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Abstract

Deep neural networks have been investigated in learning latent representations of

medical images, yet most of the studies limit their approach using supervised convo-

lutional neural network (CNN), which usually rely heavily on a large scale annotated

dataset for training. To learn image representations with less supervision involved,

we propose a deep clustering algorithm for learning latent representations of medi-

cal images. In this work, we present Deep clustering method that jointly learns the

parameters of a neural network and the cluster assignments of the resulting features.

We iteratively groups the features with a standard clustering algorithm, k-means

and uses the subsequent assignments as a supervision to update the weights of the

network. We evaluated the learned image representations on a task of classification

using a publicly available diabetic retinopathy fundus image dataset. The experimen-

tal results show that our proposed method is close to the state-of-the-art supervised

ensemble CNN.
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Chapter 1

Diabetic Retinopathy

1.1 Introduction

Diabetic retinopathy, a chronic, progressive eye diseases, has turned out to be one

of the most common cause of vision impairment and blindness especially for working

ages in the world today [10]. It is estimated to affect over 93 million people. The

US Center for Disease Control and Prevention estimated that 29.1 million people in

the US have diabetes and the World Health Organization estimates that 347 million

people have the disease worldwide∗. It usually affects people who have had diabetes

for significant number of years [17]. If it is left untreated it could increase the risk

of blindness. Diabetic retinopathy can cause blood vessels in the retina to leak fluid

or hemorrhage, distorting vision. In its most advanced stage, new abnormal blood

vessels proliferate on the surface of the retina, which can lead to scarring and cell loss

in the retina.

The progress of DR can be categorized into four stages:

• Mild nonproliferation retinopathy: Small areas of balloon-like swelling in

the retina’s tiny blood vessels, called micro aneurysms, occur at this earliest

stage of the disease.

• Moderate nonproliferation retinopathy: As the disease progresses, blood

vessels that nourish the retina may swell and distort. They may also lose their

ability to transport blood.

∗https://www.kaggle.com/c/diabetic-retinopathy-detection/overview/description
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• Severe nonproliferation retinopathy: Many more blood vessels are blocked,

depriving blood supply to areas of the retina. These areas secrete growth factors

that signal the retina to grow new blood vessels.

• Proliferative diabetic retinopathy: At this advanced stage, growth factors

secreted by the retina trigger the proliferation of the new blood vessels, which

grow along the inside surface of the retina and into the vitreous gel, the fluid

that fills the eye. The new blood vessels are fragile, which makes them more

likely to leak and bleed. Accompanying scar tissue can contract and cause

retinal detachment-the pulling away of the retina from underlying tissue, like

wallpaper peeling away from a wall. Retinal detachment can lead to permanent

vision loss.

Figure 1.1: Fundus image of a healthy eye (left) and proliferate retinopathy (right).
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Figure 1.2: Types of Diabetic retinopathy.

1.2 Problem Statement

At present, retinopathy detection system is accomplished by involving a well-trained

physician manually detecting vascular abnormalities and structural changes of retina

in the retinal fundus images, which are then taken by dilating the retina using vasodi-

lating agent. Due to the manual nature of DR screening methods, however, highly

inconsistent results are found from different readers. Therefore there is a need for a

comprehensive and automated method of DR screening. Also, accurate detection of

DR at the early stage can greatly improve the intervention by clinician, which reduces

the risk of vision loss. We propose to reduce the workload on medical specialists by

automatically classifying fundus images using deep learning.
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1.3 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2: This chapter discussed the related work done for Diabetic retinopa-

thy grading.

• Chapter 3: This chapter provides an outline of dataset statistics, preprocessing

and augmentation techniques.

• Chapter 4: This chapter compares the performance of various CNN architec-

ture with spatial pyramid pooling layer.

• Chapter 5: This chapter presents our Deep clustering based approach for

Diabetic retinopathy grading.

• Chapter 6: This chapter concludes our analysis and outlines potential short-

comings and future work.



Chapter 2

Related Work

The two-step (i.e., feature extraction and prediction) automated DR detection ap-

proaches dominated the field of DR detection for many years. Earlier work using

machine learning to diagnose diabetic retinopathy has used classifiers on top of man-

ually designed feature detectors to measure the blood vessels and the optic disc, and

to count the presence of abnormalities such as red lesions, microaneurysms, hard ex-

udates, hemorrhages and cotton wool spots. Roychowdhury et al. [18] developed a

3-stage hierarchical architecture using AdaBoost to select the 30 top features out of

78. The 1st stage enhances the image and detects the optic disc, vasculature and red

lesions. Stage 2 classifies the lesions as either cotton wool spots, hard exudates, mi-

croaneurysms or hemorrhages. Stage 3 counts the features and assigns one of 5 class

labels. They achieved 100% sensitivity, 53.16% specificity, and 0.904 AUC.However,

these types of approaches have the disadvantage of utilizing limited number of fea-

tures.

In a similar approach, Acharya et al. 2009 [2] used 331 fundus images for analysis.

Five groups were identified: normal retina, mild non-proliferative diabetic retinopa-

thy, moderate non-proliferative diabetic retinopathy, severe non-proliferative diabetic

retinopathy, and proliferative diabetic retinopathy. Four salient features blood vessels,

microaneurysms, exudates, and haemorrhages were extracted from the raw images us-

ing image-processing techniques and fed to the SVM for classification. They achieve

an accuracy of 86%, sensitivity of 82% and specificity of 86%. This is in comparison

to the group’s earlier work [34] that focused on using the area and perimeter of the

RGB components of the blood vessels and a neural network to achieve an accuracy

of 84%, sensitivity of 92% and specificity of 100%. They also investigated a simpler

8
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approach [1] that did not use retinopathy-specific features. Using higher order spectra

(HOS) features they achieved an accuracy of 82%, sensitivity of 83% and specificity of

89%. Nayak et al. [25] performed 3-class classification Image preprocessing, morpho-

logical processing techniques and texture analysis methods are applied on the fundus

images to detect the features such as area of hard exudates, area of the blood vessels

and the contrast to achieve an accuracy of 94%, sensitivity of 90% and specificity of

100%.

This type of approaches are not as effective as the recent deep learning approaches,

such as [17, 2]. All these deep learning approaches adopted the standard architecture

like GoogLeNet, ResNet, Vgg to build their CNN, based on the experimental results

these deep learning approaches significantly outperform the traditional two-step ap-

proaches. Pratt et al [28] use a CNN with data augmentation to classify 5 classes

of retinopathy on the kaggle dataset of 80000 images. They achieved a sensitivity

score of 95% on the dataset with accuracy of 75% on 5000 validation images. Colas

et al. [7] described the work of start-up company DreamUp Vision in classifying the

same dataset. They achieved an area under the receiver operating characteristics

curve(AUROC) of 0.946 with 96.2% sensitivity. In [3] CNN based method was em-

ployed to detect microaneurysms a DR stage grading.

Ensemble of CNN was employed to simultaneously detect DR and macular edema

by Kori et al.[19]. They employed a variant of ResNet [12] and densely connected

networks [14]. To make the model prediction more interpretable, a visual map was

generated by Torre et al. [31] using CNN model, which can be used to detect lesion

in the tested retinal fundus images. A similar approach was used in [33] along with

generation of regression activation map (RAM).



Chapter 3

DR Dataset Description &

Pre-processing

3.1 Dataset Statistics

The dataset that we have used is downloaded from the kaggle website.∗. The training

& test dataset contains 35126 & 53576 high resolution images respectively under

a variety of imaging conditions. These retina images were obtained from a group

of subjects, and for each subject two images were obtained for left and right eyes,

respectively. The labels were provided by clinicians who rated the presence of diabetic

retinopathy in each image by a scale of ”0, 1, 2, 3, 4”, which represent ”no DR”,

”mild”, ”moderate”, ”severe”, ”proliferative DR” respectively. As mentioned in the

description of the dataset, the images in the dataset comes from different models and

types of camera, which can affect the visual appearance of left vs right.The samples

images are shown in Fig 3.1 Also, the dataset doesn’t have the equal distribution

among the 5 scales. As one can expect, normal data with label ”0” is the biggest

class in the whole dataset, while ”poliferative DR” data is smallest class. Fig 3.2

shows counts of images for different scales in the training dataset.

∗https://www.kaggle.com/c/diabetic-retinopathy-detection/
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Figure 3.1: Sample images of color retina images dataset.

Figure 3.2: Count of images for different scales in the training dataset.

3.2 Data Pre-processing and Augmentation

We normalized our data set by its pixel statistics mean channel = [0.4568, 0.3276,

0.2462], standard-deviation channel = [0.2784, 0.2013, 0.1687]. We have also re-

scaled the images to 512 x 512 dimensions. The performance of deep neural network

is strongly correlated with the size of available training data. Although Kaggle Eye-

PACS dataset is largest for retinopathy detection consisting of around 88,702 images,

We are to use a very small fraction of it for training containing images for diseases

severity grading task with imbalanced classes, requiring us to heavily augment our

training data to obtain a model which is stable and not over fitted.

• Rotation: A Random rotation between -max rotate and max rotate degrees is

applied with probability p.

• Flip: The image is flipped vertically or horizontal flip is applied.
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• ZoomCrop: Randomly zoom and crop.

• RandomResizeCrop: Randomly resize and crop the image. This transform

is an implementation of the main approach used for nearly all wining imagenet

entries since 2013, based on Andrew Howard’s Some Improvements on Deep

Convolutional Neural Network Based Image Classification.

https://arxiv.org/abs/1312.5402
https://arxiv.org/abs/1312.5402
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Figure 3.3: Sample images after rotation operation.

Figure 3.4: Sample images after zoomcrop operation.

Figure 3.5: Sample images after randomresizecrop operation.

Figure 3.6: Sample images after flip operation.



Chapter 4

ResNet with Class Activation

Maps for DR Grading

4.1 Motivation

We generally perceive that ”the deeper the better” when it comes to convolutional

neural network. This makes sense, since the models should be more capable (their

flexibility to adapt to any space increases) because they have a bigger parameter space

to explore. However, it has been noticed that after some depth, the performance

degrades. This was one of the bottlenecks of earlier networks. ResNet gives us the

residual learning framework to ease the training of networks that are substantially

deeper than those used previously. It has won the 1st place on the ILSVRC 2015

for classification & localization task [13]. This motivates us to use ResNet as a

starting point for Diabetic retinopathy grading. The depth of representation is very

important for many visual recognition tasks and we have used this deep representation

to generate class activation maps to indicate the discriminating image regions used

by the CNN to identify that category [36].

4.2 Preliminaries

In this section we will discuss about the ResNet34 architecture, the idea of Class

activation maps and spatial pyramid pooling (SPP) layer. We will see how SPP layer

helps us training the network with progressive resizing of images, which acts as a

14
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regularizer and reduces the overfit in the model.

4.2.1 Architecture

Let us consider H(x) as the underlying mapping to be fit by a few stacked layers(

not necessarily the entire net), with x denoting the inputs to the first of these layers.

If one hypothesizes that multiple nonlinear layers can asymptotically approximate

complicated functions∗, then it is equivalent to hypothesize that they can asymptot-

ically approximate the residual functions, i.e., H(x) - x (assuming input and output

are of the same dimensions). So rather than expect stacked layers to approximate

H(x), we explicitly let these layers approximate a residual function F(x):= H(x) -

x. The original function thus becomes F(x) + x. Although both forms should be

able to asymptotically approximate the desired functions(as hypothesized), the ease

of learning might be different.

Figure 4.1: Residual learning: a building block [13]

Based on the plain network 4.2 we insert shortcut connections 4.2 which turn the

network into its counterpart residual version. The identity shortcuts can be directly

used when the input and output are of the same dimensions.

In Fig 4.2 we can see that the ResNet consists on one convolution and pooling step(

on orange) followed by 4 layers of similar behavior. Each of the layers follow the same

pattern. They perform 3 x 3 convolution with fixed feature map dimensions (F) [64,

128, 256, 512] respectively, by passing the input every 2 convolutions. Furthermore,

the width (W) and Height (H) dimensions remain constant during the entire layer.

∗still a topic of debate[24]
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Figure 4.2: Bottom: the VGG-19 model [29] (19.6 billion FLOPs) as a reference.
Middle: a plain network with 34 parameter layers (3.6 billion FLOPs). Top: a
residual network with 34 parameter layers (3.6 billion FLOPs) [13]

The dotted line is there, precisely because there has been a reduction in the dimension

of the input volume. This reduction between layers is achieved by an increase on the

stride from 1 to 2, at the first convolution of each layer. Instead of by a pooling

operation, which we are used to see as down samplers.

4.2.2 Spatial Pyramid Pooling

Existing deep convolutional neural networks(CNNs) require a fixed-size (e.g., 224 x

224) input image. This requirement is ”artificial” and may reduce the recognition

accuracy for the images or sub-images of an arbitrary size/scale. Spatial pyramid

pooling strategy will eliminate the above requirement. The new network architecture

can generate a fixed-length representation regardless of image size/scale. [12]

Figure 4.3: Top: a conventional CNN. Bottom: spatial pyramid pooling network
structure [12].

A CNN mainly consists of two parts: Convolutional layers, and fully-connected layers

that follow. The convolutional layers operate in a sliding-window manner and output

feature maps which represent the spatial arrangement of the activations. Convolu-

tional layers do not require a fixed image size and can generate feature maps of any
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sizes. On the other hand, the fully-connected layers need to have a fixed-size/length

input by their definition. Hence, the fixed-size constraint comes only from the fully-

connected layers.

The convolutional layers accept arbitrary input sizes, but they produce outputs of

variable sizes. The classifier or fully-connected layers requires fixed-length vectors.

To adopt the deep network for images of arbitrary sizes, we replace the last pooling

layer with spatial pyramid pooling layer.

Figure 4.4: A network structure with a spatial pyramid pooling layer. Here
256 is a filter number of the conv5 layer, and conv5 is the last convolutional layer [12]

Consider the feature maps after conv5 that have a size of a x a. With a pyramid level

of n x n bins, we implement this pooling level as sliding window pooling, where the

window size win =d a/n e and stride str = b a/n c with d . e and b . c denoting

ceiling and floor operations. With an l -level pyramid, we implemented l such layers.

The next fully-connected layer (fc6) will concatenate the l outputs.

In our implementation we have used adaptive average pooing and adaptive max pool-

ing with output size 1.
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Figure 4.5: AdaptiveConcatPool2d.

4.2.3 Class Activation Maps

Global average pooling layer proposed in [4], shed light on how it explicitly enables

the convolutional neural network (CNN) to have remarkable localization ability de-

spite being trained on image-level labels. While this technique proposed as a means

for regularizing training,we find that it is actually builds a generic localizable deep

representation that exposes the implicit attention of CNNs on an image. CNNs have

the ability to identify exactly which regions of an image are being used for discrimi-

nation.

Figure 4.6: Class Activation Mapping: the predicted class score is mapped back to
the previous convolutional layer to generate the class activation maps (CAMs). The
CAM highlights the class-specific discriminative regions [36]

.

As shown in Fig. 4.6, global average pooling outputs the spatial average of the feature

map of each unit at the last convolutional layers. A weighted sum of these values is

used to generate the final output. Similary, we compute a weighted sum of the feature

maps of the last convolutional layers to obtain our class activation maps. For a given

image, let fk(x, y) represent the activation of unit k in the last convolutional layer

at spatial location (x, y). Then, for unit k, the result of performing global average

pooling, F k is
∑

x,y fk(x, y). Thus, for a given class c, the input to the softmax, Sc
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is
∑

k w
c
kFk where wck is the weight corresponding to class c for unit k. Finally the

output of the softmax for clss c, Pc is given by softmax(Sc). Here we ignore the bias

term: we explicitly set the input bias of the softmax to 0 as it has little to no impact

on the classification performance. By plugging Fk =
∑

x,y fk(x, y) into the class score,

Sc, we obtain

Sc =
∑
k

wck
∑
x,y

fk(x, y) =
∑
x,y

∑
k

wckfk(x, y)

.

We define Mc as the class activation map for class c, where each spatial element is

given by

Mc(x, y) =
∑
k

wckfk(x, y)

4.3 Implementation Details

We have added the Adaptive concatenate 2D pooling layer just before the fully con-

nected layer in our architecture which will generate a fixed sized representation of the

input image irrespective of its size. We first train the network loaded with pretrained

weights of imagenet dataset with 224 x 224 resized images. Now we will do transfer

Learning using the pretrained weights of this network and further fine tune the net-

work with 448 x 448 image size. As far as CNN is concerned, we are presenting it with

a fresh dataset. Meaning that, even if we were overfitting while training with 224 x

224 size images, we will regularize our model with bigger size images. We will repeat

the process with 896 x 896 images, though we didn’t get much improved performance

with this size. We trained our network for 100 epochs on Nvidia Tesla P100 for 3

days.

4.4 Results

We have compared the results from various CNN architectures with spatial pyramid

pooling layer in Table 4.1. We have found that ResNet34 with SPP performed better

on test dataset. We have also generated class activation maps (CAM) with ResNet34

to visualize those regions of image which are being used for discrimination. Through

class activation maps Fig 4.9 we have understood that network is good at detecting
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cotton wool spots, exudates and hemorrhages but unable to detect microaneurysm

most of the times. Most of the predictions for class 1, 2 are confused with its neigh-

bourhood class as shown in Fig 4.8. As we can infer from the loss plot Fig 4.7 training

network with progressive resizing technique causes spikes in the curve which repre-

sents change in the image size. We have found that training the network with image

size more than 512 doesn’t help much in converging the loss function.

Figure 4.7: Loss Plot:Training and validation loss plot of ResNet34+SPP over 100
epochs.

Model Quadratic Weighted Kappa

VGG16 + SPP 0.7280
ResNet34 0.7664

Densenet121 + SPP 0.7714
ResNet34 + SPP 0.8022

Table 4.1: Performance of various models with increasing order of kappa score.
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Figure 4.8: Confusion Matrix: Actual vs predicted class labels for validation dataset.

Figure 4.9: Class Activation Maps: Examples of highlighted image regions for most
correctly predicted class.



Chapter 5

Deep Clustering For Screening

Diabetic Retinopathy

5.1 Introduction to Deep Clustering

Clustering is a class of unsupervised learning methods that has been extensively ap-

plied and studied in computer vision. Little work has been done to adapt it to the

end-to-end training of visual features on the large scale datasets. In this work, we

propose clustering based end-to-end training of Deep neural network without super-

vision. This method learns simultaneously the parameters of the neural network and

the cluster assignment of the resulting features. We showed that we can obtain gen-

eral purpose discriminating features with clustering framework. Our approach does

the weights updating of the convolutional neural network by predicting the cluster

assignments. We used k-means, but other clustering approaches can also be used [6].

Unlike supervised methods, clustering has the advantage of requiring little domain

knowledge and no supervision.

Unsupervised learning has been widely studied in the Machine Learning [11]. Al-

gorithms for clustering, dimentionality reduction or density estimation are regularly

used in the computer vision applications [32]. For example, the ”bag of features”

model uses clustering on handcrafted local descriptors to produce good image-level

features [8]. A key reason for their success is that they can be applied on any specific

domain or dataset, like Medical or satellite images, where annotations are not always

available in quantity. Our approach, summarized in Fig 5.1, consists in alternating

22
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between clustering of the image descriptor and updating the weights of the convolu-

tion network by predicting the cluster assignments. We focus our study on k -means,

but other clustering approaches can be used, like Power iteration Clustering (PIC).

Unlike standard supervised methods, clustering has the advantage of requiring little

domain knowledge and no specific signal from the inputs [35].

Figure 5.1: Illustration of the proposed method: We iteratively cluster deep fea-
tures and use the cluster assignment as pseduo-labels to learn the parameters of the
convnet [5].

5.2 Method

5.2.1 Unsupervised learning by clustering

Let us denote Cθ the convolution mapping, where θ is the set of convolution param-

eters. By applying this mapping to an image we will get image features as vector.

Given a training set of images, we want to find a parameter θ∗ such that the mapping

C∗θ represents good general-purpose features. These parameters are generally learned

with supervised data where each image has a corresponding label vector. On top

of these features Cθ(xn) a parameterized classifier Pγ predicts the true labels. The

parameters γ of the classifier and the parameter θ of the convolution mapping are

then jointly learned by optimizing the following expression:
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min
θ,γ

1

N

N∑
n=1

l(Pγ(Cθ(xn)), yn)

Where l is the loss function. This loss function is minimized using mini-batch stochas-

tic gradient descent [21] and back propagation to compute the gradient [20].

We will cluster the output of the convolution block and use the cluster assignments

as ”pseudo-labels” to optimize equation 5.2.1. This approach iteratively learns the

features and group them. Cluster assignment yn is jointly learned by d x k centroid

matrix CM for each image n by solving the following optimization problem:

min
CM∈Rd×k

1

N

N∑
n=1

min
yn∈{0,1}k

||Cθ(xn)− CMyn||2

such that yTn 1k = 1

Solving above problem gives a set of optimal assignments y∗ which we will use as a

pseudo-labels.

5.2.2 Algorithm

Algorithm 1 Deep Clustering

Input: Dataset X = {xi}Ni=1

Output: Class label y∗i of xi ∈ X
1: Randomly initialize θ, γ
2: for epoch = 1, . . . , K do
3: for batch = 1, . . . , Number of Images do
4: B ← random samples {xi}bi=1 of b images
5: {fi}bi=1 ← Cθ(B)
6: end for

7: {y∗i }Ni=1 ← min
CM∈Rd×K

1

N

N∑
n=1

min
yn∈{0,1}K

‖fn − CMyn‖2

8: X ′ ← {xi, y∗i }Ni=1

9: for batch = 1, . . . , Number of images do

10: min
θ,γ

1

b

b∑
n=1

l(Pγ(Cθ(xn)), y∗n)

11: end for
12: end for
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5.2.3 Implementation details

We have used standard VGG16 with batch normalization [15] architecture. It con-

sists of five convolutional blocks with 64, 128, 256, 512, 512 filters and three fully

connected layers. Unsupervised methods often do not work directly on color and

different strategies have been considered as alternative [26]. We apply a fixed linear

transformation based on Sobel filters to remove color and increase local contrast [27].

We cluster the resized images features and perform data augmentation 3.2 when

training the network. This enforce invariance to data augmentation which is useful

for feature learning [9]. The network is trained with dropout [30], a constant step size,

an l2 penalization of the weights θ and a momentum of 0.9. Each mini batch contains

32 images. For the clustering, features are PCA-reduced to 256 dimensions, whitened

and l2 - normalized. We use the k -means implementation of Johnson et al [16]. We

train the deep cluster model for 150 epochs, which takes 6 days on Nvidia Tesla P100

for VGG16 with batch normalization. For classification task it takes around 2 days

on same GPU for 90 epochs.

5.3 Results

The quadratic weighted kappa, the state-of-the-art performance matrix for multi class

classification and suggested evaluation matrix for DR∗. We have compared the perfor-

mance of various CNN architectures and found that our deep clustering based model

performs better Table 5.1. We achieved 0.8105 quadratic weighted kappa on test

dataset of kaggle. If we compare the confusion matrix of our previous best model we

find that our deep clustering model has performed better in detecting early stages of

DR which is a major aspect of this challenge.

∗https://www.kaggle.com/c/diabetic-retinopathy-detection/overview/evaluation
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Figure 5.2: Loss Plot: Training and validation loss plot along with kappa score.

Figure 5.3: Confusion Matrix: Actual vs predicted class labels for validation dataset.
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Model Quadratic Weighted Kappa

VGG16 + SPP 0.7280
ResNet34 0.7664

Densenet121 + SPP 0.7714
ResNet34 + SPP 0.8022

VGG16 with deep clustering 0.8105

Table 5.1: Performance of various models with increasing order of kappa score.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

We propose a scalable clustering approach for the unsupervised learning of convnet.

It iterates between clustering with k-means the features produced by the convnet

and updating its weights by predicting the cluster assignments as pseudo-labels in

a discriminative loss. We trained our network on largest publicly available Diabetic

retinopathy data provided by EyePACS. It achieves results close to state-of-the-art.

Our approach makes little assumption about the inputs, and does not require much

domain specific knowledge, making it a good candidate to learn deep representations

specific to domains where annotations are scarce.

One of the shortcoming of this model is its training time, it almost took 8 days to

perform classification task. Which makes hyper parameter tuning very difficult.

6.2 Future Work

• We can perform morphological image pre-processing like CLAHE(Contrast Lim-

ited Adaptive Histogram Equalization) for making uniform intensity variation

across image.

• We can consider Power Iteration Clustering (PIC) as an alternative clustering

method [22].

• We can consider other networks like ResNet, DenseNet which has deep repre-

28
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sentation of input features to cluster.

• As the misclassification is between neighbouring classes, instead of using PCA

before the clustering we can embed the image features in higher dimensions and

then applying kernel PCA before clustering. This can lead to better separability

of the classes. The weights learn by the network will produce better general

purpose features.
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