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Abstract

In this thesis, we develop three new methods for feature selection with Multi Layer

Perceptron(MLP) neural networks. In each method, we use a two-step approach.

First, we train a MLP network for a given dataset. Second, we introduce feature

selector variables and form an optimization problem based on some penalty on

these feature selector variables and some measure of redundancy. Then, we op-

timize the problem using gradient descent method to find nearly optimal values

of the feature selector variables while keeping the weights of the MLP networks

fixed. First method, which we call Feature Selection with MLP using Approximate

L0-norm and Global Redundancy Control (FSMLP-AL-GRC) uses penalty based

on an approximate L0-norm and global redundancy, i.e., redundancy that is calcu-

lated with features values, without considering the class information. For second

method, we first define a new redundancy measure that uses class label informa-

tion while calculating redundancy, we call it class-level redundancy. This method

make use of class level redundancy measure along with an approximate L0-norm

based penalty. We call it Feature Selection with MLP using Approximate L0-norm

and Class-level Redundancy Control (FSMLP-AL-CRC). Last method is a variant of

method two. Here, we replace each feature selector variable with some non-linear

bounded function that always lies between 0 and 1, this function act as feature

attenuating gates. We call this method Gated Feature Selection with MLP using

Class-level Redundancy Control (Gated-FSMLP-CRC). We test these methods ex-

perimentally on different data sets. We also present results on Sonar data using

method Gated-FSMLP-CRC without keeping the weights of MLP fixed during the

learning process.
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Chapter 1

Introduction

Modern technologies have made it possible to assess objects from different perspec-

tives at the same time. This causes the generation of high dimensional datasets,

which increase the time and memory requirements as well as increase difficulties

of analyzing the data. Different features may have different effects on data analysis

- it may have positive or negative influences [9]. We often face this problem while

classifying high dimensional datasets. Here, feature selection can be very useful,

which is the process of choosing a smaller subset of ”good/useful” features from a

larger set of features [11]. Feature selection not only helps in handling large datserts

but it also preserve the original semantics of data, thereby offering interoperability

by domain expert [5].

Feature selection methods are usually classified into three categories: filter meth-

ods, wrapper methods, and embedded methods. In filter methods, feature selec-

tion is performed by some characteristic of data and the procedure is independent

of any classifier. On the other hand, in wrapper methods, feature selection is de-

pendent on the performance of a classifier. This makes wrapper methods time-

consuming. In embedded methods, feature selection is performed with learning of

the classifier in an integrated fashion.

Generally, finding an optimal set of features requires an exhaustive search on all

subsets of features, which can be computationally impossible to do in real appli-
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cations. Even in wrapper methods, some sub optimal heuristics are used to look

at fewer subsets through a guided search. Using forward and backward selection

type methods may not be very useful as they do not consider the interaction be-

tween features properly. Hence, in our view integrated approach can be proved to

be most useful, these methods do not require you to search all possible subsets and

they can consider the interaction between features during the selection procedure.

Our proposed methods also work with this philosophy.

Before going to more details and chapters, we would like to discuss different types

of features and what kind of feature we like to select. We want to select useful

features and discard features with poor prediction power or features that can con-

fuse the learning process. Keeping this goal in mind, we can classify features into

four groups [3]: 1) essential features— these features are necessary irrespective

of the modeling tool that we use; 2) bad or derogatory features—these features

must be discarded irrespective of the modeling tool that we use; 3) indifferent fea-

tures—these features neither help nor cause any problem in decision making; and

4) redundant features— these are useful features, which are dependent on each

other, such as two highly correlated features. Thus, all of the redundant features

are not necessary; only some are needed to solve the problem.

Our proposed methods come under the framework of Maximum Relevance and

Minimum Redundancy-type methods as it try to select most relevant features while

controlling the level of redundancy [7]. Removing irrelevant and redundant fea-

tures will decrease feature numbers and enhance the performances of classifiers

[13]. Other than this, feature selection methods can also be divided into two categories-

Unsupervised and Supervised feature selection methods. The term unsupervised

is used for approaches where only feature values are used during feature selection

procedure. On the other hand supervised feature selection methods use extra in-

formation such as class label information. This work mainly focuses on supervised

feature selection. recently semi-supervised feature selction methods have been in-

troduced, which uses combination of labeled and unlabeled data [15].
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1.1 Problem Statement

The objective of this work is to propose embedded methods of feature selection us-

ing multi layer perceptron. The proposed methods should select a smaller subset

of relevant features with low redundancy while maintaining the performance, i.e.,

the accuracy of MLP.

1.2 Outline of This Thesis

In Chapter 2, we discuss some related works. Chapter 3 presents the proposed

methods. In Chapter 4, we describe the experiments to validate this work. We

conclude in Chapter 5.



Chapter 2

Related Work

Multi-layer perceptrons (MLPs) are frequently used as classifiers because of there

high discriminating capabilities. Various embedded feature selection schemes with

MLPs [4] have also been proposed. We will be dicussing few methods for feature

selection grouped according to the philosophy.

2.1 Unsupervised approaches

The unsupervised approach as discussed by the authors in [1] uses a greedy method

for feature selection. Let S be the set of indices of the selected r features and

X be the data matrix of size n × f . The authors have used a novel feature selec-

tion criterion by introducing a minimization problem using function F(S), F(S) =

||X − PSX||2F, where ||.||F is the Frobenius norm and PS is an n× n projection ma-

trix which projects the columns of X onto the span of the columns corresponding

to the selected features. We want to select a set S with dimension r for which F(S)

is minimized.

In [2], authors proposed a method to select r features with controlled redundancy

such that the topology of original dataset can be maintained in the reduced di-

mension. This method uses Sammon’s error as a measure of preservation of topol-

ogy. In this method, extra feature selector variables have been introduced corre-

sponding to each feature. Let X ∈ Rn×p be the dataset, i.e., X = {x1, x2, . . . , xn}

4



Section 2.2 5

where ∀i ∈ {1, 2 . . . n}, xi = (xi1, xi2, . . . , xip)
T. We want to select r features and

let β = (β1, β2, . . . , βp) be extra introduced feature selector variables. Selection of

features is done by optimizing a function, E, with respect to βs, E is sum of four

terms as,

E = SE + B× PF1 + C× PF2 + D× PF3

with

SE =
1

∑i<j
∑
i<j

(d∗ij − dij)
2

d∗ij

PF1 =
1

(p− r)2

(
p

∑
i=1

e−β2
i − r

)2

PF2 =
4
p

p

∑
i=1

e−β2
i (1− e−β2

i )

PF3 =
1

p(p− 1)

p

∑
i=1

e−β2
i ∑

j 6=i
e−β2

j ρ2
ij

where, B, C, D ∈ R+ are coefficients of penalty terms; d∗ij is Euclidean distance

between xi and xj; dij =
√

∑
p
k=1 e−2β2

k(xik − xjk)2 and ρij is the dependency between

features i and j. After minimization E by gradient descent method, using the values

of e−β2
i , i = 1, 2 . . . p and some threshold, features are selected.

2.2 Sparsity based approaches

For instance, in [10] the authors introduced an extra set of variables that plays the

role of feature selectors. Their method is divided into two main steps. First, they

trained an MLP on a given dataset, and then, they introduced a variable corre-

sponding to each feature to form a minimization problem as described below.

minimize
β

{
1
n

n

∑
i=1
L(ti, (xi1 × β1, xi2 × β2, . . . , xiF × βF)

T) + λ
F

∑
i=1
|βi|
}

(2.1)

Here, β = (β1, β2, . . . , βF)
T ∈ RF is the set of feature selectors; F is the dimension

of the data; n is the is the nuumber of samples; L(·) is the loss function of the MLP;
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ti ∈ {0, 1}F is the target vector for the ith sample; xi = (xi1, xi2, . . . , xiF) ∈ RF is the

ith training sample; and λ ∈ R+ is a regularizing coefficient. For a given threshold

τ ∈ R, the ith feature is selected, if |βi| > τ. After selecting features this process is

repeated on reduced set of features until stopping criteria is met. The current work

indeed is inspired by this work [10].

In [8], the authors discussed an approximate L0-norm minimization method for

compressed sensing by solving the following problem:

maximize
x

F (x)

subject to y = Ax

where F (x) =
n

∑
i=1

e−x2
i /2a2 , (2.2)

where x ∈ Rd is the d dimensional signal vector, y ∈ Rd′ is the d′ dimensional

reconstructed signal vector, A is a d′× d transformation matrix, and a→ 0 is a very

small quantity. Therefore, the following hold:

lim
a→0
F (x) =

n

∑
i=1

I[xi = 0] =
n

∑
i=1

(1− I[xi 6= 0]) = n− L0(x), (2.3)

where I[·] is the indicator function. In this fashion, the authors [8] used (n−F (x))

as an approximation of the L0-norm of x, i.e., L0(x). We extend this idea in the

current work for a smooth approximation of L0-norm in the penalty function for

selecting features.

2.3 Controlled Redundancy based approaches

In [6], authors proposed a two-stage feature selection approach based on mutual

information. They have used the maximum relevance and minimum redundancy

as the selection criterion. They first select the feature that has the highest mutual in-

formation value with the class labels. Then, from the remaining set, their intention
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is to choose the second feature that has the highest relevance with the class labels

(i.e., mutual information) as well as the minimum dependency with the already

selected features. So, at any step, if already m− 1 features are chosen forming the

set Sm−1, then from the remaining set F − Sm−1, they choose the next feature by

optimizing the following criterion:

maximize
xj∈F−Sm−1

(
MI(xj, c)− 1

m− 1 ∑
xi∈Sm−1

MI(xi, xj)

)

Here, F is the set of features. Thus, this scheme selects one feature at a time. Given

number of features to be selected say r , it selects the feature subsets S1, S2, . . . , Sr

. From the selected sets, choose the set that yields better cross-validation accuracy

with a classifier.

In [4], the authors proposed a method of feature selection with MLP using a penalty

that considers redundancy of features. Rather than introducing linear unbounded

variables, they multiplied the value of each feature by a nonlinear gate function

f (·) ∈ [0, 1]. They minimized the following total error (TE):

TE =
1
n

n

∑
i=1
||ti −M(xi)||22 +

λ

F(F− 1)

F

∑
i=1

f (βi)
F

∑
j=1
j 6=i

f (β j)φ(Xi, Xj) (2.4)

whereM(·) ∈ [0, 1]c is the output from the MLP, c is the number of classes, φ(·) is

the dependency between two features, and X f denotes the f th feature. Here, f (·)

can be chosen as f (βi) = e−β2
i or f (βi) = 1/(1+e−βi). We note here, that φ(xi, xj) will

be computed using Xi and Xj, where Xi ∈ RF is the vector containing the ith fea-

ture value of all training data points. Hence, for notational convenience in place of

φ(xi, xj), we should use φ(Xi, Xj). In the current work, we also extend this concept

[4] of redundancy and define a new redundancy measure, and then, use that for

feature selection.



Chapter 3

The Proposed Methods

In this Chapter, first, we discuss smooth approximation of L0-norm that we have

used in first two methods. Than we will discuss each method one by one with

neccessary details and problem formulation.

3.1 A Smooth Approximation of L0-norm

Generally, embedded feature selection methods that use neural networks, use L1-

norm or L2-norm on feature selector variables to reduce the total number of selected

features [12], [16]. But when L0-norm based penalty is used, it provides us with a

good sparse subset of features, as it directly reduces the number of selected features

by making more feature selector variable zero. L1-norm or L2-norm are used be-

cause L2-norm is differentiable and L1-norm is continuous whereas L0-norm is not

even continuous and there is an issue in using L0-norm based penalties - L0-norm

based penalty minimization is NP-hard in nature, even for simple classification

losses [14]. We may, however, use a smooth approximation of L0-norm, and then,

may apply a gradient-based method for optimization. With this philosophy, we

use a smooth approximation of L0-norm as a regularizer.

The L0-norm of a d dimensional vector w = (w1, w2, . . . , wd)
T, i.e., L0(w) is defined

8



Section 3.2 9

(a) a = 0.1 (b) a = 0.01 (c) a = 0.001

Figure 3.1: Plot of
(

1− e−x2/2a2
)

with different values of a.

as

L0(w) =
d

∑
i=1

I[wi 6= 0]. (3.1)

Now, we define a smooth approximation of L0(w), denoted by La
0(w) as follows:

La
0(w) =

d

∑
i=1

(1− e−w2
i /2a2

) (3.2)

The approximation in (3.2), is dependent on the variable a and its behavior for

different values of a is shown in Fig. 3.1. Note that, as a→ 0, La
0(w)→ L0(w). The

explanation behind this is as follows:

lim
a→0

La
0(w) =

n

∑
i=1

lim
a→0

(1− e−w2
i /2a2

) =
n

∑
i=1

I[wi 6= 0] = L0(w) (3.3)

3.2 Method 1, Feature Selection with MLP using Approxi-

mate L0-norm and Global Redundancy Control (FSMLP-

AL-GRC)

Let X = {Xi,Xj,Xk} be a set of three features, such that, Xi, Xj, and Xk are strongly

related to (dependent on) each other. Dependency may either be linear or nonlinear

in nature. Here, The term “related”, means that if we know the value of any of the

features, we can predict the values of the remaining two features. Consequently, if

we have any one of the three features, we do not need the other two. X , therefore,
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is a set of redundant features.

In this method we want to select features that reduce the number of sets of re-

dundant features and hence reduce overall redundancy in the system. We also

want to keep useful features, i.e., features that are relevant for the classification

purpose. Hence, this method comes under the framework of Maximum-Relevance

Minimum-Redundancy. We will use the redundancy measure that is used by au-

thors in [4] as discussed in chapter 2, with slight modification and with combination

of equation (3.2).

Let X = {X1, X2, . . . , XF} denotes input data and y = {y1, y2, . . . , yn} denotes the

set of class label for each sample. Then using (X, y) we train a MLP neural network.

Let the MLP take an input a vector of size F. We calculate loss between output

of MLP and target vector, for example cross-entropy loss, mean-square loss etc.

Let this loss function denoted by L(.). The optimization function that we have

proposed as a part of method 1 is as,

Eλ,µ(β1, β2, . . . , βF) =
1
n

n

∑
i=1
L(ti, (xi1 × β1, xi2 × β2, . . . , xiF × βF)

T)

+
µ

F

F

∑
i=1

(
1− e−β2

i /2a2
)

+
λ

F(F− 1)

F

∑
i=1

β2
i

 F

∑
j=1
j 6=i

β2
j φ(Xi, Xj)

 (3.4)

Optimal values of feature selectors are,

β∗ = arg min
β

Eλ,µ(β1, β2, ...., βF)

From the value of β∗ we can select features, i.e., low value of any component de-

notes rejection of the corresponding feature. We will refer this model as Feature

Selection with MLP using Approximate L0-norm and Global Redundancy Control

(FSMLP-AL-GRC). We used the term global redundancy control here because as
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we can see that the redundancy measure φ(.) only considers feature values without

considering the local correspondence to different classes. But we can use class la-

bel information while calculating redundancy and by this motivation we will now

discuss our 2nd proposed method.

3.3 Method 2, Feature Selection with MLP using Approxi-

mate L0-norm and Class-level Redundancy Control (FSMLP-

AL-CRC)

Let for feature Xi and class c, Xc
i denotes the data of feature Xi that corresponds/belongs

to class c, thus Xi = ∪C
c=1Xc

i . Then, Class-level redundancy is defined as,

The Class-level redundancy between feature Xi and Xj is defined as,

φCL(Xi, Xj) =
1
C

C

∑
c=1

φ(Xc
i , Xc

j )

where C denotes total number of classes.

Now, how to use this idea of redundancy to develop an appropriate optimization

function for feature selection? Here, if we want to use this redundancy measure we

need to have some extra variable that also tells us that which part within a feature

is important or not, as some feature may be redundant for one class but may not be

redundant for the another class. Here the objective is not to just reject features but

to get some class specific information.

So, we have introduced a feature selector matrix βC×F where C is total number of

classes and F is total number of features. And, each element of this matrix say βc f ,

denotes the status of Xc
f , whether this part of dataset is relevant or not.

Using this matrix βC×F and loss function L(.), we develop a new optimization

function that is a combination of different ideas that was discussed earlier. The
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optimization function is defined as,

Eλ,µ(βC×F) =
1
C

C

∑
i=1

1
ni

ni

∑
j=1
L(ti, (xij

1 × βi1, xij
2 × βi2, . . . , xij

F × βiF)
T)

+
1
C

C

∑
i=1

µi

F

F

∑
j=1

(
1− e−β2

ij/2a2
)

+
1
C

C

∑
i=1

λi

F(F− 1)

F

∑
j=1

β2
ij

F

∑
k=1
k 6=j

β2
ikφ(Xi

j, Xi
k) (3.5)

where ni denotes number of samples in class i, ti ∈ {0, 1}F is the target vector

for the ith class, xij
k represents value of feature Xk that belongs to jth sample of

class i data, µ = (µ1, µ2, . . . , µC) ∈ RC and λ = (λ1, λ2, . . . , λC) ∈ RC vectors of

regularizing coefficients.

Optimal values of feature selector matrix is,

β∗C,F = arg min
βC,F

Eλ,µ(βC×F)

After getting β∗C,F, we will select the features for which its corresponding column

contain at least one non-zero value. Because it shows its high relevance for at least

one class. We will call this framework, Feature Selection with MLP using approxi-

mate L0-norm and Class-level redundancy control (FSMLP-AL-CRC). Next we, will

extensively compare our two proposed method, i.e., FSMLP-AL-GRC and FSMLP-

AL-CRC. This comparison is necessary as the first method uses already known

redundancy measure and second one uses our proposed redundancy measure.

3.4 Global vs Class-level Redundancy Control

In this section, we will compare various properties of FSMLP-AL-GRC model, as

given by equation (3.4) and FSMLP-AL-CRC model, as given by equation (3.5).

We will be mainly considering the Pearson’s correlation coefficient for comparison

purposes but the ideas can be extended to some non-linear dependency measure

such as mutual information. For simplicity we will only consider the effect of re-

dundancy terms, i.e., last term in equations (3.4) and (3.5), because we are only dis-
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cussing the effect of global redundancy and class-level redundancy here. Hence,

consider ∀i ∈ {1, 2 . . . F}, µi = 0 = µ in equations (3.4) and (3.5). Now we compare

these methods and make the following remarks:

Class-level redundancy framework is as good as global redundancy framework

for handling highly (globally) correlated features:

As, equation (3.5) contains more free variables, so we can take λ1 = λ2 = ..... =

λC = λ and ∀j ∈ {1, 2 . . . F}, β1,j = β2,j = ..... = βC,j = β j. So, (3.4) and (3.5) mainly

differ in the dependency measure as one uses global and another uses class-level

redundancy. But, next we will discuss, the effect of class-level is as good as global

for highly globally correlated features.

Let feature Xi and Xj are highly linearly correlated features that means |ρ(Xi, Xj)| ≈

1 i.e., ∃a 6= 0, Xi ≈ aXj + d. Now, due to this ∀c ∈ {1, 2 . . . C}, Xc
i ≈ aXc

j + d and

hence, |ρ(Xc
i , Xc

j )| ≈ 1. So,

φCL(Xi, Xj) =
1
C

C

∑
c=1

φ(Xc
i , Xc

j ) =
1
C

C

∑
c=1
|ρ(Xc

i , Xc
j )| ≈

1
C

C

∑
c=1

1 = 1

This means, if in the global redundancy control framework a highly correlated fea-

ture has tendency to get rejected, then this tendency will be preserved in class-level

redundancy control framework.

There exists datasets for which global redundancy control framework doesn’t

work but class-level does:

Consider a three dimensional data set with features {X1, X2, X3}, various views of

data are shown in figure 3.2 and figure 3.3, where different colors represent differ-

ent classes.

As, we can see only feature X1 and X3 are enough for 100% accurate classification,
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(a) X1-vs.-X2 (b) X2-vs.-X3 (c) X1-vs.-X3

Figure 3.2: Pair-wise view of the features in {X1, X2, X3}

Figure 3.3: Three-dimensional view of the synthetic data

see figure 3.2(b). Global redundancy between different pairs is as,

|ρ(X1, X2)| = 0.08590776

|ρ(X2, X3)| = 0.19083253

|ρ(X3, X1)| = 0.72072376

Suppose, if we use global redundancy control framework for this dataset. As fea-

ture X2’s correlation with X1 and X3 are low, so we have to choose large regulariz-

ing coefficient to eliminate X2 but then X3 may also get removed as its correlation

with X1 is high. We have tested it for various coefficient of penalty term and tried

to choose top 2 features but feature X2 always gets selected and feature X3 always

gets rejected. Where as, class-level redundancy control framework works very well

and chooses features (X1, X3) because here class-level redundancy for all pairs is

approximately equal, so it does not favor any feature. The class-level redundancies

is shown Table 3.1. Hence, only loss based penalty is effective and helps in rejecting
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feature X2. We have tested it and it is found to be true experimentally.

Table 3.1: Different class-level redundancies for synthetic data

c=0 (Red class) c=1 (Green class) c=2 (Blue class)
|ρ(Xc

1, Xc
2)| 0.99083612 0.98955383 0.98866423

|ρ(Xc
2, Xc

3)| 0.9515664 0.9470847 0.9584851
|ρ(Xc

3, Xc
1)| 0.96333222 0.95429516 0.96633191

In global redundancy framework, one of the highly correlated features can be

removed without affecting the performance of MLP but this is not true in class-

level redundancy framework:

We will show that if two features are highly globally related than we can remove

one of them without affecting output of MLP, whereas this is not true for class-

level redundancy. Suppose two features Xi and Xj are highly linearly correlated

i.e., |ρ(Xi, Xj)| = 1 or ∃a 6= 0, d, Xi = aXj + d. Consider any node k in the first hid-

den layer of the MLP. The output of this node is σ(xiwik + xjwjk + bk + e), where σ

is some activation function and e is remaining term of the net. Now, as xi = axj + d,

this output becomes σ(xj(awik + wjk) + d + bk + e). We can consider awik + wjk as

new weight w′jk and d + bk as new bias b′k to form σ(xjw′jk + b′k + e). These new

weights can be learned by the MLP. This essentially shows that if two features are

highly globally correlated than one of them is not useful in influencing the output

of the MLP for classification.

Figure 3.4: View of X1-vs.-X2

The above is not true for highly class-level related features. Consider the example

of a two dimensional dataset {X1, X2}, as shown in Figure 3.4, where the red and

green colors represent different classes. Linear class-level redundancy between X1



Section 3.5 16

and X2 is high, |ρ(Xred
1 , Xred

2 )| = 0.99 and |ρ(Xgreen
1 , Xgreen

2 )| = 0.99, but as we can

see in Figure 3.4, no feature alone is sufficient for the classification task.

3.5 Benefits of FSMLP-AL-CRC method

Their are various benefits of the method/model described using equation (3.5), we

will discuss some of them below:

• As, we have already discussed in the previous sections, that this new method

with newly proposed redundancy measure is as good as the popularly used

and studied global redundancy control. And even on some data-sets it works

better as demonstrated in Section 3.4 by a synthetic data-set.

• Minimizing equation (3.5), we get the feature selector matrix βC×F. We can

answer various questions with this matrix. Suppose we want to understand

for a particular class which features are important then we can look at the

row in βC×F that corresponds to this class and look for non-zero values of

βc f . This can be very important for some applications. For example, suppose

for a particular cancer class, we want to understand features relevant to this

particular class. Using FSMLP-AL-CRC framework we can get features that

are particularly relevant to this cancer class. Previously it was not possible as

for all classes we have same set of selected features, their is no difference at

the class level.

• We can select top k < F features from each class. In this case we can get repre-

sentative for each class. This increases the discrimination power as compared

to global redundancy control framework because previously in global mech-

anism if we choose top k features or if use some threshold to select features

then we might get lots of features that are important to one class and might

not get any feature that is important for other class.
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3.6 Method 3, Gated Feature Selection with MLP using Class-

level Redundancy Control (Gated-FSMLP-CRC)

We can use the clever idea of penalty with non-linear gate function as discussed by

authors in [2] and combine it to idea presented in method 2 to get a new optimiza-

tion function as,

Eλ,µ(βC×F) =
1
C

C

∑
i=1

1
ni

ni

∑
j=1
L(ti, (xij

1 × e−β2
i1 , xij

2 × e−β2
i2 , . . . , xij

F × e−β2
iF)T)

+
1
C

C

∑
i=1

µi

F

F

∑
j=1

e−β2
ij(1− e−β2

ij)

+
1
C

C

∑
i=1

λi

F(F− 1)

F

∑
j=1

e−β2
ij

F

∑
k=1
k 6=j

e−β2
ik φ(Xi

j, Xi
k) (3.6)

And we want to minimize it to get,

β∗
C×F = arg min

βC×F

Eλ,µ(βC×F)

First and last term in equation (3.6) are easy to explain as we have just replaced

unrestricted linear βij variable with restricted non-linear function e−β2
ij , which al-

ways lies between 0 and 1. This is called gate function as it behaves like a gate for

a feature, 1 indicate selection and 0 indicate rejection of that part of feature.

Figure 3.5: The curve of e−β2
ij(1− e−β2

ij)

Now, we try to understand the use of second term. Consider the plot of this term in

figure 3.5. So, this term will help to make either absolute value of βij high or low;

for high βij, e−β2
ij will be low (approx. 0) and for low βij it will be high (approx.

1). This represents selection and rejection in a better way. In this model rather than

looking at the value of βij we will look at e−β2
ij for feature selection. We will call the
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method given by equation (3.6) as Gated-FSMLP-CRC.

3.7 Learning rule

We will use gradient descent method for updating values of βs with each iteration

using the following learning rule,

3.7.1 For FSMLP-AL-GRC

Consider the error Eλ,µ in equation (3.4), then learning rule for β with learning rate

η is as,

∀l ∈ [F],

βl = βl − η
∂E
∂βl

(3.7)

where

∂E
∂βl

=
1
n

n

∑
i=1

xilL′(ti, (xi1 × β1, xi2 × β2, . . . , xiF × βF)
T) +

µβl

a2F
e−β2

i /2a2

+
2λβl

F(F− 1)

F

∑
j=1
j 6=i

β2
j φ(Xi, Xj)

Here, let Il represents lth input to MLP than,

L′(ti, (xi1 × β1, xi2 × β2, . . . , xiF × βF)
T) =

∂L
∂Il

∣∣∣∣
(ti ,(xi1×β1,xi2×β2,...,xiF×βF)T)

3.7.2 For FSMLP-AL-CRC

Consider the error Eλ,µ in equation (3.5), then learning rule to update βs with learn-

ing rate η is as,

∀l ∈ [C], m ∈ [F],

βlm = βlm − η
∂E

∂βlm
(3.8)
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where

∂E
∂βlm

=
1

nlC

nl

∑
j=1

xl j
mL′(tl , (xl j

1 × βl1, xl j
2 × βl2, . . . , xl j

F × βlF)
T) +

µl βlm

a2FC
e−

β2
lm

2a2

+
2λl βlm

F(F− 1)C

F

∑
k=1

k 6=m

β2
lkφCL(Xl

m, Xl
k)

Here, if Im represents mth input to MLP, then

L′(tl , (xl j
1 × βl1, xl j

2 × βl2, . . . , xl j
F × βlF)

T) =
∂L′
∂Im

∣∣∣∣
(tl ,(xl j

1×βl1,xl j
2×βl2,...,xl j

F×βlF)T)

3.7.3 For Gated-FSMLP-CRC

Similarly, consider the error Eλ,µ in equation (3.6), then learning rule to update βs

with learning rate η is as,

∀l ∈ [C], m ∈ [F],

βlm = βlm − η
∂E

∂βlm
(3.9)

where

∂E
∂βlm

=
−1
nlC

nl

∑
j=1

(
2xl jβlme−β2

lmL′(ti, (xij
1 × e−β2

i1 , xij
2 × e−β2

i2 , . . . , xij
F × e−β2

iF)T)
)

− 2µl βlm

FC
e−β2

lm +
4µl βlm

FC
e−2β2

lm

− 2λl βlme−β2
lm

F(F− 1)C

F

∑
k=1

k 6=m

e−β2
lk φCL(Xl

m, Xl
k)

Here, if Im represents mth input to MLP, then

L′(ti, (xij
1 × e−β2

i1 , xij
2 × e−β2

i2 , . . . , xij
F × e−β2

iF)T) =
∂L
∂Im

∣∣∣∣
(ti ,(xij

1×e−β2
i1 ,xij

2×e−β2
i2 ,...,xij

F×e−β2
iF )T)
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Results

For all our experiments, we use just one hidden layer with a fixed number of hid-

den nodes for each dataset. To make our results reliable, we use two level stratified

cross-validation mechanism, except for SRBCT dataset. We have used the follow-

ing scheme. In the outer level, first, we randomly partition the data into five folds

with equal number of data points with respect to each class (to the extent possible),

X = X1 ∪ X2 . . . X5, Xi ∩ Xj = ∅, ∀i 6= j. One of the folds, say Xj , is kept out for

testing. While, the remaining four folds’ data, Y = ∪i 6=jXi, are now used for selec-

tion of features as well as for designing a network to test the effectiveness of the

selected features on the data left out in the outer loop, i.e., on Xj. This is repeated

for all j = 1, 2 . . . 5.

In the inner loop, we use only Y and perform two tasks. First, we use it to train

the MLP. We divide Y into five folds as Y = Y1 ∪ Y2 . . . Y5. We use one fold as

validation data say Yj and rest for training the MLP. We keep the weights until the

epoch where we get maximum accuracy on Yj. We repeat this ∀j ∈ {1, 2, 3, 4, 5}

and keep the MLP which has the maximum validation accuracy among these five

folds. We perform feature selection with data Y. After the features are selected, we

project Y on the selected feature space and let us call the projected version of Y as

Y′. To assess how good these selected features are, we train MLP using the selected

features, i.e., using the data set Y′, as we trained before feature selection. Now, we

test this MLP on X′j, where X′j is the projected version of Xj that was left out in the

20
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outer loop. This process is repeated ∀j ∈ {1, 2, 3, 4, 5} in the outer loop to get the

accuracy using the selected features. Finally, the entire process can be repeated few

times, we repeated twice, every time using a different random partition in the outer

loop. We report the average accuracy. For all the methods, we have used stochastic

gradient descent rather than updating βs in one iteration with complete data.

4.1 Performance on different datasets

We have generated results for following datasets: Iris (4 features, 3 classes, 150

samples), WDBC (30 features, 2 classes, 569 samples), SRBCT (2308 features, 4

classes, 83 samples), Glass (9 features, 6 classes, 214 samples) and Sonar(60 fea-

tures, 2 classes, 208 samples). During generation of all results we have fixed the

number of hidden nodes in MLP, which is written in brackets with name of the

data set.

4.1.1 For FSMLP-AL-GRC

This method uses the equation (3.4), we fixed a = 0.35. First, each component in

β is assigned 1 initially, we select top features by looking at highest values in β.

The penaly factors, features selected(S), average train(Tr) and test accuracies(Te)

according to the experimentation procedure are summarized in Table 4.1.

If we look at the results in Table 4.1, for example for Glass data with coefficient µ =

3 and λ = 20, we get approximately the same test accuracy with nearly all features

(eight features) and with four features (approx. 50%). And for SRBCT data only 10

features (out of 2308 features) are enough to get more than 95% accuracy. For the

WDBC data when we use L0-norm, in four of the six cases the test performance is

better. Similar is the case for the SRBCT data set.

4.1.2 For FSMLP-AL-CRC

This method uses the equation (3.5). We have fixed a = 0.35, keep ∀i ∈ {1, 2 . . . C}, λi =

λ and ∀i ∈ {1, 2 . . . C}, µi = µ. First, each value in βC×F is assigned 1 initially, after
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Table 4.1: Results for method FSMLP-AL-GRC

DataSet µ λ S Tr Te

Iris Data(3)
0 7

1 91.4 89.7
2 96.5 92.8

1 5
1 92.8 89.5
2 95.4 94.6

WDBC(10)

0 15

1 94.5 88.4
2 92.5 90.4
4 96.5 92.8
6 94.7 91.3
8 95.3 94.6
10 98.2 96.4

1 10

1 92.5 87.7
2 94.6 89.5
4 96.5 94.4
6 96.8 92.3
8 94.7 96.9
10 97.1 98.3

Sonar(15)

0 50

1 66.2 48.6
2 74.5 71.4
4 79.2 69.4
6 80.4 74.2
8 88.7 90.6
10 84.3 85.4

4 40

1 68.3 52.4
2 77.3 68.4
4 72.4 75.3
6 85.4 77.9
8 90.1 88.6
10 92.2 89.3

SRBCT(10)

0 250

1 44.5 33.33
2 67.2 66.5
4 90.3 88.8
6 95.4 85.3
8 96.9 85.9
10 99.2 95.8

10 200

1 32.6 39.4
2 54.8 60.3
4 92.5 90.2
6 96.7 85.8
8 98.2 95.3
10 98.4 98.5

Glass(15)

0 30

1 45.2 46.7
2 66.5 60.1
4 80.2 68.8
6 84.9 72.6
8 84.2 70.2

3 20

1 55.3 42.8
2 62.1 61.3
4 75.8 68.1
6 83.7 70.1
8 81.2 68.3
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feature selection procedure, we select a few top features by looking at highest val-

ues in each row corresponding to a class. The union of these features for all classes

will be set of selected features for the dataset. The penaly factors, how many top

features we select per class, the average number of total feature selected(S), average

train(Tr) and test accuracies(Te) for different data sets are summarized in Table 4.2.

Results in Table 4.2 suggest that for SRBCT data we can get 100% training accuracy

and more than 95% testing accuracy using only 10 features. Table 4.2 revels that the

total number of features selected is 4 (number of classes) times the number of top

features we select from each class. This means that there is no overlap between the

sets of features selected for different classes. This suggests that different classes are

characterized by different sets of features. This is natural, but global feature selec-

tor methods cannot reveal such information. We can see this clearly by plotting the

data of selected features, we will discuss this nature of selected features in the next

section.

4.1.3 For Gated-FSMLP-CRC

This method uses the equation (3.6), we keep ∀i ∈ {1, 2 . . . C}, λi = λ and ∀i ∈

{1, 2 . . . C}, µi = µ. First, each value in βC×F is assigned 0.1 initially, as it makes

Gate variable open i.e., e−βij = 0.99 ≈ 1. We select features with respect to each

class by looking at values in each row corresponding to a class, such that e−βij > 0.9.

Union of these features for all classes will be set of selected features for the dataset.

The average of total number of feature selected(S), the average train(Tr) and test

accuracies(Te) for different values of coefficient of penalty are shown in Table 4.3.

For WDBC data set results suggest that approximately 9 features are enough to get

more than 95% testing accuracy. For SRBCT data only 7 features (out of 2308 fea-

tures) are enough to get 95% testing accuracy whereas with 2104 features we get

99% test accuracy, ie., only 4% reduction in test accuracy with more than 99% re-

duction in total number of selected features.
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Table 4.2: Results for method FSMLP-AL-CRC

DataSet µ λ TOP S Tr Te

Iris Data(3)
0 15

1 2.3 95.3 92.5
2 3.2 96.3 95.7

1 10
1 2.1 96.3 94.3
2 3.8 98.2 93.7

WDBC(10)

0 30

1 1.7 90.4 86.3
2 3.4 95.7 90.3
4 6.9 96.5 92.8
6 10.2 96.6 93.9
8 11.8 97.3 94.2
10 14.3 98.9 97.3

2 20

1 1.8 92.3 88.6
2 3.2 93.5 91.5
4 6.1 96.5 92.1
6 9.7 97.5 93.8
8 11.9 98.7 95.3
10 13.9 99.1 93.4

Sonar(15)

0 100

1 2 70.3 62.4
2 4 78.3 66.8
4 7.4 92.2 81.3
6 11.4 80.2 71.6
8 15.6 84.3 84.6
10 17.3 87.2 93.2

4 50

1 2.3 71.4 60.3
2 3.6 76.5 70.2
4 7.1 79.2 76.4
6 10.9 84.3 78.3
8 14.7 89.2 84.6
10 18.3 90.1 80.4

SRBCT(10)

0 5000

1 4 95.5 90.4
2 8 98.5 93.5
4 16 99.5 90.2
6 24 100 93.7
8 31.7 99.8 95.6
10 40 100 97.4

1 2000

1 4 94.5 93.8
2 8 95.5 94.5
4 16 98.3 96.3
6 24 100 97.2
8 32 100 98.1
10 40 100 97.6

Glass(15)

0 20

1 4.9 64.4 53.2
2 7.6 70.3 66.2
4 8.2 76.8 73.8
6 8.4 84.2 74.5
8 9 78.7 69.3

5 10

1 4.8 65.4 58.2
2 7.8 72.4 62.4
4 8.1 77.1 68.8
6 8.4 82.3 74.5
8 8.8 80.2 70.3
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Table 4.3: Results for method Gated-FSMLP-CRC

DataSet µ λ S Tr Te

Iris Data(5)

1 2 3.8 98.6 98.4
1 5 3.1 97.4 96.3
1 7 2.4 94.9 92.5
1 10 1.1 95.4 90.5

WDBC(10)

1 10 9.1 96.5 95.3
1 20 7.2 94.9 92.6
2 30 5.3 94.6 89.5
5 50 2.9 92.3 87.1

Sonar(15)

2 20 4.3 82.1 76.5
3 25 2.9 72.6 66.7
2 30 2.2 70.2 68.5
2 50 0.8 54.6 44.5

SRBCT(10)

5 50 2106.4 99.6 99.5
5 500 985.6 98.4 96.1
5 5000 110.6 100 97.5
3 100000 6.7 99.3 95.4

Glass(15)

1 5 8.6 84.3 72.1
1 7 7.1 82.5 73.2
2 7 6.4 76.8 70.5
1 10 3.2 70.2 66.7

We have also generated results on one data set (Sonar) with a modification in the

learning algorithm. Previously, we keep weights of MLP fixed while we learn val-

ues of feature selecting gates but for result in Table 4.4, we also update weights of

MLP together with feature selector variables in each iteration using stochastic gra-

dient descent. These results generated using modified learning process shows that

for Sonar data, we get only 4% reduction in testing accuracy by 80% reduction in

total number of features selected.

Table 4.4: Results for Gated-FSMLP-CRC without keeping weights of MLP fixed

DataSet µ λ S Tr Te

Sonar(15)

5 500 0 - -
5 100 4.3 71.3 68.2
5 50 11.4 79.4 80.7
5 10 50.8 88.2 84.2
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4.2 Nature of selected features

We have manually plotted some selected features to understand the nature of the

selection. For example consider the Figure 4.1. Feature set {173, 334, 544, 2198} is

selected for the SRBCT data by applying the method FSMLP-AL-CRC and select-

ing top one feature from each class according to feature selector variables. So we

got good representative features for each class. The discriminating power of these

features is very high as each represent or help discriminating one class.

(a) Feature for Class 1 (b) Feature for Class 2 (c) Feature for Class 3 (d) Feature for Class 4

Figure 4.1: Plot of representative features for different classes as selected by
class-level redundancy framework, i.e., using method FSMLP-AL-CRC on SRBCT
dataset

Now, consider set of top four features selected using method FSMLP-AL-GRC, i.e.,

{245, 1713, 1861, 1910} for SRBCT dataset as shown in Figure 4.2. As we can see it

does not select features that represent all four classes. Features 245, 1910 have good

discriminating power for first(red) class, fourth(yellow) class respectively. Feature

1861 has moderate discriminating power for third(blue) class but none of four fea-

tures has good discriminating power for third(green) class. It may happen that the

interaction of these features may lead to good accuracy and can discriminate all

classes. But as compared to class-level redundancy framework, global redundancy

framework may not give good discriminating features for each class with less num-

ber of selected features.

Similarly, consider WDBC dataset. It contains only two classes, so each feature that

is good for discriminating one automatically becomes good for others. So, there

must exists cases where only one feature is selected for both classes. During exper-

imentation we found such a feature (feature number 22), see plot in Figure 4.3.
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(a) Feature 245 (b) Feature 1713 (c) Feature 1861 (d) Feature 1910

Figure 4.2: Plot of top four features selected using global redundancy framework,
i.e., using method FSMLP-AL-GRC on SRBCT dataset

Figure 4.3: Plot of representative feature for both classes of WDBC dataset



Chapter 5

Conclusion and Future Scope

In this thesis, we presented three different feature selection methods that comes in

the framework of Maximum Relevance and Minimum Redundancy method. We

first described various methods available and how we got the motivation for this

work. We than explained the first method that uses approximate L0-norm based

penalty in combination of global redundancy based penalty. Next, we define a new

way of dealing with redundancy and incorporate it to give method two that also

considers the class-level redundancy. We gave an extensive comparison of this new

redundancy control framework, i.e., class-level, with the global redundancy frame-

work. We have explained different benefits of using class-level redundancy. After

this we gave a third method which is a variant of method two. This method helps

in differentiating the selected and rejected feature set properly by using gate func-

tions, for which the required threshold is easy to find. We discussed the updating

rules for all three methods. Then we presented results generated by two level cross

validation mechanism on five datsets.

In future, we plan to modify the algorithm in such a way that rather than keep-

ing fixed value of a in approximation of L0-norm, its value can be changed with

iterations or according to the values of βs. We can try to give a general method

for assigning values to different hyper parameters like number of hidden nodes in

MLP before or after feature selection, various coefficients of penalties etc. We can

try to study the convergence of proposed methods.

28
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