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Abstract

Cops and Robber is a two-player pursuit-evasion game played on graphs.

Here, one player controls a set of k cops, and the other player controls

a single robber. The game starts with k cops placing themselves on the

vertices of a graph. More than one cops can occupy the same vertex.

Then the robber enters a vertex of the graph. Then the game occurs

in rounds and in each round, first the cops move, and then the robber

moves. In a cop move, each cop either moves to an adjacent vertex or

stays on the same vertex. In a robber move, the robber either moves to

an adjacent vertex or stays on the same vertex. If at some point in the

game, one of the cops occupies the same vertex as the robber, we call it

a capture. The goal of the cops is to capture the robber, and the robber

aims to evade the capture. The cop number of a graph G, denoted as

c(G), is the minimum number of cops that can ensure the capture against

all strategies of the robber. A graph is cop-win if its cop number is 1.

This game is a perfect information game, that is, each player can see

other players and their moves.

Many variants of this game have been studied, mainly varying based on

the capabilities of the cops and the robber. We begin our study by consid-

ering two variants: the Cops and attacking Robber and the lazy Cops and

Robber, on various kinds of grids originating from the Cartesian product

of paths and cycles. In particular, we study the attacking cop number



of planar grids, cylindrical grids, toroidal grids, high-dimenstional grids,

and hypercubes. We study the lazy cop number of planar, cylindrical,

and toroidal grids. We also study the classical Cops and Robber game

on solid grids and partial grids.

Next, we study three models of this game on oriented graphs which

differ based on the kind of moves the players can make. These models

are (i) the normal cop model, where both cops and robber can only move

along the direction of the arcs; (ii) the strong cop model, where the cops

can move along or against the direction of the arcs while the robber can

only move along them; and (iii) the weak cop model, where the robber

can move along or against the direction of the arcs while the cops can

only move along them. For the normal cop model, we show that there

exist strongly connected oriented graphs having high girth, high mini-

mum degree, and high cop number. We also characterize the cop-win

graphs in various graph classes like transitive-triangle-free, outerplanar,

and subcubic graphs. For the strong cop model, we construct graphs

with unbounded cop number, and also study the cop number of grids,

outerplanar, and planar graphs. For the weak cop model, we characterize

the cop-win graphs.

Next, we study the game of Cops and Robber on string graphs. We

give an algorithm to capture the robber on a string graph using at most

14 cops. Thus we prove that the cop number of string graphs is upper

bounded by 14.



Let H be a subgraph of G. We say that cops guard H if the robber

cannot enter the vertices of H without getting captured. Finally, we

study the applications of guarding subgraphs to bound the cop number

of some graph classes. In particular, we study the cop number of butterfly

networks and AT-free graphs. We also study the game of Cops and fast

Robber for AT-free graphs.
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Introduction

Contents

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Graph Theory Preliminaries . . . . . . . . . 7

1.1.2 Cops and Robber Game . . . . . . . . . . . 10

1.2 Brief Survey . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Contributions and thesis overview . . . . . . . . . . 20

1.3.1 Models considered . . . . . . . . . . . . . . . 20

1.3.2 Organisation and Results . . . . . . . . . . . 23

The primary focus of this thesis is on the game of Cops and Robber.

Before getting into the game, we give a brief introduction to the theory

of games itself. Since the literature on the study of games is massive and
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beyond the scope of this thesis, we give a brief overview of the games

that are relevant to the theme of this thesis.

In general, we consider a game as a structured form of play where a

set of players contest, following some rules, to win. At any instance, the

snapshot of the game is referred to as the state of the game. Some of

these states are marked as winning states. Players change the state of

the game aiming to reach a winning state. The player to reach a winning

state first wins the game.

Although multiplayer games have been studied, we consider only the

two-player games in this thesis. There are two major branches of study in

the game theory: combinatorial game theory and economic game theory.

Broadly, the combinatorial game theory deals with the games of pure

strategy and no chance, and the economic game theory deals with games

that also involve an element of chance. Humans started playing and

discussing games long before the formal study of mathematical game

theory began.

Combinatorial games are usually 2-player sequential games, where the

two players move alternately. Moreover, these are perfect information

games, that is, both players know the state of the game during the whole

play. Also, there are no chance devices, and the game advances based

purely on the strategy of the two players.

The study of combinatorial games began with the impartial games, in

which both the players have the same allowable moves, and the moves

allowed at any point in the game depend solely on the state of the game

and not on which of the two players is playing. Some examples of im-

partial games are Nim [27], Sprouts [53], Kayles [45], and Cram [54]. In

partisan games, the moves available to one player are not available to

the other, that is, the moves allowed at any point in the game depend

both on the state of the game and on which of the players is playing.

One example is chess, where one player can move only the white tokens,

whereas the other player can move only the black tokens. The games

2



that we consider in this thesis are partisan games.

Although we do not consider the economic game theory in this the-

sis, it is worth mentioning that economic game theory encompasses an

important part of game theory that deals with problems that arise in

many practical scenarios. In economic game theory, there is an element

of chance and there might be some chance devices involved. Moreover,

in economic game theory, there might be simultaneous play where both

players can act simultaneously (sequential games also exist). Further-

more, these might be imperfect information games, where players may

not know the full state of the game all the time. The field of game theory

is vast and the boundary between the combinatorial game theory and

economic game theory is not very stringent. Also, it is worth mentioning

that there are some variations of the Cops and Robber game that are

studied in the framework of economic game theory. Some examples are

simultaneously moving Cops and Robbers [74] and generalized Cops and

Robber [70].

The games considered in this thesis are the pursuit-evasion games and

fall broadly under the category of graph searching. Suppose we have to

search for some data that is on some vertex of the graph. We can use any

standard graph search algorithm like breadth first search (BFS) or depth

first search (DFS), and search the data if it is on some vertex of the graph.

However, if the search object is moving in the graph, these graph search

algorithms do not ensure that they can search the search object. Graph

searching encompasses moving target search in graphs, that is, the search

object is moving in the graph. To capture the worst-case behaviour, we

consider the search object as an adversary. Hence, we can define graph

searching problems in the form of games between a set of searchers and

some evaders that do not want to be found.

Suppose a person is lost in a cave and a group of searchers aim to

find that lost person. Also, the searchers know the structure of the cave

but do not know the position of the lost person. Also, the person who
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is lost has no coordination with the search team and may be moving in

the cave. What is the minimum number of searchers that are required to

search the lost person in the cave irrespective of the movement of the lost

person? In the 1970s Richard Breisch, a spelunker, asked this question

to his mathematician friend T.D. Parsons. Breisch also suggested some

formulations of this problem and suggested some conjectures. Later, Par-

sons gave a precise mathematical formulation of this problem and wrote

two papers [89, 90]. These papers gave rise to the formal theory of graph

searching and graph sweeping. Parsons modeled this problem in the fol-

lowing manner. He considered the cave as a finite connected graph in

which the lost person is moving continuously. The searchers must move

according to a strategy based solely on the graph that must search the

lost person, whose position is not known to the searchers. Moreover, to

capture the worst-case behaviour, it was assumed that the lost person

can see the movement of the searchers and does not want to be found.

N. Petrov [91] studied a similar pursuit-evasion problem independently.

Golovach [59, 60] later proved that both these above problems, formu-

lated by Petrov and by Parsons, are equivalent, and can be modeled as

the following decontamination game. Let G be a graph. Initially, the

whole graph G is contaminated and the goal is to decontaminate G. For

this purpose, we have searchers and the goal is to use a minimum number

of searchers. In a move, a searcher can either be placed on a vertex of

the graph, removed from a vertex of the graph, or can slide from a vertex

u occupied by the searcher to a vertex v along the edge uv. When a

searcher slides along the edge uv, we say that the edge uv is cleared. If

at some point in the game a cleared edge e can be connected with a con-

taminated edge using a path P that does not contain any searchers, then

e becomes contaminated again. The goal is to clear all the edges of G

using a minimum number of searchers. Here, the contamination may be

considered as the territory of an arbitrarily fast invisible fugitive. Many

variants of this game have been generated and studied by restricting or

4



enhancing the abilities of the searchers or the fugitive.

In the above game model by Golovach, the fugitive can hide on both

the vertices and the edges of the graph. These kinds of games naturally

model problems like the following: searching for a moving vehicle on a

road network, decontaminating a pipe system of some poisonous gas, and

many more. The problems where the fugitive can hide on the vertices as

well as the edges are usually referred to as the graph sweeping problems.

There are many practical problems which can be modeled by search

games on graphs where the fugitive can only hide on vertices (although

it can move along the edges). One such example is to look for some data

on a computer network. The problems where the fugitive can only hide

on the vertices of the graph are usually referred to as the graph searching

problems. In all the games we consider in thesis, the fugitive can only

stay on vertices, and hence all these problems fall under the category of

graph searching.

Many variants of these problems are studied and these variants mainly

differ on the following properties of the game.

1. Visible/Invisible fugitive: If the searchers can see the location and

movement of the fugitive, then we say that the fugitive is visible,

and invisible otherwise.

2. Speed of the fugitive: If the fugitive has speed s, then it can move

along a path of length at most s that does not contain any searcher.

Games with different speeds of the robber (ranging from s = 1 to

unbounded speed) have been considered.

3. Lazy/Agile fugitive: The fugitive is lazy if it can move only if a

searcher is attacking the fugitive, and is agile if the fugitive can

move any time of the game.

4. Connected search: The search is said to be connected if the cleared

region always induces a connected component.

5



5. Monotonicity of search: A search strategy is said to be monotone

if the fugitive cannot recontaminate a cleared edge/vertex. It en-

sures that the searchers don’t have to search an already searched

subgraph. It is not always possible to find an optimal monotone

search strategy. If the search strategy for a game is monotone, then

we can check whether the game is in class NP by just considering

the monotone strategies.

Many variants of the graph searching have been considered varying

these properties and some other properties of the search. Alspach [4]

wrote a brief survey on graph searching. Fomin and Thilikos [49] have

compiled an annotated bibliography on graph searching, and Nisse [84]

have compiled a recent survey on the topic.

Cops and robber is a graph searching game. In this game, the searchers

are referred to as cops and the fugitive is referred to as the robber. This is

a perfect information and sequential game. We define the game formally

in Section 1.1.2. The cops as well as the robber can only stay on the

vertices of the graph and make alternating moves starting with the cops.

The goal of the cops is to capture the robber, and both cops and the

robber have speed equal to 1. If at some point in the game one of the

cops occupies the same vertex as the robber, we call it a capture. The

goal of the game is to capture the robber using a minimum number of

cops. Many variants of this game are also studied. A brief survey of the

game is given in Section 1.2.

1.1 Preliminaries

In this section, we give the preliminaries required for this thesis. In

Section 1.1.1, we define the standard graph theoretic terms and notions

used in this thesis. In Section 1.1.2, we define the game of classical Cops

and Robber.
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1.1.1 Graph Theory Preliminaries

Graphs are primary object of study in this thesis. Hence, we begin by

giving the necessary definitions and preliminaries about graph theory.

For further details on graph theory, books by West [107] and Diestel [44]

serve as good resources.

A graph G is a triple consisting of a vertex set V (G), an edge set E(G),

and a relation that associates each edge with two (not necessarily distinct)

vertices called its endpoints. A loop is an edge whose endpoints are the

same, and multiple edges are the edges having the same endpoints.

A simple graph is a graph without loops or multiple edges. We denote

a simple graph G as G(V,E), having vertex set V (G) and edge set E(G).

Here we consider E(G) as a set of unordered pair of vertices and write

an edge e = uv (or e = vu) for an edge e with endpoints u and v. Unless

specified otherwise, the graphs that we consider in this thesis are simple.

Moreover, when it is clear from context, we denote V (G) as V and E(G)

as E. The order of a graph is the size of its vertex set and is usually

denoted by n, that is, n = |V |.
If u and v are two endpoints of an edge e, then we also say that u

and v are neighbours and are adjacent. For a vertex u, we define its

open neighbourhood, denoted by N(u), as {v | uv ∈ E}. We define close

neighbourhood of u, denoted by N [u], as N(u)∪u. We say that a vertex v

is dominating or universal if N [v] = V . The degree of a vertex v, denoted

by d(v), is the number of edges incident on v. The minimum degree

of a graph G is denoted by δ(G), and δ(G) = minv∈V d(v). Similarly,

the maximum degree of a graph G is denoted by ∆(G), and ∆(G) =

maxv∈V d(v). A graph is said to be k-regular if each vertex has degree k.

A homomorphism f from G to H is a function f : V (G) −→ V (H) (also

denoted as f : G −→ H) which preserves edges, that is, if uv ∈ E(G),

then f(u)f(v) ∈ E(H). An isomorphism f from G to H is a bijective

function f : V (G) −→ V (H) (also denoted as f : G −→ H) such that
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uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say that G is isomorphic

to H, written G ∼= H, if there is an isomorphism from G to H.

We say that a sequence of vertices u1, . . . , uk is a path if uiui+1 ∈ E for

i < k. Here we say that u1 and uk are the endpoints of the path. We say

that P is a u, v-path if u and v are endpoints of P . Moreover, a path of

order n is denoted as Pn. A graph is connected if there is a path between

every pair of vertices in the graph.

A cycle on n vertices, denoted as Cn, is isomorphic to a graph with

vertex set V = {v1, v2, v3, . . . , vn} and edge set E = {viv(i+1) mod n) | vi ∈
V }. A graph is acyclic or forest if it contains no cycles. A tree is a

connected and acyclic graph. The girth of a graph is the size of a smallest

cycle of the graph.

A chord is an edge joining two non-consecutive vertices of a path or a

cycle. A chordless cycle in G is a cycle of length at least 4 in G that has

no chord. A hole is a chordless cycle in the graph.

We say that a graphH(V ′, E ′) is a subgraph of graphG(V,E), if V ′ ⊆ V

and E ′ ⊆ E ∩ (V ′ × V ′). We say that H is an induced subgraph of G, if

V ′ ⊆ V and for ∀u, v ∈ V ′, edge uv ∈ E ′ if and only if uv ∈ E. Let x be

a vertex of G. Then G\x represents the graph induced by vertices V \x.

Similarly, G \H represents the graph induced by vertices V \ V ′. For a

subgraph H of G, we define close neighourhood of H, denoted by N [H],

as N [H] =
⋃
v∈V (H)N [v].

For a graph G and S ⊆ V (G), let G[S] denote the subgraph of G

induced by the vertices of S. A complete graph on n vertices, denoted by

Kn, has n vertices which are pairwise adjacent. A subgraph H of G is

said to be a clique, if H induces a complete graph. We say that a set

of vertices S is independent if G[S] contains no edges. A graph is said

to be bipartite, if its vertices can be partitioned into two independent

sets; and is said to be k-partite if its vertices can be partitioned into

k independent sets. A complete bipartite graph, denoted by Km,n, is a

bipartite graph containing two partitions of size m and n such that two
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vertices are adjacent if and only if they are in different partitions.

Let d(u, v) denote the length of a shortest u, v-path. If u = v, then

d(u, v) = 0 and if there is no u, v-path, then d(u, v) = ∞. An isometric

path is a shortest path between its endpoints.

Let A × B denote the Cartesian product of two sets A and B. The

Cartesian product of two graphs G and H, denoted by G�H, has vertex

set V (G)× V (H) and vertices (a, a′) and (b, b′) are adjacent if a = b and

a′b′ ∈ E(H), or a′ = b′ and ab ∈ E(G). Several other graph products have

been considered in the literature and the book by Imrich and Klavžar [66]

serves as a good reference for the subject.

For a graph G, a set of vertices S is said to be a dominating set if

every vertex not in S has a neighbour in S. A dominating set S with the

minimum cardinality is said to be the minimum dominating set and the

cardinality of S, that is |S|, is the domination number of G.

In this thesis, we consider directed graphs too, also referred to as di-

graphs. A directed graph is defined analogous to an undirected graph

other than the fact that each edge is an ordered pair. The edges in di-

rected graphs are referred to as arcs. Let uv be an arc in a directed graph
−→
G , then u is referred to as the tail of the arc, v is referred to as head

of the arc, and together both of them are referred to as endpoints of the

arc. An arc where both its endpoints are the same is referred to as loop.

Let uv be an arc of a digraph
−→
G . We say that u is an in-neighbor of

v and v is an out-neighbor of u. Let N−(u) and N+(u) denote the set of

in-neighbors and out-neighbors of u, respectively. A vertex without any

in-neighbor is a source and a vertex without any out-neighbor is a sink.

An orientation of a graph G is an assignment of direction to the edges

of the undirected graph G, resulting in the directed graph
−→
G . Here G is

said to be the underlying graph of
−→
G . A directed path is an orientation

of a path such that all arcs are oriented in the same direction. Similarly,

a directed cycle is an orientation of a cycle such that all arcs are oriented

in the same direction. A digraph is said to be a directed acyclic graph

9



(also referred as DAG), if it does not contain a directed cycle. A digraph

is said to be strongly connected if there exists a directed path between all

ordered pairs of vertices.

An oriented graph is a digraph without loops or directed 2-cycles. Fur-

thermore, assigning orientations to any simple graph gives an oriented

graph. In this thesis, the directed graphs we consider are mostly oriented

graphs.

1.1.2 Cops and Robber Game

Several variations of the Cops and Robber game have been studied. Here

we define the variation given by Aigner and Fromme [3], also referred to

as the classical Cops and Robber.

Cops and Robber is a two-player pursuit-evasion game played on a

connected graph. Here, one player controls a set of k cops, and the other

player controls a single robber. The game starts with k cops placing

themselves on the vertices of a graph. More than one cop can occupy the

same vertex. Then the robber enters the graph on a vertex (not already

occupied by a cop). Then the game occurs in rounds and in each round,

first the cops move, and then the robber moves. In a cop move, each

cop either moves to an adjacent vertex or stays on the same vertex. In

a robber move, the robber either moves to an adjacent vertex or stays on

the same vertex. When on a cop/robber move, a cop/robber stays on the

same vertex, we say that cop/robber skips the move or passes the move.

If at some point in the game, one of the cops occupies the same vertex

as the robber, we call it a capture. The goal of the cops is to capture the

robber, and the goal of the robber is to evade the capture. If the cops

can capture the robber in a finite number of moves, then we say that the

cops win, else, the robber wins. Moreover, this is a perfect information

game, that is, each player can see other players and their moves.

The cop number of a graphG, denoted by c(G), is the minimum number
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of cops that can ensure the capture against all the strategies of the robber.

If we place a cop on each vertex of the graph, then the robber cannot enter

the graph without being captured. Hence the cop number is well defined

for a graph G, and the order of G is the obvious upper bound for the cop

number. Another obvious (but better) upper bound is the domination

number of G, because if we place a cop on each vertex of a dominating

set, then the robber will be captured in the next round (or the next cop

move). Moreover, for a family F of graphs, c(F) = max{c(G) | G ∈ F}.
A graph is said to be cop-win if its cop number is 1. In this thesis, we

represent the robber as R.

The assumption of connected graph is obvious, as for a disconnected

graphG having connected componentsH1, . . . , Hm, the cop number c(G) =∑i=m
i=1 c(Hi). Hence, the cop number of a disconnected graph G can be

computed by computing the cop number of its connected components

individually. Furthermore, the assumption of a single robber is also obvi-

ous, as if cops can ensure the capture of a single robber in a finite number

of moves, then they can capture all robbers one by one in a finite number

of moves. All graphs considered in this thesis are simple, connected, and

finite. Although we consider the Cops and Robber game on only finite

graphs, the game has also been studied on infinite graphs [20, 102]. Also,

the cop number of an infinite graph can be finite [20].

The first question considered regarding this game was to characterize

the cop-win graphs [86, 95]. Consider the last move of the robber R
before the capture. Let R be on a vertex u and the cop C is at a vertex

v. If R can move to a vertex x such that x /∈ N [v], then observe that C
cannot capture R. Hence, the capture is only possible if N [u] ⊆ N [v].

We call a vertex u a corner of v if N [u] ⊆ N [v]. Observe that for a graph

G to be cop-win, G must have at least one corner vertex. A graph is

said to be dismantlable if on successively removing a sequence of corner

vertices, it can be reduced to a single vertex. It is known that a graph

G is cop-win if and only if G is dismantlable [3, 86, 95]. Some examples
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of cop-win graphs are trees, Kn, and chordal graphs. Not all graphs are

cop-win. For example, 2 cops are necessary to capture the robber in the

graph C4 (cycle on 4 vertices).

Let H and T be subgraphs of G. We say that cops guard H if the

robber cannot enter the vertices of H without getting captured, by one

of the cops guarding H, in the next cop move. We say that the robber

is restricted to T , if the robber cannot leave the vertices of T without

getting captured. Here T is the robber territory. Guarding a subgraph H

of G is a technique used heavily to bound the cop number of graph G.

The capture time of a graph G using k cops, denoted as captk(G), is

the minimum number of rounds required by k cops to capture the robber

in G, assuming the optimal play from both cops and robber.

1.2 Brief Survey

The game of Cops and Robber was introduced independently by Nowakowski

and Winkler [86], and by Quillot [95]. All of them considered the game

with a single cop and a single robber and characterized the graphs where

a single cop can capture the robber. Later, Aigner and Frommer [3] gen-

eralized the game to multiple cops, which is now referred to as Classical

Cops and Robber, and also defined the cop number. They showed that

for a graph G having girth 5, c(G) ≥ δ(G) and using this lower bounding

technique showed that for every natural number k, there exists a graph

G′ such that c(G′) > k. In contrast to this result, they proved that

the cop number of planar graphs is at most 3, by proving and using the

lemma that for a shortest u, v-path P of a graph G, one cop can guard

P after a finite number of rounds. This lemma has been used heavily

by a lot of authors and also in this thesis. Since the inception of this

game, a lot of research has occurred in the field. The book by Bonato

and Nowakowski [24] serves as a good reference on the topic.

A lot of research has been done regarding the computational complexity
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of finding the cop number of a graph. Berarducci and Inrigila [12] gave a

backtracking algorithm that decides whether the cop number of a graph

is at most k in time polynomial in nk. Hence, for a fixed k (and a graph

having cop number at most k), their algorithm implies a polynomial-

time algorithm to compute the cop number of a graph. Goldstein and

Reingold [58] considered the computational complexity of the Cops and

Robber game (and some of its variants). They proved that, when k is

a part of the input, it is EXPTIME-complete to decide whether k cops

can win if either the initial positions are given or the graph is directed.

They also conjectured that in the classical Cops and Robber game, to

decide if k cops can win is EXPTIME-complete. Fomin et al. [46] proved

the game to be NP-hard, that is, it is NP-hard to decide if k cops can

capture the robber in a graph. Later, Fomin et al. [48] considered the

PSPACE-hardness of some variations of the game under some restrictions.

Mamino [81] proved that it is hard in PSPACE to decide whether k cops

can capture the robber in a graph. Kinnersley [72] proved that it is

EXPTIME-complete to decide whether k cops can win in an undirected

graph, hence confirming a conjecture of Goldstein and Reingold [58].

Later, Kinnersley [73] showed that deciding whether k cops can win in a

directed graph is polynomial-time equivalent to deciding whether k cops

can win in an undirected graph, which gives an alternate proof of the

EXPTIME-completeness of the Cops and Robber game.

Cop-win graphs were characterized in [3, 86, 95]. Later, Hahn and

McGillivray [61] gave an algorithmic characterization of cop-win finite

digraphs and then reduced the k cop game to 1 cop game, hence giving

an algorithmic characterization of digraphs where k cops can win. Clarke

and MacGillivray [38] gave a relational characterization of the graphs

where k cops have a winning strategy, which in turn implies a slightly

improved polynomial-time algorithm to decide whether, for a fixed k, k

cops can win in a graph G.

Cop number is well studied in the context of the topological and ge-
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ometric properties of a graph. Aigner and Fromme [3] proved that 1

cop can guard a shortest (isometric) path, and using this proved that

the cop number for the class of planar graphs is 3. Later, Beveridge et

al. [14] proved that 3 cops can prevent the robber to cross a shortest

path in a unit disk graph, and applying techniques similar to Aigner and

Fromme [3] proved that the cop number for a unit disk graph is at most 9.

Gavenčiak et al. [56] used similar techniques and the idea of guarding the

neighbourhood of a shortest path using five cops by Chiniforooshan [33],

proved that the cop number of a string graph is at most 15. Gavenčiak et

al. [56] also studied the cop number on various other intersection graph

classes, such as outer-string graphs, interval-filament graphs, and string

graphs of higher genus.

Aigner and Fromme [3] also proposed a question about the cop number

of graphs embedded in the torus and orientable surfaces of higher genus

and conjectured that one has to add 2 cops for going to higher genus.

Quillot [96] proved the upper bound of this conjecture and showed that

the cop number of a graph with genus g is at most 3 + 2g. This result

implies that the cop number of toroidal graphs is at most 5. Schroeder [97]

later improved this result, refuting the lower bound of the conjecture,

and showed that the cop number for a graph with genus g is at most

b3/2 ∗ genus(G)c+ 3. This also implies that the cop number for toroidal

graphs is at most 4. Moreover, he proved that the cop number of a

graph with genus 2 is at most 5. He also conjectured that for a graph G

with genus g, c(G) ≤ 3 + g. Bowler et al. [28] improved the upper bound

further and proved that for graphs having girth g, the cop number is upper

bounded by 4g
3

+ 10
3

. Recently, Lehner [75] proved the tight bound and

proved that the cop number for the class of toroidal graphs is 3, resolving

a long-standing open question by Andreae [6]. Cop number of graphs that

can be embedded in non-orientable surfaces has also been studied. Let

G be a graph that can be embedded in a non-orientable surface having a

non-orientable genus g′. Schroeder [97] gave an asymptotic bound proving
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that c(G) = O(g′). Later, Nowakowski and Schroeder [87] improved this

upper bound and proved that c(G) ≤ 2g′ + 1. This bound was later

improved by Clarke et al. [37], who proved that c(G) ≤ 3g′

2
+ 3

2
. Moreover,

they proved that the cop number of a graph that can be embedded in a

projective plane is at most 3, and of a graph that can be embedded in a

Klein Bottle is at most 4. They also compared the cop number of graphs

that can be embedded in orientable surfaces and that can be embedded

in non-orientable surfaces. They showed that for a graph G having non-

orientable genus g′ and a graph H having genus g′ − 1, c(G) ≤ c(H).

Another parameter studied for this game is the capture time. Bonato

et al. [18] introduced the notion of capture time; and showed that the

capture time for a cop-win graph, on n vertices, is at most n − 3 and

for chordal graphs is at most bn
2
c. Later, Gavenčiak [55] showed that for

a cop-win graph of order n, the capture time is at most n − 4. Clarke

et al. [36] gave an algorithm to compute the capture time of the cop-

win graphs. Mehrabian [82] studied the capture time of two-dimensional

Cartesian grids. Bonato et al. [19] showed that the capture time for a d-

dimensional hypercube is θ(dlog(d)). Pisantechakool and Tan [92] showed

that the capture time for a planar graph with n vertices is at most 2n.

For a graph G on n vertices, having cop number k, it can be implied that

capture time of G is O(nk+1) (see [12, 18, 38]). Brandt et al. [30] and

Kinnersley [73], independently, proved this bound to be tight for k > 1.

They did so by constructing a family of graphs with n vertices, for all

k > 1, such that the capture time of graphs from this family using k cops

is Ω(nk+1).

Bonato et al. [25] studied the capture time of the graphs using more

cops than required (more than the cop number of a graph). They showed

that as more cops are added, the capture time decreases monotonically.

They studied the capture times of trees, grids, hypercubes, and binomial

random graphs using different number of cops. Breen et al. [31] intro-

duced the notion of throttling-number of a graph, that is, the minimum
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value of k+captk(G), where k is the number of cops used and captk(G) is

the capture time of G using k cops. They studied the throttling number

of various graphs and characterized graphs having low throttling num-

ber. They also compared the behaviour of throttling number with various

graph parameters such as domination number, radius, girth, and diame-

ter of a graph. They also posed a question about the complexity of com-

puting the throttling number, which was later answered by Shitov [100],

who proved that computing the throttling-number of a graph is PSPACE-

complete. Another interesting parameter to compute the speed-up using

more cops was studied by Luccio and Pagli [79], where they defined work

as k × captk(G) and the goal is to minimize the work. They studied the

capture time for grids and tori using different number of cops.

The lower bounding technique of Aigner and Fromme [3] of girth five

graphs is the most used technique for lower bounding the cop number of a

graph. As implied by the lower bound for the Zarankiewicz problem [108],

an extremal graph with girth at least five has Ω(n3/2) edges. In a graph

with Ω(n3/2) edges if there is a vertex whose degree is less than c
√
n, for

an appropriate constant c, then we can remove it and still get a smaller

graph with Ω(n3/2) edges. Hence, eventually, every vertex has degree

Ω(
√
n). By the lower bounding technique of Aigner and Fromme [3], the

cop number of such a graph is Ω(
√
n). Meyniel [50] conjectured this to

be tight, that is, O(
√
n) cops are sufficient to capture the robber in any

connected graph. This is probably the deepest conjecture in this field,

and has since been the focus of many results. Frankl [50] showed that

for a graph G of order n, c(G) = O(n loglogn
logn

). Later, Chiniforooshan [33]

extended the idea of guarding a shortest path [3] to guarding the closed

neighbourhood of a shortest path using five cops, and using this proved

that c(G) = O( n
logn

). Lo and Peng [78] proved the Meyniel’s conjecture

for graphs with diameter 2 and for bipartite graphs with diameter 3. Fur-

thermore, for general graphs they showed that c(G) = O
(

n

2(1−o(1))
√

log2(n)

)
.

Scott and Sudakov [98] also proved a similar bound for the Meyniel’s con-
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jecture independently, proving that c(G) = O
(

n

2(1+o(1))
√

log2(n)

)
. Frieze et

al. [51] generalized these bounds to the variation of the game where the

robber can move more than one edges at a time. The Meyniel’s conjecture

has also been studied for random graphs (see [16, 93, 94]). For a brief

survey on Meyniel’s conjecture, see the survey by Baird and Bonato [8].

Game of Cops and Robber is also studied on directed graphs. For di-

rected graphs, the rules of the game are similar to the classical Cops and

Robber game, with the only difference that a player (cop/robber), in its

turn, can either move to an outneighbour of the vertex occupied by the

player or stay on the same vertex. Hamidoune [62] considered the game

on Cayley digraphs. Frieze et al. [51] studied the game on strongly con-

nected digraphs and gave an upper bound of O
(
n(log logn)2

logn

)
for cop num-

ber in digraphs. Along these lines, Loh and Oh [77] constructively proved

the existence of a strongly connected planar digraph with cop number

greater than three. They also proved that every n-vertex strongly con-

nected planar digraph has cop number at most O(
√
n), thus confirming

the Meyniel’s conjecture on strongly connected planar digraphs. Hahn

and MacGillivray [61] gave an algorithmic characterization of the cop-win

finite digraphs. They also showed that any k-cop game can be reduced

to 1-cop game, resulting in an algorithmic characterization for k-cop-win

finite digraphs. However, these results do not give a structural charac-

terization of k-cop-win or cop-win digraphs. Later Darlington et al. [40]

tried to structurally characterize cop-win oriented graphs and gave a con-

jecture that was later refuted by Khatri et al. [71], who also studied the

game in oriented outerplanar graphs and line digraphs. Kinnersley [73]

showed that n-vertex strongly connected cop-win digraphs can have cap-

ture time Ω(n2). Recently, the cop number of planar Eulerian digraphs

and related families was studied in several articles [41, 63, 64]. In par-

ticular, Hosseini and Mohar [64] considered the orientations of integer

grid that are vertex-transitive, and showed that at most four cops can

capture the robber on arbitrary finite quotients of these directed grids.
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De la Maza et al. [41] considered the straight-ahead orientations of 4-

regular quadrangulations of the torus and the Klein bottle and proved

that their cop number is bounded by a constant. They also showed that

the cop number of every k-regular oriented toroidal grid is at most 13.

Furthermore, Bonato and Mohar [23] explored some future directions of

research in the directed graphs. Bradshaw et. al. [29] proved that the

cop number of directed and undirected Cayley graphs on abelian groups

has an upper bound of the form of O(
√
n). Modifying this construction,

they obtained families of graphs and digraphs with cop number Θ(
√
n).

The family of digraphs obtained by this construction has the largest cop

number in terms of n, of any known digraph construction.

Several variations of the game of Cops and Robber have been studied

and they have various applications. The applications of the game ex-

tend from theory [99] to applications in artificial intelligence and other

practical applications [4, 67, 105]. If the robber is invisible, the game is

also said to be zero-visibility Cops and Robber and this game has been

studied on various graph classes [42, 104]. The game when the robber

is only visible if it is at a distance k is also studied and referred to as

limited visibility Cops and Robber [35]. Another property is the speed of

the robber and we say that the robber has speed s, if it can move along

a path of length at most s. The model where the robber is faster than

the cop is referred to as Cops and fast Robber [32, 43, 46].

One interesting variant is Helicopter Cops and Robber given by Sey-

mour and Thomas [99], which characterizes the tree-width of a graph.

In this model, the robber can move along any path in the graph that is

not occupied by a cop. Also, each cop is either in a helicopter or on a

vertex, and the goal of the cops is to land one of the cops from a heli-

copter on the vertex occupied by the robber. However, the robber can

see the helicopter landing and can move from that vertex before the cop

lands, evading capture. Seymour and Thomas [99] proved that a graph

has cop number k for this model if and only if it has tree-width k − 1.
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They also showed that the search strategy is monotone, that is, the cops

have a winning strategy in which the robber cannot occupy a vertex of

the graph that was previously occupied by a cop.

Many variants of this game were later studied and were shown to have

correspondence with various width parameters of the graphs. These vari-

ants vary on properties of the game like visibility, monotonicity, and

whether the robber is agile or lazy. For example, if the search strategy is

monotonic against an invisible and lazy (respectively agile) robber, then

the cop number characterizes the tree-width (respectively path-width) of

the graph [2].

Clean territory is the set of vertices that cannot be accessed by the

robber at a given time step. We say that a search is connected if, at every

step of the game, the clean territory induces a connected subgraph. More

recently, researchers have focused on connected search. It is shown that,

if the search is monotonic and connected against an invisible and lazy

robber, then the cop number characterizes the connected tree-width of the

graph. Also, if the search is monotonic and connected against an invisible

and agile robber, then the cop number characterizes the connected path-

width [2].

Researchers have generalized this game to directed graphs as well, to

study the width parameters in directed graphs. In the directed graph

model, the robber can move along a directed path not occupied by any

cop. For a directed graph, if the search is monotone against a visible

and agile robber, then the cop number characterizes the DAG-width of

the graph [13]. If the search is monotone against an invisible and agile

robber, then the cop number characterizes the directed path-width of the

graph [11]. If the search is monotone against a visible and lazy robber,

then the cop number characterizes the Kelly-width of the graph [65].

Apart from these, there are similar games that characterize other width

parameters such as tree-depth [57], hypertree-width [1], cycle-rank[57],

and directed tree-width [68].
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1.3 Contributions and thesis overview

1.3.1 Models considered

In this thesis, we consider several variations of the Cops and Robber game

other than the classical version defined above. They are as follows.

Cops and attacking Robber

The game of Cops and attacking Robber was introduced by Bonato et

al. [17]. In this variant, the robber is able to strike back against the cops.

If on a robber’s turn, there is a cop in its neighborhood, then the robber

attacks the cop and eliminates it from the game. However, if more than

one cops occupy a vertex and the robber attacks them, then only one

of the cops get eliminated, and the robber gets captured by the other

cop. The cop number for capturing an attacking robber on a graph G

is represented as cc(G), and is referred to as attacking cop number of

G. Bonato et al. [17] proved that c(G) ≤ cc(G) ≤ 2 · c(G). This can

be verified easily as cc(G) cops can capture the robber in the classical

version; and if we play the attacking version with 2 · c(G) cops using the

strategy of the classical variant with the only difference that there are

always at least 2 cops on a vertex. Aigner and Fromme [3] proved that

for a graph G with girth at least 5, c(G) ≥ δ(G) (δ(G) is the minimum

degree in G). Bonato et al. [17] extended this result and proved that for

a graph G with girth at least 5, cc(G) ≥ δ(G) + 1. They also proved

that for an outerplanar graph G, cc(G) ≤ 3. They further studied the

relationship between c(G) and cc(G) and proved that for a bipartite graph

G, cc(G) ≤ c(G) + 2. For a K1,m−free diameter-2 graph G (with m > 2),

they proved that cc(G) ≤ c(G) + 2 ·m− 2.
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Lazy Cops and Robber

The lazy Cops and Robber game was introduced by Offner and Ojakian [88],

who also gave bounds for hypercubes. These bounds were later improved

and generalized in [9, 101]. In this variant, at most one cop can move

during the cop’s turn. This restricts the ability of the cops with respect

to the classical version. The cop number for lazy cops to capture the

robber in a graph G is known as the lazy cop number and is denoted by

lc(G). Clearly, c(G) ≤ lc(G), as lc(G) cops can capture the robber in the

classical version (using the winning strategy of the lazy Cops and Robber

game).

This variant is also referred as one-cop-moves game. Gao and Yang [52]

studied this game on planar graphs and showed that there exists a planar

graph with lazy cop number greater than 3. Wang and Yang [106] recently

gave a relational characterization of graphs having cop number at most k.

They also studied this game on graphs having treewidth 2, Halin graphs,

and on the Cartesian product of trees having at least one edge.

Cops and Robber in oriented graphs

We consider three variants of the Cops and Robber game on an oriented

graph
−→
G . Since

−→
G is an oriented graph, one can define two types of

moves. In a normal move the cop or the robber can move along the arc,

whereas in a strong move the cop or the robber can also move against

the arc.

In the normal cop model, Player 1 (controlling the cops) can perform at

most one normal move on each of its cops, whereas Player 2 (controlling

the robber) can perform at most one normal move on the robber. In the

strong cop model, Player 1 can perform at most one strong move on each

of its cops, whereas Player 2 can perform at most one normal move on

the robber. In the weak cop model, Player 1 can perform at most one

normal move on each of its cops, whereas Player 2 can perform at most
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one strong move on the robber.

The normal (respectively, strong, weak) cop number cn(
−→
G) (respec-

tively, cs(
−→
G), cw(

−→
G)) of an oriented graph

−→
G is the minimum number

of cops needed by Player 1 to have a winning strategy in the normal

(respectively, strong, weak) cop model. Furthermore, for a family F of

oriented graphs

cx(F) = max{cx(
−→
G) |

−→
G ∈ F}

where x ∈ {n, s, w}. Given a fixed model, an oriented graph is cop-win

if Player 1 has a winning strategy playing with a single cop.

Cops and fast Robber

The game of Cops and fast Robber was introduced by Fomin et al. [46].

In this variant, the robber can move faster than the cops, that is, if the

robber has speed s, then the robber can move along a path P of length

at most s, such that no vertex of P is occupied by a cop. If s = 1, then

this variant is equivalent to the classical Cops and Robber game. Here,

cop number of a graph G, denoted by cs(G), is the minimum number of

cops that are sufficient to capture the robber with speed s.

Cops and fast Robber game is well studied on graphs. The game was

introduced by Fomin et al. [46]. They proved that this game is NP-hard

and its parameterized version is W[2]-hard. They also showed that while

for speed s = 1, the game is polynomial-time solvable for split graphs, the

game becomes NP-hard for split graphs when s = 2. They also proved

that the cop number for the class of planar graphs is unbounded when the

robber is faster than the cops. Nisse and Suchan [85] studied the game

of Cops and fast Robber on planar graphs and proved that Ω(
√
logn)

cops are necessary to capture a fast robber (even with s = 2) in n × n
grid. Later, Balister et al. [10] considered this game on an n×n grid and

improved this bound to show that exp(Ω( logn
loglogn

)) cops are necessary to

capture a fast robber with high speed. Frieze et al. [51] studied this game
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and gave an upper bound on the cop number for a graph G. Dereniowski

et al. [43] considered this game on interval graphs, with s = ∞, and

showed that this game is polynomial-time decidable for interval graphs.

1.3.2 Organisation and Results

Chapter 2: Variations of Cops and Robber on Grids

In chapter 2, we consider the game of Cops and attacking Robber and

the game of lazy Cops and Robber for various kinds of grids obtained

from the Cartesian products of paths and cycles. Apart from that, we

also study the game of classical Cops and Robber on the subgraphs of

the planar grids. In particular, we have the following results.

In Section 2.3, we consider the game of attacking Cops and Robber

on various kind of grids originating from the Cartesian product of paths

and cycles. We show that the attacking cop number of planar grids is 2.

Then we show that the attacking cop number of both cylindrical grids

and toroidal grids is 3. Next, we consider the game of Cops and attacking

Robber on hypercubes and show that in a d-dimensional hypercube
⌈
d
2

⌉
+

1 cops are sufficient to capture the attacking robber. We also show that

for a d-dimensional grid, d cops are sufficient to capture the attacking

robber.

In Section 2.4, we present our results on lazy cops and robbers. We

first show that the lazy cop number for both planar grids and cylindrical

grids is 2. It seems that on toroidal grids (Cm�Cn) a few lazy cops would

not create problems for the robber. One of the ways to strengthen the

ability of cops is to add a few flexible cops. In such a setting, all of the

flexible cops are free to move in every round, while only one of the lazy

cops can move in a round. We show that one flexible and two lazy cops

can capture the robber on toroidal grids.

In Section 2.5, we consider the game of classical Cops and Robber on

the subgraph of planar grids. We show that the cop number for the class
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of solid grids (defined in Section 2.5) is 2. Then we show that the cop

number for the class of partial grids is 3.

Finally, we draw conclusions in Section 2.6.

Chapter 3: Cops and Robber on Oriented Graphs

In chapter 3, we consider the game of Cops and Robber in oriented graphs.

The three graph parameters that we mainly consider are normal cop

number cn(·), strong cop number cs(·), and weak cop number cw(·) for

oriented graphs. In particular, we have the following results.

We start our discussion by comparing the parameters cn(·), cs(·), cw(·).
In Section 3.3, we study the normal cop number of oriented graphs.

We begin by proving a Mycielski-type result by constructing oriented

graphs with high normal cop number and girth. Then we attempt to

characterize the cop-win oriented graphs in various graph families. It

is easy to see that for an oriented graph to be cop-win, it must have a

unique source. Therefore, all graphs that we consider for being cop-win

are assumed to have a unique source vertex. In particular, we show that

an oriented triangle-free graph is cop-win if and only if it is a directed

acyclic graph (DAG). As a corollary, it proves that oriented bipartite

graphs are cop-win if and only they are DAG. We also prove a similar

result for outerplanar graphs, proving that an oriented outerplanar graph

is cop-win if and only if it is a DAG. For subcubic graphs other than K4,

we show that an oriented subcubic graph (other than K4) is cop-win if

and only if they are DAG.

In Section 3.4, we study the strong cop model on oriented graphs. We

begin by proving that there exist graphs with arbitrarily high strong cop

number. We also extend this result to bipartite graphs. Next, we consider

the strong cop number of oriented planar graphs, outerplanar graphs,

and series-parallel graphs. In particular, we prove that the strong cop

number of outerplanar graphs is two. We also prove that a specific class
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of oriented outerplanar graphs whose weak dual is a collection of paths

are strong cop-win. We also consider the strong cop model on oriented

Cartesian grids and show that they are also strong cop-win.

In Section 3.5, we consider the weak cop model on oriented graphs

and characterize the weak cop-win oriented graphs. For this, we use

a technique similar to the cop-win characterization by Nowakowski and

Winkler [86].

Chapter 4: Cops and Robber on Intersection Graphs

In chapter 4, we consider the classical Cops and Robber game on some

intersection graphs. In particular, we have the following results.

In Section 4.3.1, we consider the game of Cops and Robber on string

graphs. We show that for a string graph G, 14 cops are always sufficient

to capture the robber in G. This improves the result by Gavenčiak et

al. [56] which gives a strategy to capture the robber in a string graph G

using 15 cops. For that purpose, we also show that for a unique shortest

u, v-path P , 4 cops can guard N [P ].

In Section 4.4, we consider the game of Cops and Robber on boxicity

2 graphs. We have the following result. Let 2-BOX be the family of

boxicity 2 graphs. Then 3 ≤ c(2-BOX) ≤ 14. This improves the result

by Gavenčiak et al. [56] which is 2 ≤ c(2-BOX) ≤ 15.

Finally, we conclude our chapter in Section 4.5.

Chapter 5: Applications of Guarding subgraphs

For a subgraph H of graph G, we say that some cops guard H if R
cannot enter H without being captured by one of the cops guarding H.

This technique of guarding a subgraph has been used heavily in Cops and

Robber games to find the cop number of various classes of graphs. We

consider applications of guarding to find the cop number of some classes

of graphs.
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We begin our chapter by studying the Cops and Robber game on but-

terfly graphs and prove that the cop number for the class of butterfly

graphs is two. We do so by using a novel guarding technique. Conven-

tionally, in guarding a subgraph H of G, the subgraph H is connected

and the cops guarding H stay on the vertices of H. For butterfly graphs,

we guard a subgraph that induces an independent set using one cop and

the cop enters the vertices of the guarded subgraph only to capture R.

Next, we consider the game of Cops and fast Robber for graphs having

a dominating pair (hence for AT -free graph too). Using an application

of guarding the shortest path, we show that for a graph G having a

dominating pair, cs(G) ≤ s + 3 improving upon the previously known

bound, cs(G) ≤ 5s−1, by Fomin et al. [46]. We also consider the classical

Cops and Robber game on AT -free graphs and show that for an AT -free

graph G, the cop number c(G) ≤ 3.

Chapter 6: Conclusion

Finally, in Chapter 6, we discuss some open problems and future direc-

tions. Moreover, we introduce a new model for oriented graphs where

some of the players have the ability to push the vertices of the graph.

For a vertex v of an oriented graph, the push operation on v reverses the

orientations of all the arcs incident on v. We define two kinds of push op-

erations that can be performed by players: namely weak push and strong

push. A player on vertex v having the ability to weak push can either

move to an out-neighbour of v or can push v. A player on vertex v having

the ability to strong push can either move to an out-neighbour of v or

can push any vertex of the graph. Now, a player can have the ability

to weak push, strong push, or no ability to push. Depending on what

kind of abilities cops and the robber have, we can have 9 variations of the

game, of which the one where neither the cops nor the robber can push

is equivalent to the normal cop model.
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In this chapter, we study two variants of Cops and Robber games on

several kinds of grids originating from the Cartesian product of paths and

cycles. We also study the classical Cops and Robber game on subgraphs of

planar grids. The two variants that we study are the Cops and attacking

Robber and the lazy Cops and Robber. For both these variants, the

cop number is lower bounded by the cop number of classical Cops and

Robber game. In Section 2.1, we give a brief survey concerning this

chapter and the definitions (and preliminaries) required for this chapter.

In Section 2.2, we give an overview of the results included in this chapter.

In Section 2.3 we consider the game of Cops and attacking Robber and in

Section 2.4 we consider the game of lazy Cops and Robber. In Section 2.5

we consider the classical Cops and Robber game on solid grids and partial

grids. Finally, we conclude in Section 2.6.
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2.1 Preliminaries

2.1.1 Brief Survey

The game of Cops and Robber is well studied in the context of grids.

Maamoun and Meyniel [80] considered the game of Cops and Robber on

the product of trees and gave the cop number for the same. Their results

imply that the cop number of a d-dimensional grid is dd+1
2
e. Hence, the

cop number for planar grids is 2. Neufeld and Nowakowski [83] extended

this study to the products of various kinds of graphs. They also gave

results for the cop number of products of trees and cycles. Their results

imply that the cop number of cylindrical and toroidal grids is 2 and 3,

respectively. Mehrabian [82] studied the capture time on planar grids.

Luccio and Pagli [79] studied the capture time of planar, cylindrical, and

toroidal grids and studied the capture time using more cops than the

cop number of these grids. Several variations of the Cops and Robber

game are also studied on grids. Nisse and Suchan [85] studied the game

where the robber is twice as fast as the cops and showed that the cop

number of planar grids is unbounded for this game. Balister et al. [10]

studied the game of Cops and fast Robber on grids where the robber can

be arbitrarily fast. Bhattacharya et al. [15] considered a variation of the

game on d-dimensional grids where the robber has to move on each turn,

and proved that the cop number here is d.

The game of Cops and attacking Robber was introduced by Bonato et

al. [17]. In this variant, the robber can strike back against the cops. If on

a robber’s turn, there is a cop in its neighborhood, then the robber attacks

the cop and eliminates it from the game. However, if more than one cops

occupy a vertex and the robber attacks them, then only one of the cops

gets eliminated, and the robber gets captured by the other cop. The cop

number for capturing an attacking robber on a graph G is represented

as cc(G), and is referred to as attacking cop number of G. Bonato et
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al. [17] proved that c(G) ≤ cc(G) ≤ 2 · c(G). This can be verified easily

as cc(G) cops can capture the robber in the classical version; and if we

play the attacking version with 2 · c(G) cops using the strategy of the

classical variant with the only difference that there are always at least 2

cops on a vertex. Aigner and Fromme [3] proved that for a graph G with

girth at least 5, c(G) ≥ δ(G) (δ(G) is the minimum degree in G). Bonato

et al. [17] extended this result and proved that for a graph G with girth

at least 5, cc(G) ≥ δ(G) + 1. They also proved that for an outerplanar

graph G, cc(G) ≤ 3. They further studied the relationship between c(G)

and cc(G) and proved that for a bipartite graph G, cc(G) ≤ c(G) + 2.

For a K1,m−free diameter-2 graph G (with m > 2), they proved that

cc(G) ≤ c(G) + 2 ·m− 2.

The game of lazy Cops and Robber was introduced by Offner and

Ojakian [88], who also gave bounds for hypercubes. These bounds were

later improved and generalized in [9, 101]. In this variant, at most one

cop can move during the cop’s turn. This restricts the ability of the cops

with respect to the classical version. The cop number for lazy cops to

capture the robber in a graph G is known as the lazy cop number and

is denoted by lc(G). Clearly, c(G) ≤ lc(G), as lc(G) cops can capture

the robber in the classical version (using the winning strategy of the lazy

Cops and Robber game).

This variant is also referred as one-cop-moves game. Gao and Yang [52]

studied this game on planar graphs and showed that there exists a planar

graph with lazy cop number greater than 3. Wang and Yang [106] recently

gave a relational characterization of graphs having cop number at most k.

They also studied this game on graphs having treewidth 2, Halin graphs,

and on the Cartesian product of trees having at least one edge.
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2.1.2 Definitions

All graphs considered in this chapter are simple, connected, finite, and

undirected. In this chapter, we refer to the robber as R, single cop as C,
and multiple cops as C1, . . . , Ck. Let Pn and Cn denote the paths and cy-

cles of order n respectively1. Let � denote the Cartesian product between

two graphs. A planar grid (also referred as Cartesian grid), denoted as

Pm�Pn, is the Cartesian product of two paths Pm and Pn. A cylindrical

grid, denoted as Cm�Pn, is the Cartesian product of the cycle Cm and

path Pn. A toroidal grid, denoted as Cm�Cn, is the Cartesian product of

cycles Cm and Cn. A d-dimensional grid, denoted as Pi1�Pi2� . . .�Pid ,

is the Cartesian product of the paths Pi1 , . . . , Pid . The d-dimensional hy-

percube Qd is defined recursively in terms of Cartesian products of two

graphs as follows: Q1 = K2 and Qd = Qd−1�K2, where K2 is an edge.

The vertex set of Pm�Pn is {(i, j) | 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1}
and vertex (i, j) is adjacent to (i ± 1, j), (i, j ± 1) if they exist. Pm�Pn
can also be visualized as a grid with n rows and m columns. A vertex

of Pm�Pn is a corner vertex if its degree is two; a boundary vertex if its

degree is three; and an internal vertex if its degree is four. The grid is

oriented such that its four corner vertices (0, 0), (0, n− 1), (m− 1, n− 1)

and (m− 1, 0) are arranged in clockwise order with (0, 0) at the bottom

left. The boundary vertices are called top, bottom, right or left boundary

vertices if the belong to the n− 1th row, 0th row, m− 1th column or 0th

column respectively (see Fig. 2.1.1).

The cylindrical grid Cm�Pn is defined similar to Pm�Pn, with extra

edges between (0, j) and (m− 1, j), for 0 ≤ j ≤ n− 1. The toroidal grid

Cm�Cn is defined similar to Cm�Pn, with extra edges between (i, 0) and

(i, n− 1), for 0 ≤ i ≤ m− 1.

A graph is a partial grid if it is a subgraph of a planar grid. A graph is

a solid grid if it has an embedding such that it is a subgraph of a planar

1For sake of convenience, we do not consider P1 as a path.
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C3(2, 1)

C2(8, 4)

R(3, 6)

C1(8, 8)

Figure 2.1.1: C1, C2 and C3 are in corner, boundary and internal vertex
respectively. Here h = 1 and v = 2.

grid and all the internal faces have unit area.

Now consider the grid Pm�Pn. Let the cop Ci be at vertex (xi, yi)

and the robber R be at a vertex (xr, yr). We define row(Ci) = yi and

row(R) = yr. Moreover, we define h(Ci) and v(Ci) as h(Ci) = |xi−xr| and

v(Ci) = |yi−yr|. Let h = minCi h(Ci) and v = minCi v(Ci) (see Fig. 2.1.1).

We say Ci moves towards R if either h(Ci) or v(Ci) decreases. Similarly,

we say that R moves away from Ci if either h(Ci) or v(Ci) increases. We

also say that Ci moves vertically (or horizontally) towards R if h(Ci) (or

v(Ci)) decreases, and R moves vertically (or horizontally) away from Ci if

h(Ci) (or v(Ci)) increases. Cop Ci at (xi, yi) moves towards a vertex (p, q)

if |xi − p| or |yi − q| decreases.

Many of our strategies are described in terms of rounds, that is, they

say how the cops will move depending on the robber’s move. Therefore, to

avoid confusion, unless mentioned otherwise, we fix the following. After

the cops are placed, the first round begins with the placement of the

robber. In a round, the cop Ci mirrors the move of R if h(Ci) and v(Ci)
do not change after that round, that is, in this round Ci moves exactly in

the same direction as R. We say that cops Ci, . . . , Ck regroup at a vertex

v if all of them reach v in a finite number of rounds.

In Pm�Pn, Cm�Pn and Cm�Cn, we say that Ci blocks R if h(Ci) = 1
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and v(Ci) = 1. Suppose Ci blocks R in Pm�Pn and Ci is not at a corner

vertex. If we draw the co-ordinate axes with origin at Ci, it divides the

grid in four quadrants each containing one corner point. In Pm�Pn, R is

trapped by Ci when R is in a corner vertex and Ci blocks R. When R is

trapped, it cannot make any move without getting captured.

We say that cop/cops guard a subgraph H of G if R cannot enter the

vertices of H without getting captured in the next cop move. In the

context of grids, we guard rows/columns to capture the robber. Observe

that if a cop C is in the row y = j and h(C) ≤ 1, then R cannot enter

the row y = j without getting captured. Similarly, if C is in the column

x = i and v(C) ≤ 1, then R cannot enter the the column x = i without

getting captured. Hence, we say that a cop C guards the row y = j if C
is in y = j and h(C) ≤ 1. Similarly, C guards the column x = i if C is

in x = i and v(C) ≤ 1. Once a cop guards a row/column, it can keep

guarding that row/column by mirroring the robber’s move whenever it

loses the guarding position.

Consider the classical Cops and Robber game on a planar grid. Here

one cop can always guard a row/column. We have the following observa-

tion.

Observation 2.1.1. In the classical Cops and Robber game, one cop can

guard a row/column of a planar grid.

Proof. We will show how to guard a row y = j. If the robber is at vertex

(i′, j′), then we consider the image of the robber at vertex (i′, j). The

image of the robber moves as the robber moves but is restricted to a

finite path (induced by the row y = j), and the image can only move to a

neighbouring vertex. The cop will move on the vertices of this path and

will capture the image of the robber. Observe that at this point the cop

guards the row y = j. The cop can similarly guard a column x = i.

Next, we show that in the game of classical Cops and Robber on a

planar grid, one cop can block the robber. We have the following lemma
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which will be useful for several results in this thesis.

Lemma 2.1.1. In the classical Cops and Robber game on a planar grid,

one cop can block the robber.

Proof. The cop C begins at vertex (0, 0). Now C will move depending on

the moves of R in the following manner until C blocks R.

1. If R moves such that either h(C) or v(C) increases, then C mirrors

the move of R.

2. If R move such that neither h(C) nor v(C) increases, then C moves

such that max{h(C), v(C)} decreases.

Next, we show that R cannot make moves of type 1 forever. Without

loss of generality, let us assume that C is at a vertex (i, j) and R is at a

vertex (i+ a, j + b), where a ≥ 0 and b ≥ 0. Now to increase either h(C)
or v(C), R has to make either a horizontal right move or a vertical up

move. Since the grid is finite, R cannot make these moves forever and R
has to make a move of type 2 after every finite number of rounds. Thus

max{h(C), v(C)} decreases after every finite number of rounds.

Hence, after a finite number of rounds, both h(C) and v(C) become

equal to 1, and C blocks R.

2.2 Chapter overview

In Section 2.3, we consider the game of attacking Cops and Robber on

various kinds of grids originating from the Cartesian product of paths

and cycles. We show that the attacking cop number of planar grids is 2.

Then we show that the attacking cop number of both cylindrical grids

and toroidal grids is 3. Next, we consider the game of Cops and attacking

Robber on hypercubes and show that in a d-dimensional hypercube
⌈
d
2

⌉
+

1 cops are sufficient to capture the attacking robber. We also show that
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for a d-dimensional grid, d cops are sufficient to capture the attacking

robber. Recall that the cop number of d-dimensional hypercube and d-

dimensional grid for the classical Cops and Robber game is
⌈
d+1
2

⌉
[80].

In Section 2.4, we present our results on lazy cops and robbers. We

first show that the lazy cop number for both planar grids and cylindrical

grids is 2. It seems that on toroidal grids (Cm�Cn) a few lazy cops would

not create problems for the robber. One of the ways to strengthen the

ability of cops is to add a few flexible cops. In such a setting, all of the

flexible cops are free to move in every round, while only one of the lazy

cops can move in a round. We show that one flexible and two lazy cops

can capture the robber on toroidal grids.

In Section 2.5, we consider the game of classical Cops and Robber on

the subgraph of planar grids. We show that the cop number for the class

of solid grids is 2. Then we show that the cop number for the class of

partial grids is 3.

Finally, we draw conclusions in Section 2.6.

2.3 Cops and attacking Robber

In this section, we consider the game of Cops and attacking Robber on

various kinds of grids. We give strategies to capture the attacking rob-

ber on planar grids, cylindrical grids, toroidal grids, hypercubes, and

d-dimensional grids.

2.3.1 Cops and attacking Robber on Planar grids

In this section, we prove that the attacking cop number of the planar

grids is 2. We have the following theorem.

Theorem 2.3.1. The attacking cop number of a finite planar grid is 2,

that is, cc(Pm�Pn) = 2.
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Proof. Neufeld and Nowakowski [83] proved that c(Pm�Pn) = 2. Since

c(G) ≤ cc(G), the attacking cop number is at least 2. Thus, it suffices to

give a strategy to capture the attacking robber using two cops to show

that cc(Pm�Pn) = 2.

Let the two cops be C1 and C2. To avoid getting attacked by the robber,

both cops will either remain on the same vertex or adjacent vertices at

all points in the game. The cops will use the following strategy.

Both cops start at the vertex (0, 0). Then C1 blocksR using Lemma 2.1.1

and C2 moves such that after each cop move, both C1 and C2 are on the

same vertex. Without loss of generality, let us assume that both cops are

at vertex (i, j) and R is at vertex (i + 1, j + 1). Now R can only make

either a vertical up move or a horizontal right move. If R makes such a

move, both the cops mirror the move of R and retain their block position.

Since the grid is finite, eventually R will end up at the top-right corner

vertex (m− 1, n− 1) if R keeps moving. If at some point in the game, R
is at vertex (x, y) (cops are at vertex (x− 1, y− 1)) and R does not move

on a robber move, then C2 moves to vertex (x − 1, y). Now the robber

is forced to move and both cops will mirror the moves of R. Hence, R
eventually ends up at vertex (m− 1, n− 1).

Now R is at vertex (m− 1, n− 1), and either both cops are on vertex

(m − 2, n − 2) or C1 is at vertex (m − 2, n − 2) and C2 is at vertex

(m− 2, n− 1). In any case, in the next cop move, both cops move such

that C1 is at vertex (m− 2, n− 2) and C2 is at vertex (m− 2, n− 1). In

the next round, irrespective of the moves of R, R will be captured by the

cops.

2.3.2 Cops and attacking Robber on cylindrical grids

In this section, we prove that the attacking cop number of the cylindrical

grids is 3, that is, cc(Cm�Pn) = 3. We have the following theorem.

36



Theorem 2.3.2. The attacking cop number of a finite cylindrical grid

Cm�Pn (for m > 3) is 3, that is, cc(Cm�Pn) = 3.

Proof. Luccio and Pagli [79] proved that c(Cm�Pn) = 2. Therefore, to

prove cc(Cm�Pn) = 3, we will give both a strategy to capture the attack-

ing robber using three cops and an example of a cylindrical grid where

three cops are necessary to capture the attacking robber. Let the three

cops be C1, C2, and C3

Strategy Outline

1. Cop C3 will guard the column x = 0.

2. Robber R is restricted to a planar grid Pm−1�Pn, and then C1 and

C2 capture R using the strategy from Theorem 2.3.1.

Initially all cops C1, C2, and C3 start at (0, 0). Cops C3 and C1 move

together (to avoid getting attacked by R) and guard the column x = 0

using Observation 2.1.1. Once C3 guards x = 0, observe that an attacking

robber cannot enter x = 0. Now C1 moves in column x = 0 and regroups

with C2 at (0, 0). Note that, during this strategy, when a cop is alone, it

cannot be attacked by R.

Since R cannot enter column x = 0 (as it is guarded by C3), R is

restricted to move in a planar grid Pm−1�Pn. Now cops C1 and C2 capture

R, by using strategy from Theorem 2.3.1.

Now we prove that three cops are necessary for cylindrical grids. It can

be verified that to capture an attacking robber in Cm�Pn, for m > 3,

at least three cops are necessary. In the last round, before two cops

capture the attacking robber, they should be adjacent to each other and

adjacent to R and its neighbors. Since no such position of two cops

and an attacking robber exists in Cm�Pn, two cops cannot capture an

attacking robber.

However, we have the following remark about the attacking cop number

of C3�Pn.

37



Remark 2.3.1. Note that in C3�Pn, two cops can capture an attacking

robber.

2.3.3 Cops and attacking Robber on Toroidal Grids

In this section, we prove that the attacking cop number of the toroidal

grids is 3. We have the following theorem.

Theorem 2.3.3. The attacking cop number of a toroidal grid is 3, that

is, cc(Cm�Cn) = 3.

Proof. Neufeld and Nowakowski [83] proved that c(Cm�Cn) = 3. Since

c(G) ≤ cc(G), cc(Cm�Cn) ≥ 3. Hence, it suffices to give a strategy to

capture an attacking robber using three cops, say C1, C2 and C3.

Strategy Outline

1. All cops start at (0, 0).

2. C1 guards the column x = 0.

3. C2 and C3 guard the row y = 0.

4. C3 blocks the robber.

5. Cops now capture the robber.

Now we give the detailed strategy. One of the cop, say C1, remains at

(0, 0) while C2 and C3 move to guard the column x = 0. If the robber R
ever enters the row y = 0, the column x = 0 gets guarded by C1. If R
never enters the row y = 0, its movements are restricted in a cylindrical

grid Cm�Pn−1, with each row inducing a cycle Cm. Now using the strat-

egy similar to the first step in the proof of Theorem 2.3.2, C2 and C3 guard

the column x = 0. Hence, after a finite number of rounds, either a cop is

guarding a row or a cop is guarding a column. Now rename the cops such

that C1 is guarding either the column x = 0 or the row y = 0. Without

loss of generality, let us assume that C1 is guarding the column x = 0.
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After this, R cannot enter the column x = 0 without being captured.

Hence, R is restricted to a cylindrical grid Pm−1�Cn, with each column

inducing a cycle Cn.

Now cops use a strategy similar to the first step in the proof of The-

orem 2.3.2: C2 and C3 guard the row y = 0 (we reconfigure the axes

system if required by renaming the guarded row y = 0 and accordingly

renaming the other rows). Now C1 is guarding the column x = 0 and C2
and C3 are guarding the row y = 0. Hence, R is restricted to a planar

grid Pm−1�Pn−1. At this point, we assume that v(C1) = 0, h(C2) = 0 and

h(C3) = 0 (this can be attained in finite steps).

Now C3 moves to block R. At each step, v(C1) = 0, h(C2) = 0 and

h(C3) ≤ 1. After finite rounds, either C3 blocks R or h(C3) = 0 and

v(C3) = 2. In the latter case, if R ever moves horizontally, then C3
moves to block R. If R does not move or moves vertically, then C2
and C3 approach R from opposite directions (see Figure 2.3.1(a)) with

C3 maintaining v(C3) = 2. After a finite number of rounds, we have

v(C1) = 0, h(C3) = 0, v(C3) = 2, h(C2) = 0, v(C2) = 2. In this position,

if R moves vertically, then it gets captured, and if R moves horizontally,

then C3 moves to block R. If R chooses not to move in this situation,

then C1 moves toward R till h(C1) = 2 (see Figure 2.3.1(b)). Now C3
moves right; R cannot move left or up. If R moves down or stays put,

then C3 blocks R. If R moves right, then C2 blocks R (without loss

of generality, assume that C3 blocks R: see Figure 2.3.1(c)). Now we

have C1 and C2 guarding a column and a row, respectively with h(C1) =

2, v(C1) = 0, h(C2) = 0, v(C2) = 2, h(C3) = 1, v(C3) = 1.

Now C1 moves up. If R moves left or stays put, then we end up with

C1 and C3 blocking R with h(C1, C3) = 2, v(C1, C3) = 2, v(C2) = 2 and

h(C2) = 1. Now C2 moves down. Now whatever R does, it gets captured

in the next cop move. This completes the proof of Theorem 2.3.3.
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Figure 2.3.1: Attacking robber on toroidal grid

2.3.4 Cops and attacking Robber on multidimensional grids

In this section, we study the game of Cops and attacking Robber on

higher-dimensional grids. We show that for a d-dimensional grid, the

attacking cop number is at most d, that is, cc(Pi1�Pi2� . . .�Pid) ≤ d.

We have the following theorem.

Theorem 2.3.4. The attacking cop number of a d-dimensional grid is at

most d, that is, dd+1
2
e ≤ cc(Pi1�Pi2� . . .�Pid) ≤ d.

Proof. The lower bound is obvious as the classical cop number of d-

dimensional grids is dd+1
2
e [80]. To prove the upper bound, we use induc-

tion on d. The base case, cc(Pm�Pn) ≤ 2, follows from Theorem 2.3.1.

We assume that for some d ∈ N, cc(Pi1�Pi2� · · ·� Pid−1
) ≤ d − 1. In

what follows, we give a strategy for d cops to capture an attacking robber

in Pi1�Pi2� · · ·�Pid .

For the sake of convenience, let A represent the (d − 1)-dimensional

grid Pi1�Pi2� · · ·�Pid−1
. Hence Pi1�Pi2� · · ·�Pid can be considered as

id copies of A with corresponding vertices between Ai and Ai+1 being

adjacent (see Fig. 2.3.2). By image Ic of the robber in Ac, we mean

the vertex in Ac which differs from the robber’s position only in the dth

coordinate. We say that a cop Ci captures the image Ic if Ci and Ic are on

the same vertex after the cop’s move. We say that a cop Ci protects the

image Ic if R is not in Ac and Ci is adjacent to Ic after the cop’s move.
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A1 A2 Aid−1 Aid

Figure 2.3.2: d-dimensional grid partitioned into d− 1-dimensional grid

Observe that, if a cop is protecting Ic, then R cannot enter Ac without

getting captured.

Strategy Outline:

1. All cops start in A1 and capture I1.

2. Cop C1 protects or captures I1. Other d− 1 cops regroup and move

to A2.

3. For x = 2 to k − 1:

(a) Cop, say C2, captures Ix.

(b) Rest d− 1 cops regroup in Ax while C2 guards Ix.

(c) Rename C2 as C1 and C1 as C2.
(d) The d− 1 cops, except C1, move to Ax+1.

4. Capture R in Aid .

All d cops start in A1. By our induction hypothesis, d − 1 of them,

except say C2, captures I1. During this time, C2 moves with a cop so

that R cannot eliminate it. Let C1 be the cop that captures I1. Now R
makes its move. Depending on R’s move, C1 can move (or stay put) such

that it is protecting I1. Thus if R enters A1, then C1 will capture R. All

other d − 1 cops regroup at a vertex in A1 and then move to A2, while

C1 keeps on protecting I1 by mirroring R’s move. Next, the d − 1 cops

in A2 capture I2. Say C2 protects I2, and the rest regroup at a vertex

in A2. Iteratively, we can proceed such that some cop is protecting Id−1
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and the other d− 1 cops and R are in Aid , where R gets captured by our

induction hypothesis.

This completes the proof of Theorem 2.3.4.

2.3.5 Cops and attacking Robber on Hypercubes

In this section, we consider the game of Cops and attacking Robber on hy-

percubes. We prove that the attacking cop number of the d- dimensional

hypercube is at most
⌈
d
2

⌉
+ 1. We have the following theorem.

Theorem 2.3.5. The attacking cop number of the d-dimensional hyper-

cube is at most
⌈
d
2

⌉
+ 1, that is, dd+1

2
e ≤ cc(Qd) ≤

⌈
d
2

⌉
+ 1.

Proof. The lower bound is obvious as the classical cop number of d-

dimensional grids is dd+1
2
e [80]. To prove the upper bound, we use in-

duction on the dimension of the hypercube. Since Qd+1 = Qd�K2, it

can be considered as two copies of Qd with edges between correspond-

ing vertices. Similarly, Qd+2 can be considered as four copies of Qd, say

A, B, C and D (see Figure 2.3.3) with corresponding edges between

(A,B), (B,C), (C,D) and (D,A). If the robber R is in one of the Qd,

say in C, then the vertex in B and D adjacent to R are denoted IB and

ID respectively. The vertex in A adjacent to IB and ID is denoted by IA.

The vertices IA, IB and ID are called the image of the robber (see Fig-

ure 2.3.3). If a cop is adjacent to IK , where K denotes some hypercube

Qd, we say that it is protecting IK and also K is guarded by the cop.

Moreover, if a cop is on vertex IK , we say it has captured IK .

For the base case of induction, cc(Q2) ≤ 2 is obvious and cc(Q3) ≤ 3

is a special case of Theorem 2.3.4 as Q3 = P2�P2�P2. We assume that

for some d ∈ N , cc(Qd) ≤
⌈
d
2

⌉
+ 1. In what follows, we give a strategy

for
⌈
d
2

⌉
+ 2 cops to capture an attacking robber in Qd+2.

Strategy Outline
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Figure 2.3.3: Hypercube Qd+2 decomposed into four Qd’s.

1. All cops start in A.

2. Cops capture/protect IA.

3. Cops force R to move to C and then restrict it to C.

4. Cops capture R in C.

All cops start in A. The extra cop, that is, cc(Qd) + 1th cop starts

and moves with one of the cops so that it does not get eliminated by the

attacking robber. By our induction hypothesis, cc(Qd) cops capture IA in

A. When a cop captures the attacking robber or its image, it is adjacent

to another cop, else the robber could have eliminated it. Let C1 be the

cop capturing IA and C2 be adjacent to C1. So C2 is protecting IA, and

hence R cannot enter A.

If R is in C, then C1 maintains the capture position. So R cannot enter

B or D. All other cops regroup in A and then move to C via B or D.

By our induction hypothesis, cc(Qd) cops capture R in C.

If R is in B or D (without loss of generality assume that R is in B),

then C2 keeps on protecting IA so that R cannot enter A. Then rest of

the cops regroup in A and then move to B. By our induction hypothesis,

cc(Qd) cops can capture R in B if R does not move to C; else they

capture IB. In the round when R moves from B to C, C2 captures IA

(as IA does not change in this round and C2 was protecting IA). Thus R
cannot enter B or D. All other cops regroup in B and then move to C.

By our induction hypothesis, cc(Qd) cops capture R in C.
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2.4 Lazy cops and robber

In this section, we consider the game of lazy Cops and Robber on grids.

In particular, we give bounds for the lazy cop number of planar and

cylindrical grids.

2.4.1 Lazy Cops and Robber on Planar Grids

In this section, we consider the game of lazy Cops and Robber on planar

grids. We prove that the lazy cop number for the planar grids is 2. We

have the following theorem.

Theorem 2.4.1. The lazy cop number for planar grids is 2, that is,

lc(Pm�Pn) = 2.

Proof. Clearly c(G) ≤ lc(G) as lc(G) number of cops can capture the rob-

ber in the classical cops and robbers game. And since the cop number of

a planar grid (Pm�Pn) is 2 (as proved by Neufeld and Nowakowski [83]),

lc(Pm�Pn) ≥ 2. Hence it suffices to give a strategy to capture the robber

using two lazy cops C1 and C2 to prove lc(Pm�Pn) = 2.

We begin with an outline of such a strategy. If a lazy cop C1 traps the

robber R, then a lazy cop C2 can capture R in finite time. Let C1 and C2
both be initially placed at (0, 0). First C1 blocks R. In further rounds,

C1 and C2 will force R to go in a trap position such that R is trapped by

C1. Then C2 moves towards R till it captures R. We use the following

simple observation.

Observation 2.4.1. If robber R gets into trap position of a cop C1, R
cannot move without being captured.

Now we give the detailed strategy. Only one of the lazy cops can move

in a cop’s turn. First, cop C1 blocks R using Lemma 2.1.1. In all these

rounds, only the cop C1 moves. Without loss of generality, we assume that

C1 blocksR such that C1 is at vertex (x, y) andR is at vertex (x+1, y+1).
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Now, the only moves R can make are horizontally right and vertically up.

Whenever R moves, C1 mirrors the move of R, thus maintaining its block

position. Moreover, if R keeps moving, then eventually R will end up at

the corner vertex (m− 1, n− 1) with C1 at vertex (m− 2, n− 2).

If R chooses not to move, then C2 moves towards R and will eventually

force R to move. Hence, eventually R will end up at the (m− 1, n− 1)

with C1 at vertex (m − 2, n − 2). Now R cannot make a move, and C2
will move and capture R.

2.4.2 Lazy Cops and Robber on Cylindrical Grids

In this section, we consider the game of lazy Cops and Robber on cylin-

drical grids and prove that the lazy cop number of cylindrical grids is 2.

We have the following theorem.

Theorem 2.4.2. The lazy cop number of cylindrical grids is 2, that is,

lc(Cm�Pn) = 2.

Proof. Luccio and Pagli [79] proved that c(Cm�Pn) = 2. Thus, it suffices

to give a strategy to capture the robber R using two lazy cops C1 and C2
to prove lc(Cm�Pn) = 2.

Strategy Outline

1. Both cops start at (0, 0).

2. C1 guards the column x = 0.

3. C2 makes h(C2) = 0.

4. C1 and C2 restricts R to one of boundary rows.

5. R is captured.

All cops start at (0, 0). C1 guards the column x = 0 using Obser-

vation 2.1.1. Now C2 moves to make h(C2) = 0. This can be done as

following. In each round, R can move in one of the following ways:
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• R moves vertically: In this case, if R makes v(C1) > 1, C1 follows

R hence ensuring column x = 0 is always guarded by C1. On any

other move of R, C2 moves to decrease h(C2).

• R moves horizontally or does not move: C2 moves trying to decrease

h(C2).

Since C1 always guards column x = 0, v(C1) ≤ 1. Moreover, the value

of h(C2) never increases after a round, because if R moves horizontally

away from C2, then C2 mirrors R’s move. Since column x = 0 is guarded

and the number of columns is finite, R moves horizontally away from C2
for a finite rounds, after which h(C2) decreases. After a finite number of

rounds h(C2) decreases to 0. Now we have h(C2) = 0 and v(C1) ≤ 1.

Now C1 and C2 will try to restrict R to one of the boundary rows, that

is, the topmost or the bottommost row. Without loss of generality, let

us assume that row(C1) ≥ row(C2) and row(R) > row(C2). If R moves

to make h(C2) > 1 or v(C1) > 1, then C2 or C1 follows R respectively. On

any other move of R, C2 moves vertically up towards R. Here we ensure

that h(C2) ≤ 1 and v(C1) ≤ 1 is maintained, that is, C1 guards x = 0 and

C2 guards its row. Therefore R is always restricted to the rows above

C2. Since C2 never moves down vertically, but moves up vertically after

every finite number of moves, R will eventually be restricted only to the

topmost row. We can also ensure that h(C2) = 1 and v(C2) = 1. Now R
can only make horizontal moves in one direction. Whenever R makes any

horizontal move, C2 mirrors R’s move and maintains the block position.

In the meantime, if R chooses not to move, C1 moves horizontally in the

opposite direction to the direction R is allowed to move. Thus after a

finite number of moves, R will be restricted to the topmost row with C1
and C2 blocking R from both sides (left and right of R).

Now R cannot move and will be captured in at most two rounds.
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2.4.3 Lazy and Flexible Cops and Robber on Toroidal Grids

One of the ways to strengthen the ability of lazy cops is to add a few

flexible cops. In such a setting, all of the flexible cops are free to move

in every round while only one of the lazy cops can move in a round.

Neufeld and Nowakowski [83] proved that the cop number of toroidal

grids is three. So three flexible cops can capture the robber in toroidal

grids. In what follows, we prove that one flexible cop and two lazy cops

can capture a robber on toroidal grids.

During a cop’s turn, a flexible cop can move or pass its turn whereas

at most one of the lazy cops can move. Let C1 be the flexible cop, and

C2, C3 be the lazy cops. We now give a strategy for the cops to capture

R on toroidal grid Cm�Cn. We have the following theorem.

Theorem 2.4.3. One flexible and two lazy cops can capture the robber

in a finite toroidal grid.

Proof. We give a cop strategy to prove our theorem.

Strategy Outline

1. All cops start at (0, 0).

2. A lazy cop guards the column x = 0.

3. C1 guards the row y = 0.

4. C2 and C3 capture R using the strategy used in the proof of Theo-

rem 2.4.2.

All cops start at (0, 0). Cop C2 moves to guard the column x = 0. If

R ever enters the row y = 0, then the column x = 0 gets guarded by C1
and C3. If R never enters x = 0, then C2 can guard the column x = 0

as movements of R are restricted to a cylindrical grid Cm�Pn−1. Thus

after a finite number of moves, the column x = 0 is guarded by one of
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the lazy cops. Now C1 can guard the row y = 0 as R cannot enter the

column x = 0 and is restricted to a cylindrical grid Cn�Pm−1.

Now C1 is guarding the row x = 0. Hence, the robber is restricted to

a cylindrical grid Cm�Pm−1. Now lazy cops C3 and C2 use the strategy

used in the proof of Theorem 2.4.2 to capture R.

2.5 Classical Cops and Robber on subgraphs of

Grids

In this section, we consider the game of classical Cops and Robber on

the subgraphs of planar grids, that is, solid grids and partial grids. We

provide a dichotomy result proving that while 2 cops can always ensure

capture of the robber for solid grids, there are partial grids where 3 cops

are necessary to capture the robber.

2.5.1 Cops and Robber on solid grids

In this section, we consider the game of classical Cops and Robber on

solid grids. We consider a grid representation of the solid grid graph.

In this representation rows and columns are clearly defined. For sake of

simplicity, we assume that our solid grid has more than one columns.

A column path is a path which has all its vertices from the same column,

say ci, and both endpoints of this path have exactly one neighbour in ci,

each. A column ci may have multiple column paths. A column path P

in column ci is a boundary column path if vertices of P have neighbours

only in P and in either column ci+1 or in ci−1. See Figure 2.5.1 for an

illustration. Two column paths P and P ′ are adjacent if some vertex

p ∈ P and p′ ∈ P ′ have an edge.

Let P be a column path of a solid grid graph G, and P have endpoints

u and v. It is easy to see that:
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Figure 2.5.1: A solid grid. Here P, Q, R and S are some of the column
paths, of which R and S are boundary paths.

1. P is a shortest u, v-path.

2. If P is not a boundary column path, then G − P has at least two

connected components.

We have the following lemma.

Lemma 2.5.1. Let P be a column path in solid grid G and let S be one of

the components of G−P . Then S has a unique column path P ′ adjacent

to P .

Proof. We will prove this by contradiction. Let P1 and P2 be two paths

of component S that are adjacent to P , such that bottom most vertex of

P1 is in a higher row that top most vertex of P2. Let the bottom most

vertex of P1 be u and top most vertex of P2 be v. Also let the neighbours

of u and v in P be u′ and v′ respectively. Note that (u, v) can not be an

edge, by definition of column paths.

Let v′, x1, . . . , xk, u
′ be the path between u′ and v′ in P and u, y1, . . . , yj, v

be the shortest path between u and v in S. Then u, y1, . . . , yj, v, v
′, x1,

. . . , xk, u
′, u is an internal face of the solid grid and has area more than

1 (since (u, v) is not an edge). Since it is not possible in a solid grid, this

leads to a contradiction.
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Hence S can have only one column path P ′ that is adjacent to P and

this proves our claim.

From Lemma 2.5.1, we have the following observation, which is central

to our strategy to capture R using two cops.

Observation 2.5.1. Let P be a column path in solid grid G and let R
be in one of the components of G− P , say S. Then if a cop is guarding

the column path P ′ of S, that is adjacent to P , then R cannot leave the

component S without being captured.

Now we prove the following theorem.

Theorem 2.5.1. The cop number of solid grids is two.

Proof. We give a cop strategy to capture R using two cops. In this

strategy, cops will reduce the robber territory after every finite number

of steps, subsequently capturing the robber. Let the two cops be C1 and

C2. Cops follow the following strategy.

1. C1 begins by guarding a column path P . If P is a boundary path,

then R is restricted to G − P , else R is restricted to one of the

connected components of G− P , say S.

2. Now, cops find the column path P ′ in S that is adjacent to P , and

C2 guards P ′. This restricts R to S and hence we can free C1, which

was guarding P earlier.

R is now restricted to S and a column path P ′ is guarded by C2.
This further restricts R to either S−P ′ (if P ′ is a boundary column

path of S) or to one of the connected components of S − P ′. Let

the connected component R is restricted to be S ′.

This situation is same as situation in the end of step 1. So, we

rename C2 as C1, C1 as C2, P ′ as P and S ′ as S, and repeat step 2.
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Here cops reduce the robber territory in each step. Subsequently, the

robber will be restricted to a single column and then C2 will capture R.

To see the two cops are necessary to capture a robber in some solid

grids, we can see that a cycle of 4 vertices, which is a solid grid, has cop

number 2.

2.5.2 Classical Cops and Robber on Partial Grids

In this section, we consider the game of classical Cops and Robber on the

partial grids and prove that the cop number for the class of partial grids

is 3. We have the following theorem.

Theorem 2.5.2. Let P be the class of partial grids. Then c(P) = 3.

Proof. Aigner and Fromme [3] proved that the cop number for the class

of planar graphs is 3. Since all partial grids are planar, c(P) ≤ 3. Hence

to prove c(P) = 3, it is sufficient to construct a partial grid graph G such

that c(G) = 3.

Joret et al. [69] proved that for every positive integer r, subdividing

each edge of a graph r times does not decrease the cop number. Thus, it

would suffice to show that there exists some graph G′ such that c(G′) = 3

and after subdividing each edge of G′ r times, we can get a partial grid

graph G.

It is well known that the cop number of the dodecahedron graph is 3.

It can be proved by the results of Aigner and Fromme [3] since it is a

planar graph, and also a 3-regular graph with girth 5. We will show that

by subdividing each edge of the dodecahedron an equal number of times,

we can get a graph G which is a partial grid.

In Figure 2.5.2, we present a dodecahedron where vertices are marked

from 1, . . . , 20. We obtain a graph G by subdividing each edge of the

dodecahedron 19 times. In Figure 2.5.3, we give a partial grid represen-

tation of G. Each vertex i of the dodecahedron is a vertex i in G (and
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Figure 2.5.2: A dodecahedron labelling.
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Figure 2.5.3: A partial grid obtained on subdividing each edge of do-
decahedron 19 times.

there are new vertices too).

This completes the proof of Theorem 2.5.2.

2.6 Concluding remarks and open problems

In this chapter, we study two variants of the cops and robber game,

namely Cops and attacking Robber and lazy Cops and Robber. We find

the attacking cop number of planar, cylindrical, and toroidal grids. We

also bound the cop number for hypercubes and high-dimensional grids.

We also find the lazy cop number of planar and cylindrical grids.

The classical version of the game is well studied on graph products. We

study the game of Cops and attacking Robber on the Cartesian products

of paths and cycles. It will be interesting to study cops and attacking

robber game on general graph products as well as on the Cartesian prod-

uct of trees. Moreover, the lazy cop number of toroidal grids remains

open.
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Question 2.6.1. What is the lazy cop number for the finite toroidal

grids?
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In this chapter, we study the game of Cops and Robber on oriented

graphs. We begin by giving a brief survey and recollecting the definitions

relevant to this chapter in Section 3.1. We also compare the three graph
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parameters cn(·), cs(·), cw(·) (defined later in Section 3.1). In Section 3.2,

we give an overview of the results discussed in this chapter. The normal,

strong and weak cop models are studied in Sections 3.3, 3.4 and 3.5,

respectively.

3.1 Preliminaries

3.1.1 Brief Survey

Here we present a brief survey of the game of Cops and Robber played

on directed graphs. In most of these works, the rules of the game are

similar to classical Cops and robber with the only difference that, in its

turn, a player can move to an out-neighbour of the vertex occupied by

the player. In this thesis, we refer to this model as normal cop model,

and is defined formally later in this chapter.

Hamidoune [62] considered the Cops and Robber game on Cayley di-

graphs. Frieze et al. [51] studied the game on digraphs and gave an

upper bound of O
(
n(log logn)2

logn

)
for cop number in digraphs. Along these

lines, Loh and Oh [77] constructively proved the existence of a strongly

connected planar digraph with cop number greater than three. They

also prove that every n-vertex strongly connected planar digraph has cop

number at most O(
√
n).

Goldstein and Reingold [58] proved that deciding whether k cops can

capture a robber is EXPTIME-complete if k is not fixed, and either

the initial positions are given or the graph is directed. Later, Kinners-

ley [72] proved that determining the cop number of a graph or digraph is

EXPTIME-complete. Kinnersley [73] also showed that n-vertex strongly

connected cop-win digraphs can have capture time Ω(n2).

Hahn and MacGillivray [61] gave an algorithmic characterization of the

cop-win finite digraphs. They also showed that any k-cop game can be

reduced to 1-cop game resulting in an algorithmic characterization for
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k-cop-win finite digraphs. However, these results do not give a structural

characterization of such graphs. Later Darlington et al. [40] tried to

structurally characterize cop-win oriented graphs and gave a conjecture

that was later disproved by Khatri et al. [71], who also studied the game

in oriented outerplanar graphs and line digraphs.

Recently, the cop number of planar Eulerian digraphs and related fam-

ilies was studied in several articles [41, 63, 64]. In particular, Hosseini

and Mohar [64] considered the orientations of integer grid that are vertex-

transitive and showed that at most four cops can capture the robber on

arbitrary finite quotients of these directed grids. De la Maza et al. [41]

considered the straight-ahead orientations of 4-regular quadrangulations

of the torus and the Klein bottle and proved that their cop number is

bounded by a constant. They also showed that the cop number of every

k-regularly oriented toroidal grid is at most 13. Furthermore, Bonato and

Mohar [23] explored some future directions of research.

Bradshaw et al. [29] proved that the cop number of directed and undi-

rected Cayley graphs on abelian groups has an upper bound of the form

of O(
√
n). Modifying this construction they obtained families of graphs

and digraphs with cop number Θ(
√
n). The family of digraphs thus ob-

tained has the largest cop number in terms of n of any known digraph

construction.

Recently, in the open problem session of GRASTA 20141 [47], Nicolas

Nisse introduced one of the variants (the strong cop model) in directed

graphs (digraphs) and asked to characterize the “cop-win” graphs in two

variants (the normal cop model and the strong cop model).

3.1.2 Preliminaries

An oriented graph is a directed graph without loops or directed 2-cycles.

We start with an oriented graph
−→
G and Player 1 places k cops on its

1GRASTA 2014: http://www-sop.inria.fr/coati/events/grasta2014/

57

http://www-sop.inria.fr/coati/events/grasta2014/


vertices. Multiple cops can occupy the same vertex v. After that Player 2

places the robber on one vertex of the graph. After the setup, Player 1

and 2 take turns to move the cops and robber, respectively, with Player 1

taking the first turn. Player 1 wins if after finitely many turns the robber

and a cop are on the same vertex. In this case, we say that the cop

captures the robber. Player 2 wins if Player 1 does not win in a finite

number of moves.

Since
−→
G is an oriented graph, one can define two types of moves. In a

normal move the cop or the robber can move along the arc, whereas in a

strong move the cop or the robber can also move against the arc.

In the normal cop model, in each round, Player 1 can perform at most

one normal move on each of its cops, whereas Player 2 can perform at

most one normal move on the robber. In the strong cop model, in each

round, Player 1 can perform at most one strong move on each of its cops,

whereas Player 2 can perform at most one normal move on the robber.

In the weak cop model, in each round, Player 1 can perform at most one

normal move on each of its cops, whereas Player 2 can perform at most

one strong move on the robber.

Next, we define a few necessary parameters. The normal (respectively,

strong, weak) cop number cn(
−→
G) (respectively, cs(

−→
G), cw(

−→
G)) of an ori-

ented graph
−→
G is the minimum number of cops needed by Player 1 to

have a winning strategy in the normal (respectively, strong, weak) cop

model. Furthermore, for a family F of oriented graphs

cx(F) = max{cx(
−→
G) |

−→
G ∈ F}

where x ∈ {n, s, w}. Given a fixed model, an oriented graph is cop-win

if Player 1 has a winning strategy playing with a single cop.

Let uv be an arc of an oriented graph
−→
G . We say that u is an in-

neighbor of v and v is an out-neighbor of u. Let N−(u) and N+(u)

denote the set of in-neighbors and out-neighbors of u, respectively. A
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vertex without any in-neighbor is a source and a vertex without any

out-neighbor is a sink.

The out-degree of v is d+(v) = |N+(v)| and its in-degree is d−(v) =

|N−(v)|. Let N+[v] = N+(v) ∪ {v} denote the closed out-neighbourhood

of v.

If a cop moves to an in-neighbor of the robber R, then we say that

the cop attacks the robber. The robber is on a safe vertex from a cop

if it cannot be captured by that cop in the next turn of Player 1. The

robber evades capture if every time the cop attacks it, R can move to a

safe vertex.

We end this section with some basic results about the relation between

strong, normal, and weak cop numbers of oriented graphs.

The first result follows directly from the definitions.

Proposition 3.1.1. For any oriented graph
−→
G we have cs(

−→
G) ≤ cn(

−→
G) ≤

cw(
−→
G).

Observe that there are plenty of oriented graphs, the transitive tour-

nament for instance, where equality holds in each of the cases. However,

it is interesting to study the gap between these parameters.

Proposition 3.1.2. Given any m,n ∈ N, there exists an oriented graph
−→
G such that cn(

−→
G)− cs(

−→
G) = n and cw(

−→
G)− cn(

−→
G) ≥ m.

Proof. The oriented graph
−→
G =

−→
Gm,n is composed of two oriented graphs

−→
A n and

−→
Bm. The oriented graph

−→
A n is an orientation of the star graph

such that its central vertex v is a sink having n+1 in-neighbors v0, . . . vn.

We know that there exist graphs with arbitrarily high cop number in

the undirected case [3]. Let Bm be a connected undirected graph with

cop number at least m + 1. Let
−→
Bm be an orientation of Bm, such

that it is a directed acyclic graph having a single source u. Such an

orientation can be obtained by performing a breadth-first search (BFS)

rooted at u and orienting each edge from the lower indexed vertex to
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v0 = u

v1

v2
v3

vn−1

vn

~An

~Bm

~Gm,n

Figure 3.1.1: Illustration of
−→
Gm,n.

the higher indexed vertex with respect to the BFS ordering. Note that

cs(
−→
Bm) = cn(

−→
Bm) = 1 as the cop can start from u and keep following

the robber who can move only a finite number of times (in the directed

acyclic graph).

The graph
−→
Gm,n is obtained by merging vertices u and v0 to form a sin-

gle vertex vmerge. Observe that vmerge is a source in
−→
Gm,n. In particular,

after merging, the out-neighbors of both u and v0 become out-neighbors

of vmerge. See Figure 3.1.1 for reference.

Note that cs(
−→
Gm,n) = 1 as Player 1 can place one cop on v and capture

the robber in one move if it is in
−→
A n or capture the robber in a finite

number of moves if it is in
−→
Bm as observed before.

Next let us prove that cn(
−→
Gm,n) = n+ 1. Indeed, we have cn(

−→
Gm,n) ≥

n + 1, as Player 1 must keep a cop on each of the (n + 1) sources

vmerge, v1, . . . , vn. Since
−→
Bm is a directed acyclic graph, the cop at vmerge

can capture the robber if it is placed in
−→
Bm.

Now we will show that cw(
−→
Gm,n) ≥ m+ n+ 1. Observe that Player 1

needs to place (n+1) cops on each of the (n+1) sources. This will ensure

that if the robber is placed on any vertex of
−→
An, then it will be captured.
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However, if the robber is placed on a vertex of
−→
Bm, then the only cop in

−→
An that may enter

−→
Bm is the cop placed on vmerge, as this is the weak

cop model. Hence, we need to place at least m more cops on the vertices

of
−→
Bm as the cop number of the undirected graph Bm is (m+ 1).

3.2 Chapter overview

In Section 3.3, we study the normal cop number of oriented graphs. We

begin by proving a Mycielski-type result by constructing oriented graphs

with high normal cop number and girth. Then we attempt to characterize

the cop-win oriented graphs in various graph families. It is easy to see

that for an oriented graph to be cop-win, it must have a unique source,

otherwise R can start at a source vertex not occupied by the cop and

the cop then can never reach this vertex. Therefore, all graphs that we

consider for being cop-win are assumed to have a unique source vertex. In

particular, we show that an oriented triangle-free graph is cop-win if and

only if it is a directed acyclic graph (DAG). As a corollary, it proves that

oriented bipartite graphs are cop-win if and only they are DAG. We also

prove a similar result for outerplanar graphs, proving that an oriented

outerplanar graph is cop-win if and only if it is a DAG. For subcubic

graphs other than K4, we show that an oriented subcubic graph (other

than K4) is cop-win if and only if they are DAG.

In Section 3.4, we study the strong cop model on oriented graphs. We

begin by proving that there exist graphs with arbitrarily high strong cop

number. We also extend this result to bipartite graphs. Next, we consider

the strong cop number of oriented planar graphs, outerplanar graphs,

and series-parallel graphs. In particular, we prove that the strong cop

number of outerplanar graphs is two. We also prove that a specific class

of oriented outerplanar graphs whose weak dual is a collection of paths

are strong cop-win. We also consider the strong cop model on oriented

Cartesian grids and show that they are also strong cop-win.
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In Section 3.5, we consider the weak cop model on oriented graphs

and characterize the weak cop-win oriented graphs. For this, we use

a technique similar to the cop-win characterization by Nowakowski and

Winkler [86].

Finally, we draw conclusions in Section 3.6.

3.3 Normal Cop Model

It is known [51] that, in the normal cop model, if we can compute the cop

number for strongly connected digraphs, then we can compute the cop

number for weakly connected digraphs. Taking a cue from the above, we

start by constructing strongly connected oriented graphs with arbitrarily

high normal cop number, minimum degree, and girth (length of a smallest

cycle of the underlying graph).

Theorem 3.3.1. Given any g ≥ 5 and c ≥ 3, there exists a regular

strongly connected oriented graph
−→
G g,c with girth at least g and outdegree

c having cn(
−→
G g,c) ≥ c+ 1.

Proof. For this proof, we borrow a construction to form regular expander

graphs with high girth from an unpublished note of J. Kilbane on graphs

of large girth (currently this note is not available on the internet). We

present their complete construction which uses the concept of L-lifts in-

troduced by Amit and Linial [5].

Given a set L and a simple graph G, let GL be a graph on the set of

vertices V (GL) = V (G) × L. Moreover, let the edges of GL satisfy the

following property: for each edge uv ∈ E(G), there is a perfect matching

between the vertex subsets {u}×L and {v}×L. Furthermore, other than

the above-mentioned perfect matchings, there are no other edges in GL.

Such a GL is an L-lift of G. Observe that there can be different L-lifts of

a graph.
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Given a path u1u2 · · ·uk of G, its L-lift GL will have many correspond-

ing paths of the form (u1, l1) (u2, l2) · · · (uk, lk), where l1, l2, . . . , lk ∈ L.

The path u1u2 · · ·uk is called the projection of (u1, l1)(u2, l2) · · · (uk, lk).
Further, consider a graph G with m edges e1, e2, . . . , em. Let L =

{0, 1}m, that is, the set of all binary vectors of length m. Let us now

construct a graph GL and then show that it is an L-lift of G. The vertex

set of GL is given by V (GL) = V (G) × L. Let uv = ei be an edge of G.

Then, whenever we have two binary vectors l, l′ ∈ L which only differs

at the ith coordinate, we add the edges (u, l)(v, l′) and (u, l′)(v, l) in GL.

Observe that this ensures a perfect matching between the sets {u} × L
and {v} × L. Moreover, these are the only edges of GL. Hence, GL is

indeed an L-lift of G.

Next, let us pick a shortest cycle C0 in GL. Its projection in G is also a

cycle C. We claim that for every edge uv ∈ E(C), there are at least two

edges in C0 between {u}×L and {v}×L. To prove this claim, note that

if we start at a vertex (u, l) of C0, then the next vertex, say, (v, l′), is such

that the two binary vectors l and l′ differ only at their ith coordinates.

Now to reach (u, l) again, for completing the cycle, we need to flip the ith

coordinate of the binary vector once more. This can only happen if we

traverse uv once again. Thus, |C0| ≥ 2|C|. Hence the girth of GL is at

least twice the girth of G.

To construct the oriented graph with arbitrarily high cop number and

girth, we take a K2c+1 and go on applying the above-mentioned L-lift con-

struction repeatedly until the girth is at least g. Denote the so-obtained

graph as Gg,c. As L-lifts of a k-regular graph is also k-regular, the graph

Gg,c is 2c-regular; and hence Eulerian. Now obtain the oriented graph
−→
G g,c by making an Eulerian circuit of Gg,c a directed circuit by assigning

orientations to its edges. This results in a strongly connected oriented

graph with girth at least g and the out-degree of each vertex is c. Thus

its normal cop number is at least (c + 1) as we know that a strongly

connected oriented graph with girth at least five has normal cop num-
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ber cn(
−→
G) ≥ δ+(

−→
G) + 1, where δ+(

−→
G) is the minimum out-degree of

−→
G [77].

Darlington et al. [40] characterized cop-win oriented paths and trees in

the normal cop model. We are also going to do so for some other families

of oriented graphs.

A transitive-triangle-free oriented graph is an oriented graph with no

transitive triangles. The following theorem characterizes cop-win transitive-

triangle-free oriented graphs, a superclass of triangle-free oriented graphs.

Proposition 3.3.1. Let
−→
G be transitive-triangle-free oriented graph. Then

−→
G is cop-win if and only if

−→
G is a directed acyclic graph with one source.

Proof. Observe that any directed acyclic graph with one source is cop-

win, and every cop-win oriented graph has exactly one source. Thus

it suffices to prove that if a transitive triangle-free oriented graph
−→
G is

cop-win, then it is a directed acyclic graph.

Suppose
−→
G has a directed cycle

−→
C on at least 3 vertices. We will now

give a strategy for the robber R to escape. Note that the cop C must be

placed at the source initially, as otherwise Player 2 places R on the source

and wins. The robber R initially places himself at some safe vertex of
−→
C .

Such a vertex exists, as any vertex in
−→
G cannot dominate two consecutive

vertices in
−→
C , else a transitive triangle is created. Now R moves to the

next vertex in
−→
C whenever R lies in the out-neighbour of C. Whenever

C attacks R, the robber moves to the next vertex in
−→
C and evades the

attack. Since
−→
C is a directed cycle, C cannot capture R. This contradicts

that
−→
G is a cop-win graph, hence the result.

As bipartite graphs are triangle-free, we have the following corollary.

Corollary 1. Let
−→
G be an oriented bipartite graph. Then

−→
G is cop-win

if and only if
−→
G is a directed acyclic graph with one source.

Next, we characterize the cop-win oriented outerplanar graphs.
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Proposition 3.3.2. Let
−→
G be an oriented outerplanar graph. Then

−→
G

is cop-win if and only if
−→
G is a directed acyclic graph with one source.

Proof. The ‘if’ part is obvious.

For proving the ‘only if’ part, first note that a graph cannot be cop-win

if it has no source or at least two sources. Thus suppose that there exists

an oriented outerplanar cop-win graph
−→
G containing a directed cycle

−→
C

with exactly one source v. The cop C must be initially placed on the

source v.

Note that at most two vertices of
−→
C can have a path made up of vertices

from outside
−→
C connecting v in order to avoid a K4-minor. Thus there

is at least one safe vertex u in
−→
C such that any directed path connecting

v to u must go through some vertex of
−→
C other than u. Hence if the

robber R places itself on u and does not move until C comes on a vertex

of
−→
C , it cannot be captured.

If C is on a vertex of
−→
C and starts moving towards R following the

direction of the arcs of
−→
C , then R also moves forward and evades C.

Thus C must go out of
−→
C in order to try and capture R. The moment C

goes out to some vertex w outside
−→
C , then R is either on a safe vertex or

it can move to a safe vertex on
−→
C in its next move as w can be adjacent

to at most two vertices of
−→
C in order to avoid a K4-minor.

This brings us to a situation similar to the initial situation. Thus the

robber will always evade the cop, a contradiction.

Proposition 3.3.3. Let
−→
G be an oriented subcubic2 graph other than K4.

Then
−→
G is cop-win if and only if

−→
G is a directed acyclic graph with one

source.

Proof. The ‘if’ part is obvious.

For proving the ‘only if’ part, first note that a graph cannot be cop-

win if it has no source or at least two sources. Thus suppose that there

2An oriented graph whose underlying undirected graph is a subcubic graph.
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exists an oriented subcubic cop-win graph
−→
G , other than K4, containing

a directed cycle
−→
C with exactly one source v. The cop C must be initially

placed on the source v.

Consider a shortest directed cycle
−→
C = v0v1 . . . vkv0 of

−→
G . Since

−→
G is

a subcubic graph and
−→
C is a smallest directed cycle; each vi ∈

−→
C can

have at most one more neighbor not belonging to V (
−→
C ). Also since the

graph is subcubic and v is the unique source, any vertex u 6= v can have

at most two out-neighbors in
−→
C .

On the other hand, the source vertex v can have at most three out-

neighbors in
−→
C . As we know that the underlying graph of our graph is

not K4, there exists a vertex of
−→
C which is not an out-neighbor of v.

Consider the possibility that there exists a vertex u 6∈ V (
−→
C ) (and

u 6= v) containing both vi−1 and vi as its out-neighbors for some i ∈
{0, 1, · · · , k}. Here the +,− operations on the indices of the vertices of
−→
C are considered modulo (k + 1). If a vertex such as u does not exist,

then R will evade C by moving along the cycle
−→
C , whenever under attack.

Therefore, such a u, which has both vi−1 and vi as its out-neighbors,

exists. Here we call vi a special vertex. There may be more than one

special vertex in
−→
C . The strategy of R is to initially start on a special

vertex of
−→
C and move towards the next special vertex of

−→
C when under

attack. We will now show that this strategy works.

The robber R starts at a special vertex vi and does not move until C

attacks (either from vi−1 or u). When C attacks, R moves to vi+1. At

this point R is two vertices ahead of C, and R keeps moving towards the

next special vertex in
−→
C , irrespective of C’s moves. If there are no more

special vertices, then R traverses
−→
C completely and reaches vi (the vertex

vi itself is the next special vertex, in this case). In any case R maintains a

distance of at least two from C (just before C’s move), since
−→
C is a shortest

directed cycle. Thus R can forever evade capture. This contradicts our

initial assumption that
−→
G is a cop-win graph.
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3.4 Strong Cop model

The strong cop number of an oriented graph is upper bounded by the cop

number in the classical version of the game on the underlying undirected

graph. The following observation is trivially true.

Observation 3.4.1. For any oriented graph
−→
G , we have cs(

−→
G) ≤ c(G).

Given a simple graph G, we are going to describe a specific construction

of an oriented graph
−→
SG and study the relation between c(G) and cs(

−→
SG).

Later we proceed to find the strong cop number of oriented planar graphs,

outerplanar graphs, and series-parallel graphs.

Construction: Given an undirected graph G, first replace each of its

edges with a directed 2-cycle. After that subdivide each arc to obtain

an oriented graph. That is, each edge vivj of G is replaced by a directed

4-cycle viuijvjujivi to obtain the oriented graph
−→
SG.

We have the following lemma that relates the strong cop number of
−→
SG

with the cop number of G.

Lemma 3.4.1. For any simple graph G, cs(
−→
SG) ≥ c(G).

Proof. We know that cs(
−→
SG) cops have a strategy to capture the robber

R in
−→
SG. We will show that cs(

−→
SG) cops have a winning strategy in G as

well. To be more specific, we will use the winning strategy of cs(
−→
SG) cops

in
−→
SG to obtain a winning strategy in G.

As the game is played in G, we also play it simultaneously in
−→
SG. The

moves of the cops in
−→
SG, following the winning strategy, are translated to

a winning strategy in G. We will describe the procedure to do so below.

Before that, we will present the notion of image.

Note that the sets N+[v], for v ∈ V (G), partition V (
−→
SG). That means,

for any x ∈ V (
−→
SG), there exists a unique v ∈ V (G) such that x ∈ N+[v]

in
−→
SG. Now define the image of x as i(x) = v.
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Initially place cs(
−→
SG) cops in

−→
SG according to the winning strategy.

Correspondingly place cs(
−→
SG) cops in G on the images of the vertices of

−→
SG where we had placed the cops. Secondly, place R in G. In

−→
SG also

place R on the exact same vertex.

For each move of the robber in G, make two moves of the robber in
−→
SG. To be precise, if the robber moves from vi to vj in G, then the robber

will move from vi to uij and then to vj in
−→
SG.

The cops will move according to the winning strategy in
−→
SG. Corre-

spondingly, we will move the cops in G. To be precise, if a cop moves

from x to y in
−→
SG in two consecutive turns, chasing the robber, then

correspondingly we move the cop from i(x) to i(y) in G. This is possible

as i(x) and i(y) are either adjacent in G or the same vertex in G.

Notice that, when R is captured in
−→
SG, it is also captured in G.

Remark 3.4.1. Berarducci and Intrigila [12], and Joret, Kaminski, and

Theis [69] showed that subdividing every edge of an undirected graph a

fixed number of times does not decrease the cop number. Lemma 3.4.1

is a weak analogue of their result. Our proof is similar to that in [12]

and can be generalized to prove that subdividing every arc of an oriented

graph a fixed number of times does not decrease its strong cop number.

As a result of Lemma 3.4.1, we find the strong cop number of oriented

planar graphs and then form oriented graphs with arbitrarily high strong

cop number.

Corollary 2. The strong cop number of the family of oriented planar

graphs is three.

Proof. We know that the cop number of planar graphs is three [3]. Thus,

by Observation 3.4.1, the strong cop number of oriented planar graphs is

at most 3. On the other hand, if H is a planar graph with cop number

3 (for example, dodecahedron), then, by Lemma 3.4.1, the strong cop

number of
−→
SH is at least 3. Thus we are done by observing that

−→
SH is

planar.
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It is known that the cop number of bipartite graphs is unbounded [24].

We have a similar result for the strong cop model also.

Corollary 3. For every k ∈ N, there exists an oriented bipartite graph
−→
Hk such that cs(

−→
Hk) ≥ k.

Proof. We know that there exists a graph Hn with cop number at least

k [3]. Now take
−→
Hn =

−−→
SHn . Note that

−−→
SHn is bipartite. Thus, the proof

follows from Lemma 3.4.1.

Next, we find the strong cop numbers of the family of oriented outer-

planar and series-parallel graphs.

Theorem 3.4.1. The strong cop number of the family of oriented outer-

planar graphs is two.

Proof. The cop number of outerplanar graphs in the classical game on

undirected graphs is two [34]. Hence, by Observation 3.4.1, it suffices to

construct an oriented graph that is not strong cop-win.

Construction: Consider the cycle
−→
C 1, depicted in Fig. 3.4.1, on vertices

v0, v1, · · · , v23 vertices having cycle arcs vivi−1 and chord arcs v2iv2i+2.

The + and − operations on the indices of V (
−→
C 1) are taken modulo 24.

Consider another copy
−→
C 2 of

−→
C 1. In

−→
C 2 rename each vertex vi as ui.

Now merge the vertex v0 of
−→
C 1 with the vertex u0 of

−→
C 2 to obtain the

graph
−→
C .

We give a robber-win strategy for
−→
C when there is just one strong cop

in this oriented graph.

Initial Setup If the cop C is placed at v0, then robber R enters at

v4; else R starts at v4 or u4 depending on whether C starts at C2 or C1,

respectively. In the latter case, R passes its moves until C is at v0 (in

order to catch R, C has to go through v0). Once C reaches v0, R passes its
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Figure 3.4.1: The biconnected outerplanar graph
−→
C 1.

move once more; reducing this case to the former case. Hence, without

loss of generality, assume that C and R start at v0 and v4, respectively.

In the rest of this proof, we show that if C tries to capture R, then R

reaches the initial configuration (C at v0 and R at v4) or its equivalent

configuration (C at v0 and R at u4) without being captured. Precisely, we

show that if C pursues R, then R reaches v0 two turns before C (or the

game continues indefinitely); thereby evading capture indefinitely.

To simplify our presentation, we use the following notations. Read

X(U ∗ V ) as “X moves from U to V in ∗ sense”. Read X(∗) as “X

moves in ∗ sense to an adjacent vertex”, where ∗ ∈ {	,�}, that is,

counter-clockwise and clockwise, respectively. Let dc denote the distance

between C and R at the given instant in the underlying undirected graph.

Rules for the Robber : All operations are performed under modulo 24.

R0 : At any turn, if C passes its move then R passes its move; else R

moves according to the following rules (R1 – R4 ).

R1 : For i = 1 to 7, if C(v2i−4 	 v2i−2) or C(v2i−3 	 v2i−2) then R(v2i 	

v2i+2); else it passes its move.

R2 : For i = 8 to 11, R(v2i 	 v2i+2) irrespective of C’s move.

R3 : If R is at v2i, for i ≤ 7, and C(�), then
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– if dc increases to at least 4, then R(�).

– if dc increases but remains less than 4, then R passes its move.

– if dc decreases, then R(�).

R4 : If R is at v2i+1, for i < 7, then R(�) irrespective of C’s move.

The scenarios that are not addressed by the above rules do not occur.

Analysis We claim that R satisfies its objective, that is, R reaches v0 at

least two turns before C. Once R is at v14 and C(v10 	 v12), then R keeps

on moving counter-clockwise and reaches v0 at least two turns before C

(irrespective of C’s moves). However if C(�) and if dc increases to at least

4, then R(�); else if dc < 4, then R passes its move. The restriction

dc ≥ 4 ensures that if C moves counter-clockwise, then R can safely move

clockwise to the next vertex with an even index. For subsequent steps, if

C(�) and R is on v2i, for i = 1 to 7, then R(�), provided the restrictions

in R3 are met. In any intermediate step if C(	), then R(�) if it is at

a vertex with odd index; else R(	) or R passes its move depending on

whether C attacks it or not. In such a case R always stays at least two

moves away from C and hence evades capture.

The only way left for C to capture R is if C continues moving counter-

clockwise along the chord arcs and then tries to capture R which now

moves counter-clockwise along the cycle arcs. However, in such a case

also, one can check that R reaches v0 at least two moves before C. Hence

the constructed graph is not strong cop-win.

Remark 3.4.2. The analysis for the above non-strong cop-win graph (a

graph that is not cop-win in the strong cop model) can be extended to

a family of non-strong cop-win graphs built on the same idea. In the

construction of the above graph take C1 and C2 as the cycles with an

even length of at least 24.
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It is known that the cop number of series-parallel graphs in the classical

game on undirected graphs is two [103]. Since the outerplanar graph in

Figure 3.4.1 is also a series-parallel graph, by Observation 3.4.1, we have

the following corollary.

Corollary 4. The strong cop number of oriented series-parallel graphs is

two.

As mentioned earlier all the oriented graphs whose underlying graphs

are cop-win graphs in the classical (undirected graph) version are strong

cop-win. Next, we find some families of oriented graphs which are strong

cop-win but whose underlying undirected graphs are not cop-win in the

classical version. We begin with a specific class of outerplanar graphs.

First, we need the following definition.

The weak dual of a plane graph G is a graph that has a vertex for each

bounded face of G and two vertices are adjacent if the corresponding

faces share an edge.

Theorem 3.4.2. Oriented connected outerplanar graphs whose weak dual

is a collection of paths are strong cop-win.

Proof. Let
−→
G be an oriented outerplanar graph on n vertices such that

the weak dual of its underlying graph G is a collection of paths. We call

the edges in the outer face of G as cycle edges and the other edges as

chord edges. Every edge in the weak dual of G corresponds to a chord

edge in G, so there are two bounded faces incident to a chord edge, one

on each side of it. Every bounded face in G has at most two chord edges,

or else a claw3 will be induced in the weak dual of G.

Let F be a bounded face in G, Also, let us assume that the robber

R is on the vertex v (say) at the moment. Let the length of a shortest

directed path from v to a vertex of F be l. The image iF (R) of the robber

R, is the set of vertices in F such that there is a directed path of length l

3A claw is a star graph on four vertices.
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from v to them. The image iF (R) may possibly be empty if there are no

directed paths from v to F . Note that, if v is not in F , then the vertices

of iF (R) are incident to a chord edge. This also implies that |iF (R)| ≤ 2,

as the weak dual of G is a collection of paths. Also if |iF (R)| = 2, then

the vertices from iF (R) are incident to the same chord edge.

If |iF (R)| = 2, then after R’s move, iF (R) may remain the same, or

reduce to one vertex, or become empty. If |iF (R)| = 1, then after R’s

move, iF (R) may remain the same, or become empty, or get changed to

a set containing an adjacent vertex of x, where x is the vertex in iF (R)

earlier. If |iF (R)| = 0, then it remains the same irrespective of R’s move.

As mentioned above, if R is not in F , then each vertex in iF (R) is an

end vertex of a chord edge in F . Thus even if R moves, iF (R) might

change to an adjacent vertex only (from one end vertex of a chord edge

to the other end vertex if R is not in F or follows R if it is in F ).

Now we give a strong cop-win strategy in
−→
G . Select a face F1 in

−→
G

and place the cop C in some vertex of F1. After R is placed in
−→
G , we find

iF1(R). If iF1(R) = ∅, or becomes ∅ at any point, then C moves to the

other face adjacent to F1 that is closer to R .

If iF1(R) 6= ∅, then capture a vertex in iF1(R). This is always possible

as a vertex in iF1(R) changes at most to an adjacent vertex. Now C is at

an end vertex of a chord edge, say pq. Let F2 be the other face incident

at the chord edge. The cop C follows the same strategy as it did in F1,

but with with the following exception (in order to forbid R from entering

F1).

If iF2(R) = {x} and there are two dipaths from x to p and q, then C tries

to capture iF2(R) by going against the orientation on the shortest dipath.

But if R enters F2 and takes the other directed path, then C reverses back

to pq and then takes the other dipath to x. This way C captures R .

If iF2(R) = {x, y} and there are two dipaths from say x to p and y to

q, then C tries to capture one of iF2(R) by going against the orientation

on the shortest dipath. But if R enters F2 and takes the other directed

73



path, then C reverses back to pq and then takes the other dipath. This

way C captures R . Following this strategy, R is forbidden to enter the

explored faces by the cop.

At each iteration, we go on removing one face of the graph to which R

cannot enter. Eventually both R and C end up in the same cycle, where

R gets captured.

Our next class of strong cop-win graphs are oriented grids.

Theorem 3.4.3. Oriented grids are strong cop-win.

Proof. Fix a m × n grid
−→
G with vertices at {(i, j) | 0 ≤ i ≤ m − 1, 0 ≤

j ≤ n− 1} in the usual coordinate system. The cop C starts at (0, 0). We

say that R is restricted to Ti, if R cannot move to a vertex of rows from

0 to i − 1 of
−→
G . Let (i, j) be the position of R, then we define image of

R in row r as (i, r). When C is at image of R in row r, we say that C is

guarding row r. Observe that if C is guarding row r and R is in a row

r′ > r, then R is restricted to Tr+1.

Cop C begins by guarding row 0. Next we show that if C is guarding

row r < n− 2 (and so R is restricted to Tr+1), then after a finite number

of moves C can guard row r+ 1 restricting R to Tr+2. Let R be at a vertex

(i, j) and C is guarding row r < j. Now, if R moves up or down, then C

moves up and guards row r+1. If R moves left or right, then C also moves

left or right, respectively, and retains the guard of row r. Since the grid

is oriented and R can make only weak moves, if R moves from a vertex

u to v, then it cannot move from v to u. Hence, R can make at most m

left and right moves and then has to either make an up or down move or

skip a move. In both cases, C moves up and guards row r+ 1. Also, note

that until C guards row r + 1, it is guarding row r and hence R is always

restricted to Tr+1 during this process.

This way C finally guards row n− 2 with R restricted to Tn−1 (that is,

row n− 1). Again, since R can only move a finite number of times in row
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n− 1 and also R cannot move to row n− 2, there will be no more moves

for R and C will capture R.

3.5 Weak Cop Model

A vertex u in a directed graph is said to be a corner vertex, if there exists

a vertex v such that N+[u]∪N−(u) ⊆ N+[v], where N∗[v] = N∗(v)∪{v}
for each ∗ ∈ {+,−}. We also say that v dominates u.

Now we characterize all cop-win directed graphs in this model, which

is adapted from the cop-win characterization of undirected graphs [86].

Theorem 3.5.1. A directed graph is cop-win in the weak cop model if

and only if by successively removing corner vertices, it can be reduced to

a single vertex.

In order to prove Theorem 3.5.1, we need the following two lemmas.

Lemma 3.5.1. If a directed graph has no corner vertex, then it is not

weak cop-win.

Proof. Let
−→
G have no corner vertex. The robber R starts from a vertex

that is not an out-neighbour of the cop C. The robber does not move

unless C attacks it. Whenever R is under attack, it can move to a vertex

that in not an out-neighbour of C (as there are no corner vertices in
−→
G).

Hence R never gets caught.

Lemma 3.5.2. A directed graph
−→
G with a corner u is weak cop-win if

and only if
−→
H =

−→
G \ {u} is weak cop-win.

Proof. Let vertex v dominate u in G. Suppose
−→
H is cop-win. Define the

image iR of the robber R as follows: iR(u) = v and iR(x) = x for all

x ∈ V (
−→
H ). So iR is restricted to

−→
H and it can be captured by the cop C.

If R is not on u, then it is captured. If R is on u, then C is on v and will

capture R in its next move.
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Suppose, on the other hand,
−→
H is not weak cop-win. Define the image

iC of the cop C as follows: iC(u) = v and iC(x) = x for all x ∈ V (
−→
H ). So

iC is restricted to
−→
H and R has a winning strategy against iC. If C is not

on u, then R follows its winning strategy and does not get captured in

C’s next move. If C is on u, then R follows its winning strategy assuming

C is on iC(u) = v. Since R has a winning strategy against C if C were at v

instead, R does not get captured in C’s next move (as v dominates u). So

R evades capture; hence
−→
G is not weak cop-win.

Finally, we are ready to prove Theorem 3.5.1.

Proof of Theorem 3.5.1. Lemma 3.5.2 implies that upon removing the

corner vertices, the weak cop-win property of the graph remains the same.

Now remove all possible corner vertices successively in the directed graph.

If we end up with a single vertex, then it is weak cop-win. Otherwise, we

end up with some other graph that has no corner vertices, Lemma 3.5.1

implies that it is not weak cop-win.

3.6 Conclusion

In this chapter, we focus on three variants of the Cops and Robber game

on oriented graphs. We are able to characterize the weak cop-win graphs.

For the normal model, we find some cop-win graphs. For the strong

model, we also find some cop-win graphs; and then find the strong cop

numbers of some families of oriented graphs, namely, the outerplanar, the

series-parallel, and the planar.

In the strong cop model, it will be interesting to study graph classes

that have cop number two in the classical undirected game, such as, in-

terval filament graphs, circular-arc graphs, function graphs. Also, the

characterization of strong cop-win graphs remains open. Another inter-

esting question is to construct oriented graphs that can have arbitrarily

high strong cop number, minimum degree, and girth.
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In this chapter we study the game of Cops and Robber on some classes

of intersection graphs. In particular, we study the cop number of string

graphs and rectangle intersection graphs.

4.1 Chapter overview

In Section 4.2, we provide some basic definitions and preliminary results.

Our main observation of guarding a special path is given in Section 4.3.1,

which is used to prove the improved upper bound on the cop number of

string graphs in Section 4.3. In Section 4.4, we improve the bounds on

the cop number of boxicity 2 graphs. We end with Section 4.5 where we

suggest some future directions.

4.2 Preliminaries

Recollected definitions: All graphs considered in this chapter are

finite, connected, and simple. Let G(V,E) be a graph with vertex set V

and edge set E. Let u be a vertex of G. Then the open neighbourhood of u

is denoted by N(u), and N(u) = {v : uv ∈ E}. The closed neighbourhood

of u is denoted by N [u], and N [u] = N(u) ∪ u. For a subgraph H of

G, we represent the closed neighbourhood of H by N [H], where N [H] =⋃
v∈V (H)N [v]. We also define G \H as the graph induced by the vertices

in G but not in H. For a vertex v of G, by G \ v we refer to the graph

induced by vertices of V \ v. Let V ′ ⊆ V be a set of vertices of G. Then

G|V ′ denote the subgraph of G induced by vertices of V ′.

Consider a graph G and a subgraph H of G. We say that the robber

R is restricted to H, if R cannot leave the vertices of H without getting

captured. Here H is the robber territory. We say that cops guard H if
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the robber cannot enter the vertices of H without getting captured, by

one of the cops guarding H, in the next cop move.

For vertices u and v in G, a path from u to v is denoted as u, v-path.

For two vertices u and v in G, let d(u, v) denote the length of a shortest

u, v-path

New definitions: Let P be a shortest u0, uk-path such that P =

u0, u1, . . . , uk. For 0 ≤ i ≤ k, let Di = {x | d(u0, x) = i} if i < k, and

Di = {x | d(u0, x) ≥ i} otherwise. Hence, ui ∈ Di, for i ≤ k.

G(V,E) is an intersection graph if each vertex v ∈ V corresponds to a

set ψ(v), and (u, v) ∈ E if and only if ψ(u) ∩ ψ(v) 6= ∅. A string graph

G = (V,E) is an intersection graph of strings, where each string ψ(v) is

a continuous image of the interval [0, 1] into R2. Given a string graph G,

we can generate strings corresponding to each vertex of V such that two

strings intersect if and only if the corresponding two vertices are adjacent

in G. These strings are said to be a realization/representation of graph

G. We assume that the strings are non self-intersecting.

Segments, Faces and Regions: A set A ⊂ R2 is arc-connected if for any

two points a, b ∈ A, the set A contains a curve with endpoints a and b.

Consider a fixed string representation Ψ of G. If two strings π and π′

intersect at a point p, then we call p as an intersection point. In a fixed

representation of a string graph G, a string can have multiple intersection

points and two strings can have multiple intersection points in common.

A segment s of a string π is a maximal continuous part of the string π

that does not contain any intersection point other than its endpoints. A

string containing k intersection points has k + 1 segments.

A region is an arc-connected area bounded by some segments of a set

of strings in a string representation. A region also includes its boundary.

Whenever we mention about region, it should satisfy our region definition.

A face is a region not containing any intersection point between two

strings except on the boundary and no string has a continuous part in

the region that intersects the boundary of the region more than once. It
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Figure 4.2.1: Here ψ(u) is in ΨB, ψ(x) is not in ΨB, and for ψ(v),
strings ψ(v1) and ψ(v2) are in ΨB.

is a standard assumption that for a finite string graph G, we can have a

representation such that the number of segments and faces is finite.

Consider a region B of representation Ψ. We define the representation

restricted to B, denoted by ΨB, in the following manner. If a string π is

completely inside B, then we have π in ΨB also. If π is completely outside

B, then π is not in ΨB. If a string π is such that some portion of π is

outside B and some portion of π is inside B, then we do the following.

Let s1, . . . , sk be the portions of the string π such that each endpoint of

si, for 0 < i ≤ k, is either on the boundary of B or is an endpoint of

the string π, and si ∈ PhiB. Then instead of string π, we include k new

strings. We consider each portion si, for 0 < i ≤ k, as a new string πi

in ΨB. See Figure 4.2.1 for illustration. Let GB(VB, EB) be the string

graph corresponding to the representation ΨB. Here VB is defined by

the strings in ΨB and EB is defined by the intersection between these

strings. Observe that, though GB might contain more vertices than G,

the number of vertices in GB remains finite. Moreover, the number of

faces and the number of segments in ΨB are not more than that in Ψ.
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Here we also say that GB is the graph G restricted to region B.

Let Ψ be a fixed representation of a string graph G. Consider a curve

C in the representation Ψ. C is composed of some of the segments of the

strings from Ψ. Let C be composed of segments s1, . . . , sl. Furthermore,

consider a path P in G, such that P = u1, . . . , uk. Suppose each segment

s ∈ {s1, . . . , sl} is a segment of some string ψ(u), u ∈ {u1, u2, . . . , uk},
and for each string ψ(u), u ∈ {u1, u2, . . . , uk}, there is a segment s ∈
{s1, . . . , sl} such that s is a segment of ψ(u). Here we say curve C is

related to path P . Observe that l ≥ k. Note that multiple curves may

relate to the same path, and a curve may be related to multiple paths.

For example, consider a complete graph Kn (which is a string graph) and

a string representation of Kn, denoted by Ψ(Kn). If we choose a curve

such that it contains at least one segment from each string of Ψ(Kn),

then this curve corresponds to every path of length n in Kn. We would

also like to mention here that the order of segments in the curve might

not correspond to the order of vertices in the path.

Let Ψ be a fixed representation of a string graph G. A shortest curve

in Ψ is a curve that is related to a shortest path between two distinct

vertices in G. Let P = u1, . . . , uk be a shortest u1, uk-path and let C be

a curve that is related to P . Let C be composed of segments s1, . . . , sl

and the segments are in order s1, . . . , sl. Then a segment of string ψ(ui)

can only be adjacent to a segment of string ψ(ui−1), ψ(ui), or of string

ψ(ui+1) in C (since P is a shortest path). Observe that, although multiple

shortest curves can be related to a shortest path, a shortest curve relates

to only one shortest path. For clarification of this observation, we present

the following argument. Let z1, . . . , zk be natural numbers such that

z1 = 1, zk = l, and z1 < z2 < · · · < zk. Then there exists a sequence

z1, . . . , zk such that each segment s ∈ {szi , . . . , szi+1
}, for 1 ≤ i ≤ k − 2,

is a segment of either the string ψ(ui) or the string ψ(ui+1), and the

segment szi+1
is a segment of the string ψ(ui+1). For i = k − 1, each

segment s ∈ {szi , . . . , szi+1
}, is a segment of either the string ψ(ui) or the
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string ψ(ui+1). Thus, C can be related to only one path u1, u2, . . . , uk.

Therefore, a shortest curve relates to only one shortest path.

A curve with endpoints a and b is referred to as an a, b-curve. Two

curves are said to be internally disjoint if they can intersect only at their

respective endpoints. Let C be a curve in a string representation Ψ. A

curve π is said to be a sub-curve of C if π can be formed by some segments

of C. We borrow the following topological lemmas by Gavenčiak et al. [56]

that we will use in this chapter.

Lemma 4.2.1 (Gavenčiak et al. [56]). Let B be a region. If π is a shortest

curve and π′ ⊆ π is a sub-curve with π′ ⊆ B, then π′ is a shortest curve

in ΨB.

Lemma 4.2.2 (Gavenčiak et al. [56]). Let π1 and π2 be two internally

disjoint shortest a, b-curves with a 6= b and F be one of the closed faces

of R2\(π1 ∪ π2). For any simple a, b-curve π3 contained in F and going

through at least one of its inner points we have that every face of R2\(π1∪
π2∪π3) is bounded by simple and internally disjoint curves π′i and π′3 with

π′i ⊆ πi, π
′
3 ⊆ π3 and i ∈ {1, 2}.

4.2.1 Brief Survey

Aigner and Fromme [3] proved that the cop number for the class of

planar graphs is three. For that purpose, they proved that one cop can

guard a shortest u, v-path after a finite number of steps. This guarding

result and its extensions have been used extensively in computing the cop

number of various graph classes, and we will also use this result . We here

present a reworded version of the statement and its proof on the lines of

the proof of the same by Bonato and Nowakowski [24].

Result 4.2.1 (Aigner and Fromme [3]). Let u0 and uk be two distinct

vertices of a graph G, and let P be a shortest u0, uk-path. Then one cop

C can guard P after a finite number of moves.
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Proof. Let path P = {u0, . . . , uk}. We define the image of the robber,

denoted by image(R), as ui if R is at vertex v and v ∈ Di. Hence

image(R) is always restricted to P and can only move from ui to ui−1,

ui or ui+1, if they exist. Hence, C can occupy the vertex image(R) in at

most k moves. Thereafter, in whatever way R moves, after the move of

C, C can and will always continue to be on image(R). Since each vertex

v ∈ P is an image of itself and after each round C is on image(R), R
gets captured by C whenever R enters P . Hence C guards P in at most

k rounds.

Using Result 4.2.1, Aigner and Fromme [3] proved that the cop number

of planar graphs is three. We give a high level overview of their technique

here. Consider a particular planar embedding of a planar graph G. Let

the three cops be denoted as C1, C2, and C3. The cop C1 starts with

guarding a shortest u, v-path P and then C2 guards a shortest u, v-path

P ′ in (G \ P ) ∪ {u, v}. By Jordan Curve theorem, we can see that the

paths P and P1 divide the graph in two planar regions: one inside and

one outside. Let those regions be A and B, respectively. Observe that in

a planar graph, if R has to move from a vertex of A to a vertex of B, or

vice versa, then R has to enter a vertex of P ∪ P1. Since both P and P1

are guarded, R is restricted to one of the regions. Let this region be A.

Now, C3 finds a shortest u, v-path P2 in A∪{u, v} and guards it. Let the

region enclosed between P and P2 be A1 and the region enclosed between

P2 and P1 be A2. Now, R is restricted in either the region A1 or the

region A2, and depending on that we can free C2 or C1, respectively. Now

the freed cop can again reduce the robber territory. This way cops go on

reducing the robber territory and finally capture the robber. This result

used the embedding structure of the planar graphs and this technique

was later extended to other embeddable graphs as discussed below.

Let u and v be two distinct vertices of a graph G(V,E). We say that

a u, v-path P is a shortest path relative to T ⊆ V , if there is no shorter
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u, v-path in G|P∪T (graph induced by vertices of P and T ). Gavenčiak

et al. [56] showed that if P is a shortest path relative to T ⊆ V and R
is restricted to T , then one cop can guard P . They argued that the cop

can guard P by considering the game in the graph induced by vertices of

P and T . Here also, if the path P has length k, then the cop can guard

P in at most k cop moves. They had the following lemma.

Lemma 4.2.3 (Gavenčiak et al [56]). Let u and v be two distinct vertices

of G and P be a shortest u, v-path relative to T ⊆ V , and R is restricted

to T . Then one cop can guard P in a finite number of moves.

Chiniforooshan [33] extended the idea of guarding a shortest path P to

guarding N [P ], and used it to upper bound the cop number of a graph

G(V,E) in terms of n = |V |. This idea of guarding N [P ] was used by

Gavenčiak et al. [56] to bound the cop number of string graphs. We will

use this result for our algorithm and hence we give a small proof which

is a rewording of Gavenčiak et al. [56].

Result 4.2.2 (Chiniforooshan [33]). Let P be a shortest u0, uk-path in

G, then five cops can guard N [P ] after a finite number of moves.

Proof. Let P = u0, u1, . . . , uk. We refer to one of the five cops as the sher-

iff and the other cops are its deputies. The deputies follow the movements

of the sheriff such that when the sheriff is at a vertex ui, for 0 ≤ i ≤ k,

the deputies are at vertices ui−2, ui−1, ui+1 and ui+2. Let vertices uk+1

and uk+2 refer to the vertex uk, and let vertices u−1 and u−2 refer to the

vertex u0.

Using Result 4.2.1, the sheriff guards P , in at most k steps. Next, we

show that if the sheriff is guarding P , then the sheriff and its deputies

are guarding N [P ]. Suppose R moves to a vertex v ∈ N [P ], and let

v ∈ Di. So the sheriff has to move to ui for guarding P, from a vertex

u ∈ {ui−1, ui, ui+1}. Observe that these five cops can ensure their presence

at all these ui−1, ui, and ui+1 vertices, when the sheriff was at vertex u.
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Also, since v ∈ N [P ], v ∈ Dj and P is a shortest u0, uk-path, observe

that v is adjacent to at least one of ui−1, ui, and ui+1. Because there is

a cop at each of these vertices, the cops will capture R.

Thus five cops can guard N [P ], in at most k rounds.

Let T be a a subset of the vertex set of G. Gavenčiak et al [56] extended

the idea of guarding the neighbourhood of a shortest path to guarding

the neighbourhood of a shortest path relative to T ⊆ V . We state the

lemma below. The proof is similar to the proof of Result 4.2.2.

Lemma 4.2.4 (Gavenčiak et al [56]). Let u and v be two distinct vertices

of G, P be a shortest u, v-path relative to T ⊆ V , and R is restricted to

T . Then five cops can guard N [P ] after a finite number of moves.

Using Lemma 4.2.4, Gavenčiak et al [56] proved that five cops can

restrict the robber to cross a shortest path P in a string graph. Then

using this result and some other sophisticated results, and a technique

similar to that of Aigner and Fromme [3], they proved that 15 cops can

always capture the robber in a string graph.

We improve upon this result and prove that 14 cops are always sufficient

to capture the robber in a string graph. For that purpose, we prove that

if P is the unique shortest u, v-path in G, that is, all other u, v-paths are

longer than P , then four cops can guard N [P ].

This technique of restricting the robber to enter or cross a path was

also used by Beveridge et al. [14] for bounding the cop number of unit

disk graphs. They showed that three cops can restrict the robber to

cross a shortest path in a unit disk graph. Then using this result and

techniques similar to that of Aigner and Fromme [3], they proved that

the cop number for the class of unit disk graph is at most 9.
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4.3 Cops and Robber on String graphs

4.3.1 Guarding the unique shortest path

In the results discussed till now, five cops were guarding any shortest

u, v-path and its neighbourhood, and then building on the techniques

of Aigner and Fromme [3], one could reduce the robber territory. Our

crucial observation is that if the shortest u, v-path is unique in some sense,

then we can guard the path and its neighbourhood using four cops. Let

G be a graph, and let u0 and uk be two distinct vertices of G. Then

P = u0, . . . , uk is the unique shortest u0, uk-path, if the length of every

other u0, uk-path is more than the length of P . We will show that four

cops are sufficient to guard N [P ].

Consider a graph G(V,E). Let T be a subset of the vertex set V , that

is, T ⊆ V . Consider a u0, uk-path P such that P = u0, u1, . . . , uk. P is

said to be a special path relative to T ⊆ V , if P is a shortest path relative

to T and there is no vertex v ∈ T such that v /∈ P , d(u0, v) = i− 1 and

v ∈ N(ui), for 0 ≤ i ≤ k.

Let u and v be two distinct vertices of G and let P be the unique

shortest u, v-path. Then, observe that P is also a special path relative to

T = V . Moreover, if a path P is a special path relative to T ⊆ V , then

T is also a special path relative to T ′, where T ′ ⊆ T .

We now prove the following lemma, which is central to our proof. We

use the notions of sheriff and deputies as in the proof of Result 4.2.2.

Lemma 4.3.1. Let P = u0, . . . , uk be a special path relative to T ⊆ V .

Then 4 cops can guard N [P ], after a finite number of steps.

Proof. We mark one cop as the sheriff and the other three cops are said

to be its deputies. The deputies follow the movements of the sheriff such

that when the sheriff is at a vertex ui, for 0 ≤ i ≤ k, the deputies are at

vertices ui−2, ui−1 and ui+1. Let the vertex uk+1 refers to the vertex uk,

and let vertices u−1 and u−2 refer to the vertex u0.
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Since P is a shortest path relative to T , the sheriff guards P in at most

k steps using Lemma 4.2.3. Moreover, it is worth mentioning that the

sheriff can do so by staying on the vertices of P . More specifically, after

each move of the sheriff, if R is at a vertex v ∈ Dj, then the sheriff is at

vertex uj. We claim that once the sheriff guards P , these four cops guard

N [P ].

To prove the above claim, we show that ifRmoves to a vertex x ∈ N [P ]

(also x ∈ T ), then R gets captured by one of the cops. If R moves to a

vertex in P , then the sheriff will capture the robber as it is guarding P .

Let R moves to a vertex x /∈ P , x ∈ N [P ], and x ∈ Dj.

Let 1 < j < k. Since x ∈ N [P ], x is adjacent to at least one vertex of P .

Now x cannot be adjacent to a vertex y from {u0, . . . , uj−2}, as through

path u0, . . . , y, x the distance d(u0, x) < j, which is not possible since

x ∈ Dj. Moreover, x cannot be adjacent to a vertex y from {vj+2, . . . vk},
as the path u0, . . . x, y, . . . uk becomes a shorter u0, uk-path than P , which

is a contradiction to the fact that P is a shortest path. Also, x cannot be

adjacent to uj+1 by the definition of the special path. Hence, x can only

be adjacent to uj−1 and uj, and is adjacent to at least one of them. Since

the sheriff is guarding R, it can reach uj in this cop move, and hence is

at one of the vertex from {uj−1, uj, uj+1}. In any case, there are cops on

both uj and uj−1. Hence, one of these cops will capture R whenever R

enters x.

Similar arguments hold for j ∈ {0, 1, k}. If j = k, then observe that

x can only be adjacent to uk and uk−1, and both these vertices would be

occupied by cops. If j = 1, then x can only be adjacent to u0 and u1,

and both these vertices would be occupied by cops. If j = 0, then x = u0

and hence x in on P , and since the sheriff is guarding P , it will capture

R.

Hence, these four cops can guard N [P ] in at most k steps.

If a curve π related to a special path P relative T , then π is referred to
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as a special curve relative to T . We extend Lemma 4.2.1 to accommodate

the special curves in the following lemma.

Lemma 4.3.2. Let B be a region of Ψ. If π is a special curve relative

to T and π′ ⊆ π is a sub-curve with π′ ⊆ B, then π′ is a special curve

relative to T in ΨB.

Proof. First, we prove that π′ is a special curve in Ψ. Let the curve π

be related to a special u0, uk-path P = u0, . . . , uk in G. Then any sub-

curve π′ ⊆ π would relate to a ui, uj-path P ′ = ui, ui+1, . . . , uj, where

0 ≤ i ≤ j ≤ k. For contradiction, let us assume that π′ is not a special

curve relative to T in Ψ, and hence P ′ is not a special path relative to

T in G. Thus, there exists a vertex v ∈ T \ P and some ul (where

i ≤ l ≤ j) such that d(ui, v) = d(ui, ul) − 1 and ul ∈ N [v]. Therefore,

d(u0, ui) + d(ui, v) = d(u0, ui) + d(ui, ul) − 1. Hence, we have a vertex

v ∈ T \P such that d(u0, v) = d(u0, ul)−1 and ul ∈ N [v]. This contradicts

the fact that P is a special path (relative to T ) related to special curve π

(relative to T ). Hence, π′ is a special curve in Ψ and P ′ is a special path

in G, both relative to T .

Next, we show that if a curve π′ is a special curve in Ψ and π′ ⊆ ΨB

(for some B of Ψ), then π′ is a special curve in ΨB. Consider two vertices

x and y of G corresponding to strings ψ(x) and ψ(y) in Ψ, respectively.

Let x′ and y′ be two vertices in GB such that ψ(x′) is a portion of ψ(x)

and ψ(y′) is a portion of ψ(y). Then observe that d(x′, y′) in GB cannot

be less than d(x, y) in G.

Now consider a vertex v′ in GB such that v′ /∈ P ′, corresponding to

string ψ(v′) in ΨB, such that ul ∈ N [v′]. Let ψ(v) be a string in Ψ,

corresponding to vertex v such that v /∈ P , such that ψ(v′) is a portion

of string ψ(v) in Ψ. Hence ul is also a neighbour of v in G. Since P ′ is a

special path in G, either d(ui, v) = d(ui, ul) + 1 or d(ui, v) = d(ui, ul) in

G. Hence, d(ui, v) ≥ d(ui, ul) in G. Since d(x′, y′) in GB cannot be less

than d(x, y) in G, d(ui, v
′) ≥ d(ui, ul). Thus, there cannot be any vertex
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v′ in GB \P ′ such that ul ∈ N [v′] and d(ui, v
′) = d(ui, ul)− 1. Hence, P ′

is a special path in GB and π′ is a special curve in ΨB, both relative to

T .

Also, if a curve π relates to a shortest path P relative to T , then we

say that π is a shortest curve relative to T .

We would like to note that if a path P is a shortest/special relative

to T ⊆ V , then P is shortest/special relative to every subset T ′ ⊆ T .

Similarly, if a curve π is a shortest/special relative to T ⊆ V , then π is

shortest/special relative to every subset T ′ ⊆ T .

4.3.2 Bounding the robber region

Consider a string representation of a string graph G(V,E) in R2. Let a

vertex v ∈ V be represented by a string ψ(v). Let Ψ = {ψ(v) | v ∈ V }
be the set of strings in our representation. We say that a string ψ(v) is

a top-most string if some point on ψ(v) has the highest y-coordinate in

Ψ. Here we also say that v is a top-most vertex. Similarly, we define the

bottom-most string and bottom-most vertex.

Shortest paths represented by curves: Let C be a curve related to

a path P . When some cops are guarding N [P ], then we also say that the

cops are guarding the curve C.

Let u and v be two distinct vertices of G such that u is a top-most and

v is a bottom-most vertex. Consider a shortest u, v-path P in G. Let

p be a point on string ψ(u) such that p has the highest y-coordinate in

Ψ and p′ be a point on ψ(v) such that p′ has the lowest y-coordinate in

Ψ. Then a p, p′-curve C, related to a shortest path P , is referred to as a

top-bottom curve. Note that this curve may not be unique.

Let C be a top-bottom curve related to a shortest u, v-path P such that

u is a top-most and v is a bottom-most vertex. Observe that, if a vertex

x /∈ N [P ], then ψ(x) lies either completely on the left of C or completely

on the right of C. If a string ψ(x) lies on the left (or right) of curve C,
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then we also say that vertex x lies on the left (or right) of P . We say

that the robber crosses the curve C if R moves (in some finite rounds)

from a vertex u completely on the left of C to a vertex v completely on

the right of C, or vice versa.

This curve C is a continuous curve from a top-most point a to a bottom-

most point b in the string representation. Hence, if a vertex x is on left of

P and a vertex y is on right of P , every path from x to y passes through a

vertex of N [P ]. Thus, if cops are guarding N [P ], then the robber cannot

cross any curve C corresponding to the path P . Here, we also say that

the robber cannot cross the path P .

The following observation is a consequence of Result 4.2.2.

Observation 4.3.1. Let u and v be two distinct vertices such that u is

a top-most vertex and v is a bottom-most vertex, and P be a shortest

u, v-path. If C is a curve related to path P , then five cops can restrict the

robber to cross the curve C.

Proof. Cops can achieve this by guarding N [P ].

Robber territory and restricted Graphs: Let G(V,E) be a string

graph. We say that T ⊆ V is the robber territory if R cannot leave

vertices of T without getting captured. Alternately, we can also say that

R cannot move to a vertex v ∈ V \ T . We also say that R is restricted

to T .

Consider a fixed string representation Ψ of G. We extend the definition

of robber territory to geometric robber territory. Consider a region B. Let

R be on a vertex u such that all points of the string ψ(u) are inside the

region B ( points may be on the boundary of B also). If R cannot move

to a vertex v (without getting captured) such that some portion of the

string ψ(v) is outside B, then we say that ΨB is the geometric robber

territory. We say that R is in the region ΨB if R is on a vertex u of G

such that all points of the string ψ(u) are inside region B. Now we give

various ways to bound the geometric robber territory.
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We say that two curves are internally disjoint if they can intersect only

at their respective endpoints. If a region B is bounded by two internally

disjoint curves C1 and C2, then we denote ΨB as ΨC1,C2 also. We have

the following observation.

Observation 4.3.2. Let π1 and π2 be two disjoint a, b-curves and R is

in the region Ψπ1,π2. If both curves π1 and π2 are guarded, then R cannot

leave the region Ψπ1,π2 without getting captured.

We extend this definition of bounding a region B with two curves C1

and C2 to bounding the region on the left or the right of a top-bottom

curve C. Let C be a top-bottom curve. The region on the left of the

curve C contains the points both on C and on left of C. Here ΨB is

defined analogously and ΨB is also denoted by ΨC,L. Similarly, we can

define the region on the right of the curve C, and also ΨC,R.

Observe that when we guard the closed neighbourhood of a shortest

u, v-path P related to a top-bottom curve C, as we did in Observation

4.3.1, the robber territory T is restricted to either left or right of P .

Here we use curves to bound the robber territory and geometric robber

territory. The following observations provide one more way to bound the

robber territory.

Observation 4.3.3. Let x be a cut vertex of G(V,E) such that G|V \x
gives a connected component G′(T,E ′). If R is on a vertex v ∈ T and a

cop is occupying the vertex x, then R is restricted to T and T becomes

the robber territory.

4.3.3 Extending a shortest path

Consider a string graph G and a fixed representation Ψ of G. Let ΨB

be the geometric robber territory, and GB be the graph corresponding

to ΨB. Let ΨB be bounded by two internally disjoint a, b-curves π1 and

π2, that is, Ψπ1,π2 is the geometric robber territory. Let π1 and π2 are
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related to paths P1 and P2 respectively. Also, let T ⊆ V (GB) be the

robber territory such that both P1 and P2 are shortest paths relative to

T . Intuitively speaking, by extending a shortest path P1 (that relates to

a shortest curve π1), we mean that we find a shortest path P and a curve

π such that in the region B′ bounded by two disjoint curves π′1 ⊆ π1 and

π′ ⊂ π, the curve π′1 is a special curve in the region Ψπ′1,π
′ and π′ is a

shortest curve in Ψπ′1,π
′ . Here π′1 is a special curve in Ψπ′1,π

′ relative to

T ′ = V (GB′), and π′ is a shortest curve in Ψπ′1,π
′ relative to V (GB′ \ P ′1),

where P ′1 is the path related to the curve π′1. We can extend the path P1

in the following manner.

If there is no u0, uk-path other than P1 and P2 in GB, then we say that

we cannot extend the path P1. Otherwise, we do the following.

If P1 is a special path in GB relative to T , then we find a shortest u0, uk-

path P in GB other than P1 and P2. We call P as the extended path of

P1. Observe that P is a shortest path relative to the robber territory

T \ (P1 ∪P2) (and paths P1 and P2 are guarded), and hence N [P ] can be

guarded using five cops. Let π be an a, b-curve related to path P . Since

path P1 is a special path in GB, π1 is a special curve. Hence, observe that

if R is in a region bounded by two disjoint curves π′1 ⊆ π1 and π′ ⊆ π,

then four cops can guard π′1 and five cops can guard π′. Here we need 9

cops to bound this robber region Ψπ,π′ .

If P1 is not a special path in GB relative to T , then we do the following.

Let Q refer to path P2. Find a vertex x ∈ GB \(P1∪Q) with least d(u0, x)

such that d(u0, x) = i − 1 and ui ∈ N(x), for 0 < i < k (there might

be multiple such vertices and we select any one of them). Now consider

the path P = u0, . . . , x, ui, . . . , uk. We fix a curve C related to P in the

following manner. Let p′ be an intersection point of strings ψ(x) and

ψ(ui). Let C1 be an a, p′-curve related to a shortest u0, x-path which is

not a subpath of the path P1 or of the path P2. Let p be a point on the

string ψ(ui) ∩ π1 which is closest to p′ along the sub-curve of the string
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Figure 4.3.1: Here the extended path π is represented in red color.

ψ(ui). Let C2 be the p, b-curve such that C2 is a sub-curve of π1. Then

consider the curve π as the union of curves C1 and p′, p-curve that is a

sub-curve of string ψ(ui) and C2. See Figure 4.3.1 for an illustration.

Note that P is a shortest path relative to T \ (P1∪P2) and π is a shortest

curve relative to T \ (P1 ∪ P2).

Now consider the region B′ bounded by curves π1 and π. If P1 is a

special path relative to GB′ , then we call P as the extended path of P1.

If not, then we consider the path P as Q, the region B′ as B and repeat

the steps of the above paragraph until we find an extended path P of P1.

Finally, we get an extended path P of P1. We also have curves π

related to P and π1 related to P1. We call the curve π as the extended

curve of π1. Now, consider any region B′ bounded by two disjoint curves

π′1 ⊆ π1 and π′ ⊂ π, and let R be inside the region Ψπ′1,π
′ . The curve π′

is a special curve in the region Ψπ′1,π
′ relative to T ′ = V (GB′). The curve

π′1 is a shortest curve in region Ψπ′1,π
′ relative to V (GB′ \ P ′1), where P ′1

is a path related to curve π′1. Now we can guard π using four cops, and

when π′ is guarded (or even P ′ is guarded), we can guard π′1 using five
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cops. Hence, the geometric robber territory Ψπ′1,π
′ can be bounded using

9 cops.

If ΨB is bounded by only one top-down curve π1 related to path P1,

that is, the robber territory is either Ψπ1,L or Ψπ1,R, then we extend the

path P1 in following manner. We use a similar strategy to the above one,

with the only change that we consider the path P2 as an empty path,

that is, P2 = ∅. Rest we follow the same steps and find an extended path

P of P1.

We have the following observation.

Observation 4.3.4. Let P1 be a shortest path in GB (relative to some

T ⊆ V (GB)) and P is an extended path of P1. Moreover, let the curves

π1 and π be related to paths P1 and P , respectively such that π is the

extended curve of π1. Let both π1 and π are guarded by cops. Consider a

region B′ bounded by two disjoint curves π′1 ⊆ π1 and π′ ⊆ π. The curve

π′ is a special curve in the region Ψπ′1,π
′ relative to T ′ = V (GB′). The

curve π′1 is a shortest curve in region Ψπ′1,π
′ relative to V (GB′ \P ′1), where

P ′1 is the path related to the curve π′1. Thus, if R is inside the region B′,

then 4 cops can guard π′ and 5 cops can guard π′1. Hence, 9 cops can

bound the geometric robber territory Ψπ′1,π
′.

We use this technique of extending a path to ensure that, in our al-

gorithm, whenever two teams of cops guard a bounded region, they can

do so using 9 cops instead of 10 cops (as done by Gavenčiak et al. [56])

giving us a maximum cop number of 14 instead of 15. Now we are ready

to present our algorithm and give our algorithm in the next section.

4.3.4 Algorithm

Now we show that 14 cops are always sufficient to capture the robber

in a string graph G. Let G(V,E) be a string graph and Ψ be a fixed

representation of G. Let R is in a region B and R is restricted to T ⊆
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V (GB). Let u and v be two distinct vertices in GB. For our strategy,

first we define three game states, state 1, state 2 and state 3 as follows.

1. State 1 : Let u be a top-most and v be a bottom-most vertex in GB.

Then five cops are guarding a shortest u, v-path P .

2. State 2 : The region B is bounded by two disjoint curves π1 and π2

such that π1 is a special curve in Ψπ1,π2 relative to T and π2 is a

shortest curve in Ψπ1,π2 relative to T . Then five cops are guarding

π2 and four cops are guarding π1 (total 9 cops).

3. State 3 : Let x be a vertex in G such that GB is a connected com-

ponent of G \ x. If a cop is occupying the vertex x and R is in

GB, then observe that R is restricted to GB. Let u be a top-most

vertex and v be a bottom-most vertex in GB, and P be a shortest

u, v-path relative to T . Then one cop is occupying vertex x and five

cops are guarding guard N [P ]. Moreover, R and ψ(x) are on the

same side of each curve π related to P .

State 1, State 2, and State 3 are referred to as safe states. (Observe

that, in safe state 1, the robber is restricted either to the left or to the

right of P .)

We have the following lemma which is central to our algorithm.

Lemma 4.3.3. Consider a fixed representation Ψ of a string graph G(V,E).

Let R be in a region B of Ψ, and ΨB be the geometric robber territory.

Let T ⊆ V (GB) be the robber territory, and the game is in a safe state S.

Then 14 cops can force the game to a safe state S ′ and robber territory to

T ′ ⊆ T and geometric robber territory to ΨB′ ⊂ ΨB, in a finite number

of moves.

Proof. Depending upon the state S of the game, we do the following:

1. S = state 1: Let u0 be a top-most and uk be a bottom most vertex

in GB , and P = u0, . . . , uk be the shortest path such that N [P ] is
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guarded by 5 cops. Let π be a curve related to path P (and let π

defined B). Observe that the geometric robber territory is either

Ψπ,L or Ψπ,R. Without loss of generality, let us assume that R is

restricted to the right of π and hence Ψπ,R is the geometric robber

territory. We extend the path P in Ψπ,R and let P ′ be the extended

path of P . Now, guard N [P ′] using 5 cops. (We can do so because

P ′ is a shortest path relative to T \ P .) Consider a top-bottom

curve π′ related to path P ′, such that π′ is an extended curve of π.

Now, one of the following scenarios is possible:

(a) Path P cannot be extended. It is possible only if there is

no u, v-path in GB other than P . Let R be in a connected

component G′(T ′, E ′) of GB \ P . In this case, we claim that

there is a unique vertex x ∈ P such that x has a neighbour in

G′. For contradiction, assume that there is some other vertex

y 6= x in P such that y has some neighbour in G′. Then

consider the path P ′ formed by the vertices of u, x-path along

P , followed by a shortest x, y-path in G′ ∪ {u, v}, followed by

the y, v-path along P . Here P ′ is an extended path of P , and

thus we have a contradiction. Thus x is a cut vertex such that

GB \ x gives G′ as a component.

Guard x using one cop and free other cops. Now, find a top-

most vertex u′ and a bottom-most vertex v′ in G′ and a short-

est u′, v′-path in G′. Now, consider a top-down curve C ′ cor-

responding to path P ′ and guard C ′ using five cops. If R and

x are on same side of P ′, then we are in the safe state 3. If

R and x are on opposite sides, then we can free cop on x and

we are in safe state 1. In both cases, at least the segments

corresponding to vertices of P − x will be removed from the

geometric robber territory.

(b) R is not in the region bounded by curves π and π′. Observe
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that, here R is on the same side of π and π′. Since π′ is a top-

bottom curve and π′ is guarded by five cops, we can free the

cops on curve π. Hence, the geometric robber territory is now

Ψπ′,R (since R is in right of both π and π′). Also, Ψπ′,R ⊂ Ψπ,R

since the region bounded between π and π′ is in Ψπ,R but not

in Ψπ′,R.

(c) R is in the region bounded by two curves C and C ′ such that

C ⊆ π and C ′ ⊆ π′. By Observation 4.3.4 we know that C

is a special curve and C ′ is a shortest curve, both relative to

new robber territory T ′. Hence 4 cops can guard the curve

C and 5 cops can guard C ′. Hence we are in the safe state

2. For the sake of convenience, to prove that the geometric

robber territory decreases in this case, we prove it for state 2,

and whenever this case occurs, we execute this Lemma again

for state 2.

2. S = state 2: Let B is bounded by two disjoint curves π and π′,

and Ψπ,π′ is the geometric robber territory. Let π and π′ are related

to paths P and P ′, respectively. Also, let π be a special curve in

Ψπ,π′ and π′ be a shortest curve in Ψπ,π′ , both relative to T . Let

the curves π and π′ intersect at points a and b. Also, four cops

are guarding π and five cops are guarding π′. Now extend the path

P ′ and let P1 be the extended path of P ′. Also let π1 be a curve

related to P1 such that π1 is an extended curve of π′. Now, guard

π1 using five cops. By Lemma 4.2.2, we know that each face of

Ψπ,π′ \ (π ∪ π′ ∪ π1) is bounded by simple and disjoint curves C1

and C2 such that C1 ⊆ π1 and, either C2 ⊆ π or C2 ⊆ π′. If R is

trapped between C1 ⊆ π1 and C2 ⊆ π, then observe that C1 is a

shortest curve relative to the new robber territory T ′ and C2 is a

special curve relative to T ′ (by Observation 4.3.4). If R is trapped

between C1 ⊆ π1 and C2 ⊆ π′, then observe that C1 is a shortest
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curve relative to T ′ and curve C2 is a special curve relative to T ′

(by Observation 4.3.4). In either case, we can guard C1 using 5

cops and C2 using 4 cops, and we are in safe state 2. Also, since

C2 is not equal to π or π′, at least some part of π or π′ is removed

from the geometric random territory. Note that, we use 14 cops to

reduce the robber territory here. (Any improvement in this step

will reduce the cop number further).

Suppose we cannot extend the path P ′ (that is, there is no u, v-

path in T other than P and P ′, where u and v are endpoints of

P ′). Then observe that the vertices of the connected component of

GB \(P ∪P ′) containing R can be connected to only one vertex x of

P ∪P ′ (Proof is similar to the argument in case 1(a)). We move one

cop to vertex x and free all other cops. Now, we are in a situation

similar to that of step 1(a). Hence we follow the same steps. Note

that, we reduce the geometric territory of R in this step.

3. S = state 3: Let x be a vertex such that GB is a connected

component of G \ x. Consider the representation Ψ′ ⊂ Ψ such that

Ψ′ = {ψ(u) | u ∈ GB}. Let u and v be a top-most and bottom-most

vertex of GB, respectively. Also P is a shortest u, v-path such that

N [P ] is guarded by 5 cops, and one cop is occupying the vertex x.

Moreover, both R and x are on the same side of P . Without loss

of generality, let us assume that they are on the right of P . Since

x is occupied by a cop and N [P ] is guarded by cops, observe that

the geometric robber territory is Ψ′π,R, where π is a curve related to

P . Now, we extend the path P in Ψ′π,R and let P1 be the extended

path of P . Also let π1 be related to P1 such that π1 is an extended

curve of π in Ψ′π,R.

If R and x are on the same side of π1, then we can free cops from P

and we are in the safe state 3. Here, the geometric robber territory

is reduced by region bounded between π and π1.
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If R is in the region bounded by π and π1, then we are in the

safe state 2. Here also, similar to case 1(a), we execute this Lemma

again for the safe state 2, and we proved that the geometric territory

decreases when we execute this Lemma starting from state 2.

If the path P cannot be extended in Ψ′π,R, then there exists a vertex

y ∈ P such that vertices in GB \y gives a connected component GB′

containing R. If x /∈ GB′ , then we are in a situation similar to 1(a)

and we follow the same steps. If x ∈ GB′ , then We place one cop

on y and free other cops from P . Now, we find a top-most vertex

u′ and bottom-most vertex v′ in GB′ and find a shortest u′, v′-path

P1 in GB′ . Now, five cops guard N [P ′]. Now consider a top-bottom

curve π′ related to P ′. Now, either x and R lie on the same side of

π′ or y and R lie on the same side of π′. In both cases, we are in

the safe state 3. Also observe that each segment s such that s is a

segment of path P and s is not a segment of string ψ(y) is reduced

from the geometric robber territory. Hence the geometric robber

territory reduces in this step.

This completes the proof of our lemma.

Now we prove the main theorem of this section.

Theorem 4.3.1. If G is a string graph, then c(G) ≤ 14.

Proof. We give a cop strategy to prove our claim. We first show that at

most 14 cops can force the robber to a safe state.

Initially, the robber territory T = G and GB = G. Cops find a top-

most vertex u and a bottom-most vertex v in GB and find a shortest

u, v-path P in GB. Now, five cops guard P . This restricts the robber

either to the left or to the right of P . Now we are in the safe state 1.

After this, until the robber is captured, we use Lemma 4.3.3 to reduce

the geometric robber territory. Since we have a finite graph with a finite

99



representation and cops can reduce the geometric robber territory in ev-

ery iteration of Lemma 4.3.3 using at most 14 cops, these 14 cops will

eventually capture the robber.

Gavenčiak et al. [56] showed that if a string graph G have girth 5 and

cop number k, then G is k-degenerate. Using this result along with the

Theorem 4.3.1 gives us the following corollary.

Corollary 5. If G is a string graph with girth 5, then G is 14-degenerate

and hence 15-colorable.

Gavenčiak et al. [56] also proved that for a string graph G orientable

on a surface of genus g, 10g+15 cops are sufficient to capture the robber.

For this purpose, they use 10 cops to unfold a genus, and then finally

capture the robber in a genus 0 string graph using 15 cops. If we use our

strategy to capture the robber in a string graph of genus 0 using 14 cops,

along with their unfolding techniques, we have the following immediate

corollary.

Corollary 6. If G is a string graph having genus g, then c(G) ≤ 10g+14.

4.4 Boxicity 2 graphs

Boxicity 2 graphs are the intersection graphs of axis-parallel boxes (rect-

angles) in R2. Let 2-BOX be the family of boxicity 2 graphs. Since boxes

are arc-connected, 2-BOX is a subset of the class of string graphs. Hence,

we have the following corollary.

Corollary 7. Let 2-BOX be the family of boxicity 2 graphs. Then c(2-

BOX) ≤ 14.

Gavenčiak et al. [56] showed that 2 ≤c(2-BOX)≤ 15. We improve both

the lower bound and upper bound for this result in the following theorem.
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Theorem 4.4.1. Let 2-BOX be the family of rectangle intersection graphs.

Then 3 ≤c(2-BOX)≤ 14

Proof. Corollary 7 proves the upper bound. To prove the lower bound,

3 ≤c(2-BOX), we give a rectangle intersection representation of the do-

decahedron graph in Figure 4.4.1. It is known from Aigner and Fromme [3]

that the cop number of the dodecahedron graph is 3. Hence, 3 ≤c(2-

BOX)≤ 14.

4.5 Concluding remarks and open problems

It will be interesting to see whether the techniques used in this chapter

can be used to reduce the known upper bound on cop number from 9 ([14])

to 8. Gavenčiak et al. [56] showed that for a string graph G drawn on

a surface with genus g, c(G) ≤ 10g + 15. Using the techniques used in

this chapter, this result can be improved to c(G) ≤ 10g + 14. Gavenčiak

et al. [56] unfold a genus g surface to genus g − 1 surface by guarding

2 shortest paths using 10 cops. It would be interesting to see if similar

techniques could be used to unfold using 9 cops as that can give us c(G) ≤
9g + 15.
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Figure 4.4.1: A dodecahedron and its boxicity 2 representation. Here
each vertex i corresponds to the rectangle i.
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Let H be a subgraph of G. We say that cop(s) guard H if R cannot

enter H without getting captured. The idea of guarding subgraphs is
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used heavily in Cops and Robber games literature to give strategies to

capture the robber. In this chapter, we consider some applications of

guarding subgraphs to the game of Cops and Robber. In particular, we

use guarding techniques to find the cop number of butterfly graphs and

AT-free graphs. We also study the game of Cops and fast Robber on

graphs having a dominating pair.

5.1 Preliminaries

Let H be a subgraph of G. We say that R is restricted to H, if R cannot

leave the vertices of H without getting captured. We also say that H is

the robber territory.

Let H be a subgraph of G. A cop C guards H if the robber cannot

enter the vertices of H without getting captured by C in the next cop

move.

For a graph G, capture time using k cops, is the number of cop moves

to ensure the capture (of robber) using k cops.

A k-dimensional butterfly network, is a graph, consisting of 2k(k + 1)

vertices arranged in k+1 columns and 2k rows. The 2k rows are coded in

k-bit binary from 00 . . . 00 to 11 . . . 11 and the k + 1 columns are coded

in decimal from 0 to k. These columns are also referred to as levels. A

vertex in i-th row and j-th column is denoted by (i, j). There exists an

edge between two vertices (i, j) and (i′, j′) if (1) j′ = j + 1 and (2) either

i′ = i, referred as straight edge, or the binary representations of i and i′

differ exactly in the j′-th least significant bit, referred as cross edge. See

Fig. 5.1.1 for an illustration.

We also define the recursive definition of a k-dimensional butterfly

network, which we will use in our algorithm. For that purpose, take two

(k − 1)-dimensional butterfly networks A and B. Now, for all vertices

of A, append 0 as the most significant bit and for all the vertices of B,
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Figure 5.1.1: A 3-dimensional butterfly network.

append 1 as the most significant bit. Levels of all vertices remain as

they were in A and B. Next, add level k with 2k vertices and add edges

between vertices of level k and k− 1 as per the rules defined for butterfly

networks in the previous definition. See Fig. 5.1.1 for an illustration.

Observe that all paths from vertices of A to vertices of B go through the

vertices of the new level (level k).

Butterfly networks are extensively studied interconnection networks

and have applications in parallel computing [76]. We study the game of

cops and robber on butterfly networks and have the following theorem.

Let u and v be two vertices of a graph G. A vertex u is a corner vertex,

if there exists a vertex v such that N [u] ⊆ N [v]. We also say that u is

a corner of v. If a graph G has no corner vertex, then c(G) > 1 [3, 86].

Aigner and Fromme [3] proved the following result (we restate the result

to suit our definitions), which we will use.

Result 5.1.1. (Aigner and Fromme [3]) Let P be a shortest path between

two vertices u and v of a graph G. Then one cop can guard P after a
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finite number of moves.

5.2 Chapter Overview

In Section 5.1 we define some important definitions and tools that we will

use for our proofs. In section 5.3 we study the Cops and Robber game on

butterfly networks and using a nontrivial and novel guarding technique,

we prove that the cop number for the class of butterfly network graphs

is 2. In section 5.4, we study the cop number for the class of AT-free

graphs and improve the known bounds by Fomin et al. [46] for both the

classical Cops and Robber game and for the Cops and fast Robber game.

In section 5.6 we suggest some future directions.

5.3 Butterfly Networks

In this section, we give a strategy to capture the robber in a k-dimensional

butterfly network using two cops in O(k2) moves. We need the following

definitions.

We refer the vertex in level 0 and row 00 . . . 00 as the start vertex of

a k-dimensional butterfly network. An agent, cop or robber, makes a

forward move if the level of vertex occupied by the agent increases, and

makes a backward move if the level of the vertex occupied by the agent

decreases.

When we say l-th least significant bits or l significant bits, it means

the usual for l > 0. For l = 0, assume that the l least significant bits or

the l-th least significant bit of all the tuples are the same.

Vertex (i′, j) is said to be an image of (i, j), if the j least significant

bits of i and i′ are the same. For example, each vertex is an image of

itself, all the vertices of level 0 are images of each other, and the vertices

of level k do not have any image other than themselves. A cop C captures

an image of R if R is at a vertex (i, j) and C is at an image of (i, j).
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A path is a monotone path if all its vertices are from different levels

and the first vertex is from level 0. A cop C guards level l if the robber

cannot enter the vertices of level l without getting captured by C in the

subsequent cop move.

Recall that we refer to (00 . . . 00, 0) as the start vertex. We have the

following lemma.

Lemma 5.3.1. Let (i, j) be a vertex of a butterfly network. Then there

exists an image (i′, j) of (i, j) such that there exists a monotone path from

the start vertex to (i′, j).

Proof. We follow a simple strategy to create such a monotone path P .

We start our path P from the start vertex. When we move from level l

to l + 1, we take a straight edge if the l + 1-th least significant bit of i is

0, and take a cross edge otherwise. This way, when we reach the level j,

at a vertex (i′, j), the j least significant bits of i and i′ will be the same,

and each vertex of path P is in a different level. Hence this path P is a

monotone path from start to an image (i′, j) of vertex (i, j).

Lemma 5.3.2. In a k-dimensional butterfly network, one cop can capture

an image of the robber in at most k steps.

Proof. Cop C begins at the start vertex. Let R be at a vertex (i, j).

First, C will find a monotone path P from the start vertex to an image

of R (by Lemma 5.3.1). The cop will update the monotone path P

dynamically, following the moves of R, and will move forward through P

until it reaches an image of R.

Let R be at vertex (r, l). We will maintain the invariant that the last

vertex of P is (p, l) such that (p, l) is an image of R. Also in each cop

move, C will make a forward move on P . If at any point C and R are at

the same level, then observe that C has captured an image of R.

If R moves forward to increase the level from vertex (r, l) to (r′, l+ 1),

then r and r′ differ in at most one bit (that is the (l+1)-th least significant
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bit). Before this move, let the last vertex of P be (p, l). Since l least

significant bits of p and r are the same, l least significant bits of p and r′

are also the same. Thus, if the l + 1-th bit of p and r′ is the same, then

we extend our path P using a straight edge, else we extend P using a

cross edge.

If R moves backward, then we truncate our path by one vertex. Sup-

pose R moves from (r, l) to (r′, l − 1). Here r and r′ differ in at most

one bit, that is, the l-th bit. Hence the first l − 1 bits of r, r′, p and p’s

neighbour in level l − 1 are the same. Therefore, our invariant holds if

we just remove the last vertex from our path P .

Since in each cop move C is strictly increasing its level in a monotone

path, in at most k moves, both C and R will be in the same level. Hence,

C captures an image of R in at most k steps.

Lemma 5.3.3. In a k-dimensional butterfly network, one cop can guard

level k in at most k steps.

Proof. In the level k of a k-dimensional butterfly network, each vertex

has only itself as an image. Thus, if R is in level k and C captures an

image of R, then C captures R. Hence, if C can ensure that after each

cop move C has captured an image of the robber R, then R cannot enter

level k without being captured by C.
Cop C starts by capturing an image of the robber (by Lemma 5.3.2).

In Lemma 5.3.2 we are maintaining a dynamic path P such that its last

vertex (p, l) is an image of R. When C captures an image of R, cop C
is on the last vertex (p, l) of P . We keep maintaining this dynamic path

P as we did in Lemma 5.3.2, and C will move such that C is on the last

vertex of P . Note that C may have to move backward (from a column

c to column c − 1) also. Let (p, l) be the last vertex of P and after the

move of R, the new last vertex of P is (p′, l′). Since vertices (p, l) and

(p′, l′) are adjacent, C can and will move to (p′, l′).

Thus, once C captures an image of R in a k-dimensional butterfly
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network, R cannot enter level k. Hence C guards level k when C captures

an image of R.

The following lemma is central to our strategy to capture R using two

cops.

Lemma 5.3.4. Let R be restricted to levels from 0 to x, for 1 ≤ x ≤ k, in

a k-dimensional butterfly network. Then after a finite number of moves,

one cop, say C, can restrict the robber to levels from 0 to x− 1.

Proof. If x = k, then C can restrict R to levels from 0 to x− 1 simply by

guarding level k (using Lemma 5.3.3).

If x < k, then we consider the recursive definition of butterfly networks.

If we consider the levels from 0 to x of a k-dimensional butterfly network

and consider only the x least significant bits of binary codes of rows,

then we have 2k−x butterfly networks of dimension x. (If v = (i, j) was

a vertex of original network, then here we consider the vertex v as (i′, j),

where i′ is a x bit binary tuple containing x least significant bits of i.)

Now observe that, if R on a vertex of one of these x-dimensional but-

terfly networks, say A, then R cannot leave A without entering the level

x + 1 (as all these x-dimensional butterfly networks are connected only

through vertices of level x + 1). Now C will consider only the x least

significant bits of the butterfly network A and follow the strategy from

Lemma 5.3.3 to guard level x (here the start vertex becomes the start

vertex of A). Once C guards level x, the robber R cannot enter level x

and hence is restricted to levels from 0 to x− 1.

Now we are ready to prove the main result of this section. In the

following theorem, we prove that the cop number for a finite butterfly

network is two.

Theorem 5.3.1. Cop number for finite butterfly networks is two.
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Proof. We give a cop strategy to capture R in a k-dimensional butterfly

network using two cops. In this strategy, cops keep restricting the robber

territory level by level, finally restricting R to level 0, where it cannot

move. Then the cops capture R.

Initially, R is restricted to levels from 0 to k. Using Lemma 5.3.4, one

cop restricts R to levels from 0 to k− 1. While this cop guards R, other

cop moves and restricts R to levels from 0 to k − 2 using Lemma 5.3.4.

Once R is restricted to levels from 0 to k− 2 by the second cop, the first

cop guarding level k can be freed. (Cops can do so because if R cannot

enter level k−1, it cannot enter level k.) This way whenever cops restrict

R using a new cop, the previous cop gets free and restricts R further to

smaller levels.

The cops, subsequently, restrict R to level 0 where one cop is ensuring

the guard position. Now the second cop moves and captures R. Hence,

two cops are sufficient to capture the robber in a butterfly network.

To show that two cops are necessary, we prove a stronger result that

all k-dimensional butterfly networks, for k > 0, have cop number greater

than 1. We prove this by proving that k-dimensional butterfly networks,

for k > 0, do not have a corner vertex. For contradiction, suppose that u

and v are two vertices of a k-dimensional butterfly network such that u is

a corner of v; so N [u] ⊆ N [v]. Thus, u and v must be adjacent and hence

must be in different but consecutive levels. Now u has two neighbours

in the level of v and one of them is v. Let the other neighbour be x. If

N [u] ⊂ N [v], then x ∈ N [v]. This is a contradiction as x and v are in the

same level. Therefore, there is no corner vertex in a butterfly network.

Thus, two cops are necessary to capture a robber in a butterfly network.

Hence, the cop number for butterfly networks is 2.

Since the cops capture R by restricting R to smaller levels in each

iteration and each iteration takes O(k) time for a k-dimensional butterfly

network (having 2k(k + 1) vertices), we have the following corollary.
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Corollary 8. Capture time for a k-dimensional butterfly network using

two cops is O(k2).

5.4 Cops and fast Robber on AT-free graphs

In this section, we consider the game of Cops and fast Robber on AT-

free graphs. For the game of Cops and fast Robber, the Cop number of

a graph G, denoted by cs(G), is the minimum number of cops that are

sufficient to capture the robber with speed s. If the speed of the robber

is 1, then the game is equivalent to the classical Cops and Robber game.

Three independent vertices of a graph form an asteroidal triple if each

pair of vertices is joined by a path that avoids the neighbourhood of the

third vertex. A graph is asteroidal triple-free (AT-free) if it contains no

asteroidal triple. Corneil et al. [39] showed that every connected AT-free

graph contains a dominating pair, that is, a pair of vertices such that

every path joining them is a dominating set in the graph.

Nisse and Suchan [85] studied the game where the robber is twice

as fast as the cops and showed that the cop number of planar grids is

unbounded for this game. Balister et al. [10] studied the game of Cops

and fast Robber on grids where the robber can be arbitrarily fast. Fomin

et al. [46] considered the game where the robber can move faster than

cops and proved that, for a graph G having a dominating pair of vertices

(hence also for AT-free graphs), cs(G) ≤ 5s− 1. We improve this bound

and prove that for a graph G having a dominating pair, cs(G) ≤ s+ 3.

5.4.1 Guarding a shortest path

Consider a graph G and let u and v be two distinct vertices of G. We

say that a cop C guards a shortest u, v-path P , if R cannot enter this

path without getting captured by C. Aigner and Fromme [3] proved that

for any two vertices u and v of G, one cop can guard a shortest u, v-path

after a finite number of moves. Let d(x, y) denote the shortest graph
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distance between two vertices x and y. Let r denote the vertex occupied

by the robber. Recall that in Result 4.2.1, we showed that one cop can

guard a shortest u, v-path P using the following strategy. C moves in

such a manner that after each cop move, if d(u, r) ≤ d(u, v), then C is on

a vertex x such that d(u, x) = d(u, r), else C is on vertex v.

5.4.2 Algorithm

Let G be a graph having (u, v) as a dominating pair. Let P be a shortest

u, v-path having length k + 1, that is, d(u, v) = k + 1. For the sake

of convenience, we rename the vertices in the path P such that P =

u0, u1, . . . , uk. For i > 0, vertices uk+i refers to vertex uk and vertices

u0−i refers to vertex u0. Let C1, C2, . . . , Cs+3 be the cops. Then we have

the following simple strategy to capture R using s+ 3 cops.

The following lemma is central to our strategy.

Lemma 5.4.1. Let (u0, uk) be a dominating pair and let P be a shortest

u0, uk-path such that P = u0, u1, . . . , uk. Consider a vertex ui of P . If

there is a cop on each of the vertices ui−1, ui, and ui+1 and R moves to

a vertex such that the cop at ui guards P , then R will be captured in this

cop move.

Proof. Let the vertex R moves to be denoted by r. Let d(u0, r) = j.

Since P is a dominating path, the vertex r is adjacent to at least one

vertex of P , and hence j ≤ k + 1.

If d(u0, r) ≤ k, then d(u0, r) = d(u0, ui) = i since cop at ui is guarding

P . We claim that r can have an edge with a vertex u ∈ P only if

u ∈ {ui−1, ui, ui+1}. Indeed, r cannot have an edge with a vertex v ∈
{ui+2, . . . , uk} else u0, . . . , r, v, . . . , uk becomes a shorter path than P .

Similarly, r cannot have an edge with a vertex v ∈ {ui, . . . , ui−2} as

through the path u0, . . . , v, r, distance d(u0, r) becomes less than i. Since

V (P ) is a dominating set, r must have an edge with at least one of
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ui−1, ui, ui+1. Since all three vertices are occupied by cops, one of the

cops will move to capture R.

Similar arguments hold when d(u0, r) = k + 1. In this case, the cops

are at vertices uk−1 and uk. Observe that r is only adjacent to vertex uk

in path P . Since there is a cop at uk, one of the cops will move to capture

R.

This completes the proof of this lemma.

Consider a graph G having a dominating pair u0, uk. Let Ti denote the

set of vertices such that their graph distance from u0 is greater than i,

that is Ti = {x | d(u0, x) > i}. We say that R is restricted to Ti, if R
cannot leave the vertices of Ti without getting captured.

Next, we present the main theorem of this section.

Theorem 5.4.1. Let G be a graph having a dominating pair, then cs(G) ≤
s+ 3.

Proof. We will prove this by giving a strategy to capture R using s + 3

cops. Let (u0, uk) be a dominating pair in G and let P = u0, . . . , uk be a

shortest path u0, uk-path. Let the cops be denoted by C1, . . . , Cs+3. These

cops can capture R using the following simple strategy. We will prove

that this strategy guarantees capture in the rest of the proof.

1. Place cop Ci on vertex ui−1.

2. In each cop move, if a cop is at vertex ui ∈ {u0, . . . , uk}, then the

cop will move to the vertex ui+1.

Observe that when cops place themselves, R is restricted to Ts+1, be-

cause, if R moves to vertex r such that d(u0, r) < s + 2, then it will

be guarded by one of the cops from C1, . . . , Cs+2 and will be captured

immediately (by Lemma 5.4.1).

We claim that when the cop Cs+2 moves to vertex ui, for i < k, R gets

restricted to Ti. We prove this by induction on i. For the base case, we
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showed that when Cs+2 is at vertex us+1, R is restricted to Ts+1. For

induction, assume that Cs+2 is at vertex ui and R is restricted to Ti.

Now, we show that when, in the cop move, Cs+2 moves to ui+1, R will

be restricted to Ti+1 after this cop move.

After the cop move, cops are at vertices ui−s, . . . , ui+2 and Cs+2 is at

vertex ui+1. Let before this cop move, R was at a vertex r. Since r ∈
Ti, we have d(u0, r) > i. It is sufficient to show that if R moves to a

vertex r′ such that d(u0, r
′) ≤ i + 1, then R will be captured in the

next cop move. Let R moves to such a vertex r′. Since R has speed s,

d(u0, r) − s ≤ d(u0, r
′). Hence, i − s < d(u0, r

′) ≤ i + 1, which means

one of the cops from C2, . . . , Cs+2 guards P and R will be captured in the

next cop move (by Lemma 5.4.1). Thus, R cannot move to such a vertex

and is restricted to Ti+1.

Hence, after a finite number of moves, the cop Cs+2 is at vertex uk−1

and R is restricted to Tk−1. Observe that a vertex x ∈ Tk−1, can have an

edge only with uk−1 or uk among vertices of P , and have an edge with at

least one of them (because vertices of P form a dominating set). Since

R can not move out of Tk−1 and both uk and uk−1 are occupied by the

cops, R will be captured in the next cop move.

Since all AT-free graphs have a dominating pair, we have the following

immediate corollary.

Corollary 9. For asteroidal triple free graphs, cs ≤ s+ 3

5.5 Classical cops and robber on AT-free graphs

By results of Fomin et al. [46] and our Theorem 5.4.1, the cop number of

AT-free graphs in the classical Cops and Robber game is upper bounded

by 4. For the classical cops and robber game (s = 1), we improve this

result for AT-free graphs and show that for an AT-free graphG, c1(G) ≤ 3

(or c(G) ≤ 3).
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In this section, we consider the classical cops and robber game (s = 1),

and using a similar algorithm to that in Theorem 5.4.1, we prove that

three cops are always sufficient to capture a robber in an AT-free graph.

Hence we have the following theorem.

Theorem 5.5.1. Let G be an AT-free graph. Then c(G) ≤ 3.

Proof. To prove this, we will give a strategy using three cops to capture

the robber in G. Let (u0, uk) be a dominating pair of G and let P =

u0, . . . , uk be a shortest u0, uk-path. Let the three cops be denoted by

C1, C2 and C3. We use the following strategy.

1. Place cop Ci on vertex ui−1.

2. In each cop move, if a cop C is at a vertex ui ∈ {u0, . . . , uk}, then

will C will move to the vertex ui+1.

Now, we show thatR will be captured using this strategy inG. Observe

that initially R is restricted to T1. Now, we will show that, if before a

cop move R is restricted to Ti and in this cop move C2 moves from ui

to ui+1, then after this cop move R is restricted to Ti+1. Let R was at

a vertex r before this cop move. It is sufficient to show that R cannot

move to a vertex r′ such that d(u, r′) ≤ i + 1, without getting captured

immediately.

Since R was restricted to Ti before this cop move, we know that

d(u, r) > i. Since R can move at most one edge in a turn, d(u, r′) > i−1.

Hence, we have to just show that if i + 1 ≥ d(u, r′) ≥ i, then R will be

captured immediately. If d(u, r′) = i+1, then see that cop C2 is guarding

R and cops will capture R using Lemma 5.4.1. If d(u, r′) = i, then r

cannot have an edge with any of ui−1, ui or ui+1, otherwise one of the

cops would have captured R in last move. Moreover, since d(u, r′) = i

and R was restricted to Ti, d(u, r) = i+1. Since P is a dominating path,

r is adjacent to at least one vertex of P , hence r is adjacent to ui+2. Now,
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if r′ is adjacent to one of ui, ui+1 or ui+2, then one of the cops will capture

R in the next cop move. For contradiction, let us assume that r′ is not

adjacent to any of ui, ui+1 or ui+2. Since P is a dominating path, r′ has

to be adjacent to at least one vertex. Hence, r′ is adjacent to ui−1. If this

happens, ui−1, ui, ui+1, ui+2, r, r
′, ui−1 becomes a chordless cycle of length

6 and vertices ui−1, ui+1, r forms an asteroidal triple, which contradicts

the fact that G is an AT-free graph. Hence, r′ is adjacent to at least one

of ui, ui+1 or ui+2 and one of the cops will capture R.

This way, when the cop C2 reaches vertex uk−1, the robber will be

restricted to Tk−1. Now, a vertex x ∈ Tk−1 can have an edge with only

uk−1 or uk and have an edge with at least one of them. Since R cannot

move out of Tk−1 and both uk−1 and uk are occupied by cops, R will be

captured in the next cop move.

This completes the proof of our theorem.

5.6 Concluding remarks and open problems

In this chapter, we studied the game of cops and robbers on butterfly

networks. We showed that the cop number for butterfly networks is 2.

For butterfly networks, in each iteration of the algorithm, a cop guards

a level of the network. Conventionally, in the Cops and Robber game on

a graph G, a set of cops guard a connected subgraph H of G, and cops

stay on the vertices of H. In our strategy, a cop guards a subgraph of the

butterfly network that is an independent set, and the cop never enters

that subset until it can capture R. We believe that this way of guarding

a disconnected subgraph from a distance can be useful in finding the cop

number of other graph classes.

We gave an asymptotic bound on the capture time of butterfly networks

using two cops. It might be interesting to find the exact bounds on

the capture time of butterfly networks (assuming optimal play from the

robber). Moreover, Luccio and Pagli [79] studied the Cops and Robber
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game on grids and studied whether increasing the number of cops can

decrease the capture time. For a graph, they defined the work Wk as

k · capture(k), where capture(k) is the number of moves required by k

cops to capture the robber. Then they defined speedup using j > i cops as

Wi/Wj. Since butterfly networks have an inherent structure to support

parallel computations, a natural question is whether more cops can work

simultaneously to give a speedup greater than one.

The bounds on the cop number for the game of classical Cops and

Robber and for the Cops and fast Robber game are not yet tight for

AT-free graphs. It would be interesting to further improve these bounds.
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6
Conclusion

In this thesis, we studied the game of Cops and Robber and its variants

on several graph classes. We studied classical Cops and Robber, Cops

and attacking Robber, and lazy Cops and Robber on various kinds of

grids. Then we studied the game of Cops and Robber on oriented graphs

and studied three models in oriented graphs, namely strong cop model,

normal cop model, and weak cop model. Then we considered the game

of Cops and Robber on string graphs and boxicity 2 graphs. Finally,

we considered some applications of guarding subgraphs to bound the

cop number of some graph classes. In this chapter, we give some future

directions and some preliminary work related to them.
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6.1 Cops, Robber, and Cartesian products

In Chapter 2, we study variants of Cops and Robber on grids. Apart from

the subgraphs of grids, the grids considered in this chapter are generated

from the Cartesian product of paths and cycles. Let Pm denote a path

of length m and Cn denote the cycle on n vertices. We show that for a

toroidal grid (Cm�Cn), one flexible and two lazy cops can capture the

robber. However, the lazy cop number of toroidal grids is still unknown.

Hence, we raise the following natural question.

Question 6.1.1. What is the lazy cop number of toroidal grids?

We considered the Cartesian product of paths and cycles. It would be

interesting to study if these results can be generalized for the Cartesian

product of trees and cycles. The classical Cops and Robber game is well

studied for the Cartesian product of graphs and tight bounds are known

for the cop number of the Cartesian product of trees [80, 83].

Question 6.1.2. Give bounds on the attacking cop number and lazy cop

number of the Cartesian product of trees.

6.2 Cops and Robber on Oriented graphs

In Chapter 3 we considered the game of Cops and Robber on oriented

graphs. We considered three models in oriented graphs depending on the

moves allowed to the cops and the robber.

In the open problem session of the GRASTA 2014 [47], N. Nisse asked

to characterize the cop-win oriented graphs. In the normal cop model,

for a graph
−→
G to be cop-win,

−→
G must be a directed acyclic graph with

a single source. We show that for some graph classes (transitive-triangle

free, bipartite, subcubic, outerplanar), a graph
−→
G is cop-win if and only

if
−→
G is a directed acyclic graph with a single source. But the structural
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characterization of cop-win graphs in the normal cop model remains open.

Hence, the following question still remains open.

Question 6.2.1. Characterize the cop-win graphs for the normal cop

model.

Next, we consider the strong cop model. In the strong cop model,

we prove that there for every natural number k, there exists an oriented

graph such that the cop number of this oriented graph is more than

k. However, the girth and the minimum degree of the graph in our

construction are bounded. For the normal cop model, we show that

there exist strongly connected oriented graphs with high cop number,

high minimum out-degree, and high girth. Hence, the question arises

whether such a graph exists for the strong cop model also. Hence, we

have the following question.

Question 6.2.2. For g, δ, k ∈ N, does there exists an oriented graph
−→
G such that cs(

−→
G) > k, girth of

−→
G is greater than g, and minimum

out-degree of
−→
G is greater than δ?

Also, the open question suggested by N. Nisse [47] to characterize the

cop-win graphs in the strong cop model still remains open. Thus, we have

the following question.

Question 6.2.3. Characterize the cop-win graphs in the strong cop model.

In the weak cop model, we characterize the cop-win graphs.

6.3 Cops and Robber on Intersection graphs

In Chapter 4 we consider the game of classical Cops and Robber on string

graphs. Gavenčiak et al. [56] showed that for any string graph G, 15 cops

are always sufficient to capture the robber on G, that is, c(G) ≤ 15. They

asked whether these bounds can be improved. They proved that for a
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shortest path P , 5 cops can guard N [P ], and using this proved that the

cop number for a string graph is at most 15. We show that if a graph

G is unique shortest path, then 4 cops can guard N [P ]. Using this we

show that 14 cops are always sufficient to capture the robber in a string

graph. Moreover, there is no string graph G known, such that c(G) > 3.

It would be interesting to study whether these bounds can be further

improved. Hence, we have the following question.

Question 6.3.1. Let S be the class of string graphs. Then we know that

3 ≤ c(S) ≤ 14. Can these bounds be improved?

Beveridge et al. [14] use a similar strategy to show that 9 cops are suf-

ficient to capture the robber in a unit disk graph. It would be interesting

to study whether our techniques of handling the unique shortest paths

differently can be used there to show that 8 cops are always sufficient to

capture the robber in a unit disk graph.

Gavenčiak et al. [56] also showed that for a string graph G with genus

g, c(G) ≤ 10g+ 15. Using our techniques, this result can be improved to

c(G) ≤ 10g+14. It would be interesting to study whether our techniques

can be further improved to prove that c(G) ≤ 9g + 14.

Gavenčiak et al. [56] also proved that for the class of boxicity 2 graphs,

2-Box, 2 ≤ c(2-Box ≤ 15. We improve these bounds and prove that

3 ≤ c(2-Box ≤ 14. However, these bounds are far from tight and it

would be interesting to improve these bounds.

6.4 Applications of Guarding subgraphs

In Chapter 5 we study the application of guarding subgraphs of a graph

G to bound the cop number of G.

First, we study the game of Cops and Robber on the butterfly net-

works. Guarding the subgraphs to capture the robber has been used

heavily in the Cops and Robber game literature. Conventionally, in the
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Cops and Robber game on a graph G, a set of cops guard a connected

subgraph H of G, and cops stay on the vertices of H. We use a novel

and nontrivial guarding technique where a cop guards a subgraph of the

butterfly network that is an independent set, and the cop enters that sub-

graph only when it can capture R. We believe that this way of guarding

a disconnected subgraph from a distance can be useful in finding the cop

number of other graph classes.

We gave an asymptotic bound on the capture time of butterfly networks

using two cops. It might be interesting to find the exact bounds on

the capture time of butterfly networks (assuming optimal play from the

robber). Moreover, Luccio and Pagli [79] studied the cops and robber

game on grids and studied whether increasing the number of cops can

decrease the capture time. For a graph, they defined the work Wk as

k · capture(k), where capture(k) is the number of moves required by k

cops to capture the robber. Then they defined speedup using j > i cops as

Wi/Wj. Since butterfly networks have an inherent structure to support

parallel computations, a natural question is whether more cops can work

simultaneously to give a speedup greater than one. Hence, we have the

following question.

Question 6.4.1. For an n-dimensional butterfly network, what is the

minimum value of work, where work = k · capture(k)?

Next, we consider the game of Cops and fast Robber on the graphs

having a dominating pair. Fomin et al. [46] proved that for a graph G

having a dominating pair, cs(G) ≤ 5s− 1. We improve this bound using

a guarding technique and show that cs(G) ≤ s+ 3. Since AT-free graphs

have a dominating pair, this result also holds for AT-free graphs. For

the classical Cops and Robber on AT-free graphs, we further improve

this bound and show that for an AT-free G, c(G) ≤ 3. However, these

bounds are still not tight and it would be interesting to further tighten

these bounds.
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6.5 Cops and Robber that can push the graph

Consider the game of Cops and Robber on an oriented graph
−→
G .

We introduce a new model for oriented graphs where some of the play-

ers have the ability to push the vertices of the graph. For a vertex v of

an oriented graph, the push operation on v reverses the orientations of

all the arcs incident on v. We define two kinds of push operations that

can be performed by players:

• Weak push: A player on vertex v having the ability to weak push

can either move to an out-neighbour of v or can push v.

• Strong push: A player on vertex v having the ability to strong

push can either move to an out-neighbour of v or can push any

vertex of the graph.

Now, a player can have the ability to weak push, strong push, or no ability

to push. Depending on what kind of abilities the cops and the robber

have, we can have 9 variations of the game, of which the one where neither

the cops nor the robber can push is equivalent to the normal cop model.

Observe that if the robber can push, one cop can never capture the

robber in an oriented graph
−→
G that does not have a vertex u such that

every vertex other than u is an out-neighbour of u. Hence, we consider

the models where the cop can make a strong/weak push, whereas the

robber does not have the push capability.

The main question we motivate is to characterize the cop-win graphs

in these 2 models.
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[25] A. Bonato, X. Pérez-Giménez, P. Pra lat, and B. Reiniger. The

game of overprescribed cops and robbers played on graphs. Graphs

and Combinatorics, 33:801–815, 2017.

[26] B. Bosek, P. Gordinowicz, J. Grytczuk, N. Nisse, J. Sokó l, and
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