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Chapter 1

Prelude

1.1 Introduction

We need to do appropriate statistical analysis to make inference

about the characteristics of a population of interest in a real life

situation. This generally involves the selection of a suitable sam-

ple from that population and the extrapolation of findings from that

sample to the whole population. In classical parametric inference it

has been the aim of the statistician to model the true random variable

of interest through appropriate parametric forms indexed by a finite

number of parameters which provide a good fit to the observed data

pattern and can be useful in further analysis and prediction. Till

about the middle of the last century, this statistical analysis focused

almost entirely on the efficiency aspect of the problem. Around the

1950s and 1960s, however, the need for the stability of the procedure

under non-ideal conditions also started gaining recognition. In prac-

tice, all statistical methods rely on a bunch of assumptions, either

implicitly or explicitly, and in classical procedures the failure of the

1
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assumptions to hold may put the validity of the analysis in ques-

tion. Yet, small deviations from assumed model conditions are never

really completely unexpected in real life. In addition, legitimately oc-

curring outliers may also cause stability problems for classical (but

efficient) methods of statistical analysis. But life is dynamic, so re-

searchers have gladly welcomed the concept of “robustness” to cover

for these deficiencies. Robustness is generally (but not always) asso-

ciated with a loss in asymptotic efficiency, which is viewed by many

authors as the cost of achieving robustness. In our research it will

be our endeavor to search for robust techniques with minimal loss in

efficiency.

In this thesis we will focus on the minimum distance approach to ro-

bust inference. This concept was initially pioneered by Wolfowitz (1952,

1953, 1957), who described the desirable properties of this method

under suitable conditions. This idea, based on the quantification of a

measure of discrepancy between the data and the model, is a natural

one, and later research has shown that it may have an important

role in generating inference procedures with some natural robustness

properties. See, e.g., Donoho and Liu (1988).

Two broad types of distances are usually used in the literature for

minimum distance inference. We describe them below.

1. The distances between the distribution functions of the data and

the model; these include, for example, the Kolmogorov-Smirnov

distance, the Cramér-von Mises distance (von Mises (1936, 1937,

1947)), the Anderson-Darling distance (Anderson and Darling (1952)),

etc.

2. The distances between probability density functions (PDFs).

More specifically, the distance between some non-parametric
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density estimate of the data density and the model density; for

example, the Pearson’s χ2 (Pearson (1900)), the Hellinger dis-

tance (Hellinger (1909)), the Kullback-Leibler divergence (Kull-

back and Leibler (1951)), the Bregman divergence (Bregman (1967)),

etc.

The robustness concept started to catch up during the 1950s and 60s,

and since then the research in this area has grown at a furious pace.

The term ‘robust’ was coined by Box (1953), and profound early

contributions were made by Tukey (1960), Huber (1964, 1965, 1967,

1968, 1970, 1972, 1973, 1975, 1981) and Hampel (1968, 1971,1974)

in establishing the general theory of robustness in the presence of

outliers. Hampel (1974) introduced the concept of the ‘Influence

Curve’, which has become one of the most important and exclusive

heuristic evalutators of robustness and currently goes by the mod-

ified name of ‘Influence Function’. Following the works of Huber,

Hampel and the other pioneers, the statistical community has wit-

nessed a vast growth in this literature from a preliminary problem

to a rich and complicated problem. The early literature includes,

among many other prominent contributions, the works of Andrews

et al. (1972), Maronna (1976), Yohai and Maronna (1979), Ronchetti

(1982), Rousseeuw and Yohai (1984), Rousseeuw (1985), Maronna

and Yohai (1995, 2004), Robinson et al. (2003), etc.

Under the minimum distance approach, the works of Parr and Schu-

cany (1980, 1982), Boos (1981, 1982), Parr and De Wet (1981) and

Wiens (1987) among others, made significant contributions using dis-

tance measures based on distribution functions. On the other hand,

very significant contributions in the approach based on density-based

divergences were made during this period by Beran (1977), Cressie
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and Read (1984), Tamura and Boos (1986), Simpson (1987, 1989),

Donoho and Liu (1988), Lindsay (1994), etc. Since the information

content of the model is linked to the score function, it appears that

the approach based on density functions is best suited for retaining

full efficiency under any robust approach.

Another important use of the minimum distance technique is in test-

ing the goodness-of-fit of a statistical model. This part also relates

to the closeness between the data and the model, but in an opposite

sense compared to robust parametric estimation. In the latter case,

the basic target is to down-weight the effect of outliers and small

deviations; on the contrary, the aim of goodness-of-fit testing is to

magnify the small deviations from the hypothesized model for achiev-

ing high power for the test. Evidently the distances which make the

most useful contribution in robust parametric inference need not be

the best ones for the goodness-of-fit testing problem. The contri-

bution of Cressie and Read (1984), through the introduction of the

‘Power Divergence’ family, is meaningful in this regard. Accord-

ing to them, this family of statistics provides an innovative way to

unify and extend the literature by linking the traditional goodness-of-

fit test statistics through a single, real-valued parameter. However,

as expected, the divergences which provide powerful goodness-of-fit

tests are not necessarily the optimal ones in the context of robust

inference.

Another significant part of robust inference whose omission will ren-

der our research incomplete is the selection of optimal tuning param-

eter(s). Most robust estimation procedures, including practically all

minimum distance procedures, depend on the choice of a tuning pa-

rameter which normally controls the trade-off between robustness
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and efficiency. Hence, there will always be a risk of inappropriate

analysis if the chosen tuning parameter(s) is/are inappropriate. We

will follow up on some existing data driven choices for determining

the value(s) of the tuning parameter(s) so that the full potential of

these estimators might be realized. One major drawback of some of

these methods is the dependency on an initial pilot estimator. With

inappropriate pilots, the robustness issue of the estimator may it-

self be in jeopardy. Hence, our endeavour is to develop a general

method which will optimize their performance and remove this pilot

dependency to the extent possible.

1.2 General Notation

In this section, we will present some mathematical notation which

we will encounter throughout this thesis.

(i) Unless mentioned otherwise, the term ‘log’ will represent the

natural logarithm.

(ii) Unless mentioned otherwise, the term ‘density function’ will rep-

resent both the probability mass function for discrete models

and the probability density function for continuous models.

(iii) The uppercase letters G and Fθ will denote the cumulative dis-

tribution functions, whereas the lowercase letters g and fθ will

denote the corresponding density functions.

(iv) Given an i.i.d. sample X1, X2, . . . , Xn, the empirical version of

the true distribution G will be denoted by Gn, which has the
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form

Gn(x) =
1

n

n∑
i=1

I(Xi ≤ x),

where I(A) is the indicator function of the event A.

(v) Λy(x) will denote the distribution function of the degenerate

distribution at y and λy(x) will denote the corresponding prob-

ability density function.

(vi) The uppercase letters J , V , etc. will denote the matrices under

the model fθ, whereas Jg, Vg, etc. will denote the correspond-

ing matrices needed to express the asymptotic variance of the

estimators under g.

(vii) Unless mentioned otherwise, we will assume that θ is a p-dimensional

parameter and we will denote the parametric model family by

F = {Fθ : θ ∈ Θ ⊂ Rp}.

(viii) The symbol ∇ will represent the gradient with respect to the

parameter. More specifically, the jth component of the gradient

will be denoted by ∇j. Similarly, the second order derivative

with respect to the parameter θ will be denoted by ∇2, where

∇jk will represent the joint partial derivative with respect to θj

and θk.

(ix) Unless mentioned otherwise, χ will denote the support of a dis-

tribution.
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1.3 Some Well-Known Concepts

1.3.1 Fisher Information

In the field of parametric estimation, the ‘Fisher Information’ is one

of the most important concepts in the study of the parameter θ

indexing the parametric model under study. Let us suppose that

X has a density function fθ with respect to a σ-finite measure υ on

R. Let Θ ⊆ R be the parameter space, i.e., θ is a scalar parameter.

Furthermore, for any measurable set B ⊂ R, we assume that the

relation.

∇
∫
B
fθ(x)dυ(x) =

∫
B
∇fθ(x)dυ(x), (1.1)

is satisfied where ∇ is the gradient with respect to θ. Moreover the

score function uθ(x) equals the derivative of the log of the density,

i.e.,

uθ(x) = ∇ log(fθ(x)) =
∇fθ(x)

fθ(x)
.

From Equation (1.1), it can be shown that

Eθ [uθ(X)] = 0.

The Fisher Information I(θ) turns out to be the variance of the score

function, that is,

I(θ) = Vθ [uθ(X)] = Eθ

[
u2
θ(X)

]
.

Here Vθ(·) represents variance with respect to fθ. Evidently, a high

value of I(θ) indicates a substantially high score function on the aver-

age, that is, the rate of change of the density function with respect to
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θ is quite significant in such a scenario. For a family of distributions

with highly variable uθ, we intuitively expect that the estimation of

the parameter θ using the sample to be easier – different values of θ

change the behaviour of the score function uθ. If this uθ is close to

zero, then we can conclude that the corresponding random variable

does not provide much information about θ. On the contrary, if |uθ|
or u2

θ is large, then we can assume that the random variable plays a

significant role in giving information about θ; thus the score is quite

sensitive towards changes in θ. This Fisher Information basically

measures the overall sensitivity of the functional relationship of fθ to

the changes in θ through imposing a weight fθ (x) to this sensitivity

at each potential outcome x.

Our discussion, so far, has been in the context of a scalar parameter.

If we consider the p-dimensional case, p > 1, then, θ = (θ1, . . . , θp)
T ,

and the score function becomes

uθ(x) =
(
u1θ(x), u2θ(x), . . . , upθ(x)

)T
(1.2)

where, ujθ(x) =
∇jfθ(x)
fθ(x) . Similarly, the Fisher Information (matrix)

is defined in this case as

I(θ) = E
(
uθ(X)uθ(X)T

)
where Ijk(θ) = Eθ [ujθ(X)ukθ(X)]. By definition, this matrix is non-

negative definite.

In case of n i.i.d. sample observations from the density fθ with a

unidimensional θ ∈ Θ, an open subset of R, suppose we want to

estimate a continuously differentiable real-valued function m(θ). If

Tn is an unbiased estimator of m(θ), then under certain regularity
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conditions, the variance of Tn can be bounded by the relation

Vθ(Tn) ≥
(m

′
(θ))2

nI(θ)
, (1.3)

where I(θ) denotes the Fisher Information and m
′
(·) represents the

derivative of m(·). The bound given in Equation (1.3) is called the

Cramér-Rao lower bound; see, e.g., Rao (1973). For a p-dimensional

θ, this lower bound becomes

Vθ(Tn) ≥
1

n
hT I−1(θ)h,

where h = (h1, h2, . . . , hp)
T = (∇1m(θ),∇2m(θ), . . . ,∇pm(θ))T .

1.3.2 First Order Efficiency

In the field of parametric estimation, efficiency is a measure of the

quality of an estimator – more specifically, it helps us to quantify

the relative degree of undesirability of estimation errors of differ-

ent magnitudes, through some particular choice of the loss function.

Consider an i.i.d. random sample of size n from the true data gener-

ating distribution, and let fθ be the model density. In looking for the

most appropriate estimator, it is often sufficient to restrict ourselves

to only consistent and asymptotically normal (CAN) estimators, Tn,

for estimating m(θ), for which there exists a positive, asymptotic

variance ν(θ) such that

√
n(Tn −m(θ))√

ν(θ)

D−→ Z ∼ N(0, 1)

as n → ∞. The first order efficiency of these CAN estimators is

checked through a comparison between ν(θ) and the Cramér-Rao
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lower bound given in Equation (1.3) and an estimator can be called

first order efficient, if its asymptotic variance coincides with the lower

bound given by Equation (1.3).

Sometimes one may come across such estimators whose asymptotic

variance is less than this lower bound (see Le Cam (1953)). These

‘super-efficient estimators’, which are not statistically meaningful,

are to be eliminated from the set of CAN estimators to restrict our at-

tention to consistent and uniformly asymptotically normal (CUAN)

estimators only. Let us restrict our attention to the case m(θ) = θ,

and let θ be a scalar. Under this setup, we will consider Tn to be

first order efficient if

√
n(Tn − θ)

D−→ N(0,
1

I(θ)
), under fθ.

For the multiparameter case, the asymptotic variance of
√
n(Tn− θ),

where Tn is a first order efficient estimator, is given by I−1(θ).

1.3.3 Statistical Functionals

Often a statistic can be viewed as a functional defined on an ap-

propriate space of distribution functions. Let Tn(X1, . . . , Xn) be a

p-dimensional statistic based on a random sample X1, . . . , Xn drawn

from G. The empirical distribution Gn is as defined in Section 1.2.

Suppose we can express Tn as T (Gn), where T : G → Rp is a func-

tional independent of n. Then this T (·) is called a statistical func-

tional. Here, G refers to a suitable collection of the distribution

functions, including all empirical distribution functions. Moreover, a

statistical functional is considered to be linear if for any G,F ∈ G,

T (εF + (1− ε)G) = εT (F ) + (1− ε)T (G), ε ∈ [0, 1] .
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Evidently, any functional T with the form T (G) =
∫
φ(x)dG(x) is

linear. In fact, a linear statistical functional must be of this form.

Again, another significant property of any estimator in the form of

statistical functional is given by the following definition.

Definition 1.1. Suppose that X1, X2, . . . , Xn is a random sample

from a distribution modeled by the parametric family F = {Fθ : θ ∈
Θ ⊂ Rp} and let θ̂ = T (Gn) be the estimator of the parameter θ

where Gn is the empirical distribution function. This estimator will

be called Fisher consistent, if the functional T satisfies T (Fθ) = θ.

According to von Mises (1936, 1939, 1947), through the use of the

central limit theorem, it can be claimed that the asymptotic distribu-

tion of linear statistical functionals converge to normal distributions

under certain suitable differentiability conditions. This specific for-

mulation of statistics, based on distribution functions, is crucial in

the context of the most heuristic tool for measuring the robustness

of statistics, called the influence function (IF). It describes the effect

of an additional observation at any point x on a statistic T , given a

sample with distribution F . Roughly speaking, the influence function

is the first derivative of a statistic T at an underlying distribution

G, where the point x plays the role of the coordinate in the infinite

dimensional space of probability distributions.

For any two distributions G and F , the von Mises derivative of a

functional T at G, denoted by T
′

G, is defined as

T
′

G(F −G) =
∂

∂ε
T (εF + (1− ε)G)

∣∣∣∣∣
ε=0

=
∂

∂ε
T (G+ ε(F −G))

∣∣∣∣∣
ε=0

,
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if there exists a real-valued function φG(x), independent of F , such

that

T
′

G(F −G) =

∫
φG(x)d(F −G)(x),

and the additional restriction∫
φG(x)dG(x) = 0

is required for the uniqueness of φG. This φG is called the IF of

the functional T at G and will be denoted as IF (y, T,G) in the

upcoming portion of this thesis. Evidently, its mean is 0. However,

the influence function can also be computed directly without relying

on the existence of the von Mises derivative. Under appropriate

conditions, it can be represented directly as

φG(y) =
∂

∂ε
T (εΛy + (1− ε)G)

∣∣∣∣∣
ε=0

=
∂

∂ε
T (G+ ε(Λy −G))

∣∣∣∣∣
ε=0

,

where Λy is defined in Section 1.2. For illustrations, consider the

mean functional

Tmean(G) =

∫
xdG.

It is a linear functional and a simple calculation leads to the fact

that IF (y, Tmean, G) = y − Tmean(G). Evidently, it is unbounded in

y, which indicates the non-robust nature of the sample mean.

Again, the influence function of the statistical functional T (G) has

an important connection with the asymptotic distribution of the cor-

responding estimator T (Gn). For this, we need an approximation of
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the form T (Gn)−T (G) ≈ T
′

G(Gn−G) in large samples. Let us define

A(ε) = T (εF + (1− ε)G) , ε ∈ [0, 1] .

A Taylor series expansion for A(ε) around ε = 0 would be

A(ε) = A(0) + εA
′
(0) + higher order terms. (1.4)

Replacing F by Gn, we evaluate the above expansion at ε = 1 to get,

T (Gn) = T (G) + T
′

G(Gn −G) +Rn

= T (G) +

∫
φG(x)dGn(x) +Rn,

where Rn = higher order terms.

Therefore,

√
n (T (Gn)− T (G)) =

√
n

n

n∑
i=1

φG(Xi) +
√
nRn

=
1√
n

n∑
i=1

φG(Xi) +
√
nRn.

If
√
nRn

P−→ 0 as n→∞, we have

√
n (T (Gn)− T (G))

D−→ N(0, V (φG(X))).

1.3.4 M-Estimation

Huber introduced a flexible class of estimators – see Huber (1981) for

an extended discussion – which later became quite useful in the field
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of robust estimation. It is a slight generalization of the MLE (maxi-

mum likelihood estimator, discussed later). Consider a scalar param-

eter θ. Now instead of solving
∑
uθ(Xi) = 0 (the estimating equation

of the MLE) based on an i.i.d. sample X1, X2, . . . , Xn, consider the

solution of
∑
ψθ(Xi) = 0 without restricting ψθ : Θ× χ→ R to the

form of the score function. This class of estimators are called M-

estimators. Huber calls them “maximum likelihood estimates under

non-standard conditions”.

Let the functional T (G) = θ be the solution of∫
ψθ(x)dG(x) = 0. (1.5)

Now, for a scalar parameter θ, if one replaces G by Gn, we obtain the

M-estimator Tn = T (Gn) as a solution of the estimating equation

∑
ψθ(Xi) = 0. (1.6)

Let Gε = (1−ε)G+εΛy be the contaminated distribution and let θ be

a scalar parameter. After taking the derivative of the corresponding

estimating equation under contamination∫
ψT (Gε)(x) dGε(x) = 0

with respect to ε and evaluating at ε = 0, the IF of the M-estimator

is found to be

IF (y, T,G) =
ψT (G)(y)∫

ψ
′

T (G)(x) dG(x)
.
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Since the MLE is a special case of the M-estimator class, we can

derive that the IF of the maximum likelihood functional TML is

IF (y,MLE,Fθ) =
uθ(y)

I(θ)

under the parametric model family {Fθ : θ ∈ Θ ⊂ R}. On the other

hand, consider the sample median Tn = T (Gn) as an estimator of

location, which is also an M-estimator solving the equation∫
ψTn(x) dG(x) = 0

where ψT (x) = [I(x > T )− I(x < T )], I(·) being the indicator func-

tion. The IF in this case becomes

IF (y, T,G) =


1

2g(t)
, for y > t (1.7)

− 1

2g(t)
, for y < t. (1.8)

for the median function T , given by the equation
∫
ψT (x) dG(x) =

0. Clearly, these two IFs indicate the influence of small departures

from the assumed distributions on the MLE and the sample median,

respectively.

Since uθ(y) is usually unbounded, it shows non-robust characteristics

in case of the MLE, while the IF of the sample median is bounded

and hence, it has better robustness and stability properties compared

to both the sample mean and the MLE.

If we concentrate on its large sample properties, we can derive that,

√
n (Tn − T (G))

D−→ N(0, σ2
G)
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for an M-estimator where,

σ2
G =

∫
ψ2
T (G)(x) dG(x)(∫

ψ
′

T (G)(x) dG(x)
)2 .

In the multiparameter case, the expression of IF will become

IF (y, T,G) =

[∫
ψ
′

T (G)(x) dG(x)

]−1

ψT (G)(y)

and the corresponding asymptotic variance will be

ΣG = J−1KJ−1

where, J = EG

[
ψ
′

T (G)(X)
]

K = EG

[
ψT (G)(X)ψTT (G)(x)

]
.

For more details on M-estimation, Huber (1981), Hampel et al. (1986)

and Maronna et al. (2006) may be consulted.

1.4 Parametric Inference under Classical Approach

Parametric statistical inference is used in real life scenarios when

we have a reasonable idea about the model describing the available

data/the performed experiment except for a few numerical values

labelling the model, called parameters. Consider the sample values

of the observable random variables {X1, X2, . . . , Xn} = X, and the

parametric family F of distribution function Fθ(x), θ ∈ Θ describing

it. In relation to the family F , a function lθ(x), which is assigned a

value proportional to the probability density function of X at X = x

over θ for each specific choice of θ, is called the likelihood function.
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On the basis of this likelihood function, in the early part of the twen-

tieth century, Sir Ronald A. Fisher had initiated the development of

the concrete mathematical formulation of the theory of maximum

likelihood. At present, this technique is the default choice of most

researchers in case of parametric inferential problems.

1.4.1 Parametric Estimation by Likelihood Method

Although we have already introduced the likelihood function, the key

to the maximum likelihood estimation procedure, we are interested in

viewing this technique within the framework of statistical functionals.

Let us consider X1, X2, . . . , Xn to be an i.i.d. sample from G and

let F = {Fθ : θ ∈ Θ ⊂ Rp} be a collection of distribution functions

modelling the data generating distribution. As mentioned earlier,

the likelihood function is defined as

lθ(X) =
∏
i

fθ(Xi). (1.9)

According to Fisher (1922), this likelihood function is nothing but

the ‘frequency of occurrence of a particular value of a parameter of

interest’. Fisher’s idea concerns ‘the value of the parameter having

the highest frequency’ which, in the probabilistic approach, coin-

cides with the value of the parameter having the highest probability

of occurrence. We introduce this technique here. The maximum like-

lihood estimation technique basically evaluates that value of θ which

corresponds to the maximum of the likelihood. In practice, we often

obtain the MLE by solving the system of likelihood equations ob-

tained by equating the derivative of the log-likelihood to zero. Thus,
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the likelihood equations are

∂ log lθ(X)

∂θ
=

n∑
i=1

uθ(Xi) = 0,

where uθ is the score function as mentioned earlier. As we have

already shown that the MLE is an M-estimator also, the maximum

likelihood functional TML(G) will be defined as∫
uTML(G) (x) dG(x) = 0.

Moreover, TML(Fθ) = θ, which shows that the MLE is Fisher consis-

tent. In Section 1.3.4, we have already observed the expression of the

IF of the MLE, which indicates the well-known lack of the robustness

property of the MLE.

1.4.2 Parametric Hypothesis Testing by Likelihood Method

Due to its desirable asymptotic properties, Neyman and Pearson (1928)

and Wilks (1938) developed the theory of testing of hypothesis based

on likelihood methods. The details of the theory and the asymptotic

properties of the likelihood-based tests are given in many standard

texts of statistical inference and asymptotic theory; see, for example,

Serfling (1980). Here we consider all likelihood-based classical tests

under the same parametric setup.

To describe the tests of hypothesis based on likelihood methods, let

us denote the average of the score functions as

Zn(θ) =
1

n

∑
i

uθ(Xi).
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In such a scenario, three types of tests are popular and they are

described below. As this introduction is being given just for a general

flavour of likelihood based tests, in the following we describe the

tests for a simple null hypothesis only. Consider the null hypothesis

H0 : θ = θ0 to be tested against H1 : θ 6= θ0.

(i) Wald’s test (Wald (1943)): This test, named after Abraham

Wald, mainly deals with the weighted distance between the un-

restricted estimate and its null hypothesized value. Here, θ̂n is

obtained by maximizing the likelihood over the whole parameter

space Θ, that is,

θ̂n = arg max
θ∈Θ

log(lθ(X)).

The corresponding test statistic

Wn = n
(
θ̂n − θ0

)T
I(θ0)

(
θ̂n − θ0

)
has an asymptotic χ2

p distribution under H0.

(ii) Score test: The main component of this test, introduced by

Rao (1948), is the score function evaluated under the null hy-

pothesis. Since, under the null, θ is fixed, the required test

statistic will be

Sn = nZn(θ0)
T I−1(θ0)Zn(θ0)

which will asymptotically follow a χ2 distribution with p degrees

of freedom under H0. Moreover, under the null hypothesis, Sn

is separated from Wn by op(1) term only. Under the simple

null hypothesis, the score test does not require any parameter

estimation.
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(iii) Likelihood Ratio test: Let θ̂n be the unrestricted maximum like-

lihood estimator obtained by maximizing the likelihood under

the unrestricted parameter space Θ. A test statistic is con-

structed by evaluating the deviation of log-likelihood of θ̂n from

the log-likelihood of θ0. The likelihood ratio test statistic is

λn = 2
[
log
(
lθ̂n(x)

)
− log (lθ0(x))

]
and in this case, this statistic asymptotically follows a χ2 distri-

bution with p degrees of freedom under H0.

For all these three cases, a right-tailed test based on Wn, Sn and

λn would be appropriate for the rejection of H0. The three test

statistics are asymptotically equivalent under H0. Their asymptotic

equivalence continues to hold in case of local alternatives converging

sufficiently fast, but the statistics may behave differently for fixed

non-local alternatives under certain regularity conditions.

1.5 Robust Parametric Inference

Statistical inference is mainly based on two things – one is the set

of sample observations and the other is the set of assumptions about

the underlying situation. The classical approach based on the max-

imum likelihood, which is the cornerstone of parametric inference,

performs best when all these assumptions hold in the given scenario.

However these assumptions only approximate the reality, and small

deviations can never be entirely eliminated. The data analyst may

also have to face gross errors and outliers which are incompatible

with the model. In a crude sense, an outlier is an observation that
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lies outside the overall pattern of a distribution (Moore and Mc-

Cabe (1999)), i.e, it is distant from the majority of the other obser-

vations (Grubbs (1969)). This is a geometrical view of an outlier.

They are generally bad data points that can lead to highly ineffi-

cient and unstable performance of the classical technique, along with

dangerous consequences. This problem has been observed for a long

time and the initial attempts involved rejection of these ‘outliers’. At

the present time, researchers believe that outliers may contain valu-

able information about a system, and should be further scrutinized,

rather than being subjectively deleted from the data set. Besides,

in the present age of big and high-dimensional data, identifying out-

liers may be a very difficult task. The inference, therefore, should

be dealt with suitable robust procedures, which automatically decide

if and by how much to discount an observation suspected to be an

outlier. In the next subsection we will expand the idea of outliers to

probabilistic outliers, going beyond geometric outliers.

The word ‘robust’ is loaded with many inconsistent connotations, but

we will proceed with the idea of ‘robustness’ given in Huber (1981),

that is, ‘insensitivity to small deviations from the assumptions’.

The robust approach to statistical modelling and data analysis aims

at introducing techniques which produce stable statistics leading to

reliable parameter estimates, associated tests and confidence inter-

vals, not only when the data follow a given distribution exactly, but

also when there are mild violations to the parametric assumptions

or contamination is present in the data. This approach provides a

very reliable method of detecting outliers, even in high-dimensional,

multivariate scenarios. While the problem of robustness is quite old

in the history of statistics, it has been formalized only in the later
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part of the twentieth century. Some approaches consider the general

and abstract notions of stability, whereas others have taken differ-

ent topological and geometrical aspects related to robustness into

account. One such popular method adopted in the field of robust

inference is the method based on disparities.

1.5.1 Minimum Disparity Estimation

In the field of robust inference, the main component of statistical

modelling is to minimize the amount of discrepancy between the

model and the data through some robust measuring tool. We have

already mentioned disparities as one such class of discrepancy mea-

suring tools, many of which are quite insensitive to the presence of

outliers. A brief description of the minimum disparity estimation

procedure is given below.

1.5.1.1 Disparities

The class of ‘disparity’ measures is essentially the family of chi-square

type distances, also called the φ-divergences, or the f -divergences

in the literature (see Csiszár (1963, 1967), Ali and Silvey (1966),

Lindsay (1994), Pardo (2006) or Basu et al. (2011)). The class of

chi-square type distances between two densities g and f includes, for

example, the likelihood disparity (LD), the Kullback-Leibler diver-

gence (KLD) and the (squared) Hellinger distance (HD), which are

discussed in the next subsection. The main advantage of focusing

on this family is that it allows us to comprehensively study a com-

mon class of estimators which includes the MLE as well as many

remarkably strong robust estimators.
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In the parametric estimation scheme that we are considering, the

estimator corresponds to the parameter of the model density which is

nearest to the observed data density in terms of the given divergence,

the observed data density being a non-parametric representative of

the true, unknown density, based on the given sample.

Pardo (2006) provides a nice description of minimum disparity meth-

ods in discrete models with finite support, based on the multinomial

distribution. On the other hand, in case of continuous models, the

construction of the data density inevitably requires the use of an

appropriate smoothing technique, like kernel density estimation for

chi-square type distances. To be more specific, we will follow the

approach of Lindsay (1994) to describe this methodology through

the residual adjustment function and the Pearson residual discussed

later in this chapter.

Let X1, . . . , Xn be an i.i.d. sample from a distribution G, having den-

sity g with respect to the counting measure. The support of the dis-

tribution is taken to be, without loss of generality, χ = {0, 1, 2, . . .}.
Let rn(x), relative frequency at x, be the data based estimate of the

probability of occurrence of x. Moreover, we consider the parametric

model family F , which models G; both G and F belong to G, the

convex class of all distributions having densities with respect to the

counting measure. We quantify the separation between the vectors

rn = (rn(0), rn(1), . . .)T and fθ = (fθ(0), fθ(1), . . .)T , where, both

vectors satisfy

∞∑
x=0

rn(x) =
∞∑
x=0

fθ(x) = 1.
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Definition 1.2. Let C be a thrice differentiable, strictly convex func-

tion on [−1,∞), satisfying

C(0) = 0. (1.10)

Let the Pearson residual at the value x be defined by

δ(x) =
rn(x)

fθ(x)
− 1. (1.11)

(We will denote it by δn(x) whenever the dependence on n has to

be made explicit). Then the disparity between the observed relative

frequency vector rn and the model probability vector fθ generated

by C is given by

ρC(rn, fθ) =
∞∑
x=0

C(δ(x))fθ(x). (1.12)

The conditions mentioned in the above definition are called the dis-

parity conditions. The function C is defined as the disparity gener-

ating function. Applying Jensen’s theorem to the convex function C,

we get

∑
C(δ(x))fθ(x) ≥ C

(∑
δ(x)fθ(x)

)
= C (Eθ(δ(X)))

= C(0) = 0.

This is the non-negativity property of the disparity function. Fur-

thermore, by strict convexity, the equality holds if and only if when

fθ(x) = rn(x) ∀ x ∈ χ.
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1.5.1.1.1 Specific Cases of Disparities: Specific forms of C lead to

several well-known disparities, some of which have been mentioned

earlier.

(i) If we consider C(δ) = (δ + 1) log(δ + 1) − δ, then we get the

likelihood disparity (LD) as

LD(rn, fθ) =
∑[

rn log

(
rn
fθ

)
+ (fθ − rn)

]
=
∑

rn log

(
rn
fθ

)
.

(ii) The symmetric opposite of LD is the Kullback-Leibler diver-

gence (KLD).

KLD(rn, fθ) =
∑[

fθ log

(
fθ
rn

)
+ (rn − fθ)

]
=
∑

fθ log

(
fθ
rn

)
.

This corresponds to C(δ) = δ − log(δ + 1).

(iii) The (twice, squared) Hellinger distance (HD) will be generated

for C(δ) = 2
(√

δ + 1− 1
)2

.

HD(rn, fθ) = 2
∑(√

rn −
√
fθ
)2
.

(iv) If we take C(δ) = δ2

2 , then the generated divergence is Pearson’s

chi-square, which has the form

PCS(rn, fθ) =
∑ (rn − fθ)2

2fθ
.
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(v) If we take C(δ) = δ2

2(δ+1) , then the generated divergence is Ney-

man’s chi-square (NCS), which has the form

NCS(rn, fθ) =
∑ (rn − fθ)2

2rn
.

(vi) Another very important sub-family of disparities is the PD fam-

ily, introduced by Cressie and Read (1984), through the expres-

sion

PDλ(rn, fθ) =
1

λ(λ+ 1)

∑
rn

[(
rn
fθ

)λ
− 1

]
.

This family, indexed by λ ∈ R, has the disparity generating

function

C(δ) =
(δ + 1)λ+1 − (δ + 1)

λ(λ+ 1)
− δ

λ+ 1
.

For λ = 1,−1
2 and −2, this family coincides with the PCS, the

HD and the NCS respectively, whereas, it generates the LD and

the KLD whenever λ→ 0 and λ→ −1, respectively.

Some of these families will be discussed in details in the next chapter.

For ease of presentation, we introduce this technique for discrete

models and then for continuous models in the subsequent sections.

1.5.1.2 Minimum Disparity Estimation under Discrete Models

Under the discrete setup, the minimum distance estimator θ̂ of θ,

based on the disparity ρc, will be defined as

ρc(rn, fθ̂) = min
θ∈Θ

ρc(rn, fθ)
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provided the minimum exists. Under certain regularity conditions,

this estimator can be obtained by solving the estimating equation

−∇ρc(rn, fθ) =
∑(

C
′
(δ)(δ + 1)− C(δ)

)
∇fθ = 0 (1.13)

where ∇ represents the gradient with respect to θ and C
′
(·) is the

derivative of C(·).

Denoting C
′
(δ)(δ + 1)− C(δ) as A(δ), the estimating equation for θ

would be of the form

−∇ρc(rn, fθ) =
∑

A(δ)∇fθ = 0.

The function A(δ) may be standardized, without changing the esti-

mating properties of the disparity, so that A(0) = 0 and A′(0) = 1.

This standardized function is called the residual adjustment function

(RAF) of the disparity. For the PD family, this function, indexed by

the tuning parameter λ, equals

Aλ(δ) =
(δ + 1)λ+1 − 1

λ+ 1

with Aλ(0) = 0 and A
′

λ(0) = 1 ∀λ ∈ R.

According to Basu et al. (2011), if a residual adjustment function

satisfies the following property, then it can be considered as regular.

Definition 1.3. The residual adjustment function A(δ) will be called

regular, if it is twice differentiable and A
′
(δ) and A

′′
(δ)(1 + δ) are

bounded on [−1,∞), where A
′
(·) and A

′′
(·) represent the first and

second order derivatives of A(·) with respect to its argument.

This RAF plays an important role in determining the robustness
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properties of the estimators. For an outlying observation, the Pear-

son residual (δ) has a high value, indicating that the observed pro-

portion of that value is quite high compared to the proportion pre-

dicted by the model. This may be viewed as a probablistic outlier,

where the mismatch between observed and predicted probabilities

are highlighted in determining what is an outlier. This requires the

specification of a parametric model, and this description contrasts

the description of geometric outliers introduced in the previous sub-

section. Of course, the geometric and probabilistic concepts often

coincide, but they need not. Now, the basic key of constructing a

robust tool is to downweight outliers, which is made possible using

only those estimators whose RAFs exhibit a dampened response to

increasing δ. In this regard, the likelihood disparity has been consid-

ered as the benchmark. Its RAF is A(δ) = δ, which makes a 45° angle

with the x-axis and increases linearly. The deviation of other esti-

mators from this linearity will show us how stable an estimator is.

If we consider the six common disparities mentioned earlier, then we

can see that the NCS, the KLD and the HD possess concave RAFs

dominated by the RAF of LD – indicating that the estimators based

on these disparities have strong robustness properties; on the other

hand, the PCS has a convex A(δ) – dominating the RAF of the LD

and magnifying the effect of large Pearson residuals, thereby indicat-

ing that estimators based on the PCS are expected to be even worse

than the MLE in terms of robustness.

The RAF, while being indicative of the general stability of the es-

timator, can also be used to study another robust tool of minimum

disparity estimation, the influence function.

Theorem 1.4 (Lindsay (1994, Proposition 1)). Under standard reg-

ularity conditions, the influence function of any minimum distance



Chapter 1. Prelude 29

functional T with estimating equation
∑
A(δ(x))∇fθ(x) = 0 has the

following expression

IF (y, T,G) = J−1
g {A′(δ(y))uθg(y)− Eg [A′(δ(x))uθg(x)]}

where, δ(x) = g(x)
fθg (x) − 1. Also, we have

Jg = Eg

[
uθg(X)uTθg(X)A′(δ(X))

]
−
∑
x

A(δ(x))∇2fθg(x)

with θg being the best-fitting parameter.

In fact, the asymptotic distribution of the minimum distance estima-

tors (MDE) also involves the RAF, A(δ). Under certain regularity

conditions, the MDEs have the following asymptotic properties:

(i) There exists a sequence of consistent roots, θ̂n, of the estimating

Equation (1.13).

(ii) Moreover, at θ = θg,

√
n
(
θ̂n − θg

)
a−→ N

(
0, J−1

g VgJ
−1
g

)
,

where, Vg is defined as Vg = V arg [A′(δ(X))uθg(X)],

When G = Fθ, δ(x) is identically zero, and the asymptotic variance

will be I−1(θ), which is the asymptotic variance of the most efficient

estimator, the MLE. Hence, when the model is true, the MDEs have

full asymptotic efficiency. So when the model holds and the sample

size is large, we would get robust estimators having efficiencies that

are converging to that of the MLE, whereas in small to moderate

samples, our mission is to find stable estimators compromising effi-

ciency as less as possible. Moreover, under G = Fθ, we get θg = θ,
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δ (x) = 0 for all x and hence the MDE corresponding to the estimat-

ing equation
∑
A(δ(x))∇fθ(x) = 0 has influence function given by

IF (y, T,G) = I−1(θ)uθ(y).

1.5.1.3 Minimum Distance Estimation under Continuous Model

Here, we will describe the technique under continuous models. Let G
represent the class of all distributions having densities with respect to

the Lebesgue measure. Moreover, the true data distribution G (with

density g) and model family F = {Fθ : θ ∈ Θ ⊆ Rp} (with density

fθ) belong to G.

Suppose X1, . . . , Xn are n i.i.d. observations from G and we want to

find the minimum disparity estimate for the parameter θ. In case of

discrete models, the conventional estimate of g is the vector of relative

frequencies, but in case of continuous models, one needs to construct

a continuous density estimate through kernel density estimation or

other smoothing techniques so that there is no incompatibility of

measures when constructing the disparity.

This branch of robust minimum distance estimation probably origi-

nated with the seminal work of Beran (1977), and the approach has

been widely used in the subsequent literature. With the addition

of this smoothing component the procedure has an additional level

of theoretical complexity and the bandwidth selection becomes an

issue. In this context, we propose to use the suggestion of Basu and

Lindsay (1994), which helps to overcome the problems related to the

slow convergence of the kernel and makes the bandwidth selection

problem a less critical one.



Chapter 1. Prelude 31

For estimating the unknown parameter θ through a minimum di-

vergence procedure in this setup, we now describe the following two

approaches available to us.

1.5.1.3.1 Beran’s Approach In this approach, one employs the ker-

nel density estimation procedure for estimating the data density g

by

g∗n(x) =
1

n

n∑
i=1

W (x,Xi, h) =

∫
W (x, y, h) dGn(y)

where W is some smooth kernel function, h is the bandwidth, Gn

is the empirical distribution of G and Xi’s are the given sample ob-

servations. The kernel function W is usually a symmetric density

like the Epanechnikov or the Gaussian. The minimum distance es-

timate of θ is obtained through the minimization of ρ(g∗n, fθ) over

θ ∈ Θ, where ρ(·, ·) is a generic divergence and the Pearson residual

is defined as δ(x) = g∗n(x)
f(x) − 1.

Under suitable assumptions and differentiability of the model, the

MDE will be obtained through the equation

−∇ρc(g∗n, fθ) =

∫
x
A(δ(x))∇fθ(x)dx = 0,

where the RAF is as defined earlier. The estimation procedure then

proceeds as in the discrete case – the interpretation of the RAF (A(δ))

and the disparity generating function (C(δ)) will remain unaltered.

However, the kernel smoothing introduces a bias in the density esti-

mate, which has to be asymptotically corrected by choosing the band-

width h = hn to be a function of the sample size and letting it slide to
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zero at the appropriate rate with increasing n. This smoothing com-

ponent, which is an intermediate step in our estimation scheme, adds

an additional layer of theoretical complexity to the procedure, as the

choice of the bandwidth now becomes crucial. Park and Basu (2004)

have proved the existence and consistency of the MDE under as-

sumptions on the model and C(δ), and they have further shown the

asymptotic distribution of the MDE, which is,

√
n (T (Gn)− θ0)

D−→ N(0, I−1(θ0)),

when G = Fθ0. See Park and Basu (2004) for further details.

1.5.1.3.2 Basu-Lindsay Approach Due to the complexity involved in

Beran’s approach, some appropriate modification is needed to sim-

plify the estimation process. Here, we are going to refer to one such

method, which follows from the work of Basu (1991) and Basu and

Lindsay (1994).

This method differs from Beran’s approach in that while Beran only

took a non-parametric kernel density estimate g∗n of g from the data,

Basu and Lindsay also convoluted the model density with the same

kernel. It basically suggests smoothing the model density and the

true density with the same kernel function and the same bandwidth.

The rationale behind this proposal is that the convolution of the

model with the same kernel compensates for the bias due to the use

of the kernel on the data, by imposing the same distortion on the

model. Hence, the importance of the kernel has been diminished in

this estimation procedure as compared to Beran’s approach.
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For a suitable kernel W (x, y, h), suppose f ∗θ is the kernel-smoothed

version of model density fθ, which equals

f ∗θ (x) =

∫
W (x, y, h) dFθ(y) =

∫
W (x, y, h) fθ(y) dy.

Here, we will find the estimator by minimizing the distance between

g∗n and f ∗θ , namely ρ(g∗n, f
∗
θ ), which is defined as

ρ(g∗n, f
∗
θ ) =

∫
C(δ∗(x))f ∗θ (x) dx

with the modified Pearson residual δ∗(x) = g∗n(x)
f∗θ (x) − 1, that is, a resid-

ual between the smoothed data and the smoothed model. In this

case, the minimum distance estimator is obtained as the minimizer

of ρ(g∗n, f
∗
θ ). In our technical conditions, it will be assumed that

fθ(x) > 0 for all x in the sample space, so the Pearson residual δ∗(x)

is well defined. Since the kernel g∗n converges to the smoothed model

f ∗θ pointwise for any fixed bandwidth h, we have fixed h consistency

in this approach. Thus, while a bandwidth selection will still be nec-

essary in this case, it is certainly not as critical as it is under Beran’s

approach. Consistency, in any case, is not dependent on the choice

of the bandwidth. See Basu and Lindsay (1994) for more details on

this estimation scheme.

Under the assumption of differentiability of the model, the smoothed

MDE can be obtained by solving

−∇ρc(g∗n, f ∗θ ) =

∫
x
A(δ∗(x))∇f ∗θ (x)dx = 0.

To find this element under this approach, we first define the first and

second order derivatives of the log-likelihood of the smoothed version
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of the model density as

ũθ(x) = ∇ log f ∗θ (x),

∇ũθ(x) = ∇2 log f ∗θ (x),

where the j-th element of the first order derivative and the (j, k)-

th element of the second order derivative are denoted by ũjθ(x) and

ũjkθ(x) respectively. The corresponding smoothed score function is

defined as u∗θ(y) =
∫
ũθ(x)W (x, y, h)dx with zero expectation with

respect to fθ.

We will denote the minimizer of the likelihood disparity between g∗n

and f ∗θ as the MLE*. This MLE* is, in general, distinct from the or-

dinary MLE, and is not automatically first order efficient. Through

the imposition of some specific conditions on the kernel, the esti-

mating equations of these two estimators, MLE and MLE*, would

become equal and hence the estimators, too. More specifically, un-

der the smoothing technique through such kind of a kernel, all MDEs

that are asymptotically equivalent to MLE* will become first order

efficient. In fact, when model becomes true, the IF as well as the

asymptotic distribution of these MDEs obtained through the Basu-

Lindsay approach (along with the implementation of such kernel)

become identical with those of the MDEs obtained without smooth-

ing at g = fθ in case of the discrete model. These type of kernels are

called transparent kernels (Definition 1.5) relative to the model. See

Basu and Lindsay (1994) and Basu et al. (2011) for further details.

Definition 1.5. A kernel W (x, y, h) is called a transparent kernel

for the parametric model family F = {Fθ : θ ∈ Θ ⊂ Rp} if

Auθ(x) +B = u∗θ(x) (1.14)
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where A is a non-singular p× p matrix which may depend on θ and

B is a p-dimensional vector. Since E(uθ(X)) = E(u∗θ(X)) = 0 under

fθ, we get the simplified form of Equation (1.14) and that is

Auθ(x) = u∗θ(x). (1.15)

1.5.2 Hypothesis Testing using Disparities

In the field of hypothesis testing, one obvious tool is the likelihood

ratio test mentioned earlier, which is one of the oldest techniques

in the statistical literature. But, this test has shown acute sensitiv-

ity towards model mis-specification and presence of outliers. This is

true for the Wald and score tests (based on the maximum likelihood

estimator) also. An alternative could be robust tests based on dis-

parities. The likelihood ratio test (LRT) can also be seen to belong

to a larger class of ‘disparity difference’-type tests – as a result, on

one hand, this class contains the LRT which has several asymptotic

optimality results and on the other hand, many members of this class

possess strong robustness properties.

1.5.2.1 Testing of Hypothesis under the Discrete Model

Suppose X1, . . . , Xn be n i.i.d. sample observations from a true dis-

tribution G where the model family is F = {Fθ : θ ∈ Θ ⊂ Rp}.
Consider the hypotheses

H0 : θ ∈ Θ0 ⊂ Θ vs. H1 : θ ∈ Θ \Θ0.
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The test is constructed using θ̂, the unconstrained MDE under H0 ∪
H1 and θ0, provided Θ0 is a singleton test, otherwise θ̂0, the con-

strained MDE under H0 is used. Therefore, the test statistic is given

by

DDTρc(g, f) =

2n
[
ρc(g, fθ̂0)− ρc(g, fθ̂)

]
, if Θ0 is composite.

2n
[
ρc(g, fθ0)− ρc(g, fθ̂)

]
, if Θ0 = {θ0}.

Furthermore, since the model is discrete and g is unknown we are

going to use the conventional estimate of g(x), that is, relative fre-

quency at x, rn(x) in place of g(x) to perform this test.

Under suitable assumptions (C1 - C4 of Basu et al. (2011), Chapter

5),

DDTρc(rn, fθ)
a∼ χ2

r,

where r is the number of restrictions imposed by H0 and
a∼ denotes

asymptotic distribution. Next, we explore the structure of the dis-

parity difference test with respect to its robustness and hence, we

will consider the contaminated model from now onward. Suppose

T (G) be the minimum distance functional corresponding to ρc and

hence, θ̂n is the MDE after considering ĝ(x) = rn(x). For the true

distribution G, let H0 : T (G) = θ0.

Let g be the true density. In this case, the test statistic is given by

DDTρc(rn, fθ) = 2n
[
ρc(rn, fθ0)− ρc(rn, fθ̂n)

]
.



Chapter 1. Prelude 37

According to Lindsay (1994), when θ is scalar, under given condi-

tions,

DDTρc(rn, fθ)
a∼ C(g)χ2

1, under H0,

where C(g) = V arg
[
T
′
(X)

]
∇2ρc(g, fθ)

∣∣∣∣∣
θ=θ0

. T
′
(X) is the IF of the

MDE obtained through ρc. This C(g) is called the chi-square in-

flation factor. For further details, see Lindsay (1994) and Basu et

al. (2011).

1.5.2.2 Testing of Hypothesis under the Continuous Model

In the continuous case, a general approach for minimum disparity

estimation and testing of hypothesis is much more difficult than the

discrete case; however, see Park and Basu (2004) and Kuchibhotla

and Basu (2015, 2017). Several authors have constructed robust tests

on the basis of some specific distance and in this regard mention

should be made of the work of Simpson (1989) with the Hellinger

distance under continuous models.

We consider the setup of the continuous model given in Subsection

1.5.1.3. Let H0 : θ ∈ Θ0 be the null hypothesis of interest and we

want to test it against H1 : θ ∈ Θ\Θ0. Since the model is continuous,

we are to use the non-parametric density estimate g∗n based on the

kernel density estimate. If we proceed in the same way as mentioned

earlier, we define the disparity difference test statistic as

DDTρc(rn, fθ) = 2n
[
ρc(g

∗
n, fθ̂0)− ρc(g

∗
n, fθ̂)

]
.
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Here also, under suitable conditions, this statistic asymptotically fol-

lows χ2
r under H0. Here the estimators and the notation are as de-

scribed in Section 1.5.2.1. See Simpson (1989).

For the Basu and Lindsay approach the distribution of the test statis-

tic constructed in a similar spirit is a little more complicated. How-

ever, see Basu (1993), Agostinelli and Markatou (2001) and Basu et

al. (2011).

1.6 The Need for the Optimal Parameter Selec-

tion

Almost all robust procedures including M-estimators and minimum

distance estimators are dependent on the choice of one or more tuning

parameters. These tuning parameters have a vital role in determining

the trade-off between efficiency and robustness of the procedure. For

example, when estimating the location parameter of the model using

the Huber loss function in M-estimation, the choice of the tuning

parameter c which determines the boundary between the quadratic

and linear parts of the objective function, has a major role in the

description of the M-estimator. As c runs away to infinity, the esti-

mator settles on the mean; on the other hand, as c gets smaller and

smaller, the estimator approaches the median. See Maronna et al.

(2006), Section 2.2.2, for more details. Thus by varying the choice of

the tuning parameter one can choose between a highly efficient but

sensitive estimator and a strongly resistant but inefficient estimator.

As we do not know apriori how much anomaly is present in the data

and how much downweighting is necessary, a data based estimate of
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the tuning parameter which can moderate estimator depending on

the necessity may be of great value.

While data-based estimates are not absent in the literature, see, e.g.,

Wang et al. (2007), the more general approach has been to choose

tuning parameters specific to the model which retain a fixed pro-

portion of the efficiency of the classical methods. The default value

for c for Huber’s ψ function in R-packages is 1.345 (rlm function),

which achieves about 95% efficiency when the data are normally dis-

tributed. Other specific choices have been suggested by other re-

searchers. These choices generally give good compromises between

efficiency and robustness, but are never optimal as they do not make

an attempt to determine the amount of anomaly in the data and

choose the tuning parameter accordingly.

In the area of robust minimum distance estimation, some attempts

have been made to select tuning parameters in an optimal manner,

most notably with respect to the density power divergence. See,

e.g., Hong and Kim (2001) and Warwick and Jones (2005). In case

of minimum distance estimation, many variants of these methods

have been tried in the literature, but the basic approach revolves

around the Warwick and Jones (2005) idea of constructing an em-

pirical estimate of the mean square error as a function of the tuning

parameter (and a suitable “pilot” estimator). Subsequently one min-

imizes this mean square error over the tuning parameter to obtain

a data-based “optimal” estimate of the tuning parameter specific to

the data set. The overall technique has worked reasonably in many

different situations, but, unfortunately, it remains the function of a

suitable robust “pilot” estimator, and sometimes this dependence is

quite acute. Therefore, in the present dissertation, It will also be



Chapter 1. Prelude 40

our endeavor to select an optimal robust tuning parameter, which

provides the best compromise in the efficiency-robustness trade off

and removes the dependence on any particular pilot estimator.

1.7 Aim and Layout of the Thesis

The minimization of suitable statistical distances (between the data

and the model densities) has proved to be a very useful technique

in the field of robust inference. Here, the estimation of the param-

eter is derived in the context of closeness between the data and the

model. This is the parameter of the model density which minimizes

the discrepancy between the data density and the class of model

densities. Several authors produced different robust estimators us-

ing several divergences through this approach. At the same time,

some density-based divergences lead to estimators with high asymp-

totic efficiency, sometimes full asymptotic efficiency. Emphasizing

the pattern of down-weighting the score function with the power of

the density in the presence of outliers, Basu et al. (1998) developed

the density power divergence (DPD) class which is obtained through

a generalization of the estimating equation of the MLE and the mini-

mum L2 distance estimator. We will have a look at all these popular

divergences in Chapter 2 of this thesis. All these divergences can

be expressed as special cases of the Bregman divergence and hence,

their characteristics can be simply proved from the properties of the

ordinary Bregman divergence. However, since the data density must

have a linear presence in the cross-product term of the ordinary Breg-

man form, several useful divergences cannot be captured through it.

In this regard, we must mention one of the most prominent class of

disparities, namely the Power Divergence (PD) family, introduced
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by Cressie and Read (1984). So, to bring most of the popular diver-

gence families under one larger class, a modification of the Bregman

divergence is required. Although it is not the first attempt in this

direction, our belief is that this extension explores and adds some-

thing new in the field of robust analysis through a very simple and

intuitive trick.

Another important goal of this research is to develop some method

for selecting the tuning parameter optimally. The DPD, indexed by

a single tuning parameter α, has been used as the basic tool for intro-

duction and demonstration purposes. Larger values of α necessarily

lead to a drop in the model efficiency and gain in stability, while the

opposite scenario can be observed for small values of α. In Chapter 3,

a refinement of an existing technique with the aim of eliminating the

pilot dependency and the scope of discovering the optimal value of

α to provide the best compromise between model efficiency and sta-

bility against data contamination, is proposed. Moreover, to extend

the scope of its application, it is our target to apply this procedure

to different scenarios – for example, i.i.d. sample, non-homogeneous

independent samples, multiple linear regression models, etc. Our in-

tention is to rigorously setup the theoretical result, along with its

substantiation, through numerical applications. Finally we hope to

study and show its successful use within the framework of the pro-

posed extension.

In Chapter 4, we provide an extension of the ordinary Bregman di-

vergence by considering an exponent of the density as the argument

rather than the density function itself. It has made the class of the

Bregman divergence wider and thus, it contains most of the popu-

lar density-based divergences as well as the class of disparities. A
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detailed description of this extension is discussed throughout this

chapter.

We already know that two prominent classes of divergences in this

area of statistics are the PD and the DPD families, but only the like-

lihood disparity is the common element between them. To connect

them with each other, Ghosh et al. (2017) introduced a new diver-

gence family, called the S-divergence family. This family also could

not be expressed through the ordinary Bregman divergence, but now

it becomes possible through this extension. To create a broader class

of divergence families, our target is to join this S-divergence fam-

ily (and hence, the PD and the DPD families) with another im-

portant member of the Bregman class, namely the B-Exponential

divergence (BED) family and hence, a specific form of our proposed

extension is required. In Chapter 5, through this specific form, a

new super-family is introduced, namely the GSB divergence family.

Another significant discovery through this family is that we can gen-

erate robust and remarkably efficient estimates which lie outside the

PD, the DPD and even the S-divergence family. Along with this

introductory part, we have explored its performance in the field of

robust estimation under the discrete model, while in the next chap-

ter we have extended our journey through the same kind of inference

under the continuous model.

Having described the applications of our method in the field of esti-

mation, the obvious/immediate next step is to explore the usage of

this extension in the field of hypotheses testing. For demonstration

purposes, another important large family of divergences, the General-

ized Super divergence (GSD), introduced by Ghosh and Basu (2018),
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will play the same role in the field of testing, just like the GSB di-

vergence in the field of estimation. With a slight modification, this

divergence can also be brought under the umbrella of the extension –

through the convex combination of the two extended Bregman forms,

with specific choices of the convex combination. In Chapter 7, the

disparity difference test based on this divergence and its performance

under several scenarios have been analyzed through simulation stud-

ies and real life data examples. So, all these chapters have been

framed to explore the usefulness of the extended Bregman divergence

in the field of parametric inference.



Chapter 2

A Useful Divergence : The

Bregman Divergence

2.1 Definition

Being motivated by the problem of convex programming, L. M. Breg-

man (1967) introduced the Bregman divergence, a measure of dissim-

ilarity between any two vectors in the Euclidean space. In Rp, it has

the form

Dψ (x,y) =

{
ψ (x)− ψ (y)− 〈∇ψ (y) ,x− y〉

}
, (2.1)

for any strictly convex function ψ : S → R and for any two p-

dimensional vectors x,y ∈ S, where S is a convex subset of Rp.

Here, ∇ψ (y) denotes the gradient of ψ with respect to its argument

at y = (y1, y2, . . . , yp)
T .

44
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2.1.1 Use

Although this divergence has been introduced with the motivation of

applying it in convex analysis, more specifically, to find the common

points of convex sets and their application in convex programming,

later it has been widely used for several mathematical as well as sta-

tistical purposes. Both quantization and clustering problems have

been developed through the application of this divergence. In both

hard and soft clustering, this divergence have been used by Baner-

jee et al. (2005). Moreover the bijection between this divergence

and regular exponential families helps a lot in this regard. Further

its mathematical implementation includes its connection with rank

aggregation, web ranking, matrix nearness problems, etc. Bregman

metric is one of the useful metrics we generally use in case of consid-

eration of metric spaces. On the other hand, if we look at its use in

statistics, the first thing that appears in our mind is its application

in minimum distance estimation in different fields including robust

inference. For minimization of suitable statistical distances, apart

from the class of φ-divergences of Csiszár (1963) and Ali and Sil-

vey (1966), the Bregman divergence has been extensively used. Its

power to retain the robustness in the presence of outliers leads us

to generate M-estimators, mentioned earlier. And, last but not the

least, it has successful applications in the field of Bayesian inference

also.

2.1.2 Properties

There are several advantageous properties of this well-known diver-

gence. Some of them are mentioned below:
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1. The convexity criterion of the function ψ (·) evidently leads to

the non-negativity of this divergence.

2. It is convex in y.

3. It is linear in the convex function ψ.

4. It is invariant under affine transformations.

5. Another important property of this divergence is centering. The

mean vector is the minimizer of the expected Bregman diver-

gence from any random vector. It reminds us of the fact that

the mean of a set is the minimizer of squared error of elements

of that set.

2.1.3 Some Useful Divergences as Special Cases of the Breg-

man Divergence

The Bregman divergence has significant applications in the domain of

statistical inference for both discrete and continuous models. Given

two densities g and f , the Bregman divergence between these densi-

ties (associated with the convex function ψ) is given by

Dψ (g, f) =

∫ {
ψ (g (x))− ψ (f (x))− (g (x)− f (x))∇ψ (f (x))

}
dx.

(2.2)

It is easy to see that the function ψ(y) and ψ(y) + ay + b generate

the same divergence, where a and b are finite real numbers. With

specific choices of the convex function ψ (·) we can express several

useful divergences as a part of this divergence class. Some examples

are shown below.
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2.1.3.1 Likelihood Disparity (LD)

This popular divergence can be expressed as a subfamily of the class

of Bregman divergences by choosing ψ (x) = x log (x). Given a class

of model densities {fθ} and the data density g, this divergence has

the form

LD(g, fθ) = d0 (g, fθ) =

∫
g (x) log

(
g (x)

fθ (x)

)
dx. (2.3)

The minimum LD functional, T0 (G), can be defined through the

relation

d0

(
g, fT0(G)

)
= min

θ∈Θ
d0 (g, fθ) , (2.4)

provided the minimum exists. Through the consideration of the

empirical version of Equation (2.3) based on the random sample

X1, X2, . . . , Xn, we can obtain the minimum LD estimator of θ by

minimizing
∑n

i=1 (−1) log fθ (Xi), i.e., by maximizing
∑n

i=1 log fθ (Xi)

over θ ∈ Θ. But this objective function is just the log-likelihood

given the data. Moreover, if we proceed one step ahead, we get the

corresponding estimating equation.

n∑
i=1

uθ (Xi) = 0, (2.5)

where uθ (x) denotes the score function at x. Thus the divergence

in (2.3) leads to the maximum likelihood functional (discussed in

Chapter 1) whenever minimized over the whole parameter space, Θ.

This divergence is a version of the Kullback-Leibler divergence, as

already observed earlier.
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2.1.3.2 Squared L2 Distance

The (squared) L2 distance between the densities g and fθ can be

generated from this Bregman divergence by considering ψ (x) = x2

which generates the form

L2(g, fθ) = d1 (g, fθ) =

∫
(g (x)− fθ (x))2 dx. (2.6)

The minimum L2 distance functional, T1 (G), will be defined as

d1

(
g, fT1(G)

)
= min

θ∈Θ
d1 (g, fθ) , (2.7)

provided the minimizer exists. After expanding Equation (2.6) and

omitting the term involving g only (since that term has no role in

the optimization), we get the revised objective function∫
f 2
θ (x) dx− 2

∫
fθ (x) g (x) dx (2.8)

Next, replacing g (·) by dGn (·) (Gn being the empirical version of

G), we get the equation,

∫
f 2
θ (x) dx− 2

∫
fθ (x) dGn (x) =

∫
f 2
θ (x) dx− 2

1

n

n∑
i=1

fθ (Xi) ,

(2.9)

which we can actually minimize to obtain the minimum L2 distance

estimator of θ. Furthermore, an immediate calculation leads us to

the estimating equation having the form

1

n

n∑
i=1

fθ (Xi)uθ (Xi)−
∫
f 2
θ (x)uθ (x) dx = 0. (2.10)
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Through the presence of the weight fθ (x) in Equation (2.10), the

strong robustness property of the minimum L2 distance estimator is

quite evident.

2.1.3.3 Density Power Divergence (DPD)

If we observe the estimating equations (2.5) and (2.10) of the two

previous cases, it may be easily seen that they both represent special

cases of an extended general case. If we consider a general weighted

likelihood equation having the form

1

n

n∑
i=1

fαθ (Xi)uθ (Xi)−
∫
f 1+α
θ (x)uθ (x) dx = 0, (2.11)

indexed by tuning parameter α, then the choice of α = 0 generates

Equation (2.5), while α = 1 recovers Equation (2.10).

Equation (2.11) is an unbiased estimating equation at the model

corresponding to the well-known ‘Density Power Divergence’ (DPD)

family. This family is generated by the function ψ (x) = xα+1−x
α ,

applied to the general Bregman form in Equation (2.2) and is indexed

by a non-negative tuning parameter α. As a function of α, the density

power divergence may be expressed as

dα (g, fθ) =

∫ {
fα+1
θ (x)−

(
1 +

1

α

)
g (x) fαθ (x) +

1

α
gα+1 (x)

}
dx

.(2.12)

Therefore the required objective function for finding the minimum
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DPD estimator (MDPDE), obtained by ignoring the term indepen-

dent of θ and by replacing dG with dGn, becomes∫
fα+1
θ (x) dx−

(
1 +

1

α

)∫
fαθ (x) dGn (x)

=

∫
fα+1
θ (x) dx−

(
1 +

1

α

)
1

n

n∑
i=1

fαθ (Xi)

=
1

n

n∑
i=1

Vθ (Xi) (2.13)

where,

Vθ (Xi) =

∫
fα+1
θ (x) dx−

(
1 +

1

α

)
fαθ (Xi) .

Since the true density g shows up linearly in the objective function, it

has been replaced by dGn, and thus this minimization procedure does

not need any non-parametric smoothing. Moreover, it is quite clear

that the derived MDPDE can be treated as an M-estimator (with

a model-dependent ψ function) and hence its asymptotic properties

can be developed from the theory of M-estimators too. Here, at the

end of this subsection, we will mention its asymptotic properties for

future reference.

The minimum DPD functional, Tα (G), can be defined as

dα
(
g, fTα(G)

)
= min

θ∈Θ
dα (g, fθ) , (2.14)

provided the minimum exists. Moreover, this DPD family with α = 0

coincides with the likelihood disparity (in the limiting sense) whereas,

at α = 1, it generates the L2 distance between two densities. When

α assumes its minimum value zero, the estimating equation has no

density power downweighting, so that the corresponding estimator

has weak stability and poor robustness properties. On the other

hand, for large positive α, the power of the density helps to diminish
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the influence of the score function in the presence of contamination.

From practical considerations, the value of α is restricted to lie within

[0, 1], since even larger values of α make the efficiency unacceptably

low, and with a judicious choice we expect to get reasonable trade-

offs between efficiency and robustness in this range.

Under certain regularity conditions given in Basu et al. (1998),

√
n
(
θ̂α − θgα

)
→ Z ∼ Np

(
0, J−1

α (θgα)Kα (θgα) J−1
α (θgα)

)
, (2.15)

where θ̂α and θgα denote the MDPDE and the best fitting parameter

corresponding to a pre-fixed α, and,

Jα (θ) =

∫
uθ (x)uTθ (x) f 1+α

θ (x) dx

+

∫
{iθ (x)− αuθ (x)uTθ (x)}{g (x)− fθ (x)}fαθ (x) dx,

(2.16)

Kα (θ) =

∫
uθ (x)uTθ (x) f 2α

θ (x) g (x) dx− ψθψTθ , (2.17)

where ψθ =
∫
uθ (x) fαθ (x) g (x) dx, iθ(x) = − d

dθ (uθ (x)), and the

superscript T represents ‘transpose’.

2.1.3.4 B-Exponential Divergence (BED)

This divergence, introduced by Mukherjee et al. (2019), provides an-

other subfamily of Bregman divergences through the function ψ (x) =
2(eβx−βx−1)

β2 for β ∈ R. The form of this divergence is given by

dβ (g, fθ) =
2

β

∫ {
eβfθ(x)

(
fθ (x)− 1

β

)
− eβfθ(x)g (x) +

eβg(x)

β

}
dx.
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The minimum BED functional, Tβ (G), can be defined as

dβ
(
g, fTβ(G)

)
= min

θ∈Θ
dβ (g, fθ) , (2.18)

provided the minimum exists. The required objective function to

derive the minimum BED estimator, obtained by ignoring the term

independent of θ and by replacing dG with dGn, becomes∫
eβfθ(x)

(
fθ (x) dx− 1

β

)
dx−

∫
eβfθ(x)dGn (x)

=

∫
eβfθ(x)

(
fθ (x)− 1

β

)
dx− 1

n

n∑
i=1

eβfθ(Xi)

=
1

n

n∑
i=1

{∫
eβfθ(x)

(
fθ (x)− 1

β

)
dx− eβfθ(Xi)

}
, (2.19)

over θ ∈ Θ. Evidently the expression in Equation (2.19) is obtained

without any non-parametric smoothing component. Now minimiza-

tion of Equation (2.19) produces an estimating equation of the form

1

n

n∑
i=1

fθ (Xi)uθ (Xi) e
βfθ(Xi) −

∫
f 2
θ (x)uθ (x) eβfθ(x)dx = 0. (2.20)

Clearly this is also a weighted likelihood estimating equation, with

the weight being fθ (x) eβfθ(x). From this weight, the outlier stability

characteristic of the MBEDE is quite evident.

Moreover, the estimating equation is of the form
n∑
i=1

φθ(Xi) = 0,

where,

φθ(Xi) = fθ (Xi)uθ (Xi) e
βfθ(Xi) −

∫
f 2
θ (x)uθ (x) eβfθ(x)dx. (2.21)

Hence the MBEDE is also an M-estimator. Therefore, as in the case

of the MDPDE, the asymptotic properties of this MBEDE also can



Chapter 2. A Useful Divergence : The Bregman Divergence 53

be directly derived from the properties of M-estimators.

2.1.4 Concluding Remarks

Inappropriate selection of tuning parameter(s) can mislead our anal-

ysis and lead to incorrect insight generation. While some data-based

techniques lead to reasonable selection of the tuning parameter, pi-

lot dependency is an inherent feature of these methods which lead to

different optimals for different pilots (for the same data/method of

estimation). Hence, in the next chapter, we start our journey through

giving our best effort to solve this issue. At first we will introduce

a refined algorithm, more specifically, modify an existing algorithm

so that it will lead us to find pilot-independent tuning parameter(s)

generating robust estimators. The DPD family has been used as the

basic illustrative tool for this purpose. Later this modification will

be employed over the extension of the Bregman divergence for better

analysis.



Chapter 3

Choosing the ‘Optimal’ Tuning

Parameter

3.1 Introduction

In statistical inference, the two concepts of efficiency and robustness

are often at odds, and it is a delicate task for the statistician to bal-

ance them both in a suitable manner. While the issue of robustness is

a real concern in the present age of big data, this robustness should

not come at the cost of a high efficiency loss at the model. Most

robust procedures require the choice of a tuning parameter, which

determines the trade-off between robustness and efficiency. In a real

problem, selecting this tuning parameter ‘optimally’ based on the

given data is an issue of great practical interest, which can protect

the experimenter/statistician in both eventualities.

While our method is general, for the purpose of illustration we will

concentrate on the density power divergence (DPD) family discussed

earlier, which has had a major impact in the area of minimum dis-

tance estimation over the last two decades. There have been a few

54
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attempts to select the robustness tuning parameter of this family; in

particular, the method proposed by Warwick and Jones (2005) has

seen substantial application in subsequent data analysis problems,

as have others; see, for example, Ghosh and Basu (2013), Park and

Sriram (2017) and Kang and Lee (2014). In fact Jane Warwick wrote

an entire PhD thesis on this topic, although the part relevant for us

is more or less covered in the Warwick and Jones (2005) paper. The

method described in Hong and Kim (2001) is also useful in this re-

spect. We will refer to the method in Warwick and Jones (2005) as

the Warwick and Jones method (the WJ method for short), and the

method in Hong and Kim (2001) as the Hong and Kim method (the

HK method for short). However, in some sense, these methods are

not completely satisfactory, as the first one depends, sometimes quite

heavily, on the choice of a pilot estimator and the second one some-

times leads to very non-robust estimators.

Here, we make a proposal which, by refining the approach in Warwick

and Jones (2005), attempts to remove both of these deficiencies. This

may eliminate the most important drawback in the application of

the density power divergence estimator and make it more universally

acceptable. However, as already mentioned, while we illustrate it

with the DPD, the applicability of our method is not limited to this

divergence alone. It can be applied to all methods which depend

upon the choice of one or more variable tuning parameter(s). We

will, in fact, apply it on the extended Bregman divergence in the

later chapters.
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3.1.1 The Basic Idea in Tuning Parameter Selection

As α tends to 0, the DPD dα (g, f) converges to the Kullback-Leibler

divergence d0 (g, f), and given a sequence of i.i.d. observationsX1, X2,

. . . , Xn, the corresponding empirical divergence measure equals the

negative of the log-likelihood (plus a constant). Thus, the maximum

likelihood estimator, asymptotically the most efficient estimator at

the model under standard regularity conditions, belongs to the class

of minimum DPD estimators. Larger values of α provide greater ro-

bustness and outlier stability, although the efficiency decreases with

increasing α. Since robustness is a prime concern for us, we do

not necessarily assume that the true distribution G belongs to the

model; rather, we acknowledge that in reality, small deviations from

the model are expected. At the same time, we hope to develop a

procedure where these small deviations would not seriously degrade

the statistical utility of the method. Large values of α protect the

procedure against instability due to small deviations, but at the cost

of a drop in model efficiency. We therefore wish to choose a data

driven value of α in an ‘optimal’ way which balances the concerns of

robustness and efficiency. We wish to choose a large value of α only

when it is necessary.

It is already known to us that the minimum DPD procedure is Fisher

consistent and when g belongs to the model, so that g = fθ∗ for

some particular value θ∗ of θ, simplified expressions for J and K

in the variance expression may be obtained by replacing g with the

model density in the expressions (2.16) and (2.17). In this case,

θgα = θ∗ where θgα is the best fitting parameter when the tuning

parameter is α. As the robustness issue is a matter of concern for

us, we will allow g to be the contaminated density g (x) = (1 −
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ε)fθ∗ (x) + εδ (y − x), where δ is the Dirac delta function; this was

also the approach taken by Warwick and Jones (2005). Here, θ∗ is the

true target parameter and estimators will be judged by their mean

square error around θ∗. In general, of course, g may not involve fθ

per se; but, to keep a clear focus in our presentations, we will present

almost all of our results with this contamination formulation in mind.

(In the simulation study, we replace the delta function contamination

with alternative contaminations.) We are to assess the performance

of the estimator MDPDE θ̂α through its summed mean square error

E

{(
θ̂α − θ∗

)T (
θ̂α − θ∗

)}
which has the asymptotic formula

E

{(
θ̂α − θ∗

)T (
θ̂α − θ∗

)}
= n−1tr

{
J−1
α (θgα)Kα (θgα) J−1

α (θgα)
}

+ (θgα − θ∗)
T (θgα − θ∗) , (3.1)

where tr{.} denotes trace of a matrix.

3.1.2 Warwick-Jones and Hong-Kim Algorithms

Warwick and Jones (2005) proposed a useful method for choosing

the tuning parameter associated with a family of robust estimators.

The method was originally explored with the help of the family of

minimum density power divergence estimators. The original Warwick

and Jones (2005) suggestion for the selection of the optimal α consists

of the following steps.

1. First, the asymptotic variance is estimated by substituting θgα

with θ̂α and by substituting the true distribution G with the

empirical distributionGn in the forms of J andK to get Ĵα
(
θ̂α
)

,
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K̂α

(
θ̂α
)

and ψ̂θ̂α where

Ĵα (θ) =

∫
{(α + 1)uθ (x)uTθ (x)− iθ (x)}f 1+α

θ (x) dx

+
1

n

∑
{iθ (Xi)− αuθ (Xi)u

T
θ (Xi)}fαθ (Xi) (3.2)

K̂α (θ) =
1

n

∑
uθ (Xi)u

T
θ (Xi) f

2α
θ (Xi)− ψ̂θψ̂Tθ ,where,

ψ̂θ =
1

n

∑
uθ (Xi) f

α
θ (Xi) . (3.3)

Thus, the contribution of the variances to the summed MSE is

estimated as

n−1tr
{
Ĵ−1
α

(
θ̂α
)
K̂α

(
θ̂α
)
Ĵ−1
α

(
θ̂α
)}

. (3.4)

2. To estimate the asymptotic bias, θgα is substituted with θ̂α in

the bias part of Equation (3.1). However, for the unknown θ∗,

some suitable pilot estimator θp has to be used.

3. The estimates of variance and (squared) bias are added to get

the summed empirical MSE (as a function of the tuning param-

eter α and the pilot estimator θp).

4. The summed empirical MSE is minimized over a fine grid of α

values to obtain the optimal value of α (as a function of the

pilot estimator θp).

On the other hand, in the Hong and Kim (2001) approach, the rel-

evant objective function is the estimated asymptotic variance of the

estimator. For each sample, they suggest the following.

1. Fix each α ∈ [0, 1] and evaluate the MDPDE.
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2. Estimate the asymptotic variance empirically by substituting θgα

by θ̂α, i.e, calculate V
(
θ̂α
)

.

3. Choose that α which corresponds to the smallest estimated

asymptotic variance.

These authors, therefore, drop the (squared) bias component in the

objective function considered in Equation (3.1). We will discuss the

pros and cons of these methods in the following sections.

3.1.3 Our Proposal

In the following, we will refer to the original Warwick and Jones

approach as the ‘one-step Warwick-Jones algorithm’ or, in short, the

OWJ algorithm, as opposed to the approach (which we will shortly

describe) that uses the parameter estimate at a given step as the

pilot estimate in the next step. Note that in the OWJ algorithm,

the choice of the pilot can have a significant impact on the optimal

tuning parameter, as the pilot invariably draws the final estimator

towards itself. On the basis of repeated simulations, Warwick and

Jones (2005) suggested the minimum L2 distance estimator (θ̂1) as

the pilot estimator. Ghosh and Basu (2015) preferred a one-step

algorithm with θ̂0.5 as the pilot of their choice. But the essential

issue of pilot-dependence is not bypassed in either case.

We take the view that if we are ready to accept the estimate obtained

after the one-step algorithm as the ‘optimal’ estimate for the true

unknown θ∗, we should also be prepared to view it as an updated

pilot estimate for the continuation of the process. Thus, we propose

to start the process with a suitable robust pilot estimator, but instead

of terminating the algorithm after one step, the estimator obtained
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at the end of the step should be used as the updated pilot for the

next step. The process should be continued until there is no further

change in the estimate of θ∗ (or, correspondingly, the estimate of the

tuning parameter). If it can be demonstrated that the final converged

estimate is independent of the initial choice of the pilot, it will provide

us an ‘optimal’, pilot-independent estimate. In the following, we will

refer to our proposed algorithm as the ‘iterated WJ algorithm’, or,

in short, the IWJ algorithm.

3.2 The Three Algorithms : Some Comparisons

We now have three algorithms at our disposal to arrive at an estimate

of the optimal tuning parameter. Through the present commentary,

we want to setup the proper context where these methods may be

compared in terms of their usefulness.

First we consider the Hong and Kim (HK) algorithm. It is clear

that this algorithm will perform well in case of ‘pure’, outlier-free

data, since the asymptotic variance is the only relevant quantity here.

In case of contaminated data also, it often (but not always) works

well. This may be explained as follows. A good robust estimator

may often be expected to be closer to the true parameter under

contamination compared to a non-robust estimator which is likely to

show more variability. Thus, a robust estimator may be expected

to have a smaller variance compared to the non-robust estimator,

and, in many cases, the minimization of the asymptotic variance will

recover a reasonably robust solution.

However, most robust estimators are devised to primarily control the

bias under contamination; since the HK objective function has no
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bias component, there is no absolute guarantee that the criterion of

low estimated asymptotic variance will necessarily lead to the desired

optimal solution or even a robust solution. So although it is not a

frequent phenomenon, the HK algorithm will, occasionally, fail and

produce a highly non-robust solution.

Lack of robustness, on the other hand, is not a problem for the OWJ

algorithm. In this case, any robust initial pilot – such as an estima-

tor within the DPD family which may work as a robust estimator

of θ in its own right – will produce a robust solution. The disad-

vantage here is that different robust pilot estimators can lead us to

distinct, sometimes fairly disparate, solutions. In addition, the OWJ

solution is more conservative than the HK solution under pure data

and frequently produces a larger value of α as the optimal solution,

compared to the HK method in order to give adequate importance

to the robustness provision.

The IWJ method, as we will see in the following sections, appears

to overcome this pilot-dependence. We will loosely consider all MD-

PDEs with α ≥ 0.5 as potential robust pilots. Our numerical illus-

trations, in each of the considered cases, will demonstrate that all

robust pilots lead to the same IWJ optimal solution. The same has

been observed in large scale simulation studies. In all of these cases,

the final optimal estimator is the same for any robust initial pilot,

making its choice unimportant in the final optimal solution.

Yet, the IWJ algorithm produces the same solution as the HK algo-

rithm in a large number of cases. We discuss this in detail later in

this section, but this imposes the responsibility on us to justify why

the iterated method would still give a superior solution. We will pro-

vide some glimpses with real examples to show how the IWJ method
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Figure 3.1: Asymptotic variance plots corresponding to Case 1.

produces a good compromise over the different scenarios based on

estimated asymptotic variances. All these real data examples will be

analyzed over different initial pilots in later sections. In the present

section we will look at the estimated asymptotic variance curve over

α ∈ [0, 1]; more generally, we will consider the trace of the asymptotic

covariance matrix in multi-parameter situations, as given in Equa-

tion (3.4). We consider the following cases; the IWJ optimal values

in the following correspond to robust pilots, over which they are in-

variant. In the description below the example numbers refer to the

examples considered in Section 3.3 later in this chapter to illustrate

the performance of the three algorithms on real data.

1. Case 1: Here the curve of the estimated asymptotic variance

has a single, global minimum. In this case, the IWJ algorithm

and the HK algorithm lead to identical solutions. This happens,

for example, in the cases of Drosophila data (Day 28) and Peri-

tonitis data (Examples 3.2 and 3.3) with the common optimals

being α = 0.99 and 0.06, respectively: see Figure 3.1.

2. Case 2: Here the estimated asymptotic variance curve has more

than one minimum with the global minimum at α = 0 or at
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Figure 3.2: Asymptotic variance plots corresponding to Case 2.

some α close to 0 with no other local minimum to the left of it.

In such situations, the HK solution corresponding to the global

minimum of the asymptotic variance generally provides a non-

robust solution. Starting from a robust pilot, the IWJ method

converges to a larger value of α corresponding to a local mini-

mum with a robust solution. Here the HK optimal value and the

IWJ optimal value are distinct. This happens, for example, in

the cases of Star Cluster data and Salinity data (Examples 3.8

and 3.10) with the IWJ optimals being α = 0.76 and 0.30, re-

spectively: see Figure 3.2.

3. Case 3: Here the estimated asymptotic variance curve has more

than one minimum with the global minimum at α = 1 or some

other non-zero value of α with no other local minimum to the

right of it. Here the IWJ as well as the HK algorithms corre-

spond to the global minimum and thus the solutions are identi-

cal. This happens, for example, in the cases of Short’s data and

Telephone-line Fault data (Examples 3.4 and 3.6) with the com-

mon optimals being α = 0.98 and 0.2, respectively: see Figure

3.3.
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Figure 3.3: Asymptotic variance plots corresponding to Case 3.

Figure 3.4: Asymptotic variance of the MDPDEs against α.

Theorem 3.1. Suppose that the variance function g (α) = V (θ̂α) has

a unique minimum at α = α0. Then if the current pilot α1 is distinct

from α0, the IWJ algorithm must take a step in the direction of α0

and not remain stuck at α1.

Proof. Consider the graph in Figure 3.4. According to the IWJ al-

gorithm, the pilot at the i-th step, namely, θip will be the MDPDE
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corresponding to the argmin (over α) of

h (α) = V (θ̂α) +
(
θ̂α − θi−1

p

)2
(3.5)

Whenever θip = θi−1
p , the corresponding tuning parameter will be the

optimal solution. Suppose that α = α1 is the current solution (and

hence the pilot for the next step) of the IWJ process; see Figure 3.4.

At the next step, notice that, at any α > α1, V (θ̂α) is greater than

V (θ̂α1
) and, since α1 is now the pilot, the bias at any such α is non-

zero. Thus h (α) > h (α1) at any such α, and hence, the algorithm

cannot take a step to the right of α1.

We will show that the algorithm must take a (positive) step in the

direction of α0 and will not stay put at α1. Let us choose some α

close but to the left of α1 and between α1 and α0 such that,

θ̂α = θ̂α1
± ε. (3.6)

Here V (θ̂α) < V (θ̂α1
). Now, considering a Taylor series expansion

(up to first order) of V (θ̂α) around V (θ̂α1
), we get

V (θ̂α) = V (θ̂α1
) + εV ′(θ̂α)|α=α1

+ o (ε) = V (θ̂α1
) +O (ε) . (3.7)

Evidently, the O (ε) term is negative. From expression (3.7), we can

say that, for small enough ε,

h (α) = V (θ̂α)+
(
θ̂α − θ̂α1

)2
= V (θ̂α1

)+O (ε)+ε2 < V (θ̂α1
) = h (α1) .

(3.8)

Thus the estimated MSE function h(·) is strictly smaller to the left

of α1 for small enough ε. Hence, the algorithm must take a step to

the left rather than staying put at θ̂α1
. On the other hand, if the
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pilot is θ̂α0
, it is obvious that the algorithm cannot make any move

in either direction any more.

One can similarly prove that if the current pilot is on the left of α0,

the IWJ algorithm must take a step to the right at the next stage.

This theorem gives some justification of why the HK optimal and the

IWJ optimal are identical when the estimated asymptotic variance

function has a single, global, minimum.

3.3 Applications

To further study the IWJ algorithm, we provide an extensive numer-

ical study involving real data that conform to many different models

and generally contain one or more outliers. In each example, we use

(at least) eleven initial pilot estimates which will be the MDPDEs

with α = 0.01, 0.1, 0.2, . . . , 1. As all the pilot estimates are from the

minimum DPD class, we will let the expression ‘pilot α = α0’ indicate

that the pilot estimate is the MDPDE with α = α0. Here, for each

pilot, we have considered a fine grid of 101 values of α – 0, 0.01, 0.02,

. . . , 1.0 – over which we are to find the optimal α by minimizing the

empirical version of the objective function in Equation (3.1). In the

tables, we will present the sequence over which the estimates of the

tuning parameter progress in the iterated algorithm for each initial

choice of the pilot. The background of each of the datasets along

with the resulting parameter estimates are also described here. Our

consistent observation in these examples is that the IWJ algorithm

provides the same optimal estimate over a large range of initial pilot

values of α, always containing the range [0.5, 1].
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In our real data examples, we will deal with both i.i.d. data models

and linear regression models with normal errors. The approach to

handling the i.i.d. data case has been described in the previous sec-

tions. In the linear regression model, our observations Yi are condi-

tionally independent and, given xi, Yi ∼ N
(
xTi β, σ

2
)
, i = 1, 2, . . . , n.

Hence the observations are not identically distributed. Here we are

interested in the MDPDEs of θ =
(
βT , σ

)
. The corresponding esti-

mating equations as well as the asymptotic covariance matrices are

given in Ghosh and Basu (2013) based on which the criterion in

Equation (3.1) can be constructed. See Ghosh and Basu (2013) for

an extended discussion of the linear regression case.

To motivate the proposal, we begin with the following recent example

where the relevant problem will be posed and the difficulties with the

classical analysis will be pointed out.

Example 3.1. (Life Expectancy Data): This example deals with the

relationship between life expectancy at birth (in years) and health

spending per capita (in USD PPP, where purchasing power parity was

used to convert the costs in local currency units to international dol-

lar) in seventeen developed countries (fourteen European countries,

USA, Australia and New Zealand). The data are obtained from the

‘Health at a Glance 2017: OECD (Organisation for Economic Co-

operation and Development) Indicators’ publication (although the ac-

tual data refer to 2015). Normally, higher health spending per capita

is expected to lead to higher life expectancy at birth. For these data,

if we fit a linear relationship between the logarithm of health spending

per capita and life expectancy at birth by the method of least squares,

the fitted relationship, surprisingly, has a negative slope.
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A scrutiny of the data indicates that the observation corresponding

to the United States represents a strong outlier in relation to the rest

of the observations. It is clear that a better understanding of the gen-

eral relationship between health spending and life expectancy at birth

would be provided by a robustly fitted regression line which respects

the expected positive relationship between health spending per capita

and life expectancy at birth in most developed countries. The DPD

method provides one principled method of doing so but, like most

robust methods, depends on an unspecified tuning parameter. For ob-

jective analysis of the data, we also require the tuning parameter to

be automatically, and reliably, specified. We have taken up this ex-

ample to demonstrate the selection of the optimal value of the tuning

parameter which gives robust estimates of the regression coefficients

through refitting a linear regression model to these data based on the

DPD using our proposed algorithm.

The application of all the three algorithms lead to an optimal tuning

parameter of α = 0.98 for the calculation of the robust coefficient

estimates of the linear regression model. On the other hand, all the

three algorithms lead to the same robust estimates of intercept, slope

as well as the variance corresponding to α = 0.92 in case of data with

the outlier removed. As expected, all these robust estimates (for full

data) are quite different from the full data OLS estimates but close

to the outlier deleted OLS estimates. The fitted curves corresponding

to the optimal estimates for the full data along with the OLS esti-

mates for full and outlier-deleted data are given in Figure 3.5. As

the figure shows, the robust linear regression fit based on the optimal

DPD tuning parameter is quite different from the least squares fit to

the full dataset (but very similar to the least squares fit to the data

when the outlier is removed), displaying a much more reasonable and
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informative positive slope. The iterative steps in the optimal tuning

parameter selection rule are sequenced in Table 3.3.

Table 3.1: Life expectancy at birth and health spending per capita (USD
PPP), 2015

Country Health spending Life expectancy

per capita (USD PPP) in years

Australia 4492.55 82.5

Austria 5100.02 81.3

Belgium 4778.45 81.1

Finland 3993.19 81.6

France 4529.59 82.4

Greece 2210.07 81.1

Iceland 4105.67 82.5

Ireland 5275.77 81.5

Luxembourg 6817.90 82.4

Netherlands 5296.71 81.6

New Zealand 3544.56 81.7

Norway 6190.14 82.4

Portugal 2663.70 81.2

Slovenia 2730.80 80.9

Sweden 5266.33 82.3

United Kingdom 4125.26 81.0

United States 9507.20 78.8

Figure 3.5: A few different linear regression fits for Life Expectancy Data.
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Table 3.2: Optimal estimates for the Life Expectancy Data

methods β0 β1 σ

IWJ and OWJ and HK 72.08283 1.153166 0.5547354

OLS 84.1027300 −0.3040737 0.9165954

Outlier-deleted OLS 72.54185 1.098033 0.4800876

Table 3.3: Tuning parameter sequence (Life Expectancy Data)

pilot α iteration 1 iteration 2 iteration 3

0.01 0 0 0

0.1 .06 .98 .98

0.2 .95 .98 .98

0.3− .4 .96 .98 .98

0.5− .7 .97 .98 .98

0.8− 1 .98 .98 .98

The results show that except for the α = 0.01 as the starting pilot,

all other pilots lead to the same final tuning parameter (and hence

the same estimator). All the values from the point where the tuning

parameter shows no further change are given in bold fonts. We now

further illustrate the performance of the tuning parameter selection

method through a host of popular real data examples, where the

same observations as in our motivating example (Example 3.1) will

be noticed.

3.3.1 I.I.D. data examples

Example 3.2. (Drosophila Data): We consider a segment of data

on drosophila (a type of fruit fly). The experimental protocol is de-

scribed in Woodruff et al. (1984). The data were previously analyzed

by Simpson (1987), and are presented in Table 3.4. These data con-

tain information regarding chemical mutagenicity of Drosophila flies.

This sex-linked recessive lethal test was conducted on these fruit flies
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Table 3.4: Recessive lethal count

No. of daughters (X) 0 1 2 3 4 ≥ 5

No. of males (Day 28) 23 3 0 1 1 0

No. of males (Day 177) 23 7 3 0 0 1 (91)

where groups of male flies were exposed to different doses of a chem-

ical. Each male was then mated with unexposed females. Here the

variable of interest is the number of daughter flies (for each male)

carrying a recessive lethal mutation on the X-chromosome. Having

noted the frequencies in each cell, we are interested in modelling these

data with a Poisson distribution and estimating its mean. In this con-

text, we consider two specific experimental runs, on day 28 and day

177, respectively. For these data, the results for the optimal tuning

parameter selection through the IWJ algorithm are given in Tables

3.5 and 3.6.

Table 3.5: Tuning parameter sequence (Drosophila Data, day 28)

pilot iteration

α 1 2 3 4 5 6 7

0.01 .08 .16 1 .99 .99 .99 .99

0.1 .18 1 .99 .99 .99 .99 .99

0.2− 0.3 1 .99 .99 .99 .99 .99 .99

0.4 .83 .89 .93 .95 .96 .99 .99

0.5 .78 .86 .91 .94 .96 .99 .99

0.6 .79 .87 .91 .94 .96 .99 .99

0.7 .83 .89 .93 .95 .96 .99 .99

0.8 .87 .91 .94 .96 .99 .99 .99

0.9 .93 .95 .96 .99 .99 .99 .99

1 .99 .99 .99 .99 .99 .99 .99

In Tables 3.5 and 3.6, we observe that the final converged value of the

tuning parameter is the same for every initial pilot under the IWJ

algorithm. The HK algorithm produces the same optimal solution as



Chapter 3. Choosing the ‘Optimal’ Tuning Parameter 72

Table 3.6: Tuning parameter sequence (Drosophila Data, day 177)

pilot α iteration 1 iteration 2 iteration 3

0.01 .02 .03 .03

0.1− 1 .03 .03 .03

the IWJ in these two cases. In the case of the full data, the common

optimal estimates of the Poisson mean parameter corresponding to

day 28 and day 177 are 0.16311 and 0.3935, respectively. These esti-

mates are seen to be substantially closer to 0.115385 and 0.393939,

the outlier-deleted MLEs for these datasets, compared to 0.357143

and 3.058824, the corresponding full data MLEs.

Example 3.3. (Peritonitis Data): This example involves the inci-

dence of peritonitis in 390 kidney patients. The data are available

in Table 2.4 in Basu et al. (2011). A geometric model with suc-

cess probability θ has been fitted to these frequency data. The two

largest observations of this dataset are mild to moderate outliers. In

this case, the final optimal solutions for the tuning parameter under

the IWJ algorithm are all the same except for the most non-robust

initial pilot. The IWJ, OWJ and HK optimal parameter estimates

are 0.498394, 0.502111 and 0.498056, respectively. In this example,

the HK solution corresponds to α = 0.05, being different from the

IWJ optimal value. This is a numerical difference caused by the dis-

creteness of the α-grid. If we consider a grid of 100,000 values over

α ∈ [0, 1] instead of the grid of 100 values, then the iterated WJ

optimal corresponds to α = 0.05213, which is the HK optimal value

also.

On the contrary, if we consider MLEs for comparison, then the MLEs

for the full data and the (two) outlier deleted data are 0.496183 and

0.509186, respectively. In this example, the robust estimates are all
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closer to the MLE than to the outlier deleted estimate, but the dif-

ferences between all estimates are small.

Table 3.7: Peritonitis Data

cases (X) 0 1 2 3 4 5 6 7 8 9 10 11 ≥ 12

frequencies 199 94 46 23 17 4 4 1 0 0 1 0 1

Table 3.8: Tuning parameter sequence (Peritonitis Data)

pilot α iteration 1 iteration 2 iteration 3 iteration 4 iteration 5

.01 .03 .04 .05 .05 .05

.1 .07 .06 .06 .06 .06

.2 .1 .07 .06 .06 .06

.3 .12 .08 .06 .06 .06

.4 .14 .08 .06 .06 .06

.5− .6 .16 .09 .07 .06 .06

.7 .18 .09 .07 .06 .06

.8− .9 .19 .1 .07 .06 .06

1 .2 .1 .07 .06 .06

Example 3.4. (Short’s Data): In 1761, to determine the parallax of

the sun, the angle subtended by the earth’s radius as if viewed and

measured from the surface of the sun, James Short made an anal-

ysis of observations of the ‘transit of Venus’, the apparent passage

of the planet Venus across the face of the sun, as viewed from the

earth. The raw data corresponding to 17 observations in one of his

datasets are given in Table 3.9. Under the normal model, we are

interested in estimating the mean µ and the standard deviation σ for

these data. Here the (common) optimal parameter estimates obtained

through the three algorithms are µ̂ = 8.419890 and σ̂ = 0.274061.

The associated optimal α is 0.98. For comparison, we note that the

corresponding full data MLEs are 8.377647 and 0.845539 while the

(five) outlier deleted MLEs are 8.464167 and 0.189361. The different

fits are graphically presented in Figure 3.6.
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In Table 3.10, the tuning parameter sequences for the IWJ algorithm

for the simultaneous estimation of the two normal parameters are

presented.

The estimated asymptotic summed variance curve is given in the left

panel of Figure 3.3. Here the HK, OWJ and IWJ algorithms all lead

to the same optimal solution provided one uses a robust pilot in case

of the IWJ algorithm.

Table 3.9: Short’s Data

8.65 8.35 8.71 8.31 8.36 8.58 7.8 7.71 8.30

9.71 8.50 8.28 9.87 8.86 5.76 8.84 8.23

Table 3.10: Tuning parameter sequence (Short’s Data)

pilot α iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 6 iteration 7

.01 0 0 0 0 0 0 0

.1 .04 0 0 0 0 0 0

.2 .18 .16 .13 .09 .04 0 0

.3 .92 .98 .98 .98 .98 .98 .98

.4− 1 .98 .98 .98 .98 .98 .98 .98

Example 3.5. (Newcomb’s Data): Newcomb’s measurements of the

velocity of light, given in Table 3.11, are based on observations, in

the U.S. in 1882, of the passage time taken by light to travel over a

distance of 3721 meters and back; the observations are given in Table

3.11. Here also, we assume normality and our purpose is to estimate

the mean and the standard deviation using the three algorithms. The

IWJ and HK optimal estimates are the same, at µ̂ = 27.64296 and

σ̂ = 5.053583, while the OWJ optimal estimates are 27.56197 and

4.939927. These values may be compared with 26.21212 and 10.66361

(the full data MLEs), and with 27.75000 and 5.04356 (the outlier

deleted MLEs). In this case, the IWJ and OWJ optimal values, al-

though distinct, appear to be equally effective at giving a good robust
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Figure 3.6: A few different fits for Short’s Data under the two-parameter
normal model.

solution. The relevant fits are given in Figure 3.7. In this case,

each pilot with α ≥ 0.1 leads to the same eventual optimal tuning

parameter α = 0.23 under the IWJ algorithm (which is also the HK

optimal).

Table 3.11: Newcomb’s Data

28 26 33 24 34 −44 27 16 40 −2

29 22 24 21 25 30 23 29 31 19

24 20 36 32 36 28 25 21 28 29

37 25 28 26 30 32 36 26 30 22

36 23 27 27 28 27 31 27 26 33

26 32 32 24 39 28 24 25 32 25

29 27 28 29 16 23

Example 3.6. (Telephone-line Fault Data): These data, analysed

by Welch (1987), involve results of an experiment where a method of

reducing faults on telephone lines had been tested. Fourteen matched

pairs of areas were considered, where the observations are differences

between reciprocals of numbers of test and control fault rates, among
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Table 3.12: Tuning parameter sequence (Newcomb’s Data)

pilot α iteration 1 iteration 2 iteration 3 iteration 4 iteration 5

.01 .01 .01 0 0 0

.1 .16 .2 .22 .23 .23

.2 .22 .23 .23 .23 .23

.3 .24 .23 .23 .23 .23

.4 .26 .24 .23 .23 .23

.5 .28 .24 .23 .23 .23

.6 .3 .24 .23 .23 .23

.7 .33 .25 .23 .23 .23

.8 .35 .25 .23 .23 .23

.9 .39 .26 .24 .23 .23

1 .42 .26 .24 .23 .23

Figure 3.7: A few different fits for Newcomb’s Data under the two-parameter
normal model.

which −988 is a large outlier. The data are given in Table 3.13. The

HK/IWJ optimal estimates of µ and σ are 123.29752 and 132.8642

but the OWJ optimal estimates are 123.89689 and 133.0281, respec-

tively. The full data MLEs, on the other hand, are 38.92857 and

310.2318 and the outlier deleted MLEs are 117.9231 and 127.6139.
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Once again, the IWJ and OWJ optimal values provide stable solu-

tions, although there is a slight difference between them. The optimal

IWJ solution corresponds to α = 0.2 for all robust pilots, which equals

the HK solution and slightly differs from the OWJ optimal (corre-

sponds to α = .22 in case of the L2 pilot). Relevant fits are given in

Figure 3.8.

Table 3.13: Telephone-line Fault Data

−988 −135 −78 3 59 83 93 110 189 197 204 229 269 310

Figure 3.8: A few different fits for Telephone-line Fault data under the two-
parameter normal model.

Table 3.14: Tuning parameter sequence (Telephone-line Fault Data)

pilot α iteration 1 iteration 2 iteration 3

.01 0 0 0

.1 .13 .2 .2

.2− .4 .2 .2 .2

.5− .7 .21 .2 .2

.8− 1 .22 .2 .2

Example 3.7. (Insulating Fluid Data): Here we provide a non-

normal example in continuous models. The data contain breakdown
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times of an insulating fluid between electrodes, and they are recorded

at seven different voltages. The data are presented in Nelson (1982).

Here we have taken the times associated with insulation correspond-

ing to 34 kV, which are assumed to follow an exponential distribution.

The data contain one extreme outlier and four moderately severe out-

liers. If the initial pilot is non-robust, the optimal MDPDE of the

mean parameter is the maximum likelihood estimate (MLE; corre-

sponding to α = 0). On the other hand, initial pilots corresponding

to moderate to large α lead us to the minimum L2 distance estimate

as the optimal one, which is the HK optimal also. Each of the three

algorithms leads to the minimum L2 distance estimate as the optimal

solution, which is 8.175565 in this case. For the full data, the MLE

is 14.35895, whereas the outlier deleted MLE is 4.645714.

Fits of selected estimates are given in Figure 3.9. Here both one (the

last value in Table 3.15) outlier deleted and five (the last five values

in Table 3.15) outlier deleted fits are also presented in the figure.

Table 3.15: Insulating Fluid Data

0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.50

7.35 8.01 8.27 12.06 31.75 32.52 33.91 36.71 72.89

Table 3.16: Tuning parameter sequence (Insulating Fluid Data)

pilot α iteration 1 iteration 2 iteration 3 iteration 4 iteration 5

0.01 0 0 0 0 0

.1 .04 0 0 0 0

.2 .14 .09 .03 0 0

.3− 1 1 1 1 1 1

Example 3.8. (Hertzsprung-Russell Star Cluster Data): This exam-

ple involves astronomical data: the observations form the Hertzsprung-

Russell diagram of the star cluster CYG OB1, for which the num-

ber of observations, n = 47. The data, given in Rousseeuw and
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Figure 3.9: A few different fits for Insulating Fluid Data under the exponential
model.

Leroy (1987), are presented in Table 3.17. The data on the loga-

rithm of the surface temperature of the star (x), and the logarithm

of its light intensity (y) are considered to follow the linear regres-

sion model y = α + βx + ε, where ε ∼ N
(
0, σ2

)
. The data contain

four large outliers (the 11-th, 20-th, 30-th and 34-th observations).

The ordinary least squares (OLS) estimates and the robust estimates

of the regression coefficients as well as of the scale of the error are

presented in Table 3.19. Also see Figure 3.10 for a graphical repre-

sentation of the fits of some of these estimates. Note that the HK

and IWJ optimal values are distinct in this case; in fact the IWJ and

OWJ optimal values are identical while the HK method leads to the

OLS estimates, i.e., the IWJ optimal value of α is α = 0.76, whereas

the HK optimal value is α = 0. Moreover, if we delete one more

observation along with the four outliers, i.e., the 7-th observation

considering it to be a moderate outlier, then the OLS estimate will

become quite close to the optimal robust solution. The star cluster
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data asymptotic variance plot is given in the left panel of Figure 3.2.

Table 3.17: Hertzsprung-Russell Star Cluster Data

index log of log of index log of log of

temperature intensity temperature intensity

(x) (y) (x) (y)

1 4.37 5.23 25 4.38 5.02

2 4.56 5.74 26 4.42 4.66

3 4.26 4.93 27 4.29 4.66

4 4.56 5.74 28 4.38 4.90

5 4.30 5.19 29 4.22 4.39

6 4.46 5.46 30 3.48 6.05

7 3.84 4.65 31 4.38 4.42

8 4.57 5.27 32 4.56 5.10

9 4.26 5.57 33 4.45 5.22

10 4.37 5.12 34 3.49 6.29

11 3.49 5.73 35 4.23 4.34

12 4.43 5.45 36 4.62 5.62

13 4.48 5.42 37 4.53 5.10

14 4.01 4.05 38 4.45 5.22

15 4.29 4.26 39 4.53 5.18

16 4.42 4.58 40 4.43 5.57

17 4.23 3.94 41 4.38 4.62

18 4.42 4.18 42 4.45 5.06

19 4.23 4.18 43 4.50 5.34

20 3.49 5.89 44 4.45 5.34

21 4.29 4.38 45 4.55 5.54

22 4.29 4.22 46 4.45 4.98

23 4.42 4.42 47 4.42 4.50

24 4.49 4.85

Example 3.9. (Gesell Adaptive Score Data): This two-dimensional

dataset involves the age (in months) at which a child utters its first

word (x), and the corresponding Gesell adaptive score (y). The Gesell

adaptive score test is given to children to measure their level of cog-

nitive development. The data for 21 children, analysed by Mickey et

al. (1967) are given in Table 3.20. Here also we consider the simple
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Table 3.18: Tuning parameter sequence (Star Cluster Data)

pilot α iteration 1 iteration 2 iteration 3 iteration 4

0.01− 0.2 0 0 0 0

0.3 .72 .76 .76 .76

0.4 .74 .76 .76 .76

0.5− 0.7 .75 .76 .76 .76

0.8− 1 .76 .76 .76 .76

Table 3.19: Optimal estimates for the Hertzsprung-Russell Star Cluster Data

methods β0 β1 σ

IWJ and OWJ −8.572644 3.065783 0.402574

HK and OLS 6.793469 −0.413304 0.552488

4 Outlier-deleted OLS −4.056524 2.046657 0.396256

5 Outlier-deleted OLS −7.403531 2.802837 0.3670406

Figure 3.10: A few different regression fits for Star Cluster Data.

linear regression model. The estimated parameters are given in Ta-

ble 3.22. The IWJ and HK optimal values are identical in this case

and they correspond to α = 0.33; the OWJ optimal value is distinct.

However the difference between the estimators is not of a very high

order in this example; see Figure 3.11.
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Table 3.20: Gesell Adaptive Score Data

index 1 2 3 4 5 6 7 8 9 10 11

age (x) 15 26 10 9 15 20 18 11 8 20 7

score (y) 95 71 83 91 102 87 93 100 104 94 113

index 12 13 14 15 16 17 18 19 20 21

age (x) 9 10 11 11 10 12 42 17 11 10

score (y) 96 83 84 102 100 105 57 121 86 100

Table 3.21: Tuning parameter sequence (Gesell Adaptive Score Data)

pilot α iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 6

0.1 .26 .32 .33 .33 .33 .33

0.2 .28 .32 .33 .33 .33 .33

0.2 .3 .32 .33 .33 .33 .33

0.3 .32 .33 .33 .33 .33 .33

0.4 .35 .34 .33 .33 .33 .33

0.5 .38 .34 .33 .33 .33 .33

0.6 .41 .35 .34 .33 .33 .33

0.7 .46 .36 .34 .33 .33 .33

0.8 .53 .39 .35 .34 .33 .33

0.9 .62 .42 .35 .34 .33 .33

1 .73 .48 .37 .34 .33 .33

Table 3.22: Optimal estimates for the Gesell Adaptive Score Data

methods β0 β1 σ

IWJ and HK 110.557559 −1.219669 9.456469

OWJ 112.405253 −1.293444 8.982978

OLS 109.873840 −1.126989 10.484878

Outlier-deleted OLS 109.304679 −1.193311 8.185425

Example 3.10. (Salinity Data): This example deals with a set of val-

ues measuring salt concentration of water and river discharge taken

in the Pamlico Sound of North Carolina. Here, the salinity (y) to-

gether with three explanatory variables, namely, salinity lagged by

two weeks (x1), the number of biweekly periods elapsed since the be-

ginning of the spring season (x2) and the volume of river discharge
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Figure 3.11: A few different regression fits for Gesell Adaptive Score Data.

into the sound (x3) are taken into consideration. The 28 observa-

tions are given in Table 3.23. These data have been originally pre-

sented in Ruppert and Carroll (1980); Rousseeuw and Leroy (1987)

modeled these data using a multiple linear regression model. The

different estimates under the multiple linear regression model y =

α + β1x1 + β2x2 + β3x3 + ε, where ε ∼ N
(
0, σ2

)
, are given in Table

3.25. In this case also, the IWJ and HK algorithms lead to distinct

optimal values of α. The IWJ and OWJ solutions, although also dis-

tinct, are very close. Both give robust solutions close to the outlier

deleted OLS solution. However, the HK algorithm fails to give a ro-

bust solution. The residual plot in Figure 3.12 shows how the robust

fit makes the big outlier stand out.

3.3.2 No outlier performance

All the datasets that we have analyzed here can be strongly argued

to contain one or more outliers. What would happen if these outliers

were absent and the data exhibited much better model conformity?

To what extent are the optimal α values pushed closer to zero? Take
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Table 3.23: Salinity Data

Index Lagged Salinity Trend Discharge Salinity

(x1) (x2) (x3) (y)

1 8.2 4 23.005 7.6

2 7.6 5 23.873 7.7

3 4.6 0 26.417 4.3

4 4.3 1 24.868 5.9

5 5.9 2 29.895 5.0

6 5.0 3 24.200 6.5

7 6.5 4 23.215 8.3

8 8.3 5 21.862 8.2

9 10.1 0 22.274 13.2

10 13.2 1 23.830 12.6

11 12.6 2 25.144 10.4

12 10.4 3 22.430 10.8

13 10.8 4 21.785 13.1

14 13.1 5 22.380 12.3

15 13.3 0 23.927 10.4

16 10.4 1 33.443 10.5

17 10.5 2 24.859 7.7

18 7.7 3 22.686 9.5

19 10.0 0 21.789 12.0

20 12.0 1 22.041 12.6

21 12.1 4 21.033 13.6

22 13.6 5 21.005 14.1

23 15.0 0 25.865 13.5

24 13.5 1 26.290 11.5

25 11.5 2 22.932 12.0

26 12.0 3 21.313 13.0

27 13.0 4 20.769 14.1

28 14.1 5 21.393 15.1

Newcomb’s data, for example. The removal of the two largest out-

liers produces a nice bell shaped structure which is almost perfectly

symmetric and exhibits no obvious aberrations from the assumed

normal model. There is no apparent reason to use anything other

than the maximum likelihood estimator in this case. However, does
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Table 3.24: Tuning parameter sequence (Salinity Data)

pilot α iteration 1 iteration 2 iteration 3

0.01− 1 0 0 0

0.2 .30 .30 .30

0.3− 1 .31 .30 .30

Table 3.25: Optimal estimates for the Salinity Data

methods β0 β1 β2 β3 β4

IWJ 18.264868 0.716406 −0.184652 −0.622322 0.943039

OWJ 18.288342 0.716755 −0.186029 −0.623212 0.939032

HK and OLS 9.590265 0.777105 −0.025512 −0.295036 1.231637

Outlier-deleted OLS 18.491419 0.697341 −0.157051 −0.630538 0.984163

Figure 3.12: Residual plots for OLS and optimal IWJ fits, respectively, on
Salinity Data.

our algorithm lead us to the maximum likelihood estimator in this

case? In the following, we investigate such issues further.

Table 3.26 provides a comparison of the three algorithms by listing

the full data optimal values of α and the outlier deleted optimal val-

ues of α for the three methods for all the examples studied by us. The

numbers demonstrate that for the data involving outliers, the opti-

mal tuning parameters obtained by the IWJ and OWJ algorithms
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Table 3.26: The three optimal values of α for the full data as well as the outlier
removed data corresponding to all datasets.

Dataset Outlier deletion

Full data optimal αs Outlier deleted optimal αs

IWJ OWJ HK IWJ OWJ HK

Life Expectancy one: 0.98 0.98 0.98 0.92 0.92 0.92

index 17

Drosophila two: 0.99 0.99 0.99 0 0 0

(1st run) values 3, 4

Drosophila one: 0.03 0.03 0.03 0 0 0

(2nd run) value 91

Peritonitis two: 0.06 0.2 0.05 0 0 0

values 10, 12

Short five: 0.98 0.98 0.98 0 0.17 0

values 5.76, 9.87

9.71, 7.8, 7.71

Newcomb two: 0.23 0.42 0.23 0 0.54 0

values −44,−2

Telephone-line Fault one: 0.2 0.22 0.2 0 0 0

value −988

Insulating Fluid five: 1 1 1 0 0.25 0

indices 15, 16, 17, 18, 19

Hertzsprung-Russell four: 0.76 0.76 0 0.68 0.70 0

Star Cluster indices 11, 20, 30, 34

Gesell Adaptive one: 0.33 0.73 0.33 0.03 0.77 0.03

Score index 19

Salinity one: 0.3 0.31 0 0.09 0.49 0

index 16

are often close. However, for the outlier deleted data, the IWJ al-

gorithm is more successful in pushing the optimal tuning parameter

closer to zero. In fact, in all of our i.i.d. data examples, the deletion

of outliers leads to α = 0 being the optimal tuning parameter for the

IWJ algorithm. Even for the regression examples, the drop in the

value of α due to outlier deletion is more considerable for the iter-

ated algorithm. (The one-step method actually leads to an increase

in the value of the optimal α in two cases). The life expectancy

dataset is the only exception. On the whole it appears that for pure

data, the iterated version provides a more suitable optimal value of

α. HK provides even better choices of α for the pure data but at the
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expense of failing to be sufficiently robust for some datasets.

In Table 3.26, the IWJ and OWJ optimal values correspond to α = 1

as the initial pilot. However, the IWJ optimal values are invariant

for all pilot α ∈ [0.5, 1], unlike the OWJ algorithm.

3.4 Simulation Study

In this section, we present the results of a small simulation study

comparing the values of the tuning parameter provided by HK, IWJ

and OWJ methods in both pure and contaminated cases. In each

case, the initial pilot value of α is taken to be 1. Our simulation

scenarios are as follows.

� Case 1: We draw independent samples of size 50 from the stan-

dard normal distribution, N(0, 1). The process is replicated

1000 times. For each sample, the optimal values of α under

each of the three algorithms are determined. The process is

then repeated, with the same sample size and number of repli-

cations, for the P (2) – Poisson with mean 2 – distribution under

the Poisson model with parameter θ.

� Case 2: Here the setup is exactly the same as that for Case 1

except that the normal data, in each sample, are contaminated

with 10% of observations from N(8, 1). Similarly the Poisson

data, in each sample, are contaminated with 10% of observations

from P (15).

Our comparison comprises all pairwise scatterplots of HK, IWJ and

OWJ optimal values. The results for the pure data cases are depicted

in Figure 3.13 and for the contaminated data cases in Figure 3.14.
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From the graphs, we make the following observations.

1. In the pure data case, the HK and IWJ algorithms match for the

vast majority of cases (Figure 3.13, left panel, top and bottom).

For the normal data, all estimated optimal values of α are below

0.25 for either algorithm, except for one sample where HK yields

α = 0 and IWJ yields α = 1. For the Poisson case also, the

match between the two algorithms is near total. However in this

case, some larger optimal values of α under the IWJ algorithm

are observed, and there are at least eight cases where the HK

solution equals a small value (≤ 0.3) but the IWJ solution equals

1.

2. Comparison with the OWJ algorithm demonstrates that the

IWJ and HK algorithms lead to smaller optimal values in prac-

tically all the cases involving pure data. In particular, the latter

two algorithms often lead to α = 0 as the optimal value while

OWJ leads to positive, sometimes fairly large positive, optimal

values.

3. An inspection of the graphs in Figure 3.14 shows that under

contamination, the optimal values of α, are, in general, higher

for all three algorithms. There are extremely few samples with

α = 0 as the optimal solution, even for the HK algorithm.

4. For both the contaminated normal and Poisson models, HK and

IWJ again show a high degree of match. But occasional cases

where the HK solution is a low value and the IWJ solution (or

the OWJ solution) equals α = 1, indicate the occasional failure

of the HK scheme.
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5. In the case of the normal model, the OWJ optimal value is,

in general, higher than the IWJ optimal value or the HK op-

timal value under contamination. There are quite a few cases

where the OWJ optimal corresponds to the minimum L2 esti-

mate, whereas the HK as well as the IWJ optimals are substan-

tially smaller than the OWJ optimal.

6. For the contaminated Poisson model, certain very small OWJ

optimal values are associated with comparatively larger HK (or

IWJ) optimal values. But for larger OWJ optimal values, the

corresponding HK or IWJ solutions are usually smaller.

A point to be noted here is that occasionally we will come across

cases where the HK optimal solution will be α = 0 but the IWJ

algorithm leads to an optimal value of α = 1. Consider the normal

distribution part of our simulation setup. For pure data, we observe

that between 4-5% of the time we encounter the phenomenon that

the IWJ optimal is 1 and the HK optimal is 0. On the other hand,

this never happens in our simulations in case of contaminated data.

It may be worthwhile, though, to scrutinize one of the cases (under

pure data) where the HK optimal is α = 0 and the IWJ optimal

is α = 1. The histogram of the data for this particular sample

and the corresponding asymptotic variance curve over α are given in

Figure 3.15. Although the data are generated from the pure normal

model, there is clearly a substantially longer tail on the left. The

overlaid normal density curves show that the HK optimal value of

α = 0 (corresponding to the minimum asymptotic variance) tries

to accommodate the entire data whereas the IWJ optimal at α =

1 (corresponding to a local minimum) robustly fits the majority of

the data ignoring the tail on the left.
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Figure 3.15: The histogram and the asymptotic variance curve of a particular
dataset which leads to an optimal α = 0 for HK algorithm and an optimal α = 1

for IWJ algorithm.

3.5 Computational Cost

We have already demonstrated the advantages of the IWJ proposal

in the previous sections of this chapter. However as the process is an

iterative one, the experimenter would like to know about the compu-

tational cost involved in this procedure. To study this, we consider

the number of iterations needed for the convergence of the proce-

dure. Clearly a smaller number of iterations will indicate that the

algorithm is more time-efficient. However, if the number of iterations

is n, it does not mean that the computational complexity of the IWJ

algorithm is n-times that of the OWJ algorithm, as all the ground

work is done in the first step of the iteration including calculation of

the estimates over a fine grid of α-values and the evaluation of the

asymptotic variance curve. Thus, the subsequent iterations require

only a very small fraction of the computational effort of the first

iteration.
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If we consider our real life data examples then in most of the cases,

the IWJ algorithm converges in five iterations or fewer when starting

from a robust pilot. For example, if the pilot is the MDPDE at α = 1,

the number of iterations in our real data examples (including the two

cases of Example 3.2) are, in the order of the examples, 2, 2, 2, 5, 2,

5, 3, 2, 2, 6, 3. The worst case observed in these examples is in the

Gesell Adaptive Score Data where the process takes six iterations to

converge when starting from the MDPDE at α = 1 as the robust

pilot. However the computational time needed in this case is only

1.02 times the computational time required for the OWJ algorithm

starting with the same pilot.

For our simulated data also, the process converges, most of the

time (80% of the time or more), within 2-5 iterations, both for pure

and contaminated data. In Figure 3.16, we present the frequency dis-

tributions of the number of iterations required for the IWJ algorithm

to converge over 1000 replications for both pure and contaminated

normal data. For pure data, the IWJ algorithm converges in just

two iterations in more than 20% of the time although the mode of

this frequency distribution is at four. In case of contaminated data

also, the mode is at four but now the algorithm rarely converges in

just two steps. On the other hand, in some rare cases, the algorithm

may take a large number of iterations to converge in case of pure

data. For example, in one stray pure data sample, the IWJ algo-

rithm took 32 iterations to converge starting with the robust pilot

at α = 1. Further scrutiny shows that in this case, the asymptotic

variance curve is very flat and the optimal solution is α = 0; the

passage of the algorithm from α = 1 to α = 0 over a flat asymptotic

variance curve takes a while. Such large values are absent in the fre-

quency distribution for contaminated data because in this case, the
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Figure 3.16: Number of iterations needed to obtain IWJ estimator under pure
and contaminated normal model.

optimal solutions are generally substantially higher than zero which

is reached in fewer steps starting from α = 1. On the whole, the

mean numbers of iterations for convergence are approximately the

same for pure and contaminated data but the variance is larger in

case of pure data.

3.6 Concluding Remarks

Here, we have proposed an iterated WJ algorithm for the selection of

the optimal tuning parameter in the class of MDPDEs. Our findings

show that when the pilot estimators are within the MDPDE class,

all robust pilots lead to the same iterated optimal. In this sense, the

iterated algorithm eliminates the dependence on the pilot estimator.

The IWJ optimal value of α is frequently (but not always) equal to

the HK optimal value. However, the advantage of the IWJ procedure

is that it picks up a robust solution when it is appropriate but the

HK algorithm fails to do so.

Our findings also indicate that for clean data the IWJ algorithm

provides more suitable optimal values than the OWJ algorithm. For
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contaminated data, the one step and iterated algorithms give closer

results.

On the whole, we feel that the IWJ optimal solution is successful in

eliminating dependence on the pilot estimator and provides a good

robust outcome where necessary. It also provides more efficient op-

timal solutions under pure data compared to the OWJ algorithm.

It is, therefore, without doubt the best of the three algorithms for

choosing the tuning parameter in minimum DPD estimation with

which we have been concerned in this chapter.

When outliers are present in the dataset, the IWJ algorithm, on an

average, exhibits superior performance relative to the HK algorithm,

while, for outlier-free datasets, the IWJ and HK algorithms gener-

ally behave similarly (in fact are frequently identical). On the other

hand, when we compare the IWJ and OWJ algorithms, both perform

similarly under contaminated data and and generally exhibit similar

degrees of robustness. For pure data, however, the OWJ algorithm

often gets caught up in the neighborhood of the robust pilot under

consideration, while the IWJ leads to a much more efficient choice

through repeated iterations. Thus the IWJ algorithm enjoys the best

of both worlds – it behaves like the HK solution under pure data,

and like the OWJ solution under contamination.



Chapter 4

The Extended Bregman

Divergence

We have already discussed the usefulness of the Bregman divergence.

To construct a wider class of divergences as well as to use its nice

properties in case of generating better estimates, we are going to

extend this divergence and generate the “Extended Bregman diver-

gence”.

4.1 Rationale behind this Extension

We have already shown that several important divergence families (men-

tioned in second chapter) can be represented as subfamilies of the

class of Bregman divergences. Yet, there are several other important

divergences, e.g., the PD family, the S-divergence family, etc., which

cannot be represented in the Bregman form. We will try to expand

the structure of the Bregman divergence so that the above mentioned

divergences can be accommodated within the Bregman form with this

expanded definition. This we will do by utilizing powers of densities

96
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as arguments, rather than the arguments themselves; this leads to

the generalized class of the extended Bregman divergences which is

one step ahead through the modification of existing popular tools

for minimum distance approach used extensively in this literature.

This extension allows us to express several existing divergence fami-

lies as special cases of it, which is not possible through the ordinary

Bregman divergence, together with generating larger super-families

of divergences as special cases.

4.2 Proposal of the Extension

It is evident that only the convexity criterion of the function ψ (·)
in Equation (2.1) is necessary for the non-negativity property of the

divergence Dψ (x,y) to hold. One could, therefore, consider other

quantities as the arguments rather than the points themselves in this

measure. Hence, as long as ψ remains convex, any set of arguments

whose equivalence translates to the equivalence of x and y can be

used in the distance expression. This observation may be used to

extend the Bregman divergence to have the form

Dψ (x,y) =

{
ψ
(
xk
)
− ψ

(
yk
)
− 〈∇ψ

(
yk
)
,xk − yk〉

}
. (4.1)

∇ψ
(
yk
)

be the gradient of ψ with respect to its argument, evaluated

at yk =
(
yk1 , y

k
2 , . . . , y

k
d

)T
and ψ is a strictly convex function, mapping

S to R, S being a convex subset of R+p. Since our main purpose is

to utilize this extension in the field of statistics where the arguments,

being probability density functions, are inherently non-negative, re-

stricting the domain of ψ to R+p does not cause any difficulty. It is

also not difficult to see that many of the properties of the Bregman
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divergence in Equation (2.1), are retained by the extended version in

Equation (4.1). However, we will not make use of these properties in

the present research, so we do not discuss them here any further.

Consider the standard setup of parametric estimation where G is the

true data generating distribution modeled by the parametric fam-

ily F = {Fθ : θ ∈ Θ ⊂ Rp}. Let g and fθ be the corresponding

densities. Further we assume that both G and Fθ belong to G, the

class of all cumulative distribution functions having densities with

respect to some appropriate dominating measure. Our aim is to

estimate the unknown parameter θ by choosing the model density

closest to the true density in the Bregman sense. The definition of

ordinary Bregman divergences as given in Equation (2.2), useful as it

is, does not include many well-known and popular divergences which

are extensively used in the literature for different purposes including

parameter estimation. As already mentioned, the PD family, the S-

divergence family are prominent examples of this. An inspection of

the Bregman form in Equation (2.2) indicates that the term which

involves both densities g and f is of the form∫
g (x)∇ψ (f (x)) dx. (4.2)

Here, the density g is present only as a linear term having exponent

one. Given a random sample X1, X2, . . . , Xn from the true distribu-

tion G, the term in Equation (4.2) can be empirically estimated by

1
n

∑
∇ψ(fθ(Xi)) (with f = fθ under the parametric model) so that

one can construct an empirical version of the divergence without any

non-parametric density estimation. On the other hand, this restricts

the class of divergences that are expressible in the Bregman form.
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Using an extension in the spirit of Equation (4.1) may allow the con-

struction of richer classes of divergences. With this aim, we define

the extended Bregman divergence between two densities g and f as

D
(k)
ψ (g, f) =

∫ {
ψ
(
gk (x)

)
− ψ

(
fk (x)

)
−
(
gk (x)− fk (x)

)
∇ψ

(
fk (x)

)}
dx. (4.3)

Apart from the requirement of strict convexity of the function ψ,

this formulation also depends on a positive index k with which the

density is exponentiated. For the rest of the thesis, the notation

D
(k)
ψ (·, ·) will refer to this general form in Equation (4.3), of which

the divergence in Equation (2.2) is a special case for k = 1. Evidently,

D
(k)
ψ (g, f) ≥ 0 for any choices of densities f and g with respect to

the same measure. Moreover, the fact that D
(k)
ψ (g, f) = 0 if and only

if g = f , holds true in this case due to non-negativity property of a

density as well as the consideration of strict convexity of the function

ψ (·).

4.3 Some Special Cases of the Extended Breg-

man Divergence

4.3.1 Power Divergence (PD)

One of the most important subfamilies of the class of disparities is the

Cressie–Read family (Cressie and Read, 1984) of Power Divergences.

If we take ψ (x) = x1+
B
A

B , A = 1 + λ, B = −λ and λ ∈ R, with

k = A in Equation (4.1), we get the PD family expressed through

the equation

PDλ (g, f) =
1

λ (λ+ 1)

∫ {
g (x)

(
g (x)

f (x)

)λ
− 1

}
dx, λ ∈ R. (4.4)
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The PD class is a subfamily of chi-square type distances. The latter

class of divergences has the form

ρ (g, f) =

∫
C (δ (x)) f (x) dx, (4.5)

where C is a strictly convex function and δ (x) = g(x)
f(x)−1. The power

divergence corresponds to the specific convex function

C (δ) =
(δ + 1)λ+1 − (δ + 1)

λ (λ+ 1)
− δ

λ+ 1
. (4.6)

This family belong to the class of disparities and hence is totally

disjoint with the DPD family except the only common significant

member the likelihood disparity, which occurs at the limiting case

λ→ 0.

4.3.2 S-Divergence (SD)

To create a bridge between the PD and the DPD families, Ghosh et

al. (2017) introduced this divergence with the form

SD(α,λ) (g, fθ) =

∫ {
1

B

(
gA+B (x)− fA+B

θ (x)
)
−
(
gA (x)− fAθ (x)

) A+B

AB
fBθ (x)

}
dx.

(4.7)

If we take ψ (x) = x1+
B
A

B , A = 1 + λ (1− α), B = α − λ (1− α),

A+B = 1 + α, α ≥ −1, λ ∈ R and k = A in Equation (4.3), we get

Equation (4.7). The minimum S-divergence functional, T(α,λ) (G),

can be defined as

SD(α,λ)

(
g, fT(α,λ)(G)

)
= min

θ∈Θ
SD(α,λ) (g, fθ) , (4.8)
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provided the minimum exists. The essential estimating equation re-

quired for obtaining this functional is∫
K (δ (x)) f 1+α

θ (x)uθ (x) dx = 0, (4.9)

where, δ (x) = g(x)
fθ(x) − 1 and K (δ) = (δ+1)

A−1
A . This is one of the

most useful divergence families in the domain of robust minimum

distance inference due to its capacity to generate much more robust

estimator(s) than the DPD and PD families. Through this extension

of Bregman divergence, it is now possible to express the S-divergence

as a special case of this extended Bregman divergence family.

4.3.3 S-Hellinger Divergence (SHD)

If we take ψ (x) = 2eβx

β2 with k ≥ 0 in Equation (4.3), it will generate

an extension of the BED family having the form

BED
(k)
β (g, fθ) =

2

β

∫ {
eβf

k
θ (x)

(
fkθ (x)− 1

β

)
− eβfkθ (x)gk (x) +

eβg
k(x)

β

}
dx. (4.10)

It can be easily shown that, as β → 0 and k = 1+α
2 , α ∈ [0, 1],

the application of L’Hospital’s rule leads to (constant time) the S-

Hellinger Distance (SHD) family with the form

SHDα (g, fθ) =
2

1 + α

∫ (
g

1+α
2 (x)− f

1+α
2

θ (x)
)2

dx. (4.11)

This was introduced as a special case of the S-divergence family.

This family cannot be expressed through the normal expression of the

Bregman divergence, but through this extension, we can express this

S-Hellinger divergence family as a (limiting) member of the extended

BED class which becomes a subclass of the extended Bregman class.
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4.4 Concluding Remarks

Through this extension, the scope of bringing all divergences un-

der one umbrella has been evidently extended. The next step is to

use this extension for discovery of some broader class of divergences

which enables us to proceed toward further refined analysis through

more and more robust inferential procedures.



Chapter 5

A New Extended Bregman Super

Family

5.1 Introduction

In the previous chapter, our aim was to extend the scope of the

Bregman divergence by utilizing the powers of densities (rather than

the densities themselves) as arguments; this leads to the generalized

class of the extended Bregman divergences that can then be used to

generate new divergences which could provide more refined tools for

minimum divergence inference compared to the current state of the

art. Note that the use of the Bregman divergence in statistics is rel-

atively recent; the class of density power divergences defined earlier,

is a prominent example of Bregman divergences having significant

applications in statistical inference. Many minimum divergence pro-

cedures have natural robustness properties against data contamina-

tion and outliers. As our class of divergences become more and more

rich and refined, we expect that better options for statistical data

analysis involving parametric inference will be available.

103



Chapter 5. A New Extended Bregman Super Family 104

The extended Bregman divergence allows us to express several ex-

isting divergence families as special cases of it, which is not possible

through the ordinary Bregman divergence. Consequently, the ex-

tended Bregman idea can be used to generate large super-families of

divergences containing, together with the existing divergences, many

new and useful divergence families as special cases.

5.2 Generalized S-Bregman (GSB) Divergence

We have already seen that one of the most popular subclasses of

Bregman divergences, the DPD family, and the most popular sub-

class of disparities, the PD family, have only one common member,

i.e., the likelihood disparity. To connect these two families, Ghosh

et al. (2017) developed a new class of divergences, namely, the S-

divergence class, which contains both families as special cases. Apart

from acting as a bridge between these two families, this class also

serves the purpose of getting more stable minimum distance estima-

tors based on divergences lying outside both the PD and the DPD

families (but within the S-divergence class).

The S-divergences were developed by Ghosh et al. (2017) from first

principles balancing different divergence considerations. We have,

in the previous chapter of this thesis, demonstrated that this S-

divergence class is embedded within the extended Bregman family,

and thus can be directly recovered from the latter. In the present sec-

tion we will consider a refinement of the S-divergence class, within

the framework of extended Bregman divergences, which is a rich

class of divergences and combines the PD, DPD and BED families
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(Section 2.1.3.4) in a single coherent class. This is a three tuning pa-

rameter family, each of which can be linked to one of the constituent

families (α for the DPD, λ for the PD and β for the BED) and

can serve as the source of new divergences which can provide bet-

ter compromises between efficiency and robustness compared to the

S-divergence class. With this motivation we are now going to gen-

erate this new super-divergence family, and refer to it as the class of

generalized S-Bregman (GSB for short) divergences. In constructing

the GSB divergence, we use the convex function ψ(x) = eβx + x1+
B
A

B ,

A = 1 + λ (1− α), B = α − λ (1− α), A + B = 1 + α, α ≥ −1,

β, λ ∈ R, which, together with the exponent k = A, generates a

divergence with the form

D∗ (g, f) =

∫ {
eβf

A (
βfA − βgA − 1

)
+ eβg

A

+
1

B

(
gA+B − fA+B

)
−
(
gA − fA

) A+B

AB
fB
}
dx.

(5.1)

The divergence measure D∗ is our GSB divergence. It is a function

of α, λ and β, which we suppress for brevity on the left hand side of

Equation (5.1).

If we put A+B = 0 in the above expression with A 6= 0 and B 6= 0, we

will get the extended BED family with parameter β and exponent

k = A. Moreover, if A = 1, i.e., λ = 0, then it will lead to the

ordinary BED family with parameter β. However, if we put β = 0,

it will lead to the S-divergence family with parameters α and λ (in

terms of A and B). More specifically, when α = 0 and β = 0, it leads

to the PD family with parameter λ. On the other hand, β = 0 and

λ = 0 recovers the DPD family with parameter α. Thus, it acts as a

connector between the BED and the S-divergence family.
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5.3 Special Cases

We will get several well-known divergences or divergence families

from the general form of the GSB divergence for particular choices

of the three tuning parameters α, λ and β. Some such choices are

given in Table 5.1.

Table 5.1: Different divergences as special cases of GSB divergence

α λ β Divergences

α = −1 λ = 0 β ∈ R Bregman Exponential Divergencea

α = 0 λ ∈ R β = 0 Power Divergence

α ≥ 0 λ = 0 β = 0 Density Power Divergence

α ≥ 0 λ ∈ R β = 0 S-Divergence

α = 0 λ = −1 β = 0 Kullback-Liebler Divergence

α = 0 λ = 0 β = 0 Likelihood Disparity

α = 0 λ = −.5 β = 0 Hellinger Distance

α ∈ R λ = −.5 β = 0 S-Hellinger Distance

α = 0 λ = 1 β = 0 Pearson’s Chi-square Divergence

α = 0 λ = −2 β = 0 Neyman’s Chi-square Divergence

α = 1 λ ∈ R β = 0 (squared) L2 Distance
a This is a constant times the B-exponential divergence. It basically gen-

erates all the members of the BED family corresponding to the same β
except the (squared) L2 distance, which occurs when β → 0. However,
as seen above, the (squared) L2 distance remains a member of the GSB
class for other choices of the tuning parameters.

5.4 Discrete Setup

In this section, we will focus on the discrete setup for parametric

estimation based on the GSB divergence. Let X1, X2, . . . , Xn be in-

dependent and identically distributed observations from an unknown

distribution G where the support is taken, without loss of general-

ity, to be χ = {0, 1, 2, 3, . . . , }. On the other hand, we consider a

parametric family of distributions F = {Fθ : θ ∈ Θ ⊆ Rp}, also
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supported on χ, to model the true data generating distribution G.

In this setup, we assume both G and F to have densities g and fθ

with respect to the counting measure. Let the best fitting parameter

be θg = Tα,β,λ(G), and we are interested in estimating the parameter

θ.

5.4.1 The Minimum GSB Divergence Estimator

Under the parametric setup described in this section, we would like

to identify the best fitting parameter θg by choosing the element of

the model family of distributions which provides the closest match

to the true density g in terms of the given divergence. The minimum

GSB divergence functional Tα,λ,β : G → Θ is defined by the relation

D∗
(
g, fTα,λ,β

)
= min{D∗ (g, fθ) : θ ∈ Θ},

provided the minimum exists. If the parametric model family is

identifiable, it follows from the definition of the divergence that

D∗ (g, fθ) = 0, if and only if, g = fθ. Thus, Tα,λ,β (Fθ) = θ, uniquely.

Hence, we can conclude that the functional Tα,λ,β is Fisher consistent.

5.4.2 Estimating Equation

To find the best fitting parameter, a straightforward differentiation

of the GSB divergence of Equation (5.1) (given the density g) leads

to the estimating equation

∫ {
Aβ2eβf

A
θ (x)fAθ (x) +

(A+B)

A
fBθ (x)

}(
fAθ (x)− gA (x)

)
uθ (x) dx = 0. (5.2)

In practice, the true density g is unknown, so one has to use a suitable

non-parametric density estimator ĝ for g, depending on the situation.
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Since we concentrate on the discrete parametric setup only, the nat-

ural choice for ĝ is the vector of relative frequencies as obtained from

the sample data. Thus the estimating equation becomes

∞∑
x=0

A2β2eβf
A
θ (x)f2A

θ (x)uθ (x) +

∞∑
x=0

(A+B) fA+B
θ (x)uθ (x)

=
∞∑
x=0

A2β2eβf
A
θ (x)fAθ (x) ĝA (x)uθ (x) +

∞∑
x=0

(A+B) fBθ (x) ĝA (x)uθ (x) .

(5.3)

For A = 1, Equation (5.3) reduces to

∞∑
x=0

β2eβfθ(x)f 2
θ (x)uθ (x) +

∞∑
x=0

(1 +B) f 1+B
θ (x)uθ (x)

=
1

n

n∑
i=1

β2eβfθ(Xi)fθ (Xi)uθ (Xi) +
1

n

n∑
i=1

(1 +B) fBθ (Xi)uθ (Xi) .

(5.4)

Since the left hand side of the above equation is non-random and the

right hand side is a sum of i.i.d. terms, it is of the form
∑n

i=1 ψθ (Xi) =

0 and the corresponding estimator belongs to the M-estimator class.

In accordance with the information on the first three rows of Table

5.1, we will refer to the parameters α, λ and β as the DPD parameter,

the PD parameter and the BED parameter, respectively.
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5.4.3 Asymptotic Properties

Under the discrete setup employed in this section, the minimum GSB

divergence estimator is obtained as a solution of the estimating equa-

tion

∞∑
x=0

{
Aβ2eβf

A
θ (x)fAθ (x) +

(A+B)

A
fBθ (x)

}(
fAθ (x)− ĝA (x)

)
uθ (x) = 0

⇒
∞∑
x=0

{
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B) fA+B
θ (x)

} (1− ĝA(x)

fAθ (x)

)
A

uθ (x) = 0

⇒
∞∑
x=0

K (δ (x))
(
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B) fA+B
θ (x)

)
uθ (x) = 0, (5.5)

where, δ (x) = δn (x) = ĝ(x)
fθ(x) − 1 = rn(x)

fθ(x) − 1, K (δ) = (δ+1)
A−1

A and

uθ (x) is the score function at x. We denote the minimum GSB

divergence estimator, obtained as a solution of the above equation,

as θ̂. Let

Jg = Eg

(
uθg (X)uTθg (X)K ′

(
δgg (X)

) (
(A+B) fαθg (X) +A2β2eβf

A
θg

(X)f2A−1
θg (X)

))
+

∞∑
x=0

K
(
δgg (x)

) (
(A+B) fA+B

θg (x) +A2β2eβf
A
θg

(x)f2A
θg (x)

)
iθg (x)

−
∞∑
x=0

K
(
δgg (x)

) (
(A+B)2 fA+B

θg (x) +A3β2eβf
A
θg

(x)f2A
θg (x)

(
2 + βfAθg (x)

))
uθg (x)uTθg (x)

Vg = V arg

(
uθg (X)K ′

(
δgg (X)

) (
(A+B) fαθg (X) +A2β2eβf

A
θg

(X)f2A−1
θg (X)

))
, (5.6)

where X is a random variable having density g, V arg represents

variance under the density g, θ = θg, δg (x) = g(x)
fθ(x) − 1, K ′ (·) is the

derivative of K (·) with respect to its argument, δgg (x) = g(x)
fθg (x)−1 and

iθ (x) = −u′θ (x), the negative of the derivative of the score function

with respect to the parameter.

First we set up some regularity conditions:

A1. The model family F is identifiable.
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A2. The model distribution as well as the true distribution have the

same support χ, which is independent of the parameter θ.

A3. There exists an open subset ω ⊂ Θ, of which θg is an interior

point. For almost all x, fθ (x) possesses third partial derivative

of the type ∇jklfθ (x) for all θ ∈ ω.

A4. The matrix Jg is positive definite.

A5.
∞∑
x=0

g
1
2 (x)

(
A2β2eβf

A
θ (x)f 2A−1

θ (x) + (A+B) fA+B−1
θ (x)

)
|uθ (x) |,

∞∑
x=0

g
1
2 (x)

(
A2β2eβf

A
θ (x)f 2A−1

θ (x) + (A+B) fA+B−1
θ (x)

)
|ujθ (x) ||ukθ (x) |

and∞∑
x=0

g
1
2 (x)

(
A2β2eβf

A
θ (x)f 2A−1

θ (x) + (A+B) fA+B−1
θ (x)

)
|ujkθ (x) |

are bounded for all j, k and for all θ ∈ ω. Here, ujθ (x) and

ujkθ (x) denote the j-th element of ∇ log fθ (x) and (j, k)-th el-

ement of ∇2 log fθ (x), respectively.

A6. For almost all x, there existsMj,k,l (x), Mjk,l (x), Mjkl (x), M
(1)
j,k,l (x)

and M
(2)
j,k,l (x) such that they dominate(

A2β2eβf
A
θ (x)f 2A−1

θ (x) + (A+B) fA+B−1
θ (x)

)
ujθ (x)ukθ (x)ulθ (x),(

A2β2eβf
A
θ (x)f 2A−1

θ (x) + (A+B) fA+B−1
θ (x)

)
ujkθ (x)ulθ (x),(

A2β2eβf
A
θ (x)f 2A−1

θ (x) + (A+B) fA+B−1
θ (x)

)
ujklθ (x),{

(A+B)2 fA+B−1
θ (x) +A3β2eβf

A
θ (x)f2A−1

θ (x)
(
2 + βfAθ (x)

)}
ujθ (x)ukθ (x)ulθ (x),

(A+B)3 fA+B−1
θ (x)ujθ (x)ukθ (x)ulθ (x)

+
{
A4β2eβf

A
θ (x)

(
2f2A−1
θ (x) + β

(
f3A−1
θ (x) + fA−1

θ (x) + 4f2A−1
θ (x)

))}
ujθ (x)ukθ (x)ulθ (x)

in absolute value, respectively for all j, k and l and they are uni-

formly bounded in expectation with respect to g and fθ for all

θ ∈ ω.
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A7. Suppose, C1 and C2 represent the bounds ofK ′(δ) andK ′′(δ)(1+

δ), respectively, where K ′(·) and K ′′(·) represent the first and

second order derivatives of K(·) with respect to its argument δ.

Next, we are going to state (and prove) some lemmas required for

establishing the main theoretical result (Theorem 5.5). At first we

define the Hellinger Residuals as

4n(x) =
r

1/2
n (x)

f
1/2
θ (x)

− 1;4g(x) =
g1/2(x)

f
1/2
θ (x)

− 1. (5.7)

Lemma 5.1. Define, ηn (x) =
√
n (4n (x)−4g (x))2. For any k ∈

[0, 2] and for any x ∈ χ, we have,

1. Eg

{
ηkn (x)

}
≤ n

k
2Eg

{
|δn (x)− δg (x) |k

}
≤
[
g(x)(1−g(x))

f2θ (x)

]k
2

.

2. Eg {|δn (x)− δg (x) |} ≤
[
2g(x)(1−g(x))

fθ(x)

]
.

Proof. The proof follows the arguments of Lemma 2.13 of Basu et

al. (2011). For non-negative quantities a, b, we have
(√

a−
√
b
)2
≤

|a − b|. Again, under g, nrn (x) ∼ Bin(n, g (x)). Using these facts,
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we find

Eg

{
ηkn (x)

}
= n

k
2Eg

(
r

1/2
n (x)

f
1/2
θ (x)

− g1/2(x)

f
1/2
θ (x)

)2k

≤ n
k
2Eg {|δn (x)− δg (x) |}k

≤ n
k
2Eg

{
(δn (x)− δg (x))2

}k
2

for k ∈ [0, 2], (by Lyapunov’s inequality)

=
n
k
2

fkθ (x)
Eg

{
(rn (x)− g (x))2

}k
2

=
n
k
2

fkθ (x)

{
g (x) (1− g (x))

n

}k
2

=

{
g (x) (1− g (x))

f 2
θ (x)

}k
2

. (5.8)

Hence the first part is proved. For second part, we can write,

Eg {|δn (x)− δg (x) |} =
1

fθ (x)
Eg

{∣∣∣∣∣1n
n∑
i=1

I (Xi = x)− g (x)

∣∣∣∣∣
}

≤ 1

nfθ (x)

n∑
i=1

Eg {|I (Xi = x)− g (x) |}

=
2g (x) (1− g (x))

fθ (x)
, (5.9)

where the last relation holds from the results regarding the mean

deviation of a Binomial random variable.

Lemma 5.2. Eg

{
ηkn (x)

}
→ 0, as n → ∞, for k ∈ [0, 2) and for

x ∈ χ.

Proof. By Lemma 2.9 of Basu et al (2011), we have, as n→∞,

n
1
4

(√
rn (x)−

√
g (x)

)
→ 0, (5.10)
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with probability one for each x belonging to the given support. Since

f (x) = x2 is a continuous function, by Continuous Mapping Theo-

rem, we can further claim that, with probability one,

n
1
2

(√
rn (x)−

√
g (x)

)2

→ 0

⇒ ηn (x)→ 0.

Moreover, from the previous lemma, we have got that supnEg

{
ηkn (x)

}
is bounded for k ∈ [0, 2). Hence the remaining part immediately fol-

lows from the Theorem 4.5.2 of Chung (1974).

Let us now define,

an (x) = K (δn (x))−K (δg (x))

bn (x) = (δn (x)− δg (x))K ′ (δg (x))

τn (x) =
√
n|an (x)− bn (x) |.

Next, we are going to find the asymptotic distribution of

S1n =
√
n
∞∑
x=0

an (x)
(
A2β2eβf

A
θ (x)f 2A

θ (x) + (A+B) fA+B
θ (x)

)
uθ (x)

and,

S2n =
√
n
∞∑
x=0

bn (x)
(
A2β2eβf

A
θ (x)f 2A

θ (x) + (A+B) fA+B
θ (x)

)
uθ (x).

Lemma 5.3. Under assumption (A5), as n→∞, Eg|S1n−S2n| → 0

and, hence, S1n − S2n
p→ 0.

Proof. Let us consider,

c =
√
δn (x) + 1; d =

√
δg (x) + 1, (5.11)
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then, using Lemma 2.15 of Basu et al. (2011), we can claim that, for

some positive constant γ, we can write,

|K(c2 − 1)−K(d2 − 1)− (c2 − d2)K(d2 − 1)| ≤ γ(c− d)2

⇒ |K(δn (x))−K(δg (x))− (δn (x)− δg (x))K ′(δg (x))| ≤ γ

{
r

1/2
n (x)

f
1/2
θ (x)

− g1/2(x)

f
1/2
θ (x)

}2

⇒ τn(x) ≤ γ
√
n(4n(x)−4g(x))2 = γηn (x) . (5.12)

By Lemma 5.1,

Eg {τn (x)} ≤ γEg (ηn (x)) ≤ γ (g(x)(1−g(x))
1
2

fθ(x) ≤ γ g
1
2 (x)
fθ(x) .

By Lemma 5.2,

Eg {τn (x)} ≤ γEg {ηn (x)} → 0 as n→∞.

Therefore, for finite α, β and λ,

Eg|S1n − S2n| ≤
∞∑
x=0

Eg{τn (x)}
(
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B) fA+B
θ (x)

)
|uθ (x) |

≤ γ
∞∑
x=0

g
1
2 (x)

(
A2β2eβf

A
θ (x)f2A−1

θ (x) + (A+B) fαθ (x)
)
|uθ (x) | <∞,

by assumption (A5). Hence, by the dominated convergence theorem

(DCT), Eg|S1n−S2n| → 0 as n→∞. The desired result then follows

from Markov’s inequality.

Lemma 5.4. Let all the relevant expressions be evaluated at θ =

θg, and let Vg be as defined in Equation (5.6). Then, under g, S1n

converges in distribution to Np (0, Vg), whenever Vg is finite.
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Proof. From Lemma 5.3, we can say that the asymptotic distribu-

tions of S1n and S2n are same. Under θ = θg,

S2n =
√
n

∞∑
x=0

(δn (x)− δg (x))K ′ (δg (x))
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
uθg (x)

=
√
n
∞∑
x=0

(rn (x)− g (x))K ′ (δg (x))
(
A2β2eβf

A
θg

(x)f2A−1
θg (x) + (A+B) fαθg (x)

)
uθg (x)

=
√
n

[
1

n

n∑
i=1

K ′ (δg (Xi))
(
A2β2eβf

A
θg

(Xi)f2A−1
θg (Xi) + (A+B) fαθg (Xi)

)
uθg (Xi)

− Eg

{
K ′ (δg (X))

(
A2β2eβf

A
θg

(X)f2A−1
θg (X) + (A+B) fαθg (X)

)
uθg (X)

}]
→ Z ∼ Np (0, Vg) , (5.13)

in distribution by the central limit theorem. Hence the proof.

Now, we will prove the main asymptotic result regarding the mini-

mum GSB divergence estimator using the given conditions and the

results established so far.

Theorem 5.5. Under the setup described in this section and regular-

ity conditions (A1)-(A7), there exists a consistent sequence of roots

θ̂n of the estimating equation (5.3). Moreover, the asymptotic distri-

bution of
√
n
(
θ̂n − θg

)
is p-dimensional normal with (vector) mean

0 and covariance matrix J−1
g VgJ

−1
g .

Proof. First we are going to establish the consistency part and then

the asymptotic normality.

Proof of Consistency: Consider the behaviour of D∗ (rn, fθ) on a

sphere Qa which has radius a and centre at θg. We will show that

for a sufficiently small, P (D∗ (rn, fθ) > D∗ (rn, fθg)) → 1 for all θ

on the surface of Qa, so that asymptotically there will be a local

minimum of the GSB divergence with respect to θ in the interior

of Qa. Therefore, for any a > 0 sufficiently small, the minimum

GSB divergence estimating equation has a solution θn within Qa

with probability tending to one where the estimating equation must
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be satisfied. Now, considering a Taylor series expansion of D∗ (rn, fθ)

around θ = θg, we get

D∗ (rn, fθg)−D∗ (rn, fθ) = −
p∑
j=1

(
θj − θgj

)
∇jD∗ (rn, fθ) |θ=θg

− 1

2

p∑
j=1

(
θj − θgj

) (
θk − θgk

)
∇jkD∗ (rn, fθ) |θ=θg

− 1

6

p∑
j=1

(
θj − θgj

) (
θk − θgk

) (
θl − θgl

)
∇jklD∗ (rn, fθ) |θ=θ∗

= S1 + S2 + S3, say (5.14)

where, θ∗ lies between θ and θg. For the first term S1,

∇jD
∗ (rn, fθ) |θ=θg

= −
∞∑
x=0

K (δgn (x))
(
A2β2eβf

A
θg (x)f 2A

θg (x) + (A+B) fA+B
θg (x)

)
ujθg (x) ,

(5.15)

where, δgn (x) is the δn (x) evaluated at θ = θg. We will now show

that,

∞∑
x=0

K (δgn (x))
(
A2β2eβf

A
θg (x)f 2A

θg (x) + (A+B) fA+B
θg (x)

)
ujθg (x)

→
∞∑
x=0

K
(
δgg (x)

) (
A2β2eβf

A
θg (x)f 2A

θg (x) + (A+B) fA+B
θg (x)

)
ujθg (x) ,

(5.16)

in probability as n→∞. Note that, the right hand side of the above

expression is zero by definition of the minimum GSB divergence esti-

mator. Moreover, by assumption (A7) and considering the one-term
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Taylor series expansion, we have,

|
∞∑
x=0

K (δgn (x))
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
ujθg (x)

−
∞∑
x=0

K
(
δgg (x)

)
ujθg (x)

(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
|

≤ C1

∞∑
x=0

|δgn (x)− δgg (x) ||ujθg (x) |
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
.

(5.17)

Moreover, for finite α, β and λ, using the lemmas proved earlier in

this chapter, we have

E|δgn (x)−δgg (x) | ≤ |g (x) (1− g (x)) |
1
2

fθg (x)
√
n

≤ 1

2fθg (x)
√
n
→ 0 as n→∞.

(5.18)

Since 0 ≤ g(x) ≤ 1 for all x, by assumption (A5) and Lemma 5.1(2),

it follows that,

E

[
C1

∞∑
x=0

|δgn (x)− δgg (x) ||ujθg (x) |
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)]

≤ 2C1

∞∑
x=0

√
g (x)|ujθg (x) |

(
A2β2eβf

A
θg

(x)f2A−1
θg (x) + (A+B) fαθg (x)

)
<∞.

Once again we have the desired result by applying the dominated

convergence theorem and Markov’s inequality. As a consequence, we

can say that

∇jD
∗ (rn, fθ) |θ=θg

p→ 0

as n → ∞. Since this is an op (1) term, for sufficiently small a, we

can say that P
(
|S1| < pa3

)
→ 1 as n→∞, where a is the radius of

the sphere and p is its dimension.
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Next, we come to the quadratic term S2,

∇jkD∗ (rn, fθ) |θ=θg

= ∇k

(
−
∞∑
x=0

K (δgn (x))
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
ujθg (x) |θ=θg

)

= −

{ ∞∑
x=0

K ′ (δgn (x)) (− (1 + δgn (x)))
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
ujθg (x)ukθg (x)

+
∞∑
x=0

K (δgn (x))
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
ujkθg (x)

+

∞∑
x=0

K (δgn (x))
(

(A+B)2 fA+B
θg (x) +A3β2eβf

A
θg

(x)f2A
θg (x)

(
2 + βfAθg (x)

))
ujθg (x)ukθg (x)

}
.

Next, we are going to show,

−
∞∑
x=0

K ′ (δgn (x)) ((1 + δgn (x)))
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
ujθg (x)ukθg (x)

→ −
∞∑
x=0

K ′
(
δgg (x)

) ((
1 + δgg (x)

)) (
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
ujθg (x)ukθg (x) ,

in probability as n → ∞. Again, by assumption (A7) and one-term

Taylor series expansion, we get,

|K ′ (δgn) ((δgn + 1))−K ′
(
δgg
) ((

δgg + 1
))
|

≤ |δgn − δgg ||K ′′ (δ∗) (δ∗ + 1) +K ′ (δ∗) |

≤ |δgn − δgg | (C2 + C1) . (5.19)

Thus, we get,

|
∞∑
x=0

K ′ (δgn (x)) ((1 + δgn (x)))
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
ujθg (x)ukθg (x)

−
∞∑
x=0

K ′
(
δgg (x)

) ((
1 + δgg (x)

)) (
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
ujθg (x)ukθg (x) |

≤ (C1 + C2)

∞∑
x=0

|δgn (x)− δgg (x) |
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
ujθg (x)ukθg (x) .

(5.20)
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Again, by assumption (A5), Lemma 5.1(2) and an application of the

DCT, we can prove our desired result. Similarly, we can prove

∞∑
x=0

K (δgn (x))
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
ujkθg (x)

→
∞∑
x=0

K
(
δgg (x)

) (
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
ujkθg (x) ,

and,
∞∑
x=0

K (δgn (x))
(

(A+B)2 fA+B
θg (x) +A3β2eβf

A
θg

(x)f2A
θg (x)

(
2 + βfAθg (x)

))
ujθg (x)ukθg (x)

→
∞∑
x=0

K
(
δgg (x)

) (
(A+B)2 fA+B

θg (x) +A3β2eβf
A
θg

(x)f2A
θg (x)

(
2 + βfAθg (x)

))
ujθg (x)ukθg (x) .

Thus, combining all these three parts, we get,

∇jkD
∗ (rn, fθ) |θ=θg

p→ J j,kg ,

where J j,kg represents the (j, k)-th element of Jg. Now, we can write

2S2 =

p∑
j,k=1

(
θj − θgj

) (
θk − θgk

){
−∇jkD∗ (rn, fθ) |θ=θg −

(
−J j,kg

)}
+

p∑
j,k=1

(
θj − θgj

) (
θk − θgk

) (
−J j,kg

)
.

Since the first expression of the right hand side of the above equation

is an op (1) term, we can say that this term is < p2a3 with probability

tending to one. Letting µ1 be the largest eigenvalue of J j,kg , the

quadratic term given in the right hand side of the equation is < µ1a
2.

Combining these two, we can say that there exists a and c such

that whenever, a < a0 and c =
(ap2+µ1)

2 , we have S2 < −ca2 with

probability tending to one. Lastly, considering the third term S3, we
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have,

− ∇jklD∗ (rn, fθ) |θ=θ∗

=
∞∑
x=0

K ′′ (δ∗n (x)) (1 + δ∗n (x))2
{
A2β2eβf

A
θ∗ (x)f2A

θ∗ (x) + (A+B) fA+B
θ∗ (x)

}
ujθ∗ (x)ukθ∗ (x)ulθ∗ (x)

−
∞∑
x=0

K ′ (δ∗n (x)) (1 + δ∗n (x))
{
A2β2eβf

A
θ∗ (x)f2A

θ∗ (x) + (A+B) fA+B
θ∗ (x)

}
ujθ∗ (x)ukθ∗ (x)ulθ∗ (x)

−
∞∑
x=0

K ′ (δ∗n (x)) (1 + δ∗n (x))
{
A2β2eβf

A
θ∗ (x)f2A

θ∗ (x) + (A+B) fA+B
θ∗ (x)

}
ujlθ∗ (x)ukθ∗ (x)

−
∞∑
x=0

K ′ (δ∗n (x)) (1 + δ∗n (x))
{
A2β2eβf

A
θ∗ (x)f2A

θ∗ (x) + (A+B) fA+B
θ∗ (x)

}
ujθ∗ (x)uklθ∗ (x)

− 2
∞∑
x=0

K ′ (δ∗n (x)) (1 + δ∗n (x))
{

(A+B)2 fA+B
θ∗ (x)

}
ujθ∗ (x)ukθ∗ (x)ulθ∗ (x)

− 2

∞∑
x=0

K ′ (δ∗n (x)) (1 + δ∗n (x))
{
A3β2eβf

A
θ∗ (x)f2A

θ∗ (x)
(
2 + βfAθ∗ (x)

)}
ujθ∗ (x)ukθ∗ (x)ulθ∗ (x)

−
∞∑
x=0

K ′ (δ∗n (x)) (1 + δ∗n (x))
{
A2β2eβf

A
θ∗ (x)f2A

θ∗ (x) + (A+B) fA+B
θ∗ (x)

}
ujkθ∗ (x)ulθ∗ (x)

+

∞∑
x=0

K (δ∗n (x))
{
A2β2eβf

A
θ∗ (x)f2A

θ∗ (x) + (A+B) fA+B
θ∗ (x)

}
ujklθ∗ (x)

+

∞∑
x=0

K (δ∗n (x))
{

(A+B)2 fA+B
θ∗ (x) +A3β2eβf

A
θ∗ (x)f2A

θ∗ (x)
(
2 + βfAθ∗ (x)

)}
ujkθ∗ (x)ulθ∗ (x)

+
∞∑
x=0

K (δ∗n (x))
{

(A+B)2 fA+B
θ∗ (x) +A3β2eβf

A
θ∗ (x)f2A

θ∗ (x)
(
2 + βfAθ∗ (x)

)}
ujlθ∗ (x)ukθ∗ (x)

+

∞∑
x=0

K (δ∗n (x))
{

(A+B)2 fA+B
θ∗ (x) +A3β2eβf

A
θ∗ (x)f2A

θ∗ (x)
(
2 + βfAθ∗ (x)

)}
ujθ∗ (x)uklθ∗ (x)

+

∞∑
x=0

K (δ∗n (x)) (A+B)3 fA+B
θ∗ (x)ujθ∗ (x)ukθ∗ (x)ulθ∗ (x)

+
∞∑
x=0

K (δ∗n (x))
{
A4β2eβf

A
θ∗ (x)

(
2f2A
θ∗ (x) + β

(
f3A
θ∗ (x) + fAθ∗ (x) + 4f2A

θ∗ (x)
))}

ujθ∗ (x)ukθ∗ (x)ulθ∗ (x) .

(5.21)

Now we are to show that the terms in right hand side of the above

equation is bounded. At first, let them name as t1, t2, . . . , t13,
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respectively.

|t1| ≤ C2

∞∑
x=0

|1 + δ∗n (x) |Mj,k,l (x) f ∗θ (x)

= C2

∞∑
x=0

rn (x)Mj,k,l (x)

→ C2EgMj,k,l (X) <∞,

by the central limit theorem. Hence, t1 is bounded. Similarly, by

assumption (A6),

|t2| ≤ C1

∞∑
x=0

|1 + δ∗n (x) |Mj,k,l (x) f ∗θ (x)

= C1

∞∑
x=0

rn (x)Mj,k,l (x)

→ C1EgMj,k,l (X) <∞.

Hence, t2 is bounded. Similarly, by assumption (A6), we can show

that t3, t4, t5, t6 and t7 are bounded. Now, it is to be noted that,

|K (δ) | = |
∫ δ

0 K
′(δ)dδ| ≤ C1|δ| which implies |K (δ∗n (x)) | ≤ C1

rn(x)
fθ∗(x) .

So,

|t8| ≤ C1

∞∑
x=0

rn (x)

fθ∗ (x)

(
A2β2eβf

A
θ∗ (x)f2A

θ∗ (x) + (A+B) fA+B
θ∗ (x)

)
ujklθ∗ (x)

= C1

∞∑
x=0

rn (x)
(
A2β2eβf

A
θ∗ (x)f2A−1

θ∗ (x) + (A+B) fA+B−1
θ∗ (x)

)
ujklθ∗ (x)

≤ C1

∞∑
x=0

rn (x)Mjkl (x)

→ C1Eg (Mjkl (X)) <∞. (5.22)

Similarly, by assumption (A6), rest of the terms can be proved to

be bounded. Hence, on the sphere Qa, P
(
|S3| < ba3

)
→ 1, b being

sufficiently small. Combining all, we get, max (S1 + S2 + S3) < pa3−
ca2 +ba3 < a2 ((b+ p)a− c) . Hence, it will be < 0 whenever a < c

b+p .

Thus if a is sufficiently small, there exists a sequence of roots θn
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depending on a, such that,

P (||θn − θg||2 < a)

= P (D∗ (rn, fθg)−D∗ (rn, fθ) < 0)

→ 1,

where ||.||2 denotes the L2 norm. The only part that remains nec-

essary to establish is that ultimately θn is independent of a. This is

evident from the fact that, by different choices of a, we get several

sequence of roots and by the continuity of the GSB divergence, the

limit exists and it will be again a root of our proposed divergence.

Hence, the consistency part is proved.

Proof of Asymptotic Normality: Considering the Taylor series

expansion of
∞∑
x=0

K (δ (x))
(
A2β2eβf

A
θ (x)f 2A

θ (x) + (A+B) fA+B
θ (x)

)
uθ (x) about θ =

θg, we get

∞∑
x=0

K (δn (x))
(
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B) fA+B
θ (x)

)
uθ (x)

=

∞∑
x=0

K (δgn (x))
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
uθg (x)

+

p∑
k=1

(
θk − θgk

)
∇k

( ∞∑
x=0

K (δn (x))
(
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B) fA+B
θ (x)

)
uθ (x)

)
|θ=θg

+
1

2

p∑
k,l=1

(
θk − θgk

) (
θl − θgl

)
∇kl

( ∞∑
x=0

K (δn (x))
(
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B) fA+B
θ (x)

)
uθ (x)

)
|θ=θ∗ ,

where θ∗ lies between θ and θg. Now, replacing θ by θn, θn being

a root of estimating equation (5.2), the left hand side of the above
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expression comes out to be zero and hence we get

√
n
∞∑
x=0

K (δgn (x))
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
uθg (x)

=
√
n

p∑
k=1

(
θn,k − θgk

){
−∇k

( ∞∑
x=0

K (δn (x))
(
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B) fA+B
θ (x)

)
uθ (x)

)
|θ=θg

− 1

2

p∑
l=1

(
θn,l − θgl

)
∇kl

( ∞∑
x=0

K (δn (x))
(
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B) fA+B
θ (x)

)
uθ (x)

)
|θ=θ∗

}
.

(5.23)

Clearly, the first term within the braces in the right hand side con-

verges to Jg in probability and the second term is an op (1) term

which we have already proved. Moreover, we can rewrite as,

√
n
∞∑
x=0

K (δgn (x))
(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
uθg (x)

=
√
n

∞∑
x=0

{
K (δgn (x))−K

(
δgg (x)

)}(
A2β2eβf

A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
uθg (x)

= S1n|θ=θg , (5.24)

which, by Lemma 5.4, goes to Np (0, Vg) in distribution as n → ∞.

Using this result, the representation in Equation (5.23) and applying

Lemma 4.1 from Lehmann (1983), we can conclude that
√
n (θn − θg)

follows N
(
0, J−1

g VgJ
−1
g

)
asymptotically.
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Corollary 5.6. When g = fθ for some θ ∈ Θ, then
√
n (θn − θ) ∼

N
(
0, J−1V J−1

)
asymptotically, where,

J = Efθ

{
uθ (X)uTθ (X)

(
(A+B) fαθ (x) + A2β2eβf

A
θ (X)f 2A−1

θ (X)
)}

=
∞∑
x=0

{
uθ (x)uTθ (x)

(
(A+B) fαθ (x) + A2β2eβf

A
θ (x)f 2A−1

θ (x)
)}

fθ (x) .

V = Vfθ

{
uθ (X)

(
(A+B) fαθ (X) + A2β2eβf

A
θ (X)f 2A−1

θ (X)
)}

= (A+B)2
∞∑
x=0

uθ (x)uTθ (x) f 1+2α
θ (x)

+ A4β4
∞∑
x=0

e2βfAθ (x)f 4A−1
θ (x)uθ (x)uTθ (x)

+ 2 (A+B)A2β2
∞∑
x=0

eβf
A
θ (x)f 2A+α

θ (x)uθ (x)uTθ (x)− ζζ ′, (5.25)

with, ζ =
∞∑
x=0

uθ (x)
(

(A+B) fA+B
θ (x) + A2β2eβf

A
θ (x)f 2A

θ (x)
)
.

5.4.4 Influence Function

Here we study the stability of our proposed class of estimators by

exploiting the influence function (IF), which measures the effect of

adding an infinitesimal mass to the distribution and is one of the most

important heuristic tools of robustness. A simple differentiation of

a contaminated version of the estimating equation (5.2) leads to the

expression

IF (y,G, Tα,λ,β) = J−1
g Ng (y) , where, (5.26)

Ng (y) =
(
A2β2eβf

A
θg (y)fAθg (y) + (A+B)fBθg (y)

)
gA−1 (y)uθg (y)

−
∞∑
x=0

(
A2β2eβf

A
θg (x)fAθg (x) + (A+B)fBθg (x)

)
gA (x)uθg (x) ,
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Jg = A2β2
∞∑
x=0

eβf
A
θg (x)fAθg (x)

(
2fAθg (x)− gA (x)

)
uθg (x)uTθg (x)

+ Aβ3
∞∑
x=0

eβf
A
θg (x)f 2A

θg (x)
(
fAθg (x)− gA (x)

)
uθg (x)uTθg (x)

+
(A+B)

A

∞∑
x=0

fBθg (x)
(
(A+B) fAθg (x)−BgA (x)

)
uθg (x)uTθg (x)

+ Aβ2
∞∑
x=0

eβf
A
θg (x)fAθg (x)

(
gA (x)− fAθg (x)

)
iθg (x)

− (A+B)

A

∞∑
x=0

fBθg
(
fAθg (x)− gA (x)

)
iθg (x) ,

where, g is the density of G. Note that, this Jg is similar with the

matrix given in Equation (5.6). If the distribution G belongs to the

model family F with g = fθ, then the influence function reduces to,

IF (y, Fθ, Tα,λ,β) = J−1N (y) ,where, (5.27)

J =
∞∑
x=0

(
A2β2eβf

A
θ (x)f 2A

θ (x) + (A+B)fA+B
θ (x)

)
uθ (x)uTθ (x) ,

N (y) = A2β2eβf
A
θ (y)f 2A−1

θ (y)uθ (y) + (A+B)fA+B−1
θ (y)uθ (y)

−
∞∑
x=0

A2β2eβf
A
θ (x)f 2A

θ (x)uθ (x)−
∞∑
x=0

(A+B)fA+B
θ (x)uθ (x) .

Again, this J is identical with the J given in Equation (5.25) of

Corollary 5.6. Evidently, the influence function is dependent on all

the three tuning parameters. Whenever the matrix J is non singular,

the boundedness of the influence function depends on the ability of

the coefficients to control the score function uθ(y) in the first two

terms of the numerator. In most parametric models including all

exponential family models, f τθ (y)uθ(y) remains bounded for any τ >

0; in the case τ = 0, however the expression equals uθ(y) and there
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is no control over it to keep it bounded. For the second term of the

numerator in Equation (5.28), this is achieved when A+B > 1, i.e.,

when α > 0. The first term of the numerator contains an additional

exponential term. However, given that fθ(y) ≤ 1 for any value y

in the support of a discrete random variable, the first term of the

numerator is easily seen to be bounded for any fixed non-zero real β

when 2A − 1 > 0, i.e., A > 1/2. We now list the different possible

cases for boundedness of the influence function as follows:

1. β = 0; here the first and third terms of the numerator van-

ish, and the only other condition necessary is A + B > 1, i.e.,

α > 0. This is essentially the S-divergence case, and shows that

all minimum S-divergence functionals with α > 0 have bounded

influence (irrespective of the value of λ). In this case the al-

lowable region for the triplet (α, λ, β) for bounded influence is

S1 = (α > 0, λ ∈ R, β = 0).

2. β 6= 0, A = 0. In this case also the first and third terms of the

numerator drop out and the additional required condition is α >

0. However, since A = 1 + λ(1−α) = 0, this implies λ = − 1
1−α .

In this case the influence function is independent of β. Now the

relevant region for the triplet is S2 =
(
α > 0, λ = − 1

1−α , β 6= 0
)

.

3. Now suppose A + B = 0, without the components being in-

dividually zero. In this case the second and fourth terms get

eliminated and we have α = −1. In this case the condition

2A−1 > 0 translates to λ > −1
4 . Here the corresponding region

for the triplet is S3 =
(
α = −1, λ ≥ −1

4 , β 6= 0
)
.

4. Now we allow all the terms β, A and A+ B to be non-zero. In

this case all the four terms of the numerator are non-vanishing.

Then, beyond the condition on β, the required conditions are
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α > 0 and λ (1− α) > −1
2 . The region here is

S4 =
(
α > 0, λ(1− α) > −1

2 , β 6= 0
)
.

Combining all the cases, we see that the IF will be bounded if the

triplet (α, λ, β) ∈ S = S1 ∪ S2 ∪ S3 ∪ S4.

It is easily seen that the four constituent subregions are disjoint. For

illustration, we present some plots for bounded and unbounded influ-

ence functions for the minimum GSB functional under the Poisson(θ)

model in Figure 5.1, where the true data distribution is Poisson(3).

In the four rows of the right panel we give examples of triplets be-

longing to the four disjoint components of S. In the first two rows of

the right panel, the α value alone determines the shape of the curve.

On the i-th row of the left panel, on the other hand, the triplets

are slightly different from the triplets of i-th row on the right, but

far enough to be pushed out of Si. Accordingly, all the plots on

the left correspond to unbounded influence functions. Generally, it

may also be observed that for increasing β the curves get flatter in

each plot, where IF varies over different β. We will provide further

illustration of the bounded influence region of the triplet through

three-dimensional graphs at the end of the simulation section.

5.4.5 Simulation Result

In the simulation section our aim is to demonstrate that by choosing

non-zero values of the parameter β, we may be able to generate pro-

cedures which, in a suitable sense, improve upon the estimators that

are provided by the existing standard, the class of S-divergences. We

consider the Poisson (θ) model for illustration, and choose samples of

size 50 from the (1− ε)Poisson(3) + εPoisson(10) mixture, where the
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second component is the contaminant and ε ∈ [0, 1) is the contami-

nating proportion. The values 0, 0.05, 0.1 and 0.2 are considered for

ε, and at each contamination level, the samples are replicated 1000

times. The Poisson parameter is estimated in each of the 1000 repli-

cations, for each contamination level, and at each of several (α, λ, β)

triplets considered in our study. Subsequently we construct the em-

pirical mean square error (MSE) against the target value of 3, for

each tuning parameter triplet and each contamination level over the

1000 replications.

In case of the minimum S-divergence estimator, Ghosh et al. (2017)

have empirically identified a subset of (α, λ) collections which repre-

sent good choices. According to them, the zone of ‘best’ estimators

correspond to an elliptical subset of the tuning parameter space, with

α ∈ [0.1, 0.6] and λ ∈ [−1,−0.3]. We hope to show that for most

of the (α, λ) combinations (including the best ones) there is a corre-

sponding better or competitive (α, λ, β) combination with a non-zero

β, thus providing an option which appears to perform better, at least

to the extent of the findings in these simulations.

We begin with an exploration of the S-divergence, since this is the

basis for comparison. The MSEs are presented in Table 5.3 over

a cross-classified grid with α values in {0.1, 0.25, 0.4, 0.5, 0.6, 0.8, 1}
and λ values in {−1,−0.7,−0.5,−0.3, 0, 0.2, 0.5, 0.8, 1}, a total of 63

cells. In each cell the empirical MSEs for ε = 0, 0.05, 0.1 and 0.2 are

presented in a column of four elements, in that order, followed by

the corresponding combination of tuning parameters (α, λ, β = 0).

We have carried the β = 0 parameter in each triplet of parameters,

to indicate that the S-divergence is indeed a special case of the GSB

divergence. It may be noted that between all the cells, there is no
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unique (α, λ) combination which produces an overall best result (in

terms of smallest MSE) over all the four columns (levels of contami-

nation).

We now expand the exploration by considering, in addition, a grid

of possible non-zero β values at each (α, λ) combination to see if the

results can be improved. To be conservative about our definition

of improvement, we declare the existence of a ‘better’ triplet in the

GSB sense if all the four mean square errors corresponding to a (α, λ)

combination within the S-divergence family in Table 5.2 are improved

(reduced) by a suitable member of the GSB divergence class which is

strictly outside the S-divergence family (corresponding to a non-zero

β).

Our exploration indicates that in a large majority of the 63 cells

there is a member of the GSB divergence with a non-zero β param-

eter which improves (over all the four cells) the performance of the

corresponding S-divergence estimator with the same (α, λ) combi-

nation. Interestingly it turns out that in practically all the cases

where an improvement is observed it happens for a negative value of

β (it is observed to be zero in rare cases, but is never positive). A

more detailed inspection indicates that in many of these cases, the

improvement occurs at the value β = −4.

In order to summarize the findings of this rather large exploration (pre-

sented in Table 5.3) in a meaningful manner, we first note the fol-

lowing different cases,

1. (First Case) These are the cells where all the four mean square

errors for the S-divergence case are reduced by the minimum

GSB divergence estimator with the same values of (α, λ) and
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β = −4. These cells are highlighted with the blue colour in

Table 5.3. (There are 18 such cells).

2. (Second Case) These are the cells where all the four MSEs for the

S-divergence case are reduced by a minimum GSB divergence

estimator with β = −4 but with a different (α, λ) combination

than that for the corresponding cell. These cells are highlighted

in red in Table 5.3. (There are 39 such cells).

3. (Third Case) These are the cells where all the four MSEs are

reduced by a minimum GSB divergence estimator outside the

S-divergence family, but with β 6= −4, and not necessarily the

same (α, λ). These cells are highlighted in orange in Table 5.3.

(There is one such cell).

4. (Fourth Case) These are the cells where some triplet within

the minimum GSB divergence class can improve upon the three

MSEs under contamination (ε = 0.05, 0.1, 0.2) but not all the

four MSEs simultaneously. While these are not ‘better’ triplets

in the sense described earlier in the section, the pure data MSEs

(not reported here) for these triplets are close to those of the

S-Divergence MSEs for these cells; in this sense these triplets

are at least competitive. These cells are highlighted in green in

Table 5.3. (There are three such cells).

5. (Fifth Case) These are the cells where no (α, λ, β) provides an

improvement over the S-divergence results in the sense of any

of the previous four cases (although there are competitive alter-

natives). These cells remain in black in Table 5.3. There are 2

such cells.
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On the whole, therefore, it turns out that we observe improvements

in 57 out of the 63 cells in all four rows of the column of MSEs in

that cell by choosing β = −4 together with the S-divergence param-

eters. Even in the handful of cases (cells) where we do not have an

improvement in all the rows of the column, there generally are com-

petitive (although not strictly better) options within the minimum

GSB divergence class with a negative value of β. In Table 5.3, in

each cell, we also present the particular (α, λ, β) combination which

generates the mean square errors (improved over Table 5.2 in most

cases, as we have seen) reported in that cell.

In Figure 5.2, we provide a three-dimensional plot (as described in

that section) in the three-dimensional (α, λ, β) plane, where the re-

gion S has been expressed as a union of several colour-coded sub-

regions representing the individual components. The triplets corre-

sponding to the improved MSE solutions reported in the cells of Table

5.3 all belong to the blue subregion of this figure, indicating that all

improved solutions are provided by bounded influence estimators.

5.4.6 Selection of Optimal Tuning Parameters through Real

Data Analysis

Our simulations in the previous section seem to suggest that the

minimum divergence estimators within the GSB class with β = −4

often provides good options for data analysis. To take full advan-

tage of this observation, this subclass of the GSB family should be

explored further. However, we want to fully exploit the flexibility of

the three parameter system, and noting that in some cases the opti-

mal is outside the β = −4 subclass, including some which generate

the most competitive solutions in the full system, we want to use an
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Table 5.2: MSEs of the minimum divergence estimators within the S-
divergence family for pure and contaminated data

0.1968 0.0836 0.0704 0.0708 0.0733 0.0802 0.0876
0.1974 0.0981 0.0855 0.0852 0.0869 0.0926 0.0994
0.1753 0.1063 0.1012 0.1028 0.1054 0.1116 0.1118
0.3099 0.2245 0.2119 0.2113 0.2130 0.2200 0.2298

(0.1, −1, 0) (0.25, -1, 0) (0.4, -1, 0) (0.5, -1, 0) (0.6, -1, 0) (0.8, -1, 0) (1, -1, 0)
0.0751 0.0666 0.0673 0.0698 0.0729 0.0800 0.0876
0.0893 0.0830 0.0831 0.0847 0.0869 0.0927 0.0994
0.1081 0.1044 0.1045 0.1056 0.1073 0.1121 0.1118
0.2830 0.2505 0.2328 0.2264 0.2231 0.2233 0.2298

(0.1, -0.7, 0) (0.25, -0.7, 0) (0.4, -0.7, 0) (0.5, -0.7, 0) (0.6, -0.7, 0) (0.8, -0.7, 0) (1, -0.7, 0)
0.0638 0.0635 0.0665 0.0694 0.0727 0.0799 0.0876
0.0836 0.0821 0.0832 0.0849 0.0871 0.0927 0.0994
0.1203 0.1120 0.1087 0.1083 0.1089 0.1125 0.1118
0.3715 0.2958 0.2559 0.2408 0.2319 0.2258 0.2298

(0.1, -0.5, 0) (0.25, -0.5, 0) (0.4, -0.5, 0) (0.5, -0.5, 0) (0.6, -0.5, 0) (0.8, -0.5, 0) (1, -0.5, 0)
0.0600 0.0622 0.0660 0.0691 0.0725 0.0798 0.0876
0.0895 0.0846 0.0843 0.0856 0.0875 0.0928 0.0994
0.1554 0.1264 0.1149 0.1118 0.1109 0.1129 0.1118
0.5669 0.3709 0.2904 0.2605 0.2424 0.2286 0.2298

(0.1, -0.3, 0) (0.25, -0.3, 0) (0.4, -0.3, 0) (0.5, -0.3, 0) (0.6, -0.3, 0) (0.8, -0.3, 0) (1, -0.3, 0)
0.0592 0.0617 0.0657 0.0688 0.0721 0.0796 0.0876
0.1415 0.0971 0.0880 0.0873 0.0883 0.0929 0.0994
0.3491 0.1774 0.1308 0.1196 0.1147 0.1136 0.1118
1.3860 0.6555 0.3832 0.3061 0.2655 0.2333 0.2298

(0.1, 0, 0) (0.25, 0, 0) (0.4, 0, 0) (0.5, 0, 0) (0.6, 0, 0) (0.8, 0, 0) (1, 0, 0)
0.0608 0.0621 0.0657 0.0687 0.0721 0.0794 0.0876
0.3302 0.1231 0.0930 0.0892 0.0890 0.0930 0.0994
0.8565 0.2745 0.1508 0.1276 0.1181 0.1141 0.1118
2.5938 1.0853 0.5550 0.3553 0.2867 0.2370 0.2298

(0.1, 0.2, 0) (0.25, 0.2, 0) (0.4, 0.2, 0) (0.5, 0.2, 0) (0.6, 0.2, 0) (0.8, 0.2, 0) (1, 0.2, 0)
0.0671 0.0638 0.0658 0.0685 0.0718 0.0792 0.0876
1.1434 0.3251 0.1115 0.0943 0.0907 0.0931 0.0994
2.3829 0.8165 0.2234 0.1489 0.1255 0.1151 0.1118
4.8817 2.4261 0.8641 0.4847 0.3338 0.2434 0.2298

(0.1, 0.5, 0) (0.25, 0.5, 0) (0.4, 0.5, 0) (0.5, 0.5, 0) (0.6, 0.5, 0) (0.8, 0.5, 0) (1, 0.5, 0)
0.0778 0.0676 0.0665 0.0685 0.0716 0.0790 0.0876
1.9928 0.9339 0.1951 0.1068 0.0936 0.0933 0.0994
3.7890 1.9909 0.4869 0.1994 0.1378 0.1162 0.1118
6.6731 4.2592 1.6784 0.7520 0.4130 0.2511 0.2298

(0.1, 0.8, 0) (0.25, 0.8, 0) (0.4, 0.8, 0) (0.5, 0.8, 0) (0.6, 0.8, 0) (0.8, 0.8, 0) (1, 0.8, 0)
0.0863 0.0717 0.0673 0.0686 0.0714 0.0789 0.0876
2.4449 1.3987 0.3803 0.1283 0.0967 0.0934 0.0994
4.5000 2.7992 0.9117 0.2793 0.1514 0.1171 0.1118
7.5320 5.3554 2.5215 1.0745 0.4969 0.2572 0.2298

(0.1, 1, 0) (0.25, 1, 0) (0.4, 1, 0) (0.5, 1, 0) (0.6, 1, 0) (0.8, 1, 0) (1, 1, 0)

overall data-based tuning parameter selection rule in which all the

three parameters are allowed to vary over reasonable supports. The

aim is to select the ‘best’ tuning parameter combination depending
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Table 5.3: MSEs of the minimum GSB divergence estimators under pure and
contaminated data

0.0623 0.0696 0.0704 0.0708 0.0687 0.0720 0.0763
0.0816 0.0843 0.0855 0.0852 0.0833 0.0859 0.0892
0.1115 0.1056 0.1012 0.1028 0.1042 0.1060 0.1077
0.2831 0.2207 0.2119 0.2113 0.2110 0.2162 0.2115

(0.4, −0.4, -4) (0.8, -0.5, -4) (0.4, -1, 0) (0.5, -1, 0) (0.8, 0, -7.5) (0.8, -0.3, -4) (1, -1, -4)
0.0642 0.0681 0.0681 0.0696 0.0696 0.0720 0.0763
0.0816 0.0826 0.0826 0.0843 0.0843 0.0859 0.0892
0.1076 0.1043 0.1043 0.1055 0.1055 0.1060 0.1077
0.2514 0.2135 0.2135 0.2207 0.2207 0.2162 0.2115

(0.6, -0.5, -4) (0.8, 0, -8) (0.8, 0, -8) (0.8, -0.5, -4) (0.8, -0.5, -4) (0.8, -0.3, -4) (1, -0.7, -4)
0.0623 0.0623 0.0659 0.0678 0.0678 0.0696 0.0763
0.0816 0.0816 0.0825 0.0834 0.0834 0.0843 0.0892
0.1115 0.1115 0.1071 0.1061 0.1061 0.1055 0.1077
0.2831 0.2831 0.2417 0.2295 0.2295 0.2207 0.2115

(0.4, -0.4, -4) (0.4, -0.4, -4) (0.5, -0.3, -4) (0.6, -0.3, -4) (0.6, -0.3, -4) (0.8, -0.5, -4) (1, -0.5, -4)
0.0600 0.0619 0.0642 0.0659 0.0678 0.0720 0.0763
0.0845 0.0822 0.0819 0.0825 0.0834 0.0859 0.0892
0.1294 0.1154 0.1091 0.1071 0.1061 0.1060 0.1077
0.4049 0.3080 0.2602 0.2417 0.2295 0.2162 0.2115

(0.1, -0.3, -4) (0.25, -0.3, -4) (0.4, -0.3, -4) (0.5, -0.3, -4) (0.6, -0.3, -4) (0.8, -0.3, -4) (1, -0.3, -4)
0.0600 0.0600 0.0644 0.0644 0.0644 0.0755 0.0763
0.0845 0.0845 0.0817 0.0817 0.0817 0.0887 0.0892
0.1294 0.1294 0.1073 0.1073 0.1073 0.1077 0.1077
0.4049 0.4049 0.2492 0.2492 0.2492 0.2139 0.2115

(0.1, -0.3, -4) (0.1, -0.3, -4) (0.8, -1, -4) (0.8, -1, -4) (0.8, -1, -4) (0.8, 0, -4) (1, 0, -4)
0.0600 0.0600 0.0644 0.0644 0.0644 0.0779 0.0763
0.0845 0.0845 0.0817 0.0817 0.0817 0.0907 0.0892
0.1294 0.1294 0.1073 0.1073 0.1073 0.1092 0.1077
0.4049 0.4049 0.2492 0.2492 0.2492 0.2146 0.2115

(0.1, -0.3, -4) (0.1, -0.3, -4) (0.8, -1, -4) (0.8, -1, -4) (0.8, -1, -4) (0.8, 0.2, -4) (1, 0.2, -4)
0.0600 0.0600 0.0644 0.0644 0.0644 0.0696 0.0763
0.0845 0.0845 0.0817 0.0817 0.0817 0.0843 0.0892
0.1294 0.1294 0.1073 0.1073 0.1073 0.1055 0.1077
0.4049 0.4049 0.2492 0.2492 0.2492 0.2207 0.2115

(0.1, -0.3, -4) (0.1, -0.3, -4) (0.8, -1, -4) (0.8, -1, -4) (0.8, -1, -4) (0.8, -0.5, -4) (1, 0.5, -4)
0.0600 0.0600 0.0644 0.0644 0.0644 0.0696 0.0763
0.0845 0.0845 0.0817 0.0817 0.0817 0.0843 0.0892
0.1294 0.1294 0.1073 0.1073 0.1073 0.1055 0.1077
0.4049 0.4049 0.2492 0.2492 0.2492 0.2207 0.2115

(0.1, -0.3, -4) (0.1, -0.3, -4) (0.8, -1, -4) (0.8, -1, -4) (0.8, -1, -4) (0.8, -0.5, -4) (1, 0.8, -4)
0.0600 0.0600 0.0644 0.0644 0.0644 0.0696 0.0763
0.0845 0.0845 0.0817 0.0817 0.0817 0.0843 0.0892
0.1294 0.1294 0.1073 0.1073 0.1073 0.1055 0.1077
0.4049 0.4049 0.2492 0.2492 0.2492 0.2207 0.2115

(0.1, -0.3, -4) (0.1, -0.3, -4) (0.8, -1, -4) (0.8, -1, -4) (0.8, -1, -4) (0.8, -0.5, -4) (1, 1, -4)

on data contamination. Thus datasets which show very close com-

patibility to the model should be analyzed by a triplet providing an

efficient solution, while a more anomalous one should have a more

robust member of the GSB class to deal with it.
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In Chapter 3 we have described in detail the existing tuning param-

eter selection algorithms in the literature – such as Hong and Kim

(2001) and Warwick and Jones (2005) – and also presented a refine-

ment which we believe provides an improvement over the existing

techniques. In the following we have taken up two real data exam-

ples and considered the problem of selecting the ‘optimal’ tuning

parameters in each case, under the same nomenclature and nota-

tion as in Chapter 3. The OWJ algorithm considered here uses the

minimum L2 distance estimator as the pilot. Although the IWJ al-

gorithm is pilot independent, for computational purposes it needs to

commence from some suitable robust pilot for which also we utilize

the minimum L2 distance estimator. While the IWJ algorithm is our

preferred method, we demonstrate the use of all the three algorithms

in the following data sets. Along with unrestricted β, we have also

given the estimates corresponding to pre-fixed β = −4.

Example 5.1. (Drosophila Data): In Chapter 3, Table 3.4, we have

presented two sets of data, which are based on a chemical mutagenic-

ity experiment and may be robustly modeled using the Poisson(θ) dis-

tribution. These data were previously analyzed by Simpson (1987),

and the whole experimental protocol is given in Woodruff et al. (1984).

For the sake of completeness we briefly describe the experiment again.

The experimenter exposed groups of male flies to different doses of

the chemical and then mated each male with an unexposed female fly.

Finally 100 daughter flies from each male were sampled to count the

number of daughters carrying the sign of mutation. Corresponding to

the variable denoting the number of recessive lethal daughters, we are

interested to observe the frequencies denoting the number of exposed

male flies. Two experimental run are considered for our analysis—

one on Day 28 and other on Day 177. The data of Day 28 consist
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of two mild outliers with observed frequencies r = (23, 3, 1, 1) at x =

(0, 1, 3, 4), where, the dataset of Day 177 consists of a single large

outlier with observed frequencies r = (23, 7, 3, 1) at x = (0, 1, 2, 91).

Poisson models are fitted to the datasets by estimating the Poisson

parameter using the minimum GSB divergence estimation technique.

Moreover, we have applied the three algorithms for finding the optimal

tuning parameter triplets with the optimal estimates for both cases –

one for unrestricted β and another with restricted β = −4. The

details are given in Table 5.4 and 5.5. It is clearly observed that the

optimal solutions provide excellent robust fits.

Table 5.4: Optimal estimates in different cases for the Drosophila Data (un-
restricted β)

day data method optimal θ̂ optimal (α, λ, β)
28 Full data IWJ/OWJ/HK 0.1181 (0.37,−0.50,−8)

MLE 0.357 (0, 0, 0)
Clean data IWJ/OWJ/HK 0.1159 (0.53,−1,−8)

MLE 0.115 (0, 0, 0)

177 Full data IWJ/OWJ/HK 0.3591 (0.51,−1,−8)
MLE 3.05 (0, 0, 0)

Clean data IWJ/OWJ/HK 0.3909 (0.41,−1,−8)
MLE 0.3939 (0, 0, 0)

Table 5.5: Optimal estimates in different cases for the Drosophila Data (β
restricted to −4)

day data method optimal θ̂ optimal (α, λ, β)
28 Full data IWJ/OWJ/HK 0.1209 (0.37,−0.64,−4)

MLE 0.357 (0, 0, 0)
Clean data IWJ/OWJ/HK 0.1199 (0.11, 1,−4)

MLE 0.115 (0, 0, 0)

177 Full data IWJ/OWJ/HK 0.3539 (0.49,−0.98,−4)
MLE 3.05 (0, 0, 0)

Clean data IWJ/OWJ/HK 0.3907 (0, 1,−4)
MLE 0.3939 (0, 0, 0)
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Example 5.2. (Peritonitis Data): This example involves the inci-

dence of peritonitis in 390 kidney patients. This dataset was pro-

vided by Professor Peter W. M. John (personal communication) of

the Department of Mathematics, University of Texas at Austin, USA.

These data have been presented in Table 3.7 of this thesis. A thor-

ough scrutiny leads us to the consideration of a geometric model and

here we are interested to estimate the ‘success’ probability (probability

of contracting peritonitis for a kidney patient). The values at 10 and

12 may be regarded as mild outliers. Here, the IWJ solution coin-

cides with the HK solution where the estimate of success probability

is 0.5110 corresponding to (α, λ, β) = (0.41,−0.84,−3.5). The OWJ

solution gives a slightly different success probability of 0.5105 corre-

sponding to (α, λ, β) = (0.17,−0.60,−3). In case of clean data these

IWJ, OWJ and HK estimates will be 0.5044, 0.5061 and 0.5029 cor-

responding to (α, λ, β) = (0.47,−1,−2), (0.29,−1,−1) and (0.55,−1,−3),

respectively, being slightly different from each other. On the contrary,

the MLEs for the full dataset and the (two) outlier deleted dataset

are 0.4962 and 0.5092, respectively.

If, however, we prefix β at −4, then, for full data the IWJ/HK solu-

tion will be 0.5115 corresponding to (α, λ, β) = (0.41,−0.84,−4).

The OWJ solution gives a slightly different success probability of

0.5092 corresponding to (α, λ, β) = (0.45,−0.84,−4). In case of

clean data, IWJ solution coincides with the OWJ solution, i.e., θ̂ =

0.5056 corresponding to (α, λ, β) = (0.01,−1,−4) and the HK esti-

mates will be 0.5017 with (α, λ, β) = (0.59,−1,−4). It may be noted

that as the outliers are mild/moderate, the full and the clean data

estimates do not show a very wide departure. In fact the same phe-

nomenon is observed in the general case considered in the previous

paragraph, where the range of the tuning parameters are unrestricted.
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Now we consider a more recent dataset for the implementation of our

new proposal.

Example 5.3. (Stolen Bases Data): In the ‘Major League Baseball

(MLB) Player Batting Stats’ data for the 2019 MLB Regular Sea-

son, obtained from the ESPN.com website, one variable of interest is

the number of Stolen Bases (SB) awarded to the top 40 Home Run

(HR) scorers of the American League (AL). This dataset, contain-

ing three extreme and five moderate outliers, can be well-modelled by

the Poisson distribution if not for the outliers. We are interested in

estimating θ, the average number of Stolen Bases (SB) awarded to

the MLB batters of the AL throughout the whole regular season. The

‘optimal’ estimates, derived from the implementation of the three al-

gorithms under the Poisson model, are presented in Table 5.7. The

fitted polygons corresponding to some of these optimal estimates are

given in Figure 5.3. At first, for each fixed θ̂, we have evaluated

fθ̂(x) with x ranging from 0 to the maximum number of awarded

stolen bases in the data, and then joined them using line-segments

to get a closed polygon of estimated probabilities for each estimation

technique. It is clear that except for the full data MLE, all the other

estimators primarily describe the main model conforming part of the

data and sacrifice the outliers.

In the simulation section, we have obtained most of the optimal

MSEs corresponding to β = −4. Here, in the above-mentioned real

datasets, we observe that whether the value of β be pre-fixed or not,

the GSB estimators obtained in the former case is not significantly

different than in the latter one. Although it will certainly take more

research to determine why β = −4 works well in many cases, we have

demonstrated, and propose the use of the optimal tuning parameter
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search over the unrestricted space for β, while acknowledging that

the β = −4 case will work quite well in most cases.

5.5 Conclusion

Earlier we have provided an extension of the ordinary Bregman di-

vergence and in this chapter, we have made use of the suggested ap-

proach in generating a particular super-family of divergences which

seems to work very well in practice and provides new minimum di-

vergence techniques that appear to improve the performance of the

S-divergence based procedures in many cases. Since the results pre-

sented here are based on a single study, more research will be neces-

sary to decide to what extent the observed advantages of the proce-

dures considered here can be generalized, but clearly there appears

to be enough evidence to suggest such explorations are warranted.

An obvious follow up step is to suitably handle the case of continuous

models, where the construction of the density and the divergence are

more difficult and this will be explored in a detailed manner in the

next chapter.
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Figure 5.1: Examples of unbounded influence functions (left panel) and
bounded influence functions (right panel) corresponding to (α, λ, β) ∈ each dis-

joint subsets contained in S.
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Figure 5.2: The first figure shows the region needed for bounded IF. Here, the
grey, the orange, the green and the blue planes represent the boundaries of the
sets S1, S2, S3 and S4, respectively. The ‘best’ solutions are given in red dots in

the second figure.
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Table 5.6: Top 40 Home Run (HR) scorers of the AL in the 2019 MLB Regular
Season

Player Team HR SB
Jorge Soler KC 48 3
Mike Trout LAA 45 11
Nelson Cruz MIN 41 0

Alex Bregman HOU 41 5
George Springer HOU 39 6
Gleyber Torres NYY 38 5
J. D. Martinez BOS 36 2

Max Kepler MIN 36 1
Matt Olson OAK 36 0

Matt Chapman OAK 36 1
Trey Mancini BAL 35 1

Edwin Encarnacion NYY/SEA 34 0
Carlos Santana CLE 34 4
Gary Sanchez NYY 34 0
Miguel Sano MIN 34 0

Kole Calhoun LAA 33 4
Xander Bogaerts BOS 33 4
Marcus Semien OAK 33 10

Jose Abreu CHW 33 2
Austin Meadows TB 33 12

Eddie Rosario MIN 32 3
Francisco Lindor CLE 32 22

Rafael Devers BOS 32 8
Randal Grichuk TOR 31 2

Jose Altuve HOU 31 6
Renato Nunez BAL 31 1
Mitch Garver MIN 31 0
Eloy Jimenez CHW 31 0
Yuli Gurriel HOU 31 5
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Table 5.7: Optimal estimates in different cases for the Stolen Bases Data

data method optimal θ̂ optimal (α, λ, β)
Full data (with outliers) IWJ 2.6270 (0.65,−0.98,−8)

OWJ 2.5086 (0.73,−1,−8)
HK 2.6409 (0.65,−1,−8)

MLE 4.875 (0, 0, 0)
excluding 8 outliers IWJ 2.6426 (0.53,−0.98,−8)

OWJ 2.5633 (0.65,−0.98,−8)
HK 2.6426 (0.53,−0.98,−8)

MLE 2.5625 (0, 0, 0)

Figure 5.3: Some significant fits for the Stolen Bases Data under the Poisson
model. Here “clean data” refer to the modified data after removing all 8 outliers.

Table 5.8: Optimal estimates in different cases for the Stolen Bases Data (with
β = −4)

data method optimal θ̂ optimal (α, λ, β)
Full data (with outliers) IWJ 2.7392 (0.09,−0.52,−4)

OWJ 2.6083 (0.25,−0.52,−4)
HK 2.7608 (0.07,−0.52,−4)

MLE 4.875 (0, 0, 0)
excluding 8 outliers IWJ/HK 2.5774 (0.49,−0.98,−4)

OWJ 2.4749 (0.25, 1,−4)
MLE 2.5625 (0, 0, 0)



Chapter 6

The Extended Bregman

Divergence and Parametric

Estimation in Continuous Models

6.1 Introduction

We have already proposed an extension of the ordinary Bregman di-

vergence and with a special form, this proposal allows a new super

divergence family – the GSB family. Its performance under the dis-

crete model has already been explored in the previous chapter. In

this chapter, we are going to do the same under the continuous setup.

6.2 The Generalized S-Bregman (GSB) Diver-

gence

By using different ψ functions and different exponents k, one can

generate different classes of previously unexplored divergences which

143
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might provide improved choices in parametric estimation. In this sec-

tion, we will consider the divergence class mentioned in the last chap-

ter, which is a generalized form containing both the S-divergence and

the Bregman Exponential divergence (BED) proposed by Mukherjee

et al. (2019). This divergence class has the form

D∗ (g, f) =

∫ {
eβf

A (
βfA − βgA − 1

)
+eβg

A
+

1

B

(
gA+B − fA+B

)
−
(
gA − fA

) A+B

AB
fB

}
dx,

(6.1)

where A+B = 1 +α, A = 1 +λ (1− α), B = α−λ (1− α), α ≥ −1,

β, λ ∈ R. The above divergence corresponds to ψ(x) = eβx + x1+
B
A

B

with k = A. The divergence in Equation (6.1) is referred to as the

GSB (Generalized S-Bregman) divergence.

6.3 The Estimation Scheme under Continuous

Models

We assume that both the true data generating distribution G as well

as the model family F = {Fθ : θ ∈ Θ ⊂ Rp, p ≥ 1} belong to the

class of all probability distributions having densities with respect to

the Lebesgue measure.

Suppose X1, X2, . . . , Xn be independently and identically distributed

observations from an unknown distribution G having density g with

respect to the Lebesgue measure. To find the minimum divergence

estimator of θ, we wish to minimize a suitable distance/divergence

between the data density and the model density fθ. Since the data

density g is unknown, we need an empirical, non-parametric estimate

of the data density to construct the divergence. In case of discrete

models, one can simply consider the relative frequencies rn of the

support points in the random sample to generate the estimate ĝ of g
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but this is not applicable here. Whenever the model is continuous,

the data generated by a sample are still discrete, so that there is an

obvious mismatch of measures in using relative frequencies for the

estimate of the data density. This necessitates the construction of a

continuous, non-parametric density estimate from the data through

a suitable smoothing method like kernel density estimation. For es-

timating the unknown parameter θ through a minimum divergence

procedure in this setup, the two approaches that we have mentioned

in the first chapter are available to us. Between the two approaches,

we have discussed the advantage of using the Basu-Lindsay approach

over Beran’s approach. Here we are going to use the former approach

from now on.

6.4 Estimating Equation

A routine differentiation of the Expression (6.1), with g replaced

by g∗n and f replaced by the smoothed model density f ∗θ gives the

reduced estimating equation

∫
K(δ∗n (x))

(
A2β2eβf

∗A
θ (x)f∗

2A

θ (x) + (A+B) f∗
A+B

θ (x)

)
ũθ (x) dx = 0 (6.2)

with δ∗n (x) = (g∗n(x))
(f∗θ (x)) − 1. Here g∗n is some suitable non-parametric

estimate of g under this setup which has already been introduced

in Chapter 1; ũθ is as defined in Section 1.5.1.3.2. Also K(δ∗) =
(δ∗+1)A−1

A , here. The estimator obtained through solving Equation

(6.2) will be denoted as the minimum GSB* divergence estimator (in

the same spirit as the minimum S∗-divergence estimator, introduced

by Ghosh and Basu (2017)). It is generally different from the min-

imum divergence estimator that would be derived under the Beran

approach. The asymptotic distributions are also normally different;
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however note the exceptions under transparent kernels described in

Section 6.7.

6.5 Influence Function under the Basu-Lindsay

Approach

For calculating the influence function, we consider the kernel smoothed

version of the true density g given by

g∗ (x) =

∫
W (x, y, h) dG (y) =

∫
W (x, y, h) g (y) dy. (6.3)

The minimum GSB* divergence functional, denoted by T ∗α,λ,β (G),

will be defined by the relation

D∗
(
g∗, f ∗T ∗α,λ,β(G)

)
= min{D∗ (g∗, f ∗θ ) : θ ∈ Θ}, (6.4)

where D∗ is as defined in Equation (6.1), provided the minimum

exists. We will call to it the best fitting parameter. Consider the

contaminated distribution Gε (x) = (1− ε)G (x) + εΛy (x), with Λy

being the distribution degenerate at y. Let gε denote the correspond-

ing contaminated density with g∗ε being its kernel-smoothed version.

Evidently, g∗ε = (1− ε) g∗ + εW (x, y, h). To derive the IF, we take

the derivative of both sides of the equation

∫
K (δ∗ε (x))

(
A2β2eβf

∗A
θ (x)f∗

2A

θ (x) + (A+B) f∗
A+B

θ (x)

)
ũθ (x) dx = 0, (6.5)

where δ∗ε (x) = g∗ε (x)
f∗θε(x) − 1 and we get,

IF (y;G, T ∗α,λ,β) = [J∗g ]−1N ∗g (y), where
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N∗g (y) =

∫ [
A2β2eβf

∗A
θg

(x)f∗
A

θg (x) ũθg(x)g∗
A−1

(x)(W (x, y, h)− g∗(x))

]
dx

+

∫ [
(A+B)f∗

B

θg (x)g∗
A−1

(x) ũθg(x)(W (x, y, h)− g∗(x))
]
dx

=

∫ (
A2β2eβf

∗A
θg

(x)f∗
A

θg (x) + (A+B)f∗
B

θg (x)

)
W (x, y, h)g∗

A−1
(x) ũθg(x)dx

−
∫ (

A2β2eβf
∗A
θg

(x)f∗
A

θg (x) + (A+B)f∗
B

θg (x)

)
g∗

A
(x) ũθg(x)dx.

J∗g =

∫ (
A3β2eβf

∗A
θg

(x)f∗
2A

θg (x)(2 + βf∗
A

θg (x)) + (A+B)2f∗
A+B

θg (x)

)
ũθg(x)ũTθg(x)dx

−
∫ (

A2β2eβf
∗A
θg

(x)f∗
2A

θg (x) + (A+B)f∗
A+B

θg (x)

)
ĩθg(x)dx

−
∫ (

A3β2eβf
∗A
θg

(x)g∗
A

(x)f∗
A

θg (x)(1 + βf∗
A

θg (x)) + (A+B)Bf∗
B

θg (x)g∗
A

(x)

)
ũθg(x) ũTθg(x) dx

+

∫ (
A2β2eβf

∗A
θg

(x)f∗
A

θg (x)g∗
A

(x) + (A+B)f∗
B

θg (x)g∗
A

(x)

)
ĩθg(x)dx, (6.6)

with θg being the best fitting parameter under G. Moreover, when

g = fθ, the influence function becomes

J∗ =

∫ (
(A+B)f∗

A+B

θ (x)ũθ(x) ũTθ (x) +A2β2eβf
∗A
θ (x)f∗

2A

θ (x)ũθ(x) ũTθ (x)

)
dx,

N∗ =

∫ (
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B)f∗
A+B−1

θ (x)

)
ũθ(x)W (x, y, h)dx

−
∫ (

A2β2eβf
∗A
θ (x)f∗

2A

θ (x) + (A+B)f∗
A+B

θ (x)

)
ũθ(x)dx. (6.7)

For this influence function to be bounded, we need to control the

two terms (Term I and Term II) in the first integral of N ∗. For

most parametric model densities fθ with score function uθ, the inte-

gral
∫
f τθ (x)uθ(x)dx is bounded for τ > 0, as the model density fθ

downweights the score functions of unlikely values. With a bounded

kernel, therefore, Term II will be controlled whenever A+B > 1. If

the density f ∗θ (x) is bounded (alternatively, if fθ(x) and the kernel

are bounded), Term I is also bounded for 2A > 1. On the other

hand, for β ≤ 0, we have eβf
∗A
θ (x) ≤ 1 hence boundedness of the

kernel is sufficient for controlling Term I along with the condition

2A > 1. In particular, under the normal model, the influence func-

tion is bounded for A+B > 1 and 2A > 1.
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For unbounded model densities, the influence functions may be bounded

for specific models and specific tuning parameter combinations. But

the generalized arguments in such cases may not be so obvious.

For bounded densities, with bounded kernel functions, therefore, the

subregion of R3 in terms of tuning parameter combinations which

lead to bounded influence may be analysed by the conditions de-

scribed above. These calculations describe the collection S of triplets

(α, λ, β) for which the influence function is bounded, where

S = S1 ∪ S2 ∪ S3 ∪ S4, (6.8)

where,

S1 =

{
α > 0, λ ∈ R, β = 0

}
, S2 =

{
α > 0, λ = − 1

1− α
, β 6= 0

}
,

S3 =

{
α = −1, λ ≥ −1

4
, β 6= 0

}
, S4 =

{
α > 0, λ(1− α) > −1

2
, β 6= 0

}
.

Some plots of the bounded and the unbounded IFs are given in Fig-

ure 6.1.

Lemma 6.1. In case of g = fθ for some θ ∈ Θ, matrix J∗ can be

expressed further as

J∗ = J∗α,λ,β(Fθ) = Eθ

[
−∇uα,λ,β

∗

θ (X))
]
, where (6.9)

uα,λ,β
∗

θ (y) =

∫ (
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B) f∗
A+B−1

θ (x)

)
ũθ (x)W (x, y, h) dx.

(6.10)
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Proof. To prove this lemma, we note that from the expression of

uα,λ,β
∗

θ (y) given in Equation (6.10), we can write

∇uα,λ,β
∗

θ (X) =

∫
∇ũθ(x)

(
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B)f∗
A+B−1

θ (x)

)
W (x,X, h)dx

+

∫
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x)
(
βAf∗

A

θ (x) + 2A− 1
)
W (x,X, h)ũθ(x)ũTθ (x)dx

+

∫
(A+B)(A+B − 1)f∗

A+B−1

θ (x)W (x,X, h)ũθ(x)ũTθ (x)dx. (6.11)

Taking expectation of the first term with respect to X, we get,

Eθ

[∫
∇ũθ(x)

(
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B)f∗
A+B−1

θ (x)

)
W (x,X, h)dx

]
=

∫ [∫
∇ũθ(x)

(
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B)f∗
A+B−1

θ (x)

)
W (x, y, h)dx

]
fθ(y)dy

=

∫
∇ũθ(x)

(
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B)f∗
A+B−1

θ (x)

)[∫
W (x, y, h)fθ(y)dy

]
dx

=

∫
∇ũθ(x)

(
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B)f∗
A+B−1

θ (x)

)
f∗θ (x)dx

=

∫
∇ũθ(x)

(
A2β2eβf

∗A
θ (x)f∗

2A

θ + (A+B)f∗
A+B

θ (x)

)
dx. (6.12)

Manipulating the other terms similarly, the other terms on the right

hand side of Equation (6.11) becomes

Eθ

[∫
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x)
(
βAf∗

A

θ (x) + 2A− 1
)
W (x,X, h)ũθ(x)ũTθ (x)dx

]
+ Eθ

[∫
(A+B)(A+B − 1)f∗

A+B−1

θ (x)W (x,X, h)ũθ(x)ũTθ (x)dx

]
=

∫ (
A2β2eβf

∗A
θ (x)f∗

2A

θ (x)
(
βAf∗

A

θ (x) + 2A− 1
)

+ (A+B)(A+B − 1)f∗
A+B

θ (x)

)
ũθ(x)ũTθ (x)dx.

(6.13)
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Combining Equation (6.12) and Equation (6.13), we can say

Eθ[∇uα,λ,β
∗

θ (X)]

=

∫
∇ũθ(x)

(
A2β2eβf

∗A
θ (x)f∗

2A

θ (x) + (A+B)f∗
A+B

θ (x)

)
dx

+

∫ (
A2β2eβf

∗A
θ (x)f∗

2A

θ (x)
(
βAf∗

A

θ (x) + 2A− 1
)

+ (A+B)(A+B − 1)f∗
A+B

θ (x)

)
ũθ(x)ũTθ (x)dx

=

∫ (
A2β2eβf

∗A
θ (x)f∗

2A

θ (x) + (A+B)f∗
A+B

θ (x)

)
ũθ(x)dx

−
∫ (

A3β2eβf
∗A
θ (x)f∗

2A

θ (x)
(
βf∗

A

θ (x) + 2
)

+ (A+B)2f∗
A+B

θ (x)

)
ũθ(x)ũTθ (x)dx

+

∫ (
A2β2eβf

∗A
θ (x)f∗

2A

θ (x)
(
βAf∗

A

θ (x) + 2A− 1
)

+ (A+B)(A+B − 1)f∗
A+B

θ (x)

)
ũθ(x)ũTθ (x)dx

(6.14)

= −
∫ (

A2β2eβf
∗A
θ (x)f∗

2A

θ (x)
(
βAf∗

A

θ (x) + 2A
)

+ (A+B)2f∗
A+B

θ (x)

)
ũθ(x)ũTθ (x)dx

+

∫ (
A2β2eβf

∗A
θ (x)f∗

2A

θ (x)
(
βAf∗

A

θ (x) + 2A− 1
)

+ (A+B)(A+B − 1)f∗
A+B

θ (x)

)
ũθ(x)ũTθ (x)dx

= −
∫ (

A2β2eβf
∗A
θ (x)f∗

2A

θ (x) + (A+B)f∗
A+B

θ (x)

)
ũθ(x)ũTθ (x)dx = −J∗.

In Equation (6.14), the first two terms are derived using integration

by parts of Equation (6.12). Evidently, this proves the lemma.

Corollary 6.2. Under the model, with the help of the above lemma,

the influence function of minimum GSB* divergence estimator de-

rived earlier in this section, simplifies to

IF (y, Fθ, T
∗
α,λ,β) = [J∗]−1

{
uα,λ,β

∗

θ (y)− Eθ(u
α,λ,β∗

θ (X))
}
, (6.15)

where,

J∗ = Eθ

[
−∇uα,λ,β

∗

θ (X))
]
. (6.16)
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6.6 Asymptotic Distribution of the Minimum GSB*

Divergence Estimator

Suppose that X1, X2, . . . Xn are n i.i.d. observations from the true

density g with g∗ being the smoothed version of g, given in Equa-

tion (6.3). To find the closest match between g and the elements of

the model family F = {fθ : θ ∈ Θ}, the divergence between g∗n and

f ∗θ is minimized over θ ∈ Θ. First we list the assumptions required

to prove the asymptotic results

1. F is identifiable, i.e., for any θ1 and θ2, θ1 = θ2 ⇒ fθ1 (x) =

fθ2 (x) for almost all x.

2. The densities within the model family have a common a support

χ, which is independent of the parameter θ.

3. The kernel-integrated model family of densities is smooth, i.e.,

each f ∗θ (x) satisfies the conditions of Lehmann (1983, p. 409,

p. 429).

4. The matrix J∗g as defined in Equation (6.6) is positive definite.

5. The quantities∫
(g∗)

1
2 (x)

(
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B) f∗
A+B−1

θ (x)

)
|ũjθ (x) |dx,∫

(g∗)
1
2 (x)

(
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B) f∗
A+B−1

θ (x)

)
|ũjθ (x) ||ũkθ (x) |dx and∫

(g∗)
1
2 (x)

(
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B) f∗
A+B−1

θ (x)

)
|ũjkθ (x) |dx

are bounded for all j, k and for all θ ∈ ω, an open neighbour-

hood of the best fitting parameter θg.

6. There exists functions Mjkl (x), Mjk,l (x) and Mj,k,l (x), M
(1)
j,k,l (x)

and M
(2)
j,k,l (x) such that(

A2β2eβf
∗A
θ (x)f ∗

2A−1

θ (x) + (A+B) f ∗
A+B−1

θ (x)
)
ũjklθ (x),
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A2β2eβf
∗A
θ (x)f ∗

2A−1

θ (x) + (A+B) f ∗
A+B−1

θ (x)
)
ũjkθ (x) ũlθ (x) and(

A2β2eβf
∗A
θ (x)f ∗

2A−1

θ (x) + (A+B) f ∗
A+B−1

θ (x)
)
ũjθ (x) ũkθ (x) ũlθ (x),{

(A+B)2 f∗A+B−1
θ (x) +A3β2eβf

∗A
θ (x)f∗2A−1

θ (x)
(
2 + βf∗Aθ (x)

)}
ũjθ (x) ũkθ (x) ũlθ (x),

(A+B)3 f ∗A+B−1
θ (x) ũjθ (x) ũkθ (x) ũlθ (x)

+
{
A4β2eβf

∗A
θ (x)

(
2f∗2A−1
θ (x) + β

(
f∗3A−1
θ (x) + f∗A−1

θ (x) + 4f∗2A−1
θ (x)

))}
ũjθ (x) ũkθ (x) ũlθ (x)

are dominated by these functions and the expectations are uni-

formly bounded with respect to g∗ and f ∗θ for all x and all θ ∈ ω.

7. Suppose, C1 and C2 represent the bounds ofK ′(δ∗) andK ′′(δ∗)(1+

δ∗), respectively, where K ′(·) and K ′′(·) represent the first and

second order derivatives of K(·) with respect to its argument δ∗,

where δ∗ (x) = g∗(x)
f∗θ (x) − 1.

To derive the asymptotic result of MGSBDE, we will assume, from

now on, the above-mentioned conditions hold. Under these assump-

tions, we are going to state and prove, some set of lemmas necessary

to establish our asymptotic results.

Lemma 6.3 (Basu and Lindsay (1994, Lemma 6.1)). For each fixed

x in the support, Vg (g∗n (x)) = ν(x)
n , provided it exists, where

ν (x) =

∫
W 2 (x, y, h) g (y) dy − (g∗ (x))2 . (6.17)

We further assume the kernel to be bounded, i.e.,

W (x, y, h) ≤ N(h) <∞. (6.18)
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Therefore, further calculations lead us to the following

ν(x) ≤
∫
W 2 (x, y, h) g (y) dy

≤ N(h)

∫
W (x, y, h) g (y) dy

≤ N(h)g∗(x). (6.19)

Lemma 6.4. In the above-mentioned setup, with probability 1,

n
1
4{(g∗n (x))

1
2 − (g∗ (x))

1
2} → 0. (6.20)

provided ν(x) <∞.

Proof. With the finiteness assumption of ν(x), the proof mimics that

of Lemma 5.2, except the fact that rn(x) has been used as estimate

of g under discrete model, whereas, g∗n(x) is used as estimate of g

under continuous model.

Next, under continuous setup, we define Hellinger residuals as

4∗n(x) =
g
∗1/2
n (x)

f
∗1/2
θ (x)

− 1;4∗g(x) =
g∗1/2(x)

f
∗1/2
θ (x)

− 1. (6.21)

Furthermore, we define,

δ∗n(x) =
g∗n(x)

f ∗θ (x)
− 1; δ∗g(x) =

g∗(x)

f ∗θ (x)
− 1. (6.22)

Lemma 6.5. Define η∗n (x) =
√
n
(
4∗n (x)−4∗g (x)

)2
. For any k ∈

[0, 2] and any x ∈ χ, we have,

1. Eg{η∗kn (x)} ≤ n
k
2Eg{|δ∗n (x)− δ∗g (x) |k} ≤

{
ν(x)

(f∗θ (x))
2

}k
2

.

2. Eg{|δ∗n (x)− δ∗g (x) |} ≤
(√

ν(x)

f∗θ (x)

)
.
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Proof. The proof of this lemma is follows from Lemma 5.1.

Lemma 6.6. Eg{η∗kn (x)} → 0, as n → ∞, for k ∈ [0, 2) and any

x ∈ χ.

Proof. The proof is exactly similar to the proof of Lemma 5.2.

Let us now define

a∗n (x) = K (δ∗n (x))−K
(
δ∗g (x)

)
b∗n (x) =

(
δ∗n (x)− δ∗g (x)

)
K ′
(
δ∗g (x)

)
and τ ∗n (x) =

√
n|a∗n (x)− b∗n (x) |. (6.23)

Now, we will find the limiting distributions of the following

S∗1n (x) =
√
n

∫
x
a∗n (x)

(
A2β2eβf

∗A
θ (x)f∗

2A

θ (x) + (A+B) f∗
A+B

θ (x)

)
ũθ (x) dx,

S∗2n (x) =
√
n

∫
x
b∗n (x)

(
A2β2eβf

∗A
θ (x)f∗

2A

θ (x) + (A+B) f∗
A+B

θ (x)

)
ũθ (x) dx.

(6.24)

Lemma 6.7. Under assumption (5), Eg|S∗1n − S∗2n| → 0 as n → ∞
and as n→∞

S∗1n − S∗2n
p→ 0.

Proof. Using Lemma 5.3, Lemma 6.5 and Equation (6.19), we have

E|S∗1n − S∗2n| ≤
∫
E (τ∗n (x))

(
A2β2eβf

∗A
θ (x)f∗

2A

θ (x) + (A+B) f∗
A+B

θ (x)

)
|ũθ (x) |dx

≤ γ

∫
E (η∗n (x))

(
A2β2eβf

∗A
θ (x)f∗

2A

θ (x) + (A+B) f∗
A+B

θ (x)

)
|ũθ (x) |dx

≤ γ

∫
ν1/2(x)

f∗θ (x)

(
A2β2eβf

∗A
θ (x)f∗

2A

θ (x) + (A+B) f∗
A+B

θ (x)

)
|ũθ (x) |dx

≤ γN
1
2 (h)

∫
x

(g∗ (x))
1
2

(
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B) f∗
A+B−1

θ (x)

)
|ũθ (x) |dx

< ∞. (6.25)
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Then, by DCT, we have Eg|S∗1n − S∗2n| → 0 as n → ∞, and hence,

by Markov’s Inequality, it follows that

S∗1n − S∗2n
p→ 0

as n→∞.

Lemma 6.8. Under g, S∗1n converges in distribution to Np

(
0, V ∗g

)
,

whenever

V ∗g = V arg

{∫
W (x,X, h)K ′

(
δ∗g (x)

)(
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B) f∗
A+B−1

θ (x)

)
ũθ (x) dx

}
(6.26)

is finite.

Proof. By the previous lemma, the asymptotic distributions of S∗1n
and S∗2n are the same, which has helped us to write, under g,

S∗2n

=
√
n

∫
x
b∗n (x)

(
A2β2eβf

∗A
θ (x)f∗

2A

θ (x) + (A+B) f∗
A+B

θ (x)

)
ũθ (x) dx

=
√
n

∫
x

(
δ∗n (x)− δ∗g (x)

)
K ′
(
δ∗g (x)

)(
A2β2eβf

∗A
θ (x)f∗

2A

θ (x) + (A+B) f∗
A+B

θ (x)

)
ũθ (x) dx

=
√
n

∫
x

(g∗n (x)− g∗ (x))K ′
(
δ∗g (x)

)(
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B) f∗
A+B−1

θ (x)

)
ũθ (x) dx

=
1√
n

n∑
i=1

∫
x

(W (x,Xi, h)− Eg(W (x,Xi, h)))K ′
(
δ∗g (x)

)(
A2β2eβf

∗A
θ (x)f∗

2A−1

θ (x) + (A+B) f∗
A+B−1

θ (x)

)
ũθ (x) dx.

The remaining part immediately follows from the above through an

application of the Central Limit Theorem.

Theorem 6.9. Under the above-mentioned assumptions, there exists

a consistent sequence of roots θ∗n of the estimating equation (6.2).

Moreover,
√
n (θ∗n − θg) asymptotically follows a p-dimensional nor-

mal with mean 0 and [J∗g ]−1V ∗g [J∗g ]−1, where J∗g and V ∗g are as defined

in Equation (6.6) and Equation (6.26) (after replacing θ by θg in

Equation (6.26)).
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Proof. We can prove the main theorem of consistency and normal-

ity with slight modifications of the proof of Theorem 5.5 based on

continuity and all the lemmas mentioned above. Hence we are just

representing here the minor differences.

For the linear term (an analogy of S1 in proof of Theorem 5.5), we

have ∣∣∣∣∣
∫
x
K (δ∗gn (x))

(
A2β2eβf

∗A
θg

(x)f∗2Aθg (x) + (A+B) f∗A+B
θg (x)

)
ũjθg (x) dx

−
∫
x
K
(
δ∗gg (x)

) (
A2β2eβf

∗A
θg

(x)f∗2Aθg (x) + (A+B) f∗A+B
θg (x)

)
ũjθg (x) dx

∣∣∣∣∣
≤ C1

∫
x
|δ∗gn (x)− δ∗gg (x) ||ujθg (x) |

(
A2β2eβf

∗A
θg

(x)f∗2Aθg (x) + (A+B) f∗A+B
θg (x)

)
dx.

and,

E(C1

∫
x
|δ∗gn (x)− δ∗gg (x) ||ujθg (x) |

(
A2β2eβf

∗A
θg

(x)f∗2Aθg (x) + (A+B) f∗A+B
θg (x)

)
dx

≤ C1

∫
x
ν1/2(x)|ujθg (x) |

(
A2β2eβf

∗A
θg

(x)f∗2A−1
θg (x) + (A+B) f∗A+B−1

θg (x)
)
dx

≤ C1N
1/2(h)

∫
x
|ujθg (x) |g∗1/2(x)

(
A2β2eβf

∗A
θg

(x)f∗2A−1
θg (x) + (A+B) f∗A+B−1

θg (x)
)
dx

< ∞. (6.27)

Hence the term converges, as expected. For the quadratic term (an

analogy of S2 in proof of Theorem 5.5), we have

∣∣∣∣∣K ′ (δ∗gn ) (1 + δ∗gn )
(

(A+B)2 fA+B
θg (x) +A3β2eβf

A
θg

(x)f2A
θg (x)

(
2 + βfAθg (x)

))
ujθg (x)ukθg (x)

− K ′
(
δ∗gg
)

(1 + δ∗gg )
(

(A+B)2 fA+B
θg (x) +A3β2eβf

A
θg

(x)f2A
θg (x)

(
2 + βfAθg (x)

))
ujθg (x)ukθg (x)

∣∣∣∣∣
P−→ 0,

and∣∣∣∣∣K (δ∗gn (x))−K
(
δ∗gg (x)

) ∣∣∣∣∣ (A2β2eβf
A
θg

(x)f2A
θg (x) + (A+B) fA+B

θg (x)
)
ujkθg (x)

P−→ 0.

(6.28)
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Thus, combining all these,

∇jkD
∗ (g∗, f ∗θ ) |θ=θg

p→ J j,kg .

The rest is exactly the same as the proof of Theorem 5.5.

Corollary 6.10. When the true density g belongs to the model family

{fθ : θ ∈ Θ} , i.e., g = fθ for some θ ∈ Θ, the asymptotic distri-

bution of
√
n (θ∗n − θ) is normal with mean 0 and covariance matrix

(J∗)−1 V ∗ (J∗)−1, where V ∗ = Vfθ

(
uα,λ,β

∗

θ (X)
)

and J∗ is defined in

Equation (6.7).

6.7 Derivation of Transparent Kernel for the Min-

imum GSB* Divergence Estimator

Under the continuous model, we have already derived several prop-

erties of of our proposed estimators through the implementation of

Basu-Lindsay approach. In 1994, Basu and Lindsay have proposed

the concept of “Transparent Kernel” and proved that through its

imposition, any minimum disparity estimator obtained under the

Basu-Lindsay approach have the same asymptotic distribution as the

maximum likelihood estimator. In the same spirit, in order to obtain

same features on asymptotic distribution of the minimum GSB* di-

vergence estimators, we are going to discuss and develop the required

conditions on kernels throughout this section. For this purpose, let

us first assume, G = Fθ for some θ ∈ Θ, i.e., the true distribution

belongs to the model.
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Lemma 6.11. Suppose the kernel function W (x, y, h) used in smooth-

ing the densities is such that

uα,λ,β∗θ (y) = M
(
A2β2eβf

A
θ (y)f 2A−1

θ (y) + (A+B) fA+B−1
θ (y)

)
uθ (y)+L

(6.29)

for a p-vector L depending possibly on α, λ, β and h but not on θ,

and a p× p non-singular matrix M possibly depending on θ, α, λ, β

and h, where for each component θj of θ, we have either∫ (
A2β2eβf

A
θ (y)f 2A

θ (y) + (A+B) fA+B
θ (y)

)
uθj (y) dy = 0 (6.30)

or the j-th column of M is independent of θ. Then the influence

function for the minimum GSB* divergence estimator will be func-

tionally the same as that of the minimum GSB divergence estimator

as given in Equation (5.27).

Proof. We first need to show that conditions (6.29) and (6.30) to-

gether imply that

Eθ[−∇uα,λ,β
∗

θ (X)] = M

∫ (
(A+B)fA+B

θ (x) +A2β2eβf
A
θ (x)f2A

θ (x)
)
uθ(x) uTθ (x)dx.

(6.31)

In order to prove that, first we differentiate both sides of Equa-

tion (6.29) with respect to θ and get,

∇uα,λ,β
∗

θ (x)

= M∇uθ(x)
(
A2β2eβf

A
θ (x)f2A−1

θ (x) + (A+B)fA+B−1
θ (x)

)
+ M

{
A2β2eβf

A
θ (x)f2A−1

θ (x)
(
2A− 1 + βAfAθ (x)

)
+ (A+B)(A+B − 1)fA+B−1

θ (x)
}
uθ(x)uTθ (x)

+ [(∇1M)uθ(x) (∇2M)uθ(x) . . . (∇pM)uθ(x)]
(
A2β2eβf

A
θ (x)f2A−1

θ (x) + (A+B)fA+B−1
θ (x)

)
.

(6.32)

Here,∇j represents the derivative with respect to the j-th component

of θ. Taking expectation with respect to fθ on both sides of the above
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equation, we get

E[∇uα,λ,β
∗

θ (X)] = M

∫
∇uθ(x)

(
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B)fA+B
θ (x)

)
dx

+ M

∫
A2β2eβf

A
θ (x)f2A

θ (x)
(
2A− 1 + βAfAθ (x)

)
uθ(x)uTθ (x)dx

+ M

∫
(A+B)(A+B − 1)fA+B

θ (x)uθ(x)uTθ (x)dx. (6.33)

The remaining terms turn out to be zero due to condition (6.30).

Again, integrating by parts the first integral of the above equation,

we get

M

∫
∇uθ(x)

(
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B)fA+B
θ (x)

)
dx

= −M
∫ (

A2β2eβf
A
θ (x)f2A

θ (x)
(
2A+ βAfAθ (x)

)
+ (A+B)2fA+B

θ (x)
)
uθ(x)uTθ (x)dx,

(6.34)

since, f τθ (x)uθ(x), τ > 0, goes to zero as x tends to its most extreme

value in either tail. Now, combining Equation (6.33) and Equa-

tion (6.34), we get the desired result given in Equation (6.31).

Then it follows that

IF(y, Fθ, T
∗
α,λ,β) = [J∗θ ]−1

{
uα,λ,β

∗

θ (y)− Eθ[uα,λ,β
∗

θ (X)]
}

=

[
M

∫
uθ(x)uTθ (x)

(
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B)fA+B
θ (x)

)
dx

]−1

(
M
(
A2β2eβf

A
θ (y)f2A−1

θ (y) + (A+B)fA+B−1
θ (y)

)
uθ(y) + L

)
−

[
M

∫
uθ(x)uTθ (x)

(
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B)fA+B
θ (x)

)
dx

]−1

(
Eθ

[
Muθ(X)

(
A2β2eβf

A
θ (X)f2A−1

θ (X) + (A+B)fA+B−1
θ (X)

)]
+ L

)
=

[∫
uθ(x)uTθ (x)

(
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B)fA+B
θ (x)

)
dx

]−1

{(
A2β2eβf

A
θ (y)f2A−1

θ (y) + (A+B)fA+B−1
θ (y)

)
uθ(y)

}
−

[∫
uθ(x)uTθ (x)

(
A2β2eβf

A
θ (x)f2A

θ (x) + (A+B)fA+B
θ (x)

)
dx

]−1

Eθ

[
uθ(X)

(
A2β2eβf

A
θ (X)f2A−1

θ (X) + (A+B)fA+B−1
θ (X)

)]
. (6.35)
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Equation (6.35) is identical to the expression of the IF of the mini-

mum GSB divergence estimator given in Equation (5.27). Hence the

proof.

Furthermore, in some particular cases of the GSB divergence, we can

show that something extra can be achieved through such assumptions

on kernel. We can not only prove the result regarding the influence

function but also eventually show that the estimating equations of

estimators obtained through Basu-Lindsay approach are same with

the estimating equations of ordinary estimators obtained without

smoothing under discrete model and hence, indeed the estimators

are equal. In fact, in such scenario, the condition of g = fθ is not

required at all. The following corollary will give a clear picture of it.

Corollary 6.12. Under the assumption of condition (6.29) on kernel

function, if we consider, further,

1. β = 0, i.e. the condition becomes uα∗θ (y) = M(1+α)uθ (y) fαθ (y)+

L, then the estimating equation of minimum DPD* estimator (MD-

PDE*)

1

n

n∑
i=1

uα∗θ (Xi)− Eθ(u
α∗
θ (X)) = 0 (6.36)

where uα∗θ (y) =
∫
ũθ (x) {f ∗θ (x)}αW (x, y, h)dx will reduce to the

estimating equation of minimum DPD estimator (MDPDE)

1

n

n∑
i=1

fαθ (Xi)uθ (Xi)− Eθ(f
α
θ (X)uθ (X)) = 0. (6.37)



Chapter 6. The Extended Bregman Divergence and Parametric Estimation in
Continuous Models 161

2. α = −1 and λ = 0: then condition (6.29) becomes uβ∗θ (y) =

Mβ2uθ (y) fθ (y) eβfθ(y) +L, then the estimating equation of min-

imum BED* estimator (MBEDE*)

1

n

n∑
i=1

uβ∗θ (Xi)− Eθ(u
β∗
θ (X)) = 0 (6.38)

where, uβ∗θ (y) =
∫
ũθ (x) eβf

∗
θ (x)f ∗θ (x)W (x, y, h)dx will reduce to

the estimating equation of minimum BED estimator (MBEDE)

1

n

n∑
i=1

eβfθ(Xi)fθ (Xi)uθ (Xi)− Eθ(e
βfθ(X)fθ (X)uθ (X)) = 0.

(6.39)

Therefore, under these scenarios, MDPDE* and MDPDE as well as

MBEDE* and MBEDE will be the same. Trivially it shows their

asymptotic equivalence.

Corollary 6.13. Under the assumptions of kernel given in Lemma

6.11, the minimum GSB* divergence estimators θ∗n asymptotically

follow normal distribution with mean zero and variance-covariance

matrix mentioned in Expression (5.25). Furthermore all first order

asymptotic properties of minimum GSB* divergence estimator will be

similar to those of the original minimum GSB divergence estimator

given in Chapter 5.

We will refer to any kernel function satisfying condition (6.29) and

(6.30) as α, λ, β-transparent kernel. Moreover, at α = 0 and β = 0,

this kernel coincides with the transparent kernel defined in Basu and

Lindsay (1994). For the mean and the variance of the normal model,

the Gaussian kernel is an example of a transparent kernel at α = 0

and β = 0. Note that, in these cases, no restriction needs to be

imposed on tuning parameter λ.
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6.8 Simulation Results

Earlier, Ghosh et al. (2015), and to some extent Basu et al. (2013),

have looked at the values of the tuning parameters that appear to

provide the best compromise in terms of robustness and efficiency

in divergence tests based on the S-divergence and the DPD, respec-

tively. Eventually, the minimum S∗-divergence estimators belong to

the family of minimum GSB* divergence estimators, too, and hence

they can be listed as the ‘best’ MGSBE*s with specific choices of the

triplet (α, λ, β). Here, in this section, our main aim is to expand this

list with a significant modification, that is, to extend the region of

tuning parameter(s) which can generate such ‘best’ minimum GSB*

divergence estimators which are in turn better than the existing S∗-

divergence estimators in terms of robustness and/or efficiency, but

they will essentially lie outside the family of the minimum DPD and

the minimum S∗-divergence estimators.

For efficiency calculations, we consider samples from the pure model,

while for illustrations of robustness, the data are generated from

contaminated model densities. We choose samples of size 50 from

three different setups. For the first case, we choose samples from the

(1 − ε)N(0, 9) + εN(15, 9) mixed distribution. For the second case,

samples of the same size are drawn from the (1−ε)N(0, 9)+εN(0, 100)

mixture. Lastly, samples of the same size are drawn from the (1 −
ε)N(0, 9) + εχ2

10 mixture. The second component is the contaminant

and ε ∈ [0, 1) is the contaminating proportion and our intention is to

estimate the parameters of the main, larger component. The values 0,

0.05, 0.1 and 0.2 are considered for ε, and at each contamination level,

the whole procedure is replicated 1000 times. In each of the 1000
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replications, the normal parameters are estimated corresponding to

each contamination level and each (α, λ, β) triplet is considered in our

study. We then construct the empirical mean square error (MSE)

against the target value of µ (= 0) and σ (= 3), for each tuning

parameter combination over the 1000 replications.

For our simulation purpose, we will follow the Basu-Lindsay ap-

proach. Our parametric model is the N(µ, σ2) family, and we will em-

ploy the Gaussian kernel with the bandwidth being the well-known

Silverman’s bandwidth. Through the convolution property of the

normal distribution, f ∗θ (x) will become the density of N
(
µ, σ2 + h2

)
,

where h is the employed bandwidth.

We will first compute the minimum S*-divergence estimators for each

sample over several choices of (α, λ) belonging to the set A = {(α, λ) :

α ∈ (0, 1) , λ ∈ (−1, 1)} with β = 0, and then find the minimum

GSB* divergence estimators over a grid of non-zero β for each se-

lected pair (α, λ) ∈ A; since β lies over the whole real line, we have

restricted its range between (−8, 8) in our explorations. We then

compare the MSEs under four scenarios of the MSDE*s with those

of the MGSBE*s, and, surprisingly, here also, we have ended up with

the ‘best’ dominating GSB* divergence estimators with β = −4 cor-

responding to many of the choices (α, λ) ∈ A – all of these have a

better performance, at least to the extent of the findings in these

simulations in either sense of robustness and efficiency.

Here, we present our derived result in a slightly different way than

the presentation given in case of the discrete setup. Generally, we

have observed four scenarios–

1. First we consider those examples of estimators, where MSDE*s
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are not uniformly dominated by any other member of MGDBE∗

class. There exists some MGSBE*s which may beat these MSDE∗

in three of the four cases, but not in all of them.

2. This case is similar to the previous one except the thing that in

order to get further improvement for cases ε = 0.05, 0.10, 0.20,

we have to become liberal with respect to the MSE for the case

ε = 0.

3. Next we have presented the cases where the MGSBE*s beat the

MSDE*s in terms of the contaminated data mean square errors,

while being competitive in terms of the MSE for ε = 0.

4. Lastly, we give examples of a zone of tuning parameters, where

some MGSBE∗ provides better (reduced) measures at each of

the four entries compared to the corresponding MSDE∗.

For each contaminated model, we are providing different small tables

consisting of at least two examples corresponding to each of these

four cases rather than representing them in a single table. For each

table, each cell consists of a block of five numbers – the four MSEs

corresponding to four contaminating proportions ε = 0, 0.05, 0.1, 0.2

along with the corresponding triplet (α, λ, β). For comparison pur-

pose, generally, each table consists of even numbers of columns – for

each pair of columns, the left one represents the MSEs of MSDE*s

estimators whereas the same thing in the right column corresponds

to the minimum GSB* divergence estimators. For further ease of un-

derstanding, the non-coloured numbers correspond to the MSDE*s,

whereas the coloured values correspond to the MGSBE*s. Moreover,

examples of the MGSBE*s corresponding to the second, the third

and the fourth cases are given through red, green and blue coloured



Chapter 6. The Extended Bregman Divergence and Parametric Estimation in
Continuous Models 165

MSE values in Tables (6.1(B),6.3(B)), Tables (6.1(C),6.3(C)) and

Tables (6.1(D),6.2(B),6.3(D)), respectively.

Here we have shown some particular cases only, but actually, we have

searched MGSBE*s over the set A, as mentioned earlier. Based on

this search, we can conclude the MGSBE*s corresponding to any

α ∈ [0.1, 0.8] and λ ∈ [−0.7,−0.3], with β = −4, as the competitive

alternatives of the existing standard MSDE*s (as suggested by Ghosh

et al. (2017)). Some cases belonging to this preferred region are given

in Table 6.4.
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Figure 6.1: Examples of unbounded influence functions (left panel) and
bounded influence functions (right panel). Only the right panel consists of sub-
sets of S. Those in the left panel are outside!. Here n = 50, fθ = 1

σφ(x−µσ ) with

(µ, σ) = (0, 3) and h = 1.06 ∗ n−1/5 ∗ σ
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Table 6.1: Comparison of MSEs of MSDE* and MGSBE* under the contam-
inated model (1− ε)N(0, 9) + εN(15, 9)

(a)

S∗-divergence GSB* divergence S∗-divergence GSB* divergence
0.3341 0.3222 0.3106 0.3328
0.3991 0.4040 0.3944 0.3995
0.6321 0.6262 0.6815 0.6380
5.2920 5.0263 6.9180 5.7525

(0.6, -0.7, 0) (0.8, -0.4, -4) (0.4, -0.7, 0) (0.8, -0.6, -4)

(b)

S∗-divergence GSB* divergence
0.2955 0.3103
0.4022 0.3967
0.7689 0.7083
8.3008 7.8682

(0.25, -0.7, 0) (0.6, -0.5, -4)
0.2813 0.2950
0.5069 0.4093
1.5619 0.8835
13.9369 10.5650

(0.1, -0.5, 0) (0.6, -0.7, -4)

(c)

S∗-divergence GSB* divergence
0.3208 0.3208
0.4025 0.3972
0.7079 0.6732
7.0816 6.9023

(0.5, -0.5, 0) (0.6, -0.4, -4)
0.2904 0.2904
0.4979 0.4199
1.5257 1.0108
13.8318 11.6017

(0.25, -0.3, 0) (0.4, -0.5, -4)

(d)

S∗-divergence GSB* divergence S∗-divergence GSB* divergence
0.3072 0.3006 0.3321 0.3279
0.4285 0.4026 0.4087 0.3978
0.9598 0.8038 0.7088 0.6479
9.9708 9.4896 6.7164 6.1973

(0.4, -0.3, 0) (0.5, -0.5, -4) (0.6, -0.3, 0) (0.8, -0.7, -4)

0.3047 0.2976 0.3564 0.3467
0.4984 0.4240 0.4167 0.4065
1.4900 0.9696 0.6600 0.6236
13.0312 10.6559 4.9637 4.7685

(0.4, 0, 0) (0.25, -0.3, -4) (0.8, 0, 0) (0.8, -0.3, -4)
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Table 6.2: Comparison of MSEs of MSDE* and MGSBE* under the contam-
inated model (1− ε)N(0, 9) + εN(0, 100)

(a)

S∗-divergence GSB* divergence S∗-divergence GSB* divergence
0.3106 0.3175 0.2854 0.2904
0.3767 0.3827 0.3711 0.3722
0.4935 0.4912 0.5393 0.5149
1.0387 0.9826 1.3916 1.2132

(0.4, -0.7, 0) (0.74, -0.7, -4) (0.1, -0.7, 0) (0.4, -0.5, -4)

(b)

S∗-divergence GSB* divergence S∗-divergence GSB* divergence
0.3801 0.3626 0.3341 0.3279
0.4233 0.4126 0.3912 0.3892
0.5190 0.5082 0.4947 0.4923
0.9223 0.9125 0.9556 0.9496

(1, -1, 0) (1, -0.5, -4) (0.6, -0.7, 0) (0.8, -0.7, -4)

0.2813 0.2793 0.2904 0.2828
0.3833 0.3800 0.3822 0.3748
0.5891 0.5722 0.5600 0.5437
1.6507 1.5538 1.4593 1.3933

(0.1, -0.5, 0) (0.25, -0.5, -4) (0.25, -0.3, 0) (0.5, -0.7, -4)

0.3175 0.3006 0.3031 0.2904
0.3875 0.3744 0.3960 0.3722
0.5171 0.4986 0.5831 0.5149
1.1346 1.0863 1.5140 1.2132

(0.5, 0, 0) (0.5, -0.5, -4) (0.4, 0.2, 0) (0.4, -0.5, -4)



Chapter 6. The Extended Bregman Divergence and Parametric Estimation in
Continuous Models 169

Table 6.3: Comparison of MSEs of MSDE* and MGSBE* under the contam-
inated model (1− ε)N(0, 9) + εχ2

10

(a)

S∗-divergence GSB* divergence S∗-divergence GSB* divergence
0.3584 0.3103 0.3222 0.3328
0.4782 0.4714 0.4684 0.4701
0.7903 0.9292 0.8814 0.8437
2.9494 3.8506 3.5611 3.3292

(0.8, -1, 0) (0.6, -0.5, -4) (0.5, -0.7, 0) (0.8, -0.6, -4)

(b)

S∗-divergence GSB* divergence
0.2854 0.2904
0.5122 0.4980
1.2033 1.1270
5.1364 4.8735

(0.1, -0.7, 0) (0.4, -0.5, -4)
0.2745 0.2767
0.9164 0.6111
2.3973 1.6196
8.1453 6.8306

(0.1, 0, 0) (0.4, -0.7, -4)

(c)

S∗-divergence GSB* divergence
0.2904 0.2904
0.5315 0.4980
1.2500 1.1270
5.3144 4.8735

(0.25, -0.3, 0) (0.4, -0.5, -4)
0.3296 0.3296
0.4894 0.4707
0.9433 0.8589
3.8557 3.4199

(0.6, 0.2, 0) (0.6, -0.3, -4)

(d)

S∗-divergence GSB* divergence S∗-divergence GSB* divergence
0.3331 0.3295 0.3072 0.3006
0.4735 0.4707 0.4916 0.4799
0.8623 0.8589 1.0338 1.0112
3.4300 3.4199 4.3622 4.3011

(0.6, -0.5, 0) (0.6, -0.3, -4) (0.4, -0.3, 0) (0.5, -0.5, -4)

0.3175 0.3113 0.2855 0.2793
0.4942 0.4754 0.7409 0.5546
1.0068 0.9489 1.8903 1.3954
4.1993 3.9459 6.9269 6.0041

(0.5, 0, 0) (0.4, -0.3, -4) (0.25, 0.2, 0) (0.25, -0.5, -4)
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Table 6.4: MSEs along with triplets (α, λ, β) of some MGSBE*s belonging to
the ‘best’ region

(a) Simulated results generated from the (1− ε)N(0, 9) + εN(15, 9) model

GSB* divergence GSB* divergence GSB* divergence GSB* divergence
0.2904 0.2976 0.2767 0.2793
0.4199 0.4240 0.5802 0.4908
1.0108 0.9696 2.3223 1.6413
11.6017 10.6559 18.2625 15.6017

(0.4, -0.5, -4) (0.25, -0.3, -4) (0.4, -0.7, -4) (0.25, -0.5, -4)

(b) Simulated results generated from the (1− ε)N(0, 9) + εN(0, 100) model

GSB* divergence GSB* divergence GSB* divergence GSB* divergence
0.2904 0.2976 0.2767 0.2793
0.3722 0.3761 0.3947 0.3800
0.5149 0.5138 0.6324 0.5722
1.2132 1.1797 1.8803 1.5538

(0.4, -0.5, -4) (0.25, -0.3, -4) (0.4, -0.7, -4) (0.25, -0.5, -4)

(c) Simulated results generated from the (1− ε)N(0, 9) + εχ2
10 model

GSB* divergence GSB* divergence GSB* divergence GSB* divergence
0.2904 0.2976 0.2767 0.2793
0.4980 0.4924 0.6111 0.5546
1.1270 1.0714 1.6196 1.3954
4.8735 4.5668 6.8306 6.0041

(0.4, -0.5, -4) (0.25, -0.3, -4) (0.4, -0.7, -4) (0.25, -0.5, -4)
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6.9 Real Data Analysis

Here we consider the practical implementation of our proposal on

real data and illustrate the strong outlier stability of the proposed

method just like the discrete setup.

The natural question that will once again come up in this connection

is which set of tuning parameters to use when analyzing a particu-

lar set of real data. As already observed in previous chapters, for

data which follow the model very closely, the maximum likelihood

estimator with the tuning parameter triplet (α, λ, β) = (0, 0, 0) or

something close should work well. For data which involve some de-

parture from the model, more stable divergences such as those with

large values of α and/or large negative values of λ may be more desir-

able. In a particular situation, however, it is not known apriori what

proportion of data are anomalous, and we must have an automatic

data-based selection plan for tuning parameters. In this context we

extend and use the tuning parameter selection strategy described in

Chapter 3. Our procedure will construct an empirical mean square

error as a function of the tuning parameters and an initial robust

pilot estimator, which can then be optimized over the set of tuning

parameters. We have already observed that the iterated Warwick

Jones algorithm can lead to pilot independent estimates with good

performance.

We apply this tuning parameter selection algorithm on our proposed

minimum GSB* divergence estimators in our subsequent data analy-

sis exercise. As the simulation study of the previous and the current

chapters suggest that the desired results correspond to β = −4 in

most of the cases and the optimals corresponding to restricted as
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well as unrestricted βs are quite close to each other, it appears to

be a reasonable strategy to extend the search over a two-dimensional

space with pre-fixed β = −4. Hence, here we consider the restricted

β-case only. For comparison we will also present the tuning param-

eter(s) selected by the HK, OWJ and IWJ algorithms (as defined in

Section 3).

Example 6.1. (Short’s Data): See Stigler (1977) for a description

of the data. The raw observations, containing one extreme outlier,

are presented in Table 6.5.

Table 6.5: Short’s Data

8.65 8.35 8.71 8.31 8.36 8.58 7.8 7.71 8.30
9.71 8.50 8.28 9.87 8.86 5.76 8.84 8.23

For the full dataset, the MLE of (µ, σ) equals (8.378, 0.846), whereas

the MLE after removing the extreme outlier is (8.541, 0.552). Af-

ter the implementation of the three algorithms on the full data, the

OWJ, IWJ and HK estimators will be (8.410, 0.423), (8.409, 0.537)

and (8.275, 0.874), corresponding to the triplets (0.57, 0.96,−4),

(0.50, 0.96,−4) and (0.08, 0.89,−4), respectively. It is clear that the

non-robust HK estimator is quite close to the full data MLE, whereas

the opposite scenario is observed in case of the IWJ and the OWJ

estimators. On the other hand, if we apply the three algorithms on

the outlier-deleted data, then the HK and the IWJ estimators are

identical, i.e, (8.515, 0.544), which is not far from the outlier-deleted

MLE, and the OWJ estimator, although not identical is close to these

two, i.e., (8.410, 0.388) corresponding to (0.57, 0.96,−4).

Example 6.2. (Newcomb’s Data): These data include Newcomb’s

measurements of the velocity of light, which are based on observa-

tions, in the U.S. in 1882, of the passage time of light over a certain
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distance. These data can also be found in Stigler (1977). The ob-

servations, containing two outliers, are given in Table 6.6. The full

Table 6.6: Newcomb’s Data

28 26 33 24 34 −44 27 16 40 −2
29 22 24 21 25 30 23 29 31 19
24 20 36 32 36 28 25 21 28 29
37 25 28 26 30 32 36 26 30 22
36 23 27 27 28 27 31 27 26 33
26 32 32 24 39 28 24 25 32 25
29 27 28 29 16 23

data MLE of (µ, σ) under the normal model equals (26.212, 10.745),

whereas the outlier-deleted MLE is (27.750, 5.083). For the full data,

if we apply the three algorithms, we would get (27.472, 4.984) and

(26.472, 10.483) as the OWJ/IWJ estimator and the HK estimator,

corresponding to the triplets (0.56, 0.98,−4) and (0.45,−0.98,−4),

respectively. Evidently, the OWJ/IWJ estimator is close to the outlier-

deleted MLE, whereas the HK estimator is closer to the full data

MLE. On the other hand, if we consider the outlier-deleted data, the

OWJ/IWJ estimator will be (27.515, 4.821) corresponding to (0.13, 0.98,−4)

and the HK estimator will be (27.783, 4.940) corresponding to (0.01, 0.98,−4)

and, as expected, both the estimators are quite close to each other.

Example 6.3. (Alkalinity Data): This dataset is based on the av-

erage alkalinity level of public water wells in Suffolk County, New

York, USA in 1990. These data can be found in Thode Jr. (2002,

p. 347). The sample contains observations of 58 wells, which can be

well-modelled by the normal distribution. The data, containing three

outliers, are represented in the table below.

The implementation of these three algorithms and the maximum like-

lihood estimation on the full and the outlier-deleted data led us to the
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Table 6.7: Alkalinity Data

29 34 30 36 48 32 42 36 48 38
42 31 48 48 35 46 32 27 45 45
23 35 31 27 34 41 39 36 72 38
39 63 35 31 21 26 41 29 38 60
41 29 44 50 33 33 38 39 28 34
26 26 30 26 37 34 31 33

following results given in Table 6.8. Some significant fits based on

these derived estimates are given in Figure 6.2.

Table 6.8: Optimal estimates for the Alkalinity Data

data method optimal θ̂ optimal (α, λ, β)
Full data IWJ/OWJ (35.0381, 7.7976) (0.57,−0.58,−4)

HK (37.1492, 10.5708) (0.01, 0.96,−4)
MLE (36.9483, 9.6016) (0, 0, 0)

Clean data IWJ (35.3194, 7.0145) (0.15,−0.58,−4)
OWJ (35.1444, 7.3329) (0.43,−0.58,−4)
HK (35.3308, 6.8655) (0.01, 0.96,−4)

MLE (35.4182, 7.0545) (0, 0, 0)

6.10 Conclusion

The extension of the Bregman divergence has led us to the introduc-

tion of some new super family of divergences which, through further

refinement, has helped us to generate highly robust estimators to-

gether with an insignificant compromise in efficiency. Under both

continuous setup (as well as the discrete set up considered in the

previous section), we have figured out some estimators whose per-

formances are even better than the ‘best’ minimum S∗-divergence

estimators. Our next target is to implement this extension in the

field of testing of hypotheses. Through some further modification in

this extension, we are hoping to achieve some good tests leading to

better analyses.
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Figure 6.2: Some significant fits for the Alkalinity Data under the Normal
model.



Chapter 7

Hypotheses Testing using the

Extended Bregman Divergence

7.1 Introduction

Hypothesis testing is one of the two fundamental activities in the

field of statistical inference. It helps us to judge the validity of an

unsubstantiated claim on the basis of an available sample in any

real-life scenario. Although the philosophy of testing procedures and

the theory of optimal tests was initiated in the early decades of the

twentieth century, new discoveries and modifications of testing tools

are still useful and represent challenging research areas. The use of

such developments in the statistical domain depends on several of its

asymptotic and other optimality issues. One such major issue is the

stability of a testing procedure, and the problem of keeping a balance

between robustness and efficiency; in the last few chapters we have

dealt with this issue in the context of parametric estimation. Here

we take up the hypothesis testing case.

176



Chapter 7. Hypotheses Testing using the Extended Bregman Divergence 177

The classical likelihood ratio test (LRT) often represents the de-

fault application tool in the hypothesis testing context and has some

asymptotic optimality properties, but its lack of robustness can lead

to problems in real situations. Our target is to devise a test (or a

system of tests) based on the extended Bregman divergence and its

variants which provide a good compromise between efficiency and

robustness.

Since the LRT is extremely non-robust, “disparity difference tests”

and other tests in the similar spirit have been considered useful,

robust alternatives to it in recent years. Several divergences have

been used for this purpose which utilize the minimum possible value

of the divergence between the data and a model density. See, for

example, Simpson (1989), Lindsay (1994), Basu et al. (2011), Basu

et al. (2013), Ghosh et al. (2015), etc. In our research, we will use

the Bregman divergence and its extensions for testing purposes.

Proposing the extended Bregman divergence, and using it for statisti-

cal inference, has been a primary focus of this thesis. In the previous

chapters we have used a particular member of this extended Breg-

man class (the GSB family) to demonstrate the advantages derived

out of it in parametric estimation. In the present chapter we will

perform tests of hypothesis using divergences that are based on the

extended Bregman idea, but because of certain advantages which will

be apparent from the future discussion, we will base all our demon-

strations in case of hypothesis testing on yet another generalized

family of divergences. This divergence is referred to as the general-

ized S-divergence (GSD) family. This family has been derived earlier

by Ghosh and Basu (2018) through entirely different considerations

of testing tubular hypothesis; also see Park and Basu (2003), who
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developed an earlier, simpler, one parameter version of this diver-

gence (the generalized Kullback-Leibler divergence) based on fewer

parameters (also through tubular hypothesis ideas).

The GSD family has the form

Q(α,τ,γ)(g, f) =
1

τ τ̄(α− γ)

∫ {τ ( g
f

)1+α

+ τ̄

}
−

{
τ

(
g

f

)1+γ

+ τ̄

} 1+α

1+γ

 f1+αdµ,

(7.1)

where α ∈ [0, 1), τ ∈ (0, 1), τ̄ = 1 − τ and γ ∈ R − {−1} with

γ 6= α. Moreover, this divergence can be extended over α ∈ [0, 1],

τ ∈ [0, 1] and γ ∈ R through their continuous limits. In the next

subsection we will outline the development of the GSD following the

extended Bregman principles. Tests of hypotheses based on the PD,

DPD and the S-divergence have already been attempted before; see,

e.g., Ghosh et al. (2017). Since the S-divergence is a special case of

the GSD, studying the tests of hypotheses based on the GSD allows

an exploration of this larger superfamily beyond the tests based on

S-divergences, and the additional benefits that can be derived out of

this in hypothesis testing.

7.2 GSD as a Special Form of Bregman Diver-

gence

Due to several desirable properties of the Bregman divergence, it

is always an advantage to show any other divergence as a special

case of the Bregman divergence, if possible. In that case, the said

desirable properties are automatically inherited by that divergence.

Previously, the DPD family and the BED family could be expressed
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as special forms of this divergence, but the PD family and the S-

divergence family could not. Now, through our extension, it is pos-

sible for us to move one step ahead – the last two above-mentioned

divergence families have become a part of this extension. The GSD

family, which is our primary tool in the demonstration of robust test-

ing procedures, has been expressed as a special form of this extension

through a slight modification – more specifically, a convex combina-

tion of two extended Bregman divergences with specific choices of

arguments, ψ and k.

Considering Equation (4.1) with ψ (x) = x
A+B
A

B , k = 1 along with

f 1+γ and τg1+γ + τ̄ f 1+γ as arguments, we would get

D1 (g, f) =

∫ {
1

B
f 1+α − 1

B

(
τg1+γ + τ̄ f 1+γ

) 1+α
1+γ

}
− A+B

AB

∫ (
τf 1+γ − τg1+γ

) (
τg1+γ + τ̄ f 1+γ

)α−γ
1+γ .

Here A = 1 + λ(1− α) and B = α− λ(1− α). Again, if we consider

the same equation associated with the same ψ (·) and k along with

g1+γ and τg1+γ + τ̄ f 1+γ as arguments, we then get

D2 (g, f) =

∫ {
1

B
g1+α − 1

B

(
τg1+γ + τ̄ f 1+γ

) 1+α
1+γ

}
− A+B

AB

∫ (
τ̄ f 1+γ − τ̄ g1+γ

) (
τg1+γ + τ̄ f 1+γ

)α−γ
1+γ .
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Now, consideration of the ‘convex combination’ ofD1 (g, f) andD2 (g, f)

would produce to the following

τ̄D1 (g, f) + τD2 (g, f)

= τ τ̄

∫ {
1

τB
f 1+α +

1

τ̄B
g1+α − 1

τ τ̄B

(
τg1+γ + τ̄ f 1+γ

) 1+α
1+γ

}

= τ τ̄

∫  1

τB
+

1

τ̄B

(
g

f

)1+α

− 1

τ τ̄B

(
τ

(
g

f

)1+γ

+ τ̄

) 1+α
1+γ

 f 1+α

= τ τ̄ ×Q(α,τ,γ)(g, f). (7.2)

Moreover, a convex combination of two divergences is also a diver-

gence – this fact evidently proves that this GSD family is indeed a

divergence family, satisfying all the criteria of being a divergence.

Thus the application of this divergence will provide an illustration of

the usefulness of divergences generated in the spirit of the extended

Bregman principle in the context of hypothesis testing.

In classical inference, the LRT is the first choice in practically all

applications, but due to its non-robust characteristics, robust tests

have been in demand and the search for improved robust tests is

still meaningful. In this journey, a remarkable step was taken by

Basu et al. (2013) – by introducing tests based on the DPD. This

is called the Density Power Divergence based Test (DPDT) with α

as the tuning parameter. Later on, Ghosh et al. (2015) introduced

another robust test based on the S-divergence. This is called the

S-divergence based Test (SDT) with a pair of tuning parameters

(α, λ), of which the DPDT is a special case; more specifically, the

SDT with λ = 0 coincides with the DPDT having the same value of

α as the SDT. Here, we take it one step further by considering the

generalization of the SDT – we have constructed a test based on the

Generalized S-Divergence mentioned earlier, with the hope of being
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successful in our journey of developing a more general class of robust

tests for more refined analysis in real life scenarios. Although, this

divergence (indexed by the triplet of tuning parameters (α, τ, γ)) is

denoted by ‘Q’ with its arguments g and f , keeping similarity with

the name of this divergence, we will refer the test based on it as the

generalized S-divergence based test (GSDT) with the triplet (α, τ, γ).

Both the DPD and the S-divergence are special cases of the GSD.

For fixed α and τ , the GSD in Equation (7.1) with γ → −1 leads to

the S-divergence with the same α and λ = ατ−(1−τ)
1−α . On the other

hand, keeping α fixed, if we take a specific choice of τ depending on

α, i.e., τ = 1
1+α and γ → −1, then this GSD leads us to the DPD

indexed by the same α. Here, using this GSD to define the GSDT,

we are basically extending the path of availing robust tests through

some theorems, simulations and real life data analysis.

7.3 Testing Parametric Hypothesis using GSD

(Simple Null Hypotheses)

Consider the problem of testing a simple null hypothesis based on

the available sample(s). Let E = {fθ : θ ∈ Θ ⊂ Rp} represent the

parametric family of densities. Moreover, we assume that the true

data generating density, denoted by g, belongs to this model family.

Now, we will develop a testing procedure using the GSD family in

this setup. For clear presentation, we consider the following cases

separately.

(i) One Sample Problem: H0 : θ = θ0 vs. H1 : θ 6= θ0 where θ0 is a

fixed value in the parameter space Θ. In this case, a random sample

of size n will be available from the population under study.
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(ii) Two Sample Problem: H0 : θ1 = θ2 vs. H1 : θ1 6= θ2 where θ1 and

θ2 are fixed values of the model parameters describing two different

populations. In this scenario, two independent random samples of

sizes n and m are available from these two populations.

Ghosh and Basu (2018) have already established the first order in-

fluence function of the minimum GSD estimator (MGSDE) at the

model, which is a function of α alone and shown it to be identi-

cal to the influence function of the MDPDE at the model with the

same value of α. Therefore, their theoretical robustness properties

are also similar. It also turns out that the asymptotic distribution

of the MGSDE is the same as that of the MDPDE with the same

value of α (irrespective of the values of τ and γ) at least in the case

of discrete models. We will keep these desirable properties in mind

when constructing the test procedures in the following sections.

7.3.1 One Sample Problem

For testing the null hypothesis under the one sample problem, the

general test statistic based on the GSD with parameters α, τ and γ

will be defined as

T(α,τ,γ)

(
θ̂α, θ0

)
= 2n Q(α,τ,γ)

(
fθ̂α, fθ0

)
, (7.3)

where θ̂α is the MDPDE of θ at α.

It is important to explain the motivation behind describing the test

statistic as in Equation (7.3). Notice that this test statistic, although

not directly in the disparity difference form, is developed in the same

spirit. When the model is correctly specified, and θ0 represents the

true value of the parameter, any statistic of the form (7.3) with a
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consistent estimator of the model parameter in the first argument on

the left hand side of Equation (7.3) is likely to assume a small value

for moderate to large sample sizes. The most appropriate choice, of

course, would be to use the estimator θ̂(α,τ,γ), which represents the

model density closest to the data density for the choice of the given

GSD. However, we prefer to use the estimator θ̂α instead for two

reasons.

Firstly, the estimator (θ̂α) used in the statistic (7.3) is a member of

the minimum density power divergence estimator class, and thus the

evaluation of this estimator involves no non-parametric density esti-

mation, leading to huge theoretical and computational advantages;

secondly, whenever θ = θ0, Ghosh and Basu (2018) have already

shown that, at the model, the influence function of the MGSDE is

the same with that of the MDPDE for the same value of α. Their

asymptotic distributions are also the same for discrete parametric

models. Thus, although it is neither a theoretical or computational

necessity, we expect that the asymptotic behavior of the statistic in

(7.3) would be similar to what would have been obtained if one used

the statistic θ̂(α,τ,γ) in its definition instead.

This is the reason why we use this divergence as our main platform

for the testing part. Since the MDPDE is easy to use, we want to

switch towards such a divergence, whose null distribution is the same

as the distribution of the MDPDE. On the other hand, although

our GSB divergence is able to generate such estimators which are

strongly robust and which are more or similarly efficient compared

to the existing standard estimators, its expression is complicated

and the estimator will inherently require a non-parametric smoothing

component in the computation of the divergence. This is why, in
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order to explore the advantage of the usage of the extended Bregman

divergence, our initial choice is to proceed with the GSD divergence,

although, undoubtedly, the usage of the GSB divergence in testing

is an open path for future research, with an expectation of getting

some desirable results as in the case of estimation.

7.3.1.1 Some Theorems

Here, we are going to present a combined set of conditions given in

Lehmann (1983) and Basu et al. (2011), respectively. These con-

ditions are necessary to establish the asymptotic properties of our

proposed GSD test statistic.

B1. Each model density of the parametric model family, E , as well

as the true density g, must have a common support, χ, which is

independent of θ.

B2. As the true density is assumed to belong to the model, we have

g = fθg for some θg ∈ Θ. There exists an open subset ω ⊂ Θ, of

which the true parameter θg is an interior point. For almost all

x, fθ (x) possesses third partial derivatives of the type ∇jklfθ (x)

for all θ ∈ ω. Moreover, the third order partial derivatives are

continuous with respect to θ.

B3. The first and second order derivatives of the score function uθ

are such that

Eθ(uθ(X)) = 0, I(θ) = Eθ(uθ(X)uθ(X)T ) = −Eθ(∇uθ(X)).

B4. The Fisher information matrix I(θ) is positive definite for all

θ ∈ ω.

B5. The matrix Jα is positive definite (where Jα is as defined later

in Equation (7.5)).
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B6. The integrals
∫
f 1+α
θ (x)dx and

∫
fαθ (x)g(x)dx are thrice differ-

entiable with respect to θ. Moreover, the derivatives and the

integrals can be interchanged.

B7. For all x ∈ χ, there exists a function Mjkl(x) such that it dom-

inates the third order partial derivative of∫
f 1+α
θ (x)dx− (1 +

1

α
)fαθ (x) (7.4)

in absolute value and Eg(Mjkl(X)) <∞, for all j,k,l and for all

θ ∈ ω.

From now onwards, we are going to refer these conditions as the

Lehmann and Basu et al. conditions (B1)-(B7).

Lemma 7.1. (Corollary 2.1 of Dik and de Gunst (1985)). For X ∼
Nq(0,Σ) and a q-dimensional, real-valued symmetric matrix B, the

distribution of XTBX is the same with the distribution of
∑r

i=1 λiZ
2
i(

where Zi
i.i.d.∼ N(0, 1)

)
, r = rank(ΣBΣ) (r ≥ 1) and λ1, . . . , λr are

the non-zero eigenvalues of BΣ.

Lemma 7.2. (Corollary 2.2 of Dik and de Gunst (1985)). For

X ∼ Nq(µ,Σ) and for Q being a real, symmetric, non-negative def-

inite matrix of order q, the quadratic form XTQX has the same

distribution as that of the random variable
∑r

i=1 λi(Ui + wi)
2 + ζ,

where r = rank(ΣQΣ), λ1, . . . , λr are the positive eigenvalues of QΣ,

U1, . . . , Ur
i.i.d.∼ N(0, 1), w = Λ−1

r P TSTQµ and ζ = µTQµ − wTΛpw

with S being any q × s square root of Σ, Λr = diag(λ1, . . . , λr) and

P is the matrix of the corresponding orthonormal eigenvectors.

Theorem 7.3. Under the Lehmann and Basu et al. conditions (B1)-

(B7), the asymptotic null distribution of the test statistic T(α,τ,γ)

(
θ̂α, θ0

)
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is the same as the distribution of
∑r

i=1 λiZ
2
i , where Zi ∼ N(0, 1) in-

dependently and λi’s are the non-zero eigenvalues of Aα(θ0)Σα(θ0)

with

Aα(θ0) = ∇2Q(α,τ,γ) (fθ, fθ0)
∣∣
θ=θ0

=

(
(1 + α)

∫
fα−1
θ0

∂fθ0
∂θi

∂fθ0
∂θj

)
i,j=1,...,p

,

r = rank
(
Vα(θ0) J

−1
α (θ0) Aα(θ0) J

−1
α (θ0) Vα(θ0)

)
,

Σα(θ0) = J−1
α (θ0)Vα(θ0)J

−1
α (θ0),

where

Jα(θ0) =

∫
uθ0u

T
θ0
f 1+α
θ0

, (7.5)

Vα(θ0) =

∫
uθ0u

T
θ0
f 1+2α
θ0

−
(∫

uθ0f
1+α
θ0

)(∫
uθ0f

1+α
θ0

)T
. (7.6)

Proof. We consider the second order of Taylor series expansion of

Q(α,τ,γ) (fθ, fθ0) around θ = θ0 at θ = θ̂α (MDPDE at fixed α) and

we get

Q(α,τ,γ)

(
fθ̂α , fθ0

)
= Q(α, τ, γ) (fθ0 , fθ0)

+

p∑
i=1

∇iQ(α,τ,γ) (fθ, fθ0)

∣∣∣∣∣
θ=θ0

(
θ̂iα − θi0

)
+

1

2

p∑
i=1

p∑
j=1

∇ijQ(α,τ,γ) (fθ, fθ0)

∣∣∣∣∣
θ=θ0

(
θ̂iα − θi0

)(
θ̂jα − θ

j
0

)
+ o

(
||θ̂α − θ0||2

)
,

where ∇i and ∇ij are as defined in Chapter 1. Evidently,

Q(α,τ,γ) (fθ0, fθ0) = 0. Also, ∇iQ(α,τ,γ) (fθ, fθ0)

∣∣∣∣∣
θ=θ0

= 0.
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Moreover, Aα(θ0) =
((
aαij(θ0)

))
with

aαij(θ0) = ∇ijQ(α,τ,γ) (fθ, fθ0)

∣∣∣∣∣
θ=θ0

=

(
∂2Q(α,τ,γ) (fθ, fθ0)

∂θi∂θj

) ∣∣∣∣∣
θ=θ0

= (1 + α)

∫
fα−1
θ0

(
∂fθ
∂θi

∂fθ
∂θj

) ∣∣∣∣∣
θ=θ0

.

Therefore,

T(α,τ,γ)

(
θ̂α, θ0

)
= 2n Q(α,τ,γ)

(
fθ̂α , fθ0

)
=
√
n
(
θ̂α − θ0

)T
Aα(θ0)

√
n
(
θ̂α − θ0

)
+ n× o

(
||θ̂α − θ0||2

)
.

Hence, T(α,τ,γ)

(
θ̂α, θ0

)
and
√
n
(
θ̂α − θ0

)T
Aα(θ0)

√
n
(
θ̂α − θ0

)
have

the same asymptotic distribution. Again, we already know the asymp-

totic distribution of MDPDE θ̂α, which is given by,

√
n
(
θ̂α − θ0

)
a∼ N

(
0, J−1

α (θ0) Vα(θ0) J
−1
α (θ0)

)
,

where Jα and Vα have the expressions given in Equation (7.5) and

(7.6). Furthermore, according to Lemma 7.1, we can say,

T(α,τ,γ)

(
θ̂α, θ0

)
D
=
√
n
(
θ̂α − θ0

)T
Aα(θ0)

√
n
(
θ̂α − θ0

)
D
=

r∑
i=1

λiZ
2
i , Zi

i.i.d.∼ N(0, 1),

where,
D
= denotes the quantities on either side are distributionally

equivalent in asymptotic sense. Here λi’s are non-zero eigenvalues of

Aα(θ0) J
−1
α (θ0) Vα(θ0) J

−1
α (θ0) and

r = rank
(
Vα(θ0) J

−1
α (θ0) Aα(θ0) J

−1
α (θ0)Vα(θ0)

)
.
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Next, we consider the test under a contiguous alternative hypothesis

H1,n : θ = θn, where, θn = θ0 +
∆√
n
, (7.7)

where ∆ is a fixed vector in Rp such that θn ∈ Θ ⊂ Rp. Now, we

are going to present the asymptotic distribution of our proposed test

statistic under (7.19) in the following theorem.

Theorem 7.4. Under the Lehmann and Basu et al. conditions (B1)-

(B7), whenever H1,n is true, the asymptotic distribution of T(α,τ,γ)

(
θ̂α, θ0

)
is the same as the distribution of

∑r
i=1 λi(Zi + wi)

2 + ξ, where Zi ∼
N(0,1) independently, λi’s are the positive eigenvalues of Aα(θ0)J

−1
α (θ0)

Vα(θ0) J
−1
α (θ0), the values w = (w1, . . . , wr)

T and ξ are given by

w = Λ−1
r P TSTAα(θ0)∆,

ξ = ∆TAα(θ0)∆− wTΛrw.

Also, S is any square root of
[
J−1
α (θ0)Vα(θ0)J

−1
α (θ0)

]
,

Λr = diag(λ1, . . . , λr) and P is the matrix of corresponding orthonor-

mal eigenvectors.

Proof.
√
n
(
θ̂α − θ0

)
can be rewritten as

√
n
(
θ̂α − θ0

)
=
√
n
(
θ̂α − θn

)
+
√
n (θn − θ0) =

√
n
(
θ̂α − θn

)
+ ∆.

(7.8)

Under H1,n we get, from Equation (7.8) and the consistency of θ̂α

√
n
(
θ̂α − θ0

)
a∼ N

(
∆, J−1

α (θ0) Vα(θ0) J
−1
α (θ0)

)
.
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Again, we established that T(α,τ,γ)

(
θ̂α, θ0

)
and

√
n
(
θ̂α − θ0

)T
Aα(θ0)

√
n
(
θ̂α − θ0

)
have the same asymptotic distri-

bution. Therefore, the rest of the proof can be readily established

using Lemma 7.2.

Theorem 7.5. Under the Lehmann and Basu et al. conditions (B1)-

(B7), the power function of the test statistic defined in Equation (7.3)

at significance level β is given by

Π
(α,τ,γ)
n,β = 1− Φn

( √
n

σ(α,τ,γ)(θ∗)

(
t
(α,τ,γ)
β

2n
−Q(α,τ,γ) (fθ∗, fθ0)

))

where, Φn tends to Φ (the cdf of N(0, 1)) uniformly, t
(α,τ,γ)
β is the

quantile of the order (1−β) of the asymptotic distribution of the test

statistic given in Equation (7.3) and

σ2
(α,τ,γ)(θ

∗) = MT
(α,τ,γ)(θ

∗)J−1
α (θ∗)Vα(θ∗)J−1

α (θ∗)M(α,τ,γ)(θ
∗).

Proof. A first order Taylor series expansion ofQ(α,τ,γ)

(
fθ̂α, fθ0

)
around

θ∗, θ∗ 6= θ0 at θ = θ̂α, we get,

Q(α,τ,γ)

(
fθ̂α , fθ0

)
= Q(α,τ,γ) (fθ∗ , fθ0) +

p∑
i=1

∂

∂θi
Q(α,τ,γ) (fθ, fθ0)

∣∣∣∣∣
θ=θ∗

(
θ̂iα − θ∗i

)
+ o

(
||θ̂α − θ∗||

)
.

From the asymptotic theory of MDPDE, under θ = θ∗,

√
n
(
θ̂α − θ∗

)
a∼ N

(
0, J−1

α (θ∗) Vα(θ∗) J−1
α (θ∗)

)
, as n→∞.

Therefore, the asymptotic distributions of
√
n
(
Q(α,τ,γ)

(
fθ̂α, fθ0

)
−Q(α,τ,γ) (fθ∗, fθ0)

)
andMT

(α,τ,γ)(θ
∗)
√
n
(
θ̂α − θ∗

)
are same due to the fact that

√
n × o

(
||θ̂α − θ∗||

)
= op(1), where

M(α,τ,γ)(θ) = ∇Q(α,τ,γ) (fθ, fθ0).
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Hence,
√
n
(
Q(α,τ,γ)

(
fθ̂α, fθ0

)
−Q(α,τ,γ) (fθ∗, fθ0)

)
a∼ N(0, σ2

(α,τ,γ)(θ
∗)),

where σ2
(α,τ,γ)(θ

∗) has the expression as mentioned in the statement of

the theorem. Therefore, the asymptotic power at θ∗ can be evaluated

as

Pθ=θ∗
(
T(α,τ,γ)

(
θ̂α, θ0

)
> t

(α,τ,γ)
β

)
= 1− Pθ=θ∗

Q(α,τ,γ)

(
fθ̂α , fθ0

)
≤
t
(α,τ,γ)
β

2n


= 1− Pθ=θ∗

√n
(
Q(α,τ,γ)

(
fθ̂α , fθ0

)
−Q(α,τ,γ) (fθ∗ , fθ0)

)
σ(α,τ,γ)(θ∗)

≤

√
n

(
t
(α,τ,γ)
β

2n −Q(α,τ,γ) (fθ∗ , fθ0)

)
σ(α,τ,γ)(θ∗)


→ 1− Φ

 t(α,τ,γ)
β

2n
−Q(α,τ,γ) (fθ∗ , fθ0)

 √
n

σ(α,τ,γ)(θ∗)

 .

Moreover, at any significance level β, as n → ∞, this rejection rule

T(α,τ,γ)

(
θ̂α, θ0

)
> t

(α,τ,γ)
β leads to a probability which tends to 1.

Hence, this test is consistent.

7.3.2 Two Sample Problem

Here we have two independent populations modeled by the same

parametric family, and we want to test whether the parameters for

the two populations are equal. In this case, the test statistic will be

modified as

S(α,τ,γ)

(
(1)θ̂α,

(2)θ̂α
)

=
2nm

m+ n
Q(α,τ,γ)

(
f(1)θ̂α

, f(2)θ̂α

)
, (7.9)

where, (1)θ̂α and (2)θ̂α are the MDPDEs at α based on independent

samples of sizes n and m, respectively, from the two populations.
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7.3.2.1 Some Theorems

Theorem 7.6. Assume that the Lehmann and Basu et al condi-

tions (B1)-(B7) are satisfied by both populations, which are mod-

eled by the same parametric family. The asymptotic distribution

of S(α,τ,γ)

(
(1)θ̂α,

(2)θ̂α
)

under H0 is the same as the distribution of∑r
i=1 λiZ

2
i , where Z1, . . . , Zr are independent standard normal ran-

dom variables and λ1, . . . , λr are the non-zero eigenvalues of

Aα(θ1)J−1
α (θ1)Vα(θ1)J−1

α (θ1) and r = rank
(
Vα(θ1)J−1

α (θ1)Aα(θ1)J−1
α (θ1)Vα(θ1)

)
.

Proof. From the known results about the MDPDE, we have, under

fθ1 and fθ2, respectively,

√
n
(

(1)θ̂α − θ1

)
a∼ N

(
0, J−1

α (θ1) Vα(θ1) J
−1
α (θ1)

)
and

√
m
(

(2)θ̂α − θ2

)
a∼ N

(
0, J−1

α (θ2) Vα(θ2) J
−1
α (θ2)

)
.

Suppose

lim
n,m→∞

m

m+ n
= ω

⇒ lim
n,m→∞

n

m+ n
= lim

n,m→∞

(
1− m

m+ n

)
= 1− lim

n,m→∞

m

m+ n
= 1− ω,

where ω ∈ (0, 1). Therefore, as n,m → ∞, we have, under fθ1 and

fθ2, respectively,√
mn

m+ n

(
(1)θ̂α − θ1

)
a∼ N

(
0, ωJ−1

α (θ1) Vα(θ1) J
−1
α (θ1)

)
,√

mn

m+ n

(
(2)θ̂α − θ2

)
a∼ N

(
0, (1− ω)J−1

α (θ2) Vα(θ2) J
−1
α (θ2)

)
.
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Under H0, as n,m→∞,√
mn

m+ n

(
(1)θ̂α − θ1

)
−
√

mn

m+ n

(
(2)θ̂α − θ2

)
=

√
mn

m+ n

((
(1)θ̂α − (2)θ̂α

)
− (θ1 − θ2)

)
a∼ N

(
0, J−1

α (θ1) Vα(θ1) J
−1
α (θ1)

)
.

A second order Taylor series expansion of Q(α,τ,γ) (fθ1, fθ2) around

θ1 = θ2 at
(

(1)θ̂α,
(2)θ̂α

)
leads us to the following

Q(α,τ,γ)

(
f(1)θ̂α , f(2)θ̂α

)
= Q(α,τ,γ) (fθ1 , fθ2)

+

p∑
i=1

∂

∂θ1i
Q(α,τ,γ) (fθ1 , fθ2)

∣∣∣∣∣
θ1=θ2

(
θ̂1i
α − θ1i

)
+

p∑
i=1

∂

∂θ2i
Q(α,τ,γ) (fθ1 , fθ2)

∣∣∣∣∣
θ1=θ2

(
θ̂2i
α − θ2i

)
+

1

2

p∑
i,j=1

∂2

∂θ1i∂θ1j
Q(α,τ,γ) (fθ1 , fθ2)

∣∣∣∣∣
θ1=θ2

(
θ̂1i
α − θ1i

)(
θ̂1j
α − θ1j

)

+
1

2

p∑
i,j=1

∂2

∂θ2i∂θ2j
Q(α,τ,γ) (fθ1 , fθ2)

∣∣∣∣∣
θ1=θ2

(
θ̂2i
α − θ2i

)(
θ̂2j
α − θ2j

)

+

p∑
i,j=1

∂2

∂θ1i∂θ2j
Q(α,τ,γ) (fθ1 , fθ2)

∣∣∣∣∣
θ1=θ2

(
θ̂1i
α − θ1i

)(
θ̂2j
α − θ2j

)
+ o(||(1)θ̂α − θ1||2) + o(||(2)θ̂α − θ2||2).

We have,

∂

∂θ1
Q(α,τ,γ) (fθ1, fθ2)

=
1 + α

τ τ̄(α− τ)

∫ [
τfαθ1

∂fθ1
∂θ1
− τfγθ1

∂fθ1
∂θ1

{
τf 1+γ

θ1
+ τ̄ f 1+γ

θ2

}α−γ
1+γ

]
dµ,

∂

∂θ2
Q(α,τ,γ) (fθ1, fθ2)

=
1 + α

τ τ̄(α− τ)

∫ [
τ̄ fαθ2

∂fθ2
∂θ2
− τ̄ fγθ2

∂fθ2
∂θ2

{
τf 1+γ

θ1
+ τ̄ f 1+γ

θ2

}α−γ
1+γ

]
dµ.
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Here, τ̄ = 1− τ . Moreover, at θ1 = θ2,

∂2

∂θ2
1

Q(α,τ,γ) (fθ1, fθ2) =
∂2

∂θ2
2

Q(α,τ,γ) (fθ1, fθ2)

= (1 + α)

∫
fα−1
θ1

(
∂fθ1
∂θ1

)2

dµ,

∂2

∂θ1∂θ2
Q(α,τ,γ) (fθ1, fθ2) =

∂2

∂θ2∂θ1
Q(α,τ,γ) (fθ1, fθ2)

= −(1 + α)

∫
fα−1
θ1

(
∂fθ1
∂θ1

)2

dµ

= − ∂2

∂θ2
1

Q(α,τ,γ) (fθ1, fθ2) .

Therefore, combining all these, we get,

2Q(α,τ,γ)

(
f(1)θ̂α

, f(2)θ̂α

)
=
(

(1)θ̂α − θ1

)T
Aα(θ1)

(
(1)θ̂α − θ1

)
− 2

(
(1)θ̂α − θ1

)T
Aα(θ1)

(
(2)θ̂α − θ2

)
+
(

(2)θ̂α − θ2

)T
Aα(θ1)

(
(2)θ̂α − θ2

)
+ o(||(1)θ̂α − θ1||2) + o(||(2)θ̂α − θ2||2)

=
(

(1)θ̂α −(2) θ̂α
)T

Aα(θ1)
(

(1)θ̂α −(2) θ̂α
)

+ o(||(1)θ̂α − θ1||2) + o(||(2)θ̂α − θ2||2).

Hence, under H0, when n,m →∞,

2Q(α,τ,γ)

(
f(1)θ̂α

, f(2)θ̂α

)
D
=
(

(1)θ̂α −(2) θ̂α
)T

Aα(θ1)
(

(1)θ̂α −(2) θ̂α
)
.

Therefore, using the fact that n× o(||(1)θ̂α − θ1||2) = m× o(||(2)θ̂α −
θ2||2) = op(1), we can say,

S(α,τ,γ)

(
(1)θ̂α,

(2)θ̂α
)

D
=

r∑
i=1

λiZ
2
i , (7.10)

(by Lemma 7.1) where λi’s, Zi’s and Aα(θ1) are as defined in the

theorem. Hence, the proof.
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Theorem 7.7. Under the Lehmann and Basu et al. conditions (B1)-

(B7), an approximation to the power function of the test statistic in

Equation (7.9), at significance level β is given by

Π
(α,τ,γ)
m,n,β (θ1, θ2) = 1− Φ


√

mn
m+n

σ(α,τ,γ)(θ1, θ2)

S(α,τ,γ)
β

2

m+ n

mn
−Q(α,τ,γ)(fθ1 , fθ2)

 .

Moreover, the probability of rejecting the null hypothesis H0 : θ1 = θ2,

through the rejection rule S(α,τ,γ)

(
(1)θ̂α,

(2)θ̂α
)
> S

(α,τ,γ)
β with pre-fixed

significance level β, tends to 1 as n,m→∞. Hence, this test is also

consistent in the Fraser’s sense.

Proof.

Q(α,τ,γ)

(
f(1)θ̂α , f(2)θ̂α

)
= Q(α,τ,γ) (fθ1 , fθ2) +

p∑
i=1

∂

∂θ1i
Q(α,τ,γ) (fθ1 , fθ2)

(
θ̂1i − θ1i

)
+

p∑
i=1

∂

∂θ2i
Q(α,τ,γ) (fθ1 , fθ2)

(
θ̂2i − θ2i

)
+ o(||(1)θ̂α − θ1||)

+ o(||(2)θ̂α − θ2||).

Then,

Q(α,τ,γ)

(
f(1)θ̂α , f(2)θ̂α

)
−Q(α,τ,γ) (fθ1 , fθ2) = GTα

(
(1)θ̂α − θ1

)
+HT

α

(
(2)θ̂α − θ2

)
+ o(||(1)θ̂α − θ1||) + o(||(2)θ̂α − θ2||),

where,

Gα = (g1, . . . , gp)
T =

((
∂

∂θ1i
Q(α,τ,γ) (fθ1, fθ2)

))
i=1,2,...,p

,

Hα = (h1, . . . , hp)
T =

((
∂

∂θ2i
Q(α,τ,γ) (fθ1, fθ2)

))
i=1,2,...,p

.

Evidently, when θ1 6= θ2,

√
n GT

α

(
(1)θ̂α − θ1

)
a∼ N

(
0, GT

αJ
−1
α (θ1) Vα(θ1) J

−1
α (θ1)Gα

)
,

√
n HT

α

(
(2)θ̂α − θ2

)
a∼ N

(
0, HT

α J
−1
α (θ2) Vα(θ2) J

−1
α (θ2)Hα

)
,
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and in that case, the random variable

√
mn

m+ n

(
Q(α,τ,γ)

(
f(1)θ̂α , f(2)θ̂α

)
−Q(α,τ,γ) (fθ1 , fθ2)

)
=

√
m

m+ n

√
n GTα

(
(1)θ̂α − θ1

)
+

√
n

m+ n

√
mHT

α

(
(2)θ̂α − θ2

)
+

√
mn

m+ n
× o(||(1)θ̂α − θ1||) +

√
mn

m+ n
× o(||(2)θ̂α − θ2||)

a∼ N
(
0, ωGTαJ

−1
α (θ1) Vα(θ1) J−1

α (θ1)Gα + (1− ω)HT
α J
−1
α (θ2) Vα(θ2) J−1

α (θ2)Hα

)
.

Therefore, for any fixed significance level β, if we start with the

rejection rule, S(α,τ,γ)

(
(1)θ̂α,

(2) θ̂α
)
> S

(α,τ,γ)
β , we then conclude that

Π
(α,τ,γ)
m,n,β = PH1

(
S(α,τ,γ)

(
(1)θ̂α,

(2) θ̂α

)
> S

(α,τ,γ)
β

)
= PH1

Q(α,τ,γ)

(
f(1)θ̂α , f(2)θ̂α

)
>
m+ n

mn

S
(α,τ,γ)
β

2


= PH1


(
Q(α,τ,γ)

(
f(1)θ̂α , f(2)θ̂α

)
−Q(α,τ,γ) (fθ1 , fθ2)

)√
mn
m+n

σ(α,τ,γ)(θ1, θ2)

>

(
m+n
mn

S
(α,τ,γ)
β

2 −Q(α,τ,γ) (fθ1 , fθ2)

)√
mn
m+n

σ(α,τ,γ)(θ1, θ2)



→ 1− Φ


(
m+n
mn

S
(α,τ,γ)
β

2 −Q(α,τ,γ) (fθ1 , fθ2)

)√
mn
m+n

σ(α,τ,γ)(θ1, θ2)

 ,

where σ(α,τ,γ)(θ1, θ2) is the square root of ωGT
αJ
−1
α (θ1)Vα(θ1)J

−1
α (θ1)Gα+

(1−ω)HT
α J
−1
α (θ2)Vα(θ2)J

−1
α (θ2)Hα. Evidently, this test is consistent

in the Fraser’s sense.

7.3.3 Robustness Properties of the GSDT (Simple NULL

Hypothesis)

Now, we cultivate the robustness of our proposed statistic. Evidently,

it depends on the robustness of both the GSD family and the DPD

family. To study this robustness, we will consider the contaminated
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distribution Gε = (1 − ε)G + εΛy where Λy is the distribution de-

generate at y and ε is the proportion of contamination. The true

distribution G is still assumed to belong to the model family. Under

its consideration, the following tools and certain theorems will be

established.

7.3.3.1 Influence Function of the Test

Following to Hampel’s IF of the test, we first define the GSDT func-

tional as

T
(1)
(α,τ,γ)(G) = Q(α,τ,γ)

(
fTα(G), fθ0

)
,

where, Tα(G) is the minimum DPD functional. The IF will be given

by

IF (y, T
(1)
(α,τ,γ), G) =

∂

∂ε
T

(1)
(α,τ,γ)(Gε)

∣∣
ε=0

= M(α,τ,γ)(Tα(G))T IF (y, Tα, G),

where, IF (y, Tα, G) is the IF of Tα(G) and M(α,τ,γ)(Tα(G)) =

∂
∂θQ(α,τ,γ) (fθ, fθ0)

∣∣
θ=Tα(G)

. Since at the null hypothesis G = Fθ0,

Tα(G) = θ0 (by Fisher consistency property) and hence, M(α,τ,γ)(θ0) =

0, the Hampel’s first order IF of the test statistic is 0 under null hy-

pothesis. For further analysis, we need to calculate the second order

IF which is given in the following expression

IF2

(
y, T

(1)
(α,τ,γ), G

)
=

∂2

∂ε2
T

(1)
(α,τ,γ)(Gε)

∣∣
ε=0

= M(α,τ,γ)(Tα(G))T
∂2

∂ε2
Tα(Gε)

∣∣
ε=0

+ IF (y, Tα, G)T∇2Q(α,τ,γ) (fθ, fθ0)
∣∣
θ=Tα(G)

IF (y, Tα, G).
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Evidently at the null hypothesis, it will reduce to

IF2

(
y, T

(1)
(α,τ,γ), Fθ0

)
= IF (y, Tα, Fθ0)

T Aα(θ0) IF (y, Tα, Fθ0).

Therefore, at the null, this test statistic possesses the same robustness

property of the test statistic based on the S-divergence, introduced

by Ghosh et al. (2017). At the null, the second order IF of our

proposed test depends only on α. Hence, the IF will be bounded if

and only if the IF of Tα(G) is bounded. Evidently, it will be bounded

∀ α > 0. An extremely non-robust case corresponds to α = 0, since

Tα=0(G) coincides with the MLE and it indeed leads to a non-robust

test procedure as well.

7.3.3.2 Level and Power Influence Function

Because our proposed tests are consistent, we have also studied their

behaviour under contiguous alternatives. Now, to study the robust-

ness of the test, we are to consider contamination over these contigu-

ous alternatives.

Due to the consistency property of the test, to set up the alternative

hypotheses, we have taken H1,n : θ = θn, where, θn = θ0 + ∆√
n
,

with ∆ having the same dimension as θ. Now, we are to consider

the contaminations such that their effects vanish as θn tends to θ0

at the same rate to avoid confusion between the null and alternative

hypotheses.

For the level, we consider the distribution

FL
n,ε,y =

(
1− ε√

n

)
Fθ0 +

ε√
n

Λy.
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and for power, we consider

F P
n,ε,y =

(
1− ε√

n

)
Fθn +

ε√
n

Λy.

Then, the level influence function (LIF) is given by

LIF
(
y, T

(1)
(α,τ,γ), Fθ0

)
= lim

n→∞

∂

∂ε
PFLn,ε,y

(
T(α,τ,γ)

(
θ̂α, θ0

)
> t

(α,τ,γ)
β

) ∣∣∣∣∣
ε=0

,

and the power influence function (PIF) is given by

PIF
(
y, T

(1)
(α,τ,γ), Fθ0

)
= lim

n→∞

∂

∂ε
PFPn,ε,y

(
T(α,τ,γ)

(
θ̂α, θ0

)
> t

(α,τ,γ)
β

) ∣∣∣∣∣
ε=0

.

Theorem 7.8. Under the Lehmann and Basu et al. conditions (B1)-

(B7), the following results hold for any ∆ ∈ RP and ε ≥ 0:

(i) The asymptotic distribution of the GSDT under F P
n,ε,y is the

same as that of W TAα(θ0)W , where W follows p-variate normal

distribution with mean ∆̃ = ∆ + εIF (y, Tα, Fθ0) and variance-

covariance matrix Σα(θ0). Equivalently, this distribution is the

same as that of
∑r

i=1 λiχ
2
1,δi

where, λ1, . . . , λr are the r non-

zero eigenvalues of Aα(θ0)Σα(θ0) and χ2
1,δ1
, . . . , χ2

1,δr
are r inde-

pendent non-central χ2
1 variables with non-centrality parameter

δi = µ2
i of µ = (µ1, . . . , µr)

T = Pα(θ0)Σ
−1/2
α (θ0)∆̃, Pα(θ0) being

the matrix of normalized eigenvectors of Aα(θ0)Σα(θ0).

(ii) The asymptotic power will be

power(∆, ε) = lim
n→∞

PFPn,ε,y

(
T(α,τ,γ)

(
θ̂α, θ0

)
> t

(α,τ,γ)
β

)
=

∞∑
ν=0

Cν(θ0, ∆̃)P

(
χ2
r+2ν >

t
(α,τ,γ)
β

λ(1)

)
, (7.11)
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where, λ(1) = min{λ1, . . . , λr} and

Cν(θ0, ∆̃) =
1

ν!

 r∏
j=1

λ(1)

λj

1/2

e−δ/2E(Q̂ν)

with δ = µTµ and

Q̂ =
1

2

r∑
j=1

[(
1−

λ(1)

λj

)1/2

Zj + µj

(
λ(1)

λj

)1/2
]2

for r independent standard normal variables Z1, Z2, . . . , Zr.

Proof. (i) Let, θ∗n be the minimum DPD functional under the distri-

bution F P
n,ε,y. A second order Taylor series expansion ofQ(α,τ,γ) (fθ, fθ0)

around θ = θ∗n at θ = θ̂α gives

Q(α,τ,γ)

(
fθ̂α , fθ0

)
= Q(α,τ,γ)

(
fθ∗n , fθ0

)
+
(
θ̂α − θ∗n

) ∂

∂θ
Q(α,τ,γ) (fθ, fθ0)

∣∣∣∣∣
θ=θ∗n

+
1

2

(
θ̂α − θ∗n

)T
∇2Q(α,τ,γ) (fθ, fθ0)

∣∣∣∣∣
θ=θ∗n

(
θ̂α − θ∗n

)
+ o

(
||θ̂α − θ∗n||2

)
= Q(α,τ,γ)

(
fθ∗n , fθ0

)
+
(
θ̂α − θ∗n

)
M(α,τ,γ) (θ∗n)

+
1

2

(
θ̂α − θ∗n

)T
Aα (θ∗n)

(
θ̂α − θ∗n

)
+ o

(
||θ̂α − θ∗n||2

)
.

(7.12)

Under F P
n,ε,y, θ

∗
n is the best fitting parameter for tuning param-

eter α, and by the consistency of θ̂α we have

√
n
(
θ̂α − θ∗n

)
a∼ N (0,Σα(θ0)) .

Again, as n →∞, θ∗n → θ0 and hence by continuity, Aα (θ∗n) →
Aα (θ0) element-wise as n→∞.
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From Theorem 3, Ghosh et al. (2016), we get

(θ∗n − θ0) =
∆√
n

+
ε√
n
IF (y, Tα, Fθ0) + o(

1√
n

).

Then, by a first order Taylor series expansion of M(α,τ,γ) (θ)

around θ = θ0 at θ = θ∗n we get, using Ghosh et al. (2015,

Theorem 3.1)

M(α,τ,γ) (θ∗n)−M(α,τ,γ) (θ0) = Aα(θ0)
∆√
n

+ Aα(θ0)
ε√
n
IF (y, Tα, Fθ0)

+ o

(
1√
n

)
. (7.13)

However, M(α,τ,γ) (θ0) = 0 and ∆̃ = ∆ + εIF (y, Tα, Fθ0). Hence,

Equation (7.13) becomes

M(α,τ,γ) (θ∗n) = Aα(θ0)
∆̃√
n

+ o
(
n−1/2

)
⇒
√
nM(α,τ,γ) (θ∗n) = Aα(θ0)∆̃ + o(1). (7.14)

Again, considering the second order Taylor series expansion of

S(α,τ,γ) (fθ, fθ0) around θ = θ0 at θ = θ∗n, we get,

Q(α,τ,γ)

(
fθ∗n , fθ0

)
−Q(α,τ,γ) (fθ0 , fθ0)

= (θ∗n − θ0)T
∂

∂θ
Q(α,τ,γ) (fθ, fθ0)

∣∣∣∣∣
θ=θ0

+
1

2
(θ∗n − θ0)T ∇2Q(α,τ,γ) (fθ, fθ0)

∣∣∣∣∣
θ=θ0

(θ∗n − θ0) + o

(
1

n

)
= (θ∗n − θ0)T M(α,τ,γ)(θ0) +

1

2
(θ∗n − θ0)T Aα(θ0) (θ∗n − θ0) + o

(
1

n

)
=

∆T

√
n
M(α,τ,γ)(θ0) +

ε√
n
IF (y, Tα, Fθ0)TM(α,τ,γ)(θ0) + o

(
1√
n

)
M(α,τ,γ)(θ0)

+
1

2n
∆TAα(θ0)∆ +

ε

n
∆TAα(θ0)IF (y, Tα, Fθ0)

+
ε2

2n
IF (y, Tα, Fθ0)TAα(θ0)IF (y, Tα, Fθ0) + o

(
1

n

)
. (7.15)

But evidently Q(α,τ,γ) (fθ0, fθ0) = 0, M(α,τ,γ)(θ0) = 0 and
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IF (y, Tα, Fθ0)
TM(α,τ,γ)(θ0) = 0. Therefore, Equation (7.15) can

be rewritten as

2n Q(α,τ,γ)

(
fθ∗n, fθ0

)
= ∆TAα(θ0)∆ + 2ε∆TAα(θ0)IF (y, Tα, Fθ0)

+ ε2IF (y, Tα, Fθ0)
TAα(θ0)IF (y, Tα, Fθ0) + o(1)

= (∆ + εIF (y, Tα, Fθ0))
T Aα(θ0) (∆ + εIF (y, Tα, Fθ0)) + o(1)

= ∆̃TAα(θ0)∆̃ + o(1).

Now, n× o
(
||θ̂α − θ∗n||2

)
= op(1), therefore combining all these,

we get

2n Q(α,τ,γ)

(
fθ̂α, fθ0

)
= ∆̃TAα(θ0)∆̃ + 2

√
n
(
θ̂α − θ∗n

)T
Aα(θ0)∆̃

+
√
n
(
θ̂α − θ∗n

)T
Aα(θ∗n)

√
n
(
θ̂α − θ∗n

)
+ op(1) + o(1)

=
[
∆̃ +

√
n
(
θ̂α − θ∗n

)]T
Aα(θ0)

[
∆̃ +

√
n
(
θ̂α − θ∗n

)]
+ op(1) + o(1).

Thus, under F P
n,ε,y, the asymptotic distribution of the GSDT

statistic is the same as that of
(

∆̃ +W0

)T
Aα(θ0)

(
∆̃ +W0

)
,

where W0 =
√
n
(
θ̂α − θ∗n

)
a∼ N(0,Σα(θ0)). Hence, the proof

of the first part of (i) follows using W = ∆̃ + W0. By spectral

decomposition, we have

Σ1/2
α (θ0)Aα(θ0)Σ

1/2
α (θ0) = Pα(θ0)Γr(θ0)Pα(θ0),

where Γr(θ0) = diag(λ1, λ2, . . . , λr, 0, . . . , 0), λi’s being the eigen-

values of Aα(θ0)Σα(θ0) and Pα(θ0) is as defined in the statement
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of the theorem. Now, considering W = W0 + ∆̃, we can rewrite,

W TAα(θ0)W = W TΣ−1/2
α (θ0)

[
Σ1/2
α (θ0)Aα(θ0)Σ1/2

α (θ0)
]

Σ−1/2
α (θ0)W

= W TΣ−1/2
α (θ0)Pα(θ0)Γr(θ0)Pα(θ0)Σ−1/2

α (θ0)W

= (W ∗ + µ)T Γr(θ0) (W ∗ + µ) ,

where, W ∗ = Pα(θ0)Σ
−1/2
α (θ0)W0 and evidently, W ∗ ∼ N(0, Ir)

which follows from the definition of Pα(θ0). Thus,

W TAα(θ0)W =
r∑
i=1

λi (W
∗
i + µi)

2 . (7.16)

It is immediately seen that the asymptotic distribution of the

random variable in Equation (7.16) is the same as that of
∑r

i=1 λiχ
2
1,δi

where δ = vector of non-centrality parameters = (δ1, δ2, . . . , δr)
T

= (µ2
1, µ

2
2, . . . , µ

2
r)
T . Hence, the proof of the second part of (i).

(ii) According to Kotz et al. (1967b), the distribution function

(Fn(α; ξ; y)) of the linear combination of non-central χ2 random

variables of the form
∑n

i=1 αi(Zi + ξi)
2, where Zi

i.i.d.∼ N(0, 1),

can be represented by the series expansion of the distribution

function (G(n; y)) of central χ2
n random variables as follows

Fn(α; ξ; y) =
∞∑
k=0

aCkG

(
n+ 2k;

y

β

)
(7.17)

for some β > 0 and aCk = Ae−
ξT ξ
2
E(Q̂k)
k! . Here, Q̂ is defined as

Q̂(Z) =
1

2

n∑
j=1

(
γ

1
2

j Zj + ξj(1− γj)
1
2

)2

,

where,

γj = 1− β

αj
, A =

n∏
j=1

(
β

αj

) 1
2

,
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and Zi’s are i.i.d. N(0, 1) random variables. Several authors

suggested several choices for β, but the most popular one is

Ruben’s suggestion, that is, β = min{λi} = λ(1). Now, consid-

ering n = r, αi = λi∀i, ξj = µj∀j, we get

aCk =

r∏
i=1

(
λ(1)

λi

) 1
2

e−
µT µ
2
E(Q̂k)

k!

and Q̂(Z) =
1

2

r∑
j=1

((
1−

λ(1)

λj

) 1
2

Zj + µj

(
λ(1)

λj

) 1
2

)2

.

Using all these substitutions, we will get our desired result.

Here, {aCk }k=1,...,n will be replaced by {Cν(θ0, ∆̃)}ν=1,...,r.

7.3.4 Some Observations

(i) If ∆ = ε = 0, then F P
n,ε,y coincides with the null distribution. In

that case, ∆̃ = ∆ + εIF (y, Tα, Fθ0) = 0 and hence, µ = 0. It

implies that the asymptotic distribution of the GSDT statistic

has the same distribution as the random variable Z =
∑r

i=1 λiχ
2
1,

a linear combination of independent central χ2
1 distributions.

Evidently, it coincides with the null distribution.

(ii) If ε = 0, then ∆̃ = ∆, as there is no contamination. In this case,

the asymptotic distribution of the GSDT under the contiguous

alternative H1,n : θ = θn,where, θn = θ0 + ∆√
n

is as given in part

(i) of this theorem, but ∆̃ is replaced by ∆. In such a case, the

asymptotic power will be given by the same expression, with ∆̃

being replaced by ∆ in Equation (7.11).

(iii) If ∆ = 0, we would then get the asymptotic (null) distribu-

tion under θ = θ0 through part (i) of Theorem 7.8 with ∆̃ =
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εIF (y, Tα, Fθ0). In that case, from part (ii) of the above-mentioned

theorem, we can express the asymptotic level using the same ex-

pression, with the term Cν
(
θ0, ∆̃

)
being replaced by

Cν (θ0, εIF (y, Tα, Fθ0)) in Equation (7.11).

Using part (ii) of Thoerem 7.8, the LIF and PIF can now be derived.

Theorem 7.9. Under the Lehmann and Basu et al. conditions (B1)-

(B7), provided IF (y, Tα, Fθ0) of MDPD functional is bounded, the

PIF and the LIF are given by

PIF
(
y, T

(1)
(α,τ,γ), Fθ0

)
= IF (y, Tα, Fθ0)

T

( ∞∑
ν=0

[
∂

∂t
Cν(θ0, t)

∣∣∣∣
t=∆

]
P

(
χ2
r+2ν >

t
(α,τ,γ)
β

λ(1)

))
,

and

LIF
(
y, T

(1)
(α,τ,γ), Fθ0

)
= IF (y, Tα, Fθ0)

T

( ∞∑
ν=0

[
∂

∂t
Cν(θ0, t)

∣∣∣∣
t=0

]
P

(
χ2
r+2ν >

t
(α,τ,γ)
β

λ(1)

))
.

Proof.

PIF
(
y, T

(1)
(α,τ,γ), Fθ0

)
=

∂

∂ε
power(∆, ε)

∣∣∣∣
ε=0

=
∞∑
ν=0

∂

∂ε
Cν(θ0, ∆̃)

∣∣∣∣
ε=0

P

(
χ2
r+2ν >

t
(α,τ,γ)
β

λ(1)

)
.

(7.18)

Differentiating the Taylor series expansion given in Equation (12) of

Ghosh et al. (2015) with respect to ε and evaluating it at ε = 0, we
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will get the expression

∂

∂ε
Cν(θ0, ∆̃)

∣∣∣∣
ε=0

= IF (y, Tα, Fθ0)
T

[
∂

∂t
Cν(θ0, t)

∣∣∣∣
t=∆

]
,

provided IF (y, Tα, Fθ0) is bounded.

Therefore, putting the above-mentioned expression in Equation (7.18),

we get the desired form of the PIF as mentioned in the theorem.

To derive the LIF, we first note that if we take ∆ = 0, the PIF

becomes the LIF. Hence, the reduced form of the PIF, which is con-

sidered to be the LIF, is totally the same with the expression stated

in the theorem above, with the partial derivative being evaluated at

t = 0 instead of t = ∆.

7.4 Testing Parametric Hypothesis using GSD

(Composite Null Hypotheses)

In case of testing with composite hypotheses, the null parameter

space generally consists of some pre-defined restrictions and under

these restrictions, the parameters are needed to be estimated to per-

form the tests. The likelihood ratio test is the default classical test

in any testing scenario and it uses the restricted MLE for conducting

the test. But due to its demonstrated non-robustness in the presence

of outliers, we want some robust alternatives with good asymptotic

properties.

We have already developed a robust test using the GSD family for

simple null hypotheses; now we are going to extend this for composite

null hypotheses. Consider a random sample X1, X2, . . . , Xn from true

density g and a parametric family of densities E = {fθ : θ ∈ Θ ⊂ Rp}
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to model g. We are going to test the following set of hypotheses

H0 : θ ∈ Θ0, vs H1 : θ /∈ Θ0, (7.19)

where, the restricted parameter space Θ0 is defined by a set of r < p

restrictions h(θ) = 0, such that, the p× r matrix H(θ) = ∂h(θ)
∂θ exists

with rank r and is a continuous function of θ. Here, the estimator

can be obtained by minimizing Q(α,τ,γ)(ĝ, fθ) over Θ subject to the

conditions h(θ) = 0 or, equivalently, minimizing the same over Θ0,

where ĝ is some suitable non-parametric estimate of g. The restricted

minimum GSD functional is defined by the relation

Q(α,τ,γ)(g, fT̃(α,τ,γ)(G)) = min
θ∈Θ0

Q(α,τ,γ)(g, fθ) = min
h(θ)=0

Q(α,τ,γ)(g, fθ),

(7.20)

provided the minimum exists. Therefore, using the method of La-

grange’s multiplier, this constrained minimization problem can be

solved through the estimating equation given below.
∫
K(δ(x))f 1+α

θ (x)uθ(x)dx+H(θ)λn = 0,

h(θ) = 0,

(7.21)

where,

K(δ) =
1

τ(α− γ)

[(
τ(δ + 1)1+γ + (1− τ)

)α−γ
1+γ − 1

]
with,

δ(x) = δn(x) =
ĝ(x)

fθ(x)
− 1,

and λn is the vector of Lagrange’s multipliers.
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7.4.1 Influence Function of Restricted MGSDE

For the unrestricted case, Ghosh and Basu (2018) have already shown

that, whenever g = fθ0 and the simple null hypothesis is true), the

IF of MGSDE coincides with the IF of MDPDE. Considering this

asymptotic equivalence, we have already used θ̂α instead of θ̂(α,τ,γ) in

case of constructing the test statistic under the simple null. There-

fore, under the restrictions h(θ) = 0, if we can prove the similar

kind of statement, then, replacing the restricted estimator RMGSDE

θ̃(α,τ,γ) by the restricted estimator RMDPDE θ̃α in constructing the

GSDT, will be more credible.

If we consider any statistical divergence in a more general form, i.e.,

ρ(g, fθ) =

∫
D(g, fθ)dµ, (7.22)

with θ̃g = T̃ρ(G) and θ̃ε = T̃ρ(Gε) being the best fitting parameters

under pure data distribution G and contaminated data distribution

Gε (where, Gε(x) = (1 − ε)G(x) + εΛy(x)), respectively, then from

Theorem 3.1 of Ghosh (2015b), we will use here the general form of

the IF of the restricted minimum divergence estimator to serve our

purpose, which we state in the following lemma.

Lemma 7.10. Assuming rank(H(θ̃g)) = r, the IF of T̃ρ(G) will be

of the form,

IF (y, T̃ρ, G) = [N0(θ̃
g)TN0(θ̃

g) +H(θ̃g)H(θ̃g)T ]−1N0(θ̃
g)T

[ξ0(θ̃
g)−M0(y; θ̃g)], (7.23)
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where,

N0(θ) =

∫
D(2)(g(x), fθ(x)){∇2fθ(x)}dµ(x)

+

∫
D(2,2)(g(x), fθ(x)){∇fθ(x)}{∇fθ(x)}Tdµ(x)

M0(y; θ) = D(1,2)(g(y), fθ(y)){∇fθ(y)}

ξ(θ) =

∫
D(1,2)(g(x), fθ(x)){∇fθ(x)}g(x)dµ(x), (7.24)

with additional restrictions h(θ) = 0. Here, D(i)(·, ·) denotes the

first order partial derivative of D(·, ·) w.r.t. its i-th argument and

D(i,j)(·, ·) denotes the second order partial derivative of D(·, ·) w.r.t.

its i-th and j-th arguments, i, j = 1, 2.

In case of RMGSDE, θ̃g = T̃(α,τ,γ)(G) and θ̃ε = T̃(α,τ,γ)(Gε). Here,

ρ(g, fθ) = Q(α,τ,γ)(g, fθ), (7.25)

where,

D(g, fθ) =
1

τ τ̄(α− γ)

[{
τg1+α + τ̄ f 1+α

}
−
{
τg1+γ + τ̄ f 1+γ

} 1+α
1+γ

]
.

Next, we have the following

D(1)(g, f) =
(1 + α)

τ̄(α− γ)

[
gα − gγ

{
τg1+γ + τ̄ f 1+γ

}α−γ
1+γ

]
D(1,2)(g, f) = −(1 + α)(gf)γ

{
τg1+γ + τ̄ f 1+γ

}α−2γ−1
1+γ

D(2)(g, f) =
(1 + α)

τ(α− γ)

[
fα − fγ

{
τg1+γ + τ̄ f 1+γ

}α−γ
1+γ

]
D(2,2)(g, f) =

(1 + α)

τ(α− γ)

[
αfα−1 − γfγ−1

{
τg1+γ + τ̄ f 1+γ

}α−γ
1+γ

]
− (1 + α)

τ

[
τ̄ f 2γ

{
τg1+γ + τ̄ f 1+γ

}α−2γ−1
1+γ

]
. (7.26)
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Therefore, from (7.24),

N(θ) =
(1 + α)

τ(α− γ)

∫ [
(1 + α)f 1+α

θ − (1 + γ)f 1+γ
θ

{
τg1+γ + τ̄ f 1+γ

θ

}α−γ
1+γ

]
uθu

T
θ dµ

− (1 + α)τ̄

τ

∫
f

2(1+γ)
θ

{
τg1+γ + τ̄ f 1+γ

θ

}α−2γ−1
1+γ

uθu
T
θ dµ

− (1 + α)

τ(α− γ)

∫ [
f 1+α
θ − f 1+γ

θ

{
τg1+γ + τ̄ f 1+γ

θ

}α−γ
1+γ

]
iθdµ

M(y; θ) = −(1 + α)gγ(y)f 1+γ
θ (y)

{
τg1+γ(y) + τ̄ f 1+γ

θ (y)
}α−2γ−1

1+γ

uθ(y)

ξ(θ) = −(1 + α)

∫
(gfθ)

1+γ
{
τg1+γ + τ̄ f 1+γ

θ

}α−2γ−1
1+γ

uθdµ = Eg(M(X; θ))

(7.27)

Substituting all these expressions in Equation (7.23), we get the re-

quired form of influence function. In particular, when g = fθ0 for

some θ0 ∈ Θ0, expressions in (7.27) reduce to the following

N(θ0) = (1 + α)

∫
f 1+α
θ0

uθ0u
T
θ0
dµ

M(y; θ0) = −(1 + α)fαθ0(y)uθ0(y)

ξ(θ0) = −(1 + α)

∫
f 1+α
θ0

(y)uθ0(y) = (1 + α)Efθ0
(fαθ0(X)uθ0(X)).

In that case, the IF of RMGSDE will be simplified to

IF (y, T̃(α,τ,γ), Fθ0) =

{[∫
f 1+α
θ0

uθ0u
T
θ0
dµ

]2

+
1

(1 + α)2
H(θ0)H(θ0)

T

}−1

×
{∫

f 1+α
θ0

uθ0u
T
θ0
dµ

}

×
{
fαθ0(y)uθ0(y)− Efθ0

(fαθ0(X)uθ0(X))

}
, (7.28)

which is dependent on α only, and moreover, it is exactly identical

with the influence function of minimum DPD estimator derived under

this restricted setup.
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7.4.2 Discrete Setup

Here, we will consider the set of non-negative integers as the support

of the model density. Evidently, the empirical estimate of g(x) will

be rn(x), the relative frequency at x based on a given sample of

size n. Hence, the estimates can be obtained through an estimating

equation after replacing ĝ(x) with rn(x) and the integral with sum

over the support. Let us denote the restricted best fitting parameter

obtained by minimizing Q(α,τ,γ)(g, fθ) over Θ0 under g by θ̃g.

For the following theorem, we assume that the Lehmann and Basu

et al. conditions hold, as do the assumptions made in Chapter 5 in

connection with the existence and consistency of the MGSBE under

the discrete setup, for the restricted set Θ0 = {θ : h(θ) = 0}.

Theorem 7.11. Under this setup of a discrete model and under the

null hypothesis,

(i) there exists a consistent sequence of roots θ̃n to the restricted

minimum GSD estimating equation (7.21) (after replacing ĝ(x)

by rn(x)),

(ii)
√
n(θ̃n − θ̃g)

a∼ Np(0, P̃gṼgP̃g), where,

P̃g = J̃−1
g

[
Ip −H(θ̃g)

{
H(θ̃g)T J̃−1

g H(θ̃g)
}−1

H(θ̃g)T J̃−1
g

]
with

J̃g = Eg

[
uθ̃g(X) uT

θ̃g
(X)K

′
(
δ̃gg(X)

)
fα
θ̃g

(X)
]
−
∫
K
(
δ̃gg(x)

)
∇2fθ̃g(x)dx,

Ṽg = V arg

[
K
′
(
δ̃gg(X)

)
fα
θ̃g

(X) uθ̃g(X)
]

; δ̃gg(X) =
g(x)

fθ̃g(x)
− 1. (7.29)
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Proof. The proof of part (i) is exactly similar to the proof of part (i)

of Theorem 5.5. Hence, we need to prove the asymptotic normality

of restricted MGSDE only.

We know θ̃g is the restricted best fitting parameter under g. Putting

this θ̃g in our essential estimating equation

Qn(θ) =
∞∑
x=0

K (δn(x)) f 1+α
θ (x)uθ(x) = 0, (7.30)

where,

K(δ) =
1

τ(α− γ)

[(
τ(δ + 1)1+γ + τ̄

)α−γ
1+γ − 1

]
,

δn(x) =
rn(x)

fθ(x)
− 1,

we can conclude that

√
nQn(θ̃

g) =
√
n
∞∑
x=0

K
(
δ̃gn(x)

)
f 1+α
θ̃g

(x)uθ̃g(x)

a∼ Np(0, Ṽg) (7.31)

and

∇Qn(θ̃
g)

P−→ J̃g, (7.32)

where

δ̃gn(x) =
rn(x)

fθ̃g(x)
− 1.

by proceeding as in the proof of the asymptotic normality of the

MGSBE in Theorem 5.5. The use of the first order Taylor series

expansion of Qn(θ) around θ̃g at θ̃n leads us to

√
nQn(θ̃n) =

√
nQn(θ̃

g) +
√
n∇Qn(θ̃

g)
(
θ̃n − θ̃g

)
+
√
n× o

(
||θ̃n − θ̃g||

)
.
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Through consistency, it is clear that
√
n × o

(
||θ̃n − θ̃g||

)
= op(1).

Similarly, we have

√
n h(θ̃n) =

√
n h(θ̃g) +HT (θ̃g)

√
n
(
θ̃n − θ̃g

)
+
√
n× o

(
||θ̃n − θ̃g||

)
.

Since h(θ̃g) = 0 and θ̃n is the solution of the estimating equation

(7.21), we can conclude that

HT (θ̃g)
√
n
(
θ̃n − θ̃g

)
+ op(1) = 0.

Furthermore, the reduced estimating equation will be

√
nQn(θ̃

g) +∇Qn(θ̃
g)
√
n
(
θ̃n − θ̃g

)
+
√
nH(θ̃n)λn + op(1) = 0,

HT (θ̃g)
√
n
(
θ̃n − θ̃g

)
+ op(1) = 0.

(7.33)

If we rewrite Equation (7.33) in a matrix format, we then get∇Qn(θ̃
g) H(θ̃g)

HT (θ̃g) 0

√n(θ̃n − θ̃g)√
nλn

 =

−√nQn(θ̃
g)

0

+ op(1).

From the above expression, we get by taking the inverse of the first

matrix of the left-hand side,

√
n
(
θ̃n − θ̃g

)
= −Pn(θ̃g)

√
nQn(θ̃

g) + op(1),

where,

Pn(θ) = [∇Qn(θ)]
−1

[
Ip −H(θ)

{
HT (θ) [∇Qn(θ)]

−1H(θ)
}−1

HT (θ) [∇Qn(θ)]
−1
]
.
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Again, using the above expression and (7.32), we can conclude that

Pn(θ̃
g)

P−→ P̃g and hence, by (7.31), the theorem is proved.

Corollary 7.12. When g = fθ0 for some θ0 ∈ Θ satisfying the re-

strictions h(θ) = 0, then θ̃g = θ0 and expressions in (7.29) reduce

to

J̃fθ0 = Efθ0

[
uθ0(X)uTθ0(X)fαθ0(X)

]
,

Ṽfθ0 = V arfθ0
[
uθ0(X)fαθ0(X)

]
,

and hence, P̃fθ0 = J̃−1
fθ0

[
Ip −H(θ0)

{
H(θ0)

T J̃−1
fθ0
H(θ0)

}−1
H(θ0)

T J̃−1
fθ0

]
.

Therefore, at the model fθ0,

√
n
(
θ̃n − θ0

)
a∼ Np

(
0, P̃fθ0 Ṽfθ0 P̃fθ0

)
. (7.34)

Evidently, the distribution is independent of tuning parameters τ and

γ and depends on α only. Therefore, just like the unrestricted case,

here also, the asymptotic distribution of restricted MGSDE is identi-

cal with that of restricted MDPDE at fθ0, as may be verified through

a comparison of the result in Equation (7.35) and the result obtained

in Theorem 2 of Basu et al. (2018).

Unlike the discrete case, the derivation of the MSGDE estimator in

case of the continuous distribution is much more complicated, as it in-

evitably needs some form of non-parametric smoothing to construct

the divergence, and the estimator (as well as its distribution) is a

function of the kernel and the bandwidth. Trying to get an asymp-

totic distribution in the nature of the discrete distribution case will

require the use of the Beran approach, or the use of a transparent

kernel in the spirit of the discussion in Section 6.7. We, however,

do neither, as the estimation of minimum GSD estimator under the
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kernel smoothing protocol is not what we are looking for. Our aim

is to find a powerful but simple test of the hypothesis under our

consideration, and noting the equivalence of the influence functions

of the minimum GSD estimator and the minimum DPD estimator,

we will continue to use the minimum DPD estimators, both in the

unrestricted setup and under the restrictions imposed by the null, as

the parameter estimates in the GSDT.

7.4.3 GSDT for Composite Hypotheses

To test H0 : θ ∈ Θ0 vs H1 : θ 6∈ Θ0, if we consider a test statistic

based on the GSD family, then ideally, it should be constructed as

T̃(α,τ,γ)

(
θ̂(α,τ,γ), θ̃(α,τ,γ)

)
= 2n Q(α,τ,γ)

(
fθ̂(α,τ,γ), fθ̃(α,τ,γ)

)
, (7.35)

where θ̂(α,τ,γ) and θ̃(α,τ,γ) are the unrestricted and restricted MGSDE,

respectively, with fixed α, τ and γ. However, depending on the

triplet of the tuning parameters, this may entail the use of an esti-

mator which requires non-parametric smoothing in the construction

of the corresponding divergence in continuous models. In the spirit

of our previous discussion, the observed equivalence of the influence

functions of the MDPDE and MGSDE, and the equivalence of the

asymptotic distributions of these two estimators – at least for dis-

crete models – we will continue to supplant the MGSDE with the

MDPDE of the parameter in Equation (7.35), and use the modified

test statistic

T̃(α,τ,γ)

(
θ̂α, θ̃α

)
= 2n Q(α,τ,γ)

(
fθ̂α, fθ̃α

)
, (7.36)

and explore its behaviour in robust testing of hypotheses.
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Theorem 7.13. Under the Lehmann and Basu et al. conditions

(B1)-(B7), the asymptotic null distribution of the GSDT statistic

T̃(α,τ,γ)

(
θ̂α, θ̃α

)
coincides with the distribution of

∑r
i=1 η̃iZ

2
i , where

Zi ∼ N(0, 1) independently, and η̃i’s are non-zero eigenvalues of

Aα(θ0)Σ̃α(θ0) where

Aα(θ0) = ∇2Q(α,τ,γ)(fθ, fθ0)

∣∣∣∣∣
θ=θ0

, θ0 ∈ Θ0 is the true parameter value

under H0, and

Σ̃α(θ0) =
[
J−1
α (θ0)− Pα(θ0)

]
Vα(θ0)

[
J−1
α (θ0)− Pα(θ0)

]
, (7.37)

r = rank
(
Vα(θ0)

[
J−1
α (θ0)− Pα(θ0)

]
Aα(θ0)

[
J−1
α (θ0)− Pα(θ0)

]
Vα(θ0)

)
.

Proof. A second-order Taylor series expansion of Q(α,τ,γ)

(
fθ, fθ̃α

)
around θ = θ̃α at θ = θ̂α will give us

Q(α,τ,γ)

(
fθ̂α , fθ̃α

)
= Q(α,τ,γ)

(
fθ̃α , fθ̃α

)
+

p∑
i=1

∂

∂θi
Q(α,τ,γ)

(
fθ, fθ̃α

) ∣∣∣∣∣
θ=θ̃α

(
θ̂iα − θ̃iα

)
+

1

2

p∑
i,j=1

∂2

∂θi∂θj
Q(α,τ,γ)

(
fθ, fθ̃α

) ∣∣∣∣∣
θ=θ̃α

(
θ̂iα − θ̃iα

)(
θ̂jα − θ̃jα

)
+ o

(
||θ̂α − θ̃α||2

)
.

Evidently,

Q(α,τ,γ)

(
fθ̃α, fθ̃α

)
= 0,

∂

∂θi
Q(α,τ,γ)

(
fθ, fθ̃α

) ∣∣∣∣∣
θ=θ̃α

= 0, and

∂2

∂θi∂θj
Q(α,τ,γ)

(
fθ, fθ̃α

) ∣∣∣∣∣
θ=θ̃α

= (1 + α)

∫
fα−1
θ̃α

(
∂fθ̃α
∂θi

)(
∂fθ̃α
∂θj

)
= aαij(θ̃α), (7.38)
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where aαij(θ̃α) is the (i, j)th element of Aα(θ̃α). Again,

T̃(α,τ,γ)

(
θ̂α, θ̃α

)
= 2n Q(α,τ,γ)

(
fθ̂α , fθ̃α

)
= n

p∑
i,j=1

∂2

∂θi∂θj
Q(α,τ,γ)

(
fθ, fθ̃α

) ∣∣∣∣∣
θ=θ̃α

(
θ̂iα − θ̃iα

)(
θ̂jα − θ̃jα

)
+ n× o

(
||θ̂α − θ̃α||2

)
=
√
n
(
θ̂α − θ̃α

)T
Aα(θ̃α)

√
n
(
θ̂α − θ̃α

)
+ n× o

(
||θ̂α − θ̃α||2

)
.

Furthermore, from Theorem 3 in Basu et al. (2018), we have the

result,

√
n
(
θ̂α − θ̃α

)
a∼ N

(
0, Σ̃α(θ0)

)
,

where Σ̃α(θ0) is as defined in the statement of the theorem. There-

fore, just like the other theorems in case of the simple hypotheses,

here also, by Lemma 7.1, we can conclude that the asymptotic dis-

tribution of the GSDT statistic T̃(α,τ,γ)

(
θ̂α, θ̃α

)
under θ0 ∈ Θ0 coin-

cides with the distribution of the random variable
∑r

i=1 η̃iZ
2
i , where

Zi
i.i.d.∼ N(0, 1) and where r and η̃i’s are as defined in the theorem.

Next, we are going to derive the expression of the power function

of the above-mentioned GSDT statistic T̃(α,τ,γ)

(
θ̂α, θ̃α

)
at any point

θ∗ 6∈ Θ0. Moreover, when θ∗ 6∈ Θ0 is the true parameter value then

θ̂α
P→ θ∗, but θ̃α

P→ θ0 with θ0 ∈ Θ0, with θ0 6= θ∗. Hence, under

Lehmann and Basu et al. conditions,
√
n
(
θ̂α − θ∗

)
a∼ N(0,Σα(θ∗)),

Σα(θ∗) = J−1
α (θ∗)Vα(θ∗)J−1

α (θ∗), and
√
n
(
θ̃α − θ0

)
a∼ N(0, Pα(θ0)Vα(θ0)Pα(θ0)).

Theorem 7.14. Under the Lehmann and Basu et al. conditions

(B1)-(B7), for any θ∗ 6∈ Θ0, an approximate expression of the power
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function at θ = θ∗ (6= θ0) at significance level β is given by

Π̃
(α,τ,γ)
n,β (θ∗) = 1− Φ

( √
n

σ̃(α,τ,γ)(θ∗, θ0)

(
t̃β(α,τ,γ)

2n
−Q(α,τ,γ) (fθ∗, fθ0)

))
,

where t̃β(α,τ,γ) is the (1−α)th quantile of the asymptotic null distribu-

tion of the GSDT and

σ̃2
(α,τ,γ)(θ

∗, θ0) = MT
1,(α,τ,γ)(θ

∗, θ0)Σα(θ∗)M1,(α,τ,γ)(θ
∗, θ0)

+ MT
1,(α,τ,γ)(θ

∗, θ0)A12M2,(α,τ,γ)(θ
∗, θ0)

+ MT
2,(α,τ,γ)(θ

∗, θ0)A
T
12M1,(α,τ,γ)(θ

∗, θ0)

+ MT
2,(α,τ,γ)(θ

∗, θ0)Pα(θ0)Vα(θ0)Pα(θ0)M2,(α,τ,γ)(θ
∗, θ0),

where,

M1,(α,τ,γ)(θ
∗, θ0) = ∇Q(α,τ,γ) (fθ, fθ0)

∣∣∣∣∣
θ=θ∗

,

M2,(α,τ,γ)(θ
∗, θ0) = ∇Q(α,τ,γ) (fθ∗, fθ)

∣∣∣∣∣
θ=θ0

, (7.39)

and, Cov(θ̂α, θ̃α) = A12 for some p× p matrix A12.

Proof. A first order Taylor series expansion ofQ(α,τ,γ)

(
fθ̂α, fθ̃α

)
around

fθ∗, θ
∗ 6= θ̃α at θ = θ̂α, we get,

Q(α,τ,γ)

(
fθ̂α , fθ̃α

)
= Q(α,τ,γ)

(
fθ∗ , fθ̃α

)
+

p∑
i=1

∂

∂θi
Q(α,τ,γ)

(
fθ, fθ̃α

) ∣∣∣∣∣
θ=θ∗

(
θ̂iα − θ∗i

)
+ o

(
||θ̂α − θ∗||

)
= Q(α,τ,γ)

(
fθ∗ , fθ̃α

)
+MT

1,(α,τ,γ)

(
θ∗, θ̃α

)(
θ̂α − θ∗

)
+ o

(
||θ̂α − θ∗||

)
.
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A similar step for Q(α,τ,γ)

(
fθ∗, fθ̃α

)
around fθ0 at θ = θ̃α will lead us

to

Q(α,τ,γ)

(
fθ∗ , fθ̃α

)
= Q(α,τ,γ) (fθ∗ , fθ0) +

r∑
j=1

∂

∂θj
Q(α,τ,γ) (fθ∗ , fθ)

∣∣∣∣∣
θ=θ0

(
θ̃jα − θ

j
0

)
+ o

(
||θ̃α − θ0||

)
= Q(α,τ,γ) (fθ∗ , fθ0) +MT

2,(α,τ,γ) (θ∗, θ0)
(
θ̃α − θ0

)
+ o

(
||θ̃α − θ0||

)
.

Note that,

θ̃α = restricted MDPDE under H0

. ⇒ θ̃α → θ0, as n→∞,

⇒ M1,(α,τ,γ)

(
θ∗, θ̃α

)
→M1,(α,τ,γ) (θ∗, θ0) , as n→∞.

Hence, combining all the above, we get

√
n
(
Q(α,τ,γ)

(
fθ̂α, fθ̃α

)
−Q(α,τ,γ) (fθ∗, fθ0)

)
= MT

1,(α,τ,γ)

(
θ∗, θ̃α

)√
n
(
θ̂α − θ∗

)
+MT

2,(α,τ,γ) (θ∗, θ0)
√
n
(
θ̃α − θ0

)
+ o

(
||θ̂α − θ∗||

)
+ o

(
||θ̃α − θ0||

)
→ MT

1,(α,τ,γ) (θ∗, θ0)
√
n
(
θ̂α − θ∗

)
+MT

2,(α,τ,γ) (θ∗, θ0)
√
n
(
θ̃α − θ0

)
= MT

(α,τ,γ) (θ∗, θ0)

√n(θ̂α − θ∗)√
n
(
θ̃α − θ0

) , as n→∞,

where,

MT
(α,τ,γ) (θ∗, θ0) =

(
MT

1,(α,τ,γ) (θ∗, θ0) MT
2,(α,τ,γ) (θ∗, θ0)

)
.

Again, we have already shown that

√
n
(
θ̂α − θ∗

)
a∼ N

(
0, J−1

α (θ∗)Vα(θ∗)J−1
α (θ∗)

)
,

√
n
(
θ̃α − θ0

)
a∼ N (0, Pα(θ0)Vα(θ0)Pα(θ0)) .
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Hence, under Basu et al. conditions,

√n(θ̂α − θ∗)√
n
(
θ̃α − θ0

)
 a−→ N

0

0

 ,

J−1
α (θ∗)Vα(θ∗)J−1

α (θ∗) A12

A21 Pα(θ0)Vα(θ0)Pα(θ0)


= N

0

0

 , Σ∗

 .

It immediately follows that the asymptotic distribution of

√
n
(
Q(α,τ,γ)

(
fθ̂α , fθ̃α

)
−Q(α,τ,γ) (fθ∗ , fθ0)

)
and MT

(α,τ,γ) (θ∗, θ0)

√n(θ̂α − θ∗)√
n
(
θ̃α − θ0

)
 are

the same. Therefore, as n→∞,

√
n
(
Q(α,τ,γ)

(
fθ̂α , fθ̃α

)
−Q(α,τ,γ) (fθ∗ , fθ0)

)
a∼ N

(
0,MT

(α,τ,γ) (θ∗, θ0) Σ∗M(α,τ,γ) (θ∗, θ0)
)

≡ N
(

0, σ̃2
(α,τ,γ) (θ∗, θ0)

)
,

where,

σ̃2
(α,τ,γ) (θ∗, θ0)

= M1,(α,τ,γ) (θ∗, θ0)
T J−1

α (θ∗)Vα(θ∗)J−1
α (θ∗) M1,(α,τ,γ) (θ∗, θ0)

+ M1,(α,τ,γ) (θ∗, θ0)
T A12 M2,(α,τ,γ) (θ∗, θ0)

+ M2,(α,τ,γ) (θ∗, θ0)
T A21 M1,(α,τ,γ) (θ∗, θ0)

+ M2,(α,τ,γ) (θ∗, θ0)
T Pα(θ0)Vα(θ0)Pα(θ0) M2,(α,τ,γ) (θ∗, θ0) .
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We fix θ = θ∗ 6= θ0. The power at θ = θ∗ for a fixed significance level

β will be

Π̃
(α,τ,γ)
n,β = Pθ=θ∗

(
T̃(α,τ,γ)

(
θ̂α, θ̃α

)
> t̃

(α,τ,γ)
β

)
= Pθ=θ∗

Q(α,τ,γ)

(
fθ̂α , fθ̃α

)
>
t̃
(α,τ,γ)
β

2n


= 1− Pθ=θ∗

√n
(
Q(α,τ,γ)

(
fθ̂α , fθ̃α

)
−Q(α,τ,γ) (fθ∗ , fθ0)

)
σ̃(α,τ,γ) (θ∗, θ0)

≤

√
n

(
t̃
(α,τ,γ)
β

2n −Q(α,τ,γ) (fθ∗ , fθ0)

)
σ̃(α,τ,γ) (θ∗, θ0)


→ 1− Φ

 √
n

σ̃(α,τ,γ) (θ∗, θ0)

 t̃(α,τ,γ)
β

2n
−Q(α,τ,γ) (fθ∗ , fθ0)

 .

As n→∞, Π̃
(α,τ,γ)
n,β → 1, that is, the test is consistent in the Fraser’s

sense.

7.4.4 Robustness Properties of the GSDT (Composite Hy-

potheses)

7.4.4.1 Influence Function of the Test

We have already defined this term and its interpretation in the field

of statistical hypotheses testing in Section 7.3.3.1 where the hypothe-

ses were simple. Here, in case of composite hypotheses, the GSDT

functional will be defined as

T̃
(1)
(α,τ,γ)(G) = Q(α,τ,γ)

(
fTα(G), fT̃α(G)

)
,

where Tα(G) is the unrestricted minimum DPD functional derived

over the whole parameter Θ and T̃α(G) is the restricted minimum
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DPD functional derived over Θ0. Here, the contamination distribu-

tion remains the same as earlier.

Therefore, the first order IF of the GSDT functional is given by

IF
(
y, T̃

(1)
(α,τ,γ), G

)
=

∂

∂ε
T̃

(1)
(α,τ,γ)(Gε)

∣∣∣∣∣
ε=0

=
∂

∂θ
Q(α,τ,γ)

(
fθ, fT̃α(G)

) ∣∣∣∣∣
θ=Tα(G)

∂

∂ε
Tα(Gε)

∣∣∣∣∣
ε=0

+
∂

∂θ
Q(α,τ,γ)

(
fTα(G), fθ

) ∣∣∣∣∣
θ=T̃α(G)

∂

∂ε
T̃α(Gε)

∣∣∣∣∣
ε=0

= M1,(α,τ,γ)

(
Tα(G), T̃α(G)

)T
IF (y, Tα, G)

+ M2,(α,τ,γ)

(
Tα(G), T̃α(G)

)T
IF (y, T̃α, G).

Under H0, if we consider θ0 ∈ Θ0 is the true parameter value, then

in case of G = Fθ0, Tα(Fθ0) = T̃α(Fθ0) = θ0 and M1,(α,τ,γ)(θ0, θ0) =
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M2,(α,τ,γ)(θ0, θ0) = 0. Therefore, the first order IF under the compos-

ite null is zero. Next, we consider the second order IF

IF2

(
y, T̃

(1)
(α,τ,γ), G

)
=

∂2

∂ε2
T̃

(1)
(α,τ,γ)(Gε)

∣∣∣∣∣
ε=0

=
∂

∂ε

[
M1,(α,τ,γ)

(
Tα(G), T̃α(G)

)T
IF (y, Tα, G)

] ∣∣∣∣∣
ε=0

+
∂

∂ε

[
M2,(α,τ,γ)

(
Tα(G), T̃α(G)

)T
IF (y, T̃α, G)

] ∣∣∣∣∣
ε=0

= M1,(α,τ,γ)

(
Tα(G), T̃α(G)

)T ∂2

∂ε2
Tα(Gε)

∣∣∣∣∣
ε=0

+ M2,(α,τ,γ)

(
Tα(G), T̃α(G)

)T ∂2

∂ε2
T̃α(Gε)

∣∣∣∣∣
ε=0

+ IF (y, Tα, G)T ∇θ1∇θ1Q(α,τ,γ) (fθ1 , fθ2)

∣∣∣∣∣
θ1=Tα(G),θ2=T̃α(G)

IF (y, Tα, G)

+ IF (y, Tα, G)T ∇θ1∇θ2Q(α,τ,γ) (fθ1 , fθ2)

∣∣∣∣∣
θ1=Tα(G),θ2=T̃α(G)

IF
(
y, T̃α, G

)

+ IF
(
y, T̃α, G

)T
∇θ2∇θ1Q(α,τ,γ) (fθ1 , fθ2)

∣∣∣∣∣
θ1=Tα(G),θ2=T̃α(G)

IF (y, Tα, G)

+ IF
(
y, T̃α, G

)T
∇θ2∇θ2Q(α,τ,γ) (fθ1 , fθ2)

∣∣∣∣∣
θ1=Tα(G),θ2=T̃α(G)

IF
(
y, T̃α, G

)

= M1,(α,τ,γ)

(
Tα(G), T̃α(G)

)T ∂2

∂ε2
Tα(Gε)

∣∣∣∣∣
ε=0

+ M2,(α,τ,γ)

(
Tα(G), T̃α(G)

)T ∂2

∂ε2
T̃α(Gε)

∣∣∣∣∣
ε=0

+ IF (y, Tα, G)T A1,1,(α,τ,γ)

(
Tα(G), T̃α(G)

)
IF (y, Tα, G)

+ IF (y, Tα, G)T A1,2,(α,τ,γ)

(
Tα(G), T̃α(G)

)
IF
(
y, T̃α, G

)
+ IF

(
y, T̃α, G

)T
A2,1,(α,τ,γ)

(
Tα(G), T̃α(G)

)
IF (y, Tα, G)

+ IF
(
y, T̃α, G

)T
A2,2,(α,τ,γ)

(
Tα(G), T̃α(G)

)
IF
(
y, T̃α, G

)
, (7.40)
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where, Ai,j,(α,τ,γ)(θ
∗
1, θ
∗
2) = ∇θi∇θjQ(α,τ,γ) (fθ1, fθ2)

∣∣∣∣∣
θ1=θ∗1 ,θ2=θ∗2

, i, j =

1, 2. Moreover, when G = Fθ0, it reduces to the following

IF2

(
y, T̃

(1)
(α,τ,γ), Fθ0

)
=

(
IF (y, Tα, Fθ0)− IF

(
y, T̃α, Fθ0

))T
Aα(θ0)(

IF (y, Tα, Fθ0)− IF
(
y, T̃α, Fθ0

))
.

Evidently, when G = Fθ0, the second order influence function is

dependent only on α, and, at the model, the use of the MDPDE in

place of the MGSDE does not alter the influence function.

7.4.4.2 Influence Function of the Level and the Power

As in the simple null hypothesis case, here also we need to observe

the IF of the level and power of the GSDT. We will analyze its power

performance in case of fixed and contiguous alternatives H1,n : θ =

θn, θn = θ0 + ∆√
n

for non-negative ∆, θ0 ∈ Θ0; for existence of θ0, we

consider it as a limit point of Θ0, a closed subset of Θ. Since we are

mainly concerned with the stability of these tests in the presence of

outliers, we consider the contaminated cases here. As a result, we

want to derive the level influence function (LIF) and power influence

function (PIF) as defined earlier.

Theorem 7.15. Under the above-mentioned setup, assuming that

the Lehmann and Basu et al. conditions (B1)-(B7) hold, for any

∆ ∈ Rp and ε > 0,

(i) the asymptotic distribution of T̃(α,τ,γ)

(
θ̂α, θ̃α

)
under F P

n,ε,y is the

same as that of the distribution of W TAα(θ0)W , where, W ∼
Np(∆̃

∗, Σ̃α(θ0)),

∆̃∗ = ∆ + ε
(
IF (y, Tα, Fθ0)− IF (y, T̃α, Fθ0)

)
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and, Σ̃α(θ0) is same as defined in Theorem 7.13. Equivalently,

this distribution is the same as that of
∑r

i=1 η̃iχ
2
1,δ̃i

, where η̃1, . . . , η̃r

are the non-zero eigenvalues of Aα(θ0)Σ̃α(θ0) and(√
δ̃1,
√
δ̃2, . . . ,

√
δ̃r
)T

= Ṽα(θ0)Σ̃
−1/2
α (θ0)∆̃

∗ with Ṽα(θ0) being

the matrix of the normalized eigenvectors of Aα(θ0)Σ̃α(θ0).

(ii) the asymptotic power will be

P̃ (∆, ε) =
∞∑
ν=0

C̃α
ν (θ0, ∆̃

∗)P

(
χ2
r+2ν >

t̃
(α,τ,γ)
β

η̃(1)

)
, (7.41)

where η̃(1) = mini η̃i,

Cν(θ0, ∆̃
∗) =

1

ν!

 r∏
j=1

η̃(1)

η̃j

1/2

e−δ̃/2E(Q̃ν)

and

Q̃ =
1

2

r∑
j=1

[(
1−

η̃(1)

η̃j

)1/2

Zj +
√
δ̃j

(
η̃(1)

η̃j

)1/2
]2

for r independent standard normal variables Z1, Z2, . . . , Zr.

Proof. Let us consider θ∗n = Restricted best fitting parameter un-

der F P
n,ε,y and θ̃∗n = Unrestricted best fitting parameter under F P

n,ε,y

at first. A second order Taylor series expansion of Q(α,τ,γ)

(
fθ, fθ̃α

)
around θ = θ∗n at θ = θ̂α gives

Q(α,τ,γ)

(
fθ̂α, fθ̃α

)
= Q(α,τ,γ)

(
fθ∗n, fθ̃α

)
+
(
θ̂α − θ∗n

)T
M1,(α,τ,γ)

(
θ∗n, θ̃α

)
+

1

2

(
θ̂α − θ∗n

)T
A1,1,(α,τ,γ)

(
θ∗n, θ̃α

)(
θ̂α − θ∗n

)
+ o

(
||θ̂α − θ∗n||2

)
,
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where Mi,(α,τ,γ)(·, ·) and Ai,j,(α,τ,γ) (·, ·), i, j = 1, 2 are as defined in

Equations (7.39) and (7.40). Again, a second order Taylor series

expansion of Q(α,τ,γ)

(
fθ∗n, fθ

)
around θ = θ̃∗n at θ = θ̃α will lead us to

Q(α,τ,γ)

(
fθ∗n, fθ̃α

)
= Q(α,τ,γ)

(
fθ∗n, fθ̃∗n

)
+
(
θ̃α − θ̃∗n

)T
M2,(α,τ,γ)

(
θ∗n, θ̃

∗
n

)
+

1

2

(
θ̃α − θ̃∗n

)T
A2,2,(α,τ,γ)

(
θ∗n, θ̃

∗
n

)(
θ̃α − θ̃∗n

)
+ o

(
||θ̃α − θ̃∗n||2

)
,

M1,(α,τ,γ)

(
θ∗n, θ̃α

)
= M1,(α,τ,γ)

(
θ∗n, θ̃

∗
n

)
+
(
θ̃α − θ̃∗n

)
A2,1,(α,τ,γ)

(
θ∗n, θ̃

∗
n

)
+ o

(
||θ̃α − θ̃∗n||

)
,

A1,1,(α,τ,γ)

(
θ∗n, θ̃α

)
= A1,1,(α,τ,γ)

(
θ∗n, θ̃

∗
n

)
+ op(1).

Again, we consider the Taylor series expansion of Mj,(α,τ,γ)

(
θ, θ̃∗n

)
around θ = θ0 at θ = θ∗n to get

Mj,(α,τ,γ)

(
θ∗n, θ̃

∗
n

)
= Mj,(α,τ,γ)

(
θ0, θ̃

∗
n

)
+A1,j,(α,τ,γ)

(
θ0, θ̃

∗
n

) ∆√
n

+
ε√
n
A1,j,(α,τ,γ)

(
θ0, θ̃

∗
n

)
IF (y, Tα, Fθ0) + o

(
1√
n

)
= Mj,(α,τ,γ)

(
θ0, θ̃

∗
n

)
+

∆ + εIF (y, Tβ, Fθ0)√
n

A1,j,(α,τ,γ)

(
θ0, θ̃

∗
n

)
+ o

(
1√
n

)
= Mj,(α,τ,γ)

(
θ0, θ̃

∗
n

)
+A1,j,(α,τ,γ)

(
θ0, θ̃

∗
n

) ∆̃√
n

+ o

(
1√
n

)
.

We have already used the following relation before,

√
n(θ∗n − θ0) = ∆ + εIF (y, Tα, Fθ0). (7.42)



Chapter 7. Hypotheses Testing using the Extended Bregman Divergence 226

Similarly, considering θ̃∗n as a function of εn, i.e., f(εn) = ε√
n
, we get

θ̃∗n = f(εn) =
∞∑
k=0

1

k!

εk

nk/2
∂kf(εn)

∂ε

∣∣∣∣∣
ε=0

= θ0 +
ε√
n
IF (y, T̃α, Fθ0) +

∞∑
k=2

1

k!

εk

nk/2
∂kf(εn)

∂ε

∣∣∣∣∣
ε=0

= θ0 +
ε√
n
IF (y, T̃α, Fθ0) + o(

1√
n

). (7.43)

Therefore, for each j, k = 1, 2, application of Taylor series expansion

gives us

Mj,(α,τ,γ)

(
θ0, θ̃

∗
n

)
= Mj,(α,τ,γ) (θ0, θ0) +

ε√
n
A2,j,(α,τ,γ) (θ0, θ0) IF (y, T̃α, Fθ0) + o

(
1√
n

)
,

Mj,(α,τ,γ) (θ∗n, θ0) = Mj,(α,τ,γ) (θ0, θ0) +A1,j,(α,τ,γ) (θ0, θ0)
∆√
n

+
ε√
n
A1,j,(α,τ,γ) (θ0, θ0) IF (y, Tα, Fθ0)

+ o

(
1√
n

)
,

Aj,k,(α,τ,γ)

(
θ∗n, θ̃

∗
n

)
= Aj,k,(α,τ,γ)

(
θ0, θ̃

∗
n

)
+ o(1).

We know θ∗n and θ̃∗n are the unrestricted and restricted MDPD func-

tionals obtained over Θ and Θ0 respectively. Moreover, we have con-

sidered contiguous alternatives. Hence, both θ∗n, θ̃
∗
n → θ0 as n→∞.

Hence, for j, k = 1, 2, Mj,(α,τ,γ) (θ∗n, θ0)→Mj,(α,τ,γ) (θ0, θ0), Mj,(α,τ,γ)

(
θ0, θ̃

∗
n

)
→

Mj,(α,τ,γ) (θ0, θ0), Aj,k,(α,τ,γ) (θ∗n, θ0)→ Aj,k,(α,τ,γ) (θ0, θ0) andAj,k,(α,τ,γ)

(
θ0, θ̃

∗
n

)
→

Aj,k,(α,τ,γ) (θ0, θ0) as n→∞.

Furthermore, Mj,(α,τ,γ) (θ0, θ0) = 0 andAj,k,(α,τ,γ) (θ0, θ0) = (−1)j+kAα(θ0).
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Thus, we get

Mj,(α,τ,γ)

(
θ∗n, θ̃

∗
n

)
=

ε√
n
A2,j,(α,τ,γ) (θ0, θ0) IF (y, T̃α, Fθ0) + o

(
1√
n

)
+ A1,j,(α,τ,γ)

(
θ0, θ̃

∗
n

) ∆̃√
n

+ o

(
1√
n

)
=

ε√
n

(−1)2+jAα(θ0)IF (y, T̃α, Fθ0) +
∆̃√
n

(−1)1+jAα(θ0)

+ o

(
1√
n

)
.

⇒
√
nMj,(α,τ,γ)

(
θ∗n, θ̃

∗
n

)
= (−1)1+jAα(θ0)

[
∆̃− εIF (y, T̃α, Fθ0)

]
+ o(1)

= (−1)1+jAα(θ0)∆̃∗ + o(1).

A second order Taylor expansion of Q(α,τ,γ)

(
fθ∗n, fθ

)
around θ = θ0 at

θ = θ̃∗n gives

Q(α,τ,γ)

(
fθ∗n , fθ̃∗n

)
= Q(α,τ,γ)

(
fθ∗n , fθ0

)
+

ε√
n
M2,(α,τ,γ) (θ∗n, θ0) IF (y, T̃α, Fθ0)

+
ε2

n
IF (y, T̃α, Fθ0)TA2,2,(α,τ,γ) (θ∗n, θ0) IF (y, T̃α, Fθ0) + o

(
1

n

)
.

But we have already shown in Theorem 7.8 that,

2n Q(α,τ,γ)

(
fθ∗n, fθ0

)
= ∆̃TAα(θ0)∆̃ + o(1).

Hence, we can conclude that

2n Q(α,τ,γ)

(
fθ∗n , fθ̃∗n

)
= ∆̃TAα(θ0)∆̃ + 2

√
nεM2,(α,τ,γ) (θ∗n, θ0) IF (y, T̃α, Fθ0)

+ ε2IF (y, T̃α, Fθ0)TA2,2,(α,τ,γ) (θ∗n, θ0) IF (y, T̃α, Fθ0) + o(1)

= ∆̃TAα(θ0)∆̃ + 2ε(−1)3IF (y, T̃α, Fθ0)TAα(θ0)∆̃∗ + o(1)

+ ε2IF (y, T̃α, Fθ0)T (−1)4Aα(θ0)IF (y, T̃α, Fθ0) + o(1)

=
[
∆̃− εIF (y, T̃α, Fθ0)

]T
Aα(θ0)

[
∆̃− εIF (y, T̃α, Fθ0)

]
= ∆̃∗TAα(θ0)∆̃∗ + o(1).
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Finally, we have derived the following

2nQ(α,τ,γ)

(
fθ̂α , fθ̃α

)
= ∆̃∗TAα(θ0)∆̃∗ + 2∆̃∗TAα(θ0)

√
n
(
θ̂α − θ∗n

)
− 2∆̃∗TAα(θ0)

√
n
(
θ̃α − θ̃∗n

)
+
(
θ̃α − θ̃∗n

)T
Aα(θ0)

(
θ̃α − θ̃∗n

)
− 2

√
n
(
θ̃α − θ̃∗n

)T
Aα(θ0)

√
n
(
θ̂α − θ̃∗n

)
+
√
n
(
θ̂α − θ∗n

)T
Aα(θ0)

√
n
(
θ̂α − θ∗n

)
+ op(1) + o(1)

=
[
∆̃∗ +

√
n
(
θ̂α − θ∗n

)
−
√
n
(
θ̃α − θ̃∗n

)]T
Aα(θ0)[

∆̃∗ +
√
n
(
θ̂α − θ∗n

)
−
√
n
(
θ̃α − θ̃∗n

)]
+ op(1) + o(1),

because n× o
(
||θ̂α − θ∗n||2

)
= op(1) and n× o

(
||θ̃α − θ̃∗n||2

)
= op(1),

which follows from the asymptotic distribution of the MDPDE and

the RMDPDE.

Hence, under F P
n,ε,y, as n→∞,

T̃(α,τ,γ)

(
θ̂α, θ̃α

)
D
= W TAα(θ0)W,

where,

W
D
=
[
∆̃∗ +

√
n
(
θ̂α − θ∗n

)
−
√
n
(
θ̃α − θ̃∗n

)]
.

Just like the null case given in Theorem 7.13, here also, one can prove

that,

∆̃∗ +
√
n
(
θ̂α − θ∗n

)
−
√
n
(
θ̃α − θ̃∗n

)
a∼ N

(
∆̃∗, Σ̃α(θ0)

)
,

where, Σ̃α(θ0) is given in Equation (7.37).

Hence, the proof of the first statement of part (i) is complete. The

next part immediately follows from Lemma 7.2. This is quite similar

to the proof of the last statement of part (i) of Theorem 7.8, where we
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were deriving the asymptotic distribution of our test statistic under

F P
n,ε,y in case of a simple null hypothesis.

The part (ii) follows from the infinite series expansion of a linear

combination of non-central chi-squares, in terms of the central χ2

distribution as derived in Kotz et al. (1967a). We have already fol-

lowed the same thing in case of deriving the asymptotic power in

case of a simple null hypothesis and hence omitted it here.

� In case of ε = 0, the expression of the asymptotic power will re-

main the same except C̃α
ν (θ0, ∆̃

∗) will be replaced by C̃α
ν (θ0,∆).

� In case of ∆ = 0, the asymptotic level under FL
n,ε,y as

P̃ (∆ = 0, ε) =

∞∑
ν=0

C̃αν

(
θ0, ε

(
IF (y, Tα, Fθ0)− IF (y, T̃α, Fθ0)

))

P

χ2
r+2ν >

t̃
(α,τ,γ)
β

η̃(1)

 .

� In case of ∆ = 0 and ε = 0, the asymptotic distribution of the

GSDT under F P
n,ε,y coincides with the asymptotic distribution of

the GSDT under the null hypothesis defined in Theorem 7.3.

Following the procedure adopted in case of the simple null hypothe-

ses, we can now find the expressions of the PIF and the LIF as follows

PIF
(
y, T̃

(1)
(α,τ,γ), Fθ0

)
=

∂

∂ε
P̃ (∆, ε)

∣∣∣∣∣
ε=0

=
∞∑
ν=0

∂

∂ε
C̃αν (θ0, ∆̃

∗)

∣∣∣∣∣
ε=0

P

χ2
r+2ν >

t̃
(α,τ,γ)
β

η̃(1)


=

(
IF (y, Tα, Fθ0)− IF (y, T̃α, Fθ0)

) ∞∑
ν=0

∂

∂ε
C̃αν (θ0, t)

∣∣∣∣∣
t=∆

P

χ2
r+2ν >

t̃
(α,τ,γ)
β

η̃(1)

 ,

LIF
(
y, T̃

(1)
(α,τ,γ), Fθ0

)
=

(
IF (y, Tα, Fθ0)− IF (y, T̃α, Fθ0)

) ∞∑
ν=0

∂

∂ε
C̃αν (θ0, t)

∣∣∣∣∣
t=0

P

χ2
r+2ν >

t̃
(α,τ,γ)
β

η̃(1)

 ,
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for any bounded IF of MDPDE under the Lehmann and Basu et al.

conditions (B1)-(B7).

7.5 Simulation Study

Here, we provide some extensive numerical evidence of the perfor-

mance of our proposed tests by demonstrating their strong robust-

ness properties. The test statistic is dependent on the data through

the MDPDE, θ̂α, and hence, the robustness of the test depends on

the MDPDE as well as the three associated tuning parameters, α, τ

and γ of the GSD. Throughout this section, we consider the univari-

ate normal distribution with mean µ and variance σ2 to explore the

performance of our proposed test statistics for testing a hypothesis

about µ. Based on a sample of size n from this population, we want

to test H0 : µ = 0 against omnibus alternatives for both cases of

sigma being known (simple hypotheses) and being unknown (com-

posite hypotheses) respectively, and to study its power, we consider

several alternative values of µ. In this scenario, whenever σ is known,

T(α,τ,γ)(µ̂α, µ0)

λ
a∼ χ2

1

as n → ∞, where, µ̂α denotes the MDPDE of µ at a fixed α value,

µ0 denotes the null hypothesized value and λ = eigenvalue of

A(µ0)J
−1(µ0)K(µ0)J

−1(µ0) = (1+α)5/2

(1+2α)3/2(2π)α/2σα
. For α = 0, λ becomes

1. The observed level or power will be evaluated as the proportion

of the derived test statistics, derived based on the samples of sizes n

= 20, 50 and 100, being larger than χ2
0.05,1 = 3.84146 in a number of

1000 replications.
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To analyze a pure case scenario, we consider the model N(0, 1) under

null hypothesis and the models N(0.5, 1) and N(1, 1) under alterna-

tive hypothesis and similarly for a contaminated case scenario, we

consider the model (1− ε) N(0, 1) + ε N(5, 1) under null hypothesis

and the models (1 − ε) N(0.5, 1) + ε N(−5, 1) and (1 − ε) N(1, 1)

+ ε N(−9, 1) under alternative hypothesis, with the value of ε being

0.10. The asymptotic level is calculated under several combinations

of (α, τ, γ); more specifically, we have taken some standard choices of

α = {0.15, 0.25, 0.5, 0.75, 0.9, 1} and τ is well spread over the (0, 1)

interval, that is, {0.05, 0.15, 0.30, 0.5, 0.7, 0.85, 0.95}, but the result is

symmetric with respect to τ = 0.5, so we omit the case of τ > 0.5. In

case of γ, we already know that γ → −1 generates the performance

of the SDT, introduced by Ghosh et al. (2015). So, we have decided

to consider γ = {−10,−5,−1, 0, 1, 5, 10} to explore the performance

of the GSDT.

Till now, we have fixed the model and the sample size to analyze its

performance under fixed alternatives varying over tuning parameters,

but now we are going to thoroughly illustrate the case of contiguous

alternatives to study its performance depending on several models

and different sample sizes. Here, we consider, under alternative H1,n :

µ = µ1 = µ0 + ∆√
n

for ∆ =
√

5, µ0 = 0 and different sample sizes

n = 20, 50, 100. We have studied its performance under this setup for

both σ being known and unknown. The graphical presentation of the

p-values with respect to the given choices of the tuning parameters

and sample size n are given in Figures 7.1–7.24 for fixed alternatives

and in Figures 7.25–7.32 for contiguous alternatives.
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7.5.1 Some Observations

(i) For given values of n and α, if τ is fixed at a very small value

and we observe the variation w.r.t. γ then both level and power

decreases as γ approaches 0. On the other hand, as γ goes far

from 0 on the either side of the real line, there is an increment

in both level and power.

(ii) For given values of n and α, if τ is fixed at a moderate to rel-

atively large value and we observe the variation w.r.t. γ then

both level and power increases as γ approaches 0. On the other

hand, as γ goes far from 0 on the either side of the real line,

there is a decrement in both level and power.

(iii) Keeping the values of n and α fixed and γ being far from 0 on

either side of real line, if we concentrate on how τ varies, we will

observe that both level and power diminishes as τ increases to

0.5, but then rises as τ further increases to 1. Since the pattern

of increment and decrement of level/power are essentially the

same on either side of τ = 0.5, we have omitted the observation

for the τ > 0.5 case. But this change w.r.t. τ is almost negligible

when γ approaches 0.

(iv) If the values of n, γ and τ are fixed and we look at the common

parameter of the SDT, the DPDT and the GSDT, that is, α, we

can then observe that small to moderately large α’s are giving

reasonable results.

(v) If the values of α, τ and γ are fixed, then as the sample size

n increases, the empirical level and power exhibit opposing be-

haviour. On one hand, the level decreases, but on the other, the

power increases and this is very much desirable to us.



Chapter 7. Hypotheses Testing using the Extended Bregman Divergence 233

(vi) If we consider a pure model where σ is known to us and n = 100,

then the empirical level almost reaches the nominal level of 0.05

whenever γ ∈ [−1, 1], irrespective of the value of τ .

(vii) Again, for a pure model with σ-known case, the empirical levels

corresponding to τ < 0.1 are significantly greater than the nom-

inal level value of 0.05. Also, if we consider both the pure and

contaminated models and when σ is either known or unknown to

us, then corresponding to τ < 0.1, the empirical power attains

quite high values which must be a consequence of underestimat-

ing the true cut-off values.

(viii) Keeping α fixed, the surface plots, corresponding to various the

pairs of (τ, γ), are gently sloping downwards with the increment

in the sample size n.

(ix) For fixed α, τ , γ and n, the empirical level and power are larger

in the σ-unknown case, as compared to the known case. If we

consider the pure and contaminated model, then the contami-

nated one will give us larger level and smaller power values, as

compared to the pure model. When we consider both fixed and

contiguous alternatives, then in case of the contiguous one, the

values of the power are less.

(x) In case of contiguous alternative, the power remains almost con-

stant whenever γ ∈ [−1, 1] and for varying values of the sample

size n. This picture becomes clearer as τ increases in [0.1, 0.5].

(xi) In case of contiguous alternative, the pattern of change of power

with respect to varying α (keeping remaining parameters fixed)

is slightly different from the case of fixed alternative (mentioned
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in (iii) above). Here, as α increases, the empirical power de-

creases uniformly. The scenarios with respect to varying γ val-

ues (mentioned in (i) and (ii)) and τ (mentioned in (iii)) are

quite similar to the case of fixed alternative.

Based on these observations, we can conclude that for α ∈ [0.1, 0.5],

τ ∈ [0.1, 0.5] and γ ∈ [−1, 1], the empirical level and power are

quite stable – for the pure model, the powers are found to be quite

satisfactory and competitive with SDTs and DPDTs and the sizes

are quite close to the nominal level 0.05, even more closer than the

class of SDTs and DPDTs. On the other hand, for the contaminated

model, there are many members of the GSDTs within this region

which give more robust size along with almost the same power as

generated by the ‘best’ SDTs or DPDTs. Therefore, our preferable

best region is approximately a cuboid with α ∈ [0.1, 0.5], τ ∈ [0.1, 0.5]

and γ ∈ [−1, 1], in the sense that it expands the choice of robust tests

lying outside the class of DPDTs or SDTs, which maintain levels close

to the nominal one with high power (in pure model) and show robust

characteristics in generating size along with satisfactory power in the

presence of contamination.

7.5.2 Comparison Among Some ‘Best’ DPDTs–SDTs–GSDTs

and the LRT

To follow up on the previous discussion, we have further arranged

some specific plots to make a comparison of the DPDTs and the SDTs

belonging to the ‘best’ region (as declared by Basu et al. (2011) and

Ghosh et al.(2015) respectively) with some of the ‘best’ GSDTs in

terms of level and power, by varying over sample sizes which range
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from small (n = 5) to large (n = 100). Moreover, we have taken the

LRT into account for this purpose. We have made a setup of testing

H0 : µ = 0 vs. H1 : µ 6= 0 with both cases of σ being known and

unknown. For studying the observed level, the data have been gen-

erated from the N(0, 1) distribution, whereas, to generate power, we

have taken the sample from the N(0.5, 1) population. In either case,

the level of significance is 0.05. This pure model scenario has been

constructed for efficiency purposes, but to illustrate the robustness,

we need to consider the presence of contamination – the same tests

are to be repeated under the mixture of contaminated sample obser-

vations taken from N(−2, 1) for studying observed level, whereas, we

are to sample from N(−6, 1) for studying observed power. In both

cases, the proportion of contamination (ε) is 0.1. In such scenarios,

the derived results are given in Figure 7.33 and 7.34.

If we look at the pure model scenario, we can then observe that

all the robust tests, along with the t-test, have almost the same

power, but when we consider the level, it is not so. There are several

combinations among our chosen one, which produce less size than

the t-test; among them, the GSDT with τ = 0.65 and γ = 1 has

the least size for the σ-known case and on the other hand, the same

thing is observed in case of the GSDT with τ = 0.15 and γ = 1

for the σ-unknown case. It is to be noted that both the cases here

belong to the best region that we have mentioned earlier. Overall,

the proposed tests (within the preferred region) appear to be quite

competitive with other tests.

To study the stability of the power, we now enlighten ourselves of

the contaminated case. Here, the GSDTs are quite resistant. The
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scenario with respect to the LRT is totally different under contam-

ination, since its non-robust nature has been revealed – its level is

getting increased with n, whereas, the power is getting decreased.

Here also, for moderate to large sample sizes, all robust tests per-

form quite better with almost the same power and their powers are

significantly larger than that of the t-test, but if we concentrate on

the size of the tests, the conclusion will be same as in the pure case.
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.1: Simulated level of the GSDT for testing H0 : µ = 0 (with σ known)
corresponding to different sample sizes and different triplets (α, τ, γ) (in case of

N(0, 1) model)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.2: (Continued) Simulated level of the GSDT for testing H0 : µ = 0
(with σ known) corresponding to different sample sizes and different triplets

(α, τ, γ) (in case of N(0, 1) model)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.3: Simulated power of the GSDT for testing H1 : µ = 0.5 (with σ
known) corresponding to different sample sizes and different triplets (α, τ, γ) (in

case of N(0.5, 1) model)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.4: (Continued) Simulated power of the GSDT for testing H1 : µ = 0.5
(with σ known) corresponding to different sample sizes and different triplets

(α, τ, γ) (in case of N(0.5, 1) model)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.5: Simulated power of the GSDT for testing H1 : µ = 1.0 (with σ
known) corresponding to different sample sizes and different triplets (α, τ, γ) (in

case of N(1, 1) model)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.6: (Continued) Simulated power of the GSDT for testing H1 : µ = 1.0
(with σ known) corresponding to different sample sizes and different triplets

(α, τ, γ) (in case of N(1, 1) model)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.7: Simulated level of the GSDT for testing H0 : µ = 0 (with σ known)
corresponding to different sample sizes and different triplets (α, τ, γ) (in case of

0.9 N(0, 1) + 0.1 N(5, 1) model)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.8: (Continued) Simulated level of the GSDT for testing H0 : µ = 0
(with σ known) corresponding to different sample sizes and different triplets

(α, τ, γ) (in case of 0.9 N(0, 1) + 0.1 N(5, 1) model)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.9: Simulated power of the GSDT for testing H1 : µ = 0.5 (with σ
known) corresponding to different sample sizes and different triplets (α, τ, γ) (in

case of 0.9 N(0.5, 1) + 0.1 N(−5, 1) model)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.10: (Continued) Simulated power of the GSDT for testing H1 : µ =
0.5 (with σ known) corresponding to different sample sizes and different triplets

(α, τ, γ) (in case of 0.9 N(0.5, 1) + 0.1 N(−5, 1) model)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.11: Simulated power of the GSDT for testing H1 : µ = 1.0 (with σ
known) corresponding to different sample sizes and different triplets (α, τ, γ) (in

case of 0.9 N(1, 1) + 0.1 N(−9, 1) model)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.12: (Continued) Simulated power of the GSDT for testing H1 : µ =
1.0 (with σ known) corresponding to different sample sizes and different triplets

(α, τ, γ) (in case of 0.9 N(1, 1) + 0.1 N(−9, 1) model)3
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.13: Simulated level of the GSDT for testing H0 : µ = 0 (with σ
unknown) corresponding to different sample sizes and different triplets (α, τ, γ)

(in case of N(0, 1) model)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.14: (Continued) Simulated level of the GSDT for testing H0 : µ = 0
(with σ unknown) corresponding to different sample sizes and different triplets

(α, τ, γ) (in case of N(0, 1) model)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.15: Simulated power of the GSDT for testing H1 : µ = 0.5 (with σ
unknown) corresponding to different sample sizes and different triplets (α, τ, γ)

(in case of N(0.5, 1) model)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.16: (Continued) Simulated power of the GSDT for testing H1 :
µ = 0.5 (with σ unknown) corresponding to different sample sizes and different

triplets (α, τ, γ) (in case of N(0.5, 1) model)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.17: Simulated power of the GSDT for testing H1 : µ = 1.0 (with σ
unknown) corresponding to different sample sizes and different triplets (α, τ, γ)

(in case of N(1, 1) model)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.18: (Continued) Simulated power of the GSDT for testing H1 :
µ = 1.0 (with σ unknown) corresponding to different sample sizes and different

triplets (α, τ, γ) (in case of N(1, 1) model)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.19: Simulated level of the GSDT for testing H0 : µ = 0 (with σ
unknown) corresponding to different sample sizes and different triplets (α, τ, γ)

(in case of 0.9 N(0, 1) + 0.1 N(5, 1) model)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.20: (Continued) Simulated level of the GSDT for testing H0 : µ = 0
(with σ unknown) corresponding to different sample sizes and different triplets

(α, τ, γ) (in case of 0.9 N(0, 1) + 0.1 N(5, 1) model)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.21: Simulated power of the GSDT for testing H1 : µ = 0.5 (with σ
unknown) corresponding to different sample sizes and different triplets (α, τ, γ)

(in case of 0.9 N(0.5, 1) + 0.1 N(−5, 1) model)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.22: (Continued) Simulated power of the GSDT for testing H1 :
µ = 0.5 (with σ unknown) corresponding to different sample sizes and different

triplets (α, τ, γ) (in case of 0.9 N(0.5, 1) + 0.1 N(−5, 1) model)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.23: Simulated power of the GSDT for testing H1 : µ = 1.0 (with σ
unknown) corresponding to different sample sizes and different triplets (α, τ, γ)

(in case of 0.9 N(1, 1) + 0.1 N(−9, 1) model)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.24: (Continued) Simulated power of the GSDT for testing H1 :
µ = 1.0 (with σ unknown) corresponding to different sample sizes and different

triplets (α, τ, γ) (in case of 0.9 N(1, 1) + 0.1 N(−9, 1) model)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.25: Simulated power of the GSDT for testing H1 : µ =
√

5√
n

(with σ

known) corresponding to different sample sizes and different triplets (α, τ, γ) (in

case of N(
√

5√
n
, 1) models)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.26: (Continued) Simulated power of the GSDT for testing H1 : µ =√
5√
n

(with σ known) corresponding to different sample sizes and different triplets

(α, τ, γ) (in case of N(
√

5√
n
, 1) models)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.27: Simulated power of the GSDT for testing H1 : µ =
√

5√
n

(with σ

known) corresponding to different sample sizes and different triplets (α, τ, γ) (in

case of 0.9 N(
√

5√
n
, 1) + 0.1 N(−5, 1) models)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.28: (Continued) Simulated power of the GSDT for testing H1 : µ =√
5√
n

(with σ known) corresponding to different sample sizes and different triplets

(α, τ, γ) (in case of 0.9 N(
√

5√
n
, 1) + 0.1 N(−5, 1) models)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.29: Simulated power of the GSDT for testing H1 : µ =
√

5√
n

(with σ

unknown) corresponding to different sample sizes and different triplets (α, τ, γ)

(in case of N(
√

5√
n
, 1) models)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.30: (Continued) Simulated power of the GSDT for testing H1 :

µ =
√

5√
n

(with σ unknown) corresponding to different sample sizes and different

triplets (α, τ, γ) (in case of N(
√

5√
n
, 1) models)
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(a) α = 0.15 and n = 20, 50 and 100

(b) α = 0.25 and n = 20, 50 and 100

(c) α = 0.50 and n = 20, 50 and 100

Figure 7.31: Simulated power of the GSDT for testing H1 : µ =
√

5√
n

(with σ

unknown) corresponding to different sample sizes and different triplets (α, τ, γ)

(in case of 0.9 N(
√

5√
n
, 1) + 0.1 N(−5, 1) models)
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(a) α = 0.75 and n = 20, 50 and 100

(b) α = 0.90 and n = 20, 50 and 100

(c) α = 1.00 and n = 20, 50 and 100

Figure 7.32: (Continued) Simulated power of the GSDT for testing H1 :

µ =
√

5√
n

(with σ unknown) corresponding to different sample sizes and different

triplets (α, τ, γ) (in case of 0.9 N(
√

5√
n
, 1) + 0.1 N(−5, 1) models)
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(a) (σ known) (b) (σ known)

(c) (σ unknown) (d) (σ unknown)

Figure 7.33: Simulated size (plots (A) and (C)) for testing H0 : µ = 0 vs.
H1 : µ 6= 0 for pure data generated from N(0, 1). Plots (B) and (D) represent
the powers of the same test at µ = 0.5 (data generated from N(0.5, 1)). In the

above plots the GSDT is represented by the QDT.
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(a) (σ known) (b) (σ known)

(c) (σ unknown) (d) (σ unknown)

Figure 7.34: Simulated size (plots (A) and (C)) for testing H0 : µ = 0 vs.
H1 : µ 6= 0 for contaminated data generated from 0.9N(0, 1) + 0.1N(−2, 1).
Plots (B) and (D) represent the powers of the same test at µ = 0.5 (data
generated from 0.9N(0.5, 1) + 0.1N(−6, 1)). In the above plots the GSDT is

represented by the QDT.
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7.6 Real Life Data Examples

In this section, we proceed one step further by applying our proposed

GSDTs in real life scenarios. Here, we have considered one discrete

and two continuous datasets – the discrete one follows the Poisson

distribution, whereas the two continuous datasets follow the normal

model.

To study their performance under these models, we have taken the

help of graphical representations, more specifically, 3D surface plots.

Keeping the value of α fixed, these surface plots of p-values are con-

structed with respect to τ and γ. Here, we have chosen two dis-

criminating α’s corresponding to two opposing statistical decisions

for testing any set of hypotheses. If the decision goes in favour of

the rejection of H0 at α0 and against rejection of H0 at α1, where

α1 > α0, then the same decision of the rejection of the null hypothe-

sis holds true for any α < α0 and the opposite decision holds true for

any α > α1. Similarly, if the decision goes against the rejection of H0

at α0 and in favour of the rejection of H0 at α1, where α1 > α0, then

the same decision of the rejection of the null hypothesis holds true

for any α > α1 and the opposite decision holds true for any α < α0.

Here, we will show that the deviation between the p-values for these

two α’s is becoming less in case of the clean data rather than the

full data. Sometimes, the two surface plots of p-values are getting

overlapped with each other, either partially or fully. Now, through

the following three examples, we are going to prove the satisfactory

results of our proposed statistics belonging to the ‘best’ region, as

derived in the previous section.
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7.6.1 One Sample Telephone Line Fault Data

Next, we consider an interesting dataset containing the records on

telephone line faults given in Table 7.1, to picturize the nature of

the GSDT in robust inference. The data, analyzed earlier by Simp-

son (1989), consist of observations on the ordered differences between

the inverse rates of test and control for 14 matched pairs. The data

contain one large outlier and excluding this, the dataset can be well-

modelled by the N(µ, σ2) distribution. First we have considered two

sets of hypotheses for testing µ, namely,

H0 : µ = 0 vs. H1 : µ 6= 0 and H
′

0 : µ = 115 vs. H
′

1 : µ 6= 115.

(7.44)

Figures 7.35 and 7.36 represent the p-values for these two cases, in

case of full data and clean data, respectively. For the σ-known case,

σ is considered to be 132, as suggested by Basu et al. (2013), whereas,

for the σ-unknown case, the MDPDE has been used for a fixed α.

Due to the presence of the outlier, the MLEs are getting distorted

and as a result, if we perform a t-test, then it would fail to reject the

null hypothesis H0 : µ = 0 due to its non-robust nature, whereas,

if we look at Figures 7.35(a) and 7.35(c), we can then see that for

the larger α between the two cases considered, the decision reverses;

more specifically, γ ∈ [−1, 1] and τ < 0.3 strongly reject the null

hypothesis. For the σ-known case, rejection of the null hypothesis

with low p-values is observed when α > 0.01 and the same result is

observed for α > 0.1 in the σ-unknown case. Now, if we consider the

second set of hypotheses, the outlier influenced the t-test to reject

the null. Here also, the opposite picture is very much visible for the

GSDTs in Figures 7.35(b) and 7.35(d). Larger α, along with smaller

τ and γ values, makes the test resistant through the failure to reject
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H0. Next, if we illustrate the case of the clean data, we can then

see that the LRT test or the t-test are giving the desired results for

both the cases, whereas, in case of our proposed test also, the results

coincide for those two discriminating α’s (considered in case of the

full data), which is quite clear from these two almost-overlapping

surfaces. Overall, the robust nature of the GSDTs with a pair of

(τ, γ) belonging to the ‘best’ region is quite clear in the scenarios

corresponding to the two sets of hypotheses.

The presence of outlier in the normal model generally inflates the σ

estimate and as a result, the LRT test does not fulfill the require-

ments of testing. Therefore, in this case, to check the performance

of the GSDTs, we are going to test

H0 : σ = 132 vs. H1 : σ 6= 132, (7.45)

with µ = 115 (known), as suggested by Basu et al. (2013). Keeping

the outlier intact, the data lead to σ̂ = standard deviation of the

full data = 321.94, while after removing this outlier, we get, σ̂ =

standard deviation of clean data = 132.82. Now, we are to check

whether the GSDTs help us to get correct statistical decisions via

testing or not. If we look at Figure 7.37(a), that is, the full data

case, we can see that whenever α > 0.1, the result is in favour of the

failure of rejection of H0 for each pair of (τ, γ) along with the ‘best’

region. On the other hand, from Figure 7.37(b), that is, the clean

data case, the p-values being almost 1 coincide with the statistical

decision of the LRT test, that is, leads to the failure of rejection of

H0.

Lastly, we consider the most practical case, that is, a test on θ =

(µ, σ)T , since both are unknown. Here, we consider the hypothesis
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H0 : (µ, σ)T = (115, 132)T against its omnibus alternative. Here, the

dimension of the parameters is greater than 1 and hence, the pro-

portion of the test statistic Q(α,τ,γ)

(
fθ̂α, fθ0

)
being greater than or

equal to
∑

i λiZ
2
i , with λi’s being the non-zero eigenvalues of matrix

Aα (θ0) J
−1
α (θ0)Kα (θ0) J

−1
α (θ0), has been considered to be the simu-

lated p-value, for a pre-fixed (α, τ, γ). From Figure 7.37(c), it is clear

that α ≥ 0.103 leads to the failure of rejection of H0, irrespective

of any choice of (τ, γ) considered in this study. On the other hand,

if we consider the outlier-deleted case, both surfaces, corresponding

to two different α’s, generate p-values belonging to [0.9, 1] leading us

to the failure to reject H0 and, in fact, these two surfaces are highly

overlapped in Figure 7.37(d).

Table 7.1: Telephone Line Fault Data

Pair 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Difference -988 -135 -78 3 59 83 93 110 189 197 204 229 289 310

7.6.2 One Sample Darwin’s Plant Fertilization Data

Charles Darwin had performed an experiment on 15 pairs of a certain

variety of plants, one self-fertilized and the other cross-fertilized, to

justify the claim – whether these two types of plants have different

growth rates. This data set, consisting of 15 pairs of differences in

height of these two types of plants after a specific time period, is

given in Table 7.2. There are two moderate outliers in these data.

Under the assumption of the normal model, an obvious intuition is

to test for

H0 : µ = 0 against H1 : µ 6= 0. (7.46)

Since the two outliers are geometrically well-separated from the rest

of the data, they influence the LRT to fail to reject H0 and if we
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consider tests based on the GSD class, we can then observe that the

two-sided p-values (in Figure 7.38) are quite different for the two sur-

faces corresponding to two α’s in case of the full data. However, the

opposite scenario can be observed in case of the clean data. More-

over, if we consider larger α values, then irrespective of the values

of τ and γ, the two surfaces fully overlap each other and for each of

these cases, the p-values being extremely low indicates strong rejec-

tion of H0. So, here also, larger value of α helps the test statistic to

retain its robust characteristics for both the cases of full and clean

data.

Table 7.2: Darwin’s Plant Fertilization Data

Pair 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Difference -67 -48 6 8 14 16 23 24 28 29 41 49 56 60 75

7.6.3 Two Sample Drosophila Data

Let us end this section by considering a real life dataset (given in

Table 7.3) consisting of two independent samples on the occasional

spurious counts in Drosophila Assay. These data have been analyzed

by Woodruff et al. (1984), Simpson (1989), Basu et al. (2013), etc.

Some male flies were exposed to a certain degree of chemical and the

remaining were not. The variable of interest is based on the num-

ber of daughter flies carrying a recessive lethal mutation. The first

group is outlier-free, whereas, the second group has two large out-

liers. These variables are assumed to follow the Poisson distribution

with means θ1 (control group) and θ2 (treatment group) respectively.

Here, our specific target is to check the validity of our apprehension

regarding the use of the chemical reducing the lethal mutation and



Chapter 7. Hypotheses Testing using the Extended Bregman Divergence 276

Table 7.3: Frequencies of the number of recessive lethal daughters for the
Drosophila data

0 1 2 3 4 5 6 7
Observed (control) 159 15 3 0 0 0 0 0
Observed (treated) 110 11 5 0 0 0 1 1

hence, the obvious hypotheses will be –

H0 : θ1 ≥ θ2 vs. H1 : θ1 < θ2. (7.47)

Let (1)θ̂α and (2)θ̂α denote the MDPDEs at fixed α for the two groups

respectively, whereas (0)θ̂α denote the common MDPDE at that fixed

α under the null hypothesis. We know that the LRT is the most

popular test in such a scenario. But due to the presence of outliers,

the mean of the treatment group appeared to be larger, which is not

consistent with the remaining part of the data. Hence, we need some

robust test in such a scenario. Therefore, an obvious choice is to

compare the GSDTs of several combinations of α, τ and γ with this

LRT.

We have discussed earlier about two sample test statistics and their

distributions for testing

H
′

0 : θ1 = θ2 vs. H
′

1 : θ1 6= θ2. (7.48)

Furthermore, at any fixed (α, τ, γ), the test statistic for testing the

set of hypotheses given in (7.48) will be of the form

S(α,τ,γ)

(
(1)θ̂α,

(2) θ̂α
)

=
1

λ
(
θ̂α
) 2mn

m+ n
Q(α,τ,γ)

(
f(1)θ̂α

, f(2)θ̂α

)
,

(7.49)

where, λ
(

(0)θ̂α
)

=
Aα((0)θ̂α)Kα((0)θ̂α)

J2
α((0)θ̂α)

. Therefore, to test (H0, H1) in-

stead of (H
′

0, H
′

1), we modify the test statistic given in (7.49) in the
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following way

S∗(α,τ,γ)

(
(1)θ̂α,

(2) θ̂α
)

=

√
S(α,τ,γ)

(
(1)θ̂α,(2) θ̂α

)
sgn

(
(2)θ̂α −(1) θ̂α

)
,

where,

sgn(u) =


−1, if u < 0

0, if u = 0

1, if u > 0.

Since,

S(α,τ,γ)

(
(1)θ̂α,

(2) θ̂α
)

a∼ χ2
1

⇒ S∗(α,τ,γ)

(
(1)θ̂α,

(2) θ̂α
)

a∼ N(0, 1).

Therefore, for testing H0 vs. H1, a right-tailed test based on

S∗(α,τ,γ)

(
(1)θ̂α,

(2) θ̂α
)

would be appropriate. Using this concept, we

have represented p-values corresponding to two different α’s along

with the specified ranges of τ and γ for both the full and the clean

data. Here, in spite of the presence of outliers, for every choice of

(τ, γ), the larger α value will result in the failure to reject H0, while

the smaller α is unable to do so. But for the outlier deleted data, both

kinds of α’s lead to the failure to reject H0 with partially overlapped

surfaces in Figure 7.39. In fact, in case of the full data, it is clear

from the figure that the GSDTs generate insignificant p-values for

any α > 0.1 and hence, they are quite resistant here also.

We have already seen the performance of the GSDTs with respect to

the small α values, but here we will compare it with other popular

tests in the same scenario. For this purpose, keeping α fixed at

0.07, we have analyzed the robustness among the GSDTs, the SDTs

and the DPDTs by a tabular representation of the test statistics,
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Table 7.4: Value of the test statistic S∗(α,τ,γ)

(
(1)θ̂α,

(2) θ̂α

)
and associated p-

values for small α in case of both the full and the clean Drosophila data

Test Full Data Clean Data
Test Statistic P-value Test Statistic P-value

LRT 2.9586 0.0015 1.0986 0.1359
SDT0.07,−0.5 1.6854 0.0460 1.0013 0.1583
SDT0.07,−0.33 1.6647 0.0479 0.9934 0.1602

GSDT0.07,0.15,0 1.6421 0.0503 0.9850 0.1623
GSDT0.07,0.15,1 1.5573 0.0597 0.9518 0.1706

DPD0.07 1.6278 0.0518 0.9791 0.1638

along with the corresponding p-values for both the full and the clean

data in Table 7.4. It is quite obvious that the LRT fails to give a

satisfactory result and the SDT also fails to retain its robustness. The

performance of the DPDT and the GSDTs, though, are satisfactory

to some extent. In case of the outlier-deleted data, all the robust tests

provide satisfactory results here. Lastly, in case of GSDT(0.07,0.15,1),

we get the strongest evidence regarding the failure to reject H0.

Thus, for each real data set, the outliers cannot affect the decision of

our robust tests whenever the triplet of associated tuning parameters

(α, τ, γ) belongs to the ‘best’ region, as mentioned in the previous

section. In case of the outlier-deleted data, smaller values of α lying

outside the ‘best’ region also lead to the satisfactory result, but the

other tuning parameters have to remain within that region in most

of the cases.
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(a) H0 : µ = 0 (σ known) (b) H
′

0 : µ = 115 (σ known)

(c) H0 : µ = 0 (σ unknown) (d) H
′

0 : µ = 115 (σ unknown)

Figure 7.35: Plot of p-values of the GSDT (corresponding to two different α’s)
varying over different pairs of (τ, γ) in case of the Telephone Line Fault data

(with outlier)
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(a) H0 : µ = 0 (σ known) (b) H
′

0 : µ = 115 (σ known)

(c) H0 : µ = 0 (σ unknown) (d) H
′

0 : µ = 115 (σ unknown)

Figure 7.36: Plot of p-values of the GSDT (corresponding to two different α’s)
varying over different pairs of (τ, γ) in case of the Telephone Line Fault data

(without outlier)
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(a) H0 : σ = 132 (µ known) (with
outlier)

(b) H0 : σ = 132, (µ known) (without
outlier)

(c) H0 : (µ, σ)T = (115, 132)T (with
outlier)

(d) H0 : (µ, σ)T = (115, 132)T (with-
out outlier)

Figure 7.37: Plot of p-values of the GSDT (corresponding to two different α’s)
varying over different pairs of (τ, γ) in case of the Telephone Line Fault data

(both with and without outlier)
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(a) H0 : µ = 0 (σ unknown) (with
outlier)

(b) H0 : µ = 0 (σ unknown) (without
outlier)

Figure 7.38: Plot of p-values of the GSDT (corresponding to two different α’s)
varying over different pairs of (τ, γ) in case of the Darwin’s Plant Fertilization

data (both with and without outlier)

(a) H0 : θ1 = θ2 (with outlier) (b) H0 : θ1 = θ2 (without outlier)

Figure 7.39: Plot of p-values of the GSDT (corresponding to two different α’s)
varying over different pairs of (τ, γ) in case of the Drosophila data (both with

and without outlier)
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7.7 Concluding Remarks

Ghosh and Basu (2018) has already demonstrated partially the worth

of the GSD family through its application in the field of robust esti-

mation. In this research, we have completed the remaining portion

by illustrating its performance in the field of robust testing of hy-

potheses. We believe that we have already provided a complete and

appropriate theoretical machinery regarding robust tests, based on

the class of the Generalised Super Divergence (GSD); not only that,

we have concluded it with extensive numerical studies and real data

analyses. These help us to extend the path, generating robust tests

with satisfactory results in terms of level and power, which, besides

the classes of the SDT and the DPDT, can act as a very useful and

robust alternative to our most conventional likelihood ratio test. We

are wrapping up this chapter here with a hope that this GSDT will

be extensively applied, which we will definitely endeavour towards in

future.



Chapter 8

A review on the performance of

the ‘optimal’ tuning parameter

selection algorithm

No research can be an end in itself. Irrespective of the quality, depth

and novelty of the research, there is always the possibility of refining,

improving and extending it. This must also be the case with the

tuning parameter selection issue, which is one of the most important

highlights of this thesis. In this connection some additional words

may be useful at this stage.

After the introduction of the iterated Warwick-Jones (IWJ) tuning

parameter selection algorithm early in this thesis, all real data anal-

ysis based on the DPD or other extended Bregman divergences have

been performed on the basis of this proposed algorithm. While we

have all the theoretical and empirical indicators suggesting the supe-

riority of our proposed algorithm in comparison to all other existing

ones, some discussion is necessary about how good the performance

of these “optimal” estimators is in relation to some reasonable fixed

α procedures, and why we should always select the tuning parameter

284



Chapter 8. A review on the performance of the ‘optimal’ tuning parameter
selection algorithm 285

through this algorithm rather than use a fixed α. At the same time,

a further case could be made to highlight the benefits of the iterative

procedure (IWJ) compared to the one step procedure (OWJ).

While the following discussion will be a general one involving all di-

vergence based estimators within the extended Bregman class (it will,

in fact, be applicable to any robust parameter estimation method

which depends on the choice of a tuning parameter), for streamlin-

ing the subsequent discussion we will use the DPD and the MDPDE

as our platform of illustration. Let us recall that we have proposed

the use of the tuning parameter α in the range [0, 1]. This is not

on the basis of some objective criterion, but on the basis of com-

mon sense, as the choice of larger values of α lead to extremely poor

model efficiencies. It is, of course, true that the there is a trade

off between model efficiency and outlier stability which can be con-

trolled by the tuning parameter α; however, this by itself, cannot

lead to a unique choice of the tuning parameter. In fact, detailed

analysis shows that in call cases (at least in all the models, sample

sizes and contamination types studied by us) the mean square error

(MSE) under contamination does not have a completely monotonic

relation with the tuning parameter. The mean square initially drops

with α under contamination, but at some point it picks up again,

and shows an upward trend thereafter. This must be a consequence

of the somewhat poor efficiency for large α estimators. Thus, while

α = 1 provides the greatest outlier down-weighting among the tun-

ing parameters considered by us, it is not necessarily the estimator

which provides the best performance under contamination, and, to

some extent, leans towards partially down-weighting legitimate ob-

servations also. Moreover, in most data contamination examples that

we have seen, the difference between the robust estimators belonging
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to the range α ∈ [0.5, 1] is not very high. Also notice that Ghosh

and Basu (2013) had suggested that the estimator at α = 0.5 (rather

than at α = 1) be selected as the pilot estimator when implementing

the algorithm of Warwick and Jones (2005). There is also the issue

that in relatively low sample sizes the choice of the empirical in place

of the unknown truth leads to a certain amount of approximation.

To show that the algorithm we are proposing is doing well in both sit-

uations (under pure data and under contamination), it would, there-

fore, be meaningful to compare the performance of the estimator

based on the “optimal tuning parameter” with the estimator based

on the fixed tuning parameter α = 0.5. We cannot realistically ex-

pect to beat the maximum likelihood estimator or estimators based

on very low values of α under pure data, but our aim would be to

make the estimator under study substantially close to the MLE under

pure data compared to the estimator at α = 0.5. In case of contami-

nated data, we hope to make the proposed estimator competitive to

the MDPDE at α = 0.5 and significantly improved over the MLE.

To this end, we performed a simulation study where the Poisson(θ)

model is used. Data are first generated from the pure Poisson(3) dis-

tribution, where the sample size is 50, and the number of replications

is 1000. Subsequently data are generated from the contaminated 0.9

Poisson(3) + 0.1 Poisson(15) distribution, but the estimator (i.e., θ)

is calculated under the Poisson(θ) model. The mean square error

of the estimators are computed against the target value of 3. The

improvement due to the choice of the optimal tuning parameter is

quite apparent (see Table 8.1). Under pure data, this optimal choice

produces an estimator which is practically identical in performance

to the estimator at α = 0.25 (fixed), but is significantly superior in
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Figure 8.1: Histogram of sequence of optimal α values corresponding to three
algorithms under 1000 simulations for pure model.

Figure 8.2: Histogram of sequence of optimal α values corresponding to three
algorithms under 1000 simulations for contaminated model.

performance to the estimator at α = 0.5 (fixed). On the other hand,

under contamination, the optimal α estimator performs as well as

the estimator at α = 0.5, but is substantially better than the estima-

tor at α = 0.25 (and, of course, is far better than the MLE). Similar

results are obtained when the results are repeated with different seed

values.

Table 8.1: Mean Square Error under pure and contaminated Poisson data

α
0 0.25 0.5 Optimum

Pure data 0.0607 0.0633 0.0693 0.0634
Contaminated Data 1.8238 0.1023 0.0838 0.0836



Chapter 8. A review on the performance of the ‘optimal’ tuning parameter
selection algorithm 288

In the above calculations, we have searched for the optimal α is

a fine grid on [0, 0.5]. Similar improvements will be possible for

the MGSBDE with a judicious choice of the ranges of the tuning

parameters. We have provided the estimators based on the optimal

parameters for every data analysis example we have looked at. In

the simulations we have not actually performed the optimal tuning

parameter selection, since there are three tuning parameters for GSB,

and if the complexity of the tuning parameter selection algorithm is

of the order of m for the DPD, in the GSB case it will shoot up to

m3, and over 1000 or 10000 replications the computational burden

would be very high.

Before we end this chapter, we provide a glimpse of the character-

istics of the sequence of the optimal α’s, in 1000 simulations under

both pure and contaminated models, upon which the figures of Ta-

ble 8.1 are based. Furthermore, to make a comparative study, the

corresponding histograms are given in Figures 8.1 and 8.2, which we

describe in the following.

Figure 8.1 provides the histograms for the optimal α values for the

three algorithms under pure data over the 1000 replications. It may

be observed, however, that the peak at α near zero is substantially

shorter for the OWJ algorithm compared to the other two. As the

OWJ algorithm starts from the most robust estimator within the

class and only takes a single step, most of the time the corresponding

optimal tuning parameter remains bounded away from α = 0, even

when the latter is the most desirable solution. Clearly the OWJ

algorithm down-weights more than what is necessary in many (if not

most) cases under pure data. On the other hand, the peaks of the

histograms for the three algorithms under contaminated data (Figure
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8.2) show that all the three algorithms have a very high mode around

the largest value of α as one should expect. The peak of the OWJ

algorithm is slightly higher than the other two with the additional

cases, mostly representing the situations where high down-weighting

was unnecessary.

The contrast between the IWJ and HK algorithms is less stark in

these histograms compared to that between the two Warwick-Jones

algorithms. The peaks (around zero and around the largest value of

α) are approximately the same for both the algorithms, for both pure

and contaminated data. However, even if the difference is slight, in

both cases the peak of the HK algorithm for the largest α in the

considered range is a little smaller than that of the IWJ. Further

scrutiny reveals that each of these cases represent such situations

where data down-weighting would have been appropriate, but the HK

algorithm fails to provide that, indicating its occasional nonrobust

behavior. Exactly the same situation was observed in Figure 3.14

earlier.

In summary, the range of the tuning parameters also need to be

judiciously selected, part of which must be based on experience and

empirical evidence. In practically all the situations we looked at

in our simulations, including the pure data and the contaminated

data cases, the optimally selected tuning parameter would lead to

an estimator which would be among the best performing ones. From

computing cost considerations we have refrained from actually doing

so in all the simulations, but we trust that the simulations that we

have presented help us in understanding how to choose the ranges

of the individual tuning parameters, while the illustration given in
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this section provides a glimpse of how the optimal tuning parameter

leads to a strong performance in all the scenarios.



Chapter 9

Epilogue

In the previous chapters, we have developed an extension to the pop-

ular Bregman divergence and explored its use in the field of robust

estimation and testing - via theoretical approaches, simulation stud-

ies and real life scenarios. We have provided here a sufficient outline

of this extension and the methodology of using it to construct sev-

eral new divergences and to carry out their applications. In the

subsequent portions of our epilogue, we will briefly sketch our future

endeavours to conclude this journey.

9.1 Selection of Tuning Parameters

To introduce this extension, we have first started with the most press-

ing issue, that is, the choice of tuning parameter(s) in Chapter 3,

because we have witnessed several times that despite using several

robust tools (divergences), the analysis has become futile due to the

dependence on tuning parameters and a trade-off between robustness

and efficiency. So, keeping this in mind, we have refined the method-

ology of Warwick-Jones (2005) and combining its concept with the
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Hong and Kim (2001) algorithm, we have developed the iterated

one, which has been mentioned in this chapter. Later, we have im-

plemented it on several i.i.d. discrete and continuous data examples

and basic regression problems and in each case, we have got satisfac-

tory results. In future, it would be worthwhile if one tries to explore

its utility in more realistic problems, i.e, in case of generalized linear

models. Lastly, we would like to mention that we have analyzed its

performance through the DPD and the GSB divergence and one can

also study its performance for other divergences as well.

9.2 Extended Bregman Divergence

Through the consideration of the exponent of arguments, we have

extended the Bregman divergence in Chapter 4. Using this extension,

we have shown that it becomes possible to bring the DPD (indexed by

parameter α), the PD (indexed by parameter λ) and the S-divergence

(indexed by parameters (α, λ)) families under one umbrella along

with the BED (indexed by parameter β) family. In fact, we have

developed a new super family of divergences through this extension

– the GSB divergence (indexed by parameters (α, λ, β)) family. In

future, through several choices of exponents and convex functions,

new divergence families can be discovered and the scope of the usage

of this extension will become much wider.

9.3 Robust Estimation

In Chapters 5 and 6 of this dissertation, we have explored its perfor-

mance through the GSB divergence in the field of robust estimation.



Chapter 9. Epilogue 293

We have come to the conclusion that within the GSB family, there

are some choices of tuning parameters generating estimators which

are quite competitive with respect to the DPD and S-divergence fam-

ilies, but all of them are lying outside these two sub-families. But

most of the choices correspond to β = −4. Hence, an obvious fu-

ture work is to find out whether there is any underlying theoretical

reason for the best choice of β being equal to −4. Furthermore, we

have applied our proposed IWJ algorithm on some i.i.d. examples

through this GSB divergence for estimation purpose. In future, we

shall apply the same for non-i.i.d. cases as well.

9.4 Robust Testing

In this section, we have considered the problem of constructing robust

tests using the extended Bregman divergence. For this purpose, we

have used another superfamily, the Generalized S-Divergence (GSD)

family as our basic tool. Here also, through simulations and i.i.d. real

data examples, we have explored the ‘best’ region providing several

tests with robust size and satisfactory power, which should essentially

lie outside the families of the DPDT and the SDT. We can explore

the performance of the GSDT for non-i.i.d. cases also. Furthermore,

as in the case of robust estimation, we believe that in the field of

hypothesis testing also, the GSB divergence will contribute some

significant tests through some specific choices of (α, λ, β), which we

shall derive in future.
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� Basak, S., Basu, A. and Jones, M. C. (2021). On the

‘optimal’ density power divergence tuning parameter.
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� Basak, S. and Basu, A. (2022). The extended Bregman

divergence and parametric estimation. Statistics,

56:699-718.

∗ Ongoing Papers:

� Basak, S. and Basu, A.. The extended Bregman divergence

and parametric estimation in continuous models.
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extended Bregman divergence.
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la Société Mathématique de France, 67:177–184.

[100] von Mises, R. (1947). On the asymptotic distribution of differ-

entiable statistical functions. The Annals of Mathematical Statis-

tics, 18:309–348.

[101] Wald, A. (1943). Tests of statistical hypotheses concerning sev-

eral parameters when the number of observations is large. Trans-

actions of the American Mathematical Society, 54:426–482.

[102] Wang, Y. G., Lin, X., Zhu, M., and Bai, Z. (2007). Robust

estimation using the Huber function with a data-dependent tun-

ing constant. Journal of Computational and Graphical Statistics,

16:468–481.

[103] Warwick, J. and Jones, M. C. (2005). Choosing a robustness

tuning parameter. Journal of Statistical Computation and Simu-

lation, 75:581–588.

[104] Wiens, D. P. (1987). Robust weighted Cramér-von Mises es-

timators of location, with minimax variance in ε-contamination

neighbourhoods. The Canadian Journal of Statistics, 15:269–278.

[105] Wilks, S. S. (1938). The large-sample distribution of the likeli-

hood ratio for testing composite hypotheses. The Annals of Math-

ematical Statistics, 9:60–62.



Bibliography 307

[106] Wolfowitz, J. (1952). Consistent estimators of the parameters

of a linear structural relation. Scandinavian Actuarial Journal,

3-4:132–151.

[107] Wolfowitz, J. (1953). Estimation by the minimum distance

method. Annals of the Institute of Statistical Mathematics, 5:9–

23.

[108] Wolfowitz, J. (1957). The minimum distance method. The

Annals of Mathematical Statistics, 28:75–88.

[109] Woodruff, R. C., Mason, J. M., Valencia, R., and Zimmering,

S. (1984). Chemical mutagenesis testing in Drosophila: I. Compar-

ison of positive and negative control data for sex-linked recessive

lethal mutations and reciprocal translocations in three laborato-

ries. Environmental Mutagenesis, 6:189–202.

[110] Yohai, V. J. and Maronna, R. A. (1979). Asymptotic behaviour

of M-estimators for the linear model. The Annals of Statistics,

7:258–268.


	Certificate
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	1 Prelude
	1.1 Introduction
	1.2 General Notation
	1.3 Some Well-Known Concepts
	1.3.1 Fisher Information
	1.3.2 First Order Efficiency
	1.3.3 Statistical Functionals
	1.3.4 M-Estimation

	1.4 Parametric Inference under Classical Approach
	1.4.1 Parametric Estimation by Likelihood Method
	1.4.2 Parametric Hypothesis Testing by Likelihood Method

	1.5 Robust Parametric Inference
	1.5.1 Minimum Disparity Estimation
	1.5.1.1 Disparities
	1.5.1.1.1 Specific Cases of Disparities:

	1.5.1.2 Minimum Disparity Estimation under Discrete Models
	1.5.1.3 Minimum Distance Estimation under Continuous Model
	1.5.1.3.1 Beran's Approach
	1.5.1.3.2 Basu-Lindsay Approach


	1.5.2 Hypothesis Testing using Disparities
	1.5.2.1 Testing of Hypothesis under the Discrete Model
	1.5.2.2 Testing of Hypothesis under the Continuous Model


	1.6 The Need for the Optimal Parameter Selection
	1.7 Aim and Layout of the Thesis

	2 A Useful Divergence : The Bregman Divergence
	2.1 Definition
	2.1.1 Use
	2.1.2 Properties
	2.1.3 Some Useful Divergences as Special Cases of the Bregman Divergence
	2.1.3.1 Likelihood Disparity (LD)
	2.1.3.2 Squared L2 Distance
	2.1.3.3 Density Power Divergence (DPD)
	2.1.3.4 B-Exponential Divergence (BED)

	2.1.4 Concluding Remarks


	3 Choosing the `Optimal' Tuning Parameter
	3.1 Introduction
	3.1.1 The Basic Idea in Tuning Parameter Selection
	3.1.2 Warwick-Jones and Hong-Kim Algorithms
	3.1.3 Our Proposal

	3.2 The Three Algorithms : Some Comparisons
	3.3 Applications
	3.3.1 I.I.D. data examples
	3.3.2 No outlier performance

	3.4 Simulation Study
	3.5 Computational Cost
	3.6 Concluding Remarks

	4 The Extended Bregman Divergence
	4.1 Rationale behind this Extension
	4.2 Proposal of the Extension
	4.3 Some Special Cases of the Extended Bregman Divergence
	4.3.1 Power Divergence (PD)
	4.3.2 S-Divergence (SD)
	4.3.3 S-Hellinger Divergence (SHD)

	4.4 Concluding Remarks

	5 A New Extended Bregman Super Family
	5.1 Introduction
	5.2 Generalized S-Bregman (GSB) Divergence
	5.3 Special Cases
	5.4 Discrete Setup
	5.4.1 The Minimum GSB Divergence Estimator
	5.4.2 Estimating Equation
	5.4.3 Asymptotic Properties
	5.4.4 Influence Function
	5.4.5 Simulation Result
	5.4.6 Selection of Optimal Tuning Parameters through Real Data Analysis

	5.5 Conclusion

	6 The Extended Bregman Divergence and Parametric Estimation in Continuous Models
	6.1 Introduction
	6.2 The Generalized S-Bregman (GSB) Divergence
	6.3 The Estimation Scheme under Continuous Models
	6.4 Estimating Equation
	6.5 Influence Function under the Basu-Lindsay Approach
	6.6 Asymptotic Distribution of the Minimum GSB* Divergence Estimator
	6.7 Derivation of Transparent Kernel for the Minimum GSB* Divergence Estimator
	6.8 Simulation Results
	6.9 Real Data Analysis
	6.10 Conclusion

	7 Hypotheses Testing using the Extended Bregman Divergence
	7.1 Introduction
	7.2 GSD as a Special Form of Bregman Divergence
	7.3 Testing Parametric Hypothesis using GSD (Simple Null Hypotheses)
	7.3.1 One Sample Problem
	7.3.1.1 Some Theorems

	7.3.2 Two Sample Problem
	7.3.2.1 Some Theorems

	7.3.3 Robustness Properties of the GSDT (Simple NULL Hypothesis)
	7.3.3.1 Influence Function of the Test
	7.3.3.2 Level and Power Influence Function

	7.3.4 Some Observations

	7.4 Testing Parametric Hypothesis using GSD (Composite Null Hypotheses)
	7.4.1 Influence Function of Restricted MGSDE
	7.4.2 Discrete Setup
	7.4.3 GSDT for Composite Hypotheses
	7.4.4 Robustness Properties of the GSDT (Composite Hypotheses)
	7.4.4.1 Influence Function of the Test
	7.4.4.2 Influence Function of the Level and the Power


	7.5 Simulation Study
	7.5.1 Some Observations
	7.5.2 Comparison Among Some `Best' DPDTs–SDTs–GSDTs and the LRT

	7.6 Real Life Data Examples
	7.6.1 One Sample Telephone Line Fault Data
	7.6.2 One Sample Darwin's Plant Fertilization Data
	7.6.3 Two Sample Drosophila Data

	7.7 Concluding Remarks

	8 A review on the performance of the `optimal' tuning parameter selection algorithm
	9 Epilogue
	9.1 Selection of Tuning Parameters
	9.2 Extended Bregman Divergence
	9.3 Robust Estimation
	9.4 Robust Testing

	A List of Published and Ongoing Papers
	Bibliography

