
Commuting tuples of operators and
functions in the Schur-Agler class

Ramlal Debnath

Indian Statistical Institute

May 2022

http://www.isical.ac.in




Indian Statistical Institute

Doctoral Thesis

Commuting tuples of operators and
functions in the Schur-Agler class

Author:
Ramlal Debnath

Supervisor:
Jaydeb Sarkar

A thesis submitted to the Indian Statistical Institute
in partial fulfilment of the requirements for

the degree of
Doctor of Philosophy (in Mathematics)

Theoretical Statistics & Mathematics Unit

Indian Statistical Institute, Bangalore Centre

May 2022

http://www.isical.ac.in
http://WEBPAGE-OF-SUPERVISOR"
http://www.isibang.ac.in/~statmath
http://www.isibang.ac.in




Dedicated to my teachers





Acknowledgements
First and foremost I would like to express my sincere gratitude to my advisor Prof.

Jaydeb Sarkar for his guidance, immense support and constant encouragement. Also,
I am thankful to him for all the discussions we had. These discussions helped me to
develop and improve my mathematical rigour.

My heartfelt thanks to Prof. Rajarama Bhat, for fostering my mathematical curiosity
via his many enlightening and motivating lectures, especially through the courses he
offered at ISI Bangalore.

I am indebted to Prof. B. Krishna Das and Prof. Monojit Bhattacharjee for collab-
orating with me, and providing a supportive work and learning experience. I am also
grateful to Prof. Amit Maji, Dr. Deepak K. Pradhan, and Dr. Srijan for many fruitful
mathematical discussions throughout my Ph.D. programme.

I express many thanks to all my friends and seniors in particular, Anindya, Aritra,
Aryaman, Deepak Johnson, Deepak K.D., Kousik, Lavy, Manish, Mansi, Muthukumar,
Narayan, Neeru, Nirupam, Sanjoy, Sankar T. R., Sarvesh, Satyendra, Sayantan, Soham,
and Susmita for making ISI Bangalore a second home for me. Also, I thank Deepak and
Lavy for their careful reading of the initial draft of the thesis, and helping me to rectify
some typographical errors.

My sincerest gratitude to Indian Statistical Institute (ISI) for providing me with the
financial support to pursue research at ISI Bangalore centre. I would also like to express
my gratitude to the members of the faculty, staff and all the workers of the institute for
creating and maintaining a friendly and pleasant research environment.

Last but not the least, I would like to thank my parents and brother for their uncon-
ditional, unequivocal, and loving support.

Bangalore, Ramlal Debnath
May, 2022





Contents

Acknowledgements v

Contents vii

Notations & Abbreviations 1

Introduction 3

1 Preliminaries 13
1.1 Reproducing Kernel Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Schur functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Colligation operators and transfer functions . . . . . . . . . . . . . 17
1.2.2 Two variables Schur functions . . . . . . . . . . . . . . . . . . . . . 19
1.2.3 Schur-Agler functions . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.4 Inner functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.5 Inner functions and isometric colligations . . . . . . . . . . . . . . 25
1.2.6 Realizations of Drury-Arveson multipliers . . . . . . . . . . . . . . 26
1.2.7 de Branges-Rovnyak kernels . . . . . . . . . . . . . . . . . . . . . 27

1.3 Structure of contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.1 Isometries and von Neumann and Wold decomposition . . . . . . . 29
1.3.2 Dilations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Factorizations of Schur-Agler functions 37
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Factorizations and Property Fm(n) . . . . . . . . . . . . . . . . . . . . . . 40
2.3 Factorizations and Property F(n) . . . . . . . . . . . . . . . . . . . . . . . 46
2.4 Factorizations of multipliers on the ball . . . . . . . . . . . . . . . . . . . 52
2.5 Functions vanishing at the origin . . . . . . . . . . . . . . . . . . . . . . . 57
2.6 Examples and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6.1 One variable factors . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.6.3 On Fm(n) and F(n) . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6.4 Reversibility of factorizations . . . . . . . . . . . . . . . . . . . . . 67

3 Schur functions and inner functions on the bidisc 69
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Inner Functions and Realizations . . . . . . . . . . . . . . . . . . . . . . . 71

vii



viii Contents

3.3 de Branges-Rovnyak kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4 Agler Kernels and Factorizations . . . . . . . . . . . . . . . . . . . . . . . 80
3.5 Counterexamples and a converse . . . . . . . . . . . . . . . . . . . . . . . 87

4 Beurling quotient module on the polydisc 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3 Isometric dilations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 Factorizations and invariant subspaces . . . . . . . . . . . . . . . . . . . . 100

Bibliography 105



Notations & Abbreviations

N Set of all Natural numbers.

Z+ N ∪ {0}.

Zn
+ {t = (t1, . . . , tn) : ti ∈ Z+, i = 1, . . . , n}.

z (z1, . . . , zn) ∈ Cn.

zk zk11 . . . zknn .

|k| k1 + . . .+ kn.

(T1, . . . , Tn) n-tuple of commuting operators on Hilbert spaces.

Tk T k1
1 . . . T kn

n .

Dn {z : |zi| < 1, i = 1, . . . , n}.

Bn {z :
∑n

i=1 |zi|2 < 1}.

E , E∗ Hilbert spaces.

B(E) Set of all bounded linear operators on E .

B(E , E∗) Set of all bounded linear operators from E to E∗.

P⊥ = I − P Where P is a orthogonal projection on a Hilbert space.
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Introduction

The subject of linear operators evolved rapidly since the work of Riesz and von Neumann
and their coauthors starting from 1916. Evidently, function theory profoundly impacts
the development of operator theory, operator algebras, mathematical physics, and many
other subjects of linear analysis. For instance, the theory of essentially bounded functions
(following the Lebesgue measure theory) plays a crucial role in unifying the theory of
normal operators, whereas the theory of bounded analytic functions plays a decisive role
in formulating and solving several problems related to non-normal operators.

The principal goal of this thesis is to provide a further insight into the underlying
connection between several variables analytic function theory and the structure of com-
muting tuples of bounded linear operators on Hilbert spaces. The broader approach is
in line with the earlier studies of shift invariant subspaces of Beurling [29], Lax [81], and
Halmos [63], the Sz.-Nagy and Foias [90] model theory, the de Branges’ point of view
of [37, 38] invariant subspaces that are contractively contained in the Hardy space, etc.
Our contribution also follows Agler’s modern approach to Schur functions [1, 2], and the
line of research of Sarason in the generalization of Beurling theorem [101]. Some of our
results again bring out the known contrast between the theory of single operators and
the theory of multivariable operator theory.

More specifically, we study factorizations of Schur functions and Schur-Agler func-
tions of various kinds. We relate the structure of inner functions with isometric colli-
gations and C0· operators. We also characterize Beurling quotient modules on Hardy
space over polydisc in terms of model operators. We present several results concerning
de Branges-Rovnyak kernels and Agler kernels. The main contributions of this thesis
are:

1. Factorizations of Schur-Agler functions: We present algorithms to factorize Schur
functions and Schur-Agler class functions in terms of colligation matrices. More
precisely, we isolate checkable conditions on colligation matrices that ensure the
existence of Schur (Schur-Agler class) factors of a Schur (Schur-Agler class) func-
tion and vice versa. This study also seeks to contribute to the understanding of
the delicate structure of bounded analytic functions in several complex variables.

2. Schur functions and inner functions on the bidisc: We study representations of
inner functions on the bidisc from a fractional linear transformation point of view.

3



4 Introduction

We provide sufficient conditions, in terms of colligation matrices, for the existence
of two-variable inner functions, and we present classification results of de Branges-
Rovnyak kernels on the polydisc and on the open unit ball of Cn, n ≥ 1. We also
classify, in terms of Agler kernels, two-variable Schur functions that admit a one
variable factor.

3. Beurling quotient modules on the polydisc: We present a complete characteriza-
tion of Beurling quotient modules of H2(Dn) in terms of model operators. We
provide two applications, first, we obtain a dilation theorem for Brehmer n-tuples
of commuting contractions, and, second, we relate joint invariant subspaces with
factorizations of inner functions.

Let us now elaborate on the above content chapter-wise. Our thesis comprises three
chapters, excluding a preliminary chapter. Here is the detailed outline of the main
chapters:

Chapter 2: Factorizations of Schur-Agler functions

The goal of this chapter is to clarify the link between isometric colligations and factors
of Schur functions. Let Ω be an open connected set in Cn, n ≥ 1. By definition, the
Schur class S(Ω) consists of complex-valued analytic functions mapping from Ω into the
closed unit disk D, that is

S(Ω) = {φ : Ω → C : φ is analytic and ‖φ‖∞ ≤ 1},

where ‖ · ‖∞ denotes the supremum norm over Ω. In other words, S(Ω) is the closed
unit ball of the commutative Banach algebra H∞(Ω), the set of all bounded analytic
functions on Ω under the supremum norm. The elements in the set S(Ω) are called
Schur functions [104, 105]. In this thesis, we will only focus on Ω as the open unit disc
Dn and the open unit ball Bn in Cn.

Now we formulate the necessary set of notations for the main results of this chapter.
Given 1 ≤ m < p ≤ n and Hilbert spaces H1, . . . ,Hn, we set

Hp
m = Hm ⊕Hm+1 ⊕ · · · ⊕ Hp.

In particular, Hn
1 =

n⊕
i=1

Hi. Moreover, with respect to the orthogonal decomposition

Hn
1 = Hm

1 ⊕Hn
m+1, we represent an operator D ∈ B(Hn

1 ) as

D =

[
D11 D12

D21 D22

]
∈ B(Hm

1 ⊕Hn
m+1).
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Similarly, if E and E∗ are Hilbert spaces, B ∈ B(Hn
1 , E) and C ∈ B(E∗,Hn

1 ), then we
write

B =
[
B1 B2

]
∈ B(Hm

1 ⊕Hn
m+1, E) and C =

[
C1

C2

]
∈ B(E∗,Hm

1 ⊕Hn
m+1).

We are ready to introduce the relevant isometric colligations:

Definition 0.0.1. Let 1 ≤ m < n. We say that an isometry V ∈ B(H) satisfies property
Fm(n) if there exist Hilbert spaces H1, . . . ,Hn such that H = C⊕Hn

1 , and representing
V as

V =

 a B1 B2

C1 D11 D12

C2 D21 D22

 ∈ B(C⊕Hm
1 ⊕Hn

m+1),

one has D21 = 0 and aD12 = C1B2.

The Schur-Agler class SA(Dn) [2] consists of scalar-valued analytic functions φ on
Dn such that φ satisfies the n-variables von Neumann inequality, that is

‖φ(T1, . . . , Tn)‖B(H) ≤ 1,

for any n-tuples of commuting strict contractions on a Hilbert space H. The elements
of SA(Dn) are called Schur-Agler class functions. If φ ∈ SA(Dn), then we also say that
φ is a function in the Schur-Agler class SA(Dn). The following theorem of Jim Agler
[2] then obtains:

Theorem 0.0.2 (Agler). Let φ be a function on Dn. Then φ ∈ SA(Dn) if and only if
there exist Hilbert spaces H1, . . . ,Hn and an isometric colligation

V =

[
a B

C D

]
∈ B(C⊕Hn

1 ),

such that φ = τV where

τV (z) = a+B(IHn
1
− EHn

1
(z)D)−1EHn

1
(z)C,

Hn
1 =

n⊕
i=1

Hi and EHn
1
(z) =

n⊕
i=1

ziIHi for all z ∈ Dn.

Our first main result concerns factorizations of Schur-Agler class functions in SA(Dn),
n > 1, into Schur-Agler class factors with fewer variables.

Theorem 0.0.3. Let 1 ≤ m < n, and let θ ∈ SA(Dn). If θ(0) 6= 0, then

θ(z) = ϕ(z1, . . . , zm)ψ(zm+1, . . . , zn) (z ∈ Dn),
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for some ϕ ∈ SA(Dm) and ψ ∈ SA(Dn−m) if and only if

θ(z) = τV (z) (z ∈ Dn),

for some isometric colligation V satisfying property Fm(n).

Next we investigate general n-variables (n ∈ N) Schur-Agler class factors of Schur-
Agler class functions in SA(Dn). More specifically, for a given θ ∈ SA(Dn), we give a
set of necessary and sufficient conditions on isometric colligations ensuring the existence
of φ and ψ in SA(Dn) such that θ = φψ. Our classification is related to the following
class of isometric colligations:

Definition 0.0.4. We say that an isometry V ∈ B(H) satisfies property F(n) if there
exist Hilbert spaces {Mi}ni=1 and {Ni}ni=1 such that

H = C⊕
( n⊕

i=1

(Mi ⊕Ni)
)
,

and representing V as

V =


a B1 · · · Bn

C1 D11 · · · D1n

...
... . . . ...

Cn Dn1 · · · Dnn

 ∈ B
(
C⊕

( n⊕
i=1

(Mi ⊕Ni)
))
,

and Bi, Ci and Dij as

Bi =
[
Bi(1) Bi(2)

]
∈ B(Mi ⊕Ni,C), Ci =

[
Ci(1)

Ci(2)

]
∈ B(C,Mi ⊕Ni),

and

Dij =

[
Dij(1) Dij(12)

Dij(21) Dij(2)

]
∈ B(Mj ⊕Nj ,Mi ⊕Ni),

one has
Dij(21) = 0, and aDij(12) = Ci(1)Bj(2),

for all i, j = 1, . . . , n.

The second factorization result of this chapter states:

Theorem 0.0.5. Suppose θ ∈ SA(Dn), and suppose that θ(0) 6= 0. Then θ = ϕψ for
some ϕ, ψ ∈ SA(Dn) if and only if θ = τV for some isometric colligation V satisfying
property F(n).

Now we consider factorizations of contractive multipliers (denoted by M1(H
2
n)) on

the Drury-Arveson space H2
n. Recall that H2

n is the reproducing kernel Hilbert space
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corresponding to the kernel

Bn × Bn 3 (z,w) 7→ 1

1− 〈z,w〉
.

Theorem 0.0.6. Suppose θ ∈ M1(H
2
n) and θ(0) 6= 0. Then the following are equivalent:

(1) There exist multipliers ϕ ∈ M1(H
2
m) and ψ ∈ M1(H

2
n−m) such that

θ(z) = ϕ(z1, . . . , zm)ψ(zm+1, . . . , zn) (z ∈ Dn).

(2) There exist Hilbert spaces H1 and H2 and isometric colligation

V =

[
a B

C D

]
: C⊕ (H1 ⊕H2) → C⊕ (H1 ⊕H2)

n,

such that writing B =
[
B(1) B(2)

]
, C =


C1

...
Cn

 and D =


D1

...
Dn

, one has

Cj =



Cj(1)

0

 if 1 ≤ j ≤ m

 0

Cj(2)

 if m+ 1 ≤ j ≤ n,

and

Dj =



Dj(1) Dj(2)

0 0

 if 1 ≤ j ≤ m

0 0

0 Dj(3)

 if m+ 1 ≤ j ≤ n,

and
aDi(2) = Ci(1)B(2),

for all i = 1, . . . ,m, and

θ(z) = a+B(IH1⊕H2 − E(H1⊕H2)n(z)D)−1E(H1⊕H2)n(z)C (z ∈ Dn).

In the setting of the Drury-Arveson space, we prove the following analog of Theorem
2.3.4.

Theorem 0.0.7. Suppose θ ∈ M1(H
2
n) and θ(0) 6= 0. Then the following are equivalent:

(1) There exist ϕ and ψ in M1(H
2
n) such that θ = ϕψ.
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(2) There exist Hilbert spaces H1 and H2 and isometric colligation

V =

[
a B

C D

]
: C⊕ (H1 ⊕H2) → C⊕ (H1 ⊕H2)

n,

such that

θ(z) = a+B(IH1⊕H2 − E(H1⊕H2)n(z)D)−1E(H1⊕H2)n(z)C (z ∈ Bn),

and writing B =
[
B(1) B(2)

]
, C =


C1

...
Cn

 , D =


D1

...
Dn

 and

Ci =

[
Ci(1)

Ci(2)

]
and Di =

[
Di(1) Di(12)

Di(21) Di(2)

]
,

one has
Di(21) = 0 and aDi(12) = Ci(1)B(2),

for all i = 1, . . . , n.

Finally, we present a complete description of Schur-Agler class factors of Schur-Agler
class functions on Dn vanishing at the origin.

Theorem 0.0.8. Suppose θ ∈ AS(Dn) and θ(0) = 0. Then

(1) θ = ϕψ for some ϕ, ψ ∈ SA(Dn) and ψ(0) 6= 0 if and only if there exist Hilbert
spaces {Hi}ni=1, {Mi}ni=1 and {Ni}ni=1 and an isometric colligation

V =

[
0 B

C D

]
=


0 B1 · · · Bn

C1 D11 · · · D1n

...
... . . . ...

Cn Dn1 · · · Dnn

 ∈ B(C⊕ (

n⊕
i=1

Hi)),

such that θ = τV and Hk = Mk ⊕Nk, k = 1, . . . , n, and representing Bi, Ci an Dij as

Bi = [Bi(1), Bi(2)] ∈ B(Mi ⊕Ni,C), Ci =

[
Ci(1)

Ci(2)

]
∈ B(C,Mi ⊕Ni),

and Dij =

[
Dij(1) Dij(12)

Dij(21) Dij(2)

]
∈ B(Mj⊕Nj ,Mi⊕Ni), one has Bi(2) = 0, Dij(21) = 0,

and
C(1)C(1)∗D(12) = C(1)∗C(1)D(12) and C(1)∗C(1) > 0,

where i, j = 1, . . . , n, and C(1) =


C1(1)

...
Cn(1)

 and D(12) =
[
Dij(12)

]n
i,j=1

.
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(2) θ = ϕψ for some ϕ, ψ ∈ SA(Dn) and ϕ(0) = 0 = ψ(0) if and only if there exist
Hilbert spaces {Hi}ni=1, {Mi}ni=1 and {Ni}ni=1, an isometry X ∈ B(C,

n⊕
i=1

Mi), a bounded

linear operator Y ∈ B(
n⊕

i=1
Ni,C) and an isometric colligation

V =

[
0 B

C D

]
=


0 B1 · · · Bn

C1 D11 · · · D1n

...
... . . . ...

Cn Dn1 · · · Dnn

 ∈ B
(
C⊕ (

n⊕
i=1

Hi)
)
,

such that θ = τV and Hk = Mk ⊕Nk, k = 1, . . . , n, and representing Bi, Ci an Dij as

Bi = [Bi(1), Bi(2)] ∈ B
(
Mi ⊕Ni,C

)
, Ci =

[
Ci(1)

Ci(2)

]
∈ B

(
C,Mi ⊕Ni

)
,

and Dij =

[
Dij(1) Dij(12)

Dij(21) Dij(2)

]
∈ B(Mj ⊕Nj ,Mi ⊕Ni), one has Bi(2) = 0, Ci(1) = 0,

and
Dij(21) = 0, D(12) = XY and X∗D(1) = 0,

where
D(1) = [Dij(1)]

n
i,j=1 ∈ B

( n⊕
p=1

Mp

)
,

and
D(12) =

[
Dij(12)

]n
i,j=1

∈ B
( n⊕

p=1

Np,

n⊕
p=1

Mp

)
.

Similar results also hold for contractive multipliers on the Drury-Arveson space.

Chapter 3: Schur functions and inner functions on the bidisc

In this chapter, we study representations of inner functions on the bidisc from a
fractional linear transformation point of view. We provide sufficient conditions, in terms
of colligation matrices, for the existence of two-variable inner functions. Our sufficient
conditions are not necessary in general, and we prove a weak converse for rational inner
functions that admit a one variable factorization. We also present a classification of de
Branges-Rovnyak kernels on the bidisc (which equally works in the setting of Dn and
Bn, n ≥ 1), and classify, in terms of Agler kernels, two-variable Schur functions that
admit a one variable factor.

Recall that C0· denotes the set of all contractions T on Hilbert spaces such that
Tn → 0 in the strong operator topology (that is, ‖Tmh‖ → 0 as m→ ∞ for all h ∈ H).
The first main theorem of this chapter states:
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Theorem 0.0.9. Let φ ∈ S(D2). If φ = τV for some isometric colligation

V =

 a B1 B2

C1 D1 D2

C2 0 D3

 : C⊕ (H1 ⊕H2) → C⊕ (H1 ⊕H2),

with D1, D3 ∈ C0·, then φ is an inner function.

Now we turn to de Branges-Rovnyak kernels on Dn. Let Θ ∈ SA(Dn,B(E , E∗)). Then
MΘ is a contraction from H2

E(Dn) into H2
E∗(D

n). It is now easy to check that KΘ ≥ 0,
where

KΘ(z,w) = Sn(z,w)−1(I −Θ(z)Θ(w)∗) (z,w ∈ Dn).

We say that KΘ is a (B(E∗)-valued) de Branges-Rovnyak kernel on Dn. In the following,
we do not assume a priori that K is analytic in {z1, . . . , zn}.

Theorem 0.0.10. Let K : Dn × Dn → B(E∗) be a kernel on Dn. Then K = KΘ for
some Schur-Agler function Θ ∈ SA(Dn,B(E , E∗)) and a Hilbert space E if and only if
there exist B(E∗)-valued kernels K1, . . . ,Kn on Dn such that

K(z,w) =
n∑

i=1

1∏
j ̸=i

(1− zjw̄j)
Ki(z,w),

for all z,w ∈ Dn, and IE∗ − S−1
n ·K ≥ 0.

In the last part of this chapter we study factorizations of two-variable Schur functions
in terms of Agler kernels. We prove:

Theorem 0.0.11. Let φ ∈ S(D2) and suppose φ(0) 6= 0. The following assertions are
equivalent:

(1) There exist φ1 and φ2 in S(D) such that

φ(z) = φ1(z1)φ2(z2) (z ∈ D2).

(2) There exist Agler kernels {K1,K2} of φ such that K1 depends only on z1 and w̄1,
and

φ(0)K2(·, (w1, 0)) = φ(w1, 0)K2(·,0) (w1 ∈ D).

(3) There exist Agler kernels {L1, L2} of φ such that all the functions in HL1 depends
only on z1, and

φ(0)f(·, 0) = φ(·, 0) f(0) (f ∈ HL2).

(4) φ = τV for some co-isometric colligation

V =

φ(0) B1 B2

C1 D1 D2

C2 0 D4

 ∈ B(C⊕ (H1 ⊕H2)),
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with φ(0)D2 = C1B2.

Chapter 4: Beurling quotient modules on the polydisc

In this chapter, we present a complete characterization of Beurling quotient modules
of vector-valued Hardy space over Dn. We present two applications: first, we obtain
a dilation theorem for Brehmer n-tuples of commuting contractions, and, second, we
relate joint invariant subspaces with factorizations of inner functions.

Let n ≥ 1 and let E be a Hilbert space. The E-valued Hardy space over the polydisc
Dn, denoted by H2

E(Dn), is the Hilbert space of all E-valued analytic functions f on Dn

such that
‖f‖ :=

(
sup

0≤r<1

∫
Tn

‖f(rz1, . . . , rzn)‖2Edm(z)
) 1

2
<∞,

where dm(z) is the normalized Lebesgue measure on the n-torus Tn. Given another
Hilbert space E∗, we denote by H∞

B(E∗,E)(D
n) the Banach space of all B(E∗, E)-valued

bounded analytic functions on Dn. A function Θ ∈ H∞
B(E∗,E)(D

n) is called inner if
f 7→ Θf defines an isometry MΘ : H2

E∗(D
n) → H2

E(Dn). Finally, recall that a closed
subspace Q ⊆ H2

E(Dn) is said to be a Beurling quotient module (and Q⊥ is a Beurling
submodule) if

Q = H2
E(Dn)	ΘH2

E∗(D
n) ∼= H2

E(Dn)/ΘH2
E∗(D

n),

for some Hilbert space E∗ and inner function Θ ∈ H∞
B(E∗,E)(D

n). In the context of Beurling
theorem and the classical Sz.-Nagy and Foias dilation theory, it appears natural to raise
the following question:

Question 1. Which quotient modules of H2
E(Dn) admit Beurling representations?

Given a quotient module Q ⊆ H2
E(Dn), define the n-tuple of compression operators

Cz = (Cz1 , . . . , Czn) on Q by

Czi = PQMzi |Q (i = 1, . . . , n),

where PQ ∈ B(H2
E(Dn)) is the orthogonal projection onto Q. In the following theorem,

we give the answer to Question 1:

Theorem 0.0.12. Let E be a Hilbert space and let Q be a quotient module of H2
E(Dn).

Then Q is a Beurling quotient module if and only if

(IQ − C∗
ziCzi)(IQ − C∗

zjCzj ) = 0 (i 6= j).

Now we turn to the analytic model theory in several variables. Let T = (T1, . . . , Tn)

be a commuting tuple of contractions on a Hilbert space H. We say that T is a Brehmer
tuple (cf. [9], [39], [79]) if ∑

F⊆G

(−1)|F |TFT
∗
F ≥ 0,
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for every G ⊆ {1, . . . , n} where |F | denotes the cardinality of F and TF =
∏

j∈F Tj for
all F ⊆ {1, . . . , n}. We set, by convention, that T∅ = IH and |∅| = 0. A contraction X

on H is called pure if X∗n → 0 as n → ∞ in the strong operator topology. A Brehmer
tuple T is called a pure Brehmer tuple if Ti is pure for all i = 1, . . . , n.

We define model operators Tzi,Θ = PQΘ
Mzi |QΘ

for all i = 1, . . . , n, and set

TΘ = (Tz1,Θ, . . . , Tzn,Θ).

It is a natural question to ask which n-tuples of commuting contractions are unitarily
equivalent to TΘ on Beurling quotient modules QΘ. The following result (a refinement
of Theorem 4.1.1) gives a complete answer to this question.

Theorem 0.0.13. Let T = (T1, . . . , Tn) be an n-tuple of commuting contractions on H.
The following are equivalent.

(a) T ∼= TΘ for some Beurling quotient module QΘ.

(b) T is a pure Brehmer tuple and (IH − T ∗
i Ti)(IH − T ∗

j Tj) = 0 for all i 6= j.

In the final section of this chapter we classify factorizations of inner functions in
terms of existence of certain invariant subspaces.

Theorem 0.0.14. Let Θ ∈ H∞
B(E∗,E)(D

n) be an inner function. The following are
equivalent.

1. There exist a Hilbert space F and inner functions Ψ and Φ in H∞
B(E∗,F)(D

n) and
H∞

B(F ,E)(D
n), respectively, such that Θ = ΦΨ.

2. There exists a TΘ-invariant subspace M ⊆ QΘ such that M ⊕ SΘ is a Beurling
submodule of H2

E(Dn).

3. There exists a TΘ-invariant subspace M ⊆ QΘ such that

(I − C∗
i Ci)(I − C∗

jCj) = 0 (i 6= j),

where Cs = PQΘ⊖MTzs,Θ|QΘ⊖M for all s = 1, . . . , n.



Chapter 1

Preliminaries

In this chapter, we recall the necessary definitions and basic facts from classical operator
theory and function theory. We also present the background ideas of Schur functions,
Schur-Agler functions, and reproducing kernel Hilbert spaces. For more about Schur
functions and Schur-Agler functions we refer the reader to the book by Agler and Mc-
Carthy (see [6]) and the lecture notes by W.J. Helton (see [65]). We refer the reader
to the book by Paulsen and Raghupathi [92] and Aronszajn [14] on reproducing kernel
Hilbert spaces, and the classic by Sz.-Nagy and Foias (see [90]) on the theory of dilations
and structure of contractions. 

1.1 Reproducing Kernel Hilbert spaces

We begin by recalling the definition of kernel functions.

Definition 1.1.1. Let E be a Hilbert space, and let Ω be a non-empty set. A function
K : Ω× Ω → B(E) is called a positive kernel if

m∑
i,j=1

〈K(zi, zj)ηj , ηi〉E ≥ 0,

for all {z1, . . . , zm} ⊆ Ω, {η1, . . . , ηm} ⊆ E and m ≥ 1.

We often say that K is a kernel and denote it by K ≥ 0.

Let K be a B(E)-valued kernel function, and let HK be the closure of the linear space{
m∑
i=1

K(·, zi)ηi : z ∈ Ω, η ∈ E and m ∈ N
}

with respect to the inner product

〈K(·,w)η,K(·, z)ζ〉 := 〈K(z,w)η, ζ〉E ,

for all z,w ∈ Ω and η, ζ ∈ E . Then HK forms a Hilbert space of E-valued functions on
Ω and

HK = span{K(·,w)η : η ∈ E and w ∈ Ω}.

13
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The following equality, follows from the above inner product, is known as the reproducing
property:

〈f,K(·, z)η〉 = 〈f(z), η〉E ,

for all z ∈ Ω, f ∈ HK and η ∈ E . Let HK be E-valued reproducing kernel Hilbert space
corresponding to a B(E)-valued kernel function K. Suppose w ∈ Ω and ev(w) : HK → E
is the evaluation, that is

ev(w)(f) = f(w) (f ∈ HK).

Then
K(z,w) = ev(z)ev(w)∗ (z,w ∈ Ω).

Now let Ω ⊆ Cn be a domain and let HK be a reproducing kernel Hilbert space of
analytic functions on Ω. In this case, K is analytic in the first variables and we call it
as an analytic kernel. We also call HK as an analytic reproducing kernel Hilbert space.
Suppose HK is an analytic reproducing kernel Hilbert space, and let ziHK ⊆ HK for all
i = 1, . . . , n. Then

(Mzif)(w) = wif(w) (w ∈ Ω, f ∈ HK),

for all i = 1, . . . , n, defines a commuting tuple of bounded linear operators (Mz1 , · · · ,Mzn)

on HK . It is easy to verify that

M∗
zi(K(·,w)η) = wiK(·,w)η,

for all w ∈ Ω, η ∈ E and i = 1, . . . , n. The following is a list of examples for analytic
reproducing kernel Hilbert spaces:

Example 1.1.2. 1. Let n ∈ N. The Hardy space H2(Dn) on the unit polydisc Dn is
a reproducing kernel Hilbert space with the Szegö kernel

Sn(z,w) =

n∏
i=1

(1− ziwi)
−1 (z,w ∈ Dn).

2. Let n ∈ N. The Drury-Arveson space H2
n on the unit ball Bn is a reproducing

kernel Hilbert space with the Drury-Arveson kernel

kn(z,w) = (1− 〈z,w〉Cn)−1 (z,w ∈ Bn).

3. Let n ∈ N and let α > n. The weighted Bergman space L2
a,α(Bn) on the unit ball

Bn is a reproducing kernel Hilbert space with the weighted Bergman kernel

KL2
a,α(Bn)(z,w) = (1− 〈z,w〉Cn)−α (z,w ∈ Bn).

when α = n , L2
a,α(Bn) is the usual Hardy space H2(Bn).
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4. Let n ∈ N. The Dirichlet space D(Bn) on the unit ball Bn is a reproducing kernel
Hilbert space with the Dirichlet kernel

KD(Bn)(z,w) = 1 + log 1

1− 〈z,w〉
(z,w ∈ Bn).

5. Let λ = (λ1, . . . , λn), where λi > −1 and i = 1, . . . , n. The weighted Bergman
space L2

a,λ(Dn) on the unit polydisc Dn is a reproducing kernel Hilbert space with
kernel

KL2
a,λ(Dn)(z,w) =

n∏
i=1

1

(1− ziwi)2+λi
(z,w ∈ Dn).

Now we turn to multipliers on reproducing kernel Hilbert spaces. Let E1 and E2 be
two Hilbert spaces. Let HK1 and HK2 be two reproducing kernel Hilbert spaces where
Kj : Ω×Ω → B(Ej). A function Θ : Ω → B(E1, E2) is said to be a multiplier if Θf ∈ HK2

for all f ∈ HK1 . The set of all multipliers is denoted by M(HK1 ,HK2), that is

M(HK1 ,HK2) = {Θ : Ω → B(E1, E2) : ΘHK1 ⊆ HK2} .

By an application of the closed graph theorem, a multiplier Θ in M(HK1 ,HK2) defines
a bounded multiplication operator MΘ : HK1 → HK2 as

(MΘf)(ω) = (Θf)(ω) = f(ω)Θ(ω),

for all f ∈ HK1 and ω ∈ Ω. The multiplication operator MΘ has the following property

M∗
Θ(K2(·, ω)η) = K2(·, ω)Θ(ω)∗η,

for all w ∈ Ω and η ∈ E . Indeed, for f ∈ HK1 , we have

〈f,M∗
Θ(K2(·, ω)η)〉 = 〈Θf,K2(·, ω)η〉

= 〈Θ(ω)f(ω), η〉

= 〈f(ω), Θ(ω)∗η〉

= 〈f,K2(·, ω)Θ(ω)∗η〉.

Moreover, M(HK1 ,HK2) is a Banach space with respect to the norm

‖Θ‖M(HK1
,HK2

) := ‖MΘ‖B(HK1
,HK2

),

for all Θ ∈ M(HK1 ,HK2). If K1 = K2, we denote M(HK1 ,HK1) simply by M(HK1) is a
Banach algebra with the norm ‖·‖M(HK1

). The following result characterizes multipliers
in terms of reproducing kernels.

Theorem 1.1.3. Let Kj : Ω × Ω → B(Ej), j = 1, 2, be analytic kernels. Suppose HK1

and HK2 are the corresponding analytic reproducing kernel Hilbert spaces, and suppose
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Θ : Ω → B(E1, E2) is a function. Then the following are equivalent:

(i) Θ ∈ M(HK1 ,HK2).

(ii) There exists a constant c > 0 such that
(µ, ν) 7→ c2K2(µ, ν)−Θ(µ)K1(µ, ν)Θ(ν)∗ (µ, ν ∈ Ω),

is a kernel.

An analytic kernel K : Ω× Ω → B(E) is said to be quasi-scalar kernel if

K(z, w) = k(z, w)IE (z, w ∈ Ω),

for some scalar kernel k on Ω. In this case, we have HK = Hk ⊗ E .

Theorem 1.1.4 ([6]). Let Hk be a reproducing kernel Hilbert space with quasi-scalar
kernel k on Ω. Let Θ : Ω → B(E1, E2) be a function. Then the following are equivalent

(i) Θ ∈ M(Hk ⊗ E1,Hk ⊗ E2).

(ii) The operator

T (k(·, ω)⊗ η) = k(·, ω)⊗Θ(ω)∗η (ω ∈ Ω, η ∈ E2),

defines a bounded linear operator T : Hk ⊗ E1 → Hk ⊗ E2.

In this case, T is the adjoint of MΘ. Below we give a list of examples of multiplier
algebras:

Example 1.1.5. 1. Let H2
E(Dn) be the E-valued Hardy space on Dn. Then

M(H2
E(Dn)) = H∞

B(E)(D
n), the Banach algebra of B(E)-valued bounded analytic

functions on Dn.

2. Let L2
a(Dn, E) be the E-valued Bergman space on Dn. Then M(L2

a(Dn, E)) =

H∞
B(E)(D

n).

3. Let H2
E(Bn) be the E-valued Hardy space on Bn. Then M(H2

E(Bn)) = H∞
B(E)(B

n),
the Banach algebra of B(E)-valued bounded analytic functions on Bn.

4. Let L2
a(Bn, E) be the E-valued Bergman space on Bn. Then M(L2

a(Bn, E)) =

H∞
B(E)(B

n).

5. Let H2
n(E) be the E-valued Drury-Arveson space on Bn. Then

M(H2
n(E)) = {Φ : Bn → B(E) analytic and sup ‖Φ(rT )‖ <∞},

where the supremum is taken over r ∈ (0, 1) and commuting n-tuples T = (T1, . . . , Tn)

on some Hilbert space H such that
n∑

j=1
TjT

∗
j ≤ IH (see [16]).
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It is worthwhile to note that the multiplier algebra M(D(D)) of the Dirichlet space
D(D) is a proper subalgebra ofH∞(D). Also, note that if n ≥ 2, than M(H2

n) ( H∞(Bn)

the inclusion is contractive, and the multiplier norm and the supremum norm on the
ball are not equivalent (see [64]).

1.2 Schur functions

We begin with the definition of Schur functions. Let n ∈ N, Ω = Dn or Bn, and let E and
E∗ be Hilbert spaces. Let H∞

B(E∗,E)(D
n) denote the Banach space of all B(E∗, E)-valued

bounded analytic functions on Dn with the supremum norm

‖Φ‖∞ := sup{‖Φ(z)‖ : z ∈ Dn} (Φ ∈ H∞
B(E∗,E)(D

n)).

A function Φ ∈ H∞
B(E∗,E)(D

n) is said to be Schur function if ‖Φ‖∞ ≤ 1. We denote by
S(Dn,B(E∗, E)) the set of all Schur functions defined on Dn, that is

S(Dn,B(E∗, E)) = {Φ : Dn → C : Φ is analytic and ‖Φ‖∞ ≤ 1}.

When E∗ = E = C, we will simply denote the set of all scalar valued Schur functions on
D by S(D), that is,

S(D) = {φ : D → C : φ is analytic and ‖φ‖∞ := sup{|φ(z)| : z ∈ D} ≤ 1}.

We introduce the Schur functions on Ω = Bn in subsection 1.2.6. The structure of Schur
functions is closely related to operators, namely, colligation operators, on Hilbert spaces.

1.2.1 Colligation operators and transfer functions

A colligation (or scattering operator matrix) [40] is any bounded linear operator V of
the form

V =

[
A B

C D

]
: E ⊕H → E∗ ⊕H,

where H, E and E∗ are Hilbert spaces. The colligation is said to be isometric colligation
(unitary colligation) if V is isometry (unitary). Now, let H be a Hilbert space and let

V =

[
a B

C D

]
: C⊕H → C⊕H, (1.2.1)

be an isometry. The transfer function realization of the isometric colligation V is defined
by

τV (z) = a+ zB(IH − zD)−1C (z ∈ D).

Since V is an isometry, it is easy to see that D is a contraction, and hence ‖zD‖ =

|z|‖D‖ < 1 for all z ∈ D. It follows that τV defined above is analytic on D. Since
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V ∗V = I, we have [
|a|2 + C∗C aB + C∗D

aB∗ +D∗C B∗B +D∗D

]
=

[
1 0

0 IH

]
.

Using this, we calculate

1− τV (z)τV (z) = 1− |a|2 − zaB(I − zD)−1C − azC∗(I − zD∗)−1B∗

− |z|2C∗(I − zD∗)−1B∗B(I − zD)−1C

= C∗C + zC∗D(I − zD)−1C + zC∗(I − zD∗)−1D∗C

− |z|2(I − zD∗)−1(I −D∗D)(I − zD)−1C

= C∗(I − zD∗)−1[(I − zD∗)(I − zD) + z(I − zD∗)D

+ zD∗(I − zD)− |z|2I + |z|2D∗D](I − zD)−1C

= C∗(I − zD∗)−1[(1− |z|2)I](I − zD)−1C.

In particular, |τV (z)| ≤ 1 for all z ∈ D, and hence τV ∈ S(D). Now we prove the
converse:

Theorem 1.2.1 (I. Schur). Let φ be a function on D. Then φ ∈ S(D) if and only if
there exist a Hilbert space H and an isometric colligation

V =

[
a B

C D

]
∈ B(C⊕H),

such that φ = τV .

Proof. (⇒) This part follows from the above discussion.

(⇐) Suppose φ ∈ S(D). Then Mφ defines a contraction on H2(D). That is,
I −MφM

∗
φ ≥ 0, and hence, a simple calculation shows that

〈(I −MφM
∗
φ)S(·, w), S(·, z)〉 =

1− φ(z)φ(w)

1− zw
= (1− φ(z)φ(w))S(z, w).

Therefore, (1−φ(z)φ(w))S(z, w) is a kernel on D (see Lemma 1.2.2 ). Since a kernel can
always be realized as a Grammian, it follows that there exists a Hilbert space H and a
function f : D → H such that

(1− φ(z)φ(w))S(z, w) = 〈f(z), f(w)〉H.

Since S(z, w) = (1− zw̄)−1, it follows that

1 + 〈zf(z), wf(w)〉H = φ(z)φ(w) + 〈f(z), f(w)〉H. (1.2.2)

Therefore, the map

V :

(
1

zf(z)

)
7→

(
φ(z)

f(z)

)
, (1.2.3)
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extends linearly to an isometry on

span
{(

1

zf(z)

)
: z ∈ D

}
.

Adding an infinite dimensional summand to H, if necessary, V can then be extended to
an isometry from C⊕H to C⊕H. We again denote the extension by V . Set

V =

[
a B

C D

]
∈ B(C⊕H).

Note that (1.2.2) implies in particular that

a+ zBf(z) = φ(z), and
C + zDf(z) = f(z).

By the second equality, we have

f(z) = (I − zD)−1C,

and then, by the first equality above, we have

φ(z) = a+ zB(I − zD)−1C (z ∈ D).

1.2.2 Two variables Schur functions

We continue the discussion by presenting a transfer function realization of two variables
Schur functions (see [5] and also page 171, [6]). We begin with a lemma (which is also
valid for Schur functions on Bn).

Lemma 1.2.2. If φ ∈ S(Dn), then

Kφ(z,w) =
1− φ(z)φ(w)∏n
i=1(1− ziwi)

(z,w ∈ Dn),

is a kernel on Dn.

Proof. Let φ ∈ S(Dn). Then Mφ ∈ B(H2(Dn)) is a contraction, or, equivalently,
I −MφM

∗
φ ≥ 0 on H2(Dn). A simple calculation shows that

〈(I −MφM
∗
φ)Sn(·,w), Sn(·, z)〉 =

1− φ(z)φ(w)∏n
i=1(1− ziwi)

,
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where
Sn(z,w) =

n∏
i=1

1

1− ziw̄i
(z,w ∈ Dn),

is the Szegö kernel on Dn. Let {z1, . . . , zm} ⊆ Dn, {c1, . . . , cm} ⊆ Cn, and m ∈ N. Then

m∑
i=1

m∑
i=1

cicjKφ(zj , zi) =

m∑
i=1

m∑
i=1

cicj〈(I −MφM
∗
φ)Sn(·, zi), Sn(·, zj)〉

= 〈(I −MφM
∗
φ)

m∑
i=1

ciSn(·, zi),
m∑
j=1

cjSn(·, zj)〉

= ‖(I −MφM
∗
φ)

1
2

m∑
i=1

ciSn(·, zi)‖2 ≥ 0.

Therefore, Kφ is a kernel on Dn.

The following is one of the most influential and useful results in multivariable operator
theory and we refer the reader to [2, 19, 20, 21, 22, 23, 31, 33, 34, 73, 80] and the references
therein for a wide application and several connecting results.

Theorem 1.2.3. Let φ : D2 → C be a function. The following are equivalent:
(1) φ ∈ S(D2).
(2) Then there exist kernels K1,K2 : D2 × D2 → C (known as Agler kernels) such that

1− φ(z)φ(w) = (1− z1w1)K1(z,w) + (1− z2w2)K2(z,w) (z,w ∈ D2).

(3) There exist Hilbert spacesH1 andH2 and a unitary/isometric/co-isometric/contractive
colligation operator

V =

[
a B

C D

]
∈ B(C⊕ (H1 ⊕H2)),

such that φ = τV , where

τV (z) = a+B(IH1⊕H2 − EH1⊕H2(z)D)−1EH1⊕H2(z)C,

and EH1⊕H2(z) = z1IH1 ⊕ z2IH2 for all z ∈ D2.

Proof. (1) ⇒ (2) First we assume that φ is an inner function. Let S1 be the maximal
Mz1 invariant subspace of Qφ (where Qφ = H2(D)	 φH2(D)), that is,

S1 = {f ∈ Qφ : zn1 f ∈ Qφ, ∀n ∈ Z+} .

Set S2 = Qφ	S1. Since S1 and S2 are closed subspace of Qφ, then they are reproducing
kernel Hilbert spaces with kernels

KSj (z,w) = PSj (KQφ(·,w))(z),
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where
KQφ(z,w) =

1− φ(z)φ(w)

(1− z1w1)(1− z2w2)
,

for all z,w ∈ D2. From the definition of S1, it is clear that z1S1 ⊆ S1. Since
M∗

z2Qφ ⊆ Qφ and {Mz1 ,Mz2} are doubly commuting, it follows that M∗
z2S1 ⊆ S1,

and consequently, z2S2 ⊆ S2. Note that Sj ⊆ Qφ ⊆ H2(D2), hence, ‖Mzj |Sj‖Sj = 1 for
j = 1, 2. It follows that

Kj(z,w) = (1− zjwj)KSj (z,w)

is a kernel for j = 1, 2. Now

1− φ(z)φ(w)

(1− z1w1)(1− z2w2)
= KQφ(z,w)

= KS1(z,w) +KS2(z,w)

=
K1(z,w)

1− z1w1
+
K2(z,w)

1− z2w2
.

For the general case, assume that φ is a non-inner function. Then by a well known
result of Rudin [97, Theorem 5.5.1], there exists a sequence of inner functions {φn}n≥1

such that φn → φ uniformly on compact subsets of D2. Let {K1
n,K

2
n} be Agler kernels

associated with φn for each n ∈ N. Since H
Kj

n
is contractively contained in H2(D2), we

have

|Kj
n(z,w)| ≤ ‖Kj

n(·,w)‖‖Kj
n(·, z)‖ ≤ 1√

(1− |w1|2)(1− |w2|2)
1√

(1− |z1|2)(1− |z2|2)
,

for all z,w ∈ D2, n ∈ N and j = 1, 2. Since Kj
n is locally uniformly bounded, then it

forms a normal family for each j = 1, 2. Therefore by Montel’s theorem there exists
a subsequence {φnk

} of {φn} such that {Kj
nk} converges to kernel Kj uniformly on

compact subsets of D2 for each j = 1, 2. And finally, we have

1− φ(z)φ(w)

(1− z1w1)(1− z2w2)
=
K1(z,w)

1− z1w1
+
K2(z,w)

1− z2w2
.

(2) ⇒ (3) Let {K1,K2} be Agler kernels such that

1− φ(z)φ(w) = (1− z1w1)K1(z,w) + (1− z2w2)K2(z,w) (z,w ∈ D2).

By the reproducing property, we have

1− φ(z)φ(w) = (1− z1w̄1)〈K1(·,w),K1(·, z)〉HK1
+ (1− z2w2)〈K2(·,w),K2(·, z)〉HK2

,
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and hence, by rearranging terms

1 + 〈w1K1(·,w), z1K1(·, z)〉HK1
+ 〈w2K2(·,w), z2K2(·, z)〉HK2

= φ(z)φ(w)

+ 〈K1(·,w),K1(·, z)〉HK1
+ 〈K2(·,w),K2(·, z)〉HK2

,

for all z,w ∈ D2. Therefore

V :

 1

w1K1(·,w)

w2K2(·,w)

 7→

 φ(w)

K1(·,w)

K2(·,w)

 (w ∈ D2), (1.2.4)

defines an isometry from D onto R, where

D = span


 1

w1K1(·,w)

w2K2(·,w)

 : w ∈ D2

 ⊆ C⊕HK1 ⊕HK2 ,

and

R = span


 φ(w)

K1(·,w)

K2(·,w)

 : w ∈ D2

 ⊆ C⊕HK1 ⊕HK2 .

Clearly V extends to a contractive map on C ⊕ HK1 ⊕ HK2 . By adding an infinite
dimensional Hilbert space H, if necessary, V extends to an isometry (unitary) from
C⊕HK1 ⊕ (HK2 ⊕H) into itself. Let

V =

[
a B

C D

]
∈ B(C⊕HK1 ⊕ (HK2 ⊕H)).

From (1.2.4) we get

A+BE∗
H1⊕H2

(w)

(
K1(·,w)

K2(·,w)

)
= φ(w),

C +DE∗
H1⊕H2

(w)

(
K1(·,w)

K2(·,w)

)
=

(
K1(·,w)

K2(·,w)

)
,

and hence
φ(z) = A∗ + C∗(I − EH1⊕H2(z)D

∗)−1EH1⊕H2(z)B
∗.

The proof of (3) ⇒ (1) is similar to the above computation (or see the proof of Theorem
1.2.1).

1.2.3 Schur-Agler functions

Let E and E∗ be Hilbert spaces. The Schur-Agler class SA(Dn,B(E , E∗)) consists of
B(E , E∗)-valued analytic functions φ on Dn such that φ satisfies the n-variables von
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Neumann inequality
‖φ(T1, . . . , Tn)‖B(H) ≤ 1,

for arbitrary n-tuples of commuting strict contractions T = (T1, . . . , Tn) on Hilbert
spaces arbitrary H. Here

φ(T1, . . . , Tn) =
∑
k∈Zn

+

φk ⊗ Tk,

where φ =
∑

k∈Zn
+

φkz
k, φk ∈ B(E , E∗), and Tk = T k1

1 · · ·T kn
n for all k = (k1, . . . , kn) ∈

Zn
+. The elements of SA(Dn,B(E , E∗)) are called Schur-Agler functions. We denote by

SA(Dn) the scalar valued Schur-Agler functions on Dn.

Following the classical (one variable) von Neumann inequality, Ando [12] proved that
the von Neumann inequality also holds for commuting pairs of contractions. On the
other hand, the von Neumann inequality does not hold in general for n-tuples, n > 2,
of commuting contractions [45, 111]. It follows then that

S(D) = SA(D) and S(D2) = SA(D2),

but S(Dn) ) SA(Dn) for all n > 2.

Example 1.2.4 (Kaijser–Varopoulos polynomial). Consider the following degree (2, 2, 2)
homogeneous polynomial in z1, z2 and z3 variables

p(z1, z2, z3) =
1

5
(z21 + z22 + z23 − 2z1z2 − 2z2z3 − 2z3z1).

It can be easily show that ‖p‖∞ = 1. However, there exist commuting contractions T1, T2
and T3 such that ‖p(T1, T2, T3)‖ = 6

5 > 1. Hence p ∈ S(D3), but p /∈ SA(D3).

The following result is due to Agler [2]:

Theorem 1.2.5 (Agler). Let φ be a function on Dn. Then φ ∈ SA(Dn) if and only if
there exist Hilbert spaces H1, . . . ,Hn, and an isometric colligation

V =

[
a B

C D

]
∈ B(C⊕Hn

1 ),

such that φ = τV where

τV (z) = a+B(IHn
1
− EHn

1
(z)D)−1EHn

1
(z)C,

Hn
1 =

n⊕
i=1

Hi and EHn
1
(z) =

n⊕
i=1

ziIHi for all z ∈ Dn.

We also have the following analog of Theorem 1.2.3:
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Theorem 1.2.6. Given a function θ : Dn → C, the following are equivalent:

(1) θ ∈ SA(Dn).

(2) There exist kernels K1, . . . ,Kn (known as Agler kernels) on Dn such that

1− θ(z)θ(w) =
n∑

i=1

(1− ziwi)Ki(z,w), (z,w ∈ Dn).

We now define the Schur-Agler norm of a function f ∈ SA(Dn,B(E , E∗)):

‖f‖sa = sup
T

‖f(T )‖,

where the supremum is taken over all n-tuples T = (T1, . . . , Tn) of commuting strict
contractions on some Hilbert space H. Clearly, supremum norm is dominated by Schur-
Agler norm, that is ‖f‖∞ ≤ ‖f‖sa for all f ∈ SA(Dn,B(E , E∗)).

Theorem 1.2.7 (see [61] and [67]). Let φ ∈ S(Dn,B(E , E∗)). Then φ ∈ SA(Dn,B(E , E∗))
if and only if

‖f‖SA = ‖f‖∞.

In general, the condition z1f ∈ SA(Dn), n ≥ 3, for an analytic function f on Dn does
not force f ∈ SA(Dn) (see [60]).

1.2.4 Inner functions

Let E be a Hilbert space. Recall that the E-valued Hardy space over the polydisc Dn,
denoted by H2

E(Dn), is the Hilbert space of all E-valued analytic functions f on Dn such
that

‖f‖ :=
(

sup
0≤r<1

∫
Tn

‖f(rz1, . . . , rzn)‖2Edm(z)
) 1

2
<∞,

where z = (z1, . . . , zn) and dm(z) is the normalized Lebesgue measure on the n-torus
Tn. A function Θ ∈ H∞

B(E∗,E)(D
n) is called inner if f 7→ Θf defines an isometry MΘ :

H2
E∗(D

n) → H2
E(Dn) or equivalently Θ(z)∗Θ(z) = IE∗ a.e. z ∈ Tn. The simplest example

is Θ(z) = ziIE , i = 1, . . . , n, whenever E∗ = E . Therefore, (Mz1 , . . . ,Mzn) is a commuting
tuple of isometries on H2

E(Dn).

In the scalar case, a function φ ∈ S(Dn) is said to be inner if

lim
r↗1

|φ(reit1 , · · · , reitn)| = |φ(eit1 , · · · , eitn)| = 1,

almost everywhere on the distinguished boundary Tn of Dn. Now it can be easily proved
that a function φ ∈ S(Dn) is inner if and only if Mφ on H2(Dn) is an isometry (in fact,
if φ is non-constant then Mφ on H2(Dn) is a pure isometry if and only if φ is inner).
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For example, a function φ ∈ S(Dn) is rational inner function if and only if

φ(z) = zk11 · · · zknn
p( 1

z̄1
, . . . , 1

z̄n
)

p(z)
,

where p is a polynomial with no zeros in Dn and (k1, . . . , kn) is the multi-degree of p
(see Rudin [97, Theorem 5.2.5]). Some useful references on rational inner functions are
[33, 35, 74, 75, 76]

1.2.5 Inner functions and isometric colligations

A function φ : D → B(Cn) is called matrix valued rational inner function if φ is an inner
function and entries of the matrix φ are rational functions with poles off D. Let φ be a
n× n matrix valued rational inner function. Now consider the following subset of D2

V = {(z, w) ∈ D2 : det(φ(z)− wI) = 0}.

Then
V ∩ ∂(D2) = V ∩ T2, (1.2.5)

where ∂D2 is the topological boundary of D2 and the closure of V is taken in D2. That
is, V exits the bidisc through the distinguished boundary T2 of D2. A non-empty set
V ⊆ C is called a distinguished variety if there is a polynomial p ∈ C[z, w] such that
V = {(z, w) ∈ D2 : p(z, w) = 0} and V exits the bidisc through the distinguished
boundary.

Theorem 1.2.8. Let V be a distinguished variety of D2. Then there is a matrix valued
rational inner function φ such that

V = {(z, w) ∈ D2 : det(φ(z)− wI) = 0}.

We refer [3, 4, 47, 72, 98] for details on this. The following result is a characterization
of rational inner functions in terms of dimensions of state spaces.

Theorem 1.2.9. Let φ : D → B(Cn) be a function. Then φ is rational inner if and
only if there exists a Hilbert space H with dim(H) <∞ and a unitary colligation

U =

[
A B

C D

]
∈ B(Cn ⊕H),

such that
φ(z) = A+ zB(I − zD)−1C, (z ∈ D).

A similar result exists for rational inner functions on D2 (see [21]). Now we turn
to characterizations of inner Schur functions. Recall that C0· denotes the set of all
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contractions T on Hilbert spaces such that Tm → 0 as m → ∞ in the strong operator
topology.

Theorem 1.2.10. Let φ ∈ S(D) be a Schur function. Then φ is inner if and only if
φ = τV for some isometric colligation

V =

[
a B

C D

]
∈ B(C⊕H),

with D ∈ C0·.

Proof. Let φ ∈ S(D) be an inner function, and suppose

φ =

∞∑
m=0

amz
m (z ∈ D),

is the power series representation of φ on D. We clearly have

am = PCM
∗m
z Mφ|C (m ≥ 0),

where PC denotes the orthogonal projection onto the space of constant functions in
H2(D). Note that Mφ1 = φ. Note that Mφ is an isometry on H2(D). Then for the
model space Qφ = H2(D) 	 φH2(D), we have M∗

zQφ ⊆ Qφ and M∗
zφ ∈ Qφ (indeed,

〈M∗
zφ,φf〉 = 〈M∗

z 1, f〉 = 0 for all f ∈ H2(D)). Therefore

φ(w) = PCMφ|C + wPC|Qφ(IQφ − wM∗
z |Qφ)

−1M∗
zMφ|C (w ∈ D). (1.2.6)

Clearly

V =

[
φ(0) PC|Qφ

M∗
zMφ|C M∗

z |Qφ

]
,

defines a unitary colligation operator on C⊕Qφ. And, of course, we have M∗
z |Qφ ∈ C0·

and φ = τV . For the converse part we refer [57, Theorem 10.1, page 122].

Note that the representation of φ in (1.2.6) reduces to a more compact form as

φ(w) = PC(IH2(D) − wM∗
z )

−1Mφ|C (w ∈ D).

1.2.6 Realizations of Drury-Arveson multipliers

The Drury-Arveson space, denoted by H2
n, is the Hilbert space of holomorphic functions

on Bn corresponding to the reproducing kernel (cf. [16], [108])

k(z,w) =
1

1− 〈z,w〉
(z,w ∈ Bn),
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where 〈z,w〉 is the usual scalar product in Cn. We denote by M(H2
n) the commutative

Banach algebra of multipliers ofH2
n equipped with the operator norm ‖φ‖ := ‖Mφ‖B(H2

n)
.

Also we define
M1(H

2
n) = {φ ∈ M(H2

n) : ‖φ‖ ≤ 1}.

Set M1(H
2
n) is called the Schur class on Bn. Given a Hilbert space H, we denote by Hn

the n-copies of H, that is
Hn = H⊕ · · · ⊕ H︸ ︷︷ ︸

n

,

and EHn : Bn → B(Hn,H) the row operator

EHn(z) = (z1IH, . . . , znIH) (z ∈ Bn).

The following characterization of multipliers parallel to the transfer function realizations
of Schur-Agler class functions on Dn is our starting point:

Theorem 1.2.11 ([16, 56]). Suppose φ is a complex-valued function on Bn. Then the
following are equivalent:

(1) φ ∈ M1(H
2
n).

(2) There exist a Hilbert space H and an isometric colligation

V =

[
a B

C D

]
: C⊕H → C⊕Hn,

such that φ = τV where

τV (z) = a+B(IH − EHn(z)D)−1EHn(z)C (z ∈ Bn).

1.2.7 de Branges-Rovnyak kernels

In this section, we briefly discuss the basics of contractively contained shift invariant
(and not necessarily closed) subspaces of the Hardy space. We refer to the survey article
by Ball and Bolotnikov [18] for a detailed discussion about de Branges-Rovnyak spaces.
Also see [24, 25, 37, 38, 54, 55, 99, 110].

Let T be a bounded operator on a Hilbert space H. We define the range space ranH
with the inner product

〈Th, Tk〉ranH = 〈h, k〉H, (h, k ∈ H 	 ker(T )).

The space ranH is a Hilbert space with respect to the inner product 〈·, ·〉ranH. Moreover,
T is a partial isometry on H with respect to the range space norm.

Let φ ∈ S(D) be Schur function. The de Branges-Rovnyak space Hφ corresponding
to φ is the range space

Hφ = (I −MφM
∗
φ)

1
2H2(D).
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which is a reproducing kernel Hilbert space with kernel (we call it de Branges-Rovnyak
kernel)

Kφ(z, w) =
1− φ(z)φ(w)

1− zw
(z, w ∈ D).

Observe that Hφ is the model space Qφ = H2(D)	 φH2(D) whenever φ is inner.

We now present the definition of the de Branges-Rovnyak space associated with an
operator-valued Schur function. Given a Schur function Φ ∈ S(D,B(E , E∗)), the space

HΦ =
{
f ∈ H2

E∗(D) : ‖f‖
2
HΦ

:= sup
{
‖f +Φg‖2H2

E∗ (D)
− ‖g‖2H2

E(D)
: g ∈ H2

E(D)
}
<∞

}
is called the de Branges-Rovnyak space associated with Φ. The space HΦ is invariant
under the backward shift operator

B : f(z) 7→ f(z)− f(0)

z
.

Let HK1 and HK2 be reproducing kernels on a set X. Then HK1 is said to be
contractively contained in HK2 , if HK1 is a vector subspace of HK2 and

‖h‖HK2
≤ ‖h‖HK1

(h ∈ HK1).

Notice that HK1 is contractively contained in HK2 if and only if

K2 −K1 ≥ 0.

Now it is easy to observe that HΦ is contractively contained in H2
E∗(D).

We now turn to de Branges-Rovnyak kernels corresponding to Schur-Agler functions
on Dn. Suppose Θ ∈ SA(Dn,B(E , E∗)). Since MΘ : H2

E(Dn) → H2
E∗(D

n) is a contraction,
we have KΘ ≥ 0, where

KΘ(z,w) = Sn(z,w)−1(I −Θ(z)Θ(w)∗) (z,w ∈ Dn).

In this case, we say that KΘ is a (B(E∗)-valued) de Branges-Rovnyak kernel on Dn, and
the corresponding reproducing kernel Hilbert space as the de Branges-Rovnyak space
associate with Θ.

Similarly, in the setting of the Drury-Arveson space, for a B(E , E∗)-valued contractive
Θ ∈ M(H2

n ⊗ E ,H2
n ⊗ E∗), the de Branges-Rovnyak kernel KΘ corresponding to Θ is

defined by
KΘ(z,w) =

I −Θ(z)Θ(w)∗

1− 〈z,w〉
(z,w ∈ Bn).

The reproducing kernel Hilbert space corresponding to KΘ is called the de Branges-
Rovnyak space on Bn.
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1.3 Structure of contractions

In this section, we briefly discuss some basic dilation theory in both one and severable
variables. Along the way, we recall the classical Beurling-Lax-Halmos theorem and in
the final part of this section, we review dilations of Brehmer tuples.

1.3.1 Isometries and von Neumann and Wold decomposition

Let H be a Hilbert space. An operator V on H is called an isometry if ‖V h‖ = ‖h‖ for
all h in H. An isometry V is called a pure isometry or a shift if V ∗m → 0 in the strong
operator topology. The following classical result is due to von Neumann and Wold (cf
[90]):

Theorem 1.3.1 (von Neumann and Wold decomposition). Let V be an isometry on H.
Then there exist unique reducing subspaces H0 and H1 of H such that

1. H = H0 ⊕H1,

2. V |H0 is a unitary, and

3. V |H1 is a pure isometry.

In the above case, H1 = ⊕m≥0V
mW, where W = kerV ∗ is the cyclic wandering

subspace of V |H1 , and H0 = ∩m≥0V
mH. The following result is now immediate:

Corollary 1.3.2. Let V be a pure isometry on H. Then V is unitary equivalent to Mz

on the Hardy space H2
W(D), where W = kerV ∗.

As already pointed out, MΘ(Mz ⊗ IE) = (Mz ⊗ IE∗)MΘ for all Θ ∈ H∞
B(E,E∗)(D). In

fact the converse is also true (see [102] for a more general result):

Theorem 1.3.3. Let X ∈ B(H2(D)⊗ E ,H2(D)⊗ E∗) such that

X(Mz ⊗ IE) = (Mz ⊗ IE∗)X.

Then there exists Θ ∈ H∞
B(E,E∗)(D) such that X =MΘ.

Proof. Let w ∈ D and η ∈ E∗. Then

(Mz ⊗ IE)
∗(X∗(S(·, w)⊗ η)) = X∗(Mz ⊗ IE)

∗(S(·, w)⊗ η) = wX∗(S(·, w)⊗ η),

implies that
X∗(S(·, w)⊗ η) ∈ ker(M∗

z ⊗ IE − wI).

Since ker(M∗
z − wI) = CS(·, w), where CS(·, w) = {λS(·, w) : λ ∈ C}, there exists a

linear map Y (w) : E∗ → E such that

X∗(S(·, w)⊗ η) = S(·, w)⊗ Y (w)η,
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for all η ∈ E∗ and w ∈ D. Note that

‖Y (w)η‖ =
‖X∗(S(·, w)⊗ η)‖

‖S(·, w)‖
≤ ‖X‖‖η‖,

and hence, Y (w) is a bounded operator for all w ∈ D. Set Θ(w) = Y (w)∗. Then

X∗(S(·, w)⊗ η) = S(·, w)⊗Θ(w)∗η.

By the reproducing property

〈Θ(w)η1, η2〉 = 〈X(S(·, 0)⊗ η1), S(·, w)⊗ η2〉,

for all η1, η2 ∈ E∗ and w ∈ D. Since w 7→ S(·, w) is a co-analytic, the above equality
implies that w 7→ Θ(w) is an analytic on D.

Now we turn to analytic representations of shift invariant subspaces of vector-valued
Hardy spaces. This is due to Beurling [29], Lax [81], and Halmos [63].

Theorem 1.3.4 (Beurling-Lax-Halmos). Let E be a Hilbert space and let S be a non-
zero closed subspace of H2

E(D). Then S is invariant under Mz if and only if there exist
a Hilbert space E∗ and an inner function Θ ∈ H2

B(E∗,E)(D) such that

S = ΘH2
E∗(D).

Moreover, Θ is unique up to a constant unitary right factor.

Proof. Let W = S 	 zS. Consider the operator V : H2
W(D) → H2

E(D) defined by

V (znη) =Mn
z η (η ∈ W , n ≥ 0).

Then V extends to an isometry. Since Mz is a pure isometry, Mz|S is also a pure
isometry. Applying Wold decomposition to Mz|S , we get

S =

∞⊕
n=0

Mn
z W = R(V ),

where R(V ) is the range of V . Thus V V ∗ = PS . Also it is easy to observe that

VMW
z =ME

z V.

Now from Theorem 1.3.3, we get
V =MΘ,

for some Θ ∈ H∞
B(W,E)(D). Since V is an isometry, it follows that Θ is an inner function,

and hence S = ΘH2
W(D) for some inner function Θ.
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For the uniqueness part, suppose

ΘH2
E∗(D) = ΦH2

F∗(D),

for some inner function Φ ∈ H∞
B(F∗,E)(D). Then by Douglas lemma, there exists a

contraction X such that
MΘ =MΦX.

We now observe that

MΦXMz =MΘMz =MzMΘ =MzMΦX =MΦMzX.

Since MΦ is an isometry, we get

XMz =MzX.

Thus from Theorem 1.3.3 we obtain X =MΨ for some Ψ ∈ H∞
B(E∗,F∗)

(D). Since MΘ and
MΦ are isometries, it follows that MΨ is an isometry and consequently Ψ is an inner
function. Again we observe that

ΦΨH2
E∗(D) = ΦH2

F∗(D).

This implies that ΨH2
E∗(D) = H2

F∗
(D), and hence Ψ is a unitary constant (cf. Lemma

1.3.9).

It is worthwhile to note that the wandering subspace W := S 	 zS has the following
expression:

W = ΘE∗.

As a corollary to the above theorem, we have the classical Beurling theorem:

Corollary 1.3.5 (Beurling). Let S be a nonzero closed subspace of H2(D). Then S is
invariant under Mz if and only if there exists an inner function θ ∈ H∞(D) such that
S = θH2(D). Moreover, θ is unique up to a unimodular constant.

However, Beurling type representations of shift invariant subspaces of H2(Dn), n ≥ 2,
fails in general:

Example 1.3.6. Consider the Mz invariant subspace

S = {f ∈ H2(D2) : f(0, 0) = 0}

of H2(D2). Since S = z1(H
2(D) ⊗ C) ⊕ z2(C ⊗ H2(D)) ⊕ z1z2H

2(D2), and S is a
reproducing kernel Hilbert space, the kernel function k of S is given by

k(z, w) =
z1w̄1

1− z1w̄1
+

z2w̄2

1− z2w̄2
+ z1z2S2(z, w)w̄1w̄2 (z, w ∈ D2),
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where
S2(z, w) = (1− z1w̄1)

−1(1− z2w̄2)
−1 (z, w ∈ D2),

is the Szegö kernel of D2. A simple calculation shows that

k(z, w) = (z1(1− z2w̄2)w̄1 + z2w̄2)S2(z, w) (z, w ∈ D2).

If possible, suppose that S is a Beurling type invariant subspace, that is, S = θH2(D2)

for some inner function θ ∈ H∞(D2). Then k(z, w) = θ(z)θ(w)S2(z, w), from which it
immediately follows that

θ(z)θ(w) = z1(1− z2w̄2)w̄1 + z2w̄2 (z, w ∈ D2).

Clearly, the left side is a positive definite function while the right side is not. This proves
that S is not a Beurling type invariant subspace.

In fact, the following result characterizes Beurling type invariant subspaces of vector-
valued Hardy spaces. A closed subspace S of H2

E(Dn) is said to be of Beurling type
if there exist a Hilbert space E∗ and an inner function Θ ∈ H∞

B(E∗,E)(D
n) such that

S = ΘH2
E∗(D

n).

Theorem 1.3.7 ([85], [103]). Let S be a non-zero closed subspace of H2
E(Dn). Then S

is of Beurling type if and only if

RziR
∗
zj = R∗

zjRzi (i 6= j),

where Rzi =Mzi |S for i = 1, . . . , n.

A subspace S of H2
E(Dn) is called reducing if S is invariant under (Mz1 , . . . ,Mzn)

and (M∗
z1 , . . . ,M

∗
zn). The following result characterizes all reducing subspaces of vector-

valued Hardy spaces:

Theorem 1.3.8 ([103]). Let S be a non-zero closed subspace of H2
E(Dn). Then S is a

reducing subspace if and only if there exists a subspace F of E such that

S = H2
F (Dn).

In particular, (Mz1 , . . . ,Mzn) on H2(D) is irreducible.

We will identify as usual Mzi on H2
E(Dn) with Mzi ⊗ IE on H2(Dn)⊗E , i = 1, . . . , n,

and write
Mz ⊗ IE = (Mz1 ⊗ IE , . . . ,Mzn ⊗ IE).

We know, for each i = 1, . . . , n, that

M∗
zi(S(·, w)⊗ η) = w̄i(S(·, w)⊗ η),
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and hence MziM
∗
zi(S(·, w)⊗η) = ziw̄i(S(·, w)⊗η) for all w ∈ Dn and η ∈ E . It is now easy

to see that D2
M∗

z⊗IE
= PC ⊗ IE (for the definition of defect operator see 1.3.13), where

PC denotes the orthogonal projection of H2(Dn) onto the one-dimensional subspace of
constant functions.

Lemma 1.3.9. Let Θ ∈ H∞
B(E∗,E)(D

n) be an inner function. If ΘH2
E∗(D

n) = H2
E(Dn),

then Θ is an unitary constant.

Proof. Since, by hypothesis, MΘ : H2
E∗(D

n) → H2
E(Dn) is unitary and (Mzi ⊗ IE)MΘ =

MΘ(Mzi ⊗IE∗), it follows that (M∗
zi ⊗IE)MΘ =MΘ(M

∗
zi ⊗IE∗) for all i = 1, . . . , n. Then

D2
Mz⊗IEMΘ =MΘD

2
Mz⊗IE∗

,

and hence
(PC ⊗ IE)MΘ =MΘ(PC ⊗ IE∗).

Thus, for any η ∈ E∗, we have Θ(z)η = Θ(0)η, z ∈ Dn, that is, Θ ≡ Θ(0) is a constant
function. This completes the proof of the lemma.

The n = 1 case of the above lemma can be found in [28, Chapter 5, Proposition 1.17].
Moreover, the present proof is slightly simpler.

1.3.2 Dilations

We begin with the definition of dilations:

Definition 1.3.10. Let T = (T1, . . . , Tn) and V = (V1, . . . , Vn) be commuting tuples of
contractions and isometries on Hilbert spaces H and K, respectively. We say that V is
an isometric dilation of T if there exists an isometry Π : H → K such that ΠT ∗

i = V ∗
i Π

for all i = 1, . . . , n.

It is easy to observe that ΠH is invariant under (V ∗
1 , . . . , V

∗
n ) and (T1, . . . , Tn) is

jointly unitary equivalent to (PΠHV1|ΠH, . . . PΠHVn|ΠH). The existence and uniqueness
of isometric (or unitary) dilation of a  Hilbert space contraction was first proved by
Sz.-Nagy (see [89], [90]). Also, see [106] for the alternative proof of Sz.-Nagy dilation
theorem using infinite matrix representation due to Schäffer.

Theorem 1.3.11 (Sz.-Nagy). A contraction always dilates to an isometry (and hence,
to a unitary).

We refer to the recent survey article by Shalit [107] for the introduction to dilation
theory and its applications. Sz.-Nagy dilation was extended for pairs of commuting
contractions by Andô (see [12]):

Theorem 1.3.12 (Andô). Any pair of commuting contractions can be dilated to a pair
of commuting isometries (and hence, unitaries).
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In the above case, unlike dilations of single contractions, minimal isometric dilations
are not necessarily unique. Also one can easily prove that the existence of isometric
dilations of n-tuples of commuting contractions implies the n-variable von-Neumann
inequality. However, in sharp contrast, for 3 or more than 3 variables, neither the von
Neumann inequality nor the existence of isometric dilations holds in general(see [93],
[111]). The fundamental result of Arveson[13] (also see [91], [95]) says that an n-tuple
of commuting contractions admits an isometric dilation if and only if it satisfies the
von Neumann inequality for matrix-valued polynomials of all matrix sizes. For more
information on several variables dilations and von-Neumann inequality, we refer the
reader to [9],[26], [27], [44], [53], [61],[68], [77], [78], [84] and the references therein.

On the other hand, if a commuting tuple satisfies the Brehmer positivity condition,
then it admits an isometric dilation.  We recall:

Definition 1.3.13. Let T = (T1, . . . , Tn) be a commuting tuple of contractions on a
Hilbert space H. We say that T is Brehmer if∑

F⊆G

(−1)|F |TFT
∗
F ≥ 0, (1.3.1)

for every G ⊆ {1, . . . , n}, where |F | denotes the cardinality of F and TF =
∏

j∈F Tj for
all F ⊆ {1, . . . , n}. We set, by convention, that T∅ = IH and |∅| = 0.

A commuting tuple of isometries V = (V1, . . . , Vn) is said to be doubly commuting if
ViV

∗
j = V ∗

j Vi for all i 6= j. Note that a commuting tuple of unitaries U = (U1, . . . , Un) is
automatically doubly commuting (thanks to Fuglede-Putnam theorem). The following
theorem concerns isometric dilations of Brehmer tuples (see [10, 46, 86]).

Theorem 1.3.14. Let T = (T1, . . . , Tn) be a commuting tuple of contractions on a
Hilbert space H. Then the following are equivalent:

1. T satisfies the Brehmer positivity.

2. T dilates to doubly commuting isometries V = (V1, . . . , Vn) on K.

Definition 1.3.15. Consider a commuting tuple T = (T1, . . . , Tn) on some Hilbert space
H. We say that T is a

(i) Szegö tuple if T satisfy (1.3.1) for G = {1, . . . , n}, and

(ii) pure tuple if Ti is pure for all i = 1, . . . , n.

Note that the compressed tuple PQMz|Q = (PQMz1 |Q, . . . , PQMzn |Q) is a pure Szegö
tuple whenever Q is a joint (M∗

z1 , . . . ,M
∗
zn) invariant closed subspace of H2

E(Dn). The
converse is also true, which will be useful in our study.

Theorem 1.3.16. Let T = (T1, . . . , Tn) be a commuting tuple of contractions on a
Hilbert space H. Then the following are equivalent:
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1. T is a pure Szegö tuple.

2. T dilates to Mz = (Mz1 , . . . ,Mzn) on H2
E(Dn) for some Hilbert space E.





Chapter 2

Factorizations of Schur-Agler
functions

2.1 Introduction

The primary goal of this chapter is to clarify the link between isometric colligations and
factors of Schur functions.

We state one of our main results specializing to the n = 1 case (see Theorem 2.3.4):
Suppose φ ∈ S(D). If φ = φ1φ2 for some φ1 and φ2 in S(D), then there exist Hilbert
spaces H1 and H2 and an (explicit) isometric colligation

V =

[
a B

C D

]
:=

 a B1 B2

C1 D11 D12

C2 D21 D22

 : C⊕ (H1 ⊕H2) → C⊕ (H1 ⊕H2), (2.1.1)

such that
D21 = 0 and aD12 = C1B2, (2.1.2)

and φ = τV , where τV (z) = a+ zB(IH1⊕H2 − zD)−1C, z ∈ D.
The converse is true under an additional assumption that φ(0) 6= 0 (see Theorem 2.5.1,
Section 2.5, for the case φ(0) = 0): If φ = τV for some isometric colligation V as in
(2.1.1) satisfying (2.1.2) and a := φ(0) 6= 0, then φ = φ1φ2 for some φ1 and φ2 in S(D).
Moreover, in this case, ϕ and ψ are explicitly given by φ1 = τV1 and φ2 = τV2 where

V1 =

[
α B1

1
βC1 D11

]
∈ B(C⊕H1) and V2 =

[
β 1

αB2

C2 D22

]
∈ B(C⊕H2),

are isometric colligations and α and β are non-zero scalars which satisfy the following
conditions

|β|2 = |a|2 + C∗
1C1 and α =

a

β
.

37
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We also remark that the above one-variable factorization of Schur functions also
relates to factorizations of Sz.-Nagy and Foias characteristic functions [66] as well as
Brodskiĭ colligations [40] in terms of invariant subspaces of certain operators [40, The-
orem 2.6]. More specifically, see the idea of the product of colligations (as well as for
a similar result as above, but in one direction) in [8, Theorem 1.2.1] and [40, The-
orem 2.8]. However, here out results are different in the following sense: (i) we are
interested in scalar-valued (unlike operator-valued functions in [8, 40]) Schur functions,
(ii) our isometric colligations are explicit, (iii) our method is reversible (see Subsection
2.6.4), and (perhaps most importantly) (iv) our ideas works in the setting of n-variable
Schur(-Agler) functions.

Needless to say, transfer function realizations and isometric colligation matrices cor-
responding to Schur-Agler class functions in n-variables, n ≥ 1, are among the most
frequently used techniques in problems in function theory, operator theory and interdis-
ciplinary subjects such as Nevanlinna-Pick interpolation [5], commutant lifting theorem
and analytic model theory [100, 57, 58], scattering theory [15], interpolation and Toeplitz
corona theorem [16], electrical network theory [65, 66], signal processing [71, 59], linear
systems [70, 50, 109], operator algebras [87, 88] and image processing [96] (just to name
a few). In this context and for deeper studies, we refer the reader to a number of classic
work such as Livšic [82, 83], Brodskiĭ [40], Brodskiĭ and M. Livšic [41] and Pavlov [94].
Also see [11], [42] and [61] and the references therein.

From this point of view, along with a question of interest in its own right, here we aim
at finding necessary and sufficient conditions on isometric colligations which guarantee
that a Schur-Agler class function factors into a product of Schur-Agler class functions.
More precisely, we aim to solve the following problem: Given θ ∈ SA(Dn), find a set of
necessary and sufficient conditions on isometric colligations V which ensures that

θ = τV = ϕψ,

for some (explicit) ϕ and ψ in SA(Dn).

In this chapter we give a complete answer to this question by identifying checkable
conditions on isometric colligations. Our results and approach are new even in the
case of one variable and two-variable Schur functions. In this context, it is also worth
noting that the structure of bounded analytic functions in several variables is much more
complicated than the structure of Schur functions on the unit disc (for instance, consider
the existence of inner-outer factorizations of bounded analytic functions in one variable).
From this point of view, our approach is also focused on providing an understanding of
the complex area of bounded analytic functions of two or more variables (as the transfer
function realization technique has already proven to be extremely useful in proving
many classical results like Nevanlinna-Pick interpolation theorem and Carathéodory
interpolation theorem etc. in several variables).
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Our main results, specializing to the n = 2 case, yields the following: Suppose
θ ∈ S(D2) and a := θ(0) 6= 0. Then:

(1) Theorem 2.2.4 implies that: θ(z) = φ1(z1)φ2(z2), z ∈ D2, for some φ1 and φ2 in
S(D) if and only if θ = τV for some isometric colligation

V =

 a B1 B2

C1 D11
1
aC1B2

C2 0 D22

 ∈ B(C⊕ (H1 ⊕H2)).

(2) Theorem 2.3.4 implies that: θ = φψ for some φ and ψ in S(D2) if and only if there
exist Hilbert spaces {Mi}2i=1 and {Ni}2i=1 and isometric colligation

V =

 a B1 B2

C1 D11 D12

C2 D21 D22

 ∈ B
(
C⊕ ((M1 ⊕N1)⊕ (M2 ⊕N2))

)
,

such that θ = τV , and representing Bi, Ci and Dij as

Bi =
[
Bi(1) Bi(2)

]
∈ B(Mi ⊕Ni,C) and Ci =

[
Ci(1)

Ci(2)

]
∈ B(C,Mi ⊕Ni),

andDij =

[
Dij(1) Dij(12)

Dij(21) Dij(2)

]
∈ B(Mj⊕Nj ,Mi⊕Ni), respectively, one hasDij(21) = 0

and aDij(2) = Ci(1)Bj(2), i, j = 1, 2.

Moreover, in the case of (1) (see Theorem 2.2.3): ϕ1(z) = τṼ1
(z) and ϕ2(z) = τṼ2

(z),
z ∈ D, where

Ṽ1 =

[
α B1

1
βC1 D11

]
and Ṽ2 =

[
β 1

αB2

C2 D22

]
,

and α and β are non-zero scalars satisfying the conditions |β|2 = 1− C∗
2C2 and α = a

β ;
and in the case of (2) (see Theorem 2.3.3): φ(z) = τV1(z) and ψ(z) = τV2(z), z ∈ D2,
where

V1 =

[
α B(1)

1
βC(1) D(1)

]
and V2 =

[
β 1

αB(2)

C(2) D(2)

]
,

and

D(1) =
[
Dkl(1)

]2
k,l=1

, D(2) =
[
Dkl(2)

]2
k,l=1

, B(i) =
[
B1(i) B2(i)

]
and C(i) =

[
C1(i)

C2(i)

]
,

for all i = 1, 2, and α and β are non-zero scalars satisfying the conditions |β|2 = |a|2 +
C(1)∗C(1) and α = a

β .

Remark 2.1.1. The assumption that θ(0) 6= 0 is not essential for the necessary parts of
the above results (and Theorems 2.2.4 and 2.3.4) and the case of θ(0) = 0 will be treated
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separately in Section 2.5. As we will see there, functions vanishing at the origin reveals
more detailed properties of corresponding isometric colligations.

The rest of this chapter is organized as follows. Section 2.2 contains the definition of
Fm(n) class of isometric colligations, 1 ≤ m < n, and a classification of factorizations
of functions in the Schur-Agler class SA(Dn), n > 1, into Schur-Agler class factors
with fewer variables. Section 2.3 introduces the F(n) class of isometric colligations,
which connects the representation of a Schur-Agler class function to its Schur-Agler
class factors. Section 2.4 deals with similar factorization results in the setting of the unit
ball in Cn. In Section 2.5, we will discuss factorizations of Schur-Agler class functions
vanishing at the origin. The concluding Section 2.6 outlines some concrete examples
and presents results concerning one variable factors of Schur-Agler class functions and
a remark on the reversibility of our method of factorizations.

This chapter is based on the published paper [48].

2.2 Factorizations and Property Fm(n)

In this section, we present results concerning factorizations of Schur-Agler class functions
in SA(Dn), n > 1, into Schur-Agler class factors with fewer variables. More specifically,
our interest here is to identify (and then classify) isometric colligations V such that
τV ∈ SA(Dn) and

τV (z) = ϕ(z1, . . . , zm)ψ(zm+1, . . . , zn) (z ∈ Dn),

for some (canonical, in terms of V ) ϕ ∈ SA(Dm) and ψ ∈ SA(Dn−m). Throughout this
section we will always assume that 1 ≤ m < n.

Recall that, given 1 ≤ m < p ≤ n and Hilbert spaces H1, . . . ,Hn, we set

Hp
m = Hm ⊕Hm+1 ⊕ · · · ⊕ Hp.

In particular, Hn
1 =

n⊕
i=1

Hi. Moreover, with respect to the orthogonal decomposition

Hn
1 = Hm

1 ⊕Hn
m+1, we represent an operator D ∈ B(Hn

1 ) as

D =

[
D11 D12

D21 D22

]
∈ B(Hm

1 ⊕Hn
m+1).

Similarly, if E and E∗ are Hilbert spaces, B ∈ B(Hn
1 , E) and C ∈ B(E∗,Hn

1 ), then we
write

B =
[
B1 B2

]
∈ B(Hm

1 ⊕Hn
m+1, E) and C =

[
C1

C2

]
∈ B(E∗,Hm

1 ⊕Hn
m+1).

Now we are ready to introduce the central object of this section.
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Definition 2.2.1. Let 1 ≤ m < n. We say that an isometry V ∈ B(H) satisfies property
Fm(n) if there exist Hilbert spaces H1, . . . ,Hn such that H = C⊕Hn

1 , and representing
V as

V =

 a B1 B2

C1 D11 D12

C2 D21 D22

 ∈ B(C⊕Hm
1 ⊕Hn

m+1),

one has D21 = 0 and aD12 = C1B2.

More specifically, an isometry V ∈ B(H) satisfies property Fm(n) if there exist Hilbert
spaces H1, . . . ,Hn such that H = C⊕H1 ⊕ · · · ⊕ Hn, and writing V as

V =


a B1 · · · Bn

C1 D11 · · · D1n

...
... . . . ...

Cn Dn1 · · · Dnn

 ,

on C⊕ (H1 ⊕ · · · ⊕ Hn), one has
Dij = 0,

for all i = m+ 1, . . . , n and j = 1, . . . ,m, and

aDij = CiBj ,

for all i = 1, . . . ,m and j = m + 1, . . . , n. By way of example, we consider the two
variables situation. We say that an isometry V satisfies property F1(2) if there exist
Hilbert spaces H1 and H2 such that

V =

 a B1 B2

C1 D11 D12

C2 0 D22

 ∈ B(C⊕H1 ⊕H2)

and aD12 = C1B2.

Let us introduce some more notation. Let 1 ≤ m < p ≤ n. We set

EHp
m
(z) = zmIHm ⊕ · · · ⊕ zpIHp (z ∈ Cn).

Also for X ∈ B(Hp
m), ‖X‖ ≤ 1, define

Rp
m(z, X) =

(
IHp

m
− EHp

m
(z)X

)−1
(z ∈ Dn).

Note that Rp
m(z, X) is a function of {zm, . . . , zp} variables. Moreover, we will denote

Rn
1 (z, X) simply by R(z, X).

Now we proceed to prove that a pair of isometric colligations is naturally associated
with an isometric colligation satisfying property Fm(n). More specifically, given τV1 ∈
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SA(Dm) and τV2 ∈ SA(Dn−m) for some isometric colligations V1 and V2, we aim to
construct an explicit isometric colligation V such that V satisfies property Fm(n) and

τV (z) = τV1(z1, . . . , zm)τV2(zm+1, . . . , zn) (z ∈ Dn).

To this end, let H1, . . . ,Hn be Hilbert spaces. Suppose

V1 =

[
a1 B1

C1 D1

]
∈ B(C⊕Hm

1 ), and V2 =

[
a2 B2

C2 D2

]
∈ B(C⊕Hn

m+1),

are isometric colligations. Define Ṽ1 and Ṽ2 in B(C⊕Hm
1 ⊕Hn

m+1) by

Ṽ1 =

a1 B1 0

C1 D1 0

0 0 I

 and Ṽ2 =

a2 0 B2

0 I 0

C2 0 D2

 ,
and set V = Ṽ1Ṽ2. It is easy to check, by swapping rows and columns (of Ṽ2), that Ṽ1
and Ṽ2 are isometries and thus the isometric colligation

V =

a1a2 B1 a1B2

a2C1 D1 C1B2

C2 0 D2

 ∈ B
(
C⊕ (Hm

1 ⊕Hn
m+1)

)
,

satisfies property Fm(n). Let z ∈ Dn. Clearly

τV (z) = a1a2 +
[
B1 a1B2

]
R(z,

[
D1 C1B2

0 D2

]
)EHn

1
(z)

[
a2C1

C2

]
,

where

R
(
z,

[
D1 C1B2

0 D2

])−1
= IHn

1
−

[
EHm

1
(z) 0

0 EHn
m+1

(z)

][
D1 C1B2

0 D2

]

=

[
IHm

1
− EHm

1
(z)D1 −EHm

1
(z)C1B2

0 IHn
m+1

− EHn
m+1

(z)D2

]
.

By the inverse formula of an invertible upper triangular matrix, it follows that

R
(
z,

[
D1 C1B2

0 D2

])
=

[
Rm

1 (z, D1) Rm
1 (z, D1)EHm

1
(z)C1B2R

n
m+1(z, D2)

0 Rn
m+1(z, D2)

]
.
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We now infer, in view of the above equality, that

τV (z) = a1a2 +
[
B1 a1B2

]
R
(
z,

[
D1 C1B2

0 D2

])
EHn

1
(z)

[
a2C1

C2

]

= a1a2 +
[
B1 a1B2

] [Rm
1 (z, D1) Rm

1 (z, D1)EHm
1
(z)C1B2R

n
m+1(z, D2)

0 Rn
m+1(z, D2)

]

×

[
a2EHm

1
(z)C1

EHn
m+1

(z)C2

]
= a1a2 + a2B1R

m
1 (z, D1)EHm

1
(z)C1 + a1B2R

n
m+1(z, D2)EHn

m+1
(z)C2

+B1R
m
1 (z, D1)EHm

1
(z)C1B2R

n
m+1(z, D2)EHn

m+1
(z)C2

=
(
a1 +B1R

m
1 (z, D1)EHm

1
(z)C1

)(
a2 +B2R

n
m+1(z, D2)EHn

m+1
(z)C2

)
= τV1(z1, . . . , zm)τV2(zm+1, . . . , zn),

for all z ∈ Dn. We have therefore proved the following result:

Theorem 2.2.2. Let 1 ≤ m < n, and let H1, . . . ,Hn be Hilbert spaces. Suppose

V1 =

[
a1 B1

C1 D1

]
∈ B(C⊕ (

m⊕
i=1

Hi)) and V2 =

[
a2 B2

C2 D2

]
∈ B(C⊕ (

n⊕
i=m+1

Hi)),

are isometric colligations. Define Ṽ1, Ṽ2 and V in B
(
C⊕

(
(

m⊕
i=1

Hi)⊕ (
n⊕

i=m+1

Hi)
))

by

Ṽ1 =

a1 B1 0

C1 D1 0

0 0 I

 and Ṽ2 =

a2 0 B2

0 I 0

C2 0 D2

 ,
and V = Ṽ1Ṽ2, respectively. Then

V =

a1a2 B1 a1B2

a2C1 D1 C1B2

C2 0 D2

 ∈ B
(
C⊕

(
(

m⊕
i=1

Hi)⊕ (

n⊕
i=m+1

Hi)
))
,

is an isometric colligation, V satisfies property Fm(n) and

τV (z) = τV1(z1, . . . , zm)τV2(zm+1, . . . , zn) (z ∈ Dn).

Now to prove the reverse direction, we assume in addition that τV (0) 6= 0 (for the
case of transfer functions vanishing at the origin, see Section 2.5) : Suppose H1, . . . ,Hn

are Hilbert spaces and

V =

 a B1 B2

C1 D11 D12

C2 0 D22

 ∈ B(C⊕Hm
1 ⊕Hn

m+1), (2.2.1)
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is an isometric colligation satisfying property Fm(n). Thus

aD12 = C1B2. (2.2.2)

Suppose a := τV (0) 6= 0. Since V ∗V = I, we have

|a|2 + C∗
1C1 + C∗

2C2 = 1,

implies that
1− C∗

2C2 = |a|2 + C∗
1C1 > 0,

as a 6= 0. Then there exists a scalar β, 0 < |β| ≤ 1, such that

|β|2 = 1− C∗
2C2.

It now follows that
C∗
1C1 = |β|2 − |a|2, (2.2.3)

and
α :=

a

β
, (2.2.4)

is a non-zero scalar. Define

V1 =

 α B1 0
1
βC1 D11 0

0 0 I

 and V2 =

 β 0 1
αB2

0 I 0

C2 0 D22

 ,
on C⊕Hm

1 ⊕Hn
m+1. It follows from (2.2.3) and (2.2.4) that

|α|2 + 1

|β|2
C∗
1C1 = |α|2 + 1

|β|2
(|β|2 − |a|2) = 1 + |α|2 − |a|2

|β|2
= 1,

that is
|α|2 + 1

|β|2
C∗
1C1 = 1. (2.2.5)

Also, we see that B∗
1B1 +D∗

11D11 = I, and

ᾱB1 +
1

β̄
C∗
1D11 =

1

β̄
(ᾱβ̄B1 + C∗

1D11) =
1

β̄
(āB1 + C∗

1D11) = 0,

and hence V ∗
1 V1 = I. We now proceed to prove that V2 is also an isometry. First, it

easy to see that āB2 + C∗
1D12 + C∗

2D22 = 0, and hence, by (2.2.2), we have

0 = āB2+C
∗
1D12+C

∗
2D22 = āB2+

1

a
C∗
1C1B2+C

∗
2D22 =

ā2
α
(|α|2+ 1

|β|2
C∗
1C1)B2+C

∗
2D22.

Then (2.2.5) implies that β̄
αB2 + C∗

2D22 = 0. Finally, again from V ∗V = I we get

B∗
2B2 +D∗

12D12 +D∗
22D22 = I.
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Now again by (2.2.2) we have

B∗
2B2 +D∗

12D12 +D∗
22D22 = B∗

2(1 +
1

|a|2
C∗
1C1)B2 +D∗

22D22

=
1

|α|2
B∗

2(|α|2 +
1

|β|2
C∗
1C1)B2 +D∗

22D22,

so that 1
|α|2B

∗
2B2 + D∗

22D22 = I, by (2.2.5), from which we conclude that V ∗
2 V2 = I.

Finally, notice that

V1V2 =

αβ B1 B2

C1 D11
1
αβC1B2

C2 0 D22

 =

 a B1 B2

C1 D11
1
aC1B2

C2 0 D22

 ,
and hence V = V1V2, by (2.2.2). Then, by Theorem 2.2.2, we have

τV (z) = τṼ1
(z1, . . . , zm)τṼ2

(zm+1, . . . , zn),

for all z ∈ Dn where Ṽ1 =

[
α B1

1
βC1 D11

]
and Ṽ2 =

[
β 1

αB2

C2 D22

]
. Thus we have proved

the following statement:

Theorem 2.2.3. Suppose H1, . . . ,Hn are Hilbert spaces and a be a non-zero scalar. If

V =

 a B1 B2

C1 D11
1
aC1B2

C2 0 D22

 ∈ B
(
C⊕

(
(

m⊕
i=1

Hi)⊕ (

n⊕
i=m+1

Hi)
))
,

is an isometric colligation, then

Ṽ1 =

[
α B1

1
βC1 D11

]
and Ṽ2 =

[
β 1

αB2

C2 D22

]
.

are isometric colligations in B
(
C⊕ (

m⊕
i=1

Hi)
)
and B

(
C⊕ (

n⊕
i=m+1

Hi)
)
, respectively, and

τV (z) = τṼ1
(z1, . . . , zm)τṼ2

(zm+1, . . . , zn) (z ∈ Dn),

where α and β are non-zero scalars and satisfies the following conditions

|β|2 = |a|2 + C∗
1C1 and α =

a

β
.

Summing up the results of Theorems 2.2.2 and 2.2.3, we conclude the following
factorization theorem on Schur-Agler class functions in SA(Dn), n ≥ 2:
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Theorem 2.2.4. Let 1 ≤ m < n, and let θ ∈ SA(Dn). If θ(0) 6= 0, then

θ(z) = ϕ(z1, . . . , zm)ψ(zm+1, . . . , zn) (z ∈ Dn),

for some ϕ ∈ SA(Dm) and ψ ∈ SA(Dn−m) if and only if

θ(z) = τV (z) (z ∈ Dn),

for some isometric colligation V satisfying property Fm(n).

2.3 Factorizations and Property F(n)

In this section we investigate general n-variables Schur-Agler class factors of Schur-Agler
class functions in SA(Dn). More specifically, for a given θ ∈ SA(Dn), we give a set of
necessary and sufficient conditions on isometric colligations ensuring the existence of φ
and ψ in SA(Dn) such that θ = φψ. We identify a new class of isometric colligations,
namely F(n), and prove that the (Schur-Agler class) factors of Schur-Agler class func-
tions are completely determined by isometric colligations satisfying property F(n). Here
we do not set any restriction on n, that is, we will assume that n ≥ 1.

We first identify the relevant isometric colligations:

Definition 2.3.1. We say that an isometry V ∈ B(H) satisfies property F(n) if there
exist Hilbert spaces {Mi}ni=1 and {Ni}ni=1 such that

H = C⊕
( n⊕

i=1

(Mi ⊕Ni)
)
,

and representing V as

V =


a B1 · · · Bn

C1 D11 · · · D1n

...
... . . . ...

Cn Dn1 · · · Dnn

 ∈ B
(
C⊕

( n⊕
i=1

(Mi ⊕Ni)
))
,

and Bi, Ci and Dij as

Bi =
[
Bi(1) Bi(2)

]
∈ B(Mi ⊕Ni,C), Ci =

[
Ci(1)

Ci(2)

]
∈ B(C,Mi ⊕Ni),

and

Dij =

[
Dij(1) Dij(12)

Dij(21) Dij(2)

]
∈ B(Mj ⊕Nj ,Mi ⊕Ni),

one has
Dij(21) = 0, and aDij(12) = Ci(1)Bj(2),
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for all i, j = 1, . . . , n.

As in Section 2.2, here we also first prove that a pair of isometric colligations is
naturally associated with an isometric colligation satisfying property F(n). Let {Mi}ni=1

and {Ni}ni=1 be Hilbert spaces, and let

V1 =

[
α B

C D

]
=


α B1 · · · Bn

C1 D11 · · · D1n

...
... . . . ...

Cn Dn1 · · · Dnn

 ∈ B(C⊕Mn
1 ),

and

V2 =

[
β F

G H

]
=


β F1 · · · Fn

G1 H11 · · · H1n

...
... . . . ...

Gn Hn1 · · · Hnn

 ∈ B(C⊕N n
1 ),

be isometric colligations. Given i = 1, . . . , n, we define Hi = Mi ⊕ Ni, and bounded
linear operators B̃i, C̃i and D̃ij as

B̃i =
[
Bi 0

]
∈ B(Hi,C), C̃i =

[
Ci

0

]
∈ B(C,Hi), and D̃ij =

[
Dij 0

0 δijI

]
∈ B(Hj ,Hi),

for all i, j = 1, . . . , n. Set

Ṽ1 =


α B̃1 · · · B̃n

C̃1 D̃11 · · · D̃1n

...
... . . . ...

C̃n D̃n1 · · · D̃nn

 ∈ B(C⊕Hn
1 ). (2.3.1)

On the other hand, let

Ṽ2 =


β F̃1 · · · F̃n

G̃1 H̃11 · · · H̃1n

...
... . . . ...

G̃n H̃n1 · · · H̃nn

 ∈ B(C⊕Hn
1 ), (2.3.2)

where

F̃i =
[
0 Fi

]
∈ B(Hi,C), G̃i =

[
0

Gi

]
∈ B(C,Hi), and H̃ij =

[
δijI 0

0 Hij

]
∈ B(Hj ,Hi),
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for all i, j = 1, . . . , n. Define V = Ṽ1Ṽ2. It then follows that V ∈ B(C ⊕ Hn
1 ) is an

isometry and

V =


αβ B̂1 · · · B̂n

Ĉ1 D̂11 · · · D̂1n

...
... . . . ...

Ĉn D̂n1 · · · D̂nn

 :=

[
αβ B̂

Ĉ D̂

]
, (2.3.3)

where

B̂i =
[
Bi αFi

]
∈ B(Hi,C), Ĉi =

[
βCi

Gi

]
∈ B(C,Hi), (2.3.4)

and

D̂ij =

[
Dij CiFj

0 Hij

]
∈ B(Hj ,Hi), (2.3.5)

for all i, j = 1, . . . , n. Define X(z) : C → C, z ∈ Dn, by

X(z) = B̂(IHn
1
− EH(z)D̂)−1EH(z)Ĉ.

Then τV (z) = αβ +X(z), z ∈ Dn. Next, define the flip operator η : Hn
1 → Mn

1 ⊕N n
1 ,

by

η
( n⊕

i=1

(fi ⊕ gi)
)
= (

n⊕
i=1

fi)⊕ (

n⊕
i=1

gi), (2.3.6)

for all fi ∈ Mi and gi ∈ Ni, i = 1, . . . , n. Then η is a unitary operator and so

X(z) = (B̂η∗)
(
IMn

1⊕Nn
1
− (ηEHn

1
(z)η∗)(ηD̂η∗)

)−1
(ηEHn

1
(z)η∗)(ηĈ).

On the other hand, the definition of the flip operator η reveals that

B̂η∗ =
[
B αF

]
, ηĈ =

[
βC

G

]
, ηD̂η∗ =

[
D CF

0 H

]
,

and

ηEHn
1
(z)η∗ =

[
EMn

1
(z) 0

0 ENn
1
(z)

]
.

In particular, this yields

IMn
1⊕Nn

1
− (ηEHn

1
(z)η∗)(ηD̂η∗) =

[
I − EMn

1
(z)D −EMn

1
(z)CF

0 I − ENn
1
(z)H

]
(z ∈ Dn).

In order to further ease the notation, for Hilbert spaces {Si}ni=1 and z ∈ Dn, we set

ES(z) =
n⊕

i=1

ziISi ,



2.3. Factorizations and Property F(n) 49

and, for Y ∈ B(
n⊕

i=1

Si), ‖Y ‖ ≤ 1, define r(z, Y ) =
(
ISn

1
− ES(z)Y

)−1
.

Continuing the above computation, for each z ∈ Dn, we now have

(
IMn

1⊕Nn
1
− (ηEHn

1
(z)η∗)(ηD̂η∗)

)−1
=

[
r(z, D) r(z, D)EMn

1
(z)CFr(z,H)

0 r(z,H)

]
.

Moreover, since (ηEHn
1
(z)η∗)(ηĈ) =

[
βEMn

1
(z)C

ENn
1
(z)G

]
, it follows that

X(z) =
[
B αF

] [βr(z, D)EMn
1
(z)C + r(z, D)EMn

1
(z)CFr(z,H)ENn

1
(z)G

r(z,H)ENn
1
(z)G

]
= βBr(z, D)EMn

1
(z)C +Br(z, D)EMn

1
(z)CFr(z,H)ENn

1
(z)G+ αFr(z,H)ENn

1
(z)G,

and so τV (z) = τV1(z)τV2(z), z ∈ Dn. We have therefore proved:

Theorem 2.3.2. Suppose V1 =

[
α B

C D

]
∈ B

(
C ⊕ (

n⊕
i=1

Mi)
)

and V2 =

[
β F

G H

]
∈

B
(
C⊕ (

n⊕
i=1

Ni)
)
are isometric colligations, and let V = Ṽ1Ṽ2, where Ṽ1 and Ṽ2 are as in

(2.3.1) and (2.3.2), respectively. Then the isometric colligation V ∈ B
(
C⊕ (

n⊕
i=1

(Mi ⊕

Ni))
)
as in (2.3.3) satisfies property F(n) and τV = τV1τV2.

We have the following interpretations of the above theorem: Let θ, ϕ, ψ ∈ SA(Dn),

and suppose θ = ϕψ. Suppose V1 =

[
α B

C D

]
and V2 =

[
β F

G H

]
are isometric colli-

gations on C ⊕ Mn
1 and C ⊕ N n

1 , respectively, and ϕ = τV1 , and ψ = τV2 . Then the
isometric colligation V = Ṽ1Ṽ2, as constructed in Theorem 2.3.2, satisfies property F(n)

and τV (z) = τV1(z)τV2(z) for all z ∈ Dn, that is, θ = τV .

Now we proceed to treat the converse of Theorem 2.3.2. Let V ∈ B(H) be an isometric
colligation, and let V satisfies property F(n). As in Theorem 2.2.3, here also we assume
that a := τV (0) 6= 0. Now

H = C⊕
( n⊕

i=1

(Mi ⊕Ni)
)
,

for some Hilbert spaces {Mi}ni=1 and {Ni}ni=1, and

V =

[
a B

C D

]
=


a B1 · · · Bn

C1 D11 · · · D1n

...
... . . . ...

Cn Dn1 · · · Dnn

 , (2.3.7)
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where

Bi =
[
Bi(1) Bi(2)

]
∈ B(Mi ⊕Ni,C), Ci =

[
Ci(1)

Ci(2)

]
∈ B(C,Mi ⊕Ni), (2.3.8)

and

Dij =

[
Dij(1)

1
aCi(1)Bj(2)

0 Dij(2)

]
∈ B(Mj ⊕Nj ,Mi ⊕Ni), (2.3.9)

for all i, j = 1, . . . , n. Set

D(1) =
[
Dij(1)

]n
i,j=1

∈ B(
n⊕

i=1

Mi), D(2) =
[
Dij(2)

]n
i,j=1

∈ B(
n⊕

i=1

Ni), (2.3.10)

and
D(12) =

[
Dij(12)

]n
i,j=1

∈ B
( n⊕

i=1

Mi,

n⊕
i=1

Ni

)
,

and consider the flip operator η :
(⊕n

i=1(Mi ⊕ Ni)
)
→ (

⊕n
i=1Mi) ⊕ (

⊕n
i=1Ni) (see

(2.3.6)). Then

ηDη∗ =

[
D(1) D(12)

0 D(2)

]
∈ B

(
(

n⊕
i=1

Mi)⊕ (

n⊕
i=1

Ni)
)
.

If we define Vη :=

[
1 0

0 η

]
V

[
1 0

0 η

]∗
, it then follows that Vη =

[
a Bη∗

ηC ηDη∗

]
is an isom-

etry on
n⊕

i=1
(Mi ⊕Ni). Moreover, since Bη∗ =

[
B(1) B(2)

]
and ηC =

[
C(1) C(2)

]t
,

we see that

Vη =

 a B(1) B(2)

C(1) D(1) 1
aC(1)B(2)

C(2) 0 D(2)

 ∈ B
(
C⊕ (

n⊕
i=1

Mi)⊕ (
n⊕

i=1

Ni)
)
,

where

B(i) =
[
B1(i) B2(i)

]
and C(i) =

[
C1(i)

C2(i)

]
, (2.3.11)

for all i = 1, 2. We have now arrived at the setting of the proof of Theorem 2.2.4 (more
specifically, compare Vη with V in (2.2.1)). Following the constructions of V1 and V2 in
the proof of Theorem 2.2.4, we set

V1 =

 α B(1)

1
βC(1) D(1)

 ∈ B
(
C⊕ (

n⊕
i=1

Mi)
)

V2 =

 β 1
αB(2)

C(2) D(2)

 ∈ B
(
C⊕ (

n⊕
i=1

Ni)
)
,

(2.3.12)
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where

|β|2 = |a|2 + C(1)∗C(1)

= 1− C(2)∗C(2),
(2.3.13)

and
α =

a

β
. (2.3.14)

Since a 6= 0, it follows that α (and β too) is a non-zero scalars. One may now proceed,
similarly as in the proof of Theorem 2.2.4, to see that V1 and V2 are isometries. Then,
applying Theorem 2.3.2 to the pair of isometries V1 and V2, we get the canonical pair
of isometries Ṽ1 and Ṽ2 such that τṼ1Ṽ2

= τV1τV2 . On the other hand, it follows directly
from the construction of Ṽ1 and Ṽ2 (see (2.3.3)) that V = Ṽ1Ṽ2 and consequently,
τV = τṼ1Ṽ2

= τV1τV2 . We have therefore proved the following counterpart of Theorem
2.2.3 for isometric colligations satisfying property F(n).

Theorem 2.3.3. Let V ∈ B(C ⊕ (

n⊕
i=1

(Mi ⊕ Ni))) be an isometric colligation, and let

V satisfies property F(n). If τV (0) 6= 0 and V admits the representation as in (2.3.7)
with B, C and D as in (2.3.8) and (2.3.9), respectively, then

V1 =

[
α B(1)

1
βC(1) D(1)

]
∈ B

(
C⊕(

n⊕
i=1

Mi)
)
and V2 =

[
β 1

αB(2)

C(2) D(2)

]
∈ B

(
C⊕(

n⊕
i=1

Ni)
)
,

are isometric colligations where B(i), C(i) and D(i) are as in (2.3.10) and (2.3.11) and
α and β are non-zero scalars and satisfies the following conditions

|β|2 = |a|2 + C(1)∗C(1) and α =
a

β
.

Moreover, τV = τV1τV2.

This along with Theorem 2.3.2 yields the following classification of Schur-Agler class
factors of Schur-Agler class functions in SA(Dn), n ≥ 1:

Theorem 2.3.4. Suppose θ ∈ SA(Dn), and suppose that θ(0) 6= 0. Then θ = ϕψ for
some ϕ, ψ ∈ SA(Dn) if and only if θ = τV for some isometric colligation V satisfying
property F(n).

Given θ = τV for some isometric colligation V satisfying property F(n), as pre-
sented above, we now know that θ = φψ for some ϕ, ψ ∈ SA(Dn). If V admits the
representation as in (2.3.7), then it follows moreover from (2.3.12) that ϕ(z) = α+ 1

βB(1)(IMn
1
− EMn

1
(z)D(1))−1EMn

1
(z)C(1)

ψ(z) = β + 1
αB(2)(INn

1
− ENn

1
(z)D(2))−1ENn

1
(z)C(2) (z ∈ Dn).

(2.3.15)
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The assumption that θ(0) 6= 0 in the proof of the sufficient part will be discussed in
Section 2.5. Also see Subsection 2.6.3 for a natural connection between Fm(n) and
F(n), 1 ≤ m < n.

2.4 Factorizations of multipliers on the ball

In this section, we continue with our study of factorizations of bounded analytic func-
tions. Here we are interested in factorizations of multipliers of the Drury-Arveson space
on the unit ball Bn in Cn [16]. However (and curiously, if not surprisingly), the tech-
niques involved in representing multiplier factors of multipliers of the Drury-Arveson
space seems relatively simpler than that of the Schur-Agler class functions on Dn. More-
over, since the proofs of the following results are often similar (in spirit) to the case of
SA(Dn), we will be rather sketchy.

The following simple observation on isometric colligations is quite useful: Suppose H
is a Hilbert space and

V =

[
a B

C D

]
: C⊕H → C⊕Hn,

is a bounded linear operator. Then V is an isometry (that is V ∗V = IC⊕H) if and only
if 

|a|2 + C∗C = 1

āB + C∗D = 0

B∗B +D∗D = IH.

(2.4.1)

Before proceeding we make a brief remark concerning notation: Given Hilbert spaces
H and K, in what follows, we represent an operator A ∈ B(H,Kn) as

A =


A1

...
An

 .
We now proceed to prove the first factorization result for contractive multipliers of
the Drury-Arveson space. Suppose 1 ≤ m < n, θ ∈ M1(H

2
n), φ ∈ M1(H

2
m) and

ψ ∈ M1(H
2
n−m). Suppose that

θ(z) = φ(z1, . . . , zm)ϕ(zm+1, . . . , zn) (z ∈ Bn).

Then there exist Hilbert spaces M and N and isometric colligations

V1 =

[
α E

F G

]
∈ B(C⊕M,C⊕Mm) and V2 =

[
β Y

Z W

]
∈ B(C⊕N ,C⊕N n−m).
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such that ϕ = τV1 and ψ = τV2 . Define

H = M⊕N ,

and

V =

[
αβ B

C D

]
∈ B(C⊕H,C⊕Hn), (2.4.2)

where B =
[
E αY

]
and

Cj =



βFj

0

 if 1 ≤ j ≤ m

 0

Zj−m

 if m+ 1 ≤ j ≤ n,

and

Dj =



Gj FjY

0 0

 if 1 ≤ j ≤ m

0 0

0 Wj−m

 if m+ 1 ≤ j ≤ n.

By taking into account of isometric properties of V1 and V2 and using property (2.4.1)
repeatedly, we conclude that V is an isometry in B(C⊕H,C⊕Hn). We now compute

(IH − EHn(z)D)−1 = (IH −
n∑

i=1

ziDi)
−1

= (IH −
m∑
j=1

zjDj −
n∑

j=m+1

zjDj)
−1

=
([IM 0

0 IN

]
−

m∑
j=1

zj

[
Gj FjY

0 0

]
−

n∑
j=m+1

zj

[
0 0

0 Wj−m

])−1

=

IM −
m∑
j=1

zjGj −
m∑
j=1

zjFjY

0 IN −
n∑

j=m+1
zjWj−m


−1

=

(IM −
m∑
j=1

zjGj)
−1 T

0 (IN −
n∑

j=m+1
zjWj−m)−1

 ,
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where
T = (IM −

m∑
j=1

zjGj)
−1
( m∑

j=1

zjFj

)
Y (IN −

n∑
j=m+1

zjWj−m)−1.

Moreover, since

EHn(z)C =

 β
m∑
j=1

zjFj

n∑
j=m+1

zjZj−m

 ,
it follows that

τV (z) = αβ +B(IH − EHn(z)D)−1EHn(z)C

= αβ +
[
E αY

]
(IH − EHn(z)D)−1EHn(z)C

= αβ + βE(IM −
m∑
j=1

zjGj)
−1
( m∑

j=1

zjFj

)
+ ET

n∑
j=m+1

zjZj−m

+ αY (IN −
n∑

j=m+1

zjWj−m)−1
n∑

j=m+1

zjZj−m

= τV1(z1, . . . , zm)τV2(zm+1, . . . , zn),

for all z ∈ Dn. Since θ = τV1τV2 , it then follows that

θ = τV ,

where V is the isometric colligation as in (2.4.2). We have thus proved part of the
following theorem.

Theorem 2.4.1. Suppose θ ∈ M1(H
2
n) and θ(0) 6= 0. Then the following are equivalent:

(1) There exist multipliers ϕ ∈ M1(H
2
m) and ψ ∈ M1(H

2
n−m) such that

θ(z) = ϕ(z1, . . . , zm)ψ(zm+1, . . . , zn) (z ∈ Bn).

(2) There exist Hilbert spaces H1 and H2 and isometric colligation

V =

[
a B

C D

]
: C⊕ (H1 ⊕H2) → C⊕ (H1 ⊕H2)

n,

such that writing B =
[
B(1) B(2)

]
, C =


C1

...
Cn

 and D =


D1

...
Dn

, one has
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Cj =



Cj(1)

0

 if 1 ≤ j ≤ m

 0

Cj(2)

 if m+ 1 ≤ j ≤ n,

and

Dj =



Dj(1) Dj(2)

0 0

 if 1 ≤ j ≤ m

0 0

0 Dj(3)

 if m+ 1 ≤ j ≤ n,

and
aDi(2) = Ci(1)B(2),

for all i = 1, . . . ,m, and

θ(z) = a+B(IH1⊕H2 − E(H1⊕H2)n(z)D)−1E(H1⊕H2)n(z)C (z ∈ Bn).

Proof. We only need to show that (2) implies (1). Note that V ∗V = I implies, in
particular, that

|a|2 +
m∑
j=1

Cj(1)
∗Cj(1) +

n∑
j=m+1

Cj(2)
∗Cj(2) = 1.

Let
|β|2 = |a|2 +

m∑
j=1

Cj(1)
∗Cj(1).

Since a = θ(0) 6= 0, it follows that β 6= 0. Set

α =
a

β
,

and define

V1 =


α B(1)

1
βC1(1) D1(1)

...
...

1
βCm(1) Dm(1)

 and V2 =


β 1

αB(2)

Cm+1(2) Dm+1(3)
...

...
Cn(2) Dn(3)

 .
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Clearly V1 ∈ B(C ⊕ H1,C ⊕ (H1)
n) and V2 ∈ B(C ⊕ H2,C ⊕ (H2)

n). Now in view of
(2.4.1), V1 is an isometry if and only if

|α|2 +
m∑
j=1

1
|β|2Cj(1)

∗Cj(1) = 1

ᾱB(1) +
m∑
j=1

1
β̄
Cj(1)

∗Dj(1) = 0

B(1)∗B(1) +
m∑
j=1

Dj(1)
∗Dj(1) = I.

Here the first equality is a simple consequence of the definitions of α and β. The second
and the third equalities follows from the isometric property of V applied to the equality
(2.4.1). The proof of the fact that V2 is an isometry is similar (but requires the fact that
aDj(2) = Cj(2)B(2) for all 1 ≤ j ≤ m) and left to the reader. Then

τV1 ∈ M1(H
2
m) and τV2 ∈ M1(H

2
n−m).

We set

φ(z1, . . . , zm) = τV1(z1, . . . , zm) and ψ(zm+1, . . . , zn) = τV2(zm+1, . . . , zn),

for all z ∈ Bn. Then

ϕ(z1, . . . , zm) = α+
1

β
B(1)

(
1−

m∑
j=1

zjDj(1)
)−1( m∑

j=1

zjCj(1)
)
,

and
ψ(zm+1, . . . , zn) = β +

1

α
B(2)

(
1−

n∑
j=m+1

zjDj(3)
)−1( n∑

j=m+1

zjCj(2)
)
,

for all z ∈ Bn. It is now routine to check that this indeed defines the required factors of
θ, that is

θ(z) = φ(z1, . . . , zm)ψ(zm+1, . . . , zn) (z ∈ Bn),

which completes the proof that (1) and (2) are equivalent.

The Drury-Arveson multipliers analog of Theorem 2.3.4, as stated below, also holds.
We leave the similar verification, following the line of the proof of Theorem 2.3.4, to the
reader.

Theorem 2.4.2. Suppose θ ∈ M1(H
2
n) and θ(0) 6= 0. Then the following are equivalent:

(1) There exist ϕ and ψ in M1(H
2
n) such that θ = ϕψ.

(2) There exist Hilbert spaces H1 and H2 and isometric colligation

V =

[
a B

C D

]
: C⊕ (H1 ⊕H2) → C⊕ (H1 ⊕H2)

n,
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such that

θ(z) = a+B(IH1⊕H2 − E(H1⊕H2)n(z)D)−1E(H1⊕H2)n(z)C (z ∈ Bn),

and writing B =
[
B(1) B(2)

]
, C =


C1

...
Cn

 , D =


D1

...
Dn

 and

Ci =

[
Ci(1)

Ci(2)

]
and Di =

[
Di(1) Di(12)

Di(21) Di(2)

]
,

one has
Di(21) = 0 and aDi(12) = Ci(1)B(2),

for all i = 1, . . . , n.

2.5 Functions vanishing at the origin

As pointed out in Remark 2.1.1, factorizations of functions vanishing at the origin reveals
more detailed structural properties of associated colligation matrices. To this end, in
this section, we present a complete description of the connection between isometric
colligations and Schur-Agler factors of Schur-Agler class functions vanishing at the origin.
The case of one variable Schur functions will serve well to illustrate the notation scheme
for functions in several variables that we adopt.

Suppose θ ∈ S(D), θ(0) = 0 and θ = φψ for some ϕ and ψ in S(D). The following
two cases can arise:

Case (i) ϕ(0) = 0 and ψ(0) 6= 0: Let φ = τV1 and ψ = τV2 where

V1 =

[
0 Q

R S

]
∈ B(C⊕H1) and V2 =

[
x Y

Z W

]
∈ B(C⊕H2).

Therefore

Ṽ1 =

0 Q 0

R S 0

0 0 I

 and Ṽ2 =

x 0 Y

0 I 0

Z 0 W

 ,
are isometries in B(C⊕ (H1 ⊕H2)). On defining V := Ṽ1Ṽ2, we have the isometry

V =

 0 B1 0

C1 D1 D2

C2 0 D4

 ∈ B(C⊕ (H1 ⊕H2)), (2.5.1)
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where  0 B1 0

C1 D1 D2

C2 0 D4

 =

 0 Q 0

xR S RY

Z 0 W

 .
We then have C1 = xR and D2 = RY , and consequently the condition R∗R = 1 yields

C1C
∗
1D2 = |x|2RR∗D2 = |x|2RR∗RY = |x|2RY = |x|2D2 = C∗

1C1D2,

as C∗
1C1 = |x|2(> 0). Moreover, with V as in (2.5.1), we compute τV as:

τV (z) =
[
B1 0

] (
I − z

[
D1 D2

0 D4

])−1
z

[
C1

C2

]

= z
[
B1 0

] [(I − zD1)
−1 (I − zD1)

−1zD2(I − zD4)
−1

0 (I − zD4)
−1

][
C1

C2

]

= z
[
B1(I − zD1)

−1 zB1(I − zD1)
−1D2(I − zD4)

−1
] [C1

C2

]
,

and so

τV (z) =
(
zB1(I − zD1)

−1
)(
C1 + zD2(I − zD4)

−1C2

)
(z ∈ D). (2.5.2)

Substituting the values of B1, Ci, and Dj , i = 1, 2 and j = 2, 4, we have

τV (z) =
(
zB1(I − zD1)

−1
)(
C1 + zD2(I − zD4)

−1C2

)
=
(
zQ(I − zD1)

−1
)(
xR+ zRY (I − zW )−1Z

)
=
(
zQ(I − zS)−1R

)(
x+ zY (I − zW )−1Z

)
,

for all z ∈ D, which implies that θ = τV . Thus, we have collected together all the
necessary properties of the isometric colligation V as:

C1C
∗
1D2 = C∗

1C1D2 and C∗
1C1 > 0. (2.5.3)

Conversely, suppose V is an isometric colligation as in (2.5.1), let θ = τV and let V
satisfies the conditions in (2.5.3). Let x be a non-zero scalar such that

|x|2 = C∗
1C1.

Define V1 ∈ B(C⊕H1) and V2 ∈ B(C⊕H2) by

V1 =

[
0 B1

1
xC1 D1

]
and V2 =

[
x 1

x̄C
∗
1D2

C2 D4

]
.
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Note that |x|2 = 1−C∗
2C2 = C∗

1C1. A simple computation, following (2.4.1), then shows
that V1 and V2 are isometric colligations. Now we compute

τV (z) = zB1(1− zD1)
−1C1 + z2B1(1− zD1)

−1D2(1− zD4)
−1C2,

and

τV1(z)τV2(z) = zB1(1− zD1)
−1C1 + z2B1(1− zD1)

−1{ 1

|x|2
C1C

∗
1D2}(1− zD4)

−1C2.

Thus, τV = τV1τV2 where τV (0) = τV1(0) = 0 and τV2(0) 6= 0.

Case (ii) ϕ(0) = ψ(0) = 0: Suppose ϕ = τV1 and ψ = τV2 where

V1 =

[
0 Q

R S

]
∈ B(C⊕H1) and V2 =

[
0 Y

Z W

]
∈ B(C⊕H2),

are isometric colligations. We associate with V1 and V2 the isometric colligation

V =

0 Q 0

R S 0

0 0 I


0 0 Y

0 I 0

Z 0 W

 =

0 Q 0

0 S RY

Z 0 W

 ,
in B(C⊕H1 ⊕H2) and set

V =

 0 B1 0

0 D1 D2

C2 0 D4

 . (2.5.4)

Then, in view of (2.5.2), it follows that θ = τV . Also we pick the essential properties of
the isometric colligation V as

X∗X = I, X∗D1 = 0, and D2 = XY, (2.5.5)

where X = R. Note that the first two equalities follows from the fact that V1 is an
isometry.

To prove the converse, suppose V is an isometric colligation as in (2.5.4), θ = τV ,
X ∈ B(C,H2) is an isometry, Y ∈ B(H2,C) and the conditions in (2.5.5) hold. Since
V ∗V = I, we haveC

∗
2C2 0 C∗

2D4

0 B1B
∗
1 +D∗

1D1 D∗
1D2

D∗
4C2 D∗

2D1 D∗
2D2 +D4D

∗
4

 = IC⊕H1⊕H2 ,

and hence V1 :=

[
0 B1

X D1

]
∈ B(C ⊕ H1) is an isometric colligation. Since D2 = XY ,

D∗
2D2 = Y ∗Y , and hence D∗

2D2 + D∗
4D4 = I yields Y ∗Y + D∗

4D4 = I. Thus V2 :=
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[
0 Y

C2 D4

]
∈ B(C⊕H2) is an isometric colligation. Notice that

τV1(z)τV2(z) = z2B1(1− zD1)
−1XY (1− zD4)

−1C2,

and, on the other hand, in view of (2.5.2), we have

τV (z) = z2B1(1− zD1)
−1D2(1− zD4)

−1C2,

for all z ∈ D. This and XY = D2 implies that θ = τV = τV1τV2 .

Thus we have proved the following:

Theorem 2.5.1. Suppose θ ∈ S(D) and θ(0) = 0. Then:

(1) θ = ϕψ for some ϕ, ψ ∈ S(D) and ψ(0) 6= 0 if and only if there exists an isometric
colligation

V =

 0 B1 0

C1 D1 D2

C2 0 D4

 ∈ B(C⊕ (H1 ⊕H2)),

such that θ = τV and

C1C
∗
1D2 = C∗

1C1D2 and C∗
1C1 > 0.

(2) θ = ϕψ for some ϕ, ψ ∈ S(D) and ϕ(0) = 0 = ψ(0) if and only if there exists an
isometric colligation

V =

 0 B1 0

0 D1 D2

C2 0 D4

 ∈ B(C⊕ (H1 ⊕H2)),

such that θ = τV and
X∗D1 = 0 and D2 = XY,

for some isometry X ∈ B(C,H2) and bounded linear operator Y ∈ B(H2,C).

The general case of functions vanishing at the origin in several variables (in SA(Dn)

or M1(H
2
n)) can be studied using the technique developed in the proof of Theorem

2.5.1. In particular, similar arguments allow us to obtain also a similar classification of
factorizations for functions in SA(Dn) vanishing at the origin. We only state the result
in the setting of Section 2.3 and leave out the details to the reader.

Theorem 2.5.2. Suppose θ ∈ AS(Dn) and θ(0) = 0. Then:
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(1) θ = ϕψ for some ϕ, ψ ∈ SA(Dn) and ψ(0) 6= 0 if and only if there exist Hilbert
spaces {Hi}ni=1, {Mi}ni=1 and {Ni}ni=1 and an isometric colligation

V =

[
0 B

C D

]
=


0 B1 · · · Bn

C1 D11 · · · D1n

...
... . . . ...

Cn Dn1 · · · Dnn

 ∈ B(C⊕ (
n⊕

i=1

Hi)),

such that θ = τV and Hk = Mk ⊕Nk, k = 1, . . . , n, and representing Bi, Ci an Dij as

Bi = [Bi(1), Bi(2)] ∈ B(Mi ⊕Ni,C), Ci =

[
Ci(1)

Ci(2)

]
∈ B(C,Mi ⊕Ni),

and

Dij =

[
Dij(1) Dij(12)

Dij(21) Dij(2)

]
∈ B(Mj ⊕Nj ,Mi ⊕Ni),

one has

Bi(2) = 0, Dij(21) = 0, C(1)C(1)∗D(12) = C(1)∗C(1)D(12) and C(1)∗C(1) > 0,

where i, j = 1, . . . , n, and C(1) =


C1(1)

...
Cn(1)

 ∈ B(C,
n⊕

i=1
Mi) and

D(12) =
[
Dij(12)

]n
i,j=1

∈ B
( n⊕

p=1

Np,
n⊕

p=1

Mp

)
.

(2) θ = ϕψ for some ϕ, ψ ∈ SA(Dn) and ϕ(0) = 0 = ψ(0) if and only if there exist
Hilbert spaces {Hi}ni=1, {Mi}ni=1 and {Ni}ni=1, an isometry X ∈ B(C,

n⊕
i=1

Mi), a bounded

linear operator Y ∈ B(
n⊕

i=1
Ni,C) and an isometric colligation

V =

[
0 B

C D

]
=


0 B1 · · · Bn

C1 D11 · · · D1n

...
... . . . ...

Cn Dn1 · · · Dnn

 ∈ B
(
C⊕ (

n⊕
i=1

Hi)
)
,

such that θ = τV and Hk = Mk ⊕Nk, k = 1, . . . , n, and representing Bi, Ci an Dij as

Bi = [Bi(1), Bi(2)] ∈ B
(
Mi ⊕Ni,C

)
, Ci =

[
Ci(1)

Ci(2)

]
∈ B

(
C,Mi ⊕Ni

)
,
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and

Dij =

[
Dij(1) Dij(12)

Dij(21) Dij(2)

]
∈ B(Mj ⊕Nj ,Mi ⊕Ni),

one has
Bi(2) = 0, Ci(1) = 0, Dij(21) = 0,

and
D(12) = XY and X∗D(1) = 0,

where
D(1) = [Dij(1)]

n
i,j=1 ∈ B

( n⊕
p=1

Mp

)
,

and
D(12) =

[
Dij(12)

]n
i,j=1

∈ B
( n⊕

p=1

Np,

n⊕
p=1

Mp

)
.

The case of contractive multipliers of the Drury-Arveson space vanishing at the origin
can be stated and proved in a similar way.

2.6 Examples and remarks

This section is devoted to some concrete examples, further results and general remarks
concerning Schur-Agler class functions in SA(Dn).

2.6.1 One variable factors

Our interest here is to analyze Schur-Agler class functions in SA(Dn) which can be
factored as a product of n Schur functions. More specifically, let φ ∈ SA(Dn) and let
φ(0) 6= 0. Suppose

φ(z) =
n∏

i=1

φi(zi) (z ∈ Dn),

for some φi ∈ S(D), i = 1, . . . , n. Then there exist isometric colligations

Vi =

[
a1 B̂i

Ĉi D̂i

]
∈ B(C⊕Hi),

such that
φi = τVi ,

for all i = 1, . . . , n. Let

a =
n∏

i=1

ai,
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and define

V̂1 =

a1 B̂1 0

Ĉ1 D̂1 0

0 0 I

 and Ṽn =

an 0 B̂n

0 I 0

Ĉn 0 D̂n

 ,
in B(C⊕H1 ⊕Hn

2 ) and B(C⊕Hn−1
1 ⊕Hn), respectively, and

V̂i =


ai 0 B̂i 0

0 I 0 0

Ĉi 0 D̂i 0

0 0 0 I

 ,

in B(C⊕Hi−1
1 ⊕Hi ⊕Hn

i+1) for all 1 < i < n. Then

V =
n∏

i=1

V̂i,

is an isometry in B(C⊕Hn
1 ). Moreover, it follows that

V =

[
a B

C D

]
=


a B1 · · · Bn

C1 D11 · · · D1n

...
... . . . ...

Cn Dn1 · · · Dnn

 , (2.6.1)

where

Bi = (

i−1∏
k=1

ak)B̂i, Ci = (

n∏
k=i+1

ak)Ĉi,

and

Dij =


D̂i if i = j

0 if i > j

(ai+1 · · · aj−1)ĈiB̂j if i < j.

Hence
aDi,j = CiBj ,

for all 1 6 i < j 6 n. Then by repeated application of Theorem 2.2.2, we have

φ = τV .

The converse, as stated below, follows directly from repeated applications of Theorem
2.2.3. We have thus proved the following theorem.

Theorem 2.6.1. Suppose θ ∈ SA(Dn) and θ(0) 6= 0. Then

θ(z) =
n∏

i=1

θi(zi) (z ∈ Dn),
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for some Schur functions {θi}ni=1 ⊆ S(D) if and only if there exist Hilbert spaces
H1, . . . ,Hn and an isometric colligation

[
a B

C D

]
=


a B1 · · · Bn

C1 D11 · · · D1n

...
... . . . ...

Cn Dn1 · · · Dnn


on C⊕

( n⊕
i=1

Hi

)
such that

Dij =


Di if i = j

0 if i > j

1
aCiBj if i < j,

and
θ(z) = a+B

(
IHn

1
− EHn

1
(z)D

)−1
EHn

1
(z)C (z ∈ Dn).

2.6.2 Examples

Here we aim at applying our results to some concrete examples.

Example 1: First, we let ϕ ∈ S(D) and ϕ = τV0 for some isometric colligation

V0 =

[
a B

C D

]
∈ B(C⊕H).

Now we consider ψ(z) = zm, z ∈ D and m ∈ N. One then shows that

Vm =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

1 0 0 · · · 0


∈ B(C⊕ Cm),

is an isometric colligation and
ψ = τVm .

Set θ = ϕψ = τV0τVm . Then by Theorem 2.3.2 (or more specifically, by (2.3.3)) it follows
that

τV (z) = zmφ(z) (z ∈ D),
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where V ∈ B(C⊕H⊕ Cm) is an isometric colligation with the following representation

V =



0 B a 0 0 · · · 0

0 D C 0 0 · · · 0

0 0 0 1 0 · · · 0

0 0 0 0 1 · · · 0
...

...
...

...
... . . . ...

0 0 0 0 0 · · · 1

1 0 0 0 0 · · · 0


∈ B(C⊕ (H⊕ C)⊕ Cm−1).

Example 2: Our second example concerns Blaschke factors: If λ ∈ D, then the Blaschke
factor bλ ∈ Aut(D) is defined by

bλ(z) =
z − λ

1− λ̄z
(z ∈ D).

Now observe that, for each λ ∈ D, the matrix

Vλ =

[
−λ

√
1− |λ|2√

1− |λ|2 λ̄

]
∈ B(C⊕ C),

is an isometric colligation and
bλ = τVλ

.

Now, suppose α, β ∈ D and

θ(z) = bα(z1)bβ(z2) (z ∈ D2).

Then Theorem 2.2.2 implies that
θ = τV ,

where

V =

 αβ
√
1− |α|2 −α

√
1− |β|2

−β
√
1− |α|2 ᾱ

√
1− |α|2

√
1− |β|2√

1− |β|2 0 β̄

 ,
is an isometric colligation in M3(C).

2.6.3 On Fm(n) and F(n)

Let 1 ≤ m < n. Suppose V ∈ B(C⊕Hm
1 ⊕Hn

m+1) satisfies property Fm(n). On account
of Theorem 2.2.3, we have

τV (z) = τV1(z1, . . . , zm)τV2(zm+1, . . . , zn) (z ∈ Dn),
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for some isometric colligations V1 ∈ B(C ⊕ Hm
1 ) and V2 ∈ B(C ⊕ Hn

m+1). Note that
τV1 ∈ SA(Dm) and τV2 ∈ SA(Dn−m). The above factorization and Theorem 2.3.4
further implies that

τV = τṼ ,

for some isometric colligation Ṽ ∈ B(C ⊕
( n⊕

i=1
(Mi ⊕ Ni)

)
) satisfying property F(n).

It is then natural to ask to what extent one can recover Ṽ from V . To determine the
isometric colligation Ṽ , we proceed as follows: First, we let

V =


a B1 · · · Bn

C1 D11 · · · D1n

...
... . . . ...

Cn Dn1 · · · Dnn

 ∈ B(C⊕Hn
1 ), (2.6.2)

where Dij = 0 for i = m+ 1, . . . , n and j = 1, . . . ,m; aDij = CiBj for i = 1, . . . ,m and
j = m+ 1, . . . , n. Let L be a Hilbert space. Set

Ki =

Hi ⊕ L if 1 ≤ i ≤ m

L ⊕Hi if m+ 1 ≤ i ≤ n.

We now define

Yi =


[
Bi 0

]
if 1 ≤ i ≤ m

[
0 Bi

]
if m+ 1 ≤ i ≤ n,

Zi =



Ci

0

 if 1 ≤ i ≤ m

 0

Ci

 if m+ 1 ≤ i ≤ n,

and

Wij =



Dij 0

0 δijIL

 if 1 ≤ i, j ≤ m

δijIL 0

0 Dij

 if m+ 1 ≤ i, j ≤ n,

and

Wij =



0 Dij

0 0

 if 1 ≤ i ≤ m, m+ 1 ≤ j ≤ n

 0 0

Dij 0

 if m+ 1 ≤ i ≤ n, 1 ≤ j ≤ n.
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Then, after some manipulations, it follows that the isometric colligation

Ṽ :=


a Y1 · · · Yn

Z1 W11 · · · W1n

...
... . . . ...

Zn Wn1 · · · Wnn

 ∈ B(C⊕Kn
1 ), (2.6.3)

satisfies property F(n) and τV = τṼ . More specifically, we have proved the following:

Theorem 2.6.2. Suppose 1 ≤ m < n and let V satisfies property Fm(n). If the
representation of V is given by (2.6.2), then

τV = τṼ ,

where Ṽ is given by (2.6.3) and satisfies property F(n).

2.6.4 Reversibility of factorizations

A natural question to ask in connection with Theorem 2.3.4 is whether the canonical
constructions of the colligation V (out of a pair of isometric colligations V1 and V2)
satisfying property F(n) as in (2.3.3) and V1 and V2 (out of an isometric colligation V

satisfying property F(n)) as in (2.3.12) are reversible.

To answer this, we proceed as follows: Given n ∈ N, we let C(n) denote the set of all

isometric colligations of the form
[
a B

C D

]
∈ B(C ⊕

( n⊕
i=1

Hi

)
) for some Hilbert spaces

{Hi}ni=1, and let F (n) denote the set of all isometric colligations satisfying property
F(n). Define π : C(n)× C(n) → F (n) by

π(V1, V2) = V (V1, V2 ∈ C(n)),

where V is as in (2.3.3) (or Theorem 2.3.2). Also define κ : F (n) → C(n)× C(n) by

κ(V ) = (V1, V2) (V ∈ F (n)),

where V1 and V2 are as in (2.3.12). Given V1 and V2 in C(n), the aim here is to compare
κ(π(V1, V2)) with (V1, V2). Suppose

V1 =

[
α B

C D

]
∈ B

(
C⊕ (

n⊕
i=1

Mi)
)

and V2 =

[
β F

G H

]
∈ B

(
C⊕ (

n⊕
i=1

Ni)
)

are isometric colligations and a = αβ 6= 0. Then by (2.3.3), it follows that

π(V1, V2) ∈ B
(
C⊕ (

n⊕
i=1

(Mi ⊕Ni))
)
,



68 Chapter 2. Factorizations of Schur-Agler functions

and

π(V1, V2) =


αβ B̂1 · · · B̂n

Ĉ1 D̂11 · · · D̂1n

...
... . . . ...

Ĉn D̂n1 · · · D̂nn

 ,
where B̂i, Ĉi and D̂ij , i, j = 1, . . . , n, are given by as in (2.3.4) and (2.3.5). Since
π(V1, V2) satisfies property F(n), in view of (2.3.12), it follows that

κ(π(V1, V2)) = (Ṽ1, Ṽ2),

where

Ṽ1 =


α̃ B1 · · · Bn

β

β̃
C1 D11 · · · D1n

...
... . . . ...

β

β̃
Cn Dn1 · · · Dnn

 and Ṽ2 =


β̃ α

α̃F1 · · · α
α̃Fn

G1 H11 · · · H1n

...
... . . . ...

Gn Hn1 · · · Hnn

 ,

and α̃ and β̃ are non-zero scalars satisfying the following relations (see (2.3.13) and
(2.3.14))

|β̃|2 = |α|2|β|2 + |β|2
( n∑

i=1

C∗
i Ci

)
and α̃ =

αβ

β̃
.

But we know from V ∗
1 V1 = I that |α|2 + C∗C = 1, that is

|α|2 +
n∑

i=1

C∗
i Ci = 1.

So β̃ = ε̄β and α̃ = εα for some unimodular constant ε. Hence

κ ◦ π
([α B

C D

]
,

[
β F

G H

])
=
([εα B

εC D

]
,

[
ε̄β ε̄F

G H

])
,

where ε is an unimodular constant.

One could equally consider the same question for Theorem 2.2.4. The answer is
similar.



Chapter 3

Schur functions and inner
functions on the bidisc

3.1 Introduction

The principle aim of this chapter is threefold: (1) Provide representations of inner
functions in S(D2) in terms of the isometric colligation operators (a certain class of 2×2

block operator matrices). (2) Establish a classification of de Branges-Rovnyak kernels
on D (which also works in the setting of Dn and the open unit ball of Cn, n ≥ 1). (3)
Provide a classification, in terms of Agler kernels, of Schur functions in S(D2) which
admit a one variable factorization.

Our first aim of this chapter is to provide sufficient (as well as necessary, for reducible
rational functions) conditions in terms of isometric colligation for a function in S(D2) to
be inner. Our presentation here, needless to say, is based on Agler’s realization formula
and Agler kernels for functions in S(D2) [2].

We now return to the topic of representations of inner functions in S(D2). Finding
an analog of Theorem 1.2.10 for inner functions in S(D2) seems to be a subtle and
unattended problem. Here the main difficulty is to deal with the 2 × 2 block operator
matrix D ∈ B(H1⊕H2), or more specifically, with the resolvent part of τV which involves
the inverse of the 2× 2 block operator matrix. Instead, in Theorem 3.2.1 we prove that
a function φ ∈ S(D2) is inner whenever φ = τV for some isometric colligation

V =

 a B1 B2

C1 D1 D2

C2 0 D3

 ∈ B(C⊕ (H1 ⊕H2)),

with D1, D3 ∈ C0·. This is the main content of Section 3.2.

The converse of the above fact is not true in general (see Example 3.5.1). However, a
weak converse holds for rational inner functions that admit a one variable factorization

69
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(see Theorem 3.5.3). This is the main content of Section 3.5.

Now we turn to our second goal of this chapter: Classification of de Branges-Rovnyak
kernels on Dn and the open unit ball of Cn. Here we explain the idea in the setting of
operator-valued Schur functions on D. Let Θ ∈ S(D,B(E , E∗)). We call the kernel

KΘ(z, w) :=
I −Θ(z)Θ(w)∗

1− zw
, (z, w ∈ D).

the de Branges-Rovnyak kernel corresponding to Θ. The classical de Branges-Rovnyak
theory says that the de Branges-Rovnyak space, HKΘ

is contractively contained (not
necessarily closed) subspace of the Hardy space H2

E∗(D) and invariant under backward
shift operator.

Section 3.3 focuses on the following question: How can we recognize when a kernel
admits a de Branges-Rovnyak kernel representation?

The following is our answer to this question (see Theorem 3.3.1): Let K ≥ 0 be a B(E∗)-
valued kernel (which is not a priori analytic in its first variable). Then K = KΘ for
some Θ ∈ S(D,B(E , E∗)) and Hilbert space E if and only if

IE∗ − (1− zw) ·K ≥ 0,

where · denotes the Hadamard product. This also covers a (variation of the) classical
result due to de Branges and Rovnyak (see Theorem 3.3.2 and the discussion preceding
it).

In the setting of Schur-Agler functions on Dn (see more details in Section 3.3), in The-
orem 3.3.3 we prove the following: Let K : Dn × Dn → B(E∗) be a kernel on Dn (again,
K is not a priori analytic in z1, . . . , zn). Then there exist a Hilbert space E and a
B(E , E∗)-valued Schur-Agler function Θ (in notation, Θ ∈ SA(Dn,B(E , E∗))) such that

K = KΘ,

where
KΘ(z,w) :=

I −Θ(z)Θ(w)∗

n∏
i=1

(1− ziw̄i)

(z,w ∈ Dn),

if and only if there exist B(E∗)-valued kernels K1, . . . ,Kn (called Agler kernels of φ) on
Dn such that

K(z,w) =
n∑

i=1

1∏
j ̸=i

(1− zjw̄j)
Ki(z,w) (z,w ∈ Dn),

and
IE∗ −

( n∏
i=1

(1− ziw̄i)
)
·K ≥ 0.
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An analogous but somewhat simpler statement also holds in the setting of multipliers
of the Drury-Arveson space (see Theorem 3.3.4).

The final goal of this chapter is to describe those two-variable Schur functions that
admit a one variable Schur factor. This is the main content of Section 3.4. More
specifically (see Theorem 3.4.1): Let φ ∈ S(D2) and suppose φ(0) 6= 0, where 0 = (0, 0)

(see Remark 3.4.1 on the assumption φ(0) 6= 0). The following assertions are equivalent:

(1) There exist φ1 and φ2 in S(D) such that φ(z) = φ1(z1)φ2(z2), z ∈ D2.

(2) There exist Agler kernels {K1,K2} of φ such that K1 depends only on z1 and w̄1,
and

φ(0)K2(·, (w1, 0)) = φ(w1, 0)K2(·,0) (w1 ∈ D).

(3) There exist Agler kernels {L1, L2} of φ such that all the functions in HL1 depend
only on z1, and φ(0)f(·, 0) = φ(·, 0) f(0), f ∈ HL2 .

(4) φ = τV for some co-isometric colligation

V =

φ(0) B1 B2

C1 D1 D2

C2 0 D4

 ∈ B(C⊕ (H1 ⊕H2)),

with φ(0)D2 = C1B2.

We remark that, given the importance of the rich structure, inner functions on the
bidisc have been considered in many occasions previously in different contexts. For
instance, see [41, 113] and the references therein.

It is worthwhile to point out that our main motivation for considering colligation
matrices, as in part (4) above and the one following Theorem 1.2.3, comes from the
recent paper [48].

This chapter is based on the published paper [49].

3.2 Inner Functions and Realizations

Our purpose here is to prove a statement analogous to the sufficient part of Theorem
1.2.10. We will again return to this topic in Section 3.5 with some counterexamples and
a weak converse.

It will be convenient, to begin with, to introduce some terminology and basic ob-
servations. The following construction also could be of some independent interest. We
write ⊕l2 = l2 ⊕ l2 ⊕ · · · , that is

⊕l2 =
{
{aij} :=

{
{{a0j}j≥0, {a1j}j≥0, {a2j}j≥0, . . .} :

∞∑
i,j=0

|aij |2 <∞
}
.



72 Chapter 3. Schur functions and inner functions on the bidisc

One can easily verify that

τ({aij}) =
∞∑
i=0

∞∑
j=0

aijz
i
1z

j
2,

defines a unitary τ : ⊕l2 → H2(D2), and Mz1τ = τS, where S denotes the shift on ⊕l2,
that is

S
(
{aij}

)
=
{
{0}, {a0j}j≥0, {a1j}j≥0, . . .

}
.

Here {0} ∈ l2 is the zero sequence. Now, let φ =
∞∑
i=0

(
∞∑
j=0

φijz
j
2)z

i
1 ∈ H∞(D2). We define

the block Toeplitz operator with symbol φ to be the bounded linear operator Tφ on ⊕l2

defined by (
Tφ

(
{aij}

))
ij
=

i∑
k=0

j∑
l=0

φi−k,j−lakl (i, j ≥ 0),

which in matrix notation becomes

Tφ =


Φ0 0 0 0 · · ·
Φ1 Φ0 0 0 · · ·
Φ2 Φ1 Φ0 0 · · ·
...

...
...

... . . .

 ,

where

Φk =


φk0 0 0 0 · · ·
φk1 φk0 0 0 · · ·
φk2 φk1 φk0 0 · · ·

...
...

...
... . . .

 ,
is a Toeplitz operator on l2 for all k ≥ 0. More specifically, we have

Mφτ = τTφ (φ ∈ H∞(D2)),

where Mφ denotes the multiplication operator on H2(D2) with analytic symbol φ, that
is, Mφf = φf for all f ∈ H2(D2). Indeed, if φ =

∞∑
i=0

(
∞∑
j=0

φijz
j
2)z

i
1 and {aij} ∈ ⊕l2, then

Mφτ({aij}) =

 ∞∑
i,j=0

φijz
i
1z

j
2

 ∞∑
k,l=0

aklz
k
1z

l
2

 =
∞∑

j,l=0

∞∑
i,k=0

φijaklz
i+k
1 zl+j

2

=
∞∑

j,l=0

{ ∞∑
i=0

(
i∑

k=0

φi−k,jakl

)
zi1

}
zl+j
2 =

∞∑
i=0

i∑
k=0


∞∑

j,l=0

φi−k,jaklz
l+j
2

 zi1

=
∞∑
i=0

i∑
k=0


∞∑
j=0

(
j∑

l=0

φi−k,j−lakl

)
zj2

 zi1 =
∞∑

i,j=0

 i∑
k,l=0

φi−k,j−lakl

 zi1z
j
2,

and hence Mφτ({aij}) = τTφ({aij}). In particular, we have
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Tz2 =


Sl2 0 0 0 · · ·
0 Sl2 0 0 · · ·
0 0 Sl2 0 · · ·
...

...
...

... . . .

 ,
where Sl2 denotes the shift on l2, that is, Sl2({a0, a1, . . .}) = {0, a0, a1, . . .} for all
{am}m≥0 ∈ l2. Continuing with the above notation, we set

Y0 =


Φ0

Φ1

Φ2

...

 , and Yj = SjY0, (3.2.1)

for all j ≥ 1. Then Tφ =
[
Y0 Y1 Y2 . . .

]
. Since T ∗

φTφ = (Y ∗
i Yj), it follows that Mφ

on H2(D2) is an isometry if and only if Tφ on ⊕l2 is an isometry, which is also equivalent
to

Y ∗
i Yj = δijIl2 . (3.2.2)

We are now ready to present the main theorem of this section.

Theorem 3.2.1. Let φ ∈ S(D2). If φ = τV for some isometric colligation

V =

 a B1 B2

C1 D1 D2

C2 0 D3

 : C⊕ (H1 ⊕H2) → C⊕ (H1 ⊕H2),

with D1, D3 ∈ C0·, then φ is an inner function.

Proof. Since φ = τV , and

τV (z) = a+
[
B1 B2

] (
IH1⊕H2 − EH1⊕H2(z)

[
D1 D2

0 D3

])−1
EH1⊕H2(z)

[
C1

C2

]
,

we have

φ(z) = a+

∞∑
i=1

B1D
i−1
1 C1z

i
1 +

∞∑
j=1

B2D
j−1
3 C2z

j
2 +

∞∑
i=1

∞∑
j=1

B1D
i−1
1 D2D

j−1
3 C2z

i
1z

j
2,

for all z ∈ D2. Using the same notation preceding the statement, we set

Φ0 =



a 0 0 0 · · ·
B2C2 a 0 0 · · ·
B2D3C2 B2C2 a 0 · · ·
B2D

2
3C2 B2D3C2 B2C2 a · · ·

...
...

...
... . . .


,
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and

Φj =



B1D
j−1
1 C1 0 0 0 · · ·

B1D
j−1
1 D2C2 B1D

j−1
1 C1 0 0 · · ·

B1D
j−1
1 D2D3C2 B1D

j−1
1 D2C2 B1D

j−1
1 C1 0 · · ·

B1D
j−1
1 D2D

2
3C2 B1D

j−1
1 D2D3C2 B1D

j−1
1 D2C2 B1D

j−1
1 C1 · · ·

...
...

...
... . . .


,

for j ≥ 1. We first claim that Y0 =


Φ0

Φ1

Φ2

...

 is an isometry. In fact, since Y ∗
0 Y0 =

∞∑
m=0

Φ∗
mΦm, there exists a sequence of scalars {ym}m≥0 such that

Y ∗
0 Y0 =


y0 y1 y2 · · ·
y1 y0 y1 · · ·
y2 y1 y0 · · ·
...

...
... . . .

 .

We need to show that y0 = 1 and yk = 0 for all k ≥ 1. Note that

y0 = |a|2 + C∗
1

 ∞∑
j=0

D∗j
1 B

∗
1B1D

j
1

C1

+ C∗
2

 ∞∑
k=0

D∗k
3

{
B∗

2B2 +D∗
2

∑
l≥0

D∗l
1 B

∗
1B1D

l
1

D2

}
Dk

3

C2.

Since V ∗V = I, it follows that |a|2 + C∗
1C1 + C∗

2C2 āB1 + C∗
1D1 āB2 + C∗

1D2 + C∗
2D3

aB∗
1 +D∗

1C1 B∗
1B1 +D∗

1D1 B∗
1B2 +D∗

1D2

aB∗
2 +D∗

2C1 +D∗
3C2 B∗

2B1 +D∗
2D1 B∗

2B2 +D∗
2D2 +D∗

3D3

 = I. (3.2.3)

In particular

I = B∗
1B1 +D∗

1D1

= B∗
1B1 +D∗

1(B
∗
1B1 +D∗

1D1)D1

= B∗
1B1 +D∗

1B
∗
1B1D1 +D∗2

1 D
2
1,
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and hence I =
m∑
j=0

D∗j
1 (B∗

1B1)D
j
1 +D

∗(m+1)
1 (B∗

1B1)D
(m+1)
1 for all m ≥ 1. Using the fact

that D1 ∈ C0·, we have
∞∑
j=0

D∗j
1 (B∗

1B1)D
j
1 = I, (3.2.4)

in the strong operator topology. Similarly, B∗
2B2 + D∗

2D2 + D∗
3D3 = I and D3 ∈ C0·

implies that
∞∑
j=0

D∗j
3 (B∗

2B2 +D∗
2D2)D

j
3 = I, (3.2.5)

in the strong operator topology. This with the condition |a|2 + C∗
1C1 + C∗

2C2 = 1 in
(3.2.3) implies that

y0 = |a|2 + C∗
1C1 + C∗

2C2 = 1.

Next we consider

y1 = aC∗
2B

∗
2 + C∗

2D
∗
2

 ∞∑
j=0

D∗j
1 B

∗
1B1D

j
1

C1

+ C∗
2D

∗
3

[ ∞∑
k=0

D∗k
3

{
B∗

2B2 +D∗
2

( ∞∑
l=0

D∗l
1 B

∗
1B1D

l
1

)
D2

}
Dk

3

]
C2 .

Thus by (3.2.4) and (3.2.5), it follows that

y1 = aC∗
2B

∗
2 + C∗

2D
∗
2C1 + C∗

2D
∗
3C2 = C∗

2 (aB
∗
2 +D∗

2C1 +D∗
3C2) = 0,

as aB∗
2 +D∗

2C1 +D∗
3C2 = 0 follows from (3.2.3). Similarly

yj = C∗
2D

∗j
3 (aB∗

2 +D∗
2C1 +D∗

3C2) = 0,

for all j ≥ 2. This proves that Y0 is an isometry.

Since the shift S on ⊕l2 is an isometry, Yj := SjY0, j ≥ 1, is also an isometry (see the
construction in (3.2.1)). Our final goal is to prove that Tφ :=

[
Y0 Y1 Y2 . . .

]
is an

isometry, or equivalently, by virtue of (3.2.2) and Y ∗
mYm = I for all m ≥ 0,

Y ∗
p Yq = 0 (p > q ≥ 0).

Since Y ∗
p Yq = Y ∗

0 S
∗pSqY0 = Y ∗

0 S
∗(p−q)Y0 for all p > q ≥ 0, it actually suffices to check

that
Y ∗
0 S

∗(j+1)Y0 = 0 (j ≥ 0).

So we fix j ≥ 0 and observe

SjY0 =

[
0 . . . 0︸ ︷︷ ︸

(j+1)

Φ0 Φ1 Φ2 . . .
]t
.
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Hence
Y ∗
0 S

∗(j+1)Y0 = Φ∗
0Φj+1 +Φ∗

1Φj+2 + · · · .

Therefore there exists a sequence {cm}m∈Z such that

Y ∗
0 S

∗(j+1)Y0 =


c0 c1 c2 · · ·
c−1 c0 c1 · · ·
c−2 c−1 c0 · · ·

...
...

... . . .

 .

It is suffices to prove that ck = 0 for all k ∈ Z. A simple calculation shows that

c0 = (āB1 + C∗
1D1)D

j+1
1 C1 + C∗

2

[ ∞∑
m=0

D∗m
3

{
B∗

2B1 +D∗
2D1

}
Dj+1

1 D2D
m
3

]
C2.

By (3.2.3), āB1 + C∗
1D1 = 0 and B∗

2B1 +D∗
2D1 = 0, and hence c0 = 0. Now let k > 0.

Then

ck = C∗
2D

∗(k−1)
3 (B∗

2B1+D
∗
2D1)D

j+1
1 C1+C

∗
2D

∗k
3

[ ∞∑
m=0

D∗m
3

{
B∗

2B1 +D∗
2D1

}
Dj+1

1 D2D
m
3

]
C2,

and hence ck = 0. Finally, since

c−k = (aB1+C
∗
1D1)D

j+1
1 D2D

k−1
3 C2+C

∗
2

[ ∞∑
m=0

D∗m
3

{
B∗

2B1 +D∗
2D1,1

}
Dj+1

1 D2D
m
3

]
Dk

3C2,

it again follows that c−k = 0. This implies that Tφ or, equivalently, Mφ is an isometry,
and completes the proof.

Remark 3.2.1. Let V ∈ B(C ⊕ H) be an isometric colligation, and let H = H1 ⊕ H2

for Hilbert spaces H1 and H2. Suppose D := PHV |H and suppose that DH1 ⊆ H1. Set

D =

[
D1 D2

0 D3

]
∈ B(H1 ⊕H2).

It is easy to see that if D ∈ C0·, then D1 and D3 are also in C0·. Consequently, Theorem
3.2.1 also holds for those Schur functions φ such that φ = τV with V as above. Of
course, if D1 and D3 are in C0·, then D is not necessarily in C0·.

3.3 de Branges-Rovnyak kernels

The goal of this section is to study de Branges-Rovnyak kernels on Dn and the open unit
ball of Cn, n ≥ 1. Specifically, we seek characterizations of analytic kernels that admit



3.3. de Branges-Rovnyak kernels 77

certain factorizations involving Schur(-Agler) functions. Our investigation is partly mo-
tivated by a classical result of de Branges and Rovnyak (see the Theorem 3.3.2 for more
details).

In the following, we characterize de Branges-Rovnyak kernels defined on the disc
D. The proof uses the standard and commonly used “lurking-isometry” techniques.
Therefore, our proof is fairly standard and, perhaps, it can also be achieved using existing
results about Schur(-Agler) functions([7]). Note also that the theorem below does not
assume a priori that K is analytic in its first variable.

Theorem 3.3.1. Let K : D × D → B(E∗) be a kernel on D. Then K = KΘ for some
Θ ∈ S(D,B(E , E∗)) and Hilbert space E∗ if and only if

IE∗ − (1− zw̄) ·K ≥ 0.

Proof. If K = KΘ, then

IE∗ − (1− zw̄)K(z, w) = Θ(z)Θ(w)∗ ≥ 0 (z, w ∈ D).

Conversely, if IE∗ − (1− zw) ·K ≥ 0, then there exist a Hilbert space F and a function
(a priori not necessarily analytic) F : D → B(F , E∗) such that

IE − (1− zw̄)K(z, w) = F (z)F (w)∗ (z, w ∈ D).

Clearly, F is a contractive function on D. Again, since K ≥ 0, there exist a Hilbert
space G and a function G : D → B(G, E∗) such that K(z, w) = G(z)G(w)∗, z, w ∈ D.
Then

IE∗ −G(z)G(w)∗ + zw̄G(z)G(w)∗ = F (z)F (w)∗,

and hence
IE∗ + zw̄G(z)G(w)∗ = G(z)G(w)∗ + F (z)F (w)∗,

for all z, w ∈ D. Therefore

V :

[
IE∗

w̄G(w)∗

]
η 7→

[
F (w)∗

G(w)∗

]
η (w ∈ D, η ∈ E∗),

defines an isometry from a subspace of E∗ ⊕ G to F ⊕ G. Then, adding an infinite-
dimensional summand to G if necessary, V can then be extended to an isometry, denoted
by V again, from E∗ ⊕ G to F ⊕ G. Set

V =

[
A B

C D

]
: E∗ ⊕ G → F ⊕ G.

Then [
A B

C D

][
η

w̄G(w)∗η

]
=

[
F (w)∗η

G(w)∗η

]
,
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for all η ∈ E and w ∈ D, which implies that

A+ w̄BG(w)∗ = F (w)∗ and C + w̄DG(w)∗ = G(w)∗,

for all w ∈ D. The latter equality implies that G(w)∗ = (I − wD)−1C, and hence, the
first equality yields

F (w)∗ = A+ wB(I − wD)−1C,

for all w ∈ D. Hence

F (z) = A∗ + zC∗(I − zD∗)−1B∗ (z ∈ D),

that is, F = τV ∗ is analytic on D and bounded by 1, where

V ∗ =

[
A∗ C∗

B∗ D∗

]
,

is a co-isometric colligation. Consequently, Θ := F ∈ S(D,B(F , E∗)), and hence

IE∗ − (1− zw̄)K(z, w) = Θ(z)Θ(w)∗,

that is, K(z, w) =
IE∗ −Θ(z)Θ(w)∗

1− zw̄
for all z, w ∈ D. This completes the proof.

We denote by Sn the Szegö kernel on Dn, that is

Sn(z,w) =
n∏

i=1

1

1− ziw̄i
(z,w ∈ Dn).

Also we denote S1 simply by S. The following is a variation of a result due to de Branges
and Rovnyak [36, 37]. Also, we refer the reader to the classic Sz.-Nagy and Foias [90,
Section 8, page 231] for a detailed proof and some historical notes. The proof below
follows the proof of the previous theorem. Again, a priori we do not assume (in contrast
to Sz.-Nagy and Foias) that K is analytic in its first variable.

Theorem 3.3.2. Let K : D× D → B(E∗) be a kernel. Then

0 ≤ K ≤ S and S−1 ·K ≥ 0,

if and only if there exist a Hilbert space E and an operator-valued Schur function Θ ∈
S(D,B(E , E∗)) such that

K(z, w) =
Θ(z)Θ(w)∗

1− zw̄
(z, w ∈ D).

Proof. Suppose 0 ≤ K ≤ S and S−1 ·K ≥ 0. Now 0 ≤ K ≤ S implies that

1

1− zw̄
I −K(z, w) ≥ 0.
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As in the proof of the previous theorem, there exist a Hilbert space F and a function
G : D → B(F , E∗) such that

I − (1− zw̄)K(z, w) = (1− zw̄)G(z)G(w)∗.

Again, since S−1 ·K ≥ 0, there exist a Hilbert space G and a function F : D → B(G, E∗)
such that

I − F (z)F (w)∗ = (1− zw̄)G(z)G(w)∗

The remaining argument is similar to that of the proof of the previous theorem.

We now turn to de Branges-Rovnyak kernels on Dn. Suppose Θ ∈ SA(Dn,B(E , E∗)).
Since MΘ is a contraction from H2

E(Dn) into H2
E∗(D

n), it is easy to check (as also pointed
out earlier) that KΘ ≥ 0, where

KΘ(z,w) = Sn(z,w)−1(I −Θ(z)Θ(w)∗) (z,w ∈ Dn).

Here we say that KΘ is a (B(E∗)-valued) de Branges-Rovnyak kernel on Dn. In the
following, we do not assume a priori that K is analytic in z1, . . . , zn.

Theorem 3.3.3. Let K : Dn×Dn → B(E∗) be a kernel on Dn. Then K = KΘ for some
Schur-Agler function Θ ∈ SA(Dn,B(E , E∗)) and a Hilbert space E if and only if there
exist B(E∗)-valued kernels K1, . . . ,Kn on Dn such that

K(z,w) =

n∑
i=1

1∏
j ̸=i

(1− zjw̄j)
Ki(z,w),

for all z,w ∈ Dn, and IE∗ − S−1
n ·K ≥ 0.

Proof. The “only if” part of this statement is easy, and the proof of the “if” part is
similar to the proof of Theorem 3.3.1. We give only a sketch: Suppose K1, . . . ,Kn are
B(E∗)-valued kernels on Dn, z,w ∈ Dn, and suppose

K(z,w) =

n∑
i=1

1∏
j ̸=i

(1− zjw̄j)
Ki(z,w).

Then
S−1
n (z,w)K(z,w) =

n∑
i=1

(1− ziw̄i)Ki(z,w).

Since IE∗ − S−1
n ·K ≥ 0, there exist a Hilbert space G and a function G : Dn → B(G, E∗)

such that
IE − S−1

n (z,w)K(z,w) = G(z)G(w)∗.
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Again, since Ki ≥ 0, there exist Hilbert spaces F1, . . . ,Fn, and functions Fi : Dn →
B(Fi, E∗), i = 1, . . . , n, such that Ki(z,w) = Fi(z)Fi(w)∗ for all i = 1, . . . , n. Hence

S−1
n (z,w)K(z,w) =

n∑
i

(1− ziw̄i)Fi(z)Fi(w)∗,

which implies

IE∗ +

n∑
i=1

ziw̄iFi(z)Fi(w)∗ = G(z)G(w)∗ +

n∑
i=1

Fi(z)Fi(w)∗,

for all z,w ∈ Dn. Now one can proceed with the lurking-isometry method, as in the
proof of Theorem 3.3.1, to complete the proof of the theorem.

An analogous statement also holds in the case of multipliers of the Drury-Arveson
space H2

n. In this setting, the de Branges-Rovnyak kernel KΘ corresponding to Θ ∈
Md(E , E∗) is defined by

KΘ(z,w) =
I −Θ(z)Θ(w)∗

1− 〈z,w〉
(z,w ∈ Bn).

The proof of the following theorem is completely analogous to the proof of Theorems
3.3.1 and 3.3.3. We leave details to the reader.

Theorem 3.3.4. Let E∗ be a Hilbert space and K : Bn × Bn → B(E) be a kernel. Then
K = KΘ for some Θ ∈ Mn(E , E∗) and Hilbert space E if and only if

IE∗ − (1− 〈z,w〉) ·K(z,w) ≥ 0.

In the above theorem, we do not assume a priori that K is analytic in z1, . . . , zn.

3.4 Agler Kernels and Factorizations

In this section we investigate factorizations of two-variable Schur functions in terms of
Agler kernels. We shall be particularly interested in the case of one variable factors and
Agler kernels of functions in S(D2).

Here and in what follows, HK will denote the reproducing kernel Hilbert space cor-
responding to the kernel K. Moreover, if K : D2 × D2 → C, then K(·,w) ∈ HK will
denote the kernel function at w ∈ D2, that is(

K(·,w)
)
(z) = K(z,w) (z ∈ D2),

and
f(w) = 〈f,K(·,w)〉HK

,
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for all f ∈ HK and w ∈ D2. For notational convenience we write 0 = (0, 0).

We are now ready for the main result of this section (see Remark 3.4.1 on the as-
sumption φ(0) 6= 0):

Theorem 3.4.1. Let φ ∈ S(D2) and suppose φ(0) 6= 0. The following assertions are
equivalent:

(1) There exist φ1 and φ2 in S(D) such that

φ(z) = φ1(z1)φ2(z2) (z ∈ D2).

(2) There exist Agler kernels {K1,K2} of φ such that K1 depends only on z1 and w̄1,
and

φ(0)K2(·, (w1, 0)) = φ(w1, 0)K2(·,0) (w1 ∈ D).

(3) There exist Agler kernels {L1, L2} of φ such that all the functions in HL1 depends
only on z1, and

φ(0)f(·, 0) = φ(·, 0) f(0) (f ∈ HL2).

(4) φ = τV for some co-isometric colligation

V =

φ(0) B1 B2

C1 D1 D2

C2 0 D4

 ∈ B(C⊕ (H1 ⊕H2)),

with φ(0)D2 = C1B2.

Proof. Suppose first that φ(z) = φ1(z1)φ2(z2), z ∈ D2, for some φ1 and φ2 in S(D).
Then

1− φ(z)φ(w) = 1− φ1(z1)φ1(w1) + φ1(z1)(1− φ2(z2)φ2(w2))φ1(w1),

and hence

1− φ(z)φ(w) = (1− z1w̄1)K1(z,w) + (1− z2w̄2)K2(z,w),

where

K1(z,w) =
1− φ1(z1)φ1(w1)

1− z1w̄1
and K2(z,w) =

φ1(z1)(1− φ2(z2)φ2(w2))φ1(w1)

1− z2w̄2
,

and z,w ∈ D2. Then {K1,K2} are Agler kernels of φ and satisfies the conditions of (2).
This proves (1)⇒(2).

(2)⇒ (3): Set Li = Ki, i = 1, 2, and suppose f ∈ HK1 . Since

w 7→ f(w) = 〈f, L1(·,w)〉 = 〈f,K1(·,w)〉,
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and K1 depends only on z1 and w̄1, it follows that all the functions in HL1 depend only
on z1. On the other hand, if f ∈ HL2 , then

φ(0)f(w1, 0) = 〈f, φ(0)L2(·, (w1, 0))〉HL2

= 〈f, φ(0)K2(·, (w1, 0))〉HK2

= 〈f, φ(w1, 0)K2(·, (0))〉HK2

= φ(w1, 0)〈f,K2(·, (0))〉HK2
,

and hence φ(0)g(w1, 0) = φ(w1, 0)f(0) for all w1 ∈ D.

(3)⇒ (2): This is just the reverse of the argument in the above proof.

(2)⇒ (4): Suppose {K1,K2} are Agler kernels of φ, and suppose that K1 depends only
on z1 and w̄1, and

φ(0)K2(·, (w1, 0)) = φ(w1, 0)K2(·,0) (w1 ∈ D). (3.4.1)

Now

1− φ(z)φ(w) = (1− z1w̄1)〈K1(·,w),K1(·, z)〉HK1
+ (1− z2w̄2)〈K2(·,w),K2(·, z)〉HK2

,

implies that

1 + z1w̄1〈K1(·,w),K1(·, z)〉HK1
+z2w̄2〈K2(·,w),K2(·, z)〉HK2

= φ(z)φ(w)

+ 〈K1(·,w),K1(·, z)〉HK1
+ 〈K2(·,w),K2(·, z)〉HK2

,

for all z,w ∈ D2. Therefore

V :

 1

w̄1K1(·,w)

w̄2K2(·,w)

 7→

 φ(w)

K1(·,w)

K2(·,w)

 (w ∈ D2),

defines an isometry from D onto R, where

D = span


 1

w̄1K1(·,w)

w̄2K2(·,w)

 : w ∈ D2

 ⊆ C⊕HK1 ⊕HK2 ,

and

R = span


 φ(w)

K1(·,w)

K2(·,w)

 : w ∈ D2

 ⊆ C⊕HK1 ⊕HK2 .

Note that

HK1 ⊕HK2 = span
{[

w̄1K1(·,w)

w̄2K2(·,w)

]
: w ∈ D2

}
.
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Indeed, if [
f

g

]
∈ [HK1 ⊕HK2 ]	 span

{[
w̄1K1(·,w)

w̄2K2(·,w)

]
: w ∈ D2

}
,

then

0 =
〈[f

g

]
,

[
w̄1K1(·,w)

w̄2K2(·,w)

]〉
HK1

⊕HK2

= 〈f, w̄1K1(·,w)〉HK1
+ 〈g, w̄2K2(·,w)〉HK2

,

that is, w1f(w) + w2g(w) = 0 for all w ∈ D2. Since K1 depends only on z1 and w̄1, all
the functions in HK1 depend only on z1. Therefore, if w2 = 0, then the above equality
implies that w1f((w1, 0)) = 0, and hence f = 0. Consequently, w2g(w) = 0, w ∈ D2,
and hence g = 0, proves our claim. In particular, V ∈ B(C⊕HK1 ⊕HK2) is an isometry.
The above proof also implies that

HKi = span{w̄iKi(·,w) : w ∈ D2},

for i = 1, 2. Now we consider the co-isometry V ∗ and set

V ∗ =

[
φ(0) B

C D

]
=

φ(0) B1 B2

C1 D1 D2

C2 D3 D4

 ∈ B(C⊕ (HK1 ⊕HK2)).

Since [
φ(0) C∗

B∗ D∗

] 1

w̄1K1(·,w)

w̄2K2(·,w)

 =

 φ(w)

K1(·,w)

K2(·,w)

 (w ∈ D2),

it follows that

φ(0) + C∗

[
w̄1K1(·,w)

w̄2K2(·,w)

]
= φ(w),

and

B∗ +D∗

[
w̄1K1(·,w)

w̄2K2(·,w)

]
=

[
K1(·,w)

K2(·,w)

]
,

for all w ∈ D2. Now plug w = 0 into the identity above to see that

B∗ =

[
K1(·,0)
K2(·,0)

]
,

and hence

D∗

[
w̄1K1(·,w)

w̄2K2(·,w)

]
=

[
K1(·,w)−K1(·,0)
K2(·,w)−K2(·,0)

]
.

Since D∗ =

[
D∗

1 D∗
3

D∗
2 D∗

4

]
, it follows that

w̄1D
∗
1K1(·,w) + w̄2D

∗
3K2(·,w) = K1(·,w)−K1(·,0),
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and
w̄1D

∗
2K1(·,w) + w̄2D

∗
4K2(·,w) = K2(·,w)−K2(·,0). (3.4.2)

Plugging w2 = 0 into the first identity, we get

w̄1D
∗
1K1(·, (w1, 0)) = K1(·, (w1, 0))−K1(·,0),

for all w1 ∈ D. Again, noting that K1 depends only on z1 and w̄1, we deduce

w̄1D
∗
1K1(·,w) = K1(·,w)−K1(·,0) (w ∈ D2),

and consequently D∗
3

(
w̄2K2(·,w)

)
= 0, w ∈ D2. This, along with the fact that

{w̄2K2(·,w) : w ∈ D2} is dense in HK2 , implies D3 = 0. We next plug w2 = 0

into (3.4.2) to get

D∗
2(w̄1K1(·, (w1, 0))) = K2(·, (w1, 0))−K2(·,0).

Now we turn to compute C∗
1 . Since C∗

[
w̄1K1(·,w)

w̄K2(·,w)

]
= φ(w)− φ(0), we have

C∗
1 (w̄1K1(·,w)) + C∗

2 (w̄2K2(·,w)) = φ(w)− φ(0) (w ∈ D2).

In particular, if w2 = 0, then

C∗
1 (w̄1K1(·,w)) = φ((w1, 0))− φ(0) (w1 ∈ D).

Finally, we compute B2. Observe that

B∗
2 +D∗

2(w̄1K1(·,w)) +D∗
4(w̄2K2(·,w)) = K2(·,w),

for all w ∈ D2. If w2 = 0, then

B∗
2 +D∗

2(w̄1K1(·, (w1, 0))) = K2(·, (w1, 0)),

which implies that B∗
2 = K2(·,0). Finally, if we let w ∈ D2, then

B∗
2C

∗
1 (w̄1K1(·,w)) = (φ(w1, 0)− φ(0))K2(·,0) = φ(0)K2(·, (w1, 0))− φ(0)K2(·,0),

by assumption (3.4.1), and hence

B∗
2C

∗
1 (w̄1K1(·,w)) = φ(0)(K2(·, (w1, 0))−K2(·,0)) = φ(0)D∗

2(w̄1K1(·,w)).

This proves that φ(0)D2 = C1B2.
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(4)⇒ (1) is essentially along the lines of [48, Theorem 2.3]. However, for the sake of
completeness, we sketch the proof. Let a = φ(0). Since V V ∗ = I, it follows that

I =

 |a|
2 +B1B

∗
1 +B2B

∗
2 aC∗

1 +B1D
∗
1 +B2D

∗
2 aC∗

2 +B2D
∗
4

aC1 +D1B
∗
1 +D2B

∗
2 C1C

∗
1 +D1D

∗
1 +D2D

∗
2 C1C

∗
2 +D2D

∗
4

aC2 +D4B
∗
2 C2C

∗
1 +D4D

∗
2 C2C

∗
2 +D4D

∗
4

 .
Then there exists y ∈ C such that

|y|2 = |a|2 +B2B
∗
2 = 1−B1B

∗
1 > 0,

as a 6= 0. Let x = a
y , and

V1 =

[
y B1

1
xC1 D1

]
and V2 =

[
x 1

yB2

C2 D4

]
.

Clearly, x 6= 0. We first claim that V1 and V2 are co-isometries. Indeed

V2V
∗
2 =

[
|x|2 + 1

|y|2B2B
∗
2 xC∗

2 + 1
yB2D

∗
4

x̄C2 +
1
ȳD4B

∗
2 C2C

∗
2 +D4D

∗
4

]
=

[
1 xC∗

2 + 1
yB2D

∗
4

x̄C2 +
1
ȳD4B

∗
2 C2C

∗
2 +D4D

∗
4

]
.

as |y|2 = |a|2 +B2B
∗
2 and a = xy. Also note that, since aC∗

2 +B2D
∗
4 = 0, we have that

xC∗
2 + 1

yB2D
∗
4 = 0, which implies that V2 is a co-isometry. Next, we compute

V1V
∗
1 =

[
|y|2 +B1B

∗
1

y
xC

∗
1 +B1D

∗
1

y
xC1 +D1B

∗
1

1
|x|2C1C

∗
1 +D1D

∗
1

]
.

Since C1C
∗
1 +D1D

∗
1 +D2D

∗
2 = 1, aD2 = C1B2, a = xy and |y|2 − |a|2 = B2B

∗
2 , we have

1

|x|2
C1C

∗
1 +D1D

∗
1 = 1.

Moreover, since aC∗
1 + B1D

∗
1 + B2D

∗
2 = 0 implies that y

xC
∗
1 + B1D

∗
1 = 0, we have that

V1 is also a co-isometry. Finally, set φ1(z) = τV1(z1) and φ2(z) = τV2(z2), z ∈ D2. It is
then easy to check that

φ(z) = τV (z) = τV1(z1)τV2(z2) = φ1(z)φ2(z),

for all z ∈ D2. This completes the proof.

In the setting of Theorem 3.4.1, one can also explicitly compute the entries of the
block operator matrix V in part (4). The technique involved in the computation is
standard and quite well known (cf. [17, Remark 3.6]). However, we outline some details
for the sake of making this chapter self-contained. We already know that

B∗
2 = K2(·,0) and C∗

1 (w̄1K1(·,w)) = φ((w1, 0))− φ(0),
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and
D∗

2(w̄1K1(·, (w1, 0))) = K2(·, (w1, 0))−K2(·,0),

for all w ∈ D2. Now let g ∈ HK2 and w ∈ D2. Then

(z1D2g)(w) = 〈g,K2(·, (w1, 0))−K2(·,0)〉 = g((w1, 0))− g(0),

and hence
(D2g)(w) =

g((w1, 0))− g(0)

w1
(w ∈ D2).

for all g ∈ HK2 . Similarly, if w1 = 0, then (3.4.2) implies that

w̄2D
∗
4K2(·, (w1, 0)) = K2(·,w)−K2(·, (w1, 0)),

and hence, in a similar way we have

(D4g)(w) =
g(w)− g((w1, 0))

w2
(g ∈ HK2 ,w ∈ D2),

as well as
(D1f)(w) =

f(w)− f(0)

w1
(f ∈ HK1 ,w ∈ D2).

Now we turn to compute C1 and C2. Since C∗
1 (w̄1K1(·,w)) = φ((w1, 0))−φ(0), we have

(z1C11)(w) = 〈C11, w̄1K1(·,w)〉 = φ((w1, 0))− φ(0),

and hence

(C11)(w) =
φ(w1, 0)− φ(0)

w1
and (C21)(w) =

φ(w)− φ(w1, 0)

w2
,

for all w ∈ D2. Finally, we note that (B1f)(w) = f(0) and (B2g)(w) = g(0) for all
f ∈ HK1 and g ∈ HK2 .

In particular, if φ is inner, then we have the following:

Example 3.4.2. Given an inner function φ ∈ S(D2) satisfying one of the equivalent
conditions of Theorem 3.4.1, we have φ(z) = φ1(z1)φ2(z2), z ∈ D2, for some φ1 and φ2

in S(D). Then

1 = |φ(z)| = |φ1(z1)||φ2(z2)| ≤ |φ1(z1)| ≤ 1 (z ∈ T2 a.e.)

from which we see that φ1, as well as φ2, are inner functions. Moreover, for z,w ∈ D2,
we have

1− φ(z)φ(w) = 1− φ1(z1)φ1(w1) + φ1(z1)(1− φ2(z2)φ2(w2))φ1(w1).
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Hence {K1,K2} are Agler kernels of φ, where

K1(z,w) =
1− φ1(z1)φ2(w1)

1− z1w̄1
and K2(z,w) =

φ1(z1)(1− φ2(z2)φ2(w2))φ1(w1)

1− z2w̄2
.

In this case the corresponding reproducing kernel Hilbert spaces are given by

HK1 = Qφ1 ⊗ C and HK2 = φ1C⊗Qφ2 ,

where Qφ1 = H2(D)/φ1H
2(D) and Qφ2 = H2(D)/φ2H

2(D) are model spaces. Moreover,
the co-isometric (unitary) colligation operator V with state space HK1 ⊕ HK2 is given
by

V =

 φ(0) PC|Qφ1
φ(0)PCM

∗
φ1

⊗ PC|Qφ2

φ2(0)M
∗
zMφ1 |C M∗

z |Qφ1
M∗

zMφ1PCM
∗
φ1

⊗ PC|Qφ2

Mφ1 |C ⊗M∗
zMφ2 |C 0 Iφ1C ⊗M∗

z |Qφ2

 .
Finally, we comment on the assumption that φ(0) 6= 0 in Theorem 3.4.1.

Remark 3.4.1. In the proof of Theorem 3.4.1, φ(0) 6= 0 has been used only for the
implication (4)⇒ (1). In the φ(0) = 0 case, one can easily modify the argument of the
aforementioned case to prove a similar statement. Here is a sample statement:

Let φ ∈ S(D2) be a non-zero function and suppose φ(0) = 0. Then the following are
equivalent:

(1) φ(z) = φ1(z1)φ2(z2) for some φ1, φ2 ∈ S(D) such that φ2(0) 6= 0.

(2) φ(z) = zp1φ1(z1)φ2(z2) for some p ≥ 1 and φ1, φ2 ∈ S(D) such that φ1(0) 6= 0

and φ2(0) 6= 0.

(3) There exists p ≥ 1 such that φ̃(z) = z−p
1 φ(z) ∈ S(D2), φ̃(0) 6= 0, and there exist

Agler kernels {K1,K2} of φ̃ such that K1 depends only on z1 and w̄1, and

φ̃(0)K2(·, (w1, 0)) = φ̃(w1, 0)K2(·,0) (w1 ∈ D).

(4) There exists p ≥ 1 such that φ̃(z) = z−p
1 φ(z) ∈ S(D2), φ̃(0) 6= 0, and φ̃ = τV for

some co-isometric colligation

V =

φ̃(0) B1 B2

C1 D1 D2

C2 0 D4

 ,
such that φ̃(0)D2 = C1B2.

3.5 Counterexamples and a converse

We now return to two-variable inner functions, which we encountered in Section 3.2.
The aim of this section is to further analyze Theorem 3.2.1. We begin by exhibiting
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counterexamples to the converse of Theorem 3.2.1. Then, in Theorem 3.5.3, we present
a weak converse to Theorem 3.2.1.

Example 3.5.1. Fix t ∈ (0, 1), and define

φt(z) =
z1z2 − t

1− tz1z2
(z ∈ D2).

It is fairly easy to verify that

|φt(z)| = 1 (z ∈ T2),

and hence, φt is a rational inner function. Contrary to what we are proving, let us
assume that there are Hilbert spaces H1 and H2, an operator D1 ∈ C0·, and an isometric
colligation

Vt =

−t B1 B2

C1 D1 D2

C2 0 D3

 ∈ B(C⊕H1 ⊕H2),

such that τVt = φt. Since

φt(z) + t =
(1− t2)z1z2
1− tz1z2

,

the preceding equality yields

(1− t2)z1z2
1− tz1z2

=
[
B1 B2

]([I 0

0 I

]
−

[
z1 0

0 z2

][
D1 D2

0 D3

])−1 [
z1 0

0 z2

][
C1

C2

]
.

Now the left side is equal to

(1− t2)z1z2(1 + tz1z2 + t2z21z
2
2 + · · · ),

and the right side is equal to

z1B1(I − z1D1)
−1C1 + z2B2(I − z2D4)

−1C2 + z1z2B1(I − z1D1)
−1D2(I − z2D3)

−1C2.

Comparing the coefficients of z1, we see that B1D
n
1C1 = 0, n ≥ 0. Since V ∗

t Vt = I, we
have −t C∗

1 C∗
2

B∗
1 D∗

1 0

B∗
2 D∗

2 D∗
3


−t B1 B2

C1 D1 D2

C2 0 D3

 =

1 0 0

0 I 0

0 0 I

 .
In particular B∗

1B1 +D∗
1D1 = I and −tB1 + C∗

1D1 = 0. The first equality implies (see
the proof of the equality in (3.2.4)) that

∞∑
n=0

D∗n
1 B∗

1B1D
n
1 = I,
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in the strong operator topology as D1 ∈ C0·. Therefore

∞∑
n=0

‖B1D
n
1h‖2 = ‖h‖2,

for all h ∈ H1. In particular, if we choose h = C1(1), then

∞∑
n=1

‖B1D
n
1C1(1)‖2 = ‖C1(1)‖2.

Since B1D
n
1C1 = 0 for all n ≥ 0, we deduce C1 = 0. Then −tB1+C

∗
1D1 = 0 implies that

B1 = 0, and hence D∗
1D1 = I. However, this and the fact that D1 ∈ C0· are mutually

contradictory. This shows that φt 6= τVt for any isometric colligation Vt and D1 ∈ C0·.

Now we turn to a weak converse of Theorem 3.2.1 in the setting of rational inner
functions. We need the following inverse formula for 2× 2 block matrices [69, page 18]:

Theorem 3.5.2. Let X =

[
P Q

R S

]
∈ B(Cm ⊕ Cn), and suppose that P is invertible.

Then X is invertible if and only if ∆ := S − RP−1Q is invertible. In this case, the
inverse of X is given by

X−1 =

[
P−1 + P−1Q∆−1RP−1 −P−1Q∆−1

−∆−1RP−1 ∆−1

]
.

We are now ready to establish the promised weak converse of Theorem 3.2.1.

Theorem 3.5.3. Let φ ∈ S(D2) be a rational inner function and suppose φ(0) 6= 0.
Then the following are equivalent:

(1) φ = τV for some isometric colligation

V =

[
a B

C D

]
=

 a B1 B2

C1 D1 D2

C2 0 D3

 ∈ B(C⊕H1 ⊕H2),

where H1 and H2 are finite-dimensional Hilbert spaces and D1, D3 ∈ C0·.

(2) φ(z) = φ1(z1)φ(z2), z ∈ D2, for some rational inner functions φ1 and φ2 (in
S(D)).

Proof. (1)⇒ (2): Since V ∈ B(C ⊕H1 ⊕H2) is an isometry and dimHi < ∞, i = 1, 2,
V is onto, that is, V is a unitary operator. In particular, V is invertible. Since

a = φ(0) 6= 0,
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by the above theorem, we conclude that aD − CB is invertible and

V −1 =

[
a−1 + a−1B(aD − CB)−1C −B(aD − CB)−1

−(aD − CB)−1C a−1(aD − CB)−1

]
.

Since V ∗ = V −1, in particular, we have

D∗ =

[
D∗

1 0

D∗
2 D∗

3

]
= a−1(aD − CB)−1 = a−1

[
aD1 − C1B1 aD2 − C1B2

−C2B1 aD3 − C2B2

]−1

,

and hence

a

[
aD1 − C1B1 aD2 − C1B2

−C2B1 aD3 − C2B2

][
D∗

1 0

D∗
2 D∗

3

]
=

[
I 0

0 I

]
.

But then this implies (aD2−C1B2)D
∗
3 = 0. Note that the invertibility of D immediately

implies that D3 is also invertible. Then aD2 −C1B2 = 0, and hence, by Theorem 3.4.1,
there exist rational inner functions φ1 and φ2 (here H1 and H2 are finite dimensional
Hilbert spaces) such that φ(z) = φ1(z1)φ(z2), z ∈ D2.

(2)⇒ (1): Since φi (∈ S(D)) is a rational inner function, there exists an isometric
colligation

Vi =

[
ai Bi

Ci Di

]
∈ B(C⊕Hi),

such that dim(Hi) <∞, Di ∈ C0·, and φi = τVi for all i = 1, 2. We define

V =

a1a2 B1 a1B2

a2C1 D1 C1B2

C2 0 D2

 .
Then a somewhat careful computation (or see the proof of [48, Theorem 2.2]) yields that
φ = τV .

In this connection, and also in the context of Remark 3.2.1, it is probably worth

mentioning that in the finite dimensional case we have the following: If
[
D1 D2

0 D3

]
∈

B(Cp ⊕ Cq) for some p, q ≥ 1, then

σ
([D1 D2

0 D3

])
= σ(D1) ∪ σ(D3),

and in particular,
[
D1 D2

0 D3

]
∈ C0· if and only if D1, D3 ∈ C0·.

Finally, we point out that part (1) of Theorem 3.4.1 and part (2) of Theorem 3.5.3
are related (in a different direction) to essential normality of Beurling type quotient
modules of H2(D2) [62].



Chapter 4

Beurling quotient module on the
polydisc

4.1 Introduction

Let L ⊆ H2
E(Dn) be a closed subspace. Then L is said to be a quotient module if

M∗
ziL ⊆ L for all i = 1, . . . , n. The subspace L is called a submodule if L⊥ is a quotient

module [52].

We pause for a brief aside to remark that if n = 1, then a closed subspace Q ⊆ H2
E(D)

is a quotient module if and only if there exist a Hilbert space E∗ and an inner function
Θ ∈ H∞

B(E∗,E)(D) such that Q⊥ = ΘH2
E∗(D), or equivalently

Q = H2
E(D)	ΘH2

E∗(D) ∼= H2
E(D)/ΘH2

E∗(D).

This follows from the classical Beurling-Lax-Halmos theorem [90]. Therefore, the pre-
ceding statement gives a satisfactory description of quotient modules of H2

E(D). It is also
worthwhile to emphasize that there is an inseparable alliance between quotient modules
and bounded linear operators on Hilbert spaces. For instance, if Q is a quotient module
of H2

E(D), then the module operator (also known as model operator) MQ := PQMz|Q
is a pure contraction on Q. The classical Sz.-Nagy and Foias theory says that, up to
unitary equivalence, these are all pure contractions on Hilbert spaces.

Therefore, quotient modules of H2
E(Dn), n ≥ 1, are of interest in operator theory,

function theory, and operator algebras. However, in sharp contrast, the situation changes
dramatically in the case when n > 1: In general, a quotient module of H2

E(Dn) does
not necessarily admit a Beurling-type representation. In fact, concrete description of
quotient modules of H2

E(Dn) is commonly regarded as one of the most difficult and
important problems in modern operator theory and function theory [43, 52, 97, 112].

In this chapter, our interest is in comparing the variability of the classical Beurling
representations of quotient modules in several variables. For a Hilbert space E and a

91
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closed subspace Q ⊆ H2
E(Dn), we say that Q is a Beurling quotient module (and Q⊥ is

a Beurling submodule) if

Q = H2
E(Dn)	ΘH2

E∗(D
n) ∼= H2

E(Dn)/ΘH2
E∗(D

n),

for some Hilbert space E∗ and inner function Θ ∈ H∞
B(E∗,E)(D

n). Since MziMΘ =MΘMzi

for all i = 1, . . . , n, it follows, in particular, that Q (Q⊥) is also a quotient module
(submodule) of H2

E(Dn). In the context of the above discussion, it appears natural to
raise the following question:

Question 2. Which quotient modules of H2
E(Dn) admit Beurling representations?

Curiously, despite its natural appeal and all possible applications, the above question
remained fairly untouched. It is also the one variable work of Beurling [29] which stirred
our interest in this question. Evidently, this has a lot to do with the module (or model)
operators associated with quotient modules. Given a quotient module Q ⊆ H2

E(Dn),
define the n-tuple of commuting contractions Cz = (Cz1 , . . . , Czn) (we call it the tuple
of module operators or module operators in short) on Q by

Czi = PQMzi |Q (i = 1, . . . , n),

where PQ is the orthogonal projection fromH2
E(Dn) onto Q. Therefore, Q is a contractive

Hilbert module over C[z1, . . . , zn] in the following sense (see [43, 52]):

(p, h) ∈ C[z1, . . . , zn]×Q −→ p(Cz1 , . . . , Czn)h ∈ Q.

The following theorem provides the answer to Question 2:

Theorem 4.1.1. Let E be a Hilbert space and let Q be a quotient module of H2
E(Dn).

Then Q is a Beurling quotient module if and only if

(IQ − C∗
ziCzi)(IQ − C∗

zjCzj ) = 0 (i 6= j).

The proof of Theorem 4.1.1 depends on several lemmas, some of which are of indepen-
dent interest and related to the delicate structure of submodules and quotient modules
of (vector-valued) Hardy space over Dn. This is the content of Section 4.2.

In section 4.3, we apply the above framework to dilations of n-tuples of commuting
contractions. Let us explain this when n = 2. A pair of commuting contractions
T = (T1, T2) on H is called Brehmer pair if D2

T ∗ ≥ 0, where

D2
T ∗ := IH − T1T

∗
1 − T2T

∗
2 + T1T2T

∗
1 T

∗
2 .

It is known [46, 86] that a pure Brehmer pair dilates to (Mz1 ,Mz2) on a vector-valued
Hardy space, or, equivalently, (Mz1 ,Mz2) on vector-valued Hardy spaces are analytic
models of a pure Brehmer pair. More specifically, if (T1, T2) is a pure Brehmer pair,
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then there exist a Hilbert space D (which is actually ranDT ∗) and a quotient module
Q ⊆ H2

D(D2) such that

(T1, T2) ∼= (PQMz1 |Q, PQMz2 |Q).

Since Q is not necessarily a Beurling quotient module, this model is not completely
comparable with the classical Sz.-Nagy and Foias analytic models of pure contractions.
The missing piece is precisely a paraphrase of Theorem 4.1.1: Let (T1, T2) be a pair of
commuting contractions on H, and let DT ∗ = ranDT ∗ . Then there exist a Hilbert space
E and an inner function Θ ∈ H∞

B(E,DT∗ )(D
n) such that

(T1, T2) ∼= (PQΘ
Mz1 |QΘ

, PQΘ
Mz2 |QΘ

),

if and only if the pair (T1, T2) is a pure Brehmer pair and

(IH − T ∗
1 T1)(IH − T ∗

2 T2) = 0.

Here QΘ := H2
DT∗ (Dn)/ΘH2

E(Dn) is the Beurling quotient module of H2
DT∗ (D2) corre-

sponding to the inner function Θ ∈ H∞
B(E,DT∗ )(D

n). This is the main content of Theorem
4.3.3.

Section 4.4 deals with factorizations of inner functions in H∞
B(E∗,E)(D

n) and invariant
subspaces of tuples of module operators. We briefly explain the main content of Section
4.4 when E = C and n = 2. The starting point is the following one variable result
(see Sz.-Nagy and Foias, and Bercovici [28, 90]), which connects invariant subspaces of
module operators with factorizations of the corresponding inner functions:

Let θ ∈ H∞(D) be an inner function. Then Tθ := PQθ
Mz|Qθ

has an invariant subspace
if and only if there exist inner functions φ and ψ in H∞(D) such that

θ = φψ.

However, in the case ofH∞(D2), the existence of joint invariant subspaces is not sufficient
to ensure factorizations of inner functions (see Example 4.4.2). Theorem 4.4.3 deals with
this missing link: Let θ ∈ H∞(D2) be an inner function, Qθ = H2(D2)/θH2(D2), and
let Tθ = (PQθ

Mz1 |Qθ
, PQθ

Mz2 |Qθ
) denote the pair of module operators. The following

are equivalent.

1. θ = φψ for some inner functions φ,ψ ∈ H∞(D2).

2. There exists a joint Tθ-invariant subspace M ⊆ Qθ such that M⊕ θH2(D2) is a
Beurling submodule of H2(D2).

3. There exists a joint Tθ-invariant subspace M ⊆ Qθ such that

(I − C∗
1C1)(I − C∗

2C2) = 0,
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where Ci = PQθ⊖MMzi |Qθ⊖M and i = 1, 2.

In Corollary 4.4.4, we prove that nontrivial factorizations is equivalent to the existence
of nontrivial invariant subspaces of tuples of module operators.

We say that two n-tuples T = (T1, . . . , Tn) on H and R = (R1, . . . , Rn) on K are
unitarily equivalent (which we denote by T ∼= R) if there exists a unitary U ∈ B(H,K)

such that UTi = RiU for all i = 1, . . . , n.

This chapter is based on the published paper [30].

4.2 Proof of Theorem 4.1.1

Throughout this section we fix a Hilbert space E and a quotient module Q of H2
E(Dn).

We denote by S the submodule Q⊥, that is

S = H2
E(Dn)	Q ∼= H2

E(Dn)/Q.

In order to shorten some of our computations, we will use the standard notation of cross-
commutators: [T1, T2] := T1T2 − T2T1 whenever T1 and T2 are bounded linear operators
on some Hilbert space.

Now, by definition, Q is a Beurling quotient module if and only if there exist a Hilbert
space E∗ and an inner function Θ ∈ H∞

B(E∗,E)(D
n) such that S = ΘH2

E∗(D
n), which, by

[85, 103], equivalent to the condition that [R∗
zj , Rzi ] = 0 for all i 6= j, where Rzr =Mzr |S ,

and r = 1, . . . , n. Then we have the following interpretation of Theorem 4.1.1:

Lemma 4.2.1. For each i and j in {1, . . . , n}, define

Xij = PSMziPQM
∗
zjPS .

Then Q is a Beurling quotient module if and only if Xij = 0 for all i 6= j.

Proof. Suppose i 6= j. Since MziM
∗
zj =M∗

zjMzi and IH2
E (Dn) − PS = PQ, it follows that

[R∗
zj , Rzi ] = R∗

zjRzi −RziR
∗
zj = PSM

∗
zjMzi |S − PSMziPSM

∗
zj |S = PSMziPQM

∗
zj |S .

Therefore, [R∗
zj , Rzi ] = 0 if and only if (PSMziPQM

∗
zj )|S = 0, which is equivalent to

Xij = (PSMziPQM
∗
zj )PS = 0.

It is often convenient to work with PQMziPQ ∈ B(H2
E(Dn)), which we will denote by

Ci, that is
Ci = PQMziPQ ∈ B(H2

E(Dn)) (i = 1, . . . , n).
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Observe that C = (PQMz1PQ, . . . , PQMznPQ) is an n-tuple of commuting contractions
on H2

E(Dn) (or, equivalently, C defines a contractive C[z1, . . . , zn]-Hilbert module struc-
ture on H2

E(Dn)), and
Ci|Q = Czi and C∗

i |Q = C∗
zi ,

for all i = 1, . . . , n. Finally, to shorten notation we set T k = T k1
1 · · ·T kn

n whenever
T = (T1, . . . , Tn) is a commuting tuple on some Hilbert space and k = (k1, . . . , kn) ∈ Zn

+.

For the rest of this section, we fix i and j from {1, . . . , n}, and assume that i 6= j. In
what follows, we will use k̂i (k̂j) to denote multi-indices in Zn

+ whose i-th (j-th) slot has
zero entry. The following lemma will play a key role.

Lemma 4.2.2. [Ci, C
∗k̂i ] = PQM

∗k̂i
z PSMziPQ for all k̂i ∈ Zn

+ \ {0}.

Proof. First notice that C∗l =M∗l
z PQ and C l = PQM

l
z for all l ∈ Zn

+. Since [Ci, C
∗k̂i ] =

CiC
∗k̂i − C∗k̂iCi, it follows that

[Ci, C
∗k̂i ] = PQMziM

∗k̂i
z PQ − PQM

∗k̂i
z PQMziPQ.

Then, writing PQ = IH2
E (Dn) − PS into the middle of the second term on the right side

and using M∗k̂i
z Mzi =MziM

∗k̂i
z , we get the desired equality.

For each t = 1, . . . , n, we set DCt = (PQ − C∗
t Ct)

1
2 . Since

C∗
t Ct = PQM

∗
ztPQMztPQ = PQM

∗
zt(IH2

E (Dn) − PS)MztPQ = PQ − PQM
∗
ztPSMztPQ,

that DCt is well defined follows from the fact that

PQ − C∗
t Ct = PQM

∗
ztPSMztPQ ≥ 0. (4.2.1)

We now recall a classical result due to R. Douglas [51]. Let A and B be contractions on a
Hilbert space H. The Douglas’s range and inclusion theorem then says that AA∗ ≤ BB∗

if and only if there exists a contraction X such that A = BX. We are now ready for the
third key lemma of this section.

Lemma 4.2.3. Suppose k̂i ∈ Zn
+ \ {0}. There exist contractions Xk̂i

and Yk̂i in B(Q)

such that
[Ci, C

∗k̂i ] = Xk̂i
DCi and [C k̂i , C∗

i ] = DCiYk̂i .

Proof. We already know that D2
Ci

= PQ − C∗
t Ct = PQM

∗
ziPSMziPQ. Then, by Lemma

4.2.2, we have

D2
Ci

− [Ci, C
∗k̂i ]∗[Ci, C

∗k̂i ] = PQM
∗
ziPSMziPQ − (PQM

∗
ziPSM

k̂i
z )PQ(M

∗k̂i
z PSMziPQ)

= PQM
∗
ziPS(IH2

E(Dn) −M k̂i
z PQM

∗k̂i
z )PSMziPQ

= (PQM
∗
ziPS)(IH2

E(Dn) −M k̂i
z PQM

∗k̂i
z )(PQM

∗
ziPS)

∗.
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Since M k̂i
z PQ is a contraction, it follows that IH2

E(Dn) −M k̂i
z PQM

∗k̂i
z ≥ 0, and hence

D2
Ci

− [Ci, C
∗k̂i ]∗[Ci, C

∗k̂i ] ≥ 0.

Then the first equality is an immediate consequence of the Douglas’s range and inclusion
theorem. Finally, since [Ci, C

∗k̂i ]∗ = [C k̂i , C∗
i ], the second equality follows from the

first.

The final ingredient is the following result. Again recall that Xij = PSMziPQM
∗
zjPS

(see Lemma 4.2.1).

Lemma 4.2.4. If DCiDCj = 0, then, for each k̂i, l̂j ∈ Zn
+ \ {0},

1. PQM
∗k̂i
z XijM

l̂j
z PQ = 0,

2. PQM
∗
ziXijM

l̂j
z PQ = 0, and

3. PQM
∗k̂i
z XijMzjPQ = 0.

Proof. By Lemma 4.2.3, we have on one hand [Ci, C
∗k̂i ][Cj , C

∗l̂j ]∗ = 0, and on the other
hand, by Lemma 4.2.2,

[Ci, C
∗k̂i ][Cj , C

∗l̂j ]∗ = (PQM
∗k̂i
z PSMzi)PQ(M

∗
zjPSM

l̂j
z PQ)

= PQM
∗k̂i
z XijM

l̂j
z PQ.

This proves (1). To verify (2), first observe that (4.2.1) implies

(PQ − C∗
i Ci)[C

l̂j , C∗
j ] = (PQM

∗
ziPSMziPQ)[Cj , C

∗l̂j ]∗.

By Lemma 4.2.2, we can write [Cj , C
∗l̂j ]∗ = PQM

∗
zjPSM

l̂j
z PQ, where, on the other hand,

Lemma 4.2.3 implies that
(PQ − C∗

i Ci)[C
l̂j , C∗

j ] = 0.

Therefore

0 = (PQM
∗
ziPSMziPQ)(PQM

∗
zjPSM

l̂j
z PQ) = PQM

∗
zi(PSMziPQM

∗
zjPS)M

l̂j
z PQ,

which proves (2). The proof of (3) is similar to that of (2): We first observe that

[Ci, C
∗k̂i ](PQ − C∗

jCj) = PQM
∗k̂i
z XijMzjPQ

whereas Lemma 4.2.3 implies that [Ci, C
∗k̂i ](PQ − C∗

jCj) = 0.

We also need the following simple observation: Q reduces (M∗
z1PSMz1 , . . . ,M

∗
znPSMzn),

that is
PQ(M

∗
ztPSMzt) = (M∗

ztPSMzt)PQ (t = 1, . . . , n). (4.2.2)
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Indeed, for a fixed t in {1, . . . , n}, writing PQ = IH2
E(Dn) − PS , we see that

PQ(M
∗
ztPSMzt)PQ =M∗

ztPSMztPQ − PSM
∗
ztPSMztPQ,

and, on the other hand, PSM
∗
ztPS = PSM

∗
zt and M∗

ztMzt = IH2
E(Dn) implies that

PSM
∗
ztPSMztPQ = PSM

∗
ztMztPQ = PSPQ = 0.

That is, PQ(M
∗
ztPSMzt)PQ = (M∗

ztPSMzt)PQ. Then the claim follows from the fact that
M∗

ztPSMzt is a self-adjoint operator.

Now we are ready to plunge into the main body of the proof of Theorem 4.1.1.

Proof of Theorem 4.1.1. Suppose Q is a Beurling quotient module. Then there exist a
Hilbert space E∗ and an inner function Θ ∈ H∞

B(E∗,E)(D
n) such that S = ΘH2

F (Dn) (see
the discussion preceding Lemma 4.2.1). Then PS = MΘM

∗
Θ. Now (4.2.1) and (4.2.2)

implies that
PQ − C∗

t Ct =M∗
ztPSMztPQ (t = 1, . . . , n).

Therefore by applying (4.2.2) again we obtain

(PQ − C∗
i Ci)(PQ − C∗

jCj) = (M∗
ziPSMzi)PQ(M

∗
zjPSMzj )PQ =M∗

ziPSMziM
∗
zjPSMzjPQ.

We know by M∗
ΘMΘ = IH2

E(Dn) and MztMΘ = MΘMzt for all t = 1, . . . , n, that
M∗

ΘM
∗
zjMziMΘ =M∗

zjMzi . Then PS =MΘM
∗
Θ implies that PSM

∗
zjMziPS =MΘM

∗
zjMziM

∗
Θ =

MΘMziM
∗
zjM

∗
Θ, and hence

M∗
ziPSMziM

∗
zjPSMzjPQ =M∗

ziMΘMziM
∗
zjM

∗
ΘMzjPQ =MΘM

∗
ΘPQ = 0,

which yields (PQ − C∗
i Ci)(PQ − C∗

jCj) = 0. Thus we obtain

(IQ − C∗
ziCzi)(IQ − C∗

zjCzj ) = (PQ − C∗
i Ci)(PQ − C∗

jCj)|Q = 0.

Now we turn to the converse. By taking into account Lemma 4.2.1, what we have to
show is that Xij = 0. We now describe a multi-step reduction process that reduces
this claim to Lemma 4.2.4. First observe that span{zkQ : k ∈ Zn

+} reduces Mzt for all
t = 1, . . . , n. Then there exists a closed subspace E1 of E such that

span{zkQ : k ∈ Zn
+} = H2

E1(D
n).

By setting E0 = E 	 E1, it follows that

H2
E(Dn) = span{zkQ : k ∈ Zn

+} ⊕H2
E0(D

n).
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Since Q⊥ = S ⊇ H2
E0(D

n), for each f ∈ H2
E0(D

n), we have PQM
∗
ziPSf = PQM

∗
zif = 0,

as H2
E0(D

n) reduces Mzi . This proves that

Xij |H2
E0

(Dn) = 0.

So we only need to check that Xij |span{zkQ:k∈Zn
+} = 0, or, equivalently

XijM
l
zPQ = 0 (l ∈ Zn

+).

Since Xij = PSMziPQM
∗
zjPS (see the definition of Xij in Lemma 4.2.1), we only need

to consider l ∈ Zn
+ \ {0}. Moreover, for each f0 ∈ H2

E0(D
n), since M∗

zif0 ∈ S, it follows
that

〈XijM
l
zf, f0〉 = 〈PSMziPQM

∗
zjPSM

l
zf, f0〉 = 〈PQM

∗
zjPSM

l
zf,M

∗
zif0〉 = 0,

for all f ∈ Q and l ∈ Zn
+ \ {0}. Therefore, it suffices to prove that

XijM
l
zQ ⊥Mk

z Q (l ∈ Zn
+ \ {0}, k ∈ Zn

+).

Note that the case k = 0 is trivial since ranXij ⊆ S. Hence, we are reduced to showing
that

PQM
∗k
z XijM

l
zPQ = 0 (k, l ∈ Zn

+ \ {0}). (4.2.3)

To prove this in full generality, we start with k = ei and l = ej , where ei and ej are the
multiindices with 1 in the i- th and j-th slot, respectively, and zero elsewhere. In this
case, we prove a little bit more, namely

M∗
ziXijMzj = 0.

We proceed as follows: By applying (4.2.1) twice we obtain

(PQ − C∗
i Ci)(PQ − CjC

∗
j ) = (PQM

∗
ziPSMziPQ)(PQM

∗
zjPSMzjPQ)

= PQ(M
∗
ziPSMzi)PQ(M

∗
zjPSMzj )PQ

Since (PQ − C∗
i Ci)(PQ − CjC

∗
j ) = 0, by assumption, (4.2.2) implies that

0 = PQ(M
∗
ziPSMzi)PQ(M

∗
zjPSMzj )PQ = (M∗

ziPSMzi)PQ(M
∗
zjPSMzj ) =M∗

ziXijMzj ,

which proves the desired identity. In particular, (4.2.3) holds whenever k, l ∈ Zn
+ \ {0}

and ki, lj 6= 0. Now let us consider the remaining cases: k, l ∈ Zn
+ \ {0}, where

Case 1: ki = lj = 0,

Case 2: ki 6= 0 and lj = 0, and

Case 3: ki = 0 and lj 6= 0.
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The first case simply follows from part (1) of Lemma 4.2.4. For the remaining cases, we
fix k, l ∈ Zn

+ \ {0}. By (4.2.2) we have

PQM
∗k
z M∗

zi(PSMziPQ) = PQM
∗k
z (M∗

ziPSMzi)PQ = PQM
∗k
z PQ(M

∗
ziPSMzi)PQ.

Therefore, PQM
∗k
z M∗

zi(PSMziPQ) = (PQM
∗k
z )PQM

∗
zi(PSMziPQ), from which it imme-

diately follows that

PQM
∗k
z M∗

ziXijM
l
zPQ = (PQM

∗k
z )(PQM

∗
ziXijM

l
zPQ),

and similarly

PQM
∗k
z XijMzjM

l
zPQ = (PQM

∗k
z XijMzjPQ)(M

l
zPQ).

Then Case 2 and Case 3 follows from part (2) and part (3), respectively, of Lemma 4.2.4.
This completes the proof that Q is a Beurling quotient module.

4.3 Isometric dilations

This section is meant to complement the dilation theory of (a concrete class of) n-tuples
of commuting contractions.

We begin with the definition of isometric dilations. Let T = (T1, . . . , Tn) and V =

(V1, . . . , Vn) be commuting tuples of contractions and isometries on Hilbert spaces H
and K, respectively. We say that V is an isometric dilation of T (or T dilates to V ) if
there exists an isometry Π : H → K such that ΠT ∗

i = V ∗
i Π for all i = 1, . . . , n.

We will mostly restrict attention here to the case when V is (Mz1 , . . . ,Mzn) onH2
E(Dn)

for some Hilbert space E . In fact, if n = 1, then T = (T ) dilates to Mz on H2
E(D) for

some Hilbert space E if and only if T is a pure contraction (recall again that an operator
X is pure if the sequence {X∗m}m≥0 converges to 0 in the strong operator topology).
This deep result is due to Sz.-Nagy and C. Foias [90]. However, in sharp contrast, if
n = 2 (n > 2), then general n-tuples of pure commuting contractions do not dilate to
(Mz1 ,Mz2) on vector-valued Hardy space over D2 (commuting tuples of isometries) (see
[46, 86]).

However, the multivariable situation is completely favorable in the case of Brehmer
tuples (see 1.3.13 for definition).

Theorem 4.3.1. Every commuting n-tuple (n ≥ 2) of contractions satisfying Brehmer
positivity co-extends to an n-tuple of doubly commuting isometries.

We also refer [46, 86] for proof of above dilation results. In particular, the pure case
is the following: 

Theorem 4.3.2. Every commuting n-tuple (n ≥ 2) of pure contractions satisfying Szegö
positivity co-extends to Mz = (Mz1 , . . . ,Mzn) on H2

D(Dn), for some Hilbert space D.
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In particular, there exists an isometry Π : H → H2
D(Dn) such that ΠT ∗

i = M∗
ziΠ for

all i = 1, . . . , n. Then Q := ΠH is a quotient module of H2
D(Dn), and hence

T ∼= (PQMz1 |Q, . . . , PQMzn |Q),

on Q. Note again that, if n = 1, then Q is a Beurling quotient module, and hence

T ∼= P(ΘH2
E∗ (D))

⊥Mz|(ΘH2
E∗ (D))

⊥ ,

for some Hilbert space E∗ and inner function Θ ∈ H∞
B(E∗,E)(D). This inner function Θ

and the Beurling quotient module

QΘ = (ΘH2
E∗(D))

⊥,

are popularly known as the characteristic function of T and the model space correspond-
ing to T , respectively [90]. In summary, pure contractions are unitarily equivalent to
compressions of Mz to model spaces.

We now study an analog of the above analytic model theorem for n-tuples of com-
muting contractions. First we set up some notation. Let E and E∗ be Hilbert spaces, and
let Θ ∈ H∞

B(E∗,E)(D
n) be an inner function. Let us denote by QΘ = H2

E(Dn)	ΘH2
E∗(D

n)

and SΘ = ΘH2
E∗(D

n) the Beurling quotient module and the Beurling submodule, respec-
tively, corresponding to Θ. We also define Tzi,Θ = PQΘ

Mzi |QΘ
for all i = 1, . . . , n, and

set
TΘ = (Tz1,Θ, . . . , Tzn,Θ).

One can now ask which n-tuples of commuting contractions are unitarily equivalent
to TΘ on Beurling quotient modules (or, model spaces) QΘ. The following result (a
refinement of Theorem 4.1.1) yields a complete answer to this question.

Theorem 4.3.3. Let T = (T1, . . . , Tn) be an n-tuple of commuting contractions on H.
The following are equivalent.

(a) T ∼= TΘ for some Beurling quotient module QΘ.

(b) T is a pure Brehmer tuple and (IH − T ∗
i Ti)(IH − T ∗

j Tj) = 0 for all i 6= j.

The proof directly follows from Theorem 4.1.1 and Theorem 4.3.2.

4.4 Factorizations and invariant subspaces

The main goal of this section is to classify factorizations of inner functions in terms of
invariant subspaces of tuples of module operators. Our observation will also bring out
a key difference between n-tuples of operators, n > 1, and single operators.

The structure of invariant subspaces of bounded linear operators has been tradition-
ally related to the theory of (nontrivial) factorizations of one variable inner functions.
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For instance, the following result (see [90, Chapter VI], and more specifically [28, Chap-
ter 5, Proposition 1.21]) connects invariant subspaces of module (or model) operators
with factorizations of the corresponding inner functions. Here we follow the same nota-
tion as in the discussion preceding Theorem 4.3.3.

Theorem 4.4.1 (Sz.-Nagy and Foias, and Bercovici). Let Θ ∈ H∞
B(E∗,E)(D) be an inner

function. Then TΘ has an invariant subspace if and only if there exist a Hilbert space
F and inner functions Φ ∈ H∞

B(F ,E)(D) and Ψ ∈ H∞
B(E∗,F)(D) such that

Θ = ΦΨ.

In the above, the corresponding TΘ-invariant subspace is given by M = SΦ 	 SΨ

[28, Chapter 5, Proposition 1.21]. Here we are interested in the polydisc version of the
above theorem. However, the following example shows that in the case when n > 1 the
existence of joint invariant subspaces is not sufficient to ensure factorizations of inner
functions.

Example 4.4.2. Consider the submodule S = {f ∈ H2(D2) : f(0, 0) = 0} of H2(D2).
Since

S = z1(H
2(D)⊗ C)⊕ z2(C⊗H2(D))⊕ z1z2H

2(D2),

and S is a reproducing kernel Hilbert space, the kernel function k of S is given by

k(z, w) =
z1w̄1

1− z1w̄1
+

z2w̄2

1− z2w̄2
+ z1z2S2(z, w)w̄1w̄2 (z, w ∈ D2),

where
S2(z, w) = (1− z1w̄1)

−1(1− z2w̄2)
−1 (z, w ∈ D2),

is the Szegö kernel of D2. From Example 1.3.6, it is clear that S is not a Beurling
submodule. Now observe

φ(z) =
2z1z2 − z1 − z2
2− z1 − z2

(z ∈ D2),

defines an inner function in H∞(D2). We have φ(0, 0) = 0, and φH2(D2) $ S $
H2(D2). Set M = S 	 φH2(D2). Then M is a non-trivial (PQφMz1 |Qφ , PQφMz2 |Qφ)-
invariant subspace of Qφ, but φ is not factorable.

The missing component in the polydisc analog of Theorem 4.4.1 will be determined
in Theorem 4.4.3.

We are now ready for the polydisc analog of Theorem 4.4.1. We will use the same
notation as in the discussion preceding Theorem 4.3.3.

Theorem 4.4.3. Let Θ ∈ H∞
B(E∗,E)(D

n) be an inner function. The following are equiva-
lent.
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1. There exist a Hilbert space F and inner functions Ψ and Φ in H∞
B(E∗,F)(D

n) and
H∞

B(F ,E)(D
n), respectively, such that Θ = ΦΨ.

2. There exists a TΘ-invariant subspace M ⊆ QΘ such that M ⊕ SΘ is a Beurling
submodule of H2

E(Dn).

3. There exists a TΘ-invariant subspace M ⊆ QΘ such that

(I − C∗
i Ci)(I − C∗

jCj) = 0 (i 6= j),

where Cs = PQΘ⊖MTzs,Θ|QΘ⊖M for all s = 1, . . . , n.

Proof. (1) ⇒ (2): Since MΘ =MΦMΨ, we have ΘH2
E∗(D

n) ⊆ ΦH2
F (Dn). Define

M := ΦH2
F (Dn)	ΘH2

E∗(D
n) = SΦ 	 SΘ.

Clearly, M is a closed subspace of QΘ. Also note that

QΘ 	M = (H2
E(Dn)	ΘH2

E∗(D
n))	 (ΦH2

F (Dn)	ΘH2
E∗(D

n)),

and hence, QΘ 	M = QΦ. Since T ∗
zi,Θ

= M∗
zi |QΘ

and QΦ ⊆ QΘ, it follows that QΦ is
T ∗
zi,Θ

-invariant for all i = 1, . . . , n. Consequently, M is a TΘ-invariant subspace. For the
second part, observe that

M⊕SΘ = SΦ,

is a Beurling submodule of H2
E(Dn).

(2) ⇒ (1): Let M is a TΘ-invariant subspace of QΘ and suppose M⊕SΘ is a Beurling
submodule of H2

E(Dn). Then (see the discussion preceding Lemma 4.2.1) there exist a
Hilbert space F and an inner function Φ ∈ H∞

B(F ,E)(D
n) such that

M⊕SΘ = ΦH2
F (Dn).

In particular, ΘH2
E(Dn) ⊆ ΦH2

F (Dn), and hence, by Douglas’s range and inclusion the-
orem, there exists a contraction X : H2

E∗(D
n) → H2

F (Dn) such that MΘ = MΦX. But
now, since MΦ is an isometry and

MΦXMzi =MΘMzi =MziMΘ =MziMΦX =MΦMziX,

we find XMzi = MziX for all i = 1, . . . , n. Then there exists Ψ ∈ H∞
B(E∗,F)(D

n) such
that X =MΨ. Finally, since MΘ and MΦ are isometries, we obtain

‖f‖ = ‖MΘf‖ = ‖MΦMΨf‖ = ‖MΨf‖ (f ∈ H2
E(Dn)),

and hence, MΨ is an isometry.
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(1) ⇒ (3): As in the proof of (1) ⇒ (2), if we set M = ΦH2
F (Dn) 	 ΘH2

E∗(D
n), then

QΘ 	M = QΦ, which implies Cs = PQΦ
Mzs |QΦ

for all s = 1, . . . , n. Then the desired
equality immediately follows from Theorem 4.1.1 applied to (C1, . . . , Cn) on the Beurling
quotient module QΦ.

(3) ⇒ (2): Since T ∗
zi,Θ

= M∗
zi |QΘ

, i = 1, . . . , n, it follows that QΘ 	 M is a quotient
module of H2

E(Dn). This says QΘ	M is a Beurling quotient module, taking into account
the hypothesis and Theorem 4.1.1. Finally, we observe

H2
E(Dn)	 (M⊕SΘ) = QΘ 	M,

which implies that M⊕ SΘ is a Beurling submodule. This completes the proof of the
theorem.

It is now worthwhile to observe that the subspace M⊕φH2(D2) in Example 4.4.2 is
not a Beurling submodule.

Finally, let us concentrate on the trivial cases of the above theorem, namely, M = {0}
and M = QΘ. Recall that M = ΦH2

F (Dn) 	 ΘH2
E∗(D

n). Then M = {0} if and only
if ΦH2

F (Dn) = ΘH2
E∗(D

n), which, since Θ = ΦΨ, equivalent to H2
F (Dn) = ΨH2

E∗(D
n).

By Lemma 1.3.9, the latter condition is equivalent to the condition that Ψ is a unitary
constant. For the second case, we note that M = QΘ if and only if

ΦH2
F (Dn)	ΘH2

E∗(D
n) = H2

E(Dn)	ΘH2
E∗(D

n),

which is equivalent to H2
E(Dn) = ΦH2

F (Dn). Therefore, we note, again by Lemma 1.3.9,
that M = QΘ if and only if Φ is a unitary constant. This proves that M is a nontrivial
TΘ-invariant subspace of QΘ if and only if the inner functions Φ and Ψ are not unitary
constant.

In fact, something more can be said. We continue to use the setting and conclusion
of Theorem 4.4.3.

Corollary 4.4.4. Let Θ ∈ H∞
B(E∗,E)(D

n) be a nonconstant inner function. Then the
inner functions Φ and Ψ are nonconstant if and only if the following holds:

1. M is a nontrivial TΘ-invariant subspace of QΘ,

2. M is not a Beurling submodule of H2
E(Dn), and

3. QΘ 	M does not reduce Mz ⊗ IE .

Proof. We have already seen that M is a nontrivial subspace of QΘ if and only if both
the inner functions Φ and Ψ are not unitary constant. In particular, if Φ and Ψ are
nonconstant, then M is a nontrivial subspace of QΘ. Now suppose that M is a Beurling
submodule. Then there exist a Hilbert space F1 and an inner function Φ1 ∈ H∞

B(F1,E)(D
n)

such that ΦH2
F (Dn)	ΘH2

E∗(D
n) = Φ1H

2
F1
(Dn). In particular, Φ1H

2
F1
(Dn) ⊆ ΦH2

F (Dn),
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which implies that Φ1 = ΦΦ2 for some inner function Φ2 ∈ H∞
B(F1,F)(D

n). This yields
Φ1H

2
F1
(Dn) = ΦΦ2H

2
F1
(Dn), and hence

ΦΦ2H
2
F1
(Dn) = ΦH2

F (Dn)	 ΦΨH2
E∗(D

n) = ΦQΨ,

from which we obtain QΨ = Φ2H
2
F1
(Dn). Thus QΨ, or equivalently, SΨ reduces Mz⊗IE ,

which implies that Ψ is a constant. This is a contradiction.

Finally, suppose towards a contradiction that QΘ 	M reduces Mz ⊗ IE . Then

M⊕SΘ = H2
E(Dn)	 (QΘ 	M),

also reduces Mz ⊗ IE . On the other hand, since M ⊕ SΘ = ΦH2
F (Dn), it follows that

ΦH2
F (Dn) = H2

F2
(Dn), and hence that Φ is a constant, which is a contradiction.

Now we turn to the converse part. Suppose M is a nontrivial TΘ-invariant subspace of
QΘ. Since Θ = ΦΨ and Θ is nonconstant, both Φ and Ψ cannot be constant. Moreover,
since M is nontrivial, Φ and Ψ cannot be unitary constants (see the discussion preceding
the statement of the corollary). It remains to show that Φ and Ψ cannot be constant
isometry operators. First, let us assume that Φ ≡ V1 for some non-unitary isometry V1
and that Ψ is nonconstant. Then

M⊕ΘH2
E∗(D

n) = ΦH2
F (Dn) = V1H

2
F (Dn) = H2

V1F (D
n),

and hence M⊕ΘH2
E∗(D

n) reduces Mz⊗IE , which is a contradiction. On the other hand,
if Ψ ≡ V2 and Φ is nonconstant, where V2 is a non-unitary isometry, then

M = ΦH2
F (Dn)	 ΦΨH2

E∗(D
n) = Φ(H2

F (Dn)	 V2H
2
E∗(D

n)) = ΦH2
F⊖V2E∗(Dn),

is a Beurling submodule of H2
E(Dn), which is a contradiction. This completes the proof

of the corollary.

We refer the reader to the papers [32, 62, 113] and the survey [112] for other results
(mostly in two variables) on Beurling quotient modules.
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