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Abstract

Modern developments in Deep Learning and Machine Learning have shown great
capacity to learn from labelled training data and perform remarkably well. How-
ever, there lies an inherent assumption that training data and the data which the
learning algorithm might see during testing or deployment have the same distribu-
tion. However this might not be true in most cases. We call this problem domain
shift. In addition to the fact that it might not be possible to collect data from every
possible domain gathering labelled data is expensive and resource consuming. So
there is a need to build a learning algorithm that can adapt to new domains effec-
tively and from small training samples. Hence, we propose a Meta Learning based
approach using a Few Shot Model Agnostic Meta Learning (MAML) Algorithm to
tackle problem of domain adaptation.

Extensive experimentation is performed on the office-home dataset using various
configurations of MAML and using recent advances in multi task learning like Gra-
dient Surgery which is incorporated for efficient learning from tasks. We combine
these approaches and build a Few Shot Meta Learner that has the best domain
adaptation capability and is able to generalize to new tasks in new domains from
small training samples.

Keywords: Meta Learning, Domain Adaptation, Model Agnostic Meta Learner,
Gradient Surgery, Office Home



Chapter 1

Introduction

Modern Developments in the field of Learning Algorithms and Deep Learning have
shown great capacity to learn from labelled training data and perform remarkably.
However , there lies an inherent assumption that the data used during training and
the data which the learning algorithm might see during testing i.e. performing in the
field are having the same distribution. However this might not be true in most cases.

When our training data distribution is not same as our testing or working condi-
tion data, our learning algorithm behaves unpredictably and generally leads to poor
or unreliable performance. This phenomenon is generally called Domain Shift.

There is also another aspect to domain shift. for example data from every domain
might not be easy or at all possible to collect from. Hence, in this case it might
become pretty useful if we could train our algorithm on domain data that is easy
to gather from, and have our algorithm pick up generalized meta-information which
transfers to other domains as well.

This is where Few Shot Learning comes in. It will be extremely useful in this
case to have a Few Shot learner that can be trained to perform on data coming from
the new hard to get data from domain with only one or a few samples.

Hence, for this purpose we will explore a Model Agnostic Meta Learning algo-
rithm that is used for domain adaptation. There has been numerous studies on Meta
Learning recently which explores the idea of learning to learn. We will use one of
this Meta Learning techniques called Model Agnostic Meta Learner (MAML) which
can be made to work on any learning algorithm trained with gradient descent.

We propose an algorithm to tackle the problem of supervised domain adaptation
using MAML with Gradient Surgery. We propose a new way to combine tasks from
selected domains keeping aside a unseen domain and train our learning algorithm
and study its performance on the same tasks in the unseen domain and also on new
tasks in the unseen domain.

We study our algorithm on the officchome dataset [1]. which contains images
from 65 classes from 4 different domains.



Chapter 2
Related Works

Meta learning or as it is better known learning to learn [2] is a very well known topic
which looks into training a meta learner that learns how to learn other learning-
algorithms. In the current times methods based on gradient descent have been
applied with huge success to Few Shot learning.

The authors of [3] propose a Meta-Learning technique that works for any learning
algorithm that is trained with gradient descent. It can be applied to classification,
regression, policy gradient reinforcement learning with few modifications. In the
paper the authors introduces an algorithm that is capable of generalizing to new
unseen tasks by only seeing a few examples. Hence this has a lot of application in
Few Shot Learning techniques.

The model has an outer and an inner loop. The outer loop essentially takes a
batch of tasks as an input and the inner loop runs on each each tasks separately.
The parameters of the model are updated based on the learning’s from all the tasks
taken together, hence the model parameters are optimized to perform well on any
new incoming tasks. The Model is not only agnostic to the learning techniques but
also to the tasks. Even to methods in One Shot Learning belonging to state of the
art category which are particularly designed for task of classification under supervi-
sion this technique holds up favourably.

A good number of work in the area of Adaptation to different Domains are based
on keeping in check the the target error by a metric of discrepancy between target
and source and source error [4]. In usual circumstances the issue is given a solution
by lowering the shift between domain either in output space, feature space or input
space [5] by using adversarial learning or a metric of discrepancy.

Another way tackle Domain Adaptation is : Domain generalization , which with-
out the information of taget domain during training attempts to generalize the model
to domain not seen before. There are various methods that have been proposed to
learn different representations that can be generalized and transferred across do-
mains. One way is to learn features which are specific to a task but invariant across



domains [6]. [6] learn auto-encoders of multi-task type to extract features which are
in quality robust to domain variations and immune to variation.

The authors of [7] minimizes discrepancy of joint distribution after considering
the conditional distribution of label space over input space.

10



Chapter 3

Model Agnostic Meta Learning

3.0.1 What is Meta Learning?

First, let us look at the word Meta. Meta essentially means one level of abstrac-
tion higher. For example Meta information means information about information.

Similarly usual learning algorithms like supervised classification learns how to
classify 2 or more classes. A Meta Learning algorithm learns how to learn. This is
the key idea of Meta Learning.

If we look at how we humans learn, we essentially learns new concepts and things
fairly easily. For example a man who knows how to ride a bicycle finds it easy to
learn to ride a motorbike or any other 2 wheeler easily. This essentially happens
since the man is able to transfer a lot of the skills learned like balancing from riding
a cycle to riding a motorbike.

The Meta Learning algorithm essentially attempts to mimic this fundamental
aspect of learning, it tries to learn from other learning tasks, if there are n different
learning tasks, then the meta learner is able to learn how to learn from the different
tasks and is able to adapt to new tasks from only a few examples

Now, the tasks for the meta learning algorithm can be any well-defined task like
supervised regression, classification, reinforcement learning etc.

Some examples:

e A supervised classification algorithm is able to learn how to differentiate be-
tween dogs and birds, upon only seeing a few samples of dog and bird images,
even though it might have been initially trained to classify other non-related
objects.

e A algorithm trained for playing one game using reinforcement learning learns
to play a different game only from a few episodes.

11



3.0.2 Model Agnostic Meta Learning

MAML or Model Agnostic Meta Learning is a gradient descent based learning algo-
rithm that is agnostic to the type of alogorithm i.e it can be applied to any algorithm
that is trained with gradient descent.

MAML trains over a plethora of tasks, it learns a representation that is simple
to generalize or adapt to never before seen tasks via only a few steps of gradient
descent. So, the MAML learns to find an optimal point (i.e. starting point) for
the parameters of the model from where it can quickly adapt to a variety of task
and also achieve that optimal parameter specific to a particular task quickly that is
using only a limited count of gradient steps.

Below in Fig(1) is a visualization. As stated MAML tries to find a set of pa-
rameters that are optimal and is highly adaptable to different tasks. during meta
learning represented by the bold line, MAML finds the set of optimal parameters
that can be adapted just by a few learning/gradinet steps to optimal paremeters 0}
for task 4

— meta-learning
9 ---- |earning/adaptation

VL,
VL
VL 03

* "I
1*

v "
S 62

Diagram of the MAML approach.

Figure 3.1: Diagram of our model-agnostic meta-learning algorithm (MAML) which
find optimal set of parameters that can be quickly adapted to different learning tasks
i.source : [3] Figure-1
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Algorithm 1: Model-Agnostic Meta-Learning
Data: p(7) : Tasks distribution
parameter: o, : hyperparameters deciding the size of gradient descent
step

1 initialize € by a random process;

2 while not done do

3 Sample batch of tasks 7; p(7); end

4 for all 7; do

5 Taking all the K examples evaluate VoL, (fy) ;

6 With gradient descent evaluate fine tuned parameters : 6, = 6 - «
VoL:i(fo);

7 end

8 change 0 < 0 -85 Vg/lﬂ(feg);

lets say the the MAML is represented by the function f, with parameters 6.
When the MAML is adapting to a new task 7; we calculate a loss using the model
prediction fy on the task 7; and update 6 to 6; using one or more gradient update
step,

‘92' =0 - Ongﬁﬂ‘(fg) (31)

Each task 7; acts as a meta task for the MAML and its parameter 6 are opti-
mized aggregating the losses from all the tasks 7; and optimizing fy with respect to ¢

Mathematically the meta-objective is as follows:

Hleill Z L:Tl(f@:) = Z ‘Cﬂ'(f(fe—aveﬁﬁ(fe))) (32)
) )

7 p(T T p(T

Although the model objective function is calculated using each parameters 6; for
each task 7; the meta-optimization is performed over the model parameters #. And
they are updated as follows:

0 0-6Y5 > Lulfy) (33)

Ti p(T)

where [ is the meta-step size.
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Chapter 4

Dataset for our Experiments

For our Experiments on MAML, we have used the Office-Home Dataset.

The Office-Home dataset is made to study object detection and domain adap-
tation algorithms using deep learning. object categories of 64 different kinds are
present in the dateset sampled from things that are likely to be present in an office
or home environment. For all 64 categories the images are available in 4 different
domains - Art, Product, Clipart, Real World.

e

?Q\%@%Bﬁ%w@ﬂ(ﬁf
% 8

- / ; :—-OO

\.ﬁiﬂ ¥ e

Spoon Sink Mug Pen Km!e Bed Bike Kettle ™V Keyboard Glasses - Alam-Clock Desk-Lamp Hammer  Chair Fan

Real World Product Cliparl

Figure 4.1: Here we see some samples of images present in the dataset; Art: artistic
depictions of the objects, Product: images without background, Clipart: usual cli-
part images and Real-World: camera captured images in Real World setting. 16 of
the 65 categories are shown here — sources : [1]

Object Categories :

Alarm Clock, Backpack, Batteries, Bed, Bike, Bottle, Bucket, Calculator, Calendar, Candles,
Chair, Clipboards, Computer, Couch, Curtains, Desk Lamp, Drill, Eraser, Exit Sign, Fan,
File Cabinet, Flipflops, Flowers, Folder, Fork, Glasses, Hammer, Helmet, Kettle, Keyboard,
Knives, Lamp Shade, Laptop, Marker, Monitor, Mop, Mouse, Mug, Notebook, Oven, Pan,

Paper Clip, Pen, Pencil, Postit Notes, Printer, Push Pin, Radio, Refrigerator, ruler,
Scissors, Screwdriver, Shelf, Sink, Sneakers, Soda, Speaker, Spoon, Table, Telephone,
Toothbrush, Toys, Trash Can, TV, Webcam

Figure 4.2: Object Categories, source : [1]
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Chapter 5

Model Architecture

For our experiments we use te below Convolutional Neural Network Architecture :

1. Convolutional Layer : input channel - 3, output channel - 32, Kernel size -
(3,3), padding - (1,1) with zeros.

2. Batch Normalization Layer

3. Convolutional Layer : input channel - 32, output channel - 32, Kernel size
- (3,3), padding - (1,1) with zeros.

4. Batch Normalization Layer

5. Convolutional Layer : input channel - 32, output channel - 32, Kernel size
- (3,3), padding - (1,1) with zeros.

6. Batch Normalization Layer

7. Convolutional Layer : input channel - 32, output channel - 32, Kernel size
- (3,3), padding - (1,1) with zeros.

8. Batch Normalization Layer

9. Fully Connected Linear Layer : input size : 800, output size : 5

15



Chapter 6
MAML Experiment

For testing our MAML model. We use the officechome dataset. For our MAML
experiments we ignore the domain shift aspect of our data and use any of the four
domains available (Art, Clipart, Product, Real World) to train and test our model.

So for example, We choose 'Product’ as our candidate model and then we only
use the samples for training and both testing from that domain only.

We divide the sixty five classes in our Dataset into two sets:

e Training set (Dy.qs,) : containing 50 classes.

o Testing Set (Dyeys) : containing 15 classes.

While training our model we use the Dy,.;, dataset only.

Evaluation of the model is done on the D,.; dataset.

6.0.1 Training :

We train our MAML to preform a 1-shot-5-way classification task. It means each
task of the MAML is a classification of 5 classes randomly sampled from the Dataset
Dirain having 1 sample(or shot) per class.

The Algorithm is as shown below:

16



Algorithm 2: MAML for Few-Shot Supervised Learning

Data: p(7) : distribution over Tasks
parameter: «, [ : step size hyperparameters
1 randomly initialize 0;

2 while not done do

3 Sample batch of tasks 7; p(7); end
4 for all 7; do
5
6

Sample K points of Data D = {21y} from 7;;
Evaluate VyL.;(fy) using D and L,, where L,, is either
Cross-Entropy Loss or Mean Squared Error(MSE);

7 Compute adapted parameters with gradient descent: 6, = 6 - o
VH»CTL(f@)a

8 Sample datapoints D; = {z), )} from ; for the meta-update;

9 end

10 Change value of 0 <— 0 - B Vo3 Lri(fy) using each D, and L.,
where £, is either Cross-Entropy Loss or Mean Squared Error(MSE);

11

parameter terminologies:
e o = learning rate

¢ [ = meta-step size

Outer-loop iterations(line 2): meta-iters

Task batch size(line 3): meta-batch size

e K(line 5) : 16 (1 for set D; and 15 for D;)

e inner-loop iterations(line 6): eval-iters
6.0.2 Evaluation :
While evaluation we use the same Algorithms as Algorithm 2.

We use the D, dataset to sample tasks in line 3 of Algorithm.

Since our MAML is trained to perform 1-shot-5-way classification task. While
evaluating we sample 5 classes randomly and each having 2 sample each class( 1

sample for fine tuning and 1 for testing our model performance).

We evaluate the model for 600 tasks and report the average accuracy.

17



Chapter 7
Results from Base MAML

Here We look at the results of our Experiment as explained in section 7.2 Using the
base MAML Algorithm on our OfficeHome Dataset.

7.1 Congiguration for Base MAML :

e o = learning rate = 0.01
e ($ = meta-step size = 0.001

Outer-loop iterations(line 2): meta-iters = 60000

Task batch size(line 3): meta-batch size = 3

K(line 5) : 16 (1 for set D; and 15 for D:)

inner-loop iterations(line 6): eval-iters = 10

7.2 Accuracy plots in the four domains :

7.2.1 Procut Domain :

The final evaluation results (using best intermediate model after running 17000
meta-iterations) are :

e Train Dataset : accuracy = 73.1 %

e Test Dataset : accuracy = 49.2 %

18



7.2. ACCURACY PLOTS IN THE FOUR DOMAINS :

—— train_acc
0.9 —— test_acc

Accuracy
© o o o
£y w ()] ~

o
()

©
N

o

10 20 30 40 50 60
meta-iters (in 1000s)

Figure 7.1: MAML Evaluation Accuracy vs meta-iters on Product Domain

7.2.2 Art Domain :

1.0

—— train_acc
0.9 —— test_acc
0.8

Accuracy
© o o o
I ul o ~

o
w

0'%.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
meta-iters (in 1000s)

Figure 7.2: MAML Evaluation Accuracy vs meta-iters on Art Domain

The final evaluation results (using best intermediate model after running 6000
meta-iterations) are :

e Train Dataset : accuracy = 40.73%

e Test Dataset : accuracy = 26.60%

7.2.3 Clipart Domain :

The final evaluation results (using best intermediate model after running 5000 meta-
iterations) are :
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7.2. ACCURACY PLOTS IN THE FOUR DOMAINS :

1.0

—— train_acc
0.9 —— test_acc
0.8
0.7

Accuracy
o o o
S U o

o
w

0'%.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
meta-iters (in 1000s)

Figure 7.3: MAML Evaluation Accuracy vs meta-iters on Clipart Domain

e Train Dataset : accuracy = 52.63%

e Test Dataset : accuracy = 42.83%

20



7.2. ACCURACY PLOTS IN THE FOUR DOMAINS :

7.2.4 Real World Domain :

1.0

—— train_acc
0.9 —— test_acc
0.8

Accuracy
© o o ©
B> (6] ()] ~

o
()

O'%.o 2.5 5.0 7.5 10.0 12,5 150 17.5 20.0
meta-iters (in 1000s)

Figure 7.4: MAML Evaluation Accuracy vs meta-iters on Real World Domain

The final evaluation results (using best intermediate model after running 10000
meta-iterations) are :

e Train Dataset : accuracy = 56.26%

e Test Dataset : accuracy = 36.73%
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Chapter 8

Modifications for Model
Performance Enhancements

To improve our Model Performanc compared to the baseline, we try several Im-
provements technique :

8.0.1 Dropout Layer:

Dropout is a form of regularization that has the effect of training many Neural Net-
work architectures in parallel.

Output

Output
Layer

Layer

Hidd
Hidden Loyers

Layers

!
y Input
Input O O O
o O O La}'er Layer

Original Network Dropped-Out Network

Figure 8.1: Original Network vs Dropout Network

While training some nodes in each layer are not used for predicting i.e they are
”dropped out”, this is done at random at every iteration. This has the effect of
each layer looking different at every iteration with different number of nodes and
connection. Hence, we get the effect of having different looking Network at every

22



iteration.

This has the effect of regularization since, the model is unable to rely on any
specific node of a layer for prediction and hence has to learn a robust set of weights
that doesn’t give too much importance to any specific node.

8.0.2 Random Augmentation :

To overcome the over fitting to our training data, we apply augmentation techniques
to our data to increase data points for training purpose. The augmentation is done
online during sampling the data points line 5 of Algorithm 2 in section 7.1.

We use the following Augmentations :

¢ Rotate : Randomly rotate the image by an angle between —20 degrees to 20
degrees i.e. either clockwise or anticlockwise. around the centre of the image.

e Shear along X & Y direction : Randomly shear the image along X-
direction(or Y) by selecting the shear value uniformly from the range [—0.2, 0.2].

e Translate along X & Y : Randomly translate the image along X & Y direc-
tion by uniformly selecting the magnitude of translation from range [—0.45, 0.45].

e Color : Randomly enhance the colour by factor between [0.1, 1.9]
e Brightness : Randomly enhance the colour by factor between [0.1,1.9]

For all Augmentations we have used PIL library classes.

8.0.3 Label Smoothing :

Label Smoothing refers to changing hard target labels which are basically one-hot
coded vectors with soft targets where the target values are a summation of values
from an uniform distribution and the original one-hot hard target labels.

This improves the generalization of the multi-class classifier since it prevents the
model from being too confident or too disappointed i.e. it has stops the loss from

being extreme that is too high or too low.

As an example lets say we have a 4 class classification and our target label has
1 in the Oth index and 0O in all other index. What Label smoothing does is it puts

23



0.95 in Oth index and 0.05 in all other index. This improves the models robustness.

8.0.4 Pre-trained Weights :

We use our Network and train it on minilmageNet dataset.

The minilmageNet dataset contains 100 image classes randomly sampled from
the The ImageNet Large Scale Visual Recognition Challenge - 2012. Each class
comprises six hundred sample images of size 84x84. With a split of 64 training base
class, 16 validation class and 20 novel classes.

We train the model for 40, 000 iterations on the minilmageNet dataset and ob-

serve the performance on the validation set and use the one with highest accuracy
score.

8.0.5 Learning Rate Scheduling :

This is a method to tweak (reduce or increase) the learnign rate while the model is
being trained according to a pre-determined schedule.

We use the following learning rate schedulers :

24
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Chapter 9

MAML performance post
Enhancements :

In this chapter we will look at how the MAML performs after applying the enhance-
ments we discussed in chapter 8.

First let us the describe the enhancement configurations and their meanings:

9.1 Configuration terminology and their descrip-
tions :

¢ Rand-Augment-prob : this parameter refers to the usage of Random Aug-
mentation as described in section 8.0.2. e.g. Rand-Augment-prob = 0.5
means there is a 50% probability of Random Augmentation being applied while
sampling the images.

e Dropout: this parameter refers to the Dropout percentage we use in each
layer. e.g Dropout = 0.10, implies a dropout percentage of 10% being
applied.

e Label Smoothing: refers to use of label smoothing on the hard target labels.
e.g. Label smoothing = 0.05 refers to changing the indexes with 0 in the
hard target to 0.05 and replacing the index with 1 with (1 - 0.05) = 0.95.

e meta-step-size : Refers to the meta step size parameter of the MAML algo-
rithm , refered to by symbol g in alogrithm 2.

e LR : refers to use of Learning Rate Scheduling. e.g. LR = Warmp-Up refers
to the use of Warmp Up scheduler shown in Figure 8.4.

e Pre-trained weights : this refers to the use of pre-trained weights using the
inilmageNet dataset as described in section 8.0.4

26



9.2. ACCURACY PLOTS UNDER VARIOUS CONFIGURATIONS:

9.2 Accuracy Plots under various configurations:

We performed the experiment using the below mentioned enhancement configura-
tions for our office-home dataset and selecting a specific domain (since here we are
only looking at how the MAML performs and don’t want our results to be distorted
by domain shift)

The MAML performance in the following domains under the different enhance-
ment configurations:

In the below figures, test_acc refers to the accuracy achieved using the test dataset

classes. and train accuracy refers to the accuracy achieved using the training set
classes.

9.2.1 Product Domain :

——— train_acc 1.0
0.9{ —— test_acc

—— train_acc
0.9 —— test_acc

. /.._\L/\V\

A /N~ A 21K A
04 VA AaVAnVAY ~ N\ \aVaNAS
VNI ™M o~
/\/—r \/\ 0.4 /\/\\/‘\/"\/\'/\ \/\/‘\/—\/\/\'A\/ /\
0.3
0.3
0.2 10 20 30 40 50 60 0.3
meta-iters (in 1000s) “0 10 20 30 40 50 60

meta-iters (in 1000s)

Figure 9.1: config 0
Rand-Augment-prob=0.5 Dropout=0.20
Label Smoothing=0.05 LR=Linear-Decay

Figure 9.2: config 1
Rand-Augment-prob=0.5

1.0 —— train_acc
—— train_acc 0.9 —— test_acc
0.9 —— test_acc

0.7
0.7 &

> ©

3 506

50.6 ]

3 <

0.5 AN~ .
4 A/ ’A\/\\/&\/\V//\/\/\/\/\/\/ AA \/ V\ /\/z/\/ ~ V\\/‘ /\/\/\/\/ A~

10 20 30 40 50 60
10 20 30 40 50 60 meta-iters (in 1000s)
meta-iters (in 1000s)

Figure 9.4: config 3
pre-trained Weights Rand-
Augment-prob=0.5 Dropout=0.10
Label-Smoothing=0.05

Figure 9.3: config 2
Rand-Augment-prob=0.5 Dropout=0.20
meta-step-size=0.0001
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9.2. ACCURACY PLOTS UNDER VARIOUS CONFIGURATIONS:
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Figure 9.5: config 4

Rand-Augment-prob=0.5 Dropout=0.10
Label-Smoothing=0.05 LR=Warmp-Up
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Figure 9.6: config 5
Rand-Augment-prob=0.5
Label-Smoothing=0.05

meta-step-size=0.0001
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Figure 9.7: config 6
Rand-Augment-prob=0.5 Dropout=0.10
Label-Smoothing=0.05 meta-step-
size=0.0001

Figure 9.8: config 7
pre-trained weights

Here we can see, in Fig 9.1 adding Dropout and Learning Rate scheduling didn’t
solve our problem of over-fitting infactdue to the low learning rate at the later iter-
ations, our model began performing worse on the test data classes.

in Fig. 9.3 we see reducing meta-step-size has a far better effect than using
Learning Rate scheduling. Also we see from Fig 9.4 Label smoothing doesn’t pro-
vide any increased benefits

In Fig.9.8 we see, that just using the pre-train weights makes the train_acc curve
and test_acc curve much closer to each other, this leads us to believe the model is a
more robust model and will best generalize to new data classes.

We conduct similar experiment for the other domains and have found the config-
urations perform similarly irrespective of the domain, We get the best performance
from our configuration : 2 and configuration : 7 shown in Figure : 9.3 and Figure :
9.8 respectively.
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9.2. ACCURACY PLOTS UNDER VARIOUS CONFIGURATIONS:
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Figure 9.9: config 8
Rand-Augment-prob=0.5 Dropout=0.10
meta-step-size=0.0001

Figure 9.10: config 9
Rand-Augment-prob=1
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Figure 9.12: config 11
Rand-Augment-prob=0.5
Dropout=0.20 Label-Smoothing=0.05
LR=WarmUp

Figure 9.11: config 10
Rand-Augment-prob=0.5 Dropout=0.25
meta-step-size=0.0001
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Chapter 10

Discussion : MAML Enhancement
Configuration

We see initially Base MAML is suffering from overfitting and we try to solve the
problem using the menthods mentioned in section 8.

Below we compare the results from our best 2 enhancement configurations from
section 9 with base MAML configuration.

e Base MAML configuration : abbreviated as Base and is as mentioned in
section 7.1

e configuration 2 : abbreviated as config-2 having base MAML configuration
with enhancement configuration - Rand-Augment prob=0.5, Dropout=0.20,
meta-step-size = 0.0001

e configuration 7 : abbreviated as config-7 having base MAML configuration
with enhancement configuration - pre-trained weights, meta-step-size = 0.0001

Looking at the results in the four different domains:

10.1 Product Domain :

Configurations train-set test-set
Base 731%  49.1%
config-2 60.4%  48.6%

config-7 68.8%  50.30%

10.2 Art Domain :

Configurations train-set test-set
Base 40.73%  26.6%
config-2 39.36%  25.00%

config-7 59.9%  29.33%
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10.3. CLIPART DOMAIN :

10.3 Clipart Domain :

Configurations train-set test-set
Base 52.63%  42.83%
config-2 51.63%  40.76%
config-7 63.76%  42.30%

10.4 Real World Domain :

Configurations train-set test-set

Base 56.26%  36.73%
config-2 49.9%  36.30%
config-7 61.10%  37.73%

Hence, the enhancement configuration config-7 (using pre-trained weights from
training our MAML network on miniimagenet dataset) gives us the best performance
in terms of generalizing to new and unseen classes across any of the four domains.

Also the fact that we don’t see a very high improvement using the various en-
hancement techniques suggests an inherently high contradictory nature between the
classes of data objects present in the dataset. This fact is important to note and can

be taken as a baseline reference point when we attempt domain adaptation using
the same dataset.
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Chapter 11

Model Agnostic Meta Learning
with Gradient Surgery

In our experiment we use a method called Gradient Surgery [8] to combine the gra-
dients in step 8 of Algorithm 1. i.e. the meta update step.

In this method we try to control the effect of contradicting tasks upon each other.

11.0.1 What are contradicting tasks ?

In the paper [8] it is hypothesize that an important issue in Meta Learning is the
presence of contradicting gradients coming from the batch of task for each meta
update in step 8 of Algorithm 1

Contradicting gradients for different tasks are those that point away from one
another in the parameter space as shown by a negative inner product between the
2 gradients from 2 different tasks. This results in the resultant meta update being
very small or none at all.

11.0.2 Gradient Surgery :

This method is used to nullify the effect of contradicting gradients which has a neg-
ative effect on the meta update as discussed above in section 4.1

We aim to solve this problem by taking 2 conficting gradients say ¢; and g; as
determined by a negative inner product. We simply replace g; by ¢; = ¢; - ﬁ%
gj. that is we project g; onto the normal plane of g;. For gradients which have a
positive inner product we do not alter them.
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Figure 11.1: (a) conflicting gradients (b)projecting g; onto the normal plane of g;
(c)projecting g; onto the normal plane of g; (d)non-conflicting gradients ; source :
[8] Figure-2

Algorithm 3: Gradient Surgery MAML for Few-Shot Supervised Learning

O R W N =

BN

(0]

10
11
12
13
14

15

16
17
18

19
20

21

Surgery ({7x })
gy < x V€ {1x};
for alli € [0, len({rxk})) do
for j ~uniformly [ len({rx})) \ i do
\\ if g; - g; 0 then
Sur

Sur _ Sur _ 9i 9

g;

A PR

return ¢";

parameter: «, [ : hyperparameters that determine the size of step

Data: p(7) : distribution over Tasks

initialize 6 by a process that is random ;

while not done do

Sample batch of tasks 7; p(7);

for all 7; do

Sample K points of Data D = {21, y)} from 7;;

Evaluate VyL.;(fy) using D and L., where L,, is either
Cross-Entropy Loss or Mean Squared Error(MSE);

With gradient descent compute fine tuned parameters: 9; =0-«
VGETi(fQ);

For the meta-update sample points of data D; = {29, yO)} from 7;

end

{gradList} < VoL, ( feg) using each D; and L., ; where £, is either
Cross-Entropy Loss or Mean Squared Error(MSE);

{gradList} < Surgery({gradList});

Update 6 =60 - > X

z€{gradList}

end
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Chapter 12

Result & Discussion : MAML
with Gradient Surgery

We have seen how our best MAML performs with enhancements of pre-trained
weights from training on miniimagenet datset. This configuration overall gives us
the best generalising ability to new unseen classes over all domains.

The below results are from using our MAML with Gradient Surgery and initial-
izing with pre-trained weights on minilmageNet dataset :

Domain train-set test-set

Product 72.06%  50.56%
Art 61.70%  27.56%
Clipart 63.66%  43.80%
Real World  63.43%  37.46%

Hence we see the MAML with Gradient Surgery gives us a slight better perfor-
mance for Product, Clipart and Real World Domain.

We see however the Art domain is particularly difficult for the model to classify
images in. This is inline with our expectation since the Art domain has the most
creative leeway in terms of representation of data classes, and even 2 images for the
same class from the Art domain may look quite different

Hence, we will be using our Model Agnostic Meta Learner with Gradient Surgery
and pre-trained weights and apply it for domain adaptation.
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Chapter 13

Domain Adaptation using Meta
Learning

We have two setting for our Domain Adaptation Experiment - ’Supervised’ and
"Unsupervised’

1. Supervised Domain Adaptation : In the ’Supervised’ setting our goal is to be
able to train a model such that when it is shown samples of an object/class
from a certain unseen domain it can quickly be trained on a few samples and
be able to categorize that object.

2. Unsupervised Domain Adaptation : In the "Unsupervised’ setting our goal is to
train our model such that upon showing a few samples of images for a certain
object/class from certain easy to obtain domains it will be able to correctly
classify these object in a different unseen domain

13.0.1 Meta Learning General Approach :

First discussing the part common to both the settings:

Our input space be X' and discrete label space be ). Let D be a distribution
over X x Y. and our training dataset S}..;, comes from this distribution D.

During the training phase our Meta Learning algorithm, has access to large
number of labelled images belonging to many different classes, this dataset is called
Strain- In this setting during training at every iteration ¢ we sample K-shot-N-way
classification task 7T; ; meaning we sample N classes randomly from the labelled
train dataset Si.qin and k shots for each class. Each of this task contain a small fine
tuning training set called Support Set S; (assumed to have labelled data points) and
another set of data points(assumed to be unlabelled) called Query set @);.
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While training the model is trained on the S; set and then we calculate condi-
tional probabilities of the classes in the @); set and calculate a loss based on this
prediction. For multiple such tasks T; we calculate this loss and aggregate them and
then back-propagate the loss to update the model parameters.

For evaluating the model, the data comes from a different input space X and
label space y/ to the Si.qin dataset. The testing dataset Si.q; comes from X "x ).

Similar to the training mode, we sample tasks from the S;.,; dataset, where we
have a small fine tuning set with labelled data and another evaluating set with un-
labelled data for which the model predicts labels.

13.0.2 Supervised Domain Adaptation

In our experiment we have 4 domains - ’Art’, Clipart’, "Product and "Real World’.

Algorithm 4: MAML for Few-Shot Supervised Domain Adaptation
parameter: «, [ : hyperparameters to decide the size of gradient descent
step
Data: p(7) : distribution over Tasks
Data: D(7) : List of Domains, test-domain

1 initialize € by a random process ;

2 while not done do

3 Sample batch of tasks 7; p(7) ; end

4 | domain <— Sample batch of domains from D(7) \ test-domain ;

5 for all 7; do

6 Sample K points of Data D = {21) yW} for each class in 7; from
sample domain for corresponding task 7;;

7 Evaluate VyL.;(fy) using D and L,, where L,, is either
Cross-Entropy Loss or Mean Squared Error(MSE);

8 With gradient descent evaluate fine tuned parameters : 6, = 6 - «
VoLri(fo);

9 For the meta-update sample points of data D; = {209 4y} for
classes in 7; from corresponding domain;

10 end
11 Change 0 < 0 - 5 Vy ZTZ_ () Li(f,) using every D; and L., where L.,
is either Cross-Entropy Loss or Mean Squared Error(MSE);

12
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After we have our Sy,.q;, and S;.. data-sets we proceed via the steps as stated in
Algorithm 4.

Under the supervised setting we will have the following three different types of
evaluation to test our learning Algorithm:

e Unseen Classes & Unseen Domain : For evaluation we sample classes from the
Siest dataset which is unseen during training and the samples from every class
is taken from the domain not seen during training. Here:

1. We randomly sample N classes from the S ; dataset.
2. For every class collect (k+ 1) shots where we use k shots to fine tune and

keep one from each class for final evaluation to report accuracy.

e Seen Classes & Unseen domain : For evaluation we sample classes from the
Sirain dataset which is unseen during training and the samples from every class
is taken from the domain not seen during training. Here:

1. We randomly sample N classes from the S;,..;, dataset.
2. For every class collect (k+ 1) shots where we use k shots to fine tune and

keep one from each class for final evaluation to report accuracy.

e Unseen Classes & Seen domain : For evaluation we sample classes from the
Siest dataset which is unseen during training and the samples from every class
is taken from either of the three domain seen during training. Here:

1. We randomly sample N classes from the S ; dataset.

2. For every class collect (k+ 1) shots where we use k shots to fine tune and
keep one from each class for final evaluation to report accuracy.

37



Chapter 14

Domain Adaptation Results

14.0.1 Baseline

For Baseline we use the same MAML architecture as our Experiment. We pre-train
our MAML network on the miniimagenet dataset.

The minilmageNet dataset contains 100 classes randomly chosen from ImageNet
ILSVRC-2012 challenge with 600 images of size 84 x84 pixels per class.

We mimic the evaluation methodologies used in our Supervised setting. We
sample a N-Way-k-Shot task and train our pre-trained MAML network on data of
k sample per class and calculate the accuaracy on an evaluation set of 1 sample per
class.

Domains Art Clipart Product Real World

Art 20.70% 19.70%  20.83% 20.23%
Clipart 19.96% 19.36% 19.90% 20.40%
Product  20.90% 19.63% 19.50% 20.56%

Real World 19.83% 20.73%  20.26% 21.43%

The above numbers are reported after running the evaluation 600 times and
taking the average values.

14.0.2 Supervised Domain Adaptation

In Supervised setting the results of our 3 different evaluation strategies as explained
in section 3.2, are as follows :

Our dataset officchome-65 contains 4 domains {Art, Clipart, Product, Real
World}. Hence we have 4 configurations of our model each time keeping 1 do-
main as unseen and using the remaining 3 to build our models.
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Below is a look at how domain adaptation is taking place using our Meta-Learner
and Meta-Learner with Gradient Surgery.

Unseen Domain = {Real World}

Seen Domains during Training = {Art, Clipart, Product}

MAML : GS MAML :
1. Unseen Classes & Unseen Domain: 1. Unseen Classes & Unseen Domain:
33.93% 35.90%
2. Seen Classes & Unseen Domain : 2. Seen Classes & Unseen Domain :
50.23% 50.53%
3. Unseen Classes & Seen Domain: 3. Unseen Classes & Seen Domain:
o Art: 33.40% o Art: 37.03%
e Clipart : 34.03% e Clipart : 33.50%
e Product : 34.80% e Product : 34.97%

Unseen Domain = {Product}

Seen Domains during Training = {Art, Clipart, Real World}

MAML : GS MAML :
1. Unseen Classes & Unseen Domain: 1. Unseen Classes & Unseen Domain:
45.36% 43.40%
2. Seen Classes & Unseen Domain : 2. Seen Classes & Unseen Domain :
51.53% 51.37%
3. Unseen Classes & Seen Domain: 3. Unseen Classes & Seen Domain:
e Art: 52.03% o Art: 49.37%
e Clipart : 43.73% e Clipart : 43.89%
e Real World : 44.89% e Real World : 42.67%
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Unseen Domain = {Clipart}

Seen Domains during Training = {Art, Product, Real World}

MAML :

1. Unseen Classes & Unseen Domain:

36.43%

2. Seen Classes & Unseen Domain :

51.90%

3. Unseen Classes & Seen Domain:

o Art: 41.00%
e Product : 36.83%
e Real World : 36.76%

Unseen Domain = {Art}

GS MAML :

1. Unseen Classes & Unseen Domain:
36.00%

2. Seen Classes & Unseen Domain :
52.43%

3. Unseen Classes & Seen Domain:

e Art: 39.93%
e Product : 35.90%
e Real World : 36.26%

Seen Domains during Training = {Clipart, Product, Real World}

MAML :

1. Unseen Classes & Unseen Domain:

32.33%

2. Seen Classes & Unseen Domain :

51.56%

3. Unseen Classes & Seen Domain:

e Clipart : 32.06%
e Product : 32.93%
e Real World : 33.53%
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GS MAML :

1. Unseen Classes & Unseen Domain:
30.7%

2. Seen Classes & Unseen Domain :
51.03%

3. Unseen Classes & Seen Domain:

e Clipart : 32.10%
e Product : 32.53%
e Real World : 31.56%



Chapter 15

Discussion & Conclusion

Hence we see, the MAML algorithm out performs our Baseline model both for do-
main to domain adaptation and within domain.

The Baseline model scores indicate that the model has very limited predictive
capabilities as we are seeing accuracy’s around 20% for our 5-Way-1-Shot classifica-
tion tasks. Even when looking at the predictive power within a single domain, for
example being trained in the Product domain and evaluated in the Product domain
we have an accuracy of 19.50%, the predictive power almost remains unchanged
when evaluated for different domains (i.e. other than the one it is being trained
on). This leads us to believe the model is unable to perform the 1-Shot learning
in general and hence shows similar performance for both within domain and across
domain evaluation.

The MAML algorithm improves the learning ability considerably. For example in
looking at how the model performs in the Product domain (i.e. when it is trained by
our supervised learning algorithm on the other domains - Art, Clipart, Real World)
it gives us an accuracy of 51.53% in the unseen Product domain using seen classes
from our Sy, dataset. And when also using unseen classes(i.e. the classes in our
Siest dataset) we get an accuracy of 45.36%. Eliminating domain shift and looking
at the models performance in the previously seen domains just using unseen classes
we see accuracy of 52.03% (Art) , 43.73 %(Clipart) and 44.89% (Real World). So,
in our supervised learning setting the model is both able to generalize to new classes
and new domains using 1-Shot learning.

The GS-MAML algorithm is not able to out perform the MAML algorithm in
all cases. When looking at the performance in completely unseen domain and using
unseen classes we see the GS-MAML slightly outperforms the MAML when evaluat-
ing in the Real World doamin, in all other cases the MAML performs slightly better.

For future work it will be interesting to see how other methods can be used to
tackle the inherently contradicting gradients we get from the MAML algorithm from
different classes and domains which explains the algorithm for various configurations
giving highest accuracy of about 51.37% for domain to domain adaptation. with a
more robust way to combine the gradients it might be possible to break this ceiling.
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