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Notations & Abbreviations

N Set of all Natural numbers.
Zy the set of all non-negative integers.
C Set of all complex numbers.

H,E,E,H,VW Hilbert spaces.

Cfo the linear subspace generated by the single vector fy € H.
[E]r smallest closed linear subspace containing F.

(,) The inner product of a Hilbert space.

0(Q,€) The set of all holomorphic functions on Q C C to €.
0Q) The set of all holomorphic functions on 2 C C to C.
D The open unit disk in the complex plane.

Hy, The reproduncing kernel Hilbert space with kernel k.
Clz] The ring of all polynomials over C.

H?(D) the Hardy space over D

H>(D) The algebra of multipliers of the Hardy space.

T* the adjoint of the operator 7" on a Hilbert space.

I the identity operator on a Hilbert space.

B(H) the algebra of all bounded linear operators on H.






Chapter 1

Introduction

This thesis deals with the merge of a number of operator and function theoretic con-
cepts, namely, reproducing kernels, Aluthge transforms, left invertible operators, com-
pact perturbations of isometries, and invariant subspaces of finite rank perturbations of

isometries. Our study intends to contribute equally to these subjects.

The main contributions of this thesis are:

1. Tridiagonal kernels and left-invertible operators with applications to Aluthge trans-
form: We study left-invertible operators on tridiagonal spaces and present compu-
tational approach to the theory of Aluthge transform. Given scalars a,(# 0) and
b., n > 0, the tridiagonal kernel or band kernel with bandwidth 1 is the positive
definite kernel k£ on the open unit disc D defined by

)
k(z,w) = Z ((an + bnz)z") ((&n + l_)nu?)ﬁ)"> (z,w € D).
n=0
This defines a reproducing kernel Hilbert space Hy (known as tridiagonal space)
of analytic functions on D with {(ay + b,2)2"}5°, as an orthonormal basis. We
consider shift operators M, on Hj and prove that M, is left-invertible if and only
if {|an/an+1|}n>0 is bounded away from zero. We find that, unlike the case of
weighted shifts, Shimorin’s models for left-invertible operators fail to bring to the
foreground the tridiagonal structure of shifts. In fact, the tridiagonal structure of
a kernel k, as above, is preserved under Shimorin model if and only if by = 0 or
that M, is a weighted shift. We prove concrete classification results concerning

invariance of tridiagonality of kernels, Shimorin models, and positive operators.

We also develop a computational approach to Aluthge transforms of shifts. Curi-
ously, in contrast to direct kernel space techniques, often Shimorin models fails to

yield tridiagonal Aluthge transforms of shifts defined on tridiagonal spaces.
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2. Invariant subspaces of analytic perturbations: By analytic perturbations, we re-
fer to shifts that are finite rank perturbations of the form M, + F, where M, is
the unilateral shift and F' is a finite rank operator on the Hardy space over the
open unit disc. Here shift refers to the multiplication operator M, on some an-
alytic reproducing kernel Hilbert space. Here, we first isolate a natural class of
finite rank operators for which the corresponding perturbations are analytic, and
then we present a complete classification of invariant subspaces of those analytic
perturbations. We also exhibit some instructive examples and point out several
distinctive properties (like cyclicity, essential normality, hyponormality, etc.) of

analytic perturbations.

3. Tridiagonal shifts as compact + isometry: We consider the tridiagonal kernel k£ on
D as above. Denote by M, the multiplication operator on the reproducing kernel
Hilbert space corresponding to the kernel k. Assume that M, is left-invertible.
We prove that M, = compact + isometry if and only if

bn bn+1

an an+1

‘*)0,

and
(279}

‘—>1.
An+1

4. Left-invertibility of rank-one perturbations: For each isometry V acting on some
Hilbert space and a pair of vectors f and ¢ in the same Hilbert space, we associate

a nonnegative number ¢(V; f, g) defined by

c(Vif.g) = (IF12 = IV AP gl + 1+ (V" £, 9) .

We prove that the rank-one perturbation V + f ® g is left-invertible if and only if

c(V; f,g) # 0.

We also consider examples of rank-one perturbations of isometries that are shift
on some Hilbert space of analytic functions. Here, shift refers to the operator of
multiplication by the coordinate function z. Finally, we examine D + f ® g, where
D is a diagonal operator with nonzero diagonal entries and f and g are vectors
with nonzero Fourier coefficients. We prove that D + f ® g is left-invertible if and
only if D + f ® g is invertible.

In this thesis, all Hilbert spaces will be separable and over C. Given Hilbert spaces
H and K, B(H,K) will denote the space of all bounded linear operators from H to K.
We will simply write B(#) whenever H = K.

Let us now elaborate on the above content chapter-wise. This thesis contains four

independent but closely related chapters (excluding the preliminary chapter):
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Chapter 3: Tridiagonal kernels and left-invertible operators with applications to Aluthge

transform.

The theory of left-invertible weighted shifts or multiplication operators M, on “di-
agonal” reproducing kernel Hilbert spaces is one of the most useful in operator theory,
function theory, and operator algebras (see the classic by Shields [54]). Given a bounded
sequence of positive real numbers w = {wy }n>0, and an orthonormal basis {e,}n>0 of
an infinite-dimensional Hilbert space H (complex separable), the operator S,, defined
by

Swen = Wpent1 (n>0),

is called a weighted shift with weights {wy, }»n>0. In this case, Sy, is bounded (S,, € B(H)
in short) and ||Sy|| = sup, wy. If the sequence {wy,},>0 is bounded away from zero,
then S, is a left-invertible but non-invertible operator. Note that the multiplication
operator M, on (most of the) diagonal reproducing kernel Hilbert spaces is the function
theoretic counterpart of left-invertible weighted shifts which includes the Dirichlet shift,
the Hardy shift, and the weighted and unweighted Bergman shifts, etc.

The main focus of this chapter (as well as some other parts of this thesis) is to
study shifts on the “next best” concrete analytic kernels, namely, tridiagonal kernels.
This notion was introduced by Adams and McGuire [3] in 2001 (also see the motivating
paper by Adams, McGuire and Paulsen [4]). However, in spite of its natural appearance
and potential applications, far less attention has been paid to the use of tridiagonal
kernels in the aforementioned subjects. On the other hand, Shimorin [56] developed the
idea of analytic models of left-invertible operators at about the same time as Adams
and McGuire, which has been put forth as a key model for left-invertible operators by
a number of researchers [20, 35, 58, 48].

In this chapter we consider the next level of shifts on tridiagonal spaces, namely
left-invertible shifts on tridiagonal spaces. We also discuss the pending and inevitable
comparisons between Shimorin’s analytic models of left-invertible operators and Adams
and McGuire’s theory of left-invertible shifts on tridiagonal spaces. In particular (and
curiously enough), we find that, unlike the case of weighted shifts, Shimorin models fail
to bring to the foreground the tridiagonal structure of shifts. We resolve this dilemma
by presenting a complete classification of tridiagonal kernels that are preserved under

Shimorin models.

We also prove a number of results concerning left-invertible properties of shifts on
tridiagonal spaces, new tridiagonal spaces from the old, classifications of quasinormal
operators, rank-one perturbations of left inverses, a computational approach to Aluthge
transforms of shifts, etc. Again, curiously enough, some of our definite computations
in the setting of tridiagonal kernels verify that the direct reproducing kernel Hilbert
space technique is somewhat more powerful than Shimorin models. We also provide a

family of instructive examples and supporting counterexamples. We believe that some
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of our results and approaches may be of independent interest and may find additional

applications.

To demonstrate the main contribution of this chapter, it is now necessary to dis-
ambiguate central concepts. Needless to say, the theory of reproducing kernel Hilbert
spaces will play a central role in this thesis. Briefly stated, the essential idea of re-
producing kernel Hilbert space [10] is to single out the role of positive definiteness of
inner products, multipliers and bounded point evaluations of function Hilbert spaces.
We denote by D = {z € C : |z| < 1} the open unit disc in C. Let £ be a Hilbert space.
A function k : D x D — B(E) is called an analytic kernel if k is positive definite, that is,

n

> (k(zi, z)ng,mi)e = 0,

i,j=1
for all {z;}I; C D, {m}'; € £ and n € N, and k analytic in the first variable. In
this case there exists a Hilbert space Hj, which we call analytic reproducing kernel
Hilbert space (analytic Hilbert space, in short), of £-valued analytic functions on D such
that {k(-,w)n : w € D,n € &} is a total set in Hy with the reproducing property
(f k(,w)n)u, = (f(w),n)e for all f € H, we D, and n € . The shift operator on Hy,
is the multiplication operator M, (which will be assumed to be bounded) defined by

(M f)(w) =wf(w)  (f € Hp,w e D).

Note that there exist Cinp, € B(E) such that k(z,w) =370 _( Crmnz™w", 2,w € D. We
say that Hy is a diagonal reproducing kernel Hilbert space (and k is a diagonal kernel)
if Crppy = 0 for all |m —n| > 1. We say that k is a tridiagonal kernel (or band kernel
with bandwidth 1) if

Cmn =0 (lm —n| > 2).

In this case, we say that Hy, is a tridiagonal space. Now let {ay}n>0 and {b,},>0 be a

sequences of scalars. In this thesis, we will always assume that a,, # 0, for all n > 0. Set
fn(2) = (an + bpz)2" (n>0).

Assume that {fy, }n>0 is an orthonormal basis of an analytic Hilbert space Hj. Then H;
is a tridiagonal space, as the well known fact from the reproducing kernel theory implies
that

k(z,w) = an(z)m (z,w € D). (1.0.1)
n=0

A linear operator V' on H is an isometry if |V h|| = ||h|| for all h € H, or equivalently

VIV = Iy
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Along this line, left-invertible operators (also known as, by a slight abuse of terminology,
“operators close to an isometry” [56]) are also natural examples of noncompact operators:
T € B(H) is left-invertible if T is bounded below, that is, there exists € > 0 such that
|Th|| > €||h| for all h € H, or equivalently, there exists S € B(#) such that

ST = Iy.

We now turn to Shimorin’s analytic model of left-invertible operators [56], which says
that if T € B(#H) is left-invertible and analytic (that is, N2 T™H = {0}), then there
exists an analytic Hilbert space H(C O(D,W)) such that T and M, on Hj, are unitarily
equivalent, where W = ker T* = H © TH is the wandering subspace of T', and O(D, W)
is the set of W-valued analytic functions on . The Shimorin kernel k is explicit which

involves the Shimorin left inverse
Ly = (T*T)~'T*, (1.0.2)

of T'. The representation of the Shimorin kernel is useful in studying wandering subspaces
of invariant subspaces of weighted shifts [55, 56]. See [38, Chapter 6] and [52] in the
context of the wandering subspace problem, and [48] and the extensive list of references

therein for recent developments and implementations of Shimorin models.

An analytic tridiagonal kernel is a scalar kernel k as in (1.0.1) such that C[z] C Hy,

and
bn

An41

sup
n>0

a .
" ’<oo and limsup ‘<1,

Anp4-1 n>0

(which ensures that M, on H}, is bounded) and | Y |}rn>0 is bounded away from zero.

An analytic Hilbert space is called analytic tridiagonal space if the kernel function is an

analytic tridiagonal kernel.

Now we turn to Aluthge transforms. The notion of Aluthge transforms was intro-
duced by Aluthge [7] in his study of p-hyponormal operators. Let H be a Hilbert space,
T € B(H), and let T' = U|T| be the polar decomposition of T Here, and throughout
this note, |T| = (T *T)% and U is the unique partial isometry such that ker U = ker T'.
The Aluthge transform of T is the bounded linear operator

T =|T|2U|T)=.

The Aluthge transform of T turns T into a more “normal” operator while keeping intact
the basic spectral properties of T' [40]. Evidently, the main difficulty associated with T
is to compute or represent the positive part |T'|. This is certainly not true for weighted

shifts: Since |S,,| = diag(wp, w1, we,...), it follows that Sy = S s> where

Vi = {/iiow1, /i, . }.

Therefore, S,, is also a weighted shift, namely S o



Chapter 1. Introduction

We prove the following set of results:

(a)
(b)

()
(d)

(h)

Weighted shifts behave well under Shimorin’s analytic models.

{] o |}n>0 is bounded away from zero is equivalent to the fact that M, on Hy is

left-invertible.

Representations of Shimorin left inverses of shifts on analytic tridiagonal spaces.

Shimorin kernels do not necessarily preserve the tridiagonal structure of kernels.
However, it does for a kernel k& of the form (1.0.1) if and only if M, on Hy is a
weighted shift or

by = 0.

Classification of positive operators P on a tridiagonal space Hj, such that K (z, w) :=

(Pk(-,w), k(-, z))3, defines a tridiagonal kernel on D. More specifically, if

oo Co1  Co2  Co3
Co1 €11 Ci12 C13
P= ¢y ¢ c c3 |,

Cp3 C13 Ca3 (33

denote the matrix representation of P with respect to the basis {(an + b, 2)2" }n>0

n—1b1bp_1
dzan

of Hy, then the kernel K is tridiagonal if and only if cp, = (—1)

n > 2, and ¢y = (—1)”_"‘_1%7':%_1@”%“ foralll <m <n-—2.

o1,

Suppose M, is non-normal on an analytic tridiagonal space Hj. Denote by Pcy,
the orthogonal projection of Hjy onto Cfy. Then M, is quasinormal if and only if
there exists r > 0 such that

MFM, — MM} = rPgy,.

Computation of M,, where M, is a left-invertible shift on some analytic Hilbert
space Hy. We prove that M., is also a left-invertible shift on some analytic Hilbert
space Hj,. The kernel k can be obtained either via Shimorin’s model, which we
call the Shimorin-Aluthge kernel of M, or by a direct approach, which we call the
standard Aluthge kernel of M,. We prove that if C[z] C Hy C O(D), then Ly,
and Ly; are similar up to the perturbation of an operator of rank at most one.

Moreover, in this setting Shimorin-Aluthge kernels are somewhat more explicit.

We consider truncated spaces (subclass of analytic tridiagonal spaces) in order to
pinpoint more definite results, instructive examples, and counterexamples. The

computational advantage of a truncated space is that it annihilate a rank one
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operator associated with Ly, of the shift M,. As a result, in this case we are able

to prove a complete classification of tridiagonal Shimorin-Aluthge kernels of shifts.

(i) We also comment on the assumptions in the definition of truncated kernels. We
point out, at the other extreme, if one consider a (non-truncated) tridiagonal kernel
k with
bo=b1 =1or by=1,

and all other b;’s are equal to 0, then the standard Aluthge kernel of M, is a
tridiagonal but the Shimorin-Aluthge kernel of M, is not.

We remark that some of the observations outlined in this chapter are based on several
more general results that have an independent interest in broader operator theory and

function theoretic contexts.

Chapter 4: Invariant subspaces of analytic perturbations.

Note that the main aim of perturbation theory is to study (and also compare the
properties of )
S=T+F,

where T is a tractable operator (like unitary, normal, isometry, self-adjoint, etc.) and
F is a finite rank (or compact, Hilbert-Schmidt, Schatten-von Neumann class, etc.)

operator on some Hilbert space.

In this chapter, we propose an analytic approach to perturbation theory, namely, we
study analytic perturbations of the unilateral shift on the Hardy space H?(D). Recall
that the unilateral shift is an isometry on H?(D), which is also the most well-known
example of a non-normal operator on infinite-dimensional Hilbert spaces. From this
point of view (and also as a part of the main motivations), we examine the above-
mentioned problem by replacing the normal operator with the unilateral shift. More
specifically, along with other natural properties, we deal with closed invariant subspaces
of “shift” operators of the form

Sp =M, + F,

where M, denotes the unilateral shift and F is a finite rank operator (of rank < n)
on H?(D). We call a bounded linear operator S acting on a Hilbert space a shift if
S is unitarily equivalent to M, on some analytic Hilbert space, where M, denote the
multiplication operator by the coordinate function z. In this chapter, analytic Hilbert
spaces will refer to reproducing kernel Hilbert spaces of analytic functions on ID. The
unilateral shift M, on H?(D) is a natural example (which is also a model example of

isometry) of shift.

Now the classification of invariant subspaces of the unilateral shift is completely

known, thanks to the classical work of Beurling [15]: A nonzero closed subspace M C
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H?(D) is invariant under M, if and only if there exists an inner function § € H*(D)
such that
M = 0H?*(D).

We use the standard notation H*°(D) to denote the Banach algebra of all bounded

analytic functions on .

In this chapter, we first introduce a class of finite rank operators F' (we call them
n-perturbations) on H?(D) for which the corresponding perturbations S, = M, + F
are shifts (we call them n-shifts). Then we present a complete classification of S,-
invariant closed subspaces of H?(ID). Note again that S, is unitarily equivalent to the

multiplication operator M, on some analytic Hilbert space.
Our central result of this chapter is the following invariant subspace theorem:

Theorem 1.0.1. Let S,, = M, + F on H*(D) be an n-shift, and let M be a nonzero

closed subspace of H*(D). Then M is invariant under S, if and only if there exist an
inner function § € H*(D) and polynomials {p;, q:}1=y C C[z] such that

M = (Cpo @ Cipy & -+ @ Cep_1) ® 2"0H*(D),
where p; = 2'pi — q; for alli=0,...,n—1, and
Snpj € (Cpjp1 ® -+ @ Copp_1) ® 2"0H*(D),

forallj=0,...,n—2, and Sppn—1 = 2"pp—10.

The above classification is based on a result of independent interest:

Theorem 1.0.2. If M is a nonzero closed Sy-invariant subspace of H*(D), then

dim(M © Sy M) = 1.

Clearly, this is a Burling-type property of S,-invariant subspaces.

We remark that a priori examples of n-shifts may seem counter-intuitive because
of the intricate structure of perturbed linear operators. Subsequently, we put special
emphasis on natural examples of n-shifts, and as interesting as it may seem, analytic
spaces corresponding to truncated tridiagonal kernels or band kernels with bandwidth
1 give several natural examples of n-shifts. In the special case when S, is unitarily
equivalent to a shift on an analytic space corresponding to a band truncated kernel with
bandwidth 1, we prove that the invariant subspaces of .S, are also hyperinvariant. Our
proof of this fact follows a classical route: computation of commutants of shifts. In
general, it is a difficult problem to compute the commutant of a shift (even for weighted

shifts). However, in our band truncated kernel case, we are able to explicitly compute
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the commutant of n-shifts:
{S,} ={T, + N : p € H°(D),rankN < n},

where T}, denotes the analytic Toeplitz operator with symbol ¢ € H*°(D), and N admits
an explicit (and restricted) representation. We also present concrete examples of 1-shifts
on tridiagonal kernel spaces with special emphasis on cyclicity of invariant subspaces.

For instance, a simple example of S1-shift brings out the following distinctive properties:

1. [S7,S1] := 5751 — S157 is of finite rank (in particular, S; is essentially normal).
2. Sp is not subnormal (and, more curiously, not even hyponormal).

3. Invariant subspaces of S are cyclic.

We remark that perturbations of concrete operators (with some analytic flavor) have
been also studied in different contexts by other authors. For instance, see [34, 44, 53],
and notably Clark [21].

Chapter 5: Tridiagonal shifts as compact + isometry.

A bounded linear operator T on a Hilbert space H is called semi-Fredholm if the
range space ranl’ is closed and at least one of the spaces kerT' and ker T* is of finite

dimension. If T is semi-Fredholm then
ind(T) = dimker T — dim ker T,

is called the index of T'. We shall always assume that our Hilbert spaces are separable
and over C. The starting point of our present note is the following classification of

compact perturbations of isometries [33, page 191]:

Theorem 1.0.3 (Fillmore, Stampfli, and Williams). Let T' € B(H). Then T = compact
+ isometry if and only if I —T*T is compact and T is semi-Fredholm with ind(T) < 0.

Here we are interested in a quantitative version of the above theorem. For instance,
consider a bounded sequence of non-zero scalars {wy}n>0 and an infinite-dimensional
Hilbert space H with an orthonormal basis {ey }»>0. Then the weighted shift S, defined
by

Sw(en) = wpeni1 (n>0),

is in B(H) with ||Sy || = sup,, |wy|. Let the weight sequence {w,, } be bounded away from
zero. Since ker S, = {0} and ker S} = {ep}, it follows that S,, is semi-Fredholm and
ind(Sy,) = —1. Moreover, using the fact that S} ey = 0 and S} e, = Wp_1ep—1, n > 1, it
follows that

I —S%S, = diag(l — Jwo|*, 1 — |wi]?,...).
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Theorem 5.0.1 then readily implies that

lim |w,|=1 if and only if S,, = compact + isometry. (1.0.3)

n—oo

We note that since in this case the weight sequence is bounded away from zero, S, is

necessarily left-invertible.

Also note that S, is a concrete example of a left-invertible shift on an analytic
Hilbert space. A standard computation now reveals that S,,, under some appropriate
assumption on the weight sequence {wy, }n>0 [54, proposition 7], is unitarily equivalent
to M, on a diagonal space. Therefore (5.0.1) yields a quantitative classification of shifts
on diagonal spaces that are compact perturbations of isometries. This motivates the

following natural question:

QUESTION 1. Is it possible to find a quantitative classification of left-invertible shifts on

analytic Hilbert spaces that are compact perturbations of isometries?

The main purpose of this chapter is to provide an answer to the above question for
the case of M, on tridiagonal spaces. As earlier, we fix sequences of scalars {ay }n>0 and
{bn}n>0 with the assumption that a, # 0, n > 0. We set

fu(2) = (an + bpz)2" (n>0),

and consider the Hilbert space Hy, with {f,}n>0 as an orthonormal basis. Then Hy is a

tridiagonal space corresponding to the tridiagonal kernel

bz w) = fu() @) (5w D).
n=0

We assume that {| " |}n>0 is bounded away from zero and

an n

sup | | < 0o and limsup | | < 1.

n>0 On+1 n>0 Gp41
Recall that the latter two assumptions ensure that M, on H; is bounded, whereas
the first assumption implies that M, is left-invertible. In this case we also call M, a

tridiagonal shift.

The following is the answer to Question 3 for tridiagonal shifts (as well as the main

theorem of this chapter):

Theorem 1.0.4. Let M, be the tridiagonal shift on Hyi. Then M, = compact+ isometry
. . an bi _ bn+1
if and only if ]—anH] — 1 and ‘an 7an+1| — 0.

We also offer a general (but abstract) classification of shifts that are compact per-

turbations of isometries.
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Proposition 1.0.5. Let Hy be an analytic Hilbert space. Suppose the shift M, on Hy,
is left-invertible and of finite index. Define C on Hy by

(ChHw) = {f, (1 = z0)k(;w))y,  (f € Hyp,w e D).

Then M, = compact + isometry if and only if C defines a compact operator on Hy.

Chapter 6: Left-invertibility of rank-one perturbations.

Rank-one operators are the simplest as well as easy to spot among all bounded linear
operators on Hilbert spaces. Indeed, for each pair of nonzero vectors f and ¢ in a Hilbert

space H, one can associate a rank-one operator f ® g € B(H) defined by

(fegh=(hgf (heH).

These are the only operators whose range spaces are one-dimensional. Here B(H) de-
notes the algebra of all bounded linear operators on H. Note that finite-rank operators,
that is, linear sums of rank-one operators are norm dense in the ideal of compact opera-
tors, where one of the most important and natural examples of a noncompact operator is
an isometry. The intent of this chapter is to make a modest contribution to the delicate
structure of rank-one perturbations of bounded linear operators [41]. More specifically,
this chapter aims to introduce some methods for the left-invertibility of rank-one per-
turbations of isometries and, to some extent, diagonal operators. The following is the

central question that interests us:

QUESTION 2. Find necessary and sufficient conditions for left-invertibility of the rank-
one perturbation V + f ® g, where V € B(H) is an isometry or a diagonal operator and

f and g are vectors in H.

The answer to this question is completely known for isometries. Given an isometry
V € B(H) and vectors f,g € H, the perturbation X = V + f ® g is an isometry if
and only if there exist a unit vector h € H and a scalar o of modulus one such that
f=(a—1)h and g = V*h. In other words, a rank-one perturbation X of the isometry
V is an isometry if and only if there exists a unit vector f € H and a scalar « of modulus

one such that
X=V+(a-1)feV"f. (1.0.4)

This result is due to Nakamura [44, 43] (and also see [53]). For more on rank-one
perturbations of isometries and related studies, we refer the reader to [13, 22, 21, 31, 34]
and also [39].

In this chapter, we extend the above idea to a more general setting of left-invertibility
of rank-one perturbations of isometries. In this case, however, left-invertibility of rank-
one perturbations of isometries completely relies on certain real numbers. More specif-

ically, given an isometry V € B(H) and a pair of vectors f and g in H, we associate a
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real number ¢(V; f, g) defined by

c(Vif.g) = (12 = IV IR gl + 1+ (V* £, 9) (1.0.5)
This is the number which precisely determine the left-invertibility of V + f ® g:

Theorem 1.0.6. Let V € B(H) be an isometry, and let f and g be vectors in H. Then
V + f ® g is left-invertible if and only if

c(V; f,9) #0.

Note that since V' is an isometry, we have [|[V*f|| < ||f]|, and hence, the quantity
c(V; f,g) is always nonnegative. Therefore, the condition ¢(V; f,g) # 0 in the above
theorem can be rephrased as saying that ¢(V; f,g) > 0, or equivalently, ||[V*f]| < ||f]|
or 1+ (V*f g) # 0. However, in what follows, we will keep the constant ¢(V; f, g)
in our consideration. Not only ¢(V; f, g) plays a direct role in the proof of the above
theorem but this quantity also appears in the explicit representation of a left inverse of

a left-invertible perturbation.
The following conclusion is a simple variation of the above theorem:

Corollary 1.0.7. Let V € B(H) be an isometry, and let f and g be vectors in H. Then
V 4+ f ® g is not left-invertible if and only if

IV=FE=NIf1l and (V7 f,g) = —1.

The above theorem also provides us with a rich source of natural examples of left-
invertible operators. For instance, let us denote by D the open unit disc in C. Consider
the shift M, on the &-valued Hardy space HZ(D) over D, where £ is a Hilbert space.
Then for any

n € ker M} = & C HA(D),

and nonzero vector g € H2(DD), the rank-one perturbation M, + 1 ® g is left-invertible.
A similar conclusion holds if f,g € H?(D) and

We discuss a follow-up question: Characterizations of shifts that are rank-one perturba-
tions of isometries. Here a shift refers to the multiplication operator M, on some Hilbert
space of analytic functions (that is, a reproducing kernel Hilbert space) on a domain in
C. Note, however, that our analysis will be mostly limited to the level of elementary

examples.

We also study rank-one perturbations of diagonal operators. It is well known that

the structure of rank-one perturbations of diagonal operators is also complicated (cf.
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[6, 31, 32, 39]). Moreover, comparison between perturbations of diagonal operators and
that of isometries is perhaps inevitable if one views diagonals as normal operators and
isometries as one of the best tractable non-normal operators. Here we consider D+ f®g
on some Hilbert space H, where D is a diagonal operator with nonzero diagonal entries
with respect to an orthonormal basis {e,}>2, of H. We also assume that the Fourier

coefficients of f and g with respect to {e,}22, are nonzero. We prove:

Theorem 1.0.8. D + f ® g is left-invertible if and only if D + f ® g is invertible.

We observe that the parameterized spaces considered in the work of Davidson,
Paulsen, Raghupathi and Singh [25] is connected to rank-one perturbations of isome-
tries. We compute ¢(V; f,g) when V + f ® ¢ is an isometry and make some further

comments on rank-one perturbations of diagonal operators.

Finally, we remark that the last two decades have witnessed more intense interest in
the theory of left-invertible operators starting from the work of Shimorin [56]. For in-
stance, see [49] and references therein. For a more recent account of Shimorin’s approach
in the context of analytic model theory, invariant subspaces, and wandering subspaces
in several variables, we refer the reader to Eschmeier [27] (also see [16] as part of the mo-
tivation), Eschmeier and Langendorfer [28], and Eschmeier and Toth [30]. Also see the

monograph by Eschmeier and Putinar [29] for the general framework and motivation.






Chapter 2
Preliminaries

In this chapter, we will present the basic notions that will be used in the following
chapters. In this thesis, all Hilbert spaces will be separable and over C. Given Hilbert
spaces H and K, B(H, K) will denote the space of all bounded linear operators from H
to K. We will simply write B(H) whenever H = K.

2.1 Reproducing Kernel Hilbert spaces

We begin with reproducing kernel Hilbert spaces and some basic operator theory. Briefly
stated, the essential idea of reproducing kernel Hilbert space is to single out the role
of positive definiteness of inner products, multipliers and bounded point evaluations of
function Hilbert spaces. We refer the reader to Aronszajn [10] and the monographs

[6, 26] for reproducing kernels, and the classics [36, 37, 42] for operator theory.

Definition 2.1.1. Let £ be a Hilbert space, and let X be a non-empty set. A function
k:X xX — B(E) is called a reproducing kernel (or simply a kernel) if

m

> (K (2,25, mi)e > 0,
ij=1

forall{z1,....20} C X, {m,...,0m} C & and m > 1.
Reproducing kernels are naturally attached with function Hilbert spaces known as

reproducing kernel Hilbert spaces. Let k be a B(&)-valued kernel function, and let

be the closure of the linear space

{Zk(-,zi)m:zeﬂ, n e & and meN},
i=1

17
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with respect to the inner product
(b, k(- 2)C) = (k(z,w)n, ).

for all z,w € Q and n,{ € £. Then H, is a Hilbert space of £-valued functions on €2 and
Hy = span{k(-,w)n:n € &, w e N}.

Then we have the reproducing property

(fs k(s w)n) = (f(w), n)e,

for all w € Q, f € Hy and n € €. Let Hi be E-valued reproducing kernel Hilbert space
corresponding to a B(E)-valued kernel function k. Given w € 2, consider the evaluation

operator evy, : Hr — £ defined by

evo(f) = flw)  (f € Hk).

It then follows that

k(z,w) = ev, o evy, (z,w € Q)

From now on, we assume that €2 a domain in C. However, we will mostly deal with
Q=D case, where D ={z € C: |z] < 1}.

Definition 2.1.2. The kernel k is said to be analytic if k is analytic in the first variables.
If k is analytic, then we call Hy as an analytic reproducing kernel Hilbert space (or

analytic Hilbert space, in short).

By the definition of kernel functions, if k is analytic, then Hj is a reproducing kernel
Hilbert space of analytic functions on 2. In what follows, we will deal with H g such
that zH; C Hp. In this case

(M:f)(w) =wf(w)  (weQ, feHy.
defines a bounded linear operator M, on Hj.

Definition 2.1.3. The bounded linear operator M, on Hy is called a shift operator (or
simply a shift).

If M, on Hj, is a shift, then it is easy to verify that
M (k (-, w)n) = wk(-,w)n

for all w € Q and n € £. The following is a list of familiar reproducing kernel Hilbert

spaces:
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Example 2.1.4. 1. The Hardy space H*(D) over the open unit disc D is a reproduc-
ing kernel Hilbert space with the Szego kernel

S(z,w) = (1 — zw) ™" (z,w € D).

2. Let a > 1. The wetghted Bergman space Lia(D) 18 a reproducing kernel Hilbert

space corresponding to the weighted Bergman kernel

krz mo)(zw) =1 -20)""%  (z,weD).

3. The Dirichlet space D(D) is the reproducing kernel Hilbert space corresponding to
the Dirichlet kernel

1
kpm)(z,w) =1+ log1 o (z,w € D).

2.2 Multipliers

Let & and & be Hilbert spaces, and let k; : @ x Q — B(&;), i = 1,2, be kernel functions.
A function ¢ : Q — B(&1, &) is said to be a multiplier if

OoHr, C Hi,-
Denote by M(Hg,, Hi,) the set of all multipliers, that is
M(Hk17Hk2) = {90 Q= 8(51752) : (P,chl C Hkg} .

By the closed graph theorem, a multiplier ¢ € M(Hg,, Hi,) defines a bounded linear
operator M, : Hy, — Hy,, where

(M f)(w) = (of)(w) = p(w) f(w),

for all f € Hi, and w € Q. Moreover, if ¢ € M(Hy,, H,), it then follows that

M (ka (- w)n) = p(w) k(- w)n,

for all w € Q and n € E. If k1 = ko, the we simply write M(Hg,, Hi,) as M(Hy,). It is
well known that
M(H*(D)) = H*(D),

where H*°(D) denotes the Banach algebra of all bounded analytic functions on D. On the
other hand, the multiplier algebra M(D(D)) of the Dirichlet space is a proper subalgebra
of H*(D).
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2.3 'Tridiagonal kernels

In this subsection, we study the “next best” concrete analytic kernels (after the diag-
onal kernels), namely, tridiagonal kernels. This notion was introduced by Adams and

McGuire [3] (also see the motivating paper by Adams, McGuire and Paulsen [4]).

Let k: D x D — B(€) be an analytic kernel. Then there exist Cy,,, € B(E) such that

k(z,w) = Z Crnz™w" (z,w € D).

m,n=0

We say that Hy, is a diagonal reproducing kernel Hilbert space (and k is a diagonal kernel)
if
Con =0 (lm —n| >1).

We say that k is a tridiagonal kernel (or band kernel with bandwidth 1) if
Cmn =0 (lm —n| > 2).

In this case, we say that Hy is a tridiagonal space.

Following Adams and McGuire [3], in the following, we construct a large class of
tridiagonal kernels. Let {ay}n>0 and {b,}n>0 be a sequences of scalars. In this thesis,

we will always assume that a,, # 0, for all n > 0. Set
fu(2) = (@n + bp2)z"  (n>0).

Assume that {f,, }n>0 is an orthonormal basis of an analytic Hilbert space Hj. Then H
is a tridiagonal space, as the well known fact from the reproducing kernel theory implies
that

k(z,w) = Z Ful2) fn(w) (z,w € D).
n=0

Moreover, if
bn

An+1

sup ‘ <1,

n>0

a .
= ’ < oo and limsup
An4-1 n>0

then the shift M, is a bounded linear operator on Hy [3, Theorem 5]. If b, = 0 for all
n > 0, then k is a diagonal kernel, and M, on H; is a weighted shift operator.

2.4 Left-invertible operators

Recall that a linear operator V on H is an isometry if ||V h| = ||| for all h € H, or

equivalently
VYV = Iy.
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Along this line, left-invertible operators (also known as, by a slight abuse of terminology,
“operators close to an isometry” [56]) are also natural examples of noncompact operators
(so long as the ambient Hilbert space is infinite dimensional): T' € B(H) is left-invertible
if T is bounded below, that is, there exists € > 0 such that

ITh] = ellhll  (heH),
or equivalently, there exists S € B(H) such that
ST = Iy.

This is also equivalent to the invertibility condition of T*T. Let T € B(H) be a left-
invertible operator. We use the fact that T*T is invertible to see that (T*T)~'T* is a
left inverse of T'. We call

Ly = (T*T)"'T*,

the Shimorin left inverse, to distinguish it from other left inverses of T. Note that
(TLt)?> = TLy = (TL7)*), that is, TLy is an orthogonal projection. Moreover, if
T*f =0 for some f € H, then (I — TLyp)f = f. On the other hand, if (I —TLyp)f = f
for some f € H, then TLrf = 0 and hence T*T Ly f = 0, which implies that T* f = 0.
Therefore, I — T Ly is the orthogonal projection onto ker T, that is

I-TLr = PkerT*-

Now we briefly describe the construction of Shimorin’s analytic models of left-invertible

operators. Following Shimorin, a bounded linear operator X € B(H) is analytic if

ﬁ X"H = {0}
n=0

Note that from the viewpoint of analytic Hilbert spaces:

Lemma 2.4.1. Shifts are always analytic.

Proof. Indeed, let Hi C O(, &), where 2 C C is a domain, and suppose the shift M,
is bounded on Hy. If f € (2, MIHy, then for each n > 0, there exists g, € Hj, such
that f = 2"g,. Since 2 is a domain and f is analytic on 2, we see that f = 0, that is,
220 M2Hy = {0}, =

Let T € B(H) be a bounded below operator. Set

W=kerT* = HOTH,
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and Q={zeC:|z| < T(%}, where r(Lr) is the spectral radius of Ly. Then

)

kr(z,w) = Pw(I — zLy) Y (I — @wLy) " (z,w € Q), (2.4.1)

defines a B(W)-valued analytic kernel k7 : Q x Q — B(W), which we call the Shimorin
kernel of T' (see [56, Corollary 2.14]). We lose no generality by assuming, as we shall
do, that Q = D. If, in addition, T is analytic, then the unitary U : H — H; defined by

o0

(Uf)(z) =D (PwLpf)z"  (f €H,z€D), (2.4.2)

n=0
satisfies UT = M,U [56]. More precisely, we have the following result:

Theorem 2.4.2. Let T € B(H) be an analytic left-invertible operator. Then T on H

and M, on Hy, are unitarily equivalent.

Denote by P the orthogonal projection of ‘H onto W = kerT™. From the above
discussion, it follows that
Py =1y — TLyp.

This equality plays an important role (in the sense of Wold decomposition of left-

invertible operators) in the proof of the above theorem.

2.5 Aluthge transforms

The notion of Aluthge transforms was introduced by Aluthge [7] in his study of p-
hyponormal operators. Let H be a Hilbert space, T' € B(H), and let T = U|T| be the
polar decomposition of 7. Here, and throughout, |T'| = (T *T)% and U is the unique
partial isometry such that ker U = kerT". The Aluthge transform of T is the bounded
linear operator
T =|T|2U|T)=.

The Aluthge transform of T turns T into a more “normal” operator while keeping intact
the basic spectral properties of T' [40]. Evidently, the main difficulty associated with T
is to compute or represent the positive part |T'|. This is certainly not true for weighted

shifts: Since |S,| = diag(ag, a1, as, . ..), it follows that S, = S /a» where

Va = {\/agar, yaias, .. }.

Therefore, Sy, is also a weighted shift, namely S Ja
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2.6 Beurling theorem

Recall that a bounded analytic function § € H>°(D) is said to be inner if
0(z) =1 (z€Tae.)

The celebrated Beurling theorem [15] states: A non-zero closed subspace S of H?(D) is

invariant under M, if and only if there exists an inner function § € H*°(ID) such that
S = H?*(D).

Note also that it follows (or the other way around) in particular from the above repre-
sentation of § that
S§© 28 =0C,

and so

S= & (SO 2S).

m=0
In particular, we have:

(1) S is singly generated, and

(2) SN H>(D) # {0}
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Tridiagonal kernels and
left-invertible operators with
applications to Aluthge

transforms

In this chapter, we study left-invertible shifts on tridiagonal spaces. We also discuss the
pending and inevitable comparisons between Shimorin’s analytic models of left-invertible
operators and Adams and McGuire’s theory of left-invertible shifts on tridiagonal spaces.
We prove that unlike the case of weighted shifts, Shimorin models fail to bring to the
foreground the tridiagonal structure of shifts. We resolve this dilemma by presenting a

complete classification of tridiagonal kernels that are preserved under Shimorin models.

We also prove a number of results concerning left-invertible properties of shifts on
tridiagonal spaces, new tridiagonal spaces from the old, classifications of quasinormal
operators, rank-one perturbations of left inverses, a computational approach to Aluthge
transforms of shifts, etc. Again, curiously enough, some of our definite computations in
the setting of tridiagonal kernels verify that the direct reproducing kernel Hilbert space
technique is somewhat more powerful than Shimorin models. We also provide a family

of instructive examples and supporting counterexamples.

We remark that some of the observations outlined in Subsections 3.6 and 3.7 are based
on several more general results that have an independent interest in broader operator

theory and function theoretic contexts.

25
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3.1 Preparatory results and examples

In this subsection, we set up some definitions, collect some known facts about tridiago-
nal reproducing kernel Hilbert spaces and Shimorin analytic models, and observe some
auxiliary results which are needed throughout the chapter. We also explain the idea of

Shimorin with the example of diagonal kernels (or equivalently, weighted shifts).

We start with tridiagonal spaces. Here we avoid finer technicalities [3] and introduce
only the necessary features of tridiagonal spaces. Let £ be a Hilbert space, k be a B(&)-
valued analytic kernel on D, and let Hy C O(D,E) be the corresponding reproducing
kernel Hilbert space. Then there exists a sequence {Cryp tmn>0 C B(E) such that

k(z,w) = Z Crnz™w" (z,w € D).
m,n=0
Recall that k is a tridiagonal kernel if Cp,y, = 0, Im — n| > 2. We say that Hy is a

tridiagonal space if k is tridiagonal. We now single out two natural tridiagonal spaces.

Definition 3.1.1. A tridiagonal space Hy is called semi-analytic tridiagonal space if
Clz] € Hi € O(D), and there exist scalars {an}n>0 and {by}n>0, an # 0 for all n > 0,
such that

b
sup an ‘ <oo and limsup|— ) <1, (3.1.1)
n>0 ! Ant1 n>0 0n+41
and { fn}n>0 is an orthonormal basis of Hy, where
fn(2) = (an + bpz)2" (n>0). (3.1.2)

Note that the conditions in (3.1.1) ensure that the shift M, is a bounded linear
operator on Hy, [3, Theorem 5]. We refer the reader to [3, Theorem 2] on the containment

of polynomials.

Definition 3.1.2. A semi-analytic tridiagonal space Hy, is said to be analytic tridiagonal

space if the sequence {’a:il |}n>0 is bounded away from zero, that is, there exists € > 0
such that
a
“l>e (n>0). (3.1.3)
An+1

A scalar kernel k is called semi-analytic (analytic) tridiagonal kernel if the corre-
sponding reproducing kernel Hilbert space H, is a semi-analytic (an analytic) tridiagonal

space.

It is important to note that (3.1.3) is essential for left invertibility of M,. As we
will see in Theorem 3.2.5, if H;(D Cl[z]) is a tridiagonal space corresponding to the
orthonormal basis { fy, }n>0 and if {ay, }n>0 and {by, },>0 satisfies the conditions in (3.1.1),
then condition (3.1.3) is equivalent to the left invertibility of M, on Hjy. Also recall that
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the weighted shift S, with weights {ay}n>0 is bounded if and only if sup,,>a, < oc.
In this case, S, is left-invertible if and only if {ay, }n>0 is bounded away from zero (cf.
Proposition 3.1.7). By translating this into the setting of analytic Hilbert spaces [54,
Proposition 7], it is clear that if b, = 0, n > 0, then (3.1.3) is a necessary and sufficient

condition for left invertibility of shifts on diagonal kernels.

Suppose k is a semi-analytic tridiagonal kernel. Note that k(z, w) = Y07 fn(2) fa(w).

Now fix n > 0, and write 2" = sz:o Qm fm for some a,,, € C, m > 0. Then

o
2" = agag + g (m—1bm—1 + mam)z™.

m=1
Thus comparing coefficients, we have ag = a3 = -+ = a1 = 0, and «a,, = ooy as
a;’s are non-zero scalars. Since qp4j—1bn4j—1 + aptjant; = 0, it follows that a,4; =
ntj—1bnij_ —1)7 bpbpy1-bptj— . - .
— Sk Onticl Cand thus agtj = 1) tL0nti=] for all j > 1. This implies
An+j5 an An+41-An+j
m—1
1 < H'— bntj
n __ m j=0 J
2= § :(_1) (?)fwrm (n = 0), (3.1.4)
n m=0 Hj:(] Ap+j+1

where H;:lo Tptj := 1. With this, we now proceed to compute M, [3, Section 3]. Let
n > 0. Then M, f, = a,2""! + b,2"*"2 implies that

a nbn+1 a b an bpi1
M fn = ——frs1+ (bn — &)an = —"fnt1 + Gnpa(—— - ———= 22
An+1 An+1 An+1 Ap+2 Gnt1 Apt2
that is
a
szn - ifn-{-l + an+26nzn+27 (315)
Ap+41
where ) )
a
en = (*n— "H) (n = 0). (3.1.6)
Ap+2 \Qp An+41

Then (3.1.4) implies that

M, f, = (a—")fnﬂ +cn i(—nm (M)fmm (n>0), (3.1.7)

m—1
An+1 m—0 Hj:() CLn+3+j

and hence, with respect to the orthonormal basis { fy}n>0, we have (also see [3, Page
729))
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0 0 0 0

ao
a 0 0 0
Co % 0 0
— —cgb a

[M]=] =22 a2 0 (3.1.8)

cobabs —cibs as

asay as €2 a4

—cobobszby  c1bzbys —cobg c

aszaqas ajgas as 3

The matrix representation of the conjugate of M, is going to be useful in what follows:

f G0 .. —Goby —zobsb
0 & % & e
a _ —&1b
00 2 g aubs
[M]=10o 0 0 2 g (3.1.9)
00 0 0 &

In particular, M, is a weighted shift if ¢, = 0 for all n > 0. Also, by (3.1.6), we have

bnt+1 _ by
a

¢n = 0 if and only if 2= , n > 0. Therefore, we have the following observation:

n+1 - ?n
Lemma 3.1.3. The shift M, on a semi-analytic tridiagonal space Hy, is a weighted shift

if cn =0 for all n > 0, or, equivalently, {S—Z}nzg s a constant sequence.

The proof of the following lemma uses the assumption that C[z] C Hy.

Lemma 3.1.4. If Hy, is a semi-analytic tridiagonal space, then ker M} = Cfy.

Proof. Clearly, (3.1.9) implies that fy € ker M. On the other hand, from C[z] C Hj, we
deduce that f, = M,(a,2""! + b,2") € ranM, for all n > 1, and hence span{f, : n >
1} C ranM,. The result now follows from the fact that Cfy = (span{f, : n > 1})+ D
ker M} .

O

Now we briefly describe the construction of Shimorin’s analytic models of left-invertible
operators. Let H be a Hilbert space, and let T' € B(H). We say that T' is left-invertible
if there exists X € B(H) such that XT = Ij. It is easy to check that this equivalently
means that T is bounded below, which is also equivalent to the invertibility of T%T.

Following Shimorin, a bounded linear operator X € B(H) is analytic if

ﬁ X" = {0} (3.1.10)

n=0

Note that from the viewpoint of analytic Hilbert spaces, shifts are always analytic.
Indeed, let Hyp C O(2,€&), where Q C C is a domain, and suppose the shift M, is
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bounded on Hy. If f € (L, MIHy, then for each n > 0, there exists g, € Hj such

that f = 2"g,. Since  is a domain and f is analytic on §2, we see that f = 0, that is,
M=o MM = {0}.

Now let T € B(H) be a bounded below operator. We call Ly := (T*T)~'T* the
Shimorin left inverse, to distinguish it from other left inverses of T'. Set
W=%kerT*=HOTH,
and Q={zeC:|z| < MTIT)}’ where r(Lr) is the spectral radius of Ly. Then

kr(z,w) = Pw(I — zLp) Y(I — wLy) "y (z,w € ), (3.1.11)

defines a B(W)-valued analytic kernel k7 : Q x Q — B(W), which we call the Shimorin
kernel of T' (see [56, Corollary 2.14]). We lose no generality by assuming, as we shall
do, that Q = ID. If, in addition, T is analytic, then the unitary U : H — H; defined by

o0

Uf)(z) =) _(PWLEf)2"  (f€H,z€D), (3.1.12)

n=0
satisfies UT = M,U [56]. More precisely, we have the following result:

Theorem 3.1.5. Let T' € B(H) be an analytic left-invertible operator. Then T on H

and M, on Hy, are unitarily equivalent.

Denote by Py the orthogonal projection of H onto W = ker T*. It follows that
Py =1y —TLr, (3.1.13)

This plays an important role (in the sense of Wold decomposition of left-invertible op-
erators) in the proof of the above theorem. The following equality will be very useful in

what follows.

Lemma 3.1.6. If T is a left-invertible operator on H, then LyL% = |T|~2.
Proof. This follows from the fact that Ly Lk = (T*T)~YT*T(T*T)~! = (T*T)~*. O

In the case of left-invertible weighted shifts S, it is known that the shift M, on His,,
corresponding to the Shimorin kernel kg, is also a weighted shift (for instance, see [48,
Example 5.2] in the context of bilateral weighted shifts). Nonetheless, we sketch the

proof here for the sake of completeness.

Proposition 3.1.7. Let S, be the weighted shift with weights {an}n>0. If {an}n>0
is bounded away from zero, then S, is left-invertible, and the Shimorin kernel ks, is

diagonal.
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Proof. Let {en}n>0 be an orthonormal basis of a Hilbert space H, and let Spe, =
apent1 for all n > 0. Observe that Sie, = an—1en—1, n > 1, and Skep = 0. Then
W = ker S¥ = Ceg, and S S,e, = a2e, for all n > 0. Since S* S, is a diagonal operator
and {ap }n>0 is bounded away from zero, it follows that S} S, is invertible, and hence
S, is left-invertible. Then the Shimorin left inverse Lg, := (S%S,)~1S% is given by

0 ifn=20
Ls.en=19 | (3.1.14)
o En—1 ifn>1.

Therefore, Lg, is the backward shift, and

0 ifm>n
_ 1 ifm=n (3.1.15)

m e, =
Satn QQ " On—1 €0

1

QAn—1"""Cn—m

en—m 1 m<n,

1

m€n+m for all n Z 0 and m Z 1. In

for all m > 1. Moreover, Lg"e, =

particular, Lg"ep = mem, m > 1, and thus, for each (m,n) # (0,0), we have
clearly
0 ifm=#n
Pngn& LZ’ZGO = 7&

1 .
meo if m =n.

This immediately gives ks, (z,w) = > " (PwL% LG [w)(zw)" for all z,w € D, where
W = Cey. In particular, the Shimorin kernel kg, is a diagonal kernel. Finally, identifying
W with C and setting 8, = 1 n > 1, we get

ag--ap—1"’

kso(zw) =1+ Blz(zw)" (z,w € D).
n=1""
O

Notice in the above, the Shimorin left inverse Lg, is the backward shift corresponding

to the weight sequence {--},>0, that is,

oL 0 o
ag

0o 0 L o
ai

Ls,=10 0 0
0 0 0

In the setting of Proposition 3.1.7, we now turn to the unitary map U : H — Hyg_,
where Hy, € O(D, W), and (Uf)(2) = > ;2o (PwLs f)2" for all f € H and z € D (see
(3.1.12)). Set f,, = Uep, n > 0. Since W = Cey, (3.1.14) yields fo = Uey = Pyey = ep.
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On the other hand, if n > 1, then (3.1.15) implies that

1 i =
.€0 ifm=n

PWLg‘La €n =
0 otherwise,

and hence f,, = /Binz"eo. Therefore {eg} U {[%nz”eo}nzl is the orthonormal basis of Hy_

corresponding to U. Moreover, for each n > 1, we have

1 1 1 1
M, (—2"¢p) = —2"Teg = 2"Meg = ap( z"Heo),

B B Bot1

and hence M, on Hy is also a weighted shift with the same weights {an }n>0.

3.2 Tridiagonal spaces and left-invertibility

The main contribution of this section is the left invertibility and representations of
Shimorin left inverses of shifts on tridiagonal reproducing kernel Hilbert spaces. Recall
that the conditions in (3.1.1) ensures that the shift M, is bounded on the semi-analytic
tridiagonal space Hj. Here we use the remaining condition (3.1.3) to prove that M, is

left-invertible.

Before we state and prove the result, we need to construct a specific bounded linear
operator. The choice of this operator is not accidental, as we will see in Theorem 3.2.4
that it is nothing but the Shimorin left inverse of M,. For each n > 1, set

b by
dy = 2 — =1 (3.2.1)

an an—1

Proposition 3.2.1. Let k be an analytic tridiagonal kernel corresponding to the or-

n

thonormal basis { fn}n>0, where fn(z) = (an + by2)z", n > 0. Then the linear operator

L represented by

0 4 0 0 0
aop
0 d 22 0 0
1 a1
—d1b1 as
] = 0 =hh g @
dibibo —dgbo as . |’
0 azas as d3 as ’
—d1bi1bobs  dababs  —d3bs
0 asa3a4 a3a4 a4 d4

with respect to the orthonormal basis { fn}n>0 defines a bounded linear operator on Hy.
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Proof. For each n > 1, we have clearly d,, = o» — o=t — @ns1 bn _ _an buoi g
Qn An—1 An  An41 An—1 0Aan
hence " "
a a _
|dn‘ < n—i—l’ n n ‘ n—1 )
Qan An+1 an—1 Qnp
. an . an+41
Since {| " |}n>0 is bounded away from zero (see (3.1.3)), we have that sup,>q [“2=| <

oo. This and the second assumption then imply that {d,} is a bounded sequence.

Let S denote the matrix obtained from [L] by deleting all but the superdiagonal elements
of [L]. Similarly, Ly denote the matrix obtained from [L] by deleting all but the diagonal
elements of [L], and in general, assume that L; denote the matrix obtained from [L]| by
deleting all but the i-th subdiagonal of [L], i =0,1,2.... Since

L=5+Y L

i>0

it clearly suffices to prove that S and {L;}i>o are bounded, and S + > ;54 L; is ab-

solutely convergent. Note that [|S]| = sup,,> |a’;:1| < 00. Moreover, our assumption
lim sup,,> | abL | < 1 implies that there exist r < 1 and ng € N such that
bn
‘ <r (n > nog).
an+1
Set
bn
M:SUP{ a’dn‘}
n>1 ‘10n41

Then || L;|] < M for all i = 0, ..., ng, and
[ Li|| < M™0Fp=m0 (4> ng),

from which it follows that

Gn+1
IS+ ILill =sup ==+ Y0 Lall+ Y Il
i>0 nz07 fn 0<i<no i>no+1
< sup an+1 + Z ||L’L” +Mn0+1( Z T,ifno)
n>0! Qn 0<i< ~
<i<ng i>no+1
a r
< sup 27“ + D> il M,
n>0 n 0<i<ng
and completes the proof of the theorem. O

We are now ready to prove that M, is left-invertible.

Theorem 3.2.2. In the setting of Proposition 3.2.1, we have LM, = Iy, .

Proof. We consider the matrix representations of M, and L as in (3.1.8) and Proposition

3.2.1, respectively. Let [L][M,] = (mn)mn>0. Clearly it suffices to prove that au,, =
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Omn- It is easy to see that u, myr = 0 for all £ > 1. Now by (3.1.6), we have

an

dnir (n>0). (3.2.2)

Cn = —
An42

Note that the n-th column, n > 0, of [M.] is the transpose of

O Ay, Cn?__cnbn+2 7c_lyn_n_26nbn+2--'@n_17«_lyn_n_lCnbn+2...bm

0,...,0, -
<Hr1—’ An+1 an+3 an43 - am An43 - Am+1
n+

and the m-th row, m > 0, of [L] is given by

diby - by _odaby by _3dgbg by
O S e

P

a2...am ag...am a/4...a/m
—dm—1bm—1 Am+1
o, ,0,0,...).
am, am

Now, if n < (m — 2), then the u,, (the (m,n)-th entry of [L][M.]) is given by

—n-19n41bpt1- b1 a n—odnt2bpio - b1
O, = (—1)™T" 17l nd m n_4 (—q)ym—n—28nt2ind it 9
Un42 """ 0m Gn+41 Gn43 - Qm

n

(_1)m—n—3 dn+3bn+3 Co bm—l (
An44°°Am an+3 am

bn dm— bm— m—n—
+ ) (2 ()

bpio-- by o bpageby . o byio-- by
+2 2 +dm(_1)m n 2cn +2 1 +CL +1(_1)m n lc +2

n n

and hence, using (3.2.2), we obtain

Gnbps1 - b e, n dpi2bnsa - b
amn:(_l)minildn—i—l +1 1 +(_1) 2(_ dn—H) +2VUn+2 1+

n410n42 * - Am an4-2 Gn43 - Qm

n by dp+3bpsg - by—
(_1)m—n—2(_ a i) ( +2)( +30n+3 1)

+ot

An42 an43 Qpiq - Qm
m—n—2 an, dm—lbn+2 o bm—
-+ (=1) (———dn+1) +
An42 Ap43 - Qm

Cn— (79 dmbpy2 - bm—1 —n— Qan bn+2 by,
_1)ym—n 20 d, + _1ym-n 1/ d,,
- ( an+2 +1) An+43 " am T ( An+2 +1)(an+3 e agn)

1 anbpt1 - bm—1  apbpi2-- by anbpt2 - bm—1
— (_1)m " dn+1 ( + dn+2 dn+3+
Ap4+10n+42 °°° Am Ap420n+43 °°° Am Ap420n43 " Am
anbn—i-Q byt anbn+2 bt anbn—i-Q by
+ dm—l dm - 2
An4+20n+4+3 ** * Am An4+20n+3 *** Am An4-20n+3 Ay,

)
an+3 " Am—1 Gn43 - Gm am n43 - AmOm41

nbn "‘bm— bn bm
_ (_1>mfnfldn+1 a +2 1 ( +1 + (dn+2 + dn+3 R dm—l + dm) _ ) .

Gp420n43 °** Am \ Ant1 Am

Recall from (3.2.1) that d,, = &= — 21 5, > 1. Then

an ap—1’

anbpy2 - by bn bin b by
O = (=1)" "y gy 2 : (( ) B o +1)):o.

Gn420n43 - Am Gp41 Gm Am an+1
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For the case n = m — 1, we have

Chnﬂn_l ::dWl(aﬂ%—l)_+ aﬁ%%l(Cnl_l) :i(anq_l)dnl%—(Mn+1(——ank_1dnﬂ ::0’

m am am am Am+1
and finally, o, = (a;”—;l)(a‘:nﬁ) = 1 completes the proof. O

In view of Theorem 3.2.2, let us point out, in particular (see the discussion following

(3.1.10)), that shifts on analytic tridiagonal spaces are always analytic:

Proposition 3.2.3. If k is an analytic tridiagonal kernel, then M, is an analytic left-

tnvertible operator on Hy.

Now let Hj be an analytic tridiagonal space. Our aim is to compute the Shimorin
left inverse Ly;, = (M}M,)"'M} of M, on Hy. What we prove in fact is that L in
Proposition 3.2.1 is the Shimorin left inverse of M,. First note that

Ly, 2" =2""1 (n>1). (3.2.3)

z

Indeed, Ly 2" = (M}M,) *M}M,z""' = (M;M,)~ (M*M,)z""!. Therefore, Ly, is
the backward shift on Hy, (a well known fact about Shimorin left inverses). On the other
hand, by Lemma 3.1.4 we have Ly, fo = (M}M,)"*M} fo = 0, and hence Ly, fo = 0,

which in particular yields
bo
ap .

Ly 1=

z

(3.2.4)

Let n > 1. Using (3.2.1), we have Ly, fn, = Lz, (02" +b,2" ) = @, 2" 1 +b,2", which

implies

anbp—1 an,

LMZf’rL = In (an—lznil + bn—lzn) + (bn - )Zn =

an—1 an—1 Gn—1

fn—l + dnanzna

and hence Ly, fr = -2 fr 1 + dp(an2™ + b2t — dpbp 2"t By (3.1.4), we have

an—1
o m
a | J
Las, fr = 27 fn_1+dnfn—dn< (_1)m%fn+l+m)'
Gn—1 0 szo On+1+j

This is precisely the left inverse L of M, in Proposition 3.2.1. Whence the next state-

ment:

Theorem 3.2.4. Let Hj be an analytic tridiagonal space. If L is as in Proposition
3.2.1, then the Shimorin left inverse Lys, of M, is given by Ly, = L. In particular,
LMZ fo = 0, and

an > m: bn j
Lszn = Efn—l + dnfn - dn( Z(_Dml_lj()ﬂfn-‘rl-‘rm) (n Z 1)7

m
" m=0 [Tj=0 an+14
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ba _ bnoy for allm > 1. Moreover, the matrix representation of Lys, with

where dp, = p—
n n—

respect to the orthonormal basis { fn}n>0 is given by

a1
0 o 0 0 0
0 d Z 0 0
1 a1
—diby as
[LM ] = 0 a2 d2 az 0
z 0 d1b1bo —daba d aq
asas as 3 as
——d1b1b2b3 d2b2b3 —-d3b3
O aza3a4 a3aq aq d4

an
An+1

Next we verify that the bounded away assumption of {| |}n>0 in (3.1.3) is also a

necessary condition for left-invertible shifts.

Theorem 3.2.5. Let Hj be a semi-analytic tridiagonal space corresponding to the or-
thonormal basis { fn}n>0, where fn(2) = (an + bp2z)2", n > 0. Then M, is left-invertible
if and only if {‘aiL [}n>0 is bounded away from zero, or equivalently, Hy is an analytic
tridiagonal space.

Proof. In view of Theorem 3.2.2 we only need to prove the necessary part. Consider
the Shimorin left inverse Ly, = (M}M,)"'M};. Using the fact that C[z] C Hy, one
can show, along the similar line of computation preceding Theorem 3.2.4 (note that, by
assumption, Ljs. is bounded), that the matrix representation of Ly, with respect to
the orthonormal basis { fy, }n>0 is precisely given by the one in Theorem 3.2.4. Then for

each n > 0, we have

An+41

Mz M) ™ M ey 2 /(M2 M) M fullg, >

i
n

which implies that
an 1

> :
Ani1 ’ (M M) M | 834,

and hence the sequence is bounded away from zero. O

3.3 Tridiagonal Shimorin models

As emphasized already in Proposition 3.1.7 that if k is a diagonal kernel, then kj;, is
also a diagonal kernel. However, as we will see in the example below, Shimorin kernels
are not compatible with tridiagonal kernels. This consequently motivates one to ask:
How to determine whether or not the Shimorin kernel kj;, of a tridiagonal kernel k is
also tridiagonal? We have a complete answer to this question: ks, is tridiagonal if and
only if by = 0 or that M, is a weighted shift on Hj;. This is the main content of this

section.
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Example 3.3.1. Let a, =1 for alln >0, by = %, and let b, =0 for alln > 1. Let Hy

denote the analytic tridiagonal space corresponding to the orthonormal basis {fn}n>0,
where fr, = (an + bpz)2z™ for alln > 0. Since fy =1+ %z and f, = z" for alln > 1, by
(3.1.8), we have

S N= = [a)
o = O O
_ o o O
o O O O

Let an, = 1 for alln > 0, by = %, and let by, = 0 for all n > 1. Let Hy denote
the analytic tridiagonal space corresponding to the orthonormal basis {fn}n>0, where
frn = (an+by2)2" for alln > 0. Since fy = l—i—%z and fp, = 2" for alln > 1, by (3.1.8),

we have

_= O
o = O O
= o O O
o o o O

S N

By Theorem 3.2.4, the Shimorin left inverse Ly, = (M}M,) M} is given by

01 00 0
0 5+ 10 0

Ly.=10 0 01 0
00 00 1

Recall, in this case, that W = C fo. It is easy to check that L, f1 = fo—3 f1, Ly fo=f1.
Ly fr = _%fl + f2, and L} f2 = f3. Then

Ly} fo= —§L it Ly fo= Zfl - ifz + f3,
and hence PWLMZLT\}}Z fo= %PW(LMZfl), as PywLyr, fj =0 for all j # 1. Consequently

. 1
PwLa Ly} fo = Zfo # 0,

which implies that the Shimorin kernel kys,, as defined in (3.1.11), is not a tridiagonal

kernel.

Throughout this section, Hj; will be an analytic tridiagonal space corresponding to
the orthonormal basis {fy}n>0, where f(2) = (an + bp2)2", n > 0. Recall that the



3.3. Tridiagonal Shimorin models 37

Shimorin kernel ks, : D x D — B(W) is given by (see (3.1.11) and also Theorem 3.1.5)
ke, (z,w) = Pw(I — 2La,) NI —wLi, ) (z,w € D).

Here, of course, W = Cfp, the one-dimensional space generated by the vector fy. So one

may regard kjs, as a scalar kernel. We are now ready for the main result of this section.

Theorem 3.3.2. The Shimorin kernel kyr, of M, is tridiagonal if and only if M, on
Hy. is a weighted shift or
bo = 0.

Proof. We split the proof into several steps.

Step 1: We first denote Lj;, = L and
Xonn = PWL™ L™ |y (m,n >0),

for simplicity. First observe that Theorem 3.2.4 implies that L™ fy = 0, m > 1, and
hence, X,,0 =0 = X, = Xom for all m > 1. Then the formal matrix representation of

the Shimorin kernel kjs, is given by

w0 0 0
0 Xi X Xi3 ...
[kar] =10 Xio Xoo Xoz ...|. (3.3.1)
0 Xiz X33 Xs3

Clearly, in view of the above, kjy, is tridiagonal if and only if X,,, fo = 0 for all m,n # 0

and |m —n| > 2.

Step 2: In this step we aim to compute matrix representations of LP and L*P, p > 1, with
respect to the orthonormal basis {f, }>0. The matrix representation of [L] in Theorem

3.2.4 is instructive. It also follows that

0 O 0 0 0
ai d_ —d1by  dibibs  —dibibobs
ag 1 as a2a3 a2a3a4
a 7 —dob dobob
0 F b = T
* a 7. —dz3b .
L]=|0 0 = g L 1. (3.3.2)
0 O 0 % 4
0 O 0 0 i

Here we redo the construction taking into account the general p > 1, and proceed as in

the proof of Theorem 3.2.4. However, the proof is by no means the same and the general
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case is quite involved. Assume that n > 1. We need to consider two cases: n > p and
n < p— 1. Suppose n > p. By (3.2.3) and (3.2.4), we have

LPfy = anLPz" + by LP2" M = 2" 7P 4 b, 2" PHL

which implies

L7 fr = 2 (@ by P (b= by )2 P = )t
An—p an—p an—p
where
dP) = b, — b, (n>p). (3.3.3)
n—p
Hence by (3.1.4)
P Gnp, dgzp) bn—p+1 bn—p+1bn—p+2
L fn: fn—p+ (fn—p-H_ fn—p+2+—fn—p+3_"'>7
An—p An—p+1 An—p+2 an—p+20n—p+3
that is
(p) m—1 4
a d [Ti20 bn—prit
Lpfn = = fn—p + " _1)m< in—l r )fn—p+m+17
Gn—p Gn—p+1 = Hj:O Ap—p+5+2

for all n > p. Here and in what follows, we define Hj_:lo xj = 1.

We now let p =1 and n = 1. Then by Theorem 3.2.4, we have

diby

a dibib
Lfi=—fo+difi+ (——)fa + (—
ao az

a2as3

)f3 4o (3.3.4)

Finally, let 1 <n <p— 1. Then p > 1, and again by (3.2.3) and (3.2.4), we have

— -n — —n—1
Lpfn = Lp(anzn + bnzn+1) =a, 7"+ anp_n_ll = a”<ﬂ)p + b”<ﬂ)p )
ao ao
b \P ! b
and hence LPf, = an<_a—0°) [Z—Z — ﬁ} We set
bn bO
= — — — >1), 3.
= () (3.3.5)
and 5 .
_ p—n—
8P = q, (70) B, (1<n<p-1). (3.3.6)
ag
Then LPf, = ®) and (3.1.4) implies that
(p) o o=1p.
L(fa) = == 3 (0™ () f
ao mz() 70 a4
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forall 1 <n <p-—1. Then

_ 52) o _
0 T a 0 0
2 2
0 _55 )bo £ as 0
@y ) )
LY = |9 Pibobr  _dybi dy” as , (3.3.7)
apalaz a1az az a2z
0 — B bobiby  dVbiby  dTby  d)
apgaiazas ajasas azas3 as
and in general, for each p > 2, we have
- ) (p) b
0 ,351)) ép Bp,1 ap 0 0
e © ) e
0 8" _80 L Bl a7 wil
apail apal (p)aoal al (Czy])
[IP] = |g A7k BPbobr . Blabob dPb A ap
apa1az apa1a2 a0a102 aiaz a2 oz
O o ﬂ%p)boblbg . ép)boblbz . o 6p,1b0b1b2 d;p)blbg _ derle dp+2
apalazas3 apaiaas apai1a2a3 aiazas a2a3 as
(3.3.8)
Hence, for each p > 2, we have
0 0 0 0
-§p) _ B£p)50 _§P)EOI_)1 _ BEP)EOBIT)Q
ao aoal apalaz apa1a2as3
B Bk BPbobi B bobibe
ao aopail apalaz apa1a2a3
L] = B BPbo B ibobi B Bobibs (33.9)
- aop apal apalaz apal1a2as3 U
ap d%pp) _ J;p)gl Jép)l;152
a a ala aiasa.
o B EE
0 Gp+1 Tpt1 _fp+172
al as a2a3
_ J(p%
0 0 Gp+2 p+2
as as

Step 3: We now identify condition on the sequence {Bq(znw)}nzl implied by the require-
ment that X, ;42 = 0, m > 1. Before proceeding further, we record here the following
crucial observation: Suppose B,(Lp ) = 0 for some p and n such that 1 <n <p—1. Then
by (3.3.6), we have

B =0 (¢>p) (3.3.10)
Now assume m > 1. The matrix representation in (3.3.9) implies
* 1 2 2 2 =
Lo = (B R B o 4 B f F Gmiafna). (33.10)
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Observe that, by Theorem 3.2.4, we have

Yfy ifi=1
0 if i # 1.

PwL(fi) =

Let us now assume that m > 2. Then (3.3.8) implies

ﬁ(m)

i fo if1<i<m-—1
PwL™(fi) = % fy  ifi=m (3.3.12)
0 if i >m+ 1.

Since Xy mi2 = P L™L*™ 2|y, this yields

1 =(m m m m

|ag
(3.3.13)
In particular, if m = 1, then we have

Xi3fo = (51 o )fo,
and hence X153 = 0 if and only if 5§3) = 0. By (3.3.13), applied with m = 2 we have

1 /. _
Xosfo = Taol? (554)59 + 554)6@)]00-

|lag

Assume that ﬁfg) = 0. By (3.3.10), we have ﬁ§4) = 0, and, consequently

Xosfo = Bé‘”

a2
’a0|2 fU'

Hence we obtain Xo4 = 0 if and only if 624 = 0. Therefore, if X, ;42 = 0 for all m > 1,
then by induction, it follows that 5y, (m+2) _

from the above computation.

= 0 for all m > 1. The converse also follows

Thus we have proved: X, 42 = 0 for all m > 1 if and only zfﬁ (m+2) _ for all
m > 1.

Step 4: Our aim is to prove the following claim: Suppose X; ;40 =0 foralli=1,...,m,
and m > 1. Then X, =0 foralln=m+3,m+4,..., and m > 1.

To this end, let n = m + j and j > 3. Then the matrix representation in (3.3.9) (or the
equality (3.3.11)) implies

*n 1 >(n >(n >(n _
L o= (B R+ B b+ B St ).
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and then

1n1

*T a\n m dn m 1 S an m
Pl L fo = (2= D0 B BwL™(f)) + T2 BwL™ fu = o 0 B BuL™ (£,
i=1 1=1

since Py L™ f; = 0, i > m, which follows from the matrix representation of L in (3.3.8).
Hence by (3.3.12) (or directly from (3.3.8)), we have

1 a(n m an m aln m R(n
PWL L™ fo = 1o (BB + BB ot BB + B fo

Now note that X;;yo = 0, that is, Bi(i—”) =0,¢=1,...,m, by assumption. Since
i+2<m+jforalli=1,...,m, by (3.3.10), we have

B =gt 0 (i=1,...,m).

Hence Py L™L*" fo = 0, that is, X, m4i = 0, 2 = 3,4, ..., which proves the claim.

Step 5: So far all we have proved is that X,,, = 0 for all |m — n| > 2 if and only if
(m+2) — 0 for all m > 1. Now, by (3.3.6) and (3.3.5), we have

R

where 3, = % — % for all n > 1. Thus 8{""> = 0 for all n > 1 if and only if by = 0 or

By =0 for all n > 1. On the other hand, Lemma 3.1.3 implies that 5, =0 for all n > 1
if and only if M, is a weighted shift.

Finally, by Proposition 3.1.7, we know that if M, is a left-invertible weighted shift, then
the Shimorin kernel is also a diagonal kernel. This completes the proof of Theorem
3.3.2. 0

3.4 Positive operators and tridiagonal kernels

Our aim is to classify positive operators P on a tridiagonal space Hj such that
D X ID) 9 (27 w) ’_> <Pk(‘7w)7k(.7z)>Hk7

is also a tridiagonal kernel. While this problem is of independent interest, the motivation
for our interest in this question also comes from Theorem 3.6.7 (also see the paragraph

preceding Corollary 3.8.2). We start with a simple example.

Example 3.4.1. We consider the same example as in Example 3.3.1. Note that M, is
left-invertible and not a weighted shift with respect to the orthonormal basis { fn}n>0 of
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Hi. Then by Lemma 3.1.6, we have

1 -1 00
1100
IM.| =Ly, Ly, =10 0 10
0 0 01
Let ~ _
a B 00
g v 00
IM.7'=10 0 1 0 :
0 0 01
where [a ﬁ is the positive square root of | | _5% . A straightforward calculation
2 4

shows that § 4+ 3 # 0. Define K : D x D — C by
K(z,w) = (M| 7'k(w), k(- 2)n, (2w eD).
A simple computation then shows that

Q@ .« o _ _
K(z,w)=a+ (5 + A+ (5 +B)z+ (7 +B+7)zw+ ) 2 a",
n>2
that is, K is also a tridiagonal kernel.

The following is a complete classification of positive operators P for which (z,w) —
(PEk(-,w), k(-, 2))3, defines a tridiagonal kernel.

Theorem 3.4.2. Let Hy, be a tridiagonal space corresponding to the orthonormal basis
fn(z) = (an + bp2)2™, n > 0. Let P be a positive operator on Hj with matriz represen-

tation

o0 Co1 Co2  Co3
Col1 C11 C12 Ci13
P= ¢y ci2 e c3 |,

Co3 C13 C23 C33

with respect to the basis { fn}n>0. Then the positive definite scalar kernel K, defined by

K(sz) = <Pk("w)ak('vz)>%k (Z7w € D)7
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18 tridiagonal if and only if

b1 by
con = (—1) o (n>2),
and _ _
b e b
Copny = ()AL o (1<m <n—2).
Am+2 " Ap

Equivalently, K 1is tridiagonal if and only if

B b1 5152 T

00 o1 501 e cCot

co1 c11 C12 —0%012
P=- (%501 C12 C22 o3
Z;i’g Co1 —%512 €23 33

Proof. Note, for each w € D, by (1.0.1), we have k(-,w) =Y °_, Fm(w) frm, and thus

m—

Cnmfn + Z Cmnfn fma

1
n=0

o
Pr(-w) = D _(
m=0
where Z;io Zp = 0. Then

<Pk('7w)ak('az)>7{k = Z fm Z Cnmfn + Z Cmnfn
m=0

where au,, denotes the coefficient of z™w™, m,n > 0. Our interest here is to compute

Qmn, |m —n| > 2. Clearly, apny = @pm, for all m,n > 0, and
Qo = ao(dnC()n + En—lcO,n—l) (n > 2), (3.4.1)
and

Umn = Om (fincmn + En—lcm,n—l) + bm—1 <ancm—1,n + Bn—l@n—l,n—l) (]— <m< n)
(3.4.2)
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bn—l
an

co1, and hence, by (3.4.1) again, we have

Suppose n > 2. By (3.4.1), ag, = 0 if and only if cp, = — co,n—1- In particular, if

|
=

n = 2, then cypo = —

Q

2

17
n—1 H?:l bi Co1
H?:2 a;

Therefore, ag, = 0 for all n > 2 if and only if the above identity hold for all n > 2.

con = (—1) (n >2).

Next we want to consider the case m,n # 0 and |m —n| > 2. Assume that n > 3. Then
(3.4.2) along with (3.4.1) implies

_ - _ . _ T bo
a1 = a1(@ncin+bn—1¢1,n—1) +bo(@ncon +bn-1c0n-1) = a1(@ncin+bn—1¢1n-1)+ ;ann-
Therefore, if ag, = 0 for all n > 3, then ay, = a1(ancin + Bn—lclm,—l)' Hence a1, = 0

if and only if apc1, + En—lcl,n—l = 0, which is equivalent to

_ bn—l
Cin = ———C1,n—-1-
Qn

Therefore, under the assumption that a1, = 0 and n > 4, (3.4.2) along with (3.4.1)

implies

aoy = az(ancan + Bn—ICQ,n—l) + bi(ancin + Bn—lcl,n—l) = az(ancon + Bn—ICQ,n—l)-

bn—l
an

all m,n # 0 and |m—n| > 2, we have that au, = 0 if and only if @nCmn+bn—1¢mn-1 = 0,

Then s, = 0, n > 4, if and only if ¢y, = — c2n—1. Consequently, by induction, for

or equivalently

. br—1
Cmn = —— Cmn—1-
n

Finally, observe that ¢, = (—1)”_'”_1%@”,,”“ forall 1 < m < n — 2. This

completes the proof of the theorem. O

We will return to this in Theorem 3.7.3 and Corollary 3.7.4.

3.5 Quasinormal operators

A bounded linear operator T' € B(#H) is said to be quasinormal if T*T and T commutes,
that is
[T*,T]T =0,

where [T*,T] = T*T — TT* is the commutator of 7. In this section, we present a
complete classification of quasinormality of M, on analytic tridiagonal spaces. Here,

however, we do not need to assume that M, is left-invertible.
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To motivate our result on quasinormality, we first consider the known case of weighted
shifts. Recall that the weighted shift .S, corresponding to the weight sequence (of positive
real numbers) {ay, }n>0 is given by Syen, = apeny1 for all n > 0. Then (see the proof of
Proposition 3.1.7)

SaSaen+1 = aiem_l,
and hence (S:S, — S45%)Ss = 0 if and only if (S%S, — SaS%)Saen = 0 for all n > 0,
which is equivalent to

an<0‘%+1 - 04721) =0,

for all n. Thus, we have proved [37, Problem 139]:

Lemma 3.5.1. The weighted shift Sy, is quasinormal if and only if the weight sequence

{an}n>0 is a constant sequence.

Now we turn to M, on a semi-analytic tridiagonal space Hy. Suppose [M}, M,] =
rPy,, where r is a non-negative real number and Py, denote the orthogonal projection
of H}, onto the one dimensional space Cfo. Then [M}, M,|M, = rPy, M, implies that

([MZ, MIM.) fr. = r Py (2 fn).

Now by (3.1.7) we have
o
2= Bifi
i=n-+1
for some scalar 5; € C, ¢ > n + 1. Note that 8,11 = a:il # 0. This shows that
Py, (2fn) =0, and hence

([M:’Mz]Mz)fn =0 (n > 0)7

that is, M, is quasinormal. Conversely, assume that M, is a non-normal and quasinormal
operator. Then [M}, M,|M, = 0 implies that ranM, C ker[M}, M,], and therefore, by
Lemma 3.1.4, we have

Cfo = ker M D Fan|[M}, M.].

Clearly this implies [M}, M,] = 7Py, for some non-zero scalar r. Then

rll foll® = (r Py for fo)a, = (IMZ, M) fo, fo)r, = Mz foll* — 11MZ foll = || Mz foll?,

as M fo = 0, which implies

M 2
g

1 foll?

Thus, we have proved:

Theorem 3.5.2. Let Hy. be a semi-analytic tridiagonal space. Assume that M, is a non-

normal operator on Hy. Then M, is quasinormal if and only if there exists a positive
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real number r such that
M;M, — M, M} = rPy,,

where Py, denote the orthogonal projection of Hy, onto the one dimensional space Cfy.

In more algebraic terms this result can be formulated as follows: First we recall the

matrix representation of M, (see (3.1.8))

0 0 0 0

ao
o 0 0 0

ai

Co as 0 0

—cob
[MZ] = 72(; 2 Cc1 Zz 0
cobabs —c1b3 as
azaq a4 €2 aq
—cobobszby  c1b3ba —coby c
aszaqas ajgas as 3

For each n > 0, we denote by R, and C, the n-th row and n-th column, respectively,
of [M;]. We then identify each of these column and row vectors with elements in Hy.
Then R,,,C), € Hy, n > 0. Using the matrix representation [M}] (see (3.1.9)) and [M,],
we get

<R07 Rn>7—[k =0,
for all n > 0, and, consequently
(Co, Co)ny, (C1, Co)ny, (C2, Co),
[[M* \ ]} (G0, C)ry (Cr, Cr)my, = (Rus Ray (G2, Cn)ay, — (Ra, R,
2R (G, Ca)yy, (C1, Ca)ayy, — (Ro, Ry, (Co, Ca)yy, — (Ra, Ro)w,
Therefore:

Corollary 3.5.3. Let Hy be a semi-analytic tridiagonal space. Then M, on Hy is
quasinormal if and only if (Co, Co)y, =1 and

<CUvCi>'Hk =0 (Z > 1),

and

<Cn7 Cm)Hk - <Rm7 Rn>Hk = 07

forall1<m <n.

It is easy to see that a quasinormal operator is always subnormal [37]. However,
a complete classification of subnormality of M, on tridiagonal spaces is rather more

subtle and not quite as clear-cut as in the quasinormal situation. In fact the general
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classification of subnormality of M, on tridiagonal spaces is not known (however, see

[2])-

3.6 Aluthge transforms of shifts

Recall that the Aluthge transform of an operator T € B(H) is the bounded linear

operator
T =|T|2U|T)2.

In this section, we prove that the Aluthge transform of a left-invertible shift on an
analytic Hilbert space is again an explicit shift on some analytic Hilbert space. We
present two approaches to this problem, one based on Shimorin’s analytic models of
left-invertible operators and one is based on rather direct reproducing kernel Hilbert

space techniques.

We begin with the following simple fact concerning Aluthge transforms of left-invertible

operators:

Lemma 3.6.1. If T is a left-invertible operator on ‘H, then
~ 1 1
T=|T]2T|T|" >,

and ker T* = |T|_% ker T*. In particular, T is similar to T.

Proof. Indeed, T = |T|2U|T|z = |T|2(U|T|)|T|"2 = |T|2T|T| 2, as T*T is invertible.
The second equality follows from the first. O

Suppose in addition that T is a shift on an analytic Hilbert space. In Theorem 3.6.3
(under an additional assumption that 7" is analytic), and then in Theorem 3.6.7 again,
we prove that T, up to unitary equivalence, is also a shift on an explicit analytic Hilbert

space. In connection with Lemma 3.1.6, we now prove the following:

Proposition 3.6.2. If T is a left-invertible operator on 'H, then the Shimorin left inverse
Lz of the Aluthge transform T is given by

1 _ 1 1 * _ % 1
Ly = |TJ ((Lr|TIT)™ Ly ) |TJ* = |73 ((7*T|T) " T%) T3,
Proof. Note that by Lemma 3.6.1, we have 7T = |T|~2(T*|T'|T)|T| 2. Since T*|T|T
is invertible, it follows that (7*T)~! = \T]%(T*|T\T)*1]T\%. Then

i —1 1, _ 1 G G | 1 " L 1
Ly = (7)™ = (T3 (T*TIT) T3 T3\ T)% = (1|3 (T°7\7) 77" T,
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On the other hand, since T* = |T|? Ly, we have T*|T|T = |T|*Ly|T|T, and hence
(T*T|T)~" = (L |T|T) T2
Therefore, (T*T)~ = |T|2(Ly|T|T)~}|T|~2, which gives
Ly = (T*T) ™% = [T13 (Le|T|T) 1|21 T)2) = |T|2 (L |T|T) " Lr| T2,

and completes the proof. O

Then the above, along with Theorem 3.1.5 and Lemma 3.6.1 implies the following:

Theorem 3.6.3. Let £ be a Hilbert space, and let k : D x D — B(E) be an analytic
kernel. Suppose M, is left-invertible on Hy,. Then the Aluthge transform M, is unitarily
equivalent to the shift M, on H; C O(D,W), where

k(z,w) = Py

(I —2L) NI —wL*) 7Y (z,w € D),

w

and W = ker M} = ]MZ|7% ker M, and
1 1
L= ‘MZ|§((LMZ‘MZIMZ)_lLMz)’MZP-

Definition 3.6.4. The kernel k is called the Shimorin-Aluthge kernel of M.

Under some additional assumptions on scalar-valued analytic kernels, we now prove
that, up to similarity and a perturbation of an operator of rank at most one, Ly; and
Ly, are the same. As far as concrete examples are concerned, these assumptions are

indispensable and natural (cf. Lemma 3.1.4).

Theorem 3.6.5. Let k: D x D — C be an analytic kernel, Clz] C Hy, and let {fn} C
C[z] be an orthonormal basis of Hy. Assume that M, on Hy is left-invertible, ker M} =
Cfo, and

fn € span{z™ :m > 1} (n>1).

Then Ly; and Ly, are similar up to the perturbation of an operator of rank at most

one.

Proof. Since ker M} = Cfy, Ly fo = 0 and Ly 2" = Ly, M, (2"71) = 2"1 by the
definition of Lys,. This implies Ly 2" = 2”1, n > 1 (also see (3.2.3)). In particular,
Ly, fn € Clz] for all n > 0. Moreover, for each n > 1, we have

1 1 _
Ly (IM.|22") = |M|2 ((Lag, |M=|M.) ™ Ly, )| M. |2"
1
= ‘MZ|5(LMZ‘MZIMZ)_1(LMZ’Mz‘MZ)Zn_la
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that is, LMZ(]MZ|%Z”) = |MZ]%z”_1. Therefore, we have
(IMZI_%LMZIMzI%)z"ZLMzznzz”—l (n>1).
Then (|M|~2 Ly [M.|? — Lys) fn = 0 for all n > 1, which gives
_1 1
(| M, 2LMZ‘M2|2 - LMz)|W{fn:nz1} =0.
Finally, we have clearly (|M.|™2 Ly [M.|2 — Lar ) fo = (|M.]~2 Ly | M.|?) fo, and hence
F = |M.|"3Ly |M.|? — Ly, (3.6.1)

is of rank at most one, and consequently L y; |M. z|% = ]MZ|%(L M, + F). This completes
the proof of the theorem. O

The following analysis of F', defined as in (3.6.1), will be useful in what follows. Note
that
1 1
Ly |M:|2 = |M,|2(Ly, + F). (3.6.2)

Let g € Hy. Clearly, since Ly fy = 0, we have Fg = (g, fo)w, (IMz|"7 Ly [Mz |2 fo).
Then Lemma 3.1.6 implies that

Fg = (.97 fO)’Hk((M;|M2’Mz)71M;|Mz‘f0) (g € Hk) (363)

As we will see in Section 3.7, the appearance of the finite rank operator F' causes severe
computational difficulties for Shimorin-Aluthge kernels of shifts. On the other hand,
combining Theorem 3.1.5, Proposition 3.6.2 and (3.6.2), we have:

Theorem 3.6.6. In the setting of Theorem 3.6.5, the Aluthge transform M, of M, on
Hy. is unitarily equivalent to the shift M, on Hj, where

k(z,w) = Pw(I — 2L) "1 (I — wL*) ™|y,
W = |M.|"2 ker M} = C(|M.|"2 f5), and

1 _1
L = |M.|2(Ly, + F)|M,|" 2,

and Fg = <g,fg)Hk((M;|MZ|MZ)_1M;*|MZ]fg) for all g € Hy,.

We now revisit Theorem 3.6.3 from a direct reproducing kernel Hilbert space stand-
point. Indeed, there is a rather more concrete proof of Theorem 3.6.3 which avoids using
the analytic model of left-invertible operators. In this case, also, the reproducing kernel
of the corresponding Aluthge transform is explicit. Part of the proof follows the same
line of argumentation as the proof of reproducing kernel property of range spaces (cf.

[4]). To the reader’s benefit, we include all necessary details.
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Theorem 3.6.7. Let £ be a Hilbert space, and let k : D x D — B(E) be an analytic
kernel. Assume that the shift M, is left-invertible on Hy. Then

<]%(Z7w)"7a<:>£ = <|MZ|_1(k('>w)n)a k(7z)<)>7’lk (Z,UJ € DJLC € 5)7

defines a kernel k : D x D — B(E). Moreover, the shift M, on H; defines a bounded
linear operator, and there exists a unitary U : Hy — Hj, such that UM, = M,U.

Proof. Define H = |Mz\_%’Hk Then H(= Hj) is an E-valued function Hilbert space
endowed with the inner product <|MZ]_%f, ]MZ\_%g)ﬁ = (f,g)n, for all f,g € Hy. For
each f € Hy, w € D and n € &, we have

(M2 f ML (R w)m) gy = (f IME] 72 (B Gy w)n)) o, = (ML 72 fo R w)n)ag

and hence, by the reproducing property of H;, it follows that

(M]3 f, (ML 7N R w)n) g = (M]3 ) (w), n)e. (3.6.4)

This says that {|M,|~1(k(-,w)n) : w € D,n € £} reproduces the values of functions in

7—2, and furthermore, the evaluation operator ev,, : H — £ is continuous. Indeed

evw(IM: 72 ), m)el = [((IM=] 72 F)(w), n)e]
= [(IM:|~2 £, M| (R w)n)
< IML| 72 M (B w)n)ll g
= (1M 72 Fllgg 1M1 2 (k- w)n) .

) 1 .
Since k(- w)nll2,, = (k- w)n, k(o w)nh, = (k(w, w)n, nye = [lk(w, w)dnl2, it follows
that

_1 1
M| 72 (kG w)n) I, < NMz]™ 2[5 15 C w)nlla,
_1 1
= |[|M=]"2 |3y 1 (w,w)2nlle

_1 1
< M= B 1k(w,w)2 sy Inlle

which implies that

_1 _1 1 _1
[(evw (IM=]72 F), m)el < (M=> B [ F(w, w) 2 || 3@ M= 2 fll lInlle-

Therefore H is an E-valued reproducing kernel Hilbert space corresponding to the kernel

function

k(z,w) = ev; o ev, (z,w € D).
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Clearly, (3.6.4) implies that evin = |M,|~'(k(-,w)n) for all w € D and n € £. Since

(k(z,w)n,()e = (evin,evi()e, it follows that

(k(z,w)n, Qe = (| M| (k(-, w)n), [M=] " (k(-, 2)¢)) 4
= (M2 (R w)m), [M] 72 (k(, 2)0))
that is, (l;:(z,w)n,Qg = (IM,|7 k(- w)n), k(- 2)O))n,., z,w € D,n,¢ € E. Therefore,

as a reproducing kernel Hilbert space corresponding to the kernel k, we have Hi = H.
Define the unitary map U : Hy — Hj, by

Uh = |Mz’_%h (hEHk))

and recall from Lemma 3.6.1 that M* = |MZ]7%M;‘]MZ\% Let f € Hy, w € D, and let
n € €. Then

(UNLU*(|M:| "2 f)) (w),n)e = (UNLU*(|M.] =2 ), [M.] 7 (k- w0)n) )2,
= (MLU(|ML] 72 f), | M| 72 (B( w)n))2e,
= (f, M| M| 2 (K (- w)n) ),
=

Fo [ML| 72 ME (R (-, w)0)) 34,

But since M} (k(-,w)n) = wk(-,w)n, we have

(UNLU*(IML] 72 f))(w), e = w(f, |Ma] 72 (k (-, w)n)) s, = (w(| M| 7% ) (w), e,

which implies that UMZU*(|MZ\_%f) = z(|MZ|_%f) for all f € Hy. Thus the shift M,
on H; is a bounded linear operator and U]\Zfz = M,U. L]

Definition 3.6.8. The kernel k is called the standard Aluthge kernel of M,.

In particular, if % is a scalar-valued kernel, then k(-, w) = U(|Mz|_%k(',w)) and
k(z,w) = (ML "' k(w), k(- 2)w, (2w €D).

Therefore, if the shift on a tridiagonal space Hj, is left-invertible, then there are two ways
to compute the Aluthge kernel k: use Theorem 3.6.3, or use the one above. However,
it is curious to note that, from a general computational point of view, neither approach
is completely satisfactory and definite. On the other hand, often the standard Aluthge
kernel approach (and sometimes both standard Aluthge kernel and Shimorin-Aluthge

kernel methods) lead to satisfactory results. We will discuss this in the following section.



Chapter 3. Tridiagonal kernels and left-invertible operators with applications to
52 Aluthge transforms

3.7 Truncated tridiagonal kernels

In this section, we introduce a (perhaps both deliberate and accidental) class of analytic
tridiagonal kernels from a computational point of view. Let Hj be an analytic tridiagonal

space corresponding to the kernel
i S
k(zw) =) fa(2)falw)  (z,weD),
n=0

where f, = (an + by2)z", n > 0. Suppose r > 2 is a natural number. We say that k is

a truncated tridiagonal kernel of order r (in short, truncated kernel of order r) if
b, =0 (n#2,3,...,7).

We say that an analytic tridiagonal space Hy is truncated space of order r if k is a
truncated kernel of order r. Note that there are no restrictions imposed on the scalars
bay ..., by

Let Hj be a truncated space of order r. Then MZ is unitarily equivalent to M, on
H;, where k is either the Shimorin-Aluthge kernel or the standard Aluthge kernel of
M, as in Theorem 3.6.3 and Theorem 3.6.7, respectively. Here our aim is to compute
the Shimorin-Aluthge kernel of M,. More specifically, we classify all truncated kernels
k such that the Shimorin-Aluthge kernel k of M, is tridiagonal. We begin by computing
ML

Lemma 3.7.1. If H; is a truncated space of order r, then

2] 0 0 - 0 0 0
0 i1 cl12  r Cle4l 0 0
0 C12 Co2  t Copyl 0 0
e = ,
0 Cipp1 Copy1 "0 Crglptl 0 0
0 0 0 - 0 |EE
42
0 0 0 - 0 0 |4
r+3

with respect to the orthonormal basis { fy}n>0-
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Proof. For each n > 1, by the definition of d,, from (3.2.1), we have d,, = Z—z — 2::1, and

hence dy = dy4; =0,¢1=2,3,.... Then Theorem 3.2.4 tells us that

0 @ 0 o0 0o 0 0
0
0 0 = o0 0o 0 0
0 0 dy 0 0o 0 0
oo | : :
2 _9dobyby_ r
0 0 (-pr2dzde g @
—1 _daba---by dy by r

0 0 (-UERiam o —ent deoon O

0 0 0 e 0 0 0 4
r+2

Now, by Lemma 3.1.6, |[M.|~% = Ly, L}, , which implies

@R 0 o
[‘MZ‘_Q} - 0 A12n+1 01,
0 0 D?

2
ar43 QAr44

where D? = diag( o
r+2 ar43
r 4+ 1. Using this, one easily completes the proof.

2
,) and A% | is a positive definite matrix of order
O

9

From the computational point of view, it is useful to observe that Az 1= Lra L7y,

where
_ a -
az 0 0 0 0
as
da o 0 0 0
Lr+1 = : :
 1\r—2da2ba---br_1 _1\r=3ds3bz-br—1  arqa
(c1y bty (ppeddleboy oa
_1\r—1_da2ba---by _1\r—2 _d3b3---br L. Apr42
_( 1) a3 Qrari1 ( 1) a4+ Qrar41 d’""’l ary1 ]

In other words, A2 41 admits a lower-upper triangular factorization. This is closely
related to the Cholesky factorizations/decompositions of positive-definite matrices in

the setting of infinite dimensional Hilbert spaces (see [4] and [47]).

We recall from Theorem 3.6.6 that the Shimorin-Aluthge kernel of M, is given by

k(z,w) = Py(I — 2Ly )" (I - wL’]‘\L)_HW (z,w € D),

where W = |MZ|_% ker M7, and

Ly, = M]3 (Lag, + F)IM| 2, (3.7.1)
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and Fg = (g, fo), ((M;]MZ\MZ)*lMZ*‘\MZ|f0>, g € Hy.. We now come to the key point.

Lemma 3.7.2. If k is a truncated kernel, then F' =0 and LMZ\MZ|% = ]MZ|%LMZ.

Proof. The matrix representation of |[M,|~! in Lemma 3.7.1 implies that | M, |fo = \Z—‘l) | fo,
and hence
ag
MM fo = |20z fo = 0.

by Lemma 3.1.4. Therefore, the proof follows from the definition of F' and (3.7.1). O

We are finally ready to state and prove the result we are aiming for.

Theorem 3.7.3. Let Hy. be a truncated space of order r. Then the Shimorin-Aluthge
kernel is tridiagonal if and only if

b . b

n—m—1Ym+1 n—1

Cmn = (_1) — — Cm,m+1,
am+2 s A

foralll <m<n—2and3 <n<r+1, where ¢y, are the entries of the middle block
submatrixz of order r + 1 of “szl] in Lemma 3.7.1.

Proof. We split the proof into several steps.

Step 1: First observe that k(z, w) = > =0 Xn 2™ @™, where X, = Pyl L |3 for
all m,n > 0. Now Lemma 3.7.2 implies that L7 L* = IM|2 L, |M.| 'L |M.|2, and
Py = =M. Ly by (3.1.13). Since M, = [M, |2 M.|M.| "% and Ly = |M.|> Ly, | M.| "2,
we have

Py = IM.|2(I = M. Lag,)|Mz| "% = | M| Py | M| 2

that is, P,i,|M.|2 = [M,|2 By, which implies
~ 1
X = M2 Py Ly |Mo|7 L3} b (m,n > 0). (3.7.2)

As a passing remark, we note that the above equality holds so long as the finite rank

operator F' = 0 (this observation also will be used in Example 3.8.1).

Step 2: Now we compute the matrix representation of L% _, p =2 1. By Theorem 3.2.4,

we have

0 2 9

al

)

az

—daby a4
a3 ds a3
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In particular, this yields

afy ifj=1

PwL, f; =
0 otherwise.

ago

—n—1
Now we let p > 2. Recall from (3.3.6) the definition 57(11)) = a, (i’o)p By, for all

nzl,...,p—l,whereﬁn:b—"—s—g. Sinceb0:0,wehaveB£Lp):O,1§n<p—1, and

an

bp—1 bj),

ap—1 ag

/Bl(fi)l = apflﬁpfl = ap71<

that is, Bz()p_)l = bp_1 for all p > 2. In particular, since b; = 0, we have ﬂf) =b =0.
Also recall from (3.3.3) the definition d¥) = b, — +2=bp_p, n > p. Therefore, by (3.3.7),

n—p

the matrix representation of L?wz is given by

00 2 0 0 1
0
00 % a o -
72 1= a ai ’
[ z] - d:(f) aq .. 9
00 0 Hoa -
and in general, by (3.3.8), we have
[0 0 =t @ 0 -]
w0 e
d
0 0 0 %f 0
poy_ d .
(L4 1= 10 0 0 0 % “?—%Q : (p>2). (3.7.3)
0 0 0 o _Brk b
" Tasas as
Then _ -
0 0 0 0 .
0 0 0 0
Zhl=12t 0 o0 0 & (p>2). (3.7.4)
N 2
aw oV 0
0 ap+1 dr(flzl _ Jgﬁ)l@
a1 a9 a2a3

Step 3: We prove that X, = \MZ|%PW]MZ\_1LWZ|W =0 for all n > 1. In what follows,

the above matrix representations and the one of |M,|~! in Lemma 3.7.1 will be used
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repeatedly. By (3.3.2), we have L}, fo = % f1, and hence

Xo1fo = \MPPW!M\ 'L fO*‘M|2PW( [611f1+012f2+ 1) =0.

On the other hand, if n > 2, then L3} fo = B’Z_L;lfn_l + %fn’ and hence |M,|"!fy L
Lyj fo. This implies that Xo, = 0 for all n > 2. Therefore, all entries in the first row
(and hence, also in the first column) of the formal matrix representation of k(z,w) are

zero except the (0,0)-th entry (which is Iyy). Hence (see also (3.3.1))

0
|:]:Z(Z,’LU):|: 0 Xﬁ X22 X23
0

Step 4: Our only interest here is to analyze the finite rank (of rank at most one) operator

Xmm+k, m > 1, k> 2. The matrix representation in (3.7.4) implies

, 1 )
Ly fo = go(bm+k71fm+k71 + Gtk k), (3.7.5)
and hence
1 1 - _ _ _
’MZ‘ 1I/I\Z—i_kfo = afo(bm+k71|Mz, 1fm+kfl + am+k‘MZ| 1fm+k)- (3-7-6)

There are three cases to be considered:

Case I (m+k = r+2): Note that b,41 = 0. Then | M|~ 1L*’”Hf = ai(ar+2|M |71 fra2),
by (3.7.6), and thus

Ar4-3

_ Qr 42 Gr42
Ri M fo = TS LRI frae = =22

ag

. fri2-
Ar4-2 ‘ "

y (3.7.3), we have Pw LY} frio = PwLY fmir =0 (note that k > 2), and hence
Pw Ly M| Ly fo =0,
that is, Xm7m+k = 0. It is easy to check that the equality also holds for m = 1.
Case II (m +k —1>r+2): In this case, by, -1 = 0 and

1 Am+k+1
|M’ fm+ *‘ Zl o ’fmﬂc
m

Again, by (3.7.3), we have Py L} frik = 0, k > 2, and hence in this case also Xm,erk =
0. Again, it is easy to check that the equality holds for m = 1.
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Case III (m+k < r+2): We again stress that m > 1 and k > 2. It is useful to observe,
by virtue of (3.7.3) (also see (3.3.12)), that

bl fyif j=m— 1

PwL%ij = %fo ifj =m

0 otherwise.

Now set s = m + k — 1. The matrix representation of |[M,|™! in Lemma 3.7.1 implies
that
‘szilfs = clsfl + CstQ +---+ cssfs + 6s,zs—f—lﬁs—i—l +---+ Es,r—l—lfr—i—l-

By (3.7.3) and the above equality, we have
_ byn—
PWLT]\r/L[z|MZ’ 1fs = (Cm—l,smi1 + Cm,si)fo- (377)
aq a

Next, set t = m + k. Again, the matrix representation of |[M,|~! in Lemma 3.7.1 implies
that
M. o = cuefi + eofo+ - 4 cufr + Coasr fegr + -+ Corgr fres

and, again, by (3.7.3) and the above equality, we have

_ b a
PWLT/IZ‘Mz’ 1ft = (Cm-1,t TZO ! + Cm,tafron)fo- (3.7.8)

It is easy to see that the equalities (3.7.7) and (3.7.8) also holds for m = 1. The equality
in (3.7.5) becomes
BRI 1 - _ _ _
ML LR fo = = (oM™ o+ @l M| o),

and hence, the one in (3.7.6) implies

_ 1 - _
PWLEZ |Mz‘ 1-[/>|]<\ZL+]€]CO = W[bs(cmfl,sbmfl + Cm,sam) + at(cmfl,tbmfl + Cm,tam)]fo-

This shows that Py L7, |M.|7LLy7+ fo = 0 if and only if

bs(cmfl,sbmfl + Cm,sam) + at(cmfl,tbmfl + Cm,tam) = 0.

Step 5: So far all we have proved is that k is tridiagonal if and only if

bm—l(berkflcmfl,erkfl + @m+kcmfl,m+k) + am(berkflcm,erkfl + C_lm+lfcm,m+k) = 0,
(3.7.9)

forallm>1,k>2and m+k <r-+2.
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If m = 1, then using the fact that by = 0, we have ¢ 41 = —afik Clp, 2< k<r+1,
and hence
(2Ll b B<n<ril)
Clp = (— —n  — C12 SNsSr .
" [Tis ai

Similarly, if m = 2, then (3.7.9) together with the assumption that b; = 0 implies that

31Ty b
Cop = (—1)"P2=3 Zegs (A<n<r+1). (3.7.10)

Hi:4 a;

Next, if m = 3, then (3.7.9) again implies

ba(brr2Car2 + Gryscors) + a3(bpyocspso + apsscapys) =0 (b <r—1).
On the other hand, by (3.7.10), we have ¢ 13 = —g’;ii 2,k+2, and hence l_)k+263,k+2 +
ap+3¢3x+3 = 0, which implies c3 343 = —222037“2, k < r — 1. Now, evidently the

recursive situation is exactly the same as that of the proof of Theorem 3.4.2 (more

specifically, see (3.4.2)). This completes the proof of the theorem. O

As is clear by now, by virtue of Theorem 3.4.2, the classification criterion of the above
theorem is also a classification criterion of tridiagonality of standard Aluthge kernels.

Therefore, we have the following:

Corollary 3.7.4. If H;. is a truncated space, then the Shimorin-Aluthge kernel of M,
is tridiagonal if and only if the standard Aluthge kernel of M, is tridiagonal.

3.8 Final comments and results

First we comment on the assumptions in the definition of truncated kernels (see Section
3.7). The main advantage of the truncated space corresponding to a truncated kernel
is that ' = 0, where F' is the finite rank operator as in (3.6.3). In this case, as al-
ready pointed out, we have Ly; = |MZ\%LMZ|MZ|7%. This brings a big cut down in

computation. On the other hand, quite curiously, if
b():bl:lorbozl,

and all other b;’s are equal to 0, then the corresponding standard Aluthge kernel of
M, is tridiagonal kernel but the corresponding Shimorin-Aluthge kernel of M, is not a
tridiagonal kernel. Since computations are rather complicated in the presence of F', we

only present the result for the following (convincing) case:

Example 3.8.1. Let a, =bg=b1 =1 and b, =0 for alln > 0 and m > 2. Let Hy
denote the tridiagonal space corresponding to the basis {(an + bnz)z" }n>0. By (3.1.8)



3.8. Final comments and results 59

and Theorem 3.2.4, we have

0000 O _ _
01 0 OO0 O
100 0 O
00 1 0O0 O
0100 O
[M,] = and [Ly]=10 0 =1 1 0 0 ;
0110 O
00 0 01 O
0001 O

respectively. Hence, applying Ly, Ly, = |M,|=2 (see Lemma 3.1.6) to this, we obtain

0 0---

01 -1 0 0

M 2=10 =1 2 0 0
1 0

Suppose v = % and § = 3*2‘/5. It is useful to observe that (1—«)(1—)+1=0. Set

Jun

[‘b‘ j=[_11 ‘21]  where a = (Va1 — §) ~ VB(1 — )] end b= J[-va + V],

and ¢ = %[—\/a(l — o) ++/B(1—B)]. Clearly

1 0 0 0

0 b 0
=Y

0O b ¢ O

0O 0 0 I

From this it follows that |M,|fo = fo, and hence the finite rank operator F', as in (3.6.3),

s given by
Fg =g, fo)u, (MMM MIMLIfo) =0 (9 € Ha).

Then F' =0, and hence (3.6.2) implies that Ly; = ]Mz\%LMJMz]_%. By (3.7.2) (also
see Step 1 in the proof of Theorem 3.7.3), the coefficient of z™w™ of the Shimorin-
Aluthge kernel k is given by Xomn = |Mz|%PWL”]\}[z|MZ|_1L}‘\}}Z|W, m,n > 0. We compute
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the coefficient of zw?> as

Py L, |M.| 7 L3} fo = PwLas, IM.| 7 L7 fu
= PwLar| M| Ly, f
= PywLa, M| (= fo + f3)
= PwLa, (=bf1 —cfa + f3)
= PywLy, (—bf1)
— —bfy.

Butb = %[—\/54— VB| # 0, and hence X13 # 0. This implies that the Shimorin-Aluthge
kernel is not tridiagonal. On the other hand, the matriz representation of |M,|~! implies

right away that the standard Aluthge kernel is tridiagonal (see Theorem 3.4.2).

Now we return to standard Aluthge kernels of shifts (see the definition following
Theorem 3.6.7). Let Hi C O(D) be a reproducing kernel Hilbert space. Suppose M,
on Hy, is left-invertible. Then Theorem 3.6.7 says that M, and M, on Hi(C O(D)) are

unitarily equivalent, where
Bz w) = (ML R w), k(e ), = (1M 7RG w)) (2),

for all z,w € D. In the following, as a direct application of Theorem 3.4.2, we address

the issue of tridiagonal representation of the shift M, on Hj.

Corollary 3.8.2. In the setting of Theorem 3.6.7, assume in addition that &€ = C
and Hj is a tridiagonal space with respect to the orthonormal basis { fy}n>0, where

fn(2) = (an + bpz)2™, n > 0. Then Hy, is a tridiagonal space if and only if

_ _bil 5162 -
€00 co1 &S00l gemCol .-
= _by
o1 c1 €12 aC12
* b1 = = .
UIMU" = | -2Zeon 2 €22 €23 A,
bibo ~ _ b= =
mCol —ZClz 23 €33

with respect to the basis { fn}n>0-

Proof. Recall from Theorem 3.6.7 that H; = |M.|"2H; and Uh = |M,|"2h, h € H,
defines the intertwining unitary. Set P := U|M.|U*. Then P € B(Hj) is a positive

operator, and for any z,w € D, we have

<Pk(-,w),]~€<-,z)>7{k = <|MZ’U*Z7(7w)7U*I~C(7Z)>Hk
(MM 2 k(- w), [M] 72k (),
= <k(-,w),k(-,z)>7{k,
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as U(|MZ]_%k(-,w)> = k(-,w). Hence k(z,w) = (Pl%(-,w),l%(-,z)};.[é, z,w € D. The

result now follows from Theorem 3.4.2. O

In particular, if k is a tridiagonal kernel, then for k to be a tridiagonal kernel, it is

necessary (as well as sufficient) that U|M,|U* is of the form as in the above statement.

We conclude this chapter with the following curious observation which stems from
the matrix representations of Shimorin left inverses of shifts on analytic tridiagonal
spaces (see Theorem 3.2.4). Let Hj be an analytic tridiagonal space. Recall that Ly,
denotes the Shimorin left inverse of M,. By Lemma 3.1.6, we have |M,|™2 = L. Ly,
From the matrix representation of Ljs, in Theorem 3.2.4, one can check that the matrix
representation of |M,|~2 satisfies the conclusion of Theorem 3.4.2. Consequently, the

positive definite scalar kernel

K(Zaw) = <‘MZ|_2k('vw)vk('az)>Hk (va ED)?
is a tridiagonal kernel. On the other hand, consider
2 ifn=2 1 ifn=2
an = and b, =
1 otherwise, 0 otherwise.

Then the shift M, on the analytic tridiagonal space Hj, corresponding to the orthonor-
mal basis {f,}n>0, where fn(z) = (an + bp2)2", n > 0, is left-invertible. However, a
moderate computation reveals that the matrix representation of |M,|~! does not satisfy

the conclusion of Theorem 3.4.2. In other words, the positive definite scalar kernel
K(z,w) = <‘MZ|_1k('vw)>k('az)>Hk (Zaw ED)v

is not a tridiagonal kernel.






Chapter 4

Invariant subspaces of analytic

perturbations

In this chapter, we first introduce a class of finite rank operators F' (we call them n-
perturbations) on H?(D) for which the corresponding perturbations S, = M, + F are
shifts (we call them n-shifts). Then we present a complete classification of S,-invariant
closed subspaces of H?(D). Note that S, is unitarily equivalent to the multiplication

operator M, on some analytic Hilbert space.

We remark that a priori examples of n-shifts may seem counter-intuitive because
of the intricate structure of perturbed linear operators. Subsequently, we put special
emphasis on natural examples of n-shifts, and as interesting as it may seem, analytic
spaces corresponding to (truncated) tridiagonal kernels or band kernels with bandwidth
1 give several natural examples of n-shifts. In the special case when S, is unitarily
equivalent to a shift on an analytic space corresponding to a band truncated kernel with
bandwidth 1, we prove that the invariant subspaces of S,, are also hyperinvariant. Our
proof of this fact follows a classical route: computation of commutants of shifts. In
general, it is a difficult problem to compute the commutant of a shift (even for weighted
shifts). However, in our band truncated kernel case, we are able to explicitly compute

the commutant of n-shifts:
{S,} ={T, + N : ¢ € H*(D),rankN < n},

where T;, denotes the analytic Toeplitz operator with symbol ¢ € H*°(D), and N admits
an explicit (and restricted) representation. We also present concrete examples of 1-shifts
on tridiagonal kernel spaces with special emphasis on cyclicity of invariant subspaces.

For instance, a simple example of S1-shift brings out the following distinctive properties:

1. [S7,51] .= 5751 — S157 is of finite rank (in particular, S; is essentially normal).

2. Sp is not subnormal (and, more curiously, not even hyponormal).

63
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3. Invariant subspaces of S are cyclic.

We believe that these observations along with the classification of invariant subspaces
of shifts on tridiagonal spaces are of independent interest beside their application to
the theory of perturbed operators. Finally, we remark that perturbations of concrete
operators (with some analytic flavor) have been also studied in different contexts by
other authors. For instance, see [34, 44, 53], and notably Clark [21].

4.1 n-shifts

This section introduces the central concept of this chapter, namely, analytic perturba-

tions or n-shifts. We also explore some basic properties of n-shifts.

for all f € Hg, w € D, and n € £. We now present the formal definition of shift

operators:

Definition 4.1.1. The shift on Hy, is the multiplication operator M, defined by (M, f)(w)
wf(w) for all f € Hy and w € D.

In what follows, we will be mostly concerned with bounded shifts. Therefore, we
always assume that M, is bounded. Note that, in the scalar-valued case, that is, when

& = C, the positivity condition of the kernel becomes

m
Z EZ'C]‘]{J(ZZ',ZJ') >0,
ij=1

for all {z1,...,2m} C D, {n1,...,nm} € & and m > 1. The simplest example of an

analytic kernel is the Szegd kernel S on D, where
S(z,w) = (1 — zw)™* (z,w € D).

The analytic space corresponding to the Szego kernel is the well-known (scalar-valued)
Hardy space H?(D), where the shift M, on H?(D) is known as the unilateral shift (of
multiplicity one). Also, recall that the unilateral shift M, on H?(D) is the model operator

for contractions on Hilbert spaces (in the sense of basic building blocks [21]).

We also record the key terms of the agreement: X; € B(H;) and Xy € B(Hz2) are the
same means there exists a unitary U : H1 — Ho such that UX; = X,U, that is, X7 and
X9 are unitarily equivalent. Therefore, X € B(H) is a shift if there exists an analytic
Hilbert space Hy, such that the shift M, on Hy and X are unitarily equivalent. Finally,

we are ready to introduce the central objects of this chapter:

Definition 4.1.2 (n-shifts). A linear operator F on H?(D) is called an n-perturbation
if
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(i) Fz™ =0 for all m > n,
(ii) F(z™H?(D)) C 2™*1C[2] for all m >0, and
(iii) M, + F is left-invertible.
We call S,, = M+ F the n-shift corresponding to the n-perturbation F (or simply n-shift

if F is clear from the context).

It follows that an n-perturbation is of rank m for some m < n. In fact, it is easy to

see that the rank of the 2-perturbation

P 22 ifm=0,1
ya =
0  otherwise,

2 2

is precisely 1. Moreover, So = M,+F'is a 2-shift. Indeed, since 555 = A ®1.2 2

on H?(D) = C® Cz @ 22H?(D), it follows that S3S5 is invertible, and hence Sy is left-
invertible. Now we justify Definition 4.1.2 by showing that an n-shift is indeed a shift.

Lemma 4.1.3. Let F' be an n-perturbation. If S, = M, + F, then:
(i) F(z™f) = 0 for each m > n and f € H*(D).

(i) For each f € H*(D) and m > 1, there exists p € C[z], depending on both f and
m, such that
S f=2"(f+p)

(iii) Sy, is a shift on some analytic Hilbert space.

Proof. Part (i) immediately follows from the fact that F'(2™p) = 0 for all p € C[z]. Since
by assumption F(z™H?(D)) C 2z™*C[z], m > 0, for each f € H?(D), there exists a
polynomial p; € C[z] such that F'f = zpy. Then

Spf =M.+ F)f =zf+zpf = 2(f + py),
and hence, there exists ¢5 € C[z] such that
Suf = Mz + F)(2(f +py)) = 22(f +ps) + 2%ap = 2°(f + pr + ay)-

The second assertion now follows by the principle of mathematical induction. To prove

the last assertion, we use (ii) to conclude that

STH*D) C 2mH*(D)  (m >0). (4.1.1)
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Since we know that M, on H?(D) is pure, that is, Ny>02™H2(D) = {0}, the above

inclusion implies that
Nm>0ST HA(D) C N0z HA(D) = {0}.

Using this and the left invertibility of S,,, it follows that S,, on H?(D) is a shift. O

Note that the following standard fact [56] has been used in the above proof: If
T € B(H) is a left-invertible operator and if NS°_,7™H = {0}, then T is unitarily
equivalent to the shift M, on some W-valued analytic Hilbert space, where W = HSTH.
In the present case, if
W =ker S;, = ker(M, + F)*,

then S, on H?(D) is unitarily equivalent to M, on some W-valued analytic Hilbert space
Hj over D. Here the kernel function k is explicit [56, Corollary 2.14] and involves a

specific left inverse of S,, (namely, (5SS, )~1S#), but we will not need this.

Let T be a bounded linear operator on a Hilbert space H. Given a vector f € H, let
[f]r denote the T-cyclic closed subspace generated by f, that is

[f]lr = clos {p(T) f : p € C[z]}.

Lemma 4.1.4. If f € H*(D) is a nonzero function, then [f]s, contains a nontrivial

n

closed M, -invariant subspace of H?(D).

Proof. Suppose g € H?(D). By part (ii) of Lemma 4.1.3, we already know that S"g =
2" (g + p) for some p € Clz]. Then part (i) of the same lemma implies that

Sitlg = (M. + F)("g + 2"p) = M.(2"g + 2"p) = M.(S},9).
Then, by induction, we have S)""'g = M*~"™(S]'g), and hence
Syt =MI""S) (m>n+1). (4.1.2)

In particular, if f is nonzero in H?(D), then [S” f]us

z

of [f]s,,- O

is an M -invariant closed subspace

In the context of the equality (4.1.2), note in general that

(M, S7) = MISE — SEMTT A0 (m >4 1),
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4.2 Invariant subspaces

In this section, we will prove the central result of this chapter: a complete classification
of m-shift invariant closed subspaces of H?(D). However, as a first step, we need to
prove a Beurling type property of invariant subspaces of n-shifts. We recall that if S is

a nonzero closed M, -invariant subspace of H?(DD), then
dim (§© 28) = 1.

This is an easy consequence of the Beurling theorem (or, one way to prove the Beurling
theorem). In the following, we prove a similar result for S,-invariant closed subspaces
of H*(D).

Theorem 4.2.1. If M C H?*(D) is a nonzero closed Sy-invariant subspace, then

dim(M & SpM) = 1.

Proof. Suppose if possible that M © S, M = {0}. Since S, is left-invertible, it follows
that
SpM =M (m >1),

which implies that

M =Np>15,M C ﬂmzlsTTHQ(D) - ﬂlezmHQ(D) = {0},

where the second inclusion follows from (4.1.1). This contradiction shows that M ©
SpM # {0}. Now suppose that f,g € M © S, M be unit vectors. If possible, assume
that f and g are orthogonal, that is, (f,g) = 0. We claim that

[f]s, N lgls, = {0}

To prove this, first we pick a nonzero vector h € [f]s, N[g]s,. Then there exist sequences

of polynomials {py, }m>1 and {gm }m>1 such that

h = lim (pm(Sy)f) = lm (gm(Sh)g). (4.2.1)

m—00 m—00
For each m > 1, we let
t
pm(z) =Qmo+am1z2+ -+ am, 2",

and
qm(Z) = Bm,O —+ Bm,lz 44 B’m,lmzlma
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where t,,, and [,,, are in N and m > 1. Now Ség € S,M for all [ > 1, together with
(g, f) = 0 implies that (g (Sn)g, f) = 0 for all m > 1. Therefore

<h7 f> = <mlgnoopm(sn)f> f> = <77%E>noo Qm(Sn)ga f> <Qm(Sn)gy f) =0,

= lim
m—0o0
that is, (h, f) = 0, where, on the other hand

<pm(5n)fa f> <am,0f7 f>7

m—r0o0 m—r0o0

as S\ f € SyM forall > 1, and f L S, M. We immediately deduce that

lim a0 = 0.
m—00 ’

Thus we obtain
h=1im ((Qm1Sn+ -+ s, SE) f).
m—o0

Since (S¥g,g) = 0 and (S.f,g) = 0 for all k,l > 1, repeating the same argument as

above, we have (h,g) = 0 and
lim /Bm,O = 07
m—ro0

and consequently
h=lm ((BnSn+ - + Bt Si)9).

Thus we obtain

lim ((am,lsn + -+ am,tmszm)f) = 1 ((ﬁm,lsn ++ /Bmeszm)g)'

im
m—o0 m—00

Multiplying both sides by a left inverse of S, (for instance, (S5, )15} is a left inverse
of S, [56]) then gives

hy:= lim ((m,1 + am2Sn + -+ am,thZm_l)f)

m—00

= lim ((Bm,l + 6m,25n +---+ Bm,lmsfmm_l)g)'

m— 00

We are now in exactly the same situation as in (4.2.1). Proceeding as above, we then

have

lim o1 = lim B,,1 =0.
m—0o0 m—r0o0

Arguing similarly, it will follow by induction that

lim ape = lim B,; =0.
M—00 ’ m—00 ’

forallt=0,1,...,t,,and l =0,1,...,l,,, and m > 1, and so h = 0. This contradiction
shows that

[f]s, Nlgls, = {0}.
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Now by Lemma 4.1.4 and the classical Beurling theorem, we know that 8; H2(D) C [f]s,
and O H?(D) C [g]s, for some inner functions §; and 6y in H>(D). Since

0162 € 01H*(D) N6 H*(D) C [f]s, Ngls,

it follows that 0; H?(D) N6, H?(D) # {0}, which contradicts the fact that [f]s, N[g]s, =
{0}. Therefore, dim(M & S,, M) = 1, and completes the proof of the theorem. O

Note that the final part of the above proof uses the classical Beurling theorem :
If M is a nonzero M,-invariant closed subspace of H?(ID), then there exists an inner
function § € H*°(D) such that M = [0],,. We will return to the issue of cyclic invariant
subspaces of 1-shifts in Section 4.5, and here we proceed to state and prove our general

invariant subspace theorem.

Theorem 4.2.2. Let F be an n-perturbation on H*(D), and let M be a nonzero closed
subspace of H*(D). Then M is invariant under S, = M, + F if and only if there exist
an inner function 8 € H* (D) and polynomials {p;, qi}?;ol C Clz] such that

M= (Cpo®Cp1 @ - ®Cyp,_1) D 2"0H*(D),
where p; = 2'pi — q; for alli=0,...,n—1, and
Snpj € (Cpjp1 @ - ® Cppy) ® 2"0H*(D),

forallj=0,....n—2, and Sppn—1 = 2"pn_10.

Proof. Let M be a nonzero closed subspace of H?(D). Observe that
Su(2"f) = (M. + F)(2"f) = 2" f + F(z"f) = 2"*1 ],
for all f € H?(D), where the last equality follows from Lemma 4.1.3. Therefore
M =8"M™ (m > 1). (4.2.2)
To prove the sufficient part, we see, by (4.2.2), that
S, (2"0f) = 2" f € 2"0H?*(D),

for all f € H?(D), and hence S,(z"0H?(D)) C 2z"0H?*(D). This and the remaining
assumptions then implies that S, M C M.

For the converse direction, assume that S, M C M. Theorem 4.2.1 then implies

M= (CQOQ e S, M,
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for some nonzero vector g € M © S, M. Since M is closed and S, is left invertible, it
follows that S, M is also a nonzero closed S,-invariant subspace of H2(D). By Theorem

4.2.1 again, we have
M = Cpy & (Cpy & SEM),

for some nonzero vector ¢ € S, M & S,,(S,M). Continuing exactly in the same way,
by induction, we find ¢; € SEM S SiHIM, i =0,1,...,n — 1, such that

M= (Cpo®Cp1 @ ®Cp;_1) ®SIM,

for all j = 1,...,n. In particular, M = (Cpg ® Cp1 @ --- B Cpp_1) ® S M. Now, by
(4.1.2), we have M,(S2f) = SPH1f, f € M, which implies that M,(SPM) C SPM,
that is, S”M is a closed nonzero M,-invariant subspace of H?(D). By the Beurling
theorem this implies that S"M = §H?(D) for some inner function § € H>(ID). Since
each element in S'M has a zero of order at least n at z = 0 (see part (ii) of Lemma
4.1.3), it follows that 6 = 20 for some inner function § € H>(D). Thus

S"M = Z"0H2(D), (4.2.3)

and hence
M= (Cpy®Cp1 ®---DCpp_1)® z”GHz(]D)),

for some inner function § € H*(D). Fix an i € {0,1,...,n — 1}. Since ¢; € SEM ©
S+ M, by construction, we have ¢; € S{ M, and hence (4.2.3) implies

S"ip; € STM = 2"0H?(D).
Therefore, there exists h; € H?(D) such that
S, = 2"0h,. (4.2.4)

By part (ii) of Lemma 4.1.3, there exists a polynomial ¢; € C[z] such that S? ip; =
2"(¢; + ¢;). Then
i+ qi = 2'0h;. (4.2.5)

Since ¢; L S" M = z"0H?(D), by construction, for each [ > 0, we have
(2'0hi, 2"10) = (i + g1, 2"710) = (qi, 2" 10),
which, along with (z'0h;, 2"*0) = (h;, 2"+, implies that
(s 2" H0) = (@i, 2"110).

Finally, using the fact that ¢; is a polynomial, we conclude that for each i =0,...,n—1,
there exists a natural number n; such that (h;, 2t) = 0 for all ¢ > n;, and hence p; := h;

is a polynomial. This completes the proof. O
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From the final part of the above proof, we note that h; := p; is a polynomial. There-
fore, by (4.2.4) and (4.2.5), there exist polynomials p;, ¢; € C[z] such that ; = 2'p;0 —q;,
and

Snip; =2"pi  (i=0,1,...,n—1). (4.2.6)

The description of invariant subspaces of S,, as in the above theorem appears to be
satisfactory and complete. However, a more detailed delicacy is hidden in the structure
of polynomials {p;, qi}?z_ol and the finite rank operator F. In fact, without much control
over these polynomials (and/or the finite rank operator F'), hardly much can be said

about the other basic properties of n-shift invariant subspaces. For instance:
When an n-shift invariant subspace is cyclic?

Needless to say, the cyclicity property of shift operators is a complex problem. We will
return to this issue in Section 4.5, and refer [1, 17] for some modern development of

cyclic vectors of shift invariant subspaces of function Hilbert spaces.

4.3 Commutants

In this section, we compute commutants of n-shifts on analytic Hilbert spaces corre-
sponding to truncated tridiagonal kernels. The concept of tridiagonal kernels or band
kernels with bandwidth one in the context of analytic Hilbert spaces was introduced in
[3, 4]. Note that shifts on analytic Hilbert spaces corresponding to band kernels with
bandwidth one are the next best examples of shifts after the weighted shifts.

The following definition is a variant of truncated tridiagonal kernels which is also
motivated by a similar (but not exactly the same) concept of kernels in the context of

Shimorin’s analytic models [24].

Definition 4.3.1. Let Hj be an analytic Hilbert space corresponding to an analytic
kernel k : D xID — C. We say that Hy, is a truncated space (and k is a truncated kernel)

if:
(ii) the shift M, is bounded on Hy, and

(111) { fm}m>0 forms an orthonormal basis of Hy, where fn, = (am + bp2)2™, m >0,
for some scalars {am}m>0 and {by}m>0 such that as # 0 for all s > 0, and by = 0 for
allt > n.
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Note that in the above definition, n is a fixed natural number. Also, in this case, the

kernel function k is given by

k(zw) =) fm(2)fm(w) (2w €D).
m=0

If, in addition, {| i |}m>0 is bounded away from zero, then M, on Hj, is left-invertible

[24, Theorem 3.5]. Clearly, the above representation of k justifies the use of the term

tridiagonal kernel.

Throughout this section, we will assume that a,, = 1 for all m > 0. Using the or-
thonormal basis {fmn = (1 + bm2)2" }m>0 of Hi, a simple calculation reveals that (cf.
[3, Section 3] or [24, Section 2])

=S (T ot (m =0, (43.1)
=0 =0

where HJ-_:lme+j := 1. Since b,, = 0, m > n, we have H;;%) bt =0 forallt > n + 1.

In particular, the above is a finite sum. We set

Cmp = b — bt ps (4.3.2)

for all m > 0 and p > 1. Clearly, ¢, = 0 for all m > n. Now M, f,, = 2™ + by, 22
implies that

Z2fm = fms1 + (b — bm+1)zm+2 = fomy1+ Cm,12m+27

that is, 2fim = fm+41 + cma12™ 2 for all m > 0. Then (4.3.1) yields

00 t—1
Z2fm = fm+1 + cma Z(—l)t(H bm+2+j>fm+2+t (m > 0). (4.3.3)
=0 =0

Since ¢,,1 = 0 for all m > n, as pointed out earlier, it follows that zf,,, = fin41 for all
m > n. In particular, the matrix representation of M, with respect to the orthonormal

basis {fm }m>0 is given by (also see [3, Page 729])

0 0 0 0 0

1 0 0 0

Co,1 1 0 0 0

—coab2 e 1 0 0

[M.] = co,1babs  —c11b3 c21 0 0
0 0 0 Cnfl,l 1

0 0 0 0 0
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We define the canonical unitary map U : Hy — H?(D) by setting Uf, = 2™,
m > 0. It then follows that
UM, =8S,U, (4.3.4)

where S,, := M, + F is the n-shift corresponding to the n-perturbation F' on H?(D)

whose matrix representation with respect to the orthonormal basis {z™},,>0 of H%(D)

is given by
[0 0 0 0 0 ...
0 0 0 0 0
€o,1 0 0 0 0
—co1b2  c1p 0 0 0
[F] = |Co1b2bs  —c11b3 ¢ 0 0 7
0 ... ¢cp—11 O
0 0 0

Definition 4.3.2. We call S,, the n-shift corresponding to the truncated kernel k.

Now we turn to the commutants of n-shifts corresponding to truncated kernels. Since
M, on Hj, and S, on H?(D) are unitarily equivalent, the problem of computing the

commutant of S,, reduces to that of M,.

Let Hy be a truncated space. Recall that a function ¢ : D — C is said to be a
multiplier of Hy, if oHy C Hy [10]. We denote by M(Hy) the set of all multipliers. By
the closed graph theorem, a multiplier ¢ € M(H)) defines a bounded linear operator
M, on Hy,, where

Mgof =of (f € Hk)

We call M, the multiplication operator corresponding to ¢.

We will use the following notation: If X € B(#), then the commutant of X, denoted
by {X}', is the algebra of all operators T' € B(H) such that TX = XT. In the following,
we observe that {M.}' = {M, : ¢ € M(H})}. The proof is fairly standard:

Lemma 4.3.3. Suppose A € B(Hy). Then AM, = M,A if and only if there ezists
o € M(Hy) such that A= M.

Proof. The “if” part is easy. To prove the “only if” part, suppose AM, = M, A and let
Al = ¢. Clearly, ¢ € Hy. Since f, = (1 4 bp2)2"™, it follows that

Afp = AZ™ + b Az™ M = (2™ 4 b 2™ AL = fro = O fm,

for all m > 0. Since { fm }m>0 is an orthonormal basis, we have Af = ¢f for all f € Hy,
and hence, pHy C Hjp. This proves that A = M, and completes the proof of the

lemma. O
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Now we prove the main result of this section. It essentially says that M(Hy) =
H> (D), that is, {M,} = {M, : p € H*(D)}.

Theorem 4.3.4. Let ¢ : D — C be a function, and let Hy be a truncated space with
{fm}m>0 as an orthonormal basis, where fp,(2) = (1 + byz)z™, m >0, and by = 0 for
allt > n. Then ¢ € M(Hy) if and only in ¢ € H*(D).

Proof. Recall from (4.3.3) that

o] t—1
Zfm = fmt1 + cmp Z(—l)t<H bm+2+j)fm+2+t (m > 0).

In general, for any p > 1, we have
Py = (14 bpz) 2™ = frip+ (b — b)) 2™ HPHL
Since ¢y p = by — byyyp for all m > 0 and p > 1 (see (4.3.2)), it follows that

2P frn = fonp + Cmp(Frtpt1 = Omtpi1t frnipt2 + bmipr1bmapr2 fngpes — ). (4.3.5)

Note that ¢, = 0 for all m > n. Let ¢ € Hj, and suppose ¢ = Y oy 2™. Since
ofo =" m_o(amz™fo) and fo =1+ bz, (4.3.5) implies

oo
ofo=aofo+arfi+ (e + Bro)fa+ -+ (an + Bn-10)fn + Z (o + cog—10u-1)fi,
t=n-+1
where
B;0 = coefficient of fj 1 —aji1 (j=1,...,n—1).
Observe that 3 is a finite sum for each j = 1,...,n—1. Similarly, for each 0 < m < n,
we have

Sofm ZQOfm + alferl + (Otg + Bl,m)fm+2 + -+ (anfm + anmfl,m)fn

00
+ Z (at—m + Cm,t—m—lat—m—l)fta
t=n+1

where, as before, we let
Bjm = coefficient of fjimi1 — a1 j=1,....n—m—1).

Finally, for each m > n, it is easy to see that

(pfm = Zajfm—i-j-

j=0
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Therefore, the formal matrix representation of the linear operator M, (which is not

necessarily bounded yet) is given by the formal sum of matrix operators

[My,] = [T,)] + [N], (4.3.6)
where i )
ag O 0 0
~ a1 Qo 0 0
[T,] = . (4.3.7)
as a1 o O -
and
[0 0 0 0 o o0 ..]
0 0 0 0 0 0
B1,0 0 0 0 0 0
B2,0 B1,1 0 0 0 0
[N] = ' ' ' ' ' T (438)
Br-1,0 Br—2,1 Brn-32 o 0 0 O .
€0,n0n Clyn—10p—1 €2p—20n_2 ... Chp_1101 0 0
COn+10n+1 C1,n0n C2n-10p—1 ... Cp_1200 0 0
Con+20n+2  Clypt1Qntl C2,n0ln .o Cp—13a3 00

Now assume that ¢ € M(Hy), that is, the multiplication operator M, is bounded on
H.. Since
o0
Mgafn =@fn = Zajfn—l-jv
j=0
it follows that {a,,}m>0 is square summable, and hence [T,] defines a linear (but not
necessarily bounded yet) operator on Hj. Since the matrix operator [N] has at most n

nonzero columns and
(oo}

Z ]am]2 < 00,

m=0

it follows that [N] is bounded on H},. Therefore, by (4.3.6), [T,,] defines a bounded linear
operator T, » on Hj. Then we find that the canonical unitary map U : Hy — H?*(D)
defined by equation (4.3.4) satisfies

UT, = T,U,

where T}, denote the (bounded) Toeplitz operator on H?(D) with symbol ¢. In partic-
ular, p € H*(D).
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For the converse, we assume that ¢ = > 0°_ 2™ is in H®(D). If we set T, =
U*T, U, then T¢ is a bounded linear operator on Hj, and the matrix representation of
T,, will be of the form (4.3.7). Finally, since Y0°_, |aym|? < 00, it follows that the matrix
(4.3.8) defines a bounded linear operator on Hj. Therefore, M, = T, + N is bounded
on Hj, which completes the proof of the theorem. O

Of course, the inclusion M(H) C H*(D) follows rather trivially from properties of
kernel functions: Suppose ¢ € M(H}). By the reproducing property of kernel functions,
we have Mzk(-,w) = ¢(w)k(-, w), which implies

L k(- w w
lp(w)| = WHMHC( sw)| < [[My| (weD).

In particular, ¢ € H>*(D) and |||/ < |[My||. Evidently, the content of the above the-
orem is different and proves much more than the standard inclusion M(Hy) C H*(D).
Also, note that we have proved more than what has been explicitly stated in the above

theorem:

Theorem 4.3.5. Consider the n-shift S, corresponding to the truncated space Hy de-

fined as in Theorem 4.3.4, and let X € B(H?*(D)). Then X € {S,} if and only if there
exists p € H®(D) such that X = T, + N, where N is a matriz operator as in (4.3.8)

with respect to {2 }m>0.

The proof follows easily, once one observe that
UM, = (T, + N)U, (4.3.9)

for all ¢ € H®(D) = M(Hy), where U : Hy — H?(D) is the canonical unitary as in
(4.3.4).

The following observation is now standard: The n-shift S, as in Theorem 4.3.4 is
irreducible. Indeed, if M C H;, is a closed M,-reducing subspace, then Py M, = M, Py
implies that Pyy = M, for some ¢ € M(H}). By Theorem 4.3.4, ¢ € H*(D). Then
P/%/[ = P) implies that ¢? = ¢ on D, and we obtain ¢ = 0 or 1. It now follows that
M = {0} or Hy.

Representations of commutants of n-shifts on even “simple” truncated spaces appear
to be interesting and nontrivial. We will work out some concrete examples in Section
4.5.

4.4 Hyperinvariant subspaces

We continue from where we left in Section 4.3, and prove that invariant subspaces of

n-shifts on truncated spaces are hyperinvariant. Recall that a closed subspace M C H
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is called a hyperinvariant subspace for T' € B(H) if
XMC M,

for all X € {T}/. We assume that Hj is a truncated space corresponding to the or-
thonormal basis { fp, }m>0, where f,(2) = (1+bpnz)z™, m > 0, and {by, }m>0 are scalars
such that by = 0 for all ¢ > n. In this case, recall that M(Hy) = H*(D) (see Theorem
4.3.4), and the canonical unitary U : Hj — H?(D) defined by equation (4.3.4) satisfies

UM, = S,U and UM, = (T, + N)U,

for all ¢ € H>®(D), where N is the finite rank operator whose matrix representation
with respect to the orthonormal basis {2™},,>0 of H?(DD) is given by (4.3.8).

We are now ready to solve the hyperinvariant subspace problem for n-shifts on trun-

cated spaces.

Theorem 4.4.1. Closed invariant subspaces of n-shifts on truncated spaces are hyper-

variant.

Proof. Let M, be an n-shift on a truncated space, and let S, be the corresponding
n-shift on H%(D). Suppose M is a nonzero closed Sy-invariant subspace of H?(D). By
Theorem 4.2.2, there exist an inner function § € H*(D) and polynomials {pi,qi}?gol
such that

M= (Cpo®Cp1 @ - ®Cyp,_1) D 2"0H*(D),

where ¢; = 2'p;0—q; foralli =0,...,n—1, and Snpj € (Cojp1®-- -Cipn_1)®2"0H?(D)
forall j =0,...,n—2, and Sppp_1 = 2"pr_10. In view of Theorem 4.3.5, we only need
to prove that (T, + N)p; € M for all i = 0,1,...,n — 1, and (T, + N)z"0H?*(D) C
2"0H?(D) for all ¢ € H*®(D). To this end, let ¢ € M(H;) = H*>(D), and suppose

o(z) = 00y amz™. Then for each i =0,1,...,n — 1, we have
(Ty + N)pi = UMUp; = U(pU" i),

and hence

(Ty, + N)g; = U(Z amz2"U"p;)
m=0

U(S anMIT*g),

m=0

oo
Z amS;“goi e M
m=0
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as p; € M and S, M C M. Finally, if f € H?(D), then Lemma 4.1.3 implies
(T, + N)2"0f = T,(2"0f) + 0 = 2"0pf € 2"0H*(D),

and hence, (T, + N)z"0H?*(D) C z"0H?(D), which completes the proof. O

Now let M, be an n-shift, and let M(Hy) = H*°(D). In particular, {M.} = H*(D).
In this case, a similar argument as the above proof gives the same conclusion as Theorem
4.4.1. However, as is well known, explicit computation of M(H}) is a rather challenging

problem.

4.5 Examples

In this section, we examine Theorem 4.2.2 from a more definite examples point of view.
As we will see, these examples are instructive and bring out several analytic and ge-
ometric flavors, and points out additional complications to the theory of finite rank

perturbations.

Fix scalars ag and by such that 0 < |bg| < |ag|, and consider the 1-shift S; = M, + F
on H?(D) corresponding to the 1-perturbation

—1)+b if m = 0
pom = ) (@0 =D Fboz)z i m (4.5.1)
0 if m>1.

The fact that S7 is a 1-shift follows from the inherited tridiagonal structure of S;. Indeed,
S1 is unitarily equivalent to the shift M, on the truncated space Hjp with orthonormal
basis { fm }m>0, where f, = (am + bpz)z™, m >0, and a; = 1 and by = 0 for all ¢ > 1.

Since

2] > minflagl, 1} (m 2 0),

Am41

the sequence {|#’L|}m20 is bounded away from zero, and hence, M, is left-invertible
(see the discussion following Definition 4.3.1). Moreover, the canonical unitary U :
Hi — H?(D) defined by equation (4.3.4) satisfies the required intertwining property
UM, = S1U. Therefore, it follows that Sy = M, + F on H?(DD) is indeed a 1-shift. We
clearly have

Ff = f(0)((ao— 1) +hoz)z  (f € HX(D)). (45.2)
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Now we observe three distinctive features of S7: Note that the matrix representation of

Sy with respect to the orthonormal basis {2™},,>0 of H2(D) is given by

0O 0 0 O
a 0 0 O
[Si]=[M.+F]=1bg 1 0 0
0 0 1 0
Then, a simple computation yields that
—|a0\2+ ‘b0|2 B(] 0 0 i
bo 1-— ‘CL0’2 —aogo 0
[ST, 51] = 0 —Elobo —|b0|2 0 R
0 0 0 0

is precisely a rank-3 operator. Indeed, the determinant of the 3 x 3 nonzero submatrix

of [S, S1] is given by
(120l + 1b0f?) (= (1~ laof)[bof?  lao[[b0l2) ~ [bol* = ~lao I < 0.
This also implies that [S7, S1] is not a positive definite operator. Therefore:
1. Sy is essentially normal, that is, [ST, S1] = S751 — S1.57 is compact (in fact, here
it is of finite rank).
2. Sy is not hyponormal (and hence, not subnormal).

3. Invariant subspaces of S are cyclic.

The proof of the final assertion is the main content of the following two theorems:

Theorem 4.5.1. Let ag and by be scalars such that 0 < |bg| < |ag|. Suppose

((ap—1)+boz)z ifm=0
0 ifm>1,

Fzm" =

and consider the 1-shift Sy = M, + F on H*(D). Then a nonzero closed subspace M C
H2(D) is invariant under Sy if and only if there exists an inner function § € H>®(D)
such that

M =Cp @ 20H*(D),
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where
0 = (1 + b—0|0(0)\2z)9 — @ ((ao -1)+ bOZ>~

aop ao

Moreover, if M is as above, then M = [¢]g, .

Proof. In view of Theorem 4.2.2, we only have to prove the necessary part. Suppose M
is a Si-invariant closed subspace of H?(ID). Again, by Theorem 4.2.2, there exists inner
function § € H>°(D) such that M = Cy @ 20 H?*(D), where S;¢ = 2pf and

¢=q+pd (4.5.3)

for some polynomials p,q € C[z]. Since S1p = zpf, we have zpd = (M, + F)p. Then
(4.5.2) implies
zpf = (M. + F)p = zp + (0)((ao — 1) + bo2)z,

that is, pf = ¢ + ¢(0)((ap — 1) + bpz). Therefore,
¢ =pb — p(0)((ao — 1) + bo2), (4.5.4)

and by (4.5.3), it follows that ¢ = —¢(0)((ap — 1) + boz). Now, if m > 1, then ¢ L
2™ H?(D) implies that (p, 2™0) = 0, and hence (4.5.4) yields

(p, 2™y = (pd, 2™0) = p(0){(ag — 1) + bz, z™0).

Since ¢(0) = 2(00(O) 'y, (4.5.4) again, it follows that

ag

bop(o)‘9(0)|2 ifm=1
(p,z") = 0
0 ifm > 1.
Thus, we have
b
p=p(0)(1+—0(0)*2),
ao
which implies that (by recalling (4.5.4))
¢ =pt — (0)((ao — 1) + bo2)
0)6(0
_ o= P00 1 b
ao
b 6(0
= p()[1+ 216020 ~ "2 (a0~ 1)+ 502)].
ag ao

Finally, since ¢ # 0, without loss of generality, we may assume that p(0) = 1. This
completes the proof of the first part. We also have

b
p=1+—16(0)z.
ap
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Since 0 < |bg| < |ap| and @ is inner, it follows that p is an outer polynomial. The

remaining part of the statement is now a particular case of the following theorem. [

In the level of Si-invariant subspaces, we have the following general classification:

Theorem 4.5.2. Let M C H%(D) be a nonzero closed Sy-invariant subspace. Then
M =[Me SiM]g,,

if and only if there exists an inner function € H*> (D) and an outer polynomial p € C[z]
such that M & 51 M = Cp and S1p = zpb.

Proof. Let M = Co @ 20H?(D), where § € H°(D) is an inner function, ¢ = pf — ¢, and
S1p = zpb for some p, q € C[z] (see Theorem 4.2.2). Note that

M SIM = Cop.
Since S1¢ = zpb, by (4.1.2) we have
St = ST (2pf) = M (2ph) = 2" pb),

for all m > 2. Therefore
St = 2"pb (m>1). (4.5.5)
Now suppose that M = [p]s,. The above equality then tells us that [S1¢]s, C 20 H%(D).
Since ¢ | 20H?(D), we have
M =[gls, = Cp @ 20H*(D) = Cp @ [S19]s,

Clearly, we have [S1¢p]s, = 20 H%(D), where on the other hand

[S1¢] = [2p0]ar. = 20[p] .,

and hence 20[p|y;. = 20 H?(D). But since 26 is an inner function, we have [p|y, = H*(D),
that is, p is an outer polynomial. In the converse direction, since p is outer, (4.5.5) implies
that

20H*(D) = 20[plar. = [S1¢]ar. = [S1¢]s,.-

Therefore
M = (CSD D 29H2(D) = (CSO D [51(,0]51 = [90]317

which completes the proof of the theorem. O
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In the setting of Theorem 4.5.1, we now consider the particular case when ag = by = 1.

In this case

22 ifm=0

Fz" =
0 ifm>1.

Then, by Theorem 4.5.1, we have:

Corollary 4.5.3. Let F1 = 2> and Fz™ = 0 for all m > 1. Suppose M is a nonzero
closed subspace of H*(D). Then M is invariant under Sy = M, + F if and only if there
exists an inner function 6 € H®(D) such that M = Cp @ 20H*(D), where

© = (1+0(0)]*2)0 — 6(0)=.

Moreover, if M is as above, then M = [¢]g, .

Moreover, in the setting of Theorem 4.5.1, for M = Cyp ® 20H%*(D), we have the

following curious observations:

1. M is of finite codimension if and only if € is a finite Blaschke product (this is also

true for general n-shift invariant subspaces in the setting of Theorem 4.2.2).

2. ¢ need not be an inner function. Indeed, in the setting of Corollary 4.5.3, consider
1
the Blaschke factor 6(z) = %, and set ¢ = (1 + |6(0)?2)0 — 6(0)z. Then
2
1
o(z) = %ll_i; is a rational function with z = 2 as the only pole. Note that
2

¢(1) = =T and ¢(—1) = 2. Clearly, ¢ is not an inner function.

3. If 6(0) = 0, then M = [0]y, = [0]s,. Therefore, Si|ar¢ is an unilateral shift of
multiplicity one. On the other hand, if 6 is an inner function with é(O) # 0,
then S1r and S1]  are not unitarily equivalent, where M =C¢® 20H?*(D) and

o= (1+210(0)2)8 - %((ao —1)+ boz).

The final observation is in sharp contrast with a well-known consequence of the
Beurling theorem: If M; and Mp are nonzero closed M,-invariant subspaces of H?(D),
then M,|am, and M,|s, are unitarily equivalent. In view of (3) above, this property

fails to hold for invariant subspaces of n-shifts.

We still continue with the setting of Corollary 4.5.3, and examine Theorem 4.3.5
in the case of the commutators of S;. In fact, we have the following observation: Let
X € B(H?(D)). Then X € {5} if and only if there exists ¢ € H*(D) such that
X =T, + N, where
2(p —(0)) ifm=0

0 otherwise.

N =
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Indeed, in this case, fo(2) = 1+ z and f,,,(2) = 2™ for all m > 1. Let X € B(H?*(D)),
and let XS = $1X. Set X = U*XU. Then, X € B(H;) N {M.}, and, as in the
proof of Theorem 4.3.5, there exist ¢ € H>(D) such that X = M,. Moreover, if

= amz™, then

o0
M, fo = aofo + a1 f1 + Z(O‘j + 1) fj,
=2

and

Mgofm = Zajferj (m > 1))
=0

which implies that
) 0 0 0

(651 (&7s) 0 0
[M@]: as+a; ap oy O

as+ oy ar a1 Qg

Therefore, [M,] = [T,,] + [N], where

[cg O 0 0 -] [0 0 0 0 i

ap ag 0 0 . 0O 0 0 0
[To]=laz a1 ap 0 .| and[N]=|az 0 0 0

a3 Qg o1 O (%) 0 0 0

By the proof of Theorem 4.3.5, X = UXU* = T, + N. Clearly, N1 = Z]oil ajsz =
z(p —¢(0)), and Nz™ = 0 for all m > 1, which ends the proof of the claim.

In connection with Theorem 4.5.1, we now point out the other natural (but easier)
example of 1-shift 57 = M, + F, where

Fym z ifm=0
Z =
0 ifm>1.

In this case, S; is a weighed shift with the weight sequence {2,1,1,...}. Therefore, S;
is similar to the unilateral shift M, on H?(D) via an explicit similarity map. Using
this, it is rather easy to deduce, by pulling back inner functions corresponding to M-
invariant subspaces of H?(D), that S;-invariant subspaces are cyclic and of the form
Cy ® 20H?(D), with § € H°°(D) inner and (after an appropriate scaling)

1
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We refer to [45] for the theory of invariant subspaces of weighted shifts.

Finally, as far as the results of this present chapter are concerned, n-shifts are more
realistic shifts among shifts that are finite rank perturbations of the unilateral shift.
However, a pressing question remains about the classification of invariant subspaces of

general shifts that are finite rank perturbations of the unilateral shift.



Chapter 5

Tridiagonal shifts as compact +

isometry

The starting point of our present chapter is the following classification of compact per-

turbations of isometries [33, page 191]:

Theorem 5.0.1 (Fillmore, Stampfli, and Williams). Let T' € B(H). Then T = compact
+ isometry if and only if I — T*T is compact and T is semi-Fredholm with ind(T) < 0.

In this chapter, we are interested in a quantitative version of the above theorem.
For instance, consider a bounded sequence of non-zero scalars {wy,},>0 and an infinite-
dimensional Hilbert space H with an orthonormal basis {e;},>0. Then the weighted
shift Sy, defined by

Sw(en) = wpent1 (n>0),

is in B(H) with ||Sy|| = sup,, |w,|. We assume that the weight sequence {w,,} is bounded
away from zero. Since kerS,, = {0} and ker S} = {ep}, it follows that S, is semi-
Fredholm and ind(S,) = —1. Moreover, using the fact that Sjep = 0 and S}e, =

Wy_16n—1, 1 > 1, it follows that
I—S5S, = diag(l — |wo|*, 1 — |wi]?,...).
Theorem 5.0.1 then readily implies that

lim |w,|=1 if and only if S,, = compact + isometry. (5.0.1)

n—oo

In this case, since the weight sequence is bounded away from zero, S, is necessarily

left-invertible.

Also note that Sy, is a concrete example of a left-invertible shift on an analytic Hilbert

space.

85
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A standard computation now reveals that S,,, under some appropriate assumption
on the weight sequence {wy, }n>0 [54, proposition 7], is unitarily equivalent to M, on a
diagonal space. Therefore (5.0.1) yields a quantitative classification of shifts on diago-
nal spaces that are compact perturbations of isometries. This motivates the following

natural question:

QUESTION 3. Is it possible to find a quantitative classification of left-invertible shifts on

analytic Hilbert spaces that are compact perturbations of isometries?

The main purpose of this chapter is to provide an answer to the above question for the
case of M, on (tractable) tridiagonal spaces. Throughout the chapter, we fix sequences

of scalars {ap }n>0 and {by }n>0 with the assumption that a, # 0, n > 0. We set
fn(2) = (an + bp2)2" (n>0),

and consider the Hilbert space Hy, with {f,}n>0 as an orthonormal basis. Then Hy is a

tridiagonal space corresponding to the tridiagonal kernel

k(z,w) =Y fa(2)falw)  (z,weD).
n=0

an
An+1

We always assume that {] |}n>0 is bounded away from zero and

(7% n

sup < oo and limsup < 1.
|—]

n>0 OGn+1 n>0  On+1
The latter two assumptions ensure that M, on Hj is bounded [3, Theorem 5], whereas
the first assumption implies that M, is left-invertible [24, Theorem 3.5]. In this case we
also call M, a tridiagonal shift.

The notion of tridiagonal shifts was introduced by Adams and McGuire [3]. A part
of their motivation came from factorizations of positive operators on analytic Hilbert
spaces [4] (also see [47]). Evidently, if b, = 0, then k is a diagonal kernel and M, is a
weighted shift on Hj. Therefore, in view of shifts on analytic Hilbert spaces, tridiagonal
shifts are the “next best” concrete examples of shifts after weighted shifts. The following

is the answer to Question 3 for tridiagonal shifts:

Theorem 5.0.2 (Main result). Let M, be the tridiagonal shift on Hy. Then M, =

compact + isometry if and only if |aail| — 1 and \Z—" — 2”—:“ — 0.

In Section 5.2, we present the proof of the above theorem. In Section 5.1 we prove
a key proposition that says that if 7' € B(H) is a left-invertible operator and if 7" is of
finite index, then T' = compact + isometry if and only if Ly — T™ is compact, where
Ly = (T*T)~'T*. Section 5.3 concludes the chapter with some general remarks and

additional observations.
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5.1 Preparatory results

The aim of this section is to prove a key result of this chapter. We begin with some
elementary properties of left-invertible operators. See [56] for more on this theme. Let
T € B(H) be a left-invertible operator. We use the fact that 7*7T is invertible to see
that

Ly = (T*T)~'T*,

is a left inverse of T. Note that (I'Ly)? = TLy = (T Lt)*), that is, T Lt is an orthogonal
projection. Moreover, if T*f = 0 for some f € H, then (I — TLy)f = f. On the other
hand, if (I —TLy)f = f for some f € H, then TLpf = 0 and hence T*T Ly f = 0, which
implies that T f = 0. Therefore, I —T Lt is the orthogonal projection onto ker 7™, that

1S
I —TLt = Prerr=-

Part of the following is a particular case of [33, Theorem 6.2]. However, part (3)
appears to be new, which will be also a key to the proof of the main theorem of this

chapter. For the sake of completeness, we present the argument with all details.

Proposition 5.1.1. Let T € B(H) be left-invertible and of finite index. The following

statements are equivalent:

1. T = compact + isometry.

2. I —T*T is compact.

3. Lt —T%* is compact.

4. I —TT* is compact.
Proof. Throughout the following, we will designate compact operators by letters such
as K, K1, Ko, etc.
(1) = (2): Suppose T' = S + K for some isometry S on H. Then

T"T=(S+K)(S+K)=S"S+ K, =1+ Kj,

implies that I — T™T is compact.

(2) = (3): Since I — TLp = Pyerp+ and dimker T* < oo, we have TLy = I + K;. Now
if I —T*T = KQ, then LT — T*TLT = K3, and hence

Ky=Lp—TTLy =Ly —T*(I+ K1) = Ly — T* + Ky.

This gives us Ly —T* = K.
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To prove (3) = (4), assume that Ly —T* = K. Then TLy — TT* = K;. Again, since
I —TLp = P and dimker T* < oo, we have

[—TT*= (I —TLy) + (TLy — TT*) = Pexp+ + K1 = Ko.
(4) = (2): Let K = I — TT*. Then T*K = T* — T*TT* = (I — T*T)T* implies that
T(I —T*T) = K, and hence
[ —T'T = LyT(I - T*T) = LrK; = Ko.

(2) = (1) Suppose I —T*T = K. Since |T is positive, we see that (I + |T'|) is invertible.
Then K = (I + |T|)({ — |T|) implies that |T| = I + K;. Let T" = U|T| be the polar
decomposition of T'. Taking the injectivity property of T in account, we find that U is

an isometry, which implies
T=UT|=UI+ K;)=U + Ko,

and completes the proof of the proposition. O

Unlike the proof of [33], the above proof avoids employing the Calkin algebra method.
Of course, as pointed out earlier, the result of [33] (modulo part (3)) holds without the

left-invertibility assumption.

Now we turn to the tridiagonal shift M, on Hj, where
i S
w) =Y fal@)fulw)  (z,weD),
n=0

and fn(z) = (an + by z) " an, b, € C, n > 0. Recall that a,, # 0 for all n > 0. Moreover,

| < oo and

a+1

= +1| < 1 Wthh ensures that M, is bounded and left- invertible on Hy. It

will be convenient to work with the matrix representation of M, with respect to the

lim sup, o |

orthonormal basis {f,}n>0. A standard computation reveals that [3, Section 3]

e S e (020,

—0 H] —0 On+j+1

where Hj_:lo Zp+j := 1. A new round of computation then gives

- o TS0 bosor
)jh+1'+(ZL§E:<_1) <47ﬁi4444447>jh+2+n1 (N/Z 0%

m=0 [lj=0 ant3+j

M., fr = < tn

an+1

where

n>0). (5.1.1)

Cp —

an (bn b”i)

Anp+2 Ap+1
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Therefore -~ _
0 0 0 0
aog
a 0 0 0
Co % 0 0
—cob a
[M] 220 : (5.1.2)
cobabs —c1b3 ag
azaq a4 €2 asq
—cobobzby  c1bzbys —cobg c
aszaqas ajgas as 3

with respect to the orthonormal basis { fy, }n>0 [3, Page 729].

5.2 Proof of the main theorem

Now we are ready to prove the main result of this chapter. Throughout the proof, we

will frequently use matrix representations of bounded linear operators on the tridiagonal

space (as well as subspaces of) Hj, as in (3.1.8).

Proof of Theorem 5.0.2. Since ker M} = Cfy, we see that ind(M,) = —1. Using the left-
invertibility of M, applied to Proposition 5.1.1, we see that M, = isometry 4+ compact

if and only if Ly, — M} is compact.

by

Recall that Ly, = (M} M.) 1M} is

representation of Ly, with respect to

is given by

o o o o O

o o o o
o o o g
o o 8B s

—Cobz  Cobabs
as a3a4
= —&1bg
C1 G4
as _
as €2
0 as

© o
=

ap
a0 0 0
a2
di @
dibiby —daba
asas as d3
—d1b1b2b3 dobobs —dsb3
azagq a4

a2a3a4

o

By (3.1.9), the matrix representation of M} is given

(5.2.1)

a left-inverse of M,. It follows that the matrix
the orthonormal basis { f,, }n>0 [24, Theorem 3.5]
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where d,, = Z—Z — Zn—j for all n > 1. Therefore, we have the following matrix represen-

tation of Ly, — M}:

I a1 _ do _G Cobo _ Cobobs ]
0 (ao al ) €0 as aszaq
a2 ai = 1b3
0 dl (CTI — E) —C1 a4
—diby as _ a2 —c
Ly, -] = | o (GoR) e
M. Z 0 d1b1bo —daba d (‘7‘74 — (_173)
asas as 3 as aq
—d1b1b2b3 dababs —dsbs
0 asa3aq asa4 aq d4

Finally, by (5.1.1), we see that ¢, = -2 (o — %) for all n > 0, and hence

An42 \Nan An+1

dpi1 = — 200 (0 >0). (5.2.2)

n

Now suppose that Ly, — M} is compact. Since { fy, }n>0 is an orthonormal basis of Hy,

a well-known property of compact operators on Hilbert spaces implies that
(Lar, — M) fnll — 0 as n — oo.

For each n > 1, use the matrix representation of Ly;, — M} to see that

cobabs - -+ b 2 cn_1b 2
N(Lat, = M) g =| 2B 0L Ly | Sl e 2
a3a40s - - - An+2 An 42
a a 2
_}_‘ﬂ__”iﬂ‘ +|dn+2’2+"'.
Anp+1 Gp+2
In particular
Ant2  Gpt1)?
N(Ear, = M2) fagall® = Jenf2 4 |22 = 22ELE 0y > 1),

Gn41 Qnt2

and hence, |c,| — 0 and |72 — 2252 — 0 as n — oo. Then we have
n mn

Han+1‘2_1‘ _ ‘an+1‘ Gnt1 _an+2‘ < ‘C_LnJrl _an+2‘(sup‘ Am D
= >~ 9
m

Qp12 Gn+41 Um+1

an4-2 Qpy2 1 Qpt2 an+1

and hence |#L\ — 1. Finally, |¢,| — 0 (see the definition of ¢, in (5.1.1)) and the fact
that {-%2—},~¢ is bounded imply that ]2—2 S )

an+42 An+1

For the converse direction, we assume that \aai -[ — 1 and |2—" - Z”ﬁ\ — 0. Taken
n n n

together, these conditions mean that |c,| — 0 (see (5.1.1)). We claim that Ly;, — M is
compact. To prove this, we first let (Cfg)~ = H. Then, with respect to

%k :(Cfo@Hu
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the operator Lj;, — M} can be represented as

0 A

Ly — M* =
Mz 0 B

z I

where A = Pcy,(Ly, — M})|y and B = Py (L, — M3 )|%. Thus we only have to worry
about the compactness of B. To this end, we consider the matrix representation of B

with respect to the orthonormal basis {f,,}n>1 as

@ _a _z ¢1bs
dl (al ao ) €1 a4
—diby az _ a2 _a
as dy (52 —22) Co
[B] = d1b1b2 —daby ds (ﬂ — ‘:LS)
aza3 as a3 a4
—d1b1b2b3 dobobs —d3bs d
a2a3a4 asaq aq 4

In view of the above matrix representation, we define linear operators By, By and Bg

on H, which admit the following matrix representations:

[Bl] :dlag<@_g7@_?7>7
a

and

—C 0 0 0 . dq 0 0 0

Cc1 b3 _ *. _dl bl
10 o 00 i b 0 0

Byl = | —c1b3bs c2by _ .. and [Bz] = d1b1bg —dabo
[ 2] “asas o c3 0 . [ 3] “ands Tas ds 0
c1bzbabs  —cobabs  c3bs —dibiboby  doboby  —dgbs g

asasag asae ag 4 asasay azaq ay 4

Assume for a moment that By, Bo and B3 are compact. Denote by U the unilateral shift
on M corresponding to the orthonormal basis {fy,}n>1. In other words, U f,, = f,41 for
all n > 1. Then

B = BU* + B;U*? + B,

Clearly, this would imply that B is compact. Therefore, it suffices to show that By, B
and Bj are compact operators. Note that there exist ¢ > 0 and M > 0 such that

a

e<‘ " | < M. (5.2.3)
Gn+41
Then ~ ) . )
a a a a a
SRS T
Qp Gnp+1 %9 an+1 € Gn+1

implies that the sequence {|ag—:1 - dii - |}n>0 converges to zero, which proves that By is

compact.
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We now prove that By is compact. Since lim sup |abﬁ| < 1, there exist r € (0,1) and

ng € N such that
bn

an+41

‘<T‘ (n > ngp).

Write

no—1

(@ fp) b (@ fno—i-q)a
p=1 q=0

and, with respect to this orthogonal decomposition, we let

H

A O
As Az

By =

It is now enough to prove that Ay acting on the infinite dimensional space ©gZ fny+q 18

compact. Note

—Cny 0 0
Cnobng 2 —c 0
Angp+3 no+1
—Cnobn0+2bn0+3 Cn0+1bn0+3 s )
da = | o e o

(_

)

n Cng bn0+2 "'bno +n

(=1)

n—1 Cn0+1 bno +3"'bn0+n

an0+3 "'an0+n+1

an0+4 " 'ano +n+1

(=1)

n—2 Cn0+2bn0+4 "'bno “+n
ano +5 "'ano +n+1

bn0+n

Denote by W, the bounded weighted shift on @2 fny+4 With weight sequence {an0+n+1 tn>2,
that is -
0 0 0 0
bng+2
e R 0 0
_ bn +3
Wal=| 0 222 0 0 ,
bn +4
0 0 e o
and write

Dy, = diag(—cngy —Cng+15 —Cng+2, "+ )-

Suppose My := sup,,>¢ |¢a|. Then

[ Do || = sup [en| < sup|ea| = Mo,
n>ngo n>0
and, by the fact that ¢, — 0, it follows that D,,, is a compact operator. Moreover, A
can be rewritten as
oo

Ag = Dy = Wy Dy + Wi Dy + -+ = > _(=1)"W Dy,
n=0
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Clearly, W} Dy, is compact for all n > 0, and, for m > 2, we have

HWmH < sup bno+2+lbno+3+l o ‘bno+m+l+1
noll =

1>0 | Ong+3+10ng+4+1 * * ° Cng+m+1+2
< 7r™m.

Finally, consider the sequence {S,},>1 of partial sums of compact operators, where
Sp = m—o(=1)"W2 Dy, for all n > 1. Then

m=0
[A2 = Sall = [[(=1)" Wi Dyy + (= 1)" P2 W2 Dy + (1) Wi Dyy 4 -+ ||

oo
< M, Z prtm

m=1

_ n
—Ml’l“,

for some M; > 0 (as 0 < r < 1), and hence Aj is the norm limit of a sequence of compact

operators. This completes the proof of the fact that By is compact.

It remains to prove that Bjs is compact. First note that d,41 = —ag%cn for alln > 0
(see (5.2.2)). The estimate (5.2.3) then implies that ¢, — 0 if and only if d,, — 0. In
particular, we may assume that d, — 0. We are now in a similar situation as in the
proof of the compactness of Bs. The proof of the fact that B3 is compact now follows

similarly as in the case of Bs. O

Remark 5.2.1. Note that if the sequence {Z—Z}nzo is convergent, then ]2—’; - Z:‘L—TJ — 0.

But the converse, evidently, is not true.

Note that if b, = 0 for all n > 0, then Hj is a diagonal space and M, on Hj
is a weighted shift. So in this case, Theorem 5.0.2 recovers the classification of (the
reproducing kernel version of) weighted shifts as obtained earlier in (5.0.1). We refer
the reader to [54] for the transition between weighted shifts and shifts on reproducing

kernel Hilbert spaces.

5.3 Concluding remarks

Let us now return to the general question (cf. Question 3) of quantitative classification
of left-invertible shifts that are compact perturbations of isometries. Clearly, the equiv-
alence in (5.0.1) and Theorem 5.0.2 yields a complete answer to this question for the
case of weighted shifts and tridiagonal shifts, respectively. In particular, if M, is the
Bergman shift, or the weighted Bergman shift, or the Dirichlet shift, then (5.0.1) implies
that M, = compact + isometry.

However, unlike the diagonal case, it is not yet completely clear to us how to directly

relate the kernel k of the tridiagonal space Hjy to the conclusion of Theorem 5.0.2. In



94 Chapter 5. Tridiagonal shifts as compact + isometry

other words, our answer to Question 3 for the tridiagonal case does not seem to indicate

a comprehensive understanding (if any) of the general question.

To conclude this chapter, we offer a general (but still abstract) classification of shifts
that are compact perturbations of isometries. The proof is essentially a variant of

Proposition 5.1.1.

Proposition 5.3.1. Let Hy be an analytic Hilbert space. Suppose the shift M, on Hy,
1s left-invertible and of finite index. Define C' on Hy by

(CH(w) = (f, (L= z0)k(;w))gy,  (f € Hp,w € D).

Then M, = compact + isometry if and only if C' defines a compact operator on Hy.

Proof. Since M, is left-invertible, the index of M, is negative. We know that M, =
isometry + compact if and only if I — M, M} is compact (Proposition 5.1.1). A standard

(and well known) computation shows that
MZk(-,w) = wk(-,w) (w e D).
Then
(I — M, M)k(-,w) = (1 — zw)k(-,w) (w e D).
For each f € Hy and w € D, we have ((I — M MZ)f)(w) = (I — M_MZ)f, k(-,w))y, ,

and hence

(I = MMZ) f)(w) = (f, (I = MoMOk( w)gy, = (fy (1= 20)k (-, w))yy, ,

which implies that (I — M,M})f = Cf. This completes the proof. O

On one hand, the above proposition is an effective tool for weighted shifts (the easy

case, cf. (5.0.1)). For example, if k is a diagonal kernel and

B 1
11— zw

k(z,w) k(z,w)  (z,w e D),

for some diagonal kernel %, then Proposition 5.3.1 provides a definite criterion for answer-
ing Question 3. This is exactly the case with the Bergman and the weighted Bergman
kernels. On the other hand, a quick inspection reveals that the (matrix) representation
of M, M7 for a tridiagonal shift M, is rather complicated and the above proposition is

less effective in drawing the conclusion as we did in Theorem 5.0.2.

Finally, it is worth pointing out that often Berezin symbols play an important role in
proving compactness of linear operators on analytic Hilbert spaces [46]. See [11, 59, 60]

and also [19] for recent accounts on the theory Berezin symbols on analytic Hilbert
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spaces. However, in the present context, it is not clear what is the connection between

Berezin symbols and compact perturbations of isometries.






Chapter 6

Left-invertibility of rank-one

perturbations

Rank-one operators are the simplest as well as easy to spot among all bounded linear
operators on Hilbert spaces. Indeed, for each pair of nonzero vectors f and g in a Hilbert

space H, one can associate a rank-one operator f ® g € B(H) defined by

(fegh=<(hgf (heH).

These are the only operators whose range spaces are one-dimensional. Here B(#) denotes
the algebra of all bounded linear operators on H. Note that finite-rank operators, that
is, linear sums of rank-one operators are norm dense in the ideal of compact operators,
where one of the most important and natural examples of a noncompact operator is an
isometry: A linear operator V on H is an isometry if ||Vh| = ||h| for all h € H, or
equivalently

V'V = Iy.

Along this line, left-invertible operators (also known as, by a slight abuse of terminology,
“operators close to an isometry” [56] also natural examples of noncompact operators:
T € B(H) is left-invertible if T is bounded below, that is, there exists € > 0 such that
|ITh|| > €||h| for all h € H, or equivalently, there exists S € B(#) such that

ST = Iy.

The intent of this chapter is to make a modest contribution to the delicate structure of
rank-one perturbations of bounded linear operators [41]. More specifically, this chapter
aims to introduce some methods for the left-invertibility of rank-one perturbations of
isometries and, to some extent, diagonal operators. The following is the central question

that interests us:

97
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QUESTION 4. Find necessary and sufficient conditions for left-invertibility of the rank-
one perturbation V + f ® g, where V€ B(H) is an isometry or a diagonal operator and

f and g are vectors in H.

The answer to this question is completely known for isometries. Given an isometry
V € B(H) and vectors f,g € H, the perturbation X = V + f ® g is an isometry if
and only if there exist a unit vector h € H and a scalar o of modulus one such that
f=(a—1)h and g = V*h. In other words, a rank-one perturbation X of the isometry
V is an isometry if and only if there exists a unit vector f € H and a scalar « of modulus

one such that
X=V+(a-1)feV"f. (6.0.1)

This result is due to Nakamura [44, 43] (and also see [53]). For more on rank-one
perturbations of isometries and related studies, we refer the reader to [13, 22, 21, 34]
and also [39].

In this chapter, we extend the above idea to a more general setting of left-invertibility
of rank-one perturbations of isometries. In this case, however, left-invertibility of rank-
one perturbations of isometries completely relies on certain real numbers. More specif-
ically, given an isometry V € B(H) and a pair of vectors f and g in H, we associate a

real number ¢(V; f, g) defined by

(Vi fo9) = (17 = VA NgI? + 1+ (V* £, 9) . (6.0.2)
This is the number which precisely determine the left-invertibility of V + f ® g:

Theorem 6.0.1. Let V € B(H) be an isometry, and let f and g be vectors in H. Then
V + f ® g is left-invertible if and only if

c(V; f,g) # 0.

Note that since V' is an isometry, we have [|[V*f|| < ||f]|, and hence, the quantity
c(V; f,g) is always nonnegative. Therefore, the condition ¢(V; f,g) # 0 in the above
theorem can be rephrased as saying that ¢(V; f,g) > 0, or equivalently, ||[V*f]| < ||f]|
or 14+ (V*f,g) # 0. However, in what follows, we will keep the constant c¢(V; f,g)
in our consideration. Not only ¢(V; f, g) plays a direct role in the proof of the above
theorem but, as we will see in Remark 6.1.1, this quantity also appears in the explicit

representation of a left inverse of a left-invertible perturbation.
The following conclusion is now easy:

Corollary 6.0.2. Let V € B(H) be an isometry, and let f and g be vectors in H. Then
V 4+ f ® g is not left-invertible if and only if

IV*fll = [If]l and (V*f,g) = ~1.
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The above theorem also provides us with a rich source of natural examples of left-
invertible operators. For instance, let us denote by D the open unit disc in C. Consider
the shift M, on the £-valued Hardy space H g(ID)) over D, where £ is a Hilbert space.
Then for any

n € ker M =& C HF(D),

and nonzero vector g € HZ(ID), the rank-one perturbation M, +n ® g is left-invertible.
A similar conclusion holds if f,g € H?(D) and

(M7 f,g) #—1.

Section 6.1 contains the proof of the above theorem. In Section 6.2, we discuss a follow-
up question: Characterizations of shifts that are rank-one perturbations of isometries.
Here a shift refers to the multiplication operator M, on some Hilbert space of analytic
functions (that is, a reproducing kernel Hilbert space) on a domain in C. Note, however,

that our analysis will be mostly limited to the level of elementary examples.

In Section 6.3, we study rank-one perturbations of diagonal operators. It is well
known that the structure of rank-one perturbations of diagonal operators is also com-
plicated (cf. [6, 32, 39]). Moreover, comparison between perturbations of diagonal
operators and that of isometries is perhaps inevitable if one views diagonals as normal
operators and isometries as one of the best tractable non-normal operators. Here we
consider D+ f ® g on some Hilbert space H, where D is a diagonal operator with nonzero
diagonal entries with respect to an orthonormal basis {e,}72, of 1. We also assume
that the Fourier coefficients of f and g with respect to {e,}>2 are nonzero. In Theorem

6.3.6, we prove:

Theorem 6.0.3. D + [ ® g is lefi-invertible if and only if D + f ® g is invertible.

In Section 6.4, we observe that the parameterized spaces considered in the work of
Davidson, Paulsen, Raghupathi and Singh [25] is connected to rank-one perturbations
of isometries. In the final section, Section 6.5, we compute ¢(V; f,g) when V + f® ¢
is an isometry and make some further comments on rank-one perturbations of diagonal

operators.

Finally, we remark that the last two decades have witnessed more intense interest in
the theory of left-invertible operators starting from the work of Shimorin [56]. For in-
stance, see [48] and references therein. For a more recent account of Shimorin’s approach
in the context of analytic model theory, invariant subspaces, and wandering subspaces
in several variables, we refer the reader to Eschmeier [27] (also see [16] as part of the mo-
tivation), Eschmeier and Langendorfer [28], and Eschmeier and Toth [30]. Also see the

monograph by Eschmeier and Putinar [29] for the general framework and motivation.
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6.1 Proof of Theorem 6.0.1

In this section, we present the proof of the left-invertibility criterion of rank-one pertur-
bations of isometries. First note that by expanding the right-hand side of (6.0.2), we

have
c(Vif,9) =1+ P9l + 2Re(V* £, 9) + [(V* £, 01> = IV 1PNl (6.1.1)

Next we make a list of the most commonly used rank-one operator arithmetic, which
will be used several times in what follows. Let f, g € H and let T' € B(#). The following
holds true:

L (fog =g f.

2. a(f®g)=(af)®g=f®(ag) for all a € C.

3. (feglfi®g) = (fi,9)f ®@aq forall fi,g1 €H.
4. T(fwg)=(Tf)®gandso (f®g)T=f&(T"g).

S lf @ gl =1£1lgl-

Of course, part (2) is a particular case of part (4). We also note that T € B(H) is
left-invertible if and only if T*7T is invertible. Indeed, if T is left-invertible, then T*T
is an injective positive operator. Since T is bounded below, T*T is also bounded below
and hence of closed range. Therefore, T*T is invertible. Conversely, suppose X is the
inverse of T*T. Then (XT*)T = I implies that T is left-invertible.

We are now ready for the proof of the theorem.

Proof of Theorem 6.0.1. The statement trivially holds for f = 0 or ¢ = 0. So assume
that both f and g are nonzero vectors. Suppose that V + f ® g on H is left-invertible.
Then (V + f ® g)*(V + f ® g) is invertible with the inverse, say L. We have

I=LV4+fo¢)V+fg)=LV'+g)(V+f®g).
Since V*V =1, it follows that

I=L(V'+g@ f)(V+f®g)
=LI+V'f@g+gaV'f+fl*g9®g9)
=L+ LV f)@g+LgV*f+|fI*PLg®g.

In particular, evaluating both sides on the vector V*f and g, respectively, we get

V¥ =LV*f+ (V*f,g)LV*f + |[V*f||*Lg + || fII*(V* £, 9)Lg
= ((V*f9) + DLV f+ (IV*FIIP + I FIP(V* £, 9)) Lg,
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and

9="Lg+lg|*LV*f +{g. V") Lg + | fIPllgl*Lg
= llglPLV"f + (1 + (g, V*£) + | FI*91*) Ly
= llgl*LV"f +aLg,

where a = 1+ (g, V*f) + || fI|*/lg]|?>. The latter equality implies that

1

Now plug the value for LV* f into the expression for V*f above to get

V= s (L (V) = aL)g + (IV*FI? + I F1I(V* £.9)) Lg

lg !!2

A little rearrangement then shows that

Vi = (1 F ) ) g+ (IV IRV £ 0) = S (L4 (VEf,9)) ) Lg. (6.1.2)

lg H2

We compute

lg H2

a(l+(V*f,9)) = (L+ (V' £,0) A+ (g, V) + [ £ 1lgl?)
= (V*£, ) F1P19]? + 2Re(V* £, g) + [(V* £, 9)[> + | F12]|g]|* + 1
= (V*L£ 9l 1glP + IV IR + e(Vs £, 9),

where the last equality follows from the definition of ¢(V; f,g) as in (6.1.1). Now we
simplify the coefficient of Lg, say a, in the right-hand side of (6.1.2) as follows:

a= IIV*fII2 PV f,9) — ((V*f, DIl + 1V FIPlgll? + (Vs f, g))

1
lgll®

= [V 1)

Consequently, by (6.1.2), we have

V' = o VL0~ eVi o) Lo,
Suppose if possible that ¢(V; f,g) = 0. Then V* f = W(l +(V*f,9))g, and so
V' 1) = o1+ (V' Fa))gns) = 1+ (VFoa)

which is absurd. This contradiction proves that ¢(V; f,g) # 0
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Conversely, suppose that ¢ :=¢(V; f,g) #0. Set R = (1+ (g, V*f))V*f ® g, and let
X=1I+ %{HQHQV*J‘" VI +(IVIP = f1)g® g — (R+ R")}. (6.1.3)
We claim that X (V + f ® g)* is a left inverse of V + f ® g, that is
XV+reg (V+ieg =1
Indeed, the left hand side of the above simplifies to

XV+feg)V+feog=XV"+ga )(V+fxg)
=X(I+gV'f+V'fog+|fIP9®g)

—(r+ %{IIgIIQV*f®V*f+ IV FI12 = 1f12)g ® g

~(R+ RN (T+geV i +Vifog+|fPgeg),
and hence, there exists scalars aq, as, asg, and a4 such that
XV+feg'V+feog=I1+tagRg+aV fe@gtagVf+aV' foVf

It is now enough to show that a; = a2 = a3 = a4 = 0. Before getting to the proof of

this claim, let us observe that
R+ R =(1+p)V*fog+(1+p)gaV*f,
where §:= (V*f, g). Now we prove that a; = 0:
a1 = coefficient of g ® ¢
1 _

= 11+ f{ — (U BV AP+ BIAIP) + (VA2 = A1) (L + B) + 1£121g11%) }
= |IfI” + { B+ B+ IV g1 - (1+6)Hf||2—||f||4H9H2}
_ 2, Hf”2 2 _ 201 112
= || fII” + { A+ 8) + IV FIP gl = 1+ 8) = 1179l }

—(=

= |IfI? + c)

=0,
where the last but one equality follows from (6.1.1). Next we compute as:

aos = coefficient of V*f ® g
= 14 {IalPOV AP+ BIAP) — 4 B) (L4 8) + 11PNl }

= 1+ IV APl — 11+ B2~ 1512}
=0,
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as = (V*f,g). We turn now to compute as:

a3 = coefficient of g @ V*f

=1+ @ BF - 48+ (VIR - 1717l

1 %
B2 VI - 1) el

:()7

and, finally

a1 = coefficient of V*f & V*f =~ {gl*(1 + 5) ~ (1 + g’} =0.

This completes the proof of the fact that V + f ® g is left-invertible. O

Remark 6.1.1. From the definition of X in (6.1.3), it is clear that if V + f ® g is
left-invertible for some isometry V € B(H) and vectors f and g in H, then

L= (14 {lglPVre v i+ (Vi - IfPg@g - R+ R (V+ feg)

is a left-inverse of V 4+ f ® g, where c = ¢(V; f,g) and R= (1 + (g, V*f)V*f ® g.

It is worthwhile to observe that for an isometry V' € B(H) and a vector f € H, we
have ||[V*f|| = ||f|| if and only if f € ranV. In particular, Theorem 6.0.1 yields the

following;:

Corollary 6.1.1. Let V € B(H) be an isometry and let f and g are nonzero vectors in
H. If f & ranV, then V + f ® g is left-invertible.

6.2 Analytic operators

Recall that an isometry V € B(H) is called a pure isometry if (7", V"H = {0}. As
we will see soon, this is also known as the analytic property of V. It is known that an
isometry V' € B(H) is pure if and only if V' is unitarily equivalent to M, on the WW-valued
Hardy space H%v(]D)), where W = ker V* is the wandering subspace corresponding to V.
Here M, denotes the multiplication operator by the coordinate function z on H%V(D)
(see (6.2.1) below). Rank-one perturbations of isometries (or pure isometries) that are
pure isometries form a rich class of operators and are fairly complex in nature [43]. The
methods involve heavy machinery of H°°(D)-function theory, which is mostly unavailable
for general function spaces (see [13, 34, 39, 53]). In this section we discuss some examples

of rank-one perturbations of isometries that are shift or simply analytic.

We begin with a brief introduction to shift operators on reproducing kernel Hilbert

spaces. Let £ be a Hilbert space and €2 be a domain in C. Let H be a Hilbert space of
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E-valued analytic functions on €. Suppose the evaluation map

evw(f) = flw)  (f €M),

defines a bounded linear operator ev,, : H — & for all w € 2. Then the kernel function
k:QxQ— B(E) defined by k(z,w) = ev, o ev), z,w € Q, is positive definite, that is,

n

Z (k(2i, 2j)nj,mi)e > 0,

4,j=1

for all {z;}  C Q, {n;}]~; € € and n > 1. Moreover, k is analytic in the first variable

and satisfies the reproducing property

<€Uw(f)v77>5 - <f(w)a77>5 - (fak(ﬂﬂ)m%

for all f € H, w € Q and n € £&. We denote the space H by Hi and call it analytic
Hilbert space. The shift operator M, on Hy, is defined by

(M=f)(w) =wf(w)  (f € Hi,w € Q). (6.2.1)

We always assume that M, is a bounded linear operator on Hy, (equivalently, zH; C Hy,).
It is easy to see that if M, is a shift on some Hj, then

o o

() MIHe = () 2"Hi = {0}

n=0 n=0

This is the property which bridges the gap between left-invertible operators and left-
invertible shifts. More precisely, following the ideas of Shimorin [56], a bounded linear

operator T on H is called analytic if

o)

() 7T"# = {0}.

n=0

If T e B(H) is a left-invertible analytic operator, then there exists an analytic Hilbert
space Hy, such that T" and the shift M, on Hy, are unitarily equivalent [56]. Therefore, up
to unitary equivalence, analytic left-invertible operators are nothing but left-invertible
shifts.

The following proposition collects some examples of analytic and shift operators.
Proposition 6.2.1. Let V € B(H) be a pure isometry, m,n € Z, and let fy € ker V*.
If S=V +V™fy®V"™fo, then the following holds:

1. S is analytic whenever m > n.

2. S is a shift whenever m > n + 1.
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Proof. For simplicity, for each t € Z, we set

Vo ift >0

fe =
V*itfo ift <0.

Since fy € ker V*, it follows that f; = 0 for all £ < 0. Suppose m > n. Observe that
(fm, fn) = (V™ fo, V™ fo) = 0, and hence

52 = V2 +fm+1 ®fn +fm ®fn—1 + <fmafn>fm®fn
=V + fr @ foo1 + frnt1 @ o

Then, by induction, we have

S = VAL 4 £ @ frk + i1 @ frokrt + o Frniko1 @ fac1 + fontk @ fa,

that is

k
SF = VRN LN font s ® frkrss (6.2.2)
j=0

for all £ > 1. In particular, if k =n 4+ j and 5 > 1, then it follows that

Sn+j+1 = Vn+j+1 + fm ® f—j + fm+1 ® f—j-l—l +--- 4+ fm+n+j—1 & fn—l + fm+n+j & fn
At this point, we note that f_, = 0 for all p > 0, and hence

STt Z Yyt 4 f @ fo+ Fatji1 @ fL o Fnjine1 @ fac1 + fdnts @ fa

= Vn+j+1(1 + Z fmfn71+i ® fl)?
i=0

as m > n. This implies that S"T/T1H C V*Ti+13 j > 1. From here we see that

(SHCS () SHCS [) VH={0},

r>0 r>n+1 r>n+1

where the last equality follows from the fact that V is pure. To prove (2), we compute
the value of ¢(V; f,g) with f = V"™ fy and g = V" fo:

c(Vifog9) = (1FI1P = VAP Ngll? + 11+ (V*F, )
= ([[V™foll> = V™ fol DIV ol * + |1+ (V™ fo, V™ fo)|?
=0x ||fol*+]1+0]
=1,

where the last but one equality follows because m—n—1 > 0 implies (V**V™=1fy fo) =
0. The first part and Theorem 6.0.1 then completes the proof of part (2). O
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The above observation is fairly elementary. The general classification of rank-one
perturbations of isometries (or pure isometries) that are shift on some reproducing kernel
Hilbert space is an open problem. However, see [44, Theorem 1] and [43] in the context

of classifications of rank-one perturbations of isometries that are pure isometry.

The following is also a simple class of examples of analytic operators.

Proposition 6.2.2. Let V € B(H) be a pure isometry, f and g be vectors in H, and
suppose V*g+ (g, f)g=0. Then V + f ® g is analytic.

Proof. If we set S:=V + f ® g, then
S2=V24Vfog+fo(Vg+{g flg) =VS.
Therefore, S"t! = VS, n > 1, can be proved analogously by induction. In particular
SN =V'"SHC V™M  (n>0),

and hence, by using the fact that V is a pure isometry, it follows that

NV+feg"™HC () V'H={0},
n=0 n=0
that is, V 4+ f ® g is analytic. O

Note that V*g + (g, f)g = 0 is equivalent to the condition that g € ker(V + f ® g)*.

Recall that the scalar-valued Hardy space H?(D) is a reproducing kernel Hilbert
space corresponding to the Szegd kernel S : D x D — C, where

S(z,w) = (1 — zw) ! (z,w € D).
For each w € D, consider the analytic function S(-,w) : D — C defined by (the kernel

function, see the discussion at the beginning of this section) (S(-, w))(z) = S(z,w), z € D.

Example 6.2.3. The following examples illustrate some direct application of the above

propositions.

1. Fix w € D, and set g = S(-,w). We know that M}S(-,w) = wS(-,w). Choose
f € H*(D) such that (g, a2y = —w (for instance, f = wﬂlz” for somen >1).
Evidently M}g+ (g, f)g = 0, and hence, M, + f @ S(-,w) is an analytic operator.

2. Consider f = z and g = 1 in H?>(D). Then c¢(M,;f,g) = 2 # 0, and hence
M, + f ®g is a shift.

3. Consider f = z and g = —1 in H*(D). Then c(M,; f,g) =0, and hence M.+ f®g
not left-invertible, but analytic by Proposition 6.2.1.
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Note that the rank-one perturbation M, + 2? ® 2 is similar to M, on H?(D). Here
the similarity follows easily from the fact that M, + 2? ® z is a weighted shift with the
weight sequence {1,2,1,1,...}. This implies that M, + 22 ® z is analytic, where on the
one hand

Mz 4 (2,222 =14#0.

Therefore, M, + 2> ® z is an example of an analytic rank-one perturbation of M, which

does not satisfy the hypothesis of Proposition 6.2.2.

6.3 Diagonal operators

In this section, we examine rank-one perturbations of diagonal operators. We prove
that all the interesting left-invertible rank-one perturbations of diagonal operators are

invertible.

Throughout this section, we fix a Hilbert space H with orthonormal basis {e, }>2 of
M. We also fix vectors f = > > jane, and g = > > bye, in H and diagonal operator
D e B(H) with diagonal entries {ay, }n>0. Also, we set

T=D+f®g.
We will assume throughout this section that
Qs Ay, by £ O (n>0),

as this is the class of perturbations we all are most interested in (cf. [39]). Also we

2. anb
r:zl—i—z Zn.
n

n=0

denote

The following result is from Ionascu [39, Proposition 2.4]:

Proposition 6.3.1. T admits zero as an eigenvalue if and only if r = 0 and {g—z}nzg
18 square summable.
The key to our analysis lies in the following observation which is also a result of

independent interest.

Proposition 6.3.2. {e,}n>0 C ranT if and only if r # 0 and {Z—Z}nzo is square

summable.

Proof. Assume that e; € ranT for some arbitrary but fixed integer j > 0. Then there
exists = )7 cpen € H such that Tz = (D + f ® g)x = ej. Therefore

o

ej = Z(cnozn)en + (z,9) Z anén. (6.3.1)
n=0

n=0
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Note that (x,g) # 0. Indeed, if (z,g) = 0, then

1
aj

ifn=j
Cn =
0  otherwise,

and hence v = a%ej. Since g = > o7 bnen, using (x,g) = 0, we have b; = 0. This
contradiction shows, as promised, that (z,g) # 0. Now equating the coefficients of
terms on either side of (6.3.1), we have ¢; = a—lj(l —a;(x,g)), and ¢, = 0 for all n # j.
In particular, {Z—Z}nzo is a square summable sequence, and, as (x,g) = Y oo Cnbp, We
have - - B

(Inbn bj

<x,g>=—<x,g)z + =,

(% (&%)
n=0 n J

which implies

(143 0
n=0 n

and hence r # 0. For the converse direction, fix an integer j > 0. Then

) = =

Q;

is a vector in H. Note that
y9)=—""—(r-1)+—==—.

Using the representation f =Y ° jane,, we deduce from the above that

[e.o]

b
Ty = (D+f®g)y:_E].Zanen+ej+<yag>f:€j‘
J n=0

This implies that e; € ranT for all 7 > 0 and completes the proof of the proposition. [l

We also need the following lemma:

Lemma 6.3.3. If T is bounded below, then D is invertible.

Proof. Assume by contradiction that {a,,, } is a subsequence of the sequence {a, }, which

converges to zero. Now

Te”k - (D + f ®g)€nk = ankenk + <enk>g>f = @nkenk + bnkfa
implies
[ Ten |l < lang | + [bn [ £1]-

This shows that {Te,, } converges to zero for the sequence of unit vectors {e,, }. But

this contradicts the fact that 7 is bounded below. Therefore the sequence {ay,} has no
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subsequence that converges to zero. Consequently, there exists M > 0 such that
la| > M (n>0),

and hence {é} is a bounded sequence. We conclude that D is invertible. O

The converse is not true: Pick f,g € H such that (f,g) = —1. By Proposition 6.3.1,
I+ f ® g is not injective, and hence not left-invertible. However, as a weak converse we

have:

Proposition 6.3.4. If D is bounded below and T is injective, then T is left-invertible.

Proof. Assume by contradiction that 7= D + f ® g is not bounded below. Then there
is a sequence {h,} C H with ||hy,|| = 1 such that Th, — 0. By the compactness of
f ® g, there exists a subsequence {hy, } of {h,} such that (f ® g)h,, converges. Then,
Dhy, = (T — f @ g)hn, converges. But since D is bounded below, this gives us hy,, — h
for some h € #. In particular, we have ||h| = 1. On the other hand, since T is a

bounded linear operator, we have
Th = lim Th,, =0,
k—o0

that is, h € kerT. But, ker7 = {0} by our assumption, and hence h = 0, which
contradicts the fact that ||k = 1. Therefore, T is bounded below. O

Although Proposition 6.3.4 is not directly related to the main result of this section,
but perhaps fits appropriately with our present context. We come now to the main
result on left-invertibility of rank-one perturbations. The following result and its proof

are also along the same line and perhaps of independent interest.

Proposition 6.3.5. If D has a closed range, then T also has a closed range.

Proof. Let N' = kerT, and let ranD is closed. Then T|y. is injective. Assume by
contradiction that ran7 is not closed. Then X := T'| /1 is not left-invertible. Proceeding
exactly as in the proof of Proposition 6.3.4 (by replacing the role of T by X)), we will

find a contradiction. O

We come now to the main result on left-invertibility of rank-one perturbations.
Theorem 6.3.6. D + f ® g is left-invertible if and only if D + f ® g is invertible.
Proof. For the nontrivial direction, assume that T'= D+ f ® g is left-invertible. Assume

by contradiction that 7" is not invertible. Since, in particular, ranT is closed, {e, }n>0 €

ranT. Now by Proposition 6.3.1, either r # 0 or the sequence {g—z}nzo is not square
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summable. On the other hand, we know from Lemma 6.3.3 that D is invertible, and

hence oo
_ a
D7lf = g e, €H.
n=0 On

This implies, of course, that {Z—Z}nzo is a square summable sequence, and hence r # 0.
As a consequence, we can apply Proposition 6.3.2 to T: the basis vectors {e,}n>0 C

ranT’; which is a contradiction. This proves that T is invertible. O

If we know that D is invertible (which anyway follows from Lemma 6.3.3) and r # 0,
then the surjectivity of T'= D+ f ® g in the above proof also can be obtained as follows:
Observe that

anbnp,
=r.
n

L+(D7 gy =1+~
n=0

Then for each y € H, we consider x = D™y — %(D‘ly,g>D_1f. We deduce easily that
Tx =y, which completes the proof of the fact that T is onto.

6.4 An example

Let T be a bounded linear operator on H?(D). Suppose

0 0 0
apr O 0
1] = |ap2 a2 0 .|,

the matrix representation of 7" with respect to the standard orthonormal basis {z",n >
0} of H%(D). Clearly, T'(2") C 2"*'H?(D), and hence

T"(H*(D)) C 2"H*(D)  (n>0).

It follows that

o0

(N T"H*(D) C () z"H*(D) = {0},
n=0

n=0
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that is, 7" is analytic. In particular, for each a and § in C, the matrix operator

0

oS R O O O
= o O O O
o o o o o

o
B
0
0

defines an analytic operator T, 5 on H%(D). Moreover, one can show that
Top =M+ (az+ (8 -1)") @1,

that is, T;, g is a rank-one perturbation of the shift M? on H?*(D). Next, we compute
c(Twp; f,g), where f = az + (8 — 1)2? and g = 1. Since (M;?f, 9 m2m) = B — 1, and
IM22F]2 = |8 = 12, and ||£]]2 = [af? + |8 — 172, it follows that

o(Tap,z+ (B —1)2%1) = |a]* +|8[%.

Thus we have proved:

Proposition 6.4.1. Let (o, ) € C2\ {(0,0)}. If f = az + (8 —1)2% and g = 1, then:

1. T, p is a shift on H*(D),

2. Tog=M2+f®g and

3. c(MZi f,g) = |af* + |B[.

We recall in passing that T, g is a shift means the existence of an analytic Hilbert
space H; and a unitary U : H2(]D>) — M}, such that T, g = U*M_.U.

We continue with the matrix representation [7,, g]. Clearly, Ty, g is an isometry if and
only if
f® +|B8° = 1.

Denote by H?2 5(D) the closed codimension one subspace of H 2(D) with orthonormal
basis {a + f(z,22,23,...}. Clearly, Hgéﬁ(ﬂ)) is an invariant subspace of M2. One can
verify straightforwardly that the map U : H?(D) — HC% 5(D) defined by

a+ Bz ifn=0
n+1

Uz" =

z otherwise

is a unitary operator and
UT, = MU,
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that is, T, 5 on H?(D) and M?| H2 (D) OB ny (D) are unitarily equivalent. The operator
M2\ 2 () (a, B) € C% with |a|>+|B]? = 1, has been considered in [25] in the context of
invariant subspaces and a constrained Nevanlinna-Pick interpolation problem. Clearly,
in the context of perturbation theory, it is worth exploring and explaining the results of

[25].

6.5 Concluding remarks

We begin by computing ¢(V; f, g) for rank-one perturbations that are isometries. Sup-
pose V € B(H) is an isometry and f and g are vectors in #H. It is curious to observe
that

c(Vi fog) =1,

whenever V + f ® g is an isometry. Indeed, in the present case, by (6.0.1), there exist a
unit vector h € H and a scalar a of modulus one such that f = (o — 1)h and g = V*h.
Then (6.1.1) yields

c(Vif,9) =1 =la = 1P[IVR]? + 2Re(a = D)[Vh[* + o — 12[V*AII*(1 ~ 1)
= (Ja = 1]* + 2Re(a = 1)) [V*h|?,

and hence ¢(V; f,g) —1 =0 as |a| = 1. This completes the proof of the claim.

It would be interesting to investigate the nonnegative number ¢(V; f, g) in terms of
analytic and geometric invariants, if any, of rank-one perturbations of isometries. This
is perhaps a puzzling question for which we do not have any meaningful answer or guess

at this moment.

We conclude this chapter by making some additional comments on (non-analytic
features of ) perturbations of diagonal operators. The following easy-to-prove proposition
says that rank-one perturbations of common diagonal operators do not fit well with shifts

on reproducing kernel Hilbert spaces.

Proposition 6.5.1. Let D € B(H) be a Fredholm diagonal operator, and let f,g € H.
Then D + f ® g cannot be represented as shift.

Proof. Suppose that D+ f ® g is unitarily equivalent to M, on some reproducing kernel
Hilbert space. Since D is Fredholm, and M, and D + f ® g are unitarily equivalent, we
have ind(M,) = ind(D) = 0. On the other hand, since M, is injective, it follows that

ind(M,) = dimker M, — dimker M < 0,

which is a contradiction. O
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In the context of Theorem 6.3.6, we remark that rank-one perturbations of diagonal
operators need not be left-invertible: Consider a compact diagonal operator D (for
instance, consider D with diagonal entries {1}). Then a rank-one perturbation of D is

also compact, and hence the perturbed operator cannot be left-invertible.

In Lemma 6.3.3, we prove that if D 4+ f ® ¢ is bounded below, then D is invertible.
This was one of the key tools in proving Theorem 6.3.6: D + f ® g is left-invertible if
and only if D+ f ® g is invertible. Of course, we assumed that the Fourier coefficients of
f and g are nonzero. Here, we would like to point out that rank-one perturbation of an
invertible operator need not be invertible. In fact, the invertibility property of rank-one
perturbations of invertible operators can be completely classified (see [39, Lemma 2.7]):

Let D be an invertible diagonal operator. Then D + f ® g is invertible if and only if

L+(D"'f,g) #0.

Finally, in the context of left-invertibility, consider D = Iy and choose f and g from H
such that (f,g) = —1. Then ¢(D; f,g) = 0, and hence, D 4+ f ® g is not left-invertible.
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