
 1

Evaluation of Optical Character Recognition (OCR)

accuracy: Supervised and Unsupervised techniques
DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF,

Master of Technology in Cryptology and Security

By

Niladri Banerjee
MTech Cryptology and Security, ISI Kolkata; Data Science Intern, iManage

Under the guidance of,

Dr. Clarisse Magarreiro
Data Scientist, iManage

Dr. Rakesh Kumar
Sr. Manager, Data Science, iManage

Dr. Anisur Rahaman Molla
Assistant Professor, Indian Statistical Institute Kolkata

Indian Statistical Institute, Kolkata

July 2021

 2

Acknowledgements:

I am grateful to my guide, Dr Anisur Rahaman Molla, Assistant Professor, Indian

Statistical Institute, Kolkata, for his invaluable advice and guidance. I would like

to show my highest gratitude to the Data Science team of iManage, specially to my

guide Dr. Clarisse Magarreiro and Dr. Rakesh Kumar, for their continuous support

and valuable suggestions, which not only helped me completing the project

successfully but also gave me an idea to grow further in the Data Science industry

and helped me a lot to learn several new concepts. I would also like to thank all the

professors of Indian Statistical Institute, Kolkata for help me acquire knowledge in

several topics. I am thankful to placement cell for providing the opportunity to work

with iManage. I also extend my heartfelt thanks to my family and well-wishers.

Niladri Banerjee

MTech Cryptology & Security

Indian Statistical Institute, Kolkata

Pin. 700108, India

 3

Abstract:

This work’s aim is to find an efficient method to measure the Optical Character

Recognition (OCR) accuracy in the absence of the ground truth text. To successfully

obtain the desired result, initially we have tried some efficient supervised (in the

presence of the ground truth text) accuracy measuring techniques. Then we tried

some unsupervised (in the absence of the ground truth text) techniques, which is the

final goal of our project, and compare their performance with respect to the

previously obtained supervised techniques. Our final project goal is to provide an

efficient unsupervised accuracy measuring technique which can help us to automate

the document analysis process.

 4

 Index:

1. Introduction 5

1.1. Our contribution 5

1.2. OCR conversion process 7

2. Accuracy Measures (supervised and unsupervised) 8

2.1. Jaccard Index 8

2.2. Alignment Methods 9

2.2.1. HMM 10

2.2.2. RETAS 10

2.3. Dictionary Lookup Method 11

2.4. Confidence Score based Accuracy measure 12

3. Experimental Results 13

3.1. Synthetic Output based approach 15

3.2. Analysis using text data collected from online

resources
18

3.3. Synthetic Input based approach 19

3.4. Analysis using real life scanned documents 26

4. Conclusion 28

5. Bibliography 29

6. Appendix 30

 5

1. Introduction:
OCR is the process of converting non editable texts (i.e., pdf, images) into editable

ones (text format). This a technology which is being used broadly in current days. The

biggest companies in the world (Google, Amazon) are not only using this tool, but also

developing their own model for better result. Here we are not going to discuss about

how OCR is done (that is done using deep learning tools like CNN, NLP), but focus

will be on the comparison between several OCR accuracy measuring indices. This step

is crucial to make an informed decision on the best OCR accuracy measure to use when

ground truth (i.e., the source text file) of a document is not available.

In the organization iManage, text obtained from an OCR engine is fundamental for

their applications. Document classification, information retrieval or Named Entity

Recognition are examples of processes that rely on text. For that purpose, several non-

editable documents need to be converted into the editable form to make the searching

process through characters easy. It should be noted that in any OCR process several

wrong character conversions will occur and OCR engine we are using is not an

exception on that. The performance of the applications will inevitably be influenced by

the accuracy of the OCR process. So, before considering improvements to the OCR

process it is essential to assess the OCR quality.

OCR’s accuracy depends upon several constraints. One major observation was that

the font style affects the OCR quality badly. Also handwritten digits, historical fonts

affect the OCR quality. So, in this project mostly our focus will be finding an ‘efficient’

accuracy measure, with less computational complexity.

1.1 Our Contribution:
In this project we will evaluate accuracy measures in the presence of the ground

truth text, i.e., the original raw text file. Next, we will assess efficient methods for

the case where the ground truth is missing. Our plan is to compare the performance

between methods that determine accuracy in the absence of the ground truth with

respect to the methods in the presence of the ground truth.

 6

For the case where ground truth is available, we have found some efficient

methods. First one is Jaccard index. There are two more methods depend on an

interesting and innovative idea, the recursive alignment methods [1] [3] [4] [5] [7]:

Hidden Markov Model probabilistic approach (HMM) and the Recursive Text

Alignment Scheme (RETAS). These were some supervised methods which rely on

text-to-text evaluation. There are some other processes in the supervised case, xml-

to-xml evaluation, and text-to-xml evaluation, mentioned in the paper by Romain

Karpinski, Devashish Lohani, Abdel Belaid [5]. They also mentioned about one

method called ZoneMapAltCnt [5] [8]. But it was easy for us to work with the text-

to-text approach only, so we didn’t focus on these methods.

The Jaccard index is a method which deals with the very simple mathematical

calculations, such as, union and intersection. However, it lacks the positional

information of the words. The recursive alignment method takes care of this, by

subdividing the text into smaller chunk of texts. Over those smaller chunks of texts,

we run the HMM and RETAS algo. HMM [3] is a probabilistic model which keeps

track about the relation between the original and the OCRed text by the help of one

hidden sequence. This method involves optimizations to get these values. On the

other hand, RETAS [1] method does a character level checking w.r.to edit distance.

Finally, we are going to devise a method to perform the measurements in the

absence of the ground truth. Initially, we started dictionary lookup method [6] [7],

i.e., checking whether the words in the OCRed text are meaningful or not by

searching them in a dictionary. Later we started working with other methods because

there was some problem in dictionary lookup method. As it lacks positional

information like the Jaccard index and there are problems with named entities too.

Language model can be its one possible solution, but it can be costly with respect to

the computational complexity, which may harm the main goal of our project, as we

have mentioned earlier, this project is a part of a bigger project, which should not

take long time to get finished. Hence, it was not a good idea to move forward with

this process. So, in searching for some better algorithm we found a method based on

confidence score (will be discussed in the section 2.4), which was provided by the

 7

OCR engine. This can be a good proxy against the dictionary lookup method. We

have tested many of the above-mentioned algorithms over several text files. Let us

start our discussion with the OCR conversion method.

1.2 OCR conversion process:
The OCR engine we are using in this project, provides us two different

extraction methods of the OCRed text.

The first is text extraction method, which on an input of a pdf or image outputs

the corresponding full text OCRed output, which totally reorders the paragraphs. So,

this was not useful for us.

On the other hand, the second method, namely, the docstream method outputs a

character wise detailed output corresponding to the same input as the other method.

In this method, not only the characters are given but also their positional information

and the other information like bold, italics, confidence score (the probability that a

recognition variant is correct) are given in this method too. In this method we can

accept the output in 3 different formats: text, html, stream. We will mostly work with

the text format output. For ease of calculation, we store this output inside a csv file,

so that, it’s different columns will contain different attributes, such as, Character,

font size, font style, confidence score etc. We will concatenate the characters

depending upon some special constraints to get the full text.

Figure 1: Comparison between the Original and the two files obtained via two different type of OCR

conversion for a same file

 8

2. Accuracy Measures (supervised and unsupervised):
We are going to discuss about some accuracy measure techniques in this section.

Starting with some supervised techniques we will move into the unsupervised

techniques, as in real world scenario we may not have the ground truth text file always.

The purpose of starting with the supervised techniques is nothing but to compare the

efficiency of the unsupervised techniques with respect to the supervised ones.

2.1 Jaccard Index:
It is a supervised method, i.e., it is calculated in the presence of the ground truth

(GT) text. Vaguely speaking, Jaccard index is basically the proportion of the area of

overlap over the area of the union. If we call the ground truth text as GT and the

OCRed text as OCR then this method will first split both the texts in terms of the

words and then will take set of both the lists; say, the sets are GTset and OCRset

then, Jaccard index will be,

𝐽(𝐺𝑇𝑠𝑒𝑡, 𝑂𝐶𝑅𝑠𝑒𝑡) = |𝐺𝑇𝑠𝑒𝑡	 ∩ 𝑂𝐶𝑅𝑠𝑒𝑡| ÷ |𝐺𝑇𝑠𝑒𝑡	 ∪ 𝑂𝐶𝑅𝑠𝑒𝑡|

=
|𝐺𝑇𝑠𝑒𝑡	 ∩ 𝑂𝐶𝑅𝑠𝑒𝑡|

|𝐺𝑇𝑠𝑒𝑡| + |𝑂𝐶𝑅𝑠𝑒𝑡| − |𝐺𝑇𝑠𝑒𝑡	 ∩ 𝑂𝐶𝑅𝑠𝑒𝑡|

This method is efficient with respect to computational complexity. But the problem

appears due to the set formation. For this not only the positional information gets lost

but also it ignores the other important attributes such as the confidence score. So, we

then focus on some techniques which consider the positional information. Even if we

take weight count for each word still there could be some problems. For example,

suppose in a text file the word ‘man’ present exactly 3 times. Suppose due to the

OCR error one ‘man’ word has been changed into ‘men’ and some other word, say,

‘main’ changed into ‘man’. Then, in that document, total number of the word ‘man’

remains constant. Hence in this method we will get an accuracy of 100%

corresponding to the word ‘man’, but which is not correct.

 9

2.2 Alignment Methods:
As mentioned earlier, we are going to discuss about two different methods, rely on

the alignment method, viz., RETAS method and HMM method. Let us discuss about

the alignment technique first.

This technique is also a supervised accuracy measuring technique. Hence, the input

files are the OCRed, and a GT text files. On input of these two files, we first search

for Anchor Words following this technique. Anchor words are basically the common

unique word from both the texts. In algorithmic perspective,

1. Search for unique words in the GT text file

2. For each unique word in GT checks over the OCRed text file whether it is a

unique word in that file or not

3. If yes, then mark it as Anchor word

4. If it does not present in the OCRed text, then search for the next word

5. Otherwise, if the word exists more than one time in the OCRed text then checks

for the neighbours of the word for each of its occurrence in the OCRed texts and

returns Anchor word output for matching of the neighbouring words.

After finding the Anchor words this technique divides the whole text with respect to

these Anchor words, i.e., for each consecutive Anchor words A and B, take the text

portion in between A and B. Do it for all the Anchor words. Now repeat the whole

process over the smaller text segments, stop until no Anchor word left inside a text

segment, or the length of the text segment is smaller than a certain threshold

(typically 200, used in the paper by R. Manmatha [1]). Finally, we will do the

accuracy checking over the smallest chunk of texts.

 There are several advantages of these methods. One is obviously the positional

information is taken care in this method, because of the smaller divisions. The other

thing is the time complexity. Because of these divisions the complexity got reduced.

These alignment techniques are efficient to measure the accuracy of the OCR.

Now the obvious questions may be if there will not be enough number of unique

words in the texts then the chunks may not be small, therefore we may do our analysis

over a large sized text. But the thing is that one analysis from the paper by R.

 10

Manmatha [1] says, a book of 500 words per page contains typically 10 to 15 unique

word per page. So, frequency of getting unique words is high.

2.2.1 HMM:
HMM or Hidden Markov Model is a probabilistic algorithm. This method tries to

construct a position sequence depending upon the given OCRed text sequence and

GT text sequence. Suppose 𝑂 =< 𝑜!, 𝑜", … , 𝑜# > be the OCRed text sequence, 𝐺 =

< 𝑔!, 𝑔", … , 𝑔$ > be the ground truth and 𝑆 =< 𝑠!, 𝑠", … , 𝑠# > be the hidden

position sequence, where 𝑠% = 𝑗 implies 	𝑖th word or character in the O corresponds

to the 𝑗th word or character in G. The HMM-based alignment model estimates the

joint probability of the OCR sequence and the hidden position sequence P(O, S) as:

P(O, S) =@P(𝑠%|𝑠%&!)P(𝑜%|𝑠%)
#

%'!

Here, P(𝑠%|𝑠%&!) is the transition probability, i.e., the probability of a successful

transition from the state 𝑠%&! to the state 𝑠% in the ground truth text and P(𝑜%|𝑠%) is

called the generative probability, which is the probability of generating OCR term

𝑜% from the ground truth term at the position 𝑠%. The definitions of these terms are

given in the paper by Feng and Manmatha [3].

Then our goal will be to maximize P(O, S) with respect to S, i.e.,

𝑆A = argmax
(
P(O, S)

Using the Viterbi algorithm [9] the authors Feng and Manmatha, determine the

most likely state sequence 𝑆A through decoding over the OCR sequence. So, by

solving the last equation given, we get a sequence of positions in the ground truth

with the same length as the OCR output sequence. For each OCR term, the assigned

position value indicates the ground truth term from which it is generated.

2.2.2 RETAS:
This method is an edit distance-based method. Edit distance is the minimum

number of edits required to obtain a word from a given word. Edits can be of three

 11

types, viz., Insertion, Deletion and Substitution. Insertion is adding a character at any

place of the string 1 to get the string 2, while deletion is removing, and substitution

is replacement of one character. The cost of these operations is 1, 1 and 2

respectively. For example, the word ‘spring’ is of distance 2 from the word ‘ring’ (2

deletions from spring), the word ‘art’ is of distance 1 from the word ‘are’ (1

substitution). Previously Rice proposed an idea of edit distance-based accuracy

measurement with the help of Ukkonen’s Algorithm [2]. This method was efficient

in smaller texts than the larger ones. So here REATS method uses this algorithm after

making the chunk of the text smaller. This method checks the edit distances between

the words sequentially over the smallest chunks of texts and with respect to the edit

distance they align the whole text. If edit distance is 0 then that is considered as

correctly OCRed word. Otherwise, they put a ‘@’ or a null value in the place of

wrongly OCRed characters. On an input of a OCRed and GT file it outputs a

comparison-based output file which consists of detailed character-wise information,

which will be discussed later.

2.3 Dictionary Lookup Method:
This is the first unsupervised method we are going to discuss about, here the

ground truth text is absent. This method is very simple, but little bad with respect to

the time complexity. This method simply for all word in the OCRed document search

it in a dictionary or a text file with a rich vocabulary. It recognizes a word as wrongly

OCRed if it is not in that dictionary.

Now, there are several problems in this method. For example, suppose in the

ground truth text there is a word ‘main’ somewhere. But due to OCR the word has

been changed into ‘man’. Now both the two words will be there in the dictionary and

as a result this method will identify the wrongly OCRed ‘man’ word as a correct one,

which will affect the accuracy.

There is one more crucial problem in this method, i.e., named entity recognition.

There can be hundreds of named entities which may not be present in the dictionary.

For those words even after being correctly recognized, this method will classify those

 12

as wrongly classified. Now the thing is even after having this type of major problems

the overall performance of this method was up to the mark. The comparisons are

given in the next section.

2.4 Confidence Score based Accuracy measure:
In the dictionary lookup method, we observed several problems. Previously we

have mentioned that there is an attribute called confidence score is given in the output

of the OCR engine. So, we are trying to use those confidence scores in our accuracy

measurement analysis, as its computational complexity is not high like the language

model.

The confidence score is a value between 0 to 100, which represents the probability

of confidence. Basically, the OCR engines outputs a character via a classification

model. This confidence score is the percentage of the character to be correct after

OCR. We took an average value over the confidence scores to get the accuracy in the

method 1. And in the other method we ignore all non-alphabets. In this process we

took the characters between two non-alphabets as a word, calculated its average

confidence score and finally output the average confidence scores of all the words as

the accuracy measure. We took the RETAS method output to check the efficiency of

this method. From that analysis we developed the later method of accuracy measure.

We got some impressive results in this method, which is in the next section.

 13

3. Experimental Results:

In this section we are going to show some sample outputs we got in several steps.

Firstly, I am going to show one typical output we got in the time of OCR by the above

mentioned docstream method (section 1.2) of the OCR engine.

Figure 2: This is an output file of the OCR Engine using text extension. The red marked column is the

Confidence score.

Figure 3: Sample output file using html extension

 14

In the figure 3, this is one sample html type output obtained from the OCR engine. In

figure 2 the marked column is the confidence score.

Now, as we previously told, the OCR accuracy has a huge dependency on the font

style. Here one sample output is shown below:

Table 1: Comparison between the Jaccard indices using different fonts for a same text file.

It can be shown that how simply changing the font style can affect a text’s OCR

accuracy.

Now let us start with RETAS method as our 1st method, i.e., Jaccard index is too easy

to calculate. We got a repository [11] for the RETAS method from [1]. Here one typical

output file of the RETAS method is given below:

Figure 4: Sample output file of the RETAS method

For the dictionary lookup method, already there was an algorithm at iManage. We have

done a little modification to that algorithm. The algorithm first converts everything into

small letters and then drop every character except alphabets and spaces and finally

tokenize those into words. We just modified two things, one is in the time of text

processing and the other in the time of tokenization. In the previous algo some null

value was being considered, for these two changes that problem got resolved.

So, we have worked with these four methods; two supervised, Jaccard Index & RETAS,

and two unsupervised, Dictionary Lookup & Confidence score based approach. We

have done the whole experiment in 3 ways. Initially, we have done the experiments

 15

using files downloaded from project Gutenberg [10] website. Then, we have

synthetically generated some input texts and have done the same experiments over

these files too. Finally, we take a combination of both of the files and do the same

experiments. The main reason behind using these synthetic input or synthetic output

methods is to create some documents with ‘bad’ OCR accuracy, as most of the real

world documents have an OCR accuracy around 80% to 100%.

We also have done another experiment using synthetic output documents. The main

difference between synthetic input based method and the synthetic output based

method is in the first one we will try to generate fake GT text and in the latter case we

will try to generate fake OCRed text data. Let us start our discussion with the synthetic

output based method.

3.1 Synthetic Output based approach:
The main goal of the project was to find an efficient OCR accuracy measuring

method or ensure the efficiency of the previous one (Dictionary Lookup). Here in

this synthetic output based approach we tried to do that comparison; but in the

absence of the OCR engine. Basically, for a given

GT document we tried to generate its corresponding OCRed text file. Now, we are

going to discuss the algorithm to generate the files. This algorithm can be broken

down into two parts; namely, the text generation and the confidence score generation.

We are going to discuss these for each of the files.

• Text generation:

For each files:

® Pick a number from 0 to 1 (say 𝛼) (100𝛼 will be the expected

accuracy for that document)

® For each word in the text

® Draw a random number between 0 and 1 (say 𝛽)

® If 𝛽 < 𝛼: then predict the word as correctly OCRed

® Else: predict as incorrectly OCRed *

 16

® Keep non-alphanumeric values unchanged and output the result

as OCRed text corresponding to the given GT text

* Types of incorrect OCRs:

1. Wrong but same length with correct word

2. Wrong prediction by breaking a word

3. Combination of 1 and 2

We will randomly do any of the 3 methods.

• Confidence Score Generation:

We will do this in two major steps:

1. Observing the distribution of the word-wise confidence scores both for the

correctly predicted and incorrectly OCRed words.

2. Generation of the confidence score per word for the synthetic output files

depending upon the word was OCRed correctly or not.

For (1) we need the output files of RETAS method for some previously tested files.

We divided the files into train and test files in 5:1 ratio. We will follow the following

algorithm to generate the distribution:

1. Create 2 list (or dataframe or set) True and False.

2. Input the output file performed by the RETAS method with True/False labelling

corresponding to each word.

3. Take the average confidence scores corresponding to each word which will be

calculated using the confidence scores per letter and append that in the

corresponding dictionary.

Now, for the step (2), i.e., the generation of the confidence score we will 1st check

for each word whether the words are correctly OCRed or not. Depending upon that

‘True’ or ‘False’ labelling we will draw randomly a confidence score from the

corresponding list (or set or dataframe). Thus, for all word we will do the same. Now,

we have trained and tested these over some documents. These graphs are given

below.

 17

Original Confidence Score Synthetically Generated Confidence Score

Figure 5.1: Distribution of the Confidence Score per word for all the words in the documents

Figure 5.2: Distribution of the Confidence Score per word for the correctly OCRed words in the documents

Figure 5.3: Distribution of the Confidence Score per word for the incorrectly OCRed words in the documents

 18

Here in the diagrams given above in the left-side diagram at each level those are the

diagrams for the words from the real documents and in the right-side those are the

documents from the documents with synthetically generated confidence scores for

the documents from the test set. The y-axis denotes the accuracy score (a number

from 0 to 1) and the x-axis is the number of words.

 Now, we can see the generated confidence score was quite similarly distributed

like the real-world documents. So, depending on these generated synthetic output

datasets we tried to analyze the unsupervised accuracy measuring methods.

Figure 6.1

Figure 6.2

Correlation Heatmap and boxplots for the two unsupervised methods using synthetically generated

output files. For the boxplot in the y-axis the accuracy is given (a value from 0 to 1) and the x-axis, the

methods

Now, the problem with this method is that, in this method the OCR engine is not

involved. So, we look for some better method to generate synthetic data, i.e., the

synthetic input method. In this method we try generating some input file which

should perform badly in the time of OCR conversion. But before discussing this

method let us discuss the results, we got using real text documents collected from

Project Gutenberg website [10].

3.2 Analysis using text data collected from online resources:
We used python library BeautifulSoup from bs4 to automate the process of

downloading. To be precise we didn’t download the files rather just copy the text

from the website. After that we have used python library FPDF to convert these into

pdf files. We have used the font style Arial for the pdfs. After getting the pdfs and the

 19

text files we automate the process of pdf to text conversion. For this conversion we

use a CentOS virtual machine. So, we used os.system() call to perform the command

line arguments. But there was a little problem in it, as every time even after a

successful conversion the OCR engine ended up with a segmentation fault. We used

the integer output given by the OCR engine after a successful run to tackle this

problem. Finally, we used all the four accuracy measuring methods (including both

old and new methods of dictionary lookup) over these files. Here there are the results

we got:

Figure 7.1

Figure 7.2

Correlation Heatmap and boxplots for the two supervised and two unsupervised methods using files

downloaded from the project Gutenberg website. For the boxplot in the y-axis the accuracy is given (a

value from 0 to 1) and the x-axis, all the four (two supervised and two unsupervised) methods.

Here in the figure 7.1 we can see the correlation coefficients are not so good. That is

because there are some outliers in the data, which is clearly visible in the figure 7.2.

And this is one of the main reasons behind exploring the method based on

synthetically generated text files. So, let us start discussion on this.

3.3 Synthetic Input based approach:
There are two main reasons behind using this particular approach. These are:

1. The number of ‘real’ documents were not sufficient enough to conclude any

results.

 20

2. The reason already been told in the section 3.2. We need to manage the

proportion of outliers.

One possible solution can be to remove those outliers, but instead of doing that we

want to add some data files with ‘low’ accuracy score. In this section, we will discuss

the case using synthetically generated text files first, and then finally, we do the same

using both synthetic input and real text documents.

In the generation process of synthetic input text we will follow the similar

algorithm like the synthetic output one. The basic idea is to create two dataframe (or,

other datatypes like list) one containing the correctly predicted words and the other

containing the incorrectly predicted words and then appending those in a certain

proportion to get the text files.

The main intuition behind this approach is: the word which previously have been

OCRed correctly will certainly have a high probability to be OCRed correctly again

and the same thing goes for the incorrectly predicted words too. So, using the

labelling from the RETAS method’s output file we want to do the job. Now, let us

discuss the algorithm of generating the files.

For file in files_to_be_generated:

↦ Pick a number from 0 to 1 (say 𝛼)

↦ Generation of the text

↦ Draw a random number between 0 and 1 (say 𝛽)

↦ If 𝛽 < 𝛼:

↦ Pick a word randomly from the dataframe of correctly OCRed words

↦ Else:

↦ Pick a word randomly from the dataframe of incorrectly OCRed

words

↦ Put a space between every words

Thus, we can get a text file with 100𝛼% words from the correctly OCRed collections.

Notice that we are not using any non-alphanumeric characters here. In this generation

we want to generate files with OCR conversion accuracy around 100𝛼%. One

obvious question may be asked that why we should need 𝛽. The thing is 𝛼 divides

 21

the interval into two parts [0, 𝛼)	and [𝛼, 1]. Probability of getting a number from the

1st interval, which is the interval corresponding to the correctly predicted words, is

100𝛼%, which is the expected accuracy. In this whole process 𝛽 is used for selecting

the interval.

 Once the generation is done, we will output the text-format file and convert those

into pdfs using python module FPDF. After getting both the text and pdf format

documents we will do the same thing we did in the section 3.2. Now let us look into

the results we got in this method.

Figure 8.1

Figure 8.2

Correlation Heatmap and boxplots for the two supervised and two unsupervised methods using

synthetically generated input text files only. For the boxplot in the y-axis the accuracy is given (a value

from 0 to 1) and the x-axis, all the four (two supervised and two unsupervised) methods.

These results were looking good, i.e., synthetic input method can be a good proxy

for the real datafiles. So finally, we added some of these synthetically generated files

with all the real datafiles. We took synthetic input datafiles with RETAS accuracy

only above 80%, as we already have the real datafiles for this range. Here are those

results.

 22

Figure 9.1

Figure 9.2

 Correlation Heatmap and boxplots for the two supervised and two unsupervised methods using both

synthetically generated input text files and the files downloaded from project Gutenberg website. For the

boxplot in the y-axis the accuracy is given (a value from 0 to 1) and the x-axis, all the four (two

supervised and two unsupervised) methods.

Now even after using the synthetic input documents there are several outliers in the

and that affects the correlation too. We have used some outlier removal technique

(IsolationForest, with hyper-parameter contamination) to observe how good the

result look like without outliers. Here are the results depending upon several values

of the hyper-parameter contamination.

Figure 10.1

 23

Figure 10.2

Boxplots and correlation heatmaps for the above mentioned four accuracy methods for several values of

the hyperparameter contamination using the outlier detection method isolation forest

These results were not only better than the previous one, but also it ensures us that

the unsupervised methods correlate well with the supervised methods. Specially the

Dictionary lookup method. The confidence score-based approach correlates well

with the other methods, but one major problem with this approach is that, in most of

the cases the confidence score takes a value around 80 to 100; that is why even after

correlating well with the other methods this method returns a very high value

comparing to the other methods. As a result, the boxplot is so dense comparing to

the others in this method. One possible solution can be fixing some threshold for this,

for example, 80% in RETAS ~ 92% in this method.

 Finally, we tried not to eliminate the outliers, i.e., if we can generate some datafiles

with accuracy ranging from 0% to 60% then the problem will be solved. To do this

we used a trick, inspiring by the results of Table 1. That means, we changed the font

to get some low accuracy pdfs. In this method we used add_font() function of FPDF

module. We replaced half of the synthetic input documents from each range, [10,

 24

20), [20, 30), [30, 40), … [90, 100]. Here the proportion of this replacement is given

below.

Figure 11: Comparison between the number of total files and the number of files to be replaced by the

files with different fonts, where x-axis denotes the accuracy ranges and y axis denoted the number of

files in that range

We replaced these texts with documents using 10 different fonts and using different

proportion of words taken from both the text sets (correct and incorrect). Once the

replacement is done, we started running all the four accuracy measuring methods

over these files again. After doing these we measured the correlation, RMSE, R2

scores between all the four methods. Also plotted the boxplot. If we look at the box

plot (figure 12.2) then we can see that there are still some outliers, but the number of

values less than 20% accuracy is much higher than the previous one. That obviously

help us in the analysis. Notice that, in every other boxplot graphs the graph

corresponding to the confidence score is very dense except this one. That is because

while converting scripted font documents the OCR Engine getting confused between

the letters, hence giving us a very bad confidence score. That is why the boxplot for

the confidence score-based accuracy score is surprisingly much wider in terms of its

range.

 25

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Correlation Heatmap (12.1), boxplot (12.2), RMSE (12.3) and R2 score (12.4) for the two supervised

and two unsupervised methods using both synthetically generated input files, files with scripted fonts

and the files downloaded from the project Gutenberg website. For the boxplot in the y-axis the accuracy

is given (a value from 0 to 1) and the x-axis, all the four (two supervised and two unsupervised)

methods.

We also have plotted the scatter plot between the 4 methods, that means 6 scatter plots

in total. In those scatter plots the comparison between the accuracy scores for all the

methods are given.

Figure 13.1: Jaccard index vs Confidence Score

based approach

Figure 13.2: Dictionary Lookup vs Confidence

Score based approach

 26

Figure 13.3: Jaccard index vs RETAS method

Figure 13.4: RETAS method vs Dictionary

Lookup method

Figure 13.5: Jaccard index vs Dictionary Lookup

method

Figure 13.6: RETAS method vs Confidence Score

based approach

Pairwise comparison of the accuracy values’ distribution among all the 4 methods via scatter plots.

3.4 Analysis using real life scanned documents:

So far, we have done all the analysis either using the synthetically generated data

or, some text-file downloaded from some website. But, for the final evaluation of the

newly proposed confidence score-based approach or the previously used Dictionary

Lookup method, some real-life documents were needed. For this we have used some

files already present in iManage. These documents were mostly scanned images.

Also, there was some signatures, dates in handwritten fonts. We have taken around

50 such type of documents. We have checked the accuracy scores for each documents

using both the unsupervised accuracy measures.

In this evaluation process we did not have any ground truth text. So, we have done

a manual checking and assigned a rating as per our preference out of 10 for each file.

 27

Basically, for each scanned documents we arbitrarily have chosen some 2 or 3 pages

and compare the corresponding page for the OCRed text file. Considering the fact

that this evaluation may be biased, which is the biggest disadvantage of this manual

checking; we also have found some advantages too. The very first advantage is the

fact that we at least have some proxy to the ground truth. The other advantage was

actually some interesting observations, which we have made during this manual

checking. In spite of giving us nearly 100% accuracy for the printed non-scripted

normal fonts, the OCR engine performs horribly for the handwritten digits. The other

observation was that for the low-quality scanned images (hazy picture or some

unnecessary marks in the pdf) the OCR engine gives us very low ‘confidence score’

even for the correctly recognized characters. As a result, our newly approached

confidence score-based accuracy measure fails badly for these documents. Here I’m

providing the correlation coefficients and the boxplots corresponding to these. Also,

follow the Appendix (section 6) for the detailed table corresponding to these scanned

documents.

Figure 14.1: Correlation heatmap for

confidence score-based accuracy measure,

dictionary lookup method and OCR quality

rating given by me for scanned documents

Figure 14.2: Boxplots for confidence score-based

accuracy measure, dictionary lookup method and OCR

quality rating given by me for scanned documents

 28

4. Conclusion:

In search of an efficient algorithm for the unsupervised accuracy measuring

technique, the method we found based on Confidence score can be a very good proxy

against the dictionary lookup method already present inside the company.

Initially in the testing phase we notice that one problem with the confidence score

is whenever the font style of the pdf is like the typical printed format font, not like

scripted font or handwritten digits, then the confidence scores for each character lies

around 80 to 100%. As a result, the accuracy seems high comparing to the other

methods and its boxplots become dense most of the cases. But at the same time, it

correlates well with the other accuracy measuring methods. So, fixing a threshold can

resolve the problem.

After considering the low accuracy documents via synthetic input method, the

method dictionary lookup and Confidence score both gave us a correlation above 70%

in all the cases. The main advantage of the confidence score-based approach is we can

fetch our required information directly from the output file our OCR Engine (preferably

in .csv format), unlike the dictionary lookup method. In the dictionary lookup method

text formation and tokenization of words is needed before checking. Even the checking

itself is a time-consuming method comparing to the confidence score-based approach.

But when we consider the real world scanned documents, the scenario got changed.

The method for evaluating OCR quality using confidence scores produced by the OCR

engine yield a strong correlation neither with the dictionary lookup method, nor with

the accuracy scores given by us by manual inspection. Probably this problem arose

because of the document picture quality. But whatever the problem is, these results

help us to conclude that this method is not good enough comparing to the dictionary

lookup method, as it correlates better with the scores given by us manually, that is in

simple words, dictionary lookup performed better for real-life scanned documents.

Finally, I want to conclude that, in spite of this poor correlation values I am still

sure about the fact that the confidence score can be a really good proxy for the

dictionary lookup method, which definitely will be more efficient than the dictionary

 29

lookup in terms of the computational complexity. Initially, we tried to use median,

mode, GM instead of mean (AM), but accuracy scores obtained from all these methods

have a high correlation (95%) with the method explained in this project. So, our final

conclusion is that confidence score can be used in accuracy measurement but with some

different approach, which requires further research.

5. Bibliography:

1. A Fast Alignment Scheme for Automatic OCR Evaluation of Books by Ismet Zeki Yalniz,

R. Manmatha, Multimedia Indexing and Retrieval Group, Dept. of Computer Science,

University of Massachusetts.

2. Measuring the accuracy of page-reading systems by Stephen Vincent Rice, University of

Nevada, Las Vega.

3. A Hierarchical, HMM based Automatic Evaluation of OCR Accuracy for a Digital

Library of Books by Shaolei Feng and R. Manmatha, Computer Science Department,

University of Massachusetts, Amherst.

4. A generic approach for OCR performance evaluation by A. Belaïd and L. Pierron.

5. Metrics for Complete Evaluation of OCR Performance by Romain Karpinski, Devashish

Lohani, Abdel Belaid.

6. Assessing the Impact of OCR Quality on Downstream NLP Tasks by Daniel van Strien,

Kaspar Beelen, Mariona Coll Ardanuy, Kasra Hosseini, Barbara McGillivray, Giovanni

Colavizza.

7. Automatic quality evaluation and (semi-) automatic improvement of OCR models for

historical printings by Uwe Springmann · Florian Fink · Klaus U. Schulz.

8. ZoneMapAlt: An alternative to the ZoneMap metric for zone segmentation and

classification by Romain Karpinski, Abdel Belaid.

9. Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding

Algorithm by Andrew J. Viterbi.

10. Project Gutenberg Website, http://www.gutenberg.org 2011.

11. RETAS method repository, https://github.com/Early-Modern-OCR/RETAS.

 30

6. Appendix:
This is the table of the scanned documents used to evaluate the performance of the two

unsupervised accuracy measuring methods (Confidence score based accuracy measuring method

in column 3 and Dictionary Lookup method in column 4). In column 2 the accuracy rating (out

of 10) given by manual evaluation is there. In the correlation and boxplot calculation we

transformed these values out of 1 instead of 10.
Filename Manual Evaluation Confidence Score Dictionary Lookup

file01 10 0.980327127 0.992424978

file02 8 0.648290348 0.98214857

file03 9 0.956337246 0.986263335

file04 10 0.926827821 0.992468462

file05 9 0.836073035 0.985192351

file06 9 0.940471223 0.987251402

file07 10 0.980456206 0.992453107

file08 9 0.985240164 0.979654501

file09 8 0.870989639 0.953535177

file10 9 0.847800648 0.959615581

file11 9 0.812905561 0.967689048

file13 10 0.973620899 0.991226819

file15 9 0.956082992 0.985557769

file16 8 0.485856164 0.975984932

file17 9 0.892498635 0.975535684

file18 10 0.978154464 0.986168313

file19 10 0.783051549 0.99123506

file20 9 0.906417042 0.977149075

file21 8 0.82442636 0.954450435

file22 9 0.638171728 0.987480714

file23 8 0.668211588 0.964593809

file24 9 0.627219124 0.978441352

file26 9 0.883809263 0.958711479

file27 8 0.902921526 0.963208502

file28 9 0.986444172 0.985742727

file29 10 0.413059553 0.991772763

file30 9 0.978413432 0.985276796

file31 9 0.651442126 0.984913793

file32 8 0.588968884 0.958221701

file33 9 0.951716902 0.979841173

file34 9 0.859702395 0.97795668

file35 8 0.459272959 0.938186382

file36 10 0.866232768 0.99154334

file37 9 0.74152156 0.989981666

file38 9 0.818444358 0.992875424

file39 9 0.756090875 0.988804071

file40 9 0.725221065 0.992689613

file41 9 0.946890715 0.982369824

file42 9 0.311077744 0.988047809

file43 9 0.993372993 0.968798066

file44 9 0.794622355 0.951055231

file45 9 0.995054048 0.987853403

file46 10 0.872043542 0.987962167

file47 9 0.495809897 0.978995757

file48 10 0.983768411 0.993015307

file49 9 0.666142686 0.97892198
