

The schematic of an FSM model using the Markov model is shown in Fig. 3.8.
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Figure 3.8. A state diagram of an FSM with three states where the accepting state is represented
by ϑ3 is shown in (a). The details to develop a state diagram for a computational process have been
described in detail with an example while we were exploring finite automata in the section 3.1.
The transition diagram of the Markov model designed for the same FSM is shown in (b). The
dynamic states are described by the square blocks and the label state by the circles. The direction
of the computation is shown by the arrows.

Now we will use this proposed Markov model to simulate any FSM. To do that one has

to consider three energy levels {0,±∆En}, where the label states are at 0 energy level and the

dynamic states at ±∆En. The schematic representation of the cycle to execute an FSM is
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shown in Fig. 3.9. This protocol will be analyzed for an FSM. The protocol is independent

of the prior knowledge of the states. We will now describe the protocol step by step.
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Stage 3
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Figure 3.9. A schematic representation of the cyclic process for the computation is shown. The
bluish circle and the squares describe the label states and dynamic states. The input tape is marked
with brown color having the current symbol and also the current state is highlighted by brown
color.

We consider an arbitrary stage for the beginning stage of the cycle of operation, where

the label states ϑi have energy 0. The corresponding dynamic state Dsi→i(a)
a of the system for

the specific label state ϑi have energy Enr = −∆En, and the other dynamic state for symbol

other than a have energy Enr = ∆En. We may visualize errors in the computation as one will

find the machine in different initial states. Now we will describe the four stages of the cycle.

Stage 1: In this stage of the cycle, the dynamic states are transmitted to the energy level

∆En. In this stage of the cycle, the bit flip operation is performed. The system in this stage of

the cycle gets relaxed at the label state ϑ j after a certain period of time. Before the transition

of the cycle from stage 1 to stage 2, the system should be provided with some relaxation

time.

Stage 2: In this phase of the cycle, the energy barriers are removed. For the new config-

urations, new energy barriers are created. Such type of energy barriers helps us to reduce the

energetic cost for the system and produce results with less error probability. This also helps

in coarse-graining label states, which are required for the execution of the processes.

Stage 3: In this phase of the cycle, the energy levels of the dynamic states are set based

on the tape symbol of the system. Before the transition of the system to the next phase of
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the cycle, the system is provided some time for relaxation. In this stage of the cycle, we

implement the N − it setter. So the system enters the dynamic state Dsi→i(a)
a for the label

state ϑi with tape symbol a. Here the dynamic states Dsa are transmitted from the higher

energy to the lower energy, whereas the other dynamical states remain at the high energy

level.

Stage 4: In this last phase of the cycle, the energy barrier is again removed and new are

created for the outgoing configuration. So this stage brings back the system to its initial stage

for the further execution of the process.

In this whole computational process, work is done only in two stages of the cycle, stage

1 and stage 3. In stage 1, work is done for raising the energy levels, and in stage 3, work is

extracted for lowering the dynamic state for the execution. So the work done in stage 1 can

be expressed as:

W1 =
2(r+)2

(r+)2 + r+r−+ (N −1)(r−)2 ln
(
r+

r−

)
.

And the work done in stage 3 can be expressed as

W3 = −
2r−

r+ + nr−
ln

(
r+

r−

)
.

So the total work done for the execution of the process is:

Wtotal =

(
2(r+)2

(r+)2 + r+r−+ (N −1)(r−)2 −
2r−

r+ + nr−

)
× ln

(
r+

r−

)
,

= 2ln
(
r+

r−

)
+O

(
r−

r+
ln

(
r+

r−

))
.

For r+ >> r− the results show no dependence on the symbol count and also on the size

of the machine. Along with energy cost for the execution of the cyclic process for the com-

putation, there is also some additional energy cost. Some amount of energy is required to

reset the machine to its initial state. So one can infer the thermodynamic cost is directly

proportional to the number of states of an FSM but has no dependence on the number of

computational steps that are executed in the process.
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3.5 Turing Machine: Thermodynamic Interpretation

In this section, we are going to analyze the thermodynamic cost for the different physical

models that are considered for Turing machines. First, we will discuss about the entropic

one-way-ness which confirms the existence of one-way computation. Secondly, we will

analyze the reversible Turing machine using different physical models and evaluate its ther-

modynamic costs. Stochastic thermodynamic is considered for the analysis of the dynamics

of this model of TM. From the analysis, we will be able to infer that the thermodynamic

complexity is bounded, whereas the Kolmogorov complexity happens to be unbounded.

3.5.1 One-way-ness

For the analysis of one-way-ness in the input machine (Turing machine), we will consider

Bennett’s Turing machine model [204, 258]. A one-way function is easy to compute on the

set of input but it is hard to invert it being provided with the image of the random inputs.

Binary memory and the measuring system are the logical structure of this model, and the

logical states are controlled by the controlled-NOT gate (C-NOT gate).

In Bennett’s algorithm, two non-commutative stages are utilized for the restoration and

measure of the states of the memory. To execute the process, a partition is inserted in the

adiabatic box that divides it into two equal half. It is assumed that no thermodynamic work

is done during this insertion. Due to this insertion, the memory split up into two states.

Before the execution of this process, the memory state is stored in the target bit by applying

the C-NOT gate. Due to the insertion of the partition the logical state of the measuring and

the measured system gets correlated. The pictorial representation of the process is shown in

Fig. 3.10. The operation executed in this process randomizes the memory state.
474 A. de Castro / Physica A 415 (2014) 473–478

Fig. 1. Calculating forward in two non-commutative stages of Bennett’s algorithm of Szilárd’s one-molecule engine, in Ref. [15], Bennett models an
electronic analog of this device in which the position of a diamagnetic molecule in the measured system is detected when it flips the state of a bistable
ferromagnet (measuring system). This reversible Turing machine saves its input, thereby ensuring a global 1:1 relation between the initial and the final
states, even when the function being computed is many-to-one. All of the thermodynamics of the forward calculation can then be summarized in a non-
commutative transition from non-random data to random data and from random data to non-random data again. In this state transition, the correlation
process is represented by the controlled-NOT quantum gate, as shown in the right side. In the first stage, the insertion of the partition, shown in (a→ b),
corresponds to the randomization of the measuring system without an associated thermodynamic cost. In the next stage, an ‘‘erasure’’ of the measuring
system occurs to restore the standard state. The decrease in the entropy in the measuring system provoked by the data erasure generates a minimum
increase in the entropy, equal to kBLog (2) per bit-flipping, in themeasured system. This causes an isothermal expansion in themeasured system, as shown
in (c→ d→ a).

In the last few years, the idea has been widely accepted that the existence of a one-way bijection [1–3] proves that the
complexity-classes P (deterministic polynomial-time) and NP (nondeterministic polynomial-time) are not equal [4,5]. Such
a one-way-ness conjecture arises automatically from the self-referential nature of P = ?NP problem [6], because in the
self-reference paradoxes (see Cantor’s theorem and Russell’s paradox), a one-to-one correspondence does not behave as a
bijection [7,8].

However, while all mathematical efforts to prove the existence of one-way bijections have been doomed to failure, the
assumption has gained particular importance that the complexity-class problems can be linked to physical constraints rather
than purely mathematical limitations [9–11].

Based on this perspective, we present here a new approach that connects one-way permutations to the thermodynamic
bounds of computation. In what follows, it is shown that, although it is well known in cryptosystem theory that one-to-one
correspondences can be mathematically invertible in polynomial-time with a zero-failure probability, a quantum circuit of
logical gates that map its target bit onto itself [12] encounters an entropy constraint to be physically inverted if immersed
in a heat bath (adiabatic).

This paper is organized as follows. First, an overview of the well-known Bennett’s algorithm of the reversible Turing
machine is presented, which is an input-saving machine the transition function of which maps its logic-input state to the
output unchanged [13,14]. Second, I will explore the entropy bounds of a full computational cycle by running (in reverse)
Bennett’s algorithm to prove that the computational path to thermodynamically undo the cycle cannot be performed in
polynomial-time.

2. Theoretical background

Let us distinguish a couple of logical structures in Bennett’s Turing machine, namely, a binary memory and a measured
system, the logical states of which are ruled by a controlled-NOT operator (C-NOT quantum gate), wherein the memory is
the target bit. Such a controlled-NOT operation is conceived to be mathematically embodied in an information heat engine,
the feedback controller of whichmanipulates themeasured system (an adiabatic box) based on its thermal fluctuations into
its logical memory (a heat reservoir) to restore its standard state [13–23].

2.1. One-to-two relation

To measure and restore the standard state of the memory, Bennett’s algorithm, fundamentally, utilizes two non-
commutative stages. Initially, a removable partition is inserted (with no thermodynamic work) into the middle of the
adiabatic box, resulting in the splitting of thememory into a twofold state. Before the insertion, as shown in Fig. 1(a) and (b),
the C-NOT quantum gate operator stores the memory state in the target bit ‘‘0’’ with a probability equal to unity, whereas
the control bit is in a ‘‘0’’ or ‘‘1’’. After the insertion of the partition, as shown in Fig. 1(c), the logical state of the measuring
system becomes perfectly correlated with the logical state of the measured system. This operation does not result in any
heat exchange with the measured system and corresponds to the target bit being flipped whether the control bit is ‘‘1’’ in
the C-NOT quantum gate. In other words, the measurement (acquisition of information from Bennett’s conception) induces
a randomization of the memory state with a bit equally likely to be ‘‘0’’ or ‘‘1’’.

Figure 3.10. A pictorial representation of Bennett’s algorithm for the Szilard one-molecule en-
gine is shown. There exists a one to one correspondence between the initial and the final state for
these reversible Turing machines. The thermodynamic analysis for this model comprises of the
transition that takes place in this cycle where non-random data is changed to the random and vis
versa in the cycle. [Adapted from Ref. [259]. Copyright 2014 Elsevier ]
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Now we are left with the merging of the two states of the system. Due to the merging

of the memory state, we are going to observe certain changes in some of the macroscopic

variables. Thermodynamically this operation is represented by the isothermal expansion of

the system, i.e., the adiabatic box. This is equivalent to the process of compressing the piston

in a Szilard engine model [21]. To execute the merging of the states, the partition is moved

toward the left side of the chamber. Due to this operation, the measured and the measuring

system gets detached from each other. This is represented by the fourth stage of the cycle

shown in Fig. 3.10. The system is reverted back to the initial stage, and the memory is

restored to its initial state. This process is equivalent to the information erasure process. Due

to this erasure, we can infer from Landauer’s principle, that heat will be generated in the

adiabatic chamber. This will cause an increase in the entropy by an amount of ∆S ≥ kB ln (2).

The thermodynamic reversibility is maintained by the equivalent amount of decrease in the

entropy of the random data.

Due to the thermodynamic reversibility of the process, one can reverse and rebuild the

memory. Thermodynamically this operation can be described by the isothermal compression

of the measured state as shown in Fig. 3.11. The process is executed by moving the partition

wall from the left side of the chamber with volume (V ), to the center of the chamber (V
2 )

to distribute it into two equal half. During the execution of the process, heat is extracted,

and it gets converted to thermodynamic work. So in the whole process where erasure and its

reversal process take place, we observe no net entropy change, as shown in Eq. (3.5.1).

∫
V→V

2

kB
dV

V
+

∫
V←V

2

kB
dV

V
= 0. (3.5.1)

where← indicates the change volume of the chamber from V to V
2 , whereas the→ describe

the change of the volume V
2 to V .

The problem that one encounters is the closing of the cycle. An approach to solve this

problem has been proposed in [259]. The approach one can think of is by moving the parti-

tion wall to the extreme right of the chamber as shown in Fig. 3.11(d′′′). The measured and

the measuring system gets detached when the partition is moved to the extreme left of the

chamber. Now we will discuss the method to execute this process.

The change that occurs in the memory state MD can be expressed as:

d
dt

MD = A 〈ς,MD 〉,
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Fig. 2. Calculating backward the global 1:1 relation in two non-commutative stages. Whereas in (a–b–c) the net change in entropy over the course of the
operationmust be zero, the backward cycle is only completed if the entropy decreases in themeasured system. Running forward,Maxwell’s demon trivially
returns the input state with 1S > 0, as shown in Fig. 1. However, running the backward calculation cannot thermodynamically recover the input insofar
as the C-NOT operation in the last branch of the cycle induces a 1S < 0 in the measured system. Because Landauer’s principle prevents a data erasure
occurring at zero thermodynamic cost, as shown in (d′), and because moving the partition toward the far left site corresponds to the forward calculation,
as shown in (d′′), algorithmically, there remains only to move the partition toward the far right site, as shown in (d′′′). However, such a (c → d′′′ → a)
procedure provokes an entropy decrease in the adiabatic box, which implies a time reversal for running the backward cycle. Consequently, a computational
path that undoes the cycle cannot be performed in polynomial-time.

2.2. Two-to-one relation

In the next stage, a logical merging of two states into one should occur while performing a loop closing. If we merge
data from a symmetric double-well memory state, then there must be a change in some other macroscopic variable
of the ensemble. Liouville’s theorem requires that this change be a volume-preserving operation, for which the state
space should remain invariant under the transformation, provided that the region available to the logical degrees of
freedom is reduced by a factor of two and that the region available to the non-information bearing degrees of freedom is
doubled.

The thermodynamics of this logical operation corresponds to an isothermal expansion in the adiabatic box, similar to
compression of a one-molecule gas by a piston in the symmetric Szilárd’s engine, in which the frictionless partition moves
quasi-statically toward the far left side of the box in such a way that the measured system becomes detached from the
measuring systemwhenever the partition reaches the end of the pathway, as shown in Fig. 1(d). At the end of the isothermal
expansion, the computation path is complete, and the memory is restored to its standard state ‘‘0’’ with a probability equal
to unity.

This restore-to-zero operation detaches the symmetric binary memory from the measured system, working in the same
manner as an information erasure. By Landauer’s principle, this erasure is accompanied by heat generation into the adiabatic
box, so that at the end of the full computational path, the net balance of entropy results in a minimal increase of entropy,
1S ≥ kBLog (2), in the measured system, where kB is the Boltzmann constant [12–23]. As a consequence, the entropy
increase of the measured system is compensated by an entropy decrease of the random data, rendering the operation as a
whole thermodynamically reversible.

2.3. Origin of the inverse problem

As the erasure is thermodynamically reversible, one can run it in reverse and rebuild the memory to the two equally
probable states in a one-to-two relation again (as Bennett originally performed in Ref. [13]). The thermodynamics of this
reversal operation corresponds to the isothermal compression in the measured system shown in Fig. 2(a → b → c), in
which the partition slowly slides from the far left side (V ) toward the middle of the box ( V2 ), rebuilding the target state to
either ‘‘0’’ or ‘‘1’’. As a result, the previous amount of heat generated in the measured system returns to the memory, and
the heat extracted in the pathway is once again converted into thermodynamic work [20,23].

In this way, the combination of conducting an erasure followed by its reversal results in no net entropy change, as shown
in Eq. (1). Thereby, the procedure shown in Fig. 1(c→ d→ a), combined with the procedure shown in Fig. 2(a→ b→ c),
is thermodynamically equivalent to the correlation operation shown in Fig. 1(a→ b→ c).

V
2→V

KB
dV
V
+


V
2←V

KB
dV
V
= 0. (1)

Figure 3.11. The reverse cycle for the two non-commutative stages is shown. Three approaches
for the completion of the reverse cycle are considered, out of which one satisfies all the conditions.
The other two processes are discarded as shown by the crossover on the box. The other two
approaches were removing the partition wall without dissipation, and the other approach was to
move the wall towards the extreme left of the chamber. In the adopted approach, the wall is moved
towards the right of the chamber. [Adapted from Ref. [259]. Copyright 2014 Elsevier]

where ς describes the outcome of the measurement, and A represents the matching metric

that describes the correlation between the measuring and the measured system. If A = 1,

then there exists a perfect correlation of the feedback control for Bennett’s Turing machine.

Whether one runs the forward cycle or the reverse cycle the dynamics can be expressed in

terms of the correlation as:

d
dt

MD =

 ςMD , −ve f eedback,

−ςMD , +ve f eedback.
(3.5.2)

So, one can define the erasure in the reverse process from Eq. (3.5.2) as

−ς∆t
∣∣∣∣
+ve f eedback

=

∫ MD b

MD a

=
dMD

MD
= ln

(
1 +

∆MD

MD a

)
,

where MD a, MD b describes the initial and the final state. When ∆MD
MD a

= −1
2 , the informa-

tion that is discarded in the process is ς = ln(2). This occurs when the two logical states

get merged, and prevents the loss of randomness. For the forward direction, the amount is

ς = −ln(2). As the system is immersed in an isothermal heat reservoir, the erasure of in-

formation will have a thermal effect by a factor kBT . So for the reverse cycle, the system

prevents the entropy increase by an amount of ∆S ≤ kB ln(2), where the equality holds for

the perfect correlation. For the forward cycle, we encounter the reverse process where the

system prevents the decrease in the entropy of the system by an amount ∆S ≥ kB ln(2), where

the equality holds for the perfect correlation. So one can infer that the entropic one-way-ness

guarantees the existence of one-way permutation.
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3.5.2 Thermodynamics of reversible TM

Thermodynamically, one can consider a machine to be coupled with a heat reservoir at tem-

perature T and a work reservoir. The primary motivation of the work reservoir is to thrive

the computational process in a definite direction. The Turing machine defined in section 3.1

is irreversible in its form. If in computation, we overwrite the input tape with the output one,

then the computation will be an irreversible one. So to have a reversible TM, it demands two

tape one for the input and the other for the output. In a reversible TM, we will be able to

retrace the computational path and trace it back to the initial state of the TM.

A logically reversible TM for the computational process was proposed by Bennett. In

his work, he have shown that a irreversible TM needs four times less number of steps for

the execution of a computation, than that of the logically reversible TM. Now in a recent

work [212], they have modified the Bennett’s treatment. Bennett in his work considered a

single computation, whereas in this model they develop a TM which has the power to process

a continuous stream of input string like (. . . , a, S ′
inp, a, . . . , a, Sinp, a, . . . ). The input tape is

an infinite tape with input string described by S ′
inp, Sinp. They will be separated from each

other by blank symbols. The blank symbols will denote the beginning and the end of the

input string. Following this, the output string can be described as (. . . , a, S ′
out = U(S ′

out), a,

. . . , a, Sout =U(Sout), a, . . . ), where U : Sinp→Sout. This model is equivalent to the model

studied in other works [85, 260–264], where one manipulates the external tape to extract

work.

The new TM model consists of four tapes, out of which two are the input and the output

tape, and the other two are working tape and history tape. The machine comprises the work-

ing and the history tape, and the other two tapes are provided externally. This model also

consists of a computation cycle. It is a five-stage cycle. The stages of this cycle are described

as follows:

Stage 1: In the first stage of the cycle, the system receives an input. This input is copied

from the input tape to the working tape.

Stage 2: In the second stage of the cycle, the system performs the computation process.

So after the execution of the computation, the working tape has the output data. During the

process, the history tape keeps the track of each step of the computational process to satisfy

the reversibility of the model.

Stage 3: In this phase of the cycle, the output data in the working tape is copied to the

output tape, and the working tape is reset to zero.
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Stage 4: This stage of the cycle is just the reverse of the Stage 2. The reverse computation

is done in this stage of the cycle using the data of the history tape, and then the history tape

is reset.

Stage 5: In the last stage of the cycle, the working tape having the input data is copied

to the input tape, and the working tape is reset to zero. This process completes the computa-

tional cycle.

This TM can be model by a continuous Markov process. The markovian master equation

for this Markov process for the system Y with states Y is:

d
dt

py(t) =
∑
y′

Wy,y′ py′(t),

where Wyy′ represents the rate matrix, and py(t) is the probability to find the system in the

state y ∈ Y. Now for the thermodynamic interpretation of this TM, we will consider that

each state of the system will be associated with an energy Ey. Due to this, an additional

property is attached with the rate matrix, which is defined as ln[Wy,y′ |Wy′,y] = −β(Ey −Ey′)

where β = 1
kBT . So, the markovian master equation [265] gets associated with the reversible

TM by allowing the transition in the computation process for both the forward as well as

the backward direction. In this model, it has been taken care that each state has at most two

adjacent states the predecessor and the successor state. If there exist more branches then the

system will have multiple predecessors and successors, which will cause the computational

process to lose its reversibility. So the final form of the markovian master equation is:

d
dt

pη(t) = −
(
Wη+1,η− cη−1,η

)
pη(t)

+ Wη,η+1 pη+1(t) +Wη,η−1 pη−1(t), (3.5.3)

where η ∈ Z, and Wη,η+1, Wη,η−1 describes the forward and the reverse rate respectively.

The rate matrix W will be decomposed into blocks for each input during the computation

process in stage 2 and stage 4. The transition between the different blocks of the rate matrix

is prohibited during the computation process.

For the thermodynamic analysis of this model, we will couple the system with an energy

landscape, which happens to be linear in its form for the computational path, i.e., the logical

and the successor state are separated from each other by a constant amount εc. Due to this

addition of energy, the forward and the backward transition rate should obey the local detail
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balance. This in turn fixes the temperature for the environment. Now we will move on to the

thermodynamic interpretation of the computation process using this TM model.

We will analyze the thermodynamics of this model at a coarse-grained level, subject to

the condition that the system (computer) was active for quite some time, so that the variance

(〈η2〉− 〈η〉2) is large than unity. The linearity of the energy is necessary as we are interested

in the steady-state regime for the analysis. So the rate of transition for this model can be

described as:

Wη,η+1 = Γae−βεc/2, Wη+1,η = Γaeβεc/2,

where Γa represents the overall time-scale. The Fokker-Planck equation (FPE) using Eq. (3.5.3)

for this model can be expressed as:

1
Γc

∂

∂t
pη(t) =

∂

∂η

(
−2sinh(

βεc

2
) + cosh(

βεc

2
)
∂

∂η

)
pη(t).

The expectation value of the parameter η, which describes the count of the computational

steps, and the speed of the computational process is described as:

〈η〉(t) = 2Γc t sinh
(
βεc

2

)
,

vel ≡
d
dt
〈η〉(t) = 2Γc sinh

(
βεc

2

)
, (3.5.4)

where vel depicts the speed of the computational process. So the variance over the pa-

rameter which counts the number of computational steps can be expressed as:

〈η2〉(t)−〈η〉2(t) = 2Γc t cosh
(
βεc

2

)
.

The entropy cost for the execution of the process for this model which one can describe

by the Shannon entropy is evaluated as:

S (t) = −

∫
dη pη(t) lnpη(t) =

1
2

ln
(
4πΓc t cosh

(
βεc

2

))
.

Using Eq. (3.5.4), we can transform the Shannon entropy in term of the parameter η as:

S (t) = ln
(
2πΓc t cosh

(
βεc

2

)
〈η〉(t)

)
.

So the entropy production rate, which in other terms is described as the rate of change of
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the Shannon entropy for the computational process can be expressed as:

Ṡ (t) =
d
dt

S (t) +βεc vel,

=
1
2t

+ 2Γc βεc sinh
(
βεc

2

)
≥ 0. (3.5.5)

Therefore the defined model works in a thermodynamically reversible manner without

any dissipation. The rate of entropy production becomes small for the condition where η→ 0

doesn’t imply, and the overall production rate of the entropy throughout the process will be

zero. This model also satisfies Norton’s notion regarding this matter [254, 266].

We will now explore a very recent work [267] in this direction. They have considered

that their physical system is associated with heat reservoirs, and its dynamics are influenced

by the driving schemes [206,268,269]. They have considered stochastic thermodynamics for

the analysis of the dynamics of these physical processes. Interested readers can go through

the review article [222] which provides a detailed analysis of the stochastic thermodynamics

in different aspects of computation. The state of this physical system can be equated to some

logical state of a Turing machine. In this work, the authors have considered two physical pro-

cesses for TM, and have analyzed three thermodynamic quantities for each physical process.

The three quantities that are analyzed are as follows:

(1) The heat generated during the execution of the realization of TM will be processed

for each input z. It is denoted as Q(z).

(2) The heat generation for the entire computation that mapping the input z to the output

y.

(3) The average heat generation 〈Q〉 minimizes the entropy production in the physical

process while evaluating the input.

The physical process that is considered for analysis is the ‘coin-flipping’ process for

the UTM. This physical model is a thermodynamically reversible model, where the input is

samples of the ‘coin-flipping’ distribution p(z) ∝ 2l(z), where l(z) depicts the string length.

The heat generation for this process of UTM is described as:

Qco f p(z) = l(z) + K(UT M(z)) +O(1), (3.5.6)

where UT M(z) describes the output of UTM for the given input z, and K(UT M(z)) describes

the Kolmogorov complexity for the given input string z. For a given universal Turing machine,
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one can define the Kolmogorov complexity for a given bit string z ∈ S? as:

KUT M(z) = min
UT M(z)=y

l(z).

The defined Kolmogorov complexity is an unbounded function. From the definition given

in Eq. (3.5.6), one can infer that the thermodynamic complexity is a bounded function.

Being motivated by the physical Church-Turing thesis [270], the alternative physical

process that the authors have considered in their work is a semi-computable process coined

as domination realization. Similarly to the first physical process, the heat generation or rather

heat function of the process is described as:

Qdore(z) = K(z|T M(z)) +O(1), (3.5.7)

where K(z|T M(z)) represents the condition Kolmogorov complexity for the TM. This heating

effect holds for this process even if T M is not even a UTM. For a semicomputation process

we have Qdore(z) ≤ Q(z)+O(1). This conveys the fact that the heat generation in this process

is less than the heat generation for any other semicomputable process of TM.

Now we will analyze the ‘coin-flipping’ process in detail. The coin-flipping distribution

is expressed as:

CP(z) = 2−l(z)δ( f (z),y) z ∈ dom UT M. (3.5.8)

where it is conveyed that the UT M will not halt, if the input z < dom UT M. CP(z) describes

the probability of successive feeding of the bits in the UTM, where this UTM halts after

receiving z number of bits. We will now calculate the thermodynamic cost of this physical

process. To do this, we first normalize the distribution shown in Eq. (3.5.8) as:

pco f p
z =

CP(z)∑
z∈dom UT M CP(z)

.

Similar to this we can define the universal distribution CP(y) =
∑

UT M(z)=y 2−l(z) and its

normalized distribution is p(UT M(z)) =
CP(UT M(z))∑

z∈dom UT M CP(UT M(z)) . The heat function for this coin

flipping distribution is expressed as:

Qco f p(z) = l(z) + lnCP(UT M(z)),

= l(z)−K(UT M(z)) +O(1). (3.5.9)
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The minimum amount of heat required for the generation of the output for this physical

process can be described as:

min
UT M(z)=y

Qco f p(z) = K(y) + lnCP(UT M(z)). (3.5.10)

Using Eq. (3.5.9) in Eq. (3.5.10) we have

min
UT M(z)=y

Qco f p(z) = O(1).

The average heat that is generate for a set of input strings generated from the distribution

of pco f p
z is:

〈Q〉pco f p
z

=
[
S (pco f p

z )−S (p(UT M(z)))
]
+Υ(pco f p

z ),

where Υ(pco f p
z ) describes the entropy production in a thermodynamic process.

Now, we will analyze the second physical process coined as dominating realization. The

heat function for this process has two properties, one is that it is semi computable, and the

second is that it is optimal for the physical process. The associate function for a given TM,

which is not universal is defined as:

Gb(z) = K(z|T M(z)).

For a defined TM the heat function Qdorl happens to be an upper semicomputable function.

To compute the heat function for this process, let us consider a TM that reads some long and

incompressible data of mv bits for some input program ip. The heat function for this process

can be evaluated as:

Qdorl(ip) = K(ip|T M(ip)) ≈ mv.

Now when we consider the TM to be a universal TM, it guarantees us that there exists

some desired output for a well-defined program. This provides us the required element of

information for the analysis of the thermodynamic complexity for this physical process. So

we can now compute the minimum amount of heat that is required for the computational

process to execute its operation to give a desired output y. The amount is bounded by a

constant and is expressed as:

min
UT M(z)=y

Qdorl(z) = O(1).
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Through thorough analysis, it has been conveyed that this bound holds even if the TM is not

a universal TM.

Finally, we can analyze the expected heat that is being generated while this physical

process executes some computation. For the analysis, we will consider the input to be a

random sample from the input distribution. For the comparison between the two processes,

we will consider that the input distribution will result in minimum entropy production. The

analysis shows that the expectation of heat that is being generated by this physical process

during the execution of computation for a given input distribution is infinite.

To get a clear view of the two physical processes we will give a short comparison between

the physical processes.

(1) For both the physical process, the minimum amount of heat that is required for the

computation to generate output y is bounded by a constant. The constant defined for these

two processes has no relation among them, but the thermodynamic cost for the dominating

physical process is larger in principle than that of the coin-flipping.

(2) For the coin flipping process, one has to know the shortest route for the output y to

get the bounded form of the heat production, whereas, in the case of dominating process the

condition is quite simple and advantageous. The condition says that we can get the bounded

form if the computation is fed by input which demands the print of the output y.

(3) The heat function happens to be an upper semicomputable function for the dominat-

ing physical process, whereas it is a lower semicomputable function for the coin-flipping

process. So Qdorl(z) − Qco f p(z) > cγ where cγ is a real number. The excess amount of

heat that is generated in the dominating physical process is bounded. It is expressed as

Qdorl(z)−Qco f p(z) ≤ lnK(UT M(z)).

The above methods have provided an insight into the physical realization of the TM from

a thermodynamic viewpoint. Turing machine happens to be the center of attraction to both

physics and computer science. So the physical realization of TM with a more feasible and

realistic model needs further investigation.

3.6 Error Correction: Thermodynamic Interpretation

After the advent of quantum error correction theory [243, 271, 272], it has experienced a

rapid development. Some of the quantum codes were just mapped from the classical error

correction codes mainly the classical error correction codes (CSS codes) [272]. It was then

further generalized to the stabilizer codes [273–276]. Firstly, we will discuss an unsophisti-
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cated model for the analysis of error correction as described in the work [277]. Here in this

work, the authors have considered a reversible cycle to explain the error correction process.

This cycle is a modified version of Bennett’s ‘Maxwell’s demon’. We will explain the clas-

sical codes from a thermodynamics point of view, then we will explore the quantum error

correction theory using this reversible cycle. From a thermodynamics viewpoint, quantum

error correction is equivalent to a refrigerator process. In this process, one tries to sustain a

steady entropy for the system even when it is subjected to environmental noises. Due to the

decrease in entropy, one might intuitively think that the protocol defined for the quantum er-

ror correction violates the second law of thermodynamics. A careful analysis of the process

will show that it does not violate the second law.

The author in their work [277] has considered a singlet atom confined in a box to link

the information with thermodynamics. The classical information can be modeled using this

system, where the atom when happens to be on the ‘left-hand side’ (LHS) is described as

0, and when on the ‘right-hand side’ it will be described as 1. Now we allow the system

to expand isothermally considering that the atom exists on one of the sides. Due to this

expansion, one encounters an increase in the entropy by an amount of ∆S = kB ln2. The

atom has an equally likely probability to jump on either side of the box from its initial state.

This comprises the error that can occur in the system. The protocol of the error correction is

described below:

(1) We will consider that the atoms are in the LHS and RHS of the respective boxes.

(2) Let us consider that some error occurs to the particle in the box Aα. The error is

defined as the probability of the atom in the box Aα to be in the LHS or RHS of the box.

(3) Another system Bα is kept to keep track of the system Aα. The system Bα correlates

itself with the system Aα.

(4) Based on the state of the system Bα one will move the system Aα to its respective

side. This leaves the system Bα in a randomized state. The execution of this process needs

no work.

(5) This is the last step of the protocol where the system Bα is brought back to its initial

state by isothermal compression.

The pictorial representation of the protocol is described in Fig. 3.12. The energy of the

atom in the system Aα is kBT ln2. Due to the error, the system undergoes a decrease in the

energy by an amount ∆F = −kBT ln2, and the entropy of the system increase by an amount

S = kBln2. In the third stage of the cycle, the system Bα has the information of the Aα as

they happen to be correlated. And in the final stage of the cycle, the kBT ln2 amount of work
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is done in the system Bα to reset the system. The amount of entropy change during this

stage of the process is S = −kB ln2. So the error that has been described in this model is

nothing but the inability to do work. So to make the system free of this inability the system

is correlated to another system. This makes the second system possess the same inability. In

the reset, step entropy is wasted so the system regains its initial state. Now we will analyze

the error correction in the quantum realm using this protocol.

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Figure 3.12. A pictorial representation of the reversible cycle which implement the classical error
correction protocol is depicted. The detail description of each stage of the cycle are given in the
text.

The main motivation of the quantum error correction theory is to preserve the quantum

state. The protocol is described below for the pure states. One can similarly describe the

protocol for the mixed states. The protocol is as follows:

(1) The state of the system after the introduction of the error is described as
∑

j Err j|ψcs〉|m〉|env j〉,

where |ψco〉 describes the encoded state, |m〉 represents the state of the measurement device,
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and the environmental state is described |env〉 j. The environmental states are orthogonal in

nature. Here, it has been assumed that 〈env j|envk〉 = δ( j,k).

(2) Now in the next phase of the protocol, the environmental effect is traced out. The

state of the system after tracing out is
∑

j Err j|ψco〉〈ψco|Err†j ⊗ |m〉〈m|.

(3) In this phase of the protocol, one observes the system, due to which correlation is

generated between the measurement apparatus and the system. The state of the system is

described as
∑

j Err j|ψco〉〈ψco|Err†j ⊗ |m j〉〈m j|, where 〈m j|mk〉 = δ( j,k). We have to keep in

mind that if the observation is not perfect, then the protocol will not work properly, as we

will not be able to get the orthogonal states of the system.

(4) During this phase of the cycle, the system gets uncorrelated. In this phase, the

correction of the error is done. The state of the system after the execution of this step is

|ψco〉〈ψco| ⊗
∑

j |m j〉〈m j|. This is not the exact state that we have started with. We have to

reset the measurement state to its initial state.

(5) This is the last stage of the protocol, where we reset the measurement system to its

initial state. To do this, we include a garbage system to the system. Now, the state of the

system is |ψco〉〈ψco| ⊗
∑

j |m j〉〈m j| ⊗ |m〉〈m|. The state of the system by swapping the garbage

system and the measurement system can be expressed as |ψco〉〈ψco| ⊗ |m〉〈m| ⊗
∑

j |m j〉〈m j|.

Now the system is reset for another cycle of quantum error correction.

Similar to the analysis done for the classical code, we will analyze the entropy change

that takes place throughout the protocol. The entropy of the system after the first stage of

the cycle is ∆S = S (ρab), where ρab =
∑

j Err j|ψco〉〈ψco|Err†j is the density matrix. We don’t

encounter a change in the entropy for the other steps except for the reset step. The entropy

of the system during this reset step is ∆S = −S (ρab). The garbage system encounters a gain

in the entropy of the system. The information gain by the system during the correlation step

is S (ρab). So from the observation, we can infer that the gain in the entropy by the garbage

system is more than the information gain. This confirms that the error correction protocol is

successful from a thermodynamic viewpoint.

In the work [278], the author has further extended the model described in the work [277]

to include the non-maximally mixed states for the analysis of quantum error correction. In

their work, they have conveyed that their system exhibits a constant entropy even when

subjected to the impact of environmental noises. In their model, they have introduced some

ancilla qubits which keeps a track of the error. In the refrigeration process, this is equivalent

to the transfer of information of the error from the data qubit to the ancillary qubit. This

causes an entropy change and cools downs the data qubits. They have also explored the
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changes that occur in the quantum error correction cycle when the measurement system is

not perfect, and also the information gain is not optimal. Another important aspect, i.e., how

the non-orthogonal states will have an impact on the thermodynamic analysis of the error

cycle is also addressed in this work.

Now we will explore a modern formalism to describe quantum error-correcting condi-

tion from a thermodynamic viewpoint as studied in the work [279]. Different interaction in

a system has been modeled through various Hamiltonian, like spin chain model. One have

encounter applicability of spin model in quantum information theory like in space free from

decohorence [280], entanglement [281], gates [282], and even in topological quantum com-

puting [283, 284]. Here in this work, the authors have used spin chain formalism to develop

the condition of the quantum codes.

In the seminal works [244,247,285,286], they have proposed the necessary and the suffi-

cient condition for the quantum codes to correct the errors. The condition to correct the errors

err that appears during transmission, or during storage in quantum devices can be defined

as 〈ψ|Err†aErrb|ψ〉, where ψ is a vector ∈ C, and Erra, Errb ∈ err. The errors are defined as

a set of linear operators err = {Erra : B→ B}, where B represents the encoding space. This

encoding space has a set of orthonormal basics defined as {|ψi〉}. So, one can alternatively

define the condition for quantum error correction as 〈ψ j|Err†aErrb|ψi〉 = $abδ(i, j), where

$ab is a constant.

For the analysis, the authors have first considered the XXO model. The Hilbert space for

this model is B ' (C2)⊗nc , where nc represents the size of the model or one can convey it as

the length of the lattice. The Hamiltonian of the system is described as:

H = −

nc∑
i=1

(
σx

jσ
x
j+1 +σ

y
jσ

y
j+1 + ισz

j

)
, (3.6.1)

where σa for a = x,y,z describes the Pauli matrices and ι describes the magnetic field, and

it is real in its form. This spin chain model is also called as “isotropic XY model", and was

proposed in the seminal work [287]. For any thermodynamical analysis, we need the parti-

tion function Z of the system, then we can extract the information of other thermodynamic

variables. The partition function for this system for T > 0 can be evaluated as:

Z = tr(2−H /T ) =
∑
En

2ncS 2−En/T , (3.6.2)

where 2nS describes the degeneracy that exists within the energy levels, and S depicts the
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entropy of the system. For this system, we observe that the energy and the entropy are

directly proportional to nc.

Now for this model, the partition function of the system can be evaluated as:

Z = trC 1(2−H /T )

∼
n
π

∫ π

−π
ln(1 + 2−e(p)/T )dp,

where e(p) = −4cos p+2ι. Here, the trace is taken over the subspace C 1. So, the free energy

for the system can be described as Fen = 1
2π

∫ π
−π

ln(1 + 2−e(p)/T ). So the entropy of the system

can be described as:

S =

∫ π

−π

( 1
2π

ln
(

1
2π

)
−J (p) ln[J (p)]

−{

(
1

2π

)
−J (p)} ln

[ ( 1
2π

)
−J (p)

])
, (3.6.3)

where J (pi) = 1
nc(pi+1−pi)

. Here [p] denotes the collection of the momentum of the particles.

Now we define a correlation function 〈O〉T , whereO represents the product of Pauli operators

in linear combination. The mathematical definition of this function is defined as:

〈O〉T = tr
2−H /TO

Z
.

This is also called as the thermodynamic correlation function. For this model, the correlation

is evaluated as:

〈O〉T = lim
nc→∞

〈[p]|O|[p]〉
〈[p]|[p]〉

.

The eigenvector for this system happens to be in thermo-equilibrium space with the same

J . The thermodynamic correlation function is independent of the wave vectors |ψ〉.

In the field of statistical mechanics the probability that the system collapses in an eigen-

state |φb〉 ∈ B with eigenvalue E(|φb〉 ∈ B) is 2−H /T

Z . So the subspace of this system is at

the thermo-equilibrium state and one can compare this with Schumacher’s subspace. This

subspace asymptotically converges to the quantum error correction criteria for all types of er-

rors. One can equivalently define the quantum codes to be an approximation of the ‘thermo-

equilibrium space’. To get a clear idea about this spin chain model in quantum error correc-

tion, practical implementation of this process using gates and measurement tools is required.
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3.7 Some Deeper Aspects of Thermodynamic Compu-

tation

3.7.1 Engine as computer

In a simple sense, one can convey that the Carnot heat engine extracts an amount of heat Qhot

from the hot reservoir at temperature Thot and transfers an amount of heat Qcold to the sink

at temperature Tcold. The work done to execute this process is Whot→cold = Qhot−Qcold. One

will observe optimal efficiency if

Lhot −Lcold = 0,

where Lhot = −Qhot/Thot is the negentropy that is imprinted in the engine. So the loss that

occurs in the process is just throwing away the negentropy of amount Qcold/Tcold. Now we

move on to analyze the computer equivalently as a Carnot cycle as shown in the work [288].

We know from the work [31, 289], that one encounters zero work balance for an ideal com-

puter and the amount of information that is delivered during a process is ln2dl = Lhot−Lcold

where l denotes the amount of information.

So in the case of an ideal computer, we also encounter a loss by throwing out an equiva-

lent amount of negentropy as in the case of the Carnot cycle.

3.7.2 Nonergodic systems and its thermodynamics

A memory device can be designed using a multistable system applied to the condition that,

the transition between the states is not allowed. Alternatively, we can say that information

can be stored only in a nonergodic system where the ‘time average’ of the system differs from

the ‘phase space average’ of the system. In the work [290], the authors have analyzed the

thermodynamics of computation with the notion that information is recorded in a multistable

system. These multistable states are considered as a nonergodic states.

We will interpret the memory register in terms of thermodynamics. According to the

Landauer principle, the system will confront a decrease in entropy due to restore to one

(RTO) operation. Whereas in the work [290], the authors have proved that there is no change

in the thermodynamic entropy even after the RTO operation. The Clausius definition of
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thermodynamic entropy for a system in two states S Ta and S Tb is expressed as:

∆S =

∫ S Tb

S Ta

dQ/T,

where dQ represents the heat change in the system and T the temperature of the system. So to

prove the statement proposed in the work [290] the author considered a thought experiment.

The thought experiment is that we will consider a system where the particle is in a bistable-

monostable potential well. This system will interact with a heat reservoir. Goto and his

co-workers in their work [291, 292] coined this model as “quantum flux parametron". For

the analysis, the state of the system will be described as one when the particle is found on

the right side of the potential well and zero when one finds the particle to be on the left-hand

side of the well. The thought experiment is as follows:

• The system is considered to be initiated in state zero. This will be the initial state of

the system. The entropy of the system is S zero.

• The left well of the system is lowered by applying a bias potential.

• Now the ‘double-well potential’ is converted to a single well. This is executed by

removing the partition between this well.

• In the next stage of the process, we will remove the bias potential that was applied to

the left well of the system. The system is now in a neutral state and we denote it as

S Tne. The state of the system of being in one or zero is denoted by S Tm.

• The bias potential is again applied, but now on the right side of the single potential

well. This lowers the right side of the well.

• In the next stage of the protocol, we then revert back the single potential well into the

double potential well just by recreating the partition between the left and right side of

the well.

• In the final stage of the process, we remove the bias potential. The system is now in

state one, and the entropy of the system is S one.

The schematic representation of the thought experiment is shown in Fig. 3.13.

The first four steps of the thought experiment are called the erasing process, and the final

three steps represent the writing process. If we apply RTO to the system, and the system

is in the state zero, we will observe the same configuration even after the RTO operation
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Stage 1 Stage 2
Stage 3

Stage 4 Stage 5 Stage 6

Stage 7

Figure 3.13. A schematic representation of the thought experiment step by step is depicted. The
red solid sphere is the single atom of the system

(S zero = S one), subjected to a condition that the state is known before the execution of this

experiment.

From an information point of view, entropy is defined as a measure of lack of information,

i.e., the lesser the information we gather about the system the higher is the entropy of the

system. So, the entropy of the unknown state S Tukn should have large entropy than that

of the known state. Based on this notion, Landauer argued that the system will observe a

decrease in entropy after RTO operation.

It is a well-known fact that when a computer runs repeated recordings and erasure occurs

in a memory device. The physical equivalence of this process can be thought of as a sequence

of evolution of the system from an ergodic state to a nonergodic state, and vice versa. Now

we will analyze the thermodynamics of this evolution using two different models. The first

model that we are going to analyze is the Szilard engine model, and the second one is the

bistable-monostable potential well.

Szilard engine with one atom is the widely studied model for a memory device. This

model helps us to understand the physics behind the computation. The Szilard engine model
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is associated with a heat reservoir at temperature T . When the system has the partition wall

the state of the system is in nonergodic state S Tnerg and it will be in the ergodic state S Terg

when one removes the partition. Now we will describe the writing process for this model.

The initial state of the system is considered as S Terg. Now the partition is inserted in the

middle of the chamber, so work is done on the atom in the system. The work done can be

expressed as 〈Wwriting〉 = kBT ln2 and the heat that is generated to execute the process of

writing is

〈Qwriting〉 = T (S S Terg −S S Tnerg) = kBT ln2. (3.7.1)

The process is executed a large number of times to evaluate the expectation of the work

done and the heat generation during the execution of the process.

Along with the writing process, the system goes through the erasure process. For the writ-

ing process, we have two types of erasure process. One is reversible in nature and the other

is irreversible in its form. For the reversible process the work done and the creation of heat in

the surrounding can be expressed as 〈Werasure〉 = −〈Wwriting〉 and 〈Qerasure〉 = −〈Qwriting〉. So

for the process, where one executes the writing process as well as the erasure process using

the reversible form, one can infer that the total work is done and the heat generation is zero.

One will be able to execute the reversible erasure process if the state of the system is known

before the process is executed.

The second model of the erasure process is the irreversible process. The initial state of

the system is now not known to us. To execute this process one removes the partition from

the chamber without any prior information about the state of the memory. The removal of

the partition evolves the state of the system from the nonergodic state to the ergodic state.

The work done and the heat generation for this erasure process is zero but we encounter

an increase in the entropy of the system. The increase of this entropy can be evaluated as

S erg = kBln2. So for the total process of writing and as well as the erasure process, the total

work done and the heat production can be expressed as:

〈Wtirr〉 = 〈Qtirr〉 = kB ln2, (3.7.2)

where 〈Wtirr〉 and 〈Qtirr〉 represents the work and heat for the total process.

Now we will explore the second model, i.e., the bistable-monostable potential well model.
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In this process, the partition of the Szilard engine gets replaced by a potential wall. The writ-

ing process and the erasure process for this model are described in the thought experiment.

For the writing process, the amount of work done and the heat production can be evaluated

as:

〈Wwriting〉 = kBTln
(
ZS Tne

ZS Tm

)
,

〈Qwriting〉 = ES Tne −ES Tm + kBTln
(
ZS Tne

ZS Tm

)
,

(3.7.3)

where E and Z represents the energy and partition function of the system. The partition

function for the system can be evaluated as:

ZS Tne =

∫ ∞

−∞

e−Vne/kT dx,

ZS Tm =

∫ ∞

0
e−Vm/kT dx,

where Vne, Vm describes the potential energy of the double and the single potential well. The

partition function of the system is defined based on the assumption that we have considered

the nonergodicity of the system. The potential wall should be chosen in such a way that it is

greater than kBT . The potential wall is chosen in this manner to reduce the error during the

operation.

The erasure process considered for this model is the irreversible one. The irreversible

erasure process is executed by diminishing the potential wall height (i.e. reducing the height

of the hill), and along with that, we will not use the bias potential in this process. Due to this

lowering of the height of the wall, we encounter entropy production S ern in the system by

an amount of kBln2. The work done and the heat production for the execution of the erasure

process can be expressed as:

〈Werasure〉 = −〈Wwriting〉+ TS ern,

〈Qerasure〉 = −〈Qwriting〉+ TS ern.

So for the total process of writing and as well as the erasure process, the total work done

and the heat production is equivalent to the results (Eq. (3.7.2)) obtained in the irreversible

process of the Szilard model.
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3.7.3 Thermodynamics of algorithm

It is generally believed that the advent of quantum computers will help to solve some age-old

problems in number theory, physical as well as combinatorial search faster than the existing

classical computers. To get a better understanding of quantum speedups, one has to consider

a realistic model of computation. The realistic model should consider the time-complexity

and time-space tradeoffs during analysis. Some works [293–296] have analyzed these type

of models. A recent work [297] in this direction has analyzed the quantum speedups from

a thermodynamic viewpoint. To analyze the cost of the algorithm (in classical and quantum

regimes) from the thermodynamic perspective Brownian model of computation is consid-

ered.

For the thermodynamic interpretation of algorithms, the authors in their work [297] have

considered collision finding algorithm and preimage search for their analysis. Before we

move on to the thermodynamic analysis of the algorithm, we would describe the algorithms

briefly. First, we will learn about the collision finding algorithm and then about the preimage

search algorithm.

The parallel collision search algorithm proposed by Van Oorshot and Wiener [298] hap-

pens to be the best classical collision finding algorithm. This algorithm can detect a collision

in an expected serial depth of O(
√

G/Gα), where G denotes the range of the function and Gα

depicts the parallel processes with memory O(1). It is assumed that the communication cost

among the thread is negligible than the overall computation costs. Brassard, Hoyer and Tapp

(BHT) algorithm extended this algorithm in the quantum realm in their work [299]. The

operations for this algorithm is O(G
1
3 ) with memory size G

1
3 . One can further generalize this

algorithm to a parallel algorithm with nβ parallel processors having memory size Gβ. This

generalized algorithm satisfies this condition nβ <Gβ < O
(
(Gnβ)

1
3
)

with a serial complexity

O
(√

G
Gβnβ

)
.

Bernstein has shown in their work [295] that the BHT algorithm, when measured in

terms of memory and serial depth does not encounter any improvement over the classical

algorithm, but one encounters an improvement in terms of query complexity. Giovanetti

in their work [300], counters the memory cost by proposing a quantum RAM model, where

they convey that memory access operation can be executed at logarithmic energy cost despite

large gate complexity. So the question remains whether one can propose a realistic model

where one encounters improvement of the complexity of the quantum algorithm over the

classical one. Now we will see whether the Brownian model of computation provides a
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solution to this proposed problem. To do so, we will first analyze the quantum version of the

algorithm. For a given time t and memory size Gβ, we are going to calculate the total energy

that is required for the collision search. We will consider that in the BHT algorithm the

energy complexity is subjugated by oracle queries over the memory access. So the energy

for per operation is O
((√

G
Gβnβ

)
t

)
. So the total energy for the process can be expressed as:

Equantum = O
(
nβ×

√
G

Gβnβ
×

(√
G

Gβnβ

)
t

)
= O

(GGβ

t

)
.

Now if we consider the classical case the energy for per operation is O(
√

G
Gβt ), and the total

energy for the process is:

Eclassical = O
(
Gβ×

√
G

Gβt
×

√
G

Gβ

)
= O

( G
Gβt

)
.

So we can infer from the results that this realistic model does not provide any advantage

of the quantum algorithm over the classical one. So, it requires further investigation to verify

whether any realistic model will provide an advantage of the quantum algorithm over the

classical algorithm. One can think of applying a similar analysis for the Claw Finding prob-

lem. Its objective is to find the collision between two functions with different domain sizes,

e.g., Do1 and Do2. The quantum version of this algorithm was explored in the work [301].

The energy cost for finding the collision in quantum regime is O
(
max

(
Do1 Do2
Gbetat ,

Do1
t , Do2

t

))
,

wherein the case of classical it is O
(

(Do1+Do2)3

G2
βt

)
.

Now we will analyze the second algorithm, i.e., the pre-image algorithm. One can find

preimages of a function having a domain size Nγ using Grover’s algorithm. The serial com-

plexity for this algorithm is O(Nγ). An optimal serial complexity can be obtained if one

considers Mγ parallel processes with memory O(1). The serial complexity of this optimal

model is O
(√ Nγ

Mγ

)
. This was verified in the work [302]. If one implement Grover’s algo-

rithm with Brownian computation model the energy for per operation is O


√

Nγ
Mγ

t

, and the

total energy of the process for this quantum version is:

Equantum = O


√

Nγ

Mγ

t
×Mγ×

√
Nγ

Mγ

 = O
(Nγ

t

)
.

If we naively apply the Brownian computation for the classical search the total energy
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for the process boils down to Eclassical = O
( N2

γ

Mγt

)
. To improve the complexity of the process,

one allows the Brownian motion to steer the system on a random work. If one implements

the computation with Mγ parallel processes, then the complexity of the algorithm becomes

equivalent to that of the quantum version. So we encounter the same asymptotic performance

for the algorithm in the classical and quantum regimes.

If one compares Grover’s algorithm with the classical search algorithms instead of quan-

tum versus classical collision search, then one will encounter that Grover’s algorithm is more

efficient than the classical version (where powered and unpowered Brownian computation

model is considered for the analysis). If the assumption of scale invariance for memory size

and the energy consumption is removed for unpowered primage search, then one encounters

that the preimage algorithm is memory intensive. If one considers oracle queries then also

the unpowered preimage algorithm happens to be less significant than Grover’s algorithm.

The results that have been discussed so far suggest that the cost of hardware happens to

the prime factor that determines the advantage of the algorithms. If the cost of the hardware

can be reduced, then one can even use the classical search algorithms over Grover’s algo-

rithm. One can even encounter that unpowered classical preimage search surpasses Grover’s

algorithm provided that the memory costs are very close to the fundamental thermodynamic

limit. These results also guide us in the field of post-quantum cryptography, especially in

choosing the key size of the block ciphers. It can be inferred from this analysis that doubling

the key size is unnecessary. Instead of that one can make a small increase from 128 to 192

bits for better protection.
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4.1 Introduction

The formulation of quantum mechanics is greater than a century old. The starting point

of its development came from the interpretation of the phenomena of black body radiation

in 1900. Einstein in 1905, used the intuition of quantum-based hypothesis to analyze the

photoelectric effect. Quantum theory got its new dimension when it got reframed around

1925 with the guidance of fundamental Heisenberg commutation relation and the associated

uncertainty relation which conveys that no two canonical observable will commute with each

other. This is called non-commutative which is the central mathematical concept expressing

the uncertainty in quantum mechanics.

Quantum field theory being surfaced during the 1930s, one of the problems was to find

a solution to the infinities that appeared in the theory. One of the ideas that came to the

mind of the researchers was to extend the non-commutativity to the coordinates which will

be to remove the infinite quantities that are appearing in this domain. This was suggested by

Werner Heisenberg. This intuitive idea of Heisenberg gave birth to the concept of quantum

space-time which is the generalized form of the usual space-time. In this new space-time,

some of the variables which are commutative in nature in the usual space-time are assumed

to be noncommuting. This gives rise to a different Lie algebra.

Peierls, who was the doctoral student of Heisenberg, used this idea in the late 1930s [303]

in their work to understand the Landau problem. They also explored during their studies that

in quantum space the electrons surrounded in a magnetic field can be considered as moving.

This idea was carried forward to Pauli and Oppenheimer [304]. Snyder, who was the doctoral

student of Oppenheimer, proposed the first concrete example in the year 1947 [305].

With the advent of renormalization theory and it’s success snitched the concept of non-

commutative coordinates. Later while during 1980s Connes developed noncommutative ge-

ometry [306,307]. Connes theory was very successful and it was compelling the attention of

particle physicists and string theorists [308–317].

So, the first question that pops up in one’s mind is how to define a “non-commutative

space-time". So, non-commutative space-time represents the deformation of the usual space-

time in which the space-time coordinates xi, which is expressible by Hermitian operators x̂i,

will not commute with each other. Mathematically it is depicted as:

[xi, x j] = iθi j. (4.1.1)
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Here θi j depicts the deformation parameter. It will boil down to ordinary space-time

when θi j → 0. Conventionally it is considered as a real tensor [318] and antisymmetric in

nature under i↔ j. The dimension of this parameter is length-squared. Now, what is the

physical implication of this parameter? θi j can be considered as a small patch of the area

in the i j- plane which can be deemed as “observable". This is analogues to the role that

is being played by } in [xi, p j] = i}δi j. So we can say that non-commutative space-time is

a parametrization of the space time with a limit which probes in the space-time when the

system approaches more towards the miniature scale. This form of space-time is sometimes

called “fuzzy", as one is not to provide a explicit meaning to a “point".

The consequences of the non-commutativity of space-time are:

• One can transit from the usual quantum field theory to the action of field theory

in the non-commutative space-time by substituting the field product by Moyal star-

product [319].

• The uncertainty relation for the respective position operator will lead to nonlocal the-

ory.

• The parameter θi j violates the Lorentz invariance principle then the dimension of the

space-time is considered greater than two.

• The ultraviolet divergence is still persistent in this non-commutative quantum field

theory.

• The non-commutativity of the space and time lead to the violation of causality [320].

Though there are some flawless features that persist in this model but still there has

been a strong motivation for the exploration of non-commutative space-time. There was a

strong belief that in quantum theories which also include gravity the change in space-time

is natural at distance comparable to the Planck scale. The non-commutative theories are

also explored as to its analogs theory to the Yang-Mills theory. One has encountered that

Eq. (4.1.1) describes the low-energy limit of string theory where θi j is equivalent to the

antisymmetric background field Bi j in the existence of D-brane. One can also encounter the

essence of non-commutative field theory in condensed matter theory. Analysis of electrons

placed in a magnetic field that is extrapolated to the lower Landau level is popularly depicted

as the Quantum Hall problem. And it is contemplated as non-commutative Chern-Simons

theory [321].
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An example of the presence of non-commutative coordinates can be encountered in the

analysis of non-relativistic charged particles in a strong magnetic field. Let us consider the

motion of the particle to be in the X, Y plane under the influence of a magnetic field that is

applied in the Z direction. The Lagrangian for the considered system is expressed as:

L =
1
2

mv2 +
e
c

v.A−V(X,Y), (4.1.2)

where m and e are the mass and charge of the particle respectively, Ai = {0,0,0,BX} and

V(X,Y) is some conserved potential. If we consider the field to be strong enough i.e., B→∞

then the Lagrangian of the system converge to

L =
eB
c

XẎ −V(X,Y). (4.1.3)

Eq. (4.1.3) is equivalent to the form of pq̇−h(p,q) if ( eBx
c ,Y) is considered as the canonical

coordinates i.e., {X,Y} = c
eB [322–324]. This has a close correspondence with the origin of

non-commutative in string theory.

In this we will study quantum mechanics on non-commutative space rather focusing on

quantum field theory. For the introduction of non-commutative space it is well suited that

we consider the non-commutative quantum mechanics with commutative time evolution for

our analysis rather than non-commutative quantum field theory. Non-commutative quantum

mechanics is explored and analyzed in various works [325–358]. Here we will study the

formulation and interpretation of quantum mechanics. Then we will see the affect of this

space structure to quantum thermodynamics.

4.2 Different formalism of non-commutative quantum

mechanics

In this section, we will explore some of the various formalisms of non-commutative quan-

tum mechanics. There are various formalism to explore quantum mechanics in the com-

mutative space. Now we will explore the various formalism that exist for the analysis of

non-commutative quantum mechanics. We would explore whether they are equivalent or

give some different insight into each formalism.
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4.2.1 Canonical Formalism

In this formalism, we will study three different approaches to describe this formalism.

4.2.1.1 New Coordinates System

The noncommutative space can be realized with the coordinate operators satisfying Eq. (4.1.1).

The phase space can be considered as:

[xi, x j] = iθi j, [xi, p j] = i}δi j, [pi, p j] = 0. (4.2.1)

We can generalize this by considering the non-commutativity of the momentum operator.

This is represented as:

[xi, x j] = iθi j, [xi, p j] = i}δi j, [pi, p j] = iηi j. (4.2.2)

where ηi j describes the non-commutative properties of the momentum operator in the non-

commutative space.

In this form of formalism, the approach is to describe the set of non-commutative coor-

dinates as a linear combination of the canonical variables. For this approach which is mostly

used for analysis, the Hilbert space of the non-commutative space can be considered the same

as that of the Hilbert space considered for the commutative space systems. The dynamics of

the state can be described with the help of the usual Schrödinger equation H|ψν〉 = i} ∂∂t |ψν〉,

where H is the Hamiltonian of the system in the non-commutative space.

The coordinate of the system can be expressed as:

x̂i = xi +
1

2}
θi j p̂ j, p̂i = pi. (4.2.3)

This new variable satisfies the usual commutation relation and can be described as:

[x̂, x̂ j] = 0, [x̂, p̂ j] = i}δi j, [ p̂, p̂ j] = 0. (4.2.4)

The non-commutative parameter θ as described in Eq. (4.2.3) is very small. So one can

consider the non-commutative effect as some perturbation to the commutative system by

the θ parameter to its first order. Due to this reason, one can use the wavefunction and

probabilities that are usually used for the analysis of the system in the commutative space.
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So, the dissimilarity between the commutative and the non-commutative quantum mechanics

can be described by the choice of polarization.

The non-commutative observables which for our case is the position and momentum can

be described from Eq. (4.2.3) as:

xi = κx̂i−
1

2}κ
θi j p̂ j, pi = κ p̂i +

1
2}κ

ηi j x̂ j. (4.2.5)

where κ is the scaling constant which is related to the non-commutativity of phase space [359,

360].

4.2.1.2 Bopp’s Shift and Star Products

Fritz Bopp in this seminal paper [361] discussed the statistical implication of quantization.

He also described the pseudo-differential operators which are obtained from symbol using

the quantization rule

x→ x +
1
2

i}δp p→ p−
1
2

i}δx. (4.2.6)

He used this transformation [361] instead of using the usual one x→ x and p→ −1
2 i}δx.

In the literature, the operators that are defined in Eq. (4.2.6) are called the Bopp shift. The

quantization described by Bopp in his seminal work is called Bopp quantization. The star

product (?-product) has a connection with Bopp’s shift which is described by the associa-

tive deformation of the ordinary products on the phase space. Groenewold in his seminal

paper [362] defined the ?-product as:

? ≡ e
i}
2 (
←−
δx
−→
δp−
←−
δp
−→
δx). (4.2.7)

Bopp’s shift is induced by the ?-product [363] in the sense that it has been evaluated

through the translation of functions argument as:

f (x, p)?g(x, p) = f
(
x +

i}
2
−→
δp, p−

i}
2
−→
δx

)
g(x, p). (4.2.8)

So one can say the non-commutative quantum mechanics that is described in this ap-

proach can be defined on a manifold where it is considered that the product of the functions

will be the Moyal one [364]. The Moyal product for two given functions f (x) and g(x) is

described as:

( f ?g)(x) = eiθi jδ
[1]
i δ[2]

j f (x1)g(x2) |x1=x2=x . (4.2.9)
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So, the time-dependent Schrödinger equation for this non-commutative space approach is

the same as that of the usual one and can be expressed as:

i
∂ψ(x, t)
∂t

=

(
p2

2m
+ V(x)

)
ψ(x, t), (4.2.10)

where the potential of the system is shifted as V(x− p
2 ) where V(x)?ψ(x, t)→V(x− p

2 )ψ(x, t).

This shows that the study of quantum mechanics in the non-commutative plane is nontrivial.

This is due to the fact that the in principle the shifted potential has the arbitrary power of the

momenta. So due to this reason, we will only encounter a large number of derivatives in the

Schrödinger equation.

One can reduce the non-commutative approach to a variant of Bopp calculus. The variant

of Bopp’s shift is depicted in the map

xi = x̂i−
1

2}
θi j p̂ j, pi = p̂i. (4.2.11)

This is equivalent to the Eq. (4.2.1).

4.2.1.3 Seiberg–Witten Map

Seiberg and Witten, in their seminal paper, which was based in the context of string the-

ory and non-commutative geometry gave birth to the Seiberg–Witten (SW) map [312]. It

was argued in the paper that, the usual gauge theory will be a gauge that is similar to the

non-commutative Yang-Mills field theory. This gave rise to the bridge between the non-

commutative gauge theory and the usually used i.e., the conventional gauge theory. Let us

now understand what it means by the SW map. For analysis, let’s consider a Minkowski

space. In this space structure, the coordinates xi are considered to self-adjoint in the consid-

ered Hilbert space which satisfies:

[xi, x j] = iθi j. (4.2.12)

where θi j is real and antisymmetric in nature. So the field theory considered happen to be

equivalent to the flat manifold where the usual product is substituted by the non-local ?-

product as:

( f ?g)(x) =

∫
d4k

(2π)4

∫
d4 p

(2π)4 e−i(ki+pi)xie
1
2 θ

i jki p j f̄ (k)ḡ(p). (4.2.13)
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Here f and g are the function of the manifold. The action of the non-commutative Yang-Mills

theory is defined as:

Ω̂ = −
1
4

∫
d4xF̂i j? F̂i j = −

1
4

∫
d4xF̂i jF̂i j, (4.2.14)

where

F̂i j = ∂iÂ j−∂ jÂi− iÂi? Â j + iÂ j? Âi. (4.2.15)

Here Âi is the U(1) gauge field. The variable Âi is Hermitian in nature. So, the non-

commutative gauge transformation is expressed as:

∂̂λ̂Âi = ∂iλ̂− iÂi?λ̂+ iλ̂? Âi ≡ D̂iλ̂. (4.2.16)

Here λ̂ is the known as the gauge parameter and λ̂= λ̂?. Seiberg and his colleague in their pa-

per have shown that when one expands θ, it leads to a map that connects the non-commutative

gauge field Âi with the usual commutative gauge field Ai. The relation persists for the gauge

parameters also. This is known as the SW map which is depicted as:

Âi(A) = Ai−
1
2
θklAk(∂lAi + Fki) +O(θ2)

λ̂(λ,A) = λ−
1
2
θklAk∂lλ+O(θ2). (4.2.17)

Here FKi is the Abelian field strength which is evaluated as:

Fki = ∂kAi−∂iAk. (4.2.18)

It is a general notion that non-commutative quantum mechanics are generally referred to

as the SW map linear transformation which relates the extended Heisenberg algebra [365]

with that of the standard form of the Heisenberg algebra. The definition of an SW map is

not unique [366]. With the help of one of the transformations, i.e., using a particular SW

map, one can develop a representation for the non-commutative observables which are the

operators acting on the Hilbert space of the usual quantum mechanics. So, the state of the

system can be represented by the usual wave functions that are being used in the ordinary

Hilbert space. This SW map is often considered as a alteration of the Bopp’s shift [331,367–

369].
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4.2.2 Path Integral formalism

Let us considered a deformed Heisenberg algebra as:

[x̂1, x̂2] = iθ, [x̂1, p̂1] = i}, [x̂2, p̂2] = i},

[ p̂1, p̂2] = iη, [x̂2, p̂1] = 0, [x̂1, p̂2] = 0. (4.2.19)

We will now study the path-integral formulation of quantum mechanics [370] which will

be consistent with the Eq. (4.2.19). For the analysis, one formulates the phase space path-

integral, and with the help of this, the commutation relation in Eq. (4.2.19) and the equation

of motion is derived. This will be formulated in this section. The classical action in the (2+1)

dimension space-time is described as:

S =

∫ T

0
dt

(
1
2
ωi jxi ẋ j−H(x)

)
, (4.2.20)

where H is the Hamiltonian of the system and ωi j = (Θ−1)i j. Here ωi j and Θi j is depicted as:

ωi j =
1

1− θη



0 η −1 0

−η 0 0 −1

1 0 0 θ

0 1 −θ 0


Θi j =



0 θ 1 0

−θ 0 0 1

−1 0 0 η

0 −1 −η 0


.

Here } = 1 and the matrix Θi j is non-singular in its nature. So, θη , 1. The equation of

motion and the Poisson bracket for this formalism are respectively represented as:

ẋi = {xi,H} = Θi j
∂H
∂x j

and {xi, x j} = Θi j. (4.2.21)

The path-integral formulation for the quantum mechanics for the given action in Eq. (4.2.20)

is given by

Zα =

∫ 4∏
k=1

DxkeiS =

∫ 4∏
k=1

Dxkei
∫

dt
(

1
2ωi jxi ẋ j−H(x)

)
. (4.2.22)

The variable Zα describes the transition amplitude between two states. The time ordering

of the operators given by the path-integral is:

∫
DxO1O2eiS = 〈T {Ô1Ô2}〉. (4.2.23)
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With the discretization of the path integral as shown in the Eq. (4.2.22) and with the help

of the time ordering of operators, the commutation relation can be expressed as:

[x̂i, x̂ j] = iΘi j = i(ω−1)i j. (4.2.24)

and the extended equations of motion is described as:

d
dt

x̂i = Θi j
∂Ĥ
∂x̂ j

= −[x̂i, Ĥ]. (4.2.25)

With the commutation relation in hand as defined in Eq. (4.2.19) we derive the path-

integral as shown in Eq. (4.2.22). It shows that there exists an equivalence between the

path-integral and operator formalism.

Let us now highlight some of the points of the path-integral formalism:

• For the formulation of the path-integral formalism, the dimension of the space-time is

considered to be (2+1). It can be extended to a higher dimension for the analysis.

• If we are able to control the commutative case then no such complication will arise

for the evaluation of the non-commutative partition function due to the presence of the

additional quadratic coupling between the phase space variables.

• If the matrix Θi j is singular in its form, then the two-dimensional problem get boil

down to the one-dimensional problem.

For the detail understanding of the path-integral formalism for the non-commutative

quantum mechanics one can take look on the referred articles [370–375].

4.2.3 Weyl Wigner Formalism

Let us consider a n-dimensional space. The extended Heisenberg algebra for this space with

non-commuting position and momentum observable can be expressed as:

[q̂µ, q̂ν] = iθµν, [q̂µ, p̂ν] = i}δµν, [ p̂µ, p̂ν] = iηµν, (4.2.26)

where ηµν and θµν are antisymmetric and real (n×n) matrices and δµν is the Kronecher delta

function. We assume that

ζµν = δµν+
1
}2 θµkηkν. (4.2.27)
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is an invertible matrix. What it conveys is that for the matrix elements η and θ, the product

among these two elements is smaller than }2, i.e., ηθ� }2. The algebra in Eq. (4.2.26) is

related to the Heisenberg algebra via the SW map. this is depicted as:

q̂µ = Aµνqν+ Bµνpν p̂µ = Cµνqν+ Dµνpν. (4.2.28)

Here A, B, C, D are real matrices. This transformation is irreversible. For the formulation of

the Weyl-Wigner formalism for the non-commutative quantum mechanics, let re recapitulate

some concepts briefly. When we consider the usual quantum world, we can consider the

map (i.e. the Weyl-wigner map) to be isomorpic in nature based on Heisenberg algebra in

the usual space. This provides us the simplest approach of all for deriving the mathematical

structure of the traditional phase space of the quantum mechanics [362, 376, 377]. This map

which is covariant in its form has been analyzed in the seminal work [378].

The generalization of the covariant form of the Weyl-Wigner transformation and that of

the SW map is the backbone for the formulation of the Weyl-Wigner formalism of the non-

commutative quantum mechanics. For the exploration of non-commutativity, an extended

Weyl-Wigner map is constructed, which is isomorphic in its form between the operator space

and the phase representation of the extended algebra. It has been shown by the researchers,

that the non-commutative Weyl-Wigner transforms, and thus the entire formulation will not

have any dependency on the choice of the SW map.

Some salient features of this approach are as follows:

• We can obtain the non-commutative Wigner function by using the extended Weyl–Wigner

transformation over the density matrix.

• Derivation of the extended ?-product and the extended Moyal bracket are executed.

• The dynamical of the system and the eigenvalue equations for non-commutative quan-

tum mechanics are equivalent to the usual ones.

For further details of this approach, one can go to the ref. [379, 380].

4.2.4 Systematic Formalism

Here in this section, we will first introduce the non-commutating analog of the field deriva-

tives. In the non-commutative approach, let us consider a Hermitian operator e.g., position
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in our case x̂i with satisfies the following commutation relation

[x̂i, x̂ j] = iλ2εi j, (4.2.29)

where λ is a positive constant with a dimension of length. The field derivatives for the non-

commutative systems are defined as:

∂iψ̂ = εi j
i
λ2 [x̂ j, ψ̂]. (4.2.30)

Eq. (4.2.30) satisfies the Leibniz rule, and thus it will reduce to the usual one in the commu-

tative limit. From the definition given in Eq.. (4.2.30) the momentum operator can be defined

as:

p̂i = i}λ−2εi jadx j , (4.2.31)

where adx j B̂ = [x̂i, B̂] for an operator B.

Here we are going to present a formalism that will be completely analogous to conven-

tional quantum mechanics. Here we consider a system that is in Hilbert space where Hilbert-

Schmidt operators will be operated on the non-commutative space. The creation and the

annihilation operator of the system for two-dimension which satisfies the Fock algebra [381]

can be expressed as:

a =
1
√

2θ
(x̂i + ix̂2), a† =

1
√

2θ
(x̂i− ix̂2). (4.2.32)

The operators satisfies the condition [a,a†] = 1. The non-commutative configuration space,

which is isomorphic to the boson Fock space, can be expressed as:

Hc = span
{
|n〉 ≡

1
√

n
(a†)n|0〉

}∞
n=0

, (4.2.33)

where it is considered that the span over the field of complex numbers. Let us now consider

the operation of Hilbert–Schmidt operators on the non-commutative configuration space

which is depicted as:

H =
{
ψ(x̂1, x̂2) : ψ(x̂1, x̂2) ∈B(Hc), trc(ψ(x̂1, x̂2)†ψ(x̂1, x̂2)) <∞

}
, (4.2.34)

where trc represents the trace which is taken over the non-commutative configuration

space, B(Hc) describes the set of bounded operators on Hc. On the other way round, we

can say that the Hilbert space depicts the trace class, which envelops the Fock configuration
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space algebra. As these operators happen to be bounded, so this is again a Hilbert space. To

distinguish the classical configuration space from the quantum version, we will use cl and qu

as a subscript. This notation is also used to distinguish operators in the classical or quantum

Hilbert space.

The Heisenberg algebra, for our system, is substituted by the non-commutative Heisen-

berg algebra [382]. For the two dimensional systems, it is depicted as:

[xi, p j] = i}δi j, [xi, x j] = iθi j, [pi, p j] = 0. (4.2.35)

We consider operators X̂i and P̂i which is the unitary representation of the algebra which

acts on the Hilbert space Hq. This is an analogous representation of the Schrödinger form of

the Heisenberg algebra and is depicted as:

X̂iψ(x̂1, x̂2) = x̂iψ(x̂1, x̂2)

P̂iψ(x̂1, x̂2) =
}

θ
εi j[x̂ j,ψ(x̂1, x̂2)]. (4.2.36)

The coordinates are only considered as non-commutative in Eq. (4.2.35). This is con-

sidered so that we can define the expression Eq. (4.2.36) which requires the commutating

momentum to be consistent. Now we will consider systems where the momentum compo-

nent is also non-commutative in nature. So the commutation relation for the modified form

is expressed as:

[xi, p j] = i}δi j, [xi, x j] = iθi j, [pi, p j] = iΓi j. (4.2.37)

To apply the defined formalism, we have to boil down the commutation relation in Eq. (4.2.37)

to the commutation relation described in Eq. (4.2.35) by applying a linear transformation

over the momentum and the coordinates. The newly transformed coordinates yi and momen-

tum πi is expressed as:

yi = xi

πi = αpi +βεi jx j. (4.2.38)

where α = ±}√
}2−Γθ

and β = }θ (1−α). For this values of α and β the new coordinate and the

momentum will satisfy the commutation relation given in Eq. (4.2.35). We have a critical

value for the parameter Γ which is described as Γ = }
2

θ . If Γ < }
2

θ then the system is unitary

in its nature and if Γ > }
2

θ then the system lose its unitary.
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In non-commutative quantum mechanics, the Gazeau–Klauder coherent states are stud-

ied using this formalism. This approach is used to describe the non-commutative quantum

mechanics in terms of the extended objects. For details, one can look into the ref. [383,384].

We will be considering canonical formalism for our analysis. We will develop a better

bound on the extended uncertainty relation and analyze the impact of the non-commutative

parameter on the thermodynamic cycles.

4.3 Non-commutative harmonic oscillator (NHO)

Now we will explore different potential problems like a harmonic oscillator, coupled har-

monic oscillators, and infinite potential well problems for the different non-commutative

space structures. We will be considering these systems as the working medium for the anal-

ysis of the thermodynamics process. So, we are going to explore the working principle of

these working mediums in the chapter. We initiate our discussion with the basic notion of

squeezed state. We can obtain the squeezed states by applying the Glauber’s unitary dis-

placement operator D(α) on the squeezed vacuum state [385]. The mathematical form is

|α,ξ〉 = D(α)A(ξ)|0〉, where D(α) = e(αα†−α∗α) and A(ξ) = e(ξa†a†−ξ∗aa). Here α, ξ are the dis-

placement and squeezing parameters, respectively, and A(ξ) is the unitary squeezing operator.

The ordering of the displacement and the squeezing operator are equivalent and it amounts to

a change of parameter [385]. We can also construct the squeezed state |α,ξ〉 using the ladder

operator. It is obtained by performing the Holstein-Primakoff/Bogoliubov transformation on

the squeezing operator [385]. It is defined as (a + ξa†)|α,ξ〉 = α|α,ξ〉 where a, ξ ε C. The op-

erators a,a† are the bosonic annihilation and creation operators, i.e., a†|n〉 =
√

k(n + 1)|n+1〉

and a|n〉 =
√

k(n)|n−1〉, where k(n) is a general function which leads to different generalized

models.

The one-dimensional harmonic oscillator in the non-commutative space is defined as [386–

388]:

H =
P2

2m
+

1
2

mω2X2−}ω
(1
2

+
γ

4

)
, (4.3.1)

satisfying the relations:

[X,P] = i}(1 + γ̃P2), X = (1 + γ̃p2)x, P = p. (4.3.2)

Here γ is a dimensionless constant and γ̃ = γ/(mω}) has the dimension of inverse squared

momentum. The observables X,P representing the non-commutative space shown in (4.3.2)
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are expressed in terms of the standard canonical variables x, p satisfying [x, p] = i}. The

Hamiltonian defined in (4.3.1) is non-hermitian with respect to the inner product. The

non-commutative Hamiltonian of the one-dimensional harmonic oscillator is derived from

the standard one-dimensional harmonic oscillator which satisfies the condition [Xi,P j] =

i}(1+ γ̃P2). The last term on the right-hand side appears during this transformation. The right

side of the equation has a parameter γ, which represents the non-commutative parameter. We

can tune the energy spectrum of the system by varying the non-commutative parameter.

We can construct the Hermitian counterpart of the defined non-Hermitian Hamiltonian

shown in (4.3.1), if we assume the Hamiltonian H to be a pseudo-Hermitian, i.e., the non-

Hermitian Hamiltonian H and the Hermitian Hamiltonian h are interlinked by a similarity

transformation h = µHµ−1. Here µµ† is the positive definite operator, and it plays the role of

the metric. Now, we can represent the eigenstates of the Hamiltonians H and h as |φ〉 and

|ϕ〉, respectively. They are related as |φ〉 = µ−1|ϕ〉. The Dyson map µ takes the form µ = (1 +

γ̃p2)−1/2. The Dyson map µ is defined by the same set of operators as that of the Hamiltonian.

The Dyson map can be expressed in the general form as shown in previous works [389,

390] with some assumption. Following the same methodology, the relation between the

Dyson map µ and the Hamiltonian parameters can be developed, which in turn satisfies the

commutation relations [xi, x j] = iθi j, where θi j is considered as a constant antisymmetric

tensor. Considering this metric, we can compute the Hamiltonian h as:

h = µHµ−1

=
p2

2m
+

1
2
ω2x2 +

ωµ

4}

(
p2x2 + x2 p2 + 2xp2x

)
− }ω

(1
2

+
µ

4

)
+O(µ2). (4.3.3)

Now we will use the perturbation treatment to decompose the Hamiltonian (4.3.3) into

h = h0 +h1, where h0 is taken to be the standard harmonic oscillator and h1 as the perturbation

part. Using the perturbation theory, the energy eigenvalues of H and h evolves to:

En = }ω(An + Bn2) +O(µ2), (4.3.4)

where A = (1 +µ/2) and B = µ/2. The corresponding eigenstates of the system are
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|ψn〉 = |n〉−
γ

16

√
(n−3)(4)|n−4〉

+
γ

16

√
(n + 1)(4)|n + 4〉+O(µ2), (4.3.5)

where P = Πn−1
k=0 (P + k) represents the Pochhammer symbol with the raising factorial. Now

we have all the prerequisites for the analysis of the thermodynamic cycles in these space

structures.

4.4 Coupled Harmonic Oscillator

We will examine a coupled harmonic oscillator (HO) [391, 392] system specified by the

coordinates x1, x2 and masses m1,m2. One can describe this using the Hamiltonian as the

sum of free and interacting parts

Hα =
p2

1

2m1
+

p2
2

2m2
+

1
2

(
C1x2

1 +C2x2
2 +C3x1x2

)
, (4.4.1)

where C1,C2,C3 are constant parameters and p1, p2 are the momentum of the two oscillators.

Re-scaling the position variables of the oscillators we have:

xα =
(m1

m2

) 1
4 x1, x$ =

(m2

m1

) 1
4 x2, (4.4.2)

and similarly for the momentum we have:

pα =
(m2

m1

) 1
4 P1, p$ =

(m1

m2

) 1
4 P2. (4.4.3)

So, the Hamiltonian Hα in Eq. (4.4.1) using Eq. (4.4.2), (4.4.3) takes the form:

Hα1 =
1

2m
(p2
α+ p2

$) +
1
2

(c1x2
α+ c2x2

$+ c3xαx$), (4.4.4)

where the parameters take the form:

m = (m1m2)1/2, c3 = C3, c1 = C1

√
m2

m1
, c2 = C2

√
m1

m2
.

The Hamiltonian (4.4.4) represents the interaction between the two oscillators. The anal-

ysis of the system for this Hamiltonian is not so straightforward. To streamline the situation
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we transform to new phase variables

yi = Mi jx j, qi = Mi j p j, (4.4.5)

where Mi j takes the form Mi j =

cos θ2 −sin θ
2

sin θ
2 cos θ2

. Here, Mi j is a unitary rotation operator

with the angle θ. Using this transformation (4.4.5) the Hamiltonian (4.4.4) takes the form

H f inal =
1

2m
(q2
α+ q2

$) +
K
2

(e2ζy2
α+ e−2ζy2

$), (4.4.6)

where K =

√
c1c2− c2

3/4, eζ =
c1+c2+

√
(c1−c2)2+c2

3
2K . Here eζ describes the coupling between

the two coupled oscillators. The Hamiltonian has to satisfy the conditions 4c1c2 > c2
3 and

α =
c3

c2−c1
. Solving the Hamiltonian (4.4.6) for the eigenvalues we get

En1,n2 = }ωϑ

(
eζ

(
n1 +

1
2

)
+ e−ζ

(
n2 +

1
2

))
. (4.4.7)

Eq. (4.4.7) represents the energy spectrum of the two coupled harmonic oscillators in com-

mutative space and ωϑ represents the frequency of the oscillator.

4.4.1 Coupled HO for non-commutative space

Now, we will analyze two coupled HO in NC spacetime. Based on the Heisenberg-Weyl

algebra [393] the NC space structure abides the commutation relation

[xi, x j] = iθi j, [xi, p j] = i}δi j, [pi, p j] = 0,

where θi j = εi jθ is the non-commutative parameter and δi j is the Kronecker delta which

results in one when i = j and zero otherwise. Here εi j is an antisymmetric matrix and so the

non-commutative parameter θi j is a real and anti-symmetric matrix. The non-commutative

parameter in the space-space like the case, i.e., when the space coordinate and the time

commutes with each other, the dimension of θi j is (length)2 and in the case of space-time,

the dimension of this parameter is length . time. In our space structure models, the non-

commutative parameters and their associated fundamental lengths are of the order of the

Planck length. In this work, we have studied the models and their effects on thermodynamic

cycles in natural units where } = 1 and c = 1. One can derive this relation by using the star
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product definition

f (x)?h(x) = exp
{ i

2
θi j∂xi∂y j

}
f (x)h(y)

∣∣∣∣
x=y
, (4.4.8)

where f and h are two arbitrary functions of two variables x and y. This defines the general-

ized quantum mechanics which boils down to the standard one when θ = 0. We can develop

the Hamiltonian for this space structure by using the definition (4.4.8) in Eq. (4.4.4), for NC

space structure. The Hamiltonian takes the form

HNC
α1

=
1

2m

(
p2

1 + p2
2

)
+

c1

2

(
x1−

θ

2}
p2

)2
+

c2

2

(
x2 +

θ

2}
p1

)2

+
c3

2

(
x1−

θ

2}
p2

) (
x2 +

θ

2}
p1

)
. (4.4.9)

By transforming the Hamiltonian (4.4.9), we can develop a compact form for the Hamil-

tonian. It takes the form

HNC
1 =

1
2M

(
Ξ2

1 +Ξ2
2

)
+

K
2

(
Θ2

1 +Θ2
2

)
+

Kθ
2}

(
Θ2Ξ1−Θ1Ξ2

)
, (4.4.10)

where M depicts the effective mass of the system. It is described as M = m

1+

(
mωϑθ

2}

)2 . The

effective mass, M, boils down to the defined mass m when θ = 0. To establish the compact

form of the Hamiltonian, we have rescaled the variables to new coordinates Ξi and Θi. If we

compare Eq. (4.4.10) with Eq. (4.4.6), we will encounter an extra term in the Hamiltonian of

NC space which is a function of θ. The new co-ordinates defined in Eq. (4.4.10) (Θ, Ξ) which

represents the position and the momentum variables respectively are expressed in terms of

creation and annihilation operators as:

Θi =

√
}Ω

2K

(
bi + b†i

)
, Ξi = i

√
M}Ω

2

(
b†i −bi

)
, (4.4.11)

which satisfy the relation

[bi,b
†

j] = δi j,

where bi,b
†

j are the annihilation and creation operator respectively. The effective frequency

Ω is a function of θ and is described as Ω =

√
K
M . We can re-define the Hamiltonian in

Eq. (4.4.10) by transforming it with another set of operators. The new Hamiltonian takes the

form

HNC
f inal = }Ω1B†1B1 +}Ω2B†2B2 +}Ω, (4.4.12)
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where Ω1 = Ω+ Kθ
2} ,Ω2 = Ω− Kθ

2} . The new operators are expressed as

B1 =
1
√

2
(b1 + ib2), B2 =

1
√

2
(−b1 + ib2), B1 =

1
√

2
(b†1− ib†2), B2 =

1
√

2
(−b†1− ib†2),

where b1,b2 are the annihilation operator and b†1,b
†

2 are the creation operator. The most com-

pact form of the Hamiltonian for the considered NC space structure is defined in Eq. (4.4.12).

Solving this Hamiltonian the energy eigenvalues results as

ENC
n1,n2

= }Ω1n1 +}Ω2n2 +}Ω. (4.4.13)

The energy spectrum for the coupled HO for the considered NC space structure is depicted

in the Eq. (4.4.13).

4.4.2 Coupled HO for generalized NC space

We will consider a generalized NC space for our analysis. We call this generalized NC space

because the deformation is considered for both the co-ordinate ad momentum space, i.e., the

commutation relation for both these space structures results in non-zero. The position and

the momentum of this space structure satisfies the following commutation relation

[x̂i, x̂ j] = iγi j , [ p̂i, p̂ j] = iξi j , [x̂i, p̂ j] = i}δi j ,

where γi j = εi jγ, ξi j = εi jξ is the non-commutative parameter and δi j represents the Kronecker

delta. Here εi j represents an antisymmetric matrix. We can define the Hamiltonian for this

space structure (as in [392]) by separating out the Hamiltonian (4.4.6) into two parts which

are described as:

H GNC
1 =

eζ
√

K sina
√

2
yα+

cosa
√

2m
q$

2

+

e−ζ
√

K sinb
√

2
y$+

cosb
√

2m
qα

2

,

H GNC
2 =

eζ
√

K cosa
√

2
yα−

sina
√

2m
q$

2

+

e−ζ
√

K cosb
√

2
y$−

sinb
√

2m
qα

2

. (4.4.14)

Here a and b take values such that:

sin(a−b) =
}
√

Km(eζ + e−ζ)
λ1

,cos(a−b) =
Kmγ− ξ
λ1

,

sin(a + b) =
}
√

Km(eζ − e−ζ)
λ2

,cos(a + b) = −
Kmγ+ ξ

λ2
,
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where λ1 = (eζ + e−ζ)}
√

Km
√

1 +∆1 , and λ2 = (eζ − e−ζ)}
√

Km
√

1 +∆2 . Here ∆1 and ∆2

denote the non-commutative effect of the phase space. When γ = ξ = 0, we have ∆1 = ∆2 =

0, and it returns to the ordinary commutative phase space. ∆1, ∆2 is evaluated as ∆1 =

(Kmγ−ξ)2

(eζ+e−ζ )2}2Km , and ∆2 =
(Kmγ+ξ)2

(eζ−e−ζ )2}2Km .

By further simplification the compact form for a and b is evaluated as

a =
1
2

(
arctanΛ+ arctanκ

)
,

b =
1
2

(
arctanΛ− arctanκ

)
,

where Λ=
}
√

Km(eζ−e−ζ )
−(Kmγ+ξ) , and κ=

}
√

Km(eζ+e−ζ )
Kmγ−ξ . To obtain the eigenvalues we have to solve

the Hamiltonian (4.4.14). So, the energy eigenvalues of the Hamiltonian for the considered

NC space results to

En1,n2 = E
(1)

n1
+ E

(2)

n2

=
1

2m

(
(n1 + n2 + 1)λ1 + (n1−n2)λ2

)
=
}ωϑ

2

(
(n1 + n2 + 1)(eζ + e−ζ)

√
1 +∆1 + (n1−n2)(eζ − e−ζ)

√
1 +∆2

)
= }

(
n1ωa + n2ωb +

ω

2
(eζ + e−ζ)

√
1 +∆1

)
, (4.4.15)

where the frequencies are defined as:

ωa =
ωϑ
2

{
(eζ + e−ζ)

√
1 +∆1 + (eζ − e−ζ)

√
1 +∆1

}
ωb =

ωϑ
2

{
(eζ + e−ζ)

√
1 +∆1− (eζ − e−ζ)

√
1 +∆1

}
. (4.4.16)

So, the energy spectrum of coupled harmonic oscillator for the generalized NC space is

depicted in Eq. (4.4.15).

4.5 Generalized Uncertainty Principle in relativistic regime

Here, we explore the analysis of generalized uncertainty principle [394] in the relativistic

regime. The well known quadratic GUP was first proposed in the work [395], which takes

the form as:

[xi, p j] = i}δi j(1 + g(p2)), (4.5.1)
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where i, j ε {1,2,3}, with δi j being the Kronecker delta function which results to 1 when

i = j and zero otherwise. Here, x and p represent the position and momentum of a particle

respectively. This form of the space structure was proposed for the non-relativistic regime.

The position operators for this model obeys the commutation relation

[xi, x j] = −i}g(p2)(xi p j− x j pi). (4.5.2)

For our analysis we consider a non-commutative space [394] which obeys the following

commutation relation

[xi, p j] = i}
([

1 + (ε −α)ζ2 pδpδ
]
ηi j + (β+ 2γ)ζ2 pi p j

)
, (4.5.3)

where i, j ε {0,1,2,3} and α, ε, β, γ are dimensionless parameters. The parameter ζ takes

the form ζ = 1
c Mpl

and has the dimension of inverse momentum and ηi j takes the signatures

{−,+,+,+} of the Minkowski spacetime. Here, Mpl is the Planck mass. Eq. (4.5.3) reduces

to non-relativistic limit (Eq. (4.5.1)) when c→∞, and when ζ→ 0 the system boils down to

the non-GUP limit where the standard Heisenberg algebra works.

If we take a clear note, we can visualize that the physical observables (the position and

the momentum) of the system are not canonically conjugate. By introducing the variables xi
0

and pi
0 (where pi

0 = −i} ∂
∂x0i

) which are canonically conjugate in nature the position and the

momentum can be expressed up to the second-order of ζ as1

xi = xi
0−αζ

2 pδ0 p0δxi
0 +βζ2 pi

0 pδ0x0δ+γζ2 pi
0,

pi = pi
0 (1 + εζ2 pδ0 p0δ). (4.5.4)

Using Eq. (4.5.4) the commutation relation for the position operators becomes

[xi, x j] = i}ζ2 2α+β

1 + (ε −α)ζ2 pδpδ
(xi p j− x j pi). (4.5.5)

The last two terms in the expression of xi of Eq. (4.4.4) break the isotropy of the space-

time and violates the relativity principles while introducing the preferred direction of pi
0. So,

from now onward we will consider β = γ = 0 for further analysis.

1Einstein’s summation convention is followed throughout this work.
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4.6 One-dimensional potential problems in NC space

with relativistic and GUP correction

In this section, we are going to revisit the analysis of some of the one-dimensional (1-D)

potential systems for this non-commutative space structure. For the analysis, we substitute

ε = α in Eq. (4.5.4) (we use this condition to keep the Poincare algebra undeformed) and

neglecting the last two terms of xi we have:

xi = xi
0−αζ

2 pδ0 p0δxi
0, (4.6.1)

pi = pi
0 (1 +αζ2 pδ0 p0δ).

The Klein-Gordon (KG) equation in terms of the variables pi
0 is

pδ0 p0δ(1 + 2αζ2 pρ0 p0ρ) = −m2c2, (4.6.2)

where m is the mass of the relativistic particle. Solving Eq. (4.6.2) in terms of pδ0 p0δ we get:

pδ0 p0δ = −
1

4αζ2 +
( 1
(4αζ2)2 −

m2c2

2αζ2

) 1
2 ,

' −m2c2−2αζ2m4c4−O(ζ4). (4.6.3)

The higher-order terms are discarded, and along with that, the other solution of the KG

equation is not taken into account as it does not reduce to m2c2 when ζ→ 0.

One can rewrite Eq. (4.6.3) as:

−E2 + c2 p2
0 + m2c4 + 2αζ2m4c6 = 0. (4.6.4)

Now solving the Eq. (4.6.4), we can evaluate the expression of the energy for the system. It

takes the form

E = mc2(1 +αζ2m2c2) +
p2

0

2m

(
1−

1
2
αζ2m2c2

)
−

p4
0

8m3c2

(
1−3αζ2m2c2

)
. (4.6.5)

The energy expression consists of the rest mass term, the non-relativistic kinetic energy term,

along with that it possesses relativistic and GUP corrections. Now, the Schrödinger equation

with relativistic and the GUP corrections, is defined as:
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i}
∂

∂t0
ψ(t0, x0) =

[
mc2(1 +αζ2m2c2) +

}2

2m
(1−

1
2
αζ2m2c2)∇2

0

+
}4

8m3c2 (1−3αζ2m2c2)∇4
0 + V(x)

]
ψ(t0, x0). (4.6.6)

One can solve Eq. (4.6.6) for a different potential problem with relativistic and GUP

correction, to develop the wavefunction and the physical energy of the considered problem.

We will consider two such potential problems for our analysis. One of which is the one-

dimensional infinite potential well, and the other is the harmonic oscillator.

4.6.1 One Dimensional Potential Well

The 1-D potential well for 1+1 dimensional case is defined as:

V(x) =

 V0, f or 0 < x < L,

∞, f or x ≤ 0 ∪ x ≥ L.
(4.6.7)

The physical dimensions of the 1-D box for the system under consideration can be evaluated

from Eq. (4.6.1). It s expressed as:

L = L0[1 +αζ2m2c2 +O(ζ4)]. (4.6.8)

Solving the Schrödinger equation (Eq. (4.6.6)) for this potential problem, the energy of the

system results to

En = −
n2}2π2

2mL2

[
1 +

3
2
αζ2m2c2

]
−
}4

8m2c2

[nπ
L

]4
. (4.6.9)

Here, the first term in the Eq. (4.6.9) corresponds to the non-relativistic energy of the sys-

tem with GUP-corrections, whereas, the last term of the expression depicts the relativistic

corrections.

4.6.2 Harmonic Oscillator

Harmonic oscillator is a well-defined potential problem. Here we are going to analyze the

harmonic oscillator for the system under consideration in a 1+1 dimensional case. The
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harmonic oscillator potential is

V(x) =
1
2

mω2x2.

Using this potential in the Schrödinger equation (Eq. (4.6.6)) and solving it, we can evaluate

the expression of the energy for this non-commutative spacetime model. The expression of

the energy is

En = }ω
(
n +

1
2

)[
1−

1
2
αζ2m2c2

]
−
}2ω2

32mc2

[
1−4αζ2m2c2

](
5n(n + 1) + 3

)
.

(4.6.10)

If one calculates the landau levels similar to the previously defined work [396], one will

come up with a bound on α. The bound is

α ≤ 1041.

Hereafter, for our analysis, we will consider α ∼ 1041.

The primary motivation for the exploration of the deformed space structure for the anal-

ysis of thermal systems was triggered by the question of whether the change in the space

structure can enhance the performance of the thermal machines. For that, we have consid-

ered different deformed space structures with different working models for the analysis of

thermal engines. This is an open area for exploration.

4.7 Quantum Information Loss Paradox

At the turn of the twentieth century, Einstein formulated the general theory of relativity [397].

With its development, our basic understanding of the fabric of the Universe (space-time and

its geometry) became mathematically more clear. With time, one of the strongest predictions

of the general theory of relativity (GR) became the existence of black holes. The theory of

GR is fundamentally based on the Einstein equations. It’s a set of ten coupled nonlinear

partial differential equation (PDE) with four independent parameters [398, 399].

Gab = Rab−
1
2Rgab =

8πGTab

c4 +Λgab, (4.7.1)
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where Rab is the Ricci curvature tensor, R is the Ricci scalar, gab is the metric tensor, G is

Newton’s gravitational constant, Tab is the stress-energy tensor, c the usual speed of light, and

Λ the cosmological constant. 2 Exact solutions to this set of PDEs can describe black holes

(among other things) with different physical properties (static : Schwarzchild solution [400],

rotating : Kerr- (Newman) solution [401], static with electric charge : Reissner-Nordström

solution ( [398, 399, 402–405]) etc. However, Stephen Hawking showed [5] that any given

black hole following the principles of quantum field theory, naturally emits thermal radia-

tions inversely proportional to its mass (M), with a given temperature (TH) of

kbTH =
}

2πλk
, (4.7.2)

where λk = 2rs/c is the characteristic time (in case of rotating black holes, there is an addi-

tional dependence on the angular momentum), rs(= 2GM
c2 ) is the Schwarzchild radius, while

kb and } are the usual Boltzmann constant and the reduced Planck constant.3

This is the Hawking radiation. It arises from the pair production of particles from quan-

tum fluctuations from the horizon of the black hole. One of these particles (one with positive

energy and outside the event horizon) leaves as radiation from the black hole to infinity and

the other stays trapped within the black hole. As a result of the radiation, it is suggested that

the black hole in the process loses mass (and hence the surface area) through the outgoing

particles and hence evaporates with time. This is called the evaporation of a black hole.

Observationally, it is very difficult to detect Hawking radiation as its temperature is many

orders less in comparison to the cosmic microwave background (CMB) temperature T ∼ 3K,

which overwhelms it (it is the reason why in last five decades of dedicated study we have

not been able to still detect any such signatures of black holes). This process, however, has

some deeper consequences. For one it violates the classical Hawking area theorem [406]

(black hole evaporation is a quantum effect) and other, an evaporating black hole, with los-

ing mass, means that the black hole’s lifetime is limited and beyond that period it potentially

loses all the information that was inside it. This creates a direct violation of the quantum

information conservation4. Quantum information which is quantified via the von-Neumann

2Inclusion of Λ in the Einstein equation takes into consideration of the background cosmology for a Fried-
mann–Lemaître–Robertson–Walker (FLRW) model. Although we don’t need this term for our analysis here,
but from the point of view of gravitational wave propagation, the evolution of background cosmology is gov-
erned by an FLRW universe, and hence for completeness, we presented the Einstein equation with the cosmo-
logical constant term.

3Hawking temperature of the black hole can be approximated from the values of the constant as TH ' 10−7K.
4Both in classical and quantum domain information conservation is fundamental, in classical physics this

is governed by the Liouville’s theorem of the conservation of the phase space volume [407], in the quantum
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entropy [111], similar to classical physics maintains the conservation principle, that the in-

formation in a closed isolated system will be conserved [408–412]. It is intuitive to show

that Hawking radiation generating from an initial pure state black hole, with the evolution of

time, would end up with mixed states as remnants, thus violating the unitary evolution prin-

ciple of the quantum mechanics and hence information lost during the process [413]. If the

Hawking radiation were somehow able to carry an imprint of the quantum information [414]

from within the horizon in its flight away from the black hole to infinity, it would still give

rise to new incongruency by violating the no-cloning theorem [413, 415].

In black hole theory, it was evident that energy can flow into the system, but it become

apparent from further research works [416, 417] that it can also flow out of the system.

So, it can act as an intermediary in the energy exchange process. The efficiency of energy

extraction from the system is maximum only when the horizon area remains unchanged [4,

418,419]. The analogy of the process with that of the thermodynamic behavior was a striking

feature where the horizon area plays the role of entropy. Since the advent of this analogy in

the 1970s, it is vigorously being pursued to get a deep understanding of black hole theory.

We can infer that there must be a relation between dM (the change of mass of the black hole)

and dA (the change in horizon area). In Penrose process [399, 420] one can find that when

dA = 0, one has dM =ΩαdJ +ΦαdQ, where Q and J are the charge of the black hole and the

angular momentum respectively, whereasΩα andΦα are the angular velocity and the electric

potential of the horizon respectively. This describes the change in the energy of the black

hole during the reversible process alike to the process of work done in a thermodynamic

system. It is equivalent to the First law of thermodynamics with the heat term missing. This

missing term is provided by κdA/8πG where κ depicts the surface gravity of the horizon. One

can define the surface gravity of the stationary black hole by assuming the event horizon as

a Killing horizon.

The analogy between the thermodynamic variable (i.e., temperature for this case) and the

surface gravity helps temperature to enter the first law of black hole theory which provides

the equivalence with the thermodynamic law [421–423]. Now, the fact that the tempera-

ture will remain constant over the horizon provides the equivalence with the Zeroth law of

thermodynamics, and the fact that it is near impossible to reduce it to zero provides the

equivalence with the third law [424]. Now according to the seminal work [425], a black hole

with thermodynamic temperature can be defined in terms of the efficiency of the heat engine.

This is proportional to the surface gravity of the black hole. We know that the temperature

domain, this is preserved via the unitarity of the S -matrix.
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can be expressed by virtue of the second law of thermodynamics which states that in a cycle

we cannot pump heat from a colder body to a hotter body with no other changes. The ratio of

the thermodynamic temperature for two equilibrium states is defined as Tin/Tout = Qin/Qout,

where the ratio Qin/Qout describes the heat in to that of the heat out during a reversible heat

cycle operated between two heat reservoirs. The most efficient engine is the one that has

the power to dump its heat into the cold bath. If we apply this definition to the black hole

theory, we encounter that the temperature of the black hole must be zero since with perfect

efficiency one has the empower to extract the entire rest mass of a particle as work. This is

executed by dumping the heat into the black hole by lowering it to the horizon. To do so, we

have to consider the condition of lowering the heat all the way to the horizon. This indicates

the analogy between the thermodynamic cycle with that of the black hole. So, we can infer

that the black hole itself is a thermodynamic object.

We can imbibe the concept of information paradox by means of a thought experiment.

Let us consider a pure state comprised of n EPR pairs, and the black hole happens to be

in a pure state initially. As the state of the system is pure in its form, the Von Neumann

entropy of the system, which quantifies the information vanishes. Now we throw one of

the qubits of each pair of the system into the black hole. Due to this incidence, the new

entanglement entropy, i.e., Von Neumann entropy of the states that remain outside of the

black hole (obtained by performing the trace out an operation on the interior of black hole

qubits) is nln2, where ln2 is for each pair. The entropy measure for the black hole is also

the same. After a certain period of time, the black hole gets evaporated, but the entropy of

the external states remains unchanged. It is obvious that the qubits that have fallen into this

black hole, i.e., the horizon of the black hole cannot have an influence over the matter that is

outside the black hole. If this happens, then it will violate the causality principle. So, we can

infer that in the thought experiment we started from zero initial entanglement entropy and at

the end, we have S = 2 ln2. On another way round, we can say that we started with a pure

state and ended up with a mixed state. This thought experiment thus outlines the paradox.

While analyzing the black hole information paradox, one must be careful that the results

of unitarity should only be applied to closed systems which ensures that the information

is conserved. From field theory, we know that a particle and an antiparticle are formed in

the vacuum, which is known as vacuum fluctuations. From the uncertainty principle (∆E∆t ∼

}/2), we know that these particles, which are also known as ‘virtual particles’, annihilate with

each other. Hawking has conveyed that vacuum fluctuations occur near the event horizon of

the black hole. He also showed that there is a high probability that one of the particles might
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escape the black hole horizon after its creation, and it depends on the temperature of the

black hole. The Hawking emission of using this vacuum fluctuation can be expressed as:

α(T )|1〉A|1〉B +β(T )|0〉A|0〉B, (4.7.3)

where |1〉 describes the presence of virtual particle and |0〉 describes the presence of the

particle. α(T ) and β(T ) denote that the emission process is thermal in nature. In this situation,

the particle A is outside the horizon, and the particle B is inside the horizon. So, the Hawking

radiation can be expressed as:

|ψHawking〉 =
|1〉|1〉+ |0〉|0〉

√
2

. (4.7.4)

From Eq. (4.7.4), we can infer that the black hole can be explored through information

theory. Here, in our case, we will study the information paradox using a quantum computer.

We consider a quantum computational tool for the exploration of the black hole information

paradox.

Many theories have surfaced to address the black hole information paradox. One of them

is the black hole complementarity principle [426], which tries to fix this problem by sug-

gesting that the occurrence of in-falling events are temporally relative based on the observer

frame, hence non-simultaneous and so unverifiable. Other theories include the holographic

principle [427], which states that the maximum number of states (degrees of freedom) in a

confined volume is proportional to its surface area. Recently, in their work [428], they have

proposed a new approach to tackle this problem while not disturbing the existing frame-

work of the black hole information paradox, of the violation of the monogamy principle

and the black hole evaporation process occurring simultaneously. Instead, they applied a

pseudo-density operator to account for temporal and spatial entanglement between maxi-

mally entangled particles inside and outside of the black hole event horizon. With the use

of the state tomography process, they simulated the scenario and successfully produced the

pseudo-random operators for the model, and gave measurements that were in excellent agree-

ment with the theoretical state’s value.
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The contents in this chapter are based on the article in Ref. [429].

The importance of UR is undeniable in almost all branches of physics and the recent

works [210, 430–438] convey it’s importance, especially those involving experiments in

quantum domain. Recently, various experimental tests have been performed to verify the

UR’s [193–195]. They are the main tool necessary for formulating quantum mechanics [193,

439, 440] and even quantum gravity [441]. Technologically, in present time, it is even more

important, as it has applications in quantum cryptography [181–183], and also in quantum

entanglement detection [184–187]. It is also used in quantum metrology [188] and quantum

speed limit research [189, 189–192, 442]. Likewise it is also used in space-time [443] and

gravity analysis [444]. It has important relevance in string theory [445] as well.

Further recently, Pati and Maccone [180] were able to develop a stronger UR, called

Pati-Maccone UR (PMUR), with a tighter lower bound. Using the algebraic square of sums

((a±b)2 = a2 + b2±2ab), they turned the product form of the uncertainty relation into an

119
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additive form:

∆A2 +∆B2 ≥ max (L1,L2), (5.0.1)

where L1 and L2 are defined as ±i〈[A,B]〉+
∣∣∣〈ψ|A±iB|ψ⊥〉

∣∣∣2 and 1
2 |〈ψ

⊥
A+B|A + B|ψ〉|2 respec-

tively. Here |ψ⊥A+B〉 is the state, orthogonal to the state of the system |ψA+B〉. The sign is

chosen in such a way that ±i〈[A,B]〉 yields a positive number.

Unlike the previously developed UR’s, the PMUR is able to provide a non-trivial solution

to the lower bound. For example, in the case of the relation (2.6.5), if one considers A and

B as incompatible for the states of the system |ψ〉, then the whole relation reduces to a trivial

case. However, for the case of PMUR, the lower bound happens to be almost always non-

trivial (i.e., non-zero) for the cases where |ψ〉 is a common eigenstate of A and B, and when

it is not. In the work [446], they have made a thorough derivation of PMUR relations, while

in the work [447], they have provided an experimental validation for the PMUR relation. It

is easy to see that the previous UR’s can be shown as special cases of the PMUR relation.

Here in this chapter, we will present our development on deriving the UR’s from Schrödinger’s

expression Eq. (2.6.5) and also the PMUR, both in product and as well as the sum of variance

forms in non-commutative space. The complete analysis is done following the methodology

of [448] but in non-commutative space, being motivated by the fact that the UR’s scenario

in NC space was strongly fueled by its mathematical background. Existing frameworks of

modern classical geometry are outlined by Riemann’s hypotheses of geometry [449], de-

fined by two important concepts of the manifold and line elements [450, 451]. The validity

of the infinitely small line element is connected to the basis of the respective metric of the

space [449]. However, in quantum mechanics, the domain of the space being operated on

fails to be a manifold. Along with that, we are also going to present the analysis using re-

verse UR, which is formulated in the work [448]. This is also useful in capturing the essence

of the quantum uncertainties [452–456]. During the analysis an interesting result comes out

for the non-linear model in NC space. It yields two different expressions for Schrödinger

and Heisenberg UR. The identification for these two relations does not arise in commutative

space, and even in the linear model of NC space.
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5.1 Tighter Uncertainty relation in Non-Commutative

Spacetime for Linear Harmonic Oscillator (LHO)

Till date, various NC space models have been proposed and analyzed. The proposed linear

models can be generalized as:

Xi = Ai, jx j, (5.1.1)

where Xi = [X1,X2, . . . ,X2n]T , xi = [x1, x2, . . . , x2n]T , and

Ai, j =



a1,1 a1,2 a1,3 . . . . . .a1,2n

a2,1 a2,2 a2,3 . . . . . .a2,2n

a3,1 a3,2 a3,3 . . . . . .a3,2n
...

...
...

...

a2n,1 a2n,2 a2n,3 . . . . . .a2n,2n.


Here X j are the coordinates of the non-commutative phase space, and x j are the known

commutative space coordinates. The variables ai j can take any constant values. Any linear

model can be easily procured from the generalized form given in Eq. (5.1.1) by replacing the

values of the components of Ai j. In this chapter, we will present two NC models, (one linear

and the other, non-linear). The models are presented below.

5.1.1 Model 1: Linear model

We take

X̂1 = x̂1−
λ

2
p̂2, X̂2 = x̂2 +

λ

2
p̂1, (5.1.2)

P̂1 = p̂1 +
γ

2
x̂2, P̂2 = p̂2−

γ

2
x̂1,

where λ and γ are constants (extracted from the matrix Ai j for the current model, where

n = 2.) This model is being used for the analysis of quantum gravity. The commutation

relation for these observables can be written as:

[X̂1, X̂2] = iλ}, [P̂1, P̂2] = iγ}, (5.1.3)

[X̂1, P̂1] = [X̂2, P̂2] = i}
(
1 +

λγ

4

)
.

The Robertson-Schrödinger uncertainty relation (RS) for position (X) and momentum
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(P) operators are represented as:

∆X̂2∆P̂2 ≥
∣∣∣∣12〈[X̂, P̂]〉

∣∣∣∣2 +
∣∣∣∣12〈{X̂, P̂}〉− 〈X̂〉〈P̂〉∣∣∣∣2. (5.1.4)

The expectation values, commutation and anti-commutation relations for the position X1 and

the momentum P1 operators for LHO with respect to our known canonical variables are:

[X̂1, P̂1] = i}
(
1 +

λγ

4

)
, (5.1.5)

〈X̂1〉〈P̂1〉 = 〈x̂1〉〈p̂1〉+
γ

2
〈x̂1〉〈x̂2〉−

λ

2
〈 p̂2〉〈p̂1〉−

λγ

4
〈p̂2〉〈x̂2〉, (5.1.6)

and

{X̂1, P̂1} = {x̂1, p̂1}−
λ

2
{ p̂2, p̂1}+

γ

2
{x̂1, x̂2}−

γλ

4
{ p̂2, x̂2}, (5.1.7)

respectively. Plugging in Eq. (5.1.5), (5.1.6), (5.1.7) in Eq. (5.1.4) we get:

∆X̂1
2
∆P̂1

2
≥
}2

4

(
1 +

λγ

4

)2
. (5.1.8)

So we can see that the RS inequality yields the same results as we can develop from the

Heisenberg UR relation (2.6.3). For the commutative space, there is no uncertainty in the

position or momentum operator. But in NC space, the uncertainties in the position and

momentum operators appear naturally.

The uncertainty of the position operator can be generated from Eq. (2.6.5) just by replac-

ing it with X1 and X2. Plugging in the commutation, anti-commutation and the expectation

relation in Eq. (2.6.5) for its corresponding X1 and X2 form, we get:

∆X̂1
2
∆X̂2

2
≥
}2λ2

4
. (5.1.9)

Similarly, for the momentum operator, we can develop the uncertainty relation for the

NC space by replacing the variables A and B by P1 and P2 in Eq. (2.6.5). Using the same

formalism as above, we get:

∆P̂1
2
∆P̂2

2
≥
}2γ2

4
. (5.1.10)

So we can conclude that the RS relation is equivalent in nature to the well known Heisen-

berg relation for LHO.
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Figure 5.1. Shown above are the lower (Eq. (5.1.12)) and the upper bound (Eq. (5.2.3)) for the
product of uncertainty of X and P of Model 1, for |ψ〉 = cosθ|ψ0〉− sinθ|ψ1〉. Here ψ0 is the ground
state and ψ1 is the first excited state of LHO. The green shaded region describes the right side
of the SR relation Eq.(2.6.5). The doted line is the plot of SR relation. Here it is shown that the
lower bound of (Eq. (5.1.12)) is better than Eq.(2.6.5).

Now we proceed to compute the tighter UR relation. The expression is given as:

∆A2∆B2 ≥max
{|ψn〉}

1
4

(∑
n

∣∣∣∣〈[Ā, B̄ψn ]〉ψ+ 〈{Ā, B̄ψn }〉ψ
∣∣∣∣2). (5.1.11)

Eq. (5.1.11) is tighter from Eq. (2.6.5) in the sense that it is achieved by optimizing the

UR over the complete orthonormal bases. We want to optimize our UR in NC space using

Eq. (5.1.11).

For the (X1,P1) pair, it reduces to

∆X2
1∆P2

1 ≥max
{|ψn〉}

1
4

(∑
n

∣∣∣∣〈[X̄1,
¯Pψ1n]〉ψ+ 〈{X̄1,

¯Pψ1n}〉ψ

∣∣∣∣2), (5.1.12)

where

〈[X̄1,
¯Pψ1n]〉ψ = 〈ψ|X̄1|ψn〉〈ψn|P̄1|ψ〉− 〈ψ|ψn〉〈ψn|P̄1X̄1|ψ〉. (5.1.13)

Similarly, the anti-commutation relation follows.

Here, we have considered |ψ〉 as the state of the system and {|ψn〉} as the basis states of

the LHO. We have considered the states of LHO in NC space equivalent to the states of our

known commutative space, as the models are developed by coupling the canonical variables

of commutating space.
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Figure 5.2. Similar to Fig. 5.1 we plot for λ = γ = 0 and λ = γ = 0.15. This plot shows that it is
difficult to detect the NC space from the commutating space as the difference is too small.

The better lower and upper bound of the system for our first model, as shown in Fig. 5.1,

are obtained by optimizing the UR over the compete set of bases of the considered system.

Again, we have simulated Eq. (5.1.12) and Eq. (5.2.3) using Python with linear complexity.

Sum of UR in NC space is an interesting mathematical object for study. The product

of variance can be trivial even for two incompatible observable. This is where the sum of

uncertainty comes into play, where it captures the uncertainty in the observables even when

it is non-trivial. Stronger UR has been put forward before in the work of [180]. Here we are

using the definition proposed by Mondal et al. that yields better bounds than the previous

ones, without requiring any further optimization.

The Sum of UR for two incompatible observable is:

∆A2 +∆B2 ≥
1
2

∑
n

(∣∣∣∣〈ψn|Ā|ψ〉
∣∣∣∣+ ∣∣∣∣〈ψn|B̄|ψ〉

∣∣∣∣)2
. (5.1.14)

For the current model, we replace A = X1 and B = P1, giving

∆X2
1 +∆P2

1 ≥
1
2

∑
n

(∣∣∣∣〈ψn|X̄1|ψ〉
∣∣∣∣+ ∣∣∣∣〈ψn|P̄1|ψ〉

∣∣∣∣)2
. (5.1.15)

Similar to Eq. (5.1.15), we can develop the sum of uncertainty for the position and momen-

tum operators of the NC space equivalently.

The better lower and upper bound of the system for our first model, as shown in Fig. 5.2,
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are obtained by optimizing the UR over the compete set of bases of the considered system.

To do so, we have simulated Eq. (5.1.15) and Eq. (5.2.6) in Python with a complexity that is

linear in the number of bases.

5.1.2 Model 2: Non-linear model

In this section, we will present the analysis of a second model, non-linear in nature. One

of its applications is in string theory [457]. The representation of position and momentum

operator for this non-linear model are:

X̂1 = x̂1, X̂2 = x̂2, (5.1.16)

P̂1 = p̂1(1−αp̂1 + 2α2 p̂1
2), P̂2 = p̂2(1−αp̂2 + 2α2 p̂2

2),

where α =
α0lpl
} and α0 is of order of 1 and lpl = 10−35m (Planck length).

The commutation relation of this non-linear model includes the linear and the quadratic

term in p, in the Planck regime [457].

[X̂ j, P̂ j] = i}[1−αp̂ j + 4α2 p̂ j
2], j = 1,2. (5.1.17)

We are going to develop Eq. (5.1.4) for this current model in a similar fashion. Evaluating

the expectation of the position and the momentum operator, we get:

〈X̂1〉〈P̂1〉 = 〈x̂1〉〈p̂1−αp̂1
2 + 2α2 p̂1

3〉 (5.1.18)

= 〈x̂1〉〈p̂1〉−α〈x̂1〉〈p̂1
2〉+ 2α2〈x̂1〉〈p̂1

3〉.

The anti commutation relation for this model is given as:

{X̂1, P̂1} = {x̂1, ( p̂1−αp̂1
2 + 2α2 p̂1

3)} (5.1.19)

= {x̂1, p̂1}−α{x̂1, p̂1
2}+ 2α2{x̂1, p̂1

3}.

Plugging in the above relations in Eq. (5.1.4), we get:

∆X2
1∆P2

1 ≥
1
4
}2[1−αp + 4α2 p2]2 +

1
4

C2n[(n−1)
1
2 + (n + 1)

1
2 ]2, (5.1.20)

where C = 6α2}(}2 )
3
2 (maω)

1
2 , ma is the mass of the particle and ω is the angular frequency.

For Eq. (5.1.20), n takes integer values from [1,∞]. The state of the system is having n states,
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Figure 5.3. Shown above are the lower (Eq. (5.1.12)) and the upper bound (Eq. (5.2.3)) for the
product of uncertainty of X and P of Model 2, for |ψ〉 = cosθ|ψ0〉− sinθ|ψ1〉. Similar to the linear
model the lower bound of (Eq. (5.1.12)) is better than the Eq.(2.6.5) for non-linear model.

where n = 0 corresponds to the ground state and n = 1 correspond to the first excited state

and so on.

We will optimize the UR from the well-known form as in Eq.(5.1.12), where one can

describe the different components using Eq. (5.1.13).

We have encountered an interesting difference while dealing with this linear and non-

linear model. For the linear model of NC space and even in the case of commutative space

there was no scope of differentiating the Heisenberg and SR relation. But in the case of

the non-linear model, we encountered an extra scaling factor for SR relation in Eq. (5.1.20)

along with the form that we get while deriving the Heisenberg relation.

The better lower and upper bounds of the system for our second model, as shown in

Fig. 5.3, are obtained by optimizing the UR over the compete set of bases of the considered

system. We have simulated Eq. (5.1.12) and Eq. (5.2.3) in Python with linear complexity.

5.2 Reverse uncertainty relations for NC spacetime

The computation of the reverse UR for NC space models is presented in this section. It

allows putting a constraint on the upper limit of the uncertainty bound. First, we are going

to develop the upper bound in uncertainty for the linear model followed by the non -linear

model. For this, we are going to use reverse Cauchy-Schwarz inequality [458–461]. It is
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defined as: ∑
i, j

c2
i d2

j ≤
CD + cd
4CDcd

(∑
i, j

cid j

)2

, (5.2.1)

where 0< c≤ ci ≤C <∞, 0< d ≤ di ≤D<∞ for some constants c, d, C and D for all i = 1, ...n.

One can obtain the product of variance of two observables using the above inequality as:

∆A2∆B2 ≤
Λ
ψ
αβ

4

(∑
n

∣∣∣∣〈[ A,B
ψ
n ]〉+ 〈{A,B

ψ
n }〉

∣∣∣∣)2

, (5.2.2)

where ΛψΨαβ =

(
Mα
ψΨ

Mβ
ψΨ

+mα
ψΨ

mβ
ψΨ

)2

4Mα
ψΨ

Mβ
ψΨ

mα
ψΨ

mβ
ψΨ

with Mα
ψΨ

= max{|αn|}, mα
ψΨ

= min{|αn|}, Mβ
ψΨ

= max{|βn|}

and mβ
ψΨ

= min{|βn|}. Here αn, βn are the real constants, whose square form represents the

probability of finding the particle in that state. For Model 1, we have to replace A = X1 and

B = P1 in Eq. (5.2.2), giving

∆X2
1∆P2

1 ≤
Λ
ψ
αβ

4

(∑
n

∣∣∣∣〈[ X1,P1
ψ
n ]〉+ 〈{X1,P1

ψ
n }〉

∣∣∣∣)2

. (5.2.3)

Unlike the conventional commutative space, one has to develop Eq. (5.2.3) separately for

both the position and the momentum operators. This can be generated by substitution of the

variables in Eq. (5.2.2) by the position and the momentum operators.

The reverse uncertainty relation for the sum of variance can be developed using the

Dunkl-Williams inequality [461]. Using this inequality, we get:

∆A +∆B ≤

√
2∆(A−B)√
1− Cov(A,B)

∆A.∆B

. (5.2.4)

Squaring both sides of the Eq. (5.2.4) we get the upper bound of the sum of variance for two

variables as:

∆A2 +∆B2 ≤
2∆(A−B)2

1− Cov(A,B)
∆A∆B

−2∆A∆B. (5.2.5)

For our linear model we replace A = X1 and B = P1 of the corresponding Model 1 in

Eq. (5.2.5) to get

∆X2
1 +∆P2

1 ≤
2∆(X1−P1)2

1− Cov(X1,P1)
∆X1∆P1

−2∆X1∆P1, (5.2.6)

where

Cov(X1,P1) =
1
2
〈ψn|{X1,P1}|ψ〉− 〈ψn|X1|ψ〉〈ψn|P1|ψ〉 (5.2.7)
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Figure 5.4. Shown above are the lower (Eq. (5.1.15)) and the upper bound (Eq. (5.2.6)) for the
sum of uncertainty of X and P of Model 1, for |ψ〉 = cosθ|ψ0〉 − sinθ|ψ1〉. This is a general plot
with arbitrary (theoretical) values of γ, λ.

and

∆(X1−P1)2 = 〈ψn|(X1−P1)2|ψ〉− 〈ψn|(X1−P1)|ψ〉2. (5.2.8)

Unlike the commutative space, to develop the sum of variance for the position operator

for our model, we have to consider A = X1 and B = X2 respectively. Similarly, to generate

the sum of variance for the momentum operators, we have to substitute A = P1 and B = P2

in Eq. (5.2.5). The covariance can be calculated in the same fashion as shown in Eq. (5.2.7).

The treatment for the upper bound for the sum of variances of Model 2 is exactly similar

to that of the Model 1. Replacing A = X1 and B = P1 in Eq. (5.2.5) of Model 2, we obtain

the expression of this model in the form, of Eq. (5.2.6).

The tighter bound of the uncertainty relation conveys that for a fixed amount of spread in

the measurement outcome of one of the observables the amount of spread for the other ob-

servable is bounded from both sides. The experimental realization to probe deformations of

the canonical commutator [462] and non-commutative theories [463] using quantum optics

have been explored. So, the bound in the uncertainty measure in non-commutative space can

be experimentally verified by extending the approach followed in the work [193].

The better lower and upper bounds for the sum uncertainty relation of the system for

both the model, as shown in Fig. 5.4, and Fig. 5.5 are obtained by optimizing the UR over

the compete set of bases of the considered system. To do so, we have simulated Eq. (5.1.15)

and Eq. (5.2.6) in Python with a complexity linear with the number of bases.
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Figure 5.5. Similar to Fig. 5.4, but computed with the Model 2.

The bound in the uncertainty will be an important factor in the quantum metrology in non-

commutative space structure. It will pose an upper bound in the error of the measurement

and quantum evolution.

5.3 Chapter Summary

We see from the plots, that our computation of the LHO using NC models is consistent yet

not similar to the results obtained from the traditional commutative space models. From

Fig. 5.1, we can infer that the lower bound (blue curve) is better than the SR relation (green

dotted curve). In Fig. 5.2, we have re-plotted Fig. 5.1 (excluding the SR relation), but for

two different set of parameter values (γ, λ, [0,0.15]). Where, the first case γ,λ = 0, is a

special case where the model reduces to the standard commutative space case. Here we can

see that the difference between the bounds of the commutative space(γ,λ = 0) and the non-

commutative space (γ,λ = 0.15) is very small. We speculate that this is why differentiating

between the commutative and NC space is practically challenging. Fig. 5.3 is generated with

the non-linear model. This plot further verifies the consistency of the PMUR relations in the

NC space. However, owing to the non-linear nature of this model, the curve from the SR

relation appears to have a deviation from nature exhibited in Fig. 5.1 and 5.2. We can also

see that, in a small part the SR relation exceeds the lower bound provided by the PMUR

in this model (shaded drab region), thus making it open for speculation on the tightness of
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the bound over the SR lower bound in such non-linear NC models. In Fig. 5.4 and 5.5 we

have presented the upper and the lower bound from the sum of variances using the PMUR

relations. The plot gives us an allowed region for the range of uncertainty (for PMUR using

the sum of variances only) to be valid. One can see that the linear model (Fig. 5.4) gives a less

strict/more wider allowed range(shaded orange region) for the PMUR relation in comparison

to Model 2, which is non-linear. The reason for such difference between the models is open

for further speculations. Future experimental verifications of these results could help the

community better with the understanding of the nature of working of these two models. In

addition from Eq. (5.1.20), we have shown to the best of our knowledge for the first time

that there is a difference in-bounds between the SR relation and the Heisenberg relation for

a non-linear model operating in NC space. The URs have been the cornerstone of quantum

theory. Even after nine decades of evolution of the URs, it is still open for further analysis

and speculations.

Here, we have established the tighter URs for a linear and a non-linear model for two

incompatible variables in NC space. We have also established the upper bound of the UR

for the sum and product of our models. Together these URs and the bounds can play an

important role in quantum cryptography and quantum metrology. For example, depending

on the error margin of the underlying space, one can select an error-correcting code to design

an error-free algorithm and protocols in that space. This can potentially lead to optimization

of error analysis in the quantum domain.

This work has lead to the foundation and motivation for analyzing thermodynamic vari-

ables and systems from the eye of uncertainty relation where we have developed a bridge

between the uncertainty relation of the working medium with the thermodynamic variables.

The detail analysis and foundation are described in the next two chapters regarding this. An-

other aspect that evolved was that whether the change of the space structure can provide that

much non-equilibrium effect to the system such that it boost’s the efficiency of the thermal

machines.



6 Quantum Thermal Engine’s

Efficiency Bound from Uncertainty

Relation in Non-relativistic Regime

Contents

6.1 Thermal uncertainty relation . . . . . . . . . . . . . . . . . . . . 132

6.2 Bound on sum uncertainty for one dimension potential well . . . . . . . 135

6.3 Correlation of thermodynamic quantities with uncertainty . . . . . . . . 137

6.4 Stirling cycle and bound on efficiency . . . . . . . . . . . . . . . . 138

6.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 142

The contents in this chapter are based on the article in Ref. [36].

Out of the various aspects of quantum thermodynamics, one of them comprises of the

analysis of heat engines and refrigerators in microscopic regime [15, 68, 69, 74, 110, 116,

134, 464, 465], and also in thermalization mechanism [76]. Various working models for

heat-engine in the quantum regime have been realized and studied. Along with that its ex-

perimental setup has also been proposed in some works [466–470]. Heat engines are gener-

ally discrete or continuous in their nature. Two-stroke and four-stroke engines fall into the

discrete group whereas a turbine belongs to the continuous engine.

Numerous quantum systems are considered for analysis of the quantum thermodynamics

cycle, such as particles in a potential well [37, 471], harmonic oscillator [38], and spin 1/2

particles system [39]. For example, the quantum Szilard engine has been modeled using

potential well. One-dimensional infinite potential well [196, 197] is the simplest problem in

131
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non-relativistic quantum mechanics. This exemplifies how the wave nature of the particle

quantizes the energy. When we place a barrier inside the middle of the well, the single po-

tential well gets converted to a two-chambered potential well i.e., a double potential well.

The thorough analysis of this model has been shown in the work [472]. Now modeling rela-

tivistic heat engines using potential well is not so straightforward. As in relativistic quantum

mechanics, the study of the one-dimensional potential well is not so straightforward. New

features appear in the energy spectra due to spin and energy-momentum relation. The so-

lution for the relativistic model of the potential well is shown while keeping in mind that

‘Klein’s paradox’ is taken care of [473]. Other problems that we face while we deal with

the relativistic problem are the boundary conditions, which are not the same as in the case of

non-relativistic problems. This is well discussed in [474, 475].

This chapter is dedicated to the exploration of thermal machines from a more fundamen-

tal concept of quantum mechanics. We will develop a bridge that connects the efficiency

of the thermal engine with the fundamental uncertainty relation of two canonically conju-

gate operators. For the analysis one-dimensional potential well is considered as the working

substance for the quantum thermal engines, which will work in the quantum regime for the

non-relativistic scenario. In the next phase of our work, we establish a bridge between the

uncertainty relation of position and momentum observable of the proposed model with our

well-known thermodynamic variables. So, the proposed model depicts an effective method

for the analysis of the useful work without executing any measurement, but by using two

reservoirs of different temperatures. The analysis of the work done by the engine has been

explored from the uncertainty relation viewpoint.

6.1 Thermal uncertainty relation

In the first phase of our analysis, we will evaluate the thermal uncertainty relation (which is

one of the special cases of the general uncertainty relation) for a particle in one dimensional

potential well.

Now, we formulate the uncertainty relation of the system at a certain temperature T from

thermodynamics viewpoint. The formulation of the thermal uncertainty relation is performed

by the analysis of the partition function of the system. The partition function [476], Z, for

1-D potential well is expressed as Z =
∑∞

n=1 e−βEn ≈ 1
2

√
π
βα ,where β= 1

kBT , kB is Boltzmann’s

constant and α = π2}2

2m(2L)2 . The expression of Z converges to the form mentioned, as the prod-

uct of β and α is a small quantity. We are using the Gaussian integral as the approximation
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considering the error in the integration is negligible as the product of β and α is a small

quantity. The mean energy for this system evolves to 〈E〉 = −∂lnZ
/
∂β = 1

2β . The average of

the quantum number for the system under study can be conveyed as n̄ =
∑

n ne−βEn∑
n e−βEn ≈

1√
παβ

.

Having the mathematical form of the partition function in our hand, we have all the

resources to develop the thermal uncertainty relation. Now, we focus on the development of

the dispersion relation of the position and the momentum operator at a certain temperature.

The dispersion in position can be expressed as:

(∆X)2
T = 〈(∆X)2〉T = 〈X2〉T −〈X〉2T

=
L2

3
−

2L2

π2 ×
e−αβ−

√
παβ× er f c(

√
αβ)

1
2

√
π
αβ

=
L2

3
−

4L2√αβ

π5/2 × (e−αβ−
√
παβ). (6.1.1)

Erfc is the complementary error function, which appears while solving 〈x2〉. The dispersion

relation of the momentum operator can be analyzed similarly. It is expressed as:

(∆P)2
T = 〈(∆P)2〉T = 〈P2〉T −〈P〉2T

=
π3}2n̄2

8L2 . (6.1.2)

So, the thermal uncertainty relation for the system at temperature T can be evaluated

from Eq. (6.1.1), and Eq. (6.1.2) as:

(∆X)T (∆P)T =
}n̄π3/2

2
√

2

[1
3
−

4
√
αβ

π5/2 (e−αβ−
√
παβ)

] 1
2

≥
}

2
. (6.1.3)

The product uncertainty relation loses its importance when the system under consid-

eration is an eigenstate of the observable under study. The sum of uncertainty [180] was

introduced to capture the uncertainty in the observables when the system happens to be an

eigenstate of the observables. The sum of uncertainty for this system at a particular temper-

ature T is expressed as:

(∆X)T + (∆P)T = L
[1
3
−

4
√
αβ

π5/2 (e−αβ−
√
παβ)

] 1
2

+
}n̄π3/2

2
√

2L
. (6.1.4)

The parameter that are considered for the analysis are shown in the table 6.1.
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Table 6.1. Values of the parameters

Parameter Values

n̄ 1, 2
Length (L) 0-5 nm

Hot bath (T1) 320K
Cold bath (T2) 80K
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Figure 6.1. The variation of sum uncertainty relation (Eq. (6.1.4)) for different temperature. The
dotted line is for lower and the solid line is for higher temperature

In Fig. 6.1, the variation of sum uncertainty relation (Eq. (6.1.4)) with respect to different

temperature is shown. The thermal uncertainty relation that we have developed (Eq. (6.1.4))

for the considered system encounters a negligible amount of variation when the length of the

potential well is small, whereas the difference is large for higher values of L (the order of the

length is considered in nanometer).

The variation of uncertainty relation for different levels is shown in Fig. 6.2. Similar to

the case of temperature analysis the variation is negligible for lower values of L and is large

for higher values.
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Figure 6.2. Similarly, this shows variation for different values of n.

6.2 Bound on sum uncertainty for one dimension po-

tential well

In this section, we will first develop the bound on the uncertainty for the non-relativistic

scenario. No better lower bound was known to us until it was explored in the work [448].

They have not only given a better lower bound than the previously known PMUR but also

developed an upper bound for the uncertainty relation. It is popularly known as the reverse

uncertainty relation.

The product of variances is sometimes unable to capture the uncertainty for two incom-

patible observables. If the state of the system is an eigenstate of one of the observables, then

the product of the uncertainties vanishes [429, 448]. To overcome this, the sum of variances

is introduced to capture the uncertainty of two incompatible observables. For any quantum

model, the sum of variance of two incompatible observable which results in the lower bound

is defined as:

∆A2 +∆B2 ≥
1
2

∑
n

(∣∣∣∣〈ψn|Ā|ψ〉
∣∣∣∣+ ∣∣∣∣〈ψn|B̄|ψ〉

∣∣∣∣)2
. (6.2.1)

For our system, we calculate the lower bound of sum uncertainty for position and momentum
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operator. So, we replace A = X and B = P, which yields to:

∆X2 +∆P2 ≥
1
2

∑
n

(∣∣∣∣〈ψn|X̄|ψ〉
∣∣∣∣+ ∣∣∣∣〈ψn|P̄|ψ〉

∣∣∣∣)2
. (6.2.2)

The computation of the reverse uncertainty relation of two observables results in the upper

bound of uncertainty relation. To develop the upper bound, we have to utilize the definition

of the Dunkl-Williams inequality [461]. The mathematical form of this inequality is:

∆A +∆B ≤

√
2∆(A−B)√
1− Cov(A,B)

∆A.∆B

. (6.2.3)

Squaring both sides of the Eq. (6.2.3) we get the upper bound of the sum of variance for two

variables as:

∆A2 +∆B2 ≤
2∆(A−B)2

1− Cov(A,B)
∆A∆B

−2∆A∆B , (6.2.4)

where Cov(A,B) is defined as Cov(A,B) = 1
2〈{A,B}〉 − 〈A〉〈B〉, and ∆(A− B)2 = 〈(A− B)2〉 −

〈(A−B)〉2. ∆(A−B)2 is the variance of the difference of the two incompatible observable.

Now, for our one-dimensional potential well system which we have considered as a work-

ing substance, we calculate the upper bound of the sum of variance for the position and the

momentum operator. So, we have to replace A = X and B = P in Eq. (6.2.4) and it results to:

∆X2 +∆P2 ≤
2∆(X−P)2

1− Cov(X,P)
∆X∆P

−2∆X∆P

≤
L2

3
−

2L2

(nπ)2 +
π2}2n2

4L2 . (6.2.5)

In the above equation, i.e, Eq. (6.2.5) the upper bound of the system from the standard

method is developed using the definition described in Eq. (6.2.4). Now, we develop the sum

of variance of the same incompatible observables from the thermodynamic standpoint. The

expression for the sum of variance of the system at a particular temperature evolves as:

∆X2 +∆P2 ≤
4L2

3
−

8L2√αβ

π5/2 × (e−αβ−
√
παβ) +

}2n̄2π3

4L2 . (6.2.6)

The bound of sum uncertainty relation (from thermodynamic perspective developed us-

ing Eq. (6.2.2) for lower bound and the Eq. (6.2.6) describes the upper bound for the consid-

ered system) with a particular temperature for different levels is shown in Fig. 6.3. The upper

part of the plot is for n = 1, and the lower one is for n = 2. From Fig. 6.3, we can infer that
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Figure 6.3. The bound of uncertainty relation (Eq. (6.2.2) and (6.2.6)) for a particular temperature
for different values of n from thermodynamic standpoint.

the effect of the bounds of uncertainty relation is prominent for higher values of the length of

the potential well. The bound is less prominent for lower values of L. The lower and upper

bounds of the system are obtained by optimizing the UR over the compete set of bases of the

considered system. To do so, we have simulated Eq. (6.2.6) and Eq. (6.2.2) in Python with a

complexity in linear number of bases.

6.3 Correlation of thermodynamic quantities with un-

certainty

In the next phase of our analysis, we want to establish a bridge between the thermodynamic

quantities with the uncertainty relation.

We consider the sum of variance to overcome the flaw that will appear if we consider the

product form of uncertainty if the system is an eigenstate of the observables. We will first

demonstrate a connection of partition function with our uncertainty relation. The mathemat-

ical form of this is given by:

Z =
πn̄
2

=
L
√

2
}
√
π

(
∆XT +∆PT +CT

)
, (6.3.1)
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where CT = −L
3 + 2L

π5/2 √αβT
[αβT −

√
π(αβT )3/2 − 1] is a constant for a specific temperature,

which is derived by expanding the Eq. (6.1.4) and neglecting the higher order terms as α and

β are small.

Since we are able to bridge a relationship between the uncertainty relation and the parti-

tion function, we are all set to explain all the thermodynamic variables in terms of uncertainty

relations. We develop the Helmholtz free energy [476], F, from an uncertainty viewpoint

which takes the form as:

F =
−1
β

lnZ

=
−1
β

ln
[L
√

2
}
√
π

(
∆XT +∆PT +CT

)]
. (6.3.2)

Entropy is expressed in terms of Helmholtz free energy. So, we uncover the relationship

between the variance of position and momentum with entropy. The mathematical form for

the entropy from uncertainty viewpoint is:

S = −
∂F
∂T

= kB ln
[L
√

2
}
√
π

(
∆XT +∆PT +CT

)]
+

}
√
πkB(ν+γ)

√
2Lβ(∆XT +∆PT +CT )

,

(6.3.3)

where ν =

L2 √α
√
βπ5/2

(
e−αβ−

√
παβ

)
−

2L2 √αβ
π5/2

(
αe−αβ−1/2

√
πα
β

)
[

L2
3 −

4L2 √αβ
π5/2

(
e−αβ−

√
παβ

)] 1
2

and γ is expressed as γ = − L
π5/2 √αβ3/2 (αβ−

√
π(αβ)3/2−1) + 2L

π5/2 √αβ
(α−

√
πβα3/2)

In Fig. 6.4, the variation of entropy in terms of uncertainty relation is shown. We can ob-

serve an increase in the entropy with an increase in the uncertainty for different temperatures.

With an increase in uncertainty, the disorder in the system increases, causing an increase in

entropy. The entropy of the system are obtained by optimizing the UR over the compete set

of bases of the considered system in Python with linear complexity.

6.4 Stirling cycle and bound on efficiency

Here we are going to analyze the Stirling cycle in the non-relativistic regime. The generic

description of the process is discussed in section 2.8. We are going to evaluate the work and

efficiency of the engine for both scenarios.
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Figure 6.4. The variation of entropy (Eq. (6.3.3)) for different values of temperature. The scat-
tered plot is higher and solid line is for lower temperature.

Similarly to [472], we calculate the work done and the efficiency but in terms of uncer-

tainty relation. To develop the work done of the engine, a one-dimensional well of length 2L

is considered with a particle of mass m at a temperature of T1. The energy of this system is

En = n2π2}2

2m(2L)2 . The partition function ZA for the system is Z ≈ 1
2

√
π
βα . Now, a wall is being

inserted isothermally, which converts the potential well into an infinite double-well potential.

Due to this insertion of the wall, the energy level for even values of n remain unchanged, but

the odd ones shift and overlap with their nearest neighboring energy level. So the energy of

the newly formed partitioned one-dimensional potential box is:

E2n =
(2n)2π2}2

2m(2a)2 . (6.4.1)

So, the new partition function stands as:

ZB =
∑

n
2e−β1E2n . (6.4.2)

The internal energies for the system is calculated from the partition function. The internal

energy UA and UB is defined as Ui = −∂lnZi
/
∂β1 where i = A,B and β1 = 1

kBT1
. This results

to:

UA = UB =
1

2β1
. (6.4.3)
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The heat exchanged in this isothermal process can be expressed as:

QAB = UB−UA + kBT1lnZB− kBT1lnZA. (6.4.4)

Now the system is connected to a heat bath at a lower temperature T2. The partition function

for this lower temperature where the energy remains the same is defined as:

ZC =
∑

n
2e−β2E2n . (6.4.5)

The heat exchanged for this stage of the cycle is the difference of the average energies of the

initial and the final states i.e.,

QCB = UC −UB. (6.4.6)

Where UC = −∂lnZC
/
∂β2 and β2 = 1

kBT2
. The system being connected to the heat bath at

temperature T2 we remove the wall isothermally which we call as stage 3. The energy is

now of the form En = n2π2}2

2m(2L)2 . The corresponding partition function is given by:

ZD =
∑

n
e−βEn . (6.4.7)

We can calculate the internal energy UD similarly as UC . The heat exchanged during this

process is given by:

QCD = UD−UC + kBT2lnZD− kBT2lnZC . (6.4.8)

In the fourth stage of the cycle, the system is connected back to the heat bath at temperature

T1. The corresponding energy exchange for this stage can be expressed as:

QDA = UA−UD. (6.4.9)

So the total work done for the process in terms of variance of the position and the momentum

operator evolves to:

W = QAB + QBC + QCD + QDA

=
8L2α

}2π2

[
Dln

(ZB

ZA

)
+ E ln

(ZD

ZC

)]
. (6.4.10)
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The efficiency of Stirling cycle engine stand as:

η = 1 +
QBC + QCD

QDA + QAB

=

(
n̄2

T2
ln

(
ZD
ZC

)
+ n̄2

T1
ln

(
ZB
ZA

))
(
− n̄2

T2
/2 + n̄2

T1

(
ln

(
ZB
ZA

)
+ 1/2

))
=

[
Dln

(
ZB
ZA

)
+ E ln

(
ZD
ZC

)]
[
−E/2 + D

(
ln

(
ZB
ZA

)
+ 1/2

)] . (6.4.11)

Where D = 8L2

π3}2 (∆XT1 +∆PT1 +CT1)2 and E = 8L2

π3}2 (∆XT2 +∆PT2 +CT2)2.

0 1 2 3 4 5 6 7 8
sum of uncertainty

0.64

0.66

0.68

0.70

0.72

0.74

0.76

ef
fic

ie
nc

y

Efficiency of Szilard engine

upper bound 
lower bound 

Figure 6.5. The bounds on the efficiency by heat engine in term of uncertainty relation. The
scattered plot represents the upper bound and the solid line the lower bound of the efficiency.

In Eq. (6.4.11), the upper and the lower bound of the efficiency is evaluated in terms of

the bound that is being analyzed for the thermal uncertainty relation of the position and the

momentum operator. Here, the expression of D and E (for the working model considered for

the analysis of the heat engine) gives the required uncertainty relation for the illustration of

the bound of the efficiency.

In this work, we are able to bridge a connection between the efficiency of the heat en-

gine with the variance of the position and the momentum operator. The upper bound of the

efficiency for the heat engine is near about constant when the uncertainty is high, whereas it

dips a little when uncertainty is less. As shown in Fig. 6.5, the lower bound of the efficiency

is high when the uncertainty in measurement is less and dips gradually with the increase in
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uncertainty. Thus, with an increase in uncertainty, we can visualize that the lower bound of

the efficiency decreases. From Fig. 6.5, one can infer that the lower and the upper bound of

the efficiency is near about the same when the uncertainty in the position and the momentum

operator is quite small. The lower and upper bounds of the efficiency as described in Fig. 6.5

are obtained by optimizing the UR over the compete set of bases of the considered system in

Python with linear complexity.

The Carnot efficiency for low temperature limit is expressed as
(
1− T2

T1

)
where T2 and T1

are the temperature of the cold and hot bath respectively. The upper bound of the efficiency

from an uncertainty viewpoint is consistent with the bound given by the Carnot cycle. So,

we can infer that the position and the momentum of the particle have a direct linkage with

the thermodynamic variables. The work [477] suggests that the efficiency of engines that are

powered by non-thermal baths can be higher than the usual convention. This can be testified

from an uncertainty viewpoint.

In the quantum regime, after measurement, the system collapses to one of its eigenstates.

So, to describe and analyze the efficiency of the engine for different conditions we must

have a multi-copy of the system. Whereas, if we know the uncertainty relation of the model

considered for analysis, we can describe and analyze different conditions without any mea-

surement being done on the system. So, multiple copies of the system are not required for

our analysis. This also reduces the measurement cost for the analysis of the system.

6.5 Chapter summary

The quantum heat engine has a predominant role in better understanding of the quantum

engines, information, and quantum thermodynamics. This work develops a relationship be-

tween the thermodynamic variables with the position and momentum of the particle in the

system. We give the analytic formulation of the work and efficiency of the engine in terms

of the thermal uncertainty relation. Though we have considered a specific model for our

analysis, this analysis has a global effect, i.e, it can be used to explain the efficiency of the

various engines with different quantum models as the working substance. Based on these

formulations, the physical properties of the heat engine and the thermodynamic variables

that we have encountered are as follows.

(a) The total work and the efficiency depending on the position and momentum of the

particle. The change in the uncertainty of the position and the momentum has a direct impact

on the efficiency rate and the work of the engine.
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(b) Every quantum thermodynamic variable has a direct connection with the uncertainty

relation. Helmholtz’s free energy shows the dependence of the internal energy of the thermo-

dynamic system with the uncertainty relation of the incompatible observables. The detailed

analysis of entropy with the uncertainty relation shows that entropy increases when the un-

certainty of any one of the observables increases for a definite temperature. The rate of

increase is different for different temperatures.

(c) The uncertainty relation which is the fundamental principle of quantum mechanics,

is able to predict the efficiency and the total work of the engine without performing any

measurement. So the measurement cost for the system gets reduced if we are able to model

the system under study with a quantum model for which we can develop the uncertainty

relation.

The bridge of the uncertainty related to the thermodynamic variable raises the question

of whether we can analyze the phase transition (Landau theory) from an uncertainty perspec-

tive.

Most of the known methods for the measurement of entanglement converge to the analy-

sis of entropy [478]. Now, if we can model the system that is being analyzed with a quantum

model, we can construct the entanglement from the uncertainty relation for the system. This

would be a standard method to measure the entanglement property of the system which might

be a solution to the open problem of entanglement measure.
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The contents in this chapter are based on the article in Ref. [43].

In this chapter, we have first proposed a model which will exclusively work in the quan-

tum regime for the relativistic scenario. So, for the analysis of the relativistic version of heat

engine, we have considered one-dimensional potential well as the working substance. In the

next phase of our work, we establish a bridge between the uncertainty relation of position

and momentum observable of the proposed model with our well-known thermodynamic vari-

ables. So, the proposed model depicts an effective method for the analysis of the useful work

without executing any measurement, but by using two reservoirs of different temperatures.

The analysis of the work done by the engine has been explored from the uncertainty relation

viewpoint where the incompatible observables are the position and the momentum operators

145
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of the relativistic particle in a potential well.

7.1 Thermal uncertainty relation for relativistic particle

In the first phase of our analysis, we will evaluate the thermal uncertainty relation (which is

one of the special cases of the general uncertainty relation) for a particle in one dimensional

potential well.

Now, we will formulate the uncertainty relation of this system from the thermodynamic

standpoint. To evaluate the thermal uncertainty relation we have to analyze the partition

function of the system. The partition function [476], Z, for 1-D potential well where a

relativistic particle is confined in it is expressed as

Z ≡
∞∑

n=1

e−βEn ≈
1
2

√
π

βα
e−βmc2

, (7.1.1)

where β= 1
kBT , kB being Boltzmann’s constant and α= π2}2

2m(2L)2 . The expression of Z takes

this form as the product of β and α is a small quantity. The expectation of the n-th state of

the system is

n̄ ≡
∑

n ne−βEn∑
n e−βEn

≈
1
√
παβ

. (7.1.2)

After the evaluation of the partition function of the system, we now have all the available

resources to develop the thermal uncertainty relation for the relativistic particle in a 1-D

potential well. So, to evaluate the uncertainty relation for the position and the momentum

operator we have to calculate the variance of the position and the momentum operator for

this system. For the evaluation of the expectation of the position operator we consider the

n-th state of the system and using Eq. (2.6.13) we get

(∆X)2
T ≡ 〈(∆X)2〉T = 〈X2〉T −〈X〉2T

≡
1
Z

( ∞∑
n=1

〈ψn|X2|ψn〉e−βEn −

∞∑
n=1

〈ψn|X|ψn〉e−βEn
)

= −
2L2

π2 φ
+2(p)

e−αβ−
√
παβ× er f c(

√
αβ)

1
2

√
π
αβ

+
4L2

3
φ+2(p)−L2φ+4(p)

= −φ+2(p)
4L2√αβ

π5/2 × (e−αβ−
√
παβ) + L2φ+2(p)

(4
3
−φ+2(p)

)
. (7.1.3)

Here, er f c is the complementary error function [479], which emerges while evaluating the
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expression 〈X2〉.

Similar to the expression of the dispersion relation of the position operator, the variance

of the momentum operator is

(∆P)2
T ≡ 〈(∆P)2〉T = 〈P2〉T −〈P〉2T

≡
1
Z

∞∑
n=1

〈ψn|P2|ψn〉e−βEn

=
π3}2n̄2

8L2 + 2mc2. (7.1.4)

So the uncertainty relation from Eq. (7.1.3) and Eq. (7.1.4), at a thermal condition for the

potential well model is expressed as

∆XT ∆PT =
}

2

[
−φ+2(p)

4L2√αβ

π5/2 × (e−αβ−
√
παβ) + L2φ+2(p)

(4
3
−φ+2(p)

)]1/2

×
(8mc2

}2 +
π3n̄2

2L2

) 1
2

≥
}

2
. (7.1.5)

Along with the product uncertainty relation, we also evaluate the thermal sum uncertainty

relation of the position and the momentum operator for the potential well problem. Here,

we have calculated the sum uncertainty as we are concerned about the fact that the product

uncertainty relation is unable to capture the uncertainty of the incompatible observables when

the wavefunction is an eigenfunction of one of the observables. The sum of uncertainty for

these observables is

∆XT +∆PT =

[
−φ+2(p)

4L2√αβ

π5/2 × (e−αβ−
√
παβ) + L2φ+2(p)

(4
3
−φ+2(p)

)]1/2

+
}

2

(8mc2

}2 +
π3n̄2

2L2

)1/2

≥
}

2
. (7.1.6)

Fig. 7.1 describes the variation of uncertainty with respect to different temperatures. The

value of the uncertainty relation is almost constant for lower values of the length of the well.

There is a sudden drop in the measure of uncertainty of the observables as the length of the

well exceeds from 0.3 Å. The dip is more for higher values of L.

In Fig. 7.2, we can see that there is almost a gradual fall in the measure of uncertainty

for n̄ = 1. Whereas, for n̄ = 2, we can visualize a small change for higher values of L.
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Figure 7.1. The variation of sum uncertainty relation for different temperature. The dotted line is
for lower and the solid line is for higher temperature.

Table 7.1. Values of the parameters

Parameter Values

n̄ 1, 2
Length (L) 0.1-0.5 Å

Hot bath (T1) 320K
Cold bath (T2) 80K

For the analysis of Fig. 7.1, we have replaced n̄ from Eq. (7.1.2) in the expression of

Eq. (7.1.6). Whereas, for the analysis of Fig. 7.2, we have replaced the required term of

Eq. (7.1.6) as a function of n̄ using Eq. (7.1.2) (for a fixed temperature ‘T = 100K’), to have

a clear understanding of the dependency of the uncertainty relation with temperature and the

average ‘n’.

The parameters that are considered for the analysis are shown in the table7.1.

In our model, the particle is confined to a box of length ‘2L’. The uncertainty in the

position is a function of ‘L’, i.e., the particle has to be somewhere in the box. So, with the

increase in length, there is an increase in the “uncertainty of position", i.e., ∆X increases

with increase in length. From the definition of Heisenberg uncertainty, the uncertainty of
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Figure 7.2. This shows the variation of sum uncertainty relation for different values of n.

momentum decreases with length, as it is inversely proportional to the length. So, according

to Heisenberg’s definition, the overall uncertainty remains a constant (i.e }/2). Following

the same ideology in case of our analysis, the “uncertainty of position" (∆X of Eq. (7.1.3))

should show more dominance over the contribution of ∆P for an increase in the length of the

potential well in Eq. (7.1.6). We encounter a decrease in the “total uncertainty" for higher

values of L which is depicted in Fig. 7.1. The reason behind this is the dominance of the

first term of the expression of ∆X over the second term in Eq. (7.1.3) due to its exponential

nature, which causes an overall decrease in the “total uncertainty". We encounter the same

nature in Fig. 7.2. The reason for this nature is obviously similar to the analysis made for

Fig. 7.1.

7.2 Correlation of the thermodynamic quantities with

uncertainty relation of relativistic particle

As far as our knowledge, the expression of the thermodynamic quantities from uncertainty

relation for a relativistic particle has not yet been provided. We have developed the relation-

ship between the basic thermodynamic quantities with the variance of the position and the
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momentum operator.

The partition function [476] of the system, Z, in terms of the variance by using Eq.

(7.1.6) for replacing n̄ in Eq. (7.1.1) is expressed as

Z =
π

2
e−βmc2 [16c

√
2mc

π3}2 (∆XT +∆PT +CT )
] 1

2 , (7.2.1)

where CT = Lφ
√

(4
3 −φ

2)
[2(αβ−

√
π(αβ)3/2−1)

π5/2 √αβ( 4
3−φ

2)
−1

]
−
√

2mc. Similarly, the internal energy of the

canonical system can be evaluated using the variance of two incompatible operators. For our

analysis these two incompatible operators are the position and the momentum operator. The

internal energy of the system from Eq. (7.2.1) evolves to

〈E〉 ≡ −∂lnZ
/
∂β

= mc2 +
ζ +η

π[16c
√

2mc
π3}2 (∆XT +∆PT +CT )

] ,

where ζ is expressed as ζ = 16c
√

2mc
π3}2

[ 2Lφ

π5/2
√
αβ( 4

3−φ
2)

(α−α3/2√πβ)− Lφ

π5/2β3/2
√
α( 4

3−φ
2)

(αβ−

√
π(αβ)3/2−1)

]
and after calculation η is conveyed as η=

4L2φ2

π5/2

[√
α
4β

(
e−αβ−

√
παβ

)
+
√
αβ

(
−αe−αβ−

√
πα
4β

)]
2
[
L2φ2

(
4
3−φ

2
)
−

4L2φ2 √αβ
π5/2

(
e−αβ−

√
παβ

)] 1
2

.

Having the information of the link between the uncertainty relation and the partition

function of the system we are set to describe all the thermodynamic variables in terms of the

uncertainty relation of the position and the momentum operator of the considered system.

One of the basic thermodynamic quantity is Helmholtz free energy [476] ‘F’. The Helmholtz

free energy for the relativistic particle in terms of the uncertainty relation is

F ≡
−1
β

lnZ

= mc2−
1
β

ln
[4c
√

2mc
π}2 (∆XT +∆PT +CT )

] 1
2 .

We know that we can define entropy from Helmholtz free energy. So, we are now able to

express entropy in terms of uncertainty relation which is expressed as

S ≡ −
∂F
∂T

= kB ln
[4c
√

2mc
π}2 (∆XT +∆PT +CT )

] 1
2

+
τ+χ

πβ[16c
√

2mc
π3}2 (∆XT +∆PT +CT )

] , (7.2.2)
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where τ is expressed as τ = 16c
√

2mc
π3}2

[ 2LkBφ

π5/2
√
αβ( 4

3−φ
2)

(α−α3/2√πβ)−

LkBφ

π5/2β3/2
√
α( 4

3−φ
2)

(αβ−
√
π(αβ)3/2 − 1)

]
and the form of χ after evaluation (using Eq. (7.1.6)

and the definition of CT defined in Eq. (7.2.1)) is

χ =

4L2kBφ
2

π5/2

[√
α
4β

(
e−αβ−

√
παβ

)
+
√
αβ

(
−αe−αβ−

√
πα
4β

)]
2
[
L2φ2

(
4
3−φ

2
)
−

4L2φ2 √αβ
π5/2

(
e−αβ−

√
παβ

)] 1
2

.
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Figure 7.3. The variation of entropy from Eq. (7.2.2) for different temperature is shown. The
scattered plot is for higher temperature and the solid line is for lower temperature.

From Fig. 7.3, we can infer that the entropy of the system increases along with the

increase of the uncertainty of the observables. This is true when the system is kept at a

different temperature. The entropy of the system are obtained by optimizing the UR over the

compete set of bases of the considered system in Python with a complexity linear with the

number of bases.

Till now entropy is the best-known measuring tool for entanglement. There is so far

no standard method for the measure of entanglement for mixed states. If we can bridge

a connection between these two quantities then it raises a question whether this can be a

standard method for the entanglement measure.

For a given thermodynamic system, the knowledge of the Helmholtz free energy F is

enough for determining all other thermodynamic variables for the given system. Here we
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have developed the correlation of Helmholtz free energy with the uncertainty relation of the

position and the momentum operator of the relativistic particle. This helps us to overcome

the explicit requirement of internal energy of the system for the analysis of quantum ther-

modynamic system from uncertainty viewpoint. We can also explore and develop a theory

which can explain the phase transition for relativistic particles in terms of their uncertainty

relation. This is an open area to explore in the near future.

7.3 Bound on sum uncertainty for relativistic model of

one dimensional potential well

The thorough analysis of the product uncertainty which produce better lower and upper

bound using the method proposed in previous works [429, 448] results to zero. So, the

product of variances of the specified observables is unable to capture the uncertainty for two

incompatible observables. The reason behind this result is that the state of the system is an

eigenstate of one of the observables. This causes the product of the uncertainties to vanish.

We can overcome this issue if we invoke the sum of variances to capture the uncertainty of

two incompatible observables. For the relativistic 1-D potential well, the sum of variance of

two incompatible observable which results to the lower bound is defined as

∆A2 +∆B2 ≥
1
2

∑
n

(∣∣∣∣〈ψn|Ā|ψ〉
∣∣∣∣+ ∣∣∣∣〈ψn|B̄|ψ〉

∣∣∣∣)2
. (7.3.1)

Here we replace A by X and B by P, according to the system we have considered for our

analysis. This results to the upper bound of the relation for position and momentum. It is

expressed as

∆X2 +∆P2 ≥
1
2

∑
n

(∣∣∣∣〈ψn|X̄|ψ〉
∣∣∣∣+ ∣∣∣∣〈ψn|P̄|ψ〉

∣∣∣∣)2
. (7.3.2)

We can develop the upper bound of uncertainty relation for two incompatible observables

when we compute the reverse uncertainty relation. We utilize the Dunkl-Williams inequal-

ity [461] to evolve the reverse relation. The mathematical form of the inequality is

∆A +∆B ≤

√
2∆(A−B)√
1− Cov(A,B)

∆A.∆B

. (7.3.3)
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Squaring both sides of the Eq. (7.3.3) we get

∆A2 +∆B2 ≤
2∆(A−B)2

1− Cov(A,B)
∆A∆B

−2∆A∆B , (7.3.4)

where Cov(A,B) is defined as Cov(A,B) ≡ 1
2〈{A,B}〉 − 〈A〉〈B〉, and ∆(A− B)2 ≡ 〈(A− B)2〉 −

〈(A−B)〉2.

Now, for the system which we have considered as our working substance, we calculate

the reverse relation for the position and the momentum operator. So, we substitute A by X

and B by P in Eq. (7.3.4) which stands as

∆X2 +∆P2 ≤
2∆(X−P)2

1− Cov(X,P)
∆X∆P

−2∆X∆P

≤ 4L2φ+2(p)
(
1
3
−

1
2(nπ)2

)
+
π2}2n2

4L2 + 2m2c2 . (7.3.5)

In Eq. (7.3.5), we have illustrated the reverse relation of the sum uncertainty relation without

taking the thermal state under consideration. Now, we evaluate the reverse sum uncertainty

relation from the correlation of the thermal variables. The mathematical form for the relation

stands as

∆X2
T +∆P2

T ≤ −
8L2√αβ

π5/2 φ+2(p)(e−αβ−
√
παβ) +

8L2

3
φ+2(p)−2L2φ+4(p)

+
}2n̄2π3

4L2 + 4mc2. (7.3.6)

The Eq. (7.3.6) express the upper bound of the sum uncertainty relation for our potential

well model from the thermodynamic standpoint. The lower and upper bound of the system

are obtained by optimizing the UR over the compete set of bases of the considered system.

To do so, we have simulated Eq. (7.3.2) and Eq. (7.3.6) in Python with the linear complexity.

7.4 Relativistic Stirling cycle and bound on it’s efficiency

Here we consider the Stirling cycle for a relativistic particle. The generic description of the

process is discussed in section 2.8. We are going to evaluate the work and efficiency of the

engine for both scenarios.

In the work [472], they have analyzed work done and efficiency for the heat engine in the

non-relativistic limit. Here we have first developed heat engine in the relativistic limit where
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the working substance is the one dimensional potential well. Following the similar method-

ology, we have analyzed the work done and the efficiency for the heat engine for a relativistic

particle. Along with that, we develop the work done by the engine and its efficiency from

the uncertainty relation viewpoint. We have considered a one dimensional potential well of

length 2L with a relativistic particle of mass m at temperature T1 as the working substance

for our analysis. The energy for the system is equivalent to Eq. (2.6.11). The partition

function of our system is ZA =
∑∞

n=1 e−βEn ≈
(

1
2

√
π
βα e−βmc2)

. Now, when we insert a wall

isothermally it converts the one-dimensional infinite potential well into an infinite double

well potential. In this situation, the energy level for even values of n remain unchanged but

we see a shift for the odd ones. It overlaps with their nearest neighbor energy level. The

energy of the one-dimensional potential box that are created due to the partition is

E2n =
(2n)2π2}2

2m(2L)2 + mc2, (7.4.1)

which is evaluated by replacing n by 2n in Eq. (2.6.11). The partition function for the newly

formed partitioned potential well equivalent to Eq. (7.1.1) is

ZB =
∑

n
2e−β1E2n .

The internal energy UA and UB is defined as Ui ≡ −∂lnZi
/
∂β1, where i = A,B and β1 =

1
kBT1

. So, the internal energy are

UA = UB =
1

2β1
+ mc2. (7.4.2)

During the isothermal process, the heat exchange is expressed as

QAB ≡ UB−UA + kBT1lnZB− kBT1lnZA. (7.4.3)

After the isothermal process, the system is connected to a heat bath at temperature T2. The

partition function for this stage of the cycle is

ZC =
∑

n
2e−β2E2n .

In the second stage of the cycle, the heat exchanged is given by the difference of the average
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energies of the initial and the final states (similar to Eq. (7.4.2)). It is expressed as

QCB = UC −UB. (7.4.4)

Here UC = −∂lnZC
/
∂β2 and β2 = 1

kBT2
. In the next stage of the cycle, the system remains in

the bath at temperature T2 and we remove the wall isothermally. The energy for this stage of

the cycle is same as given in Eq. (2.6.11). The partition function for the third stage of the

cycle is

ZD =
∑

n
e−β2En ,

where UD can be similarly calculated as UC . The heat exchanged for the third stage of the

cycle (similar to Eq. (7.4.3)) stands as

QCD ≡ UD−UC + kBT2lnZD− kBT2lnZC . (7.4.5)

Now, in the final stage of the cycle, the system reverts back to the first stage of the cycle, i.e.,

the system is now connected to the heat bath at temperature T1. The energy exchange for the

system when it reverts back to its initial stage is expressed as

QDA = UA−UD. (7.4.6)

We calculate the total work done for this cycle in terms of the uncertainty relation of the

position and the momentum operator. It is evaluated using Eq. (7.4.3), (7.4.4), (7.4.5) and

(7.4.6) as

W ≡ QAB + QBC + QCD + QDA

=
8L2α

}2π2

[
f ln

(ZB

ZA

)
+ gln

(ZD

ZC

)]
, (7.4.7)

where f =
[

16c
√

2mc
π3}2 (∆XT1 +∆PT1 + CT1)

]
and g =

[
16c
√

2mc
π3}2 (∆XT2 +∆PT2 + CT2)

]
. The effi-

ciency of this engine from thermal uncertainty relation standpoint using Eq. (7.4.3), (7.4.4),

(7.4.5) and (7.4.6) is

η ≡ 1 +
QBC + QCD

QDA + QAB

=

(
n̄2

T2
ln

(
ZD
ZC

)
+ n̄2

T1
ln

(
ZB
ZA

))
(
− n̄2

T2
/2 + n̄2

T1

(
ln

(
ZB
ZA

)
+ 1/2

))
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Figure 7.4. The efficiency bound for a relativistic model of heat engine.

=

[
gln

(
ZD
ZC

)
+ f ln

(
ZB
ZA

)]
[
−g/2 + f (ln

(
ZB
ZA

)
+ 1/2)

] . (7.4.8)

In Eq. (7.4.8), we have evaluated the upper and the lower bound of the efficiency with

respect to the bound that we have analyzed for the thermal uncertainty relation of the position

and the momentum operator. Here, f and g provides the required uncertainty relation for the

explanation of the bound of the efficiency. We can evaluate the lower bound of f and g in

the Eq. (7.4.8) from Eq. (7.3.1) and its upper bound from Eq. (7.3.4).

Here, we have evaluated the relation between the efficiency of a heat engine for a rel-

ativistic particle with the variance of position and momentum operator. The upper bound

of the efficiency of the heat engine is monotonously decreasing function with the increase

in temperature. From Fig. 7.4, we can infer that the variation of the lower bound with un-

certainty is less for lower values of uncertainty, but there is a sudden dip when there is an

increase in the uncertainty measure. The upper and lower bound of the efficiency of the heat

engine predicts the same rate of accuracy when the uncertainty takes higher value. The lower

and upper bound of the efficiency as described in Fig. 7.4 are obtained by optimizing the UR

over the compete set of bases of the considered system in Python with linear complexity.

With the increase in the uncertainty, the conversion ratio of the heat engine decreases as
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the thermal energy of the system is directly proportional to the uncertainty of the system. In

the case of the upper bound of the efficiency which is depicted in terms of the uncertainty

relation defined in Eq. (7.3.6), the decrease in the efficiency is more prominent due to the

presence of the exponential component which causes exponential growth in the thermal en-

ergy of the engine and the dissipated heat over the work output. Whereas in the case of the

lower bound we encounter a small variation of the efficiency for the lower value of the un-

certainty. This can be easily analyzed from Eq. (7.3.2) where we encounter no exponential

component which can depict a dominant effect on the thermal energy of the engine. If we

equate the lower bound of the efficiency with the upper bound of the efficiency we encounter

that it converges at high uncertainty. This show that for higher values of uncertainty the

conversion ratio of the thermal energy to work reduces rapidly due to the steep growth in the

thermal energy with higher uncertainty.

7.5 Chapter Summary

Heat engine plays a key role for a better comprehension of quantum thermodynamics. In

this work, we have considered a potential well model with a relativistic particle confined in

it, which acts as the working substance for the heat engine. Whether this can be globally ex-

tended to all the models that are considered for the analysis of heat engines and refrigerators

is an open area to explore.

We have given the analytic formulation of the work and efficiency of the engine in terms

of the thermal uncertainty relation. Based on our formulation, the physical properties of the

heat engine and the thermodynamic variables are as follows.

(a) The total work and the efficiency of the heat engine for the relativistic particle depends

on the position and momentum of the particle. The variation in the uncertainty relation of

the position and the momentum of the particle has a direct impact on the efficiency rate and

the work of the engine. The upper bound of the efficiency of the engine drops gradually

when the uncertainty of the observable increases, whereas the lower bound of the efficiency

decreases when the variation in the uncertainty relation is high.

(b) Our formulation develops a direct connection of every quantum thermodynamic vari-

able with the uncertainty relation. Helmholtz free energy for this relativistic system conveys

the dependence of the internal energy of the system with the thermal uncertainty relation.

The entropy which can be evaluated from Helmholtz free energy thus has a dependency on

the uncertainty relation. The entropy of the system increases when the uncertainty of the
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incompatible observables increases for a definite temperature.

(c) The uncertainty relation is the cornerstone of quantum mechanics. Hereby applying

this fundamental principle of quantum mechanics, we are able to predict the efficiency and

the total work of the engine without performing any measurement. So, the measurement

cost for the system gets reduced when we replace the classical model by a suitable quantum

model, as has been done in this work.

All the well-known methods for the measurement of entanglement converges to the anal-

ysis of entropy [478]. Now, if the system that is being analyzed can be modeled with a

quantum model, we can study the entanglement property from the uncertainty relation view-

point for the system. If this method can explain the relativistic entanglement property, then

this can act as a standard measure of entanglement. This might be a solution to the open

problem of entanglement measure. A parallel analysis of our defined model for the non

relativistic regime is shown in our work [36].
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The contents in this chapter are based on the article in Ref. [40].

The modern-day challenge is to develop a more efficient heat engine to convert thermal

energy to mechanical work with the different working mediums. Theoretical studies sug-

gest that the limit to the efficiency of the engine, i.e., the Carnot limit, can be surpassed by

exploiting the non-equilibrium reservoirs. Now the question is, can any working model in

quantum regime exceed the Carnot efficiency, and can it boost the Coefficient of performance

(COP) of the refrigerator?

In this chapter, we have proposed an approach to reach the threshold efficiency i.e., the

Carnot efficiency of the thermal machine based on the non-commutative space structure.

Progress in this direction but with different approaches is shown in the works [41,480–482].

For our analysis, we utilize the latter version of non-commutative space-time where θµν is

considered to be a function of the coordinates and momenta. Our prime motivation is to

develop an engine and refrigerator in a non-commutative space where the working substance

159
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will be the perturbed harmonic oscillator in this space. We employ this harmonic oscillator

in the Stirling and Otto cycle which is the working principle for different engines and re-

frigerators. We analyze all the stages of the cycle to compute the efficiency of this model.

The outcomes are astonishing when compared with the results of the usual spaces. We

always observe higher efficiency in non-commutative space than the usual spaces. Along

with that, the most interesting observation is that the efficiency is more for this space struc-

ture than the commutative phase space when we switch on the non-commutative parameter

but it decreases with the increase in the parameter. Whereas, with the increase in the non-

commutative parameter, the COP rises correspondingly. This guides us to the possibility

of using non-commutative systems for the exploration of quantum information processing

to obtain better results. One immediate question that arises is whether the defined non-

commutative system is accessible physically. The obvious answer is yes and it is shown

in previous works [462, 483]. The schematic analysis of the experimental model to access

non-commutative space using optics is analyzed [462]. Using the same methodology, one

can think of modeling the heat engine of non-commutative space.

The canonical partition function for the defined Hamiltonian (4.3.1) (as described in

section 4.3) can be evaluated with the help of its corresponding eigenvalue to

Z =
∑

n
e−βEn

=

e
β(2+µ)2ω

8µ
√
π
2 Er f c

[
β(2+µ)ω
2
√

2βµω

]
√
βµω

, (8.0.1)

subjected to the condition that Re[βωµ] > 0. We are neglecting the higher order terms be-

cause they tend to zero for the higher order. Erfc is the complementary error function, it

is defined as er f c(x) =
Γ(1/2,x2)
√
π

, where Γ (n, x) is the incomplete gamma function. It is ex-

pressed as Γ (n, x) = (n− 1)!ex ∑n−1
k=0

xk

k! . We will now be able to evaluate all the thermody-

namic variables in terms of the established partition function of the considered system for

the analysis of the engine model.

8.1 Stirling heat cycle

The generic description of the quantum Stirling cycle with harmonic oscillator as the work-

ing medium is described in section 2.8.2. We will analyze the well-known Stirling cycle

with non-commutating harmonic oscillator as the working substance. The four stages of the
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Stirling cycle [36, 43, 146, 147, 472] (Fig. (2.4)) (as described in section 2.2) is as follows:

(i) The first step of the cycle is the isothermal (A→B) process. In this process, the work-

ing substance will be kept in contact with a heat bath of temperature Th. The system stays

in thermal equilibrium with the heat bath throughout every instant of time. The energy spec-

trum En and the internal energy U are changed as a result of the slow change in the working

substance, i.e., the changes that take place in Hamiltonian (as described in section 4.3) dur-

ing the execution of this phase. The Hamiltonian of the system changes from H(1) to H(2),

where the change is depicted by the change of the parameter ω. So, heat is absorbed from

the bath in this phase. The heat exchange during this phase of the cycle is:

QAB = UB−UA + kBThlnZB− kBThlnZA, (8.1.1)

where kB is the Boltzmann constant. Here UB and UA describes the internal energy of the

system at the end of this phase and the initial stage of the process. Similarly, ZA describes

the partition function for the initial stage of the process and ZB describes the final stage of

this phase.

(ii) The second phase of the cycle is the isochoric (B→C) process. During this process,

the system undergoes an isochoric heat exchange. The system is connected to a bath with a

lower temperature Tc, so heat is released. The heat exchange for this process is expressed as:

QBC = UC −UB. (8.1.2)

(iii) The third phase is an isothermal (C→D) process. During this phase of the cycle, the

working substance is kept in contact with a bath of lower temperature Tc. Similar to phase

one, the system is in thermal equilibrium with the bath. In this process, the Hamiltonian is

reverted back to its initial stage (from H(2) to H(1)). The heat exchange during this stage of

the cycle is:

QCD = UD−UC + kBTclnZD− kBTclnZC . (8.1.3)

(iv) The last stage of the cycle is the isochoric (D→A) process. The system is connected

back to the bath with a higher temperature Th. The heat exchange for the last stage of the
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cycle is expressed as:

QDA = UA−UD. (8.1.4)

For all the phases, the internal energy of the system can be evaluated using the partition

function as U = −∂lnZ
∂β . The different form of the partition function (ZA,ZB,ZC ,ZD) arises due

to the changes that occur in the Hamiltonian of the system during the different phases of the

cycle. The total work done is Wtot = QAB + QBC + QCD + QDA. The efficiency of the Stirling

heat cycle is expressed as:

ηS tir = 1 +
QBC + QCD

QDA + QAB
. (8.1.5)
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Figure 8.1. (Color Online) The variation of the efficiency of the Stirling cycle for the HO and
NHO. The temperature of the hot bath and the cold bath is Th = 20K and Tc = 10K respectively.
The yellow and the blue solid line is the variation of the efficiency of NHO and HO with NC
parameter, respectively.

8.2 Stirling refrigerator cycle

If we reverse the cycle, we will have a Stirling refrigerator [123]. Following the same

methodology, as done above, we can analyze all four stages of the cycle.

(i) The first phase is the isothermal process. In this process, the system is paired to a
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cold bath at temperature Tc. This is just the reverse of the first phase of the heat cycle. In

this phase of the cycle, there is a quasi-static change of the Hamiltonian (as described in

section 4.3) of the system which is described as in section 2.2. The entropy of the system

changes during this process. The heat absorbed is:

QAB = Tc∆S . (8.2.1)

(ii) The second stage is the isochoric process. During this stage of the cycle, the temper-

ature of the system increases when connected to Th from Tc. The mean internal energy of

the system changes during this phase of the working cycle. The heat gain for this phase is:

QBC = UC −UB. (8.2.2)

(iii) This phase is an isothermal process. During this stage of the cycle, the system is bridged

with the hot reservoir with a temperature Th. Heat is rejected from the system and is de-

scribed as:

QCD = Th∆S . (8.2.3)

(iv) The last stage is an isochoric process. The system is reverted to the cold reservoir Tc

from the hot reservoir Th, which leads to a decrease in the internal energy of the system. The

amount of heat released is:

QDA = UA−UD. (8.2.4)

The entropy of the system can be evaluated from the partition function of the system as

S = lnZ + βU. The internal energy can be evaluated as shown while we have analyzed the

heat cycle. The COP of the Stirling refrigerator cycle is expressed as:

COPS tir =
QAB + QBC

WT
, (8.2.5)

where WT = QAB + QBC + QCD + QDA is the total work done on the system.

We can visualize the growth in the COP for the Stirling cycle for NHO due to the non-

commutating parameter. Whereas for the case of HO the COP remains constant as it is

independent of this parameter. For ω > ω′ and βh < βc we encounter a steep rise in the COP

with respect to the NC parameter as shown in Fig. (8.2). In Fig. (8.1), the efficiency of

the engine decreases with the increase in the NC parameter. So the non-commutative is less



164
Quantum Thermal Engines and Refrigerators in Non-relativistic Non-Commutative

Space

0.0 0.5 1.0 1.5 2.0 2.5 3.0
NC parameter ( )

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
ef

fic
ie

nt
 o

f p
er

fo
rm

an
ce

 (C
OP

)

Varation of COP of Stirling refrigerator cycle with the NC parameter
For HO
For NHO

Figure 8.2. (Color Online) The variation of the COP of the Stirling refrigerator cycle for the
Harmonic Oscillator (HO) and NHO. The temperature of the hot bath and the cold bath is Th =

20K and Tc = 10K respectively. The violet and the green solid line is the variation of the COP of
NHO and HO with NC parameter, respectively.

effective when the NC parameter is high for the engine model that we have considered for our

analysis. For the generic statement of the less effectiveness of NC parameter on the engine

model, we have to explore other cycles which is an open area for exploration.

The maximum attainable efficiency of the heat engine by the standard harmonic oscillator

has been plotted as a reference point for the analysis of the advantage due to the NC space.

Now, due to the change in the space structure, the standard Hamiltonian changes to the

non-commutative harmonic oscillator by applying the transformation from the commutative

space to the non-commutative space. So, to compare the advantage of the change introduced

by the non-commutative space, we have considered the standard harmonic oscillator as a

reference point. For the Stirling cycle, we can visualize the advantage in Fig. (8.1) and Fig.

(8.2).

For the evaluation of the efficiency and the COP of the Stirling cycle as described in the

Fig. 8.1 and Fig. 8.2 respectively, we have performed numerical simulation in Python with a

complexity of O(n), where n describes the number of iteration of process for the variation of

the non-commutative parameter.
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8.3 Otto refrigerator cycle

The generic description of the quantum Otto cycle with harmonic oscillator as the working

medium is described in section 2.8.1. Now, we will study the quantum Otto refrigerator

cycle [110, 125, 484] with non-commutative space harmonic oscillator as the working sub-

stance. The four phases of the Otto refrigerator for our analysis are described as follows:

(i) The first phase of the cycle is an isochoric (A→B) process. During this process, the

system is coupled to a cold reservoir at a temperature TC while the Hamiltonian remains

constant. The heat absorbed from the reservoir during this process is:

Qcold =
∑

n
Ecold

n (Phot
n −Pcold

n ), (8.3.1)

where Pcold
n =

exp(−βEn)
Z |β=βcold ,ω=ω′ and

Phot
n =

exp(−βEn)
Z |β=βhot,ω=ω represents the occupation probabilities of the system in the nth

eigenstate and Ecold
n = En for ω = ω′.

(ii) The second stage of the cycle is an adiabatic (B→C) process. During this phase of

the cycle, the entropy of the system is conserved. Throughout the evolution of the system in

this phase, the occupation distribution remains invariant.

(iii) The third stage of the cycle is an isochoric (C→D) heating process. In this process,

the system is connected to a hot reservoir at temperature TH . The heat rejected to the hot

reservoir in this phase is:

Qhot =
∑

n
Ehot

n (Pcold
n −Phot

n ), (8.3.2)

where Ehot
n = En for ω = ω.

(iv) The last stage of the cycle is an adiabatic (D→A) process. In this process, the

system changes quasi-statically while the entropy of the system remains constant during the

execution of this phase. The total work done on the cycle can be evaluated as, Wtotal =

Qhot + Qcold. The COP for the Otto refrigerator is defined as the ratio of the amount of

heat removed from the cold reservoir to the net amount of work done on the system under

analysis. It is represented as:

ΞOtto =
Qcold

|Wtotal|
. (8.3.3)

In the case of the Otto refrigerator, we have encountered a similar effect as in the case

of the Stirling cycle. We have detected the growth in the COP for the Otto cycle for NHO

due to the non-commutating parameter shown in Fig. (8.4). But in the case of HO, the COP



166
Quantum Thermal Engines and Refrigerators in Non-relativistic Non-Commutative

Space

A

B

C

D

T

S

Adiabatic

Ad
ia
ba
tic

Isoch
oric

Isocho
ric

Figure 8.3. Schematic diagram for the four stages of the Otto cycle.
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Figure 8.4. (Color Online) The plot depicts the evaluation of the COP of the Otto refrigerator
for the HO and NHO. The temperature of the hot and the cold bath is Th = 20K and Tc = 10K
respectively. The red and the green solid line is the variation of the COP of NHO and HO with
NC parameter, respectively.
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remains constant. A steep rise in the coefficient of the NC parameter occurs for ω > ω′ and

βh < βc, and this gives rise to this phenomenon. Following a similar pattern, as done during

the analysis of the Stirling cycle, we have considered the maximum attainable efficiency of

the heat engine by the standard harmonic oscillator has been plotted as a reference point for

the analysis of the advantage due to the NC space. For the Otto cycle, we can visualize the

advantage in Fig. (8.4). For the evaluation of the COP of the Otto refrigerator as described

in the Fig. (8.4), we have numerically simulated the COP of the refrigerator. The simulation

is carried out in Python with a complexity of O(n), where n describes the number of iteration

of process for the variation of the non-commutative parameter.

The immediate question that pokes our intuition is whether it is feasible with the quantum

technology we have? The answer to this is yes. One can analyze the non-commutative space

effect using optical setup and measure the effectiveness of the non-commutative parameter as

shown in [462]. They have provided a schematic representation of the experimental setup for

the following analysis. Following the same methodology, we can develop the setup for the

analysis of different thermodynamic cycles. For the experimental realization of the cycle in

non-commutative space, one should keep in mind the basic ingredients that are required for

the analysis. One of which is the availability of thermal heat baths for the different processes.

The second one is about the measurement of the work performed during the different phases

of the cycle, as in the case of the Otto cycle, the phases are two adiabatic processes. One

of which expands the working medium and the other compresses the working medium. The

third one is maintaining the thermal equilibrium during the thermalization processes. The

experimental analysis of the engines and refrigerators of NC space is an open area to explore.

8.4 Chapter Summary

The non-commutative harmonic oscillator outperforms the harmonic oscillator in terms of

the COP for the Stirling cycle and the Otto refrigerator. The contribution for this is provided

by the non-commutative space parameter. So, we can infer that non-commutative is a boon

for the refrigerators if considered for the growth of the COP. Whereas the NC parameter is

less effective for a boost in the efficiency of the heat cycle for the considered model.

For the appropriate implementation of the Otto refrigerator, it requires a slow implemen-

tation of the adiabatic processes so that we can maintain no further coherence generation on

the eigenstates of the non-commutative space Hamiltonian. If there is any change, then the

mean population will also change. To achieve thermal equilibrium with the reservoir, the
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system must spend a long time during the thermalization processes. The non-linearity that is

generated in the Hamiltonian appears due to the non-commutative parameter, which requires

some energy cost for the implementation of the cycle.

This model can result in a better resource in the applicable areas [485] of quantum theory

which needs further analysis. This model can be used for the analysis of the coupled working

medium as shown in previous works [136,486,487]. It can also be utilized for exploring the

non-Markovian reservoirs in NC space. We have analyzed two thermodynamic cycles. One

can analyze the different existing reversible cycles and irreversible cycles. It will be inter-

esting to explore the effect of NC parameters in the irreversible cycles and on the quantum

phase transition.

For the analysis of our work, we have used one of the existing models of the non-

commutative space. To make the generic statement of the gain in COP for different cycles,

one has to explore all the existing models in the non-commutative space. This is an open

area to explore. One can also analyze the effect of the NC parameter on the different thermo-

dynamic variables. We can analyze this model from an uncertainty viewpoint [36,43,429] to

reduce the cost for the analysis of the cycles. Along with that, it will be interesting to explore

the experimental realization of these cycles in NC space.
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The contents in this chapter are based on the article in Ref. [41].

The thermodynamic machine has practical importance in the field of quantum compu-

tation and refrigeration in micro regimes [72]. Coupled quantum systems, as the working

medium for heat engines, have been studied widely in previous works [136,202]. It is shown

in the work [136, 202] that with appropriate coupling the efficiency of the system can be in-

creased compared with the uncoupled one. Experimental realization of the Otto cycle [488]

169
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has also been analyzed.

In this chapter, we will describe our work, where we have considered a coupled harmonic

oscillator as the working substance for the analysis of quantum cycles in commutative space

and non-commutative spacetime. We have considered two non-commutative phase space

structures for our analysis. Our ultimate goal is to inspect different quantum engine cycles

with coupled harmonic oscillators as the working substance for considered non-commutative

phase-space structures and also for the commutative space structure. Different heat cycles in

the quantum realm have a harmonic oscillator as their working principle. We have considered

two reversible cycles, i.e., the Stirling cycle and the Otto cycle for analysis. The efficiency of

the cycle is evaluated for each engine cycle for commutative, and NC phase space structure

after the working substance evolves through every stage of their individual cycles. The

effects are astonishing when the cycles are in NC phase space.

In the case of the Otto cycle, the coupling strength of the coupled oscillator produce

a constant efficiency in commutative phase space, but it gets a catalytic effect when the

engine is in NC phase space. Similarly, when the Stirling cycle is analyzed with the coupled

harmonic oscillator as the working medium the coupling strength results in higher efficiency

than the decoupled oscillator. But in NC phase space the efficiency gets a boost and picks

up the efficiency near to the ideal models of the engine cycles. The working medium is

much more effective for the Stirling cycle than the Otto cycle in all forms of space structure

that is analyzed in this work. Works with space structure with different approach is shown

in [40, 480–482].

Though it seems to be mathematically feasible, one immediate question that comes to

one’s mind is regarding the physical accessibility of the NC phase space with the so-far

existing modern quantum technology. Recent works for the physical accessibility of the

NC phase space using quantum optics [462,463] and Opto-mechanical [489] setup has been

developed. So, the possibility of experimental verification and analysis of NC phase space

will provide a boost for the exploration of quantum information theory in NC space structure.

The prime focus of this chapter is to analyze how the change in the space structure can

affect the efficiency of the different quantum thermal engine models. For that, we have

considered the traditional formalism of thermodynamics. The considered system is analyzed

when the system reaches its equilibrium state. The non-equilibrium thermodynamics of the

engines, which is referred to as finite-time thermodynamics has not been explored here. Non-

equilibrium thermodynamics in NC space has been explored in some previous works [490,

491] that are mainly focused on the analysis of the Brownian motion in NC space structure.
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They have shown that the master equation for the NC space boils down to the master equation

of the ordinary space (commutative space) when the non-commutative parameter is equated

to zero. Due to the non-commutative parameter, we encounter some extra terms which affect

the results that we get from the ordinary space. The non-equilibrium thermodynamics of the

engine models in NC space is an open area for exploration.

9.1 Otto cycle with coupled harmonic oscillator

The four stages of a quantum Otto cycle with harmonic oscillator as the working medium is

schematically described in Fig. (2.6) as described in section 2.8.1. For our analysis, the four

stages of the quantum Otto cycle with the coupled harmonic oscillator can be described as

follows:

(1) In the first stage of the cycle which is the isochoric process, the working medium is

coupled with the bath at temperature Th. In other words, the Hamiltonian H(1) is attached to

the hot bath. The system is represented by the density matrix ρ(2)
c . The Hamiltonian is fixed

throughout this process. The system approaches equilibrium with the bath at the end of this

process. So, the final state of the system after this stage is given as ρ(1)
h =

exp(−βhH)
Tr[exp(−βhH)] , where

βh = 1/kBTh, with kB as the Boltzmann constant. The amount of heat absorbed from the bath

at temperature Th is Qhot = Tr[H(ρ(1)
h −ρ

(2)
c )].

(2) The second stage of the cycle is the adiabatic process. The working medium in this

phase is thermally isolated so that the quantum adiabatic theorem is valid throughout the

process. The Hamiltonian of the system changes from H(1) to H(2). During this process,

we do not encounter any heat exchange between the system and the bath. So, the change in

energy is equivalent to the work done. The work done is described as:

W1 = Tr[(ρ(1)
h H(1)−ρ(2)

h H(2))],

where ρ(2)
h = U1ρ

(1)
h U†1 , with U1 as the unitary operator which is associated with the adiabatic

process. It is defined as:

U1 = T e[−( i
} )

∫ T
0 H(t)dt],

where T represents the total time of evolution for the quasi-static process. Here H(0) = H(1)

and H(T ) = H(2).

(3) The third stage is represented by the isochoric process. At this phase of the cycle the

system is coupled with a cold bath at a temperature Tc. Similar to the stage one, the system
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attains equilibrium with the cold bath at the end of this stage. The state of the system at this

phase is described as ρ(1)
c = e(−βcH(2))

Tr[e(−βcH(2))]
. So, heat is rejected to the bath and is evaluated as

Qcold = Tr[H(2)(ρ(1)
c −ρ

(2)
h )].

(4) The last stage of the cycle is the adiabatic process. In this last phase of the cycle, the

working substance is thermally isolated from the reservoir and at the end of this process, the

system gets coupled with the hot bath. During this process, the Hamiltonian changes from

H(2) to H(1). So, the work done in this process is:

W2 = Tr[ρ(1)
c H(2)−ρ(2)

c H(1)],

which is equivalent to variation in the mean energy. Here ρ(2)
c is the density state of the

system at the end of this process. It is defined as ρ(2)
c = U2ρ

(1)
c U†2 , where U2 is evaluated as:

U2 = T e[−( i
} )

∫ T
0 H(t)dt].

Here H(0) = H(2) and H(T ) = H(1).

During the execution of the process of the Otto cycle, the Hamiltonian of the system

evolves from H(0) = H(1) to H(T ) = H(2). One can visualize that the NC space follows the

standard master equation for the analysis of the evolution of the system as suggested by the

previous analysis [491, 492].

9.1.1 In commutative phase space

Here, we will consider two coupled oscillators as our working substance. The Hamiltonian

for this coupled system in commutative phase space is described in Eq. (4.4.12). Now we will

consider the Otto cycle described above with the coupled system as the working medium.

During the first adiabatic process, the Hamiltonian of the working substance of the Otto

cycle changes its initial value from H(1) to H(2) (which is described in section 4.4). The

change in the Hamiltonian is due to the change in the eigenfrequency of the oscillators from

ω1 to ω2. It reverts to its respective initial values after the execution of the second adiabatic

process of the cycle. The total work done by the system is the sum of the contribution of the

two oscillators. So, the work done is a function of the frequency of the oscillators and the

coupling strength of the two oscillators. The frequency of the two oscillators is considered to

be the same for our analysis. During the execution of the adiabatic process, it is assumed that

there is no cross-over of the energy level of the Hamiltonian of the coupled oscillator. It is
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also taken care of that the system abides by the quantum adiabatic theorem. So, the process

occurs slowly enough such that the population of the eigenstate of the Hamiltonian remains

constant throughout the process. The total amount of heat absorbed by the working medium

from the hot bath is given by:

Q = Tr[H(ρ(1)
h −ρ

(2)
c )]

=
}ω1eζ

2

(
coth

[βh}ω1eζ

2

]
− coth

[βc}ω2eζ

2

])
+
}ω1e−ζ

2

(
coth

[βh}ω1e−ζ

2

]
− coth

[βc}ω2e−ζ

2

])
. (9.1.1)

The total work done of the Otto cycle is define W = W1 + W2. So, the work done for the

Otto cycle with coupled HO as the working medium is expressed as:

W =
}(ω1−ω2)eζ

2

(
coth

[βh}ω1eζ

2

]
− coth

[βc}ω2eζ

2

])
+
}(ω1−ω2)e−ζ

2

(
coth

[βh}ω1e−ζ

2

]
− coth

[βc}ω2e−ζ

2

])
. (9.1.2)

The efficiency of the coupled system which is considered as the working medium is

defined as the ratio of total work over the total heat absorbed by this system during the

execution of the process. It is given as:

ηottoC =
W
Q

= f (ζ).
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Figure 9.1. (Color online) Efficiency of the Otto cycle as a function of the coupling parameter in
commutative space with coupled HO as the working substance.
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We have considered the hot reservoir temperature Th = 4K and that of the cold reservoir

temperature Tc = 1K. The frequency for the coupled oscillator is considered as ω1 = 4 and

ω2 = 3 for the evaluation of the efficiency of the Otto cycle with respect to the variation of the

coupling strength. For the analysis of the efficiency of the engine, we have numerically sim-

ulated the efficiency factor with respect to the coupling parameter. The efficiency of the Otto

cycle with coupled harmonic oscillator as the working substance remains constant with the

change in the coupling parameter as shown in Fig. (9.1). The efficiency for the engine model

with the coupled harmonic oscillator considered in our analysis produces an equivalent result

to the previously studied models [202]. One can infer from all these different analyses that

the coupling of harmonic oscillators does not provide any good advantage to the efficiency

of this specific engine model. So, we can conclude that the coupling strength of the coupled

oscillators results in a constant efficiency even for the two different approaches.

9.1.2 In non-commutative phase space

In the case of commutative space, the coupled oscillators as the working substances result

in a constant efficiency with respect to the coupling strength of the system. Now here, we

will analyze how the change in the phase space affects the thermodynamic process. The

Hamiltonian of the two harmonic oscillators coupled with each other in the NC phase space

is described in Eq. (4.4.12). Following the same methodology as used in the case of com-

mutative space we will analyze the quantum Otto cycle in the NC phase space. We have

considered even in NC space that the working medium will evolve to a Gibbs state when

coupled to a heat bath similar to the previous analysis in this direction [490]. We have fol-

lowed this throughout our analysis.

Similar to the case in commutative space, the Hamiltonian changes its initial value from

H(1) to H(2) (which is described in section 4.4.1) during the first adiabatic process. The

change in the Hamiltonian is due to the change in the eigenfrequency of the oscillators from

ω1 to ω2. It goes back to its respective initial values after the second adiabatic process of

the cycle. So, the work done is a function of the frequency of the oscillators, the coupling

strength of the two oscillators, and the NC parameter of the phase space. For our analysis,

the frequency of the two oscillators is considered to be the same throughout. We take care of

the fact that there is no cross-over of the energy levels of the Hamiltonian which ultimately

satisfies the quantum adiabatic theorem in the NC phase space. The net amount of heat

absorbed is given as:
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Q = Tr[H(ρ(1)
h −ρ

(2)
c )]

=
}
(
ω1 + Kθ

2}

)
2

(
coth

(βh}
(
ω1 + Kθ

2}

)
2

)
− coth

(βc}
(
ω2 + Kθ

2}

)
2

))

+
}
(
ω1−

Kθ
2}

)
2

(
coth

(βh}
(
ω1−

Kθ
2}

)
2

)
− coth

(βc}
(
ω2−

Kθ
2}

)
2

))
. (9.1.3)

The total work done of the Otto cycle is defined as W = W1 + W2. So, the work done for

the Otto cycle with coupled HO as the working medium in NC space is expressed as:

W =
}
(
ω1−ω2

)
2

(
coth

(βh}
(
ω1 + Kθ

2}

)
2

)
− coth

(βc}
(
ω2 + Kθ

2}

)
2

))

+
}
(
ω1−ω2

)
2

(
coth

(βh}
(
ω1−

Kθ
2}

)
2

)
− coth

(βc}
(
ω2−

Kθ
2}

)
2

))
. (9.1.4)

The efficiency of the coupled system is defined as the ratio of total work over the total

heat absorbed by this system during the execution of the process. It is described as:

ηottoNC =
W
Q

= f (θ).

Similar to the case of commutative space, we have considered the hot reservoir temper-

ature Th = 4K and that of the cold reservoir temperature Tc = 1K. The frequency for the

coupled oscillator is considered as ω1 = 4 and ω2 = 3 for the evaluation of the efficiency of

the Otto cycle with respect to the variation of the NC space parameter. For our analysis, we

have fixed the coupling strength ζ = 2 and the constant K = 0.25. Here we have numerically

simulated the efficiency of the engine model in NC space structure with respect to the NC

parameter. We can observe that the efficiency of the engine model (as shown in Fig. (9.2))

boils down to the efficiency of the commutative space when the NC parameter θ is close

to zero. This satisfies the condition that the results produced by the system reduce to the

commutative space when θ→ 0. With the variation of the NC parameter, we observe that the

efficiency increases monotonously for a certain range of the NC parameter. Then at a certain

stage, the efficiency of the engine gets saturated with the variation of the NC parameter. So,

we can infer that NC space provides a boost to the efficiency of the engine over the efficiency

of the commutative space.
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Figure 9.2. (Color online) Efficiency of the Otto cycle as a function of the NC parameter with
coupled HO as the working substance is shown. The orange dash dotted curve depicts the vari-
ation of the efficiency with respect to the NC parameter with a constant coupling factor. The
red solid line depicts the efficiency of the commutative space with coupled HO as the working
substance where the coupling constant ζ = 2.

9.1.3 In generalized non-commutative phase space

In the case of non-commutative phase space, the coupled oscillators as the working sub-

stances result in a catalytic effect to the efficiency with respect to the NC space parameter

of the system. The efficiency is high for the lower values of the NC parameter. Now, we

will analyze how the generalized NC phase space affects the thermodynamic process. The

Hamiltonian of the two coupled harmonic oscillators in the NC phase space is described

in Eq. (4.4.14). Following the same methodology, as used in the case of non-commutative

space we will analyze the quantum Otto cycle in the NC phase space.

In the case of generalized NC phase space, the Hamiltonian is separated into two parts

as shown in Eq. (4.4.14). During the adiabatic process, the individual Hamiltonian changes

from the initial values from H(1) to H(2) (which is described in section 4.4.2). The total

Hamiltonian is the sum of the effect of these two Hamiltonians. The changes in the Hamilto-

nian is due to the change in the eigenfrequency of the oscillators, where the eigenfrequency

for the first oscillator changes from ω1 to ω
′

1 and for the second oscillator the frequency

changes from ω2 to ω
′

2. After the second adiabatic process, the eigenfrequencies return to

the respective initial stage. So, we can consider that the working substance is composed of

two independent oscillators. The total work done is a result of the contribution of the two
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oscillators. Therefore, the work done is a function of the frequency of the system and the

NC phase space parameters. Similar to the previous cases, we have to take care of the fact

that there is no cross-over of the energy levels of the total Hamiltonian during the execution

of the adiabatic process. The total amount of heat absorbed by the system is described as:

Q = Tr[H(ρ(1)
h −ρ

(2)
c )]

=
ω1

2

(
coth

[βhω1

2

]
− coth

[βcω
′

1

2

])
+
ω2

2

(
coth

[βhω2

2

]
− coth

[βcω
′

2

2

])
. (9.1.5)

The total work done by the system is equivalent to the sum of the work done by the

individual systems. So, the total work done for the system can be expressed as:

W =
(ω1−ω

′

1)
2

(
coth

[βhω1

2

]
− coth

[
βcω

′

1

])
+

(ω2−ω
′

2)
2

(
coth

[βhω2

2

]
− coth

[
βcω

′

2

])
. (9.1.6)

where the frequencies of the system is defined equivalent to the Eq. (4.4.16).

The efficiency of the coupled harmonic oscillator system for the generalized NC phase

space is defined as the ratio of total work over the total heat absorbed by this system. It is

described as:

ηottoGNC =
W
Q

= f (γ,ξ). (9.1.7)

Figure 9.3. (Color online) Efficiency of the Otto cycle as a function of the NC parameters in
generalized NC phase space parameters with coupled HO as the working substance.
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Similar to the case of non-commutative space, we have considered the hot reservoir tem-

perature Th = 4K and that of the cold reservoir temperature Tc = 1K for the analysis of the

Otto cycle in generalized NC phase space. Though we define this as generalized NC space,

actually we incorporate the deformation in momentum space as well as the coordinate space.

So, in this space structure, the NC effect increases than the above one. The frequency for

the coupled oscillator is taken as ω1 = 4 and ω2 = 3 for the evaluation of the efficiency of

the Otto cycle with respect to the variation of the generalized NC space parameters. The

coupling strength is taken as ζ = 2 and the constant K = 0.25 throughout the process. The

three-dimensional plot (in Fig. (9.3)) shows the variation of the efficiency of the Otto cy-

cle with coupled harmonic oscillator as the working substance in the generalized NC phase

space. The variation of the NC parameter of the coordinate and the momentum space, i.e., ξ

and γ in the graph shows that it has a direct impact on the efficiency of the engine. So, the

so-called generalized NC space results in better efficiency of the engine compared to the NC

space considered above for the analysis.

For the evaluation of the efficiency of the Otto cycle in commutative as well as non-

commutative space we have performed numerically simulation. We have used Mathematica

for deriving the solution of the equations and Python for data generation and ploting of the

efficiency of the engine model.

9.2 Stirling cycle with coupled harmonic oscillator

The generic representation of the quantum Stirling cycle with the harmonic oscillator is

described in section 2.8.2. Here in this work, we will consider coupled harmonic oscillator

as our working medium for the analysis of the quantum Stirling cycle is commutative as well

as non-commutative space structure. The four phases of the cycle for the considered working

medium is described as follows:

(i)First stage of the Stirling cycle: the isothermal process (A→ B). The working sub-

stance in this stage is coupled with the heat bath at temperature Th. All the way round

during the execution of this process, the system remains in thermal equilibrium with the

hot reservoir. Due to the quasi-static changes in the Hamiltonian from H(1) to H(2) (where

the Hamiltonian for the process is described in section 4.4) of the working medium, we en-

counter changes in the energy spectrum and the internal energy of the system. During this

process, heat is extracted from the bath isothermally.

(ii) Second phase: the isochoric process (B→ C). The system undergoes an isochoric
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heat exchange while it goes through this phase of the cycle. The system is now decoupled

from the hot reservoir and coupled with the cold reservoir at temperature Tc. So, heat gets

released during this process of the cycle.

(iii) Third phase: the isothermal process (C → D). The system remains connected to

the cold reservoir at temperature Tc throughout this process. This phase follows the same

condition that is being followed during the execution of the first isothermal process. The

system remains at thermal equilibrium with the reservoir. So, heat is rejected to the reservoir

in this stage of the cycle where the Hamiltonian is reverted back to its initial state.

(iv) Fourth stage: the isochoric process (D→ A). The system is decoupled from the cold

reservoir and reverted to the hot reservoir at temperature Th. So, heat is extracted from the

bath in this process of the cycle.

The efficiency of the Stirling Cycle is defined as the ratio of work output to heat input.

For our analysis, the efficiency with being a function of the coupling strength and the NC

parameters in NC phase space.

9.2.1 Commutative phase space

Now, for our analysis, we will consider a coupled HO in commutative phase space as the

working substance of the Stirling cycle. The Hamiltonian of the system is described in

Eq. (4.4.6) of the section 4.4. The energy eigenvalues for this Hamiltonian are evaluated as

conveyed in Eq. (4.4.7). The partition function for the considered system is described as:

Z =
∑

n
e−βEn ,=

e−βωcosh(ζ)

β2ω2 , (9.2.1)

where the system has to satisfy the condition Re
[
eζβω

]
> 0.

The heat exchange that takes place during the first stage (i.e, the isothermal process) of

the Stirling cycle is:

QAB = UA−UB +
1
βh

ln
(Zω1,βh

Zω2,βh

)
, (9.2.2)

One can evaluate the partition function ZA, ZB of the system using Eq. (9.2.1). The internal

energy UA, UB is evaluated using the definition Ui =−∂lnZi/∂βh, where i = A, B. The internal

energy is described as:

U = −
2
β
−ωcosh(ζ).

In the second phase of the cycle heat is released from the system. The heat exchange
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throughout this process can be expressed as:

QBC = UC −UB. (9.2.3)

The third phase is again a isothermal process. Heat gets rejected from the system in this

stage. The heat exchange is represented as:

QDC = UD−UC +
1
βc

ln
(Zω1,βc

Zω2,βc

)
, (9.2.4)

where Ui = −∂lnZi/∂βh with i = C, D.

And in the final stage of the cycle the system undergoes an isochoric heat addition pro-

cess. So, the heat addition to the system can be expressed as:

QDA = UA−UD. (9.2.5)

The net work done for the cycle is WtotC = QAB + QBC + QCD + QDA. The efficiency of

the Stirling heat cycle from Eq. (9.2.2), (9.2.3), (9.2.4) and (9.2.5) is defined as:

ηS tirC = 1 +
QBC + QCD

QDA + QAB
.
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Figure 9.4. (Color online) Efficiency of the Stirling cycle with coupled HO as the working sub-
stance in commutative phase space.

The hot reservoir temperature is considered as Th = 4K, and that of the cold reservoir
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temperature Tc = 1K. For the analysis of the efficiency of the Stirling cycle with respect to

the variation of the coupling strength, the frequency for the coupled oscillator is considered

as ω1 = 4 and ω2 = 2. For our analysis, we have numerically simulated the efficiency of

the Stirling cycle with respect to the coupling constant similar to the Otto cycle studied in

the above section. The variation of the efficiency of the engine with respect to the coupling

parameter is shown in Fig. (9.4). The efficiency shows very minute variation when the cou-

pling constant is near zero. The efficiency monotonically increases for a certain range of

the coupling constant. Then it gets saturated at a certain value of the coupling strength, and

thereafter it remains constant with respect to the parameter. We encounter a high efficiency of

the Stirling engine when compared with the Otto cycle with the coupled HO as the working

medium.

9.2.2 Non-commutative phase space

In the case of commutative space, the coupled oscillators as the working substances result in

a catalytic effect to the efficiency with respect to the coupling strength of the system. Now,

we want to analyze how the change in the phase space affects the thermodynamic process.

The Hamiltonian of the two harmonic oscillators coupled with each other in the NC phase

space is described in Eq. (4.4.12). The energy eigenvalue of the Hamiltonian is expressed

in the form shown in Eq. (4.4.13) of the section 4.4.1. Following the same methodology, as

used in the case of commutative space, we will analyze the quantum Stirling cycle in the NC

phase space.

The partition function for the system is evaluated and it takes the form:

Z =
∑

n
e−βEn =

−4
β2θ2(K −4ω2)

, (9.2.6)

subjected to the condition Re
[Kβθ

2 +β
√

Kθ2ω2
]
> 0.

The heat exchange that occurs when the system undergoes the first stage of the Stirling

cycle is:

QAB = UA−UB +
1
βh

ln
(Zω1,βh,θ

Zω2,βh,θ

)
, (9.2.7)

The partition function ZA, ZB of the system can be derived using Eq. (9.2.1). The internal

energy UA, UB is evaluated using the definition Ui = −∂lnZi/∂βh, where i = A, B.

In the second phase of the cycle heat is unleashed from the system. So, the heat exchange
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throughout this process can be expressed as:

QBC = UC −UB. (9.2.8)

The third phase is a isothermal process where heat gets rejected from the system. So, the

heat exchange is represented as:

QDC = UD−UC +
1
βc

ln
(Zω1,βc,θ

Zω2,βc,θ

)
, (9.2.9)

where Ui = −∂lnZi/∂βh with i = C, D.

And in the last stage of the cycle the system undergoes an isochoric heat addition process.

So, the heat addition to the system can be expressed as:

QDA = UA−UD. (9.2.10)

The work done for the cycle is described as WtotNC = QAB + QBC + QCD + QDA. The

efficiency of the Stirling heat cycle for the coupled harmonic oscillator as the working sub-

stance in NC phase space can be derived from Eq. (9.2.7), (9.2.8), (9.2.9) and (9.2.10). It

is expressed as:

ηS tirNC = 1 +
QBC + QCD

QDA + QAB
.

Similar to the commutative space model the hot reservoir temperature is Th = 4K and that

of the cold reservoir temperature Tc = 1K. We take the frequency for the coupled oscillator

as ω1 = 4 and ω2 = 2 for the evaluation of the efficiency of the Stirling cycle with respect

to the variation of the NC space parameter. For our analysis we fix the coupling strength to

ζ = 2 and the constant at K = 0.25. The efficiency of the Stirling cycle (as shown in Fig. (9.5)

in the NC phase space with coupled HO as the working medium increases with the increase

of the NC parameter and attains a steady state after a certain value of the NC parameter. The

efficiency of the engine is near to the efficiency of the ideal engine cycle. So, we can infer

that the NC phase space provides a catalytic effect on the efficiency of the engine. In Fig. 9.5

we have shown the efficiency of the Stirling cycle in the commutative space (depicted by

the solid line in the graph) for the coupling strength ζ = 2. The variation of the efficiency

with the NC parameter for the same coupling parameter is depicted by the dash-dot curve

in the graph. The efficiency of the engine boils down to the efficiency of the commutative
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Figure 9.5. (Color online) Efficiency of the Stirling cycle with coupled HO as the working sub-
stance For a constant coupling factor is shown. The violet dash-dot curve depicts the change of
the efficiency of the engine with respect to the NC parameter for a constant coupling factor ζ = 2.
The orange solid line describes the efficiency of the commutative space with the constant coupling
constant ζ = 2.

space when the NC parameter θ→ 0. So, this satisfies the condition that the results of the

system in NC space should reduce to the commutative space when the NC parameter is close

to zero. We can infer from the graph that the engine in the NC space gets a boost for the NC

parameter. Even the comparison of the efficiency of the Otto cycle with that of the Stirling

cycle conveys that the working model provides a more catalytic effect on the efficiency of

the Stirling cycle than that of the Otto cycle.

9.2.3 Generalized non-commutative phase space

In the case of non-commutative phase space, the coupled oscillators as the working sub-

stances give a boost to the efficiency with respect to the NC space parameter of the system.

The efficiency increases with the increase of the NC parameter and shows a steady efficiency

for the higher values. Now, we will study how the generalized NC phase space affects the

thermodynamic process. The Hamiltonian of the two coupled harmonic oscillators in the

NC phase space is described in Eq. (4.4.14), of the section 4.4.2. The energy eigenvalues

are described in Eq. (4.4.15). Following the same methodology, as used in the case of non-

commutative space, we will analyze the quantum Stirling cycle in the NC phase space.

In generalized NC phase space, the Hamiltonian is separated into two parts as shown in
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Eq. (4.4.14). During the first stage of the cycle, i.e, the isothermal process, the individual

Hamiltonian changes from the initial values from H(1) to H(2) to keep the system in thermal

equilibrium with the hot reservoir. The total Hamiltonian of the system is the sum of the

effect of these two Hamiltonian. The partition function for this system when evaluated results

to:

Z = −
2eζ−

1
2βωcosh(ζ)[4+2K(−Kγ+ξ)2sech(ζ)]1/2

ω2β2[−2eζ + 2e2ζK2γξ−K(K2γ2 + ξ2)]
, (9.2.11)

subjected to the condition Re
[
eζβω

(√
1 +

eζK(−Kγ+ξ)2

1+e2ζ +e2ζ
√

1 +
eζK(−Kγ+ξ)2

1+e2ζ −

√
1 +

eζK(−Kγ+ξ)2

−1+e2ζ +

e2ζ
√

1 +
eζK(−Kγ+ξ)2

−1+e2ζ

)
> 0

]
The heat exchange that takes place when the system undergoes the first stage of the

Stirling cycle is:

QAB = UA−UB +
1
βh

ln
(Zω1,βh,γ,ξ

Zω2,βh,γ,ξ

)
, (9.2.12)

The partition function ZA, ZB of the system can be assessed using Eq. (9.2.1). The internal

energy UA, UB is developed using the definition Ui = −∂lnZi/∂βh, where i = A, B.

The Hamiltonian remains at H(2) while the temperature of the system decreases from Th

to Tc during the second phase of the cycle. As a result, heat is removed by the system to the

reservoir and it can be mathematically defined as:

QBC = UC −UB. (9.2.13)

In the third stage, the system remains coupled to the hot reservoir at temperature Tc, and

the quasi-static changes in the Hamiltonian are depicted by the change of the Hamiltonian

from H(2) to H(1). Heat exchange for this phase of the cycle is given as:

QDC = UD−UC +
1
βc

ln
(Zω1,βc,γ,ξ

Zω2,βc,γ,ξ

)
, (9.2.14)

where Ui = −∂lnZi/∂βh with i = C, D.

During the fourth stage of the cycle in generalized NC space, the system Hamiltonian

stays as it is in H(1) while the temperature changes from Tc to Th as the system is reverted

back to the initial stage of the cycle. The heat exchange throughout this stage of this cycle is

described as:

QDA = UA−UD. (9.2.15)

The grand total work done for the cycle is WtotGNC = QAB + QBC + QCD + QDA. The

efficiency of the Stirling heat cycle for the coupled harmonic oscillator as the working sub-
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Figure 9.6. (Color online) Efficiency of the Stirling cycle with coupled HO as the working sub-
stance for generalized non-commutative phase space.

stance in generalized NC phase space can be derived from Eq. (9.2.12), (9.2.13), (9.2.14)

and (9.2.15). It is expressed as:

ηS tirGNC = 1 +
QBC + QCD

QDA + QAB
.

Following the same values of the parameters as done in the case of non-commutative

space, we considered the hot reservoir temperature Th = 4K and that of the cold reservoir

temperature Tc = 1K for the analysis of the Stirling cycle in generalized NC phase space.

The frequency for the coupled oscillator is taken as ω1 = 4 and ω2 = 2 for the evaluation

of the efficiency of the Stirling cycle with respect to the variation of the generalized NC

space parameters. Throughout the process the coupling strength is ζ = 2 and the constant

is K = 0.25. The three-dimensional plot (in Fig. (9.6)) shows the variation of the efficiency

of the Stirling cycle with the coupled harmonic oscillator as the working substance in the

generalized NC phase space. The variation in the parameter ξ and γ in the graph shows a

prominent effect on the efficiency of the engine in this space structure model. The efficiency

of the Stirling cycle for ζ = 2 in commutative space is about 0.63. With the same value of

the coupling constant, we can see that the efficiency of the engine is high in the generalized

NC space model. This indicates that the deformation of the space, which is depicted by the

non-commutative parameter of both the coordinate and the momentum space influences the

efficiency. If we compare the efficiency of the Stirling cycle with that of the Otto cycle we



186
Quantum Thermal Engines with Coupled Harmonic Oscillator in Non-relativistic

Non-Commutative Space

visualize that the maximum attainable efficiency for both the cycle is near about the same

but slightly higher for the Stirling cycle.

For the evaluation of the efficiency of the Stirling cycle in commutative as well as non-

commutative space we have performed numerically simulation. We have used Mathematica

for deriving the solution of the equations and Python for data generation and ploting of the

efficiency of the engine model.

9.3 Chapter Summary

To summarize, we analyzed quantum heat engines with coupled harmonic oscillators as the

working medium for the commutative and the non-commutative space. The coupled har-

monic oscillator in non-commutative phase space out-performs the oscillator in the commu-

tative space in terms of the efficiency of both the quantum cycles that are being analyzed. In

the case of the Otto cycle, the efficiency is high for the lower values of the NC parameter.

Even if it shows a monotonous decrease in the efficiency of the Otto cycle, it remains higher

than the expected efficiency in the commutative space. Whereas in the case of the Stirling

cycle we encounter a steep boost with the increase of the NC parameter. It tends to reach

the efficiency of the ideal cycle. So, we can infer that the working medium considered for

our analysis is an effectual working substance for the Stirling cycle than that of the quantum

Otto cycle. Even in the case of generalized NC phase space, the efficiency gets a catalytic

effect for the NC parameter over the commutative phase space. The non-linearity that we en-

counter in the Hamiltonian is the consequence of the NC parameter of the non-commutative

phase space.

Some of the previous works [40, 480] have explored the influence of NC space in ther-

modynamic cycles. They have shown that the NC space provides a catalytic effect to the

efficiency of the engine as well as the refrigerator models. Most of the analyses have claimed

that the system is model-dependent. So to provide a generic statement that the high engine

efficiency in NC space is universal, further analysis in this direction is required.

For the analysis and implementation of the quantum Otto cycle, one has to maintain

a quasi-static adiabatic process to prevent coherence generation in the Hamiltonian of the

considered system. This should be kept in mind while the execution of the adiabatic process

so that one can prevent the mean population change. During the thermalization process of

the cycle, to achieve the thermal equilibrium state where the system is coupled with the

reservoirs, the system must stay coupled with the bath for a longer period of time. It will
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be interesting to analyze various thermodynamic processes by using the general form of

coupling of the harmonic oscillator as the working substance.
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The contents in this chapter are based on the review article in Ref. [42].

In this chapter, we have considered non-commutative spacetime with relativistic and

GUP correction for our analysis. Our prime motivation is to inspect the quantum engine

cycles for different working mediums in relativistic non-commutative spacetime with GUP

correction. Here, the working medium, that we have considered for the analysis is one-

dimensional potential well and the harmonic oscillator. We make use of this working medium

for the analysis of the Stirling cycle, which depicts the working principle for different quan-

tum heat engines and refrigerators. We evaluate the efficiency of the cycle after the work-

ing mediums evolve through every phase of the cycle. The outcomes are surprising in the

case of relativistic NC spacetime. We visualize that when the working medium is the one-

dimensional potential well, we get a constant efficiency of the engine, whereas, during the

case of the harmonic oscillator as the working substance, the efficiency increases rapidly

with the variation of the NC parameter of the spacetime. The NC parameter gives a cat-

alytic effect to the efficiency with the harmonic oscillator as the working medium. This leads

us to the possibility of analyzing and exploring quantum information theory from the NC

spacetime perspective. One inevitable question that pokes our mind is regarding the physical

189
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accessibility of the non-commutative spacetime with the existing quantum technology. In

the context of experimental verification and analysis of the signatures of the NC spacetime

effect, we encounter recent development in this direction using quantum optics [463] and

Opto-mechanical [489] setups.

10.1 Quantum heat cycles in NC with GUP corrections

Quantum heat engines and refrigerators are analyzed for different systems as the working

substance. We will consider the 1-D potential well with relativistic and GUP correction as

the working substance for the engine model. We will also take into account the harmonic

oscillator (HO) with relativistic and GUP correction as the working substance for the engine

model. Our purpose is to analyze the better working medium for the heat engine cycles in

non-commutative space in the relativistic realm. For our analysis, we will study the Stirling

engine cycle for both cases. In the non-commutative phase space, the working medium that

we will consider for the analysis of the Stirling cycle will evolve to a Gibbs state which we

will consider for our analysis following the same analogy as shown in previous works [490].

Stirling cycle, a reversible thermodynamic cycle, is a four-stroke engine that comprises

two isothermal processes and two isochoric processes. The pressure-volume (P-V) diagram

of the Stirling cycle in the classical regime is depicted in Fig. (2.4) of the section 2.2.

10.1.1 Stirling cycle with 1-D well as working substance in the NC

space

Here, we analyze the Stirling cycle with 1-D potential well as the working substance. A

Stirling cycle [123, 146, 147, 200] consists of four stages, two of which are isothermal pro-

cesses, and the remaining two processes are isochoric in nature. The detailed description

of the generic process of the analysis of the quantum Stirling cycle with infinite potential

well as the working medium is described in section 2.8. The process will be analyzed for

infinite potential well as the working substance in the relativistic non-commutative space in

this section.

In previous works [43,472,493,494], they have studied the work done and the efficiency

for the heat engine in the non-relativistic and relativistic regime in commutative space. In

this work, we first develop the heat engine in the NC spacetime with relativistic and GUP

correction with one-dimensional potential well as the working medium. Following the same
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analogy in the previous works, we analyze the work done and the efficiency of the heat

engine for NC spacetime.

Some previous works [491, 492] have explored the non-equilibrium thermodynamics in

non-commutative space structure. They have shown that the master equation for the non-

commutative space narrows down to the usual master equation when one equates the non-

commutative parameter to zero. The presence of the non-commutative parameter enhances

the results that are generally encountered in the ordinary space without violating the usual

master equation. We have considered that our system follows the same usual master equation

in the non-commutative space as suggested in the works [491,492]. In our analysis, we have

considered that only the system will encounter the effect of the non-commutative space.

Now, we will take a 1-D potential well having a length 2L in NC spacetime with a particle

inside the system having mass m at temperature T1 as the working medium for our analysis.

The physical energy for this system is identical to Eq. (4.4.15).

The partition function [476] of our system is:

ZA =
∑

n
e−β1En

=
1

√
π

√
β1}2(2+3αζ2m2c2)

L2m

, (10.1.1)

where β1 = 1
kBT1

and kB is the Boltzmann constant.

Now, in the first stage of the cycle, we divide the 1-D well into a double potential well

by inserting a partition isothermally. During this process, even energy levels remain therein,

but we observe a shift in the odd levels. The odd ones merge with the nearest neighbor, i.e.,

the even energy level. So, the energy after the insertion takes the form:

E2n = −
(2n)2}2π2

8mL2

[
1 +

3
2
αζ2m2c2

]
−
}4

8m2c2

[ (2n)π
2L

]4
, (10.1.2)

which evolves by substituting n by 2n in Eq. (4.6.9). The partition function after the insertion

of the well is defined equivalent to Eq. (10.1.1) as:

ZB =
∑

n
2e−β1E2n .

In the isothermal process, the heat exchange takes the form:s

QAB = UB−UA + kBT1lnZB− kBT1lnZA. (10.1.3)
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The internal energy UA and UB is described as Ui = −∂lnZi
/
∂β1, where i = A,B.

During the second stage of the cycle, the system is connected to the cold bath at a tem-

perature T2. The partition function takes the form:

ZC =
∑

n
2e−β2E2n .

The heat exchanged during this stage of this cycle is interpreted by the difference of the

average energies for the initial and final states. It takes the form:

QCB = UC −UB, (10.1.4)

where UC = −∂lnZC
/
∂β2 and β2 = 1

kBT2
. In the third phase of the cycle, we remove the wall

isothermally. The energy during this stage of the cycle reverts back and is the same as given

in Eq. (4.6.9). The partition function becomes:

ZD =
∑

n
e−β2En ,

where UD can be evaluated similarly as UC . The heat exchanged (similar to Eq. (10.1.3))

becomes:

QCD = UD−UC + kBT2lnZD− kBT2lnZC . (10.1.5)

In the fourth stage of the cycle, the system falls back into the first phase of the cycle, i.e.,

the system is bridged back to the heat reservoir at temperature T1. The heat exchange for the

system is expressed as:

QDA = UA−UD. (10.1.6)

The total work done for this cycle is evaluated using Eq. (10.1.3), (10.1.4), (10.1.5) and

(10.1.6) as:

W = QAB + QBC + QCD + QDA.

The efficiency of this engine is defined using Eq. (10.1.3), (10.1.4), (10.1.5) and (10.1.6)

as:

ηS tir = 1 +
QBC + QCD

QDA + QAB
.
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Figure 10.1. (Color online) Variation of the efficiency of Stirling cycle with the NC parameter of
the system with 1-D potential as the working substance. The violet solid line depicts the efficiency
of the cycle in commutative phase space and the orange dashed-dot curve represents the efficiency
in non-commutative phase space.

We have considered T1 = 2K and T2 = 1K for the evaluation the efficiency of the Stirling

engine (shown in Fig. (10.1)) with the variation of the NC parameter. The efficiency of

the engine has been numerically analyzed with the results of the partition function and the

internal energy of the system. We have considered the length of the potential well as 5nm.

The efficiency of the engine is constant with the variation of the parameter. So, for this

working medium, we do not encounter any boost in the efficiency of the cycle. If we analyze

the engine cycle with this working medium in commutative space, the efficiency results in a

constant value which is near about (0.2) for a fixed length of the potential well. Along with

that, we encounter that the efficiency of the engine is not up to the mark with the relativistic

and GUP correction working medium. We can infer from the plot shown in Fig. (10.1) that

the non-commutative parameter has lost its impact when we have considered this model as

the working medium. The gain in the efficiency of the engine is provided by the relativistic

correction. This is quite surprising as we have encountered gain due to the non-commutative

parameters as shown in previous works [40, 41, 480, 481]. This feature of suppressing the

non-commutative effect with relativistic correction needs further investigation.



194 Quantum Thermal Engines in Relativistic Non-Commutative Space

10.1.2 Stirling cycle with harmonic oscillator in NC space

Now, we analyze the Stirling cycle having a harmonic oscillator with relativistic and GUP

correction as the working substance. A Stirling cycle [123, 146, 147, 200], consists of four

stages, two isothermal processes, and the remaining two processes are isochoric. The schematic

representation of the Stirling engine cycle with HO as a working substance is shown in

Fig. 2.7 of the section 2.8.2.

The physical energy of the system is equivalent to Eq. (4.6.10). Now, the partition func-

tion [476] for the system is defined as:

Z =
∑

n
e−βEn

=
2(2π

5 )
1
2 eκχ

Θ
, (10.1.7)

where κ=
βΞ

640c2m
(
−1+4c2m2αζ2

) , Ξ =
(
−1024c6m4αζ2 +256m6α2ζ4−35}2ω2 +280c2}2m2αζ2ω2−

16c4m2
(
−64 + 35}2m2α2ζ4ω2

))
, Θ =

√
βω2(4αζ2−1) and

χ = 1 + er f
[}βω(16c4m3αζ2+5}ω−4c2m

(
8+5}mαζ2ω

))
Θ

]
. Here er f is the error function [479] which

is defined as er f (x) = π−
1
2Γ(1

2 , x
2), where Γ(α, x) is known as incomplete gamma func-

tion [495].

(i) The first stage: isothermal (A→B) process. During this phase, the working medium

is attached with a heat reservoir of temperature Th. Throughout this process, the system will

be in thermal equilibrium with the heat bath. The changes in the energy spectrum and the

internal energy of the system take place as a result of quasistatic changes that occurs to the

working medium. These changes are due to the changes that occur in the Hamiltonian of the

system when the system evolves during this process. The heat exchange that occurs during

the first stage of the Stirling cycle is:

QAB = UB−UA + kBThlnZB− kBThlnZA, (10.1.8)

where kB is the Boltzmann constant. The partition function ZA, ZB for the phases can be cal-

culated using Eq. (10.1.7). The internal energy UA and UB is described as Ui ≡ −∂lnZi
/
∂βh,

where i = A,B.

(ii) The second phase: isochoric (B→C) process. During this phase, the system evolves

under an isochoric heat exchange. The system is coupled with a bath at a temperature Tc, so
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heat will be released in this process. So, the heat exchange is expressed as:

QBC = UC −UB. (10.1.9)

(iii) Third phase: isothermal (C→D) process. In this process, the working substance

remains coupled with the bath at temperature Tc. Similar to the first isothermal process, the

system during this process is at thermal equilibrium with the bath. Heat gets released in this

phase. The heat exchange takes the form:

QCD = UD−UC + kBTclnZD− kBTclnZC . (10.1.10)

where UC = −∂lnZC
/
∂βc and βc = 1

kBTc
.

(iv) The fourth phase: isochoric (D→A) process. The system falls back into the bath with

temperature Th. The heat exchange for this stage is expressed as:

QDA = UA−UD. (10.1.11)

The total work done for this process is Wtot = QAB + QBC + QCD + QDA. The efficiency of

the Stirling heat cycle from Eq. (10.1.8), (10.1.9), (10.1.10) and (10.1.11) is expressed as:

ηS tir = 1 +
QBC + QCD

QDA + QAB
.

We have considered T1 = 2K, T2 = 1K, ω = 4 and ω
′

= 3 for the evaluation the efficiency

of the Stirling engine (shown in Fig. (10.2)) with the variation of the NC parameter. We

numerically analyze the efficiency of the engine. There is a steep increase in the efficiency of

the Stirling cycle with the variation of the NC parameter. So, for this working medium with

relativistic and GUP correction, we encounter a catalytic effect in the efficiency of the cycle

with the increase of the NC parameter. The range of the NC parameter is considered in such

a way that it does not exceed the extreme quantum gravity limit [496]. Though it seems like

that the efficiency of the engine is monotonously increasing with the NC parameter, there is

a bound on it due to the accessible range of the NC parameter. Following the methodology

proposed in [463, 489], one can have the experimental realization of the engine models in
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Figure 10.2. (Color online) The green dash-dot curve shows the variation of the efficiency of
the engine cycle with the NC parameter of the system with non-commutative HO with relativistic
and GUP effect as the working substance. The red solid line is the efficiency of the harmonic
oscillator.

NC spacetime with a harmonic oscillator as the working medium. We can infer from the

plot shown in Fig. (10.2) that the non-commutative parameter along with the relativistic

correction has an impact on the efficiency of the engine. It is a surprising fact that this model

when considered as the working medium for the same engine we can visualize the effect of

both the relativistic as well as the non-commutative parameter. The model dependency of

the non-commutative parameter is confirmed from this analysis.

For the evaluation of the efficiency of the Stirling cycle for the two different working

mediums in the relativistic non-commutative space, we have numerically simulated the effi-

ciency of the engine. We have used Mathematica for deriving the solution of the equations

and Python for data generation and ploting of the efficiency of the engine model.

10.2 Chapter Summary

The non-commutative harmonic oscillator with relativistic and GUP correction as a working

medium for the Stirling cycle, out-performs the harmonic oscillator as a working medium in

terms of the efficiency of the cycle. With the increase in the NC parameter, the efficiency

of the engine gets a boost. We have considered the range of the NC parameter in such a

way that it is bounded by the extreme quantum gravity limit. We encounter a catalytic effect
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in the efficiency of the cycle with the harmonic oscillator as the working substance. But

we get a constant efficiency with 1-D infinite potential well as the working medium for the

same cycle. So, we can infer that the harmonic oscillator model is an effectual working

substance relativistic NC spacetime over the 1-D infinite potential well model. The effect of

non-linearity that we encounter in the Hamiltonian appears due to the NC parameter along

with the GUP correction. This requires energy for the implementation in the thermodynamic

cycles.

For the analysis and implementation of the quantum Otto cycle in the relativistic NC

spacetime, one has to maintain a quasi-static adiabatic process to prevent coherence gener-

ation in the Hamiltonian of the considered system. This should be kept in mind while the

execution of the adiabatic process so that one can prevent the mean population change. Dur-

ing the thermalization process of the cycle, to achieve the thermal equilibrium state where

the system is coupled with the reservoirs, the system must stay coupled with the bath for a

longer period of time. It will be interesting to analyze various thermodynamic processes by

using the general form of coupling of the harmonic oscillator as the working substance.

In different application areas of the quantum theory [485], the relativistic NC spacetime

can be a better resource. This is an open area for exploration. In previous works [136, 486,

487], coupled working medium has been analyzed. One can utilize the NC spacetime for the

analysis of coupled working medium, and it can be further extended for the exploration of

non-Markovian reservoirs in relativistic NC spacetime. Here, in our work, we have analyzed

the heat cycle. For the generic statement about the boost on efficiency for the engine cycle

in NC spacetime, further investigation of the existing heat cycles is required. Even one

can study the nature of the coefficient of performance for the refrigerator cycles using the

different spacetime models. It will be fascinating to study the effect of the NC spacetime

even in the irreversible cycles [497, 498] and how they affect the quantum phase transition.
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11.1 Quantum Thermal Process in Quantum Computer

We know that the standard second law of thermodynamics proposed by Clausius set up con-

straints on the thermodynamics processes like the efficiency of the engine. Similarly, we

encounter that each thermodynamic formulation provides constraints to the evolution of the

physical process that it can undergo. The constraints that are imposed on the system, can be

determined by the dynamics that characterize the respective framework. For example, in the

case of fluctuation relation [499,500] and thermodynamic uncertainty relation [210,501,502]

we can derive the constraints by applying external driving, but it is forbidden in the case of

resource theoretic approach [83,503]. In the work [504], they use the principle “information

from violation" for the evaluation of the devices, which demands an adequate amount of

isolation from the external environment for the correct execution of the operation. Quantum

computers, as well as quantum simulators which are the emerging quantum technology, fall

199
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into this category. The experimental analysis of the violation of the thermodynamic con-

straints, which results in the identification of the non-unitary evolution of the system in the

quantum computer was first proposed in the work [504]. Simulating of open quantum sys-

tems has been explored in the work [505], where the evolution of the system is supervised

by the time-independent master equation and the parameters are considered to be fixed.

A universal system will be offered by the quantum computing system for the experimen-

tal demonstration of the essential thermodynamic phenomena in the quantum realm. But it

remains a challenging problem to simulate open quantum systems as we are unable to tune

physically the control parameters of the systems and also we encounter difficulties to mea-

sure the work extraction. This is due to the that for the analysis of the work extraction we

need to physically tune the control parameter. In the case of quantum computers, there is

a constraint that no one is allowed to tune the parameters. The tuning of the parameter is

forbidden as they are optimized in the system to reduce the noise in the system. In a recent

work [506], they have proposed a way to overcome this tuning difficultly for the simula-

tion of the finite-time isothermal process, which is one of the fundamental thermodynamic

processes for the analysis of thermal machines. So, for the analysis, we need to know how

to simulate all the four quantum thermodynamic processes, i.e., isothermal, adiabatic, iso-

choric, and isobaric processes. In their work, they have introduced a virtual way by which

one can tune the control parameter. So, the dynamics of the system can be analyzed with the

help of quantum gates which will encode the parameter changes. The isothermal process is

complicated for the simulation as in this process we encounter Hamiltonian change, as well

as the interaction with the thermal bath. So, for the implementation, a discrete step method

was considered for the analysis of the thermal process, where the discrete steps consist of

series of rudimentary processes. Each step of the process either consists of an adiabatic pro-

cess or an isochoric process. In the case of the adiabatic process, the physically tuning of

the parameter is replaced by the unitary evolution with the help of quantum gates, and in

the case of the isochoric process, the dissipative evolution of the system is taken care of by

the quantum channel simulation [507–509]. The quantum channel simulation acts as a sub-

stitute for the environment [504, 510, 511]. Having this preliminary finding and along with

that, if we are able to simulate the required thermodynamics process, then we will be able

to analyze different quantum thermal engines like the Stirling cycle, and Otto cycles in the

universal quantum computer with different quantum systems as their working medium.
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11.2 Quantum Information Paradox in Quantum Com-

puter

The contents in this section are based on the article in Ref. [512].

In a very recent work as stated in section 4.7, they have proposed a method to tackle

the black hole information loss paradox. In this chapter, we will present a work, based on

similar principles, where we will apply this formalism in a binary black hole system and

show it can be successfully analyzed with a three-qubit system for binary black hole system

and measurements of this generates pseudo-random state operators which are in excellent

agreement with the theoretical values. We present an experimental setup for our model and

perform quantum optical simulation via the quantum state tomographic process1 [513]. So

far we have been considering the situation where there is no correlation between the two

qubits of the binary black hole system. Now, we have considered a situation that there exists

a correlation between the qubits of the binary black-hole. This can be described by using the

pseudo-density operator formalism by considering the interaction between the qubits of the

binary black hole with the particle above the event horizon. Interestingly the results show an

excellent agreement with our proposed theoretical proposal.

11.2.1 Mathematical Modeling of the Black Hole with Pseudo Den-

sity Operator

It is a known fact that the Schwarzschild metric describes the space-time continuum in the

presence of the black hole. A particle crossing the horizon is equivalent to swapping of

the signature of the metric, i.e., the spatial and the temporal components [399]. Now in

the quantum realm, if one considers a quantum phase factor, then the change in the spatial

and the temporal is simply conveyed by the conjugate of the defined phase factor. So, the

transpose operation of the density matrix can describe the effect of the in-falling quantum

system. The transpose operation so defined is a positive operation but defies to represent a

completely positive operation, which indicates that if one performs a transpose operation on

1It is not possible to estimate a quantum state from a single experimental run, due to no-clone theorem. As
a result, it is necessary to reconstruct the state multiple times and do the measurements number of times on a
different basis. Basic state tomography involves the estimation of the expectation values of all the operators (we
parameterize any given quantum states of a system with respect to a set of operators), and if one can reconstruct
all the operators then the experiment is said to be tomographically complete.
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Black Hole-IIBlack Hole-I

Particle-1 Particle-2 Particle-3

Particle-5Particle-4

GHZ State
Figure 11.1. This is the schematic representation of the process of the black hole evaporation for
a binary system from a pseudo-density operator framework.

one of the three-party entanglement system, the state of the system may not turn out being a

valid density matrix. For this, pseudo density operator (PDO) are used to explain this phe-

nomenon [514], which can accommodate non-positive operations like Hermitian transforma-

tions as well. We are going to exploit this fact to neutralize the violation of the monogamy

principle of the entanglement theory during the evaporation of the black hole.

Here, we consider a maximally entangled Greenberger–Horne–Zeilinger (GHZ) state

(three-qubit system) and a binary black hole system with pure states. We name the three

particles maximally entangled as particle 1 and so on. We consider that two particles from

this system fall in the binary black hole system, as shown in Fig. (11.1). Particle 1 falls

in black hole 1 and particle 2 in black hole 2. Once inside, the particles will entangle with

particles from inside the black hole environment, we name them particle 4 and 5 in the

two black holes successively. We implement this setup as per the optical setup shown in

Fig. (11.2) and then, we do the tomographic reconstruction of the state to analyze the black

hole evaporation from an information theory standpoint. The simulation returns a pseudo-

density matrix which can then be compared to our true value pseudo-density operator (ρtrue,

which depicts the theoretical expectation of the state) via a distance measure between the
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Figure 11.2. Experimental setup of the process. Here a GHZ state is generated by using two sets
of β−barium borate (BBO) type-II crystal. Three sets of measurements are considered on photon
A, B, where the measurements are considered for three different times (t1, t2 and t3 respectively)
and a single measurement for the photon C.
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two and give a figure of merit on the comparison of measurement values between the particle

entangled inside the black hole and that outside. We present this comparison in terms of a

fidelity score. We show that the fidelity score is sensitive to the method of estimation that

are used in our analysis. We have used three different methods: maximum likelihood, and

two variants of linear inversion techniques to do the state tomography, yet our overall fidelity

score is excellent, inferring that it is possible to do the measurement of the particle that is

inside the black hole via the measurement of the particle that is outside.

A density matrix bestows the probability distribution of the pure states, i.e., ρ=
∑

j a j|φ j〉〈φ j|,

where a j describes the probability of the pure state |φ j〉. The expectation value of a Pauli ma-

trix is defined as 〈a〉 = tr(aρ). So, we can describe an alternative approach to formulate the

density matrix in terms of the Pauli operator. So, for an n-qubit system, the general density

operator in terms of the Pauli operators is defined as

ρn =
1
2n

3∑
α1=0

· · ·

3∑
αn=0

〈

n⊗
β=1

σαβ〉

n⊗
β=1

σαβ , (11.2.1)

where σ0 = I, σ1 = X, σ2 = Y , σ3 = Z. Whereas the PDOs generalises these operators

and contains the statistics of the time domain. A general form of the PDO for a n-qubit is

described as:

Pn =
1
2n

3∑
α1=0

· · ·

3∑
αn=0

〈{σαβ}
n
β=1〉

n⊗
β=1

σαβ . (11.2.2)

If one consider a set of event {E1,E2, · · · ,Em}, for each event Eβ we can have a single qubit

Pauli measurement operator σαβ ∈ {σ0, · · · ,σ3}. Now for any specific choice of Pauli mea-

surement operator {σαβ}
n
j=1, we consider 〈{σαβ}

n
β=1〉 as the expectation value product of the

result of these measurements. This can be in space or in time. The PDOs shares many prop-

erties in common with the density matrix. All PDOs are necessarily Hermitian in nature,

trace one. The main difference of the PDOs with the density matrix is that they are not

necessarily positive operators, i.e., they can possess negative eigenvalues.

We will now try to comprehend the working principle of PDOs relevant to the problem

under study. Let us consider a maximally mixed state for a three-qubit system. Now, we will

describe a physical process where a system of qubits is measured at two different times. The

measurements are performed in the complimentary Pauli bases X, Y , and Z. The outcome

of the measurement statistics can be expressed by an operator, the quantum density operator.

This quantum density operator is the pseudo-density operator [514] which is described as
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Figure 11.3. Tomographic reconstruction of the reduced pseudo-density operator P143 using the
linear inversion method. The real part of the theoretical expectation (depicted by the true state in
the plot) and the real part of the reduced pseudo-density operator is compared here.

P123 =
1
8

[I + X1X2X3 + Y1Y2Y3 + Z1Z2Z3], (11.2.3)

where the subscripts indicate the index of qubits. One can obtain the reduced state of the

subsystem by tracing out the subsystem whose information is not of concern. Surprisingly,

one can represent the pseudo-density operators by executing a partial transpose operation

over the maximally entangled basis of the respective dimension. We use this model to under-

stand what happened to the three-particle entangled qubits when two of the qubits are falling

into the binary black hole system. We use P123 to describe the state of the system where it is

considered that two of the qubits is falling into the binary black hole. This is schematically

explained in Fig. (11.1).

Based on this reasoning, we will propose a PDO to model the problem under execution.

Here, a three-qubit entangled state is considered, out of them, two of the particles gets fur-

ther entangled with two other particles in the binary black hole system. We would explain

that the black hole information problem and binary black hole system can be explained by

contemplating the PDO model, which is represented by Eq. (11.2.3). This PDO represents

a three-qubit entangled system, out of which two of the entangled particles cross the event

horizon and fall into the black hole and there the particles get entangled with a qubit. This

proposed method describing the correlations associated with the black-hole evaporation is in

agreement with that proposed by [428], and the explanation of the black hole ringdown stage

boils down to the equivalent two-qubit system from the three-qubit system.
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Figure 11.4. Tomographic reconstruction of the reduced pseudo-density operator P143 using the
linear inversion method. The imaginary part of the theoretical expectation (depicted by the true
state in the plot) and the imaginary part of the reduced pseudo-density operator is compared here.

Figure 11.5. Similar to Fig.11.3, state tomography reconstruction of the reduced pseudo-density
operator P143 is conducted using the projected linear inversion method. The real part of the
theoretical expectation (depicted by the true state in the plot) and the reduced pseudo-density
operator is compared.

Figure 11.6. Similar to Fig.11.4, state tomography reconstruction of the reduced pseudo-density
operator P143 is conducted using the projected linear inversion method. The imaginary part of
the theoretical expectation (depicted by the true state in the plot) and the reduced pseudo-density
operator is compared.
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Figure 11.7. State tomography reconstruction of the reduced pseudo-density operator P143 is
conducted using the maximum likelihood estimation method. The real part of the theoretical
expectation (depicted by the true state in the plot) and the reduced pseudo-density operator is
compared.

Figure 11.8. State tomography reconstruction of the reduced pseudo-density operator P143 is
conducted using the maximum likelihood estimation method. The imaginary part of the theoreti-
cal expectation (depicted by the true state in the plot) and the reduced pseudo-density operator is
compared.
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Figure 11.9. The comparison of state tomographic reconstruction of the pseudo-density operator
P143 and the theoretical state (depicted by the true state in the plot) after the execution of the
measurement.
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Figure 11.10. State tomography reconstruction of the reduced pseudo-density operator P453 is
conducted using the maximum likelihood estimation method. The imaginary part of the theoreti-
cal expectation (depicted by the true state in the plot) and the reduced pseudo-density operator is
compared.

Figure 11.11. State tomography reconstruction of the reduced pseudo-density operator P453 is
conducted using the maximum likelihood estimation method. The imaginary part of the theoreti-
cal expectation (depicted by the true state in the plot) and the reduced pseudo-density operator is
compared.
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11.2.2 Analysis Using Rigetti Quantum Computer

We are going to explain the binary black hole evaporation theory with the help of the PDO

model. We will take into account that a three-qubit entangled state is created above the event

horizon. Now one of the particles of the GHZ state that is created due to the process of

Hawking radiation falls into one of the black holes of the binary black hole system, and the

second particle falls in the second black hole. Time like correlation is developed between

them. Now when the two particles that have fallen in the black hole get entangled respec-

tively with a qubit in the black hole, the system can be represented by a five-qubit entangled

pseudo-state. The total pseudo-density operator for the system can be described as

P12345 =
1
25

[
I +Σ123−Σ143−Σ413−Σ253−Σ523

]
, (11.2.4)

where Σi jk = XiX jXk + YiY jYk + ZiZ jZk. The Eq. (11.2.4) is based on the framework outlined

in [428]. According to the conjecture proposed in the work [428], they have considered

that the time-like correlation is positive, and whereas the spatial correlation component is

negative. This is based on the metric signature convention in general relativity, which typ-

ically follows the [+,−,−,−] (or [−,+,+,+]) convention where the positive sign is for the

temporal component and the remaining three negative signs are for the spatial component.

Following the same convention, we have defined the pseudo density operator for our system

in Eq. (11.2.4). The correlation described by the pseudo density for this system does not

obey the monogamy principle of entanglement theory. We will now use this PDO to ex-

plain the binary black hole system and discuss how the merger of the black hole boils down

equivalent to the two-qubit system.

So far in the analysis of the binary black hole system, the correlation between the qubits

of the two black hole was not taken under consideration. Here we will consider the case,

where the correlation between the two qubits (interaction term) in the binary black hole sys-

tems are taken into account. The pseudo-density operator with this correlation is expressed

as

P12345 =
1
25

[
I +Σ123−Σ143−Σ413−Σ253−Σ523−Σ453

]
, (11.2.5)

where the term Σ453 represents the correlation of the qubits of the two black hole systems.

Similar to the process conducted above for the analysis of P123, we execute the state tomo-

graphic reconstruction of the state P453, which can be obtained from Eq. (11.2.5) by tracing

out the information of the particle one and two (which can be depicted as P453 = 1
8 (I−Σ453)).
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If two-qubits systems (like A and B) are maximally correlated they cannot be correlated

with a third qubit C. For this convention, there exists a trade-off between the amount of en-

tanglement between the qubits A and B, and the same between the qubits A and C. One

can express this mathematically using the Coffman-Kundu-Wootters (CKW) monogamy in-

equality [515, 516] as

C2
AB +C2

AC ≤C2
A(BC), (11.2.6)

where CAB, CAC represents the concurrences between A and B, and between A and C re-

spectively, while CA(BC) is the concurrence between subsystems A and BC. CAB is defined as

CAB = max{0,λ1−λ2−λ3−λ4}. Here the (λi) represents the square root of the eigenvalues of

the matrix ρi j(σy ⊗σy)ρ?i j(σy ⊗σy), where ρ?i j depicts the complex conjugate of the density

matrix and σy the Pauli matrix. The monogamy inequality can also be expressed in terms of

entanglement measures as

E(A|B) + E(A|C) ≤ E(A|BC). (11.2.7)

For N qubit [517] the definition can be extended as

E(A|B1) + E(A|B2) + · · ·+ E(A|BN−1) ≤ E(A|B1B2 . . .BN−1). (11.2.8)

Using the equation (11.2.8), we can analyze the monogamy inequality for our system. This

is violated by our pseudo operator P12345.

The above proposed PDO describes the binary black hole evaporation which incorporates

the monogamy violation principle. This is possible because PDOs can be used to describe

the maximally temporal correlation as well as maximally spatial correlation.

To describe this process, we execute a quantum optical simulation of this framework.

Here, we are not going to describe any experimental test results, but we will illustrate our

theoretical model via qubit simulation using quantum virtual machines (we have considered

rigetti quantum computer for the simulation). Through our experiment, we first generate a

three-particle entangled pair of photons (A, B, C). Now, after the two-particle falls into the

black hole the correlation between the individual particles that have fallen and the particle

that is above the event horizon is in the same maximally entangled state, which is observed

by measuring the photon A and B in three different times (t1, t2 and t3). Whereas, the

correlation between the particles that have fallen inside the black hole, and has developed

a spatial entanglement there, which can be comprehended by measuring the photons A, B,
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C at the same time t1. So, we reconstruct the relevant statistics of the PDO P12345. This is

established by constructing the different ensemble of the particles under study.

In the optical schematic, we have generated a GHZ state using a type-II β-Barium Bo-

rate (BBO) crystal [518]. A mode lock laser has been considered for the generation of a

laser beam of 808 nm wavelength. This beam is then passed through a second harmonic

generator after which it gets injected into a 0.5 nm thick BBO crystal of type-II to gener-

ate a parametric down-conversion (PDC) [518, 519]. After the generation of the two-photon

beam, the second photon beam is again injected into a BBO crystal to produce two further

beams. These generate a three-photon entangled state. The maximally entangled state is

|GHZ〉 = 1√
2

(
|HHH〉+ |VVV〉

)
, where H and V represents the horizontal and the vertical

polarisation components respectively. These are generated from the interaction of the PDC

cone [520].

In two of the photon paths (A, B), two sets of measurements is conducted here in cascades

(M1, M2, M3 for photon path A and M4, M5, M6 for the photon path B). Each of these

measurement systems when unfolded, consists of a quarter-wave plate (QWP), then a half-

wave plate (HWP), and a polarizing beam splitter (PBS). We have inserted a set of HWP

and QWP between two measurements so that, one can compensate for the polarisation that

occurred due to the previous measurement. After the measurement, the photon A, B, and C

are passed through the band-pass interference filter, which filters the photon beam. After the

filtration process, it passed through the multi-mode optical fibers connected to silicon single-

photon avalanche diodes (Si-SPADs). The output is then sent to the coincidence electronics

for the analysis.

We will perform a quantum state tomography reconstruction [521, 522] on branch A. In

this case, we are able to extract the temporal correlation for the system which can be de-

scribed as P123 = 1
8 (I +Σ123) and to understand the spatial correlation we have conducted a

tomographical reconstruction of the reduced pseudo density state P143 of the system. Simi-

larly, one can develop the other reduced pseudo-density state by a similar chronology.

The state tomographic reconstruction of the state P123 is shown in Figs. (11.3-11.8). For

the analysis, we have considered three different methods to estimate and reconstruction of

the state. The results so generated using these methods are in excellent agreement with the

theoretical expectations as stated by the fidelity (F), which is the measure that evaluates the

closeness of the state expressed by the density matrix to that of the original pure state |ψ〉, F

can have a value between [0,1]. For maximum likelihood estimation (MLE), linear inversion

and projected linear inversion the fidelity is F = 99.9%, 100% and 97.3% respectively (shown
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Method Fidelity Score

Linear Inversion 1.0
Projected Linear Inversion 0.973

MLE 0.999

Table 11.1. Table showing the fidelity score F obtained from the three different methods used
in the tomography used. Since F can’t exceed values of 0.5 in the classical limit, it shows that
there is true entanglement beyond the classical limit. Also, the deviation in the models shows that
better entanglement distillation could resolve this difference in values.

in table (11.1)). The state tomographic reconstruction of the state P143 results similar to P123.

The simulation of the monogamy inequality of the considered pseudo-density matrix shows

that it violates the monogamy principal. The detailed plots of the analysis of P143 are not

shown as they are similar in nature.

It is however interesting to note the fluctuations in the imaginary part of each of the plots.

Although the absence of any fluctuations in the real axis compels us to believe that it is simply

not background noise, originating from measurement error. If we compare our imaginary

plot results to that of the [428] plots, we see clearly there are much more fluctuations in our

binary black hole system set up. It is not clear to us at the moment what are the origins

of these fluctuations, but definitely, it points to some perturbations on the quantum state

measurements of the pseudo-random operators originating specifically from our system’s set

up (hence essentially a quantum phenomenon). We speculate this could be any deviations

around the horizon of the black hole. In the future, we plan to verify this analysis with an

optomechanical setup [462, 523] and further explore in the Planck regime for any possible

deviation in the horizon of the black hole. We look forward to studying the cause of such

anomaly in the imaginary axis values and exploring it further in future works along with a

similar framework as presented by [524].

For the analysis of the interaction between the two qubits of the two black hole systems,

we have considered a different basis of the GHZ state [525], from which we can return to

the usual form by some local operation. One can obtain the maximally entangled state by

adopting the selected photons spatially which belongs to the intersection of two parametric

down-conversion cones. The process properly compensates for the temporal and the phase

effect [520]. To measure the spatial correlation (like P453 = 1
8 (I− Σ453)) we measure the

correlation between M4, M5 and M7, provided that M6 performs the same polarization pro-

jection as that of M4 and M5. By this process, we reconstruct the reduced pseudo-density

operator tomographically which actually corresponds to the spatial entangled state that is
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True Estimated via MLE 

Figure 11.12. Comparison of the two dimensional projection plot between the estimated state
P453 and the true state.

formed between the particles 4, 5, and 3 within the black hole. The state tomographic recon-

struction of the system shows a complete agreement with the proposed theoretical model for

the analysis as shown in Fig. (11.10). Similar to the state tomographic analysis of P123, we

also encounter fluctuations in the imaginary part of the plot which we can speculate as to the

effect due to the interaction of the two qubits in the binary black hole system.

11.2.3 Gravitational Waves as a context

So far, we have described an alternative method to explain the entanglement paradox in the

binary black hole system. We have incorporated the pseudo-density matrix formalism to ex-

plain this phenomenon. We have considered that Hawking radiation, which is the cause for

the phenomenology of the black hole evaporation, can be well established from the pseudo-

density formalism point of view in such a binary system, in agreement with the conjecture

presented by [428]. For the analysis, we have considered PDO in terms of the Pauli opera-

tors for the three-qubit system, where two of them fall into the binary black hole system and

get entangled there. We have used a quantum optical set up to demonstrate these phenom-

ena by simulations using a quantum virtual machine. The state tomographic reconstruction

shows that the pseudo-density operator can appropriately describe the correlation that vio-

lates monogamy.

The first detection of gravitational waves in 2015 [526, 527] has opened many new pos-

sibilities for us in understanding many fundamentals of physics and the Universe. Recent
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works [528, 529], have shown signs that there is a scope for using the gravitational waves

as an effective tool for understanding the Hawking radiation and probe into the black hole

physics. Lately, works also show [530–535] that it is very much possible to extend the stan-

dard framework of Hawking radiation in a single black hole to that of a binary black hole

system (both non-spinning and spinning). In this context, upcoming gravitational waves de-

tection programs like laser interferometer space antenna (LISA) [536] are well designed.

They will target objects like binary black hole systems typically a supermassive galactic

black hole orbited by a stellar black hole [536]. For such large mass ratio systems, [529] has

shown how there will be Hawking radiation exchange between the two merging black holes

and also that this exchange will not be attenuated by other physical parameters like the tidal

force, relative motion, etc. In addition, they proposed that such exchanged Hawking radia-

tion will lead to the production of gravitational waveforms different than those predicted by

the classical theory of gravity and in future tests of gravitational waves, it is highly likely

that such precision measurement can be recorded.

Also in their work, [528] has shown how binary gravitational systems can be expected to

produce entangled signal emissions and how laser interferometer gravitational-wave obser-

vatory (LIGO)-like detectors can be used to detect them. In what follows, we put forward

a thought experiment, trying to bridge this gap and make more use between the theoreti-

cal conjectures and the observational artefacts available from gravitational waves. We also

explore it’s verification possibilities.

In the work [529], the authors stated that owing to the effects of Hawking radiation from

the binary black hole systems, the emitted gravitational waves will have a deviation in their

characteristics from that predicted by the semi-classical theories of gravity. However, we

suggest that the exchanged Hawking radiation between the two black holes will not hinder

the normal entanglement process to propagate, exactly as outlined in our current work. We

make an assumption that in an unlikely situation if simultaneously Hawking radiation and

gravitational waves were both emitted from the outside neighborhood of the horizon of a

binary black hole system, the entanglement information that would be imprinted in both these

carriers would be the same, essentially describing the previous quantum state’s information

within the common envelope of the binary black hole’s horizon 2. A verification of this

thought experiment is proposed with our optomechanical setup. If future observations of the

gravitational waves are available with better precision, then we can replace the laser beam

2Although realistically that will never be possible to observe them simultaneously, as measurable Hawking
radiation will be produced at a much much later stage in the lifetime of a black hole.
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source in our optical setup with the characteristics waves of the gravitational waves (treating

both as standard electromagnetic waves) and perform the optical simulations with the real

data. In spite of the fact, that the gravitational waves detected are not the Hawking radiation

waves from the black hole, but in the situation described above, they should carry the same

entanglement imprint to that of Hawking radiation if they were simultaneous at the time of

emission. If this is experimentally verified as we suggest with our optical setup, then we

can do away with the requirement of detecting Hawking radiation separately for retrieval

of quantum state information from inside the black hole. If the results provide satisfactory

verification of the conjecture we proposed with good agreement between the theoretical and

the experimental values, in our optical setup using the gravitational waves, then we will

verify our above assumption.

This could potentially open new possibilities with the use of the gravitational waves as a

tool for understanding the black hole paradox and information retrieval. We can explore the

possibility of understanding the quantum states of the particles inside the black hole which

would be in spatial entanglement with the particles from outside (which in our case is par-

ticles 1, 3 and 4) or in other words we can have the possibility to access the information

of the inside of a black hole. The other possibility being, the gravitational waves detected

being originated from the binary black hole system as explained before, if, via reverse en-

gineering, the entanglement information which these waves will carry can be successfully

segregated [537, 538], we can also do a verification of our proposed conjecture and try to

explore the same set of questions with a stronger benchmark.

11.3 Chapter Summary

To summarize, in the first phase of this chapter, we have discussed how one can simulate a

thermodynamic system using quantum gates in a quantum computer, and propose that if we

can simulate the thermodynamic processes like adiabatic, isothermal, isochoric, and isobaric

processes, then we can have an experimental validation of thermal machines with different

working medium using a quantum computer. And in the second phase of the chapter, we have

verified the conjecture presented by [428] with a different system than theirs. We also tried to

explore the possibilities of how their novel work could be brought to more practical setups,

from where we can try to exploit our current available black hole observational information

in the form of the gravitational waves and make use of our conjecture for its experimental

verification as well as explore the idea of real black hole entanglement related observational
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experiments in near future. We would also like to mention, that we have analyzed the post-

merger equilibrium state (ring down) of a reduced binary black hole system. We have seen

that our setup can reproduce the results presented in [428] of a single black hole system

under such conditions. Additionally, we have encountered some interesting results from

our analysis like the fluctuations in the imaginary plots (see section 11.2.2). As discussed

already, the origin of these fluctuations is expected to be not just due to noise but due to some

effect of the system. We plan to continue the investigation on the origins of these fluctuations

and it’s consequences.

Recent new developments in open quantum systems have drawn our attention to the pos-

sibility to extend the current project from this perspective. The dynamics of a system inter-

acting with an environment can be analyzed in the framework of open quantum systems. One

can express the thermalization phenomena of the Hawking radiation from a Schwarzschild

or a de Sitter spacetime from an open quantum system framework [539–541]. Our model

conjectured here can be suited to explore with open quantum systems.
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Thermodynamics is always motivated by experimental analysis. One of the primary pur-

poses of the field is to develop principles that convey to us what are the type of machine we

can develop and the limit in the performance of these machines. For the quest of quantum

thermodynamics, the important point is to identify the quantum effects that disregard classi-

cal elucidation. A recent study to explore thermodynamics from quantum information and

computation point of view got the limelight due to the fact that their effects provide an ad-

vantage over the classical realization of the process. This framework is utilized to investigate

the void between classical and quantum computation. So, there happens to be an intimate re-

lation between quantum information and quantum thermodynamics dated back to Maxwell,

Landauer, Szilard, and Bennett. The analysis of the computation process from the thermody-

namic viewpoint has been one of the central points of attraction for the researchers of physics

as well as computer science. It got initiated from the physical Church-Turing thesis, where

they conveyed that every computational process is physical. Various approaches have been

considered for the analysis of the different computational processes. With the advent of the

modern statistical theory, the research in this area got boosted. Not only in the field of com-

puter science, we also encounter its application in different fields from chemical networks,

molecular biology, and even in neurology. In this thesis, I discussed the basic problem of

relating thermodynamics and quantum mechanics from a variety of angles mainly focusing

on the analysis of thermal machines.

Hereafter, I will discuss the main results of the thesis along with its possible future direc-

tions inspired by the analysis of the work that is carried out in this thesis. First and foremost,

we did a survey where we have presented an overview of the impact of thermodynamics

in the field of computation, mainly the artificial process (computer science theory) and the

information theory. For the information theory, we will consider only the error-correcting

codes. We have considered some specific computational models and then explored their

processing from a thermodynamic viewpoint. Error correction is an important part of any
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computational process. The analysis of these protocols from a thermodynamic viewpoint

is at their baby stage. Error correction codes in terms of the thermodynamic process are

also explored in this thesis. Further investigation in this direction is required to get a bet-

ter understanding of the bond between thermodynamics and the computational process. For

example, in the case of finite automata, one can investigate the maximum thermodynamic

cost that is required to accept a language for automata. Also one can calculate the minimal

cost for any deterministic automata. One can also work on developing a theory to analyze

the non-deterministic finite-state automata in terms of thermodynamics. Models to describe

the complex Turing machine, and also network theory from the thermodynamic viewpoint

is an open area of research. Along with that from an information perspective modeling of

the error correction models by the physical system to explain it thermodynamically needs

further investigation. In recent work, the authors have shown that there a similarity between

the quantum heat engine and quantum error correction codes. They have strengthened their

intuition by making a complete analysis of the thermodynamic properties of the quantum

engine-based error correction codes. So the thermodynamic approach to explaining the error

correction is an open book to read.

In the next phase of the thesis, we have explored thermal machines with different quan-

tum mechanical effects. In this phase of the thesis, our primary motivation is to find al-

ternative approaches to enhance the efficiency and the coefficient of performance (COP) of

the thermal machine and also reduce the cost of measurement. For this purpose, we have

considered various working models with quantum signatures for the exploration of quan-

tum thermal machines. In one approach, we have considered potential well as the working

medium for the analysis of thermal machines like Stirling engine in both non-relativistic as

well as the relativistic regime. In this work, we have bridged a connection between the ther-

modynamic variables and the uncertainty relation of the incompatible observables for the

quantum mechanical system that is being considered for the analysis. We encountered that

there is a direct connection between the thermodynamic variables and the canonical formal-

ism of the uncertainty relation. We have developed the thermal uncertainty relation where

we have applied the bounds of the canonical uncertainty relation to study the behavior of

the efficiency in terms of the uncertainty relation. We visualized that the efficiency of the

quantum thermal machines that can be predicted with the knowledge of uncertainty relation

without performing any projective measurement on the system. The effect of the uncertainty

relation is prevalent for both regimes.

Now, being fascinated by the question of whether the change in the space structure pro-
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vides a boost in the performance of the thermal engine, we considered different deformed

space structures in the literature to explore quantum thermal machines. We considered a

simple harmonic oscillator thermal machine in NC space, and then the performance of the

thermal machine was compared with ordinary space thermal machines. We encounter that

the space structure provides a boost to the performance of the engine. To explore further

deep into this problem we considered coupled harmonic oscillator for the analysis of thermal

machines. In this work, we have considered generalized deformed space structure for the

analysis. We visualized a boost in the efficiency of the heat engines for these models. This

work was further extended in the relativistic limit to explore whether it holds in this regime

or not. We find the same outcome in this regime. Along with that, we have proposed a way to

analyze the information loss paradox with the help PDO model by simulating the system in

Righetti quantum computer. Along with that, we have also proposed a Gedanken experiment

for the gravitational wave using the quantum optical approach, which can be implemented

for a better understanding of the working principle behind these gravitational waves. The

basis of this project was to visualize the power of the quantum computation tool to explain

different physical phenomena of the universe.

Though the primary perspective of the thesis was to analyze the different processes to

enhance the efficiency of the thermal machine, we provide some approaches through which

we can have the experimental analysis of relativistic thermal machines. The bound to the

efficiency that is provided by the uncertainty relation also sustain in case of the experimental

realization as it depends on the working medium (i.e. potential well, harmonic oscillator,

and so on). But it is independent of the process through which it is experimentally verified.

In recent times, the trapped ion is one of the profound quantum technology which plays

a vital role in the experimental validation of various aspects of quantum information. It also

plays an important role in the field of quantum thermodynamics for the implementation of

harmonic thermal machines [467,488,542–544]. One looks into logical trapped-ion technol-

ogy first when one envisions the experimental implementation of an oscillator-based thermal

machine. So we can expect that our model can be experimentally implemented by trapped

ion technology. Recent development has shown that one can implement relativistic Brown-

ian motion with 2D materials like graphene chips [545]. Following the same methodology,

one can design a relativistic harmonic thermal machine with 2D materials.

Now, we would try to explore the future prospect of the works of this thesis. The work

which explores the connection between the uncertainty relation with the thermodynamic

variables can be a backbone to develop a bridge of connection between the relativistic heat
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engines with the relativistic condensed matter physics. Several approaches to design materi-

als for non-relativistic engines and refrigerators are explored. Thus, it may also be possible

to design materials for the analysis of the relativistic engines using the relativistic density

functional theory. Cycles, when accompanied by the quantum phase transition, have a di-

rect impact on thermodynamic performance. So, one possible application of our work could

be to develop a connection between the uncertainty relations associated with the thermody-

namics cycles with the quantum phase transition. Along with that, one can even explore the

holographic interpretation of entanglement entropy of anti-de Sitter (ADS)/conformal field

theory (CFT) from an uncertainty viewpoint. We visualized that NC space has an impact

on the performance of the thermal machine. So we can expect that the NC phase space can

be an effectual resource for different application areas of the quantum theory, which needs

further exploration.

Various other coupled working medium is used for the analysis of quantum cycles. One

can make use of the NC phase space structure to analyze these models for the cycles, and

even can extend it for exploring non-Markovian reservoirs. For our analysis, we have focused

on quantum heat cycles. One can study the effect of the non-commutative phase space on

the coefficient of performance of the quantum refrigerator cycles for coupled oscillators and

even for other working substances. The analysis of the existing thermodynamic cycles in NC

phase space is required to provide the generic statement about the catalytic effect it yields

to the efficiency of the cycles. The analysis of the irreversible and continuous cycles, and

quantum phase transition in NC phase space needs exploration to visualize the effect of the

NC parameter in different thermodynamic processes. The challenging task in the NC space

is to analyze the NC spacetime in the relativistic regime. Recent work has analyzed the

different potential problems in the NC spacetime with relativistic correction. This gives us

the insight to analyze the thermodynamic process in the relativistic realm of NC phase space

which needs exploration. One can utilize the generalized uncertainty principle to instigate a

bound not only in the efficiency of the different cycles but even to the various thermodynamic

process by getting motivated from previous works.

The experimental realization of the NC phase space with our existing technology will

provide a boost for the analysis of thermodynamic processes and quantum information theory

in NC spacetime. Dey and Hussin in their work have shown that non-commutative systems

result in more entanglement than the usual quantum systems. The experimental validation

of this will provide a boost in the study of entanglement theory and its application to the

different areas of quantum information theory.
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It is a well-known fact that different systems have different heat signatures. One can

utilize this property of the system for various purposes such as for security in cryptographic

protocols. So one can explore the communications protocols, crypto-systems from a ther-

modynamic viewpoint. Algorithms in the form of a search algorithm from a thermodynamic

viewpoint have already been analyzed. Further exploration in this direction is an open area of

research. Thermodynamic analysis of quantum computations needs a rigorous investigation

for a better understanding of quantum computers and to develop hardware with lower cost

functions.

Simulation of thermodynamic system in quantum computer is a challenging work as

quantum computer constraints the tuning of the control parameter. These are forbidden as

they are optimized to reduce the noise. We can design a simulation of thermodynamic cycle

in quantum computer provided that we can simulate the thermodynamics processes. This

will help us to experimentally analyze different thermodynamic cycles as well as different

thermodynamic frameworks.
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[530] J. L. Friedman, K. Uryū, and M. Shibata, Thermodynamics of binary black holes and

neutron stars, Physical Review D 65 no. 6, (2002) 064035.
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