On the Choice of Appropriate Combination
of Classifier and Decomposition Scheme
for Multiclass Imbalanced Data
Classification : A Comparative Analysis

Sayantan Kumar






On the Choice of Appropriate Combination
of Classifier and Decomposition Scheme
for Multiclass Imbalanced Data
Classification : A Comparative Analysis

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in
Computer Science

by

Sayantan Kumar
[ Roll No: CS-1702 ]

under the guidance of

Dr. Swagatam Das
Associate Professor
Electronics and Communication Sciences Unit

|
D &ﬁ%ﬁ
A
N

Mo Co=n 0 Z =

UNITY IN DIVERSITY

Indian Statistical Institute
Kolkata-700108, India

July 2019



To my family and my guide



CERTIFICATE

This is to certify that the dissertation entitled “On the Choice of Appropri-
ate Combination of Classifier and Decomposition Scheme for Multiclass
Imbalanced Data Classification : A Comparative Analysis” submitted by
Sayantan Kumar to Indian Statistical Institute, Kolkata,in partial fulfillment
for the award of the degree of Master of Technology in Computer Science is
a bonafide record of work carried out by him under my supervision and guidance.
The dissertation has fulfilled all the requirements as per the regulations of this
institute and, in my opinion, has reached the standard needed for submission.

Swagatam Das

Associate Professor,

Electronics and Communication Sciences Unit,
Indian Statistical Institute,

Kolkata-700108, INDIA.



Acknowledgments

I would like to show my highest gratitude to my advisor, Dr. Swagatam Das, Asso-
ciate Professor, Electronics and Communication Sciences Unit, Indian Statistical
Institute, Kolkata, for his guidance and continuous support and encouragement.
He has literally taught me how to do good research, and motivated me with great
insights and innovative ideas.

My deepest thanks to all the teachers of Indian Statistical Institute, for their
valuable suggestions and discussions which added an important dimension to my
research work.

Finally, I am very much thankful to my parents and family for their everlasting
supports.

Last but not the least, I would like to thank all of my friends for their help and
support. I thank all those, whom I have missed out from the above list.

Sayantan Kumar
Indian Statistical Institute
Kolkata - 700108 , India.



Abstract

Classifying a multiclass data set with an imbalanced distribution of class repre-
sentatives in the data set is a challenging problem which is prevalent in many
real-world applications. In this study,we have made a comparative analysis of
different decomposition techniques like OneVsAll(OVA), OneVsOne(OVO), Error
Correcting Output Codes(ECOC), All-and-One(A&O) and One-Against-Lower-
Order(OALO) to deal with the multiclass imbalance. While OVA and OVO have
been used significantly in the multiclass imbalance domain, our work is the first to
explore the remaining binarization approaches in this field. We have examined the
performance of these decomposition methods on two types of learning : algorith-
mic approach and hybrid approach of both data-level and algorithmic solutions to
solve the binary class imbalance classification problem. For the algorithmic ap-
proach learning we have used Hellinger Distance Decision Trees and for the hybrid
method, we propose Balanced Ensemble Models (BEM) that combines both sam-
pling and algorithm level modifications. It has been analyzed how effectively the
decomposition methods when applied on our approach can counter the challenges
of multiclass imbalance. A detailed experimental study, supported by statistical
analysis has been carried out to determine which combination of classifier(between
HDDT and our proposed ensemble method) and decomposition scheme work best
to produce satisfactory classification performance on a multiclass imbalanced data
set. From our research we conclude that ECOC decomposition strategy when ap-
plied on our proposed BEM outperforms all the other algorithms in dealing with
multiclass imbalance problem.

Keywords: Multiclass Imbalanced data classification, Decision tree, Hellinger
distance, Balanced Ensemble Models, Binary Decomposition
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Chapter 1

Introduction

In this chapter we begin with an introduction to the problem of class imbalance
in classification. The next section provides a brief summary of the related work
done so far in this domain. Next we give an idea about the various challenges in
solving the class imbalance problem in multiclass data sets. In the final section,
we present our contributions and conclude with an outline of the dissertation.

1.1 Imbalance Class Problem in Classification

Imbalanced data learning is a category of classification problem, where the number
of representatives in some of the classes is very less compared to other classes. The
class imbalance is one of the most challenging tasks in data classification and is
prevalent in majority of real-world classification tasks. The skewed distribution of
classes makes many conventional classifiers prone to high miss-classification error
in predicting minority class examples. This is mainly due to the biased nature of
the learning algorithm, especially if the majority class has over 90% representation
of the data set.

The multiclass classification problem is a generalized form of the binary classi-
fication problem having k classes instead of two.In practice, many real-life domains
have multiple classes having uneven representations of instances within each class.
The next section deals with a brief summary of the work done so far in imbalanced
data classification.

1.2 Related Work

A fair amount of research has been done to solve the data imbalance problem in
classification. But most of the approaches deal with the binary class imbalance
problem which contain only two classes [IH3]. After a brief literature review of
research work done so far,the two-class class imbalance learning approaches can
be categorized into four broad types as follows :
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Algorithm Level Learning

These type of approaches deal with modification of the existing classification al-
gorithms to make the learning biased towards the minority classes [4]. This is
called the internal approach to solve the imbalanced data problem as it is mostly
dependant on the problem and classifier without modifying the underlying data
distribution [5]. A direct modification of the learning approach for a particular
method is one of the most popular solutions [6].

Data Level Learning

The problem of imbalanced class classification originates from the uneven distri-
bution of representative of each class, so many previous studies have considered
the sampling method one of the easiest ways to tackle the problem [7]. Data
level approaches balance the class distribution by using over-sampling and under-
sampling techniques [8]. This is called the external approach. In these methods,
a preprocessing step is applied to solve the class imbalance without modifying the
learning method and is independent of the classification algorithm [9].

Cost Sensitive Learning

Cost sensitive learning approaches consider both data level and algorithmic level
transformations [10]. The data level approaches include adding miss classification
costs to individual samples and algorithmic techniques like assumption of higher
miss classification cost for the minority classes [II]. A major problem of this
method is that the miss classification costs are not defined manually in the data
set [12].

Ensemble Level Learning

These approaches create a combination of one or more of the above mentioned
strategies to create an ensemble learning solution. Many of the studies focus on
create a balanced subset of data by sampling approaches and use algorithmic level
modifications to ensure diversity within the pool of base learners. Some of the
recent works by this approach include bagging combined with data level approach
[13], randomized oversampling [14], hybrid combination of algorithmic techniques
[15] and cost sensitive pruning for ensemble of decision trees [16].

Multiclass imbalanced data solutions

However,multiclass imbalance classification methods are relevant in many practical
domains like text categorization [I3], human activity recognition [14] and medical
diagnosis [I5]. In the recent years there had been a few studies on multiclass
imbalance [I6HI9]. Adaboost.NC [I8] combines boosting and over-sampling with
"multiminority” and ”multimajority” classes. DyS [17] is a neural network where
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the weights are updated by dynamically sampling the data during the learning
procedure [19] had decomposed the multiclass imbalance problem using one-vs-
one(OVO) approach and used binary ensemble learning algorithms. The next
section provides an idea about the various challenges of class imbalance problem
in multiclass domain.

1.3 Challenges in MultiClass Imbalanced Clas-
sification

Multiclass imbalance classification pose a few challenges which are not inherently
observed in their corresponding binary class problems. They have been listed as
follows :

Small number of samples

Number of samples in minority classes in imbalanced data sets is sometimes too low
for a classification algorithm to learn discriminating rules to classify the minority
class samples.

Overlapping between classes

If overlapping is absent between the classes,then any conventional classifier will
be able to learn a better rule irrespective of the classes having imbalanced distri-
bution.

Presence of small disjuncts

The complexity of the problem is enhanced if sub concepts are present within the
concept of a minority class. This is due to the fact that the amount of represen-
tatives in the classes is not usually balanced.

Summary

Based on these difficulties, it can be concluded that multiclass imbalance can be
manifested in two ways : a single majority and multiple minority classes, and a
single minority and multiple majority classes. The problem becomes more serious
when both the cases occur in a data set. Some important research that can be
addressed are how these two cases create different challenges for a classifier and
their individual effects on the classification of the majority and minority classes
respectively.
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1.4 Owur Contributions

Cieslak et al| used Hellinger distance as a splitting criterion in decision trees.
We provide an analysis on why Hellinger distance is a good choice for a splitting
metric in decision trees over the usual splitting criteria like Gini Index and Infor-
mation Gain and how Hellinger distance cannot be replaced by other divergences
of the F-Divergence family like the Kullback—Leibler(KL) divergence and Jensen-
Shanon(JS) Divergence. In this study,we have made a comparative study of the
decomposition methods like OneVsAll(OVA) [21I], OneVsOne(OVO) [22], Error
Correcting Output Codes (ECOC) [23], OVA and OVO combined(A&O) [24]
and One-Against-Lower-Order(OALO) [25]. The above techniques decompose
the multiclass problem into a series of binary ensemble problems to effectively
solve the multiclass. While OVA and OVO have been used significantly in the
multiclass imbalance domain, our work is the first to explore the remaining bi-
narization approaches in this field. We have examined the performance of these
decomposition methods on two types of learning : algorithmic approach and hy-
brid approach of both data-level and algorithmic solutions to solve the binary class
imbalance classification problem. For the algorithmic approach learning we have
used Hellinger Distance Decision Trees and for the hybrid method, we present an
ensemble method which combines both sampling and algorithm level modifica-
tions. It has been analyzed how effectively the decomposition methods when ap-
plied on our approach can counter the challenges of multiple majority and multiple
minority cases. We have carried out a detailed experimental study and supported
the findings by statistical analysis to determine which combination of classifier
(between HDDT and our proposed ensemble method) and decomposition scheme
work best to produce satisfactory classification performance on a multiclass im-
balanced data set. To assert the superiority of the best performing method, we
have compared it with AdaboostNC [18], a popular ensemble methods for solving
the multiclass imbalance challenge.

Our contributions in this dissertation can be summarized as follows :

e Analysis of how Hellinger distance is a good splitting metric in decision trees
for dealing the imbalanced data classification problem.

e Proposal of an ensemble technique for two-class imbalance problems.

e Comparative analysis of the different decomposition techniques on both
HDDT and the proposed ensemble method and conclude which of the classifier-
decomposition pair works best on multiclass imbalance classification prob-
lems.

1.5 Dissertation Outline

The rest of the dissertation has been organized as follows.
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Figure 1.1: Presence of small disjuncts and class overlapping in a multiclass im-
balanced data set

e In Chapter 2, we give an idea about Hellinger Distance Decision Trees(HDDT)
and analyze why Hellinger distance is a good choice for a splitting metric in
decision trees over the usual splitting criteria like Gini Index and Information
Gain and how Hellinger distance cannot be replaced by other divergences
of the F-Divergence family like the Kullback—Leibler(KL) divergence and
Jensen-Shanon(JS) Divergence.

e Chapter 3 provides a brief idea about the different decomposition methods
used with HDDT to classify a multiclass imbalanced data set.

e In Chapter 4, we present our proposed ensemble technique how the decom-
position schemes can be applied on that deal with the multiclass imbalanced
data classification challenge.

e Chapter 5 describes complete experimental framework of our study.

e In Chapter 6,we display the results and give a detailed performance analysis
of our scheme.

e Chapter 7 summarizes our work and we discuss about the possible directions
related to our work which can be explored in the future.



Chapter 2

Hellinger Distance Decision Trees

In this chapter, we give an idea about Hellinger Distance Decision Trees(HDDT)
and analyze why Hellinger distance is a good choice for a splitting metric in deci-
sion trees how it cannot be replaced by other divergences of the F-Divergence family
like the Kullback—Leibler(KL) divergence and Jensen-Shanon(JS) Divergence.

2.1 Decision Tree

Decision tree is one of the most important algorithms in classical machine learn-
ing,mainly because they are simple, efficient and easy to interpret. The most
popular forms of decision trees are CART [26] and C4.5 [27], using Gini Index
and Information Gain as the splitting metric respectively. In [28],the authors
have recommended C4.4, a modification of C4.5 where unpruned decision trees
have constructed with Laplacian smoothing at the leaves.

The most important thing that should be considered while building a deci-
sion tree is the splitting criterion. Although numerous studies have shown that
C4.5 with sampling methods have performed reasonably well on imbalanced data
sets, Gini index and Information Gain alone have been shown to be sensitive
to the skewed distribution of representatives within the majority and minority
classes. |Cieslak et al. have used Hellinger distance as the splitting metric,which is
member of the F-divergence family. In the next section how Hellinger distance is
superior than some of the popular choices in the F-divergence family like Kulback-
Leibler(KL) divergence and the Jensen-Shanon(JS) divergence.

2.2 Hellinger Distance

In this section,we have introduced the concept of Hellinger distance and we have
performed a comparative analysis of Hellinger distance with KL Divergence and
JS Shanon Divergence.

Definition 1. Hellinger distance is a symmetric and non-negative measure of

14
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divergence or similarity between two probability distributions,related to the Bhat-
tacharyya coefficient. Let X and Y be two continuous probability distributions with
parameter v in the measurable space (0,+). Hellinger distance can be defined as :

d(X,Y) = /(\/X— \/7>2d7 (2.1)

Q

Here,the P and @ in Equation (2.1) are normalized values of feature values across
the majority and minority classes. Hellinger distance quantifies the similarity
measure between the two probability distributions on a finite event space. If X
and Y are equal, then dg = 0 (mazimum similarity) and if X (Y = ¢, then dy

=+/(2) (zero similarity).

Before establishing the idea how Hellinger distance is a good splitting crite-
rion, in the next two sections,we will prove that KL divergence and JS divergence,
two of the most popular and widely used divergence metric cannot outperform
Hellinger distance as the node splitting metric in decision trees.

2.3 Other divergences as splitting metric

Definition 2. If X andY are discrete probability distributions defined on the same
probability space, then the Kullback-Leibler divergence between X and Y ican be
defined as :

Dic,(X|I¥) = 3 P(ilog (?&) (2.2)

Theorem 1. Kullback-Leibler Divergence cannot replace Hellinger distance as the
splitting metric in decision trees.

Proof. 1t can be proved that square of the Hellinger Distance is the lower bound
of the Kullback-Leibler divergence( proof has been shown in the Appendix). The
necessary condition for a metric to be used as the node splitting metric in a decision
tree is that it must be symmetric. From the definition of KL divergence, we can
conclude that it is not symmetric and so cannot replace Hellinger distance to be
used as the splitting metric in decision trees. O

Definition 3. Jensen Shanon Divergence is a symmetric form of the Kullback-
Leibler Divergence and it can be expressed as :

Dy (X|IY) = vDrr(X[[7X + (1 =9)Y) + (1 = 7) DYy X + (1 =7)Y) (2.3)

The value v = % in the above equation gives the JS Divergence :

1 1
Dys = 5Dwn(X||M) + 5 Dics (V][ M) (2.4)

where M = —(X;Y)
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Theorem 2. Jensen-Shanon Divergence cannot replace Hellinger distance as the
splitting metric in decision trees.

Proof. Now from Equation 2.2, KL Divergence can be expressed as :

Dir(x || y) =Y ali)loga(i) - Zﬂf(@') log y (i) (2.5)

H represents entropy

assuming y as uniform distribution
= H(z) +logn (2.8)
(2.9)

As the KL Divergence is not symmetric, a symmetric version of it has been
tested to check if it satisfies the criteria. From the above derivation, the KL
divergence expression contains the Shannon entropy term. Since Hellinger distance
performs better than Information Gain, it also works better than Shannon Entropy
since the entropy term is present within Information Gain .The Jensen-Shanon
Divergence contains the entropy term and so by intuitive argument it can agreed
that performance will not be improved if Hellinger distance is replaced by JS
divergence. O]

2.4 Hellinger Distance Decision Trees(HDDT)

We have proved that neither of KL divergence or JS divergence can replace
Hellinger distance as the node splitting criterion in decision trees. In this sec-
tion we will explain how Hellinger distance can deal with the problem of class
imbalance and then we will give an outline of the algorithm HDDT.

Definition 4. In Decision trees Hellinger distance has been incorporated in deci-
sion trees as follows [20] :

2

dr(Pr, P2) = Z( 2\ 1A (2.10)

i=1

where Py is the set of samples belonging to positive class,Ps is the set of samples
belonging to negative class. Assuming countable space,the feature values are dis-
cretized into z distinct bins. Py, represents the set of positive samples having the
i-th value out of z distinct values of the chosen attribute.
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Hellinger Distance to solve class imbalance

For splitting a node in a decision tree, we ideally want to select an attribute carry-
ing the minimal similarity between the majority and minority classes. As Hellinger
distance is a divergence between two normalized frequency distribution of feature
values across classes, it can be redefined in the context of decision trees as the
tendency of an attribute to discriminate between the feature distributions of the
majority and minority class respectively. So the feature with maximum Hellinger
distance is chosen for the split. Also,having no factor of prior probabilities for the
classes as in Gini Index [26] and Information Gain [27], Hellinger distance is not
affected to the imbalance aspect of the data set.

As a summary,the following things can be concluded about Hellinger distance
which makes it a good selection for dealing with the imbalance class problem [20)]

e Hellinger distance is symmetric and non-negative,which is a necessary crite-
rion for a splitting metric in decision trees.

e No factor of class prior which makes it skew-insensitive.

e Represents maximal tendency of a feature to discriminate between the ma-
jority and minority class

e At each node split,the feature with the maximum Hellinger distance is cho-
sen.

e Hellinger distance can outperform two other widely used divergence metric
of the F-divergence family, the Kulber-Leibler Divergence and the Jensen-
Shanon Divergence.

Algorithm 1 Calculate-Hellinger

Require: Training set S , Feature chosen f
: Let dH =—1
: Vi <= set of values of feature f
: for i =1 to length(Vy) do
Let j == Vf \Z
2 2

current_value = < ‘S‘gi’f' - ‘ﬁg;ﬁ‘) + ( lslgf“l‘ - |ﬁgg"2l>
if current_value > dy then

dy = current_value

end if
end for

10: return /dg

[ S

Algorithm 1 and 2 give an outline of the method by which Hellinger distance
is calculated and how that calculated distance is incorporated into decision trees.
In the algorithm,S, represents the subset of the training set .S which contain all
the samples with class labels x. St -, represents the training samples which have
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Algorithm 2 HDDT
Require: Training Set S,Set of features I

for each feature f € F do
du(f) = Calculate — Hellinger(S, f)
end for
p = maz(dy) > Feature chosen with maximum Hellinger distance

for each value 7 € p do
model = HDDT (Sy,—;, F)

end for

return model

value y for feature z. T, , stores the samples which belong to class = and have
value y for the z-th feature.

From the definition of Hellinger distance in Equation 2.1 which is based on
a continuous space. Algorithm 1 considers binary splits for categorical attributes
while building the decision tree. So when training samples with a continuous
feature space is encountered, Calculate-Hellinger sorts the distinct values of the
relevant feature and find all the relevant splits. The binary Hellinger distance is
computed at each node split, and the maximum distance among them is taken as
the output.

Hellinger Distance quantifies the separability or distance between two proba-
bility distributions. In a multiclass data set with c classes, calculating the pairwise
distance between ¢ probability distributions will be difficult. In the next section,
we will show how the multiclass problem can be decomposed into binarization
techniques on which Hellinger distance can be applied.

Algorithm 3 PredictHellinger

Require: model,testdata
1: for i =1 to length(testdata) do

2 while model.complete == False do

3 if testdata(i, model. feature) < model.threshold then
4: model = model.le ftbranch

5: else model = model.rightbranch

6 end if

7 model.complete = T'rue

8 end while

9: final_pred(i) = model.label

10: end for

11: return final_pred

Algorithm 3 outlines the process by which prediction of test data is done by
HDDT. For the sake of our implementation, HDDT model has been defined as
class called HellingerNode, which has the attributes threshold, feature, leftbranch,
rightbranch, complete and label.



Chapter 3

Hellinger Distance Decision Tree
using Decomposition Techniques

In the previous section, we have explained why it is not possible for Hellinger

Distance Decision Trees to perform well in multiclass imbalanced data classifica-

tion. In this chapter, we will define each of the decomposition schemes used namely

OneVsAll(OVA), OneVsOne(OVO), Error Correcting Output Codes(ECOC), Com-
bined OVA and OVO(AEQO) and One-Against-Lower-Order (OALO). Then we will

discuss in brief how each of these binarization techniques are applied to Hellinger

Distance Decision Tree.

Decomposition schemes : A good choice for multiclass imbalance

We have discussed in Chapter 1 that in multiclass data, the level of imbalance is
much more complex than that of binary data due to small disjuncts being present
in the data and classes having a lot of overlaps. Before going into the details of the
decomposition methods, we list a few ways on how these methods can potentially
solve the multilateral imbalance relation between the classes. These advantages
serve as the motivation on why we have made a comparative analysis of these
decomposition ensembles and choose the one that produces the best output.

e In some dichotomies, a few of the minority classes present in the original data
set might merge or some of the original majority classes might be excluded.
So,the imbalance level in a dichotomy is usually less than that of the original
data set.

e The problem of small disjuncts can be removed when several classes in the
actual data set are either combined together or are removed in some of the
dichotomies.

19
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3.1 OneVsAll(OVA) Decomposition

Definition 5. One of the most simplest and natural technique to decompose a mul-
ticlass classification problem to a binary one is the OVA technique. For a C class
problem, C binary classifiers are constructed corresponding to C classes. Fach of
the binary learners assigns one of the class as positive and all the remaining class
are considered as negative. FEach binary classifier returns a probability estimate
for a new test sample. These probability estimates are then combined using the
deciston function :

F(z) = arg max;_19 . .c fi(x) (3.1)
The class label with the maximum value of F(x) is the predicted label of the test

sample x. The OVA technique can also be generalized in the form of a Code
matrix. This has been explained by an example.

Example 1. Let C,Cs, C3 be 3 classes and let Dy, Dy, D3 be the 3 dichotomies.
Here by dichotomy we mean the assignment of the classes as positive and negative
in a particular binary classifier. Since C' classifiers are built in OVA,C dichotomies
are created.

+1 -1 -1
-1 +1 -1
-1 -1 +1

The rows of the matrix represent a the configurations of a particular class Cy, Cy, Cs
in all the dichotomies (a class might be labelled positive in one dichotomy and nega-
tive in the others). Similarly, the columns of the matrixz represent the configuration
of each class(positive or negative) in a particular dichotomy. Algorithm 4 outlines
the summary of the procedure in the form of a pseudo code.

Algorithm 4 HDDTOVA

Require: Training set T, testdata, Set of features F

1: Let C' = C1, (Y, ....C) < Set of labels corresponding to each of the k classes.
2: flag =10

3: for each pair of subsets C; € C'and C; = C'\ C; do

4: D;; < training data with samples of class C; and subset C;

5: model{ flag} = HDDT(D,;, F)
6
7
8
9

pd{ flag} < PredictHellinger(model,testdata)
flag = flag+ 1
: end for
. predicted = mode(pd) > Majority voting
10: return predicted

3.2 OneVsOne(OVO) Decomposition

Definition 6. The OVO 1is a decomposition scheme where pairwise combination
of classes are created and binary classifier is trained for each of the pairs. Here
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one class is considered positive and the other negative. 66 A classifier fy,, trained
using the samples of classes x and y learns to distinguish between these two classes
only.

Majority Voting

For the prediction task of a test sample,a majority voting strategy is used [29].
When a classifier is trying between classes Cy, Cy, Confidence degree r,, € [0,1]
is given by the classifier in favour of C) to distinguish class x from class y. The
confidence level in favour of Cy to correctly identify class y from class x is given by

: Tye = 1 —ryy. For a 3 class problem,the confidence score matrix can be written
as :

— T2 T3
21 — Ta23
T3y T32 —

If the confidence of a classifier to predict C; is greater than that of Cj, then a
vote is considered in favour of the class C;. The votes received by each class is
calculated and the class with the maximum votes is the assigned label for the test
sample.

c
Class = argmax,_; 53 ¢ Z Sy (3.2)
y=Lly#z
where s, = 1 if 75, > 7, and 0 otherwise.

Example 2. Like OVA, OVO can also be represented using the code matrixz. An
example for a 3 class problem has been shown :

+1 -1 O
-1 0 +1
0 +1 -1

Similarly as in OVA, the rows represent the class configurations in all the di-
chotomies and each column encodes a partition of Cy,Co,Cs into +1,-1 and 0 in a
particular dichotomy where +1,-1 and 0 meaning positive class, negative class and
class excluded from the dichotomy. According to the definition of OVO, only one
class will labelled positive and one negative in a particular dichotomy. Algorithm
5 outlines the summary of the procedure in the form of a pseudo code.

3.3 Error-Correcting Output Codes Decomposi-
tion

ECOC is a popular method developed by [23] where a decomposition ensemble
of classifiers can be learned by error correcting codes. OVO and OVA are special
cases of ECOC and so, in this section we will explain the concept of error correcting
codes in a bit detailed manner.
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Algorithm 5 HDDTOVO

Require: Training set T, testdata, Set of features F
1: Let C' = C1, (Y, ....Cy < Set of labels corresponding to each of the k classes.
2: flag =10
3: fori=1tok—1do

4: for j =i+ 1tok do

5: D;j < training data with samples of class C; and C;

6: model{ flag} = HDDT(D;;,C)

7 pd{ flag} < PredictHellinger(model, testdata)

8: flag = flag+1

9: end for

10: end for

11: predicted = mode(pd) > Majority voting

12: return predicted

The 3 stages of ECOC, coding,learning and decoding have been explained as
follows :

Coding Stage

The coding stage decomposes a multiclass problem with ¢ classes into n number
of dichotomies.To be more precise,each of these ¢ classes is assigned a n-bit string
of —1 and +1 only, called a code word.These code words are generated in a way
to ensure that the Hamming distance between all code words is maximized.Let
M e {—1,0,+1}°*" be a ¢ xn matrix such that M;; represents the j-th bit for code
word of class 7. For each dichotomy,the assignment of the ¢ classes into positive
and negative are denoted by the corresponding column of the code matrix M. If
M;; = +1, then the class ¢ belongs to the positive class in the j-th classifier, and
negative class for M;; = —1. If M;; = 0,then that particular class is excluded from
the j-th dichotomy/(classifier).

Learning Stage

The learning stage involves the training the dichotomy classifier by the learning
rule for classification. h; : x — R corresponding to the i-th dichotomy.

Decoding Stage

In this final stage,each of the n classifiers(dichotomies) predict a value for a given
test sample a, producing a code word for a : Q(z) = (q1(a),g2(a), ....q,(a)).The
t-th bit distance of example a to the C-th class is given by :

Bt(a’ 7”) = dbit(%(a)’ M(k7 t)) (33)

This quantifies the distance or separability between the output of the dichotomy
classifier ¢; and M(k,t), the dichotomy code of Class Cj in the code matrix M.
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dy;; is the bit distance between two code words which is given by the formula of
Hamming distance function :

l

1 — sign(w;, y;
dyie(2,y) = Y 2< ) (3.4)
=1

where = and y are n-length vectors and sign(z) = +1 if z > 0 and -1 for z < 0.

The bit distance vector between test sample a and class C}, is given by :
B(a, k) = (By(a, k), Ba(a, k), .....By(a, k)T (3.5)

Now, the class whose code word has the minimum magnitude of the bit distance
vector with the code word predicted by the classifier is the class label that will be
assigned to the test instance a.

y = argmin,, B(a, k) (3.6)

The error-correcting performance of the code matrix decides the performance of
the ECOC decomposition method. To achieve a satisfactory performance, the
ECOC matrix must satisfy the following 2 properties:

e Each row of the code matrix should be sufficiently separated from all the
other rows. The Hamming distance between any two rows should be maxi-
mized as possible.

e Each of the bit functions ¢; must be independent from the functions corre-
sponding to the other bit positions g;, 7 # . To ensure that each dichotomy
column has sufficient separability in terms of Hamming distance from the
other columns,each dichotomy must have at least one +1 and -1 value and
each column and its complementary should not be equal as it’s previous
columns.

Algorithm 6 outlines the summary of the procedure in the form of a pseudo
code.

Length of Codewords

Fixing the length of the code words or dichotomies is an important aspect of
the ECOC matrix. The maximum code word length is 2¥~! — 1 for a k class
problem. As the number of classes increases, the number of dichotomies formed
also increases exponentially. To solve this problem, various strategies have been
adopted to design the code matrix which are listed in Table 3.1.
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Algorithm 6 HDDTECOC

Require: Training set S, Set of features F', testdata, type

: Let there be c classes and n dichotomies,calculated according to type.

: Generate the code matrix M as explained in the coding stage.

: fort=1,2,3..n do

D(t) = ¢

for every sample i € S do
if M(y;,t) # 0 then > If class is excluded from the dichotomy

D(t) = D(t) U (zi, M(y;, 1))

end if

end for

1 HDDT(D(t), F)

11: end for

12: For a test sample a whose label is to be predicted, compute the bit distance
vector B(a, k),Vk =1, ...c according to Equation 3.5

13: § = argmin, B(a, k)

14: return g

© P gk ey

@

Table 3.1: Different types of Error Correcting Code Matrix

Type Number Description
of di-
chotomies

OneVsOne k(k—1)/2 One class positive, others negative

OneVsAll k one class positive, one class negative

DenseRandom 10loga (k) For each dichotomy, all the classes are randomly as-
signed into positive and negative labels. Each di-
chotomy has at least one of each type.

BinaryComplete || 2F=1T — 1 All possible binary combinations of classes are con-
sidered for partitioning the classes. For each di-
chotomy, all class assignments are either positive
(+1) and negative (+1) with at least one of each
type.

SparseRandom 15loga (k) For each dichotomy, classes are randomly assigned as
positive or negative with probability 0.25 for each,
and and classes are excluded from the dichotomy
with probability 0.5.

TernaryComplete|| (3¥ —2F +1— || The classes are partitioned into all possible combina-

1)/2 tions of 0, +1 and -1 with at least one positive and
one negative class in each dichotomy.
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3.4 All-and-One (A&O)

Definition 7. A0 is a decomposition method where both OVA and OVO strate-
gies are utilized. The motivation behind this method is to take advantage of both of
the methods such that one can somewhat negate the drawbacks of the other. The
AEO method have been previously used in multiclass classification problems but
has never been used in multiclass imbalanced data classification, to the best of our
knowledge. The steps of the technique have been listed as follows :

e The data set is trained using both OVA and OVO separately.

e For a test sample with unknown label, the OVA approach is used to calculate
the top two output classes (C;, C;).

e The corresponding OVO classifier f;; is used to determine the final output
label.

Motivation behind using A&O

In OVA, when there is a high proportion of miss classified instances the second
best output is actually the correctly predicted label. Also the individual binary
classifiers of OVO give satisfactory performances when trained individually, but
usually produce incorrect results when trained in combination, as they often fail to
capture the complexity of the multiclass imbalance. As discussed in the beginning
of the section, the A&O method can be used to combine the effectiveness of OVO
and OVA to deal with the multiclass imbalance problem. The algorithm has been
explained in HDDTAE&O.

Example 3. Let us consider that a multiclass imbalanced data set with 3 classes.
For the OVA,3 classifiers are constructed, OV Ay, OV Ay and OV As correspond-
ing to each class. In the training data of OV A; all the samples of class C; are
considered as positives and the samples of all the other classes as negatives. For
OVO, 3 classifiers are built for each pair of classes, OV 15, OV gz and OV Oq3.
Algorithm 7 outlines the summary of the procedure in the form of a pseudo code.

The total number of dichotomies required in A&O is k(k — 1)/2 for OVA
and k, for OVO for a k class problem. However,the number of dichotomies can
be reduced if we only train the OVA classifiers and obtaining the best and second
best classes C; and C; and then train the corresponding OVO classifier OV O;;.
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Algorithm 7 HDDTA&0O

Require: Training set T, testdata, Set of features F

10:
11:
12:
13:
14:
15:
16:
17:

1
2
3
4:
5:
6
7
8
9

. Let C'= (', (Y, ....C < Set of labels corresponding to each of the k classes.
: flag=0
: for each pair of subsets C; € C'and C; = C'\ C; do
D;; < training data with samples of class C; and subset C;
model OV A{flag} = HDDT(D,;, F)
flag = flag + 1
. end for
fori=1tok—1do
for j=i+1tok do
T;; «+ training data with samples of class C; and C}
model OV O{i,j} = HDDT(T;;,C)
pd-OVO{i,j} < PredictHellinger(model OV O, testdata)
end for
end for
Find best two classes from OVA ,index1 and index2
final_pred = pd_ OV O(index1, index2)
return final_pred

3.

5 One-Against-Low-Order(OALQO) Decomposi-
tion

Definition 8. In the OALO method, a hierarchy of classifiers is built based on
the distribution of instances within the classes. The following steps provide a brief
explanation of the decomposition technique.

o k — 1 classifiers are constructed for k classes, Ci,Cs, .....Cy in decreasing
order of the number of representatives in each class.

o The first classifier is trained considering the instances of the first class C
as positives and the samples of all the other classes as negatives. Similarly
in the second classifier, the samples of the second class Cy are trained as
positives against the samples belonging to the higher ordered classes in the
hierarchy Cs,Cly,.. and so on. The last classifier is trained assuming C'x_4
as the positive class and Cx negative.

o Likewise the hierarchical approach for building the classifiers, a similar ap-
proach is used to predict the class of a new sample. Initially the first clas-
sifier 1s used to classify the sample. If the predicted label is C4, then it can
be concluded that the sample belongs to class Cy and the process is termi-
nated. Otherwise, the second classifier classifies the sample, and this process
1s repeated till the last K — 1-th classifier.
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Motivation behind using OALO

The main motivation behind using this method in multiclass imbalance problem is
the grouping of the minority classes against the minority classes at each hierarchy.
The hierarchical order of the classifiers plays a major role in the performance, as
miss-classification errors made by the higher order classifiers is propagated to the
lower order classifiers. Hence, selection of the learning algorithm is important.
Algorithm 8 outlines the summary of the procedure in the form of a pseudo code.

Algorithm 8 HDDTOALO

Require: Training set 7', testdata, Set of features F'
. Let Cy,i € [1, k] <= Set of labels corresponding to each of the k classes.
C1, Cy, C5....C < class labels in decreasing order of training samples.
flag =10
fori=1tok—1do

D;; <= Subset of training data where Class i is trained against classes 7+ 1
to k

model{ flag} = HDDT(D,;,C)

pd{ flag} < PredictHellinger(model,testdata)

flag = flag+ 1
end for
10: for i =1 to length(testdata) do
11: for j =1 to flag do

12: final_pred = pd(i, j)

13: if final_pred(i) == C; then
14: break

15: end if

16: end for

17: end for

18: return final_pred




Chapter 4

Balanced Ensemble

Models(BEM) to Solve
MultiClass Imbalance Problem

In the last section,we discussed in detail about how Hellinger distance can be in-
corporated as a node splitting metric in decision trees. In the Related Work sub-
section of Chapter 1, three categories of solutions have been discussed to deal with
the binary class imbalanced data classification : data-level approach, algorithmic
level approach and a hybrid approach. Hellinger Distance Decision tree belongs to
the second category, without affecting the underlying data distribution. Numerous
studies over the years have demonstrated the advantages of data level and algorith-
mic approaches in the class imbalance domain. We, hereby propose an ensemble
approach which combines both data-level and algorithmic level operations. For the
remaining part of the dissertation, we will refer our proposed Balanced Ensemble

Models as BEM.

4.1 Proposed Method

Our algorithm has been designed as an ensemble of models, where both data level
and algorithmic modifications have been applied on a two-class imbalanced data
set. The entire method can be summarized in 3 steps as follows :

e Each component of the proposed ensemble is a subset of the original data
set having balanced proportion of the two classes. The subsets are created
by including all the instances belonging to the minority class and an equal
number of instances sampled randomly from the majority class without re-
placement.

e (4.5 learning algorithm is then used for training all the subsets. As each
subset is balanced, C4.5 has been considered as a reliable learner to give
good performance.

28
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e After the training phase, the output of all the models are aggregated by a
weighting voting technique. Fach model is assigned a different weight based
on their performances on the remaining subsets and the model having higher
weight is used to classify the test sample.

Algorithm 9 and 10 outline our method BEM and the weighted voting strat-
egy respectively. If C'_maj and C'_min be the labels corresponding to the majority
and minority class respectively, number of balanced subsets that will be formed is

~ |Comaj

R (4.1)

~|C_min)|
For estimating the weight for each learning model, each of them is tested on all
the other subsets except the one on which is trained on. In the Weighted Voting
algorithm, the weights are initialized as follows :

i accuracy

For each test sample, the weights are calculated corresponding to each class label
C'_maj and C'_min. The sample is assigned the class for which it has higher weight.

Algorithm 9 BEM

Require: traindata,testdata

Let C'_maj and C'_min be the majority and minority class label respectively.
R = lC-may|
|C_min|

for i =1to R do
data(i) < each subset of the training data having equal proportions of the
two classes.
train(i) < data(1)
test(i) «—All other subsets data(j) for all j # i
tree(i) = C'4.5(train(i))
accuracy(i) <Performance on test (i)
end for
pred = WeightedV oting(testdata, accuracy, R, C_maj, C_min)
return pred

4.2 Decomposition Techniques on BEM

In this section we describe the algorithms on how the decomposition methods OVA,
OVO, ECOC, A&O and OALO can be applied on BEM to solve the multiclass
imbalanced data classification problem. The main aim of the thesis is to perform
a comparative analysis of not only the different decomposition techniques but also
between an algorithmic level approach(HDDT) and hybrid approach (BEM). For
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Algorithm 10 WeightedVoting

Require: testdata, Accuracy of each subset acc, Number of subsets R, C'_maj

[ e T e S e S SO S G Y
NP R P2

and C_min
weight =

acc

for:=1 t%aﬁ do
prec = evalC4.5(testdata) > Prediction strategy of C4.5
for j = 1 to length(testdata) do
if prec(j) == C-mayj then
results(j, 1) = results(j, 1) + weight(i)
else results(j,2) = results(j,2) + weight(i)
end if
end for
end for

: for j =1 to length(testdata) do

if results(j,1) > results(j,2) then
prec(j) = C_may
else prec(j) = C_min
end if
: end for
: return prec

this reason, our proposed method has been designed to solve the binary class im-
balance problem like HDDT to make a fair comparison between the two algorithms
for each decomposition method. All the methods have been listed in algorithm
form in Algorithm 11 — 15.

Algorithm 11 BEMOVA

Require: Training set T testdata

© P g Wy

: Let C' = (1, Cs, ....Cy < Set of labels corresponding to each of the k classes.
: flag=10
: for each pair {C;,C;},C; € C and C; = C\ C; do
D;; < subset of training data with samples of class C; and subset C}
pd{ flag} = BEM(D,j;,testdata)
flag = flag+1
end for
. predicted = mode(pd) > Majority voting
return predicted
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Algorithm 12 BEMOVO

Require: Training set T'.test data

1

—_
= O

© PN Wy

: Let C' = (1, Oy, ....Cy < Set of labels corresponding to each of the k classes.
: flag=0
fori=1tok—1do
for j =i+ 1tok do
D;j < subset of training data with samples of class C; and C;
pd{ flag} = BEM(D;;,testdata)
flag = flag + 1
end for
end for
. predicted = mode(pd) > Majority voting
: return predicted

Algorithm 13 BEMECOC

Require: Training set T, testdata,type

— = =

— =
W

: Let there be ¢ classes and n dichotomies,calculated according to type.
Generate the code matrix M.
fort=1,2,3.n do
D(t) = ¢
for every sample i € S do
if M(y;,t) # 0 then > If class is excluded from the dichotomy
D(t) = D(t) U (i, M(yi, t))
end if
end for
BEM (D(t),testdata)
: end for
: For a test sample a whose label is to be predicted, compute the bit distance
vector B(a, k),Vk =1, ...c according to Equation 3.5
. ¢ = argmin, B(a, k)
: return y
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Algorithm 14 BEMAE&O

Require: traindata,testdata

10:
11:
12:
13:
14:
15:
16:
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. Let C'= (4, Cy,....C + Set of labels corresponding to each of the k classes.
: flag=0
: for each pair {C;,C;},C; € C and C; = C\ C; do

D;; < subset of traindata with samples of class C; and subset C}
pd_-OV A{ flag} = BEM(D,;, testdata)
flag = flag+ 1

. end for
cfori=1tok—1do

for j =1+ 1to k do
T;; < subset of traindata with samples of class C; and C;
pd,OVO{z j} = BEM(T;;, testdata)
end for
end for
Find best two classes from OVA index1 and index2
final_pred = pd_OV O(index1, index2)
return final_pred

Algorithm 15 BEMOALO

Require: Training set T, testdata

10:
11:
12:
13:
14:
15:
16:
17:

. Let Cj,i € [1, k] + Set of labels corresponding to each of the k classes.
C1, Oy, Cs....Cy < class labels in decreasing order of training samples.
flag =0
fori=1tok—1do
D;; <= Subset of training data having Class 7 as positive class and claases
(i + 1) to k as negative classes.
pd{ flag} = BEM(D;;,testdata)
flag = flag + 1
end for
for i = 1 to length(testdata) do
for j =1 to flag do
final_pred = pd(i, j)
if final_pred(i) == C; then
break
end if
end for
end for
return final_pred




Chapter 5

Experimental Protocols

This section describes the framework for the experimental study done in our work.
The multiclass imbalanced data sets chosen for our experiments have been described
in Section 5.1. Section 5.2 presents the evaluation metrics used to test the per-
formance of the algorithms. In the final section, we have explained how statistical
tests have been used to make a significant comparison of the results obtained from
our experimental study. A total of 10 algorithms have been tested in our work,the 5
decomposition techniques described in Section 3, applied to both HDDT and BEM.
In order to make a fair comparison with the ensemble learning techniques dedi-
cated to multiclass imbalanced data classification tasks, we have compared the best
performing algorithm with a state-of-the-art method AdaboostNC.

5.1 Data sets Used

In our study, datasets taken from various sources like the UCI repository, KEEL
and Openml have been used to test the algorithms. The data sets have been cho-
sen in such a way that they reflect variable levels of imbalance. Table 5.1 shows a
detailed description of all the data sets. For each example, it includes the number
of samples(# Exm), number of features(#Attr), the number of classes(#Class),
the distribution of representatives within each class(Distribution) and the imbal-
ance ratio(IR). For the data sets having missing feature values, we have removed
them before doing our experiments.

Synthetic Data Sets

For our experiments, we have also used 3 artificially created data sets apart from
the ones taken taken from some original source to check the robustness of the
algorithms. The data sets were created by randomly assigning two-dimensional
data points in the X-Y plane to 4 classes such that the number of representatives
within each class is imbalanced. In Table 5.1, D16, D17 and D18 are the 3
synthetic data sets having various levels of imbalance. While D16 and D18 have
the challenge of multiple minority classes and single majority class challenge, D17

33
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Table 5.1: Description of the data sets used in the study

ID Dataset # Exm | #Attr | #Class Distribution IR
D1 Abalonel9 4174 8 2 4142,32 130
D2 Balance 625 4 3 49,288,288 5.9
D3 Contraceptive 1473 9 3 629,333,511 1.9
D4 Dermatology 362 34 6 111,60,71,48,52,20 5.5
D5 Ecoli 344 7 8 143,77,52,35,20,5,6,6 29

D6 Glass7 214 9 7 70,76,17,13,9,29 8.5
D7 Hayes-roth 132 4 3 51,51,30 1.7
D8 Led7digit 500 7 8 37,51,57,52,52,47,57,53 1.5
D9 New-thyroid 215 5 3 150,30,35 5

D10 Pageblocks 551 10 5 492,33,6,8,12 82

D11 Satimage 6435 36 6 1533,703,1358,626,707,1508 2.5
D12 Thyroid 720 21 3 17,37,366 39.2
D13 Wine 178 13 3 59,71,48 1.5
D14 Winequality-red 1599 11 6 10,53,681,638,199,18 68.1
D15 Yeast 1484 8 9 244,429,463,44,51,163,35,30,25 | 18.6
D16 Rand_Imbalance 450 2 4 50,300,40,60 6

D17 || Rand_Imbalance_1 2618 2 4 1200,50,1000,368 24

D18 || Rand_Imbalance_2 1311 2 4 10,1200,30,71 120

displays the case of single minority class and multiple majority class.

K-fold Cross validation

We have used the stratified five-fold cross validation (SCV) technique [30] in our
experiments. Each data set has been divided into five folds and each fold has 20%
of the representatives of the data set. For each fold, the training data includes
samples belonging to the remaining 4 folds having 80% of the instances of the
data set. The current fold is the test data of the algorithm for that particular
fold. We have considered five-fold SCV more suited to our experimental studies
than a ten-fold SCV [31]. If we increase the number of folds, size of partitions
will become smaller. This may result in the test set in some of the folds having
having no representatives from some of the minority classes.

5.2 Evaluation Metrics

In classification, accuracy is the most common measure for evaluating the per-
formance of a learning algorithm. However, a learner trained on an imbalanced
class problem is mainly biased towards the classes having the major proportion
of the total data. In that case, the accuracy will be high if most of the majority
class samples are classified correctly but very few minority class samples are as-
signed their correct labels. Hence accuracy cannot be considered an appropriate
performance metric in imbalanced class problems.

Some of the common performance measures used to deal with binary class
imbalanced data are Precision [32] and Recall [33]. Precision is the correctly
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classified fraction of test points which are predicted as members of the posi-
tive class. Recall is the measure of the class-specific accuracies of the minor-
ity class. To combine the properties of these indices, different metric like Geo-
metric Mean(GMean) [34], F-measure [35] and Area Under the Receiver Oper-
ating Characteristic Curve(AUC) [36-38] and Area Under the Recall-Precision
Curve(AURPC) [39]. G-mean represents the geometric mean of the class-wise
accuracies. F-measure is calculated as the harmonic mean of precision and recall.
The AUC value measures the area under the Receiver Operating Characteristic
(ROC) curve, which plots Recall against False Positive Rate(FPR) for different
parameter settings of a classifier. Similarly AURPC measures the area under the
Recall-Precision Curve obtained by varying the parameter settings of a classifier.

A direct extension of G-Means is available for multiclass classification [34].
The multiclass analog of recall is called the Average Class Specific Accuracy (ACSA)
[40]. The index AUC and AURPC have been extended to the multiclass case by
One-vs-All(OVA) strategy which considers each of the remaining class as negative
class for a given positive class [41].

We have formally defined the metrics for multiclass classification which have
been used for our experiments as follows :

Definition 9. A confusion matriz over a test set T for a C-class problem can
be defined as M = [mi;loxc, where myj is the count of the samples which have
actual class label i but are predicted as member of class j. The diagonal elements
my; are the samples belonging to class i and are correctly predicted.

From Definition 1,for a multiclass classification problem with ¢ classes and n
test samples,

c
1 N
Precision = ol Zzl (72”> (5.1)

C
1 my;
ACSA =7 ;:1: < ” ) (5.2)

2 X Precision x ACSA
FM = .
casure Precision + ACSA (5.3)

GMean = (ﬁ mii) ’ (5.4)

n.
i=1

where

C
j=1

C
j=1
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5.3 Statistical Tests

Statistical test is an important tool to analyze the results obtained from the exper-
imental study. We have made an attempt to compare the outputs of the classifiers
across multiple data sets and find out if there exist any significant differences be-
tween them [42]. To evaluate the significance of our experimental findings, the
Friedman Rank test has been used. This is a non-parametric test which is first
applied on a metric to provide information of any statistically significant difference
between the rankings of the algorithms for that metric [43].

Average Rankings

Computing the average rankings is complementary to the statistical analysis.
Here,the mean value of the ranking of the algorithms is calculated to estimate
the superiority of the algorithm compared to the rest. Ranks are assigned to
the classifiers as per the produced output, from best to worst. We use the Tied
Rank test where the average ranking of an algorithm is computed by taking the
mean value of the ranks across all the data-sets. For each evaluation metric, the
algorithm with the minimum average ranking has the best performance.

Pairwise comparison of best method with others

After obtaining the best performing algorithm by Friedman and Tied Rank test,
we proceed to perform a pairwise comparison of the best method with the other
algorithms. For this we have used the Wilcoxon Signed Rank Test [44] is
a paired two-sided non parametric test that tests the null hypothesis that two
dependant samples were selected from population having the same distribution.



Chapter 6

Results and Analysis

In this section, we present our experimental findings and then perform a thorough
comparative analysis of the different algorithms to check which combination of clas-
sifier and decomposition scheme works best overall for both natural and synthetic
data sets. We have tabulated the results for the three most standard evaluation
metrics for MultiClass Imbalance problems : G-Means, F-Measure and Average

Class Specific Accuracy (ACSA).

6.1 G-Means

Table 6.1 and 6.2 presents the G-Means values of the decomposition algorithms
applied to HDDT and BEM respectively on all the data sets D1-D18. The value
marked in bold represents the best G-mean value for a particular data set.Table
6.3 shows the rankings of the algorithms for each of the data sets along with the
average ranks for all the data sets combined. Rank 1 in bold value corresponds to
the best algorithm for a data set. For proper visualization of the G-mean values,we
have created a box plot and a bar plot (Figure 6.1) corresponding to Table 6.1 and
6.2. The bar plot represents the G-mean value of a particular algorithm averaged
across all the 18 data sets while the box plot provides an idea about the range of
G-Means values.

Analysis

1. Analyzing the values from both Table 6.1 and 6.2, we find out that BEME-
COC outputs the best G-Means value in 11 out of 18 data sets.

2. If we compare classifier wise for all the decomposition schemes combined,
our proposed method BEM beats HDDT in 15 out of 18 data sets, clearly
demonstrating its superior performance.

3. For data sets like Abalone 19, Pageblocks, Yeast etc as well the synthetic data
sets having high levels of imbalance, BEM values are significantly greater
than that of HDDT.

37
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Figure 6.1: Visualization of the G-means performance of algorithms for all data
sets using Bar plot and Box plot

Table 6.1: Performance of HDDT algorithms on G-Means. The bold values in
each row represents the best performing algorithm for that particular data set.

Dataset HDDT

OVA Oovo ECOC A&O OALO

D1 0.47094 | 0.37636 0.5675 0.49726 | 0.40603
D2 0.56855 | 0.46814 0.5716 0.62262 | 0.43254
D3 0.53674 | 0.43561 | 0.47899 | 0.40745 | 0.48641
D4 0.90348 | 0.97156 | 0.94425 | 0.94722 | 0.93121
D5 0.70698 | 0.75809 | 0.83109 0.7857 0.73616
D6 0.68299 | 0.71727 | 0.70551 | 0.78168 | 0.73996
D7 0.8565 0.8634 0.8829 0.8581 0.84312
D8 0.67007 | 0.70961 | 0.68422 | 0.63917 | 0.67422
D9 0.8082 0.85308 | 0.90543 | 0.88435 | 0.82305
D1o 0.82309 | 0.79412 0.7863 0.79847 | 0.73144
D11 0.81253 | 0.78989 | 0.82364 | 0.84253 | 0.81869
D12 0.93323 | 0.95441 | 0.97339 0.9698 0.91921
D13 0.9299 0.9446 0.93067 | 0.96241 | 0.96498
D14 0.3756 0.38421 0.456 0.4287 0.3724
D15 0.4056 0.45817 | 0.55166 | 0.34612 | 0.43379
D16 0.66651 | 0.68144 | 0.72813 | 0.77295 | 0.74905
D17 0.69261 | 0.72075 | 0.78607 | 0.73769 | 0.73569
D18 0.54336 | 0.62949 0.6087 0.6767 0.50926
Average 0.6882 0.6950 0.7342 0.7199 0.6837

4. From the rankings table (Table 6.3), ECOC has minimum average rankings
for both HDDT and BEM.

5. From the box plot (Figure 6.1), it can be observed that BEMECOC has
the smallest minimum and 1st quartile value and the highest median value.
This justifies the consistent performance of BEMECOC across all data sets,
significantly better than the others.

6. It can be observed from the bar plot (Figure 6.1) that if we compare the
average values of HDDT and BEM for all the decomposition techniques,
BEM always exceeds HDDT.

Thus Error Correcting Output Codes can be considered as a reliable decomposi-
tion technique that can be applied on both algorithmic and ensemble approaches to
produce a satisfactory G-Means output on multiclass imbalanced data sets.
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Table 6.2: Performance of BEM algorithms on G-Means. The bold values in
each row represents the best performing algorithm for that particular data set.

Dataset BEM

OVA OovVoO ECOC A&O OALO

D1 0.68641 0.7176 0.7594 0.6696 0.62444
D2 0.62567 | 0.66217 | 0.72682 | 0.75525 0.5588
D3 0.54019 | 0.61253 | 0.68695 | 0.45458 | 0.59695
D4 0.94008 0.9352 0.93338 | 0.92379 | 0.90214
D5 0.6078 0.6456 0.87344 0.7364 0.7011
D6 0.65545 | 0.79874 | 0.85424 | 0.80497 | 0.70016
D7 0.78048 | 0.80674 0.8314 0.8305 0.83289
D8 0.5104 0.6949 0.76198 0.6475 0.4526
D9 0.93308 | 0.95936 | 0.94075 0.9513 0.95229
D10 0.70562 | 0.89659 | 0.89954 | 0.92291 | 0.92007
D11 0.60822 0.8256 0.90015 | 0.80809 | 0.77593
D12 0.95027 | 0.94459 | 0.97561 | 0.96984 | 0.95626
D13 0.90422 | 0.95279 0.9484 0.94829 | 0.94097
D14 0.38973 | 0.35906 | 0.55424 | 0.35453 0.3738
D15 0.51577 | 0.49037 0.6581 0.4987 0.5497
D16 0.73316 | 0.86499 | 0.88337 | 0.86866 | 0.76936
D17 0.75455 | 0.80218 | 0.82432 | 0.80525 0.8755
D18 0.78636 | 0.75244 | 0.85762 | 0.70744 0.6825
Average 0.7015 0.7656 0.8187 0.7588 0.7286

Table 6.3: Rankings of algorithms based on G-Means value over all the 18 data
sets.The best algorithm for each data set has been marked in bold(Rank 1).

Dataset Proposed Ensemble Method Hellinger Distance Decision Tree
OVA | OVO | ECOC | A&O | OALO | OVA | OVO | ECOC | A&O | OALO
D1 3 2 1 4 5 8 10 6 7 9
D2 4 3 2 1 8 7 9 6 5 10
D3 4 2 1 8 3 5 9 7 10 6
D4 4 5 6 8 10 9 1 3 2 7
D5 10 9 1 5 8 7 4 2 3 6
D6 10 3 1 2 8 9 6 7 4 5
D7 10 9 7 8 6 4 2 1 3 5
D8 9 3 1 7 10 6 2 4 8 5
D9 5 1 4 3 2 10 8 6 7 9
D1o 10 4 3 1 2 5 7 8 6 9
D11 10 3 1 7 9 6 8 4 2 5
D12 7 8 1 3 5 9 6 2 4 10
D13 10 3 4 5 7 9 6 8 2 1
D14 4 9 1 10 7 6 5 2 3 8
D15 4 6 1 5 3 9 7 2 10 8
D16 7 3 1 2 5 10 9 8 4 6
D17 6 4 2 3 1 10 9 5 7 8
D18 2 3 1 4 5 9 7 8 6 10
Average 6.611 | 4.445 2.111 4.778 5.833 7.667 | 6.389 4.945 5.167 7.056

6.2 F-Measure

In Table 6.4 and 6.5 we present the F-Measure values of the 10 algorithms on all
the data sets. The value marked in bold represents the best F-Measure value for
each data set.Table 6.6 shows the rankings of the algorithms for each of data sets
along with the average ranks for all the data sets combined. Rank 1 in bold value
corresponds to the best algorithm for a data set. Likewise in G-Means, a box plot
and a bar plot (Figure 6.1) corresponding to Table 6.4 and 6.5 has been shown.
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Figure 6.2: Visualization of the F-Measure performance of algorithms for all data
sets using Bar plot and Box plot

Table 6.4: Performance of HDDT algorithms on F-Measure. The bold values
in each row represents the best performing algorithm for that particular data set.

Dataset BEM

OVA [e)%[¢) ECOC A&O OALO

D1 0.50897 0.40969 0.44825 0.46843 0.39572
D2 0.61773 0.55415 0.69677 0.58175 0.52002
D3 0.43057 0.47429 0.47834 0.48011 0.50137
D4 0.90155 0.96652 0.95144 0.94245 0.93913
D5 0.72674 0.74703 0.79954 0.75573 0.70854
D6 0.76514 0.69168 0.80763 0.70116 0.66522
D7 0.90508 0.88823 0.89652 0.85995 0.85032

D8 0.71618 0.71677 0.78707 0.69703 0.703
D9 0.91226 0.90907 0.92047 0.91634 0.9111
D10 0.80884 0.78885 0.85538 0.81184 0.77599
D11 0.81655 0.85078 0.82561 0.86033 0.83401
D12 0.94931 0.95901 0.97072 0.97509 0.92551
D13 0.93433 0.94791 0.95212 0.95577 0.96831
D14 0.36982 0.37278 0.43127 0.35427 0.33645
D15 0.37456 0.54131 0.50336 0.47759 0.46684
D16 0.776 0.7608 0.81193 0.7867 0.7933
D17 0.83513 0.87208 0.85497 0.85085 0.83421
D18 0.47767 0.52021 0.60152 0.5265 0.54017
Average 0.712579 | 0.72062 | 0.755162 | 0.722327 | 0.703845

Analysis

1. It can be observed from Table 6.4 and 6.5 that BEMECOC has the maxi-
mum F-Measure in 9 out of 18 data sets.

Comparing classifier wise for all the decomposition strategies, our proposed

method BEM outperforms HDDT in 14 out of 18 data sets.

The bar plot and the box plot show similar trends to that of G-Means. In

terms of average F-Measure values, BEM is always superior. BEMECOC
has the minimum range and maximum median value across all data sets.

Observing the rankings table (Table 6.6), we can claim that for both BEM

and HDDT, A&O shows the 2nd best output after ECOC.
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Table 6.5: Performance of BEM algorithms on F-Measure. The bold values in
each row represents the best performing algorithm for that particular data set.

Dataset BEM
OVA [e)%[¢) ECOC A&O OALO
D1 0.75522 0.76012 0.79562 0.68927 0.62513
D2 0.60574 0.71493 0.65748 0.64192 0.60265
D3 0.47794 0.48763 0.58276 0.57434 0.60753
D4 0.85918 0.95898 0.97411 0.96421 0.93005
D5 0.49398 0.6216 0.8922 0.7997 0.7547
D6 0.71886 0.68158 0.75641 0.77225 0.75956
D7 0.81497 0.87947 0.85647 0.8521 0.84634
D8 0.6539 0.72066 0.84905 0.7694 0.5742
D9 0.97015 0.954 0.94439 0.95722 0.95409
D10 0.78188 0.90724 0.93765 0.73213 0.89865
D11 0.67935 0.83403 0.88299 0.81878 0.79539
D12 0.97217 0.94882 0.96676 0.95308 0.96084
D13 0.91561 0.95521 0.93799 0.95944 0.94551
D14 0.37414 0.39471 0.5565 0.48781 0.4681
D15 0.38463 0.54753 0.60781 0.5191 0.4434
D16 0.77238 0.87249 0.88793 0.86787 0.80535
D17 0.6987 0.87636 0.87549 0.88482 0.88902
D18 0.5421 0.80015 0.78768 0.82765 0.7250
Average 0.692828 | 0.773084 | 0.819405 | 0.781727 | 0.754751

Table 6.6: Rankings of algorithms based on F-Measure value over all the 18 data
sets.The best algorithm for each data set has been marked in bold(Rank 1).

Dataset Proposed Ensemble Method Hellinger Distance Decision Tree
OVA | OVO | ECOC | A&O | OALO OVA | OVO | ECOC | A&O | OALO
D1 3 2 1 4 5 6 9 8 7 10
D2 6 1 3 4 7 5 9 2 8 10
D3 8 5 2 3 1 10 9 7 6 4
D4 10 4 1 3 8 9 2 5 6 7
D5 10 9 1 2 5 7 6 3 4 8
D6 6 9 5 2 4 3 8 1 7 10
D7 10 4 6 7 9 1 3 2 5 8
D8 9 4 1 3 10 6 5 2 8 7
D9 1 4 5 2 3 8 10 6 7 9
D10 8 2 1 10 3 6 7 4 5 9
D11 10 4 1 7 9 8 3 6 2 5
D12 2 9 4 7 5 8 6 3 1 10
D13 10 4 8 2 7 9 6 5 3 1
D14 6 5 1 2 3 8 7 4 9 10
D15 9 2 1 4 8 10 3 5 6 7
D16 9 2 1 3 5 8 10 4 7 6
D17 10 3 4 2 1 8 5 6 7 9
D18 6 2 3 1 4 10 9 5 8 7
Average 7.389 | 4.167 2.722 3.778 5.389 7.222 | 6.500 4.333 5.889 7.611

As observed in the results for G-Means, in terns of F-Measure too, Error Correct-
ing Output Codes decomposition is significantly superior than the rest. As a 2nd
choice, the AEQO strategy can be recommended.
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6.3 Average Class Specific Accuracy (ACSA)

Table 6.7 and 6.8 displays the Average Class Specific Accuracy values of all the
decomposition algorithms of HDDT and BEM respectively. The value marked in
bold represents the best ACSA value for a particular data set.Table 6.9 shows the
average rankings of the algorithms for all the data sets combined. Like G-Means
and F-Measure, the corresponding box plot and bar plot of ACSA has been shown

for better visualization of the results.
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row represents the best performing algorithm for that particular data set.

Dataset BEM

OVA [e)%(0) ECOC A&O OALO

D1 0.54451 0.51187 0.62425 0.52534 0.51377
D2 0.62837 0.57616 0.60375 0.60051 0.56189
D3 0.45186 0.50529 0.51612 0.47622 0.53625
D4 0.88563 0.96506 0.95981 0.93838 0.93554
D5 0.67333 0.71663 0.77939 0.74901 0.76527
D6 0.59389 0.69786 0.71518 0.65627 0.61718
D7 0.89697 0.87758 0.8798 0.85455 0.83879
D8 0.66921 0.70422 0.69601 0.66857 0.68658
D9 0.91079 0.8784 0.91746 0.88905 0.9181
D10 0.72409 0.72859 0.80572 0.7411 0.77362
D11 0.80894 0.85031 0.87365 0.88234 0.83323
D12 0.94439 0.95661 0.9778 0.97742 0.91753
D13 0.93434 0.94608 0.93341 0.97397 0.96653
D14 0.32332 0.42194 0.40923 0.39833 0.33646
D15 0.36953 0.47708 0.53512 0.49831 0.48504
D16 0.73833 0.71833 0.75833 0.79875 0.7625
D17 0.86088 0.86213 0.82937 0.869 0.85425
D18 0.42411 0.59315 0.60283 0.54095 0.47497
Average 0.688472 | 0.721516 | 0.745402 | 0.724337 | 0.709861

Analysis

1. Like the F-measure table, BEMECOC is the best algorithm in terms of

ACSA in 9 out of 18 data sets.
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Table 6.8: Performance of BEM algorithms on ACSA. The bold values in each

row represents the best performing algorithm for that particular data set.

Dataset BEM

OVA OoVvVO ECOC A&O OALO

D1 0.7227 0.72606 0.78462 0.634 0.641
D2 0.45527 0.65366 0.54407 0.5975 0.60423
D3 0.47378 0.48341 0.61897 0.54496 0.50344
D4 0.68529 0.95723 0.97222 0.97237 0.93443
D5 0.65162 0.72567 0.81144 0.7698 0.66783
D6 0.68903 0.67226 0.69153 0.75462 0.76292
D7 0.76525 0.7503 0.79343 0.8455 0.84859
D8 0.4228 0.68779 0.75237 0.6533 0.4450
D9 0.96524 0.94206 0.96254 0.95429 0.95921
D10 0.72877 0.81939 0.8652 0.75915 0.82923
D11 0.65933 0.83502 0.88128 0.81754 0.79235
D12 0.90832 0.94741 0.94029 0.97132 0.95825
D13 0.90582 0.95336 0.90095 0.96886 0.94317
D14 0.36785 0.51407 0.58017 0.45186 0.5115
D15 0.45462 0.59301 0.67216 0.6093 0.5132
D16 0.75792 0.89125 0.88708 0.86542 0.77875
D17 0.63875 0.80413 0.87792 0.78275 0.81338
D18 0.53003 0.78598 0.81786 0.76417 0.6638
Average 0.654577 | 0.763448 | 0.79745 | 0.762039 | 0.731682

Table 6.9: Rankings of algorithms based on Average Class Specific Accuracy
(ACSA) value over all the 18 data sets.The best algorithm for each data set has
been marked in bold(Rank 1).

Dataset Proposed Ensemble Method Hellinger Distance Decision Tree
OVA | OVO | ECOC | A&O | OALO OVA | OVO | ECOC | A&O | OALO
D1 3 2 1 5 4 7 10 6 8 9
D2 10 1 9 6 3 2 7 4 5 8
D3 9 7 1 2 6 10 5 4 8 3
D4 10 5 2 1 8 9 3 4 6 7
D5 10 6 1 3 9 8 7 2 5 4
D6 6 7 5 2 1 10 4 3 8 9
D7 9 10 8 6 5 1 3 2 4 7
D8 10 4 1 8 9 6 2 3 7 5
D9 1 5 2 4 3 8 10 7 9 6
D10 8 3 1 6 2 10 9 4 7 5
D11 10 5 2 7 9 8 4 3 1 6
D12 10 6 8 3 4 7 5 1 2 9
D13 9 4 10 2 6 7 5 8 1 3
D14 8 2 1 4 3 10 5 6 7 9
D15 9 3 1 2 5 10 8 4 6 7
D16 8 1 2 3 5 9 10 7 4 6
D17 10 7 1 6 3 9 8 4 5 2
D18 8 2 1 3 4 10 6 5 7 9
Average 8.222 | 4.445 3.167 4.056 4.945 7.833 6.167 4.278 5.556 6.33

2. Combining all the decomposition methods, BEM has higher ACSA value
than HDDT in 14 data sets and the average value for BEM is always higher
than that of HDDT.

3. Similar to F-Measure, it can be observed that for both BEM and HDDT,
A&O has the 2nd best rankings after ECOC.

4. The bar plot for ACSA shows BEMECOC having the minimum range and
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maximum medium value among all and hence justifies the superiority and
consistency of BEMECOC.

Summary

Analyzing the values, corresponding ranks, bar plots and box plots for G-Means, F-
Measure and ACSA the following things can be summarized about the perfor-
mance of the different algorithms :

e Error Correcting Output Codes decomposition when applied to our pro-
posed method (BEMECOC) is the best choice algorithm for dealing with a
multiclass imbalanced data set.

e If we compare HDDT with our proposed ensemble scheme BEM for all the 5
decomposition methods combined, BEM outperforms HDDT in every case.

e When the same classifier is combined with different decomposition meth-
ods,increase in the number of dichotomies leads to better results. The num-
ber of classifiers trained by ECOC,A&O,0VO,0VA and OALO are 2" — 1,
[@ + nl, n(n;l), n and n — 1 respectively.With the maximum number of
dichotomies trained, ECOC decomposition yields the best results followed by
A&O and OVO.In OVA and OALO, less number of dichotomies are trained
compared to the other methods and hence the metric values for these tech-

niques are significantly less than ECOC,A&O and OVO.

e For applications having time efficiency constraints and in cases where classifi-
cation performance can be adjusted to some extent, the One-and-All (A&O)
decomposition technique will be the preferred choice.

6.4 Statistical Analysis

Friedman Test

To test whether our results are statistically significant or not we perform the
Friedman test on the values of Table 6.1,6.3 and 6.5.The p-values obtained from
the tests at a confidence interval of 95% have been listed in Table 6.7.As evident
from the table, the p-values corresponding to each of G-means, F-Measure and
ACSA are less than 5%(0.05) and so it can be claimed there is significant difference
between the rankings of the algorithms.

Pairwise Comparison by Wilcoxon Signed Rank Test

After determining the algorithm producing the best results we have compared
BEMECOC with the remaining 9 methods by the Wilcoxon Signed Rank Test at
95% confidence interval. The results of the test for G-Means, F-Measure and ACSA
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Table 6.10: p-values obtained from Friedman test corresponding to G-Means,F-
Measure and ACSA respectively.

S1 No | Evaluation Metric | p value signi ﬁcifletltizzlsciﬁz\’n 0.05)
1 G-Means 0.0019 Yes
2 F-Measure 0.0079 Yes
3 ACAS 0.0056 Yes

have been given in Table 6.8.Observing the p-values,we notice that for G-means,

all the p-values are significantly less than 0.05.Similar situation can be observed for
F-Measure and ACSA.Thus it can be concluded from the results that BEMECOC
significantly outperforms the other methods.

Table 6.11: Wilcoxon Signed Rank test for pairwise comparison of BEMECOC
with the other 9 algorithms at 95% confidence interval

G-MEANS F-MEASURE ACSA
Method p-value Method p-value Method p-value
BEMOVA 0.000233 BEMOVA 0.000386 BEMOVA 0.000455
BEMOVO | 0.000863 | BEMOVO | 0.019809 | BEMOVO | 0.015647
BEMAE&0O | 0.005684 | BEMAEO | 0.034669 | BEMAEO | 0.052624
BEMOALO | 0.002471 | BEMOALO | 0.004969 | BEMOALO | 0.019809
HDDTOVA | 0.000276 | HDDTOVA | 0.000863 | HDDTOVA | 0.003285
HDDTOVO | 0.000629 | HDDTOVO | 0.000863 | HDDTOVO | 0.008418
HDDTECOC | 0.000863 | HDDTECOC | 0.007398 | HDDTECOC'" | 0.034669
HDDTAE&O | 0.000863 | HDDTAEO | 0.000535 | HDDTAEO | 0.010843
HDDTOALO | 0.000455 | HDDTOALO | 0.000276 | HDDTOALO | 0.002471

6.5 Comparison with state-of-the-art ensemble
method

We have established the superiority of our ensemble learning paradigm and to
ensure a fair comparison with other ensemble techniques dedicated to multiclass
imbalanced data classification tasks, we have compared BEM with one of the state-
of-the art methods AdaboostINC. AdaboostNC is a combination of multiclass
boosting and negative correlation learning. AdaboostNC is different from the
classical Adaboost algorithm by the fact that here, after each classifier is built,
the difference between the classifiers within the ensembles is given a penalty term.
Along with the miss classification information, the diversity within the ensemble is
taken into account for updating the weights. For our experiments, we have taken
the following parameters of AdaboostNC as suggested by the authors.
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Table 6.12: Parameter settings of AdaboostNC
Parameter Value
Number of iterations 20
Penalty term 2
Base Classifier C4.5
Table 6.13: Comparison between BEMECOC and AdaboostNC
Dataset G-Means F-Measure ACSA
BEMECOC | AdaboostNC | BEMECOC | AdaboostNC | BEMECOC | AdaboostNC

D1 0.7594 0.39206 0.79562 0.4561 0.78462 0.52507
D2 0.72682 0.51706 0.65748 0.57435 0.54407 0.60636
D3 0.68695 0.46781 0.58276 0.47023 0.61897 0.47066
D4 0.93338 0.94531 0.97411 0.92274 0.97222 0.9265
D5 0.87344 0.87834 0.8922 0.88887 0.81144 0.73191
D6 0.85424 0.72989 0.75641 0.72554 0.69153 0.68704
D7 0.8314 0.90645 0.85647 0.91873 0.79343 0.91394
D8 0.76198 0.41469 0.84905 0.42042 0.75237 0.43386
D9 0.94075 0.89952 0.94439 0.91648 0.96254 0.90921
D10 0.89954 0.81463 0.93765 0.87274 0.8652 0.73227
D11 0.90015 0.87079 0.88299 0.88491 0.88128 0.88263
D12 0.97561 0.83564 0.96676 0.88112 0.94029 0.8594
D13 0.9484 0.94595 0.93799 0.94764 0.90095 0.94545
D14 0.55424 0.37561 0.5565 0.46013 0.58017 0.3761
D15 0.6581 0.39486 0.60781 0.47018 0.67216 0.45615
D16 0.88337 0.7206 0.88793 0.77948 0.88708 0.73542
D17 0.82432 0.79101 0.87549 0.88346 0.87792 0.85479
D18 0.85762 0.62372 0.78768 0.56428 0.81786 0.52348
Analysis

Table 6.12 shows the comparative results between BEM and AdaboostNC in terms
of G-Means, F-Measure and ACSA. As observed from the table, in terms of the
3 evaluation metrics, BEMECOC significantly outperforms AdaboostNC in ma-
jority of the data sets. AdaboostNC has won marginally in data sets which have
less degree of imbalance. On highly imbalanced data sets like Abalone 19, Con-
traceptive Led7digit as well as on the artificial ones, our method comprehensively

beats AdaboostNC. These observations assert the superiority and dominance of
BEMECOC.




Chapter 7

Conclusion and Future Work

7.1 Conclusion

In a multiclass imbalanced data set with, the level of imbalance is much more
complex than that of binary data due to small disjuncts being present in the
data and classes having a lot of overlaps. One of the most common strategies for
tackling the problem is to decompose the multiclass problem into binary imbalance
sub problems and use the classifiers which are generally suited to deal with binary
class imbalanced data sets. The proven efficacy of the classifiers to tackle a two-
class imbalance problem motivated us to make a comparative analysis of these
decomposition ensembles and choose the appropriate combination of classifier and
decomposition strategy that produces the best output.

In our work, we have used two types of learning algorithms to classify a two
class imbalanced data set. For an algorithmic level learning approach we have
used Hellinger Distance Decision Tree proposed by (Cieslak et al.. To validate the
author’s claim why Hellinger Distance is a good choice for splitting criterion in de-
cision trees, we have compared it with other members of the F-Divergence family
like the Kullback-Leibler Divergence and the Jensen-Shannon Divergence. To uti-
lize the advantages of both data level and algorithmic level modifications, we have
proposed an ensemble paradigm Balanced Ensemble Models(BEM) where balanced
subsets are created by including all the minority class samples and an equal number
of majority class samples picked without replacement and then a weighted voting
strategy is applied to the ensemble models to classify the test data. We have
used five decomposition techniques One-vs-All(OVA), One-vs-One(OVO), Error
Correcting Output Codes(ECOC), One-and-All(A&O) and One-Against-Lower-
Order(OALO) and applied each of these strategies to both HDDT and BEM.

For our experimental study we have used 3 popular evaluation metrics for
multiclass imbalance problems : G-Means, F-Measure and Average Class Spe-
cific Accuracy which is a multiclass equivalent of Average Recall. For each of
these metrics, the Tied Rank test have been used to compute the rankings of the
classifiers followed by the Friedman Rank to test whether there is any significant
differences between the rankings of the algorithms. From the average rankings
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across all data sets, we can conclude that ECOC when applied to our proposed
method BEM yields the best result. To validate the claim that BEMECOC out-
performs all the other methods, we have used the Wilcoxon Signed Rank test at a
confidence level of 5% to perform a pairwise comparison of BEMECOC with the
rest of the algorithms.

From our experimental findings and statistical tests, we conclude the fact that
Error Correcting Output Codes as a decomposition strategy yields the best result.
A&O and OVO producing comparable performances comes after that followed by
OALO and OVO. We can highlight the fact that more the number of dichotomies
trained in each decomposition scheme, better the result. If we compare the two
types of learning algorithms, algorithmic and hybrid approaches, the superior
performance of BEM in majority of the data sets clearly prove that an ensemble
paradigm of both data level and algorithmic modifications have a better chance to
effectively deal with the challenges of a multiclass imbalanced classification data
set.

7.2 Scope for Future Work

Despite its good performance, our proposed algorithm BEMECOC has a few lim-
itations and there is scope of improvement.One of the challenges of the ECOC
decomposition strategy is that it is quite time-consuming. As the number of
classes increase, the number of dichotomies trained increases exponentially. But
in applications where time efficiency constraints can be tolerated and classification
accuracy is the main focus, BEMECOC can be considered as the first choice. In
future work, we plan to use parallel based methods to reduce the training time
without compromising on the accuracy.

While OVA and OVO have been widely used as decomposition strategies in
multiclass imbalance problems, the rest of the techniques have not been utilized
much in this domain. To the best of our knowledge, this is the first study where a
thorough comparative analysis of all the 5 techniques has been made to highlights
their advantages and limitations. A scope for future work can be combining one
or more of these decomposition schemes to boost up classification accuracy. We
sincerely hope that this study should have important reference value for researchers
in the imbalance learning domain.



Chapter 8

Appendix

Theorem 3. Square of Hellinger Distance is the lower bound of the Kullback-
Leibler Divergence.

Proof. The proof will be complete if we can show that the Bhattacharyya distance
is the lower bound of the Kullback-Leibler Divergence.

The Bhattacharyya coefficient can be defined as :

Dyl y) = / V@) di (8.1)

From Equation 2.1,Hellinger distance can be reformulated as follows:

dnton) = (1 ([ Votowai)ye (52)

Therefore,Hellinger distance can be expressed in terms of Bhattacharyya coeffi-
cient as follows :

dp(w,y) = {1 = Dp(z,y)}'/? (8:3)
Bhattacharyya Distance :

dB<x7y) = _logDB(I7y)
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Thus,it can be said that Bhattacharyya distance is the lower bound of the Kullback-
Leibler Divergence.

dir(zlly) = 2dp(2,y) (8.4)
From the graph of log(x),

—log(i) > 1—1i 0<i<1 (8.5)
So.finally we can conclude from Equations 2.7 and 2.8,

dp(w,y) > du(z,y)” (8.6)
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