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Chapter 1

Introduction

The purpose of this dissertation is two fold: to study weighted norm inequalities for

maximal type operators such as Hardy–Littlewood maximal operator associated with

a family of general sets in a topological space and Fourier maximal operator in the

context of the ring of integers of a local field, and to extend the classical theory of

Hardy space and related topics such as the space BMO and the John–Nirenberg space

in the setting of Locally Compact Abelian (LCA) groups having a covering family.

1.1 Maximal Operators Associated with General Sets

Let us start with recalling the necessary background and notation. The Hardy–

Littlewood maximal function Mf of a locally integrable function f on Rd is defined

by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy, x ∈ Rd, (1.1.1)

whereB(x, r) denotes the Euclidean ball of radius r centred at x and |E| is the Lebesgue

measure of a measurable set E. The operator M was shown to be strong type (p, p)

for 1 < p ≤ ∞ and weak type (1, 1) by Hardy and Littlewood [49] for d = 1 and by

Wiener [115] for general d. More precisely, M satisfies the strong type (p, p) inequality

∫
Rd
Mf(x)p dx ≤ Cp

∫
Rd
|f(x)|p dx, 1 < p ≤ ∞, (1.1.2)

1



2 Chapter 1. Introduction

and the weak type (1, 1) inequality

|{x ∈ Rd : Mf(x) > λ}| ≤ C

λ
‖f‖1 for all λ > 0. (1.1.3)

We are interested in certain mixed weighted versions of (1.1.2) and (1.1.3). By a weight

w, we mean a nonnegative, integrable function on the underlying measure space. One

of the principal problems concerning weighted inequalities is to identify criteria for

w guaranteeing that a given bounded operator T on the Lebesgue space Lp(Rd) is

bounded on the weighted space Lp(Rd, w), that is, to characterize the nonnegative

functions w for which the inequality

‖Tf‖Lp(Rd,w) ≤ C‖f‖Lp(Rd,w) (1.1.4)

holds for all f ∈ Lp(Rd, w), where C is a positive constant that depends only on p and

w. For 1 < p < ∞, Lp(Rd, w) denotes the space of p-integrable functions on Rd with

respect to the measure w(x) dx. Extensive study of such inequalities for some of the

important operators in harmonic analysis began in the early 1970s with the seminal

work of Muckenhoupt. In his work, he characterized all weights w so that (1.1.4) holds

for the Hardy–Littlewood maximal operator M . Since then such classes of weights are

termed as Muckenhoupt Ap weights in the literature and are defined as follows.

A weight w is said to be in the Ap class, 1 < p <∞, if

[w]Ap := sup
Q

( 1

|Q|

∫
Q
w(x) dx

)( 1

|Q|)

∫
Q
w(x)

− 1
p−1 dx

)p−1
<∞,

where the supremum is taken over all cubes Q with sides parallel to the coordinate

axes.

The weight w belongs to the weight class A1 if there exists a constant C > 0 such

that

Mw(x) ≤ Cw(x) for a.e. x ∈ Rd.

Muckenhoupt [86] proved the following result.
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Theorem 1.1.1. (a) Let 1 < p < ∞. Then w ∈ Ap if and only if there exists a

constant C > 0 such that

∫
Rd
Mf(x)pw(x) dx ≤ C

∫
Rd
|f(x)|pw(x) dx for all f ∈ Lp(Rd, w). (1.1.5)

(b) The weight w ∈ A1 if and only if there exists a constant C > 0 such that

w({x ∈ Rd : Mf(x) > λ}) ≤ C

λ

∫
Rd
|f(x)|w(x) dx for all f ∈ L(Rd, w).

(1.1.6)

The quantity [w]Ap is called the Ap constant or the Ap characteristic of the weight

w. In many applications it is of interest to have optimal or at least good bounds for

the operator norm ‖M‖Lp(Rd,w)→Lp(Rd,w) in terms of the size of the constant [w]Ap .

Since [w]Ap ≥ 1, the problem is to find estimates of the form

‖M‖Lp(Rd,w)→Lp(Rd,w) ≤ C[w]
α(p)
Ap

with α(p) as small as possible, where C is a constant depending only on p and the

dimension d.

We remark that the results of Muckenhoupt [86] are qualitative, in the sense that

they do not provide any information about α(p). Buckley [9] proved the first quantita-

tive result on the boundedness of M by providing the best possible power dependence

on the Ap constant. He proved the following result.

Theorem 1.1.2. Let M be the Hardy–Littlewood maximal operator defined in (1.1.1)

and 1 < p <∞. Then there is a constant C > 0 such that

‖M‖Lp(Rd,w)→Lp(Rd,w) ≤ C[w]
1
p−1

Ap
. (1.1.7)

This estimate is sharp in the sense that the exponent 1
p−1 cannot be replaced by

any smaller quantity and hence α(p) = 1
p−1 .

In a more general setting of the spaces of homogeneous type, Hytönen, Pérez and

Rela [62] showed that Buckley’s theorem can be improved further in terms of various

mixed characteristics of the underlying weight w. Recall that a space of homogeneous
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type is a quasi-metric space S with quasi-metric d such that the d-balls B(x, r) = {y ∈

S : d(x, y) < r}, x ∈ S, r > 0, are open sets, and µ is a regular measure defined on

the σ-algebra containing the d-balls that satisfies the “doubling condition”, i.e., there

is a constant A such that the measure of a ball of radius 2r is at most A times the

measure of the ball of radius r with the same centre. Let B = {B(x, r) : x ∈ S, r > 0}.

Analogous to the Euclidean case, the uncentred Hardy–Littlewood maximal operator

M on S is obtained by replacing the cubes by balls in (1.1.1). More precisely,

Mf(x) = sup
x∈B∈B

1

µ(B)

∫
B
|f(x)| dµ(x), x ∈ S.

In a similar way, we also define the Ap constants of a weight w. Furthermore, we define

the A∞ constant of w by

[w]A∞ = sup
B∈B

1

w(B)

∫
B
M(wχB)(x) dµ(x).

where w(B) =
∫
B w(x) dµ(x). We also denote the space of p-integrable functions on S

with respect to the measure w(x) dµ(x) as Lp(S, w). With these notation, one of the

main results in [62] may be stated as follows.

Theorem 1.1.3. Let M be the Hardy–Littlewood maximal operator on S and let 1 <

p <∞. Then there is a constant C > 0 such that

‖M‖Lp(S,w)→Lp(S,w) ≤ C([w]Ap [σ]A∞)
1
p , (1.1.8)

where σ = w
− 1
p−1 is the dual weight of w.

The mixed bound in (1.1.8) is sharper than the estimate involving only the Ap

constant in (1.1.7) and improves Buckley’s theorem since [σ]A∞ ≤ C[σ]Ap′ = C[w]
1
p−1

Ap
,

which yields (1.1.7).

The essence of Hytönen, Pérez and Rela’s result is that the mixed type bounds

can be obtained for the maximal operator and the weights associated with a family

B of balls generated by a quasi-metric d of a space of homogeneous type. However,

there are many examples of important families of measurable sets arising in harmonic

analysis and PDE which cannot be generated by a quasi-metric d, and hence are not in
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the scope of spaces of homogeneous type. Let us illustrate this situation by exhibiting

some concrete examples. Some more examples are given in [28].

Example 1.1.4. A family of convex sets in Rd was considered by Caffarelli and

Gutiérrez in [12] as follows. Let φ be a convex smooth function on Rd. For x ∈ Rd,

let `(y) be a supporting hyperplane of φ at the point (x, φ(x)). For r > 0, define the

set Sφ(x, r) = {y ∈ Rd : φ(y) < l(y) + r}. These sets are called sections and are

obtained by projecting on Rd the points on the graph of φ that are below a supporting

hyperplane lifted in r. Let µ = detD2φ be the Monge–Ampère measure. The family

F = {Sφ(x, r) : x ∈ Rd, r > 0} is related to the convex solution of Monge–Ampère

equation.

Example 1.1.5. Let γ : [0,∞) → R be a convex function on [0,∞) and in C2 on

(0,∞) and satisfies γ(0) = γ′(0) = 0. For r > 0, set h(r) = rγ′(r) − γ(r). Also

suppose that there exists a constant C > 0 such that h(2r)
h(r) ≤ C for all r > 0. Moreover,

let Q0 = {(x, y) ∈ R2 : |x|, |y| < 1} and for any r > 0, set Pr(0) = ArQ0, where

Ar :=

 r 0

γ(r) + h(r) h(r)

 .

Let P := {Pr(x) = x + Pr(0) : x ∈ R2, r > 0} and µ be the Lebesgue measure.

The family P arises in studying the Lp estimates of the maximal operator and Hilbert

transform associated convex curve by Carbery et al. [15].

Observe that we can define an analogue of the maximal operator and the Ap weights

corresponding to the families F and P in the above examples. Thus, the following

question arises naturally.

Let F be a family of measurable sets which are not associated with any quasi-metric.

Consider the maximal operator and the weights associated with the family F in the usual

way. Can we extend Theorem 1.1.3 for such families?

One of the objectives of this thesis is to give an affirmative answer to this question.

We consider this question in a more general framework: given a very general basis

E of open sets on a measure space X, we prove quantitative estimates in terms of

different Ap characteristics for the maximal operator ME defined with respect to this

basis E. For the precise statement of our result, see Theorem 2.2.2. Let us mention
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that our results will not only cover all these families, but also give a mixed type bound

for Stein’s maximal operator (see Theorem 2.1.1 of Chapter 2) and also present an

improvement of Theorem 1.1.3.

Another fundamental generalization of the maximal inequality (1.1.3) is due to

Fefferman and Stein [36]. In their pioneering work, they proved that the following

two-weights inequality

w({x ∈ Rd : Mf(x) > λ}) ≤ C

λ

∫
Rd
|f(x)|Mw(x) dx (1.1.9)

holds for all nonnegative functions f and w.

In the literature, this inequality is popularly known as the endpoint Fefferman–Stein

weighted inequality and is interesting for several reasons. The first of them is that it

was a precursor of the weighted theory of Muckenhoupt and gives an improvement

of the inequality (1.1.6). Note that if w ∈ A1, then inequality (1.1.6) readily follows

from (1.1.9). In [36], Fefferman and Stein exploited this inequality to derive the vector-

valued analogue of maximal inequalities (1.1.2) and (1.1.3) and applied these to obtain

certain estimatess for Marcinkiewicz integral. If f = (f1, f2, . . . ) is a sequence of

functions on Rd, Mf = (Mf1,Mf2, . . . ) and ‖f(x)‖`r = (
∑∞

k=1 |fk(x)|r)
1
r , 1 < r <∞,

then their result is the following.

Theorem 1.1.6. Let 1 < p <∞. If 1 < r <∞, then there exists a constant Cr,p > 0

such that ∫
Rd
‖Mf(x)‖p`r dx ≤ Cr,p

∫
Rd
‖f(x)‖p`r dx.

Moreover, the following weak type (1, 1) estimate holds: there exists a constant C > 0

such that

|{x ∈ Rd : ‖Mf(x)‖`r > λ}| ≤ C

λ

∫
Rd
‖f(x)‖`r dx for all λ > 0.

Note that if we put f1 = f, f2 = f3 = · · · = 0, then we obtain the inequalities (1.1.2)

and (1.1.3).

This is a very deep theorem and has been generalized and used in many different con-

texts in modern harmonic analysis explaining the central role of the inequality (1.1.9).

Our purpose here is to extend the endpoint Fefferman–Stein weighted inequality (1.1.9)
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and Theorem 1.1.6 for the maximal operator ME associated with a family of general

sets E. This task has been addressed in Chapter 2.

At this point, we take the opportunity to mention some related works on endpoint

Fefferman–Stein inequalities in a variety of contexts. In the setting of the spaces of

homogeneous type, Aimar, Bernardis and Nowak [2] proved a dyadic version of (1.1.9)

following the proof given in [36]. Luque and Parissis [76] derived similar inequalities for

the strong maximal function on the Euclidean spaces. In a very recent work, Ombrosi,

Rivera-Ŕıos and Safe [92] proved an analogue of (1.1.9) on the infinite rooted k-ary

tree.

1.2 Fourier Partial Sum Operators on Local Fields

Another important operator in harmonic analysis is the Fourier maximal operator

acting on integrable functions on the circle T defined by

Mf(x) = sup
n∈N
|Snf(x)|, (1.2.1)

where Snf denotes the nth partial sum of the Fourier series of a function f ∈ L1(T).

The operator M was shown to be of strong type (p, p) by Carleson [17] for p = 2 and

by Hunt [57] for the case 1 < p < ∞. More precisely, Carleson and Hunt proved that

M satisfies the strong type (p, p) inequality

∫
T
Mf(x)p dx ≤ Cp

∫
T
|f(x)|p dx, 1 < p <∞. (1.2.2)

These inequalities are fundamental in harmonic analysis establishing the pointwise

almost everywhere convergence of Fourier series of Lp functions. Hunt and Young [60]

extended these inequalities for functions in the weighted spaces Lp(T, w) for the weights

satisfying the Muckenhoupt Ap condition. For 1 < p <∞, Lp(T, w) denotes the space

of p-integrable functions on T with respect to the measure w(x) dx.

Hunt and Young [60] proved the following weighted variant of the inequality (1.2.2).
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Theorem 1.2.1. Let 1 < p < ∞ and w ∈ Ap. Then there exists a constant Cp > 0,

depending only on w and p, such that

∫
T
Mf(x)pw(x) dx ≤ Cp

∫
T
|f(x)|pw(x) dx for all f ∈ Lp(T, w). (1.2.3)

Another purpose of this thesis is to generalize the inequality (1.2.3) for the maximal

operator of Fourier series in the context of the ring of integers of a locally compact,

totally disconnected and non-discrete field. This problem is considered in Chapter 3.

We now turn our attention to applications of Muckenhoupt weights. In the study of

Gabor theory, A2 weights play an important role. To facilitate our discussion further

we first recall some relevant concepts. Let ψ ∈ L2(R). The Gabor system associated

with ψ is the collection {e2πibnxψ(x − ak) : k, n ∈ Z} of simple time-frequency shifts,

where a, b > 0 are fixed. The question of when a Gabor system forms an orthonormal

basis, a frame or a Riesz basis for L2(R) has been a matter of great interest not only

mathematically but for applications as well. In this context the Zak transform has

proved to be an important tool. For ψ ∈ L2(R), the Zak transform Zψ is the function

on R× R defined by

Zψ(x, y) =
∑
k∈Z

ψ(x+ k) exp(2πiyk).

For instance, {e2πinxψ(x − k) : k, n ∈ Z} constitutes an orthonormal basis for L2(R)

precisely when |Zψ| = 1 a.e. It is complete if and only if Zψ 6= 0 a.e. In [50], Heil and

Powell showed that the Gabor systems which form Schauder bases for L2(R) also admit

a simple characterization in the Zak transform domain and manifested the importance

of Muckenhoupt A2 weights in time-frequency analysis. Recall that a Schauder basis

in L2(R) is a system of functions {fk} such that for every ψ ∈ L2(R) there exists a

unique sequence {αk} of scalars with ψ =
∑

k αkfk, where the series converges in the

L2-norm with respect to a fixed order.

Since Schauder basis expansions may converge conditionally, the order of summation

is important. Heil and Powell constructed a suitable family Γ of enumerations of Z×Z

and with respect to each of these enumerations, they proved that the Gabor system

generated by ψ is a Schauder basis for L2(R) if and only if |Zψ|2 is an A2 weight on
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T × T. Here v is an A2 weight on T × T means that for a.e.x, y ∈ T, the functions

v(x, .) and v(., y) are A2 weights on T.

The notion of Zak transform admits a natural generalization to locally compact

abelian groups (see [113]) and since the Gabor theory rests mainly on the structure

of translations and modulations, it is natural to ask whether the above mentioned

characterization of Gabor Schauder bases is also valid in the general context. Such

a development is quite useful as it includes all other examples which are important

for applications and it emphasizes the basic features of time-frequency analysis in a

comprehensive way. Even though the generalization of many aspects of Gabor theory to

locally compact abelian groups are easily carried out and is based on standard harmonic

analysis on such groups (see, for example, [46], [53] and [72]), characterization of Gabor

Schauder bases to a general locally compact abelian group is much harder. Here our

aim is to extend the Heil–Powell theorem in the setting of local fields. Furthermore, in

a local field K of positive characteristic, we provide a necessary and sufficient condition

on a function ϕ ∈ L2(K) for which the collection of translates of ϕ forms a Schauder

basis for its closed linear span.

1.3 H1 and BMO on LCA Groups

Let us move on to the theory of Hardy spaces, which is a central analytic tool in the

study of various aspects of harmonic analysis. The scope of its applications and connec-

tions is much wider, including complex analysis, partial differential equations (PDEs),

functional analysis and geometric analysis. Let us first recall the definition of the clas-

sical real-variable Hardy space H1(Rd) in the d-dimensional Euclidean space Rd. Let

f ∈ L1(Rd). We say that f belongs to H1(Rd) if the Riesz transform ∆∇
−1
2 f ∈ L1(Rd).

The origin of real-variable theory of Hardy space H1(Rd) goes back to the fundamental

work of Stein and Weiss [105] in the early 60’s. Since its introduction, the theory and

applications of Hardy space have been under intensive study. There exists an abun-

dance of equivalent characterizations for H1(Rd), among which one of the most useful

is the characterization by atomic decompositions, that is, the decomposition of func-

tions in H1(Rd) into simple building blocks, atoms, originally proved by Coifman [23]

for dimension d = 1 and by Latter [74] in higher dimensions. This remarkable feature
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freed the theory of H1(Rd) from the rigidity of differentiable structure and makes pos-

sible its extension in a variety of contexts. In the abstract spaces of homogeneous type

X, Coifman and Weiss [24] introduced the atomic Hardy spaces Hp(X), 0 < p ≤ 1.

Tolsa [112] contributed to the theory by considering a nonnegative Radon measure µ

on Rd which only satisfies the polynomial growth condition that there exist positive

constants C and κ ∈ (0, n] such that for all x ∈ Rd and r ∈ (0,∞),

µ
({
y ∈ Rd : |x− y| < r

})
≤ Crκ.

Such a measure need not satisfy the doubling condition (see also [118]). Hytönen

et. al. [63] defined and investigated the H1 theory on non-homogeneous spaces, that

include both the spaces of homogeneous type and metric spaces with polynomial

growth measures as special cases. The literature of Hardy spaces is very rich and

still continuing to flourish. Interested reader may consult some recent articles on this

topic [16, 28, 75, 64, 67].

Another goal of this thesis is to conduct an extensive study on the Hardy space in

the context of Locally Compact Abelian (LCA) groups. More specifically, the general

assumption on groups will be that any point admits a sequence of neighbourhoods of

decreasing base sets shrinking to it and, in addition, the whole space can be covered

by the increasing union of such sets. This is discussed in the first part of Chapter 4.

We now turn our attention to the well-known class of functions of bounded mean

oscillation (BMO). The space BMO, originally introduced by John and Nirenberg [65]

in the context of partial differential equations (PDEs), consists of functions whose mean

oscillations over Euclidean balls are uniformly bounded. Since then it has played a

central role in the regularity theory for nonlinear PDEs. Our interest is in its connection

with H1(Rd). In [37], Fefferman showed that BMO can be identified as the dual of

H1(Rd), i.e., [H1(Rd)]∗ = BMO. Our second goal in Chapter 4 is to extend the

classical notion of BMO to the framework of LCA groups and relate it with the Hardy

space, we aim to construct, via duality.

Another fundamental property of BMO functions is the John–Nirenberg inequality

which encodes self-improving properties of the oscillations of the functions involved.

To be more precise, if there is a constant C > 0 such that for every f ∈ L1
loc(Rd) and
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for every cube Q in Rd,

–

∫
Q
|f − fQ| dx ≤ C,

where

fQ = –

∫
Q
f(x) dx =

1

|Q|

∫
Q
f(x) dx,

then the oscillations f − fQ are exponentially integrable. Our another main result

of this work is an extension of this quintessential feature of BMO in the context of

LCA groups. Moreover, we also present an application of these results to the theory

of convolution operators (see Theorem 4.5.2).

1.4 John–Nirenberg Spaces on LCA Groups

In the same paper [65], John and Nirenberg also discussed a larger BMO-type space

which has since become known as the John–Nirenberg space, or JNp, for some param-

eter p. The space JNp is defined as follows. Suppose 1 < p < ∞ and Q0 is a cube in

Rd with sides parallel to the coordinate axes. A function f ∈ L1(Q0) is said to be in

the space JNp(Q0) provided

‖f‖JNp(Q0) := sup
( 1

|Q0|
∑
i

(
–

∫
Qi

|f − fQi | dx
)p
|Qi|

) 1
p
<∞, (1.4.1)

where the supremum is taken over all possible countable collections {Qi}i∈N of pairwise

disjoint subcubes of Q0.

In the last ten years or so, there has been substantial interest in studying the John–

Nirenberg spaces JNp [65, 1, 26, 7, 110] and its several variants such as its dyadic

version JNp [71], the John–Nirenberg-Campanato spaces [111], their localized versions

[107] and so on because of its connection with the space BMO and the self-improving

phenomenon. The space JNp retains some of the fundamental features of BMO spaces

such as the John–Nirenberg inequality. The corresponding inequality for JNp(Q0)

spaces reveals that JNp(Q0) can be embedded into Lp,∞(Q0). Therefore, the function

f , which is a priori in L1(Q0), turns out to be in the space Lp,∞(Q0) and this may be

regarded as a self-improving property for the space JNp(Q0).

In the present work we generalize the notion of John–Nirenberg spaces JNp to LCA

groups and study their properties. Our result (Theorem 5.2.1) provides an extension
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of the John–Nirenberg inequality for JNp spaces in this context. In particular, we

exhibit self-improving phenomenon in this framework. The key idea for the proof of

John–Nirenberg inequality is inspired from [7] and relies on two main ingredients: a

local Calderón–Zygmund decomposition in this setting (Lemma 5.2.4 ) and a certain

relative distributional inequality, also referred to as the “good-λ inequality” in the

literature (Proposition 5.2.2).



Chapter 2

Inequalities for the Maximal

Operator Associated with

General Sets

In this chapter we study norm inequalities for the maximal operator ME associated

with a family E of general sets from various points of view. Our first main result is

the mixed Ap − A∞ weighted estimates for the operator ME. The main ingredient

to prove this result is a sharp form of a weak reverse Hölder inequality for the A∞,E

weights. As an application of this inequality, we also provide a quantitative version

of the open property for Ap,E weights. Our second main result in this setting is the

establishment of the endpoint Fefferman–Stein weighted inequalities for the operator

ME. Furthermore, vector-valued extensions for maximal inequalities are also obtained

in this context.

2.1 Introduction

Recall that the Hardy–Littlewood maximal function Mf of a locally integrable function

f on Rd is defined by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy, x ∈ Rd, (2.1.1)

13
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where B(x, r) denotes the Euclidean ball of radius r centred at x and |E| is the

Lebesgue measure of a measurable set E. In [106], Stein generalized the results of

Hardy–Littlewood [49] and Wiener [115] on Lp-boundedness of the maximal operator

to more general situations by replacing the balls in (2.1.1) by a suitable collection

of sets in Rd. Stein observed that the Euclidean balls and the translation invariant

Lebesgue measure in Rd can be replaced by more general sets and a nonnegative Borel

measure respectively to pose and answer similar questions. More specifically, we have

the following.

For each x ∈ Rd, let {Er(x) : 0 < r < ∞} be a collection of nonempty, bounded

open subsets of Rd containing x and let E = {Er(x) : 0 < r < ∞, x ∈ Rd}. Assume

that the sets in E are monotonic in r in the sense that Er(x) ⊂ Es(x) if 0 < r ≤ s.

Let µ be a nonnegative Borel measure with µ(Rd) > 0. Further, assume that the sets

in the family E and the measure µ satisfy the following properties:

(i) there exists a constant θ > 1 such that for all x, y and r, Er(x) ∩ Er(y) 6= ∅

implies Er(y) ⊂ Eθr(x). Here, we call Eθr(x) as the θ dilation of Er(x);

(ii) there exists a constant Cµ > 1 such that

µ(E2r(x)) ≤ Cµ µ(Er(x)) for all x ∈ Rd and 0 < r <∞;

(iii)
⋂
r>0Er(x) = {x} and

⋃
r>0Er(x) = Rd;

(iv) for each open set U and r > 0, the function x→ µ(Er(x) ∩ U) is continuous.

Define the associated maximal operator ME by

MEf(x) = sup
r>0

1

|Er(x)|

∫
Er(x)

|f(y)| dy, x ∈ Rd.

Stein proved the following result. We refer to Chapter I of [106] for the proof of the

following theorem and several examples of families E in Rd satisfying these properties.

Theorem 2.1.1 (Stein). Let f be a function defined on Rd and E = {Er(x) : 0 <

r < ∞, x ∈ Rd} be as above. If f ∈ Lp(Rd), 1 ≤ p ≤ ∞, then MEf is defined almost

everywhere. Moreover, the operator ME is of weak type (1, 1) and strong type (p, p) for

1 < p ≤ ∞.
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This result can further be extended to other settings. For example, the underlying

space Rd can be replaced by a finitely generated discrete group of polynomial growth,

or a smooth compact Riemannian manifold. See p. 37 in [106] for the details.

If E consists of all Euclidean balls in Rd, then we get the usual Hardy–Littlewood

maximal operator defined in (2.1.1) which has the weak type (1, 1) and strong type

(p, p) properties, as mentioned earlier. However, if E is the family of all rectangles in

Rd, then the corresponding maximal operator is not of weak type (1, 1) and strong

type (p, p) (see [48]). If the rectangles have sides parallel to the coordinate axes, then

ME is not of weak type (1, 1), even though it is of strong type (p, p) for p > 1, see [100].

The situation does not improve even if the sets in E satisfy a monotone condition. For

instance, Hunt provided the following example on the real line. Let EN (x) = x+ SN ,

where SN =
⋃∞
k=N (2−k, 2−k + 2−2k). Then SN+1 ⊂ SN and the associated maximal

operator is still not of weak type (1, 1), see [88] for the details of this construction.

Observe that it makes sense to define the sets Er(x) of Theorem 2.1.1 in topological

spaces. In [28], Ding, Lee and Lin considered the following more general setting. This

is the context in which we are going to prove the main results of this chapter.

Let X be a topological space equipped with a nonnegative Borel measure µ. Let

E = {Er(x) : r > 0, x ∈ X} be a family of open subsets of X, where x is an interior

point of Er(x). We assume that the family E and µ satisfy the following conditions:

(A)
⋃
r>0Er(x) = X;

(B)
⋂
r>0Er(x) = {x};

(C) Er(x) ⊂ Es(x) if 0 < r ≤ s;

(D) for all x ∈ X and r > 0, we have 0 < µ(Er(x)) < ∞, and µ satisfies a doubling

condition, i.e., there exists a constant Cµ > 1 such that

µ(E2r(x)) ≤ Cµ µ(Er(x)) for all x ∈ X and Er(x) ∈ E; (2.1.2)

(E) for each open set U and r > 0, the function x→ µ(Er(x) ∩ U) is continuous;

(F) there exists a constant θ > 1 such that for all Er(x) ∈ E, y ∈ Er(x) implies

Er(x) ⊂ Eθr(y) and Er(y) ⊂ Eθr(x);
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(G) the mapping r → µ(Er(x)) is continuous for each x ∈ X.

It is easy to verify that (F) is equivalent to the following condition:

(F′) there exists a constant θ > 1 such that for all x, y ∈ X and r > 0, Er(x)∩Er(y) 6=

∅ implies Er(y) ⊂ Eθr(x).

It is not difficult to verify that the families of sets in Examples 1.1.4, 1.1.5 and the

family of balls B generated by a quasi-metric in a space of homogeneous type satisfy

the conditions (A)–(G). We now provide some more examples of such families.

Example 2.1.2. Let Ω be an open proper subset of Rd. For r > 0 and x ∈ Ω, let

B̃r(x) = Br(x) ∩ Ω, where Br(x) denotes the Euclidean open ball centred at x with

radius r. Let B̃ = {B̃r(x) : x ∈ Ω, r > 0} and µ be the Lebesgue measure. This family

B̃ arises in the study of Hardy spaces on open sets in Rd (see [18, 19]).

Example 2.1.3. Another important example of such a family arises naturally in the

Dirichlet and Neumann problems for the Laplacian on Lipschitz domains [68, 69]. Let

Ω be a bounded Lipschitz domain in Rd and ∂Ω be its boundary. Define the family of

sets K = {Br(x)
⋂
∂Ω : x ∈ ∂Ω, r > 0} and let µ be the Lebesgue measure dσ on ∂Ω.

2.2 Results on the Maximal Operator ME

2.2.1 Mixed Ap − A∞ Bound for ME

In this section first we recall some basic notions related to the maximal function ME

and the theory of Muckenhoupt weights associated with the family E of general sets

developed in [28]. Then we state our result on two-weight estimate for the operator

ME that generalizes Theorem 1.1.3 on spaces of homogeneous type.

The maximal operator ME associated with the family E on X is defined by

MEf(x) = sup
Er(x)∈E

1

µ(Er(x))

∫
Er(x)

|f(y)| dµ(y), x ∈ X. (2.2.1)

The Muckenhoupt weights can also be defined analogously in this setting. Let 1 < p <

∞. A nonnegative locally integrable function w on X is said to be in the weight class
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Ap,E if

[w]Ap,E = sup
E∈E

( 1

µ(E)

∫
E
w(x) dµ(x)

)( 1

µ(E)

∫
E
w(x)

− 1
p−1 dµ(x)

)p−1
<∞.

The A∞,E constant of w is defined by

[w]A∞,E = sup
E∈E

1

w(E)

∫
E
ME(wχE)(x) dµ(x),

where w(E) =
∫
E w(x) dµ(x).

Observe that if E is the set of all balls (or cubes with sides parallel to the coordinate

axes) and µ is the Lebesgue measure on Rd, then the Ap,E weights are the usual

Muckenhoupt Ap weights.

In [28], the authors obtained the following characterization of weighted strong type

(p, p) properties for the maximal operator ME.

Theorem 2.2.1. Let 1 < p <∞. Then w ∈ Ap,E if and only if the maximal operator

ME satisfies the strong type (p, p) inequality

‖MEf‖Lp(X,w) ≤ C‖f‖Lp(X,w), f ∈ Lp(X,w),

for some constant C > 0.

Here Lp(X,w) denotes the space of p-integrable functions on X with respect to the

measure w(x) dµ(x).

Inspired by the work of Hytönen, Pérez and Rela, as mentioned in Chapter 1, we

study the quantitative aspect of the constant C, i.e., the dependence of the operator

norm of the operator ME in terms of mixed characteristics of the underlying weight

w ∈ Ap,E. We obtain sharp quantitative norm estimates of ME in the spirit of Theo-

rem 1.1.3, and our result is the following.

Theorem 2.2.2. Let ME be the maximal operator as defined in (2.2.1) and w ∈ Ap,E,

1 < p <∞. Then there exists a constant C > 0 such that

‖MEf‖Lp(X,w) ≤ C
(

[w]Ap,E [σ]A∞,E

) 1
p ‖f‖Lp(X,w) for all f ∈ Lp(X,w). (2.2.2)

Here we denote by σ := w
− 1
p−1 the dual weight of w.
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Some words are in order regarding the proof of this result.

We will exploit the flexibility in the approach provided by Hytönen, Pérez and Rela

in [62]. However, we would like to remark that one of the main difficulties arising in our

setup is the lack of geometry. We work directly with our basic assumptions (A)–(G).

We also refer the reader to [94] for a variant of Theorem 1.1.3 on a locally compact

abelian group having a covering family as defined in [32].

In [28], the authors have proved the well-known open property of Ap weights: if

w ∈ Ap for some p > 1, then w also belongs to Ap−δ for some δ > 0. In order to prove

Theorem 2.2.2, we need some quantitative information about δ. To achieve this, we

prove the following sharp version of reverse Hölder inequality for weights in A∞,E class

with a precise quantitative expression for the exponent. The price we pay for this is

that the inequality is in a weak form.

Theorem 2.2.3 (Sharp weak reverse Hölder inequality). If w ∈ A∞,E, then

1

µ(E)

∫
E
w1+ε dµ ≤ 4Cµθ

2α
( 1

µ(Ê)

∫
Ê
w dµ

)1+ε
for all E ∈ E,

where ε = 1
2[w]A∞,EC−1 and C = 2(2Cµ)44αθ8α.

The constant α that appears above is defined in (2.4.1). The above estimate is a

weaker version of reverse Hölder inequality in the sense that the set on the right of

the inequality is an enlargement of the set on the left. The set Ê is defined in (2.4.6).

In case of spaces of homogeneous type, it is a dilation of E. As an application of

Theorem 2.2.3, we appropriately quantify the δ associated with the open property of

Ap weights. Finally, using this precise open property of Ap weights, together with an

interpolation type argument, we obtain the desired mixed bound in (2.2.2).

In Section 2.5, we give the proofs of the results described in this section.

2.2.2 Endpoint Fefferman–Stein Inequality for ME

In this section we state our result on the generalization of the endpoint Fefferman–

Stein weighted inequality (1.1.9) to the present setting. Prior to stating our results,

we indicate below some difficulties we encounter in our setting.



2.2. Results on the Maximal Operator ME 19

There are many different proofs of Fefferman–Stein weighted inequality available in

the literature in the standard case of Rd. In the original paper [36], the authors first

proved the inequality (1.1.9) for the dyadic maximal operator Md. Then a pointwise

inequality connecting Md with the truncated maximal operators allows them to obtain

the inequality (1.1.9) for the truncated maximal operators by a simple application of

Minkowski’s integral inequality. Finally, using the monotone convergence theorem,

they extended those inequalities for the ordinary maximal operator.

There is another proof in [43]. The essence of their proof is based on the following

observation. At each level λ > 0, the set {x ∈ Rd : Mf(x) > λ} can be covered by a

countable union of dilated dyadic cubes with some control on the average of f on those

dyadic cubes. By reprising the classical argument for proving the inequality (1.1.3) as

mentioned in [106], this proof avoids the use of dyadic cubes. However, it relies on the

Vitali covering lemma and regularity of the Lebesgue measure.

In our situation, we lack the concept of dyadic cubes and we do not assume any

regularity on the measure µ, although we have Vitali type covering lemma at our

disposal in our setup. Consequently, it seems difficult to adapt the above approaches

to our setting to obtain an analogue of (1.1.9). To overcome this problem, we prove

the following covering lemma in our setup.

Lemma 2.2.4. Let F = {Erα(xα) : xα ∈ X,α ∈ Λ} be a family in E and Σ =⋃
α∈ΛErα(xα) such that µ(Σ) < ∞. Then there exists a disjoint countable subfamily

{Eri(xi)} ⊂ F satisfying the property: for any Erα(xα) ∈ F , there is an Eri(xi) such

that Erα(xα) ⊂ Eθ3ri(xi), where θ is the constant given in condition (F).

As an application of this lemma, we shall derive an analogue of (1.1.9) in our setting

as follows.

Theorem 2.2.5. There exists a constant C > 0 such that

w({x ∈ X : MEf(x) > λ}) ≤ C

λ

∫
X
|f(x)|Mw(x) dµ(x) (2.2.3)

for all measurable functions f and w on X.
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The Lp version of the endpoint Fefferman–Stein estimate (2.2.3) is the following

inequality. Let 1 < p <∞. Then

∫
X
MEf(x)pw(x) dµ(x) ≤ Cp

∫
X
|f(x)|pMEw(x) dµ(x) (2.2.4)

for all measurable functions f and w on X. This estimate is a simple consequence of

the fact

‖MEf‖L∞(X,w) ≤ C‖f‖L∞(X,MEw)

combined with (2.2.3) and Marcinkiewicz interpolation theorem.

We shall prove all the results that we have presented in this section in Section 2.5.

2.2.3 Vector-Valued Inequalities for ME

Our result on the generalization of Theorem 1.1.6 to the present setting is the following.

We will prove this result in Section 2.5.

Theorem 2.2.6. Suppose 1 < p, q < ∞. Let f = {fi}i be a sequence of measurable

functions on X. Then, we have the strong type (p, p) inequality

∫
X

(∑
i

MEfi(x)q
)p/q

dµ(x) ≤ C
∫
X

(∑
i

|fi(x)|q
)p/q

dµ(x).

Moreover, we have the weak type (1, 1) inequality

µ
({
x ∈ X :

(∑
i

MEfi(x)q
)1/q

> λ
})
≤ C

λ

∫
X

(∑
i

|fi(x)|q
)1/q

dµ(x).

2.3 Notation

Throughout this chapter, we use the following notation. For 1 ≤ p ≤ ∞, p′ denotes the

conjugate exponent of p defined by the condition 1
p + 1

p′ = 1. For a measurable subset

S of X and a measurable function f on X, we will use the notation f(S) =
∫
S f dµ.

We will also write fS to denote the µ-average of f over S, i.e.,

fS =
1

µ(S)

∫
S
f(x) dµ(x).
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For 1 ≤ p < ∞, the spaces Lp(X) and Lp(X,w) denote the p-integrable functions

on X with respect to the measures µ and w(x) dµ(x), respectively.

For a measurable function f on a measure space (X,µ), the distribution function

of f is the function df defined on [0,∞) as

df (λ) = µ({x ∈ X : |f(x)| > λ}).

The set {x ∈ X : |f(x)| > λ} will be called the distribution set of f and will be denoted

by Df (λ). That is,

Df (λ) = {x ∈ X : |f(x)| > λ}.

For any p > 0, the weak Lp space Lp,∞(X,µ) is defined as the set of all µ-measurable

functions f on X such that

‖f‖Lp,∞ = inf
λ>0
{λ df (λ)

1
p } <∞. (2.3.1)

In many occasions, we will need to evaluate the Lp-norm of a function precisely.

The following formula, which computes the Lp-norm of f in terms of its distribution

set Df (·), is very helpful and will be used several times.

Let (X,µ) be a σ-finite measure space. Then for all p > 0, we have

∫
X
|f(x)|p dµ(x) =

∫ ∞
0

pλp−1µ(Df (λ)) dλ

=

∫ ∞
0

pλp−1µ({x ∈ X : |f(x)| > λ}) dλ. (2.3.2)

2.4 Basics on the Family E of General Sets

Let X be a topological space equipped with a nonnegative Borel measure µ. Let

E = {Er(x) : r > 0, x ∈ X} be a family of open subsets of X, where x is an interior

point of Er(x). We assume that E and µ satisfy the conditions (A)–(G) described in

Section 2.1.
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It is easy to verify that there exists α > 1 such that for all a > 1, we have

µ(Ear(x)) ≤ 2Cµa
αµ(Er(x)), x ∈ X, r > 0. (2.4.1)

Indeed, since a > 1 and Cµ > 1, we can find nonnegative integers j and k such

that 2j < a ≤ 2j+1 and 2k < Cµ ≤ 2k+1. Using property (C) and the doubling

condition (2.1.2), we get

µ(Ear(x)) ≤ µ(E2j+1r(x)) ≤ Cj+1
µ µ(Er(x))

≤ 2(j+1)(k+1)µ(Er(x)) ≤ 2Cµa
αµ(Er(x)),

where α = log2Cµ + 1 > 1 is independent of a.

We shall make use of the following Vitali type covering lemma several times in this

chapter.

Lemma 2.4.1 (Lemma 2.2, [28]). For 0 < r0 <∞, X0 ⊂ X, let

F = {Er(x) ∈ E : 0 < r ≤ r0, x ∈ X0}.

Then there exists a disjoint countable subfamily {Eri(xi) : i ∈ J} ⊂ F satisfying the

following property: for any Er(x) ∈ F , there exists an Eri(xi) such that Er(x) ⊂

E4θ4ri(xi).

Remark 2.4.2. Note that in Lemma 2.4.1, there is a restriction on the choices of

Er(x) in terms of r. However, in Lemma 2.2.4 there is no restriction on r but on the

measure of the union of sets Er(x). This assumption enables us to get better covering

of sets Er(x) in terms of the dilations of Eri(xi)s.

An immediate consequence of this lemma is the Lp-mapping properties of ME which

are also extensions of the inequalities (1.1.2) and (1.1.3) in this setup. More precisely,

we have the following theorem.

Theorem 2.4.3 (Theorem 2.4, [28]). Let ME be the maximal operator on X associated

with the family E defined in (2.2.1). Then

(a) ME is bounded from L1(X) to L1,∞(X);
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(b) ME is bounded on Lp(X) for 1 < p ≤ ∞.

As a corollary of the above maximal theorem, we have the Lebesgue differentiation

theorem. We will need this important theorem later, so we state here for easy reference.

Corollary 2.4.4. Let f be a locally integrable function on X. Then

lim
r→0

1

µ(Er(x))

∫
Er(x)

f(y) dµ(y) = f(x) for a.e.x ∈ X,

where Er(x) ∈ E.

In [28], the authors developed an analogue of the classical theory of Ap weights for

the family E of open subsets in X with the underlying measure µ as above. In partic-

ular, they proved that the class of weights for which the operator ME acts boundedly

from Lp(X,w) to weak Lp(X,w) is precisely the Muckennhoupt Ap,E class, 1 ≤ p <∞.

However, no information was given regarding the weak norm of ME in terms of the

Ap,E characteristic of the weight w. In the sequel, we will need a quantitative estimate

of the operator norm of ME. Therefore, we now state this requirement in a precise

form and prove it by modifying the argument given in [28]. The estimate we need is

the following.

Lemma 2.4.5. Let 1 < p <∞ and w ∈ Ap,E. Then the maximal operator ME satisfies

the following weak type (p, p) inequality

w({x ∈ X : MEf(x) > λ}) ≤ (2Cµ(4θ4)α)p

λp
[w]Ap,E‖f‖

p
Lp(X,w), λ > 0. (2.4.2)

Proof. Let λ > 0 and f ∈ Lp(X,w) be given. By a simple application of Hölder’s

inequality, it is easy to check that f is locally integrable and therefore MEf makes

sense. Let r0 > 0 be fixed and define the following truncated (uncentred) maximal

operator M̃E,r0 by

M̃E,r0f(x) = sup
x∈Er(z)∈E

r≤r0

1

µ(Er(z))

∫
Er(z)

|f(y)| dµ(y). (2.4.3)

We consider the corresponding distribution set

D
M̃E,r0f

(λ) = {x ∈ X : M̃E,r0f(x) > λ}.
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Then it is easy to see that the family {D
M̃E,r0f

(λ) : r0 > 0} is increasing in r0 and its

limit is DMEf (λ) = {x ∈ X : MEf(x) > λ}. Therefore, in order to establish (2.4.2), it

will be enough to prove that the inequality

w(D
M̃E,r0f

(λ)) ≤ C

λp
[w]Ap,E‖f‖

p
Lp(X,w) (2.4.4)

holds, where the constant C is independent of r0 and λ.

First of all, we note that

D
M̃E,r0f

(λ) ⊆
⋃

Er(z)∈F

Er(z),

where the family F ⊂ E and for any Er(z) ∈ F and r ≤ r0, we have 1
µ(Er(z))

∫
Er(z)

|f | dµ >

λ. Thus, by Lemma 2.4.1, there exists a countable disjoint family {Eri(xi)}i in F such

that D
M̃E,r0f

(λ) ⊆
⋃
iE4θ4ri(xi) and

1

µ(Eri(xi))

∫
Eri (xi)

|f | dµ > λ for all i.

Using these facts along with (2.4.1), we obtain

λpw(D
M̃E,r0f

(λ))

≤
∑
i

λpw(E4θ4ri(xi))

≤
∑
i

w(E4θ4ri(xi))
( 2Cµ(4θ4)α

µ(E4θ4ri(xi))

∫
Eri (xi)

|f(y)| dµ(y)
)p
. (2.4.5)

Now we estimate each term in this sum. By Hölder’s inequality and the Ap,E condition,

we get

w(E4θ4ri(xi))

µ(E4θ4ri(xi))
p

(∫
Eri (xi)

|f(y)| dµ(y)
)p

≤
w(E4θ4ri(xi))

µ(E4θ4ri(xi))
p

(∫
Eri (xi)

|f |pw dµ
)(∫

E4θ4ri
(xi)

w1−p′ dµ
)p−1

=
( 1

µ(E4θ4ri(xi))

∫
E4θ4ri

(xi)
w dµ

)
×
( 1

µ(E4θ4ri(xi))

∫
E4θ4ri

(xi)
w1−p′ dµ

)p−1
∫
Eri (xi)

|f |pw dµ
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≤ [w]Ap,E

∫
Eri (xi)

|f |pw dµ.

Substituting in (2.4.5) and using the fact that {Eri(xi)}i is a disjoint family, we get

our desired inequality

w(D
M̃E,r0f

(λ)) ≤ (2Cµ(4θ4)α)p

λp
[w]Ap,E‖f‖

p
Lp(X,w).

This proves (2.4.4) and the proof of the lemma is complete.

We will also need the following Calderón–Zygmund decomposition of an integrable

function. For a proof, we refer to [29].

Lemma 2.4.6 (Calderón–Zygmund decomposition). Let f ∈ L1(X) and λ > 0. There

exists a countable collection of pairwise disjoint open sets {Eri(xi) : i ∈ J} such that

(a) λ < 1
µ(Eri (xi))

∫
Eri (xi)

|f | dµ ≤ 2Cµθ
αλ for all i ∈ J ,

(b)
∑

i∈J µ(Eri(xi)) ≤
‖f‖1
λ ,

(c) |f(x)| ≤ λ if x 6∈
⋃
i∈J Eri(xi).

To prove the sharp reverse Hölder inequality, we need to enlarge the sets Er(x). We

first define this concept of enlargement and study some basic properties.

Let E = Er0(x0) be a fixed open set in E. Define

BE = {Er(y) : y ∈ E, r ≤ r0}

and

Ê =
⋃

Er(y)∈BE

Er(y). (2.4.6)

Lemma 2.4.7. Let E = Er0(x0) be a fixed open set in E.

(a) If F ∈ BE, then F ⊂ Eθr0(x0).

(b) For any z ∈ E, we have Ê ⊂ Eθ2r0(z). This implies

µ(Ê) ≤ µ(Eθ2r0(z)) ≤ 2Cµθ
2αµ(Er0(z)).
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Proof. (a) If F ∈ BE , then F = Er(x) for some x ∈ Er0(x0) and r ≤ r0. Hence,

x ∈ Er0(x) ∩ Er0(x0) so that Er0(x) ⊂ Eθr0(x0), by property (F′). Therefore, F =

Er(x) ⊂ Er0(x) ⊂ Eθr0(x0).

(b) Let F ∈ BE so that F = Er(x), x ∈ Er0(x0), r ≤ r0. By (a), F = Er(x) ⊂

Eθr0(x0). Now, if z ∈ Er0(x0), then z ∈ Eθr0(x0). Also, z ∈ Eθr0(z). Therefore,

z ∈ Eθr0(x0) ∩ Eθr0(z). Hence, Eθr0(x0) ⊂ Eθ2r0(z). Thus, F = Er(x) ⊂ Eθr0(x0) ⊂

Eθ2r0(z). This shows that Ê ⊂ Eθ2r0(z). The last assertion follows from (2.4.1).

Given a fixed open set E = Er0(x0) in E, we define the local maximal function

relative to E as follows:

MEf(y) =


sup

F∈Ê,y∈F

1
µ(F )

∫
F |f(z)| dµ(z), if y ∈ Ê,

0, otherwise.

Note that by Lebesgue differentiation theorem (Corollary 2.4.4), it follows that

|f(y)| ≤MEf(y) for a.e. y ∈ E. (2.4.7)

We consider the distribution set at level λ > 0 for the local maximal function of a

weight w:

DMEw(λ) = {x ∈ Ê : MEw(x) > λ}. (2.4.8)

The next result contains a key decomposition of DMEw(λ) of Calderón–Zygmund type.

We shall make use of it several times in the sequel.

Lemma 2.4.8. Let E = Er0(x0) be a fixed open set in E and w be a nonnegative

integrable function with support in Ê. For λ > w
Ê

, define DMEw(λ) as above. Then,

there exists a countable family of pairwise disjoint open sets {Eri(xi) : i ∈ J} from BE

such that

(i)
⋃
i∈J Eri(xi) ⊂ DMEw(λ) ⊂

⋃
i∈J E4θ4ri(xi),

(ii) λ < 1
µ(Eri (xi))

∫
Eri (xi)

w dµ ≤ 2Cµθ
αλ for all i ∈ J ,

(iii) ri ≤ r0 for all i ∈ J ,
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(iv) if r > ri for some i, then 1
µ(Er(xi))

∫
Er(xi)

w dµ ≤ 2Cµθ
αλ.

Proof. The proof is based on Lemma 2.4.1 and inequality (2.4.1), the doubling property

of µ. For x ∈ DMEw(λ), define

Rx = sup{r : there exists F = Er(y) with x ∈ F and
1

µ(F )

∫
F
w dµ > λ}.

Note that Rx < ∞ as r ≤ r0. So, for each x ∈ DMEw(λ), there exists rx > 0 and

yx ∈ Er0(x0) such that

1

µ(Erx(yx))

∫
Erx (yx)

w dµ > λ and rx ≤ Rx < θrx.

Observe that

DMEw(λ) ⊆
⋃

x∈DMEw(λ)

Erx(yx) and rx ≤ r0 for all x.

Therefore, by Lemma 2.4.1, there exists a countable set J and a collection of pairwise

disjoint open sets {Erxi (yxi) : i ∈ J} such that DMEw(λ) ⊆
⋃
i∈J E4θ4rxi

(yxi). To

simplify notation, we write rxi by ri, Rxi by Ri, and yxi by xi.

Note that (i) is trivial since each Eri(xi) is contained in DMEw(λ). To prove (ii),

observe that by (2.4.1), we get

λ <
1

µ(Eri(xi))

∫
Eri (xi)

w dµ

≤ µ(Eθri(xi))

µ(Eri(xi))
· 1

µ(Eθri(xi))

∫
Eθri (xi)

w dµ ≤ 2Cµθ
αλ.

Part (iii) is obvious. Finally, if r > ri for some i, then θr > θri > Ri. Hence, again

by (2.4.1),

1

µ(Er(xi))

∫
Er(xi)

w dµ =
µ(Eθr(xi))

µ(Er(xi))
· 1

µ(Eθr(xi))

∫
Eri (xi)

w dµ

≤ 2Cµθ
α 1

µ(Eθr(xi))

∫
Eθr(xi)

w dµ

≤ 2Cµθ
αλ.

This proves (iv).
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The next result is a continuation of the above lemma where we present a localization

argument for the local maximal function. The corresponding result for the dyadic case

in Rd is a direct consequence of the maximality of the cubes in the Calderón–Zygmund

decomposition. Preserving the notation of Lemma 2.4.8, we have the following.

Lemma 2.4.9. Let E = Er0(x0) be a fixed open set in X and L = (2Cµθ
α)3. If

x ∈ E4θ4ri(xi) ∩ DMEw(Lλ), then MEw(x) ≤ME(wχE4θ5ri
(xi))(x).

Proof. Let x ∈ E4θ4ri(xi) ∩ DMEw(Lλ). Then, there exists F = Er(y), y ∈ E and

x ∈ Er(y) with r ≤ r0 such that 1
µ(F )

∫
F w dµ > Lλ. Thus, x ∈ Er(y) ∩ E4θ4ri(xi).

We claim that r ≤ 4θ4ri. Once the claim is proved, we have x ∈ E4θ4ri(y) ∩

E4θ4ri(xi). Hence, F = Er(y) ⊂ E4θ4ri(y) ⊂ E4θ5ri(xi), by property (F′). Then, by the

definition of ME , we have

1

µ(F )

∫
F
w dµ =

1

µ(F )

∫
F
wχE4θ5ri

(xi) dµ ≤ME

(
wχE4θ5ri

(xi)

)
(x).

Therefore, MEw(x) ≤ME

(
wχE4θ5ri

(xi)

)
(x).

We now prove the claim. If possible, let r > 4θ4ri. Since x ∈ Er(xi) ∩Er(y), using

property (F′), we have Er(xi) ⊂ Eθr(y) and Er(y) ⊂ Eθr(xi). Hence,

µ(Eθr(xi))

µ(Er(y))
≤ 2Cµθ

αµ(Er(xi))

µ(Er(y))
≤ 2Cµθ

αµ(Eθr(y))

µ(Er(y))
≤ (2Cµθ

α)2.

Furthermore, by Lemma 2.4.8 (iv), we have

1

µ(Eθr(xi))

∫
Eθr(xi)

w dµ ≤ 2Cµθ
αλ,

since θr > r > 4θ4ri > ri. So we conclude that

1

µ(F )

∫
F
w dµ =

1

µ(Er(y))

∫
Er(y)

w dµ

≤ µ(Eθr(xi))

µ(Er(y))
· 1

µ(Eθr(xi))

∫
Eθr(xi)

w dµ

≤ (2Cµθ
α)2 1

µ(Eθr(xi))

∫
Eθr(xi)

w dµ

≤ (2Cµθ
α)2(2Cµθ

α)λ

= Lλ,



2.5. Proofs of the Main Results 29

which is a contradiction. This finishes the proof of the lemma.

2.5 Proofs of the Main Results

2.5.1 Sharp Weak Reverse Hölder Inequality

Proof of Theorem 2.2.3. We want to prove that if w ∈ A∞,E, then for all E ∈ E, we

have
1

µ(E)

∫
E
w1+ε dµ ≤ 4Cµθ

2α
( 1

µ(Ê)

∫
Ê
w dµ

)1+ε
, (2.5.1)

where ε = 1
2[w]A∞,EC−1 and C = 2(2Cµ)4θ8α4α.

Let E = Er0(x0) ∈ E be a fixed open set. We begin by reducing the above inequality

to a self-improving property of the maximal operator ME when restricted to A∞,E

weights. Using (2.4.7), we obtain

∫
E
w1+ε dµ ≤

∫
E

(MEw)εw dµ ≤
∫
Ê

(MEw)εw dµ.

Let DMEw(λ) be defined as in (2.4.8). Using (2.3.2), we write the last integral as

∫
Ê

(MEw)εw dµ =

∫ ∞
0

ελε−1w(DMEw(λ)) dλ

=

∫ w
Ê

0
ελε−1w(DMEw(λ)) dλ+

∫ ∞
w
Ê

ελε−1w(DMEw(λ)) dλ

≤ w(Ê)(w
Ê

)ε +

∫ ∞
w
Ê

ελε−1w(DMEw(λ)) dλ. (2.5.2)

Now, in order to estimate the second term of (2.5.2), we apply Calderón–Zygmund

decomposition of DMEw(λ) for each λ > w
Ê

(see Lemma 2.4.8) and obtain a countable

family of pairwise disjoint open sets {Eri(xi)}i such that DMEw(λ) ⊆
⋃
iE4θ4ri(xi).

Moreover,

1

µ(E4θ4ri(xi))

∫
E4θ4ri

(xi)
w(y) dµ(y) ≤ 2Cµθ

αλ for all i.

That is,

w(E4θ4ri(xi)) ≤ 2Cµθ
αλµ(E4θ4ri(xi)).
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Therefore, using the doubling property (2.4.1), we have

∫ ∞
w
Ê

ελε−1w(DMEw(λ)) dλ ≤
∫ ∞
w
Ê

ελε−1
∑
i

w(E4θ4ri(xi)) dλ

≤ 2Cµθ
α

∫ ∞
w
Ê

ελε
∑
i

µ(E4θ4ri(xi)) dλ

≤ 2Cµθ
α · 2Cµ(4θ4)α

∫ ∞
w
Ê

ελε
∑
i

µ(Eri(xi)) dλ

≤ (2Cµ)24αθ5α

∫ ∞
0

ελεµ(DMEw(λ)) dλ

= (2Cµ)24αθ5α ε

ε+ 1

∫
Ê

(MEw)1+ε dµ.

The last line follows since

∫
Ê

(MEw)ε+1 dµ =

∫ ∞
0

(ε+ 1)λεµ(DMEw(λ)) dλ.

Substituting this estimate in (2.5.2) and taking average over E, we get

1

µ(E)

∫
E
w1+ε dµ

≤ 1

µ(E)
w(Ê)(w

Ê
)ε + (2Cµ)24αθ5α ε

ε+ 1
· 1

µ(E)

∫
Ê

(MEw)1+ε dµ

≤ (w
Ê

)1+ε2Cµθ
2α + (2Cµ)24αθ5α ε

ε+ 1
· 2Cµθ2α 1

µ(Ê)

∫
Ê

(MEw)1+ε dµ,

where in the last inequality, we have used Lemma 2.4.7 (b).

We turn now to the estimation of the integral in the second term of the last in-

equality. We intend to show that

1

µ(Ê)

∫
Ê

(MEw)1+ε dµ ≤ 2[w]A∞,E

( 1

µ(Ê)

∫
Ê
w dµ

)1+ε
(2.5.3)

for any ε ≤ 1
2C[w]A∞,E−1 , where C = 2(2Cµ)44αθ8α.

If this inequality is proved, then by a simple computation, we obtain

1

µ(E)

∫
E
w1+ε dµ ≤ 4Cµθ

2α
( 1

µ(Ê)

∫
Ê
w dµ

)1+ε
,

which is precisely (2.5.1). So the proof of the theorem will be complete once we

establish (2.5.3) and we now proceed to do so.
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By the definition of the local maximal function MEw of w, we may assume that

the weight w is supported on Ê. Again, we consider the distribution set DMEw(λ) as

above and using (2.3.2), we write

∫
Ê

(MEw)1+ε dµ

=

∫ ∞
0

ελε−1MEw(DMEw(λ)) dλ

=

∫ w
Ê

0
ελε−1MEw(DMEw(λ)) dλ+

∫ ∞
w
Ê

ελε−1MEw(DMEw(λ)) dλ. (2.5.4)

Now, we estimate each integral separately. The first integral is relatively easier to

handle. Indeed, an application of Lemma 2.4.7, combined with the definition of A∞,E

constant, yields

∫ w
Ê

0
ελε−1MEw(DMEw(λ)) dλ ≤

(∫ w
Ê

0
ελε−1 dλ

)
MEw(Ê)

= (w
Ê

)ε
∫
Ê
MEw(x) dµ(x)

≤ (w
Ê

)ε
∫
Eθ2r0

(y)
ME(wχEθ2r0 (y))(x) dµ(x)

≤ (w
Ê

)ε[w]A∞,Ew(Ê), (2.5.5)

where in the second last inequality y ∈ E.

We now estimate the second integral. Apply the Calderón–Zygmund decomposition

of DMEw(λ) for each λ > w
Ê

to obtain a collection of pairwise disjoint open sets

{Eri(xi)} satisfying conditions (i) to (iv) of Lemma 2.4.8. In order to simplify notation,

we write Ei = E4θ4ri(xi) and decompose Ei as Ei = E1
i ∪ E2

i , where

E1
i = Ei ∩ DMEw(Lλ) and E2

i = Ei \ DMEw(Lλ).

Recall that L = (2Cµθ
α)3. So, in our new notation, DMEw(λ) ⊆

⋃
iEi and thus we

have

MEw(DMEw(λ)) ≤
∑
i

MEw(Ei).

Now, we proceed to estimate each MEw(Ei). We have

MEw(Ei) =

∫
E1
i

MEw dµ+

∫
E2
i

MEw dµ
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≤
∫
E1
i

ME(wχE4θ5ri
(xi)) dµ+ Lλµ(E2

i )

≤ [w]A∞,Ew(E4θ5ri(xi)) + Lλµ(E4θ5ri(xi))

=
(

[w]A∞,EwE4θ5ri
(xi) + Lλ

)
µ(E4θ5ri(xi)),

where we have used Lemma 2.4.9 in the first inequality and the definition of A∞,E

constant in the second inequality.

Now if r > ri, then by Lemma 2.4.8, wEr(xi) = 1
µ(Er(xi))

∫
Er(xi)

w dµ ≤ 2Cµθ
αλ.

Taking this fact into account and using the doubling condition (2.4.1), we obtain

MEw(Ei) ≤
(

[w]A∞,E2Cµθ
αλ+ Lλ

)
2Cµ(4θ5)αµ(Eri(xi))

≤
(

[w]A∞,E(2Cµθ
α)3 + (2Cµθ

α)3
)
λ2Cµ(4θ5)αµ(Eri(xi))

≤ [w]A∞,EλCµ(Eri(xi)),

where C = 2(2Cµ)44αθ8α. Adding these inequalities, we get

MEw(DMEw(λ)) ≤
∑
i

MEw(Ei)

≤ [w]A∞,EλC
∑
i

µ(Eri(xi))

≤ λC[w]A∞,Eµ(DMEw(λ)).

Thus, the second integral in (2.5.4) is bounded by

∫ ∞
w
Ê

ελε−1MEw(DMEw(λ)) dλ ≤ C[w]A∞,E

∫ ∞
w
Ê

ελεµ(DMEw(λ)) dλ

≤ C[w]A∞,E

∫ ∞
0

ελεµ(DMEw(λ)) dλ

= C[w]A∞,E
ε

ε+ 1

∫
Ê

(MEw)1+ε dµ. (2.5.6)

Now, we put together the estimates (2.5.5) and (2.5.6) in (2.5.4) and get

∫
Ê

(MEw)1+ε dµ ≤ (w
Ê

)ε[w]A∞,Ew(Ê) + C[w]A∞,E
ε

ε+ 1

∫
Ê

(MEw)1+ε dµ.

Finally, taking average over Ê, we have

(
1− [w]A∞,EC

ε

ε+ 1

) 1

µ(Ê)

∫
Ê

(MEw)1+ε dµ ≤ (w
Ê

)1+ε[w]A∞,E .
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Note that 1 − C[w]A∞,E
ε
ε+1 ≥

1
2 if and only if ε ≤ 1

2[w]A∞,EC−1 . In particular, if we

choose ε = 1
2[w]A∞,EC−1 , where C = 2(2Cµ)44αθ8α, then

1

µ(Ê)

∫
Ê

(MEw)1+ε dµ ≤ 2[w]A∞,E

( 1

µ(Ê)

∫
Ê
w dµ

)1+ε
.

Thus, (2.5.3) holds and the proof of Theorem 2.2.3 is complete.

2.5.2 Open Property of Ap,E Weights

We denote r(w) = 1 + ε, where ε is as above. Explicitly,

r(w) = 1 +
1

2[w]A∞,EC − 1
, where C = 2(2Cµ)44αθ8α.

An immediate consequence of Theorem 2.2.3 is the following quantitative open

property of the Ap,E weights.

Corollary 2.5.1 (Open property of Ap,E weights). Let 1 < p <∞ and w ∈ Ap,E. Let

σ = w1−p′ be the dual weight of w. Put δ = p−1
(r(σ))′ . Then, w ∈ Ap−δ,E and

[w]Ap−δ,E ≤ (2Cµθ
2α)p(4Cµθ

2α)
p−1
r(σ) [w]Ap,E . (2.5.7)

Proof. We use the same classical ideas as in the Euclidean case. For the above choice

of δ = p−1
(r(σ))′ , we have 1 − (p − δ)′ = (1 − p′)r(σ) and r(σ) = p−1

p−δ−1 . Applying the

sharp weak reverse Hölder inequality for the weight σ, we have

( 1

µ(E)

∫
E
w1−(p−δ)′ dµ

)p−δ−1
=

( 1

µ(E)

∫
E
w(1−p′)r(σ) dµ

) p−1
r(σ)

=
( 1

µ(E)

∫
E
σr(σ) dµ

) p−1
r(σ)

≤
(

(4Cµθ
2α)

1
r(σ)

1

µ(Ê)

∫
Ê
σ dµ

)p−1

for any E ∈ E.
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Let E = Er0(x0) be a fixed open set in E. By Lemma 2.4.7, we have Ê ⊂ Eθ2r0(z).

Hence, by the doubling property of µ, we have

( 1

µ(E)

∫
E
w dµ

)
·
( 1

µ(E)

∫
E
w1−(p−δ)′ dµ

)p−δ−1

≤
( 1

µ(E)

∫
E
w dµ

)
·
(

(4Cµθ
2α)

1
r(σ)

1

µ(Ê)

∫
Ê
σ dµ

)p−1

≤ 2Cµθ
2α
( 1

µ(Eθ2r0(x0))

∫
Eθ2r0

(x0)
w dµ

)
×
(

(4Cµθ
2α)

1
r(σ) 2Cµθ

2α 1

µ(Eθ2r0(x0))

∫
Eθ2r0

(x0)
w1−p′ dµ

)p−1

≤ (2Cµθ
2α)p(4Cµθ

2α)
p−1
r(σ) [w]Ap,E .

In other words, [w]Ap−δ,E ≤ (2Cµθ
2α)p(4Cµθ

2α)
p−1
r(σ) [w]Ap,E .

2.5.3 Sharp Mixed Bound for the Maximal Operator

Proof of Theorem 2.2.2. Let f ∈ Lp(X,w) be given. As we mentioned earlier, the idea

behind the proof of (2.2.2) is to use an interpolation type argument. To do so, we need

a suitable truncation of f , namely ft = fχ|f |>t, t > 0. Then, a simple computation

shows that

{x ∈ X : MEf(x) > 2t} ⊂ {x ∈ X : MEft(x) > t}. (2.5.8)

Let us estimate the Lp(X,w)-norm of MEf . First of all, by (2.5.8), we write

‖MEf‖pLp(X,w) =

∫ ∞
0

ptp−1w({x ∈ X : MEf(x) > t}) dt

= 2p
∫ ∞

0
ptp−1w({x ∈ X : MEf(x) > 2t}) dt

≤ 2p
∫ ∞

0
ptp−1w({x ∈ X : MEft(x) > t}) dt.

We will now use the tools that we have developed earlier. Let w ∈ Ap,E. By Corol-

lary 2.5.1, we have w ∈ Ap−δ,E, where δ = p−1
(r(σ))′ . Therefore, by Lemma 2.4.5

and (2.5.7), we obtain

‖MEf‖pLp(X,w) ≤ 2pp

∫ ∞
0

tp−1
[w]Ap−δ,E
tp−δ

(2Cµ(4θ4)α)p−δ
∫
X
|ft|p−δw dµdt

≤ 2pp

∫ ∞
0

tδ−1(2Cµθ
2α)p(4Cµθ

2α)
p−1
r(σ) [w]Ap,E
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×(2Cµ(4θ4)α)p−δ
∫
X
|ft|p−δw dµdt

≤ 2pp(2Cµθ
2α)p(4Cµθ

2α)
p−1
r(σ) [w]Ap,E

×(2Cµ(4θ4)α)p
∫ ∞

0
tδ−1

∫
X
|ft|p−δw dµdt

= A[w]Ap,E

∫ ∞
0

tδ−1

∫
X
|ft|p−δw dµdt

≤
A[w]Ap,E

δ

∫
X
|f |pw dµ,

whereA = 2pp(2Cµθ
2α)p(4Cµθ

2α)
p−1
r(σ) (2Cµ(4θ4)α)p. Also note that r(σ) = 1+ 1

2[σ]A∞,EC−1 ,

where C = 2(2Cµ)44αθ8α. Hence,

δ =
p− 1

(r(σ))′
=

p− 1

2[σ]A∞,EC
.

With δ as above, we obtain

‖MEf‖pLp(X,w) ≤ 2AC
[σ]A∞,E [w]Ap,E

p− 1

∫
X
|f |pw dµ.

From this we conclude that

‖MEf‖Lp(X,w) ≤ C
(

[w]Ap,E [σ]A∞,E

) 1
p ‖f‖Lp(X,w).

This completes the proof of the theorem.

2.5.4 Endpoint Fefferman–Stein Weighted Inequality

A crucial ingredient to prove the endpoint Fefferman–Stein weighted inequality is the

covering lemma outlined in Lemma 2.2.4. We first prove this result.

Proof of Lemma 2.2.4. The idea is to use a sort of inductive type argument.

Step I. We start by picking an open set Er0,1(x0,1) ∈ F such that

2µ(Er0,1(x0,1)) > sup
α∈Λ

µ(Erα(xα)).
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Define the sets F1 and R1 as follows:

F1 = {Er(x) ∈ F : Eθ2r(x) ∩ Er0,1(x0,1) 6= ∅}

and

R1 = {r : Er(x) ∈ F1}.

It is obvious that Er0,1(x0,1) ∈ F1. We claim that supR1 < ∞. Suppose on the

contrary supR1 = ∞. Then, we can find a sequence {rj} such that rj → ∞ as

j →∞ with the property that Erj (xj) ∈ F1 and Eθ2rj (xj) ∩ Er0,1(x0,1) 6= ∅. Without

loss, we can assume that θ2rj > r0,1 for all j. Since Er0,1(x0,1) ⊂ Eθ2rj (x0,1), we

have Eθ2rj (xj) ∩ Eθ2rj (x0,1) 6= ∅. By property (F′), Eθ2rj (x0,1) ⊂ Eθ3rj (xj) for all j.

Applying (2.4.1), we see that

µ(Eθ2rj (x0,1)) ≤ µ(Eθ3rj (xj)) ≤ 2Cµθ
3αµ(Erj (xj)) ≤ 2Cµθ

3αµ(Σ).

Since µ(Eθ2rj (x0,1)) → ∞ as j → ∞, this would mean that µ(Σ) = ∞. This is a

contradiction and hence the claim is proved. Therefore, we can choose Er1(x1) ∈ F1

such that θr1 > supR1.

We further claim that if Er(x) ∈ F1 such that Er(x) ∩ Er1(x1) 6= ∅, then Er(x) ⊂

Eθ3r1(x1). To prove this claim, we first observe that for any such Er(x), we have

r ≤ θ2r1. This is for the following reason. Suppose there is an r such that r > θ2r1.

Since Er0,1(x0,1) ∈ F1, by the definition of R1, we have θr1 > r0,1 so that r > θ2r1 >

θr1 > r0,1. Also, by the choice of Er1(x1), we have Er0,1(x0,1) ∩ Eθ2r1(x1) 6= ∅. Let y

be a point in their intersection. Then, by property (F′),

Er0,1(x0,1) ⊂ Eθr0,1(y) ⊂ Eθ2r1(y) ⊂ Eθ3r1(x1) ⊂ Eθr(x1).

On the other hand, by our hypothesis Er(x) ∩ Er1(x1) 6= ∅. This implies Eθr(x) ∩

Eθr(x1) 6= ∅. Hence, Eθr(x1) ⊂ Eθ2r(x) by property (F′). Thus, Er0,1(x0,1) ⊂ Eθ2r(x).

In particular, Er0,1(x0,1)∩Eθ2r(x) 6= ∅. This implies that r ∈ R1 so that r ≤ supR1 <

θr1 < θ2r1. This is a contradiction.

So we have proved that if Er(x) ∈ F1 such that Er(x) ∩ Er1(x1) 6= ∅, then r ≤

θ2r1. Consequently Eθ2r1(x) ∩ Eθ2r1(x1) 6= ∅. Therefore, by property (F′), Er(x) ⊂
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Eθ2r1(x) ⊂ Eθ3r1(x1). Thus, the second claim is also proved.

Step II. Let

F̃2 = {Er(x) ∈ F : Er(x) ∩ Er1(x1) = ∅}.

We choose Er0,2(x0,2) ∈ F̃2 such that

2µ(Er0,2(x0,2)) > sup
Er(x)∈F̃2

µ(Er(x)).

Let

F2 = {Er(x) ∈ F̃2 : Eθ2r(x) ∩ Er0,2(x0,2) 6= ∅}

and

R2 = {r : Er(x) ∈ F2}.

Proceeding as in Step I, we have supR2 < ∞ and hence we can choose Er2(x2) ∈ F2

such that θr2 > supR2. Furthermore, if Er(x) ∈ F2 such that Er(x) ∩ Er2(x2) 6= ∅,

then Er(x) ⊂ Eθ3r2(x2).

Step III. We continue as above. If the process stops after J steps, then {Eri(xi) :

i = 1, 2, . . . , J} is the required collection. Otherwise, this process generates a countable

collection of disjoint open sets {Eri(xi) : i = 1, 2, . . . }. Now, we show that if Er(x) ∈ F ,

then it intersects with at least one Eri(xi). This will complete the proof of the lemma.

If this is not the case, then Er(x) ∩ Eri(xi) = ∅ for all i. This means that Er(x) ∈ F̃i

for every i. Therefore,

2µ(Er0,i(x0,i)) > µ(Er(x)) for all i.

Also, since Eθ2r0,i(x0,i) ∩ Er0,i(x0,i) 6= ∅, by the definition of supRi, it follows that

r0,i < θri.

On the other hand, by the choice of Eri(xi), the condition Eθ2ri(xi)∩Er0,i(x0,i) 6= ∅

implies that Eθ2ri(xi) ∩ Eθ2ri(x0,i) 6= ∅. Then it follows that Eθ2ri(x0,i) ⊂ Eθ3ri(xi).

Therefore,

Er0,i(x0,i) ⊂ Eθri(x0,i) ⊂ Eθ2ri(x0,i) ⊂ Eθ3ri(xi).



38 Chapter 2. Inequalities for the Maximal Operator Associated with General Sets

Summarizing these, we obtain

0 < µ
(
Er(x)

)
< 2µ

(
Er0,i(x0,i)

)
≤ 2µ

(
Eθ3ri(xi)

)
≤ 2 · 2Cµθ3αµ

(
Eri(xi)

)
.

Since {Eri(xi)}i is a pairwise disjoint collection, this will imply that µ(Σ) = ∞, a

contradiction. Hence, we conclude that every Er(x) in F intersects at least one Eri(xi)

and in that case Er(x) ⊆ Eθ3ri(xi). This completes the proof of the lemma.

We are now ready to prove the endpoint Fefferman–Stein weighted inequality.

Proof of Theorem 2.2.5. Let f be a locally integrable function on X and λ > 0 be

given. We want to show that

w({x ∈ X : MEf(x) > λ}) ≤ C
∫
X
|f(x)|MEw(x) dµ(x), (2.5.9)

where C is independent of f and λ.

Let DMEf (λ) = {x ∈ X : MEf(x) > λ} be the distribution set of MEf at the level

λ. Fix an arbitrary element x0 in X. For n ∈ N, let fn be the function obtained by

restricting f to the set En(x0), i.e., fn = f ·χEn(x0). We also consider the corresponding

distribution set DMEfn(λ) = {x ∈ X : MEfn(x) > λ}. We clearly have that the family

DMEfn(λ) is increasing in n and moreover, DMEf (λ) =
⋃
nDMEfn(λ). This suggests

that we may compute the value of w(DMEf (λ)) as limit of w(DMEfn(λ)) as n→∞.

So let n be fixed and x ∈ DMEfn(λ). Then there exists an open set Es(z) ∈ E

containing x such that

1

µ
(
Es(z)

) ∫
Es(z)

|fn(y)| dµ(y) > λ.

The last inequality also shows that Es(z) ⊆ DMEfn(λ) and thus DMEfn(λ) may be

written as a union of open sets from E. Further, by the weak (1, 1) property of

ME (Theorem 2.4.3), we have µ(DMEfn(λ)) < ∞. Hence, by Lemma 2.2.4, there

exists a countable family of pairwise disjoint open sets {Eri(xi)}i such that

DMEfn(λ) ⊆
⋃
i

Eθ3ri(xi). (2.5.10)
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Moreover,
1

µ
(
Eri(xi)

) ∫
Eri (xi)

|fn(x)| dµ(x) > λ for all i. (2.5.11)

Therefore, using (2.5.10), (2.5.11) and (2.4.1), we obtain

w
(
DMEfn(λ)

)
≤

∑
i

w
(
Eθ3ri(xi)

)
=

∑
i

µ
(
Eθ3ri(xi)

)
· 1

µ
(
Eθ3ri(xi)

) ∫
Eθ3ri

(xi)
w dµ

≤ 2Cµθ
3α
∑
i

( 1

λ

∫
Eri (xi)

|fn| dµ
) 1

µ
(
Eθ3ri(xi)

) ∫
Eθ3ri

(xi)
w dµ

=
2Cµθ

3α

λ

∑
i

{∫
Eri (xi)

|fn|
( 1

µ
(
Eθ3ri(xi)

) ∫
Eθ3ri

(xi)
w dµ

)
dµ
}

≤ 2Cµθ
3α

λ

∑
i

∫
Eri (xi)

|fn(x)|MEw(x) dµ(x)

≤ 2Cµθ
3α

λ

∫
X
|fn(x)|MEw(x) dµ(x)

≤ 2Cµθ
3α

λ

∫
X
|f(x)|MEw(x) dµ(x).

We observe that the last expression is independent of x0 and n. Hence, we conclude

that

w
(
DMEf (λ)

)
≤ 2Cµθ

3α

λ

∫
X
|f(x)|MEw(x) dµ(x)

for all λ > 0.

Remark 2.5.2. Strictly speaking, we have proved Fefferman–Stein weighted inequality

for the case µ(X) =∞ since the covering Lemma 2.2.4 is valid only under this assump-

tion. However, the assertion of Theorem 2.2.5 is still true for the case µ(X) <∞. In

this case, we use the covering Lemma 2.4.1 instead of Lemma 2.2.4 and replace the

assumptions 0 < r <∞ and 0 < µ(Er(x)) <∞ by 0 < r < µ(X) and 0 < µ(Er(x)) <

µ(X) respectively. Then, the argument presented here for the proof of (2.5.9) will go

through for this case as well.
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2.5.5 Vector-Valued Inequalities

Proof of Theorem 2.2.6. We use the following notation. If f = (f1, f2, . . . ) is a se-

quence of functions on X, then MEf = (MEf1,MEf2, . . . ) and

‖f(x)‖`q =
(∑

i

|fi(x)|q
) 1
q , 1 < q <∞.

We shall follow the same basic ideas as the arguments presented in [36]. If p = q > 1,

then the proof is straightforward and therefore we omit the details. We will need this

result for the proof of the case p = 1. Thus, for all q > 1, there is a constant Aq such

that ∫
X
‖MEf(x)‖q`q dµ(x) ≤ Aq

∫
X
‖f(x)‖q`q dµ(x). (2.5.12)

For the case p = 1, we proceed as follows. Let f = (f1, f2, . . . ) be such that the

integral of ‖f(x)‖`q is finite and λ > 0 be given. We want to prove

µ
({
x ∈ X : ‖MEf(x)‖`q > λ

})
≤ Cq

λ

∫
X
‖f(x)‖`q dµ(x), (2.5.13)

where Cq is independent of f and λ.

We apply Calderón–Zygmund decomposition (Lemma 2.4.8) to the function (
∑

i |fi|q)1/q

to obtain a countable collection of pairwise disjoint open sets {Erj (xj) : j ∈ J} such

that

(a) λ < 1
µ(Erj (xj))

∫
Erj (xj)

‖f(x)‖`q dµ(x) ≤ 2Cµθ
αλ for all j ∈ J ,

(b)
∑

j∈J µ(Erj (xj)) ≤ 1
λ

∫
X ‖f(x)‖`q dµ(x),

(c) ‖f(x)‖`q ≤ λ, if x 6∈
⋃
j∈J Erj (xj).

Let Ω =
⋃
j Erj (xj). We shall use the open sets Erj (xj) to decompose the function f

into two parts as follows. For each i, define f1,i = fi ·χΩ on X. Setting f2,i = fi− f1,i,

we obtain a decomposition f = f1 + f2, where

f1 = (f1,1, f1,2, f1,3, . . . ) and f2 = (f2,1, f2,2, f2,3, . . . ).
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Observe that f2 is supported outside of Ω, ‖f2(x)‖`q ≤ λ for a.e.x, and ‖f2(x)‖`q ≤

‖f(x)‖`q . Using these facts and (2.5.12), we obtain

λqµ
({
x ∈ X : ‖MEf

2(x)‖`q > λ
})

≤ q

∫ λ

0
µ
({
x ∈ X : ‖MEf

2(x)‖`q > t
})
tq−1 dt

≤
∫ ∞

0
µ
({
x ∈ X : ‖MEf

2(x)‖q`q > s
})
ds

=

∫
X
‖MEf

2(x)‖q`q dµ(x)

≤ Aq

∫
X
‖f2(x)‖q`q dµ(x)

≤ λq−1Aq

∫
X

(∑
i

|f2,i(x)|q
) 1
q
dµ(x)

≤ λq−1Aq

∫
X
‖f(x)‖`q dµ(x).

Hence,

µ
({
x ∈ X : ‖MEf

2(x)‖`q > λ
})
≤ Aq

λ

∫
X
‖f(x)‖`q dµ(x). (2.5.14)

Also, by Minkowski’s inequality, we have

‖MEf(x)‖`q ≤ ‖MEf
1(x)‖`q + ‖MEf

2(x)‖`q .

So, in view of the estimate (2.5.14), it follows that inequality (2.5.13) will be proved

once we prove that

µ
({
x ∈ X : ‖MEf

1(x)‖`q > λ
})
≤ Aq

λ

∫
X
‖f(x)‖`q dµ(x). (2.5.15)

Now we further reduce the above inequality to simpler inequalities. We split the

distribution set of ‖MEf
1(·)‖`q as follows. Set Ω̃ =

⋃
j∈J Ẽrj (xj), where Ẽrj (xj) =

Eθrj (xj). Then

µ
({
x ∈ X : ‖MEf

1(x)‖`q > λ
})

≤ µ(Ω̃) + µ
({
x ∈ X \ Ω̃ : ‖MEf

1(x)‖`q > λ
})
.
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The first term is easily controlled by (2.4.1) and (b):

µ(Ω̃) ≤
∑
j∈J

µ(Ẽrj (xj))

≤ 2Cµθ
α
∑
j∈J

µ(Erj (xj))

≤ 2Cµθ
α

λ

∫
X
‖f(x)‖`q dµ(x).

Taking the above estimate into account, we see that proving (2.5.15) reduces to showing

that

µ
({
x ∈ X \ Ω̃ : ‖MEf

1(x)‖`q > λ
})
≤ C

λ

∫
X
‖f(x)‖`q dµ(x). (2.5.16)

Let us define

f̃i(x) =


1

µ
(
Erj (xj)

) ∫
Erj (xj)

|fi(y)| dµ(y), if x ∈ Erj (xj),

0, otherwise.

Then, the function ‖f̃(·)‖`q =
(∑

i |f̃i(·)|q
)1/q

is supported on Ω and is bounded by

2Cµθ
α. By a similar computation as above, we obtain

µ
({
x ∈ X : ‖MEf̃(x)‖`q > λ

})
≤ Aq(2Cµθ

α)q

λ

∫
X
‖f(x)‖`q dµ(x).

Therefore, in order to prove (2.5.16), it is enough to show that

MEf1,i(x) ≤ CMEf̃i(x) for a.e. x ∈ X \ Ω̃ and for all i. (2.5.17)

This is not hard to prove. Indeed, let x ∈ X \ Ω̃. Consider an open set Er(y) ∈ E

such that x ∈ Er(y) and 1

µ
(
Er(y)

) ∫
Er(y) |f1,i(z)| dµ(z) > 0. Now, we compute the

average of f1,i over Er(y). We have

1

µ
(
Er(y)

) ∫
Er(y)

|f1,i(z)| dµ(z)

=
1

µ
(
Er(y)

) ∑
j∈J

Er(y)∩Erj (xj)6=∅

∫
Er(y)∩Erj (xj)

|f1,i(z)| dµ(z)
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≤ 1

µ
(
Er(y)

) ∑
j∈J

Er(y)∩Erj (xj)6=∅

∫
Erj (xj)

|f1,i(z)| dµ(z)

=
1

µ
(
Er(y)

) ∑
j∈J

Er(y)∩Erj (xj)6=∅

∫
Erj (xj)

|f̃i(z)| dµ(z).

If j ∈ J is such that Er(y) ∩ Erj (xj) 6= ∅, then we claim that rj ≤ r. Suppose

r < rj . Then, Erj (y) ∩ Erj (xj) 6= ∅ so that Erj (y) ⊂ Eθrj (xj) by property (F′). This

would mean that x ∈ Er(y) ⊂ Erj (y) ⊂ Eθrj (xj) ⊂ Ω̃, a contradiction. Therefore,

Er(y) ∩ Erj (xj) 6= ∅ implies that Erj (xj) ⊂ Er(xj) ⊂ Eθr(y). Using this fact in the

last integral, we get

1

µ
(
Er(y)

) ∫
Er(y)

|f1,i(z)| dµ(z) ≤ 1

µ
(
Er(y)

) ∫
Eθr(y)

|f̃i(z)| dµ(z)

≤ 2Cµθ
α

µ
(
Eθr(y)

) ∫
Eθr(y)

|f̃i(z)| dµ(z)

≤ 2Cµθ
αMEf̃i(x).

Taking supremum over all such Er(y), we see that (2.5.17) holds. But the proof

of (2.5.13) was reduced to this inequality. Hence, we have proved the theorem for the

case p = 1.

For the exponent 1 < p < q, we use Marcinkiewicz interpolation theorem. We

interpolate between the estimates in p = 1 and p = q to conclude that

∫
X
‖MEf(x)‖p`q dµ(x) ≤ Aq

∫
X
‖f(x)‖p`q dµ(x), 1 < p < q.

For the remaining values of the exponent p, namely for 1 < q < p < ∞, we

use the duality argument presented in [36]. A careful reading of the proof reveals

that the arguments given there only use Hölder’s inequality, Hahn–Banach theorem

and an analogue of the inequality (2.2.4) as the main ingredients. Therefore, a similar

argument gives us the strong type (p, p) inequality for this case as well. This completes

the proof of the theorem.





Chapter 3

Weighted Norm Inequalities for

Fourier Series and Applications

In this chapter we focus on the weighted norm inequalities for Fourier series in the

context of the ring of integers D of a local field K and some important applications.

We establish weighted estimates for the maximal partial sum operator M of Fourier

series on the weighted spaces Lp(D, w), 1 < p < ∞, where w is a Muckenhoupt Ap

weight. As a consequence of this result, we obtain the uniform boundedness of the

Fourier partial sum operators Sn, n ∈ N, on Lp(D, w). Both these results include the

cases when D is the ring of integers of the p-adic field Qp and the field Fq((X)) of formal

Laurent series over a finite field Fq, and in particular, when D is the Walsh–Paley or

dyadic group 2ω.

We present several applications of these results. In a local field K of positive char-

acteristic, we show that for a function ϕ ∈ L2(K), its collection of discrete translates

forms a Schauder basis for its closed linear span if and only if the periodization of

|ϕ̂|2 is an A2 weight on D. Using the uniform boundedness of {Sn : n ∈ N}, we also

characterize the Schauder basis property of the Gabor systems in a local field K of

positive characteristic K in terms of A2 weights on D×D and the Zak transform Zg

of the window function g that generates the Gabor system. More precisely, we show

that the Gabor system generated by g is a Schauder basis for L2(K) if and only if

|Zg|2 is an A2 weight on D × D. Some examples are given to illustrate this result.

45
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Furthermore, we construct a Gabor system which is complete and minimal, but fails

to be a Schauder basis for L2(K).

3.1 Basics on Fourier Analysis on Local Fields

Here we first present some basic facts about local fields K and then recall some results

on Fourier series of functions defined on the ring of integers D of K. Many of these

facts are well-known and can be found, for example, in the books [109] and [96].

Moreover, we describe some results from the weighted theory of maximal functions on

local fields [20, 94] which are needed to prove our results.

3.1.1 Local Fields

Let K be a field and a topological space. Then K is called a locally compact field or a

local field if both K+ and K∗ are locally compact abelian groups, where K+ and K∗

denote the additive and multiplicative groups of K respectively.

If K is any field and is endowed with the discrete topology, then K is a locally

compact field. Further, if K is connected, then K is either R or C. If K is not

connected, then it is totally disconnected. So, by a local field, we mean a field K

which is locally compact, non-discrete and totally disconnected. We use the notation

of the book by Taibleson [109].

Let K be a local field. Since K+ is a locally compact abelian group, we choose a

Haar measure dx for K+. If α ∈ K and α 6= 0, then d(αx) is also a Haar measure. By

the uniqueness of the Haar measure, d(αx) = c dx for some c > 0. Let c = |α|. We call

|α| the absolute value or the valuation of α. We also let |0| = 0.

The map x→ |x| has the following properties:

(a) |x| = 0 if and only if x = 0;

(b) |xy| = |x||y| for all x, y ∈ K;

(c) |x+ y| ≤ max{|x|, |y|} for all x, y ∈ K.
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Property (c) is called the ultrametric inequality. It follows that

|x+ y| = max{|x|, |y|} if |x| 6= |y|. (3.1.1)

The set D = {x ∈ K : |x| ≤ 1} is called the ring of integers in K. It is the unique

maximal compact subring of K. Define P = {x ∈ K : |x| < 1}. The set P is called

the prime ideal in K and it is the unique maximal ideal in D.

Since K is totally disconnected, the set of values |x|, as x varies over K, is a discrete

set of the form {sk : k ∈ Z} ∪ {0} for some s > 0. Hence, there is an element of P

of maximal absolute value. Let p be a fixed element of maximum absolute value in

P. Such an element is called a prime element of K. It can be proved that D is

compact and open. Hence, P is compact and open. Therefore, the residue space D/P

is isomorphic to a finite field GF (q), where q = pc for some prime p and c ∈ N. For a

proof of this fact, we refer to [109].

For a measurable subset E of K, let |E| =
∫
K 1E(x) dx, where 1E is the character-

istic function of E and dx is the Haar measure of K normalized so that |D| = 1. Then,

it is easy to see that |P| = q−1 and |p| = q−1 (see [109]). It follows that if x 6= 0, and

x ∈ K, then |x| = qk for some k ∈ Z.

Let D∗ = D \ P = {x ∈ K : |x| = 1}. It is the group of units in K∗. Let

Pk = pkD = {x ∈ K : |x| ≤ q−k}, k ∈ Z. These are called fractional ideals. Each Pk

is compact and open and is a subgroup of K+ (see [96]). It follows that |Pk| = q−k

for k ∈ Z.

A character on locally compact abelian group G is a group homomorphism from

G into the circle group T. If K is a local field, then there is a nontrivial, unitary,

continuous character χ on K+. It can be proved that K+ is self dual (see [109]).

Let χ be a fixed character on K+ that is trivial on D but is nontrivial on P−1. We

can find such a character by starting with any nontrivial character and rescaling. For

y ∈ K, we define χy(x) = χ(yx), x ∈ K.

Let h ∈ K and k ∈ Z. A set B of the form h+ Pk will be called a ball with centre

h and radius q−k. It is easy to verify the following facts. For a proof, we refer to [109].

Proposition 3.1.1. (a) Every point of a ball is its centre.
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(b) If two balls intersect, then one contains the other.

(c) The number of balls in K is countable.

(d) If k < l, then Pk is a disjoint union of ql−k cosets of Pl.

For h ∈ K, the translation operator τh is defined by τhf(x) = f(x − h), whenever

f is a function on K. For k ∈ Z, let Φk = 1Pk . Note that the characteristic function

of the ball h+Pk is τhΦk = Φk(· − h). It follows from Proposition 3.1.1 (b) that τhΦk

is constant on cosets of Pk.

The space of all finite linear combinations of functions of the form τhΦk, h ∈ K,

k ∈ Z, will be denoted by S. The following two theorems describe the properties

of functions in S and their Fourier transforms. For proofs of these statements, see

Theorem 3.1 and Theorem 3.2, Chapter II in [109].

Theorem 3.1.2. The function g ∈ S if and only if there exist integers k and l such

that g is constant on cosets of Pk and is supported on Pl.

Theorem 3.1.3. If g ∈ S is constant on cosets of Pk and is supported on Pl, then

ĝ ∈ S is constant on cosets of P−l and is supported on P−k.

3.1.2 Fourier Series on the Compact Abelian Group D

Let χu be any character on K+. Since D is a subgroup of K+, the restriction χu|D is

a character on D. Also, as characters on D, χu = χv if and only if u− v ∈ D. That is,

χu = χv if u + D = v + D and χu 6= χv if (u + D) ∩ (v + D) = ∅. Let N0 = N ∪ {0}.

Hence, if {u(n) : n ∈ N0} is a complete list of distinct coset representative of D in K+,

then {χu(n) : n ∈ N0} is a list of distinct characters on D. It is proved in [109] that

this list is complete.

Proposition 3.1.4. Let {u(n) : n ∈ N0} be a complete list of coset representatives of

D in K+. Then {χu(n) : n ∈ N0} is a complete list of characters on D. Moreover, it

is an orthonormal basis for L2(D).

Given such a list of characters {χu(n) : n ∈ N0}, we define the Fourier coefficients

of f ∈ L1(D) as

f̂
(
u(n)

)
= 〈f, χu(n)〉 =

∫
D
f(x)χu(n)(x)dx, n ∈ N0.
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For N ∈ N, let SNf be the Nth partial sum of the Fourier series of f :

SNf(x) =

N−1∑
n=0

〈f, χu(n)〉χu(n)(x).

The series
∑∞

n=0〈f, χu(n)〉χu(n)(x) is called the Fourier series of f at x.

For brevity, we will now write χn = χu(n)|D for n ∈ N0. With this notation, we

have

SNf(x) =
N−1∑
n=0

〈f, χn〉χn(x). (3.1.2)

From the standard L2-theory for compact abelian groups, we conclude that the

Fourier series of f converges to f in L2(D) and Parseval’s identity holds:

∫
D
|f(x)|2 dx =

∑
n∈N0

|f̂
(
u(n)

)
|2.

Also, we have the uniqueness of the Fourier coefficients. That is, if f ∈ L1(D) and

f̂
(
u(n)

)
= 0 for all n ∈ N0, then f = 0 a.e.

We now proceed to construct a sequence {u(n) : n ∈ N0} which forms a complete

list of coset representatives of D in K+. Note that Γ = D/P is isomorphic to the finite

field GF (q) and GF (q) is a c-dimensional vector space over the field GF (p). We choose

a set {1 = ε0, ε1, ε2, . . . , εc−1} ⊂ D∗ such that span{εj : j = 0, 1, . . . , c − 1} ∼= GF (q).

For n ∈ N0 such that 0 ≤ n < q, we have

n = a0 + a1p+ · · ·+ ac−1p
c−1, 0 ≤ ak < p, k = 0, 1, . . . , c− 1.

Define

u(n) = (a0 + a1ε1 + · · ·+ ac−1εc−1)p−1. (3.1.3)

Note that {u(n) : n = 0, 1, . . . , q− 1} is a complete set of coset representatives of D in

P−1 so that we can write

P−1 =

q−1⋃
l=0

(
u(l) + D

)
. (3.1.4)
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Now, for n ≥ 0, write

n = b0 + b1q + b2q
2 + · · ·+ bsq

s, 0 ≤ bk < q, k = 0, 1, 2, . . . , s,

and define

u(n) = u(b0) + u(b1)p−1 + · · ·+ u(bs)p
−s. (3.1.5)

This defines u(n) for all n ∈ N0. In general, it is not true that u(m+n) = u(m)+u(n).

But it follows that

u(rqk + s) = u(r)p−k + u(s) if r ≥ 0, k ≥ 0 and 0 ≤ s < qk. (3.1.6)

In the following proposition we list some properties of Λ = {u(n) : n ∈ N0} which

will be used later. We refer to [4] for a proof.

Proposition 3.1.5. For n ∈ N0, let u(n) be defined as in (3.1.3) and (3.1.5). Then

(a) u(n) = 0 if and only if n = 0. If k ≥ 1, then |u(n)| = qk if and only if

qk−1 ≤ n < qk.

Moreover, if K is a local field of positive characteristic, then

(b) {u(k) : k ∈ N0} = {−u(k) : k ∈ N0};

(c) for a fixed l ∈ N0, we have {u(l) + u(k) : k ∈ N0} = {u(k) : k ∈ N0}.

In particular, Λ = {u(n) : n ∈ N0} is a subgroup of K+.

The Dirichlet kernels Dn, n ∈ N, are defined by

Dn(x) =

n−1∑
k=0

χk(x). (3.1.7)

We will need the following property of the Dirichlet kernels for some specific values

of n.

Lemma 3.1.6. For k ∈ N0, we have Dqk = qk1Pk .
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Proof. See Page 86 in [109].

Let f be a locally integrable function in K. We say that x ∈ K is a regular point

of f if

qk
∫
{y:|x−y|≤q−k}

f(y) dy =
1

|x+ Pk|

∫
x+Pk

f(y) dy → f(x) as k →∞.

The following result, called Lebesgue differentiation theorem, asserts that almost

every point of a locally integrable function is a regular point. We refer to [109] for a

proof of this theorem.

Theorem 3.1.7. If f is a locally integrable function in K, then almost every x ∈ K

is a regular point of f .

For f ∈ L1
loc(K), the Hardy–Littlewood maximal function Mf is defined by

Mf(x) = sup
k∈Z

1

|x+ Pk|

∫
x+Pk

|f(y)| dy, x ∈ K. (3.1.8)

For 1 < p <∞, let Lp(K,w) denote the space of p-integrable functions on K with

respect to the measure w(x) dx. Analogous to the Euclidean case, a weight w on K is

said to be a Muckenhoupt Ap weight if

sup
B

( 1

|B|

∫
B
w(x) dx

)( 1

|B|

∫
B
w(x)

− 1
p−1 dx

)p−1
<∞. (3.1.9)

Here the supremum is taken over all balls B in K. In this case we say that w ∈ Ap.

We also say that w ∈ A1 if there exists a constant C > 0 such that

Mw(x) ≤ Cw(x) for a.e.x ∈ K,

where M is the Hardy–Littlewood maximal operator defined in (3.1.8).

The weighted Lp-norm of any function f ∈ Lp(K,w) and the corresponding maximal

function Mf are comparable. For a proof of the following theorem, see [20] or [94].
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Theorem 3.1.8. Let M be the Hardy–Littlewood maximal operator on K and w ∈ Ap,

1 < p <∞. Then there exists a constant Cp > 0 such that

∫
K
Mf(x)pw(x) dx ≤ Cp

∫
K
|f(x)|pw(x) dx for all f ∈ LP (K,w).

We define a variant of the maximal operator by putting

Msf(x) =
(
M |f |s(x)

) 1
s , 1 < s <∞. (3.1.10)

Since |f |s ≤M |f |s, if follows that

|f | ≤ (M |f |s)
1
s = Msf. (3.1.11)

Finally, for f ∈ L1
loc(K), we introduce the Fefferman–Stein maximal function f ]

analogously as in Rn by setting

f ](x) = sup
k∈Z

1

|x+ Pk|

∫
x+Pk

|f(y)− fx+Pk | dy, x ∈ K,

where fB = 1
|B|
∫
B f(x) dx is the average of f over the ball B. We will also need the

following result which relates the weighted Lp-norm of the Hardy–Littlewood maximal

function Mf and the Fefferman–Stein maximal function f ].

Theorem 3.1.9. Let 1 < p < ∞ and w ∈ Ap. Then there exists a constant Cp > 0,

depending only on p and w, such that

∫
K
Mf(x)pw(x) dx ≤ Cp

∫
K
f ](x)

p
w(x) dx

for every f ∈ Lp(K,w).

We skip the proof of the above result as it can be proved by following the same

ideas as in the case of Euclidean spaces (see [43]).
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3.2 Weighted Norm Inequalities for Fourier Series

In this section we extend Theorem 1.2.1 to the present setting of the ring of integers

D of a general local field K. Consider the maximal operator M corresponding to the

Fourier partial sum operators {Sn : n ∈ N}:

Mf(x) = sup
n
|Snf(x)|, f ∈ L1(D).

Hunt and Taibleson [58] showed that the operator M is bounded on Lp(D) and

obtained the almost everywhere convergence of the Fourier series of functions in Lp(D)

for 1 < p < ∞. Here we are interested in a weighted version of their result. For

1 < p <∞, let Lp(D, w) denote the space of p-integrable functions on D with respect

to the measure w(x) dx.

Recall that Λ = {u(n) : n ∈ N0}. A function f on K is said to be Λ-periodic if

f(x + u(n)) = f(x) for all n ∈ N0 and a.e. x ∈ K. The main result of this section is

the following theorem.

Theorem 3.2.1. Let K be a local field, w be a Λ-periodic weight on K and 1 < p <∞.

If w ∈ Ap, then there exists a constant Cp > 0, depending only on w and p, such that

∫
D
Mf(x)pw(x) dx ≤ Cp

∫
D
|f(x)|pw(x) dx for all f ∈ Lp(D, w). (3.2.1)

Proof. Recall that the Dirichlet kernels Dn, n ∈ N, are defined by

Dn(x) =
n−1∑
k=0

χk(x).

Let Φ0 be the characteristic function of D. For functions on D, we treat them as

functions defined on K but supported on D. By this convention, we have Dn = Φ0Dn

and Snf = f ∗ Dn, where the integration that defines the convolution is over all of

K. In case of the Euclidean Fourier series, ordinary partial sums are studied in terms

of the modified partial sums after replacing the Dirichlet kernel by modified Dirichlet

kernel. The same program was also carried out by Taibleson’s development of Fourier

series in local fields (see [58, 108]). Following their footsteps, we define

D̃n = χnDn and S̃nf = D̃n ∗ f.
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The functions D̃n, n ∈ N, are called the modified Dirichlet kernels. If x ∈ D, then

Snf(x) =

∫
D
f(y)Dn(x− y) dy

= χn(x)

∫
D
f(y)χn(y)χn(x− y)Dn(x− y) dy

= χn(x)

∫
D

(
χnf

)
(y)D̃n(x− y) dy.

Therefore,

Snf = χn · S̃n(χnf). (3.2.2)

By our convention, D̃n = Φ0D̃n is the kernel of the operator S̃n. We denote this kernel

by kn. Note that kn is supported on D.

Define the associated maximal operator M∗ by

M∗f(x) = sup
n
|S̃nf(x)|, x ∈ D. (3.2.3)

Therefore, in order to prove Theorem 3.2.1, it suffices to show that there exists Cp > 0

such that ∫
D
M∗f(x)pw(x) dx ≤ Cp

∫
D
|f(x)|pw(x) dx (3.2.4)

for all f ∈ Lp(D, w).

It is proved in [58] (see also [109]) that M∗ is bounded on Lp(D). Using this

fact and the reverse Hölder inequality for Ap weights (see [20]), it is easy to see that

M∗f ∈ Lp(D, w). Since each S̃nf is supported on D, so is M∗f and hence M∗f also

lies in Lp(K,w).

We apply Theorem 3.1.8 and Lemma 3.1.9 to M∗f and obtain

‖M(M∗f)‖Lp(K,w) ≤ C‖M∗f‖Lp(K,w)

and

‖M(M∗f)‖Lp(K,w) ≤ C‖(M∗f)]‖Lp(K,w).
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These two inequalities, along with the fact that M∗f(x) ≤ M(M∗f)(x) for almost

every x, yield

∫
D
M∗f(x)pw(x) dx ≤ C

∫
K

(
(M∗f)](x)

)p
w(x) dx.

Finally, in order to estimate the last integral, we dominate (M∗f)] pointwise a.e. by

the function Mrf as follows.

Proposition 3.2.2. Let 1 < r <∞. There is a constant C > 0, depending only on r,

such that for any f ∈ Lr(D, w), we have

(M∗f)](x) ≤ CMrf(x) for a.e.x.

We postpone the proof of this proposition and continue with the proof of inequal-

ity (3.2.4). We recall an important property of the Ap weights (see [20]).

Lemma 3.2.3. Suppose 1 < p < ∞ and w ∈ Ap. Then there exists s with 1 < s < p

such that w ∈ As.

Taking the s obtained from Lemma 3.2.3, we choose r = p
s . Then p

r = s > 1 and

w ∈ A p
r
. Hence, by Proposition 3.2.2, we have

∫
D
M∗f(x)pw(x) dx ≤ C

∫
K

(
(M∗f)](x)

)p
w(x) dx

≤ Cr,p

∫
K
Mrf(x)pw(x) dx

= Cr,p

∫
K

(M |f |r(x))
p
rw(x) dx.

Since |f |r ∈ L
p
r (K,w) and w ∈ A p

r
, we apply Theorem 3.1.8 to obtain

∫
D
M∗f(x)pw(x) dx ≤ C

∫
D
|f(x)|pw(x) dx.

Hence, inequality (3.2.4) is proved.

Therefore, to complete the proof of Theorem 3.2.1, all that remains is to prove

Proposition 3.2.2.

We need the following lemmas. Recall that S is the space of all finite linear combi-

nations of functions of the form τhΦk, h ∈ K, k ∈ Z.
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Lemma 3.2.4. Let ϕ be a function in S. If ϕ is constant on cosets of Pk+1 in

Pk \ Pk+1 for all k ∈ Z, then ϕ̂ is constant on cosets of Pk+1 in Pk \ Pk+1 for all

k ∈ Z.

Proof. Observe that the property ϕ is constant on cosets of Pk+1 in Pk \Pk+1 for all

k ∈ Z is equivalent to the statement that ϕ(x+ y) = ϕ(x) whenever |x| > |y|.

Since ϕ ∈ S, there exists N ∈ N such that supp ϕ ⊆ P−N . By Theorem 3.1.3,

ϕ̂ is constant on cosets of PN . Hence, it is enough to prove the result for ϕ̂l, where

ϕl = ϕ ·1P−l\P−l+1 for all l ∈ Z. Fix l ∈ Z. Since ϕl is supported on P−l and constant

on cosets of P−l+1, by Theorem 3.1.3, ϕ̂l is supported on Pl−1 and constant on cosets

of Pl.

If |x| > q−l+1, then ϕ̂l(x) = 0. Then for each y with |y| < |x|, we have |x+ y| = |x|

so that ϕ̂l(x+y) = 0. Now, if |x| ≤ q−l+1 and |y| < |x|, then |y| ≤ q−l. Since x ∈ Pl−1,

we have x ∈ Pl + a for some a ∈ K. So Pl + a = B(x, q−l), by Proposition 3.1.1 (a).

Hence, |x + y − x| = |y| ≤ q−l so that x + y ∈ B(x, q−l) = Pl + a. This shows that

x+ y and x are in the same coset of Pl. Hence, ϕ̂l(x+ y) = ϕ̂l(x).

We derive an important property of the kernel kn which will be needed in the proof

of Proposition 3.2.2.

Lemma 3.2.5. Let y ∈ D such that |y| < 1. Then the functions τykn and kn agree at

x ∈ D if |y| < |x|.

Proof. We first write kn as follows:

kn = Φ0χnDn = Φ0χn

n−1∑
m=0

χm =
n−1∑
m=0

Φ0χu(m)−u(n).

Taking Fourier transform and observing that (Φ0χy)
∧ = τyΦ0, we get

k̂n =
n−1∑
m=0

τu(m)−u(n)Φ0 =
n−1∑
m=0

1D+u(m)−u(n).

That is, k̂n is the characteristic function of the union of n disjoint cosets

{D + u(m)− u(n) : m = 0, 1, . . . , n− 1} (3.2.5)
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of D. Let x, y ∈ D be such that |y| < |x|. Then from (3.1.1), we have |x+ y| = |x|.

We claim that k̂n(x + y) = k̂n(x). Once we prove this, it is easy to see that the

functions τykn and kn agree at x. Indeed, applying Lemma 3.2.4 to k̂n and observing

that
̂̂
kn is the reflection of kn, we get kn(x + y) = kn(x) whenever |y| < |x|. Hence,

τykn(x) = kn(x) whenever |y| < |x|.

Let us note that qk ≤ n ≤ qk+1− 1 for some k ∈ N0. Now we prove the claim. This

is equivalent to show that the union of the cosets in (3.2.5) either contains both x and

x+ y or neither. We will prove this by induction on k.

If k = 0, then 1 ≤ n ≤ q − 1. Hence, {D + u(m) − u(n) : m = 0, 1, . . . , n − 1}

consists of n distinct cosets of D in P−1, since u(m) 6= u(n) and |u(m) − u(n)| = q

for m = 0, 1, . . . , n − 1. If |x| ≤ 1, then |x + y| ≤ 1 so that both x + y and x are in

D and hence k̂n(x + y) = k̂n(x) = 0. Similarly, if |x| > q, then |x + y| > q and again

k̂n(x + y) = k̂n(x) = 0. If |x| = q, then |y| ≤ 1. Suppose x ∈ D + u(m) − u(n) for

some m = 0, 1, . . . , n− 1. Then D+u(m)−u(n) = B(x, 1). Now, |x+ y−x| = |y| ≤ 1

so that x + y ∈ B(x, 1). Hence, both x and x + y are in the same coset of D. So the

induction hypothesis is true for k = 0.

Now, assume that the assertion holds for n < qk. We will prove it for all n such

that qk ≤ n ≤ qk+1 − 1. We write

n = rqk + s, 1 ≤ r ≤ q − 1, 0 ≤ s ≤ qk − 1.

Then u(n) = u(rqk) + u(s), by (3.1.6). If 0 ≤ m ≤ rqk − 1, then

m = lqk + t, 0 ≤ l ≤ r − 1, 0 ≤ t ≤ qk − 1

so that u(m) = u(lqk) + u(t). Hence,

u(m)− u(n) =
(
u(lqk)− u(rqk)

)
+
(
u(t)− u(s)

)
.

If rqk ≤ m ≤ rqk + s − 1, then m = rqk + ν, 0 ≤ ν ≤ s − 1 and u(m) − u(n) =

u(rqk) + u(ν) − u(rqk) − u(s) = u(ν) − u(s). Therefore, the union of the cosets
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in (3.2.5) is the union of

r−1⋃
l=0

qk−1⋃
t=0

(
D + u(lqk)− u(rqk) + u(t)− u(s)

)
(3.2.6)

and
s−1⋃
ν=0

(
D + u(ν)− u(s)

)
. (3.2.7)

Since s < qk, the cosets in (3.2.7) satisfy the induction hypothesis. Hence, both x and

x + y belong to this union or neither does. For the cosets in (3.2.6), we observe that

|u(t)−u(s)| ≤ qk for t = 0, 1, . . . , qk−1 so that
⋃qk−1
t=0

(
D+u(t)−u(s)

)
= P−k. Hence,

the union in (3.2.6) is
r−1⋃
l=0

(
P−k + u(lqk)− u(rqk)

)
.

This is a union of r cosets of P−k in P−k−1 \P−k. If x is in any of these r cosets, then

|x| = qk+1 and if |y| < |x|, then |y| ≤ qk. As in the case of k = 0, it follows that x and

x+ y are in the same coset of P−k. The induction is complete.

We are now ready to prove Proposition 3.2.2. We begin with the observation that

1

2
‖f ]‖∞ ≤ sup

B
inf
α∈C

1

|B|

∫
B
|f(x)− α| dx. (3.2.8)

Indeed, first we note that, for all α ∈ C,

∫
B
|f(x)− fB| dx ≤

∫
B
|f(x)− α| dx+

∫
B
|α− fB| dx ≤ 2

∫
B
|f(x)− α| dx.

Dividing both sides by |B|, taking the infimum over α ∈ C and then supremum over

all balls B, we get (3.2.8).

Now, fix r > 1 and assume f ∈ Lr(D, w). Let x ∈ K and B be any ball containing

x. In view of (3.2.8), it is enough to show that there exists a constant α depending on

the ball B such that

1

|B|

∫
B
|M∗f(y)− α| dy ≤ CMrf(x). (3.2.9)
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By Proposition 3.1.1 (a), B = {y ∈ K : |y − x| < ql} for some l ∈ Z. We write

f1 = f · 1B and f2 = f − f1 and set α = M∗f2(x). Then for any y ∈ B,

|M∗f(y)−M∗f2(x)| =
∣∣∣sup
n
|S̃nf(y)| − sup

n
|S̃nf2(x)|

∣∣∣
≤ sup

n
|S̃nf(y)− S̃nf2(x)|

≤ sup
n
|S̃nf1(y)|+ sup

n
|S̃nf2(y)− S̃nf2(x)|

= M∗f1(y) + sup
n
|S̃nf2(y)− S̃nf2(x)|. (3.2.10)

For the first term of (3.2.10), we use Hölder’s inequality and the boundedness of M∗

on Lr(D) to get

1

|B|

∫
B
M∗f1(y) dy ≤ 1

ql−1

(∫
|y−x|<ql

M∗f1(y)r dy
) 1
r · (ql−1)

1
r′

≤ C

ql−1

(∫
|y−x|<ql

|f(y)|r dy
) 1
r · (ql−1)

1
r′

≤ CMrf(x).

Now, integrating the second term of (3.2.10) over the ball B, we get

1

|B|

∫
B

sup
n
|S̃nf2(y)− S̃nf2(x)| dy

=
1

ql−1

∫
|x−y|<ql

sup
n

∣∣∣∫
K

(
kn(y − z)− kn(x− z)

)
f2(z) dz

∣∣∣ dy
≤ 1

ql−1

∫
|x−y|≤ql−1

sup
n

∫
|x−z|≥ql

∣∣τx−ykn(x− z)− kn(x− z)
∣∣|f2(z)| dz dy.

Since |x− z| ≥ ql > ql−1 ≥ |x− y| and kn is supported on D, by Lemma 3.2.5, we

have τx−ykn(x− z) = kn(x− z). From this we conclude that the right hand side of the

above inequality is zero. Hence, (3.2.9) holds with α = M∗f2(x). This completes the

proof of Proposition 3.2.2, and hence, we have also proved Theorem 3.2.1.

Since |Snf(x)| is dominated by Mf(x) for all n ∈ N, an immediate consequence

of Theorem 3.2.1 is the uniform boundedness of the Fourier partial sum operators

Sn, n ∈ N, in the weighted spaces Lp(D, w).

Theorem 3.2.6. Let K be a local field, w be a Λ-periodic weight function on K and

1 < p < ∞. Then w ∈ Ap if and only if there is a positive constant Cp,w, depending
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only on w and p, such that for every f ∈ Lp(D, w),

∫
D
|Snf(x)|pw(x) dx ≤ Cp,w

∫
D
|f(x)|pw(x) dx (3.2.11)

for all n ∈ N. In other words, w ∈ Ap if and only if the Fourier partial sum operators

Sn, n ∈ N, are uniformly bounded on the weighted space Lp(D, w).

Proof. The proof of sufficiency part follows from Theorem 3.2.1. So, we only prove the

necessity part. First we observe that, it is enough to show that inequality (3.1.9) holds

for all balls B with |B| ≤ 1. In fact, let B be any ball with |B| > 1, then |B| = qk for

some k ≥ 1. Hence, by Proposition 3.1.1 (d), B can be written as a disjoint union of

qk cosets of D as B =
⋃qk

i=1(u(li) + D), where li ∈ N0. We observe that

1

|B|

∫
B
w(x) dx =

1

|B|

qk∑
i=1

∫
D
w(x) dx =

∫
D
w(x) dx,

since w is Λ-periodic. This reduces to the case when |B| = 1. Therefore, we assume

that |B| ≤ 1. Then, |B| = q−r for some r ∈ N0 and B ⊂ u(l)+D for some l ∈ N0. Let f

be a nonnegative function on B and 0 on
(
u(l)+D

)
\B. Extend f to K Λ-periodically.

Now, for any x ∈ B, we have B = x+ Pr. If y ∈ B, then y − x ∈ Pr. Using the fact

that Dqr = qr1Pr , r ≥ 0 (see Lemma 3.1.6), we get

Sqrf(x) =

∫
B
f(y)Dqr(x− y) dy =

∫
B
f(y)qr dy =

1

|B|

∫
B
f(y) dy.

Hence, by (3.2.11), we get

(∫
B
w(x) dx

)( 1

|B|

∫
B
f(y) dy

)p
≤ C

∫
B
|f(x)|pw(x) dx.

Then, by a standard argument as in page 247 in [59], it can be shown that w ∈ Ap.

We omit the details.

Remark 3.2.7. Few comments are in order regarding the method we have used to

prove the above results. Hunt and Young [60] proved the boundedness of the Fourier

maximal operator M on Lp(T, w) by verifying a Burkholder–Gundy [10] type distribu-

tion function inequality. This inequality relates the weighted distribution functions of

modified versions of Mf and the Hardy–Littlewood maximal function of f . Following



3.3. Applications 61

their method, Gosselin obtained a similar result for Vilenkin–Fourier series in [45]. In

addition, the proof in [45] is based on a joint distribution inequality similar to those

in [11] and [21]. A Vilenkin group G is a direct product of cyclic groups of order pi,

where each pi is an integer greater than or equal to 2. In particular, if we take each

pi to be equal to a prime p, then G becomes the ring of integers of the p-series field

Fp((X)) which is a special case of a local field of positive characteristic. On the other

hand, the ring of integers of a p-adic field Qp is not a Vilenkin group and the fields Qp

are example of local fields of characteristic zero. It is therefore natural to look for an

analogue of the Hunt–Young result on the ring of integers of a local field which are not

included in Gosselin’s result. Our result (Theorem 3.2.1) is on the ring of integers D

of a general local field which, of course, includes Qp and Fp((X)) as special cases. The

Walsh–Paley or dyadic group 2ω can be identified with the additive group of the ring

of integers of the field F2((X)). Hence, our result is also valid for the Walsh–Paley

group. It is also applicable to the p-adic fields Qp which are not included in Gosselin’s

result. We would also like to remark that our approach is different from those of [60]

and [45] and hence it also gives another proof of the boundedness of M for the case of

Vilenkin groups which are products of cyclic groups of the same order p.

3.3 Applications

The purpose of this section is to exhibit several applications of Theorem 3.2.6 to the

theory of Schauder bases on shift-invariant spaces and to Gabor theory. We begin by

recalling the definition of Schauder bases and some other relevant notions.

Definition 3.3.1. A sequence {xk : k ∈ N0} of elements of a Banach space B is called

a Schauder basis for B if for every x ∈ B there exists a unique sequence {αk : k ∈ N0}

of scalars such that

x =
∑
k∈N0

αkxk,

where the partial sums of the series converge in the norm of B, that is,

lim
N→∞

∥∥∥x− N∑
k=0

αkxk

∥∥∥ = 0.
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Let {xn : n ∈ N0} be a sequence in a Hilbert space H. A sequence {x̃n : n ∈ N0} in

H is said to be biorthogonal to {xn : n ∈ N0} if 〈xk, x̃l〉 = δk,l for all k, l ∈ N0. It is easy

to verify that if {xn : n ∈ N0} is complete in H, that is, if span{xn : n ∈ N0} = H, then

there is a unique sequence {x̃n : n ∈ N0} ⊂ H which is biorthogonal to {xn : n ∈ N0}.

Such a sequence is called the biorthogonal dual of {xn : n ∈ N0}. Every Schauder basis

has a unique biorthogonal dual.

3.3.1 Schauder Bases on Shift-Invariant Spaces

Let K be a local field, Γ be a countable set in K, and ϕ ∈ L2(K). Define

V (ϕ,Γ) = span{ϕ(· − γ) : γ ∈ Γ},

the closure in L2(K) of the finite linear combinations of translates of ϕ by elements of

Γ.

Let us consider the following problem. When does the system of translates

{ϕ(· − γ) : γ ∈ Γ} form an orthonormal basis/Schauder basis for the space

V (ϕ,Γ)?

If K = Qp, the field of p-adic numbers, then we can answer this question using

Fuglede’s conjecture on Qp.

Theorem 3.3.2. A Borel set Ω of positive and finite Haar measure in Qp is a spectral

set if and only if it tiles Qp by translations.

We say that Ω tiles Qp by translations if there exists a set T ⊂ Qp such that∑
t∈T 1Ω(x− t) = 1 for a.e.x ∈ Qp, where 1Ω is the characteristic function of Ω. The

set Ω is said to be a spectral set if there exists a set S ⊂ Qp such that {χs : s ∈ S}

is an orthonormal basis for L2(Ω). Theorem 3.3.2 was recently proved by Fan, Fan,

Liao, and Shi [34]. Using this theorem we can prove the following result.

Theorem 3.3.3. Let Ω be a Borel set of positive and finite Haar measure in Qp. Let

ϕ ∈ L2(Qp) with supp ϕ̂ ⊆ Ω and |ϕ̂| = 1 on Ω a.e. If Ω tiles Qp by translations,

then there exists Γ ⊂ Qp such that {ϕ(· − γ) : γ ∈ Γ} forms an orthonormal basis for

V (ϕ,Γ). The converse is also true.
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Fuglede’s conjecture is still open for general local fields, in particular for local fields

of positive characteristic. Nevertheless, for the set Γ = {u(k) : k ∈ N0}, we characterize

the Schauder basis property of V (ϕ,Γ) in terms of A2 weights in D. This extends the

result from the real line obtained in [90].

Theorem 3.3.4. Let K be a local field of positive characteristic, Γ = {u(k) : k ∈ N0},

and ϕ ∈ L2(K). Then, the family {ϕ(· − u(k)) : k ∈ N0} is a Schauder basis for

V (ϕ,Γ) if and only if wϕ ∈ A2(D), where wϕ(ξ) =
∑∞

n=0 |ϕ̂(ξ + u(n))|2.

Note that wϕ is Λ-periodic. Indeed, by Proposition 3.1.5 (c), for l ∈ N0, we have

wϕ(ξ + u(l)) =
∑
k∈N0

|ϕ̂(ξ + u(l) + u(k))|2 =
∑
k∈N0

|ϕ̂(ξ + u(k))|2 = wϕ(ξ)

for a.e. ξ ∈ K. In order to prove this theorem, we need some preliminary results. For

Γ = {u(k) : k ∈ N0}, we write V (ϕ,Γ) as Vϕ. That is Vϕ = span{ϕ(·−u(k)) : k ∈ N0}.

Consider the map Jϕ : L2(D, wϕ) → Vϕ defined by Jϕf = (fϕ̂)∨, where f∨ is the

inverse Fourier transform of f . It can be shown that the map Jϕ is an isometry. For

a proof of this fact, we refer to [3]. Note that (Jϕχk)
∧ = χkϕ̂ = [ϕ(· − u(k))]∧ so that

Jϕ maps χk to ϕ(· − u(k)). Thus, various properties of {ϕ(· − u(k)) : k ∈ N0} on Vϕ

correspond to similar properties of the system {χk : k ∈ N0} on L2(D, wϕ). Therefore,

our original problem is equivalent to the problem of finding conditions on wϕ so that

{χk : k ∈ N0} forms a Schauder basis for L2(D, wϕ).

Let H = Vϕ. Suppose there exists ϕ̃ ∈ Vϕ such that 〈ϕ(· − u(k)), ϕ̃〉 = δk,0 for all

k ∈ N0. Now,

〈ϕ(· − u(k)), ϕ̃(· − u(l))〉 = 〈ϕ(· − (u(k)− u(l))), ϕ̃〉. (3.3.1)

If k = l, then the above inner product is equal to 〈ϕ, ϕ̃〉 = 1. If k 6= l, then 0 6=

u(k) − u(l) = u(m) for some m ∈ N0, by Proposition 3.1.5. Hence, m 6= 0. So, the

inner product is equal to δm,0 = 0. Thus, 〈ϕ(·−u(k)), ϕ̃(·−u(l))〉 = δk,l. That is, if there

exists ϕ̃ ∈ Vϕ such that 〈ϕ(·−u(k)), ϕ̃〉 = δk,0 for all k ∈ N0, then {ϕ̃(·−u(k)) : k ∈ N0}

is a biorthogonal dual of {ϕ(· − u(k)) : k ∈ N0}. The function ϕ̃ will then be called

the canonical dual function to ϕ. As above, if it exists, then it is unique. We will need

the following result. For a proof, we refer to [104] (see Theorem 4.1, Chapter 1).
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Lemma 3.3.5. A complete sequence {xn : n ∈ N0} with biorthogonal dual {x̃n : n ∈

N0} is a Schauder basis for H if and only if the partial sum operators

sn(x) =

n−1∑
k=0

〈x, x̃k〉xk, n ∈ N,

are uniformly bounded in H.

The following result provides a necessary and sufficient condition for the existence

of a canonical dual.

Proposition 3.3.6. Let ϕ ∈ L2(K). There exists a canonical dual ϕ̃ of ϕ in Vϕ if and

only if 1
wϕ
∈ L1(D). In this case, ϕ̃ = ( 1

wϕ
ϕ̂)∨.

Proof. Since the map Jϕ : L2(D, wϕ)→ Vϕ is an isometry, ϕ̃ ∈ Vϕ if and only if there

exists a unique m in L2(D, wϕ) such that ̂̃ϕ = mϕ̂. Moreover, to be a canonical dual,

ϕ̃ must satisfy 〈ϕ(· − u(k)), ϕ̃〉 = δk,0 for all k ∈ N0. But

〈ϕ(· − u(k)), ϕ̃〉 =

∫
K
ϕ̂(ξ)χk(ξ)̂̃ϕ(ξ) dξ

=

∫
K
m(ξ)|ϕ̂(ξ)|2χk(ξ) dξ

=

∫
D
m(ξ)wϕ(ξ)χk(ξ) dξ

= (mwϕ)∧(u(k)).

Thus, the kth Fourier coefficient of mwϕ is equal to δk,0 for all k ∈ N0. This will happen

if and only if mwϕ = 1 for a.e. ξ ∈ D. Since wϕ is real-valued, we have m = m = 1
wϕ

.

Finally, m = 1
wϕ
∈ L2(D, wϕ) if and only if

∫
D

1
w2
ϕ(ξ)

wϕ(ξ) dξ =
∫
D

1
wϕ(ξ) dξ <∞ if and

only if 1
wϕ
∈ L1(D).

We are now ready to prove Theorem 3.3.4.

Proof of Theorem 3.3.4. Let {ϕ(· − u(k)) : k ∈ N0} be a Schauder basis for Vϕ. Then,

since Jϕ is an isometry, {χk : k ∈ N0} is a Schauder basis for L2(D, wϕ). Let {zk : k ∈

N0} be the biorthogonal dual of {χk : k ∈ N0} in L2(D, wϕ). By Proposition 3.3.6,

1
wϕ
∈ L1(D). In particular, wϕ > 0 a.e. We have,

δk,l = 〈χk, zl〉L2(D,wϕ) =

∫
D
χk(ξ)zl(ξ)wϕ(ξ) dξ =

∫
D
zl(ξ)wϕ(ξ)χk(ξ) dξ.
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Hence, the function zlwϕ has all but the lth Fourier coefficient are zero. By the

uniqueness of Fourier coefficients, we have zlwϕ = χl, l ∈ N0. An easy computation

shows that for any f ∈ L2(D, wϕ), we have

〈f, zk〉L2(D,wϕ) = 〈f, χk〉L2(D). (3.3.2)

Now, we define

snf =
n−1∑
k=0

〈f, zk〉L2(D,wϕ)χk.

Since {χk : k ∈ N0} is a Schauder basis for L2(D, wϕ) with biorthogonal dual {zk : k ∈

N0}, by Lemma 3.3.5, the partial sum operators sn : L2(D, wϕ) → L2(D, wϕ), n ∈ N,

are uniformly bounded. But from (3.3.2), we that snf = Snf , the usual partial sums

of the Fourier series of f . Hence, Sn : L2(D, wϕ)→ L2(D, wϕ) are uniformly bounded.

Therefore, by Theorem 3.2.6, it follows that wϕ ∈ A2(D).

Conversely, suppose that wϕ ∈ A2(D). Then wϕ > 0 a.e. and 1
wϕ
∈ L1(D). Hence,

{zk = χk
wϕ

: k ∈ N0} is the biorthogonal dual of the complete system {χk : k ∈ N0}.

Again, since 〈f, zk〉L2(D,wϕ) = 〈f, χk〉L2(D), we see that the operator sn coincides with

the Fourier partial sum operator Sn. By Theorem 3.2.6, Sn : L2(D, wϕ)→ L2(D, wϕ)

are uniformly bounded. Hence, sn : L2(D, wϕ) → L2(D, wϕ) are also uniformly

bounded. Again, by Lemma 3.3.5, {χk : k ∈ N0} is a Schauder basis for L2(D, wϕ)

which, in turn, shows that {ϕ(· − u(k)) : k ∈ N0} is a Schauder basis for Vϕ.

We conclude this section with a proof of Theorem 3.3.3.

Proof of Theorem 3.3.3. Suppose Ω tiles Qp by translations. Then, by Theorem 3.3.2,

Ω is a spectral set. That is, there is a subset Γ of Qp such that {χγ : γ ∈ Γ} forms an

orthonormal basis for L2(Ω). We have to show that the system of translates {ϕ(·−γ) :

γ ∈ Γ} forms an orthonormal basis for V (ϕ,Γ).

Let f ∈ V (ϕ,Γ). Observe that the Fourier transform f̂ of f is supported on Ω

and hence f̂ ∈ L2(Ω). Since |ϕ̂| = 1 on Ω, f̂/ϕ̂ ∈ L2(Ω). Now, since {χγ : γ ∈ Γ}

is an orthonormal basis for L2(Ω), we have f̂
ϕ̂ =

∑
γ∈Γ〈

f̂
ϕ̂ , χγ〉χγ . Using |ϕ̂|2 = 1 and
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[ϕ(· − γ)]∧ = ϕ̂χγ , we get

f̂
ϕ̂ =

∑
γ∈Γ

〈
f̂ , 1

ϕ̂
χγ
〉
χγ =

∑
γ∈Γ

〈f̂ , ϕ̂χγ〉χγ =
∑
γ∈Γ

〈f, ϕ(· − γ)〉χγ .

Hence,

f̂ =
∑
γ∈Γ

〈f, ϕ(· − γ)〉ϕ̂χγ =
∑
γ∈Γ

〈f, ϕ(· − γ)〉[ϕ(· − γ)]∧.

Therefore,

f =
∑
γ∈Γ

〈f, ϕ(· − γ)〉ϕ(· − γ).

To see the orthonormality of {ϕ(· − γ) : γ ∈ Γ}, we observe that, for γ, λ ∈ Γ, we have

〈ϕ(· − γ), ϕ(· − λ)〉 = 〈ϕ̂χγ , ϕ̂χλ〉 = 〈χγ , χλ〉 = δγ,λ.

Here, we have used Parseval’s identity and the fact that |ϕ̂|2 = 1 on Ω.

Conversely, suppose there is a countable set Γ for which {ϕ(· − γ) : γ ∈ Γ} forms

an orthonormal basis for V (ϕ,Γ). Then, by a similar argument as above, {χγ : γ ∈ Γ}

forms an orthonormal basis for L2(Ω) and then by Theorem 3.3.2, we conclude that Ω

tiles Qp by translations.

3.3.2 Characterization of Schauder Basis Property of Gabor Systems

Let K be a local field of positive characteristic. Fix a, b ∈ K and g ∈ L2(K). The

Gabor system G(g, a, b) is the collection of functions

G(g, a, b) = {Mbu(n)Tau(k)g : n, k ∈ N0}

where Tyf(x) = f(x− y) and Mξf(x) = χξ(x)f(x), y, ξ ∈ K, are the usual translation

and modulation operators, respectively. The operators Ty and Mξ are also called the

time shifts and frequency shifts. Their compositions TyMξ and MξTy are called the

time-frequency shift operators. The function g is called a window function or an atom.

We are concerned about the characterization of Schauder basis property of the system

G(g) = G(g, 1, 1) = {Mu(n)Tu(k)g : n, k ∈ N0}
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for L2(K) in terms of Zak transform.

The Zak transform was first introduced by Gelfand [44] and it was later rediscovered

by Zak [121] and Brezin [8]. For more details about the history of the Zak transform,

we refer to [47] and [52]. Weil [113] introduced the concept of Zak transform on locally

compact abelian groups and formulated its basic properties. For the definition of

Zak transform and derivation of its properties on certain locally compact nonabelian

groups, we refer to [72]. In order to define Zak transform on a locally compact abelian

group G, we need a lattice. Recall that a discrete subgroup D of G is called a lattice

if the quotient G/D is a compact group. Since the characteristic of K is positive, it

follows that Λ = {u(k) : k ∈ N0} is a discrete subgroup of K+ (see Proposition 3.1.5)

and that K+/Λ = D is compact, and hence Λ is a lattice in K+. With respect this

lattice, we make the following definition.

Definition 3.3.7. Let K be a local field of positive characteristic. The Zak transform

of a function f ∈ L2(K) is the function of two variables defined by

Zf(x, ξ) =
∑
k∈N0

Tu(k)f(x)χk(ξ) =
∑
k∈N0

f
(
x− u(k)

)
χ
(
u(k)ξ

)
, x, ξ ∈ K.

Using the Λ-periodicity of the characters χk, we can show that |Zf | is Λ-periodic in

both the variables. It turns out that Z maps L2(K) isometrically onto L2(D×D). The

proof of this fact can be obtained from the corresponding result on Euclidean spaces

with necessary modifications, see e. g. [52].

For n, k ∈ N0, define

En,k(x, ξ) = χn(x)χk(ξ) = χ
(
u(n)x− u(k)ξ

)
. (3.3.3)

The following theorem shows that the Zak transform diagonalizes the time-frequency

shifts.

Theorem 3.3.8. Let g ∈ L2(K). Then

Z(Mu(n)Tu(k)g)(x, ξ) = (En,k · Zg)(x, ξ) = En,k(x, ξ) · Zg(x, ξ).

Proof. This is a straightforward verification.
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If G(g) is a Schauder basis for L2(K), then using Theorem 3.3.8, we can show

that the biorthogonal system is of the form G(g̃), where the dual window g̃ ∈ L2(K) is

defined by the condition Zg̃ = 1/Zg. Indeed, since Z is an isometry, for k, l,m, n ∈ N0,

we have

〈Mu(n)Tu(k)g,Mu(m)Tu(l)g̃〉

= 〈Z(Mu(n)Tu(k)g), Z(Mu(m)Tu(l)g̃)〉

= 〈En,k · Zg,Em,l · Zg̃〉

=

∫
D

∫
D
χn(x)χk(ξ)Zg(x, ξ)χm(x)χl(ξ)Zg̃(x, ξ) dx dξ

= 〈χn, χm〉〈χl, χk〉

= δn,mδl,k.

Therefore, G(g̃) is biorthogonal to G(g). Since a Schauder basis has a unique biorthog-

onal dual, it follows that G(g̃) is the biorthogonal dual of G(g).

3.3.3 Ap Weights on the Product Space D×D

Let w be a nonnegative function on D × D. Following Fefferman and Stein [39], we

say that w ∈ Ap(D×D) if for a.e. y ∈ D, the function x→ w(x, y) is an Ap(D) weight

and the Ap characteristic [w(·, y)]Ap is independent of y, and a similar condition holds

for the function y → w(x, y) for a.e.x ∈ D.

That is, w ∈ Ap(D ×D) if there exists a constant C > 0 such that for a.e. y ∈ D

and all balls B ⊂ D

( 1

|B|

∫
B
w(x, y) dx

)( 1

|B|

∫
B
w(x, y)

− 1
p−1 dx

)p−1
≤ C, (3.3.4)

and for a.e.x ∈ D and balls B ⊂ D

( 1

|B|

∫
B
w(x, y) dy

)( 1

|B|

∫
B
w(x, y)

− 1
p−1 dy

)p−1
≤ C. (3.3.5)
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We will show that the above definition is equivalent to the existence of a constant

C > 0 such that for all balls B1, B2 ⊂ D, we have

( 1

|B1||B2|

∫
B1

∫
B2

w(x, y) dx dy
)

×
( 1

|B1||B2|

∫
B1

∫
B2

w(x, y)
− 1
p−1 dx dy

)p−1
≤ C. (3.3.6)

Let us temporarily write w ∈ Ap,∗(D×D) if the weight w satisfies (3.3.6) for all balls

B1, B2 ⊂ D. Also, let us denote the supremum of the left hand side in (3.3.6) taken over

all balls B1, B2 ⊂ D by [w]Ap,∗ . We will now show that both these definitions of weights

on D×D are equivalent to the boundedness on Lp(D×D, w) of the Hardy–Littlewood

maximal operator M∗ adapted to this definition.

For a function f on D, we define the maximal function M∗f as follows:

M∗f(x, y) = sup
x∈B1,y∈B2

1

|B1|
1

|B2|

∫
B1

∫
B2

|f(u, v)| du dv,

where the supremum is taken over all balls B1 in D containing x and B2 in D containing

y.

Theorem 3.3.9. Let w be a weight on D×D and 1 < p <∞. Then the following are

equivalent.

(a) w ∈ Ap,∗(D×D).

(b) w ∈ Ap(D×D).

(c) M∗ is a bounded operator on Lp(D×D, w).

Proof. Suppose (a) holds. Then for all balls B1, B2 ⊂ D, we have

( 1

|B1||B2|

∫
B1

∫
B2

w(x, y) dx dy
)

×
( 1

|B1||B2|

∫
B1

∫
B2

w(x, y)
− 1
p−1 dx dy

)p−1
≤ [w]Ap,∗ . (3.3.7)
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Fix a ball B1 ⊂ D. By Lebesgue differentiation theorem (Theorem 3.1.7), for a.e. y,

we have

1

|x+ Pk|

∫
x+Pk

( 1

|B1|

∫
B1

w(x, z) dx
)
dz −→ 1

|B1|

∫
B1

w(x, y) dx

as k →∞. Similarly,

( 1

|x+ Pk|

∫
x+Pk

( 1

|B1|

∫
B1

w(x, z)
− 1
p−1 dx

)
dz
)p−1

−→
( 1

|B1|

∫
B1

w(x, y)
− 1
p−1 dx

)p−1

as k →∞. Therefore, the product of the left sides in the last two equations converge

to the product of the right sides. By (3.3.7) the product of the left sides is at most

[w]Ap,∗ . Hence,

( 1

|B1|

∫
B1

w(x, y) dx
)( 1

|B1|

∫
B1

w(x, y)
− 1
p−1 dx

)p−1
≤ [w]Ap,∗ .

This is true for every ball B1 ∈ D and a.e. y ∈ D. Hence, w(·, y) ∈ Ap(D) and the Ap

characteristic [w(·, y)]Ap is independent of y. Similarly, w(x, ·) ∈ Ap(D) and [w(x, ·)]Ap
is independent of x. Therefore, w ∈ Ap(D×D). So (b) is proved.

Assume (b). Define the Hardy–Littlewood maximal operators M1 and M2 corre-

sponding to the first and second variables:

M1f(x, y) = sup
B

1

|B|

∫
B
|f(s, y)| ds

and

M2f(x, y) = sup
B

1

|B|

∫
B
|f(x, t)| dt.

Since w(x, ·) and w(·, y) are in Ap(D), the operators M1 and M2 are bounded on

Lp(D, w(·, y)) and Lp(D, w(x, ·)) respectively, by Theorem 3.1.8. Clearly, M∗f(x, y) ≤

M1 ◦M2f(x, y). Since the Ap characteristic of w(x, ·) and w(·, y) have uniform bound,

by applying Fubini’s theorem, we get

∫
D

∫
D
M∗f(x, y)pw(x, y) dx dy ≤

∫
D

∫
D
M1 ◦M2f(x, y)pw(x, y) dx dy

≤ C

∫
D

∫
D
M2f(x, y)pw(x, y) dx dy
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≤ C2

∫
D

∫
D
|f(x, y)|pw(x, y) dx dy.

This proves (c).

Now, assume that (c) is true. Let B1 and B2 be balls in D. Then for each (x, y) ∈

B1 ×B2, we have

M∗(f · 1B1×B2)(x, y) ≥ 1

|B1|
1

|B2|

∫
B1

∫
B2

|f(u, v)| du dv.

Hence,

( 1

|B1|
1

|B2|

∫
B1

∫
B2

|f(u, v)| du dv
)p ∫

B1

∫
B2

w(x, y) dx dy

≤
∫
B1

∫
B2

[M∗(f · 1B1×B2)(x, y)]pw(x, y) dx dy

≤ C

∫
B1

∫
B2

|f(x, y)|pw(x, y) dx dy.

Taking f = w
− 1
p−1 , we see that (3.3.6) is satisfied so that we obtain (a). This

completes the proof of the theorem.

Remark 3.3.10. (a) In view of Theorem 3.3.9, we say that w ∈ Ap(D × D) if w

satisfies either (3.3.4) and (3.3.5) or (3.3.6).

(b) In [80], several characterizations are provided for the Ap weights on Tn in terms

of strong maximal functions, rectangular conjugate functions, and rectangular

partial sums.

For M,N ∈ N, define

SM,NF =
M−1∑
m=0

N−1∑
n=0

〈F,Em,n〉Em,n,

where En,k(x, ξ) = χn(x)χk(ξ) and the inner product is in L2(D×D).

Let T : Lp(D ×D, w) → Lp(D ×D, w) be a bounded operator. The norm of this

operator is denoted by ‖T‖p,w. Also, we denote ‖T‖p to be the norm of the bounded

operator T : Lp(D×D)→ Lp(D×D).



72 Chapter 3. Weighted Norm Inequalities for Fourier Series and Applications

The following theorem characterizes the uniform boundedness of the operators

{SM,N : M,N ∈ N} on the weighted space L2(D×D, w).

Theorem 3.3.11. Let w be a nonnegative function in L2(D×D). Then supM,N ‖SM,N‖2,w <

∞ if and only if w ∈ A2(D×D).

Proof. Suppose C = supM,N ‖SM,N‖2,w < ∞. In order to show that w ∈ A2(D ×D),

we will prove that

( 1

|B1||B2|

∫
B1

∫
B2

w
)( 1

|B1||B2|

∫
B1

∫
B2

1

w

)
≤ C

for all balls B1, B2 ⊂ D. Suppose |B1| = q−r and |B2| = q−s, where r, s ≥ 0. Choose

F to be nonnegative on B1 × B2 and 0 on (D × D) \ (B1 × B2). Then extend F

Λ× Λ-periodically. Now, for (x, ξ) ∈ B1 ×B2, we have

SM,NF (x, ξ) =
M−1∑
m=0

N−1∑
n=0

〈F,Em,n〉Em,n(x, ξ)

=
M−1∑
m=0

N−1∑
n=0

[∫
B1

∫
B2

F (y, η)χm(y)χn(η) dy dη
]
χm(x)χn(ξ)

=

∫
B1

∫
B2

F (y, η)
[M−1∑
m=0

χm(x− y)

N−1∑
n=0

χn(η − ξ)
]
dy dη

=

∫
B1

∫
B2

F (y, η)DM (x− y)DN (η − ξ) dy dη,

where Dn is the Dirichlet kernel defined in (3.1.7). Now, B1 is a ball in D of measure

q−r. Since D =
⋃qr−1
l=0 (al+Pr), we have B1 = al+Pr for some al, by Proposition 3.1.1.

Since x ∈ B1, we have B1 = x + Pr since every point of a ball is its centre (see

Proposition 3.1.1). Also, we have chosen F to be supported on B1×B2 so that y ∈ B1

in the above integral, that is, y ∈ x + Pr. Hence, x − y ∈ Pr. Similarly, η − ξ ∈ Ps.

Now, we choose M = qr and N = qs. By Lemma 3.1.6, Dqk = qk1Pk . Hence, we

obtain

Sqr,qsF (x, ξ) =

∫
B1

∫
B2

F (y, η)qrqs dy dη =
1

|B1||B2|

∫
B1

∫
B2

F (y, η) dy dη.

Therefore,

1

|B1|2|B2|2
(∫

B1

∫
B2

F (y, η) dy dη
)2(∫

B1

∫
B2

w(x, ξ) dx dξ
)
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=

∫
B1

∫
B2

|Sqr,qsF (x, ξ)|2w(x, ξ) dx dξ

= ‖Sqr,qsF‖22,w ≤ C2‖F‖22,w. (3.3.8)

In particular, if F is the Λ× Λ-periodic extension of 1
w1B1×B2 , then

‖F‖22,w =

∫
B1

∫
B2

1

w2
w =

∫
B1

∫
B2

1

w
.

Hence,

( 1

|B1||B2|

∫
B1

∫
B2

1

w

)( 1

|B1||B2|

∫
B1

∫
B2

w
)(∫

B1

∫
B2

1

w

)
≤ C2

∫
B1

∫
B2

1

w
.

From this it follows that if
∫
B1

∫
B2

1
w <∞, then

( 1

|B1||B2|

∫
B1

∫
B2

1

w

)( 1

|B1||B2|

∫
B1

∫
B2

w
)
≤ C2. (3.3.9)

If
∫
B1

∫
B2

1
w = 0, then (3.3.9) holds trivially. Finally, if

∫
B1

∫
B2

1
w = ∞, then

there exists G ∈ L2(B1 × B2) such that G
w1/2 6∈ L1(B1 × B2). Let F = |G|

w1/2 . Then∫
B1

∫
B2
F = ∞ but ‖F‖2,w = ‖G‖2 < ∞. So, from (3.3.8), we get

∫
B1

∫
B2
w = 0.

Hence, (3.3.9) holds in this case also. Therefore, w ∈ A2(D×D).

We will now prove the converse. Suppose w ∈ A2(D × D). Let wx = w(x, ·) and

wξ = w(·, ξ). Since the A2 characteristics of wx and wξ are uniformly bounded, by

Theorem 3.2.6, there exists C > 0 such that for all n ∈ N and for a.e.x, ξ, we have

∫
D
|SNf(x)|2wξ(x) dx ≤ C

∫
D
|f(x)|2wξ(x) dx, f ∈ L2(D, wξ)

and ∫
D
|SNf(ξ)|2wx(ξ) dξ ≤ C

∫
D
|f(ξ)|2wx(ξ) dξ, f ∈ L2(D, wx).

Now, let F ∈ L2(D×D, w). By Fubini’s theorem, Fx = F (x, ·) ∈ L2(D, wx) for a.e.x

and F ξ = F (·, ξ) ∈ L2(D, wξ) for a.e. ξ. For M,N ∈ N, let

S1
NF (x, ξ) = SNF

ξ(x) =
N−1∑
n=0

〈F ξ, χn〉χn(x)
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and

S2
MF (x, ξ) = SMFx(ξ) =

M−1∑
m=0

〈Fx, χm〉χm(ξ).

Then S1
NS

2
MF = SM,NF . Hence,

‖SM,NF‖22,w =

∫
D

∫
D
|S1
NS

2
MF (x, ξ)|2w(x, ξ) dx dξ

≤ C

∫
D

∫
D
|S2
MF (x, ξ)|2w(x, ξ) dx dξ

≤ C2

∫
D

∫
D
|F (x, ξ)|2w(x, ξ) dx dξ

≤ C2‖F‖22,w.

This completes the proof of the theorem.

We rewrite the above result in terms of the partial sum operators involving the

windowed system Em,n · (1/W ).

Corollary 3.3.12. Let W be a nonnegative function in L2(D×D) and for M,N ∈ N,

let TM,N : L2(D×D)→ L2(D×D) be the operator

TM,NF =

M−1∑
m=0

N−1∑
n=0

〈
F,Em,n ·

1

W

〉
Em,n ·W.

Then supM,N ‖TM,N‖2 <∞ if and only if |W |2 ∈ A2(D×D).

Proof. This is a reformulation of Theorem 3.3.11, we omit the proof since it is similar

to that of Corollary 5.7 in [50].

3.3.4 Characterization of Gabor Systems that are Schauder Bases

We consider the problem of determining whether the Gabor system G(g) = {Mu(n)Tu(k)g :

n, k ∈ N0} is a Schauder basis for L2(K). Since Schauder basis expansions may con-

verge conditionally, the order of summation is important. The Gabor system G(g)

involves two indices each in N0 so that we have to consider permutations of N0 × N0.

We define a family of permutationsof N0 × N0. which are compatible with the partial

sum operators. Following Heil and Powell [50], we define the following enumerations.
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Definition 3.3.13. Let Γ be the set of all enumerations {(kj , nj)}∞j=1 of N0×N0 defined

in the following recursive manner.

(a) The initial terms (k1, n1), (k2, n2), . . . , (kJ1 , nJ1) are either

(0, 0), (0, 1), . . . , (0,M1) or (0, 0), (1, 0), . . . , (N1, 0)

for some positive integers M1 and N1.

(b) If {(kj , nj)}Jkj=1 has been constructed to be of the form

{0, 1, . . . ,Mk} × {0, 1, . . . , Nk}

for some positive integers Mk and Nk, then terms are added to the top or the

right side to obtain either the rectangle

{0, 1, . . . ,Mk} × {0, 1, . . . , Nk + 1}

or

{0, 1, . . . ,Mk + 1} × {0, 1, . . . , Nk}.

With respect to the above enumerations of N0 × N0, we consider the problem of

characterization of Schauder basis property of the Gabor system G(g) in terms of the

Zak transform. The main result of this section is the following.

Theorem 3.3.14. Let K be a local field of positive characteristic and g ∈ L2(K). A

necessary and sufficient condition for the Gabor system G(g) to be a Schauder basis for

L2(K) with respect to every enumeration σ ∈ Γ is that |Zg|2 ∈ A2(D×D).

Proof. We first prove the necessity of the condition. Let σ = {(kj , nj)}∞j=1 ∈ Γ be an

enumeration of N0 × N0 and G(g) be a Schauder basis of L2(K) with respect to σ.

Consider the partial sum operators T σN : L2(D×D)→ L2(D×D) corresponding to σ,

defined by

T σNF =

N∑
j=1

〈
F,Enj ,kj ·

1

Zg

〉
Enj ,kj · Zg,
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where En,k(x, ξ) = χn(x)χk(ξ) (see (3.3.3)). Then by Lemma 3.3.5 and Theorem 3.3.8,

1
|Zg| ∈ L2(D × D) and the operators T σN are uniformly bounded. Hence, by Corol-

lary 3.3.12, |Zg|2 ∈ A2(D×D).

We will now show the sufficiency. Let |Zg|2 ∈ A2(D × D) and σ ∈ Γ be an

enumeration of N0 × N0. Note that by the definition of the A2 condition, it follows

that 1
Zg ∈ L

2(D×D).

We again consider the operators T σN defined above and claim that they are uniformly

bounded i.e., supN,σ ‖T σN‖2 < ∞. Once we have this, then again by Lemma 3.3.5

and Theorem 3.3.8, G(g) will be a Schauder basis of L2(K) with respect to every

enumeration σ ∈ Γ.

By Corollary 3.3.12, supM,N ‖TM,N‖2 = C < ∞. Choose an enumeration σ ∈ Γ

and N ∈ N. Let MN be the largest integer MN < N such that T σMN
F = TJ,KF for

some integers J,K. Observe that

‖T σNF‖2 = ‖T σMN
F + T σNF − T σMN

F‖2

≤ ‖TJ,KF‖2 + ‖(T σN − T σMN
)F‖2.

We now estimate the second term. We have

(T σN − T σMN
)F =

N∑
j=MN+1

〈
F,Enj ,kj ·

1

Zg

〉
Enj ,kj · Zg. (3.3.10)

According to the specific nature of the enumerations σ and the definition of MN , it

follows that the terms in the above sum correspond to terms that have been added to

a rectangle on top or on right. That is, the sum is equal to either of the following two

sums:

L∑
n=0

〈
F,En,K+1 ·

1

Zg

〉
En,K+1 · Zg, L ≤ J, (3.3.11)

or

R∑
k=0

〈
F,EJ+1,k ·

1

Zg

〉
EJ+1,k · Zg, R ≤ K. (3.3.12)
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Note that by Proposition 3.1.5 (b), −u(K + 1) = u(K ′) for some K ′ ∈ N. Hence,

χ−u(K+1)(ξ) = χu(K′)(ξ) so that

E0,K′(x, ξ) = χ0(x)χu(K′)(ξ) = χ−u(K′)(ξ) = χu(K+1)(ξ).

Also, En,0(x, ξ) = χu(n)(x). Therefore, we have

〈
F,En,K+1 ·

1

Zg

〉
=

∫
D

∫
D
F (x, ξ)χu(n)(x)χu(K+1)(ξ)

1

Zg(x, ξ)
dx dξ

=

∫
D

∫
D
F (x, ξ)χu(K+1)(ξ)χu(n)(x)

1

Zg(x, ξ)
dx dξ

=

∫
D

∫
D

(F · E0,K′)(x, ξ)En,0(x, ξ)
1

Zg(x, ξ)
dx dξ

=
〈
F · E0,K′ , En,0 ·

1

Zg

〉
.

Hence, the first sum (3.3.11) is bounded by

∥∥∥ L∑
n=0

〈
F,En,K+1 ·

1

Zg

〉
En,K+1 · Zg

∥∥∥
2

=
∥∥∥ L∑
n=0

〈
F · E0,K′ , En,0 ·

1

Zg

〉
En,K+1 ·

1

Zg

∥∥∥
2

=
∥∥∥ L∑
n=0

〈
F · E0,K′ , En,0

1

Zg

〉
En,K+1 ·

1

Zg

∥∥∥
2

=
∥∥∥TL,0(F · E0,K′)

∥∥∥
2

≤ C
∥∥∥F · E0,K′

∥∥∥
2

= C‖F‖2.

For the second sum we observe that

〈
F,EJ+1,k ·

1

Zg

〉
=

∫
D

∫
D
F (x, ξ)χu(J+1)(x)χu(k)(ξ)

1

Zg(x, ξ)
dx dξ

=

∫
D

∫
D
F (x, ξ)EJ+1,0(x, ξ)E0,k(x, ξ)

1

Zg(x, ξ)
dx dξ

=
〈
F · EJ+1,0, E0,k ·

1

Zg

〉
.
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Hence, the second sum (3.3.12) is bounded by

∥∥∥ R∑
k=0

〈
F,EJ+1,k ·

1

Zg

〉
EJ+1,k · Zg

∥∥∥
2

=
∥∥∥ R∑
k=0

〈
F · EJ+1,0, E0,k ·

1

Zg

〉
EJ+1,k · Zg

∥∥∥
2

=
∥∥∥ R∑
k=0

〈
F · EJ+1,0, E0,k ·

1

Zg

〉
E0,k · Zg

∥∥∥
2

=
∥∥∥T0,R(F · EJ+1,0)

∥∥∥
2

≤ C
∥∥∥F · EJ+1,0

∥∥∥
2

= C‖F‖2.

Substituting these estimates in (3.3.10), we obtain ‖T σNF‖2 ≤ 2C‖F‖2 for all enu-

meration σ ∈ Γ and all N ∈ N. Therefore, supN,σ ‖T σN‖2 ≤ 2C <∞. Hence, the claim

is proved and this completes the proof of the theorem.

For applications, it is important to know whether a Gabor system is complete,

minimal, a frame, a Riesz basis or an orthonormal basis. We mention some results in

Gabor theory on the characterizations of such systems in terms of the Zak transform.

We refer to [72] for a proof of the following theorem. For an introduction to frame

theory, and definitions of frames and Riesz bases, see [51].

Theorem 3.3.15. Let K be a local field of positive characteristic, g ∈ L2(K) and G(g)

the Gabor system generated by g. Then

(a) G(g) is complete in L2(K) if and only if Zg 6= 0 a.e.

(b) G(g) is minimal and complete in L2(K) if and only if 1
Zg ∈ L

2(D×D).

(c) G(g) is a frame for L2(K) with bounds A and B if and only if A ≤ |Zg|2 ≤ B

a.e. In this case G(g) is a Riesz basis for L2(K) with bounds A and B.

(d) G(g) is an orthonormal basis for L2(K) if and only if |Zg| = 1 a.e.

Now, to illustrate Theorem 3.3.14, we present some examples of Gabor systems

which form Schauder bases for L2(K).
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Example 3.3.16. Let −1
2 < α < 1

2 . Consider the function g which is supported on D

and g(x) = |x|α, x ∈ D. Observe that g ∈ L2(K) since α > −1
2 . Since g is supported

on D, the only term which contributes to the sum in the definition of Zg (see (3.3.7))

corresponds to k = 0. Hence, Zg(x, ξ) = g(x). It follows from the definition that for

a function of the form w(x, y) = v(x), w ∈ Ap(D × D) if v ∈ Ap(D). The function

g(x) = |x|α is an Ap(D) weight if and only if −1 < α < p−1. Hence, |g|2 is an A2(D)

weight if and only if −1
2 < α < 1

2 . This shows that |Zg|2 ∈ A2(D×D). Therefore, by

Theorem 3.3.14, it follows that the Gabor system G(g) is a Schauder basis for L2(K)

with respect to every enumeration σ ∈ Γ.

Also, observe that |Zg| is not bounded away from zero. Therefore, by Theorem 3.3.15,

it follows that G(g) is not a Riesz basis for L2(K).

Example 3.3.17. Let g be a function constructed in Example 3.3.16 and h be any

function supported in D such that h ∈ A2(D). For example, we can take h(ξ) = |ξ|α

with −1
2 < α < 1

2 . Let G(x, ξ) = g(x)h(ξ). Then |G|2 ∈ A2(D × D) so that f =

Z−1G ∈ L2(K). By Theorem 3.3.14, G(f) is a Schauder basis for L2(K) with respect

to every enumeration σ ∈ Γ.

Note that every Schauder basis is complete and minimal, but the converse need not

be true in general. We now construct an example of a Gabor system which is complete

and minimal, and using Theorem 3.3.14 we will show that this system cannot be a

Schauder basis for some permutation of N0 × N0.

Example 3.3.18. Let A1 = P and

An = pu(1) + p2u(1) + · · ·+ pn−1u(1) + Pn, n ≥ 2.

We first show that the balls An, n ≥ 1, are pairwise disjoint. Note that |An| = q−n.

Let k, l ∈ N with k < l. Suppose Ak and Al are not disjoint. By Proposition 3.1.1 (b),

Al ⊂ Ak. Let y = pu(1) + p2u(1) + · · · + pk−1u(1). Then Ak = y + Pk and Al =

y+ pku(1) + · · ·+ pl−1u(1) +Pl. Now, if Al ⊂ Ak, then (Al− y) ⊂ (Ak − y). But, this

is not possible since pku(1)+· · ·+pl−1u(1) ∈ Al−y and |pku(1)+· · ·+pl−1u(1)| = q−k+1

whereas Ak − y = Pk is the ball of radius q−k centred at 0. Hence, An, n ≥ 1, are

disjoint.
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By Proposition 3.1.1 (d), each An is a union of q balls of radius q−n−1. Choose

any two such balls and call them En and Fn. Then |En| = |Fn| = q−n−1. Let S =

∪∞n=1(En ∪ Fn) and α be a real number such that 1 < α < q. Define the function g

which is supported on D and

g(x) =


αn/2, x ∈ En, n ≥ 1,

α−n/2, x ∈ Fn, n ≥ 1,

1, x ∈ D \ S.

We have

∫
D
|g(x)|2 dx =

∞∑
n=1

(
αn|En|+ α−n|Fn|

)
+ |D \ S|

≤
∞∑
n=1

(αn + α−n)q−n−1 + 1

=
1

q

∞∑
n=1

[(α
q

)n
+
( 1

αq

)n]
+ 1 <∞,

since α
q ,

1
αq < 1. Similarly,

∫
D

1

|g(x)|2
dx =

∞∑
n=1

(
α−n|En|+ αn|Fn|

)
+ |D \ S| <∞.

Since Zg(x, ξ) = g(x), it follows that Zg, 1
Zg ∈ L

2(D×D). Hence, by Theorem 3.3.15,

G(g) is minimal and complete in L2(K).

We now compute the average of |Zg(x, ·)|2 over the ball An. Note that |An \ (En ∪

Fn)| = q−2
qn+1 . Hence,

1

|An|

∫
An

|Zg(x, ξ)|2 dx =
1

|An|

∫
An

|g(x)|2 dx

= qn
[
(αn + α−n)q−n−1 +

q − 2

qn+1

]
=

1

q

(
αn + α−n + q − 2

)
−→∞ as n→∞.

Similarly,
1

|An|

∫
An

1

|Zg(x, ξ)|2
dx −→∞ as n→∞.

Therefore, (3.3.4) does not hold for w = |Zg|2 and p = 2. Hence, |Zg|2 6∈ A2(D×D).

By Theorem 3.3.14, there exists an enumeration σ ∈ Γ such that G(g) is not a Schauder
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basis with respect to σ.





Chapter 4

H1 and BMO on LCA Groups

Having a Covering Family

The aim of this chapter is to extend the classical theory of the Hardy space H1 and

its dual space of BMO functions with “bounded mean oscillation” to the setting of

Locally Compact Abelian (LCA) groups G having covering families. First, we discuss

in details the setting of LCA groups where our work is developed. Next, we introduce

the notion of atomic Hardy spaces H1,q(G) with atom parameter 1 < q ≤ ∞ and the

notion of the space BMO(G) in this setting. After presenting some basic properties of

these spaces, we then establish the main feature for functions in BMO(G), namely the

John–Nirenberg inequality. Moreover, we show that the atomic Hardy spaces H1,q(G)

are independent of the choice of the parameter q. Finally, we relate H1,q(G) with

BMO(G) via duality in this setting.

As an application of our results, we obtain the boundedness of certain multiplier

operators from the Hardy space to the Lebesgue spaces. In addition, we estimate the

norms of these multiplier operators.

83
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4.1 Locally Compact Abelian Groups with Covering Fam-

ilies

In this section we first review the notion of a covering family in an LCA group and

then we record several preliminary results which will be required for establishing the

results that we have in mind.

Let G be an LCA group with a measure µ that is inner regular and such that

µ(K) < ∞ for every compact set K ⊂ G. Notice that µ does not need to be the

Haar measure because we do not assume µ to be translation invariant. Furthermore,

suppose that the group possesses a local base of 0 ∈ G consisting of relatively compact

neighbourhoods Ui, i ∈ Z, satisfying the following basic conditions:

(a) {Ui}i∈Z is monotonic in i ∈ Z in the sense that Ui ⊆ Uj if i ≤ j, moreover,⋃
i∈Z Ui = G and

⋂
i∈Z Ui = {0};

(b) there exists an increasing function θ : Z→ Z such that

• i ≤ θ(i),

• Ui − Ui ⊆ Uθ(i);

(c) the measure µ satisfies a doubling condition, i.e., there exists a constant D > 1

such that

µ(x+ Uθ(i)) ≤ Dµ(x+ Ui) for all x ∈ G and i ∈ Z.

Any groupG admitting a sequence {Ui}i∈Z of neighbourhoods of 0 and satisfying the

above postulates (a)–(c) is said to have a covering family. This concept was introduced

in [32] by Edwards and Gaudry. For each x ∈ G, the set x + Ui will be called a base

set and the collection of all base sets will be denoted by B = {x + Ui : x ∈ G, i ∈

Z}. A detailed exposition of harmonic analysis on LCA groups can be found in the

monographs [32, 53, 54]. Some concrete examples of groups possessing a covering

family are given below.

Example 4.1.1. The simplest examples are Rn, Z and the circle group T. In the case

of Rn equipped with the natural metric and the Lebesgue measure, we may take Ui to
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be the Euclidean ball B(0, 2i) centred at 0 with radius 2i, i ∈ Z. Then the collection

{B(0, 2i) : i ∈ Z} forms a covering family for Rn with the doubling constant D = 2n

and θ(i) = i+ 1.

For the circle group T = {exp(2πit) : t ∈ [−1
2 ,

1
2)} with the Haar measure, take

U0 = T and for i ∈ N, Ui = {0} and U−i = {exp(2πit) : |t| < 1
2i+1}. Then, {Ui}i∈Z is

a covering family for T with θ(i) = i+ 1 and D = 2.

When G = Z, equipped with the counting measure, we may take Ui = {k ∈ Z : |k| ≤

2i−1} for i ≥ 1 and Ui = 0 otherwise; θ(i) = i+ 1, and D = 2.

Example 4.1.2. Let G be an LCA group with Haar measure µ and let H be a compact

and open subgroup of G with µ(H) = 1. Let A be an automorphism on G such that

H  AH and
⋂
i<0A

iH = {0}. In addition, suppose G =
⋃
i∈ZA

iH. Then one

can check that {AiH}i∈Z satisfies the required properties to be a covering family. A

structure of this type is considered in [6] for constructing wavelets on LCA groups with

open and compact subgroups. The p-adic group Qp, where p is a prime number, or

more generally, the additive groups of local fields, considered in Chapter 3, are some

important examples of this situation.

Now we collect some basic results which will be used in the rest of this chapter.

In several occasions, we will make use of the following engulfing property of base sets,

proved in [94, Lemma 2.2].

Lemma 4.1.3. Let U and V be two base sets such that U = x + Ui and V = y + Uj

with i ≤ j and x, y ∈ G. If U ∩ V 6= ∅, then x+ Ui ⊆ y + Uθ2(j).

If we assume µ to be translation invariant, then Lebesgue differentiation theorem

(LDT) holds in our setting, see the remarks after Lemma 2.2.1 of [32]. However, since

we do not confine ourselves to translation invariant measures, we need LDT to hold in

this case also. In [94], Paternostro and Rela pointed out that the LDT still holds in this

case as well. To be rigorous, there is a version of LDT in [54, Theorem 44.18], originally

proved for the Haar measure on LCA groups having a D′-sequence (see [54] for the

definition of a D′-sequence). A careful reading of the proof of Theorem 44.18 of [54]

reveals that the result still holds with appropriate changes for measures which need

not be translation invariant. Since a covering family is in particular a D′-sequence,

therefore we have LDT in the present situation as well.
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We remark that for some technical reasons, we may and do assume that the base

sets Ui, i ∈ Z, are symmetric. This is possible since one may always replace the base

set Ui by the symmetric set Vi = Ui−Ui and can verify that {Vi}i∈Z still forms a local

base of the identity 0 (see e.g. Appendix B.4 of [99]), and satisfies (a)–(c).

Throughout the chapter, we will use letters like C,C1, C2, etc. to denote positive

constants independent of the main parameters, but may vary from line to line. While

writing estimates, we shall use the notation f . g to indicate f ≤ Cg for some C > 0,

and whenever f . g . f , we shall write f ∼ g. For a base set of the form V = x+Ui,

its θ dilation will be denoted by V ∗ = x + Uθ(i). Further iterations of this operation

are defined recursively, that is, V ∗∗ = (V ∗)∗ and V n∗ for n iterations of the dilation

operation. Let 1 ≤ q ≤ ∞. For any µ-measurable set E in G, we denote by Lq(E, µ)

the subspace of functions in Lq(G) supported in E.

4.2 Atomic Hp Spaces on LCA Groups

In this section we introduce the notion of an atom in the present context and define

atomic Hardy spaces. We then discuss several basic results regarding the nature of

these spaces.

The standard way to define atoms is to use balls associated with some specific metric

for the corresponding space. However, we lack such a concept in our case. Here, base

sets take the role played by the balls.

Definition 4.2.1. Let 1 < q ≤ ∞. A function b ∈ Lq(G,µ) is called a (1, q)-atom if

there exists a base set V ∈ B such that

(i) supp b ⊆ V ;

(ii)
∫
V b(x) dµ(x) = 0;

(iii)
∥∥b∥∥

Lq(G,µ)
≤
[
µ(V )

]−1
q′ , where 1

q + 1
q′ = 1.

The corresponding atomic Hardy space H1,q(G) is defined by

H1,q(G) =
{ ∞∑
j=0

λjbj : {λj}∞j=0 ∈ `1 and b′js are (1, q)-atoms
}
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with the norm given by

‖f‖H1,q(G) = inf
{ ∞∑
j=0

|λj | : f =

∞∑
j=0

λjbj , {λj}∞j=0 ∈ `1 and b′js are (1,q)-atoms
}
.

4.2.1 Basic Properties

It is clear that the spaces H1,q(G) are vector spaces over C. We now highlight some

important properties of H1,q(G).

Denote by H1,q
fin(G) the subspace of H1,q(G) consisting of all finite linear combina-

tions of (1, q)-atoms. We observe that H1,q
fin(G) is dense in H1,q(G).

Proposition 4.2.2. Let 1 < q ≤ ∞.

(i) The space H1,q(G) is a Banach space.

(ii) We have H1,∞(G) ⊂ H1,q(G) ⊂ L1(G). Moreover, H1,∞(G) is dense H1,q(G).

Proof. The proof of (i) is standard and hence omitted.

Let us proof (ii). The inclusions H1,∞(G) ⊂ H1,q(G) ⊂ L1(G) are obvious. So, we

only prove that H1,∞(G) is dense in H1,q(G).

Since H1,q
fin(G) is dense in H1,q(G), it suffices to approximate H1,q

fin(G) functions in

the H1,q(G)-norm by H1,∞(G) functions.

Let ε > 0 be given and g ∈ H1,q
fin(G) be such that g =

∑M
j=1 bj , where each bj is a

(1, q)-atom and supported on some base set, say, Vj ∈ B.

First, using the fact that compactly supported bounded functions are dense in

Lq(G), we obtain ϕj ∈ L∞(Vj , µ) satisfying the condition

∥∥bj − ϕj∥∥Lq(Vj , µ)
≤ ε

2M

1(
µ(Vj)

)1− 1
q

, 1 ≤ j ≤M. (4.2.1)

Next, for each j, we define

b̃j = ϕj − ϕ̃j and ϕ̃j =
∆j

µ(Vj)
χVj ,
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where ∆j is a constant defined by the formula ∆j =
∫
Vj
ϕj dµ. Then we note that

b̃j ∈ L∞(G,µ), supp (b̃j) ⊂ Vj , and

∫
Vj

b̃j = 0,

and hence b̃j ∈ H1,∞(G). Using the fact that the integral of bj is zero, the Hölder’s

inequality, and equation (4.2.1), we get

∥∥ϕ̃j∥∥Lq(G,µ)
=

∣∣∆j

∣∣(µ(Vj)
) 1
q
−1 ≤ 1(

µ(Vj)
)1− 1

q

(∫
Vj

∣∣ϕj − bj∣∣ dµ)
≤ ‖ϕj − bj

∥∥
Lq(Vj , µ)

≤ ε

2M

1(
µ(Vj)

)1− 1
q

.

Thus, we have

∥∥bj − b̃j∥∥Lq(G,µ)
≤
∥∥bj − ϕj∥∥Lq(G,µ)

+
∥∥ϕj − b̃j∥∥Lq(G,µ)

≤ ε

M

1(
µ(Vj)

)1− 1
q

.

This means that

(
bj − b̃j

)
∈ H1,q(G) and

∥∥bj − b̃j∥∥H1,q(G)
≤ ε

M
.

Finally, setting g̃ =
∑M

j=1 b̃j , we see that

g̃ ∈ H1,∞(G) and
∥∥g − g̃∥∥

H1,q(G)
< ε.

Hence, the desired conclusion follows. This completes the proof of the proposition.

4.3 BMO functions on LCA Groups

In this section, we focus our attention to the space BMO. The concept of base sets

allows us to extend the classical notion of BMO in the present framework naturally

as follows.

Definition 4.3.1. A function f ∈ L1
loc(G) is said to be in the space BMO(G) if

‖f‖BMO(G) := sup
V ∈B

1

µ(V )

∫
V
|f(x)−mV (f)| dµ(x) <∞, (4.3.1)
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where mV (f) denotes the average of f over the base set V defined by

mV (f) :=
1

µ(V )

∫
V
f(y) dµ(y).

It is easy to check that if ‖f‖BMO(G) = 0, then the function f is constant almost

everywhere. Conversely, if f is constant almost everywhere, then ‖f‖BMO(G) = 0.

Thus, ‖ · ‖BMO(G) is only a semi-norm. Therefore, it will be convenient to consider the

quotient of BMO(G) by the space of almost everywhere constant functions. Abusing

notation, we still denote the resulting space by BMO(G). Hence, f and f + c have

the same BMO(G)-norm and they are always identified in the same class.

4.3.1 Some Characterizations of BMO(G)

We now present some equivalent characterizations of BMO(G) which will be crucial

for the proofs of some subsequent results. First we introduce some notation. Let

f ∈ L1
loc(G). Suppose that for every base set V ∈ B, there is a constant fV , which may

depend on V , such that

1

µ(V )

∫
V
|f(x)− fV | dµ(x) ≤M, (4.3.2)

where M < ∞ is a constant that does not depend on V . We then define the norm

‖f‖∗ := inf
{
M
}

, where the infimum runs over all constants M as above and all

the numbers {fV }V ∈B satisfying (4.3.2). The following proposition contains a useful

characterization of the space BMO(G).

Proposition 4.3.2. The quantities ‖ · ‖∗ and ‖ · ‖BMO(G) are equivalent. That is,

‖ · ‖∗ ∼ ‖ · ‖BMO(G).

Proof. This result can be proved in a straightforward manner by using only triangle

inequality and hence we omit the details.

We now present another characterization for a suitable subspace of BMO(G). Fix

a real-valued function f in BMO(G). Let

Mf,V = inf
α∈R

mV (|f − α|)
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and

Mf,V = {α̂ : mV (|f − α̂|) = Mf,V }.

It can be shown that the set Mf,V is nonempty. We call Mf,V the set of all medians

of f on V . Now from each set Mf,V , we choose an element αf (V ), and we call it the

median of f on V . Notice that for any real number c, c+ αf (V ) ∈ Mf+c,V . Now, we

make an agreement on αf+c(V ) and c+ αf (V ) that αf+c(V ) = c+ αf (V ).

It can be shown that αf (V ) satisfies

µ
(
{x ∈ V : f(x) > αf (V )}

)
≤ µ(V )

2
(4.3.3)

and

µ
(
{x ∈ V : f(x) < αf (V )}

)
≤ µ(V )

2
; (4.3.4)

see [66, page 30].

Furthermore, we denote ‖f‖◦ to be the minimal nonnegative constant C such that

for any base set V ,
1

µ(V )

∫
V
|f(x)− αf (V )| dµ(x) ≤ C

holds. Notice that ‖f‖◦ = ‖f + c‖◦ for any real number c.

Proposition 4.3.3. If f is real-valued, then the quantities ‖f‖◦ and ‖f‖∗ are equiva-

lent, i.e., ‖f‖◦ ∼ ‖f‖∗.

Proof. The proof of ‖f‖∗ ≤ ‖f‖◦ is clear. So we only prove the reverse inequality

‖f‖◦ . ‖f‖∗. To this end, suppose f ∈ L1
loc(G) be such that ‖f‖∗ <∞.

Let ε > 0 be arbitrary. Then from the definition of ‖f‖?, there exists a collection

of numbers {fV }V ∈B such that

1

µ(V )

∫
V
|f(x)− fV | dµ ≤ ‖f‖? + ε. (4.3.5)

Using (4.3.5), we find that for every base set V ∈ B,

1

µ(V )

∫
V

∣∣f(x)− αf (V )
∣∣ dµ

≤
( 1

µ(V )

∫
V

∣∣f(x)− fV
∣∣ dµ)+

∣∣fV − αf (V )
∣∣
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≤ ‖f‖∗ + ε+
∣∣fV − αf (V )

∣∣.
Now using the definition of αf (V ), we further obtain

∣∣fV − αf (V )
∣∣ ≤ 1

µ(V )

∫
V

[∣∣f(x)− fV
∣∣+
∣∣f(x)− αf (V )

∣∣] dµ
≤ 2

µ(V )

∫
V

∣∣f(x)− fV
∣∣ dµ ≤ 2

(
‖f‖∗ + ε

)
.

Thus, we have
1

µ(V )

∫
V

∣∣f(x)− αf (V )
∣∣ dµ ≤ 3

(
‖f‖∗ + ε

)
.

Since ε is arbitrary, it follows from the definition of ‖ · ‖◦ that ‖f‖◦ . ‖f‖∗.

Corollary 4.3.4. For real-valued functions, the quantities ‖ · ‖BMO(G) and ‖ · ‖◦ are

equivalent.

4.3.2 The Space BMO(G) and the Inequality of John–Nirenberg

At this stage, we are in a position to describe the most important behaviour of functions

with bounded mean oscillation. It is well-known in the Euclidean setting that the

logarithmic blowup is the worst possible behaviour for a BMO function. Our goal here

is to prove an analogous version of this result in the present setting of LCA groups.

The following theorem is the main result of this section.

Theorem 4.3.5. Let f ∈ BMO(G). Then there exist constants C1 and C2, indepen-

dent of f , such that for every λ > 0 and for every U ∈ B, one has

µ
({
x ∈ U : |f(x)−mU (f)| > λ

})
≤ C1 exp

( −C2λ

‖f‖BMO(G)

)
µ(U) . (4.3.6)

Proof. The main idea is borrowed from [77, Theorem 1.4]. Let f ∈ BMO(G) and

λ > 0 be given. For any base set U ∈ B, let Dλ(U) denote the distribution set of the

function f −mU (f) on U at scale λ > 0, that is,

Dλ(U) = {x ∈ U : |f(x)−mU (f)| > λ}.
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Next, we define a function Θ by

Θ(λ) = sup
U∈B

µ(Dλ(U))

µ(U)
, λ > 0.

So, in our new notation, (4.3.6) is equivalent to

Θ(λ) ≤ C1 exp
( −C2λ

‖f‖BMO(G)

)
for all λ > 0 (4.3.7)

for some constants C1, C2 > 0.

We may assume that ‖f‖BMO(G) = 1, because the above inequality remains unaf-

fected if we replace f and λ by their same constant multiples. Notice that we don’t

need to worry about the validity of the above inequality for λ not too large as the

function Θ is always bounded by 1. On the other hand, if we can manage to show

that there exists a constant λ0 > 0, independent of every base set U , such that for all

λ > λ0,
µ(Dλ(U))

µ(U)
≤ 1

2
Θ(λ− λ0) (4.3.8)

holds, then iteration of this inequality yields (4.3.7) with ‖f‖BMO(G) = 1. Thus,

Theorem 4.3.5 is reduced to proving the inequality (4.3.8). What follows is a proof

this inequality.

Fix a base set U = x0 + Uk. Observe that we may assume that mU (f) = 0.

Combining (4.3.1) with the fact that ‖f‖BMO(G) = 1, we obtain

mU∗(|f |) ≤ D, (4.3.9)

where U∗ = x0 + Uθ(k). A key object in our proof is the family of base sets associated

with U ,

BU = {y + Ui : y ∈ U, i ≤ k}.

Corresponding to this family of base sets, we define Ũ =
⋃
V ∈BU V . Then each member

of Ũ is contained in U∗. Indeed, if V = y + Ui with y ∈ U and i ≤ k, take any z ∈ V .

Then z = y + u with u ∈ Ui ⊆ Uk. Since y ∈ U , we can write y = x0 + v, v ∈ Uk.

Thus,

z = x0 + u+ v ∈ x0 + Uk + Uk ⊆ x0 + Uθ(k) = U∗.
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As a consequence, we have Ũ ⊆ U∗.

Now we consider the Hardy–Littlewood maximal operator MU restricted to the

family BU (if we replace U by another base set, then the maximal operator changes),

that is,

MUf(x) = sup
x∈V ∈BU

1

µ(V )

∫
V
|f(y)| dµ(y),

with the convention that MUf(x) = 0 if there is no base set in BU containing x. In

particular, MUf vanishes outside of U∗. By the Lebesgue differentiation theorem, we

have

|f(x)| ≤MUf(x) for a.e.x ∈ U. (4.3.10)

We now consider the distribution set Ωλ of MUf at scale λ > 0:

Ωλ = {x ∈ G : MUf(x) > λ}.

Clearly, this set is contained in U∗. In the following lemma, we present a decomposition

of Calderón–Zygmund type for the set Ωλ.

Lemma 4.3.6. Let λ > D8 and Ωλ 6= ∅. Then there exists a pairwise disjoint sequence

{Vi}i∈I in BU such that

(i)
⋃
i∈I Vi ⊆ Ωλ ⊆

⋃
i∈I V

4∗
i ;

(ii) mVi(|f |) > λ for all i ∈ I;

(iii) mVi
4∗(|f |) ≤ λ for all i ∈ I.

Proof. Define a function α : Ωλ → Z by

α(x) = max{j ∈ Z : ∃V = y + Uj ∈ BU , x ∈ V,mV (|f |) > λ}.

This mapping is well-defined since V = y + Uj ∈ BU implies j ≤ k. So, for each

x ∈ Ωλ, we choose a base set Vx ∈ BU so that x ∈ Vx = yx + Uα(x) for some yx ∈ U .

Set Σ =
⋃
x∈Ωλ

Vx. Since Vx ⊆ U∗, it is obvious that µ(Σ) < ∞. Now we claim that,

for any x ∈ Ωλ, V 4∗
x ∈ BU . For this, it suffices to show that θ4(α(x)) ≤ k. If not,

then θ4(α(x)) > k. This implies that θ6(α(x)) > θ2(k). Also, since yx ∈ Vx, we have
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V 6∗
x ∩U∗∗ 6= ∅. Hence, by the engulfing property (Lemma 4.1.3), we obtain U∗∗ ⊆ V 8∗

x .

This fact, together with the doubling property of µ, gives us

µ(U∗)

µ(Vx)
≤ Dµ(U∗∗)

µ(V ∗x )
≤ Dµ(V 8∗

x )

µ(V ∗x )
≤ D8.

Taking this into account and since Vx ⊆ U∗, we deduce that

1

µ(Vx)

∫
Vx

|f | dµ ≤ µ(U∗)

µ(Vx)

1

µ(U∗)

∫
U∗
|f | dµ ≤ D8 < λ,

which is a contradiction to the fact mVx(|f |) > λ. Thus, the claim holds true.

Let V1 = {Vx = yx +Uα(x) : x ∈ Ωλ}. The selection process of the desired Vi’s from

the collection V1 is based on an iteration process and is divided into the following three

steps.

Step I. We start by picking a base set V0,1 = x0,1 + Uα(x0,1) ∈ V1 such that

2µ(V0,1) > sup
Vx∈V1

µ(Vx).

Define the sets Ṽ1 and I1 as follows:

Ṽ1 = {Vx ∈ V1 : V ∗∗x ∩ V0,1 6= ∅}

and

I1 = {α(x) : Vx ∈ Ṽ1}.

It is obvious that Ṽ1 6= ∅ and that max I1 < ∞ is attained. We then choose a

base set x1 + Uα(x1) ∈ Ṽ1 such that α(x1) = max I1. Call V1 = x1 + Uα(x1). Now we

claim that if Vx = yx + Uα(x) ∈ V1 and Vx ∩ V1 6= ∅, then Vx ⊆ V 4∗
1 . To see this, we

first observe that α(x) ≤ θ2(α(x1)) must hold. Otherwise, if α(x) > θ2(α(x1)), then

α(x1) < α(x). Now by the choice of V1 ∈ Ṽ1, we know that V ∗∗1 ∩ V0,1 6= ∅. Hence,

there exists some u ∈ Uθ2(α(x1)) and v ∈ V0,1 such that x1 +u = x0,1 + v. Furthermore,

Vx ∩ V1 6= ∅ implies that x+ a = x1 + b, for some a ∈ Uα(x) and b ∈ Uα(x1). Thus, we

get x+ a− b+ u = x0,1 + v. Now, we see that

a− b+ u ∈ Uα(x) − Uα(x1) + Uθ2(α(x1)) ⊆ Uα(x) − Uα(x1) + Uα(x)
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⊆ Uα(x) − Uα(x) + Uθ(α(x)) ⊆ Uθ(α(x)) + Uθ(α(x)) ⊆ Uθ2(α(x)).

Therefore,

x0,1 + v = x+ a− b+ u ∈ x+ Uθ2(α(x)).

But this means actually
(
x+Uθ2(α(x))

)⋂
V0,1 6= ∅. Hence, it follows from the definition

of Ṽ1 that Vx ∈ Ṽ1 and α(x) ≤ α(x1) ≤ θ2(α(x1)). This is a contradiction. So, we have(
x+Uα(x)

)⋂(
x1 +Uθ2(α(x1))

)
6= ∅ with the condition that α(x) ≤ θ2(α(x1)). From the

engulfing property, we conclude that
(
x+ Vα(x)

)
⊆
(
x1 + Uθ4(α(x1))

)
.

Step II. Next, let V2 = {Vx ∈ V1 : Vx ∩ V1 = ∅}. We choose a base set V0,2 =

x0,2 + Uα(x0,2) ∈ V2 such that

2µ(V0,2) > sup
Vx∈V2

µ(Vx).

Define the sets Ṽ2 and I2 as follows:

Ṽ2 = {Vx ∈ V2 : V ∗∗x ∩ V0,2 6= ∅}

and

I2 = {α(x) : Vx ∈ Ṽ2}.

Proceeding as in Step I, we can get V2 = x2 + Uα(x2) ∈ Ṽ2 such that if Vx ∈ V2 and

Vx ∩ V2 6= ∅, then Vx ⊆ V 4∗
2 .

Step III. We continue as above. If the process stops after N steps, then {Vi =

xi+Uα(xi) : i = 1, 2, . . . , N} is the required collection. Otherwise, this process generates

a countable collection of disjoint base sets {Vi = xi + Uα(xi) : i = 1, 2, . . . }. Now, we

show that if Vx ∈ V1, then it intersects with at least one Vi = xi + Uα(xi). If this is

not the case, then we would have Vx
⋂
Vi = ∅ for all i. This means that Vx ∈ Vi, and

hence 2µ(V0,i) > µ(Vx), for every i.

On the other hand, by the choice of Vi, V
∗∗
i

⋂
V0,i 6= ∅ holds. That is,

(
xi +

Uθ2(α(xi))

)⋂ (
x0,i + Uα(x0,i)

)
6= ∅ holds. Also, since V ∗∗0,i

⋂
V0,i 6= ∅, it follows, from

the definition of max Ii that α(x0,i) ≤ α(xi) ≤ θ2(α(xi)). Therefore, by the engulfing

property, we obtain V0,i ⊆ V 4∗
i .
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Summarizing these, we have

0 < µ
(
Vx
)
< 2µ

(
V0,i

)
≤ 2µ

(
V 4∗
i

)
≤ 2D4µ

(
Vi
)
.

Since {Vi}i∈I is a pairwise disjoint infinite collection of base sets, this will imply that

µ(Σ) =∞, a contradiction. Hence, we conclude that every Vx in V1 intersects at least

one Vi and in that case Vx ⊆ V 4∗
i . Clearly, the sequence {Vi}i∈I satisfies the desired

conditions (i) and (ii). Since V 4∗
i = xi + Uθ4(α(xi)) ∈ BU , item (iii) follows from the

definition of α(xi). This completes the proof of the lemma.

Let us return to the proof of the inequality (4.3.8). Set λ0 = max{2D5, D8} + 1.

Then for all λ > λ0, we have Dλ(U) ⊆ Dλ0(U). Moreover, combining (4.3.10) with the

fact that mUf = 0, we see that Dλ0(U) ⊆ Ωλ0 . Thus, we write

Dλ(U) = Dλ(U) ∩ Dλ0(U) ⊆ Dλ(U) ∩ Ωλ0 .

We now apply Lemma 4.3.6 at the value λ0 to obtain a pairwise disjoint sequence of

base sets {Vi}i∈I satisfying the conditions (i)–(iii). Therefore, we have

Dλ(U) ∩ Ωλ0 ⊆
⋃
i∈I

(
V 4∗
i ∩ Dλ(U)

)
.

Now, for each i ∈ I, V 4∗
i ∩ Dλ(U) ⊆ Dλ−λ0(V 4∗

i ) holds. To see this, notice that

mV 4∗
i

(|f |) ≤ λ0. These facts imply that, for all x ∈ V 4∗
i ∩ Dλ(U),

λ < |f(x)| ≤ |f(x)−mV 4∗
i

(f)|+ |mV 4∗
i

(f)|

≤ |f(x)−mV 4∗
i

(f)|+mV 4∗
i

(|f |)

≤ |f(x)−mV 4∗
i

(f)|+ λ0.

That is, |f(x)−mV 4∗
i

(f)| ≥ λ−λ0. Hence, from the definition, the desire inclusion fol-

lows. So, summarizing the above discussions, we find that Dλ (U) ⊆
⋃
i

(
Dλ−λ0(V 4∗

i )
)
.

Therefore, we conclude that

µ(Dλ(U)) ≤
∑
i

µ(Dλ−λ0(V 4∗
i )) =

∑
i

µ(V 4∗
i )

µ(Dλ−λ0(V 4∗
i ))

µ(V 4∗
i )

≤ D4 Θ(λ− λ0)
∑
i

µ(Vi) ≤ D4 Θ(λ− λ0)

λ0

∑
i

∫
Vi

|f | dµ
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≤ D4 Θ(λ− λ0)

λ0

∫
U∗
|f | dµ ≤ D4 Θ(λ− λ0)

λ0
µ(U∗)

≤ D5 Θ(λ− λ0)

λ0
µ(U) ≤ 1

2
Θ(λ− λ0)µ(U).

In the above chain of inequalities, we have used the doubling property of µ, the

definition of Θ, Lemma 4.3.6(ii), and the inequality (4.3.9). Thus, inequality (4.3.8),

to which we reduced the proof of Theorem 4.3.5, holds. The theorem is now completely

proven.

We conclude this section with the following consequence of Theorem 4.3.5.

Corollary 4.3.7. Let G be an LCA group and 1 ≤ p <∞. There is a constant C > 0

such that for every f ∈ BMO(G) and every base set V ∈ B,

( 1

µ(V )

∫
V

∣∣f −mV (f)
∣∣p dµ) 1

p ≤ C
∥∥f∥∥

BMO(G)
.

4.4 Duality

This section is devoted to prove that the spaces H1,q(G), 1 < q ≤ ∞, coincide and

that the dual of H1,∞(G) may be identified with the space BMO(G), simultaneously.

Following the scheme provided by Journé [66], we first prepare several auxiliary lemmas.

Let g ∈ BMO(G). We define a linear functional Lg on H1,q
fin(G) by setting

Lg(f) =

∫
G
f(x)g(x) dµ(x), f ∈ H1,q

fin(G). (4.4.1)

From Corollary 4.3.7, it follows that g ∈ Lq
′

loc(G), and hence the action of the functional

Lg, defined in (4.4.1), makes sense on H1,q
fin(G). In fact, Lg extends to a bounded linear

functional on H1,q(G). This can be proved by following the line of the proof in [24]

which is based on the classical result of Fefferman and Stein [37, 38], and hence we

omit the details and record this result as a lemma for later purposes.

Lemma 4.4.1. For 1 < q ≤ ∞, BMO(G) ⊆ [H1,q(G)]∗. More precisely, for any

g ∈ BMO(G), the linear functional Lg defined in (4.4.1) for functions in H1,q
fin(G),
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can be extended to a bounded linear functional Lg over H1,q(G) with

∥∥Lg∥∥[H1,q(G)]∗
.
∥∥g∥∥

BMO(G)
. (4.4.2)

If we take q = ∞ in the above lemma, we have slightly more information: the

reverse of inequality (4.4.2) can also be achieved. To be more precise, we have the

following result.

Lemma 4.4.2. If g ∈ BMO(G), we have

∥∥Lg∥∥[H1,∞(G)]∗
∼
∥∥g∥∥

BMO(G)
.

Proof. Let g ∈ BMO(G). Without loss of generality, we may assume that g is real-

valued. In view of Lemma 4.4.1, we only need to prove that

∥∥Lg∥∥[H1,∞]∗
&
∥∥g∥∥

BMO(G)
.

In addition, with the aid of Corollary 4.3.4, we only have to construct a (1,∞)-atom

b such that ∣∣Lg(b)∣∣ & ∥∥g∥∥◦∥∥b∥∥H1,∞(G)
. (4.4.3)

First of all, by the definition of
∥∥g∥∥◦, there exists a base set V ∈ B satisfying the

condition ∥∥g∥∥◦
2
≤ 1

µ(V )

∫
V
|g(x)− αg(V )| dµ(x).

Decompose the base set V = V1 ∪ V2 ∪ V3, where V1 = {x ∈ V : g(x) > αg(V )},

V2 = {x ∈ V : g(x) < αg(V )} and V3 = {x ∈ V : g(x) = αg(V )}. Now define a

function b by

b(x) =


0 if x /∈ V,

1 if x ∈ V1,

−1 if x ∈ V2.

We are going to show that b is a (1, q)-atom and satisfies (4.4.3). By (4.3.3)

and (4.3.4), µ(V1) ≤ µ(V )
2 and µ(V2) ≤ µ(V )

2 . Using these facts, we can assign val-

ues ±1 to b on V3 suitably to make
∫
G b(x) dµ(x) = 0. From this, together with the

boundedness of b, we conclude that b is a (1, q) atom. Furthermore, the definition of b
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implies that ∥∥b∥∥
H1,∞(G)

. µ(V ).

We now estimate the quantity Lg(b) as follows:

∣∣Lg(b)∣∣ =
∣∣∣ ∫

G
g(x)b(x) dµ(x)

∣∣∣
=

∣∣∣ ∫
G

[
g(x)− αg(V )

]
b(x) dµ(x)

∣∣∣
=

∫
G

∣∣g(x)− αg(V )
∣∣ dµ(x)

≥
∥∥g∥∥◦µ(V )

2
&
∥∥g∥∥◦∥∥b∥∥H1,∞(G)

.

That is, ∣∣Lg(b)∣∣ & ∥∥g∥∥◦∥∥b∥∥H1,∞(G)
.

Hence,
∥∥Lg∥∥[H1,∞]∗

&
∥∥g∥∥

BMO(G)
. This finishes the proof of the lemma.

If we ignore the case when q = ∞ in Lemma 4.4.1, then we have the converse

conclusion as well. That is, for 1 < q < ∞, every L ∈ [H1,q(G)]∗ is essentially Lg for

some g ∈ BMO(G). To see this, we need some notation and preliminary observations.

So let L ∈
[
H1,q(G)

]∗
. For any base set V ∈ B, let Lq0(V, µ) denote the space of all

functions f ∈ Lq(V, µ) such that
∫
V f(x) dµ(x) = 0. If f ∈ Lq0(V, µ), then f ∈ H1,q(G)

and ∥∥f∥∥
H1,q(G)

≤
(
µ(V )

) 1
q′
∥∥f∥∥

Lq(V, µ)
.

Consider the restriction of L to Lq0(V, µ). For all f ∈ Lq0(V, µ), we have

∣∣L(f)
∣∣ ≤ ∥∥L∥∥

[H1,q(G)]∗

(
µ(V )

) 1
q′
∥∥f∥∥

Lq(V, µ)
.

Therefore, L defines a bounded linear functional on Lq0(V, µ). By Hahn–Banach ex-

tension theorem, L has a unique bounded extension on Lq(V, µ). Since 1 < q <∞, by

the Riesz representation theorem, there exists a unique function h ∈ Lq′(V, µ) which

represents the restriction of L on V :

L(f) =

∫
V
f(x)h(x) dµ(x) for all f ∈ Lq0(V, µ).
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Lemma 4.4.3. If 1 < q <∞, then
[
H1,q(G)

]∗ ⊆ BMO(G); that is, for any bounded

linear functional L on H1,q(G), there exists g ∈ BMO(G) such that

L(f) =

∫
G
f(x)g(x) dµ(x) for all f ∈ H1,q(G). (4.4.4)

Proof. Suppose L ∈
[
H1,q(G)

]∗
. We begin by constructing such a function g by a

labourious but conceptually simple argument as follows.

Fix a base set V = x+ Ui and let Vn = V n∗, n ∈ N. By the above observation, for

each n ∈ N, we get gn ∈ Lq
′
(Vn, µ) such that

L(f) =

∫
Vn

f(x)gn(x) dµ(x), f ∈ Lq0(Vn, µ) .

Moreover, we see that for all j, l ∈ N with j ≤ l and µ-almost every x ∈ Vj , gj(x) −

mVj (gj) = gl(x)−mVl(gl). Indeed, for any f ∈ Lq0(Vj , µ) ⊆ Lq0(Vl, µ), we have

L(f) =

∫
Vj

f(x)gj(x) dµ(x) =

∫
Vl

f(x)gl(x) dµ(x) =

∫
Vj

f(x)gl(x) dµ(x) .

This implies that for all f ∈ Lq0(Vj , µ),

∫
Vj

f(x)
[
gj(x)− gl(x)

]
dµ(x) = 0.

Now, notice that, for any h ∈ Lq(Vj , µ), we have h−mVj (h) ∈ Lq0(Vj , µ). Therefore,

0 =

∫
Vj

(
gj(x)− gl(x)

)[
h(x)−mVj (h)

]
dµ(x)

=

∫
Vj

h(x)
[
gj(x)− gl(x)−mVj (gj) +mVl(gl)

]
dµ(x)

for all h ∈ Lq(Vj , µ). Hence, gj(x)−mVj (gj) = gl(x)−mVl(gl) for almost every x ∈ Vj .

Define

g = gj −mVj (gj) on Vj , j ∈ N.

Then g is well-defined and we have

L(f) =

∫
Vj

f(x) g(x) dµ(x) for all f ∈ Lq0(Vj , µ), j ∈ N. (4.4.5)
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Now we claim that g ∈ BMO(G) and satisfies (4.4.4).

First we need the following fact: Let V = y + Uj be an arbitrary base set from B.

Then there exists k ∈ N such that V ⊆ Vk. Recall that {Vn}n∈N is an increasing family

and
⋃
n∈N Vn = G, where Vn = V n∗ = x + Uθn(i). Hence, we can find l ∈ N such that

j ≤ θl(i) and
(
y + Uj

)
∩
(
x + Uθl(i)

)
6= ∅. Then from the engulfing property of base

sets, we have y + Uj ⊂ x+ Uθl+2(i). That is, V ⊆ Vl+2 with k = l + 2.

Now, let us return to the proof of (4.4.4). For any f ∈ H1,q(G), we may write

f(x) =
∑∞

k=0 λk bk(x), where bk is a (1, q)-atom supported on the base set Fk ∈ B. By

the above fact, for each k there exists jk such that Fk ⊂ Vjk . Therefore, from (4.4.5)

and the linearity of L, we have

L(f) =

∞∑
k=0

λk L (bk) =

∞∑
k=0

λk

∫
Vjk

bk(x) g(x) dµ(x) =

∫
G
f(x) g(x) dµ(x).

To complete the proof of Lemma 4.4.3, we are thus left with the task of proving

that g ∈ BMO(G). For any fixed base set V ∈ B, we notice that

1

µ(V )

∫
V

∣∣g(x)−mV (g)
∣∣ dµ(x)

≤
(
µ(V )

)−1
q′
∥∥g −mV (g)

∥∥
Lq′ (V, µ)

=
(
µ(V )

)−1
q′ sup
‖h‖Lq(V, µ)≤1

∣∣∣ ∫
V
h(x)

[
g(x)−mV (g)

]
dµ(x)

∣∣∣
=

(
µ(V )

)−1
q′ sup
‖h‖Lq(V, µ)≤1

∣∣∣ ∫
V
g(x)

[
h(x)−mV (h)

]
dµ(x)

∣∣∣.
Now suppose that h ∈ Lq(V, µ) and ‖h‖Lq(V, µ) ≤ 1. Set b(x) = 1

2

(
µ(V )

)−1
q′
[
h(x) −

mV (h)
]
χV . Then b is a (1, q)-atom supported in V and ‖b‖Lq(V, µ) ≤ 1. This, together

with (4.4.5), implies that

(
µ(V )

)−1
q′
∣∣∣ ∫

V

[
h(x)−mV (h)

]
g(x) dµ(x)

∣∣∣ ≤ 2
∥∥L∥∥.

Hence,
1

µ(V )

∫
V

∣∣g(x)−mV (g)
∣∣ dµ(x) ≤ 2

∥∥L∥∥.
Since the base set V ∈ B is arbitrary, we deduce that g ∈ BMO(G) and that∥∥g∥∥

BMO(G)
.
∥∥L∥∥. This completes the proof of the lemma.
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The time has come now to apply everything that we have prepared for the proof

of results that we have mentioned in the beginning of this section. We state them

together and present the proof.

Theorem 4.4.4. For 1 < q <∞, H1,q(G) = H1,∞(G). Also [H1,∞(G)]∗ = BMO(G).

Proof. First of all, we observe that by Lemmas 4.4.1 and 4.4.3, [H1,q(G)]∗ = BMO(G)

for 1 < q < ∞. Next, by Proposition 4.2.2(ii), we see that
[
H1,q(G)

]∗ ⊆ [H1,∞(G)
]∗

.

We consider the maps

i : H1,∞(G)→ H1,q(G)

and

i∗ : BMO(G) =
[
H1,q(G)

]∗ → [
H1,∞(G)

]∗
,

where i is the inclusion map and i∗ is the canonical injection ofBMO(G) in
[
H1,∞(G)

]∗
.

Here we identify g with Lg for g ∈ BMO(G). We now claim that i maps H1,∞(G) onto

H1,q(G). To see this, first we notice that Lemma 4.4.2 implies i∗
(
BMO(G)

)
is closed

in
[
H1,∞(G)

]∗
. Now applying the Banach closed range theorem, we see that H1,∞(G)

is closed in [H1,q(G)]. This, combined with Proposition 4.2.2(ii), implies that

H1,∞(G) = H1,q(G)

as a set. We now recall that both H1,∞(G) and H1,q(G) are Banach spaces. Therefore,

by a corollary of open mapping theorem (see, e.g., [119, page 77]), we conclude that

H1,∞(G) = H1,q(G)

with equivalent norms. As a consequence, we have that [H1,∞(G)]∗ = BMO(G). This

completes the proof of the theorem.

Thus, we have the liberty to define the Hardy space H1(G) by choosing any value

of q. We choose the special value q =∞:

H1(G) := H1,∞(G) and ‖ · ‖H1(G) := ‖ · ‖H1,∞(G).

Remark 4.4.5. Our another motivation for studying the Hardy space on LCA groups

is a result of Kim [70]. In the special case G = Qp, the group of p-adic numbers,
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Kim [70] defined the space BMO(Qp) associated with family of balls and the Haar

measure that naturally arise on Qp and proved a version of John–Nirenberg type in-

equality similar to the classical one. Hence, a natural and important question arises

whether it is possible to set up a Hardy space on Qp, say H1(Qp), and characterize

BMO(Qp) as the dual of the space H1(Qp). Our Theorem 4.4.4 answers this question

in an affirmative way in the more general setting of LCA groups.

4.5 Application to Convolution Operators

We present an application of Theorem 4.4.4 to the theory of convolution operators.

In order to bound the norms of certain multipliers on G, Edwards and Gaudry [32]

introduced some specific convolution operators and estimated their norms as operators

from Lp(G) to Lp(G). Our purpose here is to study their boundedness property from

H1(G) to L1(G) and bound their H1(G) → L1(G)-norms. To this end, let us first

recall the relevant definitions and results. Let k be an integrable function on G. For

each l ∈ Z, define

Jl(k) = sup
y∈Ul

∫
G\Uθ(l)

|k(x− y)− k(x)| dµ(x)

and let J(k) = supl∈Z Jl(k). With respect to such a kernel k, Edwards and Gaudry

considered the usual convolution operator, that is,

Lk : f → k ? f

and proved the following result.

Theorem 4.5.1. Suppose k ∈ L1(G). Then

(i) the weak (1, 1) norm of Lk on L1 is at most

B = D2 + 4D‖k̂‖2∞ + 4 J(k),

(ii) for p ∈ (1,∞),

‖Lk‖Lp(G)→Lp(G) ≤ D
2
p∗Bp max{J(k), ‖k̂‖∞},
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where p∗ = min{p, p′} and Bp depends solely on p.

As an application of the atomic decomposition of H1(G), we prove the following

result for the operator Lk.

Theorem 4.5.2. The operator Lk is bounded from H1(G) to L1(G). Moreover,

‖Lk‖H1(G)→L1(G) ≤ D
3
2B2 max{J(k), ‖k̂‖∞}+ J(k).

For the proof of this theorem, we will require the following lemma, proved in [32].

Lemma 4.5.3. Suppose that l ∈ Z, x0 ∈ G, k is an integrable function on G, and

that u is an integrable function on G which vanishes off x0 +Ul, and has zero integral.

Then ∫
G\(x0+Uθ(l))

|k ? u(x)| dµ(x) ≤ ‖u‖1Jl(k) ≤ ‖u‖1J(k).

Proof of Theorem 4.5.2. Applying Theorem 4.4.4, it is enough to show that Lk is

bounded from H1,2(G) to L1(G). Further, we observe that it suffices to show that

there exists a constant C > 0 such that

‖Lk(b)‖L1(G) ≤ C

for all (1, 2)-atoms. Indeed, if f =
∑∞

j=0 λj bj ∈ H1,2(G), then from the linearity of

Lk, we find that

∫
G
|Lk f(x)| dµ(x) ≤

∞∑
j=0

|λj |
∫
G
|Lk bj(x)| dµ(x) ≤ C

∞∑
j=0

|λj |.

Taking infimum over all possible decompositions of f gives

∫
G
|Lk f(x)| dµ(x) ≤ C‖f‖H1,2(G).

So let b be a (1, 2)-atom. Then from its definition, there exists a base set V = x0 +Ul ∈

B such that supp b ⊆ V ,
∫
V b(x) dµ(x) = 0 and ‖b‖L2(G) ≤

[
µ(V )

]−1
2 . We write

∫
G
|Lk b(x)| dµ(x) =

∫
V ∗
|Lk b(x)| dµ(x) +

∫
G\V ∗

|Lk b(x)| dµ(x)

= I1 + I2, say.
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Applying Hölder’s inequality, the doubling property of µ and Theorem 4.5.1 for the

case p = 2, we obtain

I1 =

∫
V ∗
|Lk b(x)| dµ(x) ≤

[
µ(V ∗)

] 1
2 ·
[∫

V ∗
|Lk b(x)|2 dµ(x)

] 1
2

≤ D
1
2 ·
(
µ(V )

) 1
2 ‖Lk‖L2(G)→L2(G) ‖b‖L2(G)

≤ D
3
2 B2 max{J(k), ‖k̂‖∞} . (4.5.1)

To estimate the second integral, we use Lemma 4.5.3 and Hölder’s inequality. We have

I2 =

∫
G\V ∗

|k ? b(x)| dµ(x)

≤ ‖b‖L1(G) sup
y∈V

∫
G\Uθ(l)

|k(x− y)− k(x)| dµ(x)

≤
(
µ(V )

) 1
2 ‖b‖L2(G) · J(k) ≤ J(k),

(4.5.2)

which combined with (4.5.1), implies

‖Lk(b)‖L1(G) ≤ D
3
2B2 max{J(k), ‖k̂‖∞}+ J(k).

Hence, we conclude that

∫
G
|Lk f(x)| dµ(x) ≤

[
D

3
2B2 max{J(k), ‖k̂‖∞}+ J(k)

]
‖f‖H1,2(G).





Chapter 5

John–Nirenberg Spaces on LCA

Groups

In the final chapter of this thesis, we explore the theory of John–Nirenberg spaces JNp

in the setting of LCA groups having covering families. The main result of this chapter

is the John–Nirenberg inequality for functions in JNp spaces which describes, as it

happens in Euclidean setting, that JNp can be embedded into weak Lp spaces.

5.1 The John–Nirenberg Space JNp

To facilitate our discussion, we begin by recalling the space JNp(Q0) that was intro-

duced in Chapter 1. Let Q0 be a cube in Rd with sides parallel to coordinate axes and

1 < p < ∞. A function f ∈ L1(Q0) is said to be in the space JNp(Q0) if there exists

a positive constant C such that

‖f‖JNp(Q0) := sup
( 1

|Q0|
∑
i

(
–

∫
Qi

|f − fQi | dx
)p
|Qi|

) 1
p ≤ C, (5.1.1)

where the supremum is taken over all possible countable collections {Qi}i∈N of pairwise

disjoint subcubes of Q0 and

fQi = –

∫
Qi

f dx =
1

|Qi|

∫
Qi

f dx.
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There are other definitions of John–Nirenberg spaces in the literature depending on

whether we require the cubes {Qi}i in equation (5.1.1) to be mutually disjoint (see

[7, 78]) or allow them to overlap in some nice and natural way (see [1]). In some cases,

one obtains different spaces which are not equivalent. However, for Boman sets, all

the definitions coincide and one ends up with a single space. For more details, the

reader is referred to [78]. In case of spaces of homogeneous type, Berkovits et al. [7]

defined a version of John–Nirenberg spaces by allowing the balls associated with the

pseudo-metric to be pairwise disjoint. In the present context of LCA groups, we choose

to adopt their approach. The concept of base sets allows us to extend the notion of

John–Nirenberg spaces in the present framework as follows.

Definition 5.1.1. Let G be an LCA group with a covering family and 1 < p < ∞.

Given a base set V and f ∈ L1(V ), we say that f belongs to the John–Nirenberg space

JNp(V ) with exponent p if

‖f‖JNp(V ) := sup
(∑

i

(
inf
ci∈R

–

∫
Vi

|f − ci|
)p
µ(Vi)

) 1
p
<∞, (5.1.2)

where the supremum runs over all collections {Vi} of pairwise disjoint base sets in V .

Remark 5.1.2. Likewise in the Euclidean spaces, we may also define the John–

Nirenberg space via the integral averages fVi by replacing ci in (5.1.2). To be specific,

we may define

‖f‖JNp[V ] := sup
(∑

i

(
–

∫
Vi

|f − fVi | dµ
)p
µ(Vi)

) 1
p
<∞.

However, both the definitions lead to the same space. Indeed, since

‖f‖JNp(V ) ≤
(∑

i

(
–

∫
Vi

|f − fVi | dµ
)p
µ(Vi)

) 1
p
,

it follows that ‖f‖JNp(V ) . ‖f‖JNp[V ]. On the other hand, the reverse inequality

(∑
i

(
–

∫
Vi

|f − fVi | dµ
)p
µ(Vi)

) 1
p
. ‖f‖JNp(V )

follows from the fact that –
∫
Vi
|f − fVi | dµ ≤ 2 infci∈R –

∫
Vi
|f − ci| dµ. Hence, we have

‖f‖JNp(V ) ∼ ‖f‖JNp[V ]. At this point, we would like to remark that in practice the
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norm given in (5.1.2) is more flexible to establish some crucial results such as the

John–Nirenberg inequality for functions in JNp, as we shall see in the next section.

5.1.1 Properties of the Spaces JNp

The spaces JNp and BMO are intimately related which we exhibit below.

Proposition 5.1.3. If the group G itself is a base set, then BMO(G) ⊆ JNp(G).

Moreover, the space BMO(G) can be obtained as the limit of the John–Nirenberg spaces

JNp(G) as p→∞ in the sense that

lim
p→∞

‖f‖JNp(G) = ‖f‖BMO(G).

Proof. For any sequence of pairwise disjoint base sets {Vi}i in G, we observe that

(∑
i

(
inf
ci∈R

–

∫
Vi

|f − ci| dµ
)p
µ(Vi)

) 1
p

=
(∑

i

∫
Vi

(
inf
ci∈R

–

∫
Vi

|f − ci| dµ
)p
dµ
) 1
p

=
(∑

i

∫
Vi

(∑
j

χVj

(
inf
cj∈R

–

∫
Vj

|f − cj | dµ
))p

dµ
) 1
p

=
(∫

G

(∑
j

χVj

(
inf
cj∈R

–

∫
Vj

|f − cj | dµ
))p

dµ
) 1
p
.

Now, in the last equality, invoking a standard measure theory fact that ‖g‖Lp(G) →

‖g‖L∞(G) as p→∞, leads to

lim
p→∞

(∑
i

(
inf
ci∈R

–

∫
Vi

|f − ci| dµ
)p
µ(Vi)

) 1
p

= sup
x∈G

∑
i

χVi

(
–

∫
Vi

|f − ci| dµ
)

= sup
i

(
inf
ci∈R

–

∫
Vi

|f − ci| dµ
)
.

Then taking supremum over all possible sequences of pairwise disjoint base sets {Vi}i

in G in the above equation, we further deduce that

sup
{Vi}i

lim
p→∞

(∑
i

µ(Vi)
(

inf
ci∈R

–

∫
Vi

|f − ci| dµ
)p) 1

p
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= sup
{Vi}i

sup
i

(
inf
ci∈R

–

∫
Vi

|f − ci| dµ
)

= sup
V ∈B

(
inf
c∈R

–

∫
Vi

|f − c| dµ
)

= ‖f‖BMO(G).

In other words,

lim
p→∞

‖f‖JNp(G) = BMO(G).

This completes the proof of Proposition 5.1.3.

Taking into consideration the above proposition, the space JNp may be viewed as

a generalization of the space BMO to some extent, and the BMO norm of a function

can be interpreted as the limit of its JNp norms when p tends to ∞.

Remark 5.1.4. The space JNp(V ) contains Lp(V ) and hence JNp contains plenty of

nontrivial functions. Indeed, for any countable collection of pairwise disjoint base sets

{Vi}i, we find that

∑
i

µ(Vi)
(

inf
ci∈R

–

∫
Vi

|f − ci| dµ
)p
≤

∑
i

µ(Vi)
(

–

∫
Vi

|f | dµ
)p

≤
∑
i

µ(Vi)
(

–

∫
Vi

|f |p dµ
)

≤
∫
V
|f |p dµ.

Then by taking the supremum over all such {Vi}i, we get the desired conclusion.

5.2 John–Nirenberg Inequality for JNp

In light of Remark 5.1.4, we know that Lp(V ) ⊆ JNp(V ). Now we show further

containment relations for the spaces JNp(V ). With this in mind we present the main

result of this chapter. Recall that if V = x+Ui is a base set, then V ∗ = x+Uθ(i) (see

section 4.1).

Theorem 5.2.1 (John–Nirenberg inequality). Let 1 < p < ∞. For every base set V

and for every f ∈ L1(V ∗), we have

‖f − fV ‖Lp,∞(V ) ≤ Cp,µ‖f‖JNp(V ∗), (5.2.1)
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where Cp,µ is a constant independent of f and V .

Proof. Fix an arbitrary base set V0 = x0 +Ui0 , where x0 ∈ G and i0 ∈ Z. Suppose that

f ∈ L1(V ∗0 ) is given. To begin with the proof of (5.2.1), it will be convenient to establish

certain notation and terminologies first that will be used frequently throughout the

proof.

Let CV ∗0 be a real number for which

inf
c∈R

–

∫
V ∗0

|f − c| dµ = –

∫
V ∗0

|f − CV ∗0 | dµ (5.2.2)

is attained. Let us first assert the existence of such a CV ∗0 . Choose an approximating

sequence {λn}n so that

–

∫
V ∗0

|f − λn| dµ < inf
c∈R

–

∫
V ∗0

|f − c| dµ+
1

n
.

From this, it follows that, for all n,

|λn| ≤
∣∣∣ –

∫
V ∗0

|f | dµ− |λn|
∣∣∣+ –

∫
V ∗0

|f | dµ

≤ –

∫
V ∗0

|f − λn| dµ+ –

∫
V ∗0

|f | dµ

≤ –

∫
V ∗0

|f | dµ+ 1 + –

∫
V ∗0

|f | dµ

= 2 –

∫
V ∗0

|f | dµ+ 1.

This shows that the sequence {λn}n is bounded from above. So by Bolzano–Weierstrass

theorem, there exists a subsequence {λnk}k of {λn}n converging to CV ∗0 , say. Now using

the dominated convergence theorem, we find that

inf
c∈R

–

∫
V ∗0

|f − c| dµ = lim
k→∞

–

∫
V ∗0

|f − λnk | dµ = –

∫
V ∗0

|f − CV ∗0 | dµ,

which is (5.2.2).

Associated to the fixed base set V0, we consider the following family of base sets

which is the key object in our proof of (5.2.1):

F = {x+ Ui : x ∈ V0, i ≤ i0}.
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With respect to the above basis F , we consider the Hardy–Littlewood maximal function

of f − CV ∗0 :

MF (f − CV ∗0 )(x) = sup
x∈V ∈F

–

∫
V
|f − CV ∗0 | dµ, x ∈ G.

Also, we consider the distribution set of the maximal function MF (f − CV ∗0 ) at scale

λ > 0,

Ωλ = {x ∈ V ∗0 : MF (f − CV ∗0 )(x) > λ}. (5.2.3)

We claim that MF (f−CV ∗0 ) vanishes outside of V ∗0 . Observe that it suffices to show

that each member of F is contained in V ∗0 . For this purpose let V = y+Ui ∈ F , where

y ∈ V0 and i ≤ i0. Choose any point z ∈ V . Then, z = y + u for some u ∈ Ui ⊆ Ui0 .

Note also that y = x0 + v ∈ V0 with v ∈ Ui0 . Now, by Lemma 4.1.3, we have

z = x0 + u+ v ∈ x0 + Ui0 + Ui0 ⊆ x0 + Uθ(i0) = V ∗0 .

Hence, the claim follows.

Let us return to the proof of (5.2.1). By Lebesgue differentiation theorem, we have

for a.e.x ∈ V0,

MF (f − CV ∗0 )(x) ≥ |f − CV ∗0 |(x)

which, together with the fact that ‖f − fV0‖Lp,∞(V0) ≤ 2‖f − CV ∗0 ‖Lp,∞(V0), implies

‖f − fV0‖Lp,∞ . ‖MF (f − CV ∗0 )‖Lp,∞(V ∗0 ).

So in order to prove (5.2.1), it will be enough to prove that

‖MF (f − CV ∗0 )‖Lp,∞(V ∗0 ) . ‖f‖JNp(V ∗0 ). (5.2.4)

The proof of this estimate is based on a Burkholder–Gundy [10] type good-λ inequal-

ity (See Proposition 5.2.2 below) which relates the local maximal function MF (f−CV ∗0 )

and a variant of the sharp maximal function M ]
Ff associated with the family F defined

by

M ]
Ff(x) = sup

x∈V ∈F
–

∫
V
|f − CV | dµ,
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where CV is a constant that satisfies

inf
c∈R

–

∫
V
|f − c| dµ = –

∫
V
|f − CV | dµ.

The proof of the existence of such a CV is identical to that of C∗V0 in (5.2.2), the details

being omitted.

We consider the set

{x ∈ V ∗0 : MF (f − CV ∗0 )(x) > kλ,M ]
Ff(x) ≤ γλ},

where γ ∈ (0, 1). For convenience, in what follows, we denote this set by Σλ.

Proposition 5.2.2. Let K = max {3, D6}. If

λ ≥ D11 –

∫
V ∗0

|f − C∗V0 | dµ, (5.2.5)

for all 0 < γ < 1, we have then

µ
(
{x ∈ V ∗0 : MF (f − CV ∗0 )(x) > Kλ,M ]

Ff(x) ≤ γλ}
)

. γ · µ
(
{x ∈ V ∗0 : MF (f − CV ∗0 )(x) > λ}

)
.

We postpone the proof of this proposition and continue with the proof of the in-

equality (5.2.4).

For any λ satisfying the condition (5.2.5), it follows from Proposition 5.2.2 that

µ(ΩKλ) = µ
(
{x ∈ V ∗0 : MF (f − CV ∗0 )(x) > Kλ,M ]

Ff(x) ≤ γλ}
)

+µ
(
{x ∈ V ∗0 : MF (f − CV ∗0 )(x) > Kλ,M ]

Ff(x) > γλ}
)

. γ · µ
(
{x ∈ V ∗0 : MF (f − CV ∗0 )(x) > λ}

)
+µ
(
{x ∈ V ∗0 : M ]

Ff(x) > γλ}
)
.

Therefore, for all λ > 0, we obtain

µ
(
ΩKλ

)
. γ · µ

(
Ωλ

)
+ µ

(
{x ∈ V ∗0 : M ]

Ff(x) > γλ}
)

+χ{0<λ<D11 –
∫
V ∗0
|f−C∗V0 | dµ}

(λ) · µ(V ∗0 ). (5.2.6)
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We now consider the following quantity

JN := sup
0<λ≤N

λpµ(Ωλ), N > 0.

From (5.2.6), it follows that

JN = Kp sup
0<λ≤N

K

λpµ(ΩKλ)

. Kp γ sup
0<λ≤N

K

λpµ(Ωλ)

+Kp sup
0<λ≤N

K

λp µ
(
{x ∈ V ∗0 : M ]

Ff(x) > γλ}
)

+Kp
(
D11 –

∫
V ∗0

|f − CV ∗0 | dµ
)p
µ(V ∗0 )

. Kp γ JN +
Kp

γp
sup

0<λ≤Nγ
K

λpµ
(
{x ∈ V ∗0 : M ]

Ff(x) > λ}
)

+Kp
(
D11 –

∫
V ∗0

|f − CV ∗0 | dµ
)p
µ(V ∗0 )

= Kp γ JN +
Kp

γp
‖M ]
Ff‖

p
Lp,∞(V ∗0 )

+Kp
(
D11 –

∫
V ∗0

|f − CV ∗0 | dµ
)p
µ(V ∗0 ).

Now, choosing γ small enough in the last estimate, we see that

JN . ‖M ]
Ff‖

p
Lp,∞(V ∗0 ) +

(
D11 –

∫
V ∗0

|f − CV ∗0 | dµ
)p
µ(V ∗0 ).

Taking N →∞, we then obtain

‖MF (f − CV ∗0 )‖pLp,∞(V ∗0 )

. ‖M ]
Ff‖

p
Lp,∞(V ∗0 ) +

(
D11 –

∫
V ∗0

|f − CV ∗0 | dµ
)p
µ(V ∗0 )

.
[
‖M ]
Ff‖Lp,∞(V ∗0 ) +

(
D11 –

∫
V ∗0

|f − CV ∗0 | dµ
)
µ(V ∗0 )

1
p

]p
.

That is,

‖MF (f − CV ∗0 )‖Lp,∞(V ∗0 )

. ‖M ]
Ff‖Lp,∞(V ∗0 ) +

(
D11 –

∫
V ∗0

|f − CV ∗0 | dµ
)
µ(V ∗0 )

1
p

=: I + II. (5.2.7)
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We now estimate I and II separately. The quantity II is relatively easier to handle.

We have

‖f‖JNp(V ∗0 ) ≥
[(

inf
c∈R

–

∫
V ∗0

|f − c| dµ
)p
µ(V ∗0 )

] 1
p

=
(

inf
c∈R

–

∫
V ∗0

|f − c| dµ
)
µ(V ∗0 )

1
p

= µ(V ∗0 )
1
p –

∫
V ∗0

|f − CV ∗0 | dµ,

where we have used the definition of JNp(V
∗

0 ) and equation (5.2.2). Hence,

II . ‖f‖JNp(V ∗0 ).

Now we turn our attention to estimate I. Take any x ∈ V ∗0 so that M ]
Ff(x) > λ.

By the definition of M ]
Ff , there exists a base set Vx ∈ F containing x such that

–
∫
Vx
|f −CVx | dµ > λ. By an argument similar to that used in Lemma 2.2.1 in [32], we

deduce the following conclusion. There exists a countable family of pairwise disjoint

base sets {Vxj}j from the collection {Vx : –
∫
Vx
|f − CVx | dµ > λ} such that

{x ∈ V ∗0 : M ]
Ff(x) > λ} ⊆

⋃
j

V ∗∗xj .

It then follows, from the last fact, that

µ
(
{x ∈ V ∗0 : M ]

Ff > λ}
)
≤ D2

∑
j

µ(Vxj )

≤ D2

λp

∑
j

µ(Vxj )
(

–

∫
Vxj

|f − CVxj | dµ
)p

≤ D2

λp
‖f‖pJNp(V ∗0 ).

In other words,

I = ‖M ]
Ff‖Lp,∞(V ∗0 ) . ‖f‖JNp(V ∗0 ).

Putting these estimates together in (5.2.7), we conclude that

‖MF (f − CV ∗0 )‖Lp,∞(V ∗0 ) . ‖f‖JNp(V ∗0 ).
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Thus, inequality (5.2.4), to which we reduced the proof of Theorem 5.2.1, holds. There-

fore, in order to complete the proof of the Theorem 5.2.1, we are left with the task of

proving Proposition 5.2.2. To do so, we need the following lemmas.

Lemma 5.2.3. Let V = x+ Ui ∈ F such that

–

∫
V
|f − CV ∗0 | dµ ≥ D

11 –

∫
V ∗0

|f − CV ∗0 | dµ. (5.2.8)

Then V 6∗ ∈ F .

Proof. It suffices to show that θ6(i) ≤ i0. Assume that θ6(i) > i0. Then, θ8(i) ≥ θ2(i0).

Since x ∈ V0 ∩ V , we have x ∈ V 2∗
0 ∩ V 8∗( 6= φ). By Lemma 4.1.3, it follows that

V 2∗
0 ⊆ V 10∗. Altogether,

D11 ≤
–
∫
V |f − CV ∗0 | dµ

–
∫
V ∗0
|f − CV ∗0 | dµ

≤ µ(V ∗0 )

µ(V )
≤ µ(V 2∗

0 )

µ(V )
≤ µ(V 10∗)

µ(V )
≤ D9,

which is a contradiction. Hence, the desired result follows.

The proof of the following lemma is omitted as it is quite similar to that of

Lemma 4.3.6.

Lemma 5.2.4. Let Ωλ be the set defined in (5.2.3) and assume that λ satisfies (5.2.5).

If Ωλ is nonempty, then there exists a sequence of pairwise disjoint base sets {Vi}i =

{yi + Uαi}i from F such that

(a)
⋃
i Vi ⊆ Ωλ ⊆

⋃
i V

4∗
i ;

(b) V 6∗
i ∈ F for all i;

(c) –
∫
Vi
|f − CV ∗0 | dµ > λ for all i;

(d) if αi < r ≤ i0 for some i, then –
∫
yi+Ur

|f − CV ∗0 | dµ ≤ λ.

We are now ready to present the proof of Proposition 5.2.2.
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Proof of Proposition 5.2.2. Recall that the goal is to prove that for all γ with 0 < γ < 1

and K = max {3, D6}, the inequality

µ
(
{x ∈ V ∗0 : MF (f − CV ∗0 )(x) > Kλ,M ]

Ff(x) ≤ γλ}
)

. γ · µ
(
{x ∈ V ∗0 : MF (f − CV ∗0 )(x) > λ}

)
(5.2.9)

holds provided that

λ ≥ D11 –

∫
V ∗0

|f − C∗V0 | dµ.

First we apply the decomposition Lemma 5.2.4 to λ satisfying the above condition to

get a family of base sets {Vi}i satisfying (a) through (d). As a next step to prove (5.2.9),

we claim the following:

{x ∈ V 4∗
i : MF (f − CV ∗0 )(x) > λK}

= {x ∈ V 4∗
i : MF ((f − C∗V0)χV 6∗

i
)(x) > λK}. (5.2.10)

The direction ⊇ is obvious. So, we only prove the other direction. Suppose x lies in

the set on the left. Then there exists a base set V = y + Uj containing x with j ≤ i0,

y ∈ V0 such that

–

∫
V
|f − CV ∗o | dµ > λK ≥ λD6. (5.2.11)

Therefore, x ∈ V 4∗
i ∩ V , and hence, x = yi + u = y + v, with u ∈ Uθ4(αi), v ∈ Uj . We

claim that j ≤ θ4(αi). Suppose this is not the case. Then j > θ4(αi), which in turn

implies that Uθ4(αi) ⊆ Uj . Let z = y + w ∈ V for some w ∈ Uj . We can write

z = y + w = y + v − v + w = yi + u− v + w.

This means z ∈ yi + Uj − Uj + Uj ⊆ yi + Uθ2(j). So, we find that

V ⊆ yi + Uθ2(j). (5.2.12)



118 Chapter 5. John–Nirenberg Spaces on LCA Groups

Also, x ∈ V ∩ V 4∗
i ⊂ V ∩ (yi + Uj) = (y + Uj) ∩ (yi + Uj). So, by Lemma 4.1.3, we

obtain yi + Uj ⊆ y + Uθ2(j) = V ∗∗. From this fact, it follows that

µ(yi + Uθ2(j))

µ(y + Uj)
≤ D2µ(yi + Uj)

µ(y + Uj)
≤
D2µ(y + Uθ2(j))

µ(y + Uj)
≤ D4. (5.2.13)

On the other hand,

–

∫
V
|f − CV ∗0 | dµ > λK ≥ λD6 > D17 –

∫
V ∗0

|f − CV ∗0 | dµ

> D11 –

∫
V ∗0

|f − CV ∗0 | dµ.

So by lemma 5.2.3, we have θ6(j) ≤ i0 and hence i0 > θ2(j) > θ4(αi) > αi. This fact,

together with Lemma 5.2.4 (d), implies that

–

∫
yi+Uθ2(j)

|f − CV ∗0 | dµ ≤ λ.

Combining this with (5.2.12), (5.2.11) and (5.2.13), we conclude that

λD6 ≤ λK ≤ –

∫
V
|f − CV ∗0 | dµ ≤ D

4λ,

which is a contradiction. Hence, the claim j ≤ θ4(αi) holds true. So by Lemma 4.1.3,

we have V ⊆ V 6∗
i , and therefore,

λD6 < –

∫
V
|f − CV ∗0 | dµ = –

∫
V
|f − CV ∗0 |χV 6∗

i
dµ

≤ MF ((f − CV ∗0 )χV 6∗
i

)(x).

This means that x also lies in the set on the right of (5.2.10). Thus, equation (5.2.10)

holds.

In the next step, we claim that

MF ((f − CV 6∗
i

)χV 6∗
i

)(x) ≥ (K − 2)λ if x ∈ Σλ ∩ V 4∗
i . (5.2.14)

To see this, we first observe that from triangle inequality, we have

–

∫
V 6∗
i

|CV 6∗
i
− CV ∗0 |χV 6∗

i
(x)dµ
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≤ –

∫
V 6∗
i

|f − CV 6∗
i
| dµ+ –

∫
V 6∗
i

|f − CV ∗0 | dµ

≤ 2 –

∫
V 6∗
i

|f − CV ∗0 | dµ .

This, via equation (5.2.10), Lemma 5.2.4 (b) and (d), if x ∈ Σλ ∩ V 4∗
i , then

Kλ < MF ((f − CV 6∗
i

)χV 6∗
i

)(x)

≤ MF ((f − CV 6∗
i

)χV 6∗
i

)(x) +MF
(
(CV 6∗

i
− CV ∗0 )χV 6∗

i

)
(x)

≤ MF ((f − CV 6∗
i

)χV 6∗
i

)(x) + 2 –

∫
V 6∗
i

|f − CV ∗0 | dµ

≤ MF ((f − CV 6∗
i

)χV 6∗
i

)(x) + 2λ.

That is, MF ((f − CV 6∗
i

)χV 6∗
i

)(x) ≥ (K − 2)λ, and hence, (5.2.14) holds true.

Now, for each i, pick a point x̄i ∈ Σλ ∩ V 4∗
i . Since, Σλ ⊆ Ωλ, therefore, by

Lemma 5.2.4, equation (5.2.14) and the weak (1, 1) property of MF , we obtain

µ(Σλ) = µ(Σλ ∩ Ωλ)

≤
∑
i

µ(Σλ ∩ V 4∗
i )

≤
∑
i

µ
(
{x ∈ V 4∗

i : MF ((f − CV 6∗
i

)χV 6∗
i

)(x) > (K − 2)λ,M ]
Ff ≤ γλ}

)
≤

∑
i

C

(K − 2)λ

∫
V 6∗
i

|f − CV 6∗
i
| dµ

≤ CD6

(K − 2)λ

∑
i

µ(Vi) –

∫
V 6∗
i

|f − CV 6∗
i
| dµ

≤ CD6

(K − 2)λ

∑
i

µ(Vi)M
]
Ff(x̄i)

≤ CD6

(K − 2)λ

∑
i

µ(Vi) γ λ ≤
CD6

(K − 2)
γ µ(Ωλ).

Hence,

µ
(
{x ∈ V ∗0 : MF (f − CV ∗0 ) > Kλ, fF∗ ≤ γλ}

)
≤ CD6

K − 2
· γ · µ(Ωλ),

the desire inequality holds.

Theorem 5.2.1 is now completely proven.
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Remark 5.2.5. We conclude this chapter by briefly comparing several variants of

John–Nirenberg inequality in a variety of contexts. In the Euclidean spaces [65], the

John–Nirenberg inequality tells us that the space JNp(Q0) can be embedded into weak-

Lp(Q0). The corresponding inequality in the setting of doubling metric measure spaces

also shows that for any ball B, JNp(B) can be embedded into weak-Lp(B) (see [1]).

Note that in [1], f is said to be in JNp(B) if f ∈ L1
loc(11B) and satisfies a condition

similar to the one in (1.4.1). In [7], the authors improved this result. They showed that

in a space of homogeneous type, if B = B(x, r) is a ball of radius r centred at x and

B̂ = B(x, (1 + δ)r), where δ > 0, then JNp(B̂) can be embedded into weak-Lp(B). In

the present context, we have shown that for any base set V , JNp(V
∗) can be embedded

into weak-Lp(V ).
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[66] Journé, J.-L., Calderón–Zygmund operators, pseudo-differential operators and

the Cauchy integral of Calderón. Lecture Notes in Math. vol. 994, Springer-

Verlag, 1983.

[67] Kania-Strojec, E., Plewa, P., and Preisner, M., Local atomic decompositions for

multidimensional Hardy spaces, Rev. Mat. Complut., 34 (2021), 409–434.

[68] Kenig, C., Elliptic boundary value problems on Lipschitz domains, Beijing Lec-

tures in Harmonic Analysis, Ann. Math. Stud., 112, 131–183, 1986.

[69] Kenig, C., Harmonic Analysis Techniques for Second Order Elliptic Boundary

Value Problems, vol. 83, CBMS Regional Conference Series in Math. AMS, 1994.

[70] Kim, Y. C., Carleson measures and the BMO space on the p-adic vector space,

Math. Nachr., 282 (2009), 1278–1304.
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