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Essays on sequencing problems with welfare bounds

Abstract

This is a comprehensive study of sequencing problems with welfare bounds. The sequencing frame-
work comprises a finite set of agents and a single facility provider that processes their jobs sequentially.
Each job is characterized by its per periodwaiting cost and processing time. The designer has to fix the
order in which agents are served and the monetary compensations to be paid/received. The sequenc-
ing and queueing literature has studied the impact of imposing lower bounds on the utility function
in various contexts. The most natural bound is the first come first serve protocol where there is a
preexisting order in which agents arrive. From the cooperative game perspective, sequencing games
with initial order was analyzed by Curiel et al. (1989) and, from the mechanism design perspective,
the queueing problem was addressed by Chun et al. (2017) and by Gershkov & Schweinzer (2010).
There are other fairness bounds that have been studied from the normative viewpoint. In queueing,
the notion of identical costs bound (ICB), analogous to identical preferences lower bound,1 has been
analyzed by Maniquet (2003), Chun (2006b), Mitra (2007) and Chun & Yengin (2017). In the se-
quencing context, Mishra & Rangarajan (2007) and De (2013) study the expected cost bound where
agents have identical urgency indices, implying that every possible ordering is equally likely. Chun
& Yengin (2017) have introduced welfare lower bounds with the k-welfare lower bound guaranteeing
each agent his utility at the kth queue position with zero transfer. In the queueing literature, Ger-
shkov & Schweinzer (2010) honor an agent’s existing service rights by defining individual rationality
with respect to an existingmechanism (first come first serve and random arrival schedules). They have
examined whether efficient reordering is possible when individuals are rational with respect to the
status quo.

This thesis introduces a universal representation of all the previously studied welfare bounds in
the literature. Such a generalized representation enriches the existing literature by allowing future
studies to bemore simplified and compact. We term this bound as the “generalizedminimumwelfare
bound” (GMWB). It is type dependent and offers every agent aminimum guarantee on their utilities.

1Moulin (1990b), Moulin (1991b), Bevia (1996), Beviá (1998), Thomson (2003)
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In other words, such an assurance puts an upper limit on the maximum disutility of waiting for a
service and safeguards all agents against adverse circumstances.

The dissertation imposes the generalized minimum welfare bound property in the sequencing
framework and studies its impact using three different approaches, viz.,the strategic approach, the
egalitarian approach and the cooperative game approach. The strategic notion used in the first es-
say is that of strategyproofness. We characterize the entire class of mechanisms that satisfies outcome
efficiency, strategyproofness and the GMWB property. The chapter provides relevant theoretical ap-
plications and also addresses issues of feasibility (or, budget balance). The second essay uses the classic
Lorenz criterion that embodies the essence of egalitarianism in the distribution of the final outcome
and can be used tomake inequality comparisons. We find that the constrained egalitarianmechanism
is the only Lorenz optimalmechanism in the class of feasiblemechanisms satisfying theGMWBprop-
erty. The final essay maps the sequencing problem to a characteristic form game using an optimistic
and a pessimistic approach to define the worth of a coalition. Under both the approaches, the trans-
fers are designed such that, every agent receives his share of Shapley value payoff as his final utility. We
provide a necessary and sufficient condition for the allocation rule to satisfy GMWB. The paper also
provides key insights on the existence of the core allocations in sequencing games.
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1
Introduction

1.1 The problem of fair division

Fairness matters. It matters because every human being has an intuitive sense of the notion of fair-

ness. A common man might not be able to tangibly define or measure the idea, but he understands

whether or not he is being treated fairly by the society, the market and the government. The theories

of distributive justice are concerned with the fair allocation of resources amongst diverse agents in an

1



economy. Distribution of rewards or costs must happen in a reasonable fashion so that every member

receives (or bears) a ‘fair share’.

A fundamental concern of distributive justice involves the allocation of commonly owned re-

sources among a group of individuals who have equal claim to the resource but diversified prefer-

ences. In such a fair division problem, the justness in the distribution of the final outcome can be

measured using several fairness axioms that have been studied in the literature. Two such axioms are

no-envy and egalitarian equivalence. No-envy emphasizes that no agent should prefer another agent’s

allocation in comparison to his own (see Tinbergen (1946) and Foley (1966)) and egalitarian equiv-

alence requires an agent to be indifferent between his own bundle and a common reference bundle

(see Pazner & Schmeidler (1978)). However, Yengin (2013a) pointed out that a mechanism satisfying

these axioms might yield exceptionally small or large levels of welfare. A society would then prefer a

mechanismwhich guarantees aminimum level of welfare to every individual over amechanismwhere

some agents end up with arbitrarily low welfare levels despite being envy free. Assuring every agent

with a minimum guaranteed payoff serves as an indicator of how developed and cohesive an economy

is. Knowledge about welfare levels in worst-case scenarios acts as a safety net and protects an agent

against factors like, differences in preferences, for which no agent can be held individually responsible

for.

The fairness literature has proposed and extensively studied welfare lower bounds that are unbi-

ased, righteous and built on the notions of equity and fair-play. In the classic fair allocation problem,

guaranteeing each agent a utility level that is atleast that of consuming an equal share of the resource,

is one of the oldest axioms (see Steihaus (1948) andDubins & Spanier (1961)). Due to an equal treat-

ment of equals, each member receives the highest feasible utility outcome from an equal split of the

resource. However, when the central planner needs to allocate an indivisible commodity along with

monetary transfers to its agents, such a division is not well defined. Moulin (see Moulin (1990b) and

Moulin (1991b)) suggested an alternate fairness axiomnamely, the identical preferences lower bound.
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In an economywhere agents have varying preferences, we arbitrarily pick an agent and imagine a hypo-

thetical situation where every other agent has preferences identical to him. We compute the common

welfare level if equals are treated equally and allocations are Pareto efficient. Ideally, an agent should

be concerned only about his own taste and should not have to bear the externalities caused by the

heterogeneity of preferences in the actual economy. This bound promises each agent the benchmark

welfare level (realized in the reference economy) such that no-one is worse off in the actual world than

he/she was in the hypothetical setup. There are other welfare lower bounds that have been examined

in the fairness literature that bind the maximum loss incurred by an agent. Some of them include the

stand-alone lower bound (respecting an agent’s autonomy; seeMoulin (2003)), individual rationality

(respecting the status quo) and the k-fairness criterion based on the Rawlsian maximin principle (see

Porter et al. (2004) and Atlamaz & Yengin (2008)).

1.2 Sequencing games

I adopt the mechanism design approach to study ‘sequencing’ problems which belong to the class of

finite decision problems. A position in a queue is an indivisible good and sequencing games deal with

typical situations of allocating such goods amongst a finite set of agents. I provide a brief outline of

the framework followed in this thesis.

• A sequencing problem consists of a finite set of agents and a single server/processing unit.

• Agents are in need of processing their respective jobs. These job andmay differ across individ-

uals in terms of their processing times.

• The service provider can process only one job at a time. Once a job starts processing, it cannot

be interrupted.
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• We allow for monetary transfers and preferences are quasi-linear over the positions in a queue

and the transfers.

• Agents incur a per period cost of waiting and the total cost of completing a job depends upon

his waiting time in the queue and the time taken to process his own job.

• The task of the planner is to decide the ordering of agents (allot each agent a position in the

queue) to minimize the total cost of job completion in the economy and the transfer amounts

to be made or received by each agent.

Sequencing problems have awell established literature beginningwithDolan (1978). Dolan stud-

ied sequencing games as incentive problems with the waiting costs as private information. He pro-

vided a mechanism which was incentive compatible but not budget balanced. Significant contribu-

tions to this field were later made by Suijs (1996), Mitra (2001), Mitra (2002), Hain &Mitra (2004)

and several others. Our framework follows the structure adopted by Suijs (1996) where the perceived

waiting cost of an agent is linear in time. A special class of sequencing games is referred to as queue-

ing games where the job processing times are identical across agents. A sequencing rule is said to be

outcome efficient if it minimizes the aggregate cost of job completion. Smith et al. (1956) provided

a necessary and sufficient condition for a sequencing rule to be outcome efficient based on agents’

urgency indices. An urgency index is the ratio of an agent’s waiting cost to his processing time. Out-

come efficiency is achieved when players in a queue are arranged in a decreasing order of their urgency

indices.

A sequencing model with private information is implementable if and only if the mechanism

is a Groves mechanism (Groves (1973)). Implementability means that for any agent, truth telling

is the dominant strategy (no one is better off by misreporting their true type) and the sequencing

rule is outcome efficient. Under relatively weak assumptions on the preference domain, Green &

Laffont (1979), Holmström (1979) and Suijs (1996), have shown that the Groves mechanisms are the
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unique class that satisfies efficiency and dominant strategy incentive compatibility. However, Green

& Laffont (1979) have also shown that the transfer payments of a Groves’ scheme need not be budget

balanced in an unrestricted domain. Further, Hurwicz & Walker (1990) showed that in a variety of

exchange economies one cannot findmechanisms that satisfy both incentive compatibility andbudget

balancedness. Suijs (1996) deduced that linearity of costs over time is crucial for a sequencing problem

to be first best implementable; meaning, that it is possible to design a mechanism where truth telling

is dominant, the outcome is efficient and budget balancedness is maintained. Mitra (2002) analyzed

a more general and natural class of cost functions to conclude that, for first best implementability,

linearity of cost functions is not only sufficient but also necessary. A sequencing problem is first best

implementable only if the cost function is linear.

1.3 Welfare bounds in sequencing games

The sequencing and queueing literature has studied the impact of imposing lower bounds on the util-

ity function in various contexts. The most natural bound is the first come first serve protocol where

there is a preexisting order in which agents arrive. From the cooperative game perspective, sequencing

games with initial order was analyzed by Curiel et al. (1989) and, from the mechanism design per-

spective, the queueing problem was addressed by Chun et al. (2017) and by Gershkov & Schweinzer

(2010). There are other fairness bounds that have been studied from the normative viewpoint. In

queueing, the notion of identical costs bound (ICB), analogous to identical preferences lower bound

1, has been analyzedbyManiquet (2003), Chun (2006b),Mitra (2007) andChun&Yengin (2017). In

the sequencing context, Mishra & Rangarajan (2007) and De (2013) study the expected cost bound

where agents have identical urgency indices, implying that every possible ordering is equally likely.

Chun & Yengin (2017) have introduced welfare lower bounds with the k-welfare lower bound guar-

1Moulin (1990b), Moulin (1991b), Bevia (1996), Beviá (1998), Thomson (2003))

5



anteeing each agent his utility at the kth queue position with zero transfer. Starting from the last

position, the center progressively reduces k (thus increasing the welfare levels) till there is a clash with

certain budgetary requirements. In the queueing literature, Gershkov& Schweinzer (2010) honor an

agent’s existing service rights by defining individual rationality with respect to an existing mechanism

(first come first serve and random arrival schedules). They have addressed the queueing problem of

reordering an existing queue into its efficient order through trade.

This thesis introduces a universal representation of all the previously studied welfare bounds in

the literature. Such a generalized representation enriches the existing literature by allowing future

studies to bemore simplified and compact. We term this bound as the “generalizedminimumwelfare

bound” (GMWB). It is type dependent and offers every agent a minimum guarantee on their utili-

ties. In other words, such an assurance puts an upper limit on the maximum disutility of waiting for

a service and safeguards all agents against adverse circumstances. By virtue of the linear cost structure

in our framework, the generalized minimum welfare bound can be decomposed and expressed as a

product of two components - the per period waiting cost of an agent and the welfare parameter. The

welfare parameter is simply a function of the vector of job processing times (which is common knowl-

edge) and the form of this function varies with the specific bound under consideration. Thus, for

a given sequencing problem, a mechanism is said to satisfy the generalized minimum welfare bound

property if every agent receives a utility that is atleast as much as the guaranteed level.

The dissertation imposes the generalized minimum welfare bound property in the sequencing

framework and studies its impact using three different approaches, viz.,the strategic approach, the

egalitarian approach and the cooperative game approach. The strategic notion used in the first es-

say is that of strategyproofness. We characterize the entire class of mechanisms that satisfies outcome

efficiency, strategyproofness and the GMWB property. The chapter provides relevant theoretical ap-

plications and also addresses issues of feasibility (or, budget balance). The second essay uses the classic

Lorenz criterion that embodies the essence of egalitarianism in the distribution of the final outcome
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and can be used tomake inequality comparisons. We find that the constrained egalitarianmechanism

is the only Lorenz optimalmechanism in the class of feasiblemechanisms satisfying theGMWBprop-

erty. The final essay maps the sequencing problem to a characteristic form game using an optimistic

and a pessimistic approach to define theworth of a coalition. Under both the approaches, the transfers

are designed such that, every agent receives his share of Shapley value payoff as his final utility. In this

scenario, the expected cost bound condition is shown to be necessary and sufficient for the generalized

minimum welfare bound property to hold. The paper also provides key insights on the existence of

core allocations associated with both the cooperative games.

1.3.1 Awelfarist approach to sequencing problems with incentives

Literature

The notion strategyproofness incentivizes an agent to not misreport her true waiting cost irrespective

of what she believes other agents to be doing.2 Both sequencing and queueing problems have been

extensively studied from the strategic view point in the last couple of years (see Chun et al. (2014a),

Chun et al. (2019a), De & Mitra (2017), De & Mitra (2019), Mitra (2001), Mitra (2002) , Mitra &

Mutuswami (2011) and Ramaekers & Kayi (2008)). From the normative viewpoint, notable contri-

butions have been made by Chun (2006a), Chun (2006b), Chun (2004), Maniquet (2003), Mishra

& Rangarajan (2007) andMoulin (2007).

There are several studies in the literature that have combined strategic and fairness properties to

study the general class of allocation problems with heterogeneous indivisible goods and monetary

transfers.3 Within the scope of queueing problems, Kayı & Ramaekers (2010) study the no-envy

2The literature on strategyproofness is too vast. A comprehensive review of preferences can be found in
Barberà (2011). Other examples where strategyproofness has been applied in different contexts include Chat-
terji & Sen (2011), Moreno&Moscoso (2013), Öztürk et al. (2014), Velez (2014), Westkamp (2013) andmany
more

3Atlamaz&Yengin (2008),Mukherjee (2014), Ohseto (2004), Ohseto (2006), Pápai (2003), Yengin (2012),
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rule (see Foley (1966)) along with queue efficiency and strategyproofness. No-envy is a fairness cri-

teria which states that no agent should prefer another agent’s bundle to her own. Following this,

Hashimoto& Saitoh (2012), study the relationship between equity and efficiency for queueing prob-

lems. They characterize the class of rules that satisfy strategyproofness, anonymity inwelfare and bud-

get balance. Chun et al. (2014b) impose the egalitarian equivalence condition (see Pazner & Schmei-

dler (1978)) to characterize a sub-family of VCG rules. An allocation rule is egalitarian equivalent if

there is a reference bundle for every preference profilewhichmakes an agent indifferent betweenher al-

location bundle and the reference bundle. The normative distributive requirement of k-welfare lower

bound has been studied by Chun & Yengin (2017) which requires that each agent should be guaran-

teed her utility at the k-th queue position with zero transfer. In the queueing context, they investigate

the implication of such bounds along with queue efficiency and strategyproofness. For sequencing

problems, De (2013) studies implementation of VCG mechanisms with egalitarian equivalence and

expected costs bound.

Chapter Contribution

The “generalizedminimumwelfare bound” (GMWB) is a universal representation encompassing fair-

ness bounds as well as naturally and artificially constructed bounds. We study the implications of this

bound in the sequencing framework with incomplete information (Banerjee et al. (2020)). Our first

result, identifies the “constrained welfare property” which is a condition that is both necessary and

sufficient to obtain the class outcome efficient and strategyproof mechanisms that satisfy the general-

ized minimumwelfare bound. Our second theorem characterizes the entire class of mechanisms that

satisfies outcome efficiency, strategy proofness and GMWB.We term this as the class of “relative piv-

otal mechanisms”. We also address the issue of finding those relative pivotal mechanisms that satisfy

either feasibility or its stronger version, budget balance. Our paper proposes relevant theoretical ap-

Yengin (2013b), Yengin (2013a) and Yengin (2017).
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plications namely; ex-ante initial order, identical costs bound and expected cost bound. The idea of

identical costs bound is based on a reference economy where we pick an agent and all the other agents

have identical waiting costs and processing times. The expected costs bound allows agents to arrive

randomly such that every arrival order is equally likely. We also give insights on the issues of feasibility

and/or budget balance.

1.3.2 Lorenz optimality in sequencingwithwelfare bounds

Literature

The second essay of this thesis applies the Lorenz criterion to identify the class of feasible mechanisms

which satisfies the generalized minimumwelfare bound and is Lorenz optimal. Under the egalitarian

idea of distributive justice, members of a society are not only concerned with their share of final out-

come, but also with the distribution of the final outcome across all its members. In such an economy,

both the absolute and relative positions matter. The central planner values social welfare and equality

in the distribution of outcomeswhereas individuals are primarily driven by their self-seeking behavior.

There is a notable literature that deals with the characterization of the Lorenz ordering as a plausible

concept of inequality (see Atkinson et al. (1970), Dasgupta et al. (1973), Fields & Fei (1978),Sen et al.

(1997)). Thomson (2012) develops three general approaches to obtain the Lorenz ranking of rules for

the adjudication of claims. He develops a general criteria to enable Lorenz comparison across specific

classes of rules. Dutta and Ray (Dutta & Ray (1989), Dutta & Ray (1991)) propose a constrained

egalitarian solution concept for transferable utility games by combining commitment towards egali-

tarianism and promoting individual interest in a consistent fashion. The constrained egalitarian rule

has also been proposed by Chun et al. (1998) to solve claim problems and attain certain objectives of

equality. For queueing problems, Chun et al. (2019b) show that the constrained egalitarian mech-

anisms are Lorenz optimal amongst the class of mechanisms satisfying outcome efficiency, budget
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balance and the identical preferences lower bound (IPLB).

Chapter contribution

In the sequencing context, we explore the possibility of designing mechanisms which uphold the no-

tion of justness and safeguard an agent’s individual interest. Every agent is guaranteed a minimum

level of utility by imposing the generalized minimumwelfare bound (Banerjee &Mitra (2021)). This

paper is an important generalization of Chun et al. (2019b). Our main result shows that the con-

strained egalitarian mechanism is Lorenz optimal in a broader class of feasible mechanisms satisfying

the generalized minimumwelfare bound. We also characterize the complete class of mechanisms that

satisfies GMWB and feasibility (budget balance).

1.3.3 Existence of core in sequencing - an optimistic and a pessimistic ap-

proach

Literature

This paper adopts a cooperative approach to study sequencing problems Banerjee (2021). A popular

approach to studying cost sharing problems (Moulin (2002)) involves associating an appropriate char-

acterization form to the original problem and implementing solution concepts from the theory of co-

operative games. The Shapley value is considered as an appropriate solution to fair division problems

in general and has been shown to possess interesting fairness properties (Moulin (1992)). Maniquet

(2003) hasworked in the queueing framework and defines theworth of a coalition to be theminimum

aggregate waiting cost of its members if they are to be served first in the queue. On the other hand,

Chun (2006b) adopts a pessimistic approach towards evaluating the worth of a coalition by comput-

ing the minimum waiting cost of that coalition if they are served after the non-coalitional members.

For the queueing problem, bothManiquet (2003) andChun (2006b) axiomatically characterize their
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respective transfer rules (which generate an agent’s corresponding Shapley value payoff) using classic

fairness axioms.

Curiel et al. (1989) consider the class of sequencing games for which the initial order of the agents

is known. They focus on sharing the savings in costs when switching from an initial ordering to an

optimal ordering and show that the “mid-point” solution is in the core of an associated cooperative

game. Mishra &Rangarajan (2007) extend the characterization ofManiquet for the one dimensional

model to the general model of sequencing games. They provide a new set of axioms to characterize

the Shapley value under efficient ordering. Moulin (2007) studies the strategic aspect like splitting and

merging for a class of problems where agents have identical waiting costs but different job processing

times. These are known as scheduling problems. He shows that the Shapley value solution is merge

proof, but not splitproof.

Chapter contribution

The first half of the paper defines the characteristic form game for a given sequencing problem using

the Maniquet’s optimistic approach and Chun’s pessimistic perspective. I compute the associated

Shapley value payoffs in both the cases and the corresponding transfer amounts. The objective of

this paper is to study the set of core allocations, if at all they exist. It can be observed that - using

the optimistic approach, the core of the primal game is empty while the Shapley value belongs to

its dual and using the pessimistic approach, the core of the dual game is empty while the Shapley

value belongs to the core of the primal. The second half of the paper shows that an allocation rule

which assigns utilities corresponding to an agent’s Shapley payoff of the sequencing game, satisfies the

generalizedminimumwelfare bound if and only if the expected costs boundholds. The expected costs

bound guarantees each agent his expected cost when every possible ordering has an equal probability

of arriving for the service.
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2
Awelfarist approach to sequencing

problems with incentives

2.1 Introduction

This chapter adopts a holistic approach to analyze sequencing problems in a frameworkwhich focuses

on prioritizing a customer’s well-being under private information.
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2.1.1 Purpose

We live in an instant world where time is precious and convenience is an essential prerequisite. The

service sector is struggling under the burden of long waiting lines that hamper customer satisfaction

and their long term loyalty. This paper adopts a holistic approach to analyze sequencing problems

while prioritizing a customer’s well-being. One might argue that a consumer can always exercise his

option to walk away and not participate in the mechanism. However, if we look deeper into our

lifestyles, there are multiple instances where waiting in a line to get our jobs processed is not optional

but is either inevitable, voluntary or deemed as an absolute necessity. In such cases, the respective

service platforms often make an attempt to smoothen out the disutility of waiting and render a fair

treatment to all its customers. Ourmodel offers the participating individuals a basic layer of protection

against the agony of waiting in a queue to avail a service. This is done by guaranteeing each agent a

minimum level of utility as and when his final welfare is realized. Such an assurance acts as a safety

net for an agent and tends to improve a consumer’s overall satisfaction even in the face of adverse

circumstances. This welfarist approach can be justified throughmultiple real life examples of waiting-

time guarantees on services as well as scenarios where offering such a guarantee could benefit both

service providers and consumers at large.

Health care services and medical emergencies are an unavoidable part of our lives. In Sweden,

long waiting lines for surgical procedures pose a threat to the quality of their health policy agenda. To

reduce waiting lists, in 1992 the Swedish Government and the Federation of County Council agreed

on an initiative to offer a maximumwaiting-time guarantee. Patients awaiting medical procedures are

guaranteed a waiting time no longer than 3 months from the physician’s decision to treat/operate

(seeHanning (1996)). Similarly, UK’s national health service (NHS) provides emergency patients

with a four hours target window within which 95 percent of the patients need to be discharged or
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transferred1. India faces a massive congestion of vehicles at the highway toll plazas. When an individ-

ual drives on the highway, waiting at a toll plaza to pay the toll tax is just as necessary as waiting at the

airport check-in counter or the boarding gate before departure. The National Highway Authority of

India (NHAI) ensures that the number of toll lanes/booths are such that, the service time per vehicle

during peak hours is not more than 10 seconds. TheNHAI rules also suggest an increase in the num-

ber of toll lanes if the waiting time of the users exceeds 3minutes. Moreover, there are specific regions

in the country where riders are exempted from paying the toll tax altogether if the total waiting time

surpasses 3 minutes.

The COVID-19 pandemic has caused immense difficulties for customer care representatives at

call centers2. With employees unable to work efficiently from home, callers are facing unprecedented

waiting times to make essential inquiries and lodging complaints (broken gadgets, slow bandwidth,

canceling airline tickets, etc). Hence, it is vital for government agencies/companies to ensure their ex-

isting clientele does not experience extreme discomfort and lose their patience. Moreover, prolonged

queues at blood-donation clinics act as a major deterrent to voluntary donors 3. Blood collection or-

ganizations aim to be donor-friendly in terms of their waiting time experience. Although the findings

suggest a strong sense of commitment to donation, a waiting time guarantee is required to preserve

donor satisfaction and avoid putting undue stress on voluntary donors.

2.1.2 Our framework

We work in a standard sequencing environment with a finite set of agents. In our model, each agent

has a single job to process using a facility that can only serve one agent’s requirement at a time. It is

assumed that no job can be interrupted once it starts processing. A job is characterized by its pro-

cessing time and an agent’s waiting cost. The latter represents the disutility of waiting (per unit of

1https://www.nhsinform.scot/care-support-and-rights/health-rights/access/waiting-times
2https://www.washingtonpost.com/technology/2020/04/14/customer-service-coronavirus/
3See McKeever et al. (2006) and van Brummelen et al. (2018)
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time). The processing time of all agents are publicly known while the waiting costs are private in-

formation. There is a well established literature in this direction.4 We work in a private information

set-up where agents have quasi-linear preferences and the mechanism designer allows for monetary

incentives. Businesses often resort to monetary and non-monetary incentives to induce better queue

management (express passes for peak hours at theme parks, off season discounts, airlines providing

priority check-ins against a nominal fee, Amazon charging for faster deliveries and cashback offers for

those willing to wait, etc). For sequencing problems, mechanism design under incomplete informa-

tion was analyzed by Dolan (1978), Hain & Mitra (2004), Moulin (2007), Mitra (2002) and Suijs

(1996). A special case of sequencing problems where the processing times of the agents are identi-

cal is called queueing problems. Queueing problems have also been analyzed extensively from both

normative and strategic viewpoints.5

2.1.3 Contribution to the literature

The sequencing and queueing literature has studied the impact of imposing lower bounds on the util-

ity function in various contexts. The most natural bound is the first come first serve protocol where

there is a preexisting order in which agents arrive. From the cooperative game perspective, sequencing

games with initial order was analyzed by Curiel et al. (1989) and, from the mechanism design per-

spective, the queueing problem was addressed by Chun et al. (2017) and by Gershkov & Schweinzer

(2010). There are other fairness bounds that have been studied from the normative viewpoint. Iden-

tical cost bound (ICB)6 requires that each agent receives at least the utility he could expect under the

egalitarian solution if all agents were identical to him. For queueing problems, the notion of ICB was

4See De (2016), De (2013), De & Mitra (2017), De & Mitra (2019), Dolan (1978), Duives et al. (2015),
Hain &Mitra (2004), Mitra (2002), Moulin (2007) and Suijs (1996).

5See Chun (2006a), Chun (2006b), Chun et al. (2014b), Chun et al. (2019a), Chun et al. (2017), Chun
et al. (2019b), Hashimoto (2018), Kayı & Ramaekers (2010), Maniquet (2003), Mitra (2001), Mitra (2007),
Mitra &Mutuswami (2011) andMukherjee (2013).

6See Bevia (1996), Moulin (1991b), Moulin (1990a), Steihaus (1948) and Yengin (2013a).
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analyzed by Maniquet (2003), Chun (2006b), Kayı & Ramaekers (2010) and Mitra (2007). Chun

& Yengin (2017) have introduced welfare lower bounds with the k-welfare lower bound guaranteeing

each agent his utility at the kth queue position with zero transfer. Starting from the last position,

the center progressively reduces k (thus increasing the welfare levels) till there is a clash with certain

budgetary requirements. In the queueing literature, Gershkov& Schweinzer (2010) honor an agent’s

existing service rights by defining individual rationality with respect to an existing mechanism (first

come first serve and random arrival schedules). They have examined whether efficient reordering is

possible when individuals are rational with respect to the status quo.

We introduce the ”generalized minimum welfare bound”, which is a compact and unified rep-

resentation of all the existing bounds in the literature. Our welfarist approach gets enriched by this

universal representation which encompasses the fairness bounds and any other naturally/artificially

constructed bound. The generalized minimum welfare bound is type-dependent and guarantees an

assured level of utility to every agent 7 ,8. By virtue of the linear cost structure, one can easily observe

that such a bound can be decomposed and expressed as a product of two components- an agent’s own

waiting cost, θi (we do not consider interdependent waiting costs in this paper) and some function

of the job processing time vector,Oi(s). The componentOi(s) is the welfare parameter which varies

depending on the specific bound under consideration 9. For instance, say mechanism μ1 assures every

agent his worst case utility, i.e., when he is placed in the last position. Let, mechanism μ2 guarantee

every agent the utility he would have obtained under the first come first serve protocol. The welfare

parameter Oi(s) under μ1 is the sum of the processing times of all the agents while under μ2, it is the

sum of his own processing time and the processing time of all the agents preceding him in the initial

7This paper does not discuss the question of participation or tries to impose the individual rationality con-
straint (with respect to not getting the service) at any point.

8Every agent is entitled to getting his job processed. We work in a static framework where the facility starts
operating only after the finite set of agents have arrived.

9The welfare parameter of any agent purely depends on the job processing time vector (s) and not on the
waiting costs. Refer to how we define the job completion cost of an agent in the framework section below for
further clarity.
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order of arrival. The bound under μ2 is stricter than μ1 and guarantees a higher minimum welfare

(unless of course the agent coincidentally occupies the last position in the initial order too!)

2.1.4 Results

Under private information, we study the implications of a generalized minimum welfare bound in

a sequencing problem with monetary transfers. Our first result, identifies the “constrained welfare

property” which is a condition that is both necessary and sufficient to obtain outcome efficient and

strategyproof mechanisms that satisfy the generalized minimumwelfare bound. Constrained welfare

property requires that every agent’s welfare parameter must be bounded below by his job completion

time when he occupies the first position in the queue.

Given this property, our second theorem is a characterization result where we introduce the class

of ‘relative pivotal mechanisms’ which is a strict subset of the set of all VCGmechanisms and satisfies

the generalized minimum welfare bound. For any given vector of waiting costs, the main aspect of a

relative pivotal mechanism is to construct a ‘benchmark’ waiting cost. This is based on an optimiza-

tion exercise conducted using the welfare parameter of the agent and waiting costs of all other agents.

Given the benchmark waiting costs of all agents, under the relative pivotal mechanism, the transfer

of each agent has three parts. One part of the transfer depends on the difference between his welfare

parameter and his job completion timewith this benchmark waiting cost. The other part of the trans-

fer involves calculating the externality caused by this agent with his waiting cost on all other agents

relative to what would have happened if, ceteris paribus, this agent had the benchmark waiting cost.

The third part of the transfer is any non-negative valued function that depends on the waiting cost of

all other agents.

Moving forward, we address the issue of finding those relative pivotal mechanisms that satisfy

either feasibility or its stronger version, budget balance.10 We begin by identifying the ”weighted net

10It is well-known that feasibility of a mechanism requires that the sum of transfers across all agents is non-
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welfare” property which is a necessary condition to findmechanisms satisfying generalized minimum

welfare bounds, outcome efficiency and feasibility. We show that when there are two agents, we can

only get feasible (and not budget balanced) relative pivotal mechanisms if and only if each agent’s

welfare parameter equals the cost associated with getting served last. For more than two agents we

show that if the welfare parameter of each agent is the cost associated with getting served last, then we

can get budget balanced (hence, feasible) relative pivotal mechanism.

2.1.5 Applications

We apply our general results to sequencing problems with a natural ex-ante initial order (most com-

monly observed in our day to day lives). Our next application captures the essence of fairness by con-

structing an egalitarian bound that treats agents identically such that no agent suffers due to the het-

erogeneity of other’s preferences. In our final application, we allow for random arrival of queues. In

other words, every possible ordering of agents has an equal chance of arriving to avail a service.

For sequencing problems with initial order, there is a preexisting order on the agents. Any se-

quencing problems with a given initial order satisfies the constrained welfare property. Hence, for

sequencing problems with initial order, achieving outcome efficiency and eliciting private informa-

tion boils down to reordering the existing initial order to the outcome efficient order by using relative

pivotal mechanisms. In this context we can show that there is no feasible (and hence no budget bal-

anced) relative pivotal mechanism.11

Under Identical Costs Bound (ICB), every agent receives at least as much as his utility in the

benchmark/reference economy. The reference economy for any agent i requires that all other agents

have the same waiting cost and processing time as agent i. Since agents are identical in this sense, each

of them has an equal right to the resource. As a consequence, agent i can occupy any position in the

positive and budget balance requires that the sum of transfers across all agents is zero.
11For the queueing problem this impossibility was shown by Chun et al. (2017) and our result generalizes it

to the sequencing problems.
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queue with an equal chance. To define the Expected Cost Bound (ECB) for sequencing problems,

consider a reference economy where there are no transfers, agents arrive randomly and every arrival

order is equally likely. ECB requires that the utility of each agent is no less than the expected cost

of the agent associated with random arrival where each arrival order is equally probable. For queue-

ing problems, the notions of ICB and ECB are equivalent. For all sequencing problems with ICB

and ECB, both the constrained welfare property as well as the weighted net welfare property get sat-

isfied. Given these two properties, we obtain the relative pivotal mechanisms with ICB and ECB.We

also show that for both these bounds, when there are three agents, we can get feasible relative pivotal

mechanisms only for queueing problems.

2.1.6 Implication in terms of queueing problems

For the queueing problems with generalized minimum welfare bounds that satisfy the constrained

welfare property, one can give a more explicit form of the transfers associated with the relative pivotal

mechanism. We characterize the set of all mechanisms satisfying outcome efficiency, strategyproof-

ness and ICB (ECB) 12. For more than two agents, we provide a sufficient restriction on the welfare

parameter that guarantees the existence of budget balanced relative pivotal mechanisms. The suffi-

ciency condition also becomes necessary when welfare parameters are equal across agents.

2.2 The framework

Consider a finite set of agentsN = {1, 2, . . . , n} who want to process their jobs using a facility that

can be used sequentially. The job processing time can be different for different agents. Specifically,

for each agent i ∈ N, the job processing time is given by si > 0. Let θiSi measure the cost of job

completion for agent i ∈ N where Si ∈ R++ is the job completion time for this agent and θi ∈
12This is a generalization of the result by Chun & Yengin (2017) where we eliminate the gap between the

necessary and sufficient conditions.
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Θ := R++ denotes his constant per-period waiting cost where R++ is the positive orthant of the

real lineR. Due to the sequential nature of providing the service, the job completion time for agent

i depends not only on his own processing time si, but also on the processing time of the agents who

precede him in the order of service. By means of an order σ = (σ1, . . . , σn) on N, one can describe

the position of each agent in the order. Specifically, σi = k indicates that agent i has the k-th position

in the order. Let Σ be the set of n! possible orders onN. We define Pi(σ) = {j ∈ N \ {i} | σj < σi}

to be the predecessor set of i in the order σ. Similarly, Fi(σ) = {j ∈ N \ {i} | σj > σi} denotes

the follower (or successor) set of i in the order σ. Given a vector s = (s1, . . . , sn) ∈ Rn
++ and an

order σ ∈ Σ, the cost of job completion for agent i ∈ N is θiSi(σ), where the job completion time is

Si(σ) = ∑j∈Pi(σ) sj + si. Note that, for any i ∈ Nwe write, ∑j∈Pi(σ) sj = 0 if Pi(σ) = ∅. The agents

have quasi-linear utility of the form ui(σ, τi; θi) = −θiSi(σ) + τi where σ is the order, τi ∈ R is the

transfer that he receives and the parameter of the model θi is the waiting cost. Given any processing

time vector s = (s1, . . . , sn) ∈ Rn
++ define A(s) = ∑j∈N sj and, with slight abuse of notation, we

denote a sequencing problem by Ω and we denote the set of all sequencing problems with the set of

agentsN byS(N). A sequencing problemΩ ∈ S(N) is called a queueing problem if s = (s1, . . . , sn)

is such that s1 = . . . = sn. We denotes the set of all queueing problems with the set of agentsN by

Q(N). Clearly,Q(N) ⊂ S(N) for any givenN (such thatN is a finite set and n ≥ 2).

A typical profile of waiting costs is denoted by θ = (θ1, . . . , θn) ∈ Θn. For any i ∈ N, let θ−i,

denote the profile (θ1 . . . θi−1, θi+1, . . . θn) ∈ Θn−1 which is obtained from the profile θ by elimi-

nating i’s waiting cost. A mechanism μ = (σ, τ) constitutes of a sequencing rule σ and a transfer

rule τ. A sequencing rule is a function σ : Θn → Σ that specifies for each profile θ ∈ Θn a unique

order σ(θ) = (σ1(θ), . . . , σn(θ)) ∈ Σ. Because the sequencing rule is a function (and not a corre-

spondence) we will require a tie-breaking rule to reduce a correspondence to a function which, unless

explicitly discussed, is assumed to be fixed. We use the following tie-breaking rule. We take the lin-

ear order 1 ≻ 2 ≻ . . . ≻ n on the set of agents N. For any sequencing rule σ and any profile
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θ ∈ Θn with a tie situation between agents i, j ∈ N, we pick the order σ(θ) with σi(θ) < σj(θ)

if and only if i ≻ j. A transfer rule is a function τ : Θn → Rn that specifies for each profile

θ ∈ Θn a transfer vector τ(θ) = (τ1(θ), . . . , τn(θ)) ∈ Rn. Specifically, given any mechanism

μ = (σ, τ), if (θ′i, θ−i) is the announced profile when the true waiting cost of i is θi, then utility of i is

ui(μi(θ
′
i, θ−i); θi) = −θiSi(σ(θ′i, θ−i)) + τi(θ′i, θ−i) where μi(θ

′
i, θ−i) := (σ(θ′i, θ−i), τi(θ′i, θ−i)).

Given any Ω ∈ S(N), any θ ∈ Θn and any order σ ∈ Σ, define the aggregate cost as C(σ; θ), that is,

C(σ; θ) := ∑j∈N θjSj(σ).

A sequencing rule is outcome efficient if it minimizes the aggregate job completion cost. Amech-

anism implements a sequencing rule in dominant strategies if the transfer is such that truthful report-

ing for any agent weakly dominates false reporting irrespective of what other agents declare. Imple-

mentation of outcome efficient sequencing rules in dominant strategies has been well studied in the

literature on mechanism design under incomplete information. It is also well-known that, as long

as preferences are ‘smoothly connected’ (see Holmström (1979)), outcome efficient rules can be im-

plemented in dominant strategies if and only if the mechanism is a Vickrey-Clarke-Groves (VCG)

mechanism (see Clarke Clarke (1971), Atlamaz & Yengin (2008) and Vickrey (1961)).

Definition 1. A sequencing rule σ∗ is said to be outcome efficient if for any θ ∈ Θn, σ∗(θ) ∈

argminσ∈ΣC(σ; θ).

The ratio of the waiting cost and processing time of any agent i, that is, θi/si is known as the

urgency index. From Smith et al. (1956) it follows that σ∗ is outcome efficient if and only if the fol-

lowing holds: (OE) For any θ ∈ Θn, the selected order σ∗(θ) satisfies the following: For any i, j ∈ N,

θi/si > θj/sj ⇒ σ∗i (θ) < σ∗j (θ). We say that a mechanism μ = (σ, τ) satisfies outcome efficiency if

σ = σ∗.

Suppose that a waiting cost of zerowas admissible in the domain. Consider any outcome efficient
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order σ∗(θ) for θ ∈ Θn. We define the “induced” order σ∗(0, θ−i) as follows:

σ∗j (0, θ−i) =


σ∗j (θ)− 1 if j ∈ Fi(σ∗(θ)),

σ∗j (θ) if j ∈ Pi(σ∗(θ)),

n j = i

(2.1)

In words, given θ ∈ Θn and given any i ∈ N, σ∗(0, θ−i) is the order formed by setting the waiting

cost of agent i at zero and hence moving agent i to the last position (following the outcome efficiency

condition of Smith et al. (1956) by admitting zero waiting cost of agent i) so that only the agents in

the set behind Fi(σ∗(θ))move up by one position under the outcome efficient queue for the induced

profile (0, θ−i).

Definition 2. For a sequencing rule σ, a mechanism μ = (σ, τ) is strategyproof (dominant strategy

incentive compatible) if the transfer rule τ : Θn → Rn is such that for any i ∈ N, any θi, θ′i ∈ Θ and

any θ−i ∈ Θn−1,

ui(μi(θ); θi) ≥ ui(μi(θ
′
i, θ−i); θi). (2.2)

For a given sequencing rule σ, strategyproofness of a mechanism μ = (σ, τ) requires that the

transfer rule τ is such that truthful reporting for any agent weakly dominates false reporting nomatter

what others’ report.

Definition 3. Amechanism μ satisfies feasibility if for any θ ∈ Θn, ∑j∈N τi(θ) ≤ 0.

Definition 4. Amechanism μ satisfies budget balance if for any θ ∈ Θn, ∑j∈N τi(θ) = 0.

2.2.1 Generalized minimumwelfare bounds

Given any sequencingproblemΩ ∈ S(N), letOi(s)be thewelfareparameter of agent i. LetO(N; s) :=

(O1(s), . . . ,On(s)) ∈ Rn denote the welfare parameter vector. We represent a typical sequencing
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problem with generalized minimum welfare bounds by Γ = (Ω,O(N; s)) where Ω ∈ S(N) and

the associatedO(N; s) ∈ Rn is the welfare parameter vector.

Definition 5. ForΓ, amechanismμ = (σ, τ) satisfies generalizedminimumwelfare bounds (GMWB)

if the transfer rule τ : Θn → Rn is such that for any i ∈ N, any θi ∈ Θ and any θ−i ∈ Θn−1,

ui(μi(θi, θ−i); θi) ≥ −θiOi(s). (2.3)

2.3 GMWB, outcome efficiency and strategyproofness

Given any sequencing game with generalized minimum welfare bounds, Γ = (Ω,O(N; s)), we first

try to identify the restriction on O(N; s) for which we can get a mechanism satisfying outcome effi-

ciency, strategyproofness and GMWB. The property defined below puts a constraint on the welfare

parameter, indicating that an agentwill always need to incur atleast the cost of his ownprocessing time.

Thus, the GMWB is no less than the cost of serving that agent when he occupies the first position in

the queue.

Definition 6. Any sequencing problem with generalized minimum welfare bounds Γ =

(Ω,O(N; s)) satisfies the constrained welfare property ifO(N; s) = (O1(s), . . . ,On(s)) is such that

Oi(s) ≥ si ∀ i ∈ N. (2.4)

Let G(N) be the set of all Γ satisfying the constrained welfare property given by condition (2.4).

Theorem 1. The following statements are equivalent:

(SPC1) For aΓwecanfindamechanism that satisfies outcomeefficiency, strategyproofness andGMWB.

(SPC2) Γ satisfies the constrained welfare property, that is, Γ ∈ G(N).
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Given any Γ ∈ G(N) what is the set of all mechanisms that satisfy outcome efficiency, strate-

gyproofness and GMWB? The next result answers this question. Before going to the result we intro-

duce some notations and definitions. For any agent i ∈ N and any given profile θ−i ∈ Θn−1, define

the function

Ti(xi; θ−i) := ∑j∈N\{i} θjSj(σ∗(xi, θ−i)) + {Si(σ∗(xi, θ−i))−Oi(s)}xi, where xi ∈ R+. (2.5)

Observe that if Oi(s) > A(s) = ∑j∈N sj, then Si(σ∗(xi, θ−i)) < Oi(s) for all xi ∈ Θ and hence the

function Ti(xi; θ−i) has no maximum value xi ∈ Θ though the function has a least upper bound if

we set xi = 0. Hence, if Oi(s) > A(s), we have Ti(xi; θ−i) < Ti(0; θ−i) < ∞ for all xi ∈ Θ.13

One can also verify that even ifOi(s) = A(s), we haveTi(xi; θ−i) ≤ Ti(0; θ−i) < ∞ for all xi ∈ Θ.

However, ifOi(s) < si, then Si(σ∗(xi, θ−i)) > Oi(s) for all xi ∈ Θ and the function Ti(xi; θ−i) has

neither a maximum nor a least upper bound. Hence, for the function Ti(xi; θ−i) defined on xi ∈ Θ

to have a least upper bound, the constrained welfare property (of Definition 6) is necessary.

Definition 7. An outcome efficient mechanism μp = (σ∗, τp) is called a relative pivotal mechanism

if τp satisfies the following property: For any profile θ ∈ Θn and any agent i ∈ N,

τpi (θ) = {Si(σ∗(θ∗i , θ−i))−Oi(s)}θ∗i +RPi(θ) + hi(θ−i), (2.6)

where, given the function Ti(xi; θ−i) (defined in (2.5)), θ∗i ∈ R+ is such that Ti(θ∗i ; θ−i) ≥

Ti(xi; θ−i) for all xi ∈ Θ, RPi(θ) := ∑
j∈N\{i}

(|Pj(σ∗(θ∗i , θ−i))| − |Pj(σ∗(θ))|)θjsi and hi :

Θ|N\{i}| → R+.

LetR(N) denote the set of all relative pivotal mechanisms defined in Definition 7.

13Given (2.1), the order σ∗(0; θ−i) is well-defined and hence the functionTi(xi; θ−i) is well-defined at xi =
0.
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Theorem 2. For any Γ ∈ G(N), an outcome efficientmechanism μ = (σ∗, τ) satisfies strategyproof-

ness and GMWB if and only if it is a relative pivotal mechanism, that is, μ ∈ R(N).

We try and explain Definition 7 and Theorem 2. It is well-known from Holmström (1979) that

for outcome efficiency and strategyproof it is necessary that the mechanism μ = (σ∗, τ) be a VCG

mechanism where the transfers satisfy the following property: For any profile θ ∈ Θn and any agent

i ∈ N, τi(θ) = −C(σ∗(θ); θ) + θiSi(σ∗(θ)) + gi(θ−i) where gi : Θ|N\{i}| → R is arbitrary. The

relative pivotalmechanismgiven inDefinition 7 is aVCGmechanismwhich is obtained for each agent

i ∈ N and each profile θ ∈ Θn by substituting gi(θ−i) = Ti(θ∗i ; θ−i) + hi(θ−i) where Ti(θ∗i ; θ−i)

(resulting fromtheoptimization exercise inDefinition7) and the restrictionhi(θ−i) ≥ 0arenecessary

to satisfy theGMWB.After appropriate simplification of theVCG transfer τi(θ) = −C(σ∗(θ); θ) +

θiSi(σ∗(θ)) + gi(θ−i) by using gi(θ−i) = Ti(θ∗i ; θ−i) + hi(θ−i) we get that for all θ ∈ Θn and all

i ∈ N,

τpi (θ) = −C(σ∗(θ); θ) + θiSi(σ∗(θ)) + Ti(θ∗i ; θ−i) + hi(θ−i). (2.7)

Simplifying (2.7) we get a subset of VCG mechanisms which we call relative pivotal mechanisms

(Definition 7). From the proof of Theorem 2 it is clear that given any relative pivotal mechanism

μp = (σ∗, τp) ∈ R(N), for any θ ∈ Θn and any i ∈ N, ui(μ
p
i (θi, θ−i); θi) = −θiOi(s) +

{Ti(θ∗i ; θ−i)− Ti(θi; θ−i) + hi(θ−i)} ≥ −θiOi(s) since Ti(θ∗i ; θ−i)− Ti(θi; θ−i) + hi(θ−i) ≥ 0.

Hence, GMWB is satisfied for all agents.

The sum RPi(θ) = ∑j∈N\{i}(|Pj(σ∗(θ∗i , θ−i))| − |Pj(σ∗(θ))|)θjsi in condition (2.6) captures

the relative pivotal nature of this sub-class of VCG mechanisms. Given any profile i ∈ N, any

θ−i ∈ Θn−1 the ‘benchmark’ type θ∗i of agent i is obtained from the optimization exercise in Def-

inition 7 and if this θ∗i is taken along with θ−i ∈ Θn−1, then the resulting benchmark outcome effi-

cient order is σ∗(θ∗i , θ−i). Given any θi ∈ Θ, this benchmark order σ∗(θ∗i , θ−i) may or may not be

the same as the actual outcome efficient order σ∗(θi, θ−i) though the relative order across the agents
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other than i remains unchanged.14 Given σ∗(θ∗i , θ−i) and σ∗(θi, θ−i), we can have the threemutually

exclusive and exhaustive possibilities-(i) Pi(σ∗(θi, θ−i)) ⊂ Pi(σ∗(θ∗i , θ−i)), (ii) Pi(σ∗(θi, θ−i)) =

Pi(σ∗(θ∗i , θ−i)), and, (iii) Pi(σ∗(θ∗i , θ−i)) ⊂ Pi(σ∗(θi, θ−i)).

(R1) If Pi(σ∗(θi, θ−i)) ⊂ Pi(σ∗(θ∗i , θ−i)) (so that θ∗i ∈ [0, θi)), then relative to σ∗(θ∗i , θ−i), agent

i has inflicted an incremental cost of θjsi to each agent j ∈ Pi(σ∗(θ∗i , θ−i) \ Pi(σ∗(θi, θ−i))

under the actual order σ∗(θi, θ−i). Hence, for any j ∈ Pi(σ∗(θ∗i , θ−i) \ Pi(σ∗(θi, θ−i)), we

get |Pj(σ∗(θ∗i , θ−i))| − |Pj(σ∗(θi, θ−i))| = −1. Therefore, using the sum in (2.6) it follows

that agent i has to pay

RPi(θ) = ∑
j∈N\{i}

(|Pj(σ∗(θ∗i , θ−i))|− |Pj(σ∗(θi, θ−i))|)θjsi = − ∑
j∈Pi(σ∗(θ∗i ,θ−i)\Pi(σ∗(θi,θ−i))

θjsi.

When can we have θ∗i = 0? If for any agent i ∈ N we have Oi(s) ≥ A(s), then for

every θ−i ∈ Θn−1,Ti(xi; θ−i) is decreasing in xi ∈ Θ implying that by setting θ∗i = 0

we get Ti(0; θ−i) ≥ Ti(xi, θ−i) for all xi ∈ Θ. In this case,

RPi(θ) = ∑
j∈N\{i}

(|Pj(σ∗(0, θ−i))| − |Pj(σ∗(θi, θ−i))|)θjsi = − ∑
j∈Fi(σ∗(θ∗i ,θ−i)

θjsi.

(R2) IfPi(σ∗(θi, θ−i)) = Pi(σ∗(θ∗i , θ−i)) , then σ∗(θ∗i , θ−i) = σ∗(θi, θ−i) and agent i has

neither inflicted any incremental cost to any other agent nor has agent i induced any

incremental benefit for any other agent, that is, |Pj(σ∗(θ∗i , θ−i))| = |Pj(σ∗(θi, θ−i))|
14Specifically, for any σ∗(θ∗i , θ−i) and σ∗(θi, θ−i), the relative order across the agents other than i remains

unchanged means that for any j, k ∈ N \ {i} with j ̸= k, σ∗j (θ
∗
i , θ−i) > σ∗k (θ

∗
i , θ−i) if and only if and

σ∗j (θi, θ−i) > σ∗k (θi, θ−i).

26



for all j ∈ N. Hence, using the sum in (2.6), it follows that

RPi(θ) = ∑
j∈N\{i}

(|Pj(σ∗(θi, θ−i))| − |Pj(σ∗(θ∗i , θ−i))|)θjsi = 0

.

(R3) If Pi(σ∗(θ∗i , θ−i)) ⊂ Pi(σ∗(θi, θ−i)) (so that θ∗i > θi), then relative to the out-

come efficient order σ∗(θ∗i , θ−i), agent ihas given an incremental benefit of θjsi to each

j ∈ Pi(σ∗(θi, θ−i)) \ Pi(σ∗(θ∗i , θ−i) under the outcome efficient order σ∗(θi, θ−i).

Hence, for any j ∈ Pi(σ∗(θi, θ−i)) \ Pi(σ∗(θ∗i , θ−i), we have |Pj(σ∗(θ∗i , θ−i))| −

|Pj(σ∗(θi, θ−i))| = 1. Thus, from the sum in (2.6), it follows that agent i gets a re-

ward of

RPi(θ) = ∑
j∈N\{i}

(|Pj(σ∗(θ∗i , θ−i))|− |Pj(σ∗(θi, θ−i))|)θjsi = ∑
j∈Pi(σ∗(θi,θ−i))\Pi(σ∗(θ∗i ,θ−i)

θjsi.

Therefore, (R1), (R2) and (R3) explains how the sumRPi(θ) in (2.6) for agent iwith type θi, given θ−i

is calculated based on the difference in the cost of all other agentsN \ {i} that results from the actual

profile specific outcome efficient order σ∗(θi, θ−i) relative to the benchmark outcome efficient order

σ∗(θ∗i , θ−i). What follows from the above discussion is that for all θ ∈ Θn and each i ∈ N, either

|Pj(σ∗(θ∗i , θ−i))| − |Pj(σ∗(θ))| ∈ {−1, 0} for all j ∈ N \ {i} or |Pj(σ∗(θ∗i , θ−i))| − |Pj(σ∗(θ))| ∈

{0, 1} for all j ∈ N \ {i}. Equivalently, we cannot find a profile θ ∈ Θn and an agent i ∈ N such

that |Pj(σ∗(θ∗i , θ−i))| − |Pj(σ∗(θ))| = −1 for some agent j ∈ N \ {i} and |Pk(σ∗(θ∗i , θ−i))| −

|Pk(σ∗(θ))| = 1 for other agent k ∈ N \ {i, j}.
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2.3.1 Feasibility and budget balance

Before going to our results on identifying relative pivotalmechanisms that ensures outcome efficiency,

strategyproofness, GMWB and feasibility, we first drop the strategyproofness requirement and pro-

vide a necessary restriction for getting mechanisms that satisfy outcome efficiency, GMWB and feasi-

bility.

Definition 8. A sequencing problem with generalized minimum welfare bounds Γ =

(Ω,O(N, s)) ∈ G(N) satisfies the property of weighted net welfare if

D(O(N, s)) := ∑
j∈N

sj
{
Oj(s)−

( sj + A(s)
2

)}
≥ 0. (2.8)

For any sequencing problemwith generalizedminimumwelfare bounds Γ = (Ω,O(N, s))with

Oi(s) = si for all i ∈ N, condition (2.8) fails to hold. For any sequencing problem with generalized

minimum welfare bounds Γ = (Ω,O(N, s)) with Oi(s) ≥ (si + A(s))/2 for all i ∈ N, condi-

tion (2.8) is satisfied. Let G(N)(⊂ G(N)) denote the set of all sequencing problems with GMWB

satisfying the constrained welfare property and the weighted net welfare.

Lemma 1. If for any Γ = (Ω,O(N, s)) ∈ G(N), we can find a mechanism that satisfies outcome

efficiency, GMWB and feasibility, then Γ must satisfy the weighted net welfare, that is, Γ ∈ G(N).

Remark 1. For any sequencing problem with generalized minimum welfare bounds Γ =

(Ω,O(N, s)), a goodway to explain condition (2.8) is in terms ofmean μ(s), varianceV(s) and coeffi-

cient of variationCoV(s) :=
√

V(s)/μof the elements of the processing time vector s = (s1, . . . , sn).

Specifically, an equivalent way of representing condition (2.8) is the following:

∑
j∈N

wj(s)Oj(s) ≥
μ(s)
2

[
n+ 1+ {CoV(s)}2

]
, (2.9)
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where wi(s) := si/A(s) for all i ∈ N.15

(i) If we have the queueing problem, that is if Ω ∈ Q(N) with s1 = . . . = sn = a > 0, then

μ(s) = a, CoV(s) = 0 and wi(s) = 1/n for all i ∈ N. Condition (2.9) holds if and only

if ∑j∈N Oj(s)/n ≥ (n+ 1)a/2. Moreover, if we also require that the generalized minimum

welfare bound of all the agents are identical, that is Oi(s) = B∗ for all i ∈ N, then condition

(2.9) requires B∗ ≥ (n+ 1)a/2.

(ii) It is well-known that CoV(s) ≤
√
n− 1 for any positive integer n and any s = (s1, . . . , sn) ∈

Rn
++. Therefore, a sufficient condition for (2.9) to hold for any sequencing problemwith gen-

eralized minimum welfare bounds Γ = (Ω,O(N, s)) is obtained by substituting CoV(s) =
√
n− 1 in (2.9) that yields ∑j∈N wj(s)Oj(s) ≥ nμ(s) = A(s).

Remark 2. Fix any N and any s = (s1, . . . , sn) ∈ Rn
++. Let O(N, s) denote the set of welfare

parameter vectors O(N, s) = (O1(s), . . . ,On(s)) satisfying the constrained welfare property and

the weighted net welfare. It is obvious that the set O(N, s) is non-empty and convex. It is non-

empty since for Ō(N, s) = (Ō1(s), . . . , Ōn(s)) with Ōi(s) = (si + A(s))/2 for all i ∈ N, in-

equality (2.8) holds. For convexity of O(N, s), observe that if O(N, s),O′(N, s) ∈ O(N, s) so

that D(O(N, s)) ≥ 0 and D(O′(N, s)) ≥ 0, then, given (2.8) it easily follows that for any λ∗ ∈

[0, 1] we get D(λ∗O(N, s) + (1 − λ∗)O′(N, s)) = λ∗D(O(N, s)) + (1 − λ∗)D(O′(N, s)) ≥

0 implying λ∗O(N, s) + (1 − λ∗)O′(N, s) ∈ O(N, s). For any i ∈ N, define Ei(s) := si +(
∑j∈N sj ∑k∈N\{j} sk

)
/si and Oi(N, s) := (Ei(s), s−i).16 It is easy to verify that for any i ∈ N,

Oi(N, s) = (Ei(s), s−i) ∈ O(N, s) sinceD(Oi(N, s)) = 0. Moreover, given (2.8) it is also obvious

that for any i ∈ N and anyO(N, s) ∈ Rn
++ such thatOi(N, s) ≥ O(N, s) andO(N, s) ̸= Oi(N, s),

we have O(N, s) ̸∈ O(N, s). Therefore, for any i ∈ N, Oi(N, s) is a boundary point of the set
15To derive inequality (2.9) we have used the following equalities: ∑j∈N s2j = nVar(s) + n{μ(s)}2 =

n{μ(s)}2{1+ Cov(s)} = A(s)μ(s){1+ Cov(s)}.
16Note that if |N| = 2, then Ei = A(s) for any i ∈ N.
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O(N, s). Further, for the same type of reasoning, Ō(N, s) = (Ō1(s), . . . , Ōn(s)) ∈ O(N, s) such

that Ōi(s) = (si + A(s))/2 for all i ∈ N is also a boundary point of O(N, s). However, one can

verify that ∑j∈N wj(s)Oi(N, s) = Ō(N, s), that is, Ō(N, s) is a weighted sum of the elements of the

set {{Oi(N, s)}i∈N} with weight wi(s) = si/A(s) for each i ∈ N. The set {{Oi(N, s)}i∈N} plays

a key role in explaining the set O(N, s). For any λ = (λ1, . . . , λn) ∈ [0, 1]n with ∑j∈N λj = 1,

consider the vector∑j∈N λjOj(N, s) = (λ1E1(s) + (1− λ1)s1, . . . , λnEn(s) + (1− λn)sn). One can

verify thatO(N, s) is a non-empty and convex set given by

O(N, s) =
{
O(N, s) ∈ RN

++ | ∃λ ∈ [0, 1]n with ∑j∈N λj = 1, s.t. O(N, s) ≥ ∑j∈N λjOj(N, s)
}

.

(2.10)

Therefore, the setO(N, s) is non-empty and convex with the added property that any element in this

set weakly vector dominates some weighted sum of the elements of the set {{Oi(N, s)}i∈N}.

Given Lemma 1, from now on we restrict our attention only to the set G(N) of all sequencing

problems with GMWB satisfying the constrained welfare property and the weighted net welfare, that

is, we consider any Γ = (Ω,O(N, s)) such that O(N, s) ∈ O(N, s) and the setO(N, s) is given by

(2.10) of Remark 2.

Definition 9. An outcome efficient mechanism μ̂p = (σ∗, τ̂p) is called a minimal relative pivotal

mechanism if it is a relative pivotalmechanismwith the property that for all i ∈ N and all θ−i ∈ Θn−1,

hi(θ−i) = 0, that is, for any profile θ ∈ Θn and any agent i ∈ N,

τ̂pi (θ) = {Si(σ∗(θ∗i , θ−i))−Oi(s)}θ∗i +RPi(θ), (2.11)

where θ∗i ∈ R+ ensures Ti(θ∗i ; θ−i) ≥ Ti(xi; θ−i) for all xi ∈ Θ and we have

RPi(θ) = ∑
j∈N\{i}

(|Pj(σ∗(θ∗i , θ−i))| − |Pj(σ∗(θ))|)θjsi.
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Observe that if a relative pivotal mechanism μp = (σ∗, τp) ∈ R(N) is feasible, then the minimal

relative pivotal mechanism μ̂p = (σ∗, τ̂p) is also feasible since for any θ ∈ Θn and any i ∈ N, τpi (θ)−

τ̂pi (θ) = hi(θ−i) ≥ 0. Therefore, for any Γ ∈ G(N), if we want to check whether we can find a

feasible relative pivotal mechanism or not, we simply need to check the prospect of feasibility with the

minimal relative pivotal mechanism μ̂p.

Proposition 1. For any Γ = (Ω,O(N, s)) ∈ G(N) such that |N| = 2we have the following results:

(B2a) A feasible relative pivotal mechanism exists if and only ifO1(s) ≥ A(s) andO2(s) ≥ A(s).

(B2b) There is no budget balanced relative pivotal mechanism.

Canwe find budget balanced relative pivotal mechanisms for sequencing problems with GMWB

satisfying the constrained welfare and the weighted net welfare when there are more than two agents?

Proposition 2. For any Γ = (Ω,O(N, s)) ∈ G(N) such that |N| ≥ 3 and Oi(s) ≥ A(s) for all

i ∈ N, we can find budget balanced relative pivotal mechanisms.

Remark 1 (ii) states that theweighted average of the welfare parameters is no less than the aggregate

processing time (specifically,∑j∈N wj(s)Oj(s) ≥ A(s)) is a sufficient condition forweightednetwelfare

property. Proposition 1 shows that the welfare parameter of each agent is no less than the aggregate

processing time is necessary and sufficient for feasibility relative pivotalmechanismswhen there are two

agents and Proposition 2 shows that the same condition is sufficient to get budget balanced relative

pivotal mechanism when there are more than two agents. What can we say about obtaining feasible

relative pivotal mechanism for any Γ = (Ω,O(N, s)) ∈ G(N) such that |N| ≥ 3 and there exists

at least one agent with Oi(s) ∈ (si,A(s))? It is difficult to answer this question in general as the

transfers associated with any relative pivotal mechanism lacks closed form representation. However,

the following example suggests that one would expect to get more restriction on the processing time
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of the agents (over and above what is required under the constrained welfare andweighted net welfare

properties) to get feasible relative pivotal mechanisms.

Example 1. Consider any Γ = (Ω,O(N, s)) ∈ G(N) such that |N| = 3 andOi(s) = si+maxj ̸=i sj

for all i ∈ N. Without loss of generality, assume that s1 ≥ s2 ≥ s3. Observe that condition (2.8) holds

since D(s) = s1(s2 − s3)/2+ s2(s1 − s3)/2+ s3(s1 − s2)/2 ≥ 0. Hence, Γ = (Ω,O(N, s)) ∈

G(N). Consider the profile θ ∈ Θ3 such that σ∗j (θ) = n+ 1− j for all j ∈ N and in particular

θ3/s3 = a > θ2/s2 = b > θ1/s1 = c > 0. Using the function Ti(xi; θ−i) (in (2.5)), we can fix

θ∗1 = s1b, θ∗2 = s2c and θ∗3 = s3c. Then, using the transfers associatedwith theminimal relative pivotal

mechanism (Definition 9), we get the following:

1. τ̂1(θ) = s1s3b,

2. τ̂2(θ) = −cs2(s1 − s3), and

3. τ̂3(θ) = −cs3(s1 − s2)− s3s2b.

If s1 > s2 and a > b > c+ c[s2(s1 − s3)/s3(s1 − s2)], then ∑j∈N τ̂j(θ) = (b− c)s3(s1 − s2) −

cs2(s1 − s3) > 0 and feasibility gets violated. Hence, for feasibility to hold it is necessary that s1 =

s2 ≥ s3 which is a restriction on the processing time vector s = (s1, s2, s3).

2.4 Applications

2.4.1 Sequencingwith a given initial order

For a sequencing problem Ω ∈ S(N) with initial order, there is a preexisting order in which the

agents have arrived to use the facility and the job processing starts only after all agents have arrived

to use the facility. This problem is the natural extension of the problem of reordering an existing

queue (addressed by Chun et al. (2017) and by Gershkov & Schweinzer (2010)) to the sequencing

32



problem. Suppose that initial order of arrival is σ0 ∈ Σ. In this case, the welfare parameter vector is

Oσ0(N, s) = (Oσ0
1 (s), . . . ,Oσ0

n (s)) ∈ Rn
++ where for each i ∈ N, Oσ0

i (s) = si + ∑j∈Pi(σ0) sj and

hence for any profile θ ∈ Θn, ∑j∈N θjOσ0
j (s) = C(σ0, θ). Let I(N) = {(Ω,Oσ0(N, s)) | Ω ∈

S(N), σ0 ∈ Σ} denote the set of all sequencing problems with initial order. Every (Ω,Oσ0(N, s)) ∈

I(N) satisfies the constrained welfare property since for each i ∈ N, Oσ0
i (s) = si + ∑j∈Pi(σ0) sj ≥

si. Moreover importantly, every (Ω,Oσ0(N, s)) ∈ I(N) satisfies the weighted net welfare since

D(s) = ∑j∈N sj{Sj(σ0)− (sj + A(s))/2} = ∑j∈N(sj/2){(∑k∈Pj(σ0) sk − ∑k∈Fj(σ0) sk}

= ∑j∈N ∑k∈Pj(σ0)(sjsk/2)− ∑j∈N ∑k∈Fj(σ0)(sjsk/2) = 0 implying that condition (2.8) holds.17

Hence, we get I(N) ⊂ G(N). One can check that the special feature of the relative pivotal mecha-

nisms is that the function Ti(xi; θ−i) (defined in (2.5)) has the following form:

TI
i(xi; θ−i) =

 ∑
j∈Pi(σ∗(xi,θ−i))

sj − ∑
j∈Pi(σ0)

sj

 xi + ∑
j∈N\{i}

θjSj(σ∗(xi, θ−i)).18 (2.12)

2.4.2 Identical cost bounds

Identical cost bounds (ICB) requires that each agent i ∈ N receives at least the utility he could ex-

pect if all agents were like him (both in terms of waiting cost as well as in terms of processing time)

in a reference economy. This means that each agent i ∈ N in his reference economy has an equal

chance of facing each order from Σ. Thus, ICB requires that for any agent i ∈ N and any profile

θ ∈ Θn, ui(σ(θ), τi(θ); θi) ≥ −θi((n + 1)si/2) where θi((n + 1)si/2) represents the expected

cost of agent i with waiting cost θi and processing time si when all agents have the same processing

17The reason for the last equality is the following: For any two agents j, k ∈ N, {k ∈ Pj(σ0) ⇔ j ∈ Pk(σ0)}
which implies that for any term of the form sjsk/2, there is exactly one term of the form−sjsk/2 that cancels it
out.

18Note that for any i ∈ N, any θ−i ∈ Θn−1 and any xi ∈ R+, {Si(σ∗(xi, θ−i)) − Oi(s)}xi =[
∑

j∈Pi(σ∗(xi ,θ−i))
sj + si − ∑j∈Pi(σ0) sj − si

]
xi =

[
∑j∈Pi(σ∗(xi ,θ−i)) sj − ∑j∈Pi(σ0) sj

]
xi.
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time si and agent i gets each of the positions 1 to n with probability 1/n. For a sequencing problem

Ω ∈ S(N) with generalized minimum welfare bounds given by ICB, the welfare parameter vector

is Os(N, s) = (Os1
1 (s), . . . ,Osn

n (s)) ∈ Rn
++ where for each i ∈ N, Osi

i (s) = (n + 1)si/2. Let

C(N) = {(Ω,Os(N, s)) | Ω ∈ S(N)} denote the set of all sequencing problems with ICB and let

Γs represent a typical sequencing problem with ICB in C(N). Since for any (Ω,Os(N, s)) ∈ C(N),

Osi
i (s) = (n+ 1)si/2 > si for every i ∈ N, the constrained welfare property is satisfied. Moreover,

D(s) = ∑j∈N sj{(n + 1)sj/2 − (sj + A(s))/2} = ∑j∈N sj{∑k ̸=j(sj − sk)} = ∑n−1
j=1 ∑k>j(sj −

sk)2 ≥ 0 and hence condition (2.8) also holds. Therefore, C(N) ⊂ G(N). One can easily verify that

the special feature of the relative pivotal mechanisms in this context is that the function Ti(xi; θ−i)

(provided in (2.5)) has the following form:

TC
i (xi; θ−i) =

 ∑
j∈Pi(σ∗(xi,θ−i))

sj −
(n− 1)si

2

 xi + ∑
j∈N\{i}

θjSi(σ∗(xi, θ−i)).19 (2.13)

2.4.3 Expected cost bounds

The expected cost bounds (ECB) requires that the utility of each agent is no less than the expected cost

of the agent associated with random arrival where each arrival order is equally likely. Formally, ECB

requires the following property: For any agent i ∈ N and any profile θ ∈ Θn, ui(σ(θ), τi(θ); θi) ≥

−θi
(

∑σ∈Σ
Si(σ)
n!

)
. Define S̄i := si + ∑j∈N\{i}(sj/2) for each i ∈ N. It is quite easy to verify that for

19Observe that for any i ∈ N, any θ−i ∈ Θn−1 and any xi ∈ R+,

{Si(σ∗(xi, θ−i))−Oi(s)}xi =

 ∑
j∈Pi(σ∗(xi ,θ−i))

sj + si −
(n+ 1)si

2

 xi =

 ∑
j∈Pi(σ∗(xi ,θ−i))

sj −
(n− 1)si

2

 xi.
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each agent i ∈ N, ∑σ∈Σ
Si(σ)
n! = S̄i.20 Therefore, an equivalent representation of the ECB require-

ment is that for any agent i ∈ N and any profile θ ∈ Θn, ui(σ(θ), τi(θ); θi) ≥ −θiS̄i.

For a sequencing problem Ω ∈ S(N) with generalized minimum welfare bounds given the

ECB conditions, the welfare parameter vector is OS̄(N, s) = (OS̄1
1 (s), . . . ,OS̄n

n (s)) ∈ Rn
++ where

for each i ∈ N, OS̄i
i (s) = S̄i. Let E(N) = {(Ω,OS̄(N, s)) | Ω ∈ S(N)} denote the set

of all sequencing problems with ECB and let ΓS̄ represent a typical sequencing problem with ECB

in E(N). All sequencing problems with ECB as their generalized minimum welfare bounds satisfy

the constrained welfare property. In particular, observe that for any ΓS̄ ∈ E(N) and any i ∈ N,

OS̄i
i (s) = S̄i = si + ∑j∈N\{i}(sj/2) > si implying that the constrained welfare property given by

condition (2.4) holds. Further, D(s) = ∑j∈N sj{(sj + A(s))/2− (sj + A(s))/2} = 0 and hence

condition (2.8) also holds. Therefore, E(N) ⊂ G(N). One can verify that the special feature of the

relative pivotal mechanisms in this context is that the functionTi(xi; θ−i) (in condition (2.5)) has the

following form:

TE
i (xi; θ−i) =

[
∑

k∈Pi(σ∗(xi,θ−i))

sk
2
− ∑

k∈Fi(σ∗(xi,θ−i))

sk
2

]
xi + ∑

j∈N\{i}
θjSi(σ∗(xi, θ−i)).21 (2.14)

Remark 3. Clearly, the bounds associated with ICB and ECB are different for any sequencing prob-

lemwhich is not a queueingproblem, that is, for anyΩ ∈ S(N) \Q(N). However, for anyqueueing

problemΩ ∈ Q(N)with s1 = . . . = sn = a > 0, S̄i = (n+ 1)a/2 for all i ∈ N implying that the

20The equality ∑σ∈Σ
Si(σ)
n! = S̄i states that the average completion time of each agent i equals S̄i. The sum

in S̄i has two components-own processing time si and half of the total processing time of all other agents j ̸= i.
In any possible ordering σ ∈ Σ, an agent will always incur his own processing time and hence si enters S̄i with
probability one. Moreover, observe that any other agent j ̸= i precedes agent i in any ordering σ if and only if
he does not precede agent i in the complement ordering σc. Therefore, when we consider all possible orderings
to calculate agent i’s average completion time, sj for j ̸= i will occur in exactly half of the cases as a part of the
completion time of agent i.

21Observe that for any i ∈ N, any θ−i ∈ Θn−1 and any xi ∈ R+, {Si(σ∗(xi, θ−i)) − Oi(s)}xi =[
∑

j∈Pi(σ∗(xi ,θ−i))
sj + si − ∑

j∈N\{i}

sj
2 − si

]
xi =

[
∑k∈Pi(σ∗(xi ,θ−i))

sk
2 − ∑k∈Fi(σ∗(xi ,θ−i))

sk
2

]
xi.
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notions of ICB and ECB are equivalent.

2.4.4 Feasibility and budget balance

Sequencingwith given initial order

Using Proposition 1 it follows that if we consider any two agent sequencing problemwith initial order

(Ω,Oσ0(N, s)) ∈ I(N), then we cannot find a mechanism that satisfies outcome efficiency, strate-

gyproofness, GMWB and feasibility since for any agent (i say) having first position in the initial order

σ0, Oi(s) = si < A(s). The discussion to follow shows that this impossibility result holds in general

for any sequencing problems with given initial order.

Remark 4. Consider any Γ0 = (Ω,Oσ0(N, s)) ∈ I(N) such that |N| ≥ 3. We provide certain

observations about the minimal relative mechanism μ̂ = (σ∗, τ̂) with the Ti(xi; θ−i) function given

by condition (2.12).

(IO1) Let i ∈ N be that agent having first queueing position under that initial order σ0, that

is, Si(σ0) = si. Then, for any profile θ ∈ Θn, θ∗i = si.{max{θj/sj}j∈N\{i}} is a so-

lution to the maximization of the function TI
i(xi : θ−i) and we select σ∗(θ∗i , θ−i) such

that Pi(σ∗(θ∗i , θ−i)) = Pi(σ0) = ∅. Therefore, we have θ∗i [Si(σ∗(θ
∗
i , θ−i)) − Oi(s)] =

θ∗i [si − si] = 0 and hence using (2.12) it follows that the transfer associated with the minimal

relative pivotal mechanism μ̂ = (σ∗, τ̂) for agent i ∈ N is

τ̂i(θ) = si ∑
j∈Pi(σ∗(θ))

θj.

(IO2) Let k ∈ N be that agent having last queueing position under that initial order σ0, that is,

Si(σ0) = A(s) = ∑j∈N sj. Then, using argument similar to the one used in (R1), it follows

that for any θ ∈ Θn, θ∗k = 0 and Pk(σ∗(0, θ−k)) = Pi(σ0) = N \ {k}. Therefore, we
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have θ∗i [Si(σ∗(0i, θ−i))− Oi(s)] = θ∗i [A(s)− A(s)] = 0 and hence using (2.12) it follows

that the transfer associated with theminimal relative pivotal mechanism μ̂ = (σ∗, τ̂) for agent

k ∈ N is

τ̂k(θ) = −sk ∑
j∈Fk(σ∗(θ))

θj.

Points (IO1) and (IO2) of Remark 4 show that given a sequencing problem with initial order

σ0, the explicit form of the minimal relative pivotal transfers of the agents having the first and last

positions under the initial order σ0 are easy to derive. However, it is difficult to get an explicit form

of the minimal relative pivotal transfers for agents having other positions under the initial order σ0.

Despite this difficulty, using points (IO1) and (IO2) of Remark 4 and by appropriate construction of

a profile we can prove the following impossibility result.

Proposition 3. For any Γ0 = (Ω,Oσ0(N, s)) ∈ I(N) with |N| ≥ 3, there is no mechanism that

satisfies outcome efficiency, strategyproofness, GMWB and feasibility.

ICB and ECB

Using Proposition 1 one can show that if we consider (Ω,Os(N, s)) ∈ C(N) with two agentsN =

{1, 2}, thenwe cannot find amechanism that satisfies outcome efficiency, strategyproofness, GMWB

and feasibility since we require 3s1/2 ≥ A(s) and 3s2/2 ≥ A(s) to hold simultaneously which

is impossible. Similarly, using Proposition 1 one can also show that if we consider (Ω,OS̄(N, s)) ∈

E(N)with two agentsN = {1, 2}, thenwe cannot find amechanism that satisfies outcome efficiency,

strategyproofness, GMWB and feasibility since, for each i, j ∈ {1, 2}with i ̸= j, we have si + sj/2 <

A(s) = s1 + s2. What happens when we have more that two agents?

Proposition 4. For any (Ω,O(N, s)) ∈ C(N) ∪ E(N) such that |N| = 3, if we can find a feasible

relative pivotal mechanism, then Ω ∈ Q(N).
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Proposition 4 states that when there are three agents, if we can find a mechanism satisfying out-

come efficiency, strategyproofness, feasibility and, either ICB or ECB, then we must have a queueing

problem. It is well-known from the existing literature on queueing problems that, when there are

three or more agents we can find mechanisms that satisfy budget balance along with outcome effi-

ciency, strategyproofness and ICB (or ECB).22 Therefore, before concluding, we analyze queueing

problems with GMWB in greater details.

2.5 Queueing problems

Throughout this section we assume without loss of generality that s1 = . . . = sn = 1, and, given any

queueing problem Ω ∈ Q(N), we define the welfare parameter vector asO(N) = (O1, . . . ,On) ∈

Rn. Therefore, we represent any queueing problem with GMWB as ΓQ = (Ω,O(N)). Any ΓQ =

(Ω,O(N)) satisfies the constrained welfare property if O(N) = (O1, . . . ,On) is such that Oi ≥ 1

for all i ∈ N. One can easily verify that the special feature of the relative pivotal mechanisms in this

context is that the function Ti(xi; θ−i) (given by (2.5)) has the following form:

TQ
i (xi; θ−i) = [σ∗i (xi, θ−i)−Oi] xi + ∑

j∈N\{i}
σ∗j (xi, θ−i)θj. (2.15)

For any queueing problem Ω ∈ Q(N), the welfare parameter vector associated with either ICB

or ECB is OB(N) = (OB
1 , . . . ,OB

n) where OB
i = n+1

2 for all i ∈ N (see Remark 3). Given (2.15) we

get that the function TQ
i (xi; θ−i) has the following form:

TQB
i (xi; θ−i) =

[
σ∗i (xi, θ−i)−

(n+ 1)
2

]
xi + ∑

j∈N\{i}
σ∗j (xi, θ−i)θj. (2.16)

22See Chun&Mitra (2014), Chun et al. (2019a) and Kayı &Ramaekers (2010) for a detailed discussions on
symmetrically balanced VCGmechanisms.
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The discussion to follow identifies the explicit forms of the relative pivotal mechanisms.

Definition 10. For σ∗ and for any positive integer K ≤ |N|, a mechanism μk = (σ∗, τ(K)) is a

K-pivotal mechanism if for any θ ∈ Θn and any i ∈ N,

τ(K)i (θ) =



− ∑
j:σ∗i (θ)<σ∗j (θ)≤K

θj if σ∗i (θ) < K,

0 if σ∗i (θ) = K,

∑
j:K≤σ∗j (θ)<σ∗i (θ)

θj if σ∗i (θ) > K.

(2.17)

See Mitra & Mutuswami (2011) who introduce and characterize the K-pivotal mechanisms for

the queueing problems. Chun & Yengin (2017) also provide another characterization of these mech-

anism. We define a new set of mechanisms which are obtained by appropriately mixing different K-

pivotal mechanisms.

Definition 11. For any queueing problem, a mechanism μ̄a = (σ∗, τ̄a) is a centered K-pivotal mech-

anism with non-negative intercepts if for all θ ∈ Θn and all i ∈ N,

τ̄ai (θ) = Hi(θ−i) +

 τ(
n+1
2 )

i (θ) if n is odd,

1
2τ
( n
2 )

i (θ) + 1
2τ
( n
2+1)

i (θ) if n is even,
(2.18)

where for each i ∈ N, the functionHi : Θ|N\{i}| → R+.

Corollary 1. For any queueing problem Ω ∈ Q(N), a mechanisms satisfies outcome efficiency,

strategyproofness and ICB (ECB) if andonly if it is a centeredK-pivotalmechanismwithnon-negative

intercepts.

Corollary 1 generalizes a result byChun&Yengin (2017) on outcome efficient, strategyproofness

and ICB (ECB) by eliminating the gap between their necessary and sufficient conditions.
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Symmetrically balanced VCGmechanism

The symmetrically balancedVCGmechanism is defined for any queueing problemwith three ormore

agents as follows.

Definition 12. Assume |N| ≥ 3. Themechanism μS = (σ∗, τS) is the symmetrically balanced VCG

mechanism if for all profiles θ ∈ Θn and all i ∈ N,

τSi (θ) = ∑
j∈Pi(σ∗(θ))

(
σ∗j (θ)− 1
n− 2

)
θj − ∑

j∈Fi(σ∗(θ))

(
n− σ∗j (θ)
n− 2

)
θj. (2.19)

From the existing literature on queueing problems it is well known that the symmetrically bal-

anced VCG mechanism satisfies outcome efficiency, strategyproofness and ICB (ECB) when there

are three or more agents (see Chun & Mitra (2014), Chun et al. (2019a) and Kayı & Ramaekers

(2010)). Given Corollary 1 it means that the symmetrically balanced VCG mechanism is a centered

K-pivotal mechanism with non-negative intercept when there are three or more agents. Given more

than two agents, consider that centered K-pivotal mechanism with non-negative intercept for which

theHi : Θ|N\{i}| → R+ function for any i ∈ N and any θ−i ∈ Θ|N|\{i} has the following form:

Hi(θ−i) =


n
2−1
∑
k=1

( k−1
n−2
) {

θ(k)(θ−i)− θ(n−k)(θ−i)
}

if n is even and n ≥ 4,
n−1
2
∑
k=1

( k−1
n−2
) {

θ(k)(θ−i)− θ(n−k)(θ−i)
}

if n is odd and n ≥ 3
(2.20)

where for any k ∈ {1, . . . , n− 1}, θ(k)(θ−i) is the k-th ranked waiting cost from the profile θ−i ∈

Θ|N\{i}| so that θ(1)(θ−i) ≥ . . . ≥ θ(n−1)(θ−i). One can verify that with theHi : Θ|N\{i}| → R+

function given by (2.20), the resulting centered K-pivotal mechanism with non-negative intercept is

the symmetrically balanced VCGmechanism.
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2.5.1 Feasibility and budget balance

From Proposition 1 it follows if there are two agents, then for a queueing problem Ω ∈ Q({1, 2})

with thewelfare parameter vectorO({1, 2}) = (O1,O2)wecanfind amechanism satisfying outcome

efficiency, strategyproofness, GMWB and feasibility if and only ifO1 ≥ 2 andO2 ≥ 2.

From Lemma 1 it follows that for any queueing problem we can findmechanisms satisfying out-

come efficiency, GMWB and feasiblity only if condition (2.8) holds. Condition (2.8) for any queue-

ing problem reduces to the following inequality: ∑j∈N Oi/n ≥ (n+ 1)/2 (see Remark 1(i)). This

inequality requires that the average of the welfare parameters of all the agents should be no less than

(n+ 1)/2. The next result shows that if thewefare parameter of every agent is no less than (n+ 1)/2,

then we can find mechanisms that satisfy outcome efficiency, strategyproofness, GMWB and budget

balance.

Proposition 5. For any ΓQ = (Ω,O(N)) with |N| ≥ 3 and Oi ≥ n+1
2 for all i ∈ N, we can find

mechanisms that satisfy outcome efficiency, strategyproofness, GMWB and budget balance.

Toprove Proposition 5, wemake use of the fact that for any queueing problemwith three ormore

agents, the symmetrically balanced VCG mechanism satisfies outcome efficiency, strategyproofness,

ICB (ECB) and, more importantly, budget balance (see Chun & Mitra (2014), Chun et al. (2019a)

and Kayı & Ramaekers (2010)). Given Remark 1 (i), it also follows that if all agents have identical

Oi’s, that is, Oi = B∗ for all i ∈ N, then condition Oi = B∗ ≥ n+1
2 for all i ∈ N is both necessary

and sufficient for getting mechanisms that satisfy outcome efficiency, strategyproofness, GMWB and

budget balance.
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2.6 Conclusion

The ”generalized minimum welfare bound” is imposed on an agent’s utility function to offer him an

assurance that his dissatisfaction level will not exceed a guaranteed amount. Such a comprehensive

and an all-inclusive bound will make future studies more compact and convenient. We have already

shown that GMWB is compatible with the standard desirable properties in the literature. An obvious

extension would be applying GMWB to a dynamic sequencing framework. One can also explore the

implications of this bound when the waiting costs of the agents are interdependent.

2.7 Appendix

Proof of Theorem 1: (SPC1) ⇒ (SPC2). It is well-known that for an outcome efficient sequenc-

ing rule a mechanisms is strategyproof if and only if the associated transfer is a VCG transfer (see

Holmström (1979)). The standard way of specifying the VCG transfers for any sequencing prob-

lem Ω is that for all θ ∈ Θn and for all i ∈ N, τi(θ) = −C(σ∗(θ)), θ) + θiSi(σ∗(θ)) + gi(θ−i),

where for each i ∈ N the function gi : Θ|N\{i}| → R is arbitrary.23 If in addition we require

generalized minimum welfare bounds to be met, then it is necessary that for any profile θ ∈ ΘN

and any agent i ∈ N, Ui(σ∗(θ), τi(θ); θi) = −C(σ∗(θ); θ) + gi(θ−i) ≥ −θiOi(s) implying that

gi(θ−i) ≥ C(σ∗(θ); θ)− θiOi(s). Since the function gi(θ−i) is independent of agent i’s waiting cost

θi, we have the following:

gi(θ−i) ≥ ḡi(θ−i) := sup
xi∈Θ

[Ti(xi; θ−i)] , Ti(xi; θ−i) := [C(σ∗(xi, θ−i); xi, θ−i)− xiOi(s)]. (2.21)

Observe that Ti(xi; θ−i) = [Si(σ∗(xi, θ−i))−Oi(s)]xi + ∑j∈N\{i} θjSj(σ∗(xi, θ−i)).

Consider any profile θ̃ ∈ Θn and any i ∈ N such that θ̃j/sj = a > 0 for all j ∈ N \ {i}.

23See Mitra (2002) and Suijs (1996).
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Consider any x′i, x′′i ∈ Θ such that x′i/si ≥ a ≥ x′′i /si and x′i > x′′i . IfOi(s) < si, then we have

Ti(x′i; θ̃−i)− Ti(x′′i ; θ̃−i) = (x′i − x′′i )[si −Oi(s)] +∑
j ̸=i

sisj

[
θ̃j
sj
− x′′i

si

]
> 0. (2.22)

Moreover, for any xi > sia, Ti(xi; θ̃−i) = xi[si − Oi(s)] + ∑j∈N\{i} θ̃jSj(σ∗(xi, θ̃−i)) is increasing

in xi. Therefore, the x∗i that maximizes Ti(xi; θ̃−i) is then x∗i = ∞ implying that we do not have a

supremum. Therefore, for a supremum to exist it is necessary thatOi(s) ≥ si.

(SPC2) ⇒ (SPC1). Consider any Γ that satisfies the constrained welfare property, that is, con-

sider Γ ∈ G(N). For any profile θ ∈ Θn and any i ∈ N, consider the type x∗i ∈ Θ such that it is a

supremum for the function Ti(xi, θ−i).

Step 1: For any i ∈ N and any θ−i ∈ Θ|N\{i}|, there exists x∗i ∈ {{si(θk/sk)}k∈N\{i} ∪ {0}} such

that Ti(x∗i ; θ−i) ≥ Ti(xi; θ−i) for all xi ∈ Θ.

Proof of Step 1: Consider any agent i ∈ N and any θ−i ∈ Θ|N\{i}| andwe define the vector R̃(θ−i) =

((R̃j(θ−i) = θj/sj))j ̸=i) of agent specific waiting cost to processing time ratio of agents inN \ {i}

and R(θ−i) = (R1(θ−i) = θ(1)/s(1), . . . ,Rn−1(θ−i) = θ(n−1)/s(n−1)) be the permutation of

R̃(θ−i) such thatR1(θ−i) ≥ . . . ≥ Rn−1(θ−i). Wedivide the proof into twopossibilities (a)Oi(s) ∈

[si,A(s)] and (b)Oi(s) > A(s).

Proof of Possibility (a): We first show that there exists x∗i ∈ [siRn−1(θ−i), siR1(θ−i)] that maxi-

mizes Ti(xi, θ−i). Observe that for any xi ∈ Θ, the function Ti(xi; θ−i) = [Si(σ∗(xi, θ−i)) −

Oi(s)]xi + ∑j∈N\{i} θjSj(σ∗(xi, θ−i)). If xi > siR1(θ−i), then Si(σ∗(xi, θ−i)) = si and hence

Ti(xi; θ−i) = [si − Oi(s)]xi + ∑j∈N\{i} θjSj(σ∗(xi, θ−i)) which is non-increasing in xi since by in-

terval property si ≤ Oi(s) implying that the coefficient of xi in Ti(xi; θ−i) is non-positive. Hence,

(i) if a maxima exists then we can always find a waiting cost x∗i ≤ siR1(θ−i) that achieves it. Sim-

ilarly, if yi < siRn−1(θ−i), then Si(σ∗(yi, θ−i)) = A(s) and hence it follows that Ti(yi; θ−i) =

[A(s) − Oi(s)]yi + ∑j∈N\{i} θjSi(σ∗(yi, θ−i)) which is non-decreasing in yi since by interval prop-
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erty A(s) ≥ Oi(s) implying that the coefficient of xi in Ti(xi; θ−i) is non-negative. Hence, (ii) if a

maxima exists, then we can always find a waiting cost x∗i ≥ siRn−1(θ−i) that achieves it.

The functionTi(xi; θ−i) is continuous and concave in xi on the interval [siRn−1(θ−i), siR1(θ−i)]

and the interval [siRn−1(θ−i), siR1(θ−i)] is compact.24

Hence, the function Ti(xi; θ−i) has a maxima in the interval [siRn−1(θ−i), siR1(θ−i)]. Given

x∗i ∈ [siRn−1(θ−i), siR1(θ−i)] and given continuity of Ti(xi; θ−i), for two agents the proof is com-

plete since x∗i = siR1(θj) = si(θj/sj) and it follows that Ti(θi(θj), θj) = [si − Oi(s)]si(θj/sj) +

θj(si + sj). Therefore, consider the more than two agents case. If there exists k ∈ N\{i} such

that x∗i = si(θ(k)/s(k)) (so that Ti(x∗i ; θ−i) = Ti(si(θk/sk); θ−i) ≥ Ti(xi; θ−i) holds for all

xi ∈ Θ), then the proof is complete. If not then suppose there exists k ∈ {1, . . . , n − 2} such

that x∗i ∈ (siRk+1(θ−i), siRk(θ−i)), that is,

Ti(x∗i ; θ−i) =

[
k

∑
r=1

s(r) + si −Oi(s)

]
x∗i + ∑

j∈N\{i}
θjSj(σ∗(x∗i , θ−i)).

If ∑k
r=1 s(r) + si − Oi(s) > 0, then for any xi ∈ (x∗i , siRk(θ−i)], σ∗(xi, θ−i) = σ∗(x∗i , θ−i) and

Ti(xi; θ−i) > Ti(x∗i ; θ−i) since Ti(xi; θ−i)− Ti(x∗i ; θ−i) =
[
∑k
r=1 s(r) + si −Oi(s)

]
(xi − x∗i ) >

0. Therefore we have a contradiction to our assumption that at x∗i the function Ti(xi; θ−i) is maxi-

mized. If ∑k
r=1 s(r) + si − Oi(s) < 0, then for any x′i ∈ [siRk(θ−i), x∗i ), σ∗(x′i, θ−i) = σ∗(x∗i , θ−i)

and Ti(x′i; θ−i) > Ti(x∗i ; θ−i) since Ti(x′i; θ−i) − Ti(x∗i ; θ−i) =
[
∑k
r=1 s(r) + si −Oi(s)

]
(x′i −

x∗i ) > 0. Again we have a contradiction to our assumption that at x∗i the function Ti(xi; θ−i) is

24From the functional form of Ti(xi; θ−i) and given outcome efficiency it is obvious that given any θ−i,
the function Ti(xi; θ−i) is continuous in xi on any open interval (siRk+1(θ−i), siRk(θ−i)) for all k ∈
{1, . . . , n− 2} and by using appropriate limit argument one can also show continuity at any point siRk(θ−i)
for k ∈ {1, . . . , n− 1}. For concavity note that for any θ−i ∈ Θ−i, for every xi ∈ (siRk+1(θi), siRk(θi))
for all k ∈ {0, . . . , n}, where Rn+1 = 0 and R0 = ∞, Ti(xi; θ−i) = [Si(σ∗(xi, θi))−Oi(s)] xi +
∑j∈N\{i} θjsj(σ∗(xi, θi)) is a straight line. Moreover, Si(σ∗(xi, θi)) is non-increasing in xi ∈ R++. Hence,
the slope Si(σ∗(xi, θi))−Oi(s) is also non-increasing for xi ∈ R++. As a result the piece-wise linear continu-
ous function Ti(xi; θ−i) is concave for xi ∈ R++.
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maximized. Therefore, the only possibility left is ∑k
r=1 s(r) + si − Oi(s) = 0. However, in that case

Ti(x∗i ; θ−i) = ∑j∈N\{i} θjSi(σ∗(x∗i , θ−i)) and for every xi ∈ [siRk+1(θ−i), siRk(θ−i)] the func-

tion Ti(xi, θ−i) attains its maximum value implying that Ti(x∗i ; θ−i) = Ti(siRk+1(θ−i); θ−i) =

Ti(siRk(θ−i); θ−i) and Step 1 continues to be valid.

Proof of Possibility (b): If Oi(s) > A(s), then for any i ∈ N and any given θ−i ∈ Θ|N\{i}|, the

function Ti(xi; θ−i) on R+ is maximized if we set x∗i = 0. Since the function Ti(xi; θ−i) is only

defined on the domain Θn = R+ \ {0}, x∗i = 0 acts as a supremum of the function Ti(xi; θ−i) and

that Ti(0; θ−i) = ∑j∈N\{i} θjSj(σ∗(0, θ−i)) > Ti(xi; θ−i) for all xi ∈ Θ.

Fix any i ∈ N. First, suppose that Oi(s) ∈ [si,A(s)]. Given the proof of Possibility (a) of

Step 1 and given any θ−i ∈ Θn−1, let us define x∗i := θ∗i so that Ti(x∗i ; θ−i) = Ti(θ∗i ; θ−i) and

there exists k ∈ N\{i} such that θ∗i = si(θk/sk). Consider the VCG transfer having the following

property: For all θ ∈ Θn and for all i ∈ N, τ∗i (θ) = −C(σ∗(θ); θ) + θiSi(σ∗(θ)) + ḡi(θ−i) with

ḡi(θ−i) := Ti(θ∗i ; θ−i). Then for any given θ ∈ Θn and any agent i ∈ N, we have ui(μ∗i (θ), θi) +

θiOi(s) = −[Si(σ∗(θ)− Oi(s)]θi + ḡi(θ−i) = Ti(θ∗i , θ−i)− Ti(θi, θ−i) ≥ 0. The last inequality

follows from the fact thatTi(θi, θ−i) ≤ Ti(θ∗i , θ−i) for all θi ∈ Θ. Hence, ui(μ∗i (θ), θi) ≥ −θiOi(s)

implying that this VCG transfer satisfies the GMWB for agent i. Next, suppose that Oi(s) > A(s).

Given the proof of Possibility (b) of Step 1 and given any θ−i ∈ Θn−1, let us define x∗i := 0 so that

Ti(xi; θ−i) ≤ Ti(0; θ−i) for all xi ∈ Θ. Consider the VCG transfer having the following property:

For all θ ∈ Θn and for all i ∈ N, τ∗i (θ) = −C(σ∗(θ); θ) + θiSi(σ∗(θ)) + ḡi(θ−i) with ḡi(θ−i) :=

Ti(0; θ−i). Then for any given θ ∈ Θn and any agent i ∈ N, we have ui(μ∗i (θ), θi) + θiOi(s) =

−[Si(σ∗(θ) − Oi(s)]θi + ḡi(θ−i) = Ti(0; θ−i) − Ti(θi; θ−i) ≥ 0. Thus, using the constrained

welfare property we have identified VCG transfers that satisfies GMWB.

Proof of Theorem 2: For outcome efficiency and strategyproof it is necessary that the mechanism

μ = (σ∗, τ) must be VCG with transfers satisfying the following property: For any profile θ ∈ Θn

and any agent i ∈ N, τi(θ) = −C(σ∗(θ); θ) + θiSi(σ∗(θ)) + gi(θ−i) where gi : Θ|N\{i}| → R is
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arbitrary. For the GMWB condition to hold, in addition, it is necessary that

(I) gi(θ−i) ≥ ḡi(θ−i) = Ti(θ∗i ; θ−i) ∈ maxxi∈Θ Ti(xi; θ−i) and Ti(xi; θ−i) =

[Si(σ∗(xi, θ−i))−Oi(s)]xi + ∑j∈N\{i} θjSj(σ∗(xi, θ−i)) (see condition (2.21) in the proof of

Theorem 1).

Hence, using (I) we can replace gi(θ−i) = hi(θ−i) + Ti(θ∗i ; θ−i) where hi : Θ|N\{i}| → R and

hi(θ−i) ≥ 0. By substituting gi(θ−i) = hi(θ−i) + Ti(θ∗i ; θ−i) in the transfer τi(θ) and then simpli-

fying it we get

τi(θ) = [Si(σ∗(θ∗i , θ−i))−Oi(s)]θ∗i + ∑
j∈N\{i}

θjδji(θ) + hi(θ−i), (2.23)

where δji(θ) :=
(

∑k∈Pj(σ∗(θ∗i ,θ−i)) sk − ∑k∈Pj(σ∗(θ)) sk
)
. Observe the following:

(a) If Pi(σ∗(θ)) = Pi(σ∗(θ∗i , θ−i)), then for any j ∈ N \ {i} we have Pj(σ∗(θ)) =

Pj(σ∗(θ∗i , θ−i)), then it easily follows that δji(θ) = 0 = (|Pj(σ∗(θ∗i , θ−i))| − |Pj(σ∗(θ))|)si.

(b) If Pi(σ∗(θ∗i , θ−i)) ⊂ Pi(σ∗(θ)), then for agent any j ∈ Pi(σ∗(θ)) \ Pi(σ∗(θ∗i , θ−i)), we

have Pj(σ∗(θ∗i , θ−i)) \ Pj(σ∗(θ)) = {i}. Hence, δji(θ) = si = (|Pj(σ∗(θ∗i , θ−i))| −

|Pj(σ∗(θ))|)si.

(c) If Pi(σ∗(θ)) ⊂ Pi(σ∗(θ∗i , θ−i)), then for any j ∈ Pi(σ∗(θ∗i , θ−i)) \ Pi(σ∗(θ)), it easily

follows that Pj(σ∗(θ)) \ Pj(σ∗(θ∗i , θ−i)) = {i}. Therefore, we obtain δji(θ) = −si =

(|Pj(σ∗(θ∗i , θ−i))| − |Pj(σ∗(θ))|)si.

By substituting the values of δji(θ) for possibilities (a), (b) and (c) in the sum ∑j∈N\{i} θjδji(θ) of

(2.23) we get the sum in (2.6).

From (I) condition (2.23) and the expansion of the sum ∑j∈N\{i} θjδji(θ) summarized in (a), (b)

and (c) we get τ = τp.
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To prove the converse, observe that since any μp is a particular type of VCG transfers, μp is suffi-

cient to ensure outcome efficency and strategyproofness. To complete the proof we need to check the

sufficiency of GMWBwith μp. Consider any relative pivotal mechanism μp. For any θ ∈ Θn and any

i ∈ N, we have ui(σ∗(θ), τ
p
i (θ), θi) + θiOi(s) = −θi[Si(σ∗(θ)) − Oi(s)] + [Si(σ∗(θ∗i , θ−i)) −

Oi(s)]θ∗i + ∑j∈N\{i}(|Pj(σ∗(θ∗i , θ−i))| − |Pj(σ∗(θ))|)θjsi + hi(θ−i) = Ti(θ∗i , θ−i) − Ti(θ) +

hi(θ−i) ≥ 0. Therefore, ui(μ
p
i (θ), θi) + θiOi(s) ≥ 0 implying ui(μ

p
i (θ), θi) ≥ −θiOi(s). Hence,

any relative pivotal mechanism μp satisfies the relevant generalized minimumwelfare bounds.

Proof of Lemma 1: Suppose Γ = (Ω,O(N, s)) ∈ G(N) is a problem for which we can

find a mechanism that satisfies outcome efficiency, GMWB and feasibility and let μ = (σ∗, τ)

be such a mechanism. Then using GMWB it follows that for every θ ∈ Θn and each i ∈ N,

ui(σ∗(θ), τ(θ); θi) = −θiSi(σ∗(θ)) + τi(θ) ≥ −θiOi(s) implying that for all i ∈ N, τi(θ) ≥

θiSi(σ∗(θ)) − θiOi(s). By summing the transfers over all agents and applying feasibility it follows

that C(σ∗(θ); θ) − ∑j∈N θjOj(s) ≤ 0. Hence, for the mechanism μ = (σ∗, τ) to satisfy outcome

efficiency, GMWB and feasibility it is necessary that

∑
j∈N

θj
{
Oj(s)− Sj(σ∗(θ))

}
≥ 0, ∀ θ ∈ Θn. (2.24)

Consider a set of profiles, θt = (θt1, . . . , θtn) ∈ Θn defined for any positive integer t such that θtj =

sj[1− {j/(2tn)}] for all j ∈ N. Observe that for any given t and any l,m ∈ N such that l < m,

θtl/sl > θtm/sm so that for every positive integer t, we have the same outcome efficient order σ∗(θt) =

(σ01 , . . . , σ0n) with σ0j = j for all j ∈ N. Also observe that as t → ∞, θtj → sj > 0. Given (2.24),

the condition ∑j∈N θtj
{
Oj(s)− Sj(σ0)

}
≥ 0must hold for every positive integer t and hence it must

also hold at the limiting value of t as well, that is, it must also hold when θj = sj for all j ∈ N. Hence,

it is also necessary that

∑
j∈N

sj
{
Oj(s)− Sj(σ0)

}
≥ 0. (2.25)
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If we can show that the equality ∑j∈N sjSj(σ0) = ∑j∈N sj{sj + A(s)}/2 holds, then one can easily

verify that using this equality in (2.25)we get the result.25 Hence, our final step is to show this equality.

Observe that

∑
j∈N

sjSj(σ0) = ∑
j∈N

sj

(
sj + ∑

k>j
sk

)
= ∑

j∈N
s2j + ∑

j∈N
∑
k>j

sjsk

= ∑
j∈N

s2j + ∑
j∈N

(
∑
k ̸=j

sjsk
2

)
= ∑

j∈N
sj

(
sj + ∑

k ̸=j

sk
2

)

= ∑
j∈N

sj
(2sj + ∑k ̸=j sk

2

)
= ∑

j∈N
sj
( sj + A(s)

2

)
.

(2.26)

Therefore, from (2.26) we get the required equality and the result follows.

Proof of Proposition 1: Consider any Γ = (Ω,O(N, s)) ∈ G(N) with N = {1, 2} and, given

constrained welfare property assume without loss of generality that O1(s) = s1 + λ1s2 and O2(s) =

s2 + λ2s1 where λ1 ≥ 0 and λ2 ≥ 0. If θ = (θ1, θ2) ∈ Θ2 is any profile such that θ1/s1 > θ2/s2,

then, given θ∗i = siθj/sj if λi ∈ [0, 1) and θ∗i = 0 if λi ≥ 1 for any i, j ∈ {1, 2} such that i ̸= j, from

the definition of minimal relative pivotal mechanism μ̂p = (σ∗, τ̂p) it follows that

τ̂p1(θ1, θ2) = −min{λ1, 1}θ2s1 and τ̂p2(θ1, θ2) = (1−min{λ2, 1})θ1s2. (2.27)

Therefore, from (2.27) it follows that

τ̂p1(θ1, θ2) + τ̂p2(θ1, θ2) = [(1−min{λ2, 1})θ1s2 −min{λ1, 1}θ2s1] . (2.28)

25Specifically, if ∑j∈N sjSj(σ0) = ∑j∈N sj{sj + A(s)}/2, then expanding the left hand side of (2.25) we get

∑
j∈N

sjOj(s)− ∑
j∈N

sjSj(σ0) = ∑
j∈N

sjOj(s)− ∑
j∈N

sj
( sj + A(s)

2

)
= ∑

j∈N
sj
{
Oj(s)−

( sj + A(s)
2

)}
.
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Feasibility requires that τ̂p1(θ1, θ2) + τ̂p2(θ1, θ2) ≤ 0 for all θ = (θ1, θ2) ∈ Θ2 and for any θ1 and any

θ2 such that θ1/s1 > θ2/s2, (I) (1−min{λ2, 1})θ1s2 ≤ min{λ1, 1}θ2s1. If (1−min{λ2, 1}) > 0

(that is, if λ2 ∈ [0, 1)), then given any θ2 > 0 and any λ1 ≥ 0, by taking any θ1 sufficiently large such

that θ1 > min{λ1, 1}s1θ2/(1−min{λ2, 1})s2 and making it sufficiently large we have a violation of

condition (I). Hence, λ2 ≥ 1. Similarly, if θ′ = (θ′1, θ
′
2) ∈ Θ2 is such that θ′1/s1 < θ′2/s2, then, given

λ2 ≥ 1, from the definition of minimal relative pivotal mechanism μ̂p = (σ∗, τ̂p) it follows that

τ̂p1(θ
′
1, θ

′
2) = (1−min{λ1, 1})θ′2s1 and τ̂

p
2(θ

′
1, θ

′
2) = −θ′1s2. (2.29)

Feasibility requires that τ̂p1(θ
′
1, θ

′
2) + τ̂p2(θ

′
1, θ

′
2) ≤ 0 for all θ′ = (θ′1, θ

′
2) ∈ Θ2 and hence

given (2.29) for any θ′1 and any θ′2 such that θ′1/s1 < θ′2/s2, for feasibility it is necessary that (II)

(1 − min{λ1, 1})θ′2s1 ≤ θ′1s2. If (1 − min{λ1, 1}) > 0 (that is, λ1 ∈ [0, 1)), then given any θ′1,

by taking θ′2 > s2θ′1/(1−min{λ1, 1})s1 we have a violation of condition (II). Hence, we must also

have λ1 ≥ 1. Therefore, for feasibility it is necessary that λ1 ≥ 1 and λ2 ≥ 1, that is, O1(s) ≥ A(s)

andO2(s) ≥ A(s).

Conversely, if λ1 ≥ 1 and λ2 ≥ 1, then, from the definition of minimal relative pivotal mecha-

nism μ̂p = (σ∗, τ̂p), it follows that for any θ ∈ Θ2, any i ∈ {1, 2} and any j ∈ {1, 2} with j ̸= i,

τ̂pi (θ) =

 −θjsi if Pi(σ∗(θ)) = ∅,

0 if Pi(σ∗(θi(θ−i), θ−i) = {j},
(2.30)

It is immediate from (2.30) that for all θ1, θ2 ∈ Θ, thenwe get feasibility. Hence, we have the first part

of the result.

The proof of the second part, that is, any relative pivotal mechanism given by (2.30) is not budget

balanced, is a special case of Proposition 3 in De & Mitra (2019) where we need to replace linear

sequencing rule by its special case of outcome efficient sequencing rule.

49



Proof of Proposition 2: Consider any Γ = (Ω,O(N, s)) ∈ G(N) with the generalized mini-

mum welfare bounds satisfying the following properties: Oi(s) ≥ A(s) = ∑j∈N sj for all i ∈ N.

Observe that the constrained welfare property given by condition (2.4) holds for this example as

well. For any θ ∈ Θn and any i ∈ N, the function Ti(xi; θ−i) (given by Definition 7)) has

a supremum at θ∗i = 0 for all i ∈ N implying that Pi(σ∗(0, , θ−i)) ∪ {i} = n and hence

Si(σ∗(0, θ−i)) = A(s) ≤ Oi(s). The reason is the following: For any i ∈ N and any xi ∈ Θ such

that Pi(σ∗(xi, θ−i)) ⊂ N \ {i} and Pi(σ∗(xi, θ−i)) ̸= N \ {i}, the functionTi(xi; θ−i)) is decreas-

ing in xi since [Si(σ∗(xi, θ−i))− Oi(s)] = ∑j∈Pi(σ∗(xi,θ−i)) sj − ∑j∈N\{i} sj = −∑j∈Fi(σ∗(xi,θ−i)) sj is

negative. Therefore, for any i ∈ N, θ∗i = 0 implying that agent i is always served last in the benchmark

order σ∗(0, θ−i). Given θ∗i = 0, it is quite easy to verify that (I) θ∗i [Si(σ∗(xi, θ−i))−Oi(s)] = 0 and

(II) RPi(θ) = −∑k∈Fi(σ∗(θ)) θksi. Therefore, using (I) and (II) in Definition 7 we get that an out-

come efficient mechanism μp = (σ∗, τp) is a relative pivotal mechanism if τp satisfies the following

property: For any profile θ ∈ Θn and any agent i ∈ N,

τpi (θ) = − ∑
k∈Fi(σ∗(θ))

θksi + hi(θ−i), (2.31)

where hi : Θ|N\{i}| → R+. Let n ≥ 3 and for all i ∈ N and all θ−i ∈ Θ|N\{i}|, suppose we set

hi(θ−i) = ∑j∈N\{i}

{
sj ∑k∈Fj(σ∗(θ−i)) θk

}
/(n− 2) in the transfer given by (2.31). One can then

simplify the resulting transfers (2.31) and show that we get budget balance.26

Proof of Proposition 3: Consider anyΓ0 = (Ω,Oσ0(N, s)) ∈ I(N) and,without loss of generality,

assume σ0 such that σ0i = i for all i ∈ N. Consider any θ ∈ Θn such that θn/sn > θ1/s1 > . . . >

θn−1/sn−1 so that P1(σ∗(θ)) = {n}, Pj(σ∗(θ)) = {1, . . . , j− 1} ∪ {n} for all j ∈ N \ {1, n} and

Pn(σ∗(θ)) = ∅. Consider theminimal relative pivotal mechanism μ̂ = (σ∗, τ̂) (inDefinition 9) with

the Ti(xi; θ−i) function given by (2.12). It is easy to verify the following:

26We do not provide a formal proof since it is a special case of the proof of Theorem 1 inDe&Mitra (2019).
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(i) Given P1(σ0) = ∅, from (IO1) of Remark 4 we have θ∗1 = s1θn/sn and P1(σ∗(θ∗1 , θ−1)) =

P1(σ0) = ∅. Further,Pn(σ∗(θ∗1 , θ−1)) \Pn(σ∗(θ)) = {1} andPj(σ∗(θ∗1 , θ−1)) = Pj(σ∗(θ))

for all j ∈ N \ {1, n}. Thus, τ̂1(θ) = (|Pn(σ∗(θ∗1 , θ−1))| − |Pn(σ∗(θ))|)θns1 = θns1.

(ii) Given Pn(σ0) = N \ {n}, from condition (IO2) of Remark 4 we get θ∗n = snθn−1/sn−1 and

Pn(σ∗(θ∗n, θ−n)) = Pn(σ0) = N \ {n}. Moreover, Pj(σ∗(θ)) \ Pj(σ∗(θ∗n, θ−n)) = {n}

for all j ∈ N \ {n}. Hence, the transfer of n is τ̂n(θ) = ∑j∈N\{n}(|Pj(σ∗(θ∗n, θ−n))| −

|Pj(σ∗(θ))|)θjsn = −∑j∈N\{n} θjsn. Therefore, the transfer of agent n does not involve the

waiting cost θn.

(iii) Finally, consider any k ∈ N \ {1, n}. Observe that if xk = skθn/sn, then TI
k(xk; θ−k))

is decreasing in xk since the coefficient of xk, that is [∑j∈Pk(σ∗(xk,θ−k)) sj − ∑j∈Pk(σ0) sj] =

−∑k−1
j=1 sj < 0. Hence, θ∗k ̸= skθn/sn. Further, (|Pn(σ∗(θ∗k , θ−k))| − |Pn(σ∗(θ))|)θnsk = 0

since Pn(σ∗(θ∗k , θ−k)) = Pn(σ∗(θ)) = ∅. Thus, the transfer of any agent k ∈ N \ {1, n}

does not involve the waiting cost θn of agent n and hence can be expressed in the follow-

ing form: τ̂k(θ) = θ∗k [∑j∈Pk(σ∗(θ∗k ,θ−k)) sj − ∑j∈Pk(σ0) sk] + ∑j∈N\{k,n}(|Pj(σ∗(θ∗k , θ−k))| −

|Pj(σ∗(θ))|)θjsk.

From (i), (ii) and (iii) it follows that ∑j∈N τ̂j(θ) = θns1 + ∑j∈N\{1} τ̂j(θ). From (i) and (iii) above it

also follows that the sum ∑j∈N\{1} τ̂j(θ) does not involve the waiting cost θn and hence by defining

T (σ∗(θ); θ−n) := ∑j∈N\{1} τ̂j(θ) we get

∑
j∈N

τ̂j(θ) = θns1 + T (σ∗(θ); θ−n). (2.32)

If∑j∈N τ̂j(θ) > 0, thenwehave a violation of feasibility and the proof is complete. Therefore, assume

∑j∈N τ̂j(θ) = θns1 + T (σ∗(θ); θ−n) ≤ 0. Given that T (σ∗(θ); θ−n) is independent of θn, if we

increase the waiting cost of agent n to any yn(> θn) by keeping θ−n fixed, then the outcome efficient
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order remains unchanged (that is, σ∗(yn, θ−n) = σ∗(θ) for all yn > θn) and the transfers of all but

agent 1 continues to remain unchanged due to above mentioned independence argument, that is,

T (σ∗(yn, θ−n); θ−n) = T (σ∗(θ); θ−n) for all yn > θn. Hence, we have

∑
j∈N

τ̂j(yn, θ−n) = yns1 + T (σ∗(θ); θ−n) ∀ yn > θn. (2.33)

Since the first term in the right hand side of condition (2.33) is increasing in yn and the second term

remains constant with a change in yn, it follows that by making yn sufficiently large (say some y∗n) we

get ∑j∈N τ̂j(y∗n, θ−n) = y∗ns1 + T (σ∗(θ); θ−n) > 0 leading to a violation of feasibility.

Proof of Proposition 4: Consider any Γs = (Ω,Os(N, s)) ∈ C(N) such that |N| = 3 and, without

loss of generality, assume that s1 ≥ s2 ≥ s3. Consider the profile θ ∈ Θ3 such that σ∗j (θ) = j

for all j ∈ N and in particular θ1/s1 = a > θ2/s2 = b > θ3/s3 = c > 0 and assume that

(i) a > max{cs1/s2, bs2/s3}. Since Os
j(s) = (n + 1)sj/2 > si for all j ∈ N, using the function

TC
j (xj; θ−j) given by (2.13), we can take θ∗1 = s1c, θ∗2 = s2a and θ∗3 = s3a. Then using the transfers

associatedwith theminimal relative pivotalmechanism (Definition9)withTC
j (xj; θ−j) givenby (2.13)

we get the following:

1. τ̂1(θ) = −cs1(s1 − s2)− bs1s2,

2. τ̂2(θ) = as2(s1 − s2), and

3. τ̂3(θ) = as3(s1 − s2) + bs2s3.

If s1 > s3, then ∑j∈N τ̂j(θ) = (s1 − s2)(as2 − cs1) + (s1 − s3)(as3 − bs2) = (s1 − s2)s2[a −

(cs1/s2)] + (s1 − s3)s3[a − (bs2/s3)] > 0 (due to (i)) and we have a contradiction to feasibility.

Hence, for feasibility it is necessary that s1 ≤ s3 implying s1 ≥ s2 ≥ s3 ≥ s1. Hence, s1 = s2 = s3.

Consider any ΓS̄ = (Ω,OS̄(N, s)) ∈ E(N) such that |N| = 3 and, without loss of generality,

assume that s1 ≥ s2 ≥ s3. Consider the profile θ ∈ Θ3 such that σ∗j (θ) = j for all j ∈ N and in
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particular θ1/s1 = a > θ2/s2 = b > θ3/s3 = c > 0. Since OS̄
j (s) = (sj + A(s))/2 > si for all

j ∈ N, using the function TE
j (xj; θ−j) given by (2.14), we can take θ∗1 = s1b, θ∗2 = s2a and θ∗3 = s3a.

Then using the transfers associated with the minimal relative pivotal mechanism (Definition 9) with

TE
j (xj; θ−j) given by (2.14) we get the following:

1. τ̂1(θ) = −s1b
( s2+s3

2
)
,

2. τ̂2(θ) = s2a
( s1−s3

2
)
, and

3. τ̂3(θ) = s3a
( s1−s2

2
)
+ s2s3b.

If s1 > s3, then ∑j∈N τ̂j(θ) = (a−b)
2 (s2s1 + s1s3 − 2s2s3) > (a−b)

2 (s2s3 + s1s3 − 2s2s3) =

(a−b)s3(s1−s2)
2 ≥ 0 and we have a contradiction to feasibility. Hence, for feasibility we need s1 ≤ s3

implying s1 = s2 = s3.

Proof ofCorollary 1: For anyprofile θ ∈ Θn and i ∈ N, consider the type θ∗i ∈ Θsuch that the func-

tion TQB
i (xi, θ−i) (defined in (2.16)) takes the maximum value, that is, TQB

i (θ∗i , θ−i) ≥ TQB
i (xi, θ−i)

for all xi ∈ Θn. Let r̄(θ−i) = ((r̄j(θ−i) = θj)j ̸=i) be the vector of agent specific waiting cost in

N\{i} and ri(θ−i) = (r1(θ−i) = θ(1), . . . rn−1(θ−i) = θ(n−1)) be the permutation of r̄(θ−i) such

that r1(θ−i) ≥ . . . ≥ rn−1(θ−i). We can verify that if n is odd, θ∗i ∈ {r n−1
2
(θ−i), r n+1

2
(θ−i)} and

when n is even, θ∗i = r n
2
(θ−i). Using the resulting θ∗i that maximizes the function TQB

i (xi, θ−i) (de-

fined in (2.16)), we have the following forms of the relative pivotal mechanisms derived for the even

and odd cases separately. If n is odd, then we get the transfer given by τoddi (θ) + hi(θ−i) where,

τoddi (θ) =



− ∑
k∈Fi(σ∗(θ))|1<σ∗k (θ)≤

n+1
2

θk if σ∗i (θ) < n+1
2 ,

0 if σ∗i (θ) = n+1
2 ,

∑
k∈Pi(σ∗(θ))| n+1

2 ≤σ∗k (θ)<n
θk if σ∗i (θ) > n+1

2 ,

(2.34)
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and if n is even, then we get the transfer given by τeveni (θ) + hi(θ−i) where,

τeveni (θ) =



− ∑
k∈Fi(σ∗(θ))|1<σ∗k (θ)≤

n
2

θk −
θf
2 if σ∗i (θ) < n

2 , σ
∗
f (θ) =

n
2 + 1 and n > 2,

− θf
2 if σ∗i (θ) = n

2 and σ
∗
f (θ) =

n
2 + 1,

θp
2 if σ∗i (θ) = n

2 + 1 and σ∗p (θ) = n
2 ,

∑
k∈Pi(σ∗(θ))| n2+1≤σ∗k (θ)<n

θk +
θp
2 if σ∗i (θ) > n

2 + 1, σ∗p (θ) = n
2 and n > 2.

(2.35)

Observe that, τoddi (θ) is a K-pivotal mechanism with K = n+1
2 while τeveni (θ) is the simple average

of two K-pivotal mechanisms-one with K = n/2 and the other with K = n/2+ 1. We can then

generally express,

τ̄ai (θ) = Hi(θ−i) +

 τ(
n+1
2 )

i (θ)+ if n is odd,

1
2τ

( n2 )
i (θ) + 1

2τ
( n2+1)
i (θ) if n is even.

(2.36)

Proof of Proposition 5: Given that for any queueing problem Ω ∈ Q(N), the symmetrically

balanced VCG mechanism satisfies outcome efficiency, strategyproofness, ICB (ECB) and budget

balance, it follows that with Oi = (n + 1)/2 for all i ∈ N (which is the bound associated with

ICB(ECB)), the result holds. In particular, for any θ ∈ Θn, the utility of an agent i ∈ N associated

with the symmetrically balanced VCG mechanism satisfies Ui(σ∗(θ), τsbi (θ); θi) ≥ −θi(n+ 1)/2.

Consider any queueing problem with generalized minimum welfare bounds satisfying the following

property: For all i ∈ N,Oi ≥ (n+ 1)/2 or equivalently, for each i ∈ N, there exists βi ≥ 0 such that

Oi =
( n+1

2
)
+ βi. With the symmetrically balanced VCGmechanism we have that for each θ ∈ Θn
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and each i ∈ N,

Ui(σ∗(θ), τsbi (θ); θi) ≥ −θi
(
n+ 1
2

)
≥ −θi

(
n+ 1
2

)
− βi, for any βi ≥ 0.

Therefore, the symmetrically balanced VCG mechanism also ensures outcome efficiency, strate-

gyproofness, budget balance and GMWB for any welfare parameter vector O(N) = (O1, . . . ,On)

such thatOi ≥ (n+ 1)/2 for all i ∈ N.
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3
Lorenz optimality for sequencing problems

with welfare bounds

3.1 Introduction

Wework in a sequencing framework where the mechanism designer achieves fairness, through reduc-

tion of inequalities in the distribution of outcomes, while individuals are driven by their self-seeking
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behavior. This raises the following question: is it possible to designmechanisms that discretely protect

an agent’s self-interest while justly allocating the final outcome? Banerjee et al. (2020) have introduced

the generalized minimum welfare bound (GMWB) which is a unified and comprehensive represen-

tation of several specific lower bounds that have been previously examined in the queueing literature

(see Chun & Mitra (2014), Chun et al. (2017), Chun et al. (2019a), Chun & Yengin (2017), Ger-

shkov & Schweinzer (2010), Kayı & Ramaekers (2010), Mitra & Mutuswami (2011)). Every agent

is offered a protection in the form of a minimum guarantee on their utilities. In other words, the

GMWB imposes a lower bound on each agent’s utility function. However, despite our self-centric

existence as independent entities, we all identify ourselves with the society we live in. The decision

maker faces a moral commitment of being fair and enhancing the overall social well-being. We show

that such a goal can be achieved within the sequencing framework. Our main theorem states that the

constrained egalitarianmechanism is the onlymechanism that is Lorenz optimal in the class of feasible

mechanisms satisfying GMWB. A constrained egalitarian mechanism is a Pareto optimal mechanism

that assigns to each agent either a common level of utility or the minimum guaranteed level under

GMWB, whichever is higher.

There are two sides to distributive justice in the study ofmicroeconomics: fairness in the distribu-

tion of rights and fairness in the outcome of the game. Procedural justice addresses the former while

end-state justice addresses the latter. The collective welfare approach continues to remain themost in-

fluential application of economic analysis to distributive justice. The central idea of welfarism is that,

it evaluates collective action on the basis of individual utility levels when comparing two outcomes.

The collective utility function (CUF) aggregates individual utilities into a single utility index repre-

senting the social welfare (thus creating a social welfare ordering). The two primary examples are the

classic utilitarian collective utility (sum of individual utilities) and the egalitarian collective utility (the

minimal individual utility). When the aggregate sum of individual utilities is maximized, some indi-

viduals may have to compromise. For instance, if a majority of roommates want to watch only sports
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on the television, theminority whomight wish to tune into some news channel, will never be granted

so under the utilitarian rule. Such a CUF views individuals as mere entities producing social welfare

where an agent can be sacrificed for the betterment of the collective utility. However, the egalitarian

utility function embodies compensation andmakes the worst off (most unhappy) individual as better

off as possible (maximizes the minimum utility). For instance, equal time shares are allotted to both

sports and new channels even though theminority is small enough. An ample amount of extra utility

is not worth the tiny disutility suffered by the least well of agent(see Moulin (1991a)Moulin (2003)).

The tension between these two opposing ideas is age old and can be further highlighted through

an example given by Mirrlees (see Moulin (1991a)). “There are two cars burning after an accident.

The first car has four passengers and the second car has only one (all five an unconscious). By choos-

ing to rescue the first car, we tend to maximize the expected number of survivors and behave like an

utilitarian. On the contrary, an egalitarian rescuer, would toss a fair coin and choosewhich car to help.

He would give everyone an equal chance of surviving.”

The primary economic application of CUFs is to measure inequalities in the distribution of in-

comes. A social welfare ordering (SWO) is the ordinal counter part ofCUFs. The Lorenz criterion is a

classic in the discussion of stochastic dominance and is an equivalent formulation of the Pigou-Dalton

principle (transferring some utility from one agent to the other so as to reduce the difference in their

welfare should not reduce social welfare). The criterion clearly defines what it means for one utility

profile to be better than another profile when the utilities are additively separable and the objective is

to reduce inequalities in the allocation of payoffs. Observe that, the utilitarian approach is orthogonal

to the concern for compensation and totally indifferent towards inequalities in distribution of the fi-

nal outcome as long as the sum of utilities remains the same. On the other hand, an egalitarian strives

to re-distribute welfare from the rich to the poor. The beauty of the configuration of this criterion is

that, you can be certain that one distribution is better than the other, irrespective of whether you are

fully utilitarian or fully egalitarian or anything in between. If the designer can find such a mechanism
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whose final profile of utilities Lorenz dominates all other feasible profiles, then it will unambiguously

be the optimal choice for the designer.1,2

3.2 The framework and definitions

A finite set of agents N = {1, 2, . . . , n} want to process their jobs using a facility that can be used

sequentially (one agent at a time). Each agent has a single job to process and the processing time differs

across agents. An agent i ∈ N is identified by his job processing time si ∈ R++ and his constant per

period waiting cost θi ∈ Θ := R++ (whereR++ is the positive orthant of the real lineR). An order

σ = (σ1, . . . , σn) on N describes the position of each agent where σi = k indicates that agent i has

the k-th position in the queue. Let Σ be the set of n! possible orders onN. We denote Pi(σ) = {j ∈

N \ {i} | σj < σi} as the predecessor set and Fi(σ) = {j ∈ N \ {i} | σj > σi} as the successor set of

i in the order σ. The processing time vector s = (s1, . . . , sn) ∈ Rn
++ is common knowledge. Given a

vector s ∈ Rn
++ and an order σ ∈ Σ, the cost of job completion for agent i ∈ N is θiSi(σ), where the

job completion time is Si(σ) = ∑j∈Pi(σ) sj + si. Note that, for any i ∈ N we write, ∑j∈Pi(σ) sj = 0

if Pi(σ) = ∅. The agents have quasi-linear utility of the form ui(σ, τi; θi) = −θiSi(σ) + τi where

τi ∈ R is the transfer that he receives (pays). A sequencing problem is denoted by Ω and the set of

all sequencing problems with a finite set of agentsN (with n ≥ 2) is given by S(N). A sequencing

problem Ω ∈ S(N) is called a queueing problem if s = (s1, . . . , sn) is such that s1 = . . . = sn.3

1The authors are grateful toHervéMoulin for his contributory talks at the Blaise Pascal Chair Lecture: Ten
Lessons onMicroeconomic Fairness.

2There is a notable literature that deals with the characterization of the Lorenz ordering as a plausible con-
cept of inequality (see Atkinson et al. (1970), Dasgupta et al. (1973), Fields & Fei (1978)). Dutta and Ray
(Dutta & Ray (1989), Dutta & Ray (1991)) were the first to propose the constrained egalitarian allocations as
a solution concept for transferable utility games. The constrained egalitarian rule has also been proposed by
Chun et al. (1998) to solve claim problems and attain certain objectives of equality and by Chun et al. (2019b)
for queueing problems.

3There is a well established literature in this direction. See De (De (2016), De (2013)), De and Mitra (De
&Mitra (2017), De &Mitra (2019)), Dolan (1978), Duives et al. (2015), Hain &Mitra (2004), Mitra (2002),
Moulin (2007) and Suijs (1996).
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A special case of sequencing problems where the processing times of the agents are identical is called

queueing problems.4

Consider any Ω ∈ S(N). A typical profile of waiting costs is denoted by θ = (θ1, . . . , θn) ∈

Θn. A mechanism μ = (σ, τ) constitutes of a sequencing rule σ and a transfer rule τ. A se-

quencing rule is a function σ : Θn → Σ that specifies for each profile θ ∈ Θn a unique or-

der σ(θ) = (σ1(θ), . . . , σn(θ)) ∈ Σ. We use the following tie-breaking rule. We take the lin-

ear order 1 ≻ 2 ≻ . . . ≻ n on the set of agents N. For any sequencing rule σ and any profile

θ ∈ Θn with a tie situation between agents i, j ∈ N, we pick the order σ(θ) with σi(θ) < σj(θ)

if and only if i ≻ j. A transfer rule is a function τ : Θn → Rn that specifies for each profile

θ ∈ Θn a transfer vector τ(θ) = (τ1(θ), . . . , τn(θ)) ∈ Rn. Specifically, given any mechanism

μ = (σ, τ), if (θ′i, θ−i) is the announced profile when the true waiting cost of i is θi, then utility of i is

ui(μi(θ
′
i, θ−i); θi) = −θiSi(σ(θ′i, θ−i)) + τi(θ′i, θ−i) where μi(θ

′
i, θ−i) := (σ(θ′i, θ−i), τi(θ′i, θ−i)).

3.3 Individual interests and other properties

The generalized minimum welfare bound is an all-inclusive lower bound that guarantees an assured

level of utility to every agent (see Banerjee et al. (2020)). We represent a typical sequencing problem

with the generalized minimum welfare bound by Γ = (Ω,O(N; s)) where Ω ∈ S(N) and the

associatedO(N; s) ∈ Rn is the welfare parameter vector.

Definition 13. For Γ, a mechanism μ = (σ, τ) satisfies generalized minimum welfare bound (or

GMWB) if the transfer rule τ : Θn → Rn is such that for any i ∈ N, any θi ∈ Θand any θ−i ∈ Θn−1,

ui(μi(θi, θ−i); θi) ≥ −θiOi(s). (3.1)
4Queueing problems have also been analyzed extensively from both normative and strategic viewpoints.

See Chun (2006a), Chun (2006b), Chun et al. (2014b), Chun et al. (2017), Chun et al. (2019b), Chun et al.
(2019a), Hashimoto (2018), Kayı & Ramaekers (2010), Maniquet (2003), Mitra (2001), Mitra (2007), Mitra
&Mutuswami (2011) andMukherjee (2013).
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whereOi(s) is the welfare parameter of agent i.

Remark 5. The GMWB is a universal representation encompassing fairness bounds and naturally

constructed bounds that have been earlier studied in the literature. Its most natural application can

be observed in sequencing problemswith an (ex-ante) initial orderwhere theminimumutility guaran-

teed is based on the agents’ natural order of arrival. Identical Costs Bound (ICB) is yet another specific

application of GMWB which requires that each agent receives at least the utility he could expect un-

der the egalitarian solution if all agents were identical to him. The benchmark economy, based on

which the bound is constructed, consists of agents having identical waiting costs as well as processing

times. GMWB can be applied to sequencing environments that allow random arrival of queues with

equal probability. Thus, the Expected Costs Bound (ECB) assures each agent a utility no less than his

expected cost when every arrival order is equally likely. For a more detailed discussion of GMWB see

Banerjee et al. (2020).

Definition 14. Amechanism μ satisfies feasibility if for any θ ∈ Θn, ∑j∈N τi(θ) ≤ 0.

Definition 15. Amechanism μ satisfies budget balance if for any θ ∈ Θn, ∑j∈N τi(θ) = 0.

A sequencing rule σ∗ is outcome efficient if for any θ ∈ Θn, σ∗(θ) ∈ argminσ∈ΣC(σ; θ). The ratio

of the waiting cost and processing time of any agent i, that is, θi/si is known as the urgency index. A

sequencing rule σ∗ is outcome efficient if and only if for any θ ∈ Θn, the selected order σ∗(θ) satisfies

the following: for any i, j ∈ N, θi/si > θj/sj ⇒ σ∗i (θ) < σ∗j (θ). This condition was first introduced

by Smith et al. (1956). We say that a mechanism μ = (σ, τ) satisfies outcome efficiency if σ = σ∗.

Definition 16. Amechanism μ = (σ, τ) satisfies outcome efficiency if σ = σ∗.

Definition 17. Amechanism μ satisfies Pareto optimality if it satisfies outcome efficiency and budget

balance.
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For any θ ∈ Θn and any given order σ ∈ Σ, let us denote the aggregate cost by C(σ; θ), that is,

C(σ; θ) := ∑j∈N θiSi(σ).

Definition 18. A sequencing rule σb : Θn → Σ is said to be a Bounded Aggregate Cost (BAC) rule if,

C(σ(θ); θ) ≤ ∑
i∈N

θiOi(s), ∀ θ ∈ Θn. (3.2)

Lemma 2. The following statements are equivalent.

(a1) A sequencing rule σ : Θn → Σ is such that we can associate a mechanism μ that is budget

balanced and satisfies GMWB.

(a2) A sequencing rule σ : Θn → Σ is such that we can associate a mechanism μ that is feasible and

satisfies GMWB.

(a3) The sequencing rule is a BAC rule.

The proof of Lemma 2 is provided in the Appendix. Consider any sequencing rule σ : Θn →

Σ. For any θ ∈ Θn and any i ∈ N, define Δi(σ(θ); θi) := θiOi(s) − θiSi(σ(θ)) and define

Δ(σ(θ); θ) := ∑j∈N Δj(σ(θ); θj) = ∑i∈N θiOi(s) − C(σ(θ); θ). Note that, for any BAC rule σb,

Δ(σb(θ); θ) ≥ 0 for all θ ∈ Θn. The BAC rule puts an upper bound on the aggregate job completion

cost, such that, it does not exceed the sum total of guarantees to all the agents underGMWB. If for any

problemΓ = (Ω,O(N; s))we can find aBAC rule, then the outcome efficient rule is also a BAC rule.

Given the outcome efficient sequencing rule σ∗, for any profile θ ∈ Θn the selected order σ∗(θ)min-

imizes the aggregate cost, that is C(σ∗(θ); θ) ≤ C(σ; θ) for all σ ∈ Σ. Hence, if we know that a BAC

rule σb exists for some Γ = (Ω,O(N; s)), then the aggregate cost associated with outcome efficiency

is clearly nomore than the aggregate cost under the rule σb and hence also nomore than the aggregate

guaranteed under GMWB, that is, for any θ ∈ Θn, C(σ∗(θ); θ) ≤ C(σb(θ); θ) ≤ ∑i∈N θiOi(s) im-

plying condition (3.2). For any Γ = (Ω,O(N, s)) we can find a BAC rule (which implies getting a
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mechanismwhich satisfies outcome efficiency, GMWB and feasibility) only ifO(N, s) is such that (a)

∑j∈N sj
{
Oj(s)− (sj + A(s))/2

}
≥ 0 (see Lemma 1 in Banerjee et al. (2020)). One can show that if

Oi(s) ≥ (sj + A(s))/2 for all i ∈ N, then we can find a BAC rule. Given Lemma 2, for the rest of

the paper we restrict our attention to those Γ = (Ω,O(N; s)) for which BAC rules exists.

3.4 Lorenz optimality and the constrained egalitarian mechanism

The Lorenz criterion has been recognized as a fundamental tool to make inequality comparisons in

the distribution of income (or wealth). We denote Uμ
i (θ) ≡ ui(σi(θ), τi(θ); θi) to denote agent i’s

utility frommechanism μ at a profile θ. The utility of all agents is given byUμ(θ) ≡ (Uμ
i (θ))i∈N. The

permutation ofUμ(θ) such thatUμ
1 (θ) ≤ Uμ

2(θ) ≤ . . . ≤ Uμ
n(θ) is denoted byU

μ
(θ).

Definition 19. Let Y be a set of mechanisms and let μ, ν ∈ Y. We say that μ Lorenz dominates ν if for

all profiles θ and for every k = 1, 2, . . . , n we have, ∑k
r=1 U

μ
r (θ) ≥ ∑k

r=1 U
ν
r(θ). The mechanism μ is

Lorenz optimal in Y if μ Lorenz dominates all ν in Y.

Remark 6. We have two utility profilesUμ
(θ) frommechanism μ andUν

(θ) frommechanism ν. We

begin by comparing the worst utility undermechanism μwith that of ν. Next, we compare the sum of

utilities of the twoworst individuals in the respective utility profiles and continue till we reach the last

stage which compares the aggregate utility under both the mechanisms. In simpler terms, we begin

with the max-min (egalitarian) comparison and end with the utilitarian comparison.

A constrained egalitarianmechanism is a Pareto optimalmechanism that assigns each agent a util-

ity which is themaximumof either his guaranteed level under GMWBor a defined common quantity

λ(θ).

Definition 20. A mechanism μc is said to be constrained egalitarian if it is Pareto optimal and for

each θ ∈ Θn there exists a unique λ(θ) such that for all i ∈ N,Uμc
i (θ) = max{λ(θ),−θiOi(s)}.
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Before stating ourmain theorem, we provide a step by step algorithm to compute the constrained

egalitarian mechanism μc.

Remark 7. Given μc is Pareto optimal, observe that ∑j∈Nmax{λ(θ),−θiOi(s)} = −C(σ∗(θ); θ).

We have the following observations,

• If Uμc
i (θ) = λ(θ), then λ(θ) ≥ −θiOi(s) and for any j ∈ N such that θjOj(s) ≥ θiOi(s),

Uμc
j (θ) = λ(θ).

• If Uμc
i (θ) = −θiOi(s) > λ(θ), then for all j ∈ N such that θjOj(s) ≤ θiOi(s), U

μc
j (θ) =

−θjOj(s).

We can thus partition N as N1 ∪N2 where N1 = {i ∈ N|Uμc
i (θ) > −θiOi(s)} and N2 = {i ∈

N|Uμc
i (θ) = −θiOi(s)}. Observe that for any i ∈ N1 and any j ∈ N2,Uμc

i (θ) < Uμc
j (θ).

Remark 8. If a profile θ ∈ Θn is such that θ ∈ I(σ∗) so that θ1/s1 = . . . = θn/sn implies that the

aggregate cost is a constant for all possible orders in Σ, then we haveUμc
j (θ) = −θjOj(s) for all j ∈ N

and we haveN1 = ∅ andN2 = N. Suppose there exists i, j, k ∈ N such that si ̸= sj ̸= sk ̸= si. Then

one can also show that if a profile θ ∈ Θn is such that θ1 = . . . = θn, thenN1 = N andN2 = ∅.

For any θ ∈ Θn, let Q(θ) = (Q1(θ) = −θ1O1(s), . . . ,Qn(θ) = −θnOn(s)) be the vector of

guarantees under GMWB for all the agents and Q̃(θ) be the permutation ofQ(θ) such that Q̃1(θ) ≥

. . . ≥ Q̃n(θ) and, for every k ∈ {1, . . . , n}. Let Ũμ
k(θ) be the utility associated with the agent

with k-th ranked agent specific guarantee under GMWB Q̃k(θ). The algorithm for calculating the

profile contingent allocation associatedwith the constrained egalitarianmechanismμc is the following:

Consider any θ ∈ Θn.

Step 1: If−C(σ∗(θ); θ)/n ≥ Q̃1(θ), thenwe stop and set λ(θ) = −C(σ∗(θ); θ)/n so that Ũμcr (θ) =

λ(θ) = −C(σ∗(θ); θ)/n ≥ Q̃r(θ) for all r ∈ {1, . . . , n}. If−C(σ∗(θ); θ)/n < Q̃1(θ), then
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set Ũμc
1 (θ) = Q̃1(θ) and go to Step 2.

...

Step k: Consider any k > 1. If−C(σ∗(θ); θ)− ∑k−1
r=1 Q̃j(θ) ≥ (n− k+ 1)Q̃k(θ), then stop and set

λ(θ) = [−C(σ∗(θ); θ)− ∑k−1
r=1 Q̃r(θ)]/(n− k+ 1) so that (given the previous steps of the

algorithm) Uμcr (θ) = Q̃r(θ) for all r ∈ {1, . . . , k− 1} and Ũμcr (θ) = λ(θ) ≥ Q̃r(θ) for all

r ∈ {k, . . . , n}. If −C(σ∗(θ); θ) − ∑k−1
r=1 Q̃j(θ) < (n− k+ 1)Q̃k(θ), then set Ũμc

k (θ) =

Q̃k(θ) so that (given the previous steps of the algorithm) we have Ũμcr (θ) = Q̃r(θ) for all

r ∈ {1, . . . , k}, and then go to Step (k+ 1).

Given that in each step of the algorithm the utility of at least one agent is determined and given

−C(σ∗(θ); θ) ≥ −∑n
r=1 Q̃j(θ) (since Δ(σ∗(θ); θ) ≥ 0 for any profile θ), we can have at most n− 1

steps before the utilities of all the agents are determined. Observe that for any θ ∈ Θn, Ũ(θ) is such

that Ũμc
1 (θ) ≥ . . . ≥ Ũμcn (θ) and hence U

μc(θ) is such that Uμc
1 (θ) = Ũμcn (θ) ≤ . . . ≤ Uμc

n (θ) =

Ũμc
1 (θ).

Theorem 3. Themechanism μ is Lorenz optimal in the class of mechanisms satisfying feasibility and

GMWB if and only if μ = μc.

Given Lemma 2, we try to identify the complete class of transfers that work.5 For any sequencing

rule σ, define I(σ) := {θ ∈ Θ | Δ(σ(θ); θ) = 0}. In the previous section, we found that a BAC

sequencing rule is both necessary and sufficient to findmechanisms that are feasible (budget balanced)

and satisfy GMWB. In this section, we characterize this entire class of mechanisms.

5Lemma 2 and Theorem 3 are important generalizations of results from Chun et al. (2019b). They show
that for queueing problems, constrained egalitarianmechanisms are Lorenz optimal amongst the class ofmech-
anisms satisfying outcome efficiency, budget balance and the identical preferences lower bound (IPLB). In the
sequencing context, we identify the class ofmechanismswhich are Lorenz optimal, feasible and satisfyGMWB.
Note that, by construction, the generalizedminimumwelfare bound entails the existing fairness bounds as well
as the natural bounds that are based on the initial queue.
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Definition 21. For any sequencing rule σ, amechanismμ isF-acceptable (B-acceptable) if the following

conditions hold.

(f1) For any θ ∈ Θn \ I(σ), there exists a vector β(θ) = (β1(θ), . . . , βn(θ)) ∈ [0, 1]n such that

∑j∈N βj(θ) ≤ 1(= 1), and, for each i ∈ N, τi(θ) = βi(θ)Δ(σ(θ); θ)− Δi(σ(θ); θi).

(f2) For any θ ∈ I(σ), τi(θ) = −Δi(σ(θ); θi) for any i ∈ N.

Lemma 3. For any BAC sequencing rule σb, amechanism μ = (σb, τ) satisfiesGMWBand feasibility

(budget balance) if and only if it is an F-acceptable (B-acceptable) mechanism.

For the proof of Lemma 3 see appendix. Let W denote the set of all Bounded Aggregate Cost

(BAC) sequencing rules. We use B(σb) to denote the set of all B-acceptable mechanisms associated

with a given BAC sequencing rule σb ∈ W and we use B(W) = {{B(σb)}σb∈W} to denote the set

of all possible B-acceptable mechanisms associated with all BAC sequencing rules. Similarly, we use

F(σb) to denote the set of all F-acceptable mechanisms associated with a given σb ∈ W and we use

F(W) = {{F(σb)}σb∈W} to denote the set of all possible F-acceptablemechanisms associated with

all possible BAC sequencing rules. Clearly, for each σb ∈ W , B(σb) ⊂ F(σb) and hence we have

B(W) ⊂ F(W). We provide twomore results and the proves of these two results are provided in the

appendix.

Lemma 4. If a mechanism μ is Lorenz optimal in F(W), then μ must be Pareto optimal, that is,

μ ∈ B(σ∗).

Lemma 5. The constrained egalitarian mechanism μc is Lorenz optimal in set of all Pareto optimal

mechanisms B(σ∗).

Proof of Theorem3: If amechanismμ is in the class ofmechanisms satisfying feasibility andGMWB,

then by Lemma 2 the associated sequencing rule has to be a BAC rule and if the mechanism is also

66



Lorenz optimal, then by Lemma 4 the sequencing rule cannot be just any BAC rule but has to be the

outcome efficient rule σ∗. Moreover, by Lemma 4 it also follows that any Lorenz optimal mechanism

must also be budget balanced. Hence, if we have a Lorenz optimal mechanism satisfying feasibility

and GMWB, then it has to be in the Pareto optimal set of mechanisms B(σ∗). To complete the proof

all we need to show is that the constrained egalitarian mechanism μc is Lorenz optimal in the set of all

Pareto optimal mechanisms B(σ∗). This is done in Lemma 5.

3.5 Appendix

Proof of Lemma 2: If for a sequencing rule σ : Θn → Σ we can associate a mechanism that satisfies

GMWB and is budget balanced, then, given budget balance implies feasibility, for that same sequenc-

ing rule σ we have obtained a mechanism that satisfies GMWB and feasibility. Hence, (a1) implies

(a2). To complete the proof we first show (a2) implies (a3) and then show (a3) implies (a1).

(a2)⇒(a3): Consider any sequencing rule σ for which we can associate a mechanism (σ, τ) that

satisfies GMWB and feasibility. For any profile θ ∈ Θn and any agent i ∈ N, the GMWB condition

ui(μi(θ); θi) ≥ −θiOi(s) implies (A1) τi(θ) ≥ −Δi(σ(θ); θi) for any i ∈ N. Fix any i ∈ N and

consider the sum ∑j ̸=i τj(θ). Using (A1) for all j ∈ N \ {i} and the feasibility condition we get

τi(θ) ≤ −∑j ̸=i τj(θ) ≤ ∑j ̸=i Δj(σ(θ); θj) = Δ(σ(θ); θ)− Δi(σ(θ); θi). Therefore, we also have

(A2) τi(θ) ≤ Δ(σ(θ); θ)− Δi(σ(θ); θi) for any i ∈ N. Combining (A1) and (A2) we get

−Δi(σ(θ); θi) ≤ τi(θ) ≤ Δ(σ(θ); θ)− Δi(σ(θ); θi), ∀θ ∈ Θn and ∀i ∈ N. (3.3)

Condition (3.3) implies that for all θ ∈ Θn

Δ(σ(θ); θ) = ∑
i∈N

θiOi(s)− C(σ(θ); θ) ≥ 0. (3.4)
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Given the outcome efficient sequencing rule σ∗, for any profile θ ∈ Θn the selected order σ∗(θ)mini-

mizes the aggregate cost, that isC(σ∗(θ); θ) ≤ C(σ; θ) for all σ ∈ Σ. Hence, if we know that for a rule

σb condition (3.4) exists for some Γ = (Ω,O(N; s)), then the aggregate cost associatedwith outcome

efficiency is clearly nomore than the aggregate cost under the rule σb andhencenomore than the aggre-

gate guaranteed under GMWB, that is, for any θ ∈ Θn, C(σ∗(θ); θ) ≤ C(σb(θ); θ) ≤ ∑i∈N θiOi(s)

implying condition (3.4). Hence, a necessary condition for condition (3.4) to hold is that

∑
i∈N

θiOi(s)− C(σ∗(θ); θ) ≥ 0, ∀θ ∈ Θn. (3.5)

If Δ(σ(θ); θ)(= ∑i∈N θiOi(s) − C(σ(θ); θ)) ≥ 0, then the BAC condition (3.2) holds and

hence we have σ = σ∗.

(a3)⇒(a1): Consider any BAC rule σb and any associated mechanism μb = (σb, τb) such that

for any θ ∈ Θn, τbi (θ) = (1/n)Δ(σb(θ); θ) − Δi(σb(θ); θi) for each i ∈ N. Observe that for

any θ ∈ Θn, ∑j∈N τbj (θ) = Δ(σb(θ); θ)− ∑j∈N Δj(σb(θ); θ) = Δ(σb(θ); θ)− Δ(σb(θ); θ) = 0.

Hence, the mechanism μb satisfies budget balancedness. Further, for any θ and any i, ui(μbi (θ); θi) =

−θiSi(σb(θ)) + τbi (θ) = (1/n)Δ(σb(θ); θ)− θiOi(s) ≥ −θiOi(s) since BAC condition (3.2) im-

plies Δ(σ∗(θ); θ) ≥ 0. Hence, the mechanism μb also satisfies GMWB. Thus, for σb, we have found

μb that satisfies GMWB and is budget balanced. Since the selection of the BAC rule σb was arbitrary,

the result follows.

Proof of Lemma 3: Consider any BAC sequencing rule σb for which we can associate a mech-

anism μ = (σb, τ) that satisfies GMWB and budget balancedness (feasibility). For any profile

θ ∈ Θn and any agent i ∈ N, the GMWB condition ui(μi(θ); θi) ≥ −θiOi(s) implies (B1)

τi(θ) ≥ −Δi(σb(θ); θi) for any i ∈ N. Fix any i ∈ N and consider the sum ∑j ̸=i τj(θ).

Using (B1) for all j ∈ N \ {i} and budget balance (feasibility) condition we get τi(θ) = (≤

)− ∑j ̸=i τj(θ) ≤ ∑j ̸=i Δj(σb(θ); θj) = Δ(σb(θ); θ)− Δi(σb(θ); θi). Therefore, we also have (B2)
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τi(θ) ≤ Δ(σb(θ); θ)− Δi(σb(θ); θi) for any i ∈ N. Combining (B1) and (B2) we get that for any

Bounded Aggregate Cost (BAC) sequencing rule, the associated mechanism (σb, τ) satisfies GMWB

and budget balance (feasibility) only if

−Δi(σb(θ); θi) ≤ τi(θ) ≤ Δ(σb(θ); θ)− Δi(σb(θ); θi), ∀θ ∈ Θn and ∀i ∈ N. (3.6)

From condition (3.6) it follows that given any profile θ ∈ Θn \ I(σb), for each i ∈ N there exists

βi(θ) ∈ [0, 1] such that τi(θ) = βi(θ)Δ(σ
b(θ); θ) − Δi(σb(θ); θi). Therefore, using the defini-

tion Δ(σb(θ); θ) := ∑j∈N Δj(σb(θ); θj), it follows that ∑j∈N τj(θ) = Δ(σb(θ); θ)
(

∑j∈N βj(θ)
)
−

Δ(σb(θ); θ). Hence, from budget balancedness (feasibility) we get ∑j∈N βj(θ) = 1 (∑j∈N βj(θ) ≤ 1).

Moreover, from condition (3.6) it also follows that given any profile θ ∈ I(σb), for each i ∈ N,

τi(θ) = −Δi(σb(θ); θi) (since Δ(σb(θ); θ) = 0). This proves the necessity of B-acceptable (F-

acceptable) mechanisms.

For the converse, consider any BAC sequencing rule σb and observe that any associated B-

acceptable (F-acceptable) mechanism satisfies budget balancedness (feasibility). Moreover, for any B-

acceptable (F-acceptable) mechanism μ, for any θ ∈ Θn \ I(σ) and any i ∈ N, ui(μi(θ); θi) =

−θiSi(σb(θ)) + τi(θ) = βi(θ)Δ(σ
b(θ); θ) − θiOi(s) > −θiOi(s) (since for any profile θ ∈

Θn \ I(σ), Δ(σb(θ); θ) > 0). Moreover, for any θ ∈ I(σb) and any i ∈ N, ui(μi(θ); θi) =

−θiSi(σb(θ)) + τi(θ) = −θiOi(s). Hence, we also have GMWB being satisfied for any B-acceptable

(F-acceptable) mechanism μ.

Proof of Lemma 4: Suppose μ = (σb, τ) is Lorenz optimal in F(W) and that it satisfies feasi-

bility but is not budget balanced. Then there exists θ ∈ Θn such that the associated allocation

is μ(θ) = (μ1(θ) = (σb(θ), τ1(θ)), . . . , μn(θ) = (σb(θ), τn(θ))) and ∑j∈N τj(θ) < 0. Con-

sider a mechanism ν that retains the same rule σb and that for the same profile θ gives an allocation

ν(θ) = (ν1(θ) = (σb(θ), τ′1(θ)), . . . , νn(θ)) = (σb(θ), τ′n(θ))) where τ′i(θ) = τi(θ) + ε for
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all i ∈ N, where ε = −{∑j∈N τj(θ)}/n > 0. Observe that ∑j∈N τ′j(θ) = ∑j∈N τj(θ) + nε =

∑j∈N τj(θ) − ∑j∈N τj(θ) = 0. Therefore, this new set of transfers under ν for profile θ is bud-

get balanced. More importantly, ui(νi(θ); θ) − ui(μi(θ); θ) = ε > 0 for all i ∈ N implies that

ui(νi(θ); θ) > ui(μi(θ); θ) ≥ −θiOi(s) for all i ∈ N. Thus, for the allocation ν(θ) under the mech-

anism ν for the profile θ satisfies GMWB. Therefore, we have a violation of Lorenz optimality of μ

since ∑n
r=1 U

ν
r(θ) = ∑i∈N ui(νi(θ); θ) > ∑i∈N ui(μi(θ); θ) = ∑n

r=1 U
μ
r (θ). Hence, any Lorenz op-

timal mechanismmust be budget balanced, that is, if μ ∈ F(W) is Lorenz optimal, then μ ∈ B(W).

Therefore, to identify a Lorenz optimal mechanism from F(W) we must restrict our search within

the set B(W).

Suppose, μ = (σb, τ) ∈ B(W) is Lorenz optimal. Then it is necessary that for all profiles

θ ∈ Θn, (I) ∑n
r=1 Ū

μ
r (θ) = ∑i∈N τi(θ)− ∑i∈N θiSi(σb(θ)) ≥ ∑i∈N τ̂i(θ)− ∑i∈N θiSi(σ̂b(θ)) =

∑n
r=1 Ūν

r(θ) where σb, σ̂b ∈ W . Using budget balance, we know that ∑i∈N τi(θ) = ∑i∈N τ̂i(θ) = 0

and hence from condition (I) we get ∑i∈N θiSi(σb(θ)) ≤ ∑i∈N θiSi(σ̂b(θ)) implying that the aggre-

gate cost associated with the order σb(θ) is not higher than the aggregate cost associated with σ̂b(θ).

Therefore, if μ = (σb, τ) ∈ B(W) is Lorenz optimal, then for all σ̂b ∈ W such that σ̂b ̸= σb and all

θ ∈ ΘN, (II) C(σb(θ); θ) ≤ C(σ̂b(θ); θ). Condition (II) means that σb = σ∗, that is, the sequencing

rule σb associated with the Lorenz optimal mechanism μmust be outcome efficient.

Proof of Lemma 5: Given the constrained egalitarian mechanism μc, we first divide the set of all

possible profiles into three mutually exclusive and exhaustive sets. These sets are the following:

1. Profiles θ ∈ Θn such thatN1 = {i ∈ N|Uμc
i (θ) > −θiOi(s)} = ∅.

2. Profiles θ ∈ Θn such thatN1 = {i ∈ N|Uμc
i (θ) > −θiOi(s)} = N.

3. Profiles θ ∈ Θn such that N1 = {i ∈ N|Uμc
i (θ) > −θiOi(s)} ̸= ∅ and we also have

N2 = {i ∈ N|Uμc
i (θ) = −θiOi(s)} ̸= ∅.

Separately, for each of above three cases, we show that for any such profile θ, ∑k
r=1 U

μc
r (θ) ≥
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∑k
r=1 U

μ
r (θ) for any k ∈ {1, . . . , n} and for any μ ∈ B(σ∗).

1. For any θ ∈ Θn such that N1 = {i ∈ N|Uμc
i (θ) > −θiOi(s)} = ∅ and

N2 = {i ∈ N|Uμc
i (θ) = −θiOi(s)} = N,Uμc

j (θ) = −θjOj(s) for all j ∈ N. Further, for any

B-acceptablemechanism μ ∈ B(σ∗), Uμ
j (θ) = Uμc

j (θ) = −θjOj(s) for all j ∈ N. Hence, for

any such profile θ,∑k
r=1 U

μc
r (θ) = ∑k

r=1 U
μ
r (θ) for any k ∈ {1, . . . , n} and for any μ ∈ B(σ∗).

2. For any θ ∈ Θn such that N1 = {i ∈ N|Uμc
i (θ) > −θiOi(s)} = N and

N2 = {i ∈ N|Uμc
i (θ) = −θiOi(s)} = ∅, it follows thatUμc

j (θ) = λ(θ) = −C(σ∗(θ); θ)/n

for all j ∈ N (see Step 1 of the algorithm). Moreover, given ∑j∈N Uμc
j (θ) = ∑j∈N Uμ

j (θ) =

−C(σ∗(θ); θ) for any B-acceptable mechanism μ ∈ B(σ∗), it follows that for any

mechanism μ ∈ B(σ∗) \ {μc}, for any r = 1, . . . , n, Ūμ
r (θ) = λ(θ) + εr where

ε1 ≤ . . . ≤ εn and ∑n
r=1 εr = 0. Hence, ∑k

r=1 εr ≤ 0 for all k ∈ {1, . . . , n}. Therefore,

∑k
r=1 Ū

μcr (θ)− ∑k
r=1 Ū

μ
r (θ) = −∑k

r=1 εr ≥ 0 for all k ∈ {1, . . . , n}. Hence, for any such

profile θ, we always have ∑k
r=1 U

μc
r (θ) ≥ ∑k

r=1 U
μ
r (θ) for any k ∈ {1, . . . , n} and for any

μ ∈ B(σ∗).

3. To complete the proof we have to show that for any profile θ ∈ Θn such that N1 = {i ∈

N|Uμc
i (θ) > −θiOi(s)} ̸= ∅ andN2 = {i ∈ N|Uμc

i (θ) = −θiOi(s)} ̸= ∅, ∑k
r=1 U

μc
r (θ) ≥

∑k
r=1 U

μ
r (θ) for any k ∈ {1, . . . , n} and for any μ ∈ B(σ∗). Suppose to the contrary that

there exists a profile θ ∈ Θn such thatN1 = {i ∈ N|Uμc
i (θ) > −θiOi(s)} ̸= ∅ andN2 =

{i ∈ N|Uμc
i (θ) = −θiOi(s)} ̸= ∅, there exists is a mechanism μ ∈ B(σ∗), and, there exists

k ∈ {1, . . . , n− 1}, such that∑k
r=1 Ū

μ
r (θ) > ∑k

r=1 Ū
μcr (θ). Without loss of generality, assume

that−θ1O1(s) ≤ · · · ≤ −θnOn(s) so that there exists anm ∈ N such that Uμc
i (θ) = λ(θ)
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for any i ∈ {1, . . . ,m} and Uμc
i (θ) = −θiOi(s) for any i ∈ {m+ 1, . . . , n}.6 If k ≥ m,

then there is ℓ > m such that Uμ
ℓ(θ) < Uμc

ℓ (θ) = −θℓOℓ(s). Hence, μ does not satisfy

GMWB, a contradiction to μ ∈ B(σ∗). If k < m, then there is ℓ ∈ {k+ 1, . . . ,m} such that

Uμ
ℓ(θ) < Uμc

ℓ (θ) = λ(θ). Since (1/k)∑k
i=1 Ū

μc
i (θ) = λ(θ), (1/k)∑k

i=1 Ū
μ
i (θ) > λ(θ) and

Ūμ
ℓ(θ) < λ(θ), we have a contradiction to the assumption that k < ℓ.

6Note that for this profile |N1| = m and |N2| = n−m.
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4
Existence of core in sequencing problems-

optimistic and pessimistic approach

4.1 Introduction

This paper adopts a cooperative approach to study sequencing problems. Wework using the standard

sequencing framework that has been consistently followed in this thesis. There is a finite set of agents
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who have to process their jobs at a service facility. Each agent has a single job to process and the service

provider can only cater to one agent at a time. We assume that no job can be interrupted once it starts

processing. A job is characterized by its processing time (which in our framework differs across agents)

and an agent’s per period waiting cost (representing the disutility of waiting in a queue). Both these

parameters are observable and do not need to be evoked from the agents.1 We assume that agents

have quasi-linear preferences and monetary transfers are allowed. If agents are served in an efficient

order, the immediate question that arises is, how to compensate the agents so that the cost burden

gets divided across jobs in a fair and equitable manner.

The class of sequencing problems are a subclass of allocation problems with indivisible objects.

This general class has been examined from the cooperative game point of view (see Abdulkadiroğlu&

Sönmez (1998), Moulin (1992)) as well as from the fair allocation perspective (see Alkan et al. (1991),

Crès &Moulin (1998), CreÁs &Moulin (1998); Tadenuma (1996), Tadenuma &Thomson (1991),

Tadenuma & Thomson (1993), Tadenuma & Thomson (1995); Thomson (2003)). A popular ap-

proach to studying cost sharing problems (Moulin (2002)) involves associating an appropriate char-

acterization form to the original problem and implementing solution concepts from the theory of

cooperative games. The Shapley value is considered as an appropriate solution to fair division prob-

lems in general and has been shown to possess interesting fairness properties (Moulin (1992)).

Queueing problems are a special class of sequencing problemswith identical job processing times.

Maniquet (2003) studied queueing games and defines the worth of a coalition to be the (negative of

the)minimumaggregatewaiting cost of itsmembers if they are to be served first in the queue. In other

words, it is the least possible cost that the coalition incurs if no other agents (non-coalitionalmembers)

are present. He designed the monetary compensations (minimal transfer rule) so that every agent’s

utility corresponds to their respective Shapley values in the associated characteristic form game. Chun

1Sequencing problems with incentives have been analyzed extensively in the literature. A few notable con-
tributions include Dolan (1978),Mendelson & Whang (1990), Suijs (1996), Mitra (2001), Mitra (2002), De
(2016), Banerjee et al. (2020)
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(2006b) adopted a pessimistic approach towards evaluating theworth of a coalition by computing the

(negative of the) minimum waiting cost of that coalition if they are served after the non-coalitional

members. He too showed that the utility of the agents under the maximal transfer rule corresponds

to their respective Shapley values. BothManiquet (2003) and Chun (2006b) characterize the Shapley

value solution using classic fairness axioms.

Curiel et al. (1989) are the first to study cooperation in sequencing situations for which an initial

order of agents exists before jobs start getting processed. Every sequencing problem is associatedwith a

cooperative transferable utility (TU) game. Theworth of a coalition is themaximum cost savings that

can be obtained through admissible rearrangements. They introduce the equal gain splitting (EGS)

rule and show that such an allocation rule assigns to each sequencing game a particular core allocation.

Mishra &Rangarajan (2007) provide the Shapley value characterization for the two dimensional case

when jobs are not identical (the more general class of sequencing games). Further, Moulin (2007)

studies scheduling problems in which agent have linear waiting costs but arbitrary job lengths. The

server canmonitor the length of the job but not the identity of the user; thus leadingmerging, splitting

or partially transferring jobs to offer cooperative strategic opportunities. It is shown that the Shapley

value solution is merge proof, but not split proof.

4.1.1 Contribution

Thepaper is broadly divided into three sections. The first section defines theworth of a coalition using

the optimistic approach of Maniquet (2003) and calculates the Shapley value solution of the associ-

ated cooperative form game. Maniquet provides an alternate way of defining the worth of a coalition

in terms of its dual. For queueing games, he interprets this as the (negative of the) total waiting cost

of its members as if they are the last to arrive. In other words, if they have to compensate the non-

members for the additional cost imposed. Similarly, when the underlying rule is efficient, we define

the dual for sequencing games as the aggregate job completion cost of themembers in the grand coali-
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tion along with the incremental cost they impose on non-members. Our first theorem shows that

the core of the primal game is empty while the Shapley value belongs to the core of the dual game,

thus proving the non-emptiness of core in the dual game. The second section defines the worth of a

coalition from the pessimistic viewpoint of Chun (2006b) and calculates the Shapley value of the cor-

responding cooperative game. Our second theorem states that the Shapley value belongs to the core of

the primal game while the core of the associated dual game is empty. Under this approach, the worth

of a coalition in the dual game can be interpreted as follows: it is the (negative of the) aggregatewaiting

cost incurred by the members as if they were the first to arrive, that is, if the non-members compen-

sate the additional gain to the members of the coalition. More simply, the worth of a coalition is the

(net) aggregate cost, which is the sum of its member’s waiting cost in the grand coalition minus the

incremental benefit received as compensation from the non-members. The last section connects the

paper to the generalized minimumwelfare bound introduced by Banerjee et al. (2020). For any given

sequencing problem, we provide a necessary and sufficient condition on the constrained welfare pa-

rameter (defined in Banerjee et al. (2020)) for the allocation rule, assigning Shapley value payoffs of the

corresponding sequencing game, to satisfy the generalized minimum welfare bound property. This

result holds for both the optimistic approach byManiquet and the pessimistic approach by Chun.

4.2 The model

A finite set of agents N = {1, 2, . . . , n} want to process their jobs. An agent i ∈ N is identified

by his job processing time si ∈ R++ and his constant per period waiting cost θi ∈ Θ := R++.

An order σ = (σ1, . . . , σn) on N describes the position of each agent where σi = k indicates that

agent i has the k-th position in the queue. Let Σ be the set of n! possible orders on N. We denote

Pi(σ) = {j ∈ N \ {i} | σj < σi} as the predecessor set and Fi(σ) = {j ∈ N \ {i} | σj > σi} as

the successor set of i in the order σ. The processing time vector s = (s1, . . . , sn) ∈ Rn
++ is common
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knowledge. Given a vector s ∈ Rn
++ and an order σ ∈ Σ, the cost of job completion for agent i ∈ N

is θiSi(σ), where the job completion time is Si(σ) = ∑j∈Pi(σ) sj + si. The agents have quasi-linear

utility of the form ui(σ, τi; θi) = −θiSi(σ) + τi where τi ∈ R is the transfer that he receives (pays).

A sequencing problem is denoted byΩ = (N, θ, s) and the set of all sequencing problems with a finite

set of agentsN (with n ≥ 2) is given by S(N).

Consider anyΩ ∈ S(N). A typical profile ofwaiting costs is denotedby θ = (θ1, . . . , θn) ∈ Θn.

An allocation μ = (σ, τ) constitutes of a sequencing rule σ and a transfer rule τ. A sequenc-

ing rule is a function σ : Θn → Σ that specifies for each profile θ ∈ Θn a unique order

σ(θ) = (σ1(θ), . . . , σn(θ)) ∈ Σ. We use the following tie-breaking rule. We take the linear order

1 ≻ 2 ≻ . . . ≻ n on the set of agentsN. For any sequencing rule σ and any profile θ ∈ Θn with a

tie situation between agents i, j ∈ N, we pick the order σ(θ) with σi(θ) < σj(θ) if and only if i ≻ j.

A transfer rule is a function τ : Θn → Rn that specifies for each profile θ ∈ Θn a transfer vector

τ(θ) = (τ1(θ), . . . , τn(θ)) ∈ Rn. Specifically, for each i ∈ N, σi denotes agent i’s position in the

queue and τi is the monetary compensation (to be paid, when transfers are negative or received, when

transfers are positive).

An allocation μ is feasible if and only if the sum of transfers is not positive, i.e., the set of feasible

allocations F (Ω) is defined by μ = (σ, τ) ∈ F (Ω) if and only if ∀i, j ∈ N we have, ∑i∈N τi ≤ 0.

For any θ ∈ Θn and any given order σ ∈ Σ, we denote the aggregate cost byC(σ; θ), that is,C(σ; θ) :=

∑j∈N θiSi(σ). An allocation is efficient for Ω ∈ S(N) whenever it minimizes the aggregate cost of

job completion and no transfer is lost (sum of transfers in zero), i.e., for all μ = (σ, τ) ∈ F (Ω), μ

is efficient if and only if for all μ′
= (σ′ , τ′) ∈ F (Ω): C(σ; θ) ≤ C(σ′ , θ) and ∑i∈N τi = 0. The

efficient ordering of a sequencing problem is independent of the transfer. We use σ∗(Ω) to denote an

efficient ordering of agents.

An allocation rule ψ associates to each problemΩ ∈ S(N) a non empty set ψ(Ω) of allocations.

Definition 22. An allocation rule ψ satisfies efficiency if and only if for all Ω ∈ S(N ), μ = (σ, τ) ∈
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ψ(Ω), μ is efficient.

Definition 23. An allocation ruleψ satisfies feasibility if and only if for all Ω ∈ S(N ), μ = (σ, τ) ∈

ψ(Ω), ∑i∈N τi ≤ 0.

4.3 Sequencing games - an optimistic approach

We treat a sequencing problem Ω ∈ S(N) as a cooperative game. We primarily focus on two ways

of defining the worth of a coalition, depending on whether its members are being served first or last.

This section is inspired by the approach introduced in Maniquet (2003). We also interpret its dual

and compute the Shapley value payoffs. The worth of a coalition S ⊆ N is denoted by vM(S). It

is calculated by taking the sum of its members’ job completion cost in an efficient ordering provided

they have the power to be served first or are the first to arrive. Formally, for any Ω ∈ S(N), S ⊆ N,

vM(S) = −∑
i∈S

θi(si + ∑
j∈Pi(σ∗(θS)

sj) = −∑
i∈S

θiSj(σ∗(θS)) (4.1)

where σ∗(θS) is an efficient ordering of the members of coalition S. Maniquet has provided an

alternate way of defining the worth of a coalition. Consider the scenario where the members of the

coalition S are the last to arrive. Then, the worth wM(S) of a coalition S ⊆ N is the sum of its

member’s waiting cost in the grand coalition in addition to the incremental cost they impose on the

non-members. It is as if the members of S are compensating the non-members for their additional

waiting costs. For any S ⊆ Nwe define,

wM(S) = −∑
i∈S

θi(si + ∑
j∈Pi(σ∗(θN))

sj)− ∑
i∈N\S

θi( ∑
j∈Pi(σ∗(θN))

sj − ∑
j∈Pi(σ∗(θN\S))

sj) (4.2)

where σ∗(θN) is an efficient ordering over the grand coalition and σ∗(θN\S) is an efficient ordering of

members ofN\S.
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Remark 9. Using equation (4.2), the worth wM(S) of a coalition S ⊆ N can be expressed as

wM(S) = −∑i∈N θi(si + ∑j∈Pi(σ∗(θN)) sj) + ∑i∈N\S θi(si + ∑j∈Pi(σ∗(θN\S))
sj). It can be easily veri-

fied using equation (4.1) that wM(S) = vM(N)− vM(N\S). Thus, the game wM is the dual of the

game vM.

The contribution of an agent i ∈ N to a coalition S in vM ( i /∈ S) is given by;

vM(S∪ {i})− vM(S) = −(si + ∑
j∈Pi(σ∗(θS∪{i}))

sj)θi − si ∑
j∈Fi(σ∗(θS∪{i}))

θj

where σ∗(θS∪{i}) is an efficient ordering over the coalition S∪ {i}. The contribution is composed of

the agent’s individual cost of waiting and the cost he imposes on those agents who succeed him in the

queue.

The Shapley value of each agent is his contribution to a coalition, when we consider all possible

permutations of the formation of the grand coalition. In other words, it is the expected value of the

contributions of the player over all possible orderings when each ordering is equally likely. For all

Ω ∈ S(N), i ∈ N, the payoff assigned to agent i is given by,

Shi(vM) = ∑
S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|! [vM(S∪ {i})− vM(S)]

Given the duality of vM and wM, the Shapley value payoffs are identical for these two games (see

Kalai & Samet (1987)).

Lemma 6. Let σ∗ be an efficient ordering onN. For any i ∈ N, the Shapley value of the game vM is

given by,

Shi(vM) = −θisi − ∑
j∈Pi(σ∗(θN))

θisj/2− ∑
j∈Fi(σ∗(θN))

θjsi/2 (4.3)

Proof. A TU-game v can be expressed uniquely as a linear combination of unanimity games, v =

∑T⊆N ΔvuT, where the unanimity game uT on N is given by uT(S) = 1 if T ⊆ S, and uT(S) = 0
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otherwise. For any S ⊆ N, the dividend Δv(S) is defined as follows: if |S| = 1, Δv(S) = v(S) and if

|S| > 1, Δv(S) = v(S)− ∑
T⊂S
T ̸=S

ΔV(T). We first prove the following claim,

Claim 1. The dividends δvM(S) for any S ⊆ N are given by,

δvM(S) =



−θisi if |S| = 1

−mini,j∈S{θi/si, θj/sj}sisj if |S| = 2

0 if |S| ≥ 3

(4.4)

Proof When |S| = 1, let S = {i}. We have δvM(i) = vM(i) = −θisi. If |S| = 2, let us as-

sume S = {i, j} such that θi/si ≥ θj/sj without loss of generality. We then have δMv ({i, j}) =

vM{i, j} − δvM({i}) − δvM({j}) = −θjsi = −min{θi/si, θj/sj}sisj. If |S| = 3 and let S =

{i, j, k} such that θi/si ≥ θj/sj ≥ θk/sk without loss of generality. We define δMv ({i, j, k}) =

vM{i, j, k} − δvM({i, j}) − δvM({j, k}) − δvM({i, k}) − δvM({i}) − δvM({j}) − δvM({k}) =

−θjsi − θk(si + sj) + θjsi + θksj + θksi = 0. By induction on the size of the coalition S, let us assume

δvM(S
′
) = 0where 3 ≤ |S′ | ≤ |S|. Without loss of generality, let S = {1, 2, . . . s} such that θ1/s1 ≥

θ2/s2 ≥ . . . ≥ θs/ss. Using the induction hypothesis, δvM(S) = vM(S) − ∑T⊂S;|T|=2 δvM(T) −

∑T⊂S;|T|=1 δvM(T) = −∑j∈S θjSj(σ∗(θS)) + ∑j∈S θj(∑m∈Pj(σ∗(θS)) sm) + ∑j∈S θjsj = 0. This

proves the claim.

The Shapley value of player i ∈ N in the game v is given by SVi(v) = ∑
S⊆N
i∈S

Δv(S)
|S| . By substituting Eq.

(4.4) in this expression, we obtain

Shi(vM) =− θisi −
1
2 ∑

j∈N\{i}
min{θi/si, θj/sj}sisj

= −θisi − ∑
j∈Pi(σ∗(θN))

θisj/2− ∑
j∈Fi(σ∗(θN))

θjsi/2
.
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This gives us the desired conclusion.

Remark 10. For a sequencing problem Ω ∈ S(N), let the allocation μ = (σ, τ) give each agent his

utility corresponding to the Shapley value of the game vM (given by Lemma 6). With the sequencing

rule σ∗, the transfer to an agent i ∈ N is given by,

τi = ∑
j∈Pi(σ∗(θN))

θisj/2− ∑
j∈Fi(σ∗(θN))

θjsi/2

4.3.1 Existence of core

This section provides insights on the existence of the core in the above defined characteristic form

games. We first provide a few preliminary definitions to understand the nature of allocations in the

core and use the necessary and sufficient condition provided byBondareva (1963) and Shapley (1967),

for the core of a game to be non-empty. LetGN denote the set of all characteristic form games with a

finite set of playersN = {1, 2, . . . , n}.

Given a game v ∈ GN, we define an outcome of the game (a payoff vector) as an n-coordinated

vector x = (x1, x2, . . . , xn). Note that, for a coalition S ⊆ N, x(S) is the sum of individual payoffs

assigned to the members in the coalition S. A pay-off vector x is individually rational if for every i ∈

N, we have xi ≥ v({i}), where xi is the payoff allotted to agent i. A pay-off vector x is totally rational

if x(N) = v(N). An imputation can then be defined as a pay-off vector which is both individually

and totally rational. The core of v is the set of all those pay-off vectors that are imputations and satisfy

x(S) ≥ v(S) for all non-empty coalitions S ⊂ N. The core of the game v is denoted by C(v).

Definition 24. A collection Φ = {T1,T2, . . .Tk} ⊆ 2N of non-empty coalitions is balanced if for

any i ∈ N, there exist positive numbers λTj ,Tj ∈ Φ, such that ∑
Tj∈Φ
i∋Tj

λTj = 1.
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Theorem 4. The core of the game vM is always empty, that isC(vM) = φ. The Shapley value belongs

to the core of its dual game, wM.

Proof. We first show that the core of the cooperative game vM is empty.

Let Φ = {T1, . . . ,Tk} be a balanced family with corresponding balancing weights {λTj}Tj∈Φ.

Bondareva (1963) and Shapley (1967) have shown that the core of a game v is non-empty if and only if

for all balanced collections Φ = {T1, . . . ,Tk} and their corresponding balancingweights {λTj}Tj∈Φ,

the inequality ∑Tj∈Φ λTjv(Tj) ≤ v(N) holds. For the game vM, it follows that for any Tj ⊆ N, we

have vM(Tj) = −∑i∈Tj θiSi(σ
∗(θTj)). The left hand side of the above inequality can be expressed

as,

∑
Tj∈Φ

λTjv
M(Tj) = − ∑

Tj∈Φ
λTj

[
∑
i∈Tj

θiSi(σ∗(θTj))

]

= − ∑
Tj∈Φ

λTj

[
∑
i∈Tj

θi
(
si + ∑

k∈Pi(σ∗(θN))∩Tj

sk
)]

= − ∑
i∈N

θi
(

∑
Tj∈Φ
Tj∋i

λTj

)
si − ∑

i∈N
θi
[

∑
k∈Pi(σ∗(θN))

(
∑
Tj∋i
Tj∋k

λTj

)
sk
]

= − ∑
i∈N

θi
(
si + ∑

k∈Pi(σ∗(θN))

(
∑
Tj∋i
Tj∋k

λTj

)
sk
)

> ∑
i∈N

θi
(
si + ∑

k∈Pi(σ∗(θN))
sk
)

= v(N)

This proves the first statement.

To prove the second part, we first show that the allocation (Sh1(wM), . . . , Shn(wM)) is an im-
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putation. Using equation (4.2) , we can write,

wM({i}) = −θisi − ∑
j∈Pi(σ∗(θN))

θisj − ∑
k∈N\i

θk( ∑
j∈Pk(σ∗(θN))

sj − ∑
j∈Pk(σ∗(θN\i))

sj)

= −θisi − ∑
j∈Pi(σ∗(θN))

sjθi − ∑
k∈Fi(σ∗(θN))

θksi

< −θisi − ∑
j∈Pi(σ∗(θN))

sjθi/2− ∑
k∈Fi(σ∗(θN))

θksi/2

= Shi(wM).

(4.5)

Further,

∑
i∈N

Shi(wM) = − ∑
i∈N

[θisi + ∑
j∈Pi(σ∗(θN))

θisj/2+ ∑
j∈Fi(σ∗(θN))

θj/2]

= − ∑
i∈N

[θisi + θi ∑
j∈Pi(σ∗(θN))

sj]

= wM(N).

(4.6)

The next step is to prove that for all non-empty coalitions S ⊂ N, ∑i∈S Shi(wM) ≥ wM(S). For

any given coalition Swe have the following,

wM(S) = −∑
i∈S

θi
[
si + ∑

j∈Pi(σ∗(θN))
j∈S

sj + ∑
j∈Pi(σ∗(θN))

j/∈S

sj
]
− ∑

i∈N\S
θi
[

∑
j∈Pi(σ∗(θN))

sj − ∑
j∈Pi(σ∗(θN))

j/∈S

sj
]

= −∑
i∈S

θi
[
si + ∑

j∈Pi(σ∗(θN))
j∈S

sj + ∑
j∈Pi(σ∗(θN))

j/∈S

sj
]
− ∑

i∈N\S
θi
(

∑
j∈Pi(σ∗(θN))

j∈S

sj
)

= −∑
i∈S

θi
[
si + ∑

j∈Pi(σ∗(θN))
j∈S

sj + ∑
j∈Pi(σ∗(θN))

j/∈S

sj
]
− ∑

i∈S
si
(

∑
j∈Fi(σ∗(θN))

j/∈S

θj
)

Given, the above expression of wM(S), we consider the following:
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∑
i∈S

Shi(wM) = −∑
i∈S

θisi − ∑
i∈S

θi
(

∑
j∈Pi(σ∗(θN))

sj
)
/2− ∑

i∈S
si
(

∑
j∈Fi(σ∗(θN))

θj
)
/2

= −∑
i∈S

θisi − ∑
i∈S

θi
(

∑
j∈Pi(σ∗(θN))

j∈S

sj
)
/2− ∑

i∈S
si
(

∑
j∈Fi(σ∗(θN))

j∈S

θj
)
/2− ∑

i∈S
θi
(

∑
j∈Pi(σ∗(θN))

j/∈S

sj
)
/2

− ∑
i∈S

si
(

∑
j∈Fi(σ∗(θN))

j/∈S

θj
)
/2

= −∑
i∈S

θisi − ∑
i∈S

θi
(

∑
j∈Pi(σ∗(θN))

j∈S

sj
)
− ∑

i∈S
θi
(

∑
j∈Pi(σ∗(θN))

j/∈S

sj
)
/2− ∑

i∈S
si
(

∑
j∈Fi(σ∗(θN))

j/∈S

θj
)
/2

> −∑
i∈S

θi
[
si + ∑

j∈Pi(σ∗(θN))
j∈S

sj + ∑
j∈Pi(σ∗(θN))

j/∈S

sj
]
− ∑

i∈S
si
(

∑
j∈Fi(σ∗(θN))

j/∈S

θj
)

= wM(S).

We have thus proved that for the game wM, the Shapley value allocation vector belongs to the core of

the game wM.

4.4 Sequencing games: a pessimistic approach

In this section, we map a sequencing problem Ω ∈ S(N) to a characteristic form game in which

we define the worth of a coalition using the perspective provided by Chun (2006b). The worth of a

coalition S ⊆ N is denoted by vC(S). Chun adopts a pessimistic approach by taking the sum of its

members’ job completion cost in an efficient ordering provided the members of S are served after the

members ofN\S. Formally,

vC(S) = −∑
i∈S

θi[Si(σ∗(θS)) + ∑
k∈N\S

sk] = vM(S)− ∑
i∈S

θi( ∑
k∈N\S

sk) (4.7)
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where σ∗(θS) is an efficient ordering of the members in coalition S. We provide an alternate way

of defining the worth of a coalition. Consider the scenario where the members of the coalition S are

the first to arrive. Then, the worth wC(S) of a coalition S ⊆ N is the sum of its members’ waiting

cost in the grand coalition minus the incremental gain of the non-members. The incremental gain

is given by the difference in the job completion time when members of N\S are served in the grand

coalition as opposed to being served after the coalition S. It is as if the non-members are compensating

the amount of additional benefit, in terms of the reduction in their waiting costs, to the members of

S. For any S ⊆ Nwe define,

wC(S) = −∑
i∈S

θi(si + ∑
j∈Pi(σ∗(θN))

sj)− ∑
i∈N\S

θi( ∑
j∈Pi(σ∗(θN))

sj − ∑
j∈Pi(σ∗(θN\S))

sj − ∑
k∈S

sk) (4.8)

where σ∗(θN) is an efficient ordering over the grand coalition and σ∗(θN\S) is an efficient ordering of

members inN\S.

Remark 11. Using equation (4.8), theworthwC(S)of a coalitionS ⊆ N canbe expressed aswC(S) =

−∑i∈N θi(si + ∑j∈Pi(σ∗(θN)) sj) + ∑i∈N\S θi(si + ∑j∈Pi(σ∗(θN\S))
sj + ∑k∈N\(N\S) sk). It can be easily

verified using equation (4.7) that wC(S) = vC(N)− vC(N\S). Thus, the game wC is the dual of the

game vC.

Lemma 7. For any i ∈ N, the Shapley value of the game vC is given by,

Shi(vC) = −θi(si +∑
j ̸=i

sj) + ∑
j∈Pi(σ∗(θN))

θjsi/2+ ∑
j∈Fi(σ∗(θN))

θisj/2 (4.9)

Proof. A TU-game v can be expressed uniquely as a linear combination of unanimity games, v =

∑T⊆N ΔvuT, where the unanimity game uT on N is given by uT(S) = 1 if T ⊆ S, and uT(S) = 0

otherwise. For any S ⊆ N, the dividend Δv(S) is defined as follows: if |S| = 1, Δv(S) = v(S) and if
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|S| > 1, Δv(S) = v(S)− ∑
T⊂S
T ̸=S

ΔV(T). We first prove the following claim,

Claim 2. The dividends δvM(S) for any S ⊆ N are given by,

δvC(S) =



−θi(si + ∑j ̸=i sj) if |S| = 1

maxi,j∈S{θi/si, θj/sj}sisj if |S| = 2

0 if |S| ≥ 3

(4.10)

Proof When |S| = 1, let S = {i}. We have δvC(i) = vC(i) = −θi(si + ∑j ̸=i sj). If

|S| = 2, let us assume S = {i, j} such that θi/si ≥ θj/sj without loss of generality. We then

have δCv ({i, j}) = vC{i, j} − δvC({i}) − δvC({j}) = θisj = max{θi/si, θj/sj}sisj. If |S| = 3

and let S = {i, j, k} such that θi/si ≥ θj/sj ≥ θk/sk without loss of generality. We define

δCv ({i, j, k}) = vC{i, j, k} − δvC({i, j}) − δvC({j, k}) − δvC({i, k}) − δvC({i}) − δvC({j}) −

δvC({k}) = −θi(sj + sk)− θj(si + sk)− θk(si + sj) + θi(sj + sk) + θj(si + sk) + θk(si + sj) = 0.

By induction on the size of the coalition S, let us assume δvM(S
′
) = 0where 3 ≤ |S′ | ≤ |S|. Without

loss of generality, let S = {1, 2, . . . s} be such that θ1/s1 ≥ θ2/s2 ≥ . . . ≥ θs/ss. By induction

hypothesis, δvC(S) = vC(S)− ∑T⊂S;|T|=2 δvC(T)− ∑T⊂S;|T|=1 δvC(T) = −∑i∈S θi(Si(σ∗(θS)) +

∑k∈N\S sk)− ∑i∈S θi(∑j∈Fi(σ∗(θS)) sj) + ∑i∈S θi(si + ∑j ̸=i sj). Note that, the term ∑j ̸=i sj in the last

expression can be written as, ∑j∈S\{i} sj + ∑j∈N\S sj. Further, the expression ∑j∈S\{i} sj can be ex-

pressed as ∑j∈Pi(σ∗(θS)) sj + ∑j∈Fi(σ∗(θS)) sj. We prove the claim by rewriting ∑j ̸=i sj in terms of these

expressions.

The Shapley value of player i ∈ N in the game v is given by SVi(v) = ∑
S⊆N
i∈S

Δv(S)
|S| . By substituting Eq.

(4.10) in this expression, we obtain

86



Shi(vC) =− θi(si +∑
j ̸=i

sj) +
1
2 ∑

j∈N\{i}
max{θi/si, θj/sj}sisj

=− θi ∑
j∈N

sj + ∑
j∈Pi(σ∗(θN))

θjsi/2+ ∑
j∈Fi(σ∗(θN))

θisj/2
.

This gives us the desired conclusion.

Remark 12. For a sequencing problem Ω ∈ S(N), let the allocation μ = (σ, τ) give each agent his

utility corresponding to the Shapley value of the game vC (given by Lemma 7). With the sequencing

rule σ∗, the transfer to an agent i ∈ N is given by,

τi = ∑
j∈Pi(σ∗(θN))

θjsi/2− ∑
j∈Fi(σ∗(θN))

θisj/2

4.4.1 Existence of core

This section again explores the existence of core in the above defined characteristic form games. We

observe that the Shapley value belongs to the core of the game vCwhile the core of its dualwC is empty.

Theorem 5. The Shapley value of the game vC belongs to its core, that is, Sh(vC) ∈ C(vC). The core

of its dual wC is empty.

Proof. We begin with the first statement.

To prove that Sh(vC) ∈ C(vC), we first show that the allocation (Sh1(vC), . . . , Shn(vC)) is an

imputation. Using equation (4.7) we can write,
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vC({i}) = −θi(si + ∑
j∈N\{i}

sj)

= −θi ∑
j∈N

sj

< ∑
j∈Pi(σ∗(θ))

θjsi/2+ ∑
j∈Fi(σ∗(θ))

θisj/2− θi ∑
j∈N

sj

= Shi(vC)

Further,

Shi(vC) = − ∑
i∈N

[θi ∑
j∈N

sj − ∑
j∈Pi(σ∗(θN))

θjsi/2− ∑
j∈F(σ∗(θN))

θisj/2]

= − ∑
i∈N

[θi(si + ∑
j∈Pi(σ∗(θN))

sj + ∑
j∈Fi(σ∗(θN))

sj)− ∑
j∈Pi(σ∗(θN))

θjsi/2− ∑
j∈F(σ∗(θN))

θisj/2]

= − ∑
i∈N

[θi(si + ∑
j∈Pi(σ∗(θN))

sj) + ∑
j∈Fi(σ∗(θN))

θisj − ∑
j∈Pi(σ∗(θN))

θjsi/2− ∑
j∈F(σ∗(θN))

θisj/2]

= − ∑
i∈N

[θi(si + ∑
j∈Pi(σ∗(θN))

sj) + ∑
j∈Fi(σ∗(θN))

θisj/2− ∑
j∈Pi(σ∗(θN))

θjsi/2]

= − ∑
i∈N

θi(si + ∑
j∈Pi(σ∗(θN))

sj)− ∑
i∈N

( ∑
j∈Fi(σ∗(θN))

θisj)/2+ ∑
i∈N

( ∑
j∈Pi(σ∗(θN))

θjsi)/2

= − ∑
i∈N

θi(si + ∑
j∈Pi(σ∗(θN))

sj)

= vC(N).

The next step is to prove that for all non-empty coalition S ⊂ N, we have∑i∈S Shi(vC) ≥ vC(S).

For any given coalition Swe have the following,
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∑
i∈S

Shi(vC) = −∑
i∈S

θi
(

∑
j∈N

sj
)
+ ∑

i∈S
si
(

∑
j∈Pi(σ∗(θN))

θj
)/

2+ ∑
i∈S

θi
(

∑
j∈Fi(σ∗(θN))

sj
)/

2

= −∑
i∈S

θiSi(σ∗(θN)) + ∑
i∈S

si
(

∑
j∈Pi(σ∗(θN))

θj
)/

2− ∑
i∈S

θi
(

∑
j∈Fi(σ∗(θN))

sj
)/

2

= −∑
i∈S

θi
(
si + ∑

j∈Pi(σ∗(θN))
j∈S

sj + ∑
j∈Pi(σ∗(θN))

j/∈S

sj
)
+ ∑

i∈S
si
(

∑
j∈Pi(σ∗(θN))

θj
)/

2

− ∑
i∈S

θi
(

∑
j∈Fi(σ∗(θN))

sj
)/

2

= −∑
i∈S

θi
(
si + ∑

j∈Pi(σ∗(θN))
j∈S

sj
)
− ∑

i∈S
θi
(

∑
j∈Pi(σ∗(θN))

j/∈S

sj
)
− ∑

i∈S
θi
(

∑
j∈Fi(σ∗(θN))

j/∈S

sj
)/

2

− ∑
i∈S

θi
(

∑
j∈Fi(σ∗(θN))

j∈S

sj
)/

2+ ∑
i∈S

si
(

∑
j∈Pi(σ∗(θN))

j∈S

θj
)/

2+ ∑
i∈S

si
(

∑
j∈Pi(σ∗(θN))

j/∈S

θj
)/

2

= −∑
i∈S

θi
(
si + ∑

j∈Pi(σ∗(θN))
j∈S

sj
)
− ∑

i∈S
θi
(

∑
j∈N\S

sj
)/

2

+

[
∑
i∈S

si
(

∑
j∈Pi(σ∗(θN))

j/∈S

θj
)
− ∑

i∈S
θi
(

∑
j∈Pi(σ∗(θN))

j/∈S

sj
)]/

2

Claim 3. For any i ∈ S, the term
[

∑i∈S si
(

∑
j∈Pi(σ∗(θN))

j/∈S

θj
)
− ∑i∈S θi

(
∑

j∈Pi(σ∗(θN))
j/∈S

sj
)]/

2 ≥ 0

Proof. Without loss of generality, let us assume that θ1/s1 ≥ . . . ≥ θn/sn. By the definition of

outcome efficiency, for any i ∈ N and for any j ∈ Pi(σ ∗ (θ)), where σ∗(θ) is an efficient ordering of

agents in a non-increasing order of their urgency indices, we have θj/sj ≥ θi/si implying siθj ≥ sjθi.
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We can thus say, ∑i∈S

[
∑

j∈Pi(σ∗(θN))
j/∈S

(
siθj − θisj

)]
≥ 0 by the above argument.

Given the above claim, for any S ⊂ N observe that,

∑
i∈S

Shi(vC)− vC(S) = ∑
i∈S

θi
(

∑
j∈N\S

sj
)
/2+

[
∑
i∈S

si
(

∑
j∈Pi(σ∗(θN))

j/∈S

θj
)
− ∑

i∈S
θi
(

∑
j∈Pi(σ∗(θN))

j/∈S

sj
)]

/2

> 0

This completes the proof.

We now prove the second part of the theorem. Let Φ = {T1, . . . ,Tk} be a balanced family with

corresponding balancing weights {λTj}Tj∈Φ. Bondareva (1963) and Shapley (1967) have shown that

the core of a game v is non-empty if and only if for all balanced collections Φ = {T1, . . . ,Tk} and

their corresponding balanced weights {λTj}Tj∈Φ, the inequality ∑Tj∈Φ λTjv(Tj) ≤ v(N) holds. For

the game wC, it follows from definition (4.8) that for any Tj ⊆ N, we have wC(Tj) = −∑i∈S θi(si +

∑j∈Pi(σ∗(θN)) sj)− ∑i∈N\S θi(∑j∈Pi(σ∗(θN)) sj − ∑j∈Pi(σ∗(θN\S))
sj − ∑k∈S sk). The left hand side of the

above inequality can be expressed as,

∑
Tj∈Φ

λTjw
C(Tj) = − ∑

Tj∈Φ
λTj

[
∑
i∈Tj

θi
(
si + ∑

j∈Pi(σ∗(θN))
sj
)

+ ∑
i∈N\Tj

θi
(

∑
j∈Pi(σ∗(θN))

sj − ∑
j∈Pi(σ∗(θN\Tj ))

sj − ∑
k∈Tj

sk
)]

= − ∑
i∈N

θi
(

∑
Tj∈Φ
Tj∋i

λTj

)
(si + ∑

j∈Pi(σ∗(θN))
sj)− ∑

Tj∈Φ
λTj

[
∑

i∈N\Tj

θi
(

∑
j∈Pi(σ∗(θN))

j∈Tj

sj − ∑
k∈Tj

sk
)]

= − ∑
i∈N

θi(si + ∑
j∈Pi(σ∗(θN))

sj)− ∑
Tj∈Φ

λTj

[
∑

i∈N\Tj

θi
(

∑
j∈Pi(σ∗(θN))

j∈Tj

sj − ∑
k∈Tj

sk
)]
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Note that, for any non-empty Tj ⊂ N, the expression ∑Tj∈Φ λTjwC(Tj) − wC(N) =

−∑Tj∈Φ λTj

[
∑i∈N\Tj θi

(
∑

j∈Pi(σ∗(θN))
j∈Tj

sj − ∑k∈Tj sk
)]

> 0 because ∑
j∈Pi(σ∗(θN))

j∈Tj

sj < ∑k∈Tj sk. This

proves that the core of the game wC is empty.

4.5 Shapley value and GMWB

Given any sequencing problem Ω ∈ S(N), let Oi(s) be the welfare parameter of agent i. Let

O(N; s) := (O1(s), . . . ,On(s)) ∈ Rn denote the welfare parameter vector. We represent a typ-

ical sequencing problem with generalized minimum welfare bounds by Γ = (Ω,O(N; s)) where

Ω ∈ S(N) and the associated O(N; s) ∈ Rn is the welfare parameter vector. This section pro-

vides a necessary and sufficient condition on the welfare parameterOi(s), such that, an allocation rule

assigning utilities corresponding to the Shapley value of the associated sequencing game satisfies the

generalized minimumwelfare bound.

Definition 25. For Γ, an allocation rule ψ satisfies the generalized minimum welfare bound if and

only if for all μ = (σ, τ) ∈ ψ(Γ), i ∈ N:

ui(σ, τi; θi) ≥ −θiOi(s). (4.11)

The generalizedminimumwelfare bound imposes a lower boundon each agent’s utility function,

in the form of a minimum guarantee. Banerjee et al. (2020) have introduced this bound which is a

unified and comprehensive representation of several specific lower bounds that have been previously

examined in the literature.

Proposition 6. For a given Γ, an allocation rule ψ which selects those allocations that assign utilities

to agents corresponding to the Shapley value of the sequencing games vM(vC), satisfies the generalized
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minimumwelfare bound if and only if we haveOi(s) ≥ si + ∑j ̸=i sj/2.2

Proof. Part A.The first part of the proof considers the corresponding characteristic form game under

the optimistic approach given by vM. The transfers are designed so that the utility of each agent i ∈ N

is given by the Shapley value Shi(vM).

For a given sequencing problem Γ, the utility of player i ∈ N (corresponding to the Shapley

value of the game vM) will satisfy the GMWB property if, Shi(vM) ≥ −θiOi(s) implying −θisi −

∑j∈Pi(σ∗(θN)) θisj/2− ∑j∈Fi(σ∗(θN)) θjsi/2 ≥ −θiOi(s). Or, θi(Oi(s)− si)− ∑j∈Pi(σ∗(θN)) θisj/2−

∑j∈Fi(σ∗(θN)) θjsi/2 ≥ 0. Let, Oi(s) = si + ∑j ̸=i sj/2 + εi. Thus have, θiεi + θi(∑j ̸=i sj/2) −

∑j∈Pi(σ∗(θN)) θisj/2− ∑j∈Fi(σ∗(θN)) θjsi/2 ≥ 0. This implies, ∑j∈Fi(σ∗(θN))(θisj − θjsi)/2+ θiεi ≥ 0.

Or, ∑j∈Fi(σ∗(θN))(ui − uj) + θiεi ≥ 0. We must have εi ≥ 0. This proves necessity.

For any i ∈ N, it is given that Oi(s) ≥ si + ∑j ̸=i sj/2. The utility of player

i is given by his Shapley value Shi(vM). For any such player, consider the expression

Shi(vM) + θiOi(s) = −θisi − ∑j∈Pi(σ∗(θN)) θisj/2 − ∑j∈Fi(σ∗(θN)) θjsi/2 + θisi + θi ∑j ̸=i sj/2.

Since σ∗(θN) is an efficient ordering of the members of the grand coalition (N), then for

any agent i ∈ N, if an agent j ∈ Fi(σ∗(θN)) we must have θi/si ≥ θj/sj. This means,

Shi(vM) + θiOi(s) = ∑j∈Fi(σ∗(θN))(θisj − θjsi) ≥ 0. For any i ∈ N, we have Shi(vM) ≥ −θiOi(s).

This proves sufficiency.

Part B.Wedefine the associated cooperative game (vC) using the pessimistic approach. Theutility

of each player i ∈ N corresponds to the Shapley value of this game, Shi(vC).

For a given sequencing problem Γ, the utility of player i ∈ N (corresponding to the Shap-

ley value of the game vC) will satisfy the GMWB property if, Shi(vC) ≥ −θiOi(s) implying

−θi(∑j∈N sj) + ∑j∈Pi(σ∗(θN)) θjsi/2+ ∑j∈Fi(σ∗(θN)) θisj/2 ≥ −θiOi(s). Or, θi(Oi(s)− ∑j∈N sj) +

2This bound coincides with the expected costs bound property studied in Banerjee et al. (2020) where the
arrival of each possible ordering is equally like
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∑j∈Pi(σ∗(θN)) θjsi/2 − ∑j∈Fi(σ∗(θN)) θisj/2 ≥ 0. Let, Oi(s) = si + ∑j ̸=i sj/2 + εi. Thus, θiεi −

θi(∑j ̸=i sj/2) + ∑j∈Pi(σ∗(θN)) θjsi/2 + ∑j∈Fi(σ∗(θN)) θisj/2 ≥ 0. This implies, ∑j∈Pi(σ∗(θN))(θjsi −

θisj)/2+ θiεi ≥ 0. Or, ∑j∈Pi(σ∗(θN))(uj − ui) + θiεi ≥ 0. We must have εi ≥ 0. This shows the

necessary part.

For any i ∈ N, it is given that Oi(s) ≥ si + ∑j ̸=i sj/2. The utility of player i is given

by his Shapley value Shi(vC). For any such player, consider the expression Shi(vC) + θiOi(s) =

−θi(∑j∈N sj) + ∑j∈Pi(σ∗(θN)) θjsi/2+ ∑j∈Fi(σ∗(θN)) θisj/2+ θisi + θi ∑j ̸=i sj/2 = −θi ∑j ̸=i sj/2+

∑j∈Pi(σ∗(θN)) θjsi/2 + ∑j∈Fi(σ∗(θN)) θisj/2. Since σ∗(θN) is an efficient ordering of the members of

the grand coalition (N), then for any agent i ∈ N, if an agent j ∈ Pi(σ∗(θN)) we must have

θj/sj ≥ θi/si. This means, Shi(vM) + θiOi(s) = ∑j∈Pi(σ∗(θN))(θjsi − θisj) ≥ 0. For any i ∈ N,

we have Shi(vC) ≥ −θiOi(s). This proves the sufficiency part.

4.6 Conclusion

This papermaps sequencingproblems to cooperative games and adopts anoptimistic and apessimistic

approach to define the worth of a coalition. We study two solution concepts: the core, which deals

with stability of feasible allocations and the Shapley value, which assigns the outcome in a fair and

an impartial manner. We observe that, the Shapley value belongs to the core in two cases - 1) the

worth of a coalition is the aggregate job completion cost of its members in the grand coalition and the

compensation to the non-members for the additional cost imposed (as if the coalition arrives in the

end) and, 2) the worth of a coalition is the minimumwaiting cost incurred by its members only after

the non-coalitional members get served (under the pessimistic assumption). On the other hand, the

core of the associated cooperative game is empty in the following cases - 1) the worth of a coalition

is the minimum waiting cost of its members when they have the power to be served first (under the

optimistic assumption) and, 2) the worth of a coalition is aggregate waiting cost of its members in
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the grand coalition discounted by the additional benefit amount received from the non-coalitional

members as compensation (as if the coalition has arrived in the beginning).

Under both the approaches, the transfers are designed, so that, the utility of each individual cor-

responds to the Shapley value payoff of the associated sequencing game. When we impose the gener-

alizedminimumwelfare bound property, we observe that the expected costs bound condition (which

guarantees each agent his expected cost when every arrival order is equally likely) is necessary and suf-

ficient for the welfare bound to hold.
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