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1 Introduction

Hash functions, particularly Cryptographic Hash Functions (CHF) are called the
Swiss-army knife of crypto primitives. This is due to the multitude of applica-
tions that these functions contribute to. They are ubiquitous in today’s digital
world and are a part of almost all crypto constructions. The basic aim of a CHF
is to ensure data integrity (which is why they have been referred to in coding
theory literature as Modification Detection Codes) due to their ability to detect
(un-)intentional modifications in data. However, they are widely deployed as
the cores of Message Authentication Codes (MAC), Key Derivation Functions
(KDF), Password storages, Data immutability applications like Blockchains and
so on and so forth. Formally, CHF is a mathematical algorithm that maps data
of arbitrary size (“message”) to a bit array of a fixed size referred to as hash
or digest. Recently, the notion of fixed size hash has been relaxed and the
research community has witnessed constructions (SPONGE [BDPVA07]) that al-
low for variable (or arbitrary) length hash values. The most recent addition
to the globally accepted CHF algorithms is Keccak [BDPVA09] which won
the SHA-3 competition [GJMG11] by NIST in 2012 after 5-years of intense
worldwide public cryptanalysis.

This work aims to analyze Keccak/SHA-3 and look at the differential prop-
erties of the construction. In particular, this thesis concentrates on the Target
Difference Algorithm (TDA) [DDS12] introduced by Dinur et al. in FSE 2012.
The algorithm is heuristic in nature and is used to generate a pair of input states
of Keccak/SHA-3 which after one round produce the desired target difference.
The strategy was later extended to two rounds by Qiao et al. in Eurocrypt 2017
and three rounds by Guo et al. in Journal of Cryptology 2020 to find new col-
lision attacks on Keccak. This algorithm combines basic algebraic techniques
with differential cryptanalysis. The input of this algorithm is the target output
difference. Depending upon the output difference a system of linear equations is
constructed based on the linear and non-linear layers of Keccak. If the system
of equations consistent then it is stored for the next step where the conforming
message pairs are computed. The current work aims to understand and imple-
ment TDA on Keccak. In addition, the work also finds and enumerates the
affine subspaces of Keccak and Ascon corresponding to all output differences.
In doing so a new property of the Ascon S-box is also reported.

2 Preliminaries

Here we will discuss the description of Keccak and Ascon in this section. Sec-
tion 2.1 and 2.2 illustrates the description of Keccak and Ascon respectively.
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We will give the details of the round functions of Keccak and Ascon permu-
tation.

2.1 Keccak Description

The Keccak family of hash functions is based on the Sponge construction
[BDPVA09]. The function f , in the sponge construction, is denoted by Keccak-
f [b], where b is the length of the input string. Keccak−f [b] function is
specialization of Keccak − p[b, nr] family where nr = 12 + 2l and l =
log2(b/25) = log2(w) i.e.,

Keccak− f [b] = Keccak− p[b, 12 + 2l]

Figure 1.1: The sponge construction [Dwo15]

A state S, which is a b-bit string, in Keccak is usually denoted by a three-
dimensional grid of size 5 × 5 × w, w is the lanesize. For example, in the
case of Keccak−f [1600], w is equal to 64. The value of b is 1600, so we
have l = 6. Thus the f function in SHA-3 is Keccak−p[1600, 24]. The hash
function with output length d is denoted by

Keccak− d = Keccak[r := 1600− 2d, c := 2d].

For example Keccak-384 means, the capacity c = 768 and r = 832 = 13×64
i.e in the output state there are 13 lanes are active.

The round function f in Keccak consists of five steps. The step mapping
specifies each state transformations. These step mappings are θ, ρ, π, χ, ι. Let
A and B respectively denote input and output states of a step mappings.
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Figure 1.2: Parts of the State Array [Dwo15]

� θ (Theta) XOR to each bit of two columns. The first column in the
same slice as the updated bit, the second column in the slice before the
updated bit. From Figure 1.3, we can see the θ operation.
B[x, y, z] = A[x, y, z]⊕P [(x−1) mod 5, z]⊕P [(x+1) mod 5, (z−
1) mod w] where, P [x, z] = ⊕4

y=0A[x, y, z].

� ρ (Rho) Translate bits in z-direction. From Figure 1.4, we can see the
ρ operation.

B[x, y, z] = A[x, y, z + ρ(x, y) mod w]

3



Figure 1.3: Illustration of θ applied to a single bit [Dwo15]

Figure 1.4: Illustration of ρ for b = 200 [Dwo15]

� π (Pi) Permute bits within a slice. From Figure 1.5, we can see the π
operation

B[y][2x+ 3y][z] = A[x][y][z]

� χ (Chi) This is a non-linear operation, where each bit in the original,
state is XOR-ed with a non-linear function of the next two bits in the
same row. From Figure 1.6, we can see the χ operation

B[x, y, z] = A[x, y, z]⊕((A[(x+1) mod 5, y, z]⊕1)∗(A[(x+2) mod 5, y, z]))

� ι (iota) B[0, 0, z] = A[0, 0, z] +RC[z]

4



Figure 1.5: Illustration of π applied to a single slice [Dwo15]

Figure 1.6: Illustration of χ applied to a single row [Dwo15]

Thus one round in Keccak is given by Round(A) = ι(χ(π(ρ(θ(A))))), where
A is the initial state. The χ operation of Keccak takes five-bit in one S-box.
Also, we know that the χ operation is non-linear of degree two.

2.2 Ascon Description

Ascon is a submission by Dobraunig et al. [DEMS16] to the CAESAR compe-
tition. Ascon is based on a sponge construction with a state size of 320 bits.
The three parts- Ascon’s Authenticated Encryption Modes, Ascon’s Hashing
Modes, Ascon’s Permutation are specifies the Ascon family.

The Ascon’s modes of operations are based on sponge construction. There
are two type hash function Ascon-Hash with fixed output size and the extend-
able output function Ascon-XOF with variable output size internally use the
same hashing algorithm. The 320−bit initial state of Ascon-Xof and Ascon-
Hash is given by
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IV ||0256 = 08||r||a||08||h||0256,
S = pa(IV ||0256).

where round number a, rate r, the maximal output length of h bits as a
32-bit integer.

Ascon Permutation

All Ascon family members use the same lightweight permutation. The following
three permutations iteratively applies an SPN-based round transformation a =
12 times (for pa ) or b ∈ {6, 8} times (for pb). The main variants of the
schemes Ascon, Ascon-Xof, and Ascon-Hash are the two 320-bit permutations
pa and pb . The round transformation consists of the following three steps which
operate on a 320-bit state S divided into 5 words x0, x1, x2, x3, x4 of 64 bits
each:

p = pL ◦ pS ◦ pC
S = Sr||Sc = x0||x1||x2||x3||x4

� Addition of Round Constants(pC): Xors a round specific 1-byte con-
stant to word x2.

Figure 1.7: The constants are added to word x2 of the state. [DEMS16]

� Nonlinear Substitution Layer(pS):Applies a 5-bit S-box 64 times in
parallel in a bit-sliced. Let x0,i, x1,i, ..., x4,i denote the bits in column
i, 0 ≤ i < 64, where x0,0 is the least significant (rightmost) bit of the
first register word (outer part) of the state. Let y0,i, y1,i, ..., y4,i denote
the same bit position after application of the S-box layer.

y0,i = x4,i.x1,i ⊕ x3,i ⊕ x2,i.x1,i ⊕ x2,i ⊕ x1,i.x0,i ⊕ x1,i ⊕ x0,i ,
y1,i = x4,i ⊕ x3,i.x2,i ⊕ x3,i.x1,i ⊕ x3,i ⊕ x2,i.x1,i ⊕ x2,i ⊕ x1,i ⊕ x0,i ,
y2,i = x4,i.x3,i ⊕ x4,i ⊕ x2,i ⊕ x1,i ⊕ 1,
y3,i = x4,i.x0,i ⊕ x4,i ⊕ x3,i.x0,i ⊕ x3,i.x2,i ⊕ x1,i ⊕ x0,i ,
y4,i = x4,i.x1,i ⊕ x4,i ⊕ x3,i ⊕ x1,i.x0,i ⊕ x1,i .
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Figure 1.8: The substitution layer of Ascon applies a 5-bit S-box to
the state. [DEMS16]

We can see that the the algebraic degree of S-box of Ascon is 2. Consider
one S-box [y0,i, y1,i, ..., y4,i]. If we fix three values x4,i, x1,i, x3,i then the
S-box becomes linear.

� Linear Diffusion Layer(pL): The following index computations are un-
der mod 64.
y0,i = x0,i ⊕ x0,i+19 ⊕ x0,i+28,
y1,i = x1,i ⊕ x1,i+61 ⊕ x1,i+39

y2,i = x2,i ⊕ x2,i+1 ⊕ x2,i+6,
y3,i = x3,i ⊕ x3,i+10 ⊕ x3,i+17,
y4,i = x4,i ⊕ x4,i+7 ⊕ x4,i+41.
The linear layer can be represented by a 320× 320 matrix.

Figure 1.9: The linear diffusion layer of Ascon . [DEMS16]

3 Literature Survey

Target difference algorithm (TDA) is a technique to link a differential charac-
teristic to the initial state of the Keccak permutation, using one round permu-
tation. TDA is basically used for building connectors and achieve new collision
attacks up to 6-round. Here we will discuss briefly the works on TDA. Dinur
et al. first proposed the TDA [DDS12] which illustrates in Section 3.1. Then
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Qiao et al. [QSLG17] developed another strategy to build a 2-round connector.
Then in Section 3.2, we will discuss the extension of TDA to three rounds by
Guo et al. [GLL+20].

3.1 Introduction of the TDA explained by Dinur et
al. [DDS12]

Dinur et al. [DDS12] used the TDA algorithm in the first part of their 4-round
collision attack on Keccak-224 and Keccak-256 to obtain a sufficiently large set
of message pairs that satisfy the target difference after the first round of Keccak.
They were combining 3-round differential trails and 1-round connectors and
found 4-rounds collisions. The main idea to use the target difference algorithm
is to find collisions and near-collisions in Keccak. The main challenge is to find
the input of this algorithm. Thus they had to find such high probability the
target differences such that after one round Keccak, gives this target difference.
After finding a high probability differential characteristic with a low Hamming
weight , they extended it backwards to obtain the target difference ∆T . Then
the target difference algorithm to link the extended characteristic backwards to
the initial state of Keccak permutation, with an additional round. Given a low
Hamming weight starting state difference of a characteristic, they extended it
backwards by one round, and maintain its high probability [DGPW12]. Thus,
any low Hamming weight characteristic for r rounds of Keccak permutation
can be used to obtain results on a round-reduced version of Keccak. Also,
they tried how to use 2 rounds characteristics to find collision for 4 rounds
of Keccak-224 and Keccak-256, and how to use 3 rounds characteristics to
find near-collision for 5 rounds of these Keccak versions. The main idea to
use the target difference algorithm is to extend the initial characteristic by two
additional rounds:

� Extend the characteristic backwards by one round to obtain the target
difference with high characteristic’s probability.

� Used the target difference algorithm to link the characteristic to the initial
state of Keccak’s permutation, through an additional round.

3.2 Extension of TDA to Two Rounds by Qiao et
al. [QSLG17]

Qiao et al. [QSLG17] extends the above connector one round further and hence
achieves collision attacks for up to 5 rounds. By linearization of all S-boxes
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of the first round, the problem of finding solutions of 2 rounds connectors is
converted to that of solving a system of linear equations. They develop an
algebraic and differential hybrid method to launch collision attacks on Keccak

with complexities below the birthday bound, against 5 rounds Keccak-224 and
6 round Keccak collision challenges are also achieved. Also they used the result
that the Keccak S-box can be expressed as linear transformations, when the
input is restricted to some affine subspaces. Dinur et al.. [DDS12] and Bertoni
et al.. [BDPA11] stated that when the input and output differences are fixed, the
solution set of the Keccak S-box contains affine subspaces of dimension up to
3. In this paper, Qiao et al. [QSLG17] showed that the number of 2-dimensional
subspaces of S-box linearization is maximum and for those of dimension 3, six
2-dimensional affine subspaces out of it could allow the linearization. Using
these result, they converted the problem to of finding 2 rounds connectors into
that of solving a system of linear equations. Previously, Dinur et al.. [DDS12]
found M and M’ such that R1(M̄ ||0c) + R1(M̄ ′||0c) = ∆SI . Then Qiao et
al. were bulding two rounds connnector i.e R2(M̄ ||0c) +R2(M̄ ′||0c) = ∆SI .

α0
L0−→ β0

χ0−→ α1
L1−→ β1

χ1−→ α2 = ∆SI (given).

αi : Input difference of the i-th round function, i = 0, 1, 2,...
βi : Input difference of χ in the i-th round, i = 0, 1, 2,...
Choosing β1 in the 2 rounds connector:

� Randomly choose compatible input differences (those δin’s such that
DDT (δin, δout) > 0) β1 according to ∆SI until the 2 rounds con-
nectors.

� We can only choose those β1 such that β1
χ1−→ α2 is of the best probability

for the given α2.

α1 can be uniquely determined by the relation α1 = L−1(β1).
From Target difference algorithm, we can find β0 from α1.
Then, they were building an algorithm to construct a system of equations with
these above differences and able to find to an extra round connector.

3.3 Extension of TDA to Three Rounds by Guo et al.
[GLL+20]

Guo et al. [GLL+20] also extended the above connectors upto three rounds i.e
R3(M̄ ||0c) + R3(M̄ ′||0c) = ∆SI .further and hence achieve collision attacks
for up to 6 rounds.

9



Figure 1.10: An overview of collision attack with connector [GLL+20]

They were combining 3 rounds differential trails and 3 rounds connectors
and achieve collision attacks for up to 6 rounds. Here nr1 = 3 and nr2 = 3.
The differential trail is then fulfilled probabilistically with many such message
pairs, and collision was found when the first d bits of ∆S0 are zero. First,they
constructed an nr1 = 3 -round connector and get a subspace of messages by-
passing the first 3 rounds and then by brute force, find a colliding pair following
the nr2 = 3 rounds differential trail from the above subspaces.

Choosing β2 in the 2 rounds connector:
First we have to choose β2 before running the 3-round connector. The two
requirements are:

� Given α2 =L−1(β2), a 2-round connector for the first two rounds.

� β2� α3 is of high probability where α3 is the input differnce for the
differential trail.

α0
L0−→ β0

χ0−→ α1
L1−→ β1

χ1−→ α2
L2−→ β2

χ2−→ α3 = ∆SI (given).

For constructing 3-round connectors, the second 2 rounds connector, β2 is
fixed. In this way, the second 2 rounds connector can be constructed successfully
for the high probability β2� α3. Then similar to the 2 rounds connector, the
3 rounds connector were built.
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3.4 Target Internal Difference Algorithm (TIDA) by

Dinur et al. [DDS13]

Similar to the TDA, the TIDA is a technique that links an internal differential
characteristic to the initial state of the Keccak permutation, using one per-
mutation round. This is also a heuristic randomized algorithm. TIDA is based
on an analogous variant of the TDA for internal differential cryptanalysis. The
outputs of TIDA are single-block messages whose internal state belongs to the
target internal difference after one permutation round.

Let, a target internal difference [i, t1] is given after the first Keccak S-box

layer. The main idea is to find messages M such that χ ◦ L((̄M)) ∈ [i, t1],
where i ∈ {1, 2, 4, 8, 16, 32} and the rate r so that the algorithm should have
sufficiently many degrees of freedom. We can check that we have a positive
number of degrees of freedom only for i = 32 and for the Keccak versions with
n ∈ {224, 256, 384}. For that the internal difference of the initial state is
denoted by [32, t0]. The internal difference after the linear layer (L) is denoted
by [32, t0.5]. For i = 32, the state is split into two parts. The target internal
difference specifies the difference between the parts. Similar to the TDA, the
TIDA has two phases: Difference Phase and Value Phase. The procedure of
TIDA is similar to TDA. The set of values that satisfy the input difference and
output difference are forms an affine subspace. If there is a large number of
non-active S-boxes then it is difficult to solve the difference phase of the TIDA.
But if we find a solution, then the dimension of the affine message subspace
outputted by TIDA is expected to be large. The outputs of TIDA is an affine
subspace of messages.

3.5 Simplified TIDA by Kuila et al. [KSPC14]

The main intuition of this paper ”Practical Distinguishers against 6-Round
Keccak-f Exploiting Self-Symmetry” [KSPC14],is to exploit the self-symmetry
of the internal state of Keccak to distinguish up to 5-rounds with a probability
of 1 using a single query. Finally, the extension to 6-rounds with a complexity
of 211 gives us the most efficient 6-round distinguisher. Let S be the arbitary
state genrated by TIDA. The input and outputs of this algorithm are:

Inputs →
{

∆T (Target internal difference)

ST (Specific Target State)

Outputs → S :

{
∆T = (Keccak(s))

ST ⊂ ((Keccak(S)) ∩ ST ),∀S

11



The constraint of difference phase of TIDA, ”some specified positions of
initial internal difference(∆I) are bound to 0” is ignored in this work. In this
case we have full (25 × i) ( i ∈ {1, 2, 4, 8, 16, 32}) degrees of freedom for
any self-symmetric state Si. The Self-Symmetric State is a technique that
generates states that become self-symmetric after one round of Keccak. Let u
be the number of specific target slices. Kuila et al. stated that to make sTIDA
successful, if the quantity (8× 25− 25× u) > 0 and the whole attack to be
succeed if we have (8 × 25 − 25 × u) > 11. For the lower values of u the
sTIDA will successfully produce two-symmetric states. For example if we take
u = 4 then the attack will be succeed.

4 Understanding the Target Difference

Algrithm

The main idea of TDA [DDS12] is for a given output difference ∆T , we
have to find a message pair (M 1,M 2) such that after one round Keccak it
provides the given output difference i.e. R(M̄ 1) + R(M̄ 2) = ∆T , where
M̄ 1 = M 1||10000001||0c and M̄ 2 = M 2||10000001||0c. Now given output
difference ∆T , let ∆I be the input difference i.e. M̄ 1 + M̄ 2 = ∆I . The
Keccak consists of five step mappings θ, ρ, π, χ, ι. Here the mappings θ, ρ,
π are linear and χ is non linear of degree 2. We consider L as a matrix, where
L = ρ ◦ π ◦ θ. The following observations are important.

� The last c+ 8 bits of M̄ 1 are equal to 10000001||0c

� The last c bits of (M̄ 1, M̄ 2) are same. So, The last c bits of ∆I are zero
because ∆I is the difference (XOR) of two messages.

First this algorithm is splited into two phases: Difference Phase (Algorithm
1 and 2 ) and Value Phase (Algorithm 3 and 4). In Difference Phase, we are
trying to construct a system of equations E∆ and in the Value Phase we find
the value of messages and input difference ∆I . Figures 1.11 and 1.12 provides
an overview of TDA.
Let, we take v variables and t number of active S-boxes in Algorithm 1. Also

we added total c+5(v/5− t)+3t = v+c−2t linear equations in E∆. Then
the dimension of the solution set is v − (v + c− 2t) = 2t− c. If 2t− c > 0
then our algorithm may succeed.

We can see that in the basic procedure of the difference phase sometimes we
may get ”No Solution” or ”Fail” because this algorithm is heuristic. To obtain
better results, the main idea behind the change the order of the S-boxes such

12



Input

Linear eq. for capacity

(Output)

Linear eq. for non-active 
S-boxes & affine subspaces

Figure 1.11: Difference phase of the TDA

that the S-boxes (which produces the inconsistent equations) are pushed to the
front of the Input Difference Subset Data Structure (IDSD, Appendix C) order.
For that, we have to use another algorithm the main procedure of difference
phase.
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Algorithm 1: Basic Procedure of Difference Phase of Target
difference algorithm on Keccak

input : ∆T : Target Difference
output: E∆: System of Equations

1 E∆ = {}
2 L(∆I) = {x1, x2, . . . x1600}
3 exp = L−1(X), E∆ = exp(c||p) == 0 here c and p is capacity and

padding bits respectively.
4 For each 320− t non-active S-boxes,

E∆ = {xi+1 == 0 . . . xi+5 == 0.}, for i-th non-active S-box.
5 if E∆ is not consistent then
6 output Fail
7 end
8 else
9 for t active S-boxes do

10 from ∆T obtain δout

11 Find all δin such that DDT (δin, δout) > 0.
12 Find all the 2D afiine subspaces from the δin’s.
13 Add 3 affine equations to E∆ from the 2D affine subset

according to the IDSL (Appendix C)
14 end
15 if E∆ is consistent then
16 continue to the next S-box
17 end
18 else if then
19 continue to the next subset in the IDSL, by incrementing the

pointer and going to step 14
20 end
21 else
22 No Solution
23 end
24 end

14



Algorithm 2: The Main Procedure of Difference Phase

1 int counter, T1;
2 while counter != T1 do
3 Intialize counter = 0 and randomize the IDSD Sbox order.
4 Excute the bascic procedure;
5 if the basic procedure succeeds then
6 output E∆;
7 end
8 else if the basic procedure fails then
9 abort;

10 end
11 else
12 counter++;
13 go to next step

14 end
15 Reset the pointer of the failed Sbox IDSL (Appendix C) to its value

before the last basic procedure. Change the IDSD order by
bringing the failed Sbox to the front and go to step 4.

16 end

Input

Linear eq. for capacity

(Output)

Linear eq. for 

(Output)
Linear eq. for

Figure 1.12: Value phase of the TDA
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Algorithm 3: Basic Procedure Value Phase of Target differ-
ence algorithm

input : ∆T : Target Input Difference, E∆

output: M1,∆I such that
Keccak(M1)⊕ Keccak(M1 ⊕∆I) = ∆T after one round.

1 EM = {}
2 exp = L−1(X) where X is set of v variable

EM = exp(c||p) == c||p here c and p is capacity and padding bits
respectivesly.

3 for t active sbox do
4 from ∆T obtain δout

5 find such δini which are consistent with E∆ and sort them such
that DDT (δini , δ

out) ≥ DDT (δini+1, δ
out)

6 for δi obtain the linear equations that define the affine subset
A(δini ; δout)

7 Add equations to EM

8 if EM is consistent then
9 Add equations for δi in E∆ and go to step 4

10 end
11 else
12 check for δi+1

13 end
14 end

Similar to the difference phase, the value phase has main procedure.

Algorithm 4: The Main Procedure of Value Phase

1 Intialize int counter = 0; int T2; and obtain E∆.
2 Excute the bascic procedure;
3 if the basic procedure of value phase succeeds then
4 output E∆ and EM ;
5 end
6 else
7 counter++;
8 go to next step

9 end
10 if counter == T2,”No Solution”;.
11 Change the IDSD order by bringing the failed Sbox to the front and go

to step excute the basic procedure 2 .
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5 Discussion on 2D Affine Subspaces of

Keccak S-box

An affine subset of a vector space V to be a subset of form

A = {a+ u | a ∈ V, u ∈ U}
where U is a subspace of V .
Consider an input difference subset with every element of 5-bits. Now the
cardinality of a 2-dimensional affine subspace should be 4. So, we get (5−2) =
3 equations from a 2-dimensional affine subspace.

For example, if we take an output difference 1 then the corresponding input
difference set is {1, 3, 5, 7, 11, 15, 21, 23, 31}. If we consider the subset
{1, 3, 5, 7} then this subset forms a 2-dimensional affine subspace.
Example 1: Affine subsapce with three constants.

x1 x2 x3 x4 x5

1 = 0 0 0 0 1
3 = 0 0 0 1 1
5 = 0 0 1 0 1
7 = 0 0 1 1 1

Here we can see that x1 = 0; x2 = 0; x5 = 1 and x3, x4 are variables. So,
the subset {1, 3, 5, 7} is an 2-dimensional affine subset. The affine equations
for this affine subset are:

x1 = 0

x2 = 0

x5 = 1

Example 2: Affine subspace with two constants and one linear equation.

x1 x2 x3 x4 x5

1 = 0 0 0 0 1
3 = 0 0 0 1 1

21 = 1 0 1 0 1
23 = 1 0 1 1 1

The affine equations for {1, 3, 21, 23} are:

x2 = 0

x5 = 1

x1 ⊕ x3 = 0
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Example 3: Affine subspace with one constant and two linear equations

x1 x2 x3 x4 x5

1 = 0 0 0 0 1
11 = 0 1 0 1 1
21 = 1 0 1 0 1
31 = 1 1 1 1 1

The affine equations for {1, 3, 21, 23} are:

x5 = 1

x1 ⊕ x3 = 0

x2 ⊕ x4 = 0

Example 4: Affine subspace with three linear equations.

x1 x2 x3 x4 x5

1 = 0 0 0 0 1
10 = 0 1 0 1 0
21 = 1 0 1 0 1
30 = 1 1 1 1 0

The affine equations for {1, 10, 21, 30} are:

x2 ⊕ x5 = 1

x1 ⊕ x3 = 0

x2 ⊕ x4 = 0

Example 5: But, if we consider {1, 3, 11, 15} then this subset does not
form a 2-dimensional affine subspace.

x1 x2 x3 x4 x5

1 = 0 0 0 0 1
3 = 0 0 0 1 1

11 = 0 1 1 0 1
15 = 0 1 1 1 1

We can see that for this set x1 = 0, x5 = 1 but we can not get any linear
equations from the variables. We find all the affine equations corresponding
to all possible δout. The afiine equations corresponding to δout have been
enumerated in Appendix D.
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Property 1 [DDS12]. For a non-zero 5-bit output difference δout to a
Keccak S-box, the set of possible input differences, {δin|DDT (δin, δout) >
0}, contains at least 5 (and up to 17) 2-dimensional affine subspaces.

The above statement answers how many affine subspaces we can get from
an input difference set corresponding to an output difference (δout). We have
verified this statement practically. The number of 2-dimensional affine sub-
spaces corresponding to all output differences is given in the Table 1.1.

Also, we need an order for choosing the affine subspaces. For that, we have
to create another list named Input Difference Subset list (Refer Appendix C) for
storing the affine subspaces with some order. The IDSLs are stored in the main
Input Difference Subset Data structure (IDSD). The IDSD contains t entries
(one entry per active S-box), sorted according to an IDSD order.

δout
# 2d AS

δout
# 2d AS

1 9 17 9
2 9 18 5
3 9 19 5
4 9 20 5
5 5 21 17
6 9 22 17
7 5 23 11
8 9 24 8
9 5 25 5
10 5 26 17
11 17 27 12
12 9 28 5
13 17 29 12
14 5 30 12
15 11 31 10
16 9

Table 1.1: Number of 2D Affine Subspace (AS) of Keccak correspond-
ing to All Output Difference
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6 A Case Study of TDA on Keccak-50

In this Section, the difference phase and value phase will be discussed through
an example i.e. we will take one output difference of length b, and then we will
try to find the corresponding input difference amd message pairs . In Keccak-
p[b, nr], the width b must be 25, 50, 100, 200, 400, 800, or 1600 bits. But here
we will take an output difference of length 50 bits. We consider the capacity
c = 10. If the difference phase succeeds then we will store the system of
equations E∆ for the value phase. The difference phase and value phase will
be discussed in the Section 6.1 and 6.2 respectively.

6.1 Difference Phase on Keccak-50

Input of this algorithm For b = 50, there are 2 slices. The output difference
∆T =

1st slice
[0 1 0 0 0]
[0 0 1 1 0]
[1 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]

2nd slice
[0 1 0 0 1]
[1 0 1 0 1]
[1 0 0 1 0]
[0 0 0 0 0]
[0 0 0 0 0]

� Initialize an empty linear equation system E∆, with 50 variables for the
unknown bits of L(∆I). Let L(∆I) is a set of 50 variables. Total there
are 10 S-boxes and the number of slices is 2. The input of the S-boxes
i.e. L(∆I) is:

1st slice
[x111 x121 x131 x141 x151]
[x211 x221 x231 x241 x251]
[x311 x321 x331 x341 x351]
[x411 x421 x431 x441 x451]
[x511 x521 x531 x541 x551]

2nd slice
[x112 x122 x132 x142 x152]
[x212 x222 x232 x242 x252]
[x312 x322 x332 x342 x352]
[x412 x422 x432 x442 x452]
[x512 x522 x532 x542 x552]

� We considered the 50× 50 matrix L, where L = ρ ◦ π ◦ θ . At first, we
are finding L−1. Now we are multiplying L−1 with L(∆I) and getting
∆I as a set of 50 expressions. Now from the observation we get last
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c = 10 bits of ∆I are zero. So we get 10 equations after equating the
last 10 expressions of ∆I with zero. We are storing all these equations
in E∆.

� Now, we have Keccak S-boxes with input L(∆I) and output ∆I . From
the ∆I we can see that there are total 3 (1st slice) + 3 (2nd slice)= 6
S-boxes are active and the remaining 4 S-boxes are non-active. For the
non-active S-boxes, the input differences and output differences are zero.
Since there are 4 non-active S-boxes. So we get 20 bits are zeroes in
L(∆I) and store all these 20 equations in E∆. After adding these equa-
tions in E∆, we are checking that the system of equations E∆ is consis-
tent or not. Here the system of equations E∆ becomes consistent. After
putting 20 values in E∆, we get the following input difference L(∆I).

L(∆I):
1st slice

[x111 x121 x131 x141 x151]
[x211 x221 x231 x241 x251]
[x311 x321 x331 x341 x351]
[ 0 0 0 0 0]
[ 0 0 0 0 0]

2nd slice
[x112 x122 x132 x142 x152]
[x212 x222 x232 x242 x252]
[x312 x322 x332 x342 x352]
[ 0 0 0 0 0]
[ 0 0 0 0 0]

� Here, we have six active Keccak S-boxes. For an active S-boxes con-
sider the output difference (δout) and corresponding input difference (δin),
where DDT(δin, δout) > 0. Now from the DDT table we can find the
possible input difference set. For example, if the output difference (δout)
is 1 then the corresponding input difference set is {1, 3, 5, 7, 11,
15, 21, 23, 31}. After getting the input difference set, our next work is
to find the possible 2-dimensional affine subspaces (Refer Section 5) from
the input difference set. After obtaining the 2-dimensional affine subset
we then narrow 5 − 2 = 3 affine equations that defines this 5-bit input
of current S-box to E∆. If E∆ is consistent after adding these 3-affine
equations in E∆, add the equations and continue to the next active S-
box. Now if the E∆ becomes inconsistent after adding these equations
continue to the next affine subsets and so on. After the above procedure,
the system of equations E∆ becomes:

x111⊕ x112⊕ x121⊕ x122⊕ x131⊕ x142⊕ x211⊕ x231⊕ x232⊕ x241⊕
x242 ⊕ x251 ⊕ x311 ⊕ x312 ⊕ x322 ⊕ x332 ⊕ x352 = 0
x121⊕ x122⊕ x131⊕ x132⊕ x141⊕ x151⊕ x212⊕ x221⊕ x241⊕ x242⊕
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x251 ⊕ x252 ⊕ x311 ⊕ x312 ⊕ x321 ⊕ x322 ⊕ x331 ⊕ x341 = 0

x111⊕ x131⊕ x132⊕ x141⊕ x142⊕ x152⊕ x211⊕ x212⊕ x222⊕ x232⊕
x251 ⊕ x321 ⊕ x322 ⊕ x331 ⊕ x332 ⊕ x342 ⊕ x351 = 0

x112⊕ x121⊕ x141⊕ x142⊕ x151⊕ x152⊕ x211⊕ x212⊕ x221⊕ x222⊕
x231 ⊕ x242 ⊕ x312 ⊕ x331 ⊕ x332 ⊕ x341 ⊕ x342 ⊕ x352 = 0

x111⊕ x112⊕ x122⊕ x132⊕ x152⊕ x221⊕ x222⊕ x231⊕ x232⊕ x241⊕
x252 ⊕ x311 ⊕ x321 ⊕ x341 ⊕ x342 ⊕ x351 ⊕ x352 = 0

x111⊕ x112⊕ x121⊕ x122⊕ x132⊕ x141⊕ x212⊕ x231⊕ x232⊕ x241⊕
x242 ⊕ x252 ⊕ x311 ⊕ x312 ⊕ x321 ⊕ x331 ⊕ x351 = 0

x121⊕ x122⊕ x131⊕ x132⊕ x142⊕ x152⊕ x211⊕ x222⊕ x241⊕ x242⊕
x251 ⊕ x252 ⊕ x311 ⊕ x312 ⊕ x321 ⊕ x322 ⊕ x332 ⊕ x342 = 0
x112⊕ x131⊕ x132⊕ x141⊕ x142⊕ x151⊕ x211⊕ x212⊕ x221⊕ x231⊕
x252 ⊕ x321 ⊕ x322 ⊕ x331 ⊕ x332 ⊕ x341 ⊕ x352 = 0

x111⊕ x122⊕ x141⊕ x142⊕ x151⊕ x152⊕ x211⊕ x212⊕ x221⊕ x222⊕
x232 ⊕ x241 ⊕ x311 ⊕ x331 ⊕ x332 ⊕ x341 ⊕ x342 ⊕ x351 = 0

x111⊕ x112⊕ x121⊕ x131⊕ x151⊕ x221⊕ x222⊕ x231⊕ x232⊕ x242⊕
x251 ⊕ x312 ⊕ x322 ⊕ x341 ⊕ x342 ⊕ x351 ⊕ x352 = 0
x121 ⊕ x131 = 1
x121 ⊕ x141 = 1
x121 ⊕ x151 = 1
x251 = 1
x211 ⊕ x221 = 0
x211 ⊕ x231 = 0
x321 = 0
x311 ⊕ x331 = 1
x311 ⊕ x351 = 1
x112 ⊕ x122 = 0
x112 ⊕ x142 = 1
x112 ⊕ x152 = 0
x252 = 0
x242 = 1
x212 ⊕ x232 = 1
x312 ⊕ x332 = 1
x322 ⊕ x342 = 0
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x312 ⊕ x322 ⊕ x352 = 1

The system of equations E∆ has 28 equations and 30 variables. So,
the solution of this system of equations is not unique. Then one of the
solution i.e. L(∆I) is :

1st slice

[0 1 0 0 1]
[0 1 0 1 0]
[1 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]

2nd slice

[0 1 0 0 0]
[1 1 1 1 1]
[0 1 1 1 0]
[0 0 0 0 0]
[0 0 0 0 0]

Now, the output of the the differene phase is the system of equations E∆

(Refer Algorithm 1). So we store the E∆ for value phase.

.

6.2 Value Phase on Keccak-50

The inputs for the value phase are the system of equations E∆ and ∆T . We
will discuss the algorithm for this phase with an example in detail and update
our system of equations. Then we will get updated ∆I and messages pairs.

� Similar to the difference phase, we initialize empty linear equations sys-
tem EM with 50 variables for the unknown bits of L(M̄ 1).
L(M̄ 1):

1st slice
[m111 m121 m131 m141 m151]
[m211 m221 m231 m241 m251]
[m311 m321 m331 m341 m351]
[m411 m421 m431 m441 m451]
[m511 m521 m531 m541 m551]

2nd slice
[m112 m122 m132 m142 m152]
[m212 m222 m232 m242 m252]
[m312 m322 m332 m342 m352]
[m412 m422 m432 m442 m452]
[m512 m522 m532 m542 m552]

� We know that L is 50× 50 matrix , where L = ρ ◦ π ◦ θ . At first, we
are finding L−1. Now we are multiplying L−1 with L(M̄ 1) and getting
M̄ 1 as a set of 50 expressions. Now from the observation we get last
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c = 10 (capacity part) bits of M̄ 1 are zero. So we get 10 equations after
equating the last 10 expressions of M̄ 1 with zero. We storing all these
equations in EM .

� From the ∆T , we are collecting the 6 active S-boxes. The active S-
boxes are in decimal format {8, 6, 16, 9, 21, 18}. We iterate the 6 active
S-boxes according to the IDSD order.

� Let us consider the first S-box is δout = 8 (in binary) and finding the input
differences (δin) such that DDT (δin, δout) > 0. The input difference set
corresponding to 8 is {8, 9, 13, 24, 26, 25, 27, 29, 31}. Then we obtain
all the S-box input differences that are consistent with E∆, denoting the
set {δini } and sorting the δin’s in descending order according to DDT
value (Table B). The consistent input differences are {8, 9, 24, 25}.

Property 2 [DDS12]. Given a 5-bit input difference and 5-bit out-
put difference δout to a Keccak S-box such that DDT(δin, δout)> 0,
denote the valuation set V = {x : S(x) + S(x + δin) = δout} forms
an affine subset and denoting the subset A(δin, δout).

� We iterate the above consistent input differences one by one. Take δin1 =
8. Then We are adding the linear equations A(δin1 , δ

out) = A(8, 8) to
EM . The valuation set for input difference 8 and output difference 8 is
{16, 17, 18, 19, 24, 25, 26, 27}.

x1 x2 x3 x4 x5

16 = 1 0 0 0 0
17 = 1 0 0 0 1
18 = 1 0 0 1 0
19 = 1 0 0 1 1
24 = 1 1 0 0 0
25 = 1 1 0 0 1
26 = 1 1 0 1 0
27 = 1 1 0 1 1

The equations are x1 = 1 and x3 = 0. If these equations are consistent
with EM then add these equations to EM . In addition, add the addi-
tional equations x1 = 0, x2 = 1, x3 = 0, x4 = 0, x5 = 0 for the input
difference 8, to E∆.
Otherwise, continue to the next input difference 9 and proceed the above
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way. If no more input differences remain, output ”No Solution”.

� After iterating all the active S-boxes and their corresponding input differ-
ences which are consistent with E∆, the two systems of equations EM

and E∆ is updated. From the E∆ we get ∆I and message pairs.
EM :

m111⊕m112⊕m121⊕m122⊕m131⊕m142⊕m211⊕m231⊕m232⊕m241⊕
m242⊕m251⊕m311⊕m312⊕m322⊕m332⊕m352⊕m421⊕m422⊕m431⊕
m432⊕m441⊕m451⊕m512⊕m522⊕m541⊕m542⊕m551⊕m552 = 0,

m121⊕m122⊕m131⊕m132⊕m141⊕m151⊕m212⊕m221⊕m241⊕m242⊕
m251⊕m252⊕m311⊕m312⊕m321⊕m322⊕m331⊕m341⊕m412⊕m431⊕
m432⊕m441⊕m442⊕m452⊕m511⊕m512⊕m521⊕m532⊕m552 = 0,

m111⊕m131⊕m132⊕m141⊕m142⊕m152⊕m211⊕m212⊕m222⊕m232⊕
m251⊕m321⊕m322⊕m331⊕m332⊕m342⊕m351⊕m411⊕m421⊕m441⊕
m442⊕m451⊕m452⊕m511⊕m512⊕m521⊕m522⊕m531⊕m542 = 0,

m112⊕m121⊕m141⊕m142⊕m151⊕m152⊕m211⊕m212⊕m221⊕m222⊕
m231⊕m242⊕m312⊕m331⊕m332⊕m341⊕m342⊕m352⊕m411⊕m412⊕
m422⊕m431⊕m452⊕m521⊕m522⊕m531⊕m532⊕m541⊕m551 = 0,

m111⊕m112⊕m122⊕m132⊕m152⊕m221⊕m222⊕m231⊕m232⊕m241⊕
m252⊕m311⊕m321⊕m341⊕m342⊕m351⊕m352⊕m411⊕m412⊕m421⊕
m422⊕m432⊕m442⊕m511⊕m531⊕m532⊕m541⊕m542⊕m552 = 0,

m111⊕m112⊕m121⊕m122⊕m132⊕m141⊕m212⊕m231⊕m232⊕m241⊕
m242⊕m252⊕m311⊕m312⊕m321⊕m331⊕m351⊕m421⊕m422⊕m431⊕
m432⊕m442⊕m452⊕m511⊕m521⊕m541⊕m542⊕m551⊕m552 = 0,

m121⊕m122⊕m131⊕m132⊕m142⊕m152⊕m211⊕m222⊕m241⊕m242⊕
m251⊕m252⊕m311⊕m312⊕m321⊕m322⊕m332⊕m342⊕m411⊕m431⊕
m432⊕m441⊕m442⊕m451⊕m511⊕m512⊕m522⊕m531⊕m551 = 0,

m112⊕m131⊕m132⊕m141⊕m142⊕m151⊕m211⊕m212⊕m221⊕m231⊕
m252⊕m321⊕m322⊕m331⊕m332⊕m341⊕m352⊕m412⊕m422⊕m441⊕
m442⊕m451⊕m452⊕m511⊕m512⊕m521⊕m522⊕m532⊕m541 = 0,

m111⊕m122⊕m141⊕m142⊕m151⊕m152⊕m211⊕m212⊕m221⊕m222⊕
m232⊕m241⊕m311⊕m331⊕m332⊕m341⊕m342⊕m351⊕m411⊕m412⊕
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m421⊕m432⊕m451⊕m521⊕m522⊕m531⊕m532⊕m542⊕m552 = 0,

m111⊕m112⊕m121⊕m131⊕m151⊕m221⊕m222⊕m231⊕m232⊕m242⊕
m251⊕m312⊕m322⊕m341⊕m342⊕m351⊕m352⊕m411⊕m412⊕m421⊕
m422⊕m431⊕m441⊕m512⊕m531⊕m532⊕m541⊕m542⊕m551 = 0,
m111 = 0,
m131 = 0,
m141 = 1,
m231 = 1,
m251 = 1,
m321 = 0,
m351 = 0,
m331 = 1,
m112 = 0,
m132 = 0,
m212 ⊕m222 = 0,
m212 ⊕m232 = 0,
m212 ⊕m242 = 1,
m212 ⊕m252 = 1,
m312 = 1,
m352 = 1,
m322 ⊕m332 = 1,
m322 ⊕m342 = 0.

After solving the system of equations we get one of the messages.
M̄ 1 :

1st slice
[0 1 1 0 0]
[1 1 0 0 0]
[1 0 0 1 0]
[0 0 0 0 0]
[0 0 0 0 0]

2nd slice
[1 0 1 1 0]
[1 0 1 1 1]
[0 0 1 1 0]
[1 0 1 1 0]
[0 0 0 0 0]

The additional equations which are adding with the previous E∆:

x111 = 0, x131 = 0, x141 = 0, x121 = 1, x151 = 1,
x211 = 0, x221 = 0, x231 = 0, x251 = 0, x241 = 1,
x321 = 0, x331 = 0, x351 = 0, x311 = 1, x341 = 1,
x112 = 0, x132 = 0, x142 = 0, x152 = 0, x122 = 1,
x212 = 1, x222 = 1, x232 = 1, x242 = 1, x252 = 1,
x312 = 0, x352 = 0, x322 = 1, x332 = 1, x342 = 1.
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Now we can find the input difference from updated E∆.
∆I :

1st slice
[0 0 1 0 1]
[0 1 1 0 1]
[1 0 1 1 1]
[0 1 1 0 0]
[0 0 0 0 0]

2nd slice
[0 1 0 1 0]
[0 1 1 0 1]
[0 0 0 0 0]
[0 1 0 0 1]
[0 0 0 0 0]

Then M̄ 2 :

1st slice
[0 1 0 0 1]
[1 0 1 0 1]
[0 0 1 0 1]
[0 1 1 0 0]
[0 0 0 0 0]

2nd slice
[1 1 1 0 0]
[1 1 0 1 0]
[0 0 1 1 0]
[1 1 1 1 1]
[0 0 0 0 0]

So finally we get one message pair for given ∆T . But the system of
equations E∆ and EM both have more than one solution. So we may
get more than one message pair and ∆I corresponding an ∆T .

6.3 Verification of Correctness

To verify, we run one round Keccak on both the messages M 1 (Refer 6.2)
and M 2 (Refer 6.2).

Keccak1(M̄ 1) =

1st slice
[0 0 0 1 1]
[1 0 0 0 1]
[1 0 1 0 0]
[0 1 0 0 1]
[1 1 0 1 0]

2nd slice
[0 0 0 0 0]
[1 1 1 1 0]
[0 0 0 0 1]
[0 0 0 0 0]
[0 0 0 0 0]

Keccak1(M̄ 2) =
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1st slice
[0 1 0 1 1]
[1 0 1 1 1]
[0 0 1 0 0]
[0 1 0 0 1]
[1 1 0 1 0]

2nd slice
[0 1 0 0 1]
[0 1 0 1 1]
[1 0 0 1 1]
[0 0 0 0 0]
[0 0 0 0 0]

Keccak1(M̄ 1)⊕Keccak1(M̄ 2) =

1st slice
[0 1 0 0 0]
[0 0 1 1 0]
[1 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]

2nd slice
[0 1 0 0 1]
[1 0 1 0 1]
[1 0 0 1 0]
[0 0 0 0 0]
[0 0 0 0 0]

which is equal to given ∆T (Refer Section 6.1 ).

7 Searching the 2D Affine Subspaces of

Ascon S-box

Dinur et al. stated that for Keccak, there are minimum 5 and maximum 17, 2-
dimensional affine subspace for fixed δout. We have verified this property in the
Section 5 using a searching algorithm implemented in Matlab. The degree of
Keccak S-box is 2. Since the degree of the Ascon S-box is also 2, so we can
study the number of minimum and maximum 2-dimensional affine subspaces
for a fixed output difference of Ascon S-box. We use a similar implementation
in Matlab to find the 2D affine subspaces (AS) and affine equations (AE). Then
we get a new property for Ascon.

Property 3. For a non-zero 5-bit output difference δout to a Ascon S-box,
the set of possible input differences, {δin|DDT (δin, δout) > 0}, contains at
least 4 (and up to 17) 2-dimensional affine subspaces.

The maximum number of 2D affine subspaces of both Keccak and Ascon

S-box is 17. It is interesting to see that the minimum number of 2D affine
subspaces for Ascon S-box is 4 but for Keccak S-box it was 5. The number
of affine subspaces corresponding to all output differences are available in the
Table 1.2. We have enumerated all the 2D affine subspaces and affine equa-
tions of the Ascon S-box. Most of them affine subspaces are enumerates in
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the Appendix D.

Example 1:
The output difference 18 has 17 (maximum) 2D affine subspaces. The input
difference set corresponding to 17 is {14, 23, 28, 31, 9, 10, 11, 13, 18, 22, 26,
27}. Consider the subset {14, 23, 11, 18}.

x1 x2 x3 x4 x5

14 = 0 1 1 1 0
23 = 1 0 1 1 1
11 = 0 1 0 1 1
18 = 1 0 0 1 0

The the affine equations are:

x4 = 1

x1 ⊕ x2 = 1

x1 ⊕ x3 ⊕ x5 = 1

So, the subset {14, 23, 11, 18} is a 2D affine subspace.

Example 2:
The output difference 30 has 4 (minimum) 2D affine subspaces. The input dif-
ference set corresponding to 17 is {4, 1, 8, 25, 9, 11, 18, 22, 24, 30}. Consider
the subset {4, 8, 18, 30}.

x1 x2 x3 x4 x5

4 = 0 0 1 0 0
8 = 0 1 0 0 0

18 = 1 0 0 1 0
30 = 1 1 1 1 0

The the affine equations are:

x5 = 0

x1 ⊕ x4 = 0

x1 ⊕ x2 ⊕ x3 = 1

This is an example of 2D affine subspce corresponding to output difference 30.
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δout
# 2d AS

δout
# 2d AS

1 5 17 9
2 9 18 17
3 11 19 9
4 8 20 11
5 9 21 5
6 8 22 5
7 11 23 5
8 9 24 9
9 8 25 5
10 5 26 5
11 5 27 16
12 5 28 17
13 8 29 11
14 9 30 4
15 16 31 15
16 8

Table 1.2: Number of 2D Affine Subspace (AS) of Ascon corresponding
to All Output Difference

8 Experimental Setup

We have implemented the TDA in Matlab platform. We ran our code on 64-bit
intel-i3 CPU with 4 GB RAM machine. Our code is working on all the Keccak

versions except the lanesize 64. For lanesize 64, the machine stops responding.
Our code is able to finds the message pairs within 2 minutes for lanesize 2, 4,
8. But for the lanesize 16 and 32, it takes near about 20 minutes and 5 hours
respectively. Also we find all the 2D affine subspaces of Keccak and Ascon

S-box using a searching algorithm in Matlab.

9 Conclusion and Future Work

In this work, we have understood and implemented the diference phase and
value phase of TDA on Keccak. We implemented the searching algorithm to
enumerate the 2D affine subspace of the Keccak S-box and verified the property
reported by Dinur et al. in the work where they introduced TDA. We applied
the algorithm on the Ascon S-box and discovered a new property of the Ascon
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S-box with respect to the number of 2D affine subspaces. All implementations
are done in the Matlab platform. Since the sequence of linear layer and non-
layer is reverse, so that TDA has to be adapted before applied to Ascon which
will be an interesting work for the future. Another interesting aspect would be
improved the TDA itself. Finally, TDA is an interesting cryptanalyst tool and
understanding it, will help to apply it to other ciphers as well..
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Appendices

A Differential Distribution Table (DDT) of Keccak

S-box

The χ mapping of Keccak takes a 5-bit input and gives 5-bit output. So the
size of DDT is 32× 32. Output difference left to right and input difference up
to down :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 8 0 8 0 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 8 0 0 0
5 0 4 0 4 0 0 0 0 0 0 0 0 0 4 0 4 0 4 0 4 0 0 0 0 0 0 0 0 0 4 0 4
6 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0
7 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
8 0 0 0 0 0 0 0 0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 4 0 0 4 4 0 0 4 0 0 0 0 0 0 0 0 4 0 0 4 4 0 0 4

10 0 0 4 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 4 4
11 0 4 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 4 4 0
12 0 0 0 0 4 4 0 0 0 0 0 0 4 4 0 0 0 0 0 0 4 4 0 0 0 0 0 0 4 4 0 0
13 0 0 0 0 4 0 0 4 4 0 0 4 0 0 0 0 0 0 0 0 4 0 0 4 4 0 0 4 0 0 0 0
14 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
15 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 0 0 0 4 4 4 4 0 0 0 0 4 4
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
20 0 0 0 0 4 0 4 0 0 0 0 0 4 0 4 0 0 0 0 0 0 4 0 4 0 0 0 0 0 4 0 4
21 0 4 0 4 0 0 0 0 0 0 0 0 0 4 0 4 4 0 4 0 0 0 0 0 0 0 0 0 4 0 4 0
22 0 0 4 0 4 0 0 0 0 0 4 0 4 0 0 0 0 0 0 4 0 4 0 0 0 0 0 4 0 4 0 0
23 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
24 0 0 0 0 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 0 0 0 0
25 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
26 0 0 0 0 0 0 0 0 4 4 0 0 0 0 4 4 4 4 0 0 0 0 4 4 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0
28 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
29 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0
30 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0
31 0 2 2 0 2 0 0 2 2 0 0 2 0 2 2 0 2 0 0 2 0 2 2 0 0 2 2 0 2 0 0 2
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B DDT of Ascon S-box

The S-box of Ascon takes a 5-bit input and gives 5-bit output. So the size
of DDT is 32× 32. Output difference left to right and input difference up to
down :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 4 0 4 0 4 0 4 0 0 0 0 0 0 0 0 4 0 4 0 4 0 4 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4
3 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0
4 0 0 0 0 0 0 8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 8 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 4 4 0 4 0 4 0 4 0 0 4 0 4
6 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
7 0 0 4 4 0 0 4 4 0 0 4 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 4 4 0 0 0 0 0 0 4 4 0 0 0 0 0 0 4 4 0 0 0 0 0 0 4 4
9 0 2 0 2 2 0 2 0 2 0 2 0 0 2 0 2 2 0 2 0 0 2 0 2 0 2 0 2 2 0 2 0

10 0 2 2 0 2 0 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0 0 2
11 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2
12 0 8 0 0 0 0 0 0 8 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0
13 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 0 2 0 2 0 2 0 2
14 0 4 4 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4 0 4 0 0 4 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 4 4 0 0 4 4 0 0 0 0 0 0 0 0 0 0 4 4 0 0 4 4 0 0
16 0 0 0 0 0 0 0 0 0 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8 0 8 0 8 0 0 0 0 0 0 0 0
18 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
19 0 0 8 0 8 0 0 0 0 0 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 4 4 4 4 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 4 0 4 0 4 0 4 0 0 0 0 0 4 0 4 0 0 0 0 0 0 0 0 0 4 0 4
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
23 0 0 4 0 4 0 0 0 0 0 4 0 4 0 0 0 0 0 4 0 4 0 0 0 0 0 4 0 4 0 0 0
24 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
25 0 0 0 4 0 0 4 0 4 0 0 0 0 4 0 0 4 0 0 0 0 4 0 0 0 0 0 4 0 0 4 0
26 0 2 2 0 0 2 2 0 2 0 0 2 2 0 0 2 0 2 2 0 0 2 2 0 2 0 0 2 2 0 0 2
27 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0
28 0 4 0 4 0 0 0 0 4 0 4 0 0 0 0 0 4 0 4 0 0 0 0 0 0 4 0 4 0 0 0 0
29 0 0 0 4 0 4 0 0 4 0 0 0 0 0 4 0 4 0 0 0 0 0 4 0 0 0 0 4 0 4 0 0
30 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
31 0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 0 0 0 0 0 0 0 0 0 0

C Input Difference Subset List

� Let ∆T contains t active Sboxes and the corresponding output differences
of Sboxes are δout1 , δout2 , . . . , δoutt .

� Consider δout1 and let the input difference set is {δin11, δin12, δin13 . . . } where
DDT(δin1i , δ

out
1 ) > 0.

� Let the IDSL of the output difference δout1 is IDSL1.

� At first we want to compare two input difference subsets {δin11, δ
in
12, δ

in
13, δ

in
14}

and {δin15, δ
in
16, δ

in
17, δ

in
18} such that

DDT (δin11, δ
out
1 ) ≥ DDT (δin12, δ

out
1 ) ≥ DDT (δin13, δ

out
1 ) ≥ DDT (δin14, δ

out
1 ) > 0

and

DDT (δin15, δ
out
1 ) ≥ DDT (δin16, δ

out
1 ) ≥ DDT (δin17, δ

out
1 ) ≥ DDT (δin18, δ

out
1 ) > 0
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.

� We first compare the sizes of the largest subset for which the size is
bigger. If the sizes are equal , we compare DDT(δin12, δout1 ) and DDT(δin16,
δout1 ), and so on. For example , let the output difference is 1 the from
the DDT we get input difference set {1, 3, 5, 7, 11, 15, 21, 23, 31} with

DDT (1, 1) = 8,DDT (3, 1) = 4, DDT (5, 1) = 4,

DDT (7, 1) = 2,DDT (11, 1) = 4, DDT (15, 1) = 2,

DDT (21, 1) = 4,DDT (23, 1) = 2, DDT (31, 31) = 2.

� IDSL = {{1, 3, 5, 11},{1, 3, 5, 21}, {1, 3, 5, 7}, {1, 3, 5, 15}, . . . }.
In the above way we get IDSLs with respect to the output difference.

� Let IDSL1, IDSL2,. . . ,IDSLt are the IDSLs of the active Sboxes
δout1 , δout2 ,. . . , δoutt respectively.

� All the IDSLs and output differences are stored in one data structure
named IDSD. The number of element in IDSD is equal to t. IDSD is
used for maintaining the order of Sboxes .

D List of 2D Affine Subspaces and Affine Equations

of Keccak and Ascon.

Here we will give the possible 2 -dimensional affine subspaces and affine equa-
tions corresponding to output differences of Keccak and Ascon. From Table
.3 to Table .11 are the tables for 2 -dimensional affine subspaces and affine
equations of output differences for Keccak and the remaning tables are for
Ascon .



δout 2D affine
subspaces

Corresponding linear equations

1

{1, 3, 5, 7} x1 = 0, x2 = 0, x5 = 1
{1, 3, 21, 23} x2 = 0, x5 = 1, x1 ⊕ x3 = 0
{1, 5, 11, 15} x1 = 0, x5 = 1, x2 ⊕ x4 = 0
{1, 11, 21, 31} x5 = 1, x1 ⊕ x3 = 0 , x2 ⊕ x4 = 0
{3, 11, 7, 15} x1 = 0, x4 = 1, x5 = 1
{3, 11, 23, 31} x4 = 1, x5 = 1, x1 ⊕ x3 = 0
{5, 21, 7, 23} x2 = 0, x3 = 1, x5 = 1
{5, 21, 15, 31} x3 = 1, x5 = 1, x2 ⊕ x4 = 0
{7, 15, 23, 31} x3 = 1, x4 = 1, x5 = 1

2

{2, 6, 10, 14} x1 = 0, x5 = 0, x4 = 1
{2, 6, 11, 15} x1 = 0, x4 = 1, x2 ⊕ x5 = 0
{2, 10, 22, 30} x5 = 0, x4 = 1, x1 ⊕ x3 = 0
{2, 11, 22, 31} x4 = 1, x1 ⊕ x3 = 0 , x2 ⊕ x5 = 0
{6, 22, 14, 30} x5 = 0, x3 = 1, x4 = 1
{6, 22, 15, 31} x4 = 1, x3 = 1, x2 ⊕ x5 = 0
{10, 11, 14, 15} x1 = 0, x2 = 1, x4 = 1
{10, 11, 30, 31} x2 = 1, x4 = 1, x1 ⊕ x3 = 0
{14, 15, 30, 31} x3 = 1, x4 = 1, x2 = 1

3

{1, 3, 5, 7} x1 = 0, x2 = 0, x5 = 1
{1, 3, 21, 23} x2 = 0, x5 = 1, x1 ⊕ x3 = 0
{1, 5, 10, 14} x1 = 0, x2 ⊕ x4 = 0, , x2 ⊕ x5 = 1
{1, 10, 21, 30} x2⊕x5 = 1, x1⊕x3 = 0 , x2⊕x4 = 0
{3, 10, 7, 14} x1 = 0, x4 = 1, x2 ⊕ x5 = 1
{3, 10, 23, 30} x4 = 1, x2 ⊕ x5 = 1, x1 ⊕ x3 = 0
{5, 21, 7, 23} x2 = 0, x3 = 1, x5 = 1
{5, 21, 14, 30} x3 = 1, x2 ⊕ x5 = 1, x2 ⊕ x4 = 0
{7, 14, 23, 30} x3 = 1, x4 = 1, x2 ⊕ x5 = 1

4

{4, 12, 20, 28} x4 = 0, x5 = 0, x3 = 1
{4, 12, 22, 30} x5 = 0, x3 = 1, x1 ⊕ x4 = 0
{4, 13, 20, 29} x4 = 0, x3 = 1, , x2 ⊕ x5 = 0
{4, 13, 22, 31} x2 ⊕ x5 = 0, x3 = 0 , x1 ⊕ x4 = 0
{12, 13, 28, 29} x4 = 0, x3 = 1, x2 = 1
{12, 13, 30, 31} x3 = 1, x2 = 1, x1 ⊕ x4 = 0
{20, 22, 28, 30} x5 = 0, x3 = 1, x1 = 1
{20, 22, 29, 31} x3 = 1, x2 ⊕ x5 = 0, x1 = 1
{28, 29, 30, 31} x3 = 1, x1 = 1, x2 = 1

Table .3: List of all 2D Affine Equations of Keccak for δout= 1, 2, 3,
4.



δout 2D affine
subspaces

Corresponding linear equations

5

{1, 3, 28, 30} x1⊕x2 = 0, x1⊕x3 = 0 , x1⊕x5 = 1
{1, 11, 23, 29} x5 = 1, x1 ⊕ x3 = 0, x1 ⊕ x2 ⊕ x4 = 0
{3, 11, 7, 15} x1 = 0, x4 = 1 , x5 = 1
{12, 7, 23, 28} x3 = 1, x2 ⊕ x4 = 1 , x2 ⊕ x5 = 1
{12, 15, 29, 30} x2 = 1, x3 = 1, x1 ⊕ x4 ⊕ x5 = 0

6

{2, 6, 10, 14} x1 = 0, x5 = 0, x4 = 1
{2, 6, 11, 15} x1 = 0, x4 = 1, x2 ⊕ x5 = 0
{2, 10, 20, 28} x5 = 0, x1 ⊕ x4 = 1, x1 ⊕ x3 = 0
{2, 11, 20, 29} x1⊕x4 = 1, x1⊕x3 = 0 , x2⊕x5 = 0
{6, 20, 14, 28} x5 = 0, x3 = 1, x1 ⊕ x4 = 1
{6, 20, 15, 29} x1 ⊕ x4 = 1, x3 = 1, x2 ⊕ x5 = 0
{10, 11, 14, 15} x1 = 0, x2 = 1, x4 = 1
{10, 11, 28, 29} x2 = 1, x1 ⊕ x4 = 1, x1 ⊕ x3 = 0
{14, 15, 28, 29} x3 = 1, x1 ⊕ x4 = 1, x2 = 1

7

{1, 3, 29, 31} x1 ⊕ x2 = 0, x1 ⊕ x3 = 0 , x5 = 1
{1, 10, 23, 28} x2⊕x5 = 1, x1⊕x3 = 0, x1⊕x2⊕x4 =

0
{3, 10, 7, 14} x1 = 0, x4 = 1 , x2 ⊕ x5 = 1
{13, 7, 23, 29} x3 = 1, x2 ⊕ x4 = 1 , x5 = 1
{13, 14, 28, 31} x2 = 1, x3 = 1, x1 ⊕ x4 ⊕ x5 = 1

8

{8, 9, 24, 25} x3 = 0, x4 = 0, x2 = 1
{8, 9, 26, 27} x3 = 0, x2 = 1, x1 ⊕ x4 = 0
{8, 13, 24, 29} x4 = 0, x2 = 1, x3 ⊕ x5 = 0
{8, 13, 26, 31} x2 = 1, x1 ⊕ x4 = 0 , x2 ⊕ x5 = 0
{9, 13, 25, 29} x4 = 0, x2 = 1, x5 = 1
{9, 13, 27, 31} x1 ⊕ x2 = 1, x5 = 1, x1 ⊕ x4 = 0
{24, 26, 25, 27} x3 = 0, x2 = 1, x1 = 1
{24, 26, 29, 31} x2 = 1, x1 = 1, x3 ⊕ x5 = 0
{25, 27, 29, 31} x1 = 1, x2 = 1, x5 = 1

Table .4: List of all 2D Affine Equations of Keccak for δout= 5, 6, 7,
8.
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δout 2D affine
subspaces

Corresponding linear equations

9

{8, 24, 7, 23} x2⊕x3 = 1, x2⊕x4 = 1 , x2⊕x5 = 1
{8, 26, 15, 29} x2 = 1, x3 ⊕ x5 = 0, x1 ⊕ x3 ⊕ x4 = 0
{3, 7, 25, 29} x1 ⊕ x2 = 0, x5 = 1 , x1 ⊕ x4 = 1
{3, 15, 23, 27} x4 = 1, x1 ⊕ x2 ⊕ x3 = 0 , x5 = 1
{24, 26, 25, 27} x3 = 0, x2 = 1, x1 = 1

10

{2, 6, 25, 29} x1⊕x2 = 0, x1⊕x4 = 1 , x1⊕x5 = 0
{2, 22, 15, 27} x4 = 1, x2 ⊕ x5 = 0, x1 ⊕ x2 ⊕ x3 = 0
{6, 22, 14, 30} x1 ⊕ x3 = 0, x5 = 0 , x1 ⊕ x4 = 1
{24, 14, 15, 25} x2 = 1, x1 ⊕ x3 = 1 , x1 ⊕ x4 = 1
{24, 27, 29, 30} x1 = 1, x2 = 1, x3 ⊕ x4 ⊕ x5 = 0

11

{3, 9, 13, 17} x1 = 0, x5 = 1, x2 ⊕ x4 = 1
{3, 9, 23, 29} x5 = 1, x1 ⊕ x3 = 0, x2 ⊕ x4 = 1
{3, 13, 23, 25} x5 = 1, x2 ⊕ x4 = 1, x1 ⊕ x2 ⊕ x3 = 0
{3, 7, 25, 29} x5 = 1, x1 ⊕ x2 = 0, x1 ⊕ x4 = 1
{3, 7, 27, 31} x4 = 1, x5 = 1, x1 ⊕ x2 = 0
{9, 13, 25, 29} x4 = 0, x2 = 1, x5 = 1
{9,13, 27, 31} x2 = 1, x5 = 1, x1 ⊕ x4 = 0
{9, 24, 14, 31} x2 = 1, x3 ⊕ x4 = 0, x1 ⊕ x3 ⊕ x5 = 1
{9, 7, 23, 25} x5 = 1, x2 ⊕ x3 = 1, x2 ⊕ x4 = 1
{9, 14, 25, 30} x2 = 1, x3 ⊕ x4 = 0, x3 ⊕ x5 = 1
{13, 24, 14, 27} x2 = 1, x1 ⊕ x3 = 1, x1 ⊕ x4 ⊕ x5 = 1
{13, 7, 23, 29} x3 = 1, x5 = 1, x2 ⊕ x4 = 1
{13, 14, 29, 30} x2 = 1, x3 = 1, x4 ⊕ x5 = 1
{24, 25, 30, 31} x1 = 1, x2 = 1, x3 ⊕ x4 = 0
{24, 27, 29, 30} x1 = 1, x2 = 1, x3 ⊕ x4 ⊕ x5 = 0
{7, 14, 23, 30} x3 = 1, x4 = 1, x2 ⊕ x5 = 1
{25, 27, 29, 31} x1 = 1, x2 = 1, x5 = 1

12

{4, 9, 20, 25} x4 = 0, x2 ⊕ x5 = 0, x2 ⊕ x3 = 1
{4, 9, 22, 27} x)1⊕x4 = 0, x2⊕x5 = 0, x2⊕x3 = 1
{4, 12, 22, 30} x4 = 0, x3 = 1, , x5 = 0
{4, 12, 25, 28} x5 = 0, x3 = 1 , x1 ⊕ x4 = 0
{9, 12, 25, 28} x4 = 0, x3 ⊕ x5 = 1, x2 = 1
{9, 12, 27, 30} x3 ⊕ x5 = 1, x2 = 1, x1 ⊕ x4 = 0
{20, 22, 25, 27} x2 ⊕ x5 = 0, x2 ⊕ x3 = 1, x1 = 1
{20, 22, 28, 30} x3 = 1, x5 = 0, x1 = 1
{25, 27, 28, 30} x2 = 1, x1 = 1, x3 ⊕ x5 = 1

Table .5: List of all 2D Affine Equations of Keccak for δout= 9, 10, 11,
12
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δout 2D affine
subspaces

Corresponding linear equations

13

{3, 5, 25, 31} x5 = 1, x1 ⊕ x2 = 0, x1 ⊕ x3 ⊕ x4 = 1
{3, 21, 15, 25} x4 = 1, x1 ⊕ x4 = 1, x1 ⊕ x2 ⊕ x3 = 0
{3, 7, 27, 31} x4 = 1, x5 = 1, x1 ⊕ x2 = 0
{3, 15, 23, 27} x4 = 1, x5 = 1, x1 ⊕ x2 ⊕ x3 = 0
{5, 12, 21, 28} x4 = 0, x3 = 1, x2 ⊕ x5 = 1
{5, 12, 23, 30} x3 = 1, x1 ⊕ x4 = 0, x2 ⊕ x5 = 1
{5, 21, 7, 23} x2 = 0, x3 = 1, x5 = 1
{5, 21, 15, 31} x3 = 1, x5 = 1, x2 ⊕ x4 = 0
{5, 7, 25, 27} x5 = 1, x1 ⊕ x2 = 0, x1 ⊕ x3 = 1
{5, 7, 28, 30} x3 = 1, x1 ⊕ x2 = 0, x1 ⊕ x5 = 1
{12, 21, 7, 30} x3 = 1, x2 ⊕ x5 = 1, x1 ⊕ x2 ⊕ x4 = 1
{12, 7, 23, 28} x3 = 1, x2 ⊕ x4 = 1 , x2 ⊕ x5 = 1
{12, 15, 28, 31} x2 = 1, x3 = 1, x5 ⊕ x4 = 0
{21, 23, 25, 27} x1 = 1, x5 = 1 , x2 ⊕ x3 = 1
{21, 23, 28, 30} x1 = 1, x2 ⊕ x5 = 1 , x3 = 1
{7, 15, 23, 31} x5 = 1, x3 = 1, x4 = 1
{25, 27, 28, 30} x1 = 1, x2 = 1, x3 ⊕ x5 = 1

14

{2, 6, 27, 31} x4 = 1, x1 ⊕ x2 = 0 , x1 ⊕ x5 = 0
{2, 20, 15, 25} x1⊕x4 = 1, x2⊕x5 = 0, x1⊕x2⊕x3 =

1
{6, 20, 14, 28} x5 = 0, x3 = 1 , x1 ⊕ x4 = 1
{26, 14, 15, 27} x2 = 1, x1 ⊕ x3 = 1 , x4 = 1
{26, 25, 28, 31} x1 = 1, x2 = 1, x3 ⊕ x4 ⊕ x5 = 1

15

{3, 26, 14, 23} x4 = 1, x2 ⊕ x5 = 1, x1 ⊕ x2 ⊕ x3 = 0
{5, 9, 21, 25} x4 = 0, x5 = 1, x2 ⊕ x3 = 1
{5, 9, 23, 27} x5 = 1, x1 ⊕ x4 = 0, x2 ⊕ x3 = 1
{5, 21, 23, 7} x2 = 0, x3 = 1, x5 = 1
{5, 7, 25, 27} x5 = 1, x1 ⊕ x2 = 0, x1 ⊕ x3 = 1
{5, 14, 23, 28} x2 = 1, x3 ⊕ x4 = 0, x3 ⊕ x5 = 1
{9, 21, 7, 27} x5 = 1, x2 ⊕ x3 = 1, x1⊕ x2 ⊕ x4 = 1
{9, 7, 23, 25} x5 = 1, x2 ⊕ x3 = 1, x2 ⊕ x4 = 1
{9, 14, 27, 28} x2 = 1, x3 ⊕ x5 = 1, x1⊕ x3 ⊕ x4 = 1
{21, 7, 14, 28} x1 ⊕ x4 = 1, x3 = 1, x2 ⊕ x5 = 1
{21, 23, 25, 27} x1 = 1, x5 = 1, x2⊕ x3 = 1

Table .6: List of all 2D Affine Equations of Keccak for δout= 13, 14,
15.
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δout 2D affine
subspaces

Corresponding linear equations

16

{16, 17, 18, 19} x2 = 0, x3 = 0, x1 = 1
{16, 17, 26, 27} x3 = 0, x1 = 1, x2 ⊕ x4 = 0
{16, 18, 21, 23} x2 = 0, x1 = 1, x3 ⊕ x5 = 0
{16, 21, 26, 31} x1 = 1, x2 ⊕ x4 = 0 , x3 ⊕ x5 = 0
{17, 21, 19, 23} x2 = 0, x1 = 1, x5 = 1
{17, 21, 27, 31} x1 = 1, x5 = 1, x2 ⊕ x4 = 0
{18, 26, 19, 27} x3 = 0, x1 = 1, x4 = 1
{18, 26, 23, 31} x1 = 1, x4 = 1, x3 ⊕ x5 = 0
{19, 23, 27, 31} x1 = 1, x4 = 1, x5 = 1

17

{16, 5, 18, 7} x2 = 0, x1 ⊕ x3 = 1, x1 ⊕ x5 = 1
{16, 5, 26, 15} x1 ⊕ x3 = 0, x1 ⊕ x5 = 1, x2 ⊕ x4 = 0
{16, 17, 18, 19} x2 = 0, x3 = 0, x1 = 1
{16, 17, 26, 27} x3 = 0, x1 = 1, x2 ⊕ x4 = 0
{17, 5, 19, 7} x2 = 0, x1 ⊕ x3 = 1, x5 = 1
{17, 5, 27, 15} x1 ⊕ x3 = 1, x5 = 1, x2 ⊕ x4 = 0
{18, 26, 7, 15} x1 ⊕ x5 = 1, x1 ⊕ x3 = 1, x4 = 1
{18, 26, 19, 27} x3 = 0, x1 = 1, x4 = 1
{19, 15, 27, 7} x1 ⊕ x3 = 1, x4 = 1, x5 = 1

18

{16, 17, 14, 15} x1 ⊕ x2 = 1, x1 ⊕ x3 = 1, x1 ⊕ x4 = 1
{16, 21, 27, 30} x2 ⊕ x3 ⊕ x5 = 0, x1 = 1, x2 ⊕ x4 = 0
{6, 14, 27, 19} x4 = 1, x1 ⊕ x5 = 0, x1 ⊕ x3 = 1
{6, 15, 23, 30} x4 = 1, x3 = 1, x1 ⊕ x2 ⊕ x5 = 9
{21, 19, 17, 23} x2 = 0, x1 = 1, x5 = 1

19

{16, 5, 14, 7} x2⊕x4 = 0, x1⊕x3 = 1, x1⊕x2⊕x5 =
1

{16, 17, 30, 31} x2 ⊕ x3 = 0, x1 = 1, x2 ⊕ x4 = 0
{5, 17, 7, 19} x2 = 0, x5 = 1, x1 ⊕ x3 = 1
{22, 7, 14, 31} x4 = 1, x3 = 1, x1 ⊕ x2 ⊕ x5 = 1
{22, 19, 27, 30} x4 = 1, x1 = 1, x3 ⊕ x5 = 1

20

{4, 12, 19, 27} x1 ⊕ x4 = 0, x1 ⊕ x3 = 1, x1 ⊕ x5 = 0
{4, 13, 30, 23} x1 ⊕ x4 = 0, x3 = 1, x1 ⊕ x2 ⊕ x5 = 0
{12, 13, 28, 29} x4 = 0, x2 = 1, x3 = 1
{17, 19, 28, 30} x1 = 1, x2 ⊕ x3 = 0, x2 ⊕ x5 = 1
{17, 23, 27, 29} x5 = 1, x1 = 1, x2 ⊕ x3 ⊕ x4 = 0

Table .7: List of all 2D Affine Equations of Keccak for δout= 16, 17,
18, 19, 20
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subspaces

Corresponding linear equations

21

{12, 20, 7, 31} x3 = 1, x4 ⊕ x5 = 0, x1 ⊕ x2 ⊕ x4 = 1
{12, 22, 7, 29} x3 = 1, x2 ⊕ x4 = 1, x1 ⊕ x2 ⊕ x5 = 1
{12, 15, 28, 31} x2 = 1, x3 = 1, x4 ⊕ x5 = 0
{12, 15, 29, 30} x2 = 1, x3 = 1, x1 ⊕ x4 ⊕ x5 = 0
{17, 20, 22, 19} x2 = 0, x1 = 1, x3 ⊕ x5 = 1
{17, 20, 27, 30} x1 = 1, x2 ⊕ x4 = 0, x3 ⊕ x5 = 1
{17, 22, 27, 28} x1 = 1, x3 ⊕ x5 = 1, x2 ⊕ x3 ⊕ x4 = 0
{17, 19, 28, 30} x1 = 1, x2 ⊕ x5 = 1, x2 ⊕ x3 = 0
{17, 19, 29, 31} x5 = 1, x1 = 1, x2 ⊕ x3 = 0
{20, 22, 28, 30} x3 = 1, x5 = 0, x1 = 1
{20, 22, 29, 31} x3 = 1, x2 ⊕ x5 = 0, x1 = 1
{20, 7, 15, 28} x3 = 1, x1 ⊕ x4 = 1 , x1 ⊕ x5 = 1
{20, 19, 28, 27} x1 = 1, x3 ⊕ x4 = 1, x3 ⊕ x5 = 1
{22, 7, 15, 30} x3 = 1, x4 = 1 , x1 ⊕ x5 = 1
{22, 19, 27, 30} x1 = 1, x3 ⊕ x5 = 1 , x4 = 1
{7, 15, 19, 27} x5 = 1, x1 ⊕ x3 = 1, x4 = 1
{28, 29, 30, 31} x1 = 1, x2 = 1, x3 = 1

22

{6, 18, 26, 14} x4 = 1, x5 = 0, x1 ⊕ x3 = 1
{6, 18, 15, 27} x4 = 1, x1 ⊕ x3 = 1, x2 ⊕ x5 = 0
{6, 26, 15, 19} x4 = 1, x1 ⊕ x3 = 1, x1 ⊕ x2 ⊕ x5 = 0
{6, 14, 19, 27} x4 = 1, x1 ⊕ x3 = 1, x1 ⊕ x5 = 0
{6, 14, 23, 31} x3 = 1, x4 = 1, x1 ⊕ x5 = 0
{17, 18, 28, 31} x1 = 1, x2 ⊕ x3 = 0, x2 ⊕ x4 ⊕ x5 = 1
{17, 26, 23, 28} x2 ⊕ x5 = 1, x1 = 1, x2 ⊕ x3 ⊕ x4 = 0
{17, 19, 29, 31} x1 = 1, x2 ⊕ x3 = 0, x5 = 1
{17, 23, 27, 29} x2 ⊕ x3 ⊕ x4 = 0, x1 = 1, x5 = 1
{18, 26, 19, 27} x1 = 1, x4 = 1, x3 = 0
{18, 26, 23, 31} x4 = 1, x3 ⊕ x5 = 0, x1 = 1
{18, 14, 15, 19} x4 = 1, x1 ⊕ x2 = 1, x1 ⊕ x3 = 1
{18, 19, 28, 29} x1 = 1, x2 ⊕ x3 = 0, x2 ⊕ x4 = 1
{26, 14, 15, 27} x2 = 1, x4 = 1, x1 ⊕ x3 = 1
{26, 27, 28, 29} x1 = 1, x2 = 1 , x3 ⊕ x4 = 1
{14, 15, 28, 29} x2 = 1, x3 = 1, x1 ⊕ x4 = 1
{19, 23, 27, 31} x1 = 1, x5 = 1 , x4 = 1

Table .8: List of all 2D Affine Equations of Keccak for δout= 21, 22.
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23

{13, 17, 27, 7} x1 ⊕ x3 = 1, x5 = 1, x1 ⊕ x2 ⊕ x4 = 1
{18, 20, 26, 28} x5 = 0, x1 = 1, x3 ⊕ x4 = 1
{18, 20, 27, 29} x1 = 1, x3 ⊕ x4 = 1, x2 ⊕ x5 = 0
{18, 26, 19, 27} x3 = 0, x4 = 1, x1 = 1
{18, 7, 14, 27} x1 ⊕ x3 = 1, x4 = 1, x1 ⊕ x2 ⊕ x5 = 1
{18, 28, 29, 19} x1 = 1, x2 ⊕ x3 = 0, x2 ⊕ x4 = 1
{20, 26, 19, 29} x1 = 1, x3 ⊕ x4 = 1, x2⊕ x3 ⊕ x5 = 1
{20, 7, 14, 29} x3 = 1, x1 ⊕ x4 = 1, x1⊕ x2 ⊕ x5 = 1
{20, 19, 27, 28} x1 = 1, x3 ⊕ x4 = 1, x3 ⊕ x5 = 1
{26, 7, 14, 19} x4 = 1, x1 ⊕ x3 = 1, x2 ⊕ x5 = 1
{26, 27, 28, 29} x2 = 1, x1 = 1, x3 ⊕ x4 = 1

24

{8, 9, 18, 19} x1 ⊕ x2 = 1, x3 = 0, x1 ⊕ x2 = 1
{8, 9, 24, 25} x2 = 1, x3 = 0, x4 = 0
{8, 13, 24, 29} x4 = 0, x2 = 1, x3 ⊕ x5 = 0
{19, 23, 9, 13} x5 = 1, x1 ⊕ x2 = 1, x1 ⊕ x4 = 0
{9, 13, 29, 25} x2 = 1, x4 = 0, x5 = 1
{18, 24, 19, 25} x1 = 1, x3 = 0, x2 ⊕ x4 = 1
{18, 24, 23, 29} x1 = 1, x2 ⊕ x4 = 1, x3 ⊕ x5 = 0
{19, 23, 25, 29} x1 = 1, x5 = 1, x2 ⊕ x4 = 1

25

{8, 18, 7, 29} x3⊕x5 = 0, x2⊕x4 = 1 , x1⊕x2⊕x3 =
1

{8, 24, 15, 31} x2 = 1, x3 ⊕ x4 = 0, x3 ⊕ x5 = 0
{11, 7, 19, 31} x4 = 1, x5 = 1 , x1 ⊕ x2 ⊕ x3 = 1
{11, 15, 25, 29} x2 = 1, x1 ⊕ x4 = 1 , x5 = 1
{18, 24, 19, 25} x1 = 1, x3 = 0, x2 ⊕ x4 = 1

Table .9: List of all 2D Affine Equations of Keccak for δout= 23, 24,
25.
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26

{6, 10, 19, 31} x4 = 1, x1 ⊕ x5 = 0, x1 ⊕ x2 ⊕ x3 = 1
{6, 11, 19, 30} x4 = 1, x3 ⊕ x5 = 1, x1 ⊕ x2 ⊕ x3 = 1
{6, 14, 23, 31} x3 = 1, x4 = 1, x1 ⊕ x5 = 0
{6, 15, 23, 30} x3 = 1, x4 = 1, x1 ⊕ x2 ⊕ x5 = 0
{10, 11, 24, 25} x3 = 0, x2 = 1, x1 ⊕ x4 = 1
{10, 11, 14, 15} x1 = 0, x2 = 1, x4 = 1
{10, 11, 30, 31} x4 = 1, x2 = 1, x1 ⊕ x3 = 0
{10, 24, 15, 29} x2 = 1, x1 ⊕ x4 = 1, x3 ⊕ x5 = 0
{10, 14, 19, 23} x4 = 1, x1 ⊕ x2 = 1, x1 ⊕ x5 = 0
{10, 14, 25, 29} x2 = 1, x1 ⊕ x4 = 1, x1 ⊕ x5 = 0
{11, 24, 14, 29} x2 = 1, x1 ⊕ x4 = 1, x1 ⊕ x3 ⊕ x5 = 1
{11, 15, 19, 23} x5 = 1, x1 ⊕ x2 = 1 , x4 = 1
{11, 15, 25, 29} x2 = 1, x5 = 1, x1 ⊕ x4 = 1
{24, 14, 15, 25} x2 = 1, x1 ⊕ x3 = 1 , x1 ⊕ x4 = 1
{24, 25, 30, 31} x1 = 1, x3 ⊕ x4 = 0 , x2 = 1
{14, 15, 30, 31} x2 = 1, x3 = 1, x4 = 1
{19, 23, 25, 29} x1 = 1, x5 = 1, x2 ⊕ x4 = 1

27

{9, 10, 13, 14} x1 = 0, x2 = 1, x4 ⊕ x5 = 1
{9, 10, 29, 30} x2 = 1, x1 ⊕ x3 = 0, x4 ⊕ x5 = 1
{9, 13, 25, 29} x4 = 0, x2 = 1, x5 = 1
{9, 22, 24, 7} x1 ⊕ x5 = 1, x2 ⊕ x3 = 1, x2 ⊕ x4 = 1
{9, 7, 19, 29} x5 = 1, x2 ⊕ x4 = 1, x1 ⊕ x2 ⊕ x3 = 1
{9, 14, 25, 30} x2 = 1, x3 ⊕ x4 = 0, x3 ⊕ x5 = 1
{10, 13, 25, 30} x2 = 1, x4 ⊕ x5 = 1, x1⊕ x3 ⊕ x4 = 1
{10, 7, 19, 30} x4 = 1, x2 ⊕ x5 = 1, x1⊕ x2 ⊕ x3 = 1
{10, 14, 25, 29} x2 = 1, x1 ⊕ x4 = 1, x1 ⊕ x5 = 0
{13, 7, 25, 29} x2 ⊕ x4 = 1, x5 = 1, x1⊕ x3 = 1
{13, 14, 29, 30} x2 = 1, x3 = 1, x4⊕ x5 = 1
{22, 14, 19, 29} x1 = 1, x2 ⊕ x4 = 1, x2⊕ x3 ⊕ x5 = 1

28

{4, 9, 19, 30} x3⊕x5 = 1, x1⊕x4 = 0 , x1⊕x2⊕x3 =
1

{4, 12, 23, 31} x3 = 1, x1 ⊕ x4 = 0, x1 ⊕ x5 = 0
{9, 12, 25, 28} x4 = 0, x2 = 1 , x3 ⊕ x5 = 1
{21, 19, 25, 31} x1 = 1, x2 ⊕ x3 ⊕ x4 = 1 , x5 = 1
{21, 23, 28, 30} x1 = 1, x3 = 1, x2 ⊕ x5 = 1

Table .10: List of all 2D Affine Equations of Keccak for δout= 26, 27,
28.
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29

{5, 20, 22, 7} x1 ⊕ x4 = 1, x1 ⊕ x5 = 0, x2 ⊕ x3 = 1
{5, 20, 15, 30} x3 = 0, x4 = 1, x1 ⊕ x2 = 1
{5, 22, 15, 28} x3 = 1, x1 ⊕ x4 = 1, x1 ⊕ x2 ⊕ x5 = 0
{5, 7, 28, 30} x3 = 0, x4 = 1, x1 ⊕ x2 = 1
{5, 15, 19, 25} x1 = 0, x2 = 1, x4 = 1
{11, 12, 20, 19} x4 = 1, x1 ⊕ x2 = 1, x3 ⊕ x5 = 0
{11, 12, 25, 30} x4 = 1, x1 ⊕ x2 = 1, x1 ⊕ x5 = 0
{20, 22, 28, 30} x2 = 1, x1 ⊕ x4 = 1, x1⊕ x3 ⊕ x5 = 0
{20, 7, 15, 28} x2 = 1, x1 ⊕ x4 = 1, x1⊕ x3 ⊕ x5 = 0
{20, 19, 25, 30} x4 = 1, x1 ⊕ x2 = 1, x1⊕ x3 ⊕ x5 = 1
{22, 7, 15, 30} x2 = 1, x1 ⊕ x4 = 1, x3 ⊕ x5 = 1
{22, 19, 25, 28} x4 = 1, x5 = 1, x1⊕ x2 = 1

30

{6, 10, 21, 25} x1 ⊕ x4 = 1, x1 ⊕ x5 = 0, x2 ⊕ x3 = 1
{6, 21, 15, 28} x3 = 1, x1 ⊕ x4 = 1, x1 ⊕ x2 ⊕ x5 = 0
{10, 11, 18, 19} x3 = 0, x4 = 1, x1 ⊕ x2 = 1
{10, 11, 14, 15} x1 = 0, x2 = 1, x4 = 1
{10, 18, 15, 23} x4 = 1, x1 ⊕ x2 = 1, x3 ⊕ x5 = 0
{10, 14, 19, 23} x4 = 1, x1 ⊕ x2 = 1, x1 ⊕ x5 = 0
{10, 15, 25, 28} x2 = 1, x1 ⊕ x4 = 1, x1⊕ x3 ⊕ x5 = 0
{11, 18, 14, 23} x4 = 1, x1 ⊕ x2 = 1, x1⊕ x3 ⊕ x5 = 1
{11, 14, 25, 28} x2 = 1, x1 ⊕ x4 = 1, x3 ⊕ x5 = 1
{11, 15, 19, 23} x4 = 1, x5 = 1, x1⊕ x2 = 1
{18, 14, 15, 19} x4 = 1, x1 ⊕ x2 = 1, x1⊕ x3 = 1
{18, 23, 25, 28} x1 = 1, x2 ⊕ x4 = 1, x2⊕ x3 ⊕ x5 = 0

31

{5, 9, 19, 31} x5 = 1 , x1⊕x4 = 0, x1⊕x2⊕x3 = 1
{5, 10, 19, 28} x2⊕x5 = 1, x3⊕x4 = 1, x1⊕x2⊕x3 =

1
{5, 18, 24, 25} x1⊕x3 = 1, x4⊕x5 = 1, x1⊕x2⊕x4 =

0
{5, 20, 14, 31} x3 = 1, x2 ⊕ x4 = 0, x1 ⊕ x2 ⊕ x5 = 1
{9, 10, 28, 31} x2 = 1, x1 ⊕ x3 = 0, x1 ⊕ x4 ⊕ x5 = 1
{9, 18, 7, 28} x1⊕x5 = 1, x2⊕x4 = 1, x1⊕ x2⊕x3 =

1
{9, 20, 14, 19} x1⊕x2 = 1, x3⊕x5 = 1, x1⊕ x3⊕x4 =

0
{10, 18, 7, 31} x4 = 1, x3 ⊕ x5 = 0, x1 ⊕ x2 ⊕ x3 = 1
{10, 20, 7, 25} x1⊕x4 = 1, x2⊕x3 = 1, x1⊕ x2⊕x5 =

1
{18, 20, 25, 31} x1 = 1, x2 ⊕ x5 = 0, x2⊕ x3 ⊕ x4 = 1

Table .11: List of all 2D Affine Equations of Keccak for δout= 29,30,
31.
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1

{12, 3, 6, 9} x1 = 0, x2 ⊕ x4 = 1 , x3 ⊕ x5 = 1
{12, 28, 10, 26} x5 = 0, x2 = 1, x3 ⊕ x4 = 1
{3, 28, 13, 18} x1⊕x5 = 1, x2⊕x3 = 0 , x2⊕x4 = 1
{14, 6, 18, 26} x5 = 0, x4 = 1 , x1 ⊕ x3 = 1
{14, 9, 10, 13} x1 = 0, x2 = 1, x4 ⊕ x5 = 1

2

{19, 7, 14, 26} x4 = 1, x1 ⊕ x3 = 1, x2 ⊕ x5 = 1
{19, 7, 31, 11} x4 = 1, x5 = 1, x1 ⊕ x2 ⊕ x3 = 1
{19, 14, 23, 10} x4 = 1, x1 ⊕ x5 = 0, x1 ⊕ x2 = 1
{19, 23, 31, 27} x4 = 1, x1 = 1, x5 = 1
{7, 23, 10, 26} x4 = 1, x2 ⊕ x3 = 1, x2 ⊕ x5 = 1
{7, 23, 11, 27} x4 = 1, x5 = 1, x2 ⊕ x3 = 1
{14, 31, 10, 27} x2 = 1, x4 = 1, x1 ⊕ x5 = 0
{14, 31, 11, 26} x2 = 1, x4 = 1, x1 ⊕ x3 ⊕ x5 = 1
{10, 11, 26, 27} x3 = 0, x4 = 1, x2 = 1

3

{7, 28, 29, 6} x3 = 1, x1 ⊕ x4 = 1, x1 ⊕ x2 = 0
{7, 9, 28, 18} x2⊕x4 = 1, x1⊕x5 = 1, x1⊕x2⊕x3 =

1
{25, 29, 31, 27} x5 = 1, x1 = 1, x2 = 1
{25, 29, 9, 13} x4 = 0, x2 = 1, x5 = 1
{25, 31, 11, 13} x2 = 1, x5 = 1, x1 ⊕ x3 ⊕ x4 = 1
{25, 6, 13, 18} x1 ⊕ x3 = 1, x2 ⊕ x4 = 1, x2 ⊕ x5 = 0
{25, 9, 11, 27} x5 = 1, x2 ⊕ x3 = 1, x1⊕ x2 ⊕ x4 = 1
{29, 31, 9, 11} x1 ⊕ x3 = 0, x2 = 1, x5 = 1
{29, 11, 27, 13} x2 = 1, x5 = 1, x3 ⊕ x4 = 1
{31, 6, 11, 18} x4 = 1, x1 ⊕ x2 ⊕ x3 = 1, x2 ⊕ x5 = 0
{31, 9, 13, 27} x2 = 1, x5 = 1, x1⊕ x4 = 0

Table .12: List of all 2D Affine Equations of Ascon for δout= 1, 2, 3.
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4

{19, 9, 14, 20} x1⊕x2 = 1, x1⊕x3⊕x4 = 0, x3⊕x5 =
1

{19, 14, 23, 10} x4 = 1, x1 ⊕ x5 = 0, x1 ⊕ x2 = 1
{19, 20, 31, 24} x4 ⊕ x5 = 0, x1 = 1, x2 ⊕ x3 ⊕ x4 = 1
{19, 23, 31, 27} x4 = 1, x1 = 1, x5 = 1
{14, 31, 9, 24} x2 = 1, x3 ⊕ x4 = 0, x1 ⊕ x3 ⊕ x5 = 1
{14, 31, 10, 27} x2 = 1, x4 = 1, x1 ⊕ x5 = 0
{20, 23, 24, 27} x1 = 1, x2 ⊕ x3 = 1, x4 ⊕ x5 = 0
{9, 10, 24, 27} x2 = 1, x3 = 0, x1 ⊕ x4 ⊕ x5 = 1

5

{3, 20, 13, 26} x1⊕x2⊕x3 = 0, x3⊕x4 = 1, x1⊕x5 =
1

{3, 27, 21, 13} x3 ⊕ x4 = 1, x5 = 1, x1 ⊕ x2 ⊕ x3 = 0
{3, 31, 6, 26} x4 = 1, x1 ⊕ x2 = 0, x1 ⊕ x3 ⊕ x5 = 1
{20, 21, 26, 27} x2 ⊕ x4 = 0, x1 = 1, x2 ⊕ x3 = 1
{20, 29, 18, 27} x1 = 1, x2 ⊕ x5 = 0, x3 ⊕ x4 = 1
{20, 31, 6, 13} x3 = 1, x2 ⊕ x5 = 0, x1 ⊕ x2 ⊕ x4 = 1
{21, 29, 18, 26} x1 = 1, x3 ⊕ x4 = 1, x3 ⊕ x5 = 0
{21, 31, 18, 24} x1 = 1, x3 ⊕ x5 = 0, x2 ⊕ x3 ⊕ x4 = 1
{29, 31, 26, 24} x3 ⊕ x5 = 0, x1 = 1, x2 = 1

6

{4, 7, 8, 11} x1 = 0, x2 ⊕ x3 = 1, x4 ⊕ x5 = 1
{4, 8, 20, 24} x3 ⊕ x4 = 0, x5 = 0, x2 ⊕ x3 = 1
{4, 20, 9, 25} x4 = 0, x2 ⊕ x3 = 1, x2 ⊕ x5 = 0
{20, 9, 26, 7} x1⊕x2⊕x4 = 1, x1⊕x5 = 1, x2⊕x3 =

1
{20, 24, 11, 7} x1⊕ x4 = 1, x1⊕ x5 = 1, x2⊕ x3 = 1
{25, 9, 8, 24} x2 = 1, x4 = 0, x3 = 0
{25, 11, 8, 26} x2 = 1, x3 = 0, x1 ⊕ x4 ⊕ x5 = 0
{9, 11, 26, 24} x1 ⊕ x5 = 1, x3 = 0, x2 = 1

Table .13: List of all 2D Affine Equations of Ascon for δout= 4, 5, 6 .
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9

{16, 1, 3, 18} x1 ⊕ x5 = 1, x2 = 0, x3 = 0
{16, 1, 15, 30} x2 ⊕ x4 = 0, x2 ⊕ x3 = 0, x1 ⊕ x5 = 1
{16, 3, 21, 26} x2 = 0, x1 ⊕ x4 = 1, x1 ⊕ x3 ⊕ x5 = 1
{1, 21, 6, 18} x2 = 0, x4 ⊕ x5 = 1, x1 ⊕ x3 ⊕ x4 = 0
{1, 21, 10, 30} x2 ⊕ x5 = 1, x2 ⊕ x4 = 0, x1 ⊕ x3 = 0
{3, 15, 6, 10} x1 = 0, x2 ⊕ x3 ⊕ x5 = 1, x4 = 1
{3, 15, 18, 30} x4 = 1, x2 ⊕ x3 = 0, x1 ⊕ x5 = 1
{6, 10,18, 30} x4 = 1, x5 = 0, x1 ⊕ x2 ⊕ x3 = 1

10

{19, 7, 10, 30} x4 = 1, x2⊕x5 = 1 , x1⊕x2⊕x3 = 1
{19, 23, 9, 13} x5 = 1, x1 ⊕ x2 = 1, x1 ⊕ x4 = 0
{7, 23, 11, 27} x5 = 1, x2 ⊕ x3 = 1 , x4 = 1
{28, 9, 11, 30} x1 ⊕ x5 = 1, x2 = 1 , x1 ⊕ x3 = 0
{28, 10, 27, 13} x3 ⊕ x4 = 1, x2 = 1, x1 ⊕ x3 ⊕ x5 = 0

11

{16, 1, 11, 26} x3 = 0, x1 ⊕ x5 = 1 , x2 ⊕ x4 = 0
{16, 21, 27, 30} x1 = 1, x2 ⊕ x3 ⊕ x5 = 0, x2 ⊕ x4 = 0
{1, 21, 6, 18} x2 = 0, x4⊕x5 = 1 , x1⊕x3⊕x4 = 0
{7, 6, 26, 27} x1 ⊕ x3 = 1, x4 = 1 , x1 ⊕ x2 = 0
{7, 11, 18, 30} x1 ⊕ x5 = 1, x4 = 1, x1 ⊕ x2 ⊕ x3 = 1

12

{19, 20, 10, 13} x3⊕x4 = 1, x1⊕x2 = 1 , x1⊕x3⊕x5 =
0

{19, 23, 26, 30} x1 = 1, x4 = 1, x2 ⊕ x5 = 1
{15, 10, 27, 30} x2 = 1, x4 = 1 , x1 ⊕ x3 ⊕ x5 = 0
{15, 13, 24, 26} x1 ⊕ x3 = 1, x2 = 1 , x1 ⊕ x5 = 1
{20, 23, 24, 27} x4 ⊕ x5 = 0, x1 = 1, x2 ⊕ x3 = 1

13

{1, 25, 3, 27} x1 ⊕ x2 = 0, x5 = 1, x3 = 0
{1, 6, 25, 30} x1 ⊕ x2 = 0, x3 ⊕ x4 = 0, x3 ⊕ x5 = 1
{15, 3, 18, 30} x2 ⊕ x3 = 0, x4 = 1, x1 ⊕ x5 = 1
{3, 27, 6, 30} x4 = 1, x3 ⊕ x5 = 1, x1 ⊕ x2 = 0
{3, 9, 18, 24} x1 ⊕ x5 = 1, x3 = 0, x2 ⊕ x4 = 1
{27, 15, 6, 18} x1 ⊕ x3 = 1, x2 ⊕ x5 = 0, x4 = 1
{9, 15, 24, 30} x2 = 1, x3 ⊕ x4 = 0, x1 ⊕ x5 = 1
{24, 20,18, 30} x1 = 1, x5 = 0, x2 ⊕ x3 ⊕ x4 = 1

Table .14: List of all 2D Affine Equations of Ascon for δout= 9, 10, 11,
12.
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21

{17, 2, 26, 9} x3 = 0, x1⊕x2⊕x4 = 1 , x4⊕x5 = 1
{17, 31, 22, 24} x1 = 1, x2⊕x3⊕x5 = 1 , x3⊕x4 = 0
{2, 31, 6, 27} x1 ⊕ x5 = 0, x1 ⊕ x2 = 0 , x4 = 1
{25, 6, 9, 22} x2⊕x5 = 0, x2⊕x4 = 1 , x2⊕x3 = 1
{24, 25, 26, 27} x1 = 1, x2 = 1, x3 = 0

22

{4, 22, 26, 8} x5 = 0, x1 ⊕ x4 = 1 , x2 ⊕ x3 = 1
{4, 29, 11, 18} x3⊕x4 = 1, x1⊕x2⊕x3 = 1 , x2⊕x5 =

0
{5, 11, 22, 24} x1⊕x5 = 1, x1⊕x2⊕x4 = 0 , x2⊕x3 =

1
{5, 13, 18, 26} x1⊕x4 = 0, x1⊕x5 = 1 , x1⊕x3 = 1
{8, 29, 23, 24} x3 ⊕ x5 = 0, x2 = 1, x4 = 0

23

{17, 2, 24, 11} x3 = 0, x1⊕x2⊕x5 = 0 , x1⊕x4 = 1
{17, 9, 22, 14} x1⊕x2 = 1, x3⊕x5 = 1 , x3⊕x4 = 0
{2, 14, 6, 10} x5 = 0, x1 = 0 , x4 = 1
{24, 6, 8, 22} x5 = 0, x2 ⊕ x4 = 1 , x2 ⊕ x3 = 1
{8, 9, 10, 11} x1 = 0, x2 = 1, x3 = 0

24

{16, 1, 3, 18} x2 = 0, x3 = 0, x1 ⊕ x5 = 1
{16, 1, 15, 30} x2 ⊕ x4 = 0, x1 ⊕ x5 = 1, x2 ⊕ x3 = 0
{16, 3, 5, 22} x2 = 0, x1 ⊕ x5 = 1, x1 ⊕ x3 ⊕ x4 = 1
{16, 5, 15, 26} x2 ⊕ x4 = 0, x1 ⊕ x3 = 1, x3 ⊕ x5 = 1
{1, 5, 18, 22} x2 = 0, x1 ⊕ x4 = 0, x1 ⊕ x5 = 1
{1, 5, 26, 30} x1 ⊕ x2 = 0, x1 ⊕ x4 = 0, x1 ⊕ x5 = 1
{3, 15, 18, 30} x2 ⊕ x3 = 0, x4 = 1, x1 ⊕ x5 = 1
{3, 15, 22, 26} x1 ⊕ x5 = 1, x4 = 1, x1 ⊕ x2 ⊕ x3 = 0
{18, 22, 26, 30} x5 = 0, x4 = 1, x1 = 1

25

{12, 15, 10, 9} x1 = 0, x3 ⊕ x4 ⊕ x5 = 1 , x2 = 1
{12, 6, 22, 28} x5 = 0, x3 = 1 , x2 ⊕ x4 = 1
{2, 9, 6, 13} x2 ⊕ x5 = 0, x2 ⊕ x4 = 1 , x1 = 0
{2, 10, 30, 22} x5 = 0, x4 = 1 , x1 ⊕ x3 = 0
{15, 28, 13, 30} x1 ⊕ x5 = 1, x2 = 1, x3 = 1

26

{16, 1, 10, 27} x3 = 0, x2⊕x4 = 0 , x1⊕x2⊕x5 = 1
{16, 5, 11, 30} x1⊕x5 = 1, x1⊕x2⊕x3 = 1 , x2⊕x4 =

0
{5, 1, 22, 18} x1 ⊕ x5 = 1, x1 ⊕ x4 = 0 , x2 = 0
{23, 10, 11, 22} x4 =, x1 ⊕ x2 = 1 , x1 ⊕ x3 = 0
{18, 27, 23, 30} x2 ⊕ x3 ⊕ x5 = 0, x1 = 1, x4 = 1

Table .15: List of all 2D Affine Equations of Ascon for δout= 21, 22,
23, 24, 25, 26.
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29

{2, 15, 21, 27} x1⊕x4 = 1, x3⊕x5 = 1, x1⊕x2⊕x3 =
0

{2, 15, 22, 27} x2 ⊕ x5 = 0, x1 ⊕ x2 ⊕ x3 = 0
{5, 21, 13, 29} x4 = 0, x3 = 1, x5 = 1
{5, 21, 6, 22} x2 = 0, x3 = 1, x4 ⊕ x5 = 1
{5, 29, 6, 30} x1 ⊕ x2 = 0, x3 = 1, x4 ⊕ x5 = 1
{5, 13, 22, 30} x1 ⊕ x4 = 0, x3 = 1, x1 ⊕ x5 = 1
{30, 22, 21, 29} x1 = 1, x3 = 1, x4 ⊕ x5 = 1
{21, 6, 13, 30} x3 = 1, x4 ⊕ x5 = 1, x1⊕ x2 ⊕ x4 = 1
{21, 22, 24, 27} x1 = 1, x2 ⊕ x3 = 1, x2⊕ x4 ⊕ x5 = 1
{29, 6, 13, 22} x1 = 1, x3 ⊕ x4 = 1, x3 ⊕ x5 = 1
{29, 27, 24, 30} x3 = 1, x2 ⊕ x4 = 1, x2 ⊕ x5 = 0

30

{4, 8, 18, 30} x5 = 0, x1 ⊕ x2 ⊕ x3 = 1, x1 ⊕ x4 = 0
{1, 9, 22, 30} x1 ⊕ x3 = 0, x1 ⊕ x4 = 0, x1 ⊕ x5 = 1
{1, 11, 18, 24} x1 ⊕ x5 = 1, x3 = 0, x1 ⊕ x2 ⊕ x4 = 0
{8, 25, 9, 24} x3 = 0, x4 = 0, x2 = 1

31

{2, 10, 5, 13} x1 = 0, x3 ⊕ x5 = 0, x3 ⊕ x4 = 1
{2, 6, 26, 30} x4 = 1, x5 = 0, x1 ⊕ x2 = 0
{2, 10, 22, 30} x5 = 0, x4 = 1, x1 ⊕ x3 = 0
{5, 8, 21, 24} x2 ⊕ x3 = 1, x4 = 0, x2 ⊕ x5 = 1
{5, 8, 6, 11} x1 = 0, x2 ⊕ x3 = 1, x2 ⊕ x4 ⊕ x5 = 1
{5, 21, 6, 22} x1 = 0, x2 = 1, x4 = 1
{5, 21, 10, 26} x2 ⊕ x4 = 0, x2 ⊕ x3 = 1, x2 ⊕ x5 = 1
{5, 11, 22, 24} x2⊕x3 = 1, x1⊕x2⊕x4 = 0, x1⊕x5 =

1
{5, 13, 22, 30} x3 = 1, x1 ⊕ x5 = 1, x1 ⊕ x4 = 0
{8, 6, 22, 24} x5 = 0, x2 ⊕ x4 = 1, x2 ⊕ x3 = 1
{8, 10, 24, 26} x2 = 1, x5 = 0, x3 = 1
{21, 6, 11, 24} x1⊕x4 = 1, x2⊕x3 = 0, x1⊕x2⊕x5 =

0
{21, 6, 13, 30} x3 = 1, x4 ⊕ x5 = 1, x1 ⊕ x2 ⊕ x4 = 1
{6, 10, 22, 26} x4 = 1, x5 = 0 , x2 ⊕ x3 = 1
{11, 13, 24, 30} x1⊕x5 = 1, x1⊕x3⊕x4 = 1 , x2 = 1

Table .16: List of all 2D Affine Equations of Ascon for δout= 29, 30,
31.
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