Indian Statistical Institute, Kolkata

STATISTICAL

K ALY

¥}

Z>»—-—0DZ—
Mo Colmm D Z =

B en it

T cdan

[UNITY IN DIVERSITY |

Bibliographic Citation Recommender
System

A dissertation submitted in partial fulfillment of the
requirements for the award of
Master of Technology
in
Computer Science

Author: Supervisor:
P Omkar Ashrit Mandar Mitra
Roll No: CS1914 CVPR Unit, ISI

Certificate

This is to certify that the dissertation entitled “Bibliographic Citation
Recommender System” submitted by P Omkar Ashrit to Indian Sta-
tistical Institute, Kolkata, in partial fulfillment for the award of the degree
of Master of Technology in Computer Science is a bonafide record of
work carried out by him under my supervision and guidance. The disserta-
tion has fulfilled all the requirements as per the regulations of this institute
and, in my opinion, has reached the standard needed for submission.

Mandar Mitra
CVPR Unit,
ISI, Kolkata

Acknowledgements

I would like to thank my supervisor Prof. Mandar Mitra for suggesting
and guiding me to undertake work in the topic. I would also like to thank
Mr. Dwaipayan Roy and Mrs. Dipasree Pal for helping me in many ways
for understanding the problem and doing this work. I would also like to
thank my friends who have supported and motivated me during this time.

P Ombkar Asbrit
07/09/2021

Abstract

With increasing volume of published scholarly articles every year, it be-
comes demanding to include appropriate references in a paper. Recommen-
dation systems for bibliographic citations suggests possible references to
authors. We discuss performances of different recommendation approaches
in this report. We also have implemented a prototype extension for VS
Code which suggests references in real time to the authors. This| is the
link of the GitHub repository for the dissertaion.

https://github.com/omkar1610/Dissertation-2020

Contents

[I.2 Recommendation System

(1.2.1 Collaborative Filtering

[2.4 Reference Directed Indexing|

[2.5 Sentence Embeddings

2.6 Scikit-learn TF-IDF Vectorizer

3__Results|

4 VS Code Plugin|
4.1 How the plugin works|

[5_Conclusion|

14

16
16

18

Chapter 1

Introduction

1.1 Citation

A citation is a reference to any secondary source of information used in a
research report. Whenever an author directly quotes, paraphrases or sum-
marizes the essential elements of an idea, observation, result etc. conceived
or reported by someone else, an in-text citation referring to the original
source of information should follow. An in-text citation is a brief nota-
tion within the text of a paper or presentation that refers the reader to a
fuller description that provides all necessary details about the correspond-
ing source of information. These details are typically provided in the form
of a bibliographic record that appears as a footnote, or at the end of the
report.

1.2 Recommendation System

A recommender system (RS) is an automated system that selects and
presents items or entities that are potentially interesting to a user. These
entities may be products, ads, people, films, songs, music, etc. Recom-
mender systems that we encounter on a daily basis include those deployed
by Amazon, Netflix and YouTube. For example, when a user watches a
film on Netflix, the system later recommends other, different films based
on the user’s previous viewing history. Similarly, Amazon recommends var-
ious products, based on a user’s history of purchases and product views.
Recommender systems are responsible not only for selecting the items that
are shown to a user, but also for ranking them.

There are many approaches to build Recommender Systems. Below, we
discuss the standard approaches in the context of Bibliographic Citation
Recommendation System.

1.2.1 Collaborative Filtering

Collaborative filtering finds similar users and uses this information to make
recommendations. A citation graph is generally used in these methods.
This graph is formed using the citations between papers. By following the
citation graph for a paper, one can find what papers cite it and what papers
are cited by it.

Standard Collaborative Filtering algorithms view dataset as a ratings
matrix, whose columns represent ‘items’ and rows represent ‘users’. Each
entry of the matrix is a user’s rating for a specific item. Collaborative
Filtering algorithms make recommendations by trying to predict what can
appear in the blank entries of this matrix.

1.2.2 Content Based Methods

Content Based methods use the content of the input paper draft. They try
to find papers with similar content and output the corresponding citation
as recommendations. It involves the following steps.

e Content Analysis: This is an important step especially when the data
is unstructured data like text. So, the content should be pre-processed
to filter out the irrelevant stuff. This step is responsible to translate
the unstructured data to a structured form.

e User Profile Learner: This step collects data for a particular user,
tries to generalize it and build a user profile for each user. In our
system, a scholarly article is considered as a user.

e Recommender: The final step, the recommender uses user profiles
built in the previous step and makes recommendations.

1.3 Problem Statement

Citation recommendation describes the task of recommending citations for
a given text. As the published scientific works have increased in recent
years, the need to cite the most appropriate publications when writing
scientific texts has become very challenging. The BCRS addresses the
following problem, with input as a partially or fully written paper that
might or might not have placeholders for citations, the system returns a
ranked list of possible citations for local or global context as required. 2[
words (I words before and [words after) around the citation contributes
towards the local context. The general topic of the paper including the title,
abstract etc can be considered to contribute towards the global context.

1.4 Our Work

The contributions of this dissertation are as follows.

e We have used the proposed recommendation approaches by Roy [3]
and reproduced similar results for Content based methods and 50%
better results using Reference Directed Indexing.

e We have also compared the following approaches to the recommen-
dation problem using a common data-set.

— Sentence embeddings (USE, Word2Vec)
— TF-IDF vectorizer implemented by scikit-learn

e We have developed an interactive plugin for the VS Code integrated
development environment(IDE). The user can get recommendations
in real time for the top n papers to be cited while writing a paper using
the IDE and selecting the context around the citation placeholder.

Chapter 2

Recommendation Approaches

2.1 Problem Statement

Given a partially or fully written paper with a placeholder for citation as
input, return top n papers from the database that could be cited considering
different parts of the input paper.

Editor

plugin 1
- Querying backend
Editor
Google Scholar plugin 2
Editor
. plugin 3
. Candidate
- Querying backend Candidate Ranker
Aggregator (will run as service)
ACM Digital Library

|| <—>© Querying backend

CiteSeerx

The above is the schematic design diagram of the system. The system
has the following components:

e Querying Backend: This part of the system runs in frequent in-
tervals and connects to different sources (like Google Scholar, ACM
Digital Library, CiteSeerx etc.) and collects an updated list of re-
search papers along with their metadata.

e Candidate Aggregator: This part of the system aggregates all the
papers in the database and then indexes them appropriately which
can be searched by the search engine for the query to retrieve the
result efficiently.

e Candidate Ranker: This part receives a query from the user and
returns the top n papers to be cited. This and the above two con-
tribute to the back-end of the system.

e Editor Plugin: Different well known editors will have a plugin in-
stalled in their application, which enables the users to interact with
the candidate ranker and show the results to them. This is part of
the front end of the system.

In this dissertation, we have focused on testing different recommenda-
tion approaches which is the part of Candidate Aggregator and Candidate
Ranker. In the last part we have built of a plugin for VS Code IDE which
interacts with the back-end of the system

2.2 Collection overview

Our dataset [2] consists of 630,199 scholarly articles from CiteseerX. These
articles are drawn from various sub disciplines of Computer Science, Com-
munication, Mathematics, Statistics, etc. Each file corresponds to one
article and is defined by its DOI. Since similar papers have different DOIs
for different versions, we have assigned a single cluster id to all such papers
and have saved the mapping from DOI to cluster id. Each file is an XML
file having details like title, authors, venue, year, DOI, abstract and list of
all the citations in the paper along with cluster id of the particular paper.
A context for a particular citation is 200 words before and after the cita-
tion. We have 22,23,307 different cluster ids in the dataset. The following
is an example of an XML file corresponding to a document.

<?xml version="1.0" encoding="UTF-8" standalone="true"?>

<paper>

<title>Free-riding and whitewashing in ...</title>

<author>Michal Feldman</author>

<author>Christos H. Papadimitriou</author>

<author>John Chuang</author>

<author>Ion Stoica</author>

<venue>IEEE Journal on Selected Areas in Communications</venue>
<year>2006</year>

<key>journals/jsac/FeldmanPCS06</key>

<doi>10.1.1.1.1493</doi>

<abstract>We devise a simple model to study the ...</abstract>
<citations>

<citation>

<raw>ADAR, E., AND HUBERMAN, B. A. Free Riding on Gnutella...</raw>
<contexts>ants. However, individual rationality results ...</contexts>

10

https://citeseerx.ist.psu.edu/

<clusterid>173</clusterid>
</citation>
<citation>

</citation>
</citations>
</paper>

The XML tags title, author, venue, year, key, doi, abstract cor-
respond to the Title, Authors, Venue of publication, Year of publication,
Key of the Paper and unique DOI and abstract of the paper respectively.
The citations tag contains all the citations present in the document. Each
citation tag inside the citations tag has raw , contexts and clusterid
tag. The raw tag contains the bibliography text for the cited paper,
contexts tag has the raw text of the context around the citation and
the clusterid tag has the cluster id of the cited document. If the cited
document is not present in our collection, then this tag will have None in it.

The following is an example of the query XML file.

<query>

<top>

<paper_num> 1 </paper_num>

<paper_title> A Semi-Supervised ...</paper_title>

<paper_abstract>In this paper we investigate...</paper_abstract>
<query_num> 101 </query_num>

<text> =-=e National University of Singapore 3 ... </text>
<query_num> 102 </query_num>

<text> =-=nd Li, 2004; Mihalcea, 2004; Niu et al.,;...</text>
<query_num> 103 </query_num>

<text> based statistical methods ... </text>

</top>

<top>

paper_num> 2 </paper_num>

<paper_title> Dynamic Local Search ... </paper_title>
<paper_abstract> we introduce DLS ... </paper_abstract>
<query_num> 201 </query_num>

<text> applications, for exampl ... </text>

<query_num> 202 </query_num>

<text> ations divided by ... </text>

</top>

</query>

11

The XML tag top has all the queries from a single paper. Inside each
top tag, the paper num, paper_title, paper_abstract tag correspond
to the unique number, title and abstract of the paper from where the query
is framed respectively. The query num, text correspond to unique num-
ber and raw text of the query around the citation place holder respectively.

We have removed digits, single letters, empty spaces, punctuation, un-
supported text due to Unicode mishandling as part of our pre processing
before doing any kind of indexing on the data.

2.3 Content Based Retrieval

We have used standard IR methods implemented in Lucene for studying
content based methods on the training set and list of queries. For a partic-
ular paper, the concatenation of all the contexts in it is the context for it.
And for a cluster id, we have taken the concatenation of all the contexts
of all the papers represented by that cluster id. After removing digits, sin-
gle letters, empty spaces, punctuation, unsupported text due to Unicode
mishandling from the context, we indexed the cluster id using English an-
alyzer of Lucene. This analyzer does the stemming and removal of built
in English stop words. For queries we used 2 approaches: One was using
the citation context only and the other was using the combination of title,
abstract and citation context. The top 100 documents out of 10,000 hits
were retrieved for each query. Lucene’s implementation of Jelinek-Mercer
smoothing for language modelling was used as the ranking model.

2.4 Reference Directed Indexing

In reference directed indexing, the citation context is used for the cited
paper instead of the citing paper. Due to limited physical memory of our
PC, we couldn’t load all the contexts of 22,23,30 cluster ids to the system
RAM. Hence, we created separate files for each cluster id and appended all
the contexts in the file. Finally we merged all those files to create a single
RD file. The cluster ids were then indexed using Lucene with removal of
stop words and stemming using Lucene’s inbuilt ranking models. All those
papers which weren’t cited at least once could not be indexed using this
method.

12

2.5 Sentence Embeddings

We got vectors for each context in the RD file using average Word2Vec and
Universal Sentence Encoder. We used the pre-trained model of word2Vec
released by Google trained on the news data. This model gives a vector of
300 dimensions for each word present in its vocabulary. We got an average
of the vectors of all the valid words in the citation context and represented
the corresponding cluster id with that vector. Universal Sentence Encoder
is also a pre trained model released by Google which takes a list of sentences
as input and returns a 512 dimensional vector for each of the sentences.
For each new query, after getting the vectors for the corresponding query,
we used cosine similarity to find similar papers and returned the top 100
papers sorted in descending order of cosine similarity.

2.6 Scikit-learn TF-IDF Vectorizer

Scikit-learn (also known as sklearn) is a free software machine learning li-
brary for the Python programming language. It features various classifica-
tion, regression and clustering algorithms. We used the TF-IDF Vectorizer
which returns the document-term matrix for a given collection. We used
this with all the default values and cosine similarity to find top similar
papers to the given query.

13

Chapter 3

Results

The table below presents the results obtained using various approaches. For
the content based method, queries were formed using either the context or
a combination of title, abstract and context. For all other methods, only
the citation context field has been used to retrieve the results.

We have used Trec_eval to evaluate our results with the ground truth.
Trec_eval is an evaluation software which is used to evaluate an IR (In-
formation Retrieval) system. This tool is used by the TREC community
for evaluating an ad-hoc retrieval run, given the results file and the ground
truth.

From the table we see that the content based approach taking the title,
abstract and context of the queries gives the worst result. The most likely
reason behind this, is the dilution of focus in the query by terms relevant
to whole document, and not only to the query concerned. Further, the
inclusion of title in query worsens the result slightly due to much smaller
number of terms coming from it. The RDI approach performs the best with
Lucene’s JMSimilarity. Scikit-learn’s TF-IDF vectorizer also performs bet-
ter than other sophisticated models like USE and Word2Vec. One possible
reason for these models not working might be the corpus these models
were trained on. They are trained on a general English corpus consisting
of news and Wikipedia articles; however the CiteseerX dataset has very
specific technical words in them.

14

Indexing Method Query From Relevant ~ MAP Reciprocal

Returned Rank
Content Based Title + Abstract 207 0.0682 0.1758
+ Context

Content Based Context 270 0.1551 0.3821
Reference Directed

Indexing Context 783 0.7549 0.9012

Avg Word2Vec Context 250 0.1246 0.3503
Universal Sentence

Encoder Context 285 0.1606 0.4010

SK Learn TF-IDF Context 560 0.3739 0.6463

15

Chapter 4
VS Code Plugin

Visual Studio Code (VS Code) is a cross platform open source IDE made by
Microsoft which supports extensions for additional functionality. According
to Google trends, VS Code is one of the top 3 most downloaded IDEs
worldwide. We have built an extension which recommends top 5 papers to
be cited for the given context.

While writing a paper just selecting a context and searching for recom-
mended papers lists out the top papers with metadata that can be cited
for that context. Below is an example of how the interface looks in VS Code.

EXPLORER £ jtion for the subsequent dynamic reflect Untitled-1 @

~ OPEN EDITORS 1 UNSAVED 1 |ition for the subsequent dynamic reflectometry procedure. 3.3 Dynamic Reflectometry Our dynamic
point =-=[16, 10]-=-, as well as a description of the timevarying direction of the normal at ead
frames of the reflectance e

® = ition for the subsequent dyna...
> NO FOLDER OPENED
> TERMINAL
> OUTLINE
> MAVEN Change All Occurrences

Search Papers
Search Papers(with metadata)

v RESULTS
v CID 44210
v DOI 10.1.1.28.659
Title Non-lin:

Cut
Copy
Paste

Run Selected Query [3£E 3E]
Format Selected Query For Any Document [38E 3€B]
Bookmark Selected Query [$8E Q]

Command Palette...

4.1 How the plugin works
We have a JAVA server running which has access to the files indexed by

Lucene. The front end of the extension is written in type script. When the
user searches for papers, the front end makes a POST request to the server

16

with the query context in the body and the server respond to that request
with the resulting papers along with all the metadata of the papers. The
user can configure the number of papers to be retrieved. Once the client
gets the response, then it lists out the papers on the side panel in collapsed
state.

17

Chapter 5

Conclusion

We have tried to remove noise from the CiteseerX dataset and tried different
methods to generate recommendations for citations given a placeholder in
a fully/partially written paper. We have seen that by far the the best
performance has been achieved with reference directed indexing. Inspite of
its sophistication, models like word2vec and USE didn’t yield good results.
Content based search was also not effective enough. Using the RDI method,
that got the best result, we have build an extension for VS Code which
returns results in real time to the user while writing a paper.

However, much work needs to be done. A more careful study of various
machine learning based approaches is required where we can fine tune a
model to our specific corpus so that the out of vocabulary words will be
reduced and more context can be retained while vectorizing. An updated
collection of papers with newer version of DOI links will be much helpful
in getting the recent metadata for a paper in the extension. These remain
the future work which will be undertaken later.

18

Bibliography

[1] Caragea C. et al. (2014) CiteSeerx: A Scholarly Big Dataset. In:
de Rijke M. et al. (eds) Advances in Information Retrieval. ECIR

2014. Lecture Notes in Computer Science, vol 8416. Springer, Cham.
https://doi.org/10.1007/978-3-319-06028-6_26

[2] Dwaipayan Roy. An Improved Test Collection and Baselines for Bibli-
ographic Citation Recommendation. The 26th ACM International Con-
ference on Information and Knowledge Management (CIKM-2017), Sin-
gapore, November 6-10, 2017.

[3] Dwaipayan Roy, Kunal Ray, Mandar Mitra. From a Scholarly Big
Dataset to a Test Collection for Bibliographic Citation Recommenda-
tion. The 30th AAAI Conference on Artificial Intelligence (AAAI-16):
AAAT Workshop: Scholarly Big Data 2016, pp.705-710, Phoenix, Ari-
zona, USA, February 12-17, 2016.

[4] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Van-
derplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. &
Duchesnay, E. Scikit-learn: Machine Learning in Python. Journal Of
Machine Learning Research. 12 pp. 2825-2830 (2011)

[5] https://github.com/usnistgov/trec_eval

[6] https://tthub.dev/google/universal-sentence-encoder /4
[7] https://code.google.com/archive/p/word2vec/

[8] https://lucene.apache.org/

[9] https://code.visualstudio.com/api

19

	Introduction
	Citation
	Recommendation System
	Collaborative Filtering
	Content Based Methods

	Problem Statement
	Our Work

	Recommendation Approaches
	Problem Statement
	Collection overview
	Content Based Retrieval
	Reference Directed Indexing
	Sentence Embeddings
	Scikit-learn TF-IDF Vectorizer

	Results
	VS Code Plugin
	How the plugin works

	Conclusion

