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SUMMARY. TIn this psper we doscribe s mothod of deriving lncar rolations among

P lons of functions of order statistics. This unifics various adhoo mothods used in deriving

such rolations. This mothod also sota up & one-to-ono correspondonco botween those linear
relations and a set of combinatorial idontitice.

1. INTRODUCTION
If A is a Borol measurable function from x* to 72 and if Wo Wy, ...
are all k-vectors of ordor statistics from a distribution, a relation of the form
CoEMWo) = E C,Eh(V,) is tormed linear if Cy's aro constants, independent
of the undorl_;'ing distribution. Such relations are scattered in tho literaturo,
a large number of them finding wention in David (1981). By specinlizing
(putting b = 1) we got C, = I C, which, in genoral, is a combinatorial
14

idontity. It is remarkable that this combinatorial identity is equivalent to
tho linoar relation in the senso that it can bo used to dorive the relation itself.
We prove this equivalence and exploit it to prove a general theorem on linear
relati A largo ber of such rolations are proved with the associated
combinatorial identitics. This papor, though in spirit is similar to that of
Armnold (1877), goes boyond fi.

The method is essontially using expoctation undor tion in identi-

:
ties involving terms of the form py® py?, ..., p;* whore ‘Z =1
=l

2, Mamv RESULTS
Suppose X has an arbitrary distribution with a continuous ¢.d.f. F(z)
ond A is any Borel measurablo function from 72 to 72 such that E{h(X)}
exists, Let X,,, donote the r-th order statistic in a random sample of size
n from the distribution of X. It is well known that

EwEn ) =r(") L M) 1= Fl-raFa).

*Roacarch supportod by C.8.LR. Presontly at Univorsity of Hydorabad.
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Wo will write r  * ) aa a(r, n). Then
E{W(Xy,p)FH(X,,,) (1—F(Xy,,))%)
=a(r, n) | h()Frte=Y(z)(1—F(z))"+>7dF(z)
7

= (a{r, n)fa(r+a, n+a+d)EMZX sa;niasd))s e (2)
where a and b are intogors such that nt-a+b > r+a > 0. (2.1) is the funda-
mental result which we are going to oxploit. In what follow wo assumo that
all series considered aro convergent absolutely and uniformly w.r.t. the para-
meters involved so that oporations on them are justificd.

Theorom 2.1: Let 8 be a subset of Z? (where Z is the set of all inlegers)
with K, a mapping from S to 72 and 8, a real number. Then the following
three slalements are equivalent :

() I Kl bpog®=4,
(a,b)es

Jorall p (0, 1), g=1—p.
(ii) SE(MX,.,)} = (.EMK(a, b)(aflr, n)a(r+-a, n+a+ONEM X rya.pq000))
Jor all r and n such that 0 < r+a € n+a+b.
(iii) « E‘s K(a, b) (a(r, n)]a(r+a, n+a+d)) =4,
ﬁ;r all r and n such that 0 < r+a < nta+bd. for all (a, b) € S.
Proof : (i) ==y (ii) : If(i)is true then
L K{e, b)FY(Xr:a)(1—F(X,, )0 = &

(a,0)€8
I K(a, bk (X, ) F(Xp:n)(1—F(Xy, ) = 8 h(X,.,).
(o, 018

Taking expectation on both sides and using (2.1), we get

(‘.Ea K(a, b)(a(r, n)a(r+a, n+a+b)) E(h(Xria;nsard) = & B{(A(X,.,)}
which is (ii).

(ii) == (iii) : Take (. ) = 1 in (ii) we get (iii).

(ii) == (i) : Allowing r and = to tond to co in such a way that r/n tends
to p, using Stirling’s approximation for factorials it is easy to verify that

(a(r, n)fa(r+a, n+a+b)) tends to pagh

and the result (i) follows.

This complotes tho proof of Theorom 2.1.

Remark 1: (i) gives o rocurrenco rolation between tho expected values
of functions of order statistics whoroas (iii) gives a combinatorial identity.
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Remark 2 : Tho recurrcnco rclations botween tho momonts, moment
gonerating functions, charactoristics functions, and distribution functions
(nontruncated and truncated), whenover thoy exist can bo got by setling h(z)
= z¥, h(x) = exp(tx), h(x) = exp(ilx) and h(s) = Ji o u2), k(2) = I(_u)(2)
La,» (z) rospoctively. From distribution functiona we can pass on to density
functions (whonever thoy exist).

Wo now obtain results basod on joint distribution of two order statistics.
Suppose X, and X, (1 £ r < 8 < n) are r-th and s-th ordor statistics
from o random samplo of size n frora a distribution with a continuous c.d.f
F(z) and A is a Borel moasurable function from 72* to 72. It is well known
that, whonever it exists,
E(h(Xy 0 Xu.0)}
= afr, 8, n) [ Mz, )P {z)(Fly)—F(z)) (1~ F(y)*~*dF(z) dF (y)
<y
where a(r, &, n) =nl/[(r—1)(s—r—1){(n—s)!]. Thon
E{h(Xy,ps Xo, ) Fo(Xy . ) (F(X4,0)=F (X, )2(1—F(X,,,))}
= afr, &, ) [ kz, y)Fr+a-t (z) (Fly)— F(z)+>(1—F(y)yr+e-* dF(2)dF(y)
<y
= (alr, 8, m)fa(r+a, s+a+b, ntatbtc)) E(zria,nsorvser Lorarbinsarbiel)
(2.2)
where @, b and ¢ arointegerssuch that 1  r <e € n, 1  r+a <sta+bd
< ntatb+e.

Theorem 2.2: Let 8 (C Z® (where Z is the sct of all inlegers) with K, a
mapping from 8 to 72 and 8, a real number. Then the following three statements
are equivalend :

O, Z Ko, b, opipips =8, Jor all py 7y, 25 6 0, 15 prprtm =1
(ii) SE{M( Xy, ,, X,:,,))=( E}) K(a,b,¢)(x(r,8,n)]a(r+a, s+e+b, nta+b+c))
(0,0,0)18

E(Mzrioimsartier Xeyayd; niarbye)}

Joralr,o,n, 1 r<s&n 1 rta<statd  ntatdte, for
all (a, b, c)e S,

(iii)( bEm K{a, b, ¢) (ar, 8, n)/a(r+a, s+a+b, n+a+b+te)) =34,

(@,,)0
forall v, 8, 7, 1 € r<e&n 1< r+a<statd < ntatdte,
Jor all (a, b, ¢) 6 8.

Proof of Theorem 2.2 is similar to that of Theorom 2.1,
Al-14
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Genoralization of Theorem 2.2 is now clear. Supposo X, .., X, ., ...,
X, ., aro ri-th, ry-th, ..., rp-th order statisties (1 r < <..<n<n)

from a random sample of size » from a distribution with a continuous o.d.f
F(z) and A is a Borel measurable function from 7% to 7. It is well known
that, whenever it exists,

E{KX, (R ,.x.- ey X,‘x”)) =a(ry, fgy ooy Ty 1)

E
Joord Mevzs ozl (Flzsy ) —Flzg)) 177 dF(2,)dF(zy)...dF(zy)

where 2, = —00, Zpyy = +00, r, = 0, 1y, = n+1, and
k
a(ry, Ty, voey Ty ) = nl/lII‘(rl“—r,—))l

It is now easy to see that, for integers ay, ¢, ..., ax

) l'I (F(X,

ENX, v +lx,,)—Fur,,:..))")

ryin? '. iy v X,

= (a(ry, Py, «o0r T D)y g, T3+t Ay, ooy T tagtay . Fapy, V)

E(h(xrlho:h!' xr,ﬂaﬂl’N' e X1.+¢o+al+,..+q_1=ﬂ)) (2.3)

where N = ndag+ayt...4ax. If by=a,+a,+...+0; the RHS of (2.3)
may be written as
(alry £y ooy 70 M)falry -, 10+ ooy me+-0ey, N))

E{h( rytbot N r.ﬂ,iN' e ’r,‘wb_'luv)}-
provided 1 € r,4-b, < ry+8, < ... < tbr < N.
We now havo the following generalization of Theorem 2.2.

Theorem 2.3 1 Let 8 (C2%+! (where z is the set of all inlergers) with K, o
mapping from 8 to 72 nnd 8, a real number. Then the following three slalements
are equivalent :

@ “Esk(d) PP=34

]
uhere @ == (a5, @y, ..., ax), p”=pZe p& ... p, and p&(0,1) for alh'w:'lhEopFl-
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(i) SE(M(X, X, o0 oo Xy o)}

it Trgiet U Trgn

ESK(a) (alry, Pao oens 700 )(ry+-Bg, ra+Dy, ooy rE+bey, N))
ae

E(}'(xr,ﬂa:ﬂ’ Xu*bl:N' il Xr."'—,:lv))'

where by=a,+a,+...+a;, N=n+by, and 1 r1+b,<ry+b; <...<rp+be ;<N
(iif) ‘;‘ K(a) (a(ry, Tgs ooy TR0 a(ry+-Dg, r3+by, ooy 1240k, N) =6,
ae

where by=ayt+-ay+...+a5, N=n+by, and 1€ ry 4 by<ry+5,<... < rg+ b K N.
Proof of Theorem 2.3 js similar to that of Theorem 2.1. Romark 1 and
Remnrk 2 with obvious modifications are true for Theorems 2.2 and 2.3 also.
3. APPLIOATIONS

In this section wo present somo applications of each of our theorems of
Scction 2 separately. Wo notico that several known recurrence relations
can be deduced from our results. But combinatorial identitics are not em-
phasized and are treated only cursorily.

3.1. Ezamples for Theorem 1.1. Ezample 1: Let §={(a, b){a >0,
b5 0;a+b=m> 0} and K{a, b) = (’:) Then from binomial distribution
we have
ZSK(a, b)pogd = ,%, (T) pgt =1,

(a.d)e
Henco

EXr} = £ (™) atr, w)atr-+o, ntm)EGEpyai ) o (31)
-0 '8

and 'g (") tatr a8, npmp) = 1
or ,'é [(’:) Jr+5) (’:‘I:)] =r ("') - (32)

for positive integers », m and r such that r § 7.
In particular if wo take m = 1, then § = {(0, 1), (1, 0)} and from (3.1)
we get
E(}(X,.,)) = alr, a)YE}Xy, nu)}alr, n+1)+ER(Zr, s an)}falr+1, n41)]
o (at+1) E(h(X,,,)} = (n+r+1) ERZr, ae} FER (X rariard)} oo (33)
Replacing n by (n—1) in (3.3), wo get
PE(Xr,0or)) = (n—1) E((Er, A7 E(HZ vy,
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which is duoc to Srikantan (1062). Toking MX,,,) = XX« k=1, 2,.., and
writing z, = E(X}.,), wo get
” s = ) e e
which is due to Colo (1951). (3.3) can also bo obtained by using the identity
(Johnson, 1957, 1078),
(%) E=vr =8 [ (YN a-Fetm— (V) R,

whero N and X are positive integers, 1 { K < N.
Ezample 2: Using tho identity 1 = (p~1+41—p-1)m, we have

1= & (V)z0-pmr = £ (7)) (cymmipmo—pies
Thus
EQEr, = E (7 J=1m-ate, lfotr—m, n— o) E(HZrom, ) . (34
form, n, r>0 and m<r.
Agoin starting with 1 = (g'1—¢1)m, wo get
EpEr ) = £ (=1 (7} )eetrmletr-+m—s, n—8)) EHErum senos)(25)
form,n,r > 0and r4m > 6.

(3.4) and (3.5) are the recurrenco relations given by Krishnaish and Rizvi
(1966).

Example 3: Lot S = (o, B)la=m > 0,5 > 0} and s, ) =(*+3 7).

Ve then have from negative binomial distribution,

% Ela, bpig® = i (P pmge =1
(a, DIer 8
Hence
BT ) = B ("F7EY) e, ot m, ntmot ) BT, i)

. (3.6)
for positivo integers m, % and r such that r < 7.

Ezample 4 : From geomotric distribution (s particuler case of
Exsmplo 3 with m = 1) wo have

Eo =1
Thus By, ) = £ (atr, wfalr+1, mo4 1) Erngipuandl)s o (0

for positive intogers r and » such that r 7.
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Ezample 6: From (2.1) wo can write
ERXy FY(Xy,0) (1=F(X, )44} = (o1, t)]alr, »)) E(R(X,,,.)}
n
or 2 CERXr. )}
-1

= é‘ afr (7)) EBEOF D0 -FE ) L (a8)

where Cy is a function of . We now consider the following particular cases,
Taking Cy = 1/(n—r+1) in (3.8), we got

"z_‘:l (1(n—=r+1)) E(i(Xr:n)}
="‘§l amir ( ’: ) [o—r+DERX ) Fr-Y(X,20) (1—F(X, )r-t-++)
- '3_31(1,.)( r’il)E{h(Xl:4)F"‘(Xx::)(1—F(xx:r))"""“)
=% (% ) BP0 1= F(Xy 04
=(0=FE0 [ 5 (7 ) BT P 20— FE )]

= (= F (&, ) EHE ) 20 (7) P00 = F,
Putting ¢ = 1, we get
,% (Un—r+1) EHEr)
= E(MX, (A —Fr(Xy N(—F(X )]}
= E(W(Xy:) "i_lF"-’(Xm))

= 3 BH(Z, )P (X))
Y=l
= ﬁl(a(x, 1)/eeler, 0)) E{h(Xu,u)), using (2.1)

= u"z_lu/u) E{MXq, ) =r’1::l (UPE{R(Zy,)}- . (39)
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Similarly with Cy = 1/r in (3.8), we got
& e, ) = £ B, (310

(3.9) and (3.10) aro duo to Joshi (1973).
Taking Cp = r in (3.8), wo got

'z":lrz(h(xn..))=(nlz)a(n(x,:.))+(n-/2)ag.(x,:,», @y

With Cp = (r—1)4-11, whero 24l = z{z—1),..., (z—d+1), we then
have from (3.8),

n ¢
El(r—l)l‘-“E(h(X,m)) = (nld)ft) Zlo(d, NER(Xy.p)fr. o (302)
r= L)
whore s(d, k)’s are Stirling numbers of tho first kind defined as
d
214 = ¥ 4(d, k)zt.
k=1

3.2 Ezamples for Theorem 2.2. Ezample 1 : Let S={(a, b, c)|a,b,¢ » 0;
a+d+ec=m > 0} and K(a,b,c)=(m!jalb/cl). Then from trinomial
distribution we have,

Iz K(a, b, c)pipbp3= I Yaldlepiptps=1.
a,d.on8 (e C)PnPgP, {a.d,e8 (m /a ¢ )PIPgP.

Hence
E(Xrip Xospl} = I (mlalblol)alr, s, w)latr+a, a+a+c, n+atbeto)
LRNIL

E{MZria;nictbier Xegaro.nsasdie)) o (313)
In particular if we take m = 1, then § = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
and from (3.13) we get
E("(xr,..- xo:,.» = afr, 8, n) [(E(I'(Xru:nu- Xlﬂ:nﬂ)}/“("l'a; a+1, n41))
HER(Xr,np1 Xazne)Halr, 8 2+ 1) HER(Xr:igs Xeaying)Ya(r, s+1, 2+1))]
= (Yn+1) FEM(Xrorinir Xavains)}+H0—8+DEMXr, ny1s Xs, per)}+-1)
E(h(Xr: 11y Xegrenea))l- o (314)
Taking iz, y) = =fy* and writing phY, = E{X},, X},,} in (3.14) we got
(A1, = ity (0= 8+ D B n i+ o—n)nd e
Govindarajulu (1003) obtained this recurrenco relation for j = k = 1.

Lot
Aln, v, 8) = Py {2r:n S &5 <8o € Zu.n}

= Py {zr:0 € Epr Zgin 2 Eq); Ep <kq.



EXPEOTATIONS OF FUNCTIONS OF ORDER STATISTICS 1
I£h(z, §) = Jiecoy (%) Tjg ) (4), thon
E{h(zeip ze:al} = E Tty @ria) I gy (@)} = Aln, 7, ),

and (3.14) gives
(n+1) A(n, 7, &) = rA(n+1, r+1, s+1)+(s—r) A(n+1, r, 2+1)
+{n—2a41) A(n+1, 1, 8).
which is due to Reias and Ruschendorf (1976).
If h(z, y) = gly—=z), we get from (3.14)
(n+1) E(ﬂ(xun—xr:n)) = rE(g(Xps1:ne1— ,+1:n+1)}
He=1) E(g(Xes1:nir—Xrinra)}
Hn—a+1)E(Q(Xy. na1—Xriana))
Taking g(z) = v and § = r+41, we have

(n+DE(Xri1:a—Xr.0) = rE(X 5. 1= Xrsr:net) H0—=1E) X rp1 nin—Xra01)

+E(Xl+l:n+l—x'm+l)
or

(3+1)E(X pr1:a— X 1) = PE(Xrp2:ns1—Xrsrin)) + (=) E( X iy ni1— Xiingr)
+EX pemit—ZXrstin1 + X1 1— Zrinst)
Lot Xpir = E(Xrsy:a—X,.0), then the above reduces of the form
(A+1)Xn:r = TXnsrirarH = Xns1:rH (XasrirartXnsair)
or (0 Dxnze = (r+DxnpzranHv—r—1xaszn
which is due to Sillitto (1951). Other results of Sillitto (1951) can be easily
deduced from (3.14).

Ezample 2: Let 8 ={(a, b, c}|a » 0, b > 0, ¢ =m > 0} and K(a, b, ¢)
=(a+bd4c—1)!falb)(c—1) 1. We then have from bivariate negative bino-
misl distribution,

I Rebopissi= I [etbte—1) 1jal 31 —D)I] piates=1,
(40,009 (6,5, S

i m=1
{=1
Honce
E(h(Zy:n, Xo:a)} = p l3?'ms[(a+b-l~'=-l) Yalbl{e—1)1]
(a;(;-, 8, n)fa(r+a+e¢, a+a+tc, ntatb+¢)
E{h(Zyrsa:n4048400 Xuyasoinsardic))e o (315)



112 K. BALASUBRAMINIAN AND M, 1. BEG

Ezample 3. From bivariato geometric distribution (a particular case of
Examplo 2 with m = 1) wo havo

a
Z (a+b) Yatblpiptps =1, Ep= 1.
la des =1
Henco

b
E(h(Xr:ny Xo:n)} = s (Gt ) (alr, &, n)ja(r+a, s+a+), ntatbic)

E{h(xndimd‘rbun Xarasainiaidin)) .. (3.16)
3.3 Examples for Theorem 2.3. Example 1: Lot S = {(a,, @y, ..., a)

L m
Gy e ar S 0; 5 ag=m > 0) ond K(@) = .
05, @3 ey @t 3 03 0y = m > 0} and K(a) (ao. o ....ag) Wo then have

from multinomial distribution
2 K(a)pe = 2 (aa,al, u.at) PPty v DEE =1 Z p=1

Honce
E(hX

i Kot o Xppeal)

m
—“s( b o 25 Jatrs 71 e e )falrit by Pk s B, )

12110 SRRV ST TRETD SRTINTY) | e (317)
Ezample 2: A genoralization of negative binomial distribution gives
the identity

® m4r—1 r
% z 1 5% kK ,m _
r=0 °|+.;.+u|-r( r )( ), Gy, ...y Gr )p‘ b P 0 =1

Gy m

x
where p('s are nonnegative and X p;= 1.
=0

Hence
E{hiX,

i’ r.*n' e Xr.!n))
& m4r—1 r
z z
om0 aHayt .ty = ,( r )( @y, g, ..y Oy )(a(r,, o oo 0n )]
ﬂg =am
a(ry+bg, ratby, ..., ret-by_y, NY)

E{MX X

[RINIVD SRS SIS . (328)
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Example 3 : This is a particular case of Examplo 2 and is from a genera-
lization of g tric distribution. This is pot by sctting m = 1. We stato
tho result

X

E(hX Cgtn oo Xppial}

fin

r

-5 z ( 4y, 83, s @

)(d(',. T35 ooy Tk, 1)/
=0 aytarto.dar = &
ag ™

alry b, Tatbus s Tt brcgs N EGAX, 4y poeies Xy o) e (329)

Note: A genoral procedure for gotting certain typo of identities and
recurronce relation for expoctation of functions of order statistics can be given

as follows. e givo it only for ‘ono order’ statistics, but tho goneralization
is obrious.

(i) Whonever we have an identity of the form
L  K(a, b)pogd =éforall pe(0, 1), e (3.20)
(a,d) €8

we can got the recurronco relation
6E(h(x,=_))=( ;L)ESK(a,b)(z(r, n)ja(r+a; nta+b)) B{h(Xriainiapd)} ... (3.21)
4,

(ii) Whenever we suspect  recurrence relation of the form (3.21) we can
settle it by proving (3.20).

Conclusion : All the recurrence relations are essentially ‘linear' in
character. These are got by interchanging the order of summation and
expectation. Such a method obviously will work for conditional expectations
too. Authors of this paper are exploring in dotail conditional expectations
of order statistics in a separate papor.
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