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Abstract

Classification of micro-blog texts is a very common task for sentiment

analysis, user opinion mining, product review analysis, crisis man-

agements, identifying offensive and hate speech propagation across

social media, restricting unnecessary expansion of fake news and ru-

mors etc. In this dissertation, we consider two problems from this

domain: (i) classification of tweets during crisis scenarios like natu-

ral disasters, terrorist attacks etc and (ii) identifying offensive tweets.

We tried both statistical and deep learning approaches. Datasets from

the TREC-IS 2018 and 2019 tasks, and OLID from OffenseEval work-

shop were used for our experiments. The first task is formulated as a

multi-label classification task, while the second is a binary classifica-

tion problem. Our results suggest that preprocessing of social media

text is very crucial for classification. We also conclude that Deep

Learning approaches do not always outperform traditional learning.

We also took part as an active participant in the TREC-IS 2019A

task. Out of all 34 submissions from across the world, one of our

submissions achieved the highest macro-averaged F-1 score on this

task (0.1969) and outperformed the second highest score (0.1556) by

a substantial margin.
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Chapter 1

Introduction

1.1 Background

Social networking sites like Twitter and Facebook are now a leading source of news

about current events. events throughout the world are featured in these social

media sites almost immediately. Because these websites are used and followed by

general users around the globe, they have a higher reach than online newspapers,

regular blogs, magazines and traditional media. Every second, on average, around

6,000 tweets are tweeted on Twitter, which corresponds to over 350,000 tweets

sent per minute, 500 million tweets per day and around 200 billion tweets per year.

It is estimated in 2019, 87,500 individuals are on Twitter every minute. 71% of

these users use the platform for news updates. Similarly, during December 2018,

1.52 billion people on average log onto Facebook daily and are considered daily

active users (Facebook DAU)1. Traditional text processing tasks, such as retrieval

and classification, are particularly challenging when studied in the context of

micro-blogs because of the extreme brevity of individual “documents”. During

the course of this dissertation, we will consider the problem of text classification

applied to micro-blogs.

1https://www.statista.com/statistics/346167/facebook-global-dau/
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1.2 Objectives and Contributions

1.2 Objectives and Contributions

From recent events, it has become evident that social media texts (mainly tweets)

have played a vital role during crisis scenarios such as earthquakes, floods, ex-

plosions, terrorist attacks etc. With this rise of social media, emergency service

operators are now expected to monitor such channels and answer questions from

the public. However, crisis management personnel do not have adequate tools or

manpower to effectively monitor social media, due to the large volume of informa-

tion posted on these platforms. During the Nepal earthquake, for example, 33,610

tweets were reportedly posted between April 25th and May 28th by people on the

ground in Nepal [1]. These tweets contained a great deal of useful information

which could be vital for rescue operations, but 33,610 tweets is simply too many

for operators to process manually. There is thus an urgent need for tools that

automatically categorize, cross-reference and verify the information available via

micro-blogs during disasters.

On a related note, user opinions about recent events such as political deci-

sions, supporting similar views etc often contain offensive words and hate speech.

Davidson et. al. [2] defined hate speech as language that is used to expresses

hatred towards a targeted group or is intended to be derogatory, to humiliate, or

to insult the members of the group. However, this definition does not include

all instances of offensive languages. People often use terms that are highly of-

fensive to certain groups but in a qualitatively different manner. For example

some African Americans often use the term n*gga in everyday language online,

people use terms like h*e and b*tch when quoting rap lyrics, and teenagers use

homophobic slurs like f*g as they play video games [2]. Such language is preva-

lent on social media, making this boundary condition crucial for any usable hate

speech detection system. The identification and filtration of such offensive posts

and/or tweets is very time-consuming and as it can cause post-traumatic stress

disorder-like symptoms to human annotators, there have been many research

efforts aiming at automating the process.

In this dissertation, two important tasks have been studied: Building Effective

Disaster Management Systems from Tweets, and Offensive content Identification

from Tweets. We build and test our systems using standard, benchmark datasets

2



1.3 Overview of the Thesis

that are publicly available.

1.3 Overview of the Thesis

In Chapter 2, we discuss the Text Categorization problem and some features and

characteristics of micro blog texts. Section 2.2 outlines the most popular text

categorization algorithms. We discuss multi-label algorithms as well as recent

deep learning techniques. In Chapter 4, we describe the problem statement along

with the datasets used in our experiments. In Chapter 5 and 6, we present our

approaches to the tasks at hand. Experimental results are discussed with the

approaches. We enlist the outputs of different approaches and conclude how

different methods perform. Lastly, in Chapter 7, we conclude our overall work.

3



Chapter 2

Short Text Classification

In this chapter, we briefly review text categorization a.k.a classification, as well as

different machine learning and state-of-the-art approaches for text classification.

We also discuss the problems of handling short texts in these tasks.

2.1 Text Classification

Content-based document management tasks (collectively known as information

retrieval - IR) have gained a prominent status in the information system due

to huge availability of documents in digital form. Text Classification a.k.a Text

Categorization is one such task in which labelling of a document is performed

by analyzing the linguisitic contents on the document. Due to rise of Machine

Learning - ML in the ’90s, in which an automatic classifier is trained from a set

of pre-classified documents, text classification gained more popularity as there

is no intervention needed from either the Knowledge Engineers or the Domain

Experts.

Definition of Text Classification

Sebastiani [3] defined Text Categorization as the task of assigning a Boolean

value to each pair (dj, ci) ∈ D × C, where D is the domain of documents and

C =
{
c1, . . . , c|C|

}
is a set of predefined categories. A value of T assigned to

(dj, ci) indicates a decision to file dj under ci, while a value of F indicates a

4



2.2 Text Classification : A Brief Study

decision not to file dj under ci. More formally, the task is to approximate the

unknown target function φ̂ : D×C −→ {T, F} by the means of a decision function

φ : D × C −→ {T, F} called a classifier (a.k.a hypothesis, or model) such that φ̂

and φ “coincide as much as possible.”

2.2 Text Classification : A Brief Study

Yang [4], Sebastiani [3], Delgado et. al. [5] and other authors have summarized,

analyzed and compared different text classification techniques, starting from rule

based to statistical approaches and some recent Deep Learning techniques for

text classification. In this section we briefly discuss a subset of classifiers and

different types of classifications that are used in text classification.

Depending on the application task in hand, different constraints on Classification

can be imposed, producing mainly two kinds of Classification. For instance we

might need that, for a given integer k, exactly k (or ≤ k, or ≥ k) elements of C be

assigned to each document dj ∈ D. The case in which exactly one category must

be assigned to each dj ∈ D is often termed as Single Label Classification,

whereas the case in which, a document dj ∈ D can be assigned to any random

number of labels from C is called Multilabel Classification. A special case

of Single Label Classification is Binary Classification in which the task is to

categorize each dj ∈ D to either category ci or its complement c̄i.

2.2.1 Classification Algorithms

Machine learning approaches are used in Text Classification problems. Recent

researches in Deep Learning algorithms have brought a breakthrough in image

processing, computer vision, text domains etc.

Logistic Regression (LR) is one of the earliest methods for classification tasks.

It was developed by statistician David Cox in 1958. The aim of Logistic Re-

gression is to predict the conditional probability P (y|x; θ), where θ is the model

parameter. The hypothesis of logistic regression tends it to limit the output

5
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between 0 and 1, with the S-shaped sigmoid function,

hθ(x) =
1

1 + eθT x

The cost function for LR is given by,

Cost(hθ(x), y) =

−log(hθ(x)) if y = 1

−log(1− hθ(x)) if y = 0

If y = 1, the cost approaches to 0 when hθ(x) approaches to 1. Conversely, the

cost increases up to infinity when hθ(x) approaches to 0. Similar intuition applies

when y = 0. Hence the cost function is defined in a way such that a big penalty

is given when the prediction is far from actual output. As the cost function is

convex in nature, the parameter θ for which it attains the minimum value can be

determined using the gradient descent algorithm.

K Nearest Neighbour (KNN) [6] is a non-parametric, Instance Based Learning

technique used for classification. Given a test document x, the algorithm finds

k most similar documents among the training set. This similar documents are

determined by obtaining k nearest neighbours of x in the feature space. The

test document is classified by the plurality of votes of its neighbours. An useful

technique can be used to assign weight to the contributions of the neighbors, so

that the nearer neighbors contribute more to the average than the more distant

ones. For example, a common weighting scheme consists in giving each neighbor

a weight of 1
d
, where d is the distance to the neighbour.

Support Vector Machine (SVM) is a non-probabilistic large margin classi-

fier. It constructs a hyperplane in a high- or infinite-dimensional space, which

separates the positive from the negative training example. Intuitively, a good

separation is achieved by the hyperplane that has the largest distance to the

nearest training-data point of any class, since in general the larger the margin,

the lower the generalization error of the classifier. Using parameter w and b, the

6
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linear classifier can be expressed as,

hw,b(x) = g(wTx+ b)

where g(z) = 1 if z ≥ 0 and −1 otherwise. Given the choice of g we can normalize

w such that for the nearest data point xn, |wTxn + b| = 1. Now the distance

between xn and the hyperplane is given by,

| w
‖w‖

(x− xn)| = 1

‖w‖

. After some mathematical equivalences, the optimization problem becomes,

minimize
1

2
wTw subject to yi(w

Txi + b) ≥ 1 for i = 1 . . . N

This is easily solved by forming the dual convex problem using Lagrange’s Method.

Whereas the original problem may be stated in a finite-dimensional space, it often

happens that the sets to discriminate are not linearly separable in that space. The

original finite-dimensional space can be mapped into a much higher-dimensional

space, presumably making the separation easier in that space, by using a method

called ’Kernel Trick’.

Deep Learning Approaches

Recurrent Neural Network (RNN) is basically a 3-layer neural network, which

repeatedly uses its layers at each time step for accommodating a sequence. If xt

is taken as the input to the network at time step t and st represents the hidden

state at the same time step. Calculation of st is based as per the equation:

st = f(Uxt +Wst)

Thus, st is calculated based on the current input and the previous time steps

hidden state. The function f is taken to be a non-linear transformation such as

tanh,ReLU and U, V,W account for weights that are shared across time. Due to

variable and long length of sequences, in practice, simple RNN networks suffer

from the infamous vanishing gradient problem, which makes it really hard to

7



2.2 Text Classification : A Brief Study

learn and tune the parameters of the earlier layers in the network.

Long Short-Term Memory (LSTM) [7] has additional “forget” gates over the

simple RNN. Its unique mechanism enables it to overcome both the vanishing

and exploding gradient problem. Unlike the vanilla RNN, LSTM allows the error

to back-propagate through unlimited number of time steps. Consisting of three

gates: input, forget and output gates, it calculates the hidden state by taking a

combination of these three gates as per the equations below:

ft = σ(Wf [xt;ht−1] + bf ) (2.1)

it = σ(Wi[xt;ht−1] + bi) (2.2)

ot = σ(Wo[xt;ht−1] + bo) (2.3)

Ĉt = σ(Wc[xt;ht−1] + bc) (2.4)

ct = ft ∗ ct−1 + it ∗ Ĉt (2.5)

ht = ot ∗ tanh(ct) (2.6)

where [u; v] signifies concatenation of vector u and v. A variation of LSTM is

Bidirectional LSTM (Bi-LSTM) which processes the text from both left-to-right

and right-to-left direction and the two outputs are concatenated together to form

a single output.

Attention is a mechanism [8] mainly used in neural encoder-decoder systems.

Attention-based mechanism is motivated from that, instead of decoding based

on the encoding of a whole and a fixed-length sentence during one pass of neu-

ral network-based machine translation, one can attend a specific part of the

sentence. Hence the final context vector is basically some weighted sum of the

hidden states (annotations) (h1, h2, . . . hT ):

ci =
T∑
i=1

αijhj

The weight αij, also called attention score, of each annotation hj is computed

by,

αij =
exp (eij)∑T
k=1 exp (eik)

8
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where,

eij = a(si−1, hj)

is an alignment model which scores how well the inputs around position j of target

and the output at position i of the source match. In case of text-classification, this

alignment model is applied on the encoder RNN itself, computing how importance

each hidden state should be given to get the final context vector.

Convolutional Neural Network (CNN), gaining a huge success in the image

and computer vision domain as an automatic feature extraction method, attracted

the NLP researchers to extract features from text. A work by Kim [9] has been

well studied and produced excellent results using CNN for sentence classification

tasks on benchmark datasets. A following work by Zhang and Wallace [10] has

explained the feature extraction mechanism of CNN for text classification tasks

and effect of different parameters.

A tokenized sentence is converted to a sentence matrix, the rows of which

are word vector representations of each token. If the dimension of the word

vectors is denoted by d and length of a given sentence is s, then the dimension

of the sentence matrix is s × d. In text applications there is inherent sequential

structure to the data. Because rows represent discrete symbols (namely, words),

it is reasonable to use filters with widths equal to the dimension of the word

vector. If there is a filter parameterized by the weight matrix W with region

size h (height of the filter); W will contain h.d parameters to be estimated. This

sentence matrix is denoted by A ∈ Rs×d , and A[i : j] represents the sub-matrix

of A from row i to row j. The output sequence o ∈ Rs−h+1 of the convolution

operator is obtained by repeatedly applying the filter on sub-matrices of A:

oi = W.A[i : i+ h− 1]

where i = 1 . . . s − h + 1, and . is the dot product between the sub-matrix and

the filter (a sum over element-wise multiplications). A bias term b ∈ R is added

and an activation function f to each oi, inducing the feature map c ∈ Rs−h+1 for

this filter

ci = f(oi + b)

9



2.2 Text Classification : A Brief Study

Multiple filters may be used for the same or different region size to learn

features. The dimension of the feature map generated by each filter will vary as a

function of the sentence length and the filter region size. A pooling function is thus

applied to each feature map to induce a fixed-length vector. A common strategy

is 1-max pooling, which extracts a scalar from each feature map. Together, the

outputs generated from each filter map can be concatenated into a fixed-length,

‘top-level’ feature vector.

In text classification task, the final output of the LSTM or a CNN, also referred

as feature vector or context vector (in case of seq2seq model) of the text that has

been processed, is passed through a fully-connected layer and the number of nodes

in the output layer is kept as the number of the class (1 in case of binary) specified

in the task, followed by a sigmoid (binary classification) or a softmax activation,

to transform the score values into a probability distribution across classes. Under

this construction the loss is calculated as, Cross Entropy Loss

CE = −
C∑
i=1

yi log(si)

where yi and si are the ground truth and the probability score respectively.

Due to huge success of transfer learning in NLP, in 2018, deep architectures

for multi-tasking are now an interesting point of research. Google’s BERT [11],

AllenNLP’s ElMo [12], OpenAI GPT2 [13], fastai’s ULMfit [14] etc these new

multi-tasking architectures are pre-trained and can be plugged to various NLP

tasks such as sentence classification, sentence pair classification, question an-

swering etc. It has been claimed that BERT outperform all the others, as of

now. BERT is based on another architecture named Transformer [15]. Briefly,

A Transformer, primarily developed for machine translation, takes a fixed size

input, passed through a stacked layer of Encoders. Each Encoder consists of a

self-attention layer and a feed forward neural network. The self-attention layer

calculates how each token of input sentence is dependent on all other tokens

of the same. The final encoded input is passed through another stacked layer

of Decoders. Each decoder is again similar to encoder except that it has one

10
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encoder-decoder attention layer along with self attention. This incorporates the

similar idea from seq2seq model implying how important a source sentence token

is to target sentence token.

BERT-base consists of 12 layers, and BERT-large has 24 layers of Transformer

Encoders, with a target of building a language model which contains both direc-

tional contexts, called Masked Language Model. Beyond masking 15% of the

input, BERT also mixes things a bit in order to improve how the model later

fine-tunes. Sometimes it randomly replaces a word with another word and asks

the model to predict the correct word in that position. Since BERT is a general

language model, the architecture can be tweaked for different NLP tasks such

as sentence classification, where it reportedly outperformed most of the other

methods on some benchmark datasets.

2.2.1.1 Multilabel Classification

Multilabel Classification has been a very renowned topic in the last decade. Mad-

jarov et. al. [16] have contributed an extensive study of the available multi-

label classification algorithms and their effectiveness among 11 popular bench-

mark multi-label datasets. Tsoumakas and Katakis [17] have presented the first

overview of multi-label learning, where they divided the methods into two main

categories: Problem Transformation and Algorithm Adaptation. Madjarov et.

al. [16] have added another category named ensemble methods to the existed cat-

egories for completeness. Here we discuss a very brief overview of such algorithms.

Problem Transformation Methods

Problem Transformation methods transform a multi-label learning to one or

more single label classification problem. The algorithms discussed in section 2.2

can be used as a base classifier here.

Binary Relevance (BR) [17] is the simplest strategy for problem transforma-

tion, this method uses one-vs-rest technique for each of the labels individually,

transforming into L binary classification problems, where L is the number of la-

bels. For each of the labels, a classifier is built using all relevant examples as

positive samples and rest negative. During prediction, each classifier predicts

11
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whether a test sample is relevant for the corresponding label or not. The main

drawback of BR is that it does not take into account any label dependency and

may fail to predict some label combinations if such dependence is present. How-

ever, BR presents several obvious advantages: (1) any binary learning method

can be taken as base learner; (2) it has linear complexity with respect to the

number of labels; and (3) it can be easily parallelized.

Classifier Chain (CC) [18] method involves L binary classifiers, uses binary

relevance predictions as extra input attributes for the following classifier, cascaded

along a chain. Hence the hypothesis can be formulated as,

hCC(x) = [h1(x), h2(x, h1(x)), . . . , hL(x, h1(x), . . . , hL−1(x, . . .))]

The prediction of each base classifier hj(x, . . .) only needs to be evaluated per

test instance. Each individual classifier may be expressed as,

ŷj = hj(x, ŷi, . . . , ŷj−1) = argmax
yj∈{0,1}

p(yj|x, ŷ1, . . . , ŷj−1)

and we obtain predictions in order ŷ1, . . . , ŷL Along with tractable and approxi-

mate search methods for inference, a main focus in the development of CC meth-

ods is the order of the chain, to exploit the ‘label dependence’.

A variation of CC, namely Probabilistic Classifier Chain (PCC) [19] the condi-

tional probability P (y|x) can be computed by the chain rule of probability,

P (y|x) = p(y1|x)
L∏
j=2

p(yj|x, y1, . . . , yj−1)

One can simply notice that CC is the deterministic approximation of PCC, in

the sense of using {0, 1} -valued probability.

Label Power-set (LP) [20] is another problem transformation method. The

basis of this method is to combine entire label set into atomic labels to form a

single label problem. To achieve this, the candidate single labels can be the all

possible subsets of the label set, thus taking the label correlation into account.

Since the space of possible label subset can be very high, a variation of this

12
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was proposed called, Pruned Set (PS). In this variation, a pruning parameter p

is specified, subsets whose occurrence is lesser than and equal to p are pruned

from the all possible label set. Formally, (di, Si) ∈ D, the entire training set,

where count for Si i.e., c > p are added directly to new pruned dataset D′, where

Si ∈ 2Y and Y is the label set. Information is saved by taking each possible

subset of those pruned label set, having count greater than p.

RAndom k-labELsets (RAkEL) [21] is an ensemble method, that draws ran-

dom m subset of label set with cardinality k, and trains a label power-set (LP)

classifier using each set of labels. A simple voting process determines the final

set of labels for a test example. RAkELd is a variation of this algorithm, that

draws random m label subsets that are disjoint.

Algorithm Adaptation Methods

Multilabel kNN (ML-kNN) [22] is an extension of single label kNN algo-

rithm. It assigns a label to a test example by using a maximum a posteriori

(MAP) method from the statistical information gained from training data. More

formally, for each training example x, let N(x) be the k Nearest Neighbours of

x, a membership counting vector can be defined as

~Cx(l) =
∑

a∈N(x)

~ya(l) l ∈ Y

where ~ya(l) = 1 if a has the label l and ~Cx(l) counts the number of neighbours of

x belonging to the l-th class.

For each test instance t, ML-kNN first identifies its k nearest neighbours, N(t).

Let H l
1 be the event that t has label l, and H l

0 denotes the opposite. And also,

let El
j (j ∈ {0, 1, . . . k}) denote the event that, among k nearest neighbours of t,

there are exactly j instances having label l. Therefore, based on the membership

13
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counting vector ~Ct, the category vector is determined as,

~yt(l) = argmax
b∈{0,1}

P (H l
b|El

~Ct(l)
) l ∈ Y (2.7)

= argmax
b∈{0,1}

P (H l
b)P (El

~Ct(l)
|H l

b)

P (El
~Ct(l)

)
(2.8)

= argmax
b∈{0,1}

P (H l
b)P (El

~Ct(l)
|H l

b) (2.9)

Predictive Clustering Tree (PCT) [23] are decision trees viewed as a hierar-

chy of clusters. The root node corresponds to one cluster containing all the data,

which is recursively partitioned into smaller clusters. PCTs are constructed using

a standard top down induction of decision trees (TDIDT) [24] algorithm. The

heuristic that is used for selecting the test is reduction in variance caused by

partitioning the instances. Maximizing the variance reduction maximizes cluster

homogeneity and improves predictive performance. The main difference between

the algorithm for learning PCTs and a standard decision tree learner is that the

former treats the variance function and the prototype function that computes a

label for each leaf as parameters that can be instantiated for a given learning

task. For the multilabel classification case, the variance function is computed as

the sum of the entropies of class variables, i.e., Var(E) =
∑t

i=1Entropy(E, yi).

The prototype function returns a vector containing the majority class for each

target attribute.

Random Forest over Predictive Clustering Tree (RF-PCT) is an ensemble method

that uses PCT as base classifier. The diversity among base classifier is obtained

using bagging and additionally changing the feature set during the learning. At

each node in the trees, a random subset of input attributes is taken, and the best

feature is selected from the subset. The number of attributes that are retained is

given by a function f , for building random forests, f(x) is set to blog2(x) + 1c.
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Chapter 3

Related Works

3.1 Past Works in Building Effective Disaster

Management Systems from Tweets

As twitter became a useful tool regarding disaster management after the Nepal

Earthquake in 2015, many researchers have tried to formalize the problem and

approached with various ways. The datasets were built by different researchers

using various crowd sourcing platforms such as MicroMappers 1, CrowdFlower
2 etc. From a huge collection of related studies we summarize the important

works here. Muhammad Imran et. al. [25] gathered tweets for different crisis

scenarios such as earthquake, typhoon, volcano eruption, landslide, floods, war

& conflict etc and they categorized the 52 Million tweets into 19 different classes.

They have made their data and contributions publicly available 3 for research

purposes. Authors have prepared baseline using SVM, Naive Bayes and Random

Forest classifiers on each events separately. In the IRMiDis Track of FIRE, 2018
4, the organizers have annotated and open sourced 50,000 Tweet messages and

6,000 news articles where the task was to identify fact-checkable tweets and re-

trieve relevant news articles to support them. In SMERP 2018,5 The primary

1http://www.micromappers.org
2http://www.crowdflower.com
3https://crisisnlp.qcri.org/lrec2016/lrec2016.html
4https://sites.google.com/site/irmidisfire2018/
5https://www.cse.iitk.ac.in/users/kripa/smerp2018/
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3.2 Past Works in Offensive and/or Hate Speech Identification in
Tweets

focus of the workshop was multi-modal and multi-view information retrieval i.e.,

developing methods for aggregating information from multiple online and offline

data sources (including text, images, and video) for Emergency Relief and Pre-

paredness.

3.2 Past Works in Offensive and/or Hate Speech

Identification in Tweets

From aggression, cyber bullying to abusive, toxic comment identification, there

have been a lots of research on hate speech and offensive content detection in text.

However identifying offensive content and hate speech is not completely similar.

Kwok and Wang [26] on their work Locate the Hate : Detecting Tweets against

Black identified presence of offensive word may lead to mis-classify a tweet as a

hate speech with bag of word approach. According to their experiment 86% of

times, a tweet is classified as hate speech, due to presence of offensive words. The

difference between hate speech and other offensive language is often based upon

subtle linguistic distinctions, for example tweets containing the word n*gger are

more likely to be labeled as hate speech than n*gga. Many can be ambiguous, for

example the word gay can be used both pejoratively and in other contexts unre-

lated to hate speech. Davidson et. al. [2] presented the hate speech detection

dataset with over 24,000 English tweets labeled as non offensive, hate speech,

and profanity. Their work also built a strong baseline with logistic regression,

with some feature engineering. In TRAC 2018, the task of Aggression Iden-

tification [27], participants were provided 15,000 Facebook posts and comments

in English and Hindi. For testing two different sets, one from Facebook and one

from Twitter were used. The main target of the task was to classify those posts

into one of the three categories: non-aggressive, covertly aggressive, and overtly

aggressive. The GermEval4 [28] shared task focused on offensive language identi-

fication in German tweets. A dataset of over 8,500 annotated tweets was provided

for a course-grained binary classification task in which systems were trained to

discriminate between offensive and non-offensive tweets. An open competition at

16



3.2 Past Works in Offensive and/or Hate Speech Identification in
Tweets

Kaggle, namely, The Toxic Comment Classification Challenge 1, provided

participants with comments from Wikipedia organized in six classes: toxic, severe

toxic, obscene, threat, insult, identity hate.

1https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
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Chapter 4

Problem Statement, Dataset

Information and Evaluation

Measures

4.1 Problem Statement

As a part of this dissertation, we took part in the most recent track of TREC,

namely Incident Stream (TREC-IS v1.5) 1, in which the organizers have released a

collection of around 18,991 tweets related to different events such as, ‘TyphoonH-

agupit’, ‘NepalEarthquake’ and assigned them to 24 different categories. Each

tweet may belong to more than one such categories. Hence the task is a multi-

label multi-class classification task. Along with this, given a priority value for a

tweet in the training data (Low, Medium, High or Critical) another sub-task is to

predict ‘criticality score’ for the tweet (between 0-1), that signifies how actionable

a tweet is. We formulate this sub-task as a classification problem.

As a second task, we use the most recent dataset namely Offensive Language

Identification Dataset (OLID) [29] from the OffensEval 2 task of SemEval Work-

shop 2019. We act as a non-active participant for the task, and consider only the

first sub-task, i.e., to classify a tweet into one of two classes - OFFENSIVE and

1http://trecis.org
2https://competitions.codalab.org/competitions/20011
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4.2 Dataset Statistics

NOT OFFENSIVE.

4.2 Dataset Statistics

4.2.1 TREC-IS Data

In 2018, the TREC-IS task organizers released tweets as 1335 training data. Each

tweet was manually labelled with exactly one category. Due to ontology changes

in the subsequent year, only 1309 samples (tweets) were retained. Test data for

2018 contained 17,682 tweets; these were used as a training data in TREC-IS

v1.5 (2019)[30]. The complete data statistics are given in Table 4.1.

Dataset #Samples Label
Cardinality

TREC-ISv1.0 - train 1,309 1.0
TREC-ISv1.5 - train 17,682 2.27
TREC-ISv1.0 and v1.5 combined - train 18,991 2.18
TREC-ISv1.5 - test 9,444 -

Table 4.1: TREC-IS Data Statistics

Tweets were collected from a variety of sources [25]. The combined dataset

covers 21 events. The distribution of tweets across events is shown in Table 4.2

Events #Tweets Events #Tweets
joplinTornado2011 95 costaRicaEarthquake2012 243
fireColorado2012 259 guatemalaEarthquake2012 154
italyEarthquakes2012 103 albertaFloods2013 722
philipinnesFloods2012 437 typhoonPablo2012 234
australiaBushfire2013 677 bostonBombings2013 535
floodColorado2013 233 laAirportShooting2013 160
manilaFloods2013 411 queenslandFloods2013 709
typhoonYolanda2013 564 westTexasExplosion2013 180
chileEarthquake2014 311 typhoonHagupit2014 3939
nepalEarthquake2015 5841 flSchoolShooting2018 1118
parisAttacks2015 2066

Table 4.2: Event-wise sample distribution (TREC-IS combined)
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4.2 Dataset Statistics

These tweets were categorized into 24 class labels specified by the task orga-

nizers, each tweet may be assigned multiple labels. The label distribution of the

dataset is given in Figure 4.1.

Among these class labels, 6 labels are identified as Actionable [30], since tweets

Figure 4.1: Label Distribution in TREC-IS (combined)

categorized under these labels may need a response from the management officer.

These actionable labels are - ‘GoodsServices’, ‘SearchAndRescue’, ‘MovePeople’,

‘EmergingThreats’, ‘NewSubEvent’ and ‘ServiceAvailable’.

The samples were also annotated by humans with a priority value, also re-

ferred as ‘criticality’ from the set {Critical, High, Medium, Low}, indicating how

urgently the needs a response from the disaster management system. The distri-

bution of priority values is shown in Figure 4.2.
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4.2 Dataset Statistics

Figure 4.2: Priority Distribution in TREC-IS (combined)

We perform our experiments in a 80-20 train-test split on the TREC-IS com-

bined dataset. Additionally, we also report the scores obtained by our official

TREC-IS 2019 submissions.

4.2.2 OLID Data

The Offensive Language Identification Dataset (OLID) dataset by Zampieri et al.

[29] contains around 14,100 tweets which is divided into training data (containing

13,240 samples) and test data (containing 860 tweets).

Each of these tweets are categorized in a hierarchical manner. For the first

subtask, tweets are classified into Offensive (OFF) and Not Offensive (NOT).

Offensive tweets are further classified into targeted (TIN) and untargeted (UNT).

Furthermore, TIN labelled tweets were classified into individual targets (IND),

Group (GRP) or other (OTH).
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4.3 Data Cleaning & Preprocessing

Figure 4.3: OLID Dataset distribution

In this dissertation, we only approach the first subtask, that is to classify

whether a tweet is offensive or not.

4.3 Data Cleaning & Preprocessing

A most important part for any NLP or IR task is to clean the text data be-

fore processing. Since twitter texts are short, noisy, do not always follow any

predefined format, it is difficult to work with tweet texts for any NLP/IR task.

Pre-processing steps that we used are described below,

• We used an open source text processing tool named ‘ekphrasis’ [31] that

identifies and normalizes user mentions, hashtags, urls, numeric tokens,

date-time etc.

• We used Norvig’s word segmentation algorithm for segment long mis-typed

tokens, hashtags (eg: #prayforparis −→ pray for paris), and extract smaller

meaningful tokens.

• We also removed non-ASCII characters, emoji tokens, punctuation symbols

etc.

• We collected a list of English contractions, and expand them in texts. (don’t

−→ do not, should’ve −→ should have).

• We also made a collection of possible social media slangs and acronyms and

expand to get meaningful English dictionary words in the text.
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4.4 Evaluation Measures

4.4 Evaluation Measures

As a classification task, we enlist the usual evaluation measures used in practice,

as well as the measures provided by the task organizers.

Accuracy is the most intuitive performance measure and it is simply a ratio of

correctly predicted observation to the total observations.

Accuracy =
true positive + true negative

true positive + false positive + true negative + false negative

Precision is the ratio of correctly predicted positive samples to the total predicted

positive samples.

Precision =
true positive

true positive + false positive

Recall is defined as the ratio of the correctly predicted positive samples to the

total positive samples.

Recall =
true positive

true positive + false negative

F1-score is the harmonic mean of Precision and Recall.

F1-score =
2× Precision× Recall

Precision + Recall

For Multilabel classification on TREC-IS data (Ref. 4.2.1) we use the follow-

ing metrics:

Example Based Measure

Hamming Loss =
1

N

N∑
i=1

1

L
|h(xi)∆yi|

where ∆ stands for the symmetric difference between two sets, N is the number

of test examples, L is the total number of class labels, h(xi) is set of the predicted

labels and yi is the set of correct labels for i-th sample xi.
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4.4 Evaluation Measures

Label Based Measure

Macro-Precision (Precision averaged across all labels) is defined as,

macro precision =
1

L

L∑
j=1

tpj
tpi + fpj

where tpj and fpj are number of true positives and false positives for the j-th

label as binary class.

Macro-Recall (Recall averaged across all labels) is defined as,

macro recall =
1

L

L∑
j=1

tpj
tpi + fnj

where tpj and fpj are defined as the macro precision and fnj is the number of

false negative for j-th label as binary class.

Macro-F1 is the harmonic mean between precision and recall, where the average

is calculated per label and then averaged across all labels. If pj and rj are the

precision and recall for the j-th label, the macro-F1 is

macro F1 =
1

L

L∑
j=1

2× pj × rj
pj + rj

We enlist macro F1 score for both the problems, where for the TREC-IS task we

also present Hamming Loss and for the Offensive tweets identification we present

classification Accuracy. For TREC-IS task we also present the macro average F1

for actionable categories, as mentioned in task guidelines.

For the Criticality Score prediction subtask of the TREC-IS task, we follow the

official metric, provided by the task organizer, calculates an Accumulated Alert

Worth (AAW) described below.

The notations used in the following paragraphs are listed in Table 4.3.
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4.4 Evaluation Measures

Notation Significance
t A Tweet
T Set of all tweet in the Test Event
THigh/Critical Set of all annotated High or Critical tweets
pst Priority Score predicted by the system
ActCs

t Actionable Categories assigned to tweet t by the system
ActCa

t Actionable Categories assigned to tweet t by the Assessor
NActCs

t Non-Actionable Categories assigned to tweet t by the system
NActCa

t Non-Actionable Categories assigned to tweet t by the Assessor
λ Actionable vs Non-Actionable weighting (default value = 0.75)
α Static value for a correct alert regardless of whether the cate-

gories are correct. Default=0.3
δ The number of false alerts since the last true alert. Each time

a tweet that is not in Thigh/critical is given a pst ≥ 0.7 counted as
a false alert. δ is reset to 0 each time a tweet in Thigh/critical is
given a pst ≥ 0.7 by the system (a true alert). This is used to
emulate user trust in the system over time.

Table 4.3: Notation for AAW calculation

Two scores namely ActCScore(t) and NActCScore(t) are defined as

ActCScore(t) = γ.
|ActCs

t ∩ ActCa
t |

|ActCs
t ∪ ActCa

t |

NActCScore(t) = (1− γ).
|NActCs

t ∩ NActCa
t |

|NActCs
t ∪ NActCa

t |

γ =

λ if |ActCa
t | > 0

0 otherwise

Scoring Tweets that should generate an alert

For the tweets that are assessed as High or Critical category, the worth is calcu-

lated as,

highPriorityWorth(t) =

α + (1− α) ∗ (ActCScore(t) + NActCScore(t)) if pst ≥ 0.7

−1 otherwise
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4.4 Evaluation Measures

Scoring Tweets that should not generate an alert

For the tweets that are assessed as Low or Medium category, the worth is calcu-

lated as,

lowPriorityWorth(t) =

max(− log( δ
2

+ 1),−1) if pst ≥ 0.7

ActCScore(t) + NActCScore(t) otherwise

Accumulated Alert Worth (AAW)

Accumulated Alert Worth (AAW) is calculated as,

AAW =
1

2


1

|Thigh/critical|
.highPriorityWorth(t) if t ∈ Thigh/critical

1
|Tlow/medium|

.lowPriorityWorth(t) otherwise
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Chapter 5

Tweet Classification for Crisis

Management System

In this chapter we discuss the first problem we approached, tweet classification

for crisis scenarios. We discuss the baselines first, then the approaches we applied

and then present the experimental results.

5.1 Approaches

Experimental Setup

For our experiments, we consider two ways to split the data into training and

testing parts. In the first approach, we split the training data into train/test

(80/20) partitions for our experiment, maintaining the balance (80-20) for each

class. In the second one, we mimic the underlying application scenario of the

problem, by taking tweets for the older events, as mentioned in Table 4.2 as

training, and tweets for the 3 latest events in the testing partition (namely

‘nepalEarthquake2015’, ‘flSchoolShooting2018’, ‘parisAttacks2015’).

5.1.1 Features

We used tf-idf feature vectorization over the cleaned and pre-processed text as

mentioned in Section 4.3. Tweets were indexed with words and word bigrams.
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5.1 Approaches

We do not remove standard English stop-words, instead we limit our vocabulary

by removing the words and word bigrams having document frequency more than

90%. This may be viewed as a form of corpus specific stop word removal. We ex-

perimented with adding additional numerical features from text such as, #words,

#characters, upper case character ratio, sentiment score[32] etc and a few others

such as, #user mentioned, #hashtags, #retweet count etc from tweet statistics.

5.1.2 Classifiers

We experimented with three broad approaches: (1) Problem Transformation for

multi-label learning, (2) Algorithm Adaptation and (3) Deep Architecture based

approaches. We applied Binary Relevance (BR), Classifier Chain (CC), Pruned

Set (PS), RAkELd (Ref. Section 2.2.1.1) using SVM and Logistic Regression as

the base classifier. We also present experiments with some algorithm adaptation

methods such as, ML-kNN, PCT, RF-PCT. We experimented with some deep

learning architectures such as LSTM, CNN, Bidirectional LSTM. For LSTM,

BiLSTM architectures, we use a 200 dimensional hidden layer, followed by a 100

dimensional fully connected layer. Lastly we use another fully connected layer

to a 24 (number of labels) dimensional output layer, and minimize the binary

cross-entropy loss to train the network weights. For CNN architecture, we use

128 filters of sizes 3, 4 and 5 as suggested in [9], followed by a fully connected

layer. We train the network for 20 epochs (LSTM and other variations) and 50

epochs (CNN) with learning rate 0.001 and 0.0001 respectively with batch size 16.

We use both Glove [33] 200 dimensional word embedding, pre-trained on twitter

as well as crisis word vectors, pre-trained on crisis related tweets by Imran et. al.

[25], available publicly 1.

In order to improve the target metric macro f-1, rather than using hard thresh-

old 0 for a linear classifier f(x) > 0, we follow a threshold selection method. Since

macro f-1 for a label is independent of another for the calculation of total macro

f-1, the decision boundary for each classifier for a binary method can be tuned in-

dependently using different threshold selection for different label. We determine

threshold for each class label using an algorithm, mentioned in [34].

1https://crisisnlp.qcri.org/lrec2016/lrec2016.html
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5.1 Approaches

5.1.3 DAG Based Label ordering for Classifier Chain

(DBLCC)

In order to exploit label dependency, and improve classifier chain performance,

we devise an algorithm (Algorithm 1) for finding an order for classifier chain

method. The basic idea behind this algorithm is as follows.

Algorithm 1 DAG Based Label ordering for Classifier Chain(DBLCC)

1: Estimate p(yi|yj) for all 1 ≤ i ≤ L, 1 ≤ j ≤ L and i 6= j as

p(yi|yj) =
Count(yi == 1 ∧ yj == 1)

Count(yj == 1)

2: P ←− Sorted pairs (yi, yj) in non-increasing order of p(yi|yj).
3: Make a Graph G(V,E) where V = {y1, . . . , yL}
4: for all (yi, yj) ∈ P do
5: if (yi, yj) /∈ E and p(yi|yj) > threshold then
6: Add a directed edge from yj to yi
7: end if
8: end for
9: Find all connected components of G

10: for all G′ component of G do
11: if |G′.V | == 1 then
12: Build a one-vs-rest classifier for yk ∈ G′.V
13: else
14: SV ←− list of vertices (labels) obtained by topological sort on G′.
15: Build a classifier chain in order with SV .
16: end if
17: end for

We build a DAG (Directed Acyclic Graph) with all class labels as vertices,

and an edge according to the class conditional probability p(yi|yj) if above a

threshold. For each connected component, if there is only one vertex in that

component, we build a one-vs-rest classifier for that class label, otherwise we

perform topological sort on the vertices of a component. Intuitively, from our

graph construction mechanism, if yi depends on yj and yj depends on yk, they

belong to same component with edges yk −→ yj −→ yi, in this order we build a

chain of classifier. At prediction time, a test sample is predicted by k (number of
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5.2 Experimental Results & Analysis

connected components) classifiers.

We used scikit-learn and scikit-multilearn packages for experiments on BR,

CC, MLkNN, RAkELd. We used MEKA 1 library for PS with SVM as base

classifier. Clus 2 was used to perform the experiments on PCT and RF-PCT.

For scalability issues, the feature dimension was reduced to 5000 for the experi-

ments on MEKA. We used PyTorch 3 module for implementing the deep learning

architectures.

5.2 Experimental Results & Analysis

Results of our approaches are presented on Table 5.1. Binary Relevance with Lo-

gistic Regression (BR-LR) as a base classifier with bigram text features and some

numerical features performs the best in terms of macro f-1, resulting 0.512 in our

validation split. As suggested in [34] threshold tuning was supposed to perform

better, but it does not improve the macro-F1. The reason behind this may be,

as the final threshold for a label is determined by average of thresholds obtained

in each fold of 5 fold of cross validation and the threshold for each fold is not so

close to each other, the macro F1 from average threshold performs worse than

that of the hard threshold 0. Classifier Chain (CC) performs somehow closer to

the best result giving a macro-F1 of 0.497.

The other multi-label learning algorithms, that exploit label dependencies do not

perform better than the simple binary relevance suggesting that there is not much

significant label dependency to be inferred from the data. Whereas as suggested

in [16], RF-PCT is one of the best models as per their experiments, which per-

forms best in terms of macro-F1 for only actionable information types.

On the other hand, our proposed method is basically an ensemble of binary rel-

evance (BR) and classifier chain (CC) guided by a label dependencies perform

almost similar to the best model. The threshold mentioned in line 5 of Algo-

rithm 1, acts as a choice between BR and CC. Too high a threshold results in

no edges in the DAG thus a BR model is obtained, on the other hand too low

1http://meka.sourceforge.net
2http://clus.sourceforge.net
3https://pytorch.org
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5.2 Experimental Results & Analysis

a threshold implies a complete CC. With our experiments, we set the threshold

value with 0.45. The label ordering obtained from a topological sort of the con-

structed graph G, intuitively, follows the class conditional probability.

To simulate real life scenario during crisis, we have trained the same classifiers on

Classifier(Features) Hamming
Loss

Macro F-1
(Actionable
Information

type)

Macro
F-1 (All
labels)

BR-SVMlinear (Unigram) 0.104 0.360 0.463
BR-LR (Unigram) 0.100 0.350 0.462
BR-SVMlinear (Bigram) 0.079 0.402 0.481
BR-LR (Bigram) 0.080 0.421 0.504
BR-SVMlinear (Bigram + Features) 0.081 0.424 0.489
BR-LR (Bigram + Features) 0.080 0.439 0.512
CC-SVMlinear (Bigram + Features) 0.081 0.425 0.482
CC-LR (Bigram + Features) 0.082 0.429 0.497
PS-SVMpoly (Bigram + Features) 0.079 0.380 0.414
RAkELd-LR (Bigram + Features) 0.074 0.425 0.496
MLkNN (Bigram + Features) 0.090 0.220 0.283
PCT (Bigram + Features) 0.104 0.501 0.321
RF-PCT (Bigram + Features) 0.073 0.526 0.345
BR-LR + Threshold Tuning 0.088 0.432 0.509
DBLCC 0.080 0.438 0.511
LSTM + Glove 0.084 0.310 0.391
CNN + Glove 0.072 0.300 0.402
BiLSTM + Glove 0.082 0.282 0.406
BiLSTM + Attention + Glove 0.081 0.368 0.418
LSTM + Crisis-WV 0.088 0.318 0.380
CNN + Crisis-WV 0.073 0.345 0.412
BiLSTM + Crisis-WV 0.085 0.268 0.368
BiLSTM + Attention + Crisis-WV 0.082 0.367 0.420

Table 5.1: Result of Classifier(s) on TREC-IS (combined) (Train-Test Split)

a separate split, based on the events, on the TREC-IS (combined) data. Consid-

ering different events at different time and location, tweet texts are more likely to

belong to different vocabularies. Hence limiting the vocabulary size and thus the

dimension of the feature vector to select only the top scored (tf-idf) tokens, gives
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5.2 Experimental Results & Analysis

a good performance reducing the model complexity. The results of the classifiers

are presented in Table 5.2. This experiment also suggests that Binary Relevance

with Logistic Regression is the best model among all the classifiers.

Classifier(Features) Hamming
Loss

Macro F-1
(Actionable
Information

type)

Macro
F-1 (All
labels)

BR-SVMlinear (Unigram) 0.115 0.049 0.165
BR-LR (Unigram) 0.111 0.069 0.166
BR-SVMlinear (Bigram) 0.117 0.081 0.180
BR-LR (Bigram) 0.113 0.093 0.183
*BR-SVMlinear (Bigram + Features) DNF DNF DNF
BR-LR (Bigram + Features) 0.108 0.093 0.192
CC-SVMlinear (Bigram + Features) 0.114 0.068 0.174
CC-LR (Bigram + Features) 0.112 0.097 0.191
PS-SVMpoly (Bigram + Features) 0.105 0.027 0.125
RAkELd-LR (Bigram + Features) 0.095 0.057 0.167
MLkNN (Bigram + Features) 0.099 0.000 0.053
PCT (Bigram + Features) 0.123 0.256 0.104
RF-PCT (Bigram + Features) 0.090 0.164 0.067
DBLCC 0.107 0.090 0.191
LSTM + Glove 0.095 0.000 0.077
CNN + Glove 0.088 0.010 0.115
BiLSTM + Glove 0.095 0.006 0.084
BiLSTM+ Attn + Glove 0.094 0.001 0.095
LSTM + Crisis-WV 0.097 0.011 0.084
CNN + Crisis-WV 0.089 0.009 0.113
BiLSTM + Crisis-WV 0.093 0.015 0.082
BiLSTM+ Attn + Crisis-WV 0.096 0.004 0.093

Table 5.2: Result of Classifier(s) on TREC-IS (combined) (Event-wise split).
*DNF signifies the Did Not Finish

From our experiments with deep learning techniques, using different word

vectors do not exhibit much significant difference. Using attention mechanism

along with the LSTM improves the performance. However, these methods do not

perform in macro-F1 as well as the statistical models described before. In both

the approaches, CNN based text classification achieves the lowest hamming loss,
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5.2 Experimental Results & Analysis

although the F1-score is significantly lower than that of statistical methods.

For the other subtask, i.e., criticality score prediction, we formulate the prob-

lem as a binary classification problem by converting priority level ‘High’ and

‘Critical’ to ‘label 1’ and others to ‘label 0’. As the evaluation measure assumes

highly important tweets to have a score greater than 0.7, we scale the class predic-

tion probability 0.5-1 to 0.7-1 and scale 0-0.5 to 0-0.69 according to the semantics

of the evaluation measure described in Section 4.4. We use text features (tfidf

vector of bigrams), POS tags of the tokens and the numerical features mentioned

earlier. We present the performance of this classification with variety of classi-

fiers in Table 5.3. We also present the score under the metric proposed by TREC

guidelines, where the class prediction is used from the best performing model

BR-LR. (Ref Table 5.1)

Measure Classifier
LR SVM Decision

Tree
Random
Forest

BiLSTM
+

Attention

CNN

Accuracy 0.853 0.863 0.622 0.874 0.852 0.882
Precision 0.455 0.479 0.219 0.698 0.449 0.558
Recall 0.625 0.552 0.737 0.074 0.429 0.459
F1-score 0.526 0.513 0.338 0.134 0.439 0.504
High Priority Worth 0.035 -0.352 0.185 -0.864 -0.246 -0.230
Low Priority Worth 0.397 0.444 0.132 0.461 0.412 0.438
AAW 0.216 0.045 0.158 -0.201 0.082 0.104
RMSE 0.259 0.204 0.334 0.173 0.322 0.308

Table 5.3: Priority Prediction for TREC-IS (combined) (Train-Test split)

As shown in Table 5.3 AAW score of a classifier built on logistic regression

is higher than the other classifier. Whereas considering only high priority worth,

we see Decision Tree performs the best due to high recall. Must be mentioned

here, as the penalty for consecutive false positive predictions is lesser than the

same for false negatives in the worth calculation (Ref 4.4), predicting almost

all positive i.e., high recall increases the high priority worth. LSTM however

could not perform as good as Logistic Regression and SVM whereas CNN having

the highest accuracy of classification and precision better than LR and SVM.
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5.3 Binary Relevance : Analysis

Overall, Logistic Regression performs best with F1-score of 0.526, giving highest

Accumulating Alert Worth (AAW) value 0.216 on the test split.

On submission to the TREC-IS task, our best model, BR-LR performs best

among 34 global submissions. The model scores a macro averaged F1 of 0.1969

for actionable labels with a significant margin from the second best score of 0.1556.

On macro F1, average across all the labels, it also gains highest score of 0.2512

whereas the second best score is 0.2312. We also gain the first position in the

second subtask with the use of Logistic Regression based classification, obtaining

AAW -0.1839 in test data, where the second best AAW is -0.1973.

5.3 Binary Relevance : Analysis

Figure 5.1: Label Co-occurence of TREC-IS (combined) data
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5.3 Binary Relevance : Analysis

Experiment and as well as the result on the test data suggesting Binary Relevance

to be apparently the best among all the approaches, indicates there might not be

any significant dependency among labels (Ref. Figure 5.1). So, in this subsection

we analyze the performance of binary relevance method with the availability of

the ground truth of the test data. Another shortcoming of binary relevance

is independent training of classifiers for each label may produce complete class

failure when for a particular test sample all the classifier fails to identify the

positive class, finally predicting an empty label set for that sample.

In this scenario, one obvious choice, according to T-Criterion method [35] is

to predict the class label with least negative output. In other words, the label for

which the test sample is closest to the class boundary should be the prediction

with the assumption that the classifier have just missed the sample to put into the

positive side (Closest Word Assumption) [36]. We experiment with predicting the

default ‘Irrelevant’, and also a single randomly chosen label for these scenarios.

The results on validation set as well as test set are described in the Table 5.4.

Data No-Allocation T-Criterion ‘Irrelevant’ Random-1
validation 0.5122/0.4396 0.5109/0.4326 0.5114/0.4396 0.4947/0.4127

test 0.2512/0.1969 0.2576/0.1976 0.2512/0 1969 0.2505/0.1955

Table 5.4: f-1 score for different class failure choices. The values at right side of
the ’/’ indicates the macro averaged F1 for actionable classes and the values at
the left indicates the total macro averaged F1 score.
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Chapter 6

Offensive content identification in

Tweets

Introduction

In this section we discuss about the second task, identifying offensive content in

tweets. As mentioned earlier, we only address the problem of solving whether a

tweet is offensive or not.

6.1 Approaches

As a binary classification task, we approach this problem similar to the previous

one, experimenting with both machine learning and deep learning approaches. We

use tf-idf vectorization on the clean and pre-processed tweets. We present the

experiments on unigram, bigram tokenizations of tweets. We also use additional

text features as mention in Section 3.1. From a thorough observation, it is evident

that most of the profane words are intentionally covered with characters like ’*’,

’$’ etc on Twitter and Facebook. We have also made a spell correction dictionary

from such lexicons to normalize almost all manipulated tokens into similar token

during pre-processing step.

We have prepared a baseline with SVM and Logistic Regression along with

other classifiers such as decision tree, random forest. We also applied LSTM [7],
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6.2 Experimental Results

CNN [9] based text classification. we use 200 dimensional Glove word embedding

[33], as well as 300 dimensional Fasttext word embedding trained on a large

English Wikipedia corpus. We train the model by minimizing binary cross entropy

loss function. The hyperparameters were determined by experimentation on a

10% validation set.

We use scikit-learn, Pytorch package of Python to implement all the statistical

learning methods and the deep learning algorithm respectively.

6.2 Experimental Results

Results of the experiments are listed in Table 6.1. SVM with bigram tf-idf fea-

ture vectorization and with additional features performs best among statistical

machine learning algorithms. Addition of Parts of Speech tags does not improve

any performance significantly.
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6.2 Experimental Results

Classifier (Features) Accuracy Macro F-1

SVM (Unigram) 0.791 0.743
LR (Unigram) 0.789 0.733
Decision Tree (Unigram) 0.718 0.67
Random Forest (Unigram) 0.812 0.708
SVM (Bigram) 0.792 0.736
LR (Bigram) 0.776 0.718
Decision Tree (Bigram) 0.763 0.719
Random Forest (Bigram) 0.790 0.656
SVM (Bigram + Text Features) 0.808 0.756
LR (Bigram + Text Features) 0.801 0.747
SVM (Bigram + Text Features + POS Tags) 0.795 0.744
LR (Bigram + Text Features + POS Tags) 0.803 0.748
LSTM + Glove 0.811 0.733
CNN + Glove 0.821 0.761
BiLSTM + Glove 0.811 0.732
BiLSTM + Attention + Glove 0.813 0.765
LSTM + fasttext 0.816 0.758
CNN + fasttext 0.833 0.784
BiLSTM + fasttext 0.823 0.766
BiLSTM + Attention + fasttext 0.828 0.771
BERT 0.859 0.741

Table 6.1: Result of Classifier(s) on OLID Dataset (Test Data)

Bidirectional LSTM model performs closer but not better than SVM, giving

a F1 score of 0.732. While used with attention mechanism, the performance

improves, giving a F1 score 0.765. Hence using attention is definitely a wise

choice here. Where using Fast-text word embedding improves the overall results

of all the deep learning architectures. Among them CNN performs the best with

a F1-score of 0.784. In this problem, we observe a superiority of the deep learning

techniques. Intuitively, these methods capture contextual features of the texts

from the dense word vectors of the tokens and give a better feature representation

for classification.

We also experimented with BERT (Ref 2.2.1), with default parameters such

as maximum sequence length 128, learning rate 2×10−5 and trained for 2 epochs.

BERT performs best according to accuracy measure. However, it does not per-
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6.2 Experimental Results

form better than most of the deep learning models in terms of F1 score. Since,

macro-F1 is unweighted average of F1 score for all the classes, higher accuracy

does not imply higher F1 score due to class imbalance. We can conclude that

proper hyperparameter tuning is required to get the best performance of BERT

in sentence classification task.
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Chapter 7

Conclusions

In this dissertation, we approach the problem of classification, restricted to noisy

short social media text. We consider both binary and multi-label learning prob-

lems. The two main questions that we attempted to answer in the course of

dissertation are:

• How important is pre-processing for social media text analysis?

• Do Deep Learning techniques offer significant improvements in performance

over traditional learning techniques?

To answer the first question : our experiments suggest that pre-processing for

social media text is indeed very important. Our experiments have shown that

various pre-processing steps such as, normalizing word contractions, normalizing

slangs, languages used by netizens, mis-typed and misspelled words, expanding

emoticon meanings etc, yield small improvements which add up when these steps

are combined.

The second question that we try to address here, has already been discussed

by many researchers. The success of deep learning (DL) is usually attributed

to the ability of DL techniques to perform automatic feature extraction from the

input itself, deep learning methods are considered to effectively learn the features,

when applied for some target tasks like classification etc; in many cases, a DL

pipeline outperforms the traditional machine learning techniques that make use

of handcrafted features.
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Our experiments with 2 different datasets and variants of short text classifica-

tion suggest that there is no hard and fast rule that DL always outperforms the

statistical machine learning approaches. The outcome depends on many factors,

like the amount of data available, the distribution of the data, the target task etc

and mainly selection and tuning of hyper-parameters and the conclusion can be

drawn after appropriate experiments using different approaches. Such empirical

study continue to be important because the interpretability of Deep Learning is

still a question of research, whereas the older machine learning approaches are

relatively easy to interpret and comprehend. Further, some of the most effective

DL techniques are still too computationally intensive to be used with commodity

hardware.
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classification via probabilistic classifier chains,” in Proceedings of the 27th

International Conference on International Conference on Machine Learning,

ICML’10, (USA), pp. 279–286, Omnipress, 2010. 12

[20] J. Read, B. Pfahringer, and G. Holmes, “Multi-label classification using

ensembles of pruned sets,” in Proceedings of the 2008 Eighth IEEE Inter-

national Conference on Data Mining, ICDM ’08, (Washington, DC, USA),

pp. 995–1000, IEEE Computer Society, 2008. 12

[21] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Random k-labelsets for multil-

abel classification,” IEEE Transactions on Knowledge and Data Engineering,

vol. 23, pp. 1079–1089, July 2011. 13

[22] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach to multi-

label learning,” Pattern Recognition, vol. 40, pp. 2038–2048, 2007. 13

[23] D. Kocev, C. Vens, J. Struyf, and S. Džeroski, “Ensembles of multi-objective
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