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Notations & Abbreviations

N Set of all Natural numbers.

Z+ the set of all non-negative integers.

C Set of all complex numbers.

H,E, E ,H,W Hilbert spaces.

Cf0 the linear subspace generated by the single vector f0 ∈ H.

[E]T smallest closed linear subspace containing E.

⟨, ⟩ The inner product of a Hilbert space.

O(Ω, E) The set of all holomorphic functions on Ω ⊆ C to E .

O(Ω) The set of all holomorphic functions on Ω ⊆ C to C.

D The open unit disk in the complex plane.

Hk The reproduncing kernel Hilbert space with kernel k.

C[z] The ring of all polynomials over C.

H2(D) the Hardy space over D

H∞(D) The algebra of multipliers of the Hardy space.

T ∗ the adjoint of the operator T on a Hilbert space.

I the identity operator on a Hilbert space.

B(H) the algebra of all bounded linear operators on H.

1





Chapter 1

Introduction

This thesis deals with the merge of a number of operator and function theoretic con-

cepts, namely, reproducing kernels, Aluthge transforms, left invertible operators, com-

pact perturbations of isometries, and invariant subspaces of finite rank perturbations of

isometries. Our study intends to contribute equally to these subjects.

The main contributions of this thesis are:

1. Tridiagonal kernels and left-invertible operators with applications to Aluthge trans-

form: We study left-invertible operators on tridiagonal spaces and present compu-

tational approach to the theory of Aluthge transform. Given scalars an(̸= 0) and

bn, n ≥ 0, the tridiagonal kernel or band kernel with bandwidth 1 is the positive

definite kernel k on the open unit disc D defined by

k(z, w) =

∞∑
n=0

(
(an + bnz)z

n
)(

(ān + b̄nw̄)w̄
n
)

(z, w ∈ D).

This defines a reproducing kernel Hilbert space Hk (known as tridiagonal space)

of analytic functions on D with {(an + bnz)z
n}∞n=0 as an orthonormal basis. We

consider shift operators Mz on Hk and prove that Mz is left-invertible if and only

if {|an/an+1|}n≥0 is bounded away from zero. We find that, unlike the case of

weighted shifts, Shimorin’s models for left-invertible operators fail to bring to the

foreground the tridiagonal structure of shifts. In fact, the tridiagonal structure of

a kernel k, as above, is preserved under Shimorin model if and only if b0 = 0 or

that Mz is a weighted shift. We prove concrete classification results concerning

invariance of tridiagonality of kernels, Shimorin models, and positive operators.

We also develop a computational approach to Aluthge transforms of shifts. Curi-

ously, in contrast to direct kernel space techniques, often Shimorin models fails to

yield tridiagonal Aluthge transforms of shifts defined on tridiagonal spaces.

3



4 Chapter 1. Introduction

2. Invariant subspaces of analytic perturbations: By analytic perturbations, we re-

fer to shifts that are finite rank perturbations of the form Mz + F , where Mz is

the unilateral shift and F is a finite rank operator on the Hardy space over the

open unit disc. Here shift refers to the multiplication operator Mz on some an-

alytic reproducing kernel Hilbert space. Here, we first isolate a natural class of

finite rank operators for which the corresponding perturbations are analytic, and

then we present a complete classification of invariant subspaces of those analytic

perturbations. We also exhibit some instructive examples and point out several

distinctive properties (like cyclicity, essential normality, hyponormality, etc.) of

analytic perturbations.

3. Tridiagonal shifts as compact + isometry: We consider the tridiagonal kernel k on

D as above. Denote by Mz the multiplication operator on the reproducing kernel

Hilbert space corresponding to the kernel k. Assume that Mz is left-invertible.

We prove that Mz = compact + isometry if and only if∣∣∣ bn
an

− bn+1

an+1

∣∣∣ → 0,

and ∣∣∣ an
an+1

∣∣∣ → 1.

4. Left-invertibility of rank-one perturbations: For each isometry V acting on some

Hilbert space and a pair of vectors f and g in the same Hilbert space, we associate

a nonnegative number c(V ; f, g) defined by

c(V ; f, g) = (∥f∥2 − ∥V ∗f∥2)∥g∥2 + |1 + ⟨V ∗f, g⟩|2.

We prove that the rank-one perturbation V + f ⊗ g is left-invertible if and only if

c(V ; f, g) ̸= 0.

We also consider examples of rank-one perturbations of isometries that are shift

on some Hilbert space of analytic functions. Here, shift refers to the operator of

multiplication by the coordinate function z. Finally, we examine D+ f ⊗ g, where

D is a diagonal operator with nonzero diagonal entries and f and g are vectors

with nonzero Fourier coefficients. We prove that D+ f ⊗ g is left-invertible if and

only if D + f ⊗ g is invertible.

In this thesis, all Hilbert spaces will be separable and over C. Given Hilbert spaces

H and K, B(H,K) will denote the space of all bounded linear operators from H to K.

We will simply write B(H) whenever H = K.

Let us now elaborate on the above content chapter-wise. This thesis contains four

independent but closely related chapters (excluding the preliminary chapter):
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Chapter 3: Tridiagonal kernels and left-invertible operators with applications to Aluthge

transform.

The theory of left-invertible weighted shifts or multiplication operators Mz on “di-

agonal” reproducing kernel Hilbert spaces is one of the most useful in operator theory,

function theory, and operator algebras (see the classic by Shields [54]). Given a bounded

sequence of positive real numbers w = {wn}n≥0, and an orthonormal basis {en}n≥0 of

an infinite-dimensional Hilbert space H (complex separable), the operator Sw defined

by

Swen = wnen+1 (n ≥ 0),

is called a weighted shift with weights {wn}n≥0. In this case, Sw is bounded (Sw ∈ B(H)

in short) and ∥Sw∥ = supnwn. If the sequence {wn}n≥0 is bounded away from zero,

then Sw is a left-invertible but non-invertible operator. Note that the multiplication

operator Mz on (most of the) diagonal reproducing kernel Hilbert spaces is the function

theoretic counterpart of left-invertible weighted shifts which includes the Dirichlet shift,

the Hardy shift, and the weighted and unweighted Bergman shifts, etc.

The main focus of this chapter (as well as some other parts of this thesis) is to

study shifts on the “next best” concrete analytic kernels, namely, tridiagonal kernels.

This notion was introduced by Adams and McGuire [3] in 2001 (also see the motivating

paper by Adams, McGuire and Paulsen [4]). However, in spite of its natural appearance

and potential applications, far less attention has been paid to the use of tridiagonal

kernels in the aforementioned subjects. On the other hand, Shimorin [56] developed the

idea of analytic models of left-invertible operators at about the same time as Adams

and McGuire, which has been put forth as a key model for left-invertible operators by

a number of researchers [20, 35, 58, 48].

In this chapter we consider the next level of shifts on tridiagonal spaces, namely

left-invertible shifts on tridiagonal spaces. We also discuss the pending and inevitable

comparisons between Shimorin’s analytic models of left-invertible operators and Adams

and McGuire’s theory of left-invertible shifts on tridiagonal spaces. In particular (and

curiously enough), we find that, unlike the case of weighted shifts, Shimorin models fail

to bring to the foreground the tridiagonal structure of shifts. We resolve this dilemma

by presenting a complete classification of tridiagonal kernels that are preserved under

Shimorin models.

We also prove a number of results concerning left-invertible properties of shifts on

tridiagonal spaces, new tridiagonal spaces from the old, classifications of quasinormal

operators, rank-one perturbations of left inverses, a computational approach to Aluthge

transforms of shifts, etc. Again, curiously enough, some of our definite computations

in the setting of tridiagonal kernels verify that the direct reproducing kernel Hilbert

space technique is somewhat more powerful than Shimorin models. We also provide a

family of instructive examples and supporting counterexamples. We believe that some
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of our results and approaches may be of independent interest and may find additional

applications.

To demonstrate the main contribution of this chapter, it is now necessary to dis-

ambiguate central concepts. Needless to say, the theory of reproducing kernel Hilbert

spaces will play a central role in this thesis. Briefly stated, the essential idea of re-

producing kernel Hilbert space [10] is to single out the role of positive definiteness of

inner products, multipliers and bounded point evaluations of function Hilbert spaces.

We denote by D = {z ∈ C : |z| < 1} the open unit disc in C. Let E be a Hilbert space.

A function k : D×D → B(E) is called an analytic kernel if k is positive definite, that is,

n∑
i,j=1

⟨k(zi, zj)ηj , ηi⟩E ≥ 0,

for all {zi}ni=1 ⊆ D, {ηi}ni=1 ⊆ E and n ∈ N, and k analytic in the first variable. In

this case there exists a Hilbert space Hk, which we call analytic reproducing kernel

Hilbert space (analytic Hilbert space, in short), of E-valued analytic functions on D such

that {k(·, w)η : w ∈ D, η ∈ E} is a total set in Hk with the reproducing property

⟨f, k(·, w)η⟩Hk
= ⟨f(w), η⟩E for all f ∈ Hk, w ∈ D, and η ∈ E . The shift operator on Hk

is the multiplication operator Mz (which will be assumed to be bounded) defined by

(Mzf)(w) = wf(w) (f ∈ Hk, w ∈ D).

Note that there exist Cmn ∈ B(E) such that k(z, w) =
∑∞

m,n=0Cmnz
mw̄n, z, w ∈ D. We

say that Hk is a diagonal reproducing kernel Hilbert space (and k is a diagonal kernel)

if Cmn = 0 for all |m − n| ≥ 1. We say that k is a tridiagonal kernel (or band kernel

with bandwidth 1) if

Cmn = 0 (|m− n| ≥ 2).

In this case, we say that Hk is a tridiagonal space. Now let {an}n≥0 and {bn}n≥0 be a

sequences of scalars. In this thesis, we will always assume that an ̸= 0, for all n ≥ 0. Set

fn(z) = (an + bnz)z
n (n ≥ 0).

Assume that {fn}n≥0 is an orthonormal basis of an analytic Hilbert space Hk. Then Hk

is a tridiagonal space, as the well known fact from the reproducing kernel theory implies

that

k(z, w) =
∞∑
n=0

fn(z)fn(w) (z, w ∈ D). (1.0.1)

A linear operator V on H is an isometry if ∥V h∥ = ∥h∥ for all h ∈ H, or equivalently

V ∗V = IH.
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Along this line, left-invertible operators (also known as, by a slight abuse of terminology,

“operators close to an isometry” [56]) are also natural examples of noncompact operators:

T ∈ B(H) is left-invertible if T is bounded below, that is, there exists ϵ > 0 such that

∥Th∥ ≥ ϵ∥h∥ for all h ∈ H, or equivalently, there exists S ∈ B(H) such that

ST = IH.

We now turn to Shimorin’s analytic model of left-invertible operators [56], which says

that if T ∈ B(H) is left-invertible and analytic (that is, ∩∞
n=0T

nH = {0}), then there

exists an analytic Hilbert space Hk(⊆ O(D,W)) such that T and Mz on Hk are unitarily

equivalent, where W = kerT ∗ = H⊖ TH is the wandering subspace of T , and O(D,W)

is the set of W-valued analytic functions on D. The Shimorin kernel k is explicit which

involves the Shimorin left inverse

LT = (T ∗T )−1T ∗, (1.0.2)

of T . The representation of the Shimorin kernel is useful in studying wandering subspaces

of invariant subspaces of weighted shifts [55, 56]. See [38, Chapter 6] and [52] in the

context of the wandering subspace problem, and [48] and the extensive list of references

therein for recent developments and implementations of Shimorin models.

An analytic tridiagonal kernel is a scalar kernel k as in (1.0.1) such that C[z] ⊆ Hk,

and

sup
n≥0

∣∣∣ an
an+1

∣∣∣ < ∞ and lim sup
n≥0

∣∣∣ bn
an+1

∣∣∣ < 1,

(which ensures that Mz on Hk is bounded) and {| an
an+1

|}n≥0 is bounded away from zero.

An analytic Hilbert space is called analytic tridiagonal space if the kernel function is an

analytic tridiagonal kernel.

Now we turn to Aluthge transforms. The notion of Aluthge transforms was intro-

duced by Aluthge [7] in his study of p-hyponormal operators. Let H be a Hilbert space,

T ∈ B(H), and let T = U |T | be the polar decomposition of T . Here, and throughout

this note, |T | = (T ∗T )
1
2 and U is the unique partial isometry such that kerU = kerT .

The Aluthge transform of T is the bounded linear operator

T̃ = |T |
1
2U |T |

1
2 .

The Aluthge transform of T̃ turns T into a more “normal” operator while keeping intact

the basic spectral properties of T [40]. Evidently, the main difficulty associated with T̃

is to compute or represent the positive part |T |. This is certainly not true for weighted

shifts: Since |Sw| = diag(w0, w1, w2, . . .), it follows that S̃w = S√
w, where

√
w := {

√
w0w1,

√
w1w2, . . .}.

Therefore, S̃w is also a weighted shift, namely S√
w.
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We prove the following set of results:

(a) Weighted shifts behave well under Shimorin’s analytic models.

(b) {| an
an+1

|}n≥0 is bounded away from zero is equivalent to the fact that Mz on Hk is

left-invertible.

(c) Representations of Shimorin left inverses of shifts on analytic tridiagonal spaces.

(d) Shimorin kernels do not necessarily preserve the tridiagonal structure of kernels.

However, it does for a kernel k of the form (1.0.1) if and only if Mz on Hk is a

weighted shift or

b0 = 0.

(e) Classification of positive operators P on a tridiagonal spaceHk such thatK(z, w) :=

⟨Pk(·, w), k(·, z)⟩Hk
defines a tridiagonal kernel on D. More specifically, if

P =



c00 c01 c02 c03 . . .

c̄01 c11 c12 c13
. . .

c̄02 c̄12 c22 c23
. . .

c̄03 c̄13 c̄23 c33
. . .

...
...

...
. . .

. . .


,

denote the matrix representation of P with respect to the basis {(an+ bnz)z
n}n≥0

of Hk, then the kernel K is tridiagonal if and only if c0n = (−1)n−1 b̄1···b̄n−1

ā2···ān c01,

n ≥ 2, and cmn = (−1)n−m−1 b̄m+1···b̄n−1

ām+2···ān cm,m+1 for all 1 ≤ m ≤ n− 2.

(f) Suppose Mz is non-normal on an analytic tridiagonal space Hk. Denote by PCf0

the orthogonal projection of Hk onto Cf0. Then Mz is quasinormal if and only if

there exists r > 0 such that

M∗
zMz −MzM

∗
z = rPCf0 .

(g) Computation of M̃z, where Mz is a left-invertible shift on some analytic Hilbert

space Hk. We prove that M̃z is also a left-invertible shift on some analytic Hilbert

space Hk̃. The kernel k̃ can be obtained either via Shimorin’s model, which we

call the Shimorin-Aluthge kernel of Mz, or by a direct approach, which we call the

standard Aluthge kernel of Mz. We prove that if C[z] ⊆ Hk ⊆ O(D), then LMz

and LM̃z
are similar up to the perturbation of an operator of rank at most one.

Moreover, in this setting Shimorin-Aluthge kernels are somewhat more explicit.

(h) We consider truncated spaces (subclass of analytic tridiagonal spaces) in order to

pinpoint more definite results, instructive examples, and counterexamples. The

computational advantage of a truncated space is that it annihilate a rank one
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operator associated with LMz of the shift Mz. As a result, in this case we are able

to prove a complete classification of tridiagonal Shimorin-Aluthge kernels of shifts.

(i) We also comment on the assumptions in the definition of truncated kernels. We

point out, at the other extreme, if one consider a (non-truncated) tridiagonal kernel

k with

b0 = b1 = 1 or b0 = 1,

and all other bi’s are equal to 0, then the standard Aluthge kernel of Mz is a

tridiagonal but the Shimorin-Aluthge kernel of Mz is not.

We remark that some of the observations outlined in this chapter are based on several

more general results that have an independent interest in broader operator theory and

function theoretic contexts.

Chapter 4: Invariant subspaces of analytic perturbations.

Note that the main aim of perturbation theory is to study (and also compare the

properties of)

S = T + F,

where T is a tractable operator (like unitary, normal, isometry, self-adjoint, etc.) and

F is a finite rank (or compact, Hilbert–Schmidt, Schatten-von Neumann class, etc.)

operator on some Hilbert space.

In this chapter, we propose an analytic approach to perturbation theory, namely, we

study analytic perturbations of the unilateral shift on the Hardy space H2(D). Recall

that the unilateral shift is an isometry on H2(D), which is also the most well-known

example of a non-normal operator on infinite-dimensional Hilbert spaces. From this

point of view (and also as a part of the main motivations), we examine the above-

mentioned problem by replacing the normal operator with the unilateral shift. More

specifically, along with other natural properties, we deal with closed invariant subspaces

of “shift” operators of the form

Sn = Mz + F,

where Mz denotes the unilateral shift and F is a finite rank operator (of rank ≤ n)

on H2(D). We call a bounded linear operator S acting on a Hilbert space a shift if

S is unitarily equivalent to Mz on some analytic Hilbert space, where Mz denote the

multiplication operator by the coordinate function z. In this chapter, analytic Hilbert

spaces will refer to reproducing kernel Hilbert spaces of analytic functions on D. The

unilateral shift Mz on H2(D) is a natural example (which is also a model example of

isometry) of shift.

Now the classification of invariant subspaces of the unilateral shift is completely

known, thanks to the classical work of Beurling [15]: A nonzero closed subspace M ⊆
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H2(D) is invariant under Mz if and only if there exists an inner function θ ∈ H∞(D)
such that

M = θH2(D).

We use the standard notation H∞(D) to denote the Banach algebra of all bounded

analytic functions on D.

In this chapter, we first introduce a class of finite rank operators F (we call them

n-perturbations) on H2(D) for which the corresponding perturbations Sn = Mz + F

are shifts (we call them n-shifts). Then we present a complete classification of Sn-

invariant closed subspaces of H2(D). Note again that Sn is unitarily equivalent to the

multiplication operator Mz on some analytic Hilbert space.

Our central result of this chapter is the following invariant subspace theorem:

Theorem 1.0.1. Let Sn = Mz + F on H2(D) be an n-shift, and let M be a nonzero

closed subspace of H2(D). Then M is invariant under Sn if and only if there exist an

inner function θ ∈ H∞(D) and polynomials {pi, qi}n−1
i=0 ⊆ C[z] such that

M = (Cφ0 ⊕ Cφ1 ⊕ · · · ⊕ Cφn−1)⊕ znθH2(D),

where φi = zipiθ − qi for all i = 0, . . . , n− 1, and

Snφj ∈ (Cφj+1 ⊕ · · · ⊕ Cφn−1)⊕ znθH2(D),

for all j = 0, . . . , n− 2, and Snφn−1 = znpn−1θ.

The above classification is based on a result of independent interest:

Theorem 1.0.2. If M is a nonzero closed Sn-invariant subspace of H2(D), then

dim(M⊖ SnM) = 1.

Clearly, this is a Burling-type property of Sn-invariant subspaces.

We remark that a priori examples of n-shifts may seem counter-intuitive because

of the intricate structure of perturbed linear operators. Subsequently, we put special

emphasis on natural examples of n-shifts, and as interesting as it may seem, analytic

spaces corresponding to truncated tridiagonal kernels or band kernels with bandwidth

1 give several natural examples of n-shifts. In the special case when Sn is unitarily

equivalent to a shift on an analytic space corresponding to a band truncated kernel with

bandwidth 1, we prove that the invariant subspaces of Sn are also hyperinvariant. Our

proof of this fact follows a classical route: computation of commutants of shifts. In

general, it is a difficult problem to compute the commutant of a shift (even for weighted

shifts). However, in our band truncated kernel case, we are able to explicitly compute
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the commutant of n-shifts:

{Sn}′ = {Tφ +N : φ ∈ H∞(D), rankN ≤ n},

where Tφ denotes the analytic Toeplitz operator with symbol φ ∈ H∞(D), and N admits

an explicit (and restricted) representation. We also present concrete examples of 1-shifts

on tridiagonal kernel spaces with special emphasis on cyclicity of invariant subspaces.

For instance, a simple example of S1-shift brings out the following distinctive properties:

1. [S∗
1 , S1] := S∗

1S1 − S1S
∗
1 is of finite rank (in particular, S1 is essentially normal).

2. S1 is not subnormal (and, more curiously, not even hyponormal).

3. Invariant subspaces of S1 are cyclic.

We remark that perturbations of concrete operators (with some analytic flavor) have

been also studied in different contexts by other authors. For instance, see [34, 44, 53],

and notably Clark [21].

Chapter 5: Tridiagonal shifts as compact + isometry.

A bounded linear operator T on a Hilbert space H is called semi-Fredholm if the

range space ranT is closed and at least one of the spaces kerT and kerT ∗ is of finite

dimension. If T is semi-Fredholm then

ind(T ) = dimkerT − dimkerT ∗,

is called the index of T . We shall always assume that our Hilbert spaces are separable

and over C. The starting point of our present note is the following classification of

compact perturbations of isometries [33, page 191]:

Theorem 1.0.3 (Fillmore, Stampfli, and Williams). Let T ∈ B(H). Then T = compact

+ isometry if and only if I − T ∗T is compact and T is semi-Fredholm with ind(T ) ≤ 0.

Here we are interested in a quantitative version of the above theorem. For instance,

consider a bounded sequence of non-zero scalars {wn}n≥0 and an infinite-dimensional

Hilbert space H with an orthonormal basis {en}n≥0. Then the weighted shift Sw defined

by

Sw(en) = wnen+1 (n ≥ 0),

is in B(H) with ∥Sw∥ = supn |wn|. Let the weight sequence {wn} be bounded away from

zero. Since kerSw = {0} and kerS∗
w = {e0}, it follows that Sw is semi-Fredholm and

ind(Sw) = −1. Moreover, using the fact that S∗
we0 = 0 and S∗

wen = w̄n−1en−1, n ≥ 1, it

follows that

I − S∗
wSw = diag(1− |w0|2, 1− |w1|2, . . .).
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Theorem 5.0.1 then readily implies that

lim
n→∞

|wn| = 1 if and only if Sw = compact + isometry. (1.0.3)

We note that since in this case the weight sequence is bounded away from zero, Sw is

necessarily left-invertible.

Also note that Sw is a concrete example of a left-invertible shift on an analytic

Hilbert space. A standard computation now reveals that Sw, under some appropriate

assumption on the weight sequence {wn}n≥0 [54, proposition 7], is unitarily equivalent

to Mz on a diagonal space. Therefore (5.0.1) yields a quantitative classification of shifts

on diagonal spaces that are compact perturbations of isometries. This motivates the

following natural question:

Question 1. Is it possible to find a quantitative classification of left-invertible shifts on

analytic Hilbert spaces that are compact perturbations of isometries?

The main purpose of this chapter is to provide an answer to the above question for

the case of Mz on tridiagonal spaces. As earlier, we fix sequences of scalars {an}n≥0 and

{bn}n≥0 with the assumption that an ̸= 0, n ≥ 0. We set

fn(z) = (an + bnz)z
n (n ≥ 0),

and consider the Hilbert space Hk with {fn}n≥0 as an orthonormal basis. Then Hk is a

tridiagonal space corresponding to the tridiagonal kernel

k(z, w) =
∞∑
n=0

fn(z)fn(w) (z, w ∈ D).

We assume that {| an
an+1

|}n≥0 is bounded away from zero and

sup
n≥0

| an
an+1

| < ∞ and lim sup
n≥0

| bn
an+1

| < 1.

Recall that the latter two assumptions ensure that Mz on Hk is bounded, whereas

the first assumption implies that Mz is left-invertible. In this case we also call Mz a

tridiagonal shift.

The following is the answer to Question 3 for tridiagonal shifts (as well as the main

theorem of this chapter):

Theorem 1.0.4. Let Mz be the tridiagonal shift on Hk. Then Mz = compact+ isometry

if and only if | an
an+1

| → 1 and | bnan − bn+1

an+1
| → 0.

We also offer a general (but abstract) classification of shifts that are compact per-

turbations of isometries.
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Proposition 1.0.5. Let Hk be an analytic Hilbert space. Suppose the shift Mz on Hk

is left-invertible and of finite index. Define C on Hk by

(Cf)(w) = ⟨f, (1− zw̄)k(·, w)⟩Hk
(f ∈ Hk, w ∈ D).

Then Mz = compact + isometry if and only if C defines a compact operator on Hk.

Chapter 6: Left-invertibility of rank-one perturbations.

Rank-one operators are the simplest as well as easy to spot among all bounded linear

operators on Hilbert spaces. Indeed, for each pair of nonzero vectors f and g in a Hilbert

space H, one can associate a rank-one operator f ⊗ g ∈ B(H) defined by

(f ⊗ g)h = ⟨h, g⟩f (h ∈ H).

These are the only operators whose range spaces are one-dimensional. Here B(H) de-

notes the algebra of all bounded linear operators on H. Note that finite-rank operators,

that is, linear sums of rank-one operators are norm dense in the ideal of compact opera-

tors, where one of the most important and natural examples of a noncompact operator is

an isometry. The intent of this chapter is to make a modest contribution to the delicate

structure of rank-one perturbations of bounded linear operators [41]. More specifically,

this chapter aims to introduce some methods for the left-invertibility of rank-one per-

turbations of isometries and, to some extent, diagonal operators. The following is the

central question that interests us:

Question 2. Find necessary and sufficient conditions for left-invertibility of the rank-

one perturbation V + f ⊗ g, where V ∈ B(H) is an isometry or a diagonal operator and

f and g are vectors in H.

The answer to this question is completely known for isometries. Given an isometry

V ∈ B(H) and vectors f, g ∈ H, the perturbation X = V + f ⊗ g is an isometry if

and only if there exist a unit vector h ∈ H and a scalar α of modulus one such that

f = (α− 1)h and g = V ∗h. In other words, a rank-one perturbation X of the isometry

V is an isometry if and only if there exists a unit vector f ∈ H and a scalar α of modulus

one such that

X = V + (α− 1)f ⊗ V ∗f. (1.0.4)

This result is due to Nakamura [44, 43] (and also see [53]). For more on rank-one

perturbations of isometries and related studies, we refer the reader to [13, 22, 21, 31, 34]

and also [39].

In this chapter, we extend the above idea to a more general setting of left-invertibility

of rank-one perturbations of isometries. In this case, however, left-invertibility of rank-

one perturbations of isometries completely relies on certain real numbers. More specif-

ically, given an isometry V ∈ B(H) and a pair of vectors f and g in H, we associate a
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real number c(V ; f, g) defined by

c(V ; f, g) = (∥f∥2 − ∥V ∗f∥2)∥g∥2 + |1 + ⟨V ∗f, g⟩|2. (1.0.5)

This is the number which precisely determine the left-invertibility of V + f ⊗ g:

Theorem 1.0.6. Let V ∈ B(H) be an isometry, and let f and g be vectors in H. Then

V + f ⊗ g is left-invertible if and only if

c(V ; f, g) ̸= 0.

Note that since V is an isometry, we have ∥V ∗f∥ ≤ ∥f∥, and hence, the quantity

c(V ; f, g) is always nonnegative. Therefore, the condition c(V ; f, g) ̸= 0 in the above

theorem can be rephrased as saying that c(V ; f, g) > 0, or equivalently, ∥V ∗f∥ < ∥f∥
or 1 + ⟨V ∗f, g⟩ ̸= 0. However, in what follows, we will keep the constant c(V ; f, g)

in our consideration. Not only c(V ; f, g) plays a direct role in the proof of the above

theorem but this quantity also appears in the explicit representation of a left inverse of

a left-invertible perturbation.

The following conclusion is a simple variation of the above theorem:

Corollary 1.0.7. Let V ∈ B(H) be an isometry, and let f and g be vectors in H. Then

V + f ⊗ g is not left-invertible if and only if

∥V ∗f∥ = ∥f∥ and ⟨V ∗f, g⟩ = −1.

The above theorem also provides us with a rich source of natural examples of left-

invertible operators. For instance, let us denote by D the open unit disc in C. Consider
the shift Mz on the E-valued Hardy space H2

E(D) over D, where E is a Hilbert space.

Then for any

η ∈ kerM∗
z = E ⊆ H2

E(D),

and nonzero vector g ∈ H2
E(D), the rank-one perturbation Mz + η ⊗ g is left-invertible.

A similar conclusion holds if f, g ∈ H2(D) and

⟨M∗
z f, g⟩ ≠ −1.

We discuss a follow-up question: Characterizations of shifts that are rank-one perturba-

tions of isometries. Here a shift refers to the multiplication operator Mz on some Hilbert

space of analytic functions (that is, a reproducing kernel Hilbert space) on a domain in

C. Note, however, that our analysis will be mostly limited to the level of elementary

examples.

We also study rank-one perturbations of diagonal operators. It is well known that

the structure of rank-one perturbations of diagonal operators is also complicated (cf.
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[6, 31, 32, 39]). Moreover, comparison between perturbations of diagonal operators and

that of isometries is perhaps inevitable if one views diagonals as normal operators and

isometries as one of the best tractable non-normal operators. Here we consider D+f⊗g

on some Hilbert space H, where D is a diagonal operator with nonzero diagonal entries

with respect to an orthonormal basis {en}∞n=0 of H. We also assume that the Fourier

coefficients of f and g with respect to {en}∞n=0 are nonzero. We prove:

Theorem 1.0.8. D + f ⊗ g is left-invertible if and only if D + f ⊗ g is invertible.

We observe that the parameterized spaces considered in the work of Davidson,

Paulsen, Raghupathi and Singh [25] is connected to rank-one perturbations of isome-

tries. We compute c(V ; f, g) when V + f ⊗ g is an isometry and make some further

comments on rank-one perturbations of diagonal operators.

Finally, we remark that the last two decades have witnessed more intense interest in

the theory of left-invertible operators starting from the work of Shimorin [56]. For in-

stance, see [49] and references therein. For a more recent account of Shimorin’s approach

in the context of analytic model theory, invariant subspaces, and wandering subspaces

in several variables, we refer the reader to Eschmeier [27] (also see [16] as part of the mo-

tivation), Eschmeier and Langendörfer [28], and Eschmeier and Toth [30]. Also see the

monograph by Eschmeier and Putinar [29] for the general framework and motivation.





Chapter 2

Preliminaries

In this chapter, we will present the basic notions that will be used in the following

chapters. In this thesis, all Hilbert spaces will be separable and over C. Given Hilbert

spaces H and K, B(H,K) will denote the space of all bounded linear operators from H
to K. We will simply write B(H) whenever H = K.

2.1 Reproducing Kernel Hilbert spaces

We begin with reproducing kernel Hilbert spaces and some basic operator theory. Briefly

stated, the essential idea of reproducing kernel Hilbert space is to single out the role

of positive definiteness of inner products, multipliers and bounded point evaluations of

function Hilbert spaces. We refer the reader to Aronszajn [10] and the monographs

[6, 26] for reproducing kernels, and the classics [36, 37, 42] for operator theory.

Definition 2.1.1. Let E be a Hilbert space, and let X be a non-empty set. A function

k : X ×X → B(E) is called a reproducing kernel (or simply a kernel) if

m∑
i,j=1

⟨K(zi, zj)ηj , ηi⟩E ≥ 0,

for all {z1, . . . , zm} ⊆ X, {η1, . . . , ηm} ⊆ E and m ≥ 1.

Reproducing kernels are naturally attached with function Hilbert spaces known as

reproducing kernel Hilbert spaces. Let k be a B(E)-valued kernel function, and let Hk

be the closure of the linear space{
m∑
i=1

k(·, zi)ηi : z ∈ Ω, η ∈ E and m ∈ N

}
,

17
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with respect to the inner product

⟨k(·, w)η, k(·, z)ζ⟩ := ⟨k(z, w)η, ζ⟩E ,

for all z, w ∈ Ω and η, ζ ∈ E . Then Hk is a Hilbert space of E-valued functions on Ω and

Hk = span{k(·, w)η : η ∈ E , w ∈ Ω}.

Then we have the reproducing property

⟨f, k(·, w)η⟩ = ⟨f(w), η⟩E ,

for all w ∈ Ω, f ∈ Hk and η ∈ E . Let Hk be E-valued reproducing kernel Hilbert space

corresponding to a B(E)-valued kernel function k. Given w ∈ Ω, consider the evaluation

operator evw : Hk → E defined by

evw(f) = f(w) (f ∈ HK).

It then follows that

k(z, w) = evz ◦ ev∗w (z, w ∈ Ω)

From now on, we assume that Ω a domain in C. However, we will mostly deal with

Ω = D case, where D = {z ∈ C : |z| < 1}.

Definition 2.1.2. The kernel k is said to be analytic if k is analytic in the first variables.

If k is analytic, then we call Hk as an analytic reproducing kernel Hilbert space (or

analytic Hilbert space, in short).

By the definition of kernel functions, if k is analytic, then Hk is a reproducing kernel

Hilbert space of analytic functions on Ω. In what follows, we will deal with HK such

that zHk ⊆ Hk. In this case

(Mzf)(w) = wf(w) (w ∈ Ω, f ∈ Hk).

defines a bounded linear operator Mz on Hk.

Definition 2.1.3. The bounded linear operator Mz on Hk is called a shift operator (or

simply a shift).

If Mz on Hk is a shift, then it is easy to verify that

M∗
z (k(·, w)η) = wk(·, w)η

for all w ∈ Ω and η ∈ E . The following is a list of familiar reproducing kernel Hilbert

spaces:
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Example 2.1.4. 1. The Hardy space H2(D) over the open unit disc D is a reproduc-

ing kernel Hilbert space with the Szegö kernel

S(z, w) = (1− zw)−1 (z, w ∈ D).

2. Let α > 1. The weighted Bergman space L2
a,α(D) is a reproducing kernel Hilbert

space corresponding to the weighted Bergman kernel

kL2
a,α(D)(z, w) = (1− zw̄)−α, (z, w ∈ D).

3. The Dirichlet space D(D) is the reproducing kernel Hilbert space corresponding to

the Dirichlet kernel

kD(D)(z, w) = 1 + log
1

1− zw̄
(z, w ∈ D).

2.2 Multipliers

Let E1 and E2 be Hilbert spaces, and let ki : Ω×Ω → B(Ei), i = 1, 2, be kernel functions.

A function φ : Ω → B(E1, E2) is said to be a multiplier if

φHk1 ⊆ Hk2 .

Denote by M(Hk1 ,Hk2) the set of all multipliers, that is

M(Hk1 ,Hk2) = {φ : Ω → B(E1, E2) : φHk1 ⊆ Hk2} .

By the closed graph theorem, a multiplier φ ∈ M(Hk1 ,Hk2) defines a bounded linear

operator Mφ : Hk1 → Hk2 , where

(Mφf)(w) = (φf)(w) = φ(w)f(w),

for all f ∈ Hk1 and w ∈ Ω. Moreover, if φ ∈ M(Hk1 ,Hk2), it then follows that

M∗
φ(k2(·, w)η) = φ(w)∗k1(·, ω)η,

for all w ∈ Ω and η ∈ E . If k1 = k2, the we simply write M(Hk1 ,Hk1) as M(Hk1). It is

well known that

M(H2(D)) = H∞(D),

whereH∞(D) denotes the Banach algebra of all bounded analytic functions on D. On the

other hand, the multiplier algebra M(D(D)) of the Dirichlet space is a proper subalgebra

of H∞(D).
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2.3 Tridiagonal kernels

In this subsection, we study the “next best” concrete analytic kernels (after the diag-

onal kernels), namely, tridiagonal kernels. This notion was introduced by Adams and

McGuire [3] (also see the motivating paper by Adams, McGuire and Paulsen [4]).

Let k : D×D → B(E) be an analytic kernel. Then there exist Cmn ∈ B(E) such that

k(z, w) =
∞∑

m,n=0

Cmnz
mw̄n (z, w ∈ D).

We say thatHk is a diagonal reproducing kernel Hilbert space (and k is a diagonal kernel)

if

Cmn = 0 (|m− n| ≥ 1).

We say that k is a tridiagonal kernel (or band kernel with bandwidth 1) if

Cmn = 0 (|m− n| ≥ 2).

In this case, we say that Hk is a tridiagonal space.

Following Adams and McGuire [3], in the following, we construct a large class of

tridiagonal kernels. Let {an}n≥0 and {bn}n≥0 be a sequences of scalars. In this thesis,

we will always assume that an ̸= 0, for all n ≥ 0. Set

fn(z) = (an + bnz)z
n (n ≥ 0).

Assume that {fn}n≥0 is an orthonormal basis of an analytic Hilbert space Hk. Then Hk

is a tridiagonal space, as the well known fact from the reproducing kernel theory implies

that

k(z, w) =

∞∑
n=0

fn(z)fn(w) (z, w ∈ D).

Moreover, if

sup
n≥0

∣∣∣ an
an+1

∣∣∣ < ∞ and lim sup
n≥0

∣∣∣ bn
an+1

∣∣∣ < 1,

then the shift Mz is a bounded linear operator on Hk [3, Theorem 5]. If bn = 0 for all

n ≥ 0, then k is a diagonal kernel, and Mz on Hk is a weighted shift operator.

2.4 Left-invertible operators

Recall that a linear operator V on H is an isometry if ∥V h∥ = ∥h∥ for all h ∈ H, or

equivalently

V ∗V = IH.
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Along this line, left-invertible operators (also known as, by a slight abuse of terminology,

“operators close to an isometry” [56]) are also natural examples of noncompact operators

(so long as the ambient Hilbert space is infinite dimensional): T ∈ B(H) is left-invertible

if T is bounded below, that is, there exists ϵ > 0 such that

∥Th∥ ≥ ϵ∥h∥ (h ∈ H),

or equivalently, there exists S ∈ B(H) such that

ST = IH.

This is also equivalent to the invertibility condition of T ∗T . Let T ∈ B(H) be a left-

invertible operator. We use the fact that T ∗T is invertible to see that (T ∗T )−1T ∗ is a

left inverse of T . We call

LT := (T ∗T )−1T ∗,

the Shimorin left inverse, to distinguish it from other left inverses of T . Note that

(TLT )
2 = TLT = (TLT )

∗), that is, TLT is an orthogonal projection. Moreover, if

T ∗f = 0 for some f ∈ H, then (I − TLT )f = f . On the other hand, if (I − TLT )f = f

for some f ∈ H, then TLT f = 0 and hence T ∗TLT f = 0, which implies that T ∗f = 0.

Therefore, I − TLT is the orthogonal projection onto kerT ∗, that is

I − TLT = PkerT ∗ .

Now we briefly describe the construction of Shimorin’s analytic models of left-invertible

operators. Following Shimorin, a bounded linear operator X ∈ B(H) is analytic if

∞⋂
n=0

XnH = {0}

Note that from the viewpoint of analytic Hilbert spaces:

Lemma 2.4.1. Shifts are always analytic.

Proof. Indeed, let Hk ⊆ O(Ω, E), where Ω ⊆ C is a domain, and suppose the shift Mz

is bounded on Hk. If f ∈
⋂∞

n=0M
n
z Hk, then for each n ≥ 0, there exists gn ∈ Hk such

that f = zngn. Since Ω is a domain and f is analytic on Ω, we see that f ≡ 0, that is,⋂∞
n=0M

n
z Hk = {0}.

Let T ∈ B(H) be a bounded below operator. Set

W = kerT ∗ = H⊖ TH,
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and Ω = {z ∈ C : |z| < 1
r(LT )}, where r(LT ) is the spectral radius of LT . Then

kT (z, w) = PW(I − zLT )
−1(I − w̄L∗

T )
−1|W (z, w ∈ Ω), (2.4.1)

defines a B(W)-valued analytic kernel kT : Ω× Ω → B(W), which we call the Shimorin

kernel of T (see [56, Corollary 2.14]). We lose no generality by assuming, as we shall

do, that Ω = D. If, in addition, T is analytic, then the unitary U : H → Hk defined by

(Uf)(z) =

∞∑
n=0

(PWLn
T f)z

n (f ∈ H, z ∈ D), (2.4.2)

satisfies UT = MzU [56]. More precisely, we have the following result:

Theorem 2.4.2. Let T ∈ B(H) be an analytic left-invertible operator. Then T on H
and Mz on HkT are unitarily equivalent.

Denote by PW the orthogonal projection of H onto W = kerT ∗. From the above

discussion, it follows that

PW = IH − TLT .

This equality plays an important role (in the sense of Wold decomposition of left-

invertible operators) in the proof of the above theorem.

2.5 Aluthge transforms

The notion of Aluthge transforms was introduced by Aluthge [7] in his study of p-

hyponormal operators. Let H be a Hilbert space, T ∈ B(H), and let T = U |T | be the

polar decomposition of T . Here, and throughout, |T | = (T ∗T )
1
2 and U is the unique

partial isometry such that kerU = kerT . The Aluthge transform of T is the bounded

linear operator

T̃ = |T |
1
2U |T |

1
2 .

The Aluthge transform of T̃ turns T into a more “normal” operator while keeping intact

the basic spectral properties of T [40]. Evidently, the main difficulty associated with T̃

is to compute or represent the positive part |T |. This is certainly not true for weighted

shifts: Since |Sα| = diag(α0, α1, α2, . . .), it follows that S̃α = S√
α, where

√
α := {

√
α0α1,

√
α1α2, . . .}.

Therefore, S̃α is also a weighted shift, namely S√
α.
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2.6 Beurling theorem

Recall that a bounded analytic function θ ∈ H∞(D) is said to be inner if

|θ(z)| = 1 (z ∈ T a.e.)

The celebrated Beurling theorem [15] states: A non-zero closed subspace S of H2(D) is
invariant under Mz if and only if there exists an inner function θ ∈ H∞(D) such that

S = θH2(D).

Note also that it follows (or the other way around) in particular from the above repre-

sentation of S that

S ⊖ zS = θC,

and so

S =
∞
⊕

m=0
zm(S ⊖ zS).

In particular, we have:

(1) S is singly generated, and

(2) S ∩H∞(D) ̸= {0}.





Chapter 3

Tridiagonal kernels and

left-invertible operators with

applications to Aluthge

transforms

In this chapter, we study left-invertible shifts on tridiagonal spaces. We also discuss the

pending and inevitable comparisons between Shimorin’s analytic models of left-invertible

operators and Adams and McGuire’s theory of left-invertible shifts on tridiagonal spaces.

We prove that unlike the case of weighted shifts, Shimorin models fail to bring to the

foreground the tridiagonal structure of shifts. We resolve this dilemma by presenting a

complete classification of tridiagonal kernels that are preserved under Shimorin models.

We also prove a number of results concerning left-invertible properties of shifts on

tridiagonal spaces, new tridiagonal spaces from the old, classifications of quasinormal

operators, rank-one perturbations of left inverses, a computational approach to Aluthge

transforms of shifts, etc. Again, curiously enough, some of our definite computations in

the setting of tridiagonal kernels verify that the direct reproducing kernel Hilbert space

technique is somewhat more powerful than Shimorin models. We also provide a family

of instructive examples and supporting counterexamples.

We remark that some of the observations outlined in Subsections 3.6 and 3.7 are based

on several more general results that have an independent interest in broader operator

theory and function theoretic contexts.
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Chapter 3. Tridiagonal kernels and left-invertible operators with applications to

Aluthge transforms

3.1 Preparatory results and examples

In this subsection, we set up some definitions, collect some known facts about tridiago-

nal reproducing kernel Hilbert spaces and Shimorin analytic models, and observe some

auxiliary results which are needed throughout the chapter. We also explain the idea of

Shimorin with the example of diagonal kernels (or equivalently, weighted shifts).

We start with tridiagonal spaces. Here we avoid finer technicalities [3] and introduce

only the necessary features of tridiagonal spaces. Let E be a Hilbert space, k be a B(E)-
valued analytic kernel on D, and let Hk ⊆ O(D, E) be the corresponding reproducing

kernel Hilbert space. Then there exists a sequence {Cmn}m,n≥0 ⊆ B(E) such that

k(z, w) =
∞∑

m,n=0

Cmnz
mw̄n (z, w ∈ D).

Recall that k is a tridiagonal kernel if Cmn = 0, |m − n| ≥ 2. We say that Hk is a

tridiagonal space if k is tridiagonal. We now single out two natural tridiagonal spaces.

Definition 3.1.1. A tridiagonal space Hk is called semi-analytic tridiagonal space if

C[z] ⊆ Hk ⊆ O(D), and there exist scalars {an}n≥0 and {bn}n≥0, an ̸= 0 for all n ≥ 0,

such that

sup
n≥0

∣∣∣ an
an+1

∣∣∣ < ∞ and lim sup
n≥0

∣∣∣ bn
an+1

∣∣∣ < 1, (3.1.1)

and {fn}n≥0 is an orthonormal basis of Hk, where

fn(z) = (an + bnz)z
n (n ≥ 0). (3.1.2)

Note that the conditions in (3.1.1) ensure that the shift Mz is a bounded linear

operator onHk [3, Theorem 5]. We refer the reader to [3, Theorem 2] on the containment

of polynomials.

Definition 3.1.2. A semi-analytic tridiagonal space Hk is said to be analytic tridiagonal

space if the sequence {| an
an+1

|}n≥0 is bounded away from zero, that is, there exists ϵ > 0

such that ∣∣∣ an
an+1

∣∣∣ > ϵ (n ≥ 0). (3.1.3)

A scalar kernel k is called semi-analytic (analytic) tridiagonal kernel if the corre-

sponding reproducing kernel Hilbert spaceHk is a semi-analytic (an analytic) tridiagonal

space.

It is important to note that (3.1.3) is essential for left invertibility of Mz. As we

will see in Theorem 3.2.5, if Hk(⊇ C[z]) is a tridiagonal space corresponding to the

orthonormal basis {fn}n≥0 and if {an}n≥0 and {bn}n≥0 satisfies the conditions in (3.1.1),

then condition (3.1.3) is equivalent to the left invertibility of Mz on Hk. Also recall that
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the weighted shift Sα with weights {αn}n≥0 is bounded if and only if supn≥0 αn < ∞.

In this case, Sα is left-invertible if and only if {αn}n≥0 is bounded away from zero (cf.

Proposition 3.1.7). By translating this into the setting of analytic Hilbert spaces [54,

Proposition 7], it is clear that if bn = 0, n ≥ 0, then (3.1.3) is a necessary and sufficient

condition for left invertibility of shifts on diagonal kernels.

Suppose k is a semi-analytic tridiagonal kernel. Note that k(z, w) =
∑∞

n=0 fn(z)fn(w).

Now fix n ≥ 0, and write zn =
∑∞

m=0 αmfm for some αm ∈ C, m ≥ 0. Then

zn = α0a0 +

∞∑
m=1

(αm−1bm−1 + αmam)zm.

Thus comparing coefficients, we have α0 = α1 = · · · = αn−1 = 0, and αn = 1
an
, as

ai’s are non-zero scalars. Since αn+j−1bn+j−1 + αn+jan+j = 0, it follows that αn+j =

−αn+j−1bn+j−1

an+j
, and thus αn+j =

(−1)j

an

bnbn+1···bn+j−1

an+1···an+j
for all j ≥ 1. This implies

zn =
1

an

∞∑
m=0

(−1)m
( ∏m−1

j=0 bn+j∏m−1
j=0 an+j+1

)
fn+m (n ≥ 0), (3.1.4)

where
∏−1

j=0 xn+j := 1. With this, we now proceed to compute Mz [3, Section 3]. Let

n ≥ 0. Then Mzfn = anz
n+1 + bnz

n+2 implies that

Mzfn =
an
an+1

fn+1 + (bn − anbn+1

an+1
)zn+2 =

an
an+1

fn+1 + an+2(
bn

an+2
− an

an+1

bn+1

an+2
)zn+2,

that is

Mzfn =
an
an+1

fn+1 + an+2cnz
n+2, (3.1.5)

where

cn =
an
an+2

( bn
an

− bn+1

an+1

)
(n ≥ 0). (3.1.6)

Then (3.1.4) implies that

Mzfn =
( an
an+1

)
fn+1 + cn

∞∑
m=0

(−1)m
(∏m−1

j=0 bn+2+j∏m−1
j=0 an+3+j

)
fn+2+m (n ≥ 0), (3.1.7)

and hence, with respect to the orthonormal basis {fn}n≥0, we have (also see [3, Page

729])
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[Mz] =



0 0 0 0 . . .

a0
a1

0 0 0
. . .

c0
a1
a2

0 0
. . .

−c0b2
a3

c1
a2
a3

0
. . .

c0b2b3
a3a4

−c1b3
a4

c2
a3
a4

. . .

−c0b2b3b4
a3a4a5

c1b3b4
a4a5

−c2b4
a5

c3
. . .

...
...

...
. . .

. . .


. (3.1.8)

The matrix representation of the conjugate of Mz is going to be useful in what follows:

[M∗
z ] =



0 ā0
ā1

c̄0
−c̄0b̄2
ā3

−c̄0b̄2b̄3
ā3ā4

. . .

0 0 ā1
ā2

c̄1
−c̄1b̄3
ā4

. . .

0 0 0 ā2
ā3

c̄2
. . .

0 0 0 0 ā3
ā4

. . .
...

...
...

...
. . .

. . .


. (3.1.9)

In particular, Mz is a weighted shift if cn = 0 for all n ≥ 0. Also, by (3.1.6), we have

cn = 0 if and only if bn+1

an+1
= bn

an
, n ≥ 0. Therefore, we have the following observation:

Lemma 3.1.3. The shift Mz on a semi-analytic tridiagonal space Hk is a weighted shift

if cn = 0 for all n ≥ 0, or, equivalently, { bn
an
}n≥0 is a constant sequence.

The proof of the following lemma uses the assumption that C[z] ⊆ Hk.

Lemma 3.1.4. If Hk is a semi-analytic tridiagonal space, then kerM∗
z = Cf0.

Proof. Clearly, (3.1.9) implies that f0 ∈ kerM∗
z . On the other hand, from C[z] ⊆ Hk we

deduce that fn = Mz(anz
n−1 + bnz

n) ∈ ranMz for all n ≥ 1, and hence span{fn : n ≥
1} ⊆ ranMz. The result now follows from the fact that Cf0 = (span{fn : n ≥ 1})⊥ ⊇
kerM∗

z .

Now we briefly describe the construction of Shimorin’s analytic models of left-invertible

operators. Let H be a Hilbert space, and let T ∈ B(H). We say that T is left-invertible

if there exists X ∈ B(H) such that XT = IH. It is easy to check that this equivalently

means that T is bounded below, which is also equivalent to the invertibility of T ∗T .

Following Shimorin, a bounded linear operator X ∈ B(H) is analytic if

∞⋂
n=0

XnH = {0} (3.1.10)

Note that from the viewpoint of analytic Hilbert spaces, shifts are always analytic.

Indeed, let Hk ⊆ O(Ω, E), where Ω ⊆ C is a domain, and suppose the shift Mz is
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bounded on Hk. If f ∈
⋂∞

n=0M
n
z Hk, then for each n ≥ 0, there exists gn ∈ Hk such

that f = zngn. Since Ω is a domain and f is analytic on Ω, we see that f ≡ 0, that is,⋂∞
n=0M

n
z Hk = {0}.

Now let T ∈ B(H) be a bounded below operator. We call LT := (T ∗T )−1T ∗ the

Shimorin left inverse, to distinguish it from other left inverses of T . Set

W = kerT ∗ = H⊖ TH,

and Ω = {z ∈ C : |z| < 1
r(LT )}, where r(LT ) is the spectral radius of LT . Then

kT (z, w) = PW(I − zLT )
−1(I − w̄L∗

T )
−1|W (z, w ∈ Ω), (3.1.11)

defines a B(W)-valued analytic kernel kT : Ω× Ω → B(W), which we call the Shimorin

kernel of T (see [56, Corollary 2.14]). We lose no generality by assuming, as we shall

do, that Ω = D. If, in addition, T is analytic, then the unitary U : H → Hk defined by

(Uf)(z) =
∞∑
n=0

(PWLn
T f)z

n (f ∈ H, z ∈ D), (3.1.12)

satisfies UT = MzU [56]. More precisely, we have the following result:

Theorem 3.1.5. Let T ∈ B(H) be an analytic left-invertible operator. Then T on H
and Mz on HkT are unitarily equivalent.

Denote by PW the orthogonal projection of H onto W = kerT ∗. It follows that

PW = IH − TLT , (3.1.13)

This plays an important role (in the sense of Wold decomposition of left-invertible op-

erators) in the proof of the above theorem. The following equality will be very useful in

what follows.

Lemma 3.1.6. If T is a left-invertible operator on H, then LTL
∗
T = |T |−2.

Proof. This follows from the fact that LTL
∗
T = (T ∗T )−1T ∗T (T ∗T )−1 = (T ∗T )−1.

In the case of left-invertible weighted shifts Sα, it is known that the shift Mz on HkSα

corresponding to the Shimorin kernel kSα is also a weighted shift (for instance, see [48,

Example 5.2] in the context of bilateral weighted shifts). Nonetheless, we sketch the

proof here for the sake of completeness.

Proposition 3.1.7. Let Sα be the weighted shift with weights {αn}n≥0. If {αn}n≥0

is bounded away from zero, then Sα is left-invertible, and the Shimorin kernel kSα is

diagonal.
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Proof. Let {en}n≥0 be an orthonormal basis of a Hilbert space H, and let Sαen =

αnen+1 for all n ≥ 0. Observe that S∗
αen = αn−1en−1, n ≥ 1, and S∗

αe0 = 0. Then

W = kerS∗
α = Ce0, and S∗

αSαen = α2
nen for all n ≥ 0. Since S∗

αSα is a diagonal operator

and {αn}n≥0 is bounded away from zero, it follows that S∗
αSα is invertible, and hence

Sα is left-invertible. Then the Shimorin left inverse LSα := (S∗
αSα)

−1S∗
α is given by

LSαen =

0 if n = 0

1
αn−1

en−1 if n ≥ 1.
(3.1.14)

Therefore, LSα is the backward shift, and

Lm
Sα

en =


0 if m > n

1
α0···αn−1

e0 if m = n

1
αn−1···αn−m

en−m if m < n,

(3.1.15)

for all m ≥ 1. Moreover, L∗m
Sα

en = 1
αnαn+1···αn+m−1

en+m for all n ≥ 0 and m ≥ 1. In

particular, L∗m
Sα

e0 = 1
α0α1···αm−1

em, m ≥ 1, and thus, for each (m,n) ̸= (0, 0), we have

clearly

PWLm
Sα

L∗n
Sα

e0 =

0 if m ̸= n

1
(α0···αn−1)2

e0 if m = n.

This immediately gives kSα(z, w) =
∑∞

n=0(PWLn
Sα

L∗n
Sα

|W)(zw̄)n for all z, w ∈ D, where
W = Ce0. In particular, the Shimorin kernel kSα is a diagonal kernel. Finally, identifying

W with C and setting βn = 1
α0···αn−1

, n ≥ 1, we get

kSα(z, w) = 1 +
∞∑
n=1

1

β2
n

(zw̄)n (z, w ∈ D).

Notice in the above, the Shimorin left inverse LSα is the backward shift corresponding

to the weight sequence { 1
αn

}n≥0, that is,

LSα =



0 1
α0

0 0 . . .

0 0 1
α1

0
. . .

0 0 0 1
α2

. . .

0 0 0 0
. . .

...
...

...
. . .

. . .


.

In the setting of Proposition 3.1.7, we now turn to the unitary map U : H → HkSα
,

where HkSα
⊆ O(D,W), and (Uf)(z) =

∑∞
n=0(PWLn

Sα
f)zn for all f ∈ H and z ∈ D (see

(3.1.12)). Set fn = Uen, n ≥ 0. Since W = Ce0, (3.1.14) yields f0 = Ue0 = PWe0 = e0.
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On the other hand, if n ≥ 1, then (3.1.15) implies that

PWLm
Sα

en =

 1
βn

e0 if m = n

0 otherwise,

and hence fn = 1
βn

zne0. Therefore {e0}∪{ 1
βn

zne0}n≥1 is the orthonormal basis of HkSα

corresponding to U . Moreover, for each n ≥ 1, we have

Mz(
1

βn
zne0) =

1

βn
zn+1e0 = αn

1

βn+1
zn+1e0 = αn(

1

βn+1
zn+1e0),

and hence Mz on HkSα
is also a weighted shift with the same weights {αn}n≥0.

3.2 Tridiagonal spaces and left-invertibility

The main contribution of this section is the left invertibility and representations of

Shimorin left inverses of shifts on tridiagonal reproducing kernel Hilbert spaces. Recall

that the conditions in (3.1.1) ensures that the shift Mz is bounded on the semi-analytic

tridiagonal space Hk. Here we use the remaining condition (3.1.3) to prove that Mz is

left-invertible.

Before we state and prove the result, we need to construct a specific bounded linear

operator. The choice of this operator is not accidental, as we will see in Theorem 3.2.4

that it is nothing but the Shimorin left inverse of Mz. For each n ≥ 1, set

dn =
bn
an

− bn−1

an−1
. (3.2.1)

Proposition 3.2.1. Let k be an analytic tridiagonal kernel corresponding to the or-

thonormal basis {fn}n≥0, where fn(z) = (an + bzz)z
n, n ≥ 0. Then the linear operator

L represented by

[L] =



0 a1
a0

0 0 0 . . .

0 d1
a2
a1

0 0
. . .

0 −d1b1
a2

d2
a3
a2

0
. . .

0 d1b1b2
a2a3

−d2b2
a3

d3
a4
a3

. . .

0 −d1b1b2b3
a2a3a4

d2b2b3
a3a4

−d3b3
a4

d4
. . .

...
...

...
...

. . .
. . .


,

with respect to the orthonormal basis {fn}n≥0 defines a bounded linear operator on Hk.
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Proof. For each n ≥ 1, we have clearly dn = bn
an

− bn−1

an−1
= an+1

an
bn

an+1
− an

an−1

bn−1

an
, and

hence

|dn| ≤
∣∣∣an+1

an

∣∣∣∣∣∣ bn
an+1

∣∣∣+ ∣∣∣ an
an−1

∣∣∣∣∣∣bn−1

an

∣∣∣.
Since {| an

an+1
|}n≥0 is bounded away from zero (see (3.1.3)), we have that supn≥0 |

an+1

an
| <

∞. This and the second assumption then imply that {dn} is a bounded sequence.

Let S denote the matrix obtained from [L] by deleting all but the superdiagonal elements

of [L]. Similarly, L0 denote the matrix obtained from [L] by deleting all but the diagonal

elements of [L], and in general, assume that Li denote the matrix obtained from [L] by

deleting all but the i-th subdiagonal of [L], i = 0, 1, 2 . . .. Since

L = S +
∑
i≥0

Li,

it clearly suffices to prove that S and {Li}i≥0 are bounded, and S +
∑

i≥0 Li is ab-

solutely convergent. Note that ∥S∥ = supn≥0 |
an+1

an
| < ∞. Moreover, our assumption

lim supn≥0 | bn
an+1

| < 1 implies that there exist r < 1 and n0 ∈ N such that

∣∣∣ bn
an+1

∣∣∣ < r (n ≥ n0).

Set

M = sup
n≥1

{∣∣∣ bn
an+1

∣∣∣, |dn|}.
Then ∥Li∥ ≤ M i+1 for all i = 0, . . . , n0, and

∥Li∥ ≤ Mn0+1ri−n0 (i > n0),

from which it follows that

∥S∥+
∑
i≥0

∥Li∥ = sup
n≥0

∣∣∣an+1

an

∣∣∣+ ∑
0≤i≤n0

∥Li∥+
∑

i≥n0+1

∥Li∥

≤ sup
n≥0

∣∣∣an+1

an

∣∣∣+ ∑
0≤i≤n0

∥Li∥+Mn0+1
( ∑

i≥n0+1

ri−n0

)
≤ sup

n≥0

∣∣∣an+1

an

∣∣∣+ ∑
0≤i≤n0

∥Li∥+Mn0+1 r

1− r
,

and completes the proof of the theorem.

We are now ready to prove that Mz is left-invertible.

Theorem 3.2.2. In the setting of Proposition 3.2.1, we have LMz = IHk
.

Proof. We consider the matrix representations of Mz and L as in (3.1.8) and Proposition

3.2.1, respectively. Let [L][Mz] = (αmn)m,n≥0. Clearly it suffices to prove that αmn =
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δmn. It is easy to see that αm,m+k = 0 for all k ≥ 1. Now by (3.1.6), we have

cn = − an
an+2

dn+1 (n ≥ 0). (3.2.2)

Note that the n-th column, n ≥ 0, of [Mz] is the transpose of(
0, . . . , 0︸ ︷︷ ︸

n+1

,
an
an+1

, cn,−
cnbn+2

an+3
, . . . , (−1)m−n−2 cnbn+2 · · · bm−1

an+3 · · · am
, (−1)m−n−1 cnbn+2 · · · bm

an+3 · · · am+1
, . . .

)
,

and the m-th row, m ≥ 0, of [L] is given by(
0 , (−1)m−1d1b1 · · · bm−1

a2 · · · am
, (−1)m−2d2b2 · · · bm−1

a3 · · · am
, (−1)m−3d3b3 · · · bm−1

a4 · · · am
, . . .

. . . ,
−dm−1bm−1

am
, dm,

am+1

am
, 0, 0, . . .

)
.

Now, if n ≤ (m− 2), then the αmn (the (m,n)-th entry of [L][Mz]) is given by

αmn = (−1)m−n−1dn+1bn+1 · · · bm−1

an+2 · · · am
an
an+1

+ (−1)m−n−2dn+2bn+2 · · · bm−1

an+3 · · · am
cn

+ (−1)m−n−3dn+3bn+3 · · · bm−1

an+4 · · · am
(−cn

bn+2

an+3
) + · · ·+ (−dm−1bm−1

am
)(−1)m−n−3×

cn
bn+2 · · · bm−2

an+3 · · · am−1
+ dm(−1)m−n−2cn

bn+2 · · · bm−1

an+3 · · · am
+

am+1

am
(−1)m−n−1cn

bn+2 · · · bm
an+3 · · · amam+1

,

and hence, using (3.2.2), we obtain

αmn = (−1)m−n−1dn+1
anbn+1 · · · bm−1

an+1an+2 · · · am
+ (−1)m−n−2(− an

an+2
dn+1)

dn+2bn+2 · · · bm−1

an+3 · · · am
+

(−1)m−n−2(− an
an+2

dn+1)(
bn+2

an+3
)(
dn+3bn+3 · · · bm−1

an+4 · · · am
) + · · ·+

· · ·+ (−1)m−n−2(− an
an+2

dn+1)
dm−1bn+2 · · · bm−1

an+3 · · · am
+

(−1)m−n−2(− an
an+2

dn+1)
dmbn+2 · · · bm−1

an+3 · · · am
+ (−1)m−n−1(− an

an+2
dn+1)(

bn+2 · · · bm
an+3 · · · a2m

)

= (−1)m−n−1dn+1

( anbn+1 · · · bm−1

an+1an+2 · · · am
+

anbn+2 · · · bm−1

an+2an+3 · · · am
dn+2 +

anbn+2 · · · bm−1

an+2an+3 · · · am
dn+3+

· · ·+ anbn+2 · · · bm−1

an+2an+3 · · · am
dm−1 +

anbn+2 · · · bm−1

an+2an+3 · · · am
dm − anbn+2 · · · bm

an+2an+3 · · · a2m

)
= (−1)m−n−1dn+1

anbn+2 · · · bm−1

an+2an+3 · · · am

(
bn+1

an+1
+ (dn+2 + dn+3 + · · ·+ dm−1 + dm)− bm

am

)
.

Recall from (3.2.1) that dn = bn
an

− bn−1

an−1
, n ≥ 1. Then

αmn = (−1)m−n−1dn+1
anbn+2 · · · bm−1

an+2an+3 · · · am

(
(
bn+1

an+1
− bm

am
) + (

bm
am

− bn+1

an+1
)

)
= 0.
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For the case n = m− 1, we have

αm,m−1 = dm(
am−1

am
) +

am+1

am
(cm−1) = (

am−1

am
)dm +

am+1

am
(−am−1

am+1
dm) = 0,

and finally, αmm = (am+1

am
)( am

am+1
) = 1 completes the proof.

In view of Theorem 3.2.2, let us point out, in particular (see the discussion following

(3.1.10)), that shifts on analytic tridiagonal spaces are always analytic:

Proposition 3.2.3. If k is an analytic tridiagonal kernel, then Mz is an analytic left-

invertible operator on Hk.

Now let Hk be an analytic tridiagonal space. Our aim is to compute the Shimorin

left inverse LMz = (M∗
zMz)

−1M∗
z of Mz on Hk. What we prove in fact is that L in

Proposition 3.2.1 is the Shimorin left inverse of Mz. First note that

LMzz
n = zn−1 (n ≥ 1). (3.2.3)

Indeed, LMzz
n = (M∗

zMz)
−1M∗

zMzz
n−1 = (M∗

zMz)
−1(M∗

zMz)z
n−1. Therefore, LMz is

the backward shift on Hk (a well known fact about Shimorin left inverses). On the other

hand, by Lemma 3.1.4 we have LMzf0 = (M∗
zMz)

−1M∗
z f0 = 0, and hence LMzf0 = 0,

which in particular yields

LMz1 = − b0
a0

. (3.2.4)

Let n ≥ 1. Using (3.2.1), we have LMzfn = LMz(anz
n+bnz

n+1) = anz
n−1+bnz

n, which

implies

LMzfn =
an
an−1

(an−1z
n−1 + bn−1z

n) + (bn − anbn−1

an−1
)zn =

an
an−1

fn−1 + dnanz
n,

and hence LMzfn = an
an−1

fn−1 + dn(anz
n + bnz

n+1)− dnbnz
n+1. By (3.1.4), we have

LMzfn =
an
an−1

fn−1 + dnfn − dn

( ∞∑
m=0

(−1)m
∏m

j=0 bn+j∏m
j=0 an+1+j

fn+1+m

)
.

This is precisely the left inverse L of Mz in Proposition 3.2.1. Whence the next state-

ment:

Theorem 3.2.4. Let Hk be an analytic tridiagonal space. If L is as in Proposition

3.2.1, then the Shimorin left inverse LMz of Mz is given by LMz = L. In particular,

LMzf0 = 0, and

LMzfn =
an
an−1

fn−1 + dnfn − dn

( ∞∑
m=0

(−1)m
∏m

j=0 bn+j∏m
j=0 an+1+j

fn+1+m

)
(n ≥ 1),
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where dn = bn
an

− bn−1

an−1
for all n ≥ 1. Moreover, the matrix representation of LMz with

respect to the orthonormal basis {fn}n≥0 is given by

[LMz ] =



0 a1
a0

0 0 0 . . .

0 d1
a2
a1

0 0
. . .

0 −d1b1
a2

d2
a3
a2

0
. . .

0 d1b1b2
a2a3

−d2b2
a3

d3
a4
a3

. . .

0 −d1b1b2b3
a2a3a4

d2b2b3
a3a4

−d3b3
a4

d4
. . .

...
...

...
...

. . .
. . .


.

Next we verify that the bounded away assumption of {| an
an+1

|}n≥0 in (3.1.3) is also a

necessary condition for left-invertible shifts.

Theorem 3.2.5. Let Hk be a semi-analytic tridiagonal space corresponding to the or-

thonormal basis {fn}n≥0, where fn(z) = (an + bnz)z
n, n ≥ 0. Then Mz is left-invertible

if and only if {| an
an+1

|}n≥0 is bounded away from zero, or equivalently, Hk is an analytic

tridiagonal space.

Proof. In view of Theorem 3.2.2 we only need to prove the necessary part. Consider

the Shimorin left inverse LMz = (M∗
zMz)

−1M∗
z . Using the fact that C[z] ⊆ Hk, one

can show, along the similar line of computation preceding Theorem 3.2.4 (note that, by

assumption, LMz is bounded), that the matrix representation of LMz with respect to

the orthonormal basis {fn}n≥0 is precisely given by the one in Theorem 3.2.4. Then for

each n ≥ 0, we have

∥(M∗
zMz)

−1M∗
z ∥B(Hk) ≥ ∥(M∗

zMz)
−1M∗

z fn∥Hk
≥

∣∣∣an+1

an

∣∣∣,
which implies that ∣∣∣ an

an+1

∣∣∣ ≥ 1

∥(M∗
zMz)−1M∗

z ∥B(Hk)
,

and hence the sequence is bounded away from zero.

3.3 Tridiagonal Shimorin models

As emphasized already in Proposition 3.1.7 that if k is a diagonal kernel, then kMz is

also a diagonal kernel. However, as we will see in the example below, Shimorin kernels

are not compatible with tridiagonal kernels. This consequently motivates one to ask:

How to determine whether or not the Shimorin kernel kMz of a tridiagonal kernel k is

also tridiagonal? We have a complete answer to this question: kMz is tridiagonal if and

only if b0 = 0 or that Mz is a weighted shift on Hk. This is the main content of this

section.
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Example 3.3.1. Let an = 1 for all n ≥ 0, b0 =
1
2 , and let bn = 0 for all n ≥ 1. Let Hk

denote the analytic tridiagonal space corresponding to the orthonormal basis {fn}n≥0,

where fn = (an + bnz)z
n for all n ≥ 0. Since f0 = 1 + 1

2z and fn = zn for all n ≥ 1, by

(3.1.8), we have

[Mz] =



0 0 0 0 . . .

1 0 0 0
. . .

1
2 1 0 0

. . .

0 0 1 0
. . .

...
...

...
. . .

. . .


.

Let an = 1 for all n ≥ 0, b0 = 1
2 , and let bn = 0 for all n ≥ 1. Let Hk denote

the analytic tridiagonal space corresponding to the orthonormal basis {fn}n≥0, where

fn = (an+ bnz)z
n for all n ≥ 0. Since f0 = 1+ 1

2z and fn = zn for all n ≥ 1, by (3.1.8),

we have

[Mz] =



0 0 0 0 . . .

1 0 0 0
. . .

1
2 1 0 0

. . .

0 0 1 0
. . .

...
...

...
. . .

. . .


.

By Theorem 3.2.4, the Shimorin left inverse LMz = (M∗
zMz)

−1M∗
z is given by

LMz =



0 1 0 0 0 . . .

0 −1
2 1 0 0

. . .

0 0 0 1 0
. . .

0 0 0 0 1
. . .

...
...

...
...

. . .
. . .


.

Recall, in this case, that W = Cf0. It is easy to check that LMzf1 = f0−1
2f1, L∗

Mz
f0 = f1,

L∗
Mz

f1 = −1
2f1 + f2, and L∗

Mz
f2 = f3. Then

L∗3
Mz

f0 = −1

2
L∗
Mz

f1 + L∗
Mz

f2 =
1

4
f1 −

1

2
f2 + f3,

and hence PWLMzL
∗3
Mz

f0 =
1
4PW(LMzf1), as PWLMzfj = 0 for all j ̸= 1. Consequently

PWLMzL
∗3
Mz

f0 =
1

4
f0 ̸= 0,

which implies that the Shimorin kernel kMz , as defined in (3.1.11), is not a tridiagonal

kernel.

Throughout this section, Hk will be an analytic tridiagonal space corresponding to

the orthonormal basis {fn}n≥0, where fn(z) = (an + bnz)z
n, n ≥ 0. Recall that the
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Shimorin kernel kMz : D× D → B(W) is given by (see (3.1.11) and also Theorem 3.1.5)

kMz(z, w) = PW(I − zLMz)
−1(I − w̄L∗

Mz
)−1|W (z, w ∈ D).

Here, of course, W = Cf0, the one-dimensional space generated by the vector f0. So one

may regard kMz as a scalar kernel. We are now ready for the main result of this section.

Theorem 3.3.2. The Shimorin kernel kMz of Mz is tridiagonal if and only if Mz on

Hk is a weighted shift or

b0 = 0.

Proof. We split the proof into several steps.

Step 1: We first denote LMz = L and

Xmn = PWLmL∗n|W (m,n ≥ 0),

for simplicity. First observe that Theorem 3.2.4 implies that Lmf0 = 0, m ≥ 1, and

hence, Xm0 = 0 = X∗
m0 = X0m for all m ≥ 1. Then the formal matrix representation of

the Shimorin kernel kMz is given by

[kMz ] =



IW 0 0 0 . . .

0 X11 X12 X13 . . .

0 X∗
12 X22 X23 . . .

0 X∗
13 X∗

23 X33 . . .
...

...
...

. . .
. . .


. (3.3.1)

Clearly, in view of the above, kMz is tridiagonal if and only if Xmnf0 = 0 for all m,n ̸= 0

and |m− n| ≥ 2.

Step 2: In this step we aim to compute matrix representations of Lp and L∗p, p ≥ 1, with

respect to the orthonormal basis {fn}n≥0. The matrix representation of [L] in Theorem

3.2.4 is instructive. It also follows that

[L∗] =



0 0 0 0 0 . . .
ā1
ā0

d̄1
−d̄1b̄1
ā2

d̄1b̄1b̄2
ā2ā3

−d̄1b̄1b̄2b̄3
ā2ā3ā4

. . .

0 ā2
ā1

d̄2
−d̄2b̄2
ā3

d̄2b̄2b̄3
ā3ā4

. . .

0 0 ā3
ā2

d̄3
−d̄3b̄3
ā4

. . .

0 0 0 ā4
ā3

d̄4
. . .

0 0 0 0 ā5
ā4

. . .
...

...
...

...
. . .

. . .


. (3.3.2)

Here we redo the construction taking into account the general p ≥ 1, and proceed as in

the proof of Theorem 3.2.4. However, the proof is by no means the same and the general
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case is quite involved. Assume that n ≥ 1. We need to consider two cases: n ≥ p and

n ≤ p− 1. Suppose n ≥ p. By (3.2.3) and (3.2.4), we have

Lpfn = anL
pzn + bnL

pzn+1 = anz
n−p + bnz

n−p+1,

which implies

Lpfn =
an
an−p

(an−pz
n−p+bn−pz

n−p+1)+(bn−
an
an−p

bn−p)z
n−p+1 =

an
an−p

fn−p+d(p)n zn−p+1,

where

d(p)n = bn − an
an−p

bn−p (n ≥ p). (3.3.3)

Hence by (3.1.4)

Lpfn =
an
an−p

fn−p +
d
(p)
n

an−p+1

(
fn−p+1 −

bn−p+1

an−p+2
fn−p+2 +

bn−p+1bn−p+2

an−p+2an−p+3
fn−p+3 − · · ·

)
,

that is

Lpfn =
an
an−p

fn−p +
d
(p)
n

an−p+1

∞∑
m=0

(−1)m
(∏m−1

j=0 bn−p+j+1∏m−1
j=0 an−p+j+2

)
fn−p+m+1,

for all n ≥ p. Here and in what follows, we define
∏−1

j=0 xj := 1.

We now let p = 1 and n = 1. Then by Theorem 3.2.4, we have

Lf1 =
a1
a0

f0 + d1f1 + (−d1b1
a2

)f2 + (
d1b1b2
a2a3

)f3 + · · · . (3.3.4)

Finally, let 1 ≤ n ≤ p− 1. Then p > 1, and again by (3.2.3) and (3.2.4), we have

Lpfn = Lp(anz
n + bnz

n+1) = anL
p−n1 + bnL

p−n−11 = an

(−b0
a0

)p−n
+ bn

(−b0
a0

)p−n−1
,

and hence Lpfn = an

(
−b0
a0

)p−n−1[
bn
an

− b0
a0

]
. We set

βn =
bn
an

− b0
a0

(n ≥ 1), (3.3.5)

and

β(p)
n = an

(−b0
a0

)p−n−1
βn (1 ≤ n ≤ p− 1). (3.3.6)

Then Lpfn = β
(p)
n and (3.1.4) implies that

Lp(fn) =
β
(p)
n

a0

∞∑
m=0

(−1)m
( Πm−1

j=0 bj

Πm−1
j=0 aj+1

)
fm,
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for all 1 ≤ n ≤ p− 1. Then

[L2] =



0
β
(2)
1
a0

a2
a0

0 0 . . .

0 −β
(2)
1 b0
a0a1

d
(2)
2
a1

a3
a1

0
. . .

0
β
(2)
1 b0b1
a0a1a2

−d
(2)
2 b1
a1a2

d
(2)
3
a2

a4
a2

. . .

0 −β
(2)
1 b0b1b2
a0a1a2a3

d
(2)
2 b1b2
a1a2a3

−d
(2)
3 b2
a2a3

d
(2)
4
a3

. . .
...

...
...

...
. . .

. . .


, (3.3.7)

and in general, for each p ≥ 2, we have

[Lp] =



0
β
(p)
1
a0

β
(p)
2
a0

· · · β
(p)
p−1

a0

ap
a0

0 0 · · ·

0 −β
(p)
1 b0
a0a1

−β
(p)
2 b0
a0a1

· · · −β
(p)
p−1b0
a0a1

d
(p)
p

a1

ap+1

a1
0

. . .

0
β
(p)
1 b0b1
a0a1a2

β
(p)
2 b0b1
a0a1a2

· · · β
(p)
p−1b0b1
a0a1a2

−d
(p)
p b1
a1a2

d
(p)
p+1

a2

ap+2

a2

. . .

0 −β
(p)
1 b0b1b2
a0a1a2a3

−β
(p)
2 b0b1b2
a0a1a2a3

· · · −β
(p)
p−1b0b1b2
a0a1a2a3

d
(p)
p b1b2
a1a2a3

−d
(p)
p+1b2
a2a3

d
(p)
p+2

a3

. . .
...

...
...

...
...

...
...

. . .
. . .


.

(3.3.8)

Hence, for each p ≥ 2, we have

[L∗p] =



0 0 0 0 . . .

β̄
(p)
1
ā0

− β̄
(p)
1 b̄0
ā0ā1

β̄
(p)
1 b̄0b̄1
ā0ā1ā2

− β̄
(p)
1 b̄0b̄1b̄2
ā0ā1ā2ā3

. . .

β̄
(p)
2
ā0

− β̄
(p)
2 b̄0
ā0ā1

β̄
(p)
2 b̄0b̄1
ā0ā1ā2

− β̄
(p)
2 b̄0b̄1b̄2
ā0ā1ā2ā3

. . .
...

...
...

...
. . .

β̄
(p)
p−1

ā0
− β̄

(p)
p−1b̄0
ā0ā1

β̄
(p)
p−1b̄0b̄1
ā0ā1ā2

− β̄
(p)
p−1b̄0b̄1b̄2
ā0ā1ā2ā3

. . .

āp
ā0

d̄
(p)
p

ā1
− d̄

(p)
p b̄1
ā1ā2

d̄
(p)
p b̄1b̄2
ā1ā2ā3

. . .

0
āp+1

ā1

d̄
(p)
p+1

ā2
− d̄

(p)
p+1b̄2
ā2ā3

. . .

0 0
āp+2

ā2

d̄
(p)
p+2

ā3

. . .
...

...
...

...
. . .



. (3.3.9)

Step 3: We now identify condition on the sequence {β(n+2)
n }n≥1 implied by the require-

ment that Xm,m+2 = 0, m ≥ 1. Before proceeding further, we record here the following

crucial observation: Suppose β
(p)
n = 0 for some p and n such that 1 ≤ n ≤ p− 1. Then

by (3.3.6), we have

β(q)
n = 0 (q ≥ p). (3.3.10)

Now assume m ≥ 1. The matrix representation in (3.3.9) implies

L∗m+2f0 =
1

ā0

(
β̄
(m+2)
1 f1 + β̄

(m+2)
2 f2 + · · ·+ β̄

(m+2)
m+1 fm+1 + ām+2fm+2

)
. (3.3.11)
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Observe that, by Theorem 3.2.4, we have

PWL(fi) =

a1
a0
f0 if i = 1

0 if i ̸= 1.

Let us now assume that m ≥ 2. Then (3.3.8) implies

PWLm(fi) =


β
(m)
i
a0

f0 if 1 ≤ i ≤ m− 1

am
a0

f0 if i = m

0 if i ≥ m+ 1.

(3.3.12)

Since Xm,m+2 = PWLmL∗m+2|W , this yields

Xm,m+2f0 =
1

|a0|2
(
β̄
(m+2)
1 β

(m)
1 + β̄

(m+2)
2 β

(m)
2 + · · ·+ β̄

(m+2)
m−1 β

(m)
m−1 + β̄(m+2)

m am

)
f0.

(3.3.13)

In particular, if m = 1, then we have

X13f0 =
1

ā0

(
β̄
(3)
1

a1
a0

)
f0,

and hence X13 = 0 if and only if β
(3)
1 = 0. By (3.3.13), applied with m = 2 we have

X24f0 =
1

|a0|2
(
β̄
(4)
1 β

(2)
1 + β̄

(4)
2 a2

)
f0.

Assume that β
(3)
1 = 0. By (3.3.10), we have β

(4)
1 = 0, and, consequently

X24f0 = β̄
(4)
2

a2
|a0|2

f0.

Hence we obtain X24 = 0 if and only if β
(4)
2 = 0. Therefore, if Xm,m+2 = 0 for all m ≥ 1,

then by induction, it follows that β
(m+2)
m = 0 for all m ≥ 1. The converse also follows

from the above computation.

Thus we have proved: Xm,m+2 = 0 for all m ≥ 1 if and only if β
(m+2)
m = 0 for all

m ≥ 1.

Step 4: Our aim is to prove the following claim: Suppose Xi,i+2 = 0 for all i = 1, . . . ,m,

and m ≥ 1. Then Xmn = 0 for all n = m+ 3,m+ 4, . . ., and m ≥ 1.

To this end, let n = m+ j and j ≥ 3. Then the matrix representation in (3.3.9) (or the

equality (3.3.11)) implies

L∗nf0 =
1

ā0

(
β̄
(n)
1 f1 + β̄

(n)
2 f2 + · · ·+ β̄

(n)
n−1fn−1 + ānfn

)
,
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and then

PWLmL∗nf0 =
( 1

ā0

n−1∑
i=1

β̄
(n)
i PWLm(fi)

)
+

ān
ā0

PWLmfn =
1

ā0

m∑
i=1

β̄
(n)
i PWLm(fi),

since PWLmfi = 0, i > m, which follows from the matrix representation of Lm in (3.3.8).

Hence by (3.3.12) (or directly from (3.3.8)), we have

PWLmL∗nf0 =
1

|a0|2
(
β̄
(n)
1 β

(m)
1 + β̄

(n)
2 β

(m)
2 + · · ·+ β̄

(n)
m−1β

(m)
m−1 + amβ̄(n)

m

)
f0.

Now note that Xi,i+2 = 0, that is, β
(i+2)
i = 0, i = 1, . . . ,m, by assumption. Since

i+ 2 ≤ m+ j for all i = 1, . . . ,m, by (3.3.10), we have

β
(n)
i = β

(m+j)
i = 0 (i = 1, . . . ,m).

Hence PWLmL∗nf0 = 0, that is, Xm,m+i = 0, i = 3, 4, . . ., which proves the claim.

Step 5: So far all we have proved is that Xmn = 0 for all |m − n| ≥ 2 if and only if

β
(m+2)
m = 0 for all m ≥ 1. Now, by (3.3.6) and (3.3.5), we have

β(n+2)
n = an

(
− b0

a0

)
βn,

where βn = bn
an

− b0
a0

for all n ≥ 1. Thus β
(n+2)
n = 0 for all n ≥ 1 if and only if b0 = 0 or

βn = 0 for all n ≥ 1. On the other hand, Lemma 3.1.3 implies that βn = 0 for all n ≥ 1

if and only if Mz is a weighted shift.

Finally, by Proposition 3.1.7, we know that if Mz is a left-invertible weighted shift, then

the Shimorin kernel is also a diagonal kernel. This completes the proof of Theorem

3.3.2.

3.4 Positive operators and tridiagonal kernels

Our aim is to classify positive operators P on a tridiagonal space Hk such that

D× D ∋ (z, w) 7→ ⟨Pk(·, w), k(·, z)⟩Hk
,

is also a tridiagonal kernel. While this problem is of independent interest, the motivation

for our interest in this question also comes from Theorem 3.6.7 (also see the paragraph

preceding Corollary 3.8.2). We start with a simple example.

Example 3.4.1. We consider the same example as in Example 3.3.1. Note that Mz is

left-invertible and not a weighted shift with respect to the orthonormal basis {fn}n≥0 of
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Hk. Then by Lemma 3.1.6, we have

|Mz|−2 = LMzL
∗
Mz

=



1 −1
2 0 0 . . .

−1
2

5
4 0 0

. . .

0 0 1 0
. . .

0 0 0 1
. . .

...
...

...
...

. . .


.

Let

|Mz|−1 =



α β 0 0 . . .

β γ 0 0
. . .

0 0 1 0
. . .

0 0 0 1
. . .

...
...

...
...

. . .


,

where

[
α β

β γ

]
is the positive square root of

[
1 −1

2

−1
2

5
4

]
. A straightforward calculation

shows that α
2 + β ̸= 0. Define K : D× D → C by

K(z, w) = ⟨|Mz|−1k(·, w), k(·, z)⟩Hk
(z, w ∈ D).

A simple computation then shows that

K(z, w) = α+ (
α

2
+ β)w̄ + (

α

2
+ β)z + (

α

4
+ β + γ)zw̄ +

∑
n≥2

znw̄n,

that is, K is also a tridiagonal kernel.

The following is a complete classification of positive operators P for which (z, w) 7→
⟨Pk(·, w), k(·, z)⟩Hk

defines a tridiagonal kernel.

Theorem 3.4.2. Let Hk be a tridiagonal space corresponding to the orthonormal basis

fn(z) = (an + bnz)z
n, n ≥ 0. Let P be a positive operator on Hk with matrix represen-

tation

P =



c00 c01 c02 c03 . . .

c̄01 c11 c12 c13
. . .

c̄02 c̄12 c22 c23
. . .

c̄03 c̄13 c̄23 c33
. . .

...
...

...
. . .

. . .


,

with respect to the basis {fn}n≥0. Then the positive definite scalar kernel K, defined by

K(z, w) = ⟨Pk(·, w), k(·, z)⟩Hk
(z, w ∈ D),
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is tridiagonal if and only if

c0n = (−1)n−1 b̄1 · · · b̄n−1

ā2 · · · ān
c01 (n ≥ 2),

and

cmn = (−1)n−m−1 b̄m+1 · · · b̄n−1

ām+2 · · · ān
cm,m+1 (1 ≤ m ≤ n− 2).

Equivalently, K is tridiagonal if and only if

P =



c00 c01 − b̄1
ā2
c01

b̄1b̄2
ā2ā3

c01 . . .

c̄01 c11 c12 − b̄2
ā3
c12

. . .

− b1
a2
c̄01 c̄12 c22 c23

. . .

b1b2
a2a3

c̄01 − b2
a3
c̄12 c̄23 c33

. . .
...

...
...

. . .
. . .


.

Proof. Note, for each w ∈ D, by (1.0.1), we have k(·, w) =
∑∞

m=0 fm(w)fm, and thus

Pk(·, w) =
∞∑

m=0

(
m−1∑
n=0

c̄nmfn(w) +
∞∑

n=m

cmnfn(w))fm,

where
∑−1

n=0 xn := 0. Then

⟨Pk(·, w), k(·, z)⟩Hk
=

∞∑
m=0

fm(z)(

m−1∑
n=0

c̄nmfn(w) +

∞∑
n=m

cmnfn(w))

=
∞∑

m=0

(amzm + bmzm+1)(
m−1∑
n=0

c̄nm(ānw̄
n + b̄nw̄

n+1)

+
∞∑

n=m

cmn(ānw̄
n + b̄nw̄

n+1))

=
∑

m,n≥0

αmnz
mw̄n,

where αmn denotes the coefficient of zmw̄n, m,n ≥ 0. Our interest here is to compute

αmn, |m− n| ≥ 2. Clearly, αmn = ᾱnm for all m,n ≥ 0, and

α0n = a0(ānc0n + b̄n−1c0,n−1) (n ≥ 2), (3.4.1)

and

αmn = am

(
āncmn + b̄n−1cm,n−1

)
+ bm−1

(
āncm−1,n + b̄n−1cm−1,n−1

)
(1 ≤ m < n).

(3.4.2)
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Suppose n ≥ 2. By (3.4.1), α0n = 0 if and only if c0n = − b̄n−1

ān
c0,n−1. In particular, if

n = 2, then c02 = − b̄1
ā2
c01, and hence, by (3.4.1) again, we have

c0n = (−1)n−1

∏n−1
i=1 b̄i∏n
i=2 āi

c01 (n ≥ 2).

Therefore, α0n = 0 for all n ≥ 2 if and only if the above identity hold for all n ≥ 2.

Next we want to consider the case m,n ̸= 0 and |m−n| ≥ 2. Assume that n ≥ 3. Then

(3.4.2) along with (3.4.1) implies

α1n = a1(ānc1n+ b̄n−1c1,n−1)+ b0(ānc0n+ b̄n−1c0,n−1) = a1(ānc1n+ b̄n−1c1,n−1)+
b0
a0

α0n.

Therefore, if α0n = 0 for all n ≥ 3, then α1n = a1(ānc1n + b̄n−1c1,n−1). Hence α1n = 0

if and only if ānc1n + b̄n−1c1,n−1 = 0, which is equivalent to

c1n = − b̄n−1

ān
c1,n−1.

Therefore, under the assumption that α1n = 0 and n ≥ 4, (3.4.2) along with (3.4.1)

implies

α2n = a2(ānc2n + b̄n−1c2,n−1) + b1(ānc1n + b̄n−1c1,n−1) = a2(ānc2n + b̄n−1c2,n−1).

Then α2n = 0, n ≥ 4, if and only if c2n = − b̄n−1

ān
c2,n−1. Consequently, by induction, for

allm,n ̸= 0 and |m−n| ≥ 2, we have that αmn = 0 if and only if āncmn+b̄n−1cm,n−1 = 0,

or equivalently

cmn = − b̄n−1

ān
cm,n−1.

Finally, observe that cmn = (−1)n−m−1 b̄n−1···b̄m+1

ān···ām+2
cm,m+1 for all 1 ≤ m ≤ n − 2. This

completes the proof of the theorem.

We will return to this in Theorem 3.7.3 and Corollary 3.7.4.

3.5 Quasinormal operators

A bounded linear operator T ∈ B(H) is said to be quasinormal if T ∗T and T commutes,

that is

[T ∗, T ]T = 0,

where [T ∗, T ] = T ∗T − TT ∗ is the commutator of T . In this section, we present a

complete classification of quasinormality of Mz on analytic tridiagonal spaces. Here,

however, we do not need to assume that Mz is left-invertible.
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To motivate our result on quasinormality, we first consider the known case of weighted

shifts. Recall that the weighted shift Sα corresponding to the weight sequence (of positive

real numbers) {αn}n≥0 is given by Sαen = αnen+1 for all n ≥ 0. Then (see the proof of

Proposition 3.1.7)

SαS
∗
αen+1 = α2

nen+1,

and hence (S∗
αSα − SαS

∗
α)Sα = 0 if and only if (S∗

αSα − SαS
∗
α)Sαen = 0 for all n ≥ 0,

which is equivalent to

αn(α
2
n+1 − α2

n) = 0,

for all n. Thus, we have proved [37, Problem 139]:

Lemma 3.5.1. The weighted shift Sα is quasinormal if and only if the weight sequence

{αn}n≥0 is a constant sequence.

Now we turn to Mz on a semi-analytic tridiagonal space Hk. Suppose [M∗
z ,Mz] =

rPf0 , where r is a non-negative real number and Pf0 denote the orthogonal projection

of Hk onto the one dimensional space Cf0. Then [M∗
z ,Mz]Mz = rPf0Mz implies that

([M∗
z ,Mz]Mz)fn = rPf0(zfn).

Now by (3.1.7) we have

zfn =
∞∑

i=n+1

βifi,

for some scalar βi ∈ C, i ≥ n + 1. Note that βn+1 = an
an+1

̸= 0. This shows that

Pf0(zfn) = 0, and hence

([M∗
z ,Mz]Mz)fn = 0 (n ≥ 0),

that is, Mz is quasinormal. Conversely, assume thatMz is a non-normal and quasinormal

operator. Then [M∗
z ,Mz]Mz = 0 implies that ranMz ⊆ ker[M∗

z ,Mz], and therefore, by

Lemma 3.1.4, we have

Cf0 = kerM∗
z ⊇ ran[M∗

z ,Mz].

Clearly this implies [M∗
z ,Mz] = rPf0 for some non-zero scalar r. Then

r∥f0∥2 = ⟨rPf0f0, f0⟩Hk
= ⟨[M∗

z ,Mz]f0, f0⟩Hk
= ∥Mzf0∥2 − ∥M∗

z f0∥2 = ∥Mzf0∥2,

as M∗
z f0 = 0, which implies

r =
∥Mzf0∥2

∥f0∥2
> 0.

Thus, we have proved:

Theorem 3.5.2. Let Hk be a semi-analytic tridiagonal space. Assume that Mz is a non-

normal operator on Hk. Then Mz is quasinormal if and only if there exists a positive
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real number r such that

M∗
zMz −MzM

∗
z = rPf0 ,

where Pf0 denote the orthogonal projection of Hk onto the one dimensional space Cf0.

In more algebraic terms this result can be formulated as follows: First we recall the

matrix representation of Mz (see (3.1.8))

[Mz] =



0 0 0 0 . . .

a0
a1

0 0 0
. . .

c0
a1
a2

0 0
. . .

−c0b2
a3

c1
a2
a3

0
. . .

c0b2b3
a3a4

−c1b3
a4

c2
a3
a4

. . .

−c0b2b3b4
a3a4a5

c1b3b4
a4a5

−c2b4
a5

c3
. . .

...
. . .

. . .
. . .

. . .


.

For each n ≥ 0, we denote by Rn and Cn the n-th row and n-th column, respectively,

of [Mz]. We then identify each of these column and row vectors with elements in Hk.

Then Rn, Cn ∈ Hk, n ≥ 0. Using the matrix representation [M∗
z ] (see (3.1.9)) and [Mz],

we get

⟨R0, Rn⟩Hk
= 0,

for all n ≥ 0, and, consequently

[
[M∗

z ,Mz]
]
=


⟨C0, C0⟩Hk

⟨C1, C0⟩Hk
⟨C2, C0⟩Hk

· · ·
⟨C0, C1⟩Hk

⟨C1, C1⟩Hk
− ⟨R1, R1⟩Hk

⟨C2, C1⟩Hk
− ⟨R1, R2⟩Hk

· · ·
⟨C0, C2⟩Hk

⟨C1, C2⟩Hk
− ⟨R2, R1⟩Hk

⟨C2, C2⟩Hk
− ⟨R2, R2⟩Hk

· · ·
...

...
...

. . .

 .

Therefore:

Corollary 3.5.3. Let Hk be a semi-analytic tridiagonal space. Then Mz on Hk is

quasinormal if and only if ⟨C0, C0⟩Hk
= r and

⟨C0, Ci⟩Hk
= 0 (i ≥ 1),

and

⟨Cn, Cm⟩Hk
− ⟨Rm, Rn⟩Hk

= 0,

for all 1 ≤ m ≤ n.

It is easy to see that a quasinormal operator is always subnormal [37]. However,

a complete classification of subnormality of Mz on tridiagonal spaces is rather more

subtle and not quite as clear-cut as in the quasinormal situation. In fact the general
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classification of subnormality of Mz on tridiagonal spaces is not known (however, see

[2]).

3.6 Aluthge transforms of shifts

Recall that the Aluthge transform of an operator T ∈ B(H) is the bounded linear

operator

T̃ = |T |
1
2U |T |

1
2 .

In this section, we prove that the Aluthge transform of a left-invertible shift on an

analytic Hilbert space is again an explicit shift on some analytic Hilbert space. We

present two approaches to this problem, one based on Shimorin’s analytic models of

left-invertible operators and one is based on rather direct reproducing kernel Hilbert

space techniques.

We begin with the following simple fact concerning Aluthge transforms of left-invertible

operators:

Lemma 3.6.1. If T is a left-invertible operator on H, then

T̃ = |T |
1
2T |T |−

1
2 ,

and ker T̃ ∗ = |T |−
1
2 kerT ∗. In particular, T̃ is similar to T .

Proof. Indeed, T̃ = |T |
1
2U |T |

1
2 = |T |

1
2 (U |T |)|T |−

1
2 = |T |

1
2T |T |−

1
2 , as T ∗T is invertible.

The second equality follows from the first.

Suppose in addition that T is a shift on an analytic Hilbert space. In Theorem 3.6.3

(under an additional assumption that T is analytic), and then in Theorem 3.6.7 again,

we prove that T̃ , up to unitary equivalence, is also a shift on an explicit analytic Hilbert

space. In connection with Lemma 3.1.6, we now prove the following:

Proposition 3.6.2. If T is a left-invertible operator on H, then the Shimorin left inverse

LT̃ of the Aluthge transform T̃ is given by

LT̃ = |T |
1
2

(
(LT |T |T )−1LT

)
|T |

1
2 = |T |

1
2

(
(T ∗|T |T )−1T ∗

)
|T |

1
2 .

Proof. Note that by Lemma 3.6.1, we have T̃ ∗T̃ = |T |−
1
2 (T ∗|T |T )|T |−

1
2 . Since T ∗|T |T

is invertible, it follows that (T̃ ∗T̃ )−1 = |T |
1
2 (T ∗|T |T )−1|T |

1
2 . Then

LT̃ = (T̃ ∗T̃ )−1T̃ ∗ = (|T |
1
2 (T ∗|T |T )−1|T |

1
2 )|T |−

1
2T ∗|T |

1
2 = |T |

1
2

(
(T ∗|T |T )−1T ∗

)
|T |

1
2 .
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On the other hand, since T ∗ = |T |2LT , we have T ∗|T |T = |T |2LT |T |T , and hence

(T ∗|T |T )−1 = (LT |T |T )−1|T |−2.

Therefore, (T̃ ∗T̃ )−1 = |T |
1
2 (LT |T |T )−1|T |−

3
2 , which gives

LT̃ = (T̃ ∗T̃ )−1T̃ ∗ = |T |
1
2 (LT |T |T )−1|T |−2(T ∗|T |

1
2 ) = |T |

1
2 (LT |T |T )−1LT |T |

1
2 ,

and completes the proof.

Then the above, along with Theorem 3.1.5 and Lemma 3.6.1 implies the following:

Theorem 3.6.3. Let E be a Hilbert space, and let k : D × D → B(E) be an analytic

kernel. Suppose Mz is left-invertible on Hk. Then the Aluthge transform M̃z is unitarily

equivalent to the shift Mz on Hk̃ ⊆ O(D, W̃), where

k̃(z, w) = PW̃(I − zL)−1(I − w̄L∗)−1|W̃ (z, w ∈ D),

and W̃ = ker M̃∗
z = |Mz|−

1
2 kerM∗

z , and

L = |Mz|
1
2 ((LMz |Mz|Mz)

−1LMz)|Mz|
1
2 .

Definition 3.6.4. The kernel k̃ is called the Shimorin-Aluthge kernel of Mz.

Under some additional assumptions on scalar-valued analytic kernels, we now prove

that, up to similarity and a perturbation of an operator of rank at most one, LM̃z
and

LMz are the same. As far as concrete examples are concerned, these assumptions are

indispensable and natural (cf. Lemma 3.1.4).

Theorem 3.6.5. Let k : D × D → C be an analytic kernel, C[z] ⊆ Hk, and let {fn} ⊆
C[z] be an orthonormal basis of Hk. Assume that Mz on Hk is left-invertible, kerM∗

z =

Cf0, and

fn ∈ span{zm : m ≥ 1} (n ≥ 1).

Then LM̃z
and LMz are similar up to the perturbation of an operator of rank at most

one.

Proof. Since kerM∗
z = Cf0, LMzf0 = 0 and LMzz

n = LMzMz(z
n−1) = zn−1, by the

definition of LMz . This implies LMzz
n = zn−1, n ≥ 1 (also see (3.2.3)). In particular,

LMzfn ∈ C[z] for all n ≥ 0. Moreover, for each n ≥ 1, we have

LM̃z
(|Mz|

1
2 zn) = |Mz|

1
2 ((LMz |Mz|Mz)

−1LMz)|Mz|zn

= |Mz|
1
2 (LMz |Mz|Mz)

−1(LMz |Mz|Mz)z
n−1,
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that is, LM̃z
(|Mz|

1
2 zn) = |Mz|

1
2 zn−1. Therefore, we have

(|Mz|−
1
2LM̃z

|Mz|
1
2 )zn = LMzz

n = zn−1 (n ≥ 1).

Then (|Mz|−
1
2LM̃z

|Mz|
1
2 − LMz)fn = 0 for all n ≥ 1, which gives

(|Mz|−
1
2LM̃z

|Mz|
1
2 − LMz)|span{fn:n≥1} = 0.

Finally, we have clearly (|Mz|−
1
2LM̃z

|Mz|
1
2 −LMz)f0 = (|Mz|−

1
2LM̃z

|Mz|
1
2 )f0, and hence

F := |Mz|−
1
2LM̃z

|Mz|
1
2 − LMz , (3.6.1)

is of rank at most one, and consequently LM̃z
|Mz|

1
2 = |Mz|

1
2 (LMz +F ). This completes

the proof of the theorem.

The following analysis of F , defined as in (3.6.1), will be useful in what follows. Note

that

LM̃z
|Mz|

1
2 = |Mz|

1
2 (LMz + F ). (3.6.2)

Let g ∈ Hk. Clearly, since LMzf0 = 0, we have Fg = ⟨g, f0⟩Hk
(|Mz|−

1
2LM̃z

|Mz|
1
2 f0).

Then Lemma 3.1.6 implies that

Fg = ⟨g, f0⟩Hk
((M∗

z |Mz|Mz)
−1M∗

z |Mz|f0) (g ∈ Hk). (3.6.3)

As we will see in Section 3.7, the appearance of the finite rank operator F causes severe

computational difficulties for Shimorin-Aluthge kernels of shifts. On the other hand,

combining Theorem 3.1.5, Proposition 3.6.2 and (3.6.2), we have:

Theorem 3.6.6. In the setting of Theorem 3.6.5, the Aluthge transform M̃z of Mz on

Hk is unitarily equivalent to the shift Mz on Hk̃, where

k̃(z, w) = PW(I − zL)−1(I − w̄L∗)−1|W ,

W = |Mz|−
1
2 kerM∗

z = C(|Mz|−
1
2 f0), and

L = |Mz|
1
2 (LMz + F )|Mz|−

1
2 ,

and Fg = ⟨g, f0⟩Hk
((M∗

z |Mz|Mz)
−1M∗

z |Mz|f0) for all g ∈ Hk.

We now revisit Theorem 3.6.3 from a direct reproducing kernel Hilbert space stand-

point. Indeed, there is a rather more concrete proof of Theorem 3.6.3 which avoids using

the analytic model of left-invertible operators. In this case, also, the reproducing kernel

of the corresponding Aluthge transform is explicit. Part of the proof follows the same

line of argumentation as the proof of reproducing kernel property of range spaces (cf.

[4]). To the reader’s benefit, we include all necessary details.
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Theorem 3.6.7. Let E be a Hilbert space, and let k : D × D → B(E) be an analytic

kernel. Assume that the shift Mz is left-invertible on Hk. Then

⟨k̃(z, w)η, ζ⟩E = ⟨|Mz|−1(k(·, w)η), k(·, z)ζ)⟩Hk
(z, w ∈ D, η, ζ ∈ E),

defines a kernel k̃ : D × D → B(E). Moreover, the shift Mz on Hk̃ defines a bounded

linear operator, and there exists a unitary U : Hk → Hk̃ such that UM̃z = MzU .

Proof. Define H̃ = |Mz|−
1
2Hk. Then H̃(= Hk) is an E-valued function Hilbert space

endowed with the inner product ⟨|Mz|−
1
2 f, |Mz|−

1
2 g⟩H̃ = ⟨f, g⟩Hk

for all f, g ∈ Hk. For

each f ∈ Hk, w ∈ D and η ∈ E , we have

⟨|Mz|−
1
2 f, |Mz|−1(k(·, w)η)⟩H̃ = ⟨f, |Mz|−

1
2 (k(·, w)η)⟩Hk

= ⟨|Mz|−
1
2 f, k(·, w)η⟩Hk

,

and hence, by the reproducing property of Hk, it follows that

⟨|Mz|−
1
2 f, |Mz|−1(k(·, w)η)⟩H̃ = ⟨(|Mz|−

1
2 f)(w), η⟩E . (3.6.4)

This says that {|Mz|−1(k(·, w)η) : w ∈ D, η ∈ E} reproduces the values of functions in

H̃, and furthermore, the evaluation operator evw : H̃ → E is continuous. Indeed

|⟨evw(|Mz|−
1
2 f), η⟩E | = |⟨(|Mz|−

1
2 f)(w), η⟩E |

= |⟨|Mz|−
1
2 f, |Mz|−1(k(·, w)η)⟩H̃|

≤ ∥|Mz|−
1
2 f∥H̃∥|Mz|−1(k(·, w)η)∥H̃

= ∥|Mz|−
1
2 f∥H̃ ∥|Mz|−

1
2 (k(·, w)η)∥Hk

.

Since ∥k(·, w)η∥2Hk
= ⟨k(·, w)η, k(·, w)η⟩Hk

= ⟨k(w,w)η, η⟩E = ∥k(w,w)
1
2 η∥2E , it follows

that

∥|Mz|−
1
2 (k(·, w)η)∥Hk

≤ ∥|Mz|−
1
2 ∥B(Hk)∥k(·, w)η∥Hk

= ∥|Mz|−
1
2 ∥B(Hk) ∥k(w,w)

1
2 η∥E

≤ ∥|Mz|−
1
2 ∥B(Hk) ∥k(w,w)

1
2 ∥B(E) ∥η∥E ,

which implies that

|⟨evw(|Mz|−
1
2 f), η⟩E | ≤ (∥|Mz|−

1
2 ∥B(Hk)∥k(w,w)

1
2 ∥B(E))∥|Mz|−

1
2 f∥H̃ ∥η∥E .

Therefore H̃ is an E-valued reproducing kernel Hilbert space corresponding to the kernel

function

k̃(z, w) = evz ◦ ev∗w (z, w ∈ D).
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Clearly, (3.6.4) implies that ev∗wη = |Mz|−1(k(·, w)η) for all w ∈ D and η ∈ E . Since

⟨k̃(z, w)η, ζ⟩E = ⟨ev∗wη, ev∗zζ⟩E , it follows that

⟨k̃(z, w)η, ζ⟩E = ⟨|Mz|−1(k(·, w)η), |Mz|−1(k(·, z)ζ)⟩H̃
= ⟨|Mz|−

1
2 (k(·, w)η), |Mz|−

1
2 (k(·, z)ζ)⟩Hk

,

that is, ⟨k̃(z, w)η, ζ⟩E = ⟨|Mz|−1(k(·, w)η), k(·, z)ζ)⟩Hk
, z, w ∈ D, η, ζ ∈ E . Therefore,

as a reproducing kernel Hilbert space corresponding to the kernel k̃, we have Hk̃ = H̃.

Define the unitary map U : Hk → Hk̃ by

Uh = |Mz|−
1
2h (h ∈ Hk),

and recall from Lemma 3.6.1 that M̃∗
z = |Mz|−

1
2M∗

z |Mz|
1
2 . Let f ∈ Hk, w ∈ D, and let

η ∈ E . Then

⟨(UM̃zU
∗(|Mz|−

1
2 f))(w), η⟩E = ⟨UM̃zU

∗(|Mz|−
1
2 f), |Mz|−1(k(·, w)η)⟩Hk̃

= ⟨M̃zU
∗(|Mz|−

1
2 f), |Mz|−

1
2 (k(·, w)η)⟩Hk

= ⟨f, M̃∗
z |Mz|−

1
2 (k(·, w)η)⟩Hk

= ⟨f, |Mz|−
1
2M∗

z (k(·, w)η)⟩Hk
.

But since M∗
z (k(·, w)η) = w̄k(·, w)η, we have

⟨(UM̃zU
∗(|Mz|−

1
2 f))(w), η⟩E = w⟨f, |Mz|−

1
2 (k(·, w)η)⟩Hk

= ⟨w(|Mz|−
1
2 f

)
)(w), η⟩E ,

which implies that UM̃zU
∗(|Mz|−

1
2 f) = z(|Mz|−

1
2 f) for all f ∈ Hk. Thus the shift Mz

on Hk̃ is a bounded linear operator and UM̃z = MzU .

Definition 3.6.8. The kernel k̃ is called the standard Aluthge kernel of Mz.

In particular, if k is a scalar-valued kernel, then k̃(·, w) = U(|Mz|−
1
2k(·, w)) and

k̃(z, w) = ⟨|Mz|−1k(·, w), k(·, z)⟩Hk
(z, w ∈ D).

Therefore, if the shift on a tridiagonal space Hk is left-invertible, then there are two ways

to compute the Aluthge kernel k̃: use Theorem 3.6.3, or use the one above. However,

it is curious to note that, from a general computational point of view, neither approach

is completely satisfactory and definite. On the other hand, often the standard Aluthge

kernel approach (and sometimes both standard Aluthge kernel and Shimorin-Aluthge

kernel methods) lead to satisfactory results. We will discuss this in the following section.
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3.7 Truncated tridiagonal kernels

In this section, we introduce a (perhaps both deliberate and accidental) class of analytic

tridiagonal kernels from a computational point of view. LetHk be an analytic tridiagonal

space corresponding to the kernel

k(z, w) =
∞∑
n=0

fn(z)fn(w) (z, w ∈ D),

where fn = (an + bnz)z
n, n ≥ 0. Suppose r ≥ 2 is a natural number. We say that k is

a truncated tridiagonal kernel of order r (in short, truncated kernel of order r) if

bn = 0 (n ̸= 2, 3, . . . , r).

We say that an analytic tridiagonal space Hk is truncated space of order r if k is a

truncated kernel of order r. Note that there are no restrictions imposed on the scalars

b2, . . . , br.

Let Hk be a truncated space of order r. Then M̃z is unitarily equivalent to Mz on

Hk̃, where k̃ is either the Shimorin-Aluthge kernel or the standard Aluthge kernel of

Mz as in Theorem 3.6.3 and Theorem 3.6.7, respectively. Here our aim is to compute

the Shimorin-Aluthge kernel of Mz. More specifically, we classify all truncated kernels

k such that the Shimorin-Aluthge kernel k̃ of Mz is tridiagonal. We begin by computing

|Mz|−1.

Lemma 3.7.1. If Hk is a truncated space of order r, then

[
|Mz|−1

]
=



|a1a0 | 0 0 · · · 0 0 0 · · ·

0 c11 c12 · · · c1,r+1 0 0
. . .

0 c̄12 c22 · · · c2,r+1 0 0
. . .

...
...

... · · ·
...

...
...

. . .

0 c̄1,r+1 c̄2,r+1 · · · cr+1,r+1 0 0
. . .

0 0 0 · · · 0 |ar+3

ar+2
| 0

. . .

0 0 0 · · · 0 0 |ar+4

ar+3
| . . .

...
...

... · · ·
...

...
. . .

. . .



,

with respect to the orthonormal basis {fn}n≥0.



3.7. Truncated tridiagonal kernels 53

Proof. For each n ≥ 1, by the definition of dn from (3.2.1), we have dn = bn
an

− bn−1

an−1
, and

hence d1 = dr+i = 0, i = 2, 3, . . .. Then Theorem 3.2.4 tells us that

[LMz ] =



0 a1
a0

0 · · · 0 0 0 0 · · ·

0 0 a2
a1

· · · 0 0 0 0
. . .

0 0 d2 · · · 0 0 0 0
. . .

...
...

...
...

...
...

...
...

. . .

0 0 (−1)r−2 d2b2···br−1

a3···ar · · · dr
ar+1

ar
0 0

. . .

0 0 (−1)r−1 d2b2···br
a3···arar+1

· · · − drbr
ar+1

dr+1
ar+2

ar+1
0

. . .

0 0 0 · · · 0 0 0 ar+3

ar+2

. . .

...
...

...
...

...
...

...
. . .

. . .



.

Now, by Lemma 3.1.6, |Mz|−2 = LMzL
∗
Mz

, which implies

[
|Mz|−2

]
=

|
a1
a0
|2 0 0

0 A2
r+1 0

0 0 D2

 ,

where D2 = diag
(∣∣∣ar+3

ar+2

∣∣∣2, ∣∣∣ar+4

ar+3

∣∣∣2, . . .) and A2
r+1 is a positive definite matrix of order

r + 1. Using this, one easily completes the proof.

From the computational point of view, it is useful to observe that A2
r+1 = Lr+1L

∗
r+1,

where

Lr+1 =



a2
a1

0 0 0 0

d2
a3
a2

0 0 0
...

...
...

...
...

(−1)r−2 d2b2···br−1

a3···ar (−1)r−3 d3b3···br−1

a4···ar · · · ar+1

ar
0

(−1)r−1 d2b2···br
a3···arar+1

(−1)r−2 d3b3···br
a4···arar+1

· · · dr+1
ar+2

ar+1


.

In other words, A2
r+1 admits a lower-upper triangular factorization. This is closely

related to the Cholesky factorizations/decompositions of positive-definite matrices in

the setting of infinite dimensional Hilbert spaces (see [4] and [47]).

We recall from Theorem 3.6.6 that the Shimorin-Aluthge kernel of Mz is given by

k̃(z, w) = PW̃(I − zLM̃z
)−1(I − w̄L∗

M̃z
)−1|W̃ (z, w ∈ D),

where W̃ = |Mz|−
1
2 kerM∗

z , and

LM̃z
= |Mz|

1
2 (LMz + F )|Mz|−

1
2 , (3.7.1)
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and Fg = ⟨g, f0⟩Hk

(
(M∗

z |Mz|Mz)
−1M∗

z |Mz|f0
)
, g ∈ Hk. We now come to the key point.

Lemma 3.7.2. If k is a truncated kernel, then F = 0 and LM̃z
|Mz|

1
2 = |Mz|

1
2LMz .

Proof. The matrix representation of |Mz|−1 in Lemma 3.7.1 implies that |Mz|f0 = |a0a1 |f0,
and hence

M∗
z |Mz|f0 =

∣∣∣a0
a1

∣∣∣M∗
z f0 = 0,

by Lemma 3.1.4. Therefore, the proof follows from the definition of F and (3.7.1).

We are finally ready to state and prove the result we are aiming for.

Theorem 3.7.3. Let Hk be a truncated space of order r. Then the Shimorin-Aluthge

kernel is tridiagonal if and only if

cmn = (−1)n−m−1 b̄m+1 · · · b̄n−1

ām+2 · · · ān
cm,m+1,

for all 1 ≤ m ≤ n− 2 and 3 ≤ n ≤ r + 1, where cmn are the entries of the middle block

submatrix of order r + 1 of
[
|Mz|−1

]
in Lemma 3.7.1.

Proof. We split the proof into several steps.

Step 1: First observe that k̃(z, w) =
∑∞

m,n=0 X̃mnz
mw̄n, where X̃mn = PW̃Lm

M̃z
L∗n
M̃z

|W̃ for

allm,n ≥ 0. Now Lemma 3.7.2 implies that Lm
M̃z

L∗n
M̃z

= |Mz|
1
2Lm

Mz
|Mz|−1L∗n

Mz
|Mz|

1
2 , and

PW̃ = I−M̃zLM̃z
by (3.1.13). Since M̃z = |Mz|

1
2Mz|Mz|−

1
2 and LM̃z

= |Mz|
1
2LMz |Mz|−

1
2 ,

we have

PW̃ = |Mz|
1
2 (I −MzLMz)|Mz|−

1
2 = |Mz|

1
2PW |Mz|−

1
2

that is, PW̃ |Mz|
1
2 = |Mz|

1
2PW , which implies

X̃mn = |Mz|
1
2PWLm

Mz
|Mz|−1L∗n

Mz
|W (m,n ≥ 0). (3.7.2)

As a passing remark, we note that the above equality holds so long as the finite rank

operator F = 0 (this observation also will be used in Example 3.8.1).

Step 2: Now we compute the matrix representation of Lp
Mz

, p ≥ 1. By Theorem 3.2.4,

we have

[LMz ] =



0 a1
a0

0 0 0 . . .

0 0 a2
a1

0 0
. . .

0 0 d2
a3
a2

0
. . .

0 0 −d2b2
a3

d3
a4
a3

. . .
...

...
...

...
...

. . .
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In particular, this yields

PWLMzfj =

a1
a0
f0 if j = 1

0 otherwise.

Now we let p ≥ 2. Recall from (3.3.6) the definition β
(p)
n = an

(
−b0
a0

)p−n−1
βn for all

n = 1, . . . , p−1, where βn = bn
an

− b0
a0
. Since b0 = 0, we have β

(p)
n = 0, 1 ≤ n < p−1, and

β
(p)
p−1 = ap−1βp−1 = ap−1

( bp−1

ap−1
− b0

a0

)
,

that is, β
(p)
p−1 = bp−1 for all p ≥ 2. In particular, since b1 = 0, we have β

(2)
1 = b1 = 0.

Also recall from (3.3.3) the definition d
(p)
n = bn− an

an−p
bn−p, n ≥ p. Therefore, by (3.3.7),

the matrix representation of L2
Mz

is given by

[L2
Mz

] =


0 0 a2

a0
0 0 · · ·

0 0
d
(2)
2
a1

a3
a1

0
. . .

0 0 0
d
(2)
3
a2

a4
a2

. . .
...

...
...

. . .
. . .

 ,

and in general, by (3.3.8), we have

[Lp
Mz

] =



0 · · · 0
bp−1

a0

ap
a0

0 0 · · ·

0 · · · 0 0
d
(p)
p

a1

ap+1

a1
0

. . .

0 · · · 0 0 0
d
(p)
p+1

a2

ap+2

a2

. . .

0 · · · 0 0 0 −d
(p)
p+1b2
a2a3

d
(p)
p+2

a3

. . .
...

...
...

...
...

...
. . .

. . .


(p ≥ 2). (3.7.3)

Then

[L∗p
Mz

] =



0 0 0 0 · · ·
...

...
...

...
. . .

0 0 0 0
. . .

b̄p−1

ā0
0 0 0

. . .

āp
ā0

d̄
(p)
p

ā1
0 0

. . .

0
āp+1

ā1

d̄
(p)
p+1

ā2
− d̄

(p)
p+1b̄2
ā2ā3

. . .
...

...
...

. . .
. . .


(p ≥ 2). (3.7.4)

Step 3: We prove that X̃0n = |Mz|
1
2PW |Mz|−1L∗n

Mz
|W = 0 for all n ≥ 1. In what follows,

the above matrix representations and the one of |Mz|−1 in Lemma 3.7.1 will be used
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repeatedly. By (3.3.2), we have L∗
Mz

f0 =
ā1
ā0
f1, and hence

X̃01f0 = |Mz|
1
2PW |Mz|−1L∗

Mz
f0 = |Mz|

1
2PW(

ā1
ā0

[c11f1 + c̄12f2 + · · · ]) = 0.

On the other hand, if n ≥ 2, then L∗n
Mz

f0 = b̄n−1

ā0
fn−1 +

ān
ā0
fn, and hence |Mz|−1f0 ⊥

L∗n
Mz

f0. This implies that X̃0n = 0 for all n ≥ 2. Therefore, all entries in the first row

(and hence, also in the first column) of the formal matrix representation of k̃(z, w) are

zero except the (0, 0)-th entry (which is IW). Hence (see also (3.3.1))

[
k̃(z, w)

]
=



IW̃ 0 0 0 · · ·

0 X̃11 X̃12 X̃13
. . .

0 X̃∗
12 X̃22 X̃23

. . .

0 X̃∗
13 X̃∗

23 X̃33
. . .

...
...

...
. . .

. . .


.

Step 4: Our only interest here is to analyze the finite rank (of rank at most one) operator

X̃m,m+k, m ≥ 1, k ≥ 2. The matrix representation in (3.7.4) implies

L∗m+k
Mz

f0 =
1

ā0

(
b̄m+k−1fm+k−1 + ām+kfm+k), (3.7.5)

and hence

|Mz|−1L∗m+k
Mz

f0 =
1

ā0
(b̄m+k−1|Mz|−1fm+k−1 + ām+k|Mz|−1fm+k). (3.7.6)

There are three cases to be considered:

Case I (m+k = r+2): Note that br+1 = 0. Then |Mz|−1L∗r+2
Mz

f0 =
1
ā0
(ār+2|Mz|−1fr+2),

by (3.7.6), and thus

Lm
Mz

|Mz|−1L∗r+2
Mz

f0 =
ār+2

ā0
Lm
Mz

|Mz|−1fr+2 =
ār+2

ā0

∣∣∣ar+3

ar+2

∣∣∣Lm
Mz

fr+2.

By (3.7.3), we have PWLm
Mz

fr+2 = PWLm
Mz

fm+k = 0 (note that k ≥ 2), and hence

PWLm
Mz

|Mz|−1L∗r+2
Mz

f0 = 0,

that is, X̃m,m+k = 0. It is easy to check that the equality also holds for m = 1.

Case II (m+ k − 1 ≥ r + 2): In this case, bm+k−1 = 0 and

|Mz|−1fm+k =
∣∣∣am+k+1

am+k

∣∣∣fm+k.

Again, by (3.7.3), we have PWLm
Mz

fm+k = 0, k ≥ 2, and hence in this case also X̃m,m+k =

0. Again, it is easy to check that the equality holds for m = 1.
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Case III (m+k < r+2): We again stress that m ≥ 1 and k ≥ 2. It is useful to observe,

by virtue of (3.7.3) (also see (3.3.12)), that

PWLm
Mz

fj =


bm−1

a0
f0 if j = m− 1

am
a0

f0 if j = m

0 otherwise.

Now set s = m + k − 1. The matrix representation of |Mz|−1 in Lemma 3.7.1 implies

that

|Mz|−1fs = c1sf1 + c2sf2 + · · ·+ cssfs + c̄s,s+1fs+1 + · · ·+ c̄s,r+1fr+1.

By (3.7.3) and the above equality, we have

PWLm
Mz

|Mz|−1fs = (cm−1,s
bm−1

a0
+ cm,s

am
a0

)f0. (3.7.7)

Next, set t = m+k. Again, the matrix representation of |Mz|−1 in Lemma 3.7.1 implies

that

|Mz|−1ft = c1tf1 + c2tf2 + · · ·+ cttft + c̄t,t+1ft+1 + · · ·+ c̄t,r+1fr+1,

and, again, by (3.7.3) and the above equality, we have

PWLm
Mz

|Mz|−1ft = (cm−1,t
bm−1

a0
+ cm,t

am
a0

)f0. (3.7.8)

It is easy to see that the equalities (3.7.7) and (3.7.8) also holds for m = 1. The equality

in (3.7.5) becomes

|Mz|−1L∗m+k
Mz

f0 =
1

ā0
(b̄s|Mz|−1fs + āt|Mz|−1ft),

and hence, the one in (3.7.6) implies

PWLm
Mz

|Mz|−1L∗m+k
Mz

f0 =
1

|a0|2
[b̄s(cm−1,sbm−1 + cm,sam) + āt(cm−1,tbm−1 + cm,tam)]f0.

This shows that PWLm
Mz

|Mz|−1L∗m+k
Mz

f0 = 0 if and only if

b̄s(cm−1,sbm−1 + cm,sam) + āt(cm−1,tbm−1 + cm,tam) = 0.

Step 5: So far all we have proved is that k̃ is tridiagonal if and only if

bm−1(b̄m+k−1cm−1,m+k−1 + ām+kcm−1,m+k) + am(b̄m+k−1cm,m+k−1 + ām+kcm,m+k) = 0,

(3.7.9)

for all m ≥ 1, k ≥ 2 and m+ k < r + 2.
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If m = 1, then using the fact that b0 = 0, we have c1,k+1 = − b̄k
ā1+k

c1,k, 2 ≤ k < r + 1,

and hence

c1n = (−1)n−2

∏n−1
i=2 b̄i∏n
i=3 āi

c12 (3 ≤ n ≤ r + 1).

Similarly, if m = 2, then (3.7.9) together with the assumption that b1 = 0 implies that

c2n = (−1)n−3

∏n−1
i=3 b̄i∏n
i=4 āi

c23 (4 ≤ n ≤ r + 1). (3.7.10)

Next, if m = 3, then (3.7.9) again implies

b2(b̄k+2c2,k+2 + āk+3c2,k+3) + a3(b̄k+2c3,k+2 + āk+3c3,k+3) = 0 (k < r − 1).

On the other hand, by (3.7.10), we have c2,k+3 = − b̄k+2

āk+3
c2,k+2, and hence b̄k+2c3,k+2 +

āk+3c3,k+3 = 0, which implies c3,k+3 = − b̄k+2

āk+3
c3,k+2, k < r − 1. Now, evidently the

recursive situation is exactly the same as that of the proof of Theorem 3.4.2 (more

specifically, see (3.4.2)). This completes the proof of the theorem.

As is clear by now, by virtue of Theorem 3.4.2, the classification criterion of the above

theorem is also a classification criterion of tridiagonality of standard Aluthge kernels.

Therefore, we have the following:

Corollary 3.7.4. If Hk is a truncated space, then the Shimorin-Aluthge kernel of Mz

is tridiagonal if and only if the standard Aluthge kernel of Mz is tridiagonal.

3.8 Final comments and results

First we comment on the assumptions in the definition of truncated kernels (see Section

3.7). The main advantage of the truncated space corresponding to a truncated kernel

is that F = 0, where F is the finite rank operator as in (3.6.3). In this case, as al-

ready pointed out, we have LM̃z
= |Mz|

1
2LMz |Mz|−

1
2 . This brings a big cut down in

computation. On the other hand, quite curiously, if

b0 = b1 = 1 or b0 = 1,

and all other bi’s are equal to 0, then the corresponding standard Aluthge kernel of

Mz is tridiagonal kernel but the corresponding Shimorin-Aluthge kernel of Mz is not a

tridiagonal kernel. Since computations are rather complicated in the presence of F , we

only present the result for the following (convincing) case:

Example 3.8.1. Let an = b0 = b1 = 1 and bm = 0 for all n ≥ 0 and m ≥ 2. Let Hk

denote the tridiagonal space corresponding to the basis {(an + bnz)z
n}n≥0. By (3.1.8)
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and Theorem 3.2.4, we have

[Mz] =



0 0 0 0 0 · · ·

1 0 0 0 0
. . .

0 1 0 0 0
. . .

0 1 1 0 0
. . .

0 0 0 1 0
. . .

...
...

...
...

. . .
. . .


and [LMz ] =



0 1 0 0 0 0 · · ·

0 0 1 0 0 0
. . .

0 0 −1 1 0 0
. . .

0 0 0 0 1 0
. . .

...
...

...
...

...
. . .

. . .


,

respectively. Hence, applying LMzL
∗
Mz

= |Mz|−2 (see Lemma 3.1.6) to this, we obtain

|Mz|−2 =



1 0 0 0 0 · · ·

0 1 −1 0 0
. . .

0 −1 2 0 0
. . .

0 0 0 1 0
. . .

...
...

...
. . .

. . .


.

Suppose α = 3+
√
5

2 and β = 3−
√
5

2 . It is useful to observe that (1−α)(1−β)+1 = 0. Set[
a b

b c

]
=

[
1 −1

−1 2

] 1
2

, where a = 1√
5
[
√
α(1− β)−

√
β(1− α)] and b = 1√

5
[−

√
α+

√
β],

and c = 1√
5
[−

√
α(1− α) +

√
β(1− β)]. Clearly

|Mz|−1 =


1 0 0 0

0 a b 0

0 b c 0

0 0 0 I

 .

From this it follows that |Mz|f0 = f0, and hence the finite rank operator F , as in (3.6.3),

is given by

Fg = ⟨g, f0⟩Hk

(
(M∗

z |Mz|Mz)
−1M∗

z |Mz|f0
)
= 0 (g ∈ Hk).

Then F = 0, and hence (3.6.2) implies that LM̃z
= |Mz|

1
2LMz |Mz|−

1
2 . By (3.7.2) (also

see Step 1 in the proof of Theorem 3.7.3), the coefficient of zmw̄n of the Shimorin-

Aluthge kernel k̃ is given by X̃mn = |Mz|
1
2PWLm

Mz
|Mz|−1L∗n

Mz
|W , m,n ≥ 0. We compute
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the coefficient of zw̄3 as

PWLMz |Mz|−1L∗3
Mz

f0 = PWLMz |Mz|−1L∗2
Mz

f1

= PWLMz |Mz|−1L∗
Mz

f2

= PWLMz |Mz|−1(−f2 + f3)

= PWLMz(−bf1 − cf2 + f3)

= PWLMz(−bf1)

= −bf0.

But b = 1√
5
[−

√
α+

√
β] ̸= 0, and hence X̃13 ̸= 0. This implies that the Shimorin-Aluthge

kernel is not tridiagonal. On the other hand, the matrix representation of |Mz|−1 implies

right away that the standard Aluthge kernel is tridiagonal (see Theorem 3.4.2).

Now we return to standard Aluthge kernels of shifts (see the definition following

Theorem 3.6.7). Let Hk ⊆ O(D) be a reproducing kernel Hilbert space. Suppose Mz

on Hk is left-invertible. Then Theorem 3.6.7 says that M̃z and Mz on Hk̃(⊆ O(D)) are
unitarily equivalent, where

k̃(z, w) := ⟨|Mz|−1k(·, w), k(·, z)⟩Hk
=

(
|Mz|−1k(·, w)

)
(z),

for all z, w ∈ D. In the following, as a direct application of Theorem 3.4.2, we address

the issue of tridiagonal representation of the shift Mz on Hk.

Corollary 3.8.2. In the setting of Theorem 3.6.7, assume in addition that E = C
and Hk̃ is a tridiagonal space with respect to the orthonormal basis {fn}n≥0, where

fn(z) = (an + bnz)z
n, n ≥ 0. Then Hk is a tridiagonal space if and only if

U |Mz|U∗ =



c00 c01 − b̄1
ā2
c01

b̄1b̄2
ā2ā3

c01 . . .

c̄01 c11 c12 − b̄2
ā3
c12

. . .

− b1
a2
c̄01 c̄12 c22 c23

. . .

b1b2
a2a3

c̄01 − b2
a3
c̄12 c̄23 c33

. . .
...

...
...

. . .
. . .


,

with respect to the basis {fn}n≥0.

Proof. Recall from Theorem 3.6.7 that Hk̃ = |Mz|−
1
2Hk and Uh = |Mz|−

1
2h, h ∈ Hk,

defines the intertwining unitary. Set P := U |Mz|U∗. Then P ∈ B(Hk̃) is a positive

operator, and for any z, w ∈ D, we have

⟨P k̃(·, w), k̃(·, z)⟩Hk̃
= ⟨|Mz|U∗k̃(·, w), U∗k̃(·, z)⟩Hk

= ⟨|Mz||Mz|−
1
2k(·, w), |Mz|−

1
2k(·, z)⟩Hk

= ⟨k(·, w), k(·, z)⟩Hk
,
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as U
(
|Mz|−

1
2k(·, w)

)
= k̃(·, w). Hence k(z, w) = ⟨P k̃(·, w), k̃(·, z)⟩Hk̃

, z, w ∈ D. The

result now follows from Theorem 3.4.2.

In particular, if k̃ is a tridiagonal kernel, then for k to be a tridiagonal kernel, it is

necessary (as well as sufficient) that U |Mz|U∗ is of the form as in the above statement.

We conclude this chapter with the following curious observation which stems from

the matrix representations of Shimorin left inverses of shifts on analytic tridiagonal

spaces (see Theorem 3.2.4). Let Hk be an analytic tridiagonal space. Recall that LMz

denotes the Shimorin left inverse of Mz. By Lemma 3.1.6, we have |Mz|−2 = LMzL
∗
Mz

.

From the matrix representation of LMz in Theorem 3.2.4, one can check that the matrix

representation of |Mz|−2 satisfies the conclusion of Theorem 3.4.2. Consequently, the

positive definite scalar kernel

K(z, w) = ⟨|Mz|−2k(·, w), k(·, z)⟩Hk
(z, w ∈ D),

is a tridiagonal kernel. On the other hand, consider

an =

2 if n = 2

1 otherwise,
and bn =

1 if n = 2

0 otherwise.

Then the shift Mz on the analytic tridiagonal space Hk corresponding to the orthonor-

mal basis {fn}n≥0, where fn(z) = (an + bnz)z
n, n ≥ 0, is left-invertible. However, a

moderate computation reveals that the matrix representation of |Mz|−1 does not satisfy

the conclusion of Theorem 3.4.2. In other words, the positive definite scalar kernel

K(z, w) = ⟨|Mz|−1k(·, w), k(·, z)⟩Hk
(z, w ∈ D),

is not a tridiagonal kernel.





Chapter 4

Invariant subspaces of analytic

perturbations

In this chapter, we first introduce a class of finite rank operators F (we call them n-

perturbations) on H2(D) for which the corresponding perturbations Sn = Mz + F are

shifts (we call them n-shifts). Then we present a complete classification of Sn-invariant

closed subspaces of H2(D). Note that Sn is unitarily equivalent to the multiplication

operator Mz on some analytic Hilbert space.

We remark that a priori examples of n-shifts may seem counter-intuitive because

of the intricate structure of perturbed linear operators. Subsequently, we put special

emphasis on natural examples of n-shifts, and as interesting as it may seem, analytic

spaces corresponding to (truncated) tridiagonal kernels or band kernels with bandwidth

1 give several natural examples of n-shifts. In the special case when Sn is unitarily

equivalent to a shift on an analytic space corresponding to a band truncated kernel with

bandwidth 1, we prove that the invariant subspaces of Sn are also hyperinvariant. Our

proof of this fact follows a classical route: computation of commutants of shifts. In

general, it is a difficult problem to compute the commutant of a shift (even for weighted

shifts). However, in our band truncated kernel case, we are able to explicitly compute

the commutant of n-shifts:

{Sn}′ = {Tφ +N : φ ∈ H∞(D), rankN ≤ n},

where Tφ denotes the analytic Toeplitz operator with symbol φ ∈ H∞(D), and N admits

an explicit (and restricted) representation. We also present concrete examples of 1-shifts

on tridiagonal kernel spaces with special emphasis on cyclicity of invariant subspaces.

For instance, a simple example of S1-shift brings out the following distinctive properties:

1. [S∗
1 , S1] := S∗

1S1 − S1S
∗
1 is of finite rank (in particular, S1 is essentially normal).

2. S1 is not subnormal (and, more curiously, not even hyponormal).

63
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3. Invariant subspaces of S1 are cyclic.

We believe that these observations along with the classification of invariant subspaces

of shifts on tridiagonal spaces are of independent interest beside their application to

the theory of perturbed operators. Finally, we remark that perturbations of concrete

operators (with some analytic flavor) have been also studied in different contexts by

other authors. For instance, see [34, 44, 53], and notably Clark [21].

4.1 n-shifts

This section introduces the central concept of this chapter, namely, analytic perturba-

tions or n-shifts. We also explore some basic properties of n-shifts.

for all f ∈ Hk, w ∈ D, and η ∈ E . We now present the formal definition of shift

operators:

Definition 4.1.1. The shift on Hk is the multiplication operator Mz defined by (Mzf)(w) =

wf(w) for all f ∈ Hk and w ∈ D.

In what follows, we will be mostly concerned with bounded shifts. Therefore, we

always assume that Mz is bounded. Note that, in the scalar-valued case, that is, when

E = C, the positivity condition of the kernel becomes

m∑
i,j=1

c̄icjk(zi, zj) ≥ 0,

for all {z1, . . . , zm} ⊆ D, {η1, . . . , ηm} ⊆ E and m ≥ 1. The simplest example of an

analytic kernel is the Szegö kernel S on D, where

S(z, w) = (1− zw̄)−1 (z, w ∈ D).

The analytic space corresponding to the Szegö kernel is the well-known (scalar-valued)

Hardy space H2(D), where the shift Mz on H2(D) is known as the unilateral shift (of

multiplicity one). Also, recall that the unilateral shiftMz onH2(D) is the model operator

for contractions on Hilbert spaces (in the sense of basic building blocks [21]).

We also record the key terms of the agreement: X1 ∈ B(H1) and X2 ∈ B(H2) are the

same means there exists a unitary U : H1 → H2 such that UX1 = X2U , that is, X1 and

X2 are unitarily equivalent. Therefore, X ∈ B(H) is a shift if there exists an analytic

Hilbert space Hk such that the shift Mz on Hk and X are unitarily equivalent. Finally,

we are ready to introduce the central objects of this chapter:

Definition 4.1.2 (n-shifts). A linear operator F on H2(D) is called an n-perturbation

if
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(i) Fzm = 0 for all m ≥ n,

(ii) F (zmH2(D)) ⊆ zm+1C[z] for all m ≥ 0, and

(iii) Mz + F is left-invertible.

We call Sn = Mz+F the n-shift corresponding to the n-perturbation F (or simply n-shift

if F is clear from the context).

It follows that an n-perturbation is of rank m for some m ≤ n. In fact, it is easy to

see that the rank of the 2-perturbation

Fzm =

z2 if m = 0, 1

0 otherwise,

is precisely 1. Moreover, S2 = Mz+F is a 2-shift. Indeed, since S∗
2S2 =

[
2 2

2 4

]
⊕Iz2H2(D)

on H2(D) = C⊕ Cz ⊕ z2H2(D), it follows that S∗
2S2 is invertible, and hence S2 is left-

invertible. Now we justify Definition 4.1.2 by showing that an n-shift is indeed a shift.

Lemma 4.1.3. Let F be an n-perturbation. If Sn = Mz + F , then:

(i) F (zmf) = 0 for each m ≥ n and f ∈ H2(D).

(ii) For each f ∈ H2(D) and m ≥ 1, there exists p ∈ C[z], depending on both f and

m, such that

Sm
n f = zm(f + p).

(iii) Sn is a shift on some analytic Hilbert space.

Proof. Part (i) immediately follows from the fact that F (zmp) = 0 for all p ∈ C[z]. Since
by assumption F (zmH2(D)) ⊆ zm+1C[z], m ≥ 0, for each f ∈ H2(D), there exists a

polynomial pf ∈ C[z] such that Ff = zpf . Then

Snf = (Mz + F )f = zf + zpf = z(f + pf ),

and hence, there exists qf ∈ C[z] such that

S2
nf = (Mz + F )(z(f + pf )) = z2(f + pf ) + z2qf = z2(f + pf + qf ).

The second assertion now follows by the principle of mathematical induction. To prove

the last assertion, we use (ii) to conclude that

Sm
n H2(D) ⊆ zmH2(D) (m ≥ 0). (4.1.1)
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Since we know that Mz on H2(D) is pure, that is, ∩m≥0z
mH2(D) = {0}, the above

inclusion implies that

∩m≥0S
m
n H2(D) ⊆ ∩m≥0z

mH2(D) = {0}.

Using this and the left invertibility of Sn, it follows that Sn on H2(D) is a shift.

Note that the following standard fact [56] has been used in the above proof: If

T ∈ B(H) is a left-invertible operator and if ∩∞
m=0T

mH = {0}, then T is unitarily

equivalent to the shiftMz on someW-valued analytic Hilbert space, whereW = H⊖TH.

In the present case, if

W = kerS∗
n = ker(Mz + F )∗,

then Sn on H2(D) is unitarily equivalent to Mz on some W-valued analytic Hilbert space

Hk over D. Here the kernel function k is explicit [56, Corollary 2.14] and involves a

specific left inverse of Sn (namely, (S∗
nSn)

−1S∗
n), but we will not need this.

Let T be a bounded linear operator on a Hilbert space H. Given a vector f ∈ H, let

[f ]T denote the T -cyclic closed subspace generated by f , that is

[f ]T = clos {p(T )f : p ∈ C[z]}.

Lemma 4.1.4. If f ∈ H2(D) is a nonzero function, then [f ]Sn contains a nontrivial

closed Mz-invariant subspace of H2(D).

Proof. Suppose g ∈ H2(D). By part (ii) of Lemma 4.1.3, we already know that Sn
ng =

zn(g + p) for some p ∈ C[z]. Then part (i) of the same lemma implies that

Sn+1
n g = (Mz + F )(zng + znp) = Mz(z

ng + znp) = Mz(S
n
ng).

Then, by induction, we have Sm
n g = Mm−n

z (Sn
ng), and hence

Sm
n = Mm−n

z Sn
n (m ≥ n+ 1). (4.1.2)

In particular, if f is nonzero in H2(D), then [Sn
nf ]Mz is an Mz-invariant closed subspace

of [f ]Sn .

In the context of the equality (4.1.2), note in general that

[Mm−n
z , Sn

n ] = Mm−n
z Sn

n − Sn
nM

m−n
z ̸= 0 (m ≥ n+ 1).
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4.2 Invariant subspaces

In this section, we will prove the central result of this chapter: a complete classification

of n-shift invariant closed subspaces of H2(D). However, as a first step, we need to

prove a Beurling type property of invariant subspaces of n-shifts. We recall that if S is

a nonzero closed Mz-invariant subspace of H2(D), then

dim (S ⊖ zS) = 1.

This is an easy consequence of the Beurling theorem (or, one way to prove the Beurling

theorem). In the following, we prove a similar result for Sn-invariant closed subspaces

of H2(D).

Theorem 4.2.1. If M ⊆ H2(D) is a nonzero closed Sn-invariant subspace, then

dim(M⊖ SnM) = 1.

Proof. Suppose if possible that M⊖ SnM = {0}. Since Sn is left-invertible, it follows

that

Sm
n M = M (m ≥ 1),

which implies that

M = ∩m≥1S
m
n M ⊆ ∩m≥1S

m
n H2(D) ⊆ ∩m≥1z

mH2(D) = {0},

where the second inclusion follows from (4.1.1). This contradiction shows that M ⊖
SnM ̸= {0}. Now suppose that f, g ∈ M⊖ SnM be unit vectors. If possible, assume

that f and g are orthogonal, that is, ⟨f, g⟩ = 0. We claim that

[f ]Sn ∩ [g]Sn = {0}.

To prove this, first we pick a nonzero vector h ∈ [f ]Sn∩ [g]Sn . Then there exist sequences

of polynomials {pm}m≥1 and {qm}m≥1 such that

h = lim
m→∞

(pm(Sn)f) = lim
m→∞

(qm(Sn)g). (4.2.1)

For each m ≥ 1, we let

pm(z) = αm,0 + αm,1z + · · ·+ αm,tmz
tm ,

and

qm(z) = βm,0 + βm,1z + · · ·+ βm,lmz
lm ,
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where tm and lm are in N and m ≥ 1. Now Sl
ng ∈ SnM for all l ≥ 1, together with

⟨g, f⟩ = 0 implies that ⟨qm(Sn)g, f⟩ = 0 for all m ≥ 1. Therefore

⟨h, f⟩ = ⟨ lim
m→∞

pm(Sn)f, f⟩ = ⟨ lim
m→∞

qm(Sn)g, f⟩ = lim
m→∞

⟨qm(Sn)g, f⟩ = 0,

that is, ⟨h, f⟩ = 0, where, on the other hand

⟨h, f⟩ = ⟨ lim
m→∞

pm(Sn)f, f⟩ = lim
m→∞

⟨pm(Sn)f, f⟩ = lim
m→∞

⟨αm,0f, f⟩,

as Sl
nf ∈ SnM for all l ≥ 1, and f ⊥ SnM. We immediately deduce that

lim
m→∞

αm,0 = 0.

Thus we obtain

h = lim
m→∞

((αm,1Sn + · · ·+ αm,tmS
tm
n )f).

Since ⟨Sk
ng, g⟩ = 0 and ⟨Sl

nf, g⟩ = 0 for all k, l ≥ 1, repeating the same argument as

above, we have ⟨h, g⟩ = 0 and

lim
m→∞

βm,0 = 0,

and consequently

h = lim
m→∞

((βm,1Sn + · · ·+ βm,lmS
lm
n )g).

Thus we obtain

lim
m→∞

((αm,1Sn + · · ·+ αm,tmS
tm
n )f) = lim

m→∞
((βm,1Sn + · · ·+ βm,lmS

lm
n )g).

Multiplying both sides by a left inverse of Sn (for instance, (S∗
nSn)

−1S∗
n is a left inverse

of Sn [56]) then gives

h1 : = lim
m→∞

((αm,1 + αm,2Sn + · · ·+ αm,tmS
tm−1
n )f)

= lim
m→∞

((βm,1 + βm,2Sn + · · ·+ βm,lmS
lm−1
n )g).

We are now in exactly the same situation as in (4.2.1). Proceeding as above, we then

have

lim
m→∞

αm,1 = lim
m→∞

βm,1 = 0.

Arguing similarly, it will follow by induction that

lim
m→∞

αm,t = lim
m→∞

βm,l = 0.

for all t = 0, 1, . . . , tm, and l = 0, 1, . . . , lm, and m ≥ 1, and so h = 0. This contradiction

shows that

[f ]Sn ∩ [g]Sn = {0}.
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Now by Lemma 4.1.4 and the classical Beurling theorem, we know that θ1H
2(D) ⊆ [f ]Sn

and θ2H
2(D) ⊆ [g]Sn for some inner functions θ1 and θ2 in H∞(D). Since

θ1θ2 ∈ θ1H
2(D) ∩ θ2H

2(D) ⊆ [f ]Sn ∩ [g]Sn ,

it follows that θ1H
2(D)∩ θ2H

2(D) ̸= {0}, which contradicts the fact that [f ]Sn ∩ [g]Sn =

{0}. Therefore, dim(M⊖ SnM) = 1, and completes the proof of the theorem.

Note that the final part of the above proof uses the classical Beurling theorem :

If M is a nonzero Mz-invariant closed subspace of H2(D), then there exists an inner

function θ ∈ H∞(D) such that M = [θ]Mz . We will return to the issue of cyclic invariant

subspaces of 1-shifts in Section 4.5, and here we proceed to state and prove our general

invariant subspace theorem.

Theorem 4.2.2. Let F be an n-perturbation on H2(D), and let M be a nonzero closed

subspace of H2(D). Then M is invariant under Sn = Mz + F if and only if there exist

an inner function θ ∈ H∞(D) and polynomials {pi, qi}n−1
i=0 ⊆ C[z] such that

M = (Cφ0 ⊕ Cφ1 ⊕ · · · ⊕ Cφn−1)⊕ znθH2(D),

where φi = zipiθ − qi for all i = 0, . . . , n− 1, and

Snφj ∈ (Cφj+1 ⊕ · · · ⊕ Cφn−1)⊕ znθH2(D),

for all j = 0, . . . , n− 2, and Snφn−1 = znpn−1θ.

Proof. Let M be a nonzero closed subspace of H2(D). Observe that

Sn(z
nf) = (Mz + F )(znf) = zn+1f + F (znf) = zn+1f,

for all f ∈ H2(D), where the last equality follows from Lemma 4.1.3. Therefore

Mm+n
z = Sm

n Mn
z (m ≥ 1). (4.2.2)

To prove the sufficient part, we see, by (4.2.2), that

Sn(z
nθf) = zn+1θf ∈ znθH2(D),

for all f ∈ H2(D), and hence Sn(z
nθH2(D)) ⊆ znθH2(D). This and the remaining

assumptions then implies that SnM ⊆ M.

For the converse direction, assume that SnM ⊆ M. Theorem 4.2.1 then implies

M = Cφ0 ⊕ SnM,
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for some nonzero vector φ0 ∈ M⊖ SnM. Since M is closed and Sn is left invertible, it

follows that SnM is also a nonzero closed Sn-invariant subspace of H
2(D). By Theorem

4.2.1 again, we have

M = Cφ0 ⊕ (Cφ1 ⊕ S2
nM),

for some nonzero vector φ1 ∈ SnM⊖ Sn(SnM). Continuing exactly in the same way,

by induction, we find φi ∈ Si
nM⊖ Si+1

n M, i = 0, 1, . . . , n− 1, such that

M = (Cφ0 ⊕ Cφ1 ⊕ · · · ⊕ Cφj−1)⊕ Sj
nM,

for all j = 1, . . . , n. In particular, M = (Cφ0 ⊕ Cφ1 ⊕ · · · ⊕ Cφn−1) ⊕ Sn
nM. Now, by

(4.1.2), we have Mz(S
n
nf) = Sn+1

n f , f ∈ M, which implies that Mz(S
n
nM) ⊆ Sn

nM,

that is, Sn
nM is a closed nonzero Mz-invariant subspace of H2(D). By the Beurling

theorem this implies that Sn
nM = θ̃H2(D) for some inner function θ̃ ∈ H∞(D). Since

each element in Sn
nM has a zero of order at least n at z = 0 (see part (ii) of Lemma

4.1.3), it follows that θ̃ = znθ for some inner function θ ∈ H∞(D). Thus

Sn
nM = znθH2(D), (4.2.3)

and hence

M = (Cφ0 ⊕ Cφ1 ⊕ · · · ⊕ Cφn−1)⊕ znθH2(D),

for some inner function θ ∈ H∞(D). Fix an i ∈ {0, 1, . . . , n − 1}. Since φi ∈ Si
nM ⊖

Si+1
n M, by construction, we have φi ∈ Si

nM, and hence (4.2.3) implies

Sn−iφi ∈ Sn
nM = znθH2(D).

Therefore, there exists hi ∈ H2(D) such that

Sn−i
n φi = znθhi. (4.2.4)

By part (ii) of Lemma 4.1.3, there exists a polynomial qi ∈ C[z] such that Sn−i
n φi =

zn−i(φi + qi). Then

φi + qi = ziθhi. (4.2.5)

Since φi ⊥ Sn
nM = znθH2(D), by construction, for each l ≥ 0, we have

⟨ziθhi, zn+lθ⟩ = ⟨φi + qi, z
n+lθ⟩ = ⟨qi, zn+lθ⟩,

which, along with ⟨ziθhi, zn+lθ⟩ = ⟨hi, zn+l−i⟩, implies that

⟨hi, zn+l−i⟩ = ⟨qi, zn+lθ⟩.

Finally, using the fact that qi is a polynomial, we conclude that for each i = 0, . . . , n−1,

there exists a natural number ni such that ⟨hi, zt⟩ = 0 for all t ≥ ni, and hence pi := hi

is a polynomial. This completes the proof.
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From the final part of the above proof, we note that hi := pi is a polynomial. There-

fore, by (4.2.4) and (4.2.5), there exist polynomials pi, qi ∈ C[z] such that φi = zipiθ−qi,

and

Sn−i
n φi = znpiθ (i = 0, 1, . . . , n− 1). (4.2.6)

The description of invariant subspaces of Sn as in the above theorem appears to be

satisfactory and complete. However, a more detailed delicacy is hidden in the structure

of polynomials {pi, qi}n−1
i=0 and the finite rank operator F . In fact, without much control

over these polynomials (and/or the finite rank operator F ), hardly much can be said

about the other basic properties of n-shift invariant subspaces. For instance:

When an n-shift invariant subspace is cyclic?

Needless to say, the cyclicity property of shift operators is a complex problem. We will

return to this issue in Section 4.5, and refer [1, 17] for some modern development of

cyclic vectors of shift invariant subspaces of function Hilbert spaces.

4.3 Commutants

In this section, we compute commutants of n-shifts on analytic Hilbert spaces corre-

sponding to truncated tridiagonal kernels. The concept of tridiagonal kernels or band

kernels with bandwidth one in the context of analytic Hilbert spaces was introduced in

[3, 4]. Note that shifts on analytic Hilbert spaces corresponding to band kernels with

bandwidth one are the next best examples of shifts after the weighted shifts.

The following definition is a variant of truncated tridiagonal kernels which is also

motivated by a similar (but not exactly the same) concept of kernels in the context of

Shimorin’s analytic models [24].

Definition 4.3.1. Let Hk be an analytic Hilbert space corresponding to an analytic

kernel k : D×D → C. We say that Hk is a truncated space (and k is a truncated kernel)

if:

(i) C[z] ⊆ Hk,

(ii) the shift Mz is bounded on Hk, and

(iii) {fm}m≥0 forms an orthonormal basis of Hk, where fm = (am+ bmz)zm, m ≥ 0,

for some scalars {am}m≥0 and {bm}m≥0 such that as ̸= 0 for all s ≥ 0, and bt = 0 for

all t ≥ n.
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Note that in the above definition, n is a fixed natural number. Also, in this case, the

kernel function k is given by

k(z, w) =
∞∑

m=0

fm(z)fm(w) (z, w ∈ D).

If, in addition, {| am
am+1

|}m≥0 is bounded away from zero, then Mz on Hk is left-invertible

[24, Theorem 3.5]. Clearly, the above representation of k justifies the use of the term

tridiagonal kernel.

Throughout this section, we will assume that am = 1 for all m ≥ 0. Using the or-

thonormal basis {fm = (1 + bmz)zm}m≥0 of Hk, a simple calculation reveals that (cf.

[3, Section 3] or [24, Section 2])

zm =
∞∑
t=0

(−1)t
( t−1∏

j=0

bm+j

)
fm+t (m ≥ 0), (4.3.1)

where Π−1
j=0xm+j := 1. Since bm = 0, m ≥ n, we have

∏t−1
j=0 bm+j = 0 for all t ≥ n + 1.

In particular, the above is a finite sum. We set

cm,p = bm − bm+p, (4.3.2)

for all m ≥ 0 and p ≥ 1. Clearly, cm,p = 0 for all m ≥ n. Now Mzfm = zm+1 + bmzm+2

implies that

zfm = fm+1 + (bm − bm+1)z
m+2 = fm+1 + cm,1z

m+2,

that is, zfm = fm+1 + cm,1z
m+2 for all m ≥ 0. Then (4.3.1) yields

zfm = fm+1 + cm,1

∞∑
t=0

(−1)t
( t−1∏

j=0

bm+2+j

)
fm+2+t (m ≥ 0). (4.3.3)

Since cm,1 = 0 for all m ≥ n, as pointed out earlier, it follows that zfm = fm+1 for all

m ≥ n. In particular, the matrix representation of Mz with respect to the orthonormal

basis {fm}m≥0 is given by (also see [3, Page 729])

[Mz] =



0 0 0 . . . 0 0 . . .

1 0 0 . . . 0 0 . . .

c0,1 1 0 . . . 0 0 . . .

−c0,1b2 c1,1 1 . . . 0 0 . . .

c0,1b2b3 −c1,1b3 c2,1
. . . 0 0 . . .

...
...

...
. . .

. . .
...

...

0 0 0 . . . cn−1,1 1
. . .

0 0 0 . . . 0 0
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .



.



4.3. Commutants 73

We define the canonical unitary map U : Hk −→ H2(D) by setting Ufm = zm,

m ≥ 0. It then follows that

UMz = SnU, (4.3.4)

where Sn := Mz + F is the n-shift corresponding to the n-perturbation F on H2(D)
whose matrix representation with respect to the orthonormal basis {zm}m≥0 of H2(D)
is given by

[F ] =



0 0 0 . . . 0 0 . . .

0 0 0 . . . 0 0 . . .

c0,1 0 0 . . . 0 0 . . .

−c0,1b2 c1,1 0 . . . 0 0 . . .

c0,1b2b3 −c1,1b3 c2,1 . . . 0 0 . . .
...

...
...

. . .
. . .

...
...

0 0 0 . . . cn−1,1 0 · · ·
0 0 0 . . . 0 0 · · ·
...

...
... . . . . . .

...
...



,

Definition 4.3.2. We call Sn the n-shift corresponding to the truncated kernel k.

Now we turn to the commutants of n-shifts corresponding to truncated kernels. Since

Mz on Hk and Sn on H2(D) are unitarily equivalent, the problem of computing the

commutant of Sn reduces to that of Mz.

Let Hk be a truncated space. Recall that a function φ : D → C is said to be a

multiplier of Hk if φHk ⊆ Hk [10]. We denote by M(Hk) the set of all multipliers. By

the closed graph theorem, a multiplier φ ∈ M(Hk) defines a bounded linear operator

Mφ on Hk, where

Mφf = φf (f ∈ Hk).

We call Mφ the multiplication operator corresponding to φ.

We will use the following notation: If X ∈ B(H), then the commutant of X, denoted

by {X}′, is the algebra of all operators T ∈ B(H) such that TX = XT . In the following,

we observe that {Mz}′ = {Mφ : φ ∈ M(Hk)}. The proof is fairly standard:

Lemma 4.3.3. Suppose A ∈ B(Hk). Then AMz = MzA if and only if there exists

φ ∈ M(Hk) such that A = Mφ.

Proof. The “if” part is easy. To prove the “only if” part, suppose AMz = MzA and let

A1 = φ. Clearly, φ ∈ Hk. Since fm = (1 + bmz)zm, it follows that

Afm = Azm + bmAzm+1 = (zm + bmzm+1)A1 = fmφ = φfm,

for all m ≥ 0. Since {fm}m≥0 is an orthonormal basis, we have Af = φf for all f ∈ Hk,

and hence, φHk ⊆ Hk. This proves that A = Mφ, and completes the proof of the

lemma.
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Now we prove the main result of this section. It essentially says that M(Hk) =

H∞(D), that is, {Mz}′ = {Mφ : φ ∈ H∞(D)}.

Theorem 4.3.4. Let φ : D → C be a function, and let Hk be a truncated space with

{fm}m≥0 as an orthonormal basis, where fm(z) = (1 + bmz)zm, m ≥ 0, and bt = 0 for

all t ≥ n. Then φ ∈ M(Hk) if and only in φ ∈ H∞(D).

Proof. Recall from (4.3.3) that

zfm = fm+1 + cm,1

∞∑
t=0

(−1)t
( t−1∏

j=0

bm+2+j

)
fm+2+t (m ≥ 0).

In general, for any p ≥ 1, we have

zpfm = (1 + bmz)zm+p = fm+p + (bm − bm+p)z
m+p+1.

Since cm,p = bm − bm+p for all m ≥ 0 and p ≥ 1 (see (4.3.2)), it follows that

zpfm = fm+p + cm,p(fm+p+1 − bm+p+1fm+p+2 + bm+p+1bm+p+2fm+p+3 − · · · ). (4.3.5)

Note that cm,p = 0 for all m ≥ n. Let φ ∈ Hk, and suppose φ =
∑∞

m=0 αmzm. Since

φf0 =
∑∞

m=0(αmzmf0) and f0 = 1 + b0z, (4.3.5) implies

φf0 = α0f0 + α1f1 + (α2 + β1,0)f2 + · · ·+ (αn + βn−1,0)fn +
∞∑

t=n+1

(αt + c0,t−1αt−1)ft,

where

βj,0 = coefficient of fj+1 − αj+1 (j = 1, . . . , n− 1).

Observe that βj,0 is a finite sum for each j = 1, . . . , n−1. Similarly, for each 0 ≤ m < n,

we have

φfm =α0fm + α1fm+1 + (α2 + β1,m)fm+2 + · · ·+ (αn−m + βn−m−1,m)fn

+
∞∑

t=n+1

(αt−m + cm,t−m−1αt−m−1)ft,

where, as before, we let

βj,m = coefficient of fj+m+1 − αj+1 (j = 1, . . . , n−m− 1).

Finally, for each m ≥ n, it is easy to see that

φfm =
∞∑
j=0

αjfm+j .
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Therefore, the formal matrix representation of the linear operator Mφ (which is not

necessarily bounded yet) is given by the formal sum of matrix operators

[Mφ] = [T̃φ] + [N ], (4.3.6)

where

[T̃φ] =


α0 0 0 0 . . .

α1 α0 0 0
. . .

α2 α1 α0 0
. . .

...
. . .

. . .
. . .

. . .

 (4.3.7)

and

[N ] =



0 0 0 . . . 0 0 0 . . .

0 0 0 . . . 0 0 0
. . .

β1,0 0 0 . . . 0 0 0
. . .

β2,0 β1,1 0 . . . 0 0 0
. . .

...
...

...
...

...
...

...
. . .

βn−1,0 βn−2,1 βn−3,2 . . . 0 0 0
. . .

c0,nαn c1,n−1αn−1 c2,n−2αn−2 . . . cn−1,1α1 0 0
. . .

c0,n+1αn+1 c1,nαn c2,n−1αn−1 . . . cn−1,2α2 0 0
. . .

c0,n+2αn+2 c1,n+1αn+1 c2,nαn . . . cn−1,3α3 0 0
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .



. (4.3.8)

Now assume that φ ∈ M(Hk), that is, the multiplication operator Mφ is bounded on

Hk. Since

Mφfn = φfn =

∞∑
j=0

αjfn+j ,

it follows that {αm}m≥0 is square summable, and hence [T̃φ] defines a linear (but not

necessarily bounded yet) operator on Hk. Since the matrix operator [N ] has at most n

nonzero columns and
∞∑

m=0

|αm|2 < ∞,

it follows that [N ] is bounded on Hk. Therefore, by (4.3.6), [T̃φ] defines a bounded linear

operator T̃φ on Hk. Then we find that the canonical unitary map U : Hk → H2(D)
defined by equation (4.3.4) satisfies

UT̃φ = TφU,

where Tφ denote the (bounded) Toeplitz operator on H2(D) with symbol φ. In partic-

ular, φ ∈ H∞(D).
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For the converse, we assume that φ =
∑∞

m=0 αmzm is in H∞(D). If we set T̃φ =

U∗TφU , then T̃φ is a bounded linear operator on Hk, and the matrix representation of

T̃φ will be of the form (4.3.7). Finally, since
∑∞

m=0 |αm|2 < ∞, it follows that the matrix

(4.3.8) defines a bounded linear operator on Hk. Therefore, Mφ = T̃φ +N is bounded

on Hk, which completes the proof of the theorem.

Of course, the inclusion M(Hk) ⊆ H∞(D) follows rather trivially from properties of

kernel functions: Suppose φ ∈ M(Hk). By the reproducing property of kernel functions,

we have M∗
φk(·, w) = φ(w)k(·, w), which implies

|φ(w)| = 1

∥k(·, w)∥
∥M∗

φk(·, w)∥ ≤ ∥Mφ∥ (w ∈ D).

In particular, φ ∈ H∞(D) and ∥φ∥∞ ≤ ∥Mφ∥. Evidently, the content of the above the-

orem is different and proves much more than the standard inclusion M(Hk) ⊆ H∞(D).
Also, note that we have proved more than what has been explicitly stated in the above

theorem:

Theorem 4.3.5. Consider the n-shift Sn corresponding to the truncated space Hk de-

fined as in Theorem 4.3.4, and let X ∈ B(H2(D)). Then X ∈ {Sn}′ if and only if there

exists φ ∈ H∞(D) such that X = Tφ + N , where N is a matrix operator as in (4.3.8)

with respect to {zm}m≥0.

The proof follows easily, once one observe that

UMφ = (Tφ +N)U, (4.3.9)

for all φ ∈ H∞(D) = M(Hk), where U : Hk → H2(D) is the canonical unitary as in

(4.3.4).

The following observation is now standard: The n-shift Sn as in Theorem 4.3.4 is

irreducible. Indeed, if M ⊆ Hk is a closed Mz-reducing subspace, then PMMz = MzPM

implies that PM = Mφ for some φ ∈ M(Hk). By Theorem 4.3.4, φ ∈ H∞(D). Then

P 2
M = PM implies that φ2 = φ on D, and we obtain φ ≡ 0 or 1. It now follows that

M = {0} or Hk.

Representations of commutants of n-shifts on even “simple” truncated spaces appear

to be interesting and nontrivial. We will work out some concrete examples in Section

4.5.

4.4 Hyperinvariant subspaces

We continue from where we left in Section 4.3, and prove that invariant subspaces of

n-shifts on truncated spaces are hyperinvariant. Recall that a closed subspace M ⊆ H
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is called a hyperinvariant subspace for T ∈ B(H) if

XM ⊆ M,

for all X ∈ {T}′. We assume that Hk is a truncated space corresponding to the or-

thonormal basis {fm}m≥0, where fm(z) = (1+ bmz)zm, m ≥ 0, and {bm}m≥0 are scalars

such that bt = 0 for all t ≥ n. In this case, recall that M(Hk) = H∞(D) (see Theorem

4.3.4), and the canonical unitary U : Hk → H2(D) defined by equation (4.3.4) satisfies

UMz = SnU and UMφ = (Tφ +N)U,

for all φ ∈ H∞(D), where N is the finite rank operator whose matrix representation

with respect to the orthonormal basis {zm}m≥0 of H2(D) is given by (4.3.8).

We are now ready to solve the hyperinvariant subspace problem for n-shifts on trun-

cated spaces.

Theorem 4.4.1. Closed invariant subspaces of n-shifts on truncated spaces are hyper-

invariant.

Proof. Let Mz be an n-shift on a truncated space, and let Sn be the corresponding

n-shift on H2(D). Suppose M is a nonzero closed Sn-invariant subspace of H2(D). By

Theorem 4.2.2, there exist an inner function θ ∈ H∞(D) and polynomials {pi, qi}n−1
i=0

such that

M = (Cφ0 ⊕ Cφ1 ⊕ · · · ⊕ Cφn−1)⊕ znθH2(D),

where φi = zipiθ−qi for all i = 0, . . . , n−1, and Snφj ∈ (Cφj+1⊕· · ·Cφn−1)⊕znθH2(D)
for all j = 0, . . . , n− 2, and Snφn−1 = znpn−1θ. In view of Theorem 4.3.5, we only need

to prove that (Tφ + N)φi ∈ M for all i = 0, 1, . . . , n − 1, and (Tφ + N)znθH2(D) ⊆
znθH2(D) for all φ ∈ H∞(D). To this end, let φ ∈ M(Hk) = H∞(D), and suppose

φ(z) =
∑∞

m=0 αmzm. Then for each i = 0, 1, . . . , n− 1, we have

(Tφ +N)φi = UMφU
∗φi = U(φU∗φi),

and hence

(Tφ +N)φi = U(
∞∑

m=0

αmzmU∗φi)

= U(

∞∑
m=0

αmMm
z U∗φi)

=
∞∑

m=0

αmSm
n φi ∈ M

,
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as φi ∈ M and SnM ⊆ M. Finally, if f ∈ H2(D), then Lemma 4.1.3 implies

(Tφ +N)znθf = Tφ(z
nθf) + 0 = znθφf ∈ znθH2(D),

and hence, (Tφ +N)znθH2(D) ⊆ znθH2(D), which completes the proof.

Now let Mz be an n-shift, and let M(Hk) = H∞(D). In particular, {Mz}′ = H∞(D).
In this case, a similar argument as the above proof gives the same conclusion as Theorem

4.4.1. However, as is well known, explicit computation of M(Hk) is a rather challenging

problem.

4.5 Examples

In this section, we examine Theorem 4.2.2 from a more definite examples point of view.

As we will see, these examples are instructive and bring out several analytic and ge-

ometric flavors, and points out additional complications to the theory of finite rank

perturbations.

Fix scalars a0 and b0 such that 0 < |b0| ≤ |a0|, and consider the 1-shift S1 = Mz +F

on H2(D) corresponding to the 1-perturbation

Fzm =

((a0 − 1) + b0z)z if m = 0

0 if m ≥ 1.
(4.5.1)

The fact that S1 is a 1-shift follows from the inherited tridiagonal structure of S1. Indeed,

S1 is unitarily equivalent to the shift Mz on the truncated space Hk with orthonormal

basis {fm}m≥0, where fm = (am + bmz)zm, m ≥ 0, and at = 1 and bt = 0 for all t ≥ 1.

Since ∣∣∣ am
am+1

∣∣∣ ≥ min{|a0|, 1} (m ≥ 0),

the sequence {| am
am+1

|}m≥0 is bounded away from zero, and hence, Mz is left-invertible

(see the discussion following Definition 4.3.1). Moreover, the canonical unitary U :

Hk → H2(D) defined by equation (4.3.4) satisfies the required intertwining property

UMz = S1U . Therefore, it follows that S1 = Mz + F on H2(D) is indeed a 1-shift. We

clearly have

Ff = f(0)((a0 − 1) + b0z)z (f ∈ H2(D)). (4.5.2)
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Now we observe three distinctive features of S1: Note that the matrix representation of

S1 with respect to the orthonormal basis {zm}m≥0 of H2(D) is given by

[S1] = [Mz + F ] =



0 0 0 0 . . .

a0 0 0 0
. . .

b0 1 0 0
. . .

0 0 1 0
. . .

...
. . .

. . .
. . .

. . .


.

Then, a simple computation yields that

[S∗
1 , S1] =



|a0|2 + |b0|2 b̄0 0 0 . . .

b0 1− |a0|2 −a0b̄0 0
. . .

0 −ā0b0 −|b0|2 0
. . .

0 0 0 0
. . .

...
. . .

. . .
. . .

. . .


,

is precisely a rank-3 operator. Indeed, the determinant of the 3× 3 nonzero submatrix

of [S∗
1 , S1] is given by

(|a0|2 + |b0|2)
(
− (1− |a0|2)|b0|2 − |a0|2|b0|2

)
− |b0|4 = −|a0|2|b0|2 < 0.

This also implies that [S∗
1 , S1] is not a positive definite operator. Therefore:

1. S1 is essentially normal, that is, [S∗
1 , S1] = S∗

1S1 − S1S
∗
1 is compact (in fact, here

it is of finite rank).

2. S1 is not hyponormal (and hence, not subnormal).

3. Invariant subspaces of S1 are cyclic.

The proof of the final assertion is the main content of the following two theorems:

Theorem 4.5.1. Let a0 and b0 be scalars such that 0 < |b0| ≤ |a0|. Suppose

Fzm =

((a0 − 1) + b0z)z if m = 0

0 if m ≥ 1,

and consider the 1-shift S1 = Mz + F on H2(D). Then a nonzero closed subspace M ⊆
H2(D) is invariant under S1 if and only if there exists an inner function θ ∈ H∞(D)
such that

M = Cφ⊕ zθH2(D),



80 Chapter 4. Invariant subspaces of analytic perturbations

where

φ =
(
1 +

b0
a0

|θ(0)|2z
)
θ − θ(0)

a0

(
(a0 − 1) + b0z

)
.

Moreover, if M is as above, then M = [φ]S1.

Proof. In view of Theorem 4.2.2, we only have to prove the necessary part. Suppose M
is a S1-invariant closed subspace of H2(D). Again, by Theorem 4.2.2, there exists inner

function θ ∈ H∞(D) such that M = Cφ⊕ zθH2(D), where S1φ = zpθ and

φ = q + pθ (4.5.3)

for some polynomials p, q ∈ C[z]. Since S1φ = zpθ, we have zpθ = (Mz + F )φ. Then

(4.5.2) implies

zpθ = (Mz + F )φ = zφ+ φ(0)((a0 − 1) + b0z)z,

that is, pθ = φ+ φ(0)((a0 − 1) + b0z). Therefore,

φ = pθ − φ(0)((a0 − 1) + b0z), (4.5.4)

and by (4.5.3), it follows that q = −φ(0)((a0 − 1) + b0z). Now, if m ≥ 1, then φ ⊥
zmθH2(D) implies that ⟨φ, zmθ⟩ = 0, and hence (4.5.4) yields

⟨p, zm⟩ = ⟨pθ, zmθ⟩ = φ(0)⟨(a0 − 1) + b0z, z
mθ⟩.

Since φ(0) = p(0)θ(0)
a0

, by (4.5.4) again, it follows that

⟨p, zm⟩ =

b0
p(0)|θ(0)|2

a0
if m = 1

0 if m > 1.

Thus, we have

p = p(0)(1 +
b0
a0

|θ(0)|2z),

which implies that (by recalling (4.5.4))

φ = pθ − φ(0)((a0 − 1) + b0z)

= pθ − p(0)θ(0)

a0
((a0 − 1) + b0z)

= p(0)
[
(1 +

b0
a0

|θ(0)|2z)θ − θ(0)

a0
((a0 − 1) + b0z)

]
.

Finally, since φ ̸= 0, without loss of generality, we may assume that p(0) = 1. This

completes the proof of the first part. We also have

p = 1 +
b0
a0

|θ(0)|2z.
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Since 0 < |b0| ≤ |a0| and θ is inner, it follows that p is an outer polynomial. The

remaining part of the statement is now a particular case of the following theorem.

In the level of S1-invariant subspaces, we have the following general classification:

Theorem 4.5.2. Let M ⊆ H2(D) be a nonzero closed S1-invariant subspace. Then

M = [M⊖ S1M]S1 ,

if and only if there exists an inner function θ ∈ H∞(D) and an outer polynomial p ∈ C[z]
such that M⊖ S1M = Cφ and S1φ = zpθ.

Proof. Let M = Cφ⊕ zθH2(D), where θ ∈ H∞(D) is an inner function, φ = pθ− q, and

S1φ = zpθ for some p, q ∈ C[z] (see Theorem 4.2.2). Note that

M⊖ S1M = Cφ.

Since S1φ = zpθ, by (4.1.2) we have

Sm
1 φ = Sm−1

1 (zpθ) = Mm−1
z (zpθ) = zmpθ,

for all m ≥ 2. Therefore

Sm
1 φ = zmpθ (m ≥ 1). (4.5.5)

Now suppose that M = [φ]S1 . The above equality then tells us that [S1φ]S1 ⊆ zθH2(D).
Since φ ⊥ zθH2(D), we have

M = [φ]S1 = Cφ⊕ zθH2(D) = Cφ⊕ [S1φ]S1 .

Clearly, we have [S1φ]S1 = zθH2(D), where on the other hand

[S1φ] = [zpθ]Mz = zθ[p]Mz ,

and hence zθ[p]Mz = zθH2(D). But since zθ is an inner function, we have [p]Mz = H2(D),
that is, p is an outer polynomial. In the converse direction, since p is outer, (4.5.5) implies

that

zθH2(D) = zθ[p]Mz = [S1φ]Mz = [S1φ]S1 .

Therefore

M = Cφ⊕ zθH2(D) = Cφ⊕ [S1φ]S1 = [φ]S1 ,

which completes the proof of the theorem.
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In the setting of Theorem 4.5.1, we now consider the particular case when a0 = b0 = 1.

In this case

Fzm =

z2 if m = 0

0 if m ≥ 1.

Then, by Theorem 4.5.1, we have:

Corollary 4.5.3. Let F1 = z2 and Fzm = 0 for all m ≥ 1. Suppose M is a nonzero

closed subspace of H2(D). Then M is invariant under S1 = Mz +F if and only if there

exists an inner function θ ∈ H∞(D) such that M = Cφ⊕ zθH2(D), where

φ = (1 + |θ(0)|2z)θ − θ(0)z.

Moreover, if M is as above, then M = [φ]S1.

Moreover, in the setting of Theorem 4.5.1, for M = Cφ ⊕ zθH2(D), we have the

following curious observations:

1. M is of finite codimension if and only if θ is a finite Blaschke product (this is also

true for general n-shift invariant subspaces in the setting of Theorem 4.2.2).

2. φ need not be an inner function. Indeed, in the setting of Corollary 4.5.3, consider

the Blaschke factor θ(z) =
1
2
−z

1− 1
2
z
, and set φ = (1 + |θ(0)|2z)θ − θ(0)z. Then

φ(z) = 1
2

1− 11
4
z

1− 1
2
z

is a rational function with z = 2 as the only pole. Note that

φ(1) = −7
4 and φ(−1) = 5

4 . Clearly, φ is not an inner function.

3. If θ(0) = 0, then M = [θ]Mz = [θ]S1 . Therefore, S1|M is an unilateral shift of

multiplicity one. On the other hand, if θ̃ is an inner function with θ̃(0) ̸= 0,

then S1|M and S1|M̃ are not unitarily equivalent, where M̃ = Cφ̃⊕ zθ̃H2(D) and
φ̃ = (1 + b0

a0
|θ̃(0)|2z)θ̃ − θ̃(0)

a0

(
(a0 − 1) + b0z

)
.

The final observation is in sharp contrast with a well-known consequence of the

Beurling theorem: If M1 and M2 are nonzero closed Mz-invariant subspaces of H
2(D),

then Mz|M1 and Mz|M2 are unitarily equivalent. In view of (3) above, this property

fails to hold for invariant subspaces of n-shifts.

We still continue with the setting of Corollary 4.5.3, and examine Theorem 4.3.5

in the case of the commutators of S1. In fact, we have the following observation: Let

X ∈ B(H2(D)). Then X ∈ {S1}′ if and only if there exists φ ∈ H∞(D) such that

X = Tφ +N , where

Nzm =

z(φ− φ(0)) if m = 0

0 otherwise.
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Indeed, in this case, f0(z) = 1 + z and fm(z) = zm for all m ≥ 1. Let X ∈ B(H2(D)),
and let XS1 = S1X. Set X̃ = U∗XU . Then, X̃ ∈ B(Hk) ∩ {Mz}′, and, as in the

proof of Theorem 4.3.5, there exist φ ∈ H∞(D) such that X̃ = Mφ. Moreover, if

φ =
∑∞

m=0 αmzm, then

Mφf0 = α0f0 + α1f1 +

∞∑
j=2

(αj + αj−1)fj ,

and

Mφfm =
∞∑
j=0

αjfm+j (m ≥ 1),

which implies that

[Mφ] =



α0 0 0 0 · · ·

α1 α0 0 0
. . .

α2 + α1 α1 α0 0
. . .

α3 + α2 α2 α1 α0
. . .

...
. . .

. . .
. . .

. . .


.

Therefore, [Mφ] = [T̃φ] + [N ], where

[T̃φ] =



α0 0 0 0 · · ·

α1 α0 0 0
. . .

α2 α1 α0 0
. . .

α3 α2 α1 α0
. . .

...
. . .

. . .
. . .

. . .


and [N ] =



0 0 0 0 · · ·

0 0 0 0
. . .

α1 0 0 0
. . .

α2 0 0 0
. . .

...
. . .

. . .
. . .

. . .


.

By the proof of Theorem 4.3.5, X = UX̃U∗ = Tφ + N . Clearly, N1 =
∑∞

j=1 αjz
j+1 =

z(φ− φ(0)), and Nzm = 0 for all m ≥ 1, which ends the proof of the claim.

In connection with Theorem 4.5.1, we now point out the other natural (but easier)

example of 1-shift S1 = Mz + F , where

Fzm =

z if m = 0

0 if m ≥ 1.

In this case, S1 is a weighed shift with the weight sequence {2, 1, 1, . . .}. Therefore, S1

is similar to the unilateral shift Mz on H2(D) via an explicit similarity map. Using

this, it is rather easy to deduce, by pulling back inner functions corresponding to Mz-

invariant subspaces of H2(D), that S1-invariant subspaces are cyclic and of the form

Cφ⊕ zθH2(D), with θ ∈ H∞(D) inner and (after an appropriate scaling)

φ = θ − 1

2
θ(0).
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We refer to [45] for the theory of invariant subspaces of weighted shifts.

Finally, as far as the results of this present chapter are concerned, n-shifts are more

realistic shifts among shifts that are finite rank perturbations of the unilateral shift.

However, a pressing question remains about the classification of invariant subspaces of

general shifts that are finite rank perturbations of the unilateral shift.



Chapter 5

Tridiagonal shifts as compact +

isometry

The starting point of our present chapter is the following classification of compact per-

turbations of isometries [33, page 191]:

Theorem 5.0.1 (Fillmore, Stampfli, and Williams). Let T ∈ B(H). Then T = compact

+ isometry if and only if I − T ∗T is compact and T is semi-Fredholm with ind(T ) ≤ 0.

In this chapter, we are interested in a quantitative version of the above theorem.

For instance, consider a bounded sequence of non-zero scalars {wn}n≥0 and an infinite-

dimensional Hilbert space H with an orthonormal basis {en}n≥0. Then the weighted

shift Sw defined by

Sw(en) = wnen+1 (n ≥ 0),

is in B(H) with ∥Sw∥ = supn |wn|. We assume that the weight sequence {wn} is bounded

away from zero. Since kerSw = {0} and kerS∗
w = {e0}, it follows that Sw is semi-

Fredholm and ind(Sw) = −1. Moreover, using the fact that S∗
we0 = 0 and S∗

wen =

w̄n−1en−1, n ≥ 1, it follows that

I − S∗
wSw = diag(1− |w0|2, 1− |w1|2, . . .).

Theorem 5.0.1 then readily implies that

lim
n→∞

|wn| = 1 if and only if Sw = compact + isometry. (5.0.1)

In this case, since the weight sequence is bounded away from zero, Sw is necessarily

left-invertible.

Also note that Sw is a concrete example of a left-invertible shift on an analytic Hilbert

space.

85
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A standard computation now reveals that Sw, under some appropriate assumption

on the weight sequence {wn}n≥0 [54, proposition 7], is unitarily equivalent to Mz on a

diagonal space. Therefore (5.0.1) yields a quantitative classification of shifts on diago-

nal spaces that are compact perturbations of isometries. This motivates the following

natural question:

Question 3. Is it possible to find a quantitative classification of left-invertible shifts on

analytic Hilbert spaces that are compact perturbations of isometries?

The main purpose of this chapter is to provide an answer to the above question for the

case of Mz on (tractable) tridiagonal spaces. Throughout the chapter, we fix sequences

of scalars {an}n≥0 and {bn}n≥0 with the assumption that an ̸= 0, n ≥ 0. We set

fn(z) = (an + bnz)z
n (n ≥ 0),

and consider the Hilbert space Hk with {fn}n≥0 as an orthonormal basis. Then Hk is a

tridiagonal space corresponding to the tridiagonal kernel

k(z, w) =
∞∑
n=0

fn(z)fn(w) (z, w ∈ D).

We always assume that {| an
an+1

|}n≥0 is bounded away from zero and

sup
n≥0

| an
an+1

| < ∞ and lim sup
n≥0

| bn
an+1

| < 1.

The latter two assumptions ensure that Mz on Hk is bounded [3, Theorem 5], whereas

the first assumption implies that Mz is left-invertible [24, Theorem 3.5]. In this case we

also call Mz a tridiagonal shift.

The notion of tridiagonal shifts was introduced by Adams and McGuire [3]. A part

of their motivation came from factorizations of positive operators on analytic Hilbert

spaces [4] (also see [47]). Evidently, if bn = 0, then k is a diagonal kernel and Mz is a

weighted shift on Hk. Therefore, in view of shifts on analytic Hilbert spaces, tridiagonal

shifts are the “next best” concrete examples of shifts after weighted shifts. The following

is the answer to Question 3 for tridiagonal shifts:

Theorem 5.0.2 (Main result). Let Mz be the tridiagonal shift on Hk. Then Mz =

compact + isometry if and only if | an
an+1

| → 1 and | bnan − bn+1

an+1
| → 0.

In Section 5.2, we present the proof of the above theorem. In Section 5.1 we prove

a key proposition that says that if T ∈ B(H) is a left-invertible operator and if T is of

finite index, then T = compact + isometry if and only if LT − T ∗ is compact, where

LT = (T ∗T )−1T ∗. Section 5.3 concludes the chapter with some general remarks and

additional observations.



5.1. Preparatory results 87

5.1 Preparatory results

The aim of this section is to prove a key result of this chapter. We begin with some

elementary properties of left-invertible operators. See [56] for more on this theme. Let

T ∈ B(H) be a left-invertible operator. We use the fact that T ∗T is invertible to see

that

LT = (T ∗T )−1T ∗,

is a left inverse of T . Note that (TLT )
2 = TLT = (TLT )

∗), that is, TLT is an orthogonal

projection. Moreover, if T ∗f = 0 for some f ∈ H, then (I − TLT )f = f . On the other

hand, if (I−TLT )f = f for some f ∈ H, then TLT f = 0 and hence T ∗TLT f = 0, which

implies that T ∗f = 0. Therefore, I−TLT is the orthogonal projection onto kerT ∗, that

is

I − TLT = PkerT ∗ .

Part of the following is a particular case of [33, Theorem 6.2]. However, part (3)

appears to be new, which will be also a key to the proof of the main theorem of this

chapter. For the sake of completeness, we present the argument with all details.

Proposition 5.1.1. Let T ∈ B(H) be left-invertible and of finite index. The following

statements are equivalent:

1. T = compact + isometry.

2. I − T ∗T is compact.

3. LT − T ∗ is compact.

4. I − TT ∗ is compact.

Proof. Throughout the following, we will designate compact operators by letters such

as K,K1,K2, etc.

(1) ⇒ (2): Suppose T = S +K for some isometry S on H. Then

T ∗T = (S +K)∗(S +K) = S∗S +K1 = I +K1,

implies that I − T ∗T is compact.

(2) ⇒ (3): Since I − TLT = PkerT ∗ and dimkerT ∗ < ∞, we have TLT = I +K1. Now

if I − T ∗T = K2, then LT − T ∗TLT = K3, and hence

K3 = LT − T ∗TLT = LT − T ∗(I +K1) = LT − T ∗ +K4.

This gives us LT − T ∗ = K.
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To prove (3) ⇒ (4), assume that LT − T ∗ = K. Then TLT − TT ∗ = K1. Again, since

I − TLT = PkerT ∗ and dimkerT ∗ < ∞, we have

I − TT ∗ = (I − TLT ) + (TLT − TT ∗) = PkerT ∗ +K1 = K2.

(4) ⇒ (2): Let K = I − TT ∗. Then T ∗K = T ∗ − T ∗TT ∗ = (I − T ∗T )T ∗ implies that

T (I − T ∗T ) = K1, and hence

I − T ∗T = LTT (I − T ∗T ) = LTK1 = K2.

(2) ⇒ (1) Suppose I−T ∗T = K. Since |T | is positive, we see that (I+ |T |) is invertible.
Then K = (I + |T |)(I − |T |) implies that |T | = I + K1. Let T = U |T | be the polar

decomposition of T . Taking the injectivity property of T in account, we find that U is

an isometry, which implies

T = U |T | = U(I +K1) = U +K2,

and completes the proof of the proposition.

Unlike the proof of [33], the above proof avoids employing the Calkin algebra method.

Of course, as pointed out earlier, the result of [33] (modulo part (3)) holds without the

left-invertibility assumption.

Now we turn to the tridiagonal shift Mz on Hk, where

k(z, w) =
∞∑
n=0

fn(z)fn(w) (z, w ∈ D),

and fn(z) = (an+ bnz)z
n, an, bn ∈ C, n ≥ 0. Recall that an ̸= 0 for all n ≥ 0. Moreover,

by assumption, {| an
an+1

|}n≥0 is bounded away from zero and supn≥0 | an
an+1

| < ∞ and

lim supn≥0 | bn
an+1

| < 1, which ensures that Mz is bounded and left-invertible on Hk. It

will be convenient to work with the matrix representation of Mz with respect to the

orthonormal basis {fn}n≥0. A standard computation reveals that [3, Section 3]

zn =
1

an

∞∑
m=0

(−1)m
( ∏m−1

j=0 bn+j∏m−1
j=0 an+j+1

)
fn+m (n ≥ 0),

where
∏−1

j=0 xn+j := 1. A new round of computation then gives

Mzfn =
( an
an+1

)
fn+1 + cn

∞∑
m=0

(−1)m
(∏m−1

j=0 bn+2+j∏m−1
j=0 an+3+j

)
fn+2+m (n ≥ 0),

where

cn =
an
an+2

( bn
an

− bn+1

an+1

)
(n ≥ 0). (5.1.1)
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Therefore

[Mz] =



0 0 0 0 . . .

a0
a1

0 0 0
. . .

c0
a1
a2

0 0
. . .

−c0b2
a3

c1
a2
a3

0
. . .

c0b2b3
a3a4

−c1b3
a4

c2
a3
a4

. . .

−c0b2b3b4
a3a4a5

c1b3b4
a4a5

−c2b4
a5

c3
. . .

...
...

...
. . .

. . .


, (5.1.2)

with respect to the orthonormal basis {fn}n≥0 [3, Page 729].

5.2 Proof of the main theorem

Now we are ready to prove the main result of this chapter. Throughout the proof, we

will frequently use matrix representations of bounded linear operators on the tridiagonal

space (as well as subspaces of) Hk as in (3.1.8).

Proof of Theorem 5.0.2. Since kerM∗
z = Cf0, we see that ind(Mz) = −1. Using the left-

invertibility of Mz applied to Proposition 5.1.1, we see that Mz = isometry + compact

if and only if LMz −M∗
z is compact. By (3.1.9), the matrix representation of M∗

z is given

by

[M∗
z ] =



0 ā0
ā1

c̄0
−c̄0b̄2
ā3

c̄0b̄2b̄3
ā3ā4

. . .

0 0 ā1
ā2

c̄1
−c̄1b̄3
ā4

. . .

0 0 0 ā2
ā3

c̄2
. . .

0 0 0 0 ā3
ā4

. . .
...

...
...

...
. . .

. . .


. (5.2.1)

Recall that LMz = (M∗
zMz)

−1M∗
z is a left-inverse of Mz. It follows that the matrix

representation of LMz with respect to the orthonormal basis {fn}n≥0 [24, Theorem 3.5]

is given by

[LMz ] =



0 a1
a0

0 0 0 . . .

0 d1
a2
a1

0 0
. . .

0 −d1b1
a2

d2
a3
a2

0
. . .

0 d1b1b2
a2a3

−d2b2
a3

d3
a4
a3

. . .

0 −d1b1b2b3
a2a3a4

d2b2b3
a3a4

−d3b3
a4

d4
. . .

...
...

...
...

. . .
. . .


,
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where dn = bn
an

− bn−1

an−1
for all n ≥ 1. Therefore, we have the following matrix represen-

tation of LMz −M∗
z :

[LMz −M∗
z ] =



0 (a1a0 − ā0
ā1
) −c̄0

c̄0b̄2
ā3

− c̄0b̄2b̄3
ā3ā4

. . .

0 d1 (a2a1 − ā1
ā2
) −c̄1

c̄1b̄3
ā4

. . .

0 −d1b1
a2

d2 (a3a2 − ā2
ā3
) −c̄2

. . .

0 d1b1b2
a2a3

−d2b2
a3

d3 (a4a3 − ā3
ā4
)

. . .

0 −d1b1b2b3
a2a3a4

d2b2b3
a3a4

−d3b3
a4

d4
. . .

...
...

...
...

. . .
. . .


.

Finally, by (5.1.1), we see that cn = an
an+2

( bnan − bn+1

an+1
) for all n ≥ 0, and hence

dn+1 = −an+2

an
cn (n ≥ 0). (5.2.2)

Now suppose that LMz −M∗
z is compact. Since {fn}n≥0 is an orthonormal basis of Hk,

a well-known property of compact operators on Hilbert spaces implies that

∥(LMz −M∗
z )fn∥ → 0 as n → ∞.

For each n ≥ 1, use the matrix representation of LMz −M∗
z to see that

∥(LMz −M∗
z )fn+2∥2 =

∣∣∣ c0b2b3 · · · bn+1

a3a4a5 · · · an+2

∣∣∣2 + · · ·+
∣∣∣cn−1bn+1

an+2

∣∣∣2 + |cn|2

+
∣∣∣an+2

an+1
− ān+1

ān+2

∣∣∣2 + |dn+2|2 + · · · .

In particular

∥(LMz −M∗
z )fn+2∥2 ≥ |cn|2 +

∣∣∣an+2

an+1
− ān+1

ān+2

∣∣∣2 (n ≥ 1),

and hence, |cn| → 0 and |an+2

an+1
− ān+1

ān+2
| → 0 as n → ∞. Then we have

∣∣∣∣∣∣an+1

an+2

∣∣∣2 − 1
∣∣∣ = ∣∣∣an+1

an+2

∣∣∣∣∣∣ ān+1

ān+2
− an+2

an+1

∣∣∣ ≤ ∣∣∣ ān+1

ān+2
− an+2

an+1

∣∣∣( sup
m

∣∣∣ am
am+1

∣∣∣),
and hence | an

an+1
| → 1. Finally, |cn| → 0 (see the definition of cn in (5.1.1)) and the fact

that { an
an+2

}n≥0 is bounded imply that | bnan − bn+1

an+1
| → 0.

For the converse direction, we assume that | an
an+1

| → 1 and | bnan − bn+1

an+1
| → 0. Taken

together, these conditions mean that |cn| → 0 (see (5.1.1)). We claim that LMz −M∗
z is

compact. To prove this, we first let (Cf0)⊥ = H. Then, with respect to

Hk = Cf0 ⊕H,
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the operator LMz −M∗
z can be represented as

LMz −M∗
z =

[
0 A

0 B

]
,

where A = PCf0(LMz −M∗
z )|H and B = PH(LMz −M∗

z )|H. Thus we only have to worry

about the compactness of B. To this end, we consider the matrix representation of B

with respect to the orthonormal basis {fn}n≥1 as

[B] =



d1 (a2a1 − ā1
ā2
) −c̄1

c̄1b̄3
ā4

. . .

−d1b1
a2

d2 (a3a2 − ā2
ā3
) −c̄2

. . .

d1b1b2
a2a3

−d2b2
a3

d3 (a4a3 − ā3
ā4
)

. . .

−d1b1b2b3
a2a3a4

d2b2b3
a3a4

−d3b3
a4

d4
. . .

...
...

...
...

. . .


.

In view of the above matrix representation, we define linear operators B1, B2 and B3

on H, which admit the following matrix representations:

[B1] = diag
(a2
a1

− ā1
ā2

,
a3
a2

− ā2
ā3

, . . .
)
,

and

[B2] =



−c1 0 0 0
. . .

c1b3
a4

−c2 0 0
. . .

−c1b3b4
a4a5

c2b4
a5

−c3 0
. . .

c1b3b4b5
a4a5a6

−c2b4b5
a5a6

c3b5
a6

−c4
. . .

...
...

...
. . .

. . .


and [B3] =



d1 0 0 0
. . .

−d1b1
a2

d2 0 0
. . .

d1b1b2
a2a3

−d2b2
a3

d3 0
. . .

−d1b1b2b3
a2a3a4

d2b2b3
a3a4

−d3b3
a4

d4
. . .

...
...

...
...

. . .


.

Assume for a moment that B1, B2 and B3 are compact. Denote by U the unilateral shift

on H corresponding to the orthonormal basis {fn}n≥1. In other words, Ufn = fn+1 for

all n ≥ 1. Then

B = B1U
∗ +B∗

2U
∗2 +B3.

Clearly, this would imply that B is compact. Therefore, it suffices to show that B1, B2

and B3 are compact operators. Note that there exist ϵ > 0 and M > 0 such that

ϵ <
∣∣∣ an
an+1

∣∣∣ < M. (5.2.3)

Then ∣∣∣an+1

an
− ān

ān+1

∣∣∣ = ∣∣∣an+1

an

(
1−

∣∣∣ an
an+1

∣∣∣2)∣∣∣ < 1

ϵ

∣∣∣1− ∣∣∣ an
an+1

∣∣∣2∣∣∣,
implies that the sequence {|an+1

an
− ān

ān+1
|}n≥0 converges to zero, which proves that B1 is

compact.
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We now prove that B2 is compact. Since lim sup | bn
an+1

| < 1, there exist r ∈ (0, 1) and

n0 ∈ N such that ∣∣∣ bn
an+1

∣∣∣ < r (n ≥ n0).

Write

H = (

n0−1⊕
p=1

fp)⊕ (
∞⊕
q=0

fn0+q),

and, with respect to this orthogonal decomposition, we let

B2 =

[
A1 0

A3 A2

]
.

It is now enough to prove that A2 acting on the infinite dimensional space ⊕∞
q=0fn0+q is

compact. Note

[A2] =



−cn0 0 0
. . .

cn0bn0+2

an0+3
−cn0+1 0

. . .

−cn0bn0+2bn0+3

an0+3an0+4

cn0+1bn0+3

an0+4
−cn0+2

. . .

...
...

...
. . .

(−1)n
cn0bn0+2···bn0+n

an0+3···an0+n+1
(−1)n−1 cn0+1bn0+3···bn0+n

an0+4···an0+n+1
(−1)n−2 cn0+2bn0+4···bn0+n

an0+5···an0+n+1

. . .

...
...

...
. . .


.

Denote byWn0 the bounded weighted shift on⊕∞
q=0fn0+q with weight sequence { bn0+n

an0+n+1
}n≥2,

that is

[Wn0 ] =



0 0 0 0 . . .

bn0+2

an0+3
0 0 0

. . .

0
bn0+3

an0+4
0 0

. . .

0 0
bn0+4

an0+5
0

. . .

...
...

...
. . .

. . .


,

and write

Dn0 = diag(−cn0 ,−cn0+1,−cn0+2, · · · ).

Suppose M0 := supn≥0 |cn|. Then

∥Dn0∥ = sup
n≥n0

|cn| ≤ sup
n≥0

|cn| = M0,

and, by the fact that cn → 0, it follows that Dn0 is a compact operator. Moreover, A2

can be rewritten as

A2 = Dn0 −Wn0Dn0 +W 2
n0
Dn0 + · · · =

∞∑
n=0

(−1)nWn
n0
Dn0 .
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Clearly, Wn
n0
Dn0 is compact for all n ≥ 0, and, for m ≥ 2, we have

∥Wm
n0
∥ ≤ sup

l≥0

∣∣∣ bn0+2+lbn0+3+l · · · bn0+m+l+1

an0+3+lan0+4+l · · · an0+m+l+2

∣∣∣
≤ rm.

Finally, consider the sequence {Sn}n≥1 of partial sums of compact operators, where

Sn =
∑n

m=0(−1)mWm
n0
Dn0 for all n ≥ 1. Then

∥A2 − Sn∥ = ∥(−1)n+1Wn+1
n0

Dn0 + (−1)n+2Wn+2
n0

Dn0 + (−1)n+3Wn+3
n0

Dn0 + · · · ∥

≤ M0

∞∑
m=1

rn+m

= M1r
n,

for some M1 > 0 (as 0 < r < 1), and hence A2 is the norm limit of a sequence of compact

operators. This completes the proof of the fact that B2 is compact.

It remains to prove that B3 is compact. First note that dn+1 = −an+2

an
cn for all n ≥ 0

(see (5.2.2)). The estimate (5.2.3) then implies that cn → 0 if and only if dn → 0. In

particular, we may assume that dn → 0. We are now in a similar situation as in the

proof of the compactness of B2. The proof of the fact that B3 is compact now follows

similarly as in the case of B2.

Remark 5.2.1. Note that if the sequence { bn
an
}n≥0 is convergent, then | bnan − bn+1

an+1
| → 0.

But the converse, evidently, is not true.

Note that if bn = 0 for all n ≥ 0, then Hk is a diagonal space and Mz on Hk

is a weighted shift. So in this case, Theorem 5.0.2 recovers the classification of (the

reproducing kernel version of) weighted shifts as obtained earlier in (5.0.1). We refer

the reader to [54] for the transition between weighted shifts and shifts on reproducing

kernel Hilbert spaces.

5.3 Concluding remarks

Let us now return to the general question (cf. Question 3) of quantitative classification

of left-invertible shifts that are compact perturbations of isometries. Clearly, the equiv-

alence in (5.0.1) and Theorem 5.0.2 yields a complete answer to this question for the

case of weighted shifts and tridiagonal shifts, respectively. In particular, if Mz is the

Bergman shift, or the weighted Bergman shift, or the Dirichlet shift, then (5.0.1) implies

that Mz = compact + isometry.

However, unlike the diagonal case, it is not yet completely clear to us how to directly

relate the kernel k of the tridiagonal space Hk to the conclusion of Theorem 5.0.2. In
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other words, our answer to Question 3 for the tridiagonal case does not seem to indicate

a comprehensive understanding (if any) of the general question.

To conclude this chapter, we offer a general (but still abstract) classification of shifts

that are compact perturbations of isometries. The proof is essentially a variant of

Proposition 5.1.1.

Proposition 5.3.1. Let Hk be an analytic Hilbert space. Suppose the shift Mz on Hk

is left-invertible and of finite index. Define C on Hk by

(Cf)(w) = ⟨f, (1− zw̄)k(·, w)⟩Hk
(f ∈ Hk, w ∈ D).

Then Mz = compact + isometry if and only if C defines a compact operator on Hk.

Proof. Since Mz is left-invertible, the index of Mz is negative. We know that Mz =

isometry+compact if and only if I−MzM
∗
z is compact (Proposition 5.1.1). A standard

(and well known) computation shows that

M∗
z k(·, w) = w̄k(·, w) (w ∈ D).

Then

(I −MzM
∗
z )k(·, w) = (1− zw̄)k(·, w) (w ∈ D).

For each f ∈ Hk and w ∈ D, we have ((I −MzM
∗
z )f)(w) = ⟨(I −MzM

∗
z )f, k(·, w)⟩Hk

,

and hence

((I −MzM
∗
z )f)(w) = ⟨f, (I −MzM

∗
z )k(·, w)⟩Hk

= ⟨f, (1− zw̄)k(·, w)⟩Hk
,

which implies that (I −MzM
∗
z )f = Cf . This completes the proof.

On one hand, the above proposition is an effective tool for weighted shifts (the easy

case, cf. (5.0.1)). For example, if k is a diagonal kernel and

k(z, w) =
1

1− zw̄
k̃(z, w) (z, w ∈ D),

for some diagonal kernel k̃, then Proposition 5.3.1 provides a definite criterion for answer-

ing Question 3. This is exactly the case with the Bergman and the weighted Bergman

kernels. On the other hand, a quick inspection reveals that the (matrix) representation

of MzM
∗
z for a tridiagonal shift Mz is rather complicated and the above proposition is

less effective in drawing the conclusion as we did in Theorem 5.0.2.

Finally, it is worth pointing out that often Berezin symbols play an important role in

proving compactness of linear operators on analytic Hilbert spaces [46]. See [11, 59, 60]

and also [19] for recent accounts on the theory Berezin symbols on analytic Hilbert
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spaces. However, in the present context, it is not clear what is the connection between

Berezin symbols and compact perturbations of isometries.





Chapter 6

Left-invertibility of rank-one

perturbations

Rank-one operators are the simplest as well as easy to spot among all bounded linear

operators on Hilbert spaces. Indeed, for each pair of nonzero vectors f and g in a Hilbert

space H, one can associate a rank-one operator f ⊗ g ∈ B(H) defined by

(f ⊗ g)h = ⟨h, g⟩f (h ∈ H).

These are the only operators whose range spaces are one-dimensional. Here B(H) denotes

the algebra of all bounded linear operators on H. Note that finite-rank operators, that

is, linear sums of rank-one operators are norm dense in the ideal of compact operators,

where one of the most important and natural examples of a noncompact operator is an

isometry: A linear operator V on H is an isometry if ∥V h∥ = ∥h∥ for all h ∈ H, or

equivalently

V ∗V = IH.

Along this line, left-invertible operators (also known as, by a slight abuse of terminology,

“operators close to an isometry” [56] also natural examples of noncompact operators:

T ∈ B(H) is left-invertible if T is bounded below, that is, there exists ϵ > 0 such that

∥Th∥ ≥ ϵ∥h∥ for all h ∈ H, or equivalently, there exists S ∈ B(H) such that

ST = IH.

The intent of this chapter is to make a modest contribution to the delicate structure of

rank-one perturbations of bounded linear operators [41]. More specifically, this chapter

aims to introduce some methods for the left-invertibility of rank-one perturbations of

isometries and, to some extent, diagonal operators. The following is the central question

that interests us:

97
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Question 4. Find necessary and sufficient conditions for left-invertibility of the rank-

one perturbation V + f ⊗ g, where V ∈ B(H) is an isometry or a diagonal operator and

f and g are vectors in H.

The answer to this question is completely known for isometries. Given an isometry

V ∈ B(H) and vectors f, g ∈ H, the perturbation X = V + f ⊗ g is an isometry if

and only if there exist a unit vector h ∈ H and a scalar α of modulus one such that

f = (α− 1)h and g = V ∗h. In other words, a rank-one perturbation X of the isometry

V is an isometry if and only if there exists a unit vector f ∈ H and a scalar α of modulus

one such that

X = V + (α− 1)f ⊗ V ∗f. (6.0.1)

This result is due to Nakamura [44, 43] (and also see [53]). For more on rank-one

perturbations of isometries and related studies, we refer the reader to [13, 22, 21, 34]

and also [39].

In this chapter, we extend the above idea to a more general setting of left-invertibility

of rank-one perturbations of isometries. In this case, however, left-invertibility of rank-

one perturbations of isometries completely relies on certain real numbers. More specif-

ically, given an isometry V ∈ B(H) and a pair of vectors f and g in H, we associate a

real number c(V ; f, g) defined by

c(V ; f, g) = (∥f∥2 − ∥V ∗f∥2)∥g∥2 + |1 + ⟨V ∗f, g⟩|2. (6.0.2)

This is the number which precisely determine the left-invertibility of V + f ⊗ g:

Theorem 6.0.1. Let V ∈ B(H) be an isometry, and let f and g be vectors in H. Then

V + f ⊗ g is left-invertible if and only if

c(V ; f, g) ̸= 0.

Note that since V is an isometry, we have ∥V ∗f∥ ≤ ∥f∥, and hence, the quantity

c(V ; f, g) is always nonnegative. Therefore, the condition c(V ; f, g) ̸= 0 in the above

theorem can be rephrased as saying that c(V ; f, g) > 0, or equivalently, ∥V ∗f∥ < ∥f∥
or 1 + ⟨V ∗f, g⟩ ̸= 0. However, in what follows, we will keep the constant c(V ; f, g)

in our consideration. Not only c(V ; f, g) plays a direct role in the proof of the above

theorem but, as we will see in Remark 6.1.1, this quantity also appears in the explicit

representation of a left inverse of a left-invertible perturbation.

The following conclusion is now easy:

Corollary 6.0.2. Let V ∈ B(H) be an isometry, and let f and g be vectors in H. Then

V + f ⊗ g is not left-invertible if and only if

∥V ∗f∥ = ∥f∥ and ⟨V ∗f, g⟩ = −1.
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The above theorem also provides us with a rich source of natural examples of left-

invertible operators. For instance, let us denote by D the open unit disc in C. Consider
the shift Mz on the E-valued Hardy space H2

E(D) over D, where E is a Hilbert space.

Then for any

η ∈ kerM∗
z = E ⊆ H2

E(D),

and nonzero vector g ∈ H2
E(D), the rank-one perturbation Mz + η ⊗ g is left-invertible.

A similar conclusion holds if f, g ∈ H2(D) and

⟨M∗
z f, g⟩ ≠ −1.

Section 6.1 contains the proof of the above theorem. In Section 6.2, we discuss a follow-

up question: Characterizations of shifts that are rank-one perturbations of isometries.

Here a shift refers to the multiplication operator Mz on some Hilbert space of analytic

functions (that is, a reproducing kernel Hilbert space) on a domain in C. Note, however,
that our analysis will be mostly limited to the level of elementary examples.

In Section 6.3, we study rank-one perturbations of diagonal operators. It is well

known that the structure of rank-one perturbations of diagonal operators is also com-

plicated (cf. [6, 32, 39]). Moreover, comparison between perturbations of diagonal

operators and that of isometries is perhaps inevitable if one views diagonals as normal

operators and isometries as one of the best tractable non-normal operators. Here we

consider D+f⊗g on some Hilbert space H, where D is a diagonal operator with nonzero

diagonal entries with respect to an orthonormal basis {en}∞n=0 of H. We also assume

that the Fourier coefficients of f and g with respect to {en}∞n=0 are nonzero. In Theorem

6.3.6, we prove:

Theorem 6.0.3. D + f ⊗ g is left-invertible if and only if D + f ⊗ g is invertible.

In Section 6.4, we observe that the parameterized spaces considered in the work of

Davidson, Paulsen, Raghupathi and Singh [25] is connected to rank-one perturbations

of isometries. In the final section, Section 6.5, we compute c(V ; f, g) when V + f ⊗ g

is an isometry and make some further comments on rank-one perturbations of diagonal

operators.

Finally, we remark that the last two decades have witnessed more intense interest in

the theory of left-invertible operators starting from the work of Shimorin [56]. For in-

stance, see [48] and references therein. For a more recent account of Shimorin’s approach

in the context of analytic model theory, invariant subspaces, and wandering subspaces

in several variables, we refer the reader to Eschmeier [27] (also see [16] as part of the mo-

tivation), Eschmeier and Langendörfer [28], and Eschmeier and Toth [30]. Also see the

monograph by Eschmeier and Putinar [29] for the general framework and motivation.
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6.1 Proof of Theorem 6.0.1

In this section, we present the proof of the left-invertibility criterion of rank-one pertur-

bations of isometries. First note that by expanding the right-hand side of (6.0.2), we

have

c(V ; f, g) = 1 + ∥f∥2∥g∥2 + 2Re⟨V ∗f, g⟩+ |⟨V ∗f, g⟩|2 − ∥V ∗f∥2∥g∥2. (6.1.1)

Next we make a list of the most commonly used rank-one operator arithmetic, which

will be used several times in what follows. Let f, g ∈ H and let T ∈ B(H). The following

holds true:

1. (f ⊗ g)∗ = g ⊗ f .

2. α(f ⊗ g) = (αf)⊗ g = f ⊗ (ᾱg) for all α ∈ C.

3. (f ⊗ g)(f1 ⊗ g1) = ⟨f1, g⟩f ⊗ g1 for all f1, g1 ∈ H.

4. T (f ⊗ g) = (Tf)⊗ g and so (f ⊗ g)T = f ⊗ (T ∗g).

5. ∥f ⊗ g∥ = ∥f∥∥g∥.

Of course, part (2) is a particular case of part (4). We also note that T ∈ B(H) is

left-invertible if and only if T ∗T is invertible. Indeed, if T is left-invertible, then T ∗T

is an injective positive operator. Since T is bounded below, T ∗T is also bounded below

and hence of closed range. Therefore, T ∗T is invertible. Conversely, suppose X is the

inverse of T ∗T . Then (XT ∗)T = I implies that T is left-invertible.

We are now ready for the proof of the theorem.

Proof of Theorem 6.0.1. The statement trivially holds for f = 0 or g = 0. So assume

that both f and g are nonzero vectors. Suppose that V + f ⊗ g on H is left-invertible.

Then (V + f ⊗ g)∗(V + f ⊗ g) is invertible with the inverse, say L. We have

I = L(V + f ⊗ g)∗(V + f ⊗ g) = L(V ∗ + g ⊗ f)(V + f ⊗ g).

Since V ∗V = I, it follows that

I = L(V ∗ + g ⊗ f)(V + f ⊗ g)

= L(I + V ∗f ⊗ g + g ⊗ V ∗f + ∥f∥2g ⊗ g)

= L+ (LV ∗f)⊗ g + Lg ⊗ V ∗f + ∥f∥2Lg ⊗ g.

In particular, evaluating both sides on the vector V ∗f and g, respectively, we get

V ∗f = LV ∗f + ⟨V ∗f, g⟩LV ∗f + ∥V ∗f∥2Lg + ∥f∥2⟨V ∗f, g⟩Lg

= (⟨V ∗f, g⟩+ 1)LV ∗f + (∥V ∗f∥2 + ∥f∥2⟨V ∗f, g⟩)Lg,
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and

g = Lg + ∥g∥2LV ∗f + ⟨g, V ∗f⟩Lg + ∥f∥2∥g∥2Lg

= ∥g∥2LV ∗f + (1 + ⟨g, V ∗f⟩+ ∥f∥2∥g∥2)Lg

= ∥g∥2LV ∗f + αLg,

where α = 1 + ⟨g, V ∗f⟩+ ∥f∥2∥g∥2. The latter equality implies that

LV ∗f =
1

∥g∥2
(I − αL)g.

Now plug the value for LV ∗f into the expression for V ∗f above to get

V ∗f =
1

∥g∥2
(1 + ⟨V ∗f, g⟩)(I − αL)g + (∥V ∗f∥2 + ∥f∥2⟨V ∗f, g⟩)Lg

A little rearrangement then shows that

V ∗f =
1

∥g∥2
(
1+⟨V ∗f, g⟩

)
g+

(
∥V ∗f∥2+∥f∥2⟨V ∗f, g⟩− α

∥g∥2
(1+⟨V ∗f, g⟩)

)
Lg. (6.1.2)

We compute

α(1 + ⟨V ∗f, g⟩) = (1 + ⟨V ∗f, g⟩)(1 + ⟨g, V ∗f⟩+ ∥f∥2∥g∥2)

= ⟨V ∗f, g⟩∥f∥2∥g∥2 + 2Re⟨V ∗f, g⟩+ |⟨V ∗f, g⟩|2 + ∥f∥2∥g∥2 + 1

= ⟨V ∗f, g⟩∥f∥2∥g∥2 + ∥V ∗f∥2∥g∥2 + c(V ; f, g),

where the last equality follows from the definition of c(V ; f, g) as in (6.1.1). Now we

simplify the coefficient of Lg, say a, in the right-hand side of (6.1.2) as follows:

a = ∥V ∗f∥2 + ∥f∥2⟨V ∗f, g⟩ − 1

∥g∥2
(
⟨V ∗f, g⟩∥f∥2∥g∥2 + ∥V ∗f∥2∥g∥2 + c(V ; f, g)

)
= − 1

∥g∥2
c(V ; f, g).

Consequently, by (6.1.2), we have

V ∗f =
1

∥g∥2
(1 + ⟨V ∗f, g⟩)g − c(V ; f, g)

1

∥g∥2
Lg.

Suppose if possible that c(V ; f, g) = 0. Then V ∗f = 1
∥g∥2 (1 + ⟨V ∗f, g⟩)g, and so

⟨V ∗f, g⟩ = 1

∥g∥2
⟨(1 + ⟨V ∗f, g⟩)g, g⟩ = 1 + ⟨V ∗f, g⟩,

which is absurd. This contradiction proves that c(V ; f, g) ̸= 0.
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Conversely, suppose that c := c(V ; f, g) ̸= 0. Set R = (1 + ⟨g, V ∗f⟩)V ∗f ⊗ g, and let

X = I +
1

c
{∥g∥2V ∗f ⊗ V ∗f + (∥V ∗f∥2 − ∥f∥2)g ⊗ g − (R+R∗)}. (6.1.3)

We claim that X(V + f ⊗ g)∗ is a left inverse of V + f ⊗ g, that is

X(V + f ⊗ g)∗(V + f ⊗ g) = I.

Indeed, the left hand side of the above simplifies to

X(V + f ⊗ g)∗(V + f ⊗ g) = X(V ∗ + g ⊗ f)(V + f ⊗ g)

= X(I + g ⊗ V ∗f + V ∗f ⊗ g + ∥f∥2g ⊗ g)

=
(
I +

1

c
{∥g∥2V ∗f ⊗ V ∗f + (∥V ∗f∥2 − ∥f∥2)g ⊗ g

− (R+R∗)}
)(

I + g ⊗ V ∗f + V ∗f ⊗ g + ∥f∥2g ⊗ g
)
,

and hence, there exists scalars a1, a2, a3, and a4 such that

X(V + f ⊗ g)∗(V + f ⊗ g) = I + a1g ⊗ g + a2V
∗f ⊗ g + a3g ⊗ V ∗f + a4V

∗f ⊗ V ∗f.

It is now enough to show that a1 = a2 = a3 = a4 = 0. Before getting to the proof of

this claim, let us observe that

R+R∗ = (1 + β̄)V ∗f ⊗ g + (1 + β)g ⊗ V ∗f,

where β := ⟨V ∗f, g⟩. Now we prove that a1 = 0:

a1 = coefficient of g ⊗ g

= ∥f∥2 + 1

c

{
− (1 + β)(∥V ∗f∥2 + β̄∥f∥2) + (∥V ∗f∥2 − ∥f∥2)

(
(1 + β) + ∥f∥2∥g∥2

)}
= ∥f∥2 + 1

c

{
− β̄(1 + β)∥f∥2 + ∥V ∗f∥2∥f∥2∥g∥2 − (1 + β)∥f∥2 − ∥f∥4∥g∥2

}
= ∥f∥2 + ∥f∥2

c

{
− β̄(1 + β) + ∥V ∗f∥2∥g∥2 − (1 + β)− ∥f∥2∥g∥2

}
= ∥f∥2 + ∥f∥2

c
(−c)

= 0,

where the last but one equality follows from (6.1.1). Next we compute a2:

a2 = coefficient of V ∗f ⊗ g

= 1 +
1

c

{
∥g∥2(∥V ∗f∥2 + β̄∥f∥2)− (1 + β̄)

(
(1 + β) + ∥f∥2∥g∥2

)}
= 1 +

1

c

{
∥V ∗f∥2∥g∥2 − |1 + β|2 − ∥f∥2∥g∥2

}
= 0,
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as β = ⟨V ∗f, g⟩. We turn now to compute a3:

a3 = coefficient of g ⊗ V ∗f

= 1 +
1

c

{
− (1 + β)β̄ − (1 + β) + (∥V ∗f∥2 − ∥f∥2)∥g∥2

}
= 1 +

1

c

{
− |1 + β|2 + (∥V ∗f∥2 − ∥f∥2)∥g∥2

}
= 0,

and, finally

a4 = coefficient of V ∗f ⊗ V ∗f = −1

c

{
∥g∥2(1 + β̄)− (1 + β̄)∥g∥2

}
= 0.

This completes the proof of the fact that V + f ⊗ g is left-invertible.

Remark 6.1.1. From the definition of X in (6.1.3), it is clear that if V + f ⊗ g is

left-invertible for some isometry V ∈ B(H) and vectors f and g in H, then

L =
(
I +

1

c
{∥g∥2V ∗f ⊗ V ∗f + (∥V ∗f∥2 − ∥f∥2)g ⊗ g − (R+R∗)}

)(
V + f ⊗ g

)∗
,

is a left-inverse of V + f ⊗ g, where c = c(V ; f, g) and R = (1 + ⟨g, V ∗f⟩)V ∗f ⊗ g.

It is worthwhile to observe that for an isometry V ∈ B(H) and a vector f ∈ H, we

have ∥V ∗f∥ = ∥f∥ if and only if f ∈ ranV . In particular, Theorem 6.0.1 yields the

following:

Corollary 6.1.1. Let V ∈ B(H) be an isometry and let f and g are nonzero vectors in

H. If f /∈ ranV , then V + f ⊗ g is left-invertible.

6.2 Analytic operators

Recall that an isometry V ∈ B(H) is called a pure isometry if
⋂∞

n=0 V
nH = {0}. As

we will see soon, this is also known as the analytic property of V . It is known that an

isometry V ∈ B(H) is pure if and only if V is unitarily equivalent to Mz on the W-valued

Hardy space H2
W(D), where W = kerV ∗ is the wandering subspace corresponding to V .

Here Mz denotes the multiplication operator by the coordinate function z on H2
W(D)

(see (6.2.1) below). Rank-one perturbations of isometries (or pure isometries) that are

pure isometries form a rich class of operators and are fairly complex in nature [43]. The

methods involve heavy machinery ofH∞(D)-function theory, which is mostly unavailable

for general function spaces (see [13, 34, 39, 53]). In this section we discuss some examples

of rank-one perturbations of isometries that are shift or simply analytic.

We begin with a brief introduction to shift operators on reproducing kernel Hilbert

spaces. Let E be a Hilbert space and Ω be a domain in C. Let H be a Hilbert space of
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E-valued analytic functions on Ω. Suppose the evaluation map

evw(f) = f(w) (f ∈ H),

defines a bounded linear operator evw : H → E for all w ∈ Ω. Then the kernel function

k : Ω× Ω → B(E) defined by k(z, w) = evz ◦ ev∗w, z, w ∈ Ω, is positive definite, that is,

n∑
i,j=1

⟨k(zi, zj)ηj , ηi⟩E ≥ 0,

for all {zi}ni=1 ⊆ Ω, {ηi}ni=1 ⊆ E and n ≥ 1. Moreover, k is analytic in the first variable

and satisfies the reproducing property

⟨evw(f), η⟩E = ⟨f(w), η⟩E = ⟨f, k(·, w)η⟩H,

for all f ∈ H, w ∈ Ω and η ∈ E . We denote the space H by Hk and call it analytic

Hilbert space. The shift operator Mz on Hk is defined by

(Mzf)(w) = wf(w) (f ∈ Hk, w ∈ Ω). (6.2.1)

We always assume thatMz is a bounded linear operator onHk (equivalently, zHk ⊆ Hk).

It is easy to see that if Mz is a shift on some Hk, then

∞⋂
n=0

Mn
z Hk =

∞⋂
n=0

znHk = {0}.

This is the property which bridges the gap between left-invertible operators and left-

invertible shifts. More precisely, following the ideas of Shimorin [56], a bounded linear

operator T on H is called analytic if

∞⋂
n=0

TnH = {0}.

If T ∈ B(H) is a left-invertible analytic operator, then there exists an analytic Hilbert

space Hk such that T and the shift Mz on Hk are unitarily equivalent [56]. Therefore, up

to unitary equivalence, analytic left-invertible operators are nothing but left-invertible

shifts.

The following proposition collects some examples of analytic and shift operators.

Proposition 6.2.1. Let V ∈ B(H) be a pure isometry, m,n ∈ Z+, and let f0 ∈ kerV ∗.

If S = V + V mf0 ⊗ V nf0, then the following holds:

1. S is analytic whenever m > n.

2. S is a shift whenever m > n+ 1.
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Proof. For simplicity, for each t ∈ Z, we set

ft =

V tf0 if t ≥ 0

V ∗−tf0 if t < 0.

Since f0 ∈ kerV ∗, it follows that ft = 0 for all t < 0. Suppose m > n. Observe that

⟨fm, fn⟩ = ⟨V mf0, V
nf0⟩ = 0, and hence

S2 = V 2 + fm+1 ⊗ fn + fm ⊗ fn−1 + ⟨fm, fn⟩fm ⊗ fn

= V 2 + fm ⊗ fn−1 + fm+1 ⊗ fn.

Then, by induction, we have

Sk+1 = V k+1 + fm ⊗ fn−k + fm+1 ⊗ fn−k+1 + · · ·+ fm+k−1 ⊗ fn−1 + fm+k ⊗ fn,

that is

Sk+1 = V k+1 +
k∑

j=0

fm+j ⊗ fn−k+j , (6.2.2)

for all k ≥ 1. In particular, if k = n+ j and j ≥ 1, then it follows that

Sn+j+1 = V n+j+1 + fm ⊗ f−j + fm+1 ⊗ f−j+1 + · · ·+ fm+n+j−1 ⊗ fn−1 + fm+n+j ⊗ fn.

At this point, we note that f−p = 0 for all p > 0, and hence

Sn+j+1 = V n+j+1 + fm+j ⊗ f0 + fm+j+1 ⊗ f1 + · · ·+ fm+j+n−1 ⊗ fn−1 + fm+n+j ⊗ fn

= V n+j+1(I +
n∑

i=0

fm−n−1+i ⊗ fi),

as m > n. This implies that Sn+j+1H ⊆ V n+j+1H, j ≥ 1. From here we see that⋂
r≥0

SrH ⊆
⋂

r≥n+1

SrH ⊆
⋂

r≥n+1

V rH = {0},

where the last equality follows from the fact that V is pure. To prove (2), we compute

the value of c(V ; f, g) with f = V mf0 and g = V nf0:

c(V ; f, g) = (∥f∥2 − ∥V ∗f∥2)∥g∥2 + |1 + ⟨V ∗f, g⟩|2

= (∥V mf0∥2 − ∥V m−1f0∥2)∥V nf0∥2 + |1 + ⟨V m−1f0, V
nf0⟩|2

= 0× ∥f0∥2 + |1 + 0|

= 1,

where the last but one equality follows because m−n−1 > 0 implies ⟨V ∗nV m−1f0, f0⟩ =
0. The first part and Theorem 6.0.1 then completes the proof of part (2).
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The above observation is fairly elementary. The general classification of rank-one

perturbations of isometries (or pure isometries) that are shift on some reproducing kernel

Hilbert space is an open problem. However, see [44, Theorem 1] and [43] in the context

of classifications of rank-one perturbations of isometries that are pure isometry.

The following is also a simple class of examples of analytic operators.

Proposition 6.2.2. Let V ∈ B(H) be a pure isometry, f and g be vectors in H, and

suppose V ∗g + ⟨g, f⟩g = 0. Then V + f ⊗ g is analytic.

Proof. If we set S := V + f ⊗ g, then

S2 = V 2 + V f ⊗ g + f ⊗ (V ∗g + ⟨g, f⟩g) = V S.

Therefore, Sn+1 = V nS, n ≥ 1, can be proved analogously by induction. In particular

Sn+1H = V nSH ⊆ V nH (n ≥ 0),

and hence, by using the fact that V is a pure isometry, it follows that

∞⋂
n=0

(V + f ⊗ g)n+1H ⊆
∞⋂
n=0

V nH = {0},

that is, V + f ⊗ g is analytic.

Note that V ∗g + ⟨g, f⟩g = 0 is equivalent to the condition that g ∈ ker(V + f ⊗ g)∗.

Recall that the scalar-valued Hardy space H2(D) is a reproducing kernel Hilbert

space corresponding to the Szegö kernel S : D× D → C, where

S(z, w) = (1− zw̄)−1 (z, w ∈ D).

For each w ∈ D, consider the analytic function S(·, w) : D → C defined by (the kernel

function, see the discussion at the beginning of this section) (S(·, w))(z) = S(z, w), z ∈ D.

Example 6.2.3. The following examples illustrate some direct application of the above

propositions.

1. Fix w ∈ D, and set g = S(·, w). We know that M∗
z S(·, w) = w̄S(·, w). Choose

f ∈ H2(D) such that ⟨g, f⟩H2(D) = −w̄ (for instance, f = −1
w̄n−1 z

n for some n ≥ 1).

Evidently M∗
z g + ⟨g, f⟩g = 0, and hence, Mz + f ⊗ S(·, w) is an analytic operator.

2. Consider f = z and g = 1 in H2(D). Then c(Mz; f, g) = 2 ̸= 0, and hence

Mz + f ⊗ g is a shift.

3. Consider f = z and g = −1 in H2(D). Then c(Mz; f, g) = 0, and hence Mz+f⊗g

not left-invertible, but analytic by Proposition 6.2.1.
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Note that the rank-one perturbation Mz + z2 ⊗ z is similar to Mz on H2(D). Here

the similarity follows easily from the fact that Mz + z2 ⊗ z is a weighted shift with the

weight sequence {1, 2, 1, 1, . . .}. This implies that Mz + z2 ⊗ z is analytic, where on the

one hand

M∗
z z + ⟨z, z2⟩z = 1 ̸= 0.

Therefore, Mz + z2 ⊗ z is an example of an analytic rank-one perturbation of Mz which

does not satisfy the hypothesis of Proposition 6.2.2.

6.3 Diagonal operators

In this section, we examine rank-one perturbations of diagonal operators. We prove

that all the interesting left-invertible rank-one perturbations of diagonal operators are

invertible.

Throughout this section, we fix a Hilbert space H with orthonormal basis {en}∞n=0 of

H. We also fix vectors f =
∑∞

n=0 anen and g =
∑∞

n=0 bnen in H and diagonal operator

D ∈ B(H) with diagonal entries {αn}n≥0. Also, we set

T = D + f ⊗ g.

We will assume throughout this section that

αn, an, bn ̸= 0 (n ≥ 0),

as this is the class of perturbations we all are most interested in (cf. [39]). Also we

denote

r := 1 +

∞∑
n=0

anb̄n
αn

.

The following result is from Ionascu [39, Proposition 2.4]:

Proposition 6.3.1. T admits zero as an eigenvalue if and only if r = 0 and { an
αn

}n≥0

is square summable.

The key to our analysis lies in the following observation which is also a result of

independent interest.

Proposition 6.3.2. {en}n≥0 ⊆ ranT if and only if r ̸= 0 and { an
αn

}n≥0 is square

summable.

Proof. Assume that ej ∈ ranT for some arbitrary but fixed integer j ≥ 0. Then there

exists x =
∑∞

n=0 cnen ∈ H such that Tx = (D + f ⊗ g)x = ej . Therefore

ej =

∞∑
n=0

(cnαn)en + ⟨x, g⟩
∞∑
n=0

anen. (6.3.1)
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Note that ⟨x, g⟩ ≠ 0. Indeed, if ⟨x, g⟩ = 0, then

cn =

 1
αj

if n = j

0 otherwise,

and hence x = 1
αj
ej . Since g =

∑∞
n=0 bnen, using ⟨x, g⟩ = 0, we have bj = 0. This

contradiction shows, as promised, that ⟨x, g⟩ ≠ 0. Now equating the coefficients of

terms on either side of (6.3.1), we have cj =
1
αj
(1 − aj⟨x, g⟩), and cn = 0 for all n ̸= j.

In particular, { an
αn

}n≥0 is a square summable sequence, and, as ⟨x, g⟩ =
∑∞

n=0 cnb̄n, we

have

⟨x, g⟩ = −⟨x, g⟩
∞∑
n=0

anb̄n
αn

+
b̄j
αj

,

which implies

⟨x, g⟩
(
1 +

∞∑
n=0

anb̄n
αn

)
= ⟨x, g⟩r =

b̄j
αj

,

and hence r ̸= 0. For the converse direction, fix an integer j ≥ 0. Then

y = − b̄j
rαj

( ∞∑
n=0

an
αn

en

)
+

1

αj
ej ,

is a vector in H. Note that

⟨y, g⟩ = − b̄j
rαj

(r − 1) +
b̄j
αj

=
b̄j
rαj

.

Using the representation f =
∑∞

n=0 anen, we deduce from the above that

Ty = (D + f ⊗ g)y = − b̄j
rαj

∞∑
n=0

anen + ej + ⟨y, g⟩f = ej .

This implies that ej ∈ ranT for all j ≥ 0 and completes the proof of the proposition.

We also need the following lemma:

Lemma 6.3.3. If T is bounded below, then D is invertible.

Proof. Assume by contradiction that {αnk
} is a subsequence of the sequence {αn}, which

converges to zero. Now

Tenk
= (D + f ⊗ g)enk

= αnk
enk

+ ⟨enk
, g⟩f = αnk

enk
+ bnk

f,

implies

∥Tenk
∥ ≤ |αnk

|+ |bnk
|∥f∥.

This shows that {Tenk
} converges to zero for the sequence of unit vectors {enk

}. But

this contradicts the fact that T is bounded below. Therefore the sequence {αn} has no
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subsequence that converges to zero. Consequently, there exists M > 0 such that

|αn| > M (n ≥ 0),

and hence { 1
αn

} is a bounded sequence. We conclude that D is invertible.

The converse is not true: Pick f, g ∈ H such that ⟨f, g⟩ = −1. By Proposition 6.3.1,

I + f ⊗ g is not injective, and hence not left-invertible. However, as a weak converse we

have:

Proposition 6.3.4. If D is bounded below and T is injective, then T is left-invertible.

Proof. Assume by contradiction that T = D + f ⊗ g is not bounded below. Then there

is a sequence {hn} ⊆ H with ∥hn∥ = 1 such that Thn → 0. By the compactness of

f ⊗ g, there exists a subsequence {hnk
} of {hn} such that (f ⊗ g)hnk

converges. Then,

Dhnk
= (T − f ⊗ g)hnk

converges. But since D is bounded below, this gives us hnk
→ h̃

for some h̃ ∈ H. In particular, we have ∥h̃∥ = 1. On the other hand, since T is a

bounded linear operator, we have

T h̃ = lim
k→∞

Thnk
= 0,

that is, h̃ ∈ kerT . But, kerT = {0} by our assumption, and hence h̃ = 0, which

contradicts the fact that ∥h̃∥ = 1. Therefore, T is bounded below.

Although Proposition 6.3.4 is not directly related to the main result of this section,

but perhaps fits appropriately with our present context. We come now to the main

result on left-invertibility of rank-one perturbations. The following result and its proof

are also along the same line and perhaps of independent interest.

Proposition 6.3.5. If D has a closed range, then T also has a closed range.

Proof. Let N = kerT , and let ranD is closed. Then T |N⊥ is injective. Assume by

contradiction that ranT is not closed. Then X := T |N⊥ is not left-invertible. Proceeding

exactly as in the proof of Proposition 6.3.4 (by replacing the role of T by X), we will

find a contradiction.

We come now to the main result on left-invertibility of rank-one perturbations.

Theorem 6.3.6. D + f ⊗ g is left-invertible if and only if D + f ⊗ g is invertible.

Proof. For the nontrivial direction, assume that T = D+f⊗g is left-invertible. Assume

by contradiction that T is not invertible. Since, in particular, ranT is closed, {en}n≥0 ⊈
ranT . Now by Proposition 6.3.1, either r ̸= 0 or the sequence { an

αn
}n≥0 is not square
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summable. On the other hand, we know from Lemma 6.3.3 that D is invertible, and

hence

D−1f =

∞∑
n=0

an
αn

en ∈ H.

This implies, of course, that { an
αn

}n≥0 is a square summable sequence, and hence r ̸= 0.

As a consequence, we can apply Proposition 6.3.2 to T : the basis vectors {en}n≥0 ⊆
ranT ; which is a contradiction. This proves that T is invertible.

If we know that D is invertible (which anyway follows from Lemma 6.3.3) and r ̸= 0,

then the surjectivity of T = D+f⊗g in the above proof also can be obtained as follows:

Observe that

1 + ⟨D−1f, g⟩ = 1 +
∞∑
n=0

anb̄n
αn

= r.

Then for each y ∈ H, we consider x = D−1y − 1
r ⟨D

−1y, g⟩D−1f . We deduce easily that

Tx = y, which completes the proof of the fact that T is onto.

6.4 An example

Let T be a bounded linear operator on H2(D). Suppose

[T ] =



0 0 0 . . .

a01 0 0
. . .

a02 a12 0
. . .

a03 a13 a23
. . .

...
. . .

. . .
. . .


,

the matrix representation of T with respect to the standard orthonormal basis {zn, n ≥
0} of H2(D). Clearly, T (zn) ⊆ zn+1H2(D), and hence

Tn(H2(D)) ⊆ znH2(D) (n ≥ 0).

It follows that
∞⋂
n=0

TnH2(D) ⊆
∞⋂
n=0

znH2(D) = {0},
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that is, T is analytic. In particular, for each α and β in C, the matrix operator

[Tα,β] =



0 0 0 0 . . .

α 0 0 0
. . .

β 0 0 0
. . .

0 1 0 0
. . .

0 0 1 0
. . .

...
. . .

. . .
. . .

. . .


,

defines an analytic operator Tα,β on H2(D). Moreover, one can show that

Tα,β = M2
z + (αz + (β − 1)z2)⊗ 1,

that is, Tα,β is a rank-one perturbation of the shift M2
z on H2(D). Next, we compute

c(Tα,β; f, g), where f = αz + (β − 1)z2 and g = 1. Since ⟨M∗2
z f, g⟩H2(D) = β − 1, and

∥M∗2
z f∥2 = |β − 1|2, and ∥f∥2 = |α|2 + |β − 1|2, it follows that

c(Tα,β, αz + (β − 1)z2, 1) = |α|2 + |β|2.

Thus we have proved:

Proposition 6.4.1. Let (α, β) ∈ C2 \ {(0, 0)}. If f = αz + (β − 1)z2 and g = 1, then:

1. Tα,β is a shift on H2(D),

2. Tα,β = M2
z + f ⊗ g and

3. c(M2
z ; f, g) = |α|2 + |β|2.

We recall in passing that Tα,β is a shift means the existence of an analytic Hilbert

space Hk and a unitary U : H2(D) → Hk such that Tα,β = U∗MzU .

We continue with the matrix representation [Tα,β]. Clearly, Tα,β is an isometry if and

only if

|α|2 + |β|2 = 1.

Denote by H2
α,β(D) the closed codimension one subspace of H2(D) with orthonormal

basis {α + βz, z2, z3, . . .}. Clearly, H2
α,β(D) is an invariant subspace of M2

z . One can

verify straightforwardly that the map U : H2(D) → H2
α,β(D) defined by

Uzn =

α+ βz if n = 0

zn+1 otherwise

is a unitary operator and

UTα,β = M2
zU,
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that is, Tα,β on H2(D) and M2
z |H2

α,β(D)
on H2

α,β(D) are unitarily equivalent. The operator

M2
z |H2

α,β(D)
, (α, β) ∈ C2 with |α|2+ |β|2 = 1, has been considered in [25] in the context of

invariant subspaces and a constrained Nevanlinna-Pick interpolation problem. Clearly,

in the context of perturbation theory, it is worth exploring and explaining the results of

[25].

6.5 Concluding remarks

We begin by computing c(V ; f, g) for rank-one perturbations that are isometries. Sup-

pose V ∈ B(H) is an isometry and f and g are vectors in H. It is curious to observe

that

c(V ; f, g) = 1,

whenever V + f ⊗ g is an isometry. Indeed, in the present case, by (6.0.1), there exist a

unit vector h ∈ H and a scalar α of modulus one such that f = (α− 1)h and g = V ∗h.

Then (6.1.1) yields

c(V ; f, g)− 1 = |α− 1|2∥V ∗h∥2 + 2(Re(α− 1))∥V ∗h∥2 + |α− 1|2∥V ∗h∥4(1− 1)

= (|α− 1|2 + 2Re(α− 1))∥V ∗h∥2,

and hence c(V ; f, g)− 1 = 0 as |α| = 1. This completes the proof of the claim.

It would be interesting to investigate the nonnegative number c(V ; f, g) in terms of

analytic and geometric invariants, if any, of rank-one perturbations of isometries. This

is perhaps a puzzling question for which we do not have any meaningful answer or guess

at this moment.

We conclude this chapter by making some additional comments on (non-analytic

features of) perturbations of diagonal operators. The following easy-to-prove proposition

says that rank-one perturbations of common diagonal operators do not fit well with shifts

on reproducing kernel Hilbert spaces.

Proposition 6.5.1. Let D ∈ B(H) be a Fredholm diagonal operator, and let f, g ∈ H.

Then D + f ⊗ g cannot be represented as shift.

Proof. Suppose that D+ f ⊗ g is unitarily equivalent to Mz on some reproducing kernel

Hilbert space. Since D is Fredholm, and Mz and D+ f ⊗ g are unitarily equivalent, we

have ind(Mz) = ind(D) = 0. On the other hand, since Mz is injective, it follows that

ind(Mz) = dimkerMz − dimkerM∗
z < 0,

which is a contradiction.
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In the context of Theorem 6.3.6, we remark that rank-one perturbations of diagonal

operators need not be left-invertible: Consider a compact diagonal operator D (for

instance, consider D with diagonal entries { 1
n}). Then a rank-one perturbation of D is

also compact, and hence the perturbed operator cannot be left-invertible.

In Lemma 6.3.3, we prove that if D + f ⊗ g is bounded below, then D is invertible.

This was one of the key tools in proving Theorem 6.3.6: D + f ⊗ g is left-invertible if

and only if D+f ⊗g is invertible. Of course, we assumed that the Fourier coefficients of

f and g are nonzero. Here, we would like to point out that rank-one perturbation of an

invertible operator need not be invertible. In fact, the invertibility property of rank-one

perturbations of invertible operators can be completely classified (see [39, Lemma 2.7]):

Let D be an invertible diagonal operator. Then D + f ⊗ g is invertible if and only if

1 + ⟨D−1f, g⟩ ≠ 0.

Finally, in the context of left-invertibility, consider D = IH and choose f and g from H
such that ⟨f, g⟩ = −1. Then c(D; f, g) = 0, and hence, D + f ⊗ g is not left-invertible.
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