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Abstract

This thesis is a compilation of various message authentication codes having
beyond the birthday bound (BBB) security. Kicking off with preliminary
development in chapter 1, it proceeds to introduce the nEHtM (nonce-based
Enhanced Hash-then-Mask) MAC in chapter 2, which is BBB-secure when
nonce misuse occurs, through the concept of faulty nonces. The construction
is based on a single block cipher, used on the inputs after they undergo a
domain-separation. Next, chapter 3 tackles the security and cryptanalysis of
MAC constructions that use pseudorandom permutations as primitives by
introducing the construction PDMMAC (Permutation-based Davies-Meyer
MAC) and its variants. The work on obtaining pseudorandom functions from
PRPs by [53] lead to our exploration of PRP-based MACs, and one of our
constructions was inspired by the DWCDM of [62]. This was instrumental
in the search for an inverse-free permutation-based MAC with a single
instance of permutation. This is addressed in chapter 4 through the p-EDM
(permutation-based Encrypted Davies-Meyer), which follows the trend of
constructing n-bit to n-bit PRFs by summing smaller constructions such
as the Even-Mansour and the Davies-Meyer, like the SoEM and SoKAC
constructions of [53] and the PDMMAC and variant constructions of [47]
before it. The BBB security is again tight.

Two interesting treatments of the DbHtS construction [61] can be found in
chapters 5 and 6. A permutation-based version, dubbed p-DbHtS (permutation-
based Double-block Hash-then-Sum) is proven to possess BBB security and
a matching attack provided. Finally, a block cipher-based version of the
original construction is shown to have BBB security in the multi-user setting
for underlying hash functions that are constructed without the use of block
ciphers.

Furthermore, each chapter extends Patarin’s Mirror Theory to provide
partial bounds for solutions to a system of affine bivariate equations and
non-equations satisfying certain conditions.
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1. Introduction

1.1. Background

A Pseudo-Random Function (PRF) is a fundamental primitive in symmetric
key cryptography. It is useful in providing solutions like authentication of
messages, encryption of any arbitrary-length messages, etc. Most PRFs are
built on top of a block cipher in some mode of operation. Some commonly
used block cipher-based PRFs are CBC-MAC [13], PMAC [35], OMAC [89],
LightMAC [100], etc. However, all of these block cipher-based PRF construc-
tions only provide security up to around 2n/2 adversarial queries (where n
is the block size of the block cipher). This bound is typically known as the
birthday bound.

Birthday bound-secure constructions are often acceptable in practice when
they are instantiated with block ciphers having a large block size (e.g.,
AES-128). For example, consider PMAC, whose PRF advantage is roughly
5ℓq2/2n [117], where ℓ is the upper limit on message size in terms of
the number of blocks. When it is instantiated with AES-128, it gives a
security of roughly up to 248 adversarial queries, provided the longest
message size is 216 blocks and the success probability of breaking the scheme
is restricted to 2−10. However, with the growing trend of designing and
standardizing lightweight block ciphers (NIST lightweight competition) like
PRESENT [38], GIFT [7], LED [82, 81], etc. that are particularly suitable for a
resource-constrained environment, birthday bound-secure constructions are
no longer as suitable for use in practice. For example, PMAC instantiated
with the PRESENT block cipher (a 64-bit block cipher) gives security up to
216 adversarial queries when the longest message size is 216 blocks and the
success probability of breaking the scheme is 2−10. Thus, it is not safe to use
birthday bound-secure PRFs when they are instantiated with lightweight
block ciphers. Although using AES-128 in a birthday bound-secure mode
provides 64-bit security (which is adequate for the present-day), it may not
be so in the future due to technological advancement. In such a situation,
the feasible option would be to use a mode that gives higher security instead
of replacing the underlying cipher with a larger block size.

An authenticated encryption (AE) mode is a cryptographic scheme that
guarantees the privacy and authenticity of a message concurrently. Au-
thenticated encryption has received much attention from the cryptographic
community mostly due to its application to TLS and many other protocols.
The recently concluded CAESAR competition [43] which aimed to identify
a portfolio of authenticated encryption schemes drafted three use cases,
namely lightweight, high-performance, and defense-in-depth. The competition
considered GCM [101] as the baseline algorithm as it is widely adopted
(e.g. in TLS 1.2 and in its variant RGCM [18], which shall soon be consid-
ered in TLS 1.3 [5]) and standardized. ChaCha20+Poly1305 [19] is a popular
alternative for settings where AES-NI is not implemented.
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1. Introduction

Encrypt-then-MAC. Both ChaCha20+Poly1305 and GCM follow the Encrypt-
then-MAC (EtM) paradigm [15]. Some other popular AE designs following
the same paradigm are CWC [93], OGCM2 [3], CHM [88], CIP [87], GCM-
RUP [4], OGCM1 [137], OGCM2 [137] etc. The authenticated encryption of this
paradigm is described as follows. Let E be a nonce-based encryption scheme
and I be a message authentication code. Given a nonce N, a message M and
an associated data A, the ciphertext C = EN(M) is first computed, which
is then used to compute the tag T = I(N, A, C). All the aforementioned
algorithms can be described by an encryption EN (involving stream cipher
encryptions) and a MAC I (all constructions are algebraic hash function-
based and most of them uses Wegman-Carter MAC (WC MAC) [133]). EtM is
a popular design paradigm due to its generic security guarantee. Authors of
[44] showed that (stating informally) if E is a secure symmetric encryption
scheme and I is a secure MAC family then this method of implementing
EtM results in secure channels. This was later also analyzed by [15, 116].

Chapter 2 introduces the block-cipher based n-EHtM (nonce-based En-
hanced Hash-then-Mask) MAC, which follows the EtM paradigm. It is
shown to have beyond the birthday bound security that degrades gracefully
with increasing number of faulty nonces. An AE instantiation of n-EHtM
with CWC is also described. Chapter 3 tackles the security and cryptanalysis
of MAC constructions that use pseudorandom permutations as primitives
by introducing the construction PDMMAC (Permutation-based Davies-Meyer
MAC) and its variants, while chapter 4 follows through with the inverse-
free p-EDM (permutation-based Encrypted Davies-Meyer) — both shown to
possess tight BBB security.

Hash-then-PRF [129]. HtP is a well-known paradigm for designing variable
input-length PRFs, in which an input message of arbitrary length is hashed
and the hash value is encrypted through a PRF to obtain a short tag. Most
popular MACs including the CBC-MAC [13], PMAC [35], OMAC [89] and Light-
MAC [100] are designed using the HtP paradigm. Although the method is
simple, in particular being deterministic and stateless, the security of MACs
following the HtP paradigm is capped at the birthday bound due to the col-
lision probability of the hash function. Birthday bound-secure constructions
are acceptable in practice when any of these MACs are instantiated with
a block cipher of moderately large block size. For example, instantiating
PMAC with AES-128 permits roughly 248 queries (using 5ℓq2/2n [117] bound)
when the longest message size is 216 blocks, and the success probability of
breaking the scheme is restricted to 2−10. However, the same construction
becomes vulnerable if instantiated with some lightweight (smaller block
size) block ciphers, whose number has grown tremendously in recent years,
e.g. PRESENT [38], GIFT [7], LED [81], etc. For example, PMAC, when in-
stantiated with the PRESENT block cipher (a 64-bit block cipher), permits

3



1. Introduction

only about 216 queries when the longest message size is 216 blocks, and
the probability of breaking the scheme is 2−10. Therefore, it becomes risky
to use birthday bound-secure constructions instantiated with lightweight
block ciphers. In fact, in a large number of financial sectors, web browsers
still widely use 64-bit block ciphers 3-DES instead of AES in their legacy
applications with backward compatibility feature, as using the latter in
corporate mainframe computers is more expensive. However, it does not
give adequate security if the mode in which 3-DES is used provides only
birthday bound security, and hence a beyond birthday secure mode solves
the issue. Although many secure practical applications use the standard
AES-128, which provides 64-bit security in a birthday bound-secure mode,
which is adequate for the current technology, it may not remain so in the
near future. In such a situation, using a mode with beyond the birthday
bound security instead of replacing the cipher with a larger block size is a
better option. 1

Double-Block Hash-then-Sum. Many studies tried to tweak the HtP design
paradigm to obtain beyond the birthday bound-secure MACs; while they
possess a similar structural design, the internal state of the hash function is
doubled and the two n-bit hash values are first encrypted and then XORed
together to produce the output. In [135], Yasuda proposed a beyond the
birthday bound-secure deterministic MAC called SUM-ECBC, a rate-1/2
sequential mode of construction with four block cipher keys. Followed by
this work, Yasuda [134] came up with another deterministic MAC called
PMAC Plus, but unlike SUM-ECBC, PMAC Plus is a rate-1 parallel mode of
construction with three block cipher keys. Zhang et al. [136] proposed
another rate-1 beyond the birthday bound-secure deterministic MAC called
3kf9 with three block cipher keys. In [114], Naito proposed LightMAC Plus, a
rate (1− s/n) parallel mode of operation, where s is the size of the block
counter. The structural design of all these constructions first applies a 2n-
bit hash function on the message, then the two n-bit output values are
encrypted and XORed together to produce the tag, where n is the block size
of the block cipher. Moreover, all of them also give 2n/3-bit security. In FSE
2019, Datta et al. [61] proposed a generic design paradigm dubbed as the
double-block hash-then-sum or DbHtS, defined as follows:

DbHtS(M) := EK1(Σ)⊕ EK2(Θ), (Σ, Θ)← HKh(M),

where HKh is a double-block hash function that maps an arbitrary-length
string to a 2n-bit string. Within this unified framework, they revisited the
security proof of existing DbHtS constructions, including PolyMAC [92], SUM-
ECBC [135], PMAC Plus [134], 3kf9 [136] and LightMAC Plus [114] and also
their two-keyed versions [61] and confirmed that all the constructions are

1Note that there are no standard block ciphers of size higher than 128 bits.
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1. Introduction

secure up to 22n/3 queries when they are instantiated with an n-bit block
cipher.

In CRYPTO 2018, Leurent et al. [95] proposed a generic attack on all
these constructions using 23n/4 (short message) queries, leaving a gap be-
tween the upper and the lower bounds for the provable security of DbHtS
constructions. Recently, Kim et al. [92] have improved the bound of DbHtS
constructions from 22n/3 to 23n/4. They have shown that if the underlying
2n-bit hash function is the concatenation of two independent n-bit-universal
hash functions 2, then the resulting DbHtS paradigm is secure up to 23n/4

queries. They have also improved the security bound of PMAC Plus, 3kf9
and LightMAC Plus from 22n/3 to 23n/4 and hence closed the gap between the
upper and the lower bounds of the provable security of DbHtS constructions.

Chapters 5 and 6 give tight security bounds for two different versions of
the DbHtS construction. First, chapter 5 proposes the p-DbHtS (permutation-
based Double-block Hash-then-Sum), which is proven BBB secure in the
random oracle model, along with a matching attack that proves tightness
of the bound. Next, chapter 6 considers a version of the original (block
cipher-based) construction in the ideal cipher model and proves tight BBB
multi-user security (with matching attack) for cases when the underlying
hash function is not constructed from block ciphers.

1.2. Preliminaries and Notation

The set of all n-bit binary strings is denoted by {0, 1}n, for an integer n ∈N.

The empty set shall be denoted by ϕ. For a set X , X $←− X means X is
sampled uniformly at random from X , independently of all other random
variables defined so far. The set of all functions from X to Y is denoted as
Func(X ,Y) and the set of all permutations over X is denoted as Perm(X ).
Func(X ) denotes the set of all functions from X to {0, 1}n and Perm denotes
the set of all permutations over {0, 1}n. We often write Func instead of
Func(X ) when the domain of functions is understood from the context. Let
Z1 = (z1

1, . . . , z1
q) and Z2 = (z2

1, . . . , z2
q) be two finite q-tuples containing

n-bit strings zb
i (b ∈ {1, 2}, i ∈ [q]). When an n-bit permutation π ∈ Perm(n)

maps Z1 to Z2, we shall write Z1
π−→ Z2 if ∀ i ∈ [q], π(z1

i ) = z2
i . We say

Z1 is permutation compatible with Z2 if there exists at least one π ∈ Perm(n)
such that Z1

π−→ Z2. For integers 1 ≤ b ≤ a, the notation (a)b means
a(a − 1) . . . (a − b + 1), and (a)0 := 1. [q] refers to the set {1, . . . , q} and
[q1, q2] to the set {q1, q1 + 1 . . . , q2 − 1, q2}.

2A family of keyed hash functions is said to be universal if for any distinct x and x′, the
probability of a collision in their hash values for a randomly sampled hash function from
the family is negligible.
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1. Introduction

Given a tuple of ordered pairs Q = ((x1, y1), . . . , (xq, yq)) with pair-
wise distinct n-bit strings {xi}

q
i=1 and {yi}

q
i=1, Dom(Q) := {xi ∈ {0, 1}n :

(xi, yi) ∈ Q} and Ran(Q) := {yi ∈ {0, 1}n : (xi, yi) ∈ Q}. Clearly, |Dom(Q)|
= |Ran(Q)| = q. We say that an n-bit permutation π ∈ Perm(n) extends Q
(i.e. π −→ Q) if ∀ i ∈ [q], π(xi) = yi. We say that Q is extendable if there
exists at least one π ∈ Perm(n) such that π −→ Q.

We generalize this notion for more than one tuple of ordered pairs. Let
Q̃ = (Q1, . . . ,Qs) such that for each j ∈ [s], Qj = ((xj

1, yj
1), . . . , (xj

qj , yj
qj)),

where each xj
i and each yj

i is an n-bit string pairwise distinct from all others.
Now for each j ∈ [s], we define the following two sets: Dom(Qj) = {xj

i :

(xj
i , yj

i) ∈ Qj} and Ran(Qj) = {yj
i : (xj

i , yj
i) ∈ Qj}. Clearly, |Dom(Qj)| =

|Ran(Qj)| = qj ∀ j ∈ [s]. Moreover, for all j ̸= j′ ∈ [s], Dom(Qj) is dis-
joint from Dom(Qj′) and Ran(Qj) is disjoint from Ran(Qj′). Hence, X =
(Dom(Q1), . . . ,Dom(Qs)) and Y = (Ran(Q1), . . . ,Ran(Qs)) are two disjoint
collections of finite sets. An n-bit permutation π ∈ Perm(n) thus extends
Q̃, denoted π −→ Q̃, if π −→ Qj ∀ j ∈ [s]. As an alternative notation of
π −→ Q̃, we also write X

π−→ Y.

We write x ← y to represent the value y being assigned to the variable x.
We say two sets X and Y are disjoint if X ∩ Y = ϕ. We denote their union
as X ⊔Y (i.e. the disjoint union of X and Y). Let X = (X1, . . . ,Xs) be a finite
collection of finite sets. X is called a disjoint collection if for each j ̸= j′ ∈ [s],
Xj and Xj′ are disjoint. The size of X, denoted as |X|, is |X1|+ . . . + |Xs|.
For a disjoint collection X = (X1, . . . ,Xs,Xs+1), we write X \ Xs+1 to denote
the collection (X1, . . . ,Xs). For two disjoint collections X = (X1, . . . ,Xs) and
Y = (Y1, . . . ,Ys′), we say X is inter-disjoint with Y if for all j ∈ [s], j′ ∈ [s′], Xj
is disjoint from Yj′ . If X is inter-disjoint from Y, then we denote their union
as X⊔Y. Moreover, |X⊔Y| = |X|+ |Y|. For a set S and for a finite disjoint
collection of finite sets X = (X1, . . . ,Xs), S \ X means S \ (X1 ⊔ . . . ⊔ Xs).
For a finite subset S of N, maxS denotes the maximum-valued element
of S . For a finite set X ⊆ {0, 1}n and for an arbitrary non-zero element
a ∈ {0, 1}n, X ⊕ a denotes the set {x⊕ a : x ∈ X}.

A function Φ is said to be a block function if it maps elements from an
arbitrary domain to {0, 1}n. The set of all block functions with domain X
is denoted as Func(X ). 3 We call Φ to be a double-block function if it maps
elements from an arbitrary set X to ({0, 1}n)2. For a given double-block
function Φ : X → {0, 1}2n, we write Φℓ : D → {0, 1}n such that for every
x ∈ X , Φℓ(x) = left(Φ(x)). Similarly, we write Φr : X → {0, 1}n such that for
every x ∈ X , Φr(x) = right(Φ(x)). For two block functions Φℓ : X → {0, 1}n

and Φr : X → {0, 1}n, one can naturally define a double-block function

3When X = {0, 1}n, we write Func to denote Func({0, 1}n).
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Φ : X → {0, 1}2n such that Φ(x) = (Φℓ(x),Φr(x)), which we write as
Φ = (Φℓ,Φr).

{0, 1}n denotes the set of all binary strings of length n and {0, 1}∗ denotes
the set of all binary strings of arbitrary finite length. This text may sometimes
denote |{0, 1}n| by N. We denote 0n (i.e., the n-bit string of zeroes) by 0.
For any element X ∈ {0, 1}∗, |X| denotes the number of bits in X. For any
two elements X, Y ∈ {0, 1}∗, X∥Y denotes the concatenation of X to Y. For
X, Y ∈ {0, 1}n, X ⊕ Y denotes the addition of X and Y, modulo 2. For any
X ∈ {0, 1}∗, parse X as X = X1∥X2∥ . . . ∥Xl, where for each i = 1, . . . , l − 1,
Xi is an element of {0, 1}n and 1 ≤ |Xl| ≤ n. We call each Xi a block. For
a pair of blocks x = (xℓ, xr) ∈ {0, 1}2n, we write left(x) to denote xℓ and
right(x) to denote xr. For x ∈ {0, 1}n, where x = xn−1∥ . . . ∥x0, lsb(x) denotes
the least significant bit x0 of x. A function chopLSB : {0, 1}n → {0, 1}n−1

removes the least significant bit of a string X ∈ {0, 1}n. For a given bit b,
fixb is a function from {0, 1}n to {0, 1}n that takes an n-bit binary string
x = xn−1∥ . . . ∥x0 and returns an another binary string x′ = (xn−1∥ . . . ∥b),
where lsb(x) is fixed to bit b. For a tuple X := (X1, . . . , Xq) of length q, an
element Xi of X is called fresh if for all j ̸= i, Xi ̸= Xj. Otherwise, we say Xi
is not fresh or repeated in X. Sometimes we denote tuple X as (Xi)i∈[q]. X is
said to be distinct if each of its elements is fresh. Otherwise, we say it is not
a fresh tuple.
Lazy Sampling of Random Permutations. Consider a distinguisher A

interacting with an n-bit random permutation π
$←− {0, 1}n. We simulate

this interaction by a simulator S that maintains a partial function Ψ. Ψ is
initially defined to be an empty function (a function with empty domain),
i.e., Dom (Ψ)← ϕ. We consider two dynamically growing sets Dom(Ψ) and
Ran(Ψ) associated to Ψ, such that the points at which Ψ has already been
defined gets included in Dom(Ψ) and their respective defined values get
included in Ran(Ψ). Initially, Dom(Ψ),Ran(Ψ)← ϕ. On the ith query xi, the
simulator checks whether xi ∈ Dom(Ψ). If so, the corresponding response is
yi ← Ψ(xi). Else, the response is sampled uniformly from {0, 1}n \ Ran(Ψ)
and xi, yi are added to Dom(Ψ) and Ran(Ψ) respectively, i.e.

Dom(Ψ)← Dom(Ψ) ∪ {xi}, Ran(Ψ)← Ran(Ψ) ∪ {yi}.

Note that at any point, Dom(Ψ),Ran(Ψ) ⊆ {0, 1}n.

1.2.1. Cryptographic Security Models

The Standard Model

In the standard model, no special Mathematical objects such as infinite
random strings or random oracles are used, and communication systems

7



1. Introduction

are usually abstracted into a reliable but insecure channel. Even the most
common encryption goals require some complexity-theoretic hardness as-
sumptions in the standard model [34].

The Random Oracle Model

The random oracle model formalized by Bellare and Rogaway [16] assumes
that a hash function is replaced by a publicly accessible random function
(the random oracle). This means that the adversary cannot compute the
result of the hash function by itself, and must query the random oracle [57].
This model often allows one to design very simple, intuitive and efficient
protocols for many tasks, while simultaneously providing a seemingly
convincing security guarantee for such practical constructions [66]. Thus,
a proof in the random oracle model does not imply that the scheme will
remain secure when the random oracle is replaced by a concrete hash
function.

Upper Bound on AdvMAC
f (Page 5, [68])

To get an upper bound for AdvMAC
f , we consider a random oracle ψ

$←−
Func(K × N ×M, T ) and reject oracle Rej : N ×M× T → {0}. The
advantage AdvMAC

f is bounded above by

max
D

∣∣∣Pr[D( f π
K ,VerπK ,π,π−1) = 1]− Pr[D(ψ,Rej,π,π−1) = 1]

∣∣∣ .

The Ideal Permutation and Ideal Cipher Models

Instead of a publicly accessible random function, the ideal permutation
model assumes the adversary’s access to a random permutation in addition
to the construction (or random) oracle(s). On the other hand, the ideal cipher
model provides a publicly accessible random block cipher (or ideal cipher)
with a k-bit key and an n-bit input. All parties including the adversary can
make both encryption and decryption queries to the ideal block cipher, for
any given key [57, 66]. [66] and [57] are works that relate the random oracle
and ideal cipher models.

1.2.2. Security Definitions

Distinguishing Advantage An adversary A is modeled as a random-
ized algorithm with access to an external oracle O. Such an adversary
is called an oracle adversary. An oracle O is an algorithm that may be a
cryptographic scheme being analyzed. The interaction between A and O,
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denoted by AO, generates a transcript τ = {(x1, y1), (x2, y2), . . . , (xq, yq)},
where x1, x2, . . . , xq are q queries of A to oracle O and y1, y2, . . . , yq be the
corresponding responses, where yi = O(xi). We assume that A is adaptive,
which means that xi is dependent on the previous i− 1 responses.

Distinguishing Game. Let F and G be two random systems and an ad-
versary A is given oracle access to either of F or G. After interaction with
an oracle O ∈ {F,G}, A outputs 1, which is denoted as AO ⇒ 1. Such an
adversary is called a distinguisher and the game is called a distinguishing game.
The task of the distinguisher in a distinguishing game is to tell with which
of the two systems it has interacted. The advantage of the distinguisher A in
distinguishing the random system F from G is defined as

AdvF
G(A) := | Pr[AF ⇒ 1]− Pr[AG ⇒ 1] |,

here the above probability is defined over the probability spaces of A and O.
The maximum advantage in distinguishing F from G is defined as

max
A∈A

AdvF
G(A),

where A is the class of all possible distinguishers. One can easily generalize
this setting when the distinguisher interacts with multiple oracles, which are
separated by commas. For example, AdvF1,...,Fm

G1,...,Gm
(A) denotes the advantage

of A in distinguishing (F1, . . . ,Fm) from (G1, . . . ,Gm).

Pseudo Random Function (PRF) and Psuedo Random Permutation

(PRP). A keyed function F : K×X → Y with key space K, domain X and
range Y is a function for which F(K, X) shall be denoted by FK(X). Given
an algorithm A that has oracle access to a function from X to Y , makes at
most q queries in time at most t, and returns a single bit, the prf advantage
of A against the family of keyed functions F, AdvPRF

F (A), is defined as∣∣∣Pr
[
K $←− K : AFK(·) = 1

]
− Pr

[
RF

$←− Func(X ,Y) : ARF(·) = 1
]∣∣∣ .

F is said to be a (q, ℓ, σ, t, ϵ)-secure PRF if

AdvPRF
F (q, ℓ, σ, t) := max

A
AdvPRF

F (A) ≤ ϵ,

where the maximum is taken over all adversaries A that make q queries,
with a maximum of ℓ data blocks in a single query and the total number
of data blocks at most σ, with maximum running time t. Similarly, the
prp-advantage of A against a family of keyed permutations E is defined as

AdvPRP
E (A) :=

∣∣∣Pr
[
K $←− K : AEK(·) = 1

]
− Pr

[
Π

$←− Perm(X ) : AΠ(·) = 1
]∣∣∣ .
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E is said to be a (q, t, ϵ)-secure PRP if AdvPRP
E (q, t) := maxA AdvPRP

E (A) ≤ ϵ,
where maximum is taken over all adversaries A that make q queries and
have running time at most t.

PRF Security in the Random Permutation Model. Consider a function
f : K ×M → T , where K, M and T are the key space, message space
and the tag space respectively. We discuss the pseudorandom security of
f under the random permutation model. We assume that f makes internal
public-random-permutation calls to π and π−1 ( f can make calls to multiple
random permutations when all of them are independent and uniform on
the set of message blocks Perm(B)). For simplicity, we use f π

K to denote f
with uniform K and uniform π. The distinguisher D is given access to either

( f π
K , π, π−1) for K $←− {0, 1}k or (ψ, π, π−1) where ψ

$←− Func(K ×M, T )
is a random oracle. The distinguishing probability of D is represented by
Advprff (D), such that

Advprff (D) = |Pr[D( f π
K ,π,π−1) = 1]− Pr[D(ψ,π,π−1) = 1]|.

To be precise, we call f an ϵ-PRF against (qm, p)-adversaries if AdvPRF
F (D) ≤

ϵ for all distinguishers D making qm queries to f π
K and p offline queries to

π.

MAC Security in the Random Permutation Model. Consider f and
another function Ver : K ×M× T → {0, 1} (similar to f π

K , we use the
notation VerπK) such that for (M, T), if f π

K (M) = T then VerπK(M, T) = 1
(otherwise VerπK(M, T) = 0 ). Consider a (qm, p, qv) adversary A making qm
queries to f π

K , p queries to π and qv queries to VerπK . We say that A f orges if
any of its queries (M, T) to VerπK returns 1, such that M has not been queried
to f π

K before. The advantage of A against the MAC security of f is defined
as

AdvMAC
f (A) = Pr[K $←− K, π

$←− Perm(B) : A forges].

To be precise, we call f an ϵ-MAC against (qm, p, qv)-adversaries if AdvMAC
f (A) ≤

ϵ for all adversariesAmaking qm queries to f π
K , p queries to π and qv queries

to VerπK .

Nonce-Based MAC Security in the Random Permutation Model. Con-
sider nonce based versions of f and Ver (takes an additional input N ∈ N .)
such that for an input (N, M, T), VerπK(N, M, T) = 1 if f π

K (N, M) = T and
0 otherwise. Consider a (qm, p, qv) adversary A making qm queries to f π

K
without repeating the nonce, p queries to π and qv queries to VerπK . We say
that A forges if any of its queries (N, M, T) to VerπK , such that (N, M) has not
been queried to f π

K , returns 1. The advantage of A against the MAC security
of f is defined as

AdvMAC
f (A) = Pr[K $←− K, π

$←− Perm(B) : A forges].
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We call f an ϵ-MAC against (qm, p, qv)-adversaries if AdvMAC
f (A) ≤ ϵ for all

(qm, p, qv)-adversaries A.

PRF Security in the Ideal-Cipher Model A keyed function with the key
space K, domain X and range Y is a function F : K×X → Y . We denote
F(k, x) by Fk(x). A random function RF from X to Y is a uniform random

variable over the set Func(X ,Y), i.e., RF
$←− Func(X ,Y). We define the

pseudorandom security of F under the ideal-cipher model. We assume that
F makes internal calls to a publicly evaluated block cipher E with a randomly

sampled block cipher key K $←− K (F can make calls to multiple block ciphers
when all of them are independent and uniform over the set BC(K, {0, 1}n)).
For simplicity, we write FEK to denote F with a uniformly sampled block

cipher E $←− BC(K, {0, 1}n), which is keyed by a randomly sampled K $←− K.

The distinguisher A is given access to either (FEK,E±) for K $←− K or (RF,E±),

where E
$←− BC(K, {0, 1}n) is a uniformly sampled n-bit block cipher such

that A can make forward or inverse queries to E, which is denoted as E±.
We define the PRF advantage of A against a keyed function F in the ideal
cipher model as

AdvPRF
F (A) := Adv(FEK ,E±)

(RF,E±)
(A).

We say F is a (q, p, ϵ, t)-PRF if AdvPRF
F (A) ≤ ϵ for all adversaries A that make

q queries to F, p forward and inverse offline queries to E and run for time at
most t.

Multi-User PRF Security in Ideal Cipher Model We assume there are u
users in the multi-user setting, such that the ith user executes FEKi

. Further-
more, the ith user key Ki is independent of the keys of all other users. An
adversary A has access to all the u users as oracles. A make queries to the
oracles in the form of (i, M) to the ith user and obtains T ← FEKi

(M). We call
these construction queries. For i ∈ [u], we assume A makes qi queries to
the ith oracle. We also assume that A make queries to the underlying block
cipher E and its inverse with some chosen keys kj. We call these primitive
queries. Suppose A chooses s distinct block cipher keys (k1, . . . , ks) and
makes pj primitive queries to the block cipher E with chosen keys kj for
1 ≤ j ≤ s. Let A be a (u, q, p, t)-adversary against the PRF security of F for
all u users such that q = q1 + . . . + qu is the total number of construction
queries and p = p1 + . . . + ps is the total number of primitive queries to the
block cipher E with the total running time A being at most t. We assume
that for any i ∈ [u], A does not repeat any construction query to the ith user.
Similarly, A does not repeat any primitive query for any chosen block cipher
key kj to the block cipher E. The advantage of A in distinguishing (FE,E±)

from (RF,E±) in the multi-user setting, where RF
$←− Func(X ,Y), is defined
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as

Advmu-PRF
F (A) :=

∣∣∣Pr
[
A
((FEK1

,...,FEKu ),E
±) ⇒ 1

]
− Pr

[
A((RF,...,RF),E±) ⇒ 1

]∣∣∣ ,

where the randomness is defined over K1, . . . , Ku
$←− K, E $←− BC(K, {0, 1}n)

and the randomness of the adversary (if any). We write

Advmu-PRF
F (u, q, p, t) := max

A
Advmu-PRF

F (A),

where the maximum is over all (u, q, p, t)-adversaries A. In this chapter, we
skip the time parameter of the adversary as we shall assume that the adver-
sary is computationally unbounded. This also leads to the assumption that
the adversary is deterministic. When u = 1, it makes Advmu-PRF

F (u, q, p, t)
the single-user distinguishing advantage.

1.2.3. Keyed Hash

Security of a Keyed Hash Function Let Kh and X be two non-empty
finite sets. A keyed function H : Kh×X → {0, 1}n is ϵ-almost-XOR universal
(AXU) if for any distinct x, x′ ∈ X and for any ∆ ∈ {0, 1}n,

Pr[Kh
$←− Kh : HKh(x)⊕ HKh(x′) = ∆] ≤ ϵaxu.

Moreover, H is an ϵ-universal hash function if for any distinct x, x′ ∈ X ,

Pr[Kh
$←− Kh : HKh(x) = HKh(x′)] ≤ ϵuniv.

A keyed hash function is said to be ϵ-regular if for any x ∈ X and for any
∆ ∈ {0, 1}n,

Pr[Kh
$←− Kh : HKh(x) = ∆] ≤ ϵreg.

Regular Hash. A function H : K×D → R is said to be an ϵ-regular hash
function if ∀ d ∈ D and r ∈ R,

Pr
Kh

$←−K
[H(Kh, d) = r] ≤ ϵ.

AXU Hash. A function H : K × D → R is said to be an ϵ-AXU hash
function if for two distinct d and d′ from D and r ∈ R,

Pr
Kh

$←−K
[H(Kh, d)⊕H(Kh, d′) = r] ≤ ϵ.
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(d, d′) is called a colliding pair for a functionH(Kh, ∗) (orHKh(∗)) ifH(Kh, d) =
H(Kh, d′).
3-Way Regular Hash. A function H : K×D → R is said to be an ϵ-3-way
regular hash function if for three distinct d, d′ and d′′ from D and for any
non-zero r from R,

Pr
Kh

$←−K
[H(Kh, d)⊕H(Kh, d′)⊕H(Kh, d′′) = r] ≤ ϵ.

An example of 3-way regular hash is Poly hash (with the secret key Kh)
where the padded message x∗ = x1∥ · · · ∥xℓ is processed as

PolyKh
(x∗) = xℓ · Kh ⊕ xℓ−1 · K2

h ⊕ · · · ⊕ x1 · Kℓ
h.

1.3. Cryptographic Encryption and Authentication

1.3.1. Message Encryption

The process of message encryption converts the original plaintext into an
incomprehensible ciphertext. Ideally, only authorized parties should be able
to decrypt the ciphertext back into plaintext and gain access to the original
data. Thus, encryption serves as a mechanism to ensure confidentiality. A
pseudorandom encryption key produced by a key-generation algorithm is
typically used in an encryption system. The encryption and decryption keys
are identical in symmetric-key schemes. This secret key must be held by
the sender as well as the receiver in order to achieve secure communication.
The sender uses this key in an encryption algorithm to generate the ciphertext
from the plaintext and send it to the receiver. Then the receiver uses it in a
decryption algorithm to again obtain the plaintext. Some typical examples of
symmetric-key encryption schemes include AES, 3-DES, and SNOW.

1.3.2. Message Authenticated Codes

Let K,N ,M and T be four non-empty finite sets and F : K×N ×M→ T a
nonce-based MAC. For K ∈ K, let AuthK be the authentication oracle (which
takes as input (N, M) ∈ N ×M and outputs T = F(K, N, M)) and let VerK
be the verification oracle (which takes as input (N, M, T) ∈ N ×M× T
and outputs 1 if F(K, N, M) = T and 0 otherwise). An authentication query
(N, M) by an adversary A is called a faulty query if A has already queried to
the first oracle with the same nonce and a different message.

A (µ, qm, qv, t)-adversary against the unforgeability of F is an adversary
A with oracle access to AuthK and VerK such that it makes at most µ faulty
authentication queries out of at most qm authentication queries, and qv
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verification queries, with running time at most t. The adversary is said to be
nonce respecting if µ = 0 and nonce misusing if µ ≥ 1; any number of nonce
repetitions in verification queries is allowed. A is said to forge F if for any
of its verification queries (not obtained through a previous authentication
query), the verification oracle returns 1. The forging advantage of A against
F is defined as

AdvMAC
F (A) := Pr

[
K $←− K : AAuthK(·,·),VerK(·,·,·) forges

]
.

We write AdvMAC
F (µ, qm, qv, t) := maxA AdvMAC

F (A), where the maximum is
taken over all (µ, qm, qv, t)-adversaries. In all of these definitions, we skip
the parameter t, whenever we maximize over all unbounded adversaries.

1.3.3. Authenticated Encryption

An authenticated encryption (AE) mode is a cryptographic scheme that guar-
antees the privacy and authenticity of a message concurrently. Authenticated
encryption has received much attention from the cryptographic community
mostly due to its application to TLS and many other protocols. The recently
concluded CAESAR competition [43], which aimed to identify a portfolio
of authenticated encryption schemes, had drafted three use cases namely
lightweight, high-performance, and defense-in-depth. The competition consid-
ered GCM [101] as the baseline algorithm as it is widely adopted (e.g. in TLS
1.2 and in its variant RGCM [18], which shall soon be considered in TLS 1.3
[5]) and standardized. ChaCha20+Poly1305 [19] is a popular alternative for
settings where AES-NI is not implemented.

Encrypt-then-MAC. Both ChaCha20+Poly1305 and GCM follow the Encrypt-
then-MAC (EtM) paradigm [15]. Some other popular AE designs following
the same paradigm are CWC [93], GCM/2+ [3], CHM [88], CIP [87], GCM-RUP
[4], OGCM1 [137], OGCM2 [137], etc. The authenticated encryption of this
paradigm is described as follows: Let E be a nonce-based encryption scheme
and I be a message authentication code. Given a nonce N, a message M and
an associated data A, the ciphertext C = EN(M) is first computed, which
is then used to compute the tag T = I(N, A, C). All the aforementioned
algorithms can be described by an encryption EN (involving stream cipher
encryptions) and a MAC I (all constructions are algebraic hash function-
based and most of them use the Wegman-Carter MAC (WC) [133]). EtM is a
popular design paradigm due to its generic security guarantee. Informally
stating a result in [44], if E is a secure symmetric encryption scheme and I
is a secure MAC family then this method of implementing EtM results in
secure channels. This was later also analyzed by [15, 116].
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1.4. Cryptographic Primitives

1.4.1. PRPs and PRFs

In their seminal work, Luby and Rackoff [97] showed how to construct a
keyed pseudorandom permutation (PRP) – i.e. a block cipher – from secret
keyed pseudorandom functions (PRFs). Their work was a theoretical model
for formally arguing the security of the DES block cipher, which consists of
r rounds of Feistel constructions invoking independent instances of keyed
functions.
PRP-Based PRFs. The most obvious way a PRF can be constructed is to
consider a PRP π (a popular choice is an n-bit block cipher with a uniformly
sampled key eK for some integer n) itself as a PRF. However, this leads to
an n/2-bit secure PRF. This result comes from the fact that 2n/2 evaluations
of the PRF will lead to a collision with significant probability while the
collision probability in case of a PRP will be zero. This is also termed the
PRP-PRF switching lemma [13, 17, 49, 84]. In light of the recent research in
lightweight cryptography, this bound may not be acceptable to designers.
The value of n is generally chosen to be small because the state size of
the PRF directly depends on n and lightweight designs aim to optimize
it. For example, several lightweight block ciphers [8, 41, 9, 38, 7] that are
proposed with a 64-bit state (i.e, n = 64) achieve only 32-bit security and can
be broken with practical query complexity. This idea has resulted in several
attempts to design a PRF from a PRP with more than n/2-bit security. They
are popularly known as Beyond-the-Birthday-bound (BBB)-secure PRFs.

A first attempt to construct such a BBB-secure PRF denoted by
Truncm(eK(x)) was proposed by Hall et al. [84], where m < n (note that
a block cipher is a popular candidate for a PRP), and its security was
bounded by 2n−m/2 queries [10, 77]. Later in [14], Bellare et al. proposed n-
bit security [10, 60, 98] of eK1(x)⊕ eK2(x) where K1 and K2 are independently
sampled. Seurin et al. proposed a 22n/3 query-secure PRF, which they called
EDM [55],

eK2(eK1(x)⊕ x).

The security of this construction has been improved by Mennink [103] using
Patarin’s mirror theory [113, 122, 120, 121]. Note that all constructions are
deterministic (no use of nonce) and are instantiated with block ciphers with
inputs considered to be of fixed length. However, there are a number of
BBB-secure constructions that deal with arbitrary length inputs.

The usual technique is to incorporate a nonce and a keyed hash. The nonce
is processed with a deterministic PRF and the output is properly integrated
with the hashed value of the arbitrary length message. Excepting a few,
most PRFs do not allow nonce misuse. The WC-MAC [45, 133] (Wegman-
Carter MAC) is one such construction, where the nonce is processed with
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a PRP-based PRF and a universal hash processes the message. Next, both
the outputs are added and passed through another instance of a PRP to
generate the output. This design is vulnerable to nonce misuse but secure
only up to the birthday bound when respecting the nonce. Later, Cogliati and
Seurin updated the WC MAC and designed the EWC-MAC [55] (Encrypted
Wegman-Carter): eK2( fK1(x)⊕HKh(x)) ( f is a deterministic PRF, H is a key
universal hash and K1, K2 and Kh are uniform and independent), which
is birthday bound secure under both nonce misuse and respect scenario
(can be proved using the PRP-PRF switching lemma). The most important
question that arises is “How can a BBB secure PRF be designed?” The first
prominent design in this area is the EWCDM construction:

eK2((eK1(N)⊕ N)⊕HKh(x))

by Cogliati et al. [55], where the PRF is instantiated by Davis-Meyer and
is used in the EWC mode. This design achieves BBB security of 2n/3-bits
(though n-bit security was conjectured and proved by Mennink et al. [103]
using mirror theory) under nonce respect and birthday bound under nonce
misuse. However, this construction is not minimal in structure as it uses
two independent instances of keys K1 and K2. Datta et al. in [62] proposed
DWCDM, which is a BBB secure construction (under nonce respect), and
uses only one instance of the PRP (where eK2 is replaced by e−1

K1
). In the

security proof, the authors extended mirror theory and provided a concrete
proof of security up to 22n/3 queries under nonce respecting conditions and
birthday bound complexity under nonce misuse. Nevertheless, the bound
is not tight as there does not exist any attack below 2n queries. In fact the
design is conjectured to have n-bit security.

1.4.2. Block Ciphers

A block cipher E : K× {0, 1}n → {0, 1}n is a function that takes a key k ∈ K
and an n-bit input data x ∈ {0, 1}n and produces an n-bit output y such
that for each key k ∈ K, E(k, ·) is a permutation over {0, 1}n. K is called
the key space of the block cipher and {0, 1}n is its input-output space. In
shorthand notation, we write Ek(x) to represent E(k, x). Let BC(K, {0, 1}n)
denotes the set of all n-bit block ciphers with key space K. We say that a
block cipher E is an (q, ϵ, t)-secure strong pseudorandom permutation, if for
all distinguishers A that make a total of q forward and inverse queries with
run time at most t, the following holds:

AdvE
Π(A) := | Pr[K $←− K : AEK ⇒ 1]− Pr[Π $←− Perm : AΠ ⇒ 1] | ≤ ϵ.
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1.4.3. Block cipher-based PRFs

EDM: Encrypted Davis-Meyer. It encrypts the output of Davis-Meyer:

EDMK1,K2 [e] := eK2(DMK1 [e](x)).

EDM is a 2n/3-bit BBB secure PRF. The query complexity of the attack
against EDM is O(2n) query complexity. Hence, the security bound is not
tight. Later, Mennink proposed the dual of EDM defined as DMK2 [e](eK1(x)).
This design achieves the same security bound as EDM but the bound is not
tight. It has even been proven to be n-bit secure using mirror theory. The
proof is not verified and the attack complexity is again up to O(2n) queries.
DDM: Decrypted Davis Meyer. DDM optimizes EDM in the number of block
cipher instances. In other words DDM replaces the outer eK2 by e−1

K1
. Formally,

DDMK[e] := e−1
K (DMK(x)).

The proven security bound of DDM is exactly the same as EDM. However,
this bound is not known to be tight and is accompanied by an attack with
O(2n) queries.
EWCDM: All the constructions above can handle fixed length inputs.
EWCDM [56] extends the input domain of EDM to handle multi-block inputs.
It takes a nonce N ∈ N and an input x ∈ M (where M is the set of all
multi-block inputs) to generate a tag T ∈ T . EWCDMK1,K2,Kh [e,H] with N
and x as the inputs is defined as

T = eK2(eK1(N)⊕ N ⊕HKh(x)).

Here, H is ϵ1-regular hash, ϵ2-AXU hash and ϵ3-3-way regular hash. For
Poly hash, we have ϵ1 = ϵ2 = ϵ3 = ℓ

2n .
DWCDM: In CRYPTO 2018 [62], Datta et al. proposed DWCDM which op-
timizes EWCDM the number of block cipher instances to one without any
compromise in the security level.

It takes a nonce N ∈ N and an input x ∈ M (M is the set of all multi-
block inputs) to generate a tag T ∈ T . DWCDMK,Kh [e, e−1,H] with N and x
is defined as

T = e−1
K (eK(N)⊕ N ⊕HKh(x)).

Here, the last n/3-bits of N are 0 and H is ϵ1-regular hash, ϵ2-AXU hash
and ϵ3-3-way regular hash. For Poly hash, we have ϵ1 = ϵ2 = ϵ3 = ℓ

2n .

1.4.4. Permutation-Based Cryptography

All the PRFs discussed so far are built using block ciphers as their underly-
ing primitive. As block ciphers are designed to be efficient in the forward as
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well as the inverse direction, they are over-engineered as primitives for such
purposes [53]. At the other extreme, cryptographic public permutations
are particularly designed to be fast in the forward direction, but not neces-
sarily in the inverse. Examples of such permutations include Keccak [23],
Gimli [20], SPONGENT [40], etc. In most cases, evaluating an unkeyed pub-
lic permutation is faster than evaluating a keyed block cipher, as the latter
involves evaluating the underlying key scheduling algorithm each time the
block cipher is invoked in the design. 4 Moreover, we do not need to store
the round keys in permutation-based designs, and designing a permutation
is usually simpler than designing a block cipher. In this regard, we quote
Bertoni et al. [22]:

“ . . . the inverse mapping of block ciphers imposes a separation of the processing of
the n + k bits of the input. The key is processed in a key schedule and the data in
the data path, and there can be no diffusion from the data path to the key schedule,
which strongly limits the potential diffusion . . . Such a restriction is not present in
the design of cryptographic permutations as they do not make a distinction between
the processing of key and data input as there is no specific key input.”

Numerous public permutation-based inverse-free hash and authenticated
encryption designs were proposed [127, 46, 115, 64, 20, 65, 48, 59] with
the advent of public permutation-based designs and the advantage of their
efficient evaluation in the forward direction. The use of cryptographic
permutations gained momentum during the SHA-3 competition [127]. The
selection of the permutation-based Keccak sponge function as the SHA-3
standard further gave the community a high level of confidence in this
primitive. Permutation-based sponge constructions have presently become a
successful and full-fledged alternative to the block cipher-based modes. In
fact, in the first round of the ongoing NIST lightweight competition [119], 24

out of 57 submissions are based on cryptographic permutations. Of these 24,
16 permutation-based proposals have qualified for the second round. These
statistics depict the wide adoption of permutation-based designs [46, 20, 26,
48, 59, 64] in the community.

The necessity of designing PRFs using PRPs as primitives of cryptographic
designs [14] was therefore realized because we usually seek PRF security
from a mode of operation and it is generally easier to design PRPs than
PRFs. Designing a secure non-invertible round function that can be iterated
multiple times to produce a secure PRF is also a big challenge. As collision
probabilities are amplified with each iteration [30, 105], it is hard to correctly
iterate a non-invertible round function multiple times. Although Mennink
and Neves [105] designed a dedicated PRF called FastPRF from scratch, their

4While caching the round keys of the block cipher may seem to eliminate the problem,
this requires more storage space than storing the master key of the block cipher, e.g., storing
the round keys of AES-128 requires ten times more space than storing its master key.
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design is based on grouping the round functions of a PRP. Moreover, there
are plenty of cryptographic modes that do not require the invertibility of its
underlying primitives [101, 35, 88, 133, 46, 26, 64, 61, 62, 56, 100]. As PRFs are
designed to be efficient in both forward and inverse directions, the choice
to use them over PRPs as the underlying primitive for realizing the PRF
security of a mode of operation is a more economical one in such cases. The
fact that the counter mode of encryption generally offers a better security
guarantee when instantiated with a PRF over a PRP (one can distinguish
the PRP-based counter mode from the random encryption with 2n/2 queries,
where n is the block size of the PRP, while the PRF-based the counter mode
behaves identically with the random encryption scheme modulo the PRF
advantage of the keyed function) is substantial evidence of our argument.

Due to the classical PRF-PRP switching lemma [49, 12, 17], a PRP Ek
can be replaced with a PRF Fk until the number of invocations to the
primitive exceeds 2n/2, where n is the block size of the permutation. Such
a solution is adequate when the block size of the permutation is large
(e.g. AES 128). This may however, not be a good solution when the block
size is small (e.g. 64 bits). This is particularly relevant when instantiating
cryptographic schemes using lightweight block ciphers like PRESENT [38],
GIFT [7], etc., whose block size is typically 64 bits. Consequently, using them
as PRFs in cryptographic designs can ensure only 32 bits of security, which
is not practical in terms of the present computational power. As a remedy,
exploration of cryptographic designs that retain security even after invoking
the primitive more than 2n/2 times ensued. Such designs are popularly
known as beyond the birthday bound (BBB) secure designs. Wherefore, Hall
et al. [84] proposed a BBB secure PRF called Truncation that takes an n-bit
block cipher Ek and truncates the result to a bits. This construction was later
proven secure up to 2n−a/2 queries [10, 77]. Bellare et al. [14] proposed the
Sum of Permutations (SoP) construction that returns the XOR of the outputs
of two n-bit independent permutations:

SoPπ1,π2(x) := π1(x)⊕ π2(x).

This construction was proven secure up to 22n/3 queries [98], and was
recently shown as secure up to 2n queries [60]. Cogliati and Seurin [56]
proposed another candidate for a beyond the birthday bound secure PRF,
which they call Encrypted Davis Meyer (EDM) and have shown to achieve
2n/3-bit security:

EDMπ1,π2(x) := π2(π1(x)⊕ x).

Later in [103], Mennink and Neves showed an optimal security of the
construction. In the same paper, they also proposed a dual variant of EDM,
which they called EDMD:

EDMDπ1,π2(x) := π2(π1(x))⊕ π1(x),
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and proved its optimal PRF security. However, both proofs of security are
inherently based on a debated result of Mirror theory for a general ξmax [71].
Guo et al. [79] proposed SUMPIP, a contender of SoP:

SUMPIPπ(x) := π(x)⊕ π−1(x).

Unlike the single permutation variant of SoP that takes an n− 1-bit input,
SUMPIP is the first single permutation-based PRF that takes an n-bit input
and returns an n-bit output. Authors also show in this paper that the
single permutation variants of EDM and EDMD achieve 2n/3-bit security.
Concurrently, Cogliati and Seurin [55] too showed 2n/3-bit security for the
single-keyed EDM construction. Very recently, Gunsing and Mennink [78]
proposed a new approach to designing a block cipher-based PRF, called
the Summation-Truncation Hybrid (STH) technique. STH takes an (n − 1)-
bit input x, truncates the leftmost a bits of E(x∥0),E(x∥1), and sums the
discarded n− a bits of E(x∥0) and E(x∥1) to produce an (n + a)-bit output.
They showed 2n−a/2 bits of security for the construction, where n− a is the
number of discarded bits.

1.4.5. Public Permutation-Based Pseudorandom Functions

Let F : K×X → Y be a keyed function with K,X and Y respectively the
key space, input space and output space. We assume that F makes internal
calls to the public random permutations P = {π1, . . . , πd} for d ≥ 1, where
all of the d permutations are independent and uniformly sampled from
Perm(n) for some n ∈ N. We write P−1 =

{
π−1

1 , . . . , π−1
d

}
to denote the

d-tuple of inverse permutations. For simplicity, FP
k denotes F with uniform

k and uniform P.
A distinguisher D is given access to either the oracle FP

k in the real world
or a random function RF that maps elements from X to Y in the ideal world.
Apart from querying to either of these two oracles, D can also make queries
to the permutations P and P−1 in both of these worlds. Queries of the former
type, where the distinguisher is interacting with either FP

k or RF, are called
construction queries, and queries of the latter type are called primitive queries.
A primitive query to a permutation is called a forward primitive query and
to the inverse of a permutation is called an inverse primitive query. The prf
advantage of D against F in the public permutation model is defined as
follows:

Advprf
F (D) :=

∣∣∣∣Pr
[
D(FP

k ,P,P−1
) ⇒ 1

]
− Pr

[
D(RF,P,P−1

) ⇒ 1
]∣∣∣∣ .

Here, DO ⇒ 1 represents the distinguisher D being given access to the oracle
O, with which it interacts and then outputs 1. This probability is over the
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randomness of k $←− K, π1, . . . , πd
$←− Perm(n) and that of the distinguisher

(if any). We say that D is a (q, p, t)-distinguisher if D makes a total of q
construction queries and p primitive queries, and runs in at most t steps.

Advprf
F (q, p, t) := max

D
Advprf

F (D),

where the maximum is taken over all (q, p, t)-distinguishers D. This text
skips the time parameter of the distinguisher as the assumption throughout
shall be that the distinguisher is computationally unbounded, and hence
deterministic.

1.4.6. Some More Examples of Permutation-based PRFs

SoEM: Sum of Even-Mansour. It is a permutation based PRF that uses two
instances of EM to simply add them up to output the sum. Precisely,

SoEMK1,K2 [π1, π2](x) := EMK1 [π1](x)⊕ EMK2 [π2](x).

SOEM has three instances denoted by

• SoEM1 with π1 = π2 and K1, K2 are independent,
• SoEM21 with π1, π2 are independent with K1 = K2 and
• SoEM22 with π1, π2 are independent and K1, K2 are independent.

Security of SoEM: Both SoEM1 and SoEM21 achieves the birthday bound
security and associated with matching birthday attacks in query complexity.
SoEM22 achieves BBB security of 2n/3-bits with a matching attack in query
complexity. Below, we will briefly discuss about the birthday bound attack
on SoEM with a single random permutation (i.e, SoEM1). Note that, we use
O( f (n)) to denote c · f (n) computations, where c is a small constant. From
now on, we use this notation throughout the chapter when needed.
Attack Idea: The attack exploits the parallel structure of SoEM as well the
usage of the same permutation in both the branches. In other words, if
the inputs to the two branches swap then the final outputs will collide.
Such a structure of inputs (M, M′) can be obtained using O(2n/2) queries by
adjusting the left and the right half of the inputs. The condition on the choice
of (M, M′) is M⊕M′ = K1 ⊕ K2. This condition can be easily detected as
the output of the messages M and M′ would be same (see Fig.1.1).
SoKAC: These are mainly Even-Mansour followed by Davis-Meyer type of
constructions. More precisely,

SoKAC1K1,K2 [π1](x) := DMK1 [e](EMK1,K2 [π1](x))
SoKAC21(x) := DMK[e′](EMK[π1](x))
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M

K1 x
π

M

x′
π

K2

K1 ⊕ K2

C

M′

K1 x′
π

M′

x
π

K2

K1 ⊕ K2

C

Figure 1.1.: SoEM1 - Swapping x and x′.

where eK(x) = π1(x)⊕ K and e′K(x) = π2(x)⊕ K.
Proposition 5 in [53] claims that the same birthday bound attack as on

SoEM1 can be applied to SoKAC1. Also, Proposition 6 of the same paper
claims that the same beyond birthday bound attack as on SoEM21 can be
applied to SoKAC21. We observe that the attacks possibly do not work
with the claimed complexities. The main reason is the serial structure of
SoKAC, wherein a fresh input to the first permutation π1 makes the internal
state random. Hence, an extended attack on SoKAC is unknown to us.
Recently, Nandi proposed a birthday bound attack on SoKAC21 in [118],
giving SoKAC21 a birthday bound security; a 2n/3-bit security was claimed
in Theorem 2 of [53]. Additionally, Fig. 1.3 presents an independent attack
against SoKAC1 with O(22n/3) query complexity.

M

K1

⊕ πu v

K2

⊕ πx y

K1

C⊕

Figure 1.2.: SoKAC1 - One permutation instance π (= π1 = π2), two key instances
K1 and K2.

Analysis of the attack: Observe that for the values q = p1 = p2 = 2 · 22n/3,
the set ExtK has size O(1) with high probability, for each value K ∈ K.
Furthermore, if K⋆ denotes the true key of the construction, then Pr[K⋆ ∈
K̂] = Pr [|ExtK⋆ | ≥ 2] ≥ 1

4 , and thus, the expected size, E
[∣∣K̂∣∣], of the guess-

key set K̂ is O(1).
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5 · 22n/3-Query Attack on SoKAC1

1 : Make queries M1, . . . , Mq ← {0, 1}n to the authentication oracle O

with q = 2 · 22n/3
(

say Mi = ⟨i⟩2n/3∥0n/3 for i < 22n/3,

Mi = ⟨i− 22n/3 + 1⟩2n/3∥1∥0n/3−1 for 22n/3 ≤ i < 2 · 22n/3
)

.

2 : Make ũ1, . . . , ũp1 with p1 = 2 · 22n/3 forward queries to the primitive π(
say ũa = 0n/3∥⟨a⟩2n/3 for a < 22n/3,

ũa = 0n/3−1∥1∥⟨a− 22n/3 + 1⟩2n/3 for 22n/3 ≤ a < 2 · 22n/3
)

;

receive responses ṽa = π(ũa), a ∈ [p1].

3 : Make ỹ1, . . . , ỹp2

$←−−
wor
{0, 1}n with p2 = 2 · 22n/3 backward primitive

queries to the primitive π; receive responses x̃b, b ∈ [p2].
4 : Set ExtK := {(i, a, b) ∈ [q]× [p1]× [p2] :

(Mi ⊕ ũa = K1) ∧ (Ci ⊕ x̃b ⊕ ỹb = K1)} and set K̂ = ϕ.
5 : For all K ∈ K with |ExtK| ≥ 2, check whether :

For all pairs of tuples (i, a, b) ̸= (i′, a′, b′) in ExtK,

if (ṽa ⊕ x̃b ⊕ ṽa′ ⊕ x̃b′ = 0) , then add K to K̂.

Figure 1.3.: Interaction of the adversary with (O, π), where O is either the random
oracle or the real construction oracle SoKAC1

π
K and the primitive π.

1.5. The Coeffients-H Technique

System and Distinguisher. Consider a computationally unbounded dis-
tinguisher A (hence assumed deterministic) that interacts with either of the
possibly randomized stateful systems Sre or Sid, after which it returns a
single bit 0 or 1. For any such system Sre or Sid, the interaction between
A and the system defines an ordered sequence of queries and responses,
τ = ((X1, Y1), (X2, Y2), . . . , (Xq, Yq)) called a transcript, where Xi is the ith

query of A and Yi is the corresponding response from the system. Let Xre
(resp. Xid) be the random variable that takes a transcript resulting from the
interaction between A and Sre (resp. A and Sid). Then the advantage of A in
distinguishing Sre from Sid is bounded from above by the statistical distance
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between the two random variables Xre and Xid, which is

∆(Xre, Xid) := ∑
τ

max {0, Pr [Xid = τ]− Pr [Xre = τ]} .

1.5.1. Revisiting the Expectation Method

In the following, we briefly state the main result of the Expectation Method and
show that the coefficients-H technique [124] is a special case of the expectation
method. Both these techniques are used for bounding the information
theoretic distinguishing advantage of two random systems as defined above.
expectation method. The expectation method was introduced by Hoang
and Tessaro to derive a tight multi-user security bound of the key-alternating
cipher [85]. Subsequently, this technique has been used for proving the multi-
user security of the double encryption method in [86] and recently by Bose
et al. to bound the multi-user security of AES-GCM-SIV [42]. This method
is a generalization of coefficients-H technique. Let ϕ : Θ→ [0, ∞) be a non-
negative function which maps any attainable transcript to a non-negative
real value. Suppose there is a set of good transcripts such that for any good
transcript τ,

Pr [Xre = τ]

Pr [Xid = τ]
≥ 1− ϕ(τ). (1.1)

The statistical distance between the two random variables Xre and Xid can
then be bounded as

∆(Xre, Xid) ≤ E[ϕ(Xid)] + Pr[Xid ∈ Θbad], (1.2)

where Θbad is the set of all bad transcripts. In other words, the advantage of
A in distinguishing Sre from Sid is bounded by E[ϕ(Xid)] + Pr[Xid ∈ Θbad].
coefficients-H technique can be seen as a simple corollary of the expectation
method when ϕ is taken to be a constant function.
Coefficients-H Technique. Consider two oracles O0 = ($,⊥) (the ideal
oracle for the relaxed5 game) and O1 (real, i.e. our construction in the
same relaxed game). Let T denote the set of all possible transcripts an
adversary can obtain (i.e. the set of all attainable transcripts in the ideal
world). We let Xre be the random variable that takes values τ ∈ T when the
adversary interacts with the real world and Xid to be the random variable
that takes values τ ∈ T when it interacts with the ideal world. Without loss
of generality, we assume that the adversary is deterministic and fixed. Then
the sample space for Xre and Xid is uniquely determined by the underlying
oracle. As we deal with stateless oracles, these probabilities are independent

5“relaxed” denotes that in addition to the query input-output tuples, additional state
values may be supplied to the adversary (after all the queries are made) as a part of the
transcripts
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of the order of query responses in the transcript. Suppose we have a set of
transcripts, Tgood ⊆ T , which we call good transcripts, and the following
conditions hold:

1. In the game involving the ideal oracle O0 (and the fixed adversary),
the probability of getting a transcript in Tgood is at least 1− ϵ1.

2. For any transcript τ ∈ Tgood, Pr [Xre = τ] ≥ (1− ϵ2) · Pr [Xid = τ].

Then |Pr[DO0 = 1]− Pr[DO1 = 1]| ≤ ϵ1 + ϵ2. The proof can be found in
(say) [132].

1.5.2. Coefficients-H Technique in the Multi-user Setting

Even in a multi-user setting in the ideal cipher model (see Chapter 6 for a
detailed description), one may consider Xre to denote the random variable
that takes a transcript τ realized in the real world and Xid to denote the
random variable that takes a transcript τ realized in the ideal world. The
probability of realizing a transcript τ in the ideal (resp. real) world is
called the ideal (resp. real) interpolation probability. A transcript τ is said
to be attainable with respect to an adversary A if its ideal interpolation
probability is non-zero, and Θ shall denote the set of all such attainable
transcripts. Following these notations, we now state the main theorem of
the Coefficients-H technique [124] for the multi-user setting:

Theorem 1 (Coefficients-H Technique). Let Θ = GoodT ⊔ Bad-Tag be a
partition of the set of attainable transcripts. Suppose there exists ϵratio ≥ 0 such
that for any τ = (τc, τp) ∈ GoodT,

pre(τ)

pid(τ)
:=

Pr[Xre = τ]

Pr[Xid = τ]
≥ 1− ϵratio,

and there exists ϵbad ≥ 0 such that Pr[Xid ∈ Bad-Tag] ≤ ϵbad. Then

AdvmPRF
Π (A) ≤ ϵratio + ϵbad. (1.3)
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Abstract

Although Encrypt-then-MAC (EtM) is a popular mode for authenticated
encryption (AE), almost all designs following this paradigm (including
the AE suites for TLS) are unfortunately vulnerable against nonce misuse:
a single repetition of the nonce value reveals the hash key, leading to
a universal forgery attack. There are only two authenticated encryption
schemes following the EtM paradigm that can resist nonce misuse attacks
– the GCM-RUP (CRYPTO-17) and the GCM/2+ (INSCRYPT-12). However,
they are secure only up to the birthday bound in the nonce respecting
setting, resulting in a restriction on the data limit for a single key. This
chapter introduces nEHtM, which is a nonce-based variant of EHtM (FSE-10)
constructed using a block cipher, and which has a beyond the birthday
bound (BBB) unforgeable security that gracefully degrades under nonce
misuse. It also combines nEHtM with the CENC (FSE-06) mode of encryption
using the EtM paradigm to realize a nonce-based AE, CWC+. CWC+ is
very close to the CWC AE scheme (FSE-04) (requiring only a few more
XOR operations); not only does it provide BBB security, but also gracefully
degrading security on nonce misuse.

Keywords – graceful degradation of security, faulty nonce, Mirror Theory,
Extended Mirror Theory, Expectation Method, GCM, EHtM, nEHtM, CWC.



2. A Beyond the Birthday Bound Secure MAC in the Faulty Nonce Model

2.1. Introduction

2.1.1. Nonce Misuse Resistance Security

A nonces is a random or pseudorandom string that may be attached to a
Cryptographic protocol. The term stands for “number once” and is com-
monly referred to as a cryptographic nonce. It can be in the form of a
timestamp, a visit counter on a webpage or a special marker intended to
limit or prevent the unauthorized replay or reproduction of a file. Typically,
a nonce is a value that varies with time to verify that specific values are not
reused.

Attacks similar to Joux’s forbidden attack [1] (which demonstrates how GCM
leaks the hash key on execution of an encryption query with a repeated
nonce) can be applied against most popular AEs such as ChaCha20+Poly1305,
GCM, CWC, CHM, CIP, OGCM1, OGCM2, etc. that follow the EtM paradigm.
GCM-RUP and GCM/2+ are two exceptions, as they use variants of the WC
MAC:

• GCM-RUP resists this attack as it uses the XEX [126] construction to
define the tag, which is computed for a data D as Ek(Hkh(D)⊕ N)⊕
Hkh(D). However, the following attack ensures only a nonce-respecting
birthday bound security for XEX.

1. Make 2n/2 nonce-respecting queries (Di, Ni) and receive tags Ti
for each i ∈ [2n/2], where n is the block size of the underlying
block cipher.

2. A collision amongst the values of Hkh(Di)⊕ Ni is expected and
can be detected through a collision amongst the values of N ⊕ T.

3. Whenever Ni ⊕ Ti = Nj ⊕ Tj for i ̸= j, the difference between
the hash outputs may be computed as Ni ⊕ Nj, which eventually
leaks the hash key.

Figure 2.1.: Birthday bound attack on XEX

• GCM/2+ resists the attack as it uses the Encrypted Wegman-Carter-
Shoup (EWCS) [130] construction to define the tag. The tag of EWCS
for a data D is computed as Ek2(Ek1(N)⊕ Hkh(D)). However, a nonce-
respecting adversary can make 2n/2 queries with the same message
and observe no collision in the tag, thus reducing the PRF security to
the birthday bound.

Challenges in maintaining the uniqueness of the nonce may arise on
implementations in a stateless device or in cases where the nonce is chosen
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randomly from a small set. Faults in implementation of the cipher, accidental
nonce-resets, etc. may also cause repetition of the nonce. In fact, the internet-
wide scan by Böck et al. [36] finding 184 devices that used a duplicate nonce
makes a convincing case for security against nonce misuse in MAC and AE
constructions.

2.1.2. Beyond the Birthday Bound Security with Graceful
Degradation on Nonce Misuse

GCM-RUP possesses a forging advantage bounded by ℓq2
m/2n in the nonce-

respecting model (where a message and its associated data can consist of
at most ℓ data blocks and an adversary can make at most qm encryption
queries). This only allows the AES-based GCM-RUP (say) to process no more
than qm ≤ 232 queries of size at most ℓ = 232 blocks with a maximum
advantage of 2−32, a tolerance level much smaller than BBB security.

Achieving BBB security primarily equips a construction with a larger data
limit for a single key. Furthermore, the PRF security of a MAC contributes
to the privacy of the EtM encryption. Encrypted Wegman-Carter with Davies-
Meyer [56] (or EWCDM) and Decrypted Wegman-Carter with Davies-Meyer [62]
(or DWCDM) are two constructions that were proposed with an objective of
achieving security beyond the birthday bound in a nonce respecting setting.
However, these constructions only provided a birthday bound security with
even a single misuse of the nonce. There are other known constructions such
as Dual Encrypted Wegman-Carter with Davies-Meyer (or EWCDMD) [103, 117],
Encrypted Wegman-Carter-Shoup [56] (or EWCS) and single hash-key variants
of CLRW2 [94] possessing beyond the birthday bound nonce-respecting
security but these too immediately degrade to a birthday bound PRF security
whenever the nonce is not respected.

Goal of the chapter. The main goal of this chapter is to find an efficient
MAC which is BBB secure both as a PRF and a MAC. It must provide graceful
degradation of security in the nonce-misuse setting. Deterministic MACs (not
requiring any nonce) that provide BBB security and mainly follow a double-
block hash-then-sum approach [61, 63] and thus require the computation of
two blocks of algebraic hashes (or one pass of block cipher or tweakable block
cipher executions) notwithstanding, a single-block hash (which is certainly
faster than two blocks of hash and requires a smaller hash key) is undeniably
a better option. This motivates the chapter to focus on constructing a single-
block algebraic hash-based design (e.g., a single call of the polynomial
hash [108]).

Graceful Degradation of Security on Nonce Misuse. The most popular
metric to measure nonce misuse is the maximum number of multicollisions
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in nonce values amongst all queries [125]. To the best of our knowledge,
none of the existing block cipher-based nonce-based MACs adhere to this
notion with BBB security guarantee. We have also explored many other
variants of MAC constructions using at most two block cipher calls and a
single hash function call. Unfortunately, we found that none of them give
beyond the birthday bound security in terms of multicollision nonce misuse,
even with multicollisions of size 2.

This chapter instead considers another natural definition of nonce misuse,
called the number of faulty nonces. An authentication query is said to
be a faulty query if there exists a previous MAC query such that their
corresponding nonces match. The nonce in a faulty query is called a faulty
nonce. The notion of a faulty nonce is weaker than multicollision. When a
counter is implemented in an aperiodic manner (e.g., timely nonce [36] used
in TLS 1.2), a simple reset does not give a large number of faulty nonces;
there are easy countermeasures to prevent a large number of faulty nonce
encryptions.

2.1.3. Our Contribution

Our contribution in this chapter is threefold:

1. Multicollision on the Universal Hash. We study the probability of
occurrence of multicollisions in a universal hash function. In particular, we
show the probability of obtaining a (ξ + 1)-multicollision tuple amongst
q inputs to be at most q2ϵ/ξ (see Sect. 2.4). This is clearly an improved
bound as compared to a straightforward application of the union bound.
We believe this problem can generate an independent interest and can also
be used to get improved bounds for other constructions.

2. BBB Secure MAC with Graceful Security. [107] analyzes a probabilistic
MAC called EHtM and shows a roughly 3n/4-bit tight MAC security (tight-
ness shown in [68]). This chapter analyzes a construction denoted as nEHtM,
where

1. the random salt is replaced by the nonce and
2. the two independent pseudorandom functions are replaced by a single-

keyed block cipher.

Given a data D and a nonce N, the tag is computed as follows (see
Fig. 2.2(b)):

nEHtMk,kh(N, D) := Ek(0∥N)⊕ Ek(1∥Hkh(D)⊕ N).

We show that nEHtM is secure roughly up to 22n/3 authentication queries and
2n verification queries in the nonce-respecting setting. Moreover, this security
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Figure 2.2.: (a) On the left is the CWC MAC (MAC algorithm used in CWC); (b)
on the right is the domain separation variant of nonce-based Enhanced
Hash-then-Mask.

degrades gracefully on the introduction of faults in the nonce. An extended
distinguishing game shows the unforgeability of this construction. We apply
the expectation method (as it shall later be shown to give a better bound
than the coefficients-H technique) to bound the distinguishing advantage of
two worlds. In the ideal world, once we realize the random tags Ti, we need
to sample the hash key so as to determine all inputs of the underlying block
cipher. The equality patterns amongst the nonce values are deterministic
and we bound the number of faulty nonces by a parameter µ. However,
the equality patterns amongst other inputs of the form X := Hkh(D)⊕ N
are probabilistic due to the randomness of the hash key. As there may not
be sufficient entropy in the hash key (which could be n-bit for say, the
polynomial hash), the number of multicollisions amongst the values of X
may not be easy to compute. We tackle this problem using the multicollision
result (as stated in the first contribution) of the underlying hash function.

Limiting multicollisions in the values of both X and N allows us to
apply mirror theory to show a beyond the birthday bound security on the
distinguishing advantage of nEHtM. Note that mirror theory cannot give
a beyond the birthday bound security without restricting the number of
multicollisions.

It must be noted here that nEHtM (like all other candidates) is not secure
beyond the birthday bound under the notion of multicollision nonce misuse
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security and the corresponding attack is discussed in Sect. 2.2.6.

3. Application to a CWC-like AE Construction. We propose CWC+,
which is an instance of the EtM composition based on the CENC type en-
cryption with a maximum width parameter and the nEHtM MAC. Moreover,
we apply an appropriate domain separation to make it a single-keyed con-
struction (even the hash key is generated from the the block cipher). The
construction is a very close variant of CWC as it requires only a few addi-
tional XOR computations and no extra calls to the block cipher. Furthermore,
CWC+ gives both (1) BBB security and (2) graceful security degradation in
the faulty nonce misuse model. In particular, we have the following forging
advantage of CWC+:

Advauth
CWC+ =

105σ3ℓ

22n +
6σℓ

2n +
2qd
2ρ +

2qdℓ

2n +
(2qe + qd)2ℓµ

2n +

(
5σℓµ

2n

)2

,

where qe and qd is the number of encryption and decryption queries, ρ is
the tag size, ℓ is the maximum number of message blocks queried including
the associated data blocks, σ is the total number of message blocks queried
and µ is the total number of faulty queries. Moreover, the security of CWC+
gracefully drops to the birthday bound when ℓµ is about 2n/2. However,
when ℓ ≤ 2n/4, then the security bound of CWC+ caps at roughly 27n/12,
which is strictly greater than the birthday bound. A better bound can be
obtained if we assume some restrictions over all the message lengths.
(3) Another notable feature of CWC+ is that the scheme remains secure
even with short tag lengths. In GCM, if the tag length is only 32 bits, then
an adversary forges the construction with just 1024 verification attempts
by querying with a single message consisting of 222 blocks. However, for
the same tag size, the authenticity advantage of CWC+ is 2−21 when the
adversary forges the construction with 1024 verification attempts.

2.2. Design and Security of nEHtM and CWC+

This section discusses the design and security results of our proposed nonce-
based message authentication code, which we call nEHtM, and a nonce-based
authenticated encryption scheme called CWC+. We begin our discussion
with a result on EtM composition that combines a standard encryption and
a MAC scheme to achieve authenticated encryption.

2.2.1. Encrypt-then-MAC: Generic Composition Result

Bellare and Namprempre in [15] and Canetti and Krawczyk in [44] explored
ways to combine standard encryption schemes with MACs to achieve au-
thenticated encryption schemes. Their results yield three different types of
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combinations: (a) Encrypt-and-MAC (E&M), (b) MAC-then-Encrypt (MtE)
and (c) Encrypt-then-MAC (EtM). This chapter focuses only on EtM.

Let E = (E .KGen, E .Enc, E .Dec) be a nonce-based symmetric key en-
cryption scheme and I = (I .KGen, I .Tag, I .Ver) be a nonce-based mes-
sage authentication code. The function E .Enc : ke × N ×M → C maps
a tuple (ke, N, M) to a ciphertext C and the decryption function E .Dec :
Ke×N ×C →M∪{⊥} either maps a tuple (ke, N, C) — if legitimate — to
the corresponding message M or otherwise returns the error symbol ⊥. For
the message authentication code I , the function I .Tag : Km ×N ×D → T
maps a tuple (km, N, D) to a tag T, and the verification function I .Ver :
Km ×N ×M×T → {⊤,⊥} maps a quadruple (ke, N, D, T) to one of the
two symbols ⊤ (i.e. accept), ⊥ (i.e. reject) according to whether T is a valid
tag for the tuple (kn, N, D) or not, respectively.

Based on these two schemes, we define the EtM authenticated encryption
scheme AEE ,I = (AE.KGen,AE.Enc,AE.Dec), where the key-generation algo-
rithm AE.KGen generates a random pair of keys (ke, km) ∈ Ke ×Km. The
encryption and decryption algorithms are defined as follows:

AE.Enc(ke∥km, N, A, M) =

{
C ← E .Enc(ke, N, M)

T ← I .Tag(km, N, A∥C)

AE.Dec(ke∥km, N, A, C, T) =

{
M← E .Dec(ke, N, C), if Z = ⊤
⊥, if Z = ⊥,

for Z ← I .Ver(km, N, A∥C, T). We consider two security notions for the AE
scheme: privacy and authenticity. The privacy advantage of the AE is defined
as follows:

Advpriv
AE (A) := Pr[(ke, km)

$←− (Ke ×Km) : AAE.Enc(ke ,km) = 1]− Pr[A$ = 1],

where the random oracle $ takes (N, A, M) as input and returns (C, T) $←−
{0, 1}|M|+ρ. We assume that the adversary A is nonce respecting i.e. it does
not make two queries with the same nonce.

We say that the adversary A forges if the oracle AE.Dec returns a bit string
(which is not ⊥) for a query (N, A, C, T) such that for no message M does
the encryption query (N, A, M) to the oracle AE.Enc return (C, T). If an
adversary A interacts with the encryption and decryption oracles of the AE,
then the authenticity advantage of the AE is defined as follows:

Advauth
AE (A) := Pr[(ke, km)

$←− (Ke ×Km) : AAE.Enc(ke ,km),AE.Dec(ke ,km) forges],

where we assume that A can repeat nonces in decryption queries and can
also use the nonces used in encryption queries.
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The security of an AE scheme refers to the sum of its privacy and au-
thenticity advantages. The privacy advantage of a nonce-based encryption
scheme E that forms an AE with a MAC I is bound by the PRF advan-
tages of E and I , while its authenticity advantage is bound by the forging
advantage of I . The achievement of a beyond the birthday bound secure
nonce-based AE scheme following the EtM paradigm thus requires a nonce
respecting BBB secure nonce-based encryption scheme and a MAC mode
that gives beyond the birthday bound security for PRF-distinguishability
and unforgeability (possibly in the nonce misuse model).

2.2.2. Encryption Modes used in Encrypt-then-MAC-Based
AEs

A symmetric encryption scheme is generally defined through a pseudo-
random number generator (PRNG) that takes a short master key k and an
initial value or nonce N that generates a keystream (S1, S2, . . .). Then the
ciphertext is generated from the plaintext and the keystream by applying
the one-time padding technique.

The counter mode of encryption (CTR) is a popular symmetric key encryp-
tion scheme, which gives birthday bound security in terms of the number of
blocks and is used as the underlying encryption scheme in AE constructions
such as CWC [93], GCM [101], GCM/2+ [3] and GCM-RUP [4]. On the other
hand Multi-EDM [137] and Multi-EDMD [137], which give an almost n-bit
security, are used as underlying encryption schemes in OGCM1 [137] and
OGMC2 [137] respectively.
Cipher-Based Encryption. The cipher-based encryption [88] (CENC) is
parametrized by a fixed non-negative integer w and so can be denoted as
CENCw. The PRNG of CENCw takes a key k, a nonce ctr and a length l as
its inputs and gives a sequence of fixed length keystream blocks as output,
where the ith keystream block is defined as

Si := Ek(ctr+ j(w + 1))⊕ Ek(ctr+ j(w + 1) + i), j ∈
[

0,
l
w
− 1
]

, i ∈ [1, w].

The optimal security of CENCw is shown in [27]. It is used as the underlying
encryption scheme of the CHM and CIP AEs. An optimally secure nonce-
based encryption mode CENCmax [27], in which w is set to the maximum
number of message blocks, is applied as the underlying encryption scheme
of mGCM [27].

2.2.3. MACs used in Encrypt-then-MAC-Based AEs

Wegman-Carter MAC. The Wegman-Carter (WC) MAC [133] is an early
and popular nonce-based MAC that authenticates a message by masking
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its hash value with a random number generated through a pseudorandom
function applied on a nonce i.e.

WC[F,H](N, M) := Fk(N)⊕ Hkh(M).

If ϵ is the hash differential probability and qv is the number of verification
attempts, then the WC MAC provides O(ϵqv) security when nonces are never
reused. However, the construction has no security when the nonce repeats
even once. For some constructions, the hash key is revealed and for others,
a simple forgery is possible. Different instantiations of the pseudorandom
function and hash function give different instances of the WC MAC. The
Wegman-Carter-Shoup (WCS) MAC [130] is a popular instantiation of the
WC MAC in which the pseudorandom function is replaced by a block cipher.
WCS is used as the underlying MAC in GCM, CHM and CIP. EDM and EDMD
are used as instantiations of the PRF in the WC MAC and the resultant MACs
are used as underlying MAC algorithms in OGCM1 and OGCM2, respectively.
CWC MAC [93] (used as the MAC function in the CWC AE construction) is
another variant of the WC MAC, in which the pseudorandom function is
replaced by a block cipher and the hash function is defined as Ek2(Hkh(M)).

Encrypted Wegman-Carter-Shoup. The Encrypted Wegman-Carter-Shoup
(EWCS) MAC [56] was proposed as a remedy to the problem of nonce misuse
security over the WC MAC. The EWCS MAC encrypts the output of the
WCS MAC to generate the tag. This tag is then used as the underlying MAC
of the GCM/2+ construction. EWCS gives a security of around 2n/2 when
nonces do not repeat. An attacker can make approximately 2n/2 queries
with distinct nonces but the same message and observe no collisions in the
tag.
XOR-Encrypt-XOR. XOR-Encrypt-XOR (XEX) was originally proposed as a
mode of designing a tweakable block cipher [126]. Luykx et al. [4] used it as
the underlying MAC in GCM-RUP. For a nonce N and a message M, XEX
works as follows:

XEX[E,H](N, M) := Ek(N ⊕ Hkh(M))⊕ Hkh(M).

XEX is secure up to the birthday bound when nonces do not repeat. It is
easy to see that a collision amongst the values of N ⊕ Hkh(M) leads to a
forgery, which can be readily detected by finding collisions in the values of
N ⊕ T.
EWCDM [56] and a single-keyed hash variant of CLRW2 [94] are some

possible alternatives of nonce-based MACs that can be potentially applied
as the MAC function of any EtM-based AE mode. EWCDM is proven secure
up to approximately 22n/3 queries when nonces do not repeat [56], and the
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single-keyed hash variant of CLRW2 is also birthday bound secure in the
nonce respecting setting.

All these constructions have a birthday bound PRF security as an attacker
can make 2n/2 queries with the same message but distinct nonces and
observe no collision in the tag.

2.2.4. Security of nEHtM: A Nonce-Based Version of EHtM

The previous section demonstrates how the MACs used in the existing AE
modes are not secure beyond the birthday bound when nonces repeat just
once, making them unsuitable for use in designing an AE that is resilient
in the faulty nonce model. This section introduces the nonce-based Enhanced
Hash-then-Mask (nEHtM) and gives upto 2n/3-bit unforgeability in the faulty
nonce model. The Enhanced Hash-then-Mask (EHtM) proposed by Mine-
matsu [107] is the first BBB secure PRF-based probabilistic MAC that uses
only an n-bit random salt and an n-bit PRF. nEHtM is structurally similar
to EHtM, except that the random salt is replaced by a nonce and the PRF
by a block cipher. For the purpose of domain separation, we consider an
(n− 1)-bit nonce and an (n− 1)-bit keyed hash function. For any message
M and nonce N, nEHtM is defined as follows:

nEHtM[E,Hkh ](N, M) := Ek(0∥N)⊕ Ek(1∥(N ⊕ Hkh(M))).

We now state Theorem 2, which bounds the unforgeability of nEHtM in the
faulty nonce model. We also demonstrate a birthday bound forging attack
on nEHtM when the number of faulty nonces reaches an order of 2n/2. The
underlying idea of the attack is to form an alternating cycle of length 4 in
the input of the block cipher; details may be found in Sect. 2.2.6.

Theorem 2. LetM, k and kh be finite and non-empty sets. Let E : K×{0, 1}n →
{0, 1}n be a block cipher and H : Kh ×M→ {0, 1}n−1 be an (n− 1)-bit ϵ-AXU
hash function. Let µ be a fixed parameter. Then the forging advantage for any
(µ, qm, qv, t)-adversary against nEHtM[E,H] that makes qm authentication queries
with at most µ faulty nonces and qv verification queries in time t is given by

AdvMAC
nEHtM[E,H](µ, qm, qv, t) ≤ Advprp

E (µ, qm + qv, t′) +
48q3

m
22n +

12q4
mϵ

22n

+
12µ2q2

m
22n +

qm + 2qv

2n +
4q3

mϵ

2n + (2qm + qv)µϵ + qvϵ,

where the time parameter t′ is of the order of t + (qm + qv)tH and tH is the time
required for computing the hash function. Assuming ϵ ≈ 2−(n−1) and qm ≤ ϵ−1
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simplifies this bound to

AdvMAC
nEHtM[Perm,H](µ, qm, qv, t) ≤ 72q3

m
22n +

(
12µ2q2

m
22n +

(4qm + 2qv)µ

2n

)
+

(
qm + 4qv

2n

)
.

The proof of this theorem is deferred to Sect. 2.5. The forging advantage of
nEHtM for µ ≤ 2n/3 and qm ≤ 22n/3 is thus

AdvMAC
nEHtM[Perm,H](qm, qv, t) ≤ 13qm

22n/3 +
4qv

22n/3 .

Remark 1. EHtM offers 3n/4-bit security [68], whereas its nonce-based variant
offers 2n/3-bit security. This is because while EHtM also involves the random salts
as an additional source of entropy, the number of multicollisions in the underlying
hash function of nEHtM must be bound, for which the only source of randomness is
the hash key.

2.2.5. Security of CWC+: A Beyond the Birthday Bound
Variant of CWC

We have already seen that CENCmax is a highly efficient optimally secure
nonce respecting encryption scheme and that nEHtM is a nonce-based MAC
that is secure beyond the birthday bound in the faulty nonce model. Gluing
them together using the EtM paradigm, we realize CWC+, a beyond the
birthday bound secure AE in the faulty nonce model. The encryption and
decryption functions of CWC+ are shown in Fig. 2.3. The privacy and the
authenticity advantages of CWC+ are stated in the following theorem, the
proof of which is deferred to Sect. 2.6.

Theorem 3. Let E : K × {0, 1}n → {0, 1}n be a block cipher and Poly :
{0, 1}n × {0, 1}∗ → {0, 1}n−1 be the (n − 1)-bit truncated PolyHash function
(which truncates the first bit of the PolyHash output). Let ρ and µ be two fixed
parameters. Then the privacy advantage for any (qe, qd, ℓ, σ, t)-nonce respecting
adversary against CWC+[E, ρ] is given by

Advpriv
CWC+[E,ρ](qe, qd, ℓ, σ, t) ≤ AdvPRP

E (σ + 2q, t′)

+
105σ3ℓ

22n +
6σℓ

2n +
2qd
2ρ +

2qdℓ

2n .

The authenticity advantage for any (µ, qe, qd, ℓ, σ, t)-adversary against CWC+[E, ρ]
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is given by

Advauth
CWC+[E,ρ](µ, qe, qd, ℓ, σ, t) ≤ AdvPRP

E (σ + 2q, t′) +
105σ3ℓ

22n +
6σℓ

2n +
2qd
2ρ

+
2qdℓ

2n +
(2qe + qd)2ℓµ

2n +

(
5σℓµ

2n

)2

.

We denote qe + qd by q — the total number of encryption and decryption queries,
and O(t + qtH + σ + 2q) by t′, where tH denotes the time required for computing
the hash function and µ denotes the total number of encryption queries with faulty
nonces.

CWC+.Enck(N, A, M)

1 : L← Ek(0), N′ ← N∥0n/4−1.
2 : l ← ⌈|M|/n⌉.
3 : S← CENCmax(k, 0∥N′, l).
4 : C ← M⊕ first(S, |M|).
5 : T̃ ← nEHtM[E,PolyEk(0)](N′, C∥A).

6 : T ← chopρ(T̃).

7 : return (C, T).

CWC+.Deck(N, A, C, T)

1 : L = Ek(0), N′ ← N∥0n/4−1.
2 : l ← ⌈|C|/n⌉.
3 : T̃′ ← nEHtM[E,PolyEk(0)](N′, C∥A).

4 : if chopρ(T̃′) ̸= T then return⊥.

5 : S← CENCmax(k, N′, l).
6 : M← C⊕ first(S, |C|).
7 : return M.

Figure 2.3.: Encryption and Decryption functions of CWC+. PolyEk(0) denotes the
PolyHash function with its n-bit hash key set to the encrypted value of
0. first(S, |M|) denotes the first |M| bits in the sequence S. chopρ is a
function that truncates the last n− ρ bits of its input.

2.2.6. Nonce Misuse Attack on nEHtM

In the following, we discuss a birthday bound forging attack on nEHtM
when the number of faulty queries is roughly 2n/2. The underlying idea
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of the attack is to form an alternating cycle of length 4 in the input of the
block cipher. For this, an adversary A makes two sets of 2n/2 MAC queries
– one with message M and another with message M′( ̸= M) – and finds
four queries such that the sum of their tag becomes zero. A mounts the
attack in two phases: (a) In the first phase, it finds a quadruple that makes
the tag-sum zero. (b) In the second phase, it forges the MAC. The attack is
described algorithmically in part (b) of Fig. 2.4.

First Phase of the Attack.

1. A makes q∗ = 2n/2 MAC queries (Ni, M), i ∈ [q∗] and receives re-
sponses Ti ← nEHtM(Ni, M) ∀ i ∈ [q∗].

2. A makes q∗ = 2n/2 MAC queries (Nq∗+i, M′), i ∈ [q∗] and receives
responses Tq∗+i ← nEHtM(Nq∗+i, M) ∀ i ∈ [q∗].

3. A finds two distinct query indices i, j ∈ [q∗] such that Ti ⊕ Tj ⊕ Tq∗+i ⊕
Tq∗+j = 0.

N

Ek

0
⊕

M

Ek

1

Hkh

⊕

T

M M′

...
...

...
...

...
...

N1 Nq∗+1

Ni Nq∗+i

Nj Nq∗+j,

δ

Figure 2.4.: (a) On the left is the domain-separated variant of Nonce-based Enhanced
Hash-then-Mask with an n-bit keyed hash function Hkh

and an n-bit block
cipher Ek; (b) On the right is the forging attack on the construction.

Note that the event CollT : ∃ i, j ∈ [q∗] : Ti ⊕ Tj ⊕ Tq∗+i ⊕ Tq∗+j = 0
can take place either because of (i) the collision of the hash i.e., Hk(M)⊕
Hk(M′) = Ni ⊕ Nj or (ii) the random output of the underlying permutation
Π. The probability of occurrence of the second case is extremely low (we
call it a false positive) and therefore, when CollT takes place, we can assume
with high probability that the hash value collides. As a result, A obtains the
hash difference Ni ⊕ Nj.
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Second Phase of the Attack. A chooses two distinct nonces N2q∗+1, N2q∗+2 /∈
{N1, . . . , Nq∗} such that N2q∗+1 ⊕ N2q∗+2 = Ni ⊕ Nj and makes queries
T2q∗+1 ← (N2q∗+1, M), T2q∗+2 ← (N2q∗+1, M′), T2q∗+3 ← (N2q∗+2, M). This
allows A to forge with (N2q∗+2, M′, T2q∗+1 ⊕ T2q∗+2 ⊕ T2q∗+3).

As step 3 of the first phase holds with probability (q∗)2/2n, this attack
holds for q ≈ 2n/2+1 and µ = 2n/2, when ν = 2.

2.3. Mirror Theory

Introduced by Patarin in [120], mirror theory is a technique that provides a
lower bound for the number of solutions to a given system of linear (more
precisely, affine) bivariate equations and non-equations in a finite field (e.g.,
GF(2n)). Solving a system of linear or affine equations is a straightforward
and common problem in linear algebra. However, complications arise when
non-equations are involved. A special form of problems involving non-
equations is to find distinct values for all the variables present in the system.
If Y1, . . . , Ys are the variables, the system of non-equations Yi ⊕Yj ̸= 0 for all
i ̸= j essentially restricts the solutions to those in which all variables take
distinct values. We call such a solution an injective solution. Patarin did not
consider any other forms of non-equations [120, 123, 121]. Datta et al. [62]
considered other forms and termed the results extended mirror theory — the
authors provided a lower bound on the number of injective solutions when
the maximum component size wmax (a parameter that shall be defined soon)
is three or less. This chapter extends their analysis for an arbitrary wmax.
Injective Solution of Equations. Let G = (V := {Y1, . . . , Yα},S) be a
simple acyclic graph with an edge-labelling function L : S → {0, 1}n. For an
edge {Yi, Yj} ∈ S , we write L({Yi, Yj}) = λij (and so λij = λji). The system
of equations induced by G, denoted EG, is then defined as:

EG := {Yi ⊕Yj = λij; {Yi, Yj} ∈ S}. (2.1)

Thus, each vertex of G denotes a variable in the system of equations and
each edge of G denotes an equation in EG. We denote the set of components
in G by comp(G) = {C1, . . . , Ck}, k being the total number of components.
wi denotes the size of (i.e. the number of vertices in) the component Ci,
wmax denotes the quantity max{w1, . . . , wk} (also commonly denoted as ξ
in Patarin’s papers) and σi the sum (w1 + · · ·+ wi), with the convention
σ0 = 0.

Definition 1. With respect to the system of equations EG (as defined above),
an injective function Φ : V → {0, 1}n is said to be an injective solution if
Φ(Yi) + Φ(Yj) = λij for all {Yi, Yj} ∈ S .
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As the graph G is acyclic, there exists a unique path between any two
vertices Ys and Yt in the same component, which shall be denoted by Pst.
Adding all equations induced by the edges of any such path Pst gives

L(Pst) := ∑
e∈Pst

L(e).

So, for an injective solution to exist, the graph G (along with the label
function L) must satisfy the following property:

NPL (non-zero path label): For all paths P in graph G, L(P) ̸= 0.

It may be noted here that the NPL condition formalizes the notion of non-
degeneracy mentioned in [120, 104]. The restriction on the graph to be
acyclic implies that the equations are linearly independent (since otherwise,
there is a possibility that the system becomes inconsistent).

Having identified the necessary condition for the existence of an injective
solution to EG corresponding to any simple edge-labeled undirected acyclic
graph G, we now state the following claim due to Patarin [120], which gives
a lower bound on the number of injective solutions to EG: Suppose G has
α vertices and q edges. Then the number of injective solutions to EG is at
least (2n)α

2nk , provided σk(wmax − 1) ≤ 2n/64. Unfortunately, the proof of this
claim is unverifiable. [62] gives a detailed proof for the following lower
bound on the number of injective solutions: (2n)α

2nk · (1− ϵ), with ϵ ≈ 0 and
σ3

k w2
max ≪ 22n.

Injective Solution to a System of Equations and Non-Equations. We
shall now examine an extended system involving a system of non-equations
along with a system of equations. Let G = (V := {Y1, . . . , Yα},S ⊔ S ′,L)
be a simple undirected edge-labelled graph (L is a label function), whose
edge set is partitioned into two disjoint sets S and S ′. As before, we simply
write L({Yi, Yj}) = λij for all {Yi, Yj} ∈ S and L({Yi, Yj}) = λ′ij for all
{Yi, Yj} ∈ S ′. Let such a graph G induce a system of equations and non-
equations EG as follows:

Yi ⊕Yj = λij ∀ {Yi, Yj} ∈ S , (2.2)

Yi ⊕Yj ̸= λ′ij ∀ {Yi, Yj} ∈ S ′, (2.3)

For a system of equations and non-equations EG, an injective function Φ :
V → {0, 1}n is said to be an injective solution function if Φ(Yi)⊕Φ(Yj) = λij
for all {Yi, Yj} ∈ S and Φ(Yi)⊕Φ(Yj) ̸= λ′ij for all {Yi, Yj} ∈ S ′.
Good Graphs. We shall first investigate the case when EG has at least one
solution. To ensure this, the subgraph G= := (V ,S ,L|S), where L|S is the
function L restricted over the set S , must
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Y1

Y2 Y3

λ1

λ1 + λ2

λ2

Figure 2.5.: EG := {Y1 ⊕Y2 = λ1, Y1 ⊕Y3 = λ2, Y2 ⊕Y3 ̸= λ1 ⊕ λ2}. The continuous
red edges represent equations and the dashed blue edge represents a
non-equation. Clearly, the system of equations and non-equations is
inconsistent.

(i) be acyclic (i.e. No Cycle or NC)
(ii) satisfy the NPL condition and
(iii) satisfy the NCL (non-zero cycle label) property: For all cycles C in G

such that the edge set of C contains exactly one non-equation edge e′ ∈ S ′,
L(C) ̸= 0 (see Fig.4.1 for an example).

If a graph G satisfies the above three conditions (i)-(iii), it is said to be a good
graph. In [62], authors have proved the following lower bound for wmax = 3.
Let G = (V ,S ⊔ S ′,L) be a good graph with |V| = α, |S| = qm, |S ′| = qv.
Let comp(G=) = {C1, . . . , Ck} with |Ci| = wi (≤ 3) and σi = (w1 + · · ·+ wi).
Let Z ⊆ {0, 1}n such that |{0, 1}n \ Z| = c. The total number of injective
solutions (each solution chosen from the set Z) for the induced system of
equations and non-equations EG is at least:

(2n)α

2nk

(
1− 5k3

22n −
qv + cα

2n−1

)
. (2.4)

Observe that qv + cα is the number of non-equations, considering univariate
non-equations arising from the constraint of each solution being from the
set of size 2n − c. Now we state our theorem, which generalizes this result
for any wmax.

Theorem 4. Let G = (V ,S ⊔ S ′,L) be a good graph with α vertices such that
|S| = qm and |S ′| = qv. Let comp(G=) = {C1, . . . , Ck} and |Ci| = wi, σi =
(w1 + · · ·+wi). Then the total number of injective solutions chosen from a set Z of
size 2n − c, for some c ≥ 0, for the induced system of equations and non-equations
EG is at least:

(2n)α

2nqm

(
1−

k

∑
i=1

6σ2
i−1(

wi
2 )

22n − 2(qv + cα)

2n

)
, (2.5)

provided σkwmax ≤ 2n/4.
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Idea of the Proof. The proof begins by counting the number of solutions in
each of the k components. Let w̃ij be the number of edges from S ′ connecting
vertices between the ith and jth components of G= and w′i the number of
edges in S ′ incident on vi ∈ V \ G=(V). It is easy to see that the number
of solutions for the first component is exactly (2n − cw1). We fix a solution
and count the number of solutions for the second component, which is
(2n − w1w2 − w̃1,2 − cw2) as it must discard (i) w1 values (yi1 , . . . , yiw1

) from
the first component, (ii) w1(w2− 1) values (yi1 ⊕L(Pj), . . . , yiw1

⊕L(Pj)) for
all possible paths Pj from a fixed vertex to any other vertex in the second
component and (iii) cw2 + w̃12 values to compensate for the fact that the set
of admissible values Z is no longer a group. In general, the total number of

solutions for the ith component is at least
k

∏
i=1

(
2n − σi−1wi −

i−1
∑

j=1
w̃ij − cwi

)
.

Suppose there are k′ vertices that do not belong to the set of vertices of
the subgraph G=. Fix such a vertex Yσk+i and let us assume that w′σk+i blue
dashed edges are incident on it. If yσk+i is a valid solution to the variable
Yσk+i, then (i) yσk+i should be distinct from the previous σk assigned values,
(ii) yσk+i should be distinct from the (i− 1) values assigned to the variables
that do not belong to the set of vertices of the subgraph G=(V) and (iii)
yσk+i should not take those w′σk+i values.

Therefore, the total number of solutions is at least

k

∏
i=1

(
2n − σi−1wi −

i−1

∑
j=1

w̃ij − cwi

)
·

k′

∏
i=1

(
2n − σk − i + 1− w′σk+i

)
. (2.6)

The result follows after a few simple computations.
Let us first consider the same problem as Thm. 4, but with only a system

of affine equations, and on the entire field {0, 1}n:

Lemma 1. Let G = (V ,S ,L) be a simple edge-labelled undirected acyclic graph
that satisfies the NPL condition. Let comp(G) = {C1, . . . , Ck} be the set of compo-
nents of G such that |Ci| = wi for each i = 1, . . . , k, and let the number of edges
in G be q. We denote by σi = (w1 + . . . , wi), the number of vertices in the first i
components of G (and σ0 = 0). Then the total number of injective solutions for the
induced system of equations EG, denoted by hα, is at least

(2n)α

2nq

1−
k

∑
i=1

6σ2
i−1(

wi
2 )

22n

 ,

provided σkwmax ≤ 2n/4, where wmax = max{w1, . . . , wk}.
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Proof. Consider the first component C1 of the graph G. Let Yi1 ∈ V be
an arbitrary vertex of C1. There are 2n choices for assigning values to the
variable Yi1 . Let the value assigned to Yi1 be yi1 . For any other variable Yi2
of C1, consider the path P from Yi1 to Yi2 and assign the value yi1 ⊕ L(P)
to the variable Yi2 . Let this value be yi2 . Since the acyclic graph ensures
that the path P is unique and L(P) ̸= 0 due to the NPL property, yi1 ̸= yi2 .
Therefore, assigned values to all other variables in C1 are different from
yi1 . Furthermore, if Pj and Pk are the paths from the vertex Yi1 to Yj and Yk
respectively and P is the (possibly empty) common prefix of Pj and Pk, then
we can write Pj = P∥P′j , Pk = P∥P′k, so that

yj ⊕ yk = L(Pj)⊕L(Pk) = L(P′j )⊕L(P′k) = L(P′j∥P′k) ̸= 0,

where the last equality holds due to the NPL condition. That for all edges
{j, k} ∈ S , yj ⊕ yk = λjk is also a straightforward verification. Therefore,
yi1 sets the solution uniquely for all the variables in C1. Let (yi1 , . . . , yiw1

)

denote one such possible (hence injective) solution for the variables in the
first component. Once such a value is fixed for Yi1 , we consider the second
component.

We proceed with a similar computation for the second component C2. Let
Yiw1+1 ∈ V be a variable in C2. For any valid solution yiw1+1 for Yiw1+1 , we set
yiw1+1 ⊕L(P) as a solution to the variable Yj ∈ V , where Yj is an arbitrary
vertex in C2 and P is the unique path from Yiw1+1 to Yj. Therefore, yiw1+1

uniquely determines the values of the remaining w2 − 1 variables. If yiw1+1

is a valid assignment for Yiw1+1 , then yiw1+1 must be –

- distinct from the values yi1 , . . . , yiw1
already assigned to the variables

in C1 and
- distinct from any value in {yi1 ⊕L(Pj), . . . , yiw1

⊕L(Pj)}, for all possi-
ble paths Pj from the vertex Yiw1+1 to any other vertex Yj in C2.

Thus, at most w1w2 values get discarded for assignment to the vertex Yiw1+1 ,
leaving at least (2n − w1w2) choices of values for this vertex, hence also for
injective solutions to all vertices of the second component.

In general, for the ith component, once an injective solution is fixed for the
previous i− 1 components, there are at least (2n − w1wi − · · · − wi−1wi) =
(2n − σi−1wi) ways for an injective solution to exist for the ith component (as
vertices of the first i− 1 components are already assigned values). Hence,
the total number of possible injective solutions for the induced system of
equations is at least

hα ≥
k

∏
i=1

(2n − σi−1wi) . (2.7)
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Recall that q and α are respectively the number of edges and vertices in G.
Therefore,

hα
2nq

(2n)α
≥ 2nq

(2n)α

k

∏
i=1

(2n − σi−1wi) =
k

∏
i=1

(2n − σi−1wi)2n(wi−1)

(2n − σi−1)wi

, where (2.8)

(2n − σi−1)wi
≤ 2nwi − 2n(wi−1)

(
σi−1wi +

(
wi

2

))
+ 2n(wi−2)

((
wi

2

)
σ2

i−1

+

(
wi

2

)
(wi − 1)σi−1 +

(
wi

2

)
(wi − 2)(3wi − 1)

12

)
.

Plugging this inequality into Eqn. (2.8) gives

hα
2nq

(2n)α

≥
k

∏
i=1

1+
2n(wi−1) ·(wi

2 )−2n(wi−2) ·
(
(
wi
2 )σ2

i−1+(
wi
2 )(wi−1)σi−1+(

wi
2 )

(wi−2)(3wi−1)
12

)
2nwi−2n(wi−1)(σi−1wi+(

wi
2 ))+2n(wi−2)

(
(
wi
2 )σ2

i−1+(
wi
2 )(wi−1)σi−1+(

wi
2 )

(wi−2)(3wi−1)
12

)


≥
k

∏
i=1

1−

(
(
wi
2 )σ2

i−1+(
wi
2 )(wi−1)σi−1+(

wi
2 )

(wi−2)(3wi−1)
12

)
22n−2n(σi−1wi+(

wi
2 ))+

(
(
wi
2 )σ2

i−1+(
wi
2 )(wi−1)σi−1+(

wi
2 )

(wi−2)(3wi−1)
12

)


≥ k
∏
i=1

1−
2‘
(
(
wi
2 )σ2

i−1+(
wi
2 )(wi−1)σi−1+(

wi
2 )

(wi−2)(3wi−1)
12

)
22n

,

since 2n(σi−1wi+(
wi
2 ))−

(
(

wi
2 )σ

2
i−1+(

wi
2 )(wi−1)σi−1+(

wi
2 )

(wi−2)(3wi−1)
12

)
≤22n/2

when σkwmax≤2n/4

≥

1−
k

∑
i=1

6σ2
i−1(

wi
2 )

22n

 ,

since
(
(

wi
2 )σ

2
i−1+(

wi
2 )(wi−1)σi−1+(

wi
2 )

(wi−2)(3wi−1)
12

)
≤3σ2

i−1(
wi
2 )
(
(

wi
2 )σ

2
i−1+(

wi
2 )(wi−1)σi−1+(

wi
2 )

(wi−2)(3wi−1)
12

)
≤3σ2

i−1(
wi
2 ).

Lemma 2 computes a bound on the total number of injective solutions
when non-equation edges are incorporated:

Lemma 2. Let G = (V ,S ⊔ S ′,L) be a good graph such that V = {Y1, . . . , Yα},
|S| = qm and |S ′| = qv. Let comp(G=) = (C1, . . . , Ck) be the set of components
of G= such that |Ci| = wi for each i = 1, . . . , k and σi = (w1 + . . . + wi) the
number of vertices in the first i components of G= (σ0 := 0). For every i ̸= j ∈ [k],
suppose there are w̃ij edges from S ′ connecting vertices of the ith and jth components
of G=. Let |V \ G=(V)| = k′ and for any vertex vi ∈ V \ G=(V), let w′i be the
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number of blue dashed edges incident on vi. Then the total number of injective
solutions for the induced system of equations and non-equations EG, chosen from a
set Z of size 2n − c (c ≥ 0), denoted hα, is at least

k

∏
i=1

(
2n − σi−1wi −

i−1

∑
j=1

w̃ij − cwi

)
· ∏

i∈[k′]

(
2n − σk − i− w′i

)
. (2.9)

Proof. There are clearly (2n − cw1) ways to assign values to any one of the
vertices of the first component C1 of G=, thus uniquely determining the
values for the rest of the variables in C1. Thus, there are (2n − cw1) ways for
an injective solution to exist for the first component. Once such a solution is
fixed for the first component, we consider the second component.

For any arbitrary vertex Yiw1+1 ∈ V in the second component C2 of G=

a valid solution yiw1+1 should not take the w1w2 values constrained by the
vertices of the first component. Additionally, as there are w̃12 blue dashed
edges connecting the components C1 and C2, there are w̃12 paths from the
vertex Yiw1+1 to the vertices of the component C1. The size of the domain
set Z restricts another cw2 values to the assignment of yiw1+1 . Thus, at most
w1w2 + w̃12 + cw2 values get discarded for assignment to Yiw1+1 , and as a
result there are at least (2n − w1w2 − w̃1,2 − cw2) valid choices for Yiw1+1 .
Once this value is assigned to Yiw1+1 , the remaining variables in the second
component are assigned uniquely. Thus, there are (2n − w1w2 − w̃12 − cw2)
ways for an injective solution to exist for the second component.

In general, once the injective solution is fixed for the previous i − 1
components, there are at least (2n − σi−1wi − w̃i1 − . . .− w̃i,i−1 − cwi) ways
for an injective solution to exist for the ith component. Hence, the total
number of possible injective solutions for the induced system of equations
and non-equations is at least

k

∏
i=1

(
2n − σi−1wi −

i−1

∑
j=1

w̃ij − cwi

)
.

There may also exist vertices that do not belong to the set G=(V). Let
there be k′ such vertices. Fix such a vertex Yσk+i and assume that w′σk+i blue
dashed edges are incident on Yσk+i. If yσk+i is a valid solution to the variable
Yσk+i, then it must –

- be distinct from the previous σk assigned values,
- be distinct from the (i − 1) values assigned to variables of the set
V \ G=(V), and

- not take the w′σk+i values that violates the non-equality conditions of
the w′σk+i blue dashed edges.
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Therefore, the number of valid choices for yσk+i is at least (2n − σk − i +
1− w′σk+i). Summarizing the above, the total number of possible injective
solutions for the induced system of equations and non-equations is at least

k

∏
i=1

(
2n − σi−1wi −

i−1

∑
j=1

w̃ij − cwi

)
·

k′

∏
i=1

(2n − σk − i + 1− w′σk+i),

which proves the result.

Proof of Theorem 4

Lemma 2 bounds the number of injective solutions to EG to at least
k

∏
i=1

(2n − σi−1wi − w̃i1 − . . .− w̃i,i−1 − cwi) ·∏i∈[k′]

(
2n − σk − i + 1− w′σk+i

)
,

where wi is the size of the ith component Ci, σi−1 = (w1 + . . . + wi−1), k′ is
the number of vertices in G \G=(V) and w′σk+i is the number of blue dashed
edges incident on the vertex Yσk+i. Denoting (w̃i1 + . . . + w̃i,i−1) by pi for
notational ease, a similar computation as in Lemma 1 gives

hα
2nqm

(2n)α
≥ 2nqm

(2n)α

k

∏
i=1

(2n − σi−1wi − pi − cwi)
k′

∏
i=1

(
2n − σk − i + 1− w′σk+i

)

=
k

∏
i=1

(2n − σi−1wi − pi − cwi) 2n(wi−1)

(2n − σi−1)wi

k′

∏
i=1

(
2n − σk − i + 1− w′σk+i

)
(2n − σk − i + 1)

.

(2.10)
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Now observe that

k

∏
i=1

(2n − σi−1wi − pi − cwi) 2n(wi−1)

(2n − σi−1)wi

≥
k

∏
i=1

[
1−

(
wi
2 )σ2

i−1+(
wi
2 )(wi−1)σi−1+(

wi
2 )

(wi−2)(3wi−1)
12

22n−2n(σi−1wi+(
wi
2 ))+

(
(
wi
2 )σ2

i−1+(
wi
2 )(wi−1)σi−1+(

wi
2 )

(wi−2)(3wi−1)
12

)

−
2n(pi+cwi)

22n−2n(σi−1wi+(
wi
2 ))+

(
(
wi
2 )σ2

i−1+(
wi
2 )(wi−1)σi−1+(

wi
2 )

(wi−2)(3wi−1)
12

)
]

≥
k

∏
i=1

[
1−

2
(
(

wi
2 )σ

2
i−1+(

wi
2 )(wi−1)σi−1+(

wi
2 )

(wi−2)(3wi−1)
12

)
22n − 2(pi + cwi)

2n

]

since 2n
(

σi−1wi +

(
wi

2

))
−
((

wi

2

)
σ2

i−1 +

(
wi

2

)
(wi − 1)σi−1

+

(
wi

2

)
(wi − 2)(3wi − 1)

12

)
≤ 22n/2 when σkwmax ≤ 2n/4

≥

1−
k

∑
i=1

6σ2
i−1(

wi
2 )

22n −
k

∑
i=1

2(pi + cwi)

2n

 (2.11)

because (wi
2 )σ

2
i−1 + (wi

2 )(wi − 1)σi−1 + (wi
2 )

(wi−2)(3wi−1)
12 ≤ 3σ2

i−1(
wi
2 ). More-

over, as the total number of blue dashed edges across the components of G=

is denoted by q′v = p1 + · · ·+ pk and w1 + . . . + wk ≤ α(p1 + . . . + pk) = q′v,
the expression 2.11 is

≥

1−
k

∑
i=1

6σ2
i−1(

wi
2 )

22n − 2q′v
2n −

2cα

2n

 ,
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and
k′

∏
i=1

(
2n−σk−i+1−w′σk+i

)
(2n−σk−i+1)

=
k′

∏
i=1

(
2n − σk − i + 1− w′σk+i

)
(2n − σk − i + 1)

≥
k′

∏
i=1

(
1−

w′σk+i

(2n − σk − i + 1)

)

≥

1−
k′

∑
i=1

2w′σk+i

2n

 ,

which follows from the fact that (σk + i− 1) ≤ 2n/2,

≥
(

1− 2q′′v
2n

)
since we denote the total number of blue dashed

edges incident on the vertices outside of the set G=(V)
by (w′σk+1 + . . . + w′σk+k′) = q′′v .

Thus, hα
2nqm

(2n)α
≥

1−
k

∑
i=1

6σ2
i−1(

wi
2 )

22n − 2(qv + cα)

2n

 from Eqn. 2.10,

where qv = q′v + q′′v , the total number of non-equation edges in G.

2.4. Mutlicollision in a Universal Hash Function

This section explores some results on the number of multicollisions in the
outputs of a universal hash function. Suppose HKh is an ϵ-universal hash
function with the hash key Kh chosen uniformly at random from the hash
key space. For any q distinct messages M1, . . . , Mq, the probability that
there exists i ̸= j, such that Mi and Mj collide under the hash function
HKh is at most ϵ(q

2) (by the union bound). We say that (M1, . . . , Mξ) is a
ξ-multicollision tuple for HKh if HKh(M1) = HKh(M2) = · · · = HKh(Mξ). Then
extending the 2-collision bound for multicollisions, the probability that a
ξ-tuple (M1, . . . , Mξ) is a ξ-multicollision tuple for a ξ-wise independent
hash function [133] HKh is 1/2n(ξ−1). Clearly, this cannot be concluded
for a universal hash function. In fact, one can easily construct a ξ-tuple
of messages such that the multicollision probability under the PolyHash
function is ℓ/2n.

In the following, is a better bound on the existence of a multicollision
tuple for any collection of q messages; the proof can be found in 2.4.

Theorem 5 (Multicollision Theorem). Let X1, . . . , Xq be q distinct messages
and HKh an ϵ-universal hash function. Then for ξ ∈ N, the probability that a
(ξ + 1)-multicollision tuple exists in this set of messages is no more than q2ϵ/2ξ.
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Proof. Consider the graph G = (V ,S) with vertex set V containing each
of the q messages Zi := HKh(Xi), i ∈ [q]. Let X denote a (ξ + 1)-tuple(

X1, . . . , Xξ+1
)
∈ V ξ+1. An edge between two nodes exists in S if and only

if the hash values of the corresponding messages collide. Therefore, the
event HKh(X1) = . . . = HKh(Xξ+1) boils down to the existence of a clique of

size ξ + 1 in G. Due to Lemma 3, if G has
⌈

q2

2ξ

⌉
edges, then any collection of

ξ + 1 (out of the total q) vertices in V must contain at least one pair which is
in S . Also, for s = q2/ξ, there must exist a multiset {v1, . . . , vs} ⊆ [q]

(
with

v2i−1 ̸= v2i, v2i−1 = v2j−1 =⇒ v2i ̸= v2j and v2i = v2j =⇒ v2i−1 ̸= v2j−1

for all i, j ∈ [s/2]
)

such that

Z1 = Z2 = . . . = Zξ+1 ⇒
Zv1 = Zv2 ∨ Zv3 = Zv4 ∨ . . . ∨ Zvs−1 = Zvs and |{v1, . . . , vs}| ≥ ξ, (2.12)

hence bounding the required probability as follows:

max
X

Pr
[
Kh

$←− {0, 1}n : ∃i1, · · · , iξ ∈ [q],HKh(Xi1) = · · · = HKh(Xiξ )
]

≤ Pr[Zv1 = Zv2 ∨ . . . ∨ Zvs−1 = Zvs ]≤
s/2

∑
i=1

Pr[Zvi = Zvi+1 ]≤
sϵ

2
=

q2ϵ

2ξ
.

Lemma 3. Let q, ξ ∈ N. Then for any set V with |V| = q, there exists a graph
G = (V ,S) with |S| =

⌈
q2

2ξ

⌉
such that any collection C of ξ + 1 vertices has at

least one edge in S joining two vertices in C.

Proof. Divide the q vertices into ξ subcollections of size
⌈

q
ξ

⌉
each, the last

subcollection possibly containing a lesser number of vertices. Suppose S
contains all the edges required to form cliques Ci (i ∈ [ξ]). As there are at

most ξ · (
⌈

q
ξ

⌉
2
) edges in all the ξ cliques,

ξ ·
( q

ξ

2

)
<

q2

2ξ
≤
⌈

q2

2ξ

⌉
= |S| .

Hence, S must contain more edges, distinct from those involved in the ξ
cliques, which must exist between at least one pair of vertices in different
cliques Ci and Cj (i ̸= j). Since there are ξ + 1 vertices in C and a total
of ξ cliques Ci formed so far, it can thus be inferred from the pigeonhole
principle that at least one clique Ci contains more than one edge from S ,
making clear the existence of an edge from S in C.
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2.5. Proof of Theorem 2

In this section, we prove Theorem 2. We shall also refer to the construction
nEHtM[E,H] as simply nEHtM when the underlying primitives are under-
stood.

The first step of the proof is the standard switch from the computational
setting to an information theoretic one by replacing the block cipher Ek
with an n-bit uniform random permutation Π at a cost of Advprp

E (qm + qv, t′),
where t′ = O(t + (qm + qv)tH) and tH is the time required for computing
the hash function. Let us denote this modified construction as nEHtM∗[Π,H].
Hence,

AdvMAC
nEHtM(qm, qv, t) ≤ Advprp

E (qm + qv, t′) + AdvMAC
nEHtM∗(qm, qv, t). (2.13)

To get an upper bound for AdvMAC
nEHtM∗(qm, qv, t), we consider a perfect

random oracle Rand, which on input (N, M) returns T, sampled uniformly
at random from {0, 1}n, and an oracle Rej which always returns ⊥ (i.e.,
rejects) for all inputs (N, M, T). Now, due to [56, 68, 62] we have

AdvMAC
nEHtM∗(qm, qv, t) ≤ max

D
Pr[DTG[Π,Hkh

],VF[Π,Hkh
] = 1]− Pr[DRand,Rej = 1],

where the maximum is taken over all non-trivial distinguishers D. This
formulation allows us to apply the expectation method [85, 42] to prove that

AdvMAC
nEHtM∗(qm, qv, t) ≤ 48q3

m
22n +

12q4
mϵ

22n +
12µ2q2

m
22n +

qm + 2qv

2n +
4q3

mϵ

2n

+ (2qm + qv)µϵ + qvϵ. (2.14)

Attack Transcript. Henceforth, we fix a deterministic non-trivial (i.e., one
that makes no repeated queries) distinguisher D that interacts with

1. either the real oracle (TG[Π,Hkh ],VF[Π,Hkh ]) for a uniform random
permutation Π and a random hashing key kh,

2. or the ideal oracle (Rand,Rej),

making at most qm queries to its left (authentication) oracle with at most µ
faulty nonces, and at most qv queries to its right (verification) oracle, and
returning a single bit. Then,

Adv(D) =
∣∣∣Pr
[
DTG[Π,Hkh

],VF[Π,Hkh
] = 1

]
− Pr

[
DRand,Rej = 1

]∣∣∣ .

Let τm := {(N1, M1, T1), (N2, M2, T2), . . . , (Nqm , Mqm , Tqm)}
be the list of authentication queries made by D and the corresponding
responses it receives. Also let

τv := {(N′1, M′1, T′1, b′1), (N′2, M′2, T′2, b′2), . . . , (N′qv , M′qv , T′qv , b′qv)}
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be the list of verification queries made by D and the corresponding responses
it receives, where for all j, b′j ∈ {⊤,⊥} denotes the set of accept (b′j = ⊤)
and reject (b′j = ⊥) responses. The pair τ = (τm, τv) constitutes the query
transcript of the attack. For convenience, we slightly modify the experiment
to reveal to the distinguisher (after obtaining all responses corresponding
to its queries, but before outputting its decision), the hashing key kh if
D interacts with the real world, or a uniformly random dummy key kh
if D interacts with the ideal world. Hence, the extended transcript of the
attack is τ′ = (τ, kh). We shall often simply call a tuple (N, M, T) ∈ τm an
authentication query, and a tuple (N′, M′, T′, b′) ∈ τv a verification query.

A transcript τ′ is said to be an attainable transcript (with respect to D) if
the probability of realizing it in the ideal world is non-zero. It must be noted
that since attainability is with respect to the ideal world, any verification
query (N′i , M′i , T′i , b′i) even in an attainable transcript τ′ = (τ, kh) is such that
b′i = ⊥. We denote Θ to be the set of all attainable transcripts and Xre and
Xid to be the random variables that take an extended transcript τ′ induced
by the real world and the ideal world respectively.

2.5.1. Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcripts in the
ideal world. For notational simplicity, we denote Ni ⊕Hkh(Mi) as Xi. Note
that Xi is an (n− 1)-bit string.

Definition 2 (Bad Transcript). Given a parameter ξ ∈N, where ξ ≥ µ (optimal
value of ξ determined later in the proof), an attainable transcript τ′ = (τm, τv, kh)
is called a bad transcript if any one of the following holds:

- B1 : ∃ i1 ∈ [qm] such that Ti1 = 0.
- B2 : ∃ i1 ̸= i2 ̸= i3 such that Ni1 = Ni2 and Xi2 = Xi3 .
- B3 : {i1, . . . , iξ+1} ⊆ [qm] such that Xi1 = Xi2 = . . . = Xiξ+1 .
- B4 ∃ a ∈ [qv], ∃ i ∈ [qm] such that Ni = N′a, Xi = X′a and Ti = T′a.

We denote by Θbad (resp. Θgood) the set of bad (resp. good) transcripts.
We bound the probability of bad transcripts in the ideal world as follows.

Lemma 4. Let Xid and Θbad be defined as above. Then

Pr[Xid ∈ Θbad] ≤ ϵbad =
qm

2n +
q2

mϵ

2ξ
+ (2qm + qv)µϵ + qvϵ.

Proof. By the union bound,

Pr[Xid ∈ Θbad] ≤ Pr[B1] + Pr[B2] + Pr[B3] + Pr[B4]. (2.15)
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We now bound the probabilities of all bad events individually. The lemma
will follow by adding the individual bounds. Clearly,

Pr[B1] ≤ qm

2n . (2.16)

Bounding B2. Let F be the set of all query indices i1 for which there is a
i2 ̸= i1 such that Ni1 = Ni2 . It is easy to see that |F | ≤ 2µ. Event B2 occurs if
for some i2 ∈ F , Hkh(Mi2) = Ni3 ⊕Hkh(Mi3) for some i3 ̸= i2. For any such
fixed i1, i2, i3, the probability of the event is at most ϵ. The number of such
choices of (i2, i3) is at most 2µqm. Hence,

Pr[B2] ≤ 2µqmϵ. (2.17)

Bounding B3. Event B3 occurs if there exist ξ + 1 distinct authentication
query indices {i1, . . . , iξ+1} ⊆ [qm] such that Xi1 = . . . = Xiξ+1 . This event
is thus a (ξ + 1)-multicollision on the ϵ-universal hash function mapping
(N, M) to Hkh(M)⊕ N (as Hkh is an ϵ-almost xor universal). Therefore by
Theorem 5,

Pr[B3] ≤ q2
mϵ/2ξ. (2.18)

Bounding B4. For some a ∈ [qv] and i ∈ [qm], if Ni = N′a, Xi = X′a and
Ti = T′a, then Mi ̸= M′a (as the adversary does not make any trivial query).
Hence the probability that Xi = X′a holds is at most ϵ. Now, for any a, there
can be at most (µ + 1) indices i such that Ni = N′a. Hence, the required
probability is bounded as

Pr[B4] ≤ (µ + 1)qvϵ. (2.19)

The proof follows from Eqn.s (2.15)-(2.19).

2.5.2. Analysis of Good Transcripts

In this section, we show that for a good transcript τ′ = (τ, kh), realizing
τ′ is almost as likely in the real world as in the ideal world. Consider a
good transcript τ′ = (τm, τv, kh). Since the authentication oracle is perfectly
random and the verification oracle always rejects in the ideal world,

Pr[Xid = τ′] =
1
|Kh|

· 1
2nqm

(2.20)

We must now lower bound Pr[Xre = τ′], i.e. the probability of getting
τ′ in the real world. We say that a permutation Π is compatible with τm
(respectively with τv) if (A) (respectively (B)) holds:

(A) ∀i ∈ [qm],Π(N̂i)⊕ Π(X̂i) = Ti, (B) ∀a ∈ [qv],Π(N̂′a)⊕ Π(X̂′a) ̸= T′a,
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where N̂i = 0∥Ni, X̂i = 1∥Xi, N̂′a = 0∥N′a and X̂′a = 1∥X′a. We simply say
that Π is compatible with τ if it is compatible with both τm and τv. We
denote by Comp(τ) the set of permutations Π that are compatible with τ.
Therefore,

Pr[Xid = τ′] =
1
|Kh|

· Pr[Π $←− Perm : Π ∈ Comp(τ)]

=
1
|Kh|

· Pr[Π(N̂i)⊕ Π(X̂i) = Ti,Π(N̂′a)⊕ Π(X̂′a) ̸= T′a]︸ ︷︷ ︸
Pmv

. (2.21)

We refer to the system of equations as “authentication equations” as they
involve only the authentication queries and to the system of non-equations
as “verification non-equations” as they involve only the verification queries.
We denote the system of authentication equations by Em and the system of
verification non-equations by Ev:

Em =


Π(N̂1)⊕ Π(X̂1) = T1

Π(N̂2)⊕ Π(X̂2) = T2

Vdots
Π(N̂qm)⊕ Π(X̂qm) = Tqm

Ev =


Π(N̂′1)⊕ Π(X̂′1) ̸= T′1
Π(N̂′2)⊕ Π(X̂′2) ̸= T′2
Vdots
Π(N̂′qv)⊕ Π(X̂′qv) ̸= T′qv

Equation and Non-Equation Inducing Graph. From the above system of
bivariate affine equations and non-equations, we induce the edge-labelled
undirected graph Gτ′ = (V ,S ⊔ S ′), where the set of nodes V is the set of
variables {Y1, . . . , Yα}, S is the set of edges corresponding to each authenti-
cation equation and S ′ is the set of edges corresponding to each verification
non-equation. Moreover, if there is an authentication equation Ys ⊕Yt = Ti,
then the corresponding edge {Ys, Yt} ∈ S is labelled Ti. Similarly, if there
is a verification non-equation Ys ⊕ Yt ̸= T′i , then the corresponding edge
{Ys, Yt} ∈ S ′ is labelled T′i . Moreover, G=

τ′ = (V ,S) is a subgraph of Gτ′ .

Claim: If the transcript τ′ is good, then the induced graph Gτ′ is good.
Proof of the Claim: To prove that Gτ′ is good, we need to show that

1. G=
τ′ is acyclic,

2. Gτ′ satisfies the NPL condition, and
3. Gτ′ satisfies the NCL condition.

For this, we inherit the notations introduced while analyzing the probability
of good transcripts in the proof of Theorem 2: N̂i denotes 0∥Ni, X̂i denotes
1∥Xi, N̂′a denotes 0∥N′a and X̂′a denotes 1∥X′a where Xi = Ni ⊕ Hkh(Mi).
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G=
τ′ is acylic. For the sake of contradiction, let us assume there is a cycle C

in the graph G=
τ . If |C| = 2, then there must exist two authentication

equations

Π(N̂i1)⊕ Π(X̂i1) = Ti1 , Π(N̂i2)⊕ Π(X̂i2) = Ti2

in Em with Ni1 = Ni2 and Xi1 = Xi2 . But this event is exactly the bad
event (B2) in Definition 2. As the transcript τ′ is good, this event
cannot hold and therefore, there cannot be any cycle of length 2 in G=

τ′ .
A careful observation reveals that there cannot be any cycle of length 3
in the graph. Moreover, if there is any cycle of length at least 4 in G=

τ′ ,
there must exist three authentication equations

Π(N̂i1)⊕Π(X̂i1) = Ti1 , Π(N̂i2)⊕Π(X̂i2) = Ti2 , Π(N̂i3)⊕Π(X̂i3) = Ti3

in Em with Ni1 = Ni2 and Xi2 = Xi3 . But this event is again the bad
event (B2) in Definition 2. As the transcript τ′ is good, this event
cannot occur and therefore, there cannot be any cycle in G=

τ′ with
length at least 4. This shows that G=

τ′ is acyclic.
Gτ′ satisfies NPL. Each edge-label in the graph is non-zero as τ′ is good.

Consider any path P of length 2 in G=
τ . Let the edge-labels of the

edges in the path be Ti1 and Ti2 . This implies that there must be two
authentication equations

Π(N̂i1)⊕ Π(X̂i1) = Ti1 and Π(N̂i2)⊕ Π(X̂i2) = Ti2

in Em with Ni1 = Ni2 or Xi1 = Xi2 . If Ti1 = Ti2 , then this would
create a cycle of length 2 in G=

τ′ , which is impossible as G=
τ′ is acyclic.

Therefore, there cannot be any path of length 2 in G=
τ′ such that the

path-label becomes zero. Moreover, one cannot have any path of length
at least 3 in G=

τ′ as otherwise, the bad condition (B2) would be satisfied.
Therefore, Gτ′ satisfies Non-zero path label condition.

Gτ′ satisfies NCL. Consider first a cycle of length 2, where one edge is a
blue dotted edge. Then there must be one authentication equation and
one verification non-equation

Π(N̂i)⊕ Π(X̂i) = Ti, Π(N̂′a)⊕ Π(X̂′a) ̸= T′a,

respectively, such that Ni = N′a, Xi = X′a and Ti = T′a. However, this
implies that the event satisfies the bad condition (B4) in Definition 2.
As the transcript τ′ is good, this event cannot occur and therefore, there
cannot be any cycle of length 2 with one blue dotted edge. Moreover
as argued before, there cannot be any cycle of length 3 with exactly
one non-equation edge. Now, for the existence of a cycle with length
at least 4 that contains exactly one non-equation edge, there must
exist a path with minimum length 3 in G=

τ′ . This is clearly impossible,
ensuring that Gτ′ satisfies the Non-zero cycle label condition.
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Suppose there are k components in the subgraph G=
τ′ and the size of the

ith component is Wi. Thus, Wi is a random variable, and so is Wmax, which
denotes the size of the largest component. It is easy to see that Wmax ≤ ξ. As
the graph Gτ′ is good (follows from the claim above), we assume ξ ≤ 2n/8qm,
which allows us to apply Theorem 4 with c = 0 to obtain

Pmv ≥
1

2nqm
·
(

1−
k

∑
i=1

6σ2
i−1(

Wi
2 )

22n − 2qv

2n

)
. (2.22)

Therefore, Eqn.s (2.20)-(2.22) imply that the ratio Pr[Xre=τ′]
Pr[Xid=τ′] is no less than(

1−
k

∑
i=1

6σ2
i−1(

Wi
2 )

22n − 2qv

2n

)
≥ 1−

(
k

∑
i=1

24q2
m(

Wi
2 )

22n +
2qv

2n

)
, (2.23)

since σi−1 ≤ 2qm. Define ϕ(τ′) :=
k
∑

i=1

24q2
m(

Wi
2 )

22n + 2qv
2n . We now compute the

expectation of ϕ(Xid) as follows:

E

[(
k

∑
i=1

24q2
m(

Wi
2 )

22n +
2qv

2n

)]
=

(
2qv

2n +
24q2

m
22n E

[
k

∑
i=1

(
Wi

2

)])
. (2.24)

Let W̃i = Wi − 1 and therefore,

E

[
k

∑
i=1

(
Wi

2

)]
= E

[
k

∑
i=1

(
W̃i

2

)]
+ E

[
k

∑
i=1

W̃i

]
(2)
≤ E

[
k

∑
i=1

(
W̃i

2

)]
+ 2qm (2.25)

due to the fact that (W̃1 + . . . W̃k) = σk − k ≤ 2qm.
Next, consider the following two indicator random variables:

1i1i2 =

{
1, if Xi1 = Xi2
0, otherwise

1̃i1i2 =

{
1, if Ni1 = Ni2
0, otherwise.

Therefore, E

[
k

∑
i=1

(
W̃i

2

)]

=
qm

∑
i1 ̸=i2

E[1i1i2 ] +
µ

∑
i1 ̸=i2

E[1̃i1i2 ] (by linearity of expectation)

=
qm

∑
i1 ̸=i2

Pr[Hkh(Mi1)⊕ Hkh(Mi2) = Ni1 ⊕ Ni2 ] + µ2/2 (by definition)

≤
(

qm

2

)
ϵ + µ2/2 (by the ϵ-almost xor universal probability

of the underlying hash function)
≤ q2

mϵ/2 + µ2/2. (2.26)
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Therefore from Eqn.s (2.24)-(2.26),

E[ϕ(Xid)] ≤
(

12q4
mϵ

22n +
12µ2q2

m
22n +

48q3
m

22n +
2qv

2n

)
. (2.27)

Finally, we have assumed ξ ≥ µ and ξ ≤ 2n/8qm; if µ ≤ 2n/8qm, we also
choose ξ = 2n/8qm (if not, the bound becomes vacuously true). The result
then follows from Eqn. (1.2), Lemma 4 and Eqn. (2.27).

2.5.3. Security Bound Using the Coefficients-H Technique

We instantiate the underlying hash function of nEHtM by a truncated
n-bit 2ℓ/2n-axu PolyHash function that truncates the first bit of the out-
put [61], where ℓ is the maximum number of message blocks. Therefore,

from Lemma 4, Eqn. (2.23) and the inequality
k
∑

i=1
(Wi

2 ) ≤ ξqm, we obtain the

following bound using the coefficients-H technique:

δhc ≤
qm + 2qv

2n +
q2

mℓ

2nξ
+

(2qm + qv)2ℓµ

2n +
2qvℓ

2n +
24q3

mξ

22n . (2.28)

We choose the optimal value of ξ such that the right hand side of Eqn. (2.28)

gets maximized. This happens when q2
mℓ

2nξ = 24q3
mξ

22n . Solving this equality for ξ

gives ξopt =
(

ℓ2n

24qm

) 1
2 . Plugging in this value into Eqn. (2.28) then gives

δhc ≤
qm + 2qv

2n +
(2qm + qv)2ℓµ

2n +
2qvℓ

2n + 10
(

q5
mℓ

23n

) 1
2

.

The above bound holds as long as q ≤ 23n/5/ℓ1/5 ≈ O(23n/5), which is
weaker than the bound O(22n/3) obtained using the expectation method.

2.6. Proof of Theorem 3

Instead of separately proving the privacy and authenticity of the construc-
tion, this section bounds the distinguishing advantage of the following
random systems: (i) the pair of oracles (CWC+.Enc,CWC+.Dec) for a ran-
dom permutation Π, which is called the real system or the real world and
(ii) the pair of oracles (Rand,Rej), which is called the ideal system or the
ideal world. The privacy and authenticity bounds of CWC+ then follow as a
simple corollary of this result. We prove the following information theoretic
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bound of CWC+:

δ∗ ≤ 97σ3ℓ

22n +
5σ

2n +
σℓ

2n +
8σ3

22n +
2qd
2ρ

(
1 +

ℓ

2n−ρ

)
+

(2qe + qd)2ℓµ

2n +

(
5σℓµ

2n

)2

, (2.29)

assuming qeℓ ≈ σ, σ ≤ 2n/48. Here, δ∗ is the maximum advantage of
distinguishing the real world from the ideal world.

Description of the ideal world. We begin with the assumption that all
messages queried by an adversary have lengths in multiples of n and that
the ith message has li blocks. Consider a deterministic distinguisher A that
interacts either with the real world or with the ideal world. Rej simply rejects
all the verification attempts of A whereas Rand works on the ith encryption
query (Ni, Mi, Ai) as shown in Fig. 2.6.

Rand(Ni, Ai, Mi)

1 : if Ni ∈ D, let Ni = N.
2 : if li = lN , then Si ← L(N).
3 : if li < lN , then Si ← L(N)[1, nli].
4 : if li > lN , then

5 : R $←− ({0, 1}n)li−lN , Si ← L(N)∥R.
6 : lN = li.
7 : else

8 : Si
$←− ({0, 1}n)li , L(Ni)← Si, lNi = li.

9 : D ← D ∪ {Ni}.

10 : T̃i
$←− {0, 1}n, Ti ← chopρ(T̃i).

11 : return (Si, Ti).

Figure 2.6.: Random oracle for the ideal world. lN denotes the updated number of
keystream blocks for nonce N and L(N) denotes the updated keystream
blocks for nonce N of length lN . D denotes the domain of the nonce.
chopρ is a function that truncates the last n− ρ bits of its input.

Attack Transcript. Let D be a fixed non-trivial computationally unbounded
deterministic distinguisher that interacts with either the real world or the
ideal world, making at most qe queries to the left (encryption) oracle with at
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most µ faulty nonces, and at most qd queries to its right (decryption) oracle,
returning a single bit.
Let τe := {(N1, M1, A1, S1, T1), . . . , (Nqe , Mqe , Aqe , Sqe , Tqe)} be the list of en-
cryption queries and τd := {(N′1, A′1, C′1, T′1, Z1), . . . , (N′qd

, A′qd
, C′qd

, T′qd
, Zqd)}

be the list of decryption queries, where Zi = Mi ∪ {⊥}. Note that the en-
cryption oracle in both worlds releases the keystream as it determines the
ciphertext uniquely. For convenience, we reveal the hash key kh (which is
Ek(0) if D interacts with the real world, and a uniform random element from
{0, 1}n if D interacts with the ideal world), and also the (un-truncated) n-bit
tag T := (T̃1, . . . , T̃qe) to the distinguisher after it has made all its queries
and obtained the corresponding responses, but before it outputs its decision.
Thus, the extended transcript of the attack is τ′ = (τ, kh, T̃).

Bad Transcripts. Recall that Ni is a 3n/4-bit string. We denote 0∥Ni∥0n/4−1

by N̂i and 1∥Xi by X̂i, where Xi := Ni∥0n/4−1 ⊕ Polykh
(Mi). We also denote

by Si[j], the jth keystream block for the ith message. With these notations, we
define the bad transcript as follows: a transcript τ′ = (τe, τd, kh, T̃) is called
bad if any one of the following holds:

- B.1 : ∃ i ∈ [qe] and j ∈ [li] such that Si[j] = kh.
- B.2 : ∃ i ∈ [qe] and j ∈ [li] such that Si[j] = 0.
- B.3 : ∃ i ∈ [qe] and j, j′ ∈ [li] such that Si[j] = Si[j′].
- B.4 : ∃ i ∈ [qe] such that T̃i = 0.
- B.5 : ∃i1 ̸= i2 ̸= i3 such that N̂i1 = N̂i2 and X̂i2 = X̂i3 .
- B.6 : {i1, . . . , iξ+1} ⊆ [qe] such that X̂i1 = X̂i2 = . . . = X̂iξ+1 for some

parameter ξ ≥ µ.
- B.7 ∃ a ∈ [qd], i ∈ [qe] such that N̂i = N̂′a, X̂i = X̂′a and T̃i = T′a.

Θbad (resp. Θgood) denotes the set of bad (resp. good) transcripts, and Xre
and Xid denote random variables that realize an extended transcript τ′ in
the real and the ideal world, respectively. We bound the probability of bad
transcripts in the ideal world as follows.

Lemma 5. Let Xid and Θbad be defined as above. Then

Pr[Xid ∈ Θbad] ≤ ϵbad =
2σ

2n +
qeℓ2

2n +
qe

2n +
q2

eℓ

ξ2n +
(2qe + qd)2ℓµ

2n +
2qdℓ

2n .

Proof. By the union bound,

Pr[Xid ∈ Θbad] ≤
7

∑
i=1

Pr[B.i]. (2.30)

In the following, we only bound Pr[B.1], Pr[B.2] and Pr[B.3] as the bound
for the remaining events can be found in the proof of Lemma 4. Clearly,

Pr[B.1] ≤ σ

2n . (2.31)
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Bounding B.2. Event B.2 occurs if there exists a zero keystream block in
any query. For a fixed query and block, the probability of this event is
exactly 2−n. When the ith query is not faulty, then the probability of any
block taking the output 0 is exactly 2−n. If the ith query is faulty, then we
have the following two cases:

- Case (i): When the jth block is sampled while executing the ith query,
then the probability is 2−n.

- Case (ii): When the jth block is not sampled while executing the ith

query, then there must be some previous encryption query for which
the jth block is freshly sampled and hence, the probability is 2−n.

Summing over all choices of i and j,

Pr[B.2] ≤ σ

2n . (2.32)

Bounding B3. Event B3 occurs if there is a collision between two different
keystream blocks in an encryption query. For a fixed query and two distinct
fixed blocks, the probability of this event is exactly 2−n. When the ith query
is not faulty, then the probability of such a collision is exactly 2−n. If the ith

query is faulty, then we have the following two cases:

- Case (i): When either of the blocks is sampled while executing the ith

query, then the probability is 2−n.
- Case (ii): When none of the two blocks are sampled while executing

the ith query, it means that there must be some previous encryption
query for which either of the blocks was freshly sampled, and hence
the probability is 2−n.

Summing over all choices of i, j and j′,

Pr[B.3] ≤ qeℓ2

2n . (2.33)

Pr[B.4] + Pr[B.5] + Pr[B.6] + Pr[B.7] can be bound similarly as in Lemma 4.
Therefore, the result follows from Eqn.s (2.30), (2.31), (2.32) and (2.33) and
Lemma 4, with ϵ ≤ 2ℓ/2n (ϵ being the almost xor universal probability of
the truncated PolyHash).

Good Transcripts. We now show that for a good transcript τ′ = (τ, kh, T̃),
realizing τ′ is almost as likely in the real world as in the ideal world.

Lemma 6. Let τ′ = (τe, τd, kh, T̃) be a good transcript. Then

Pr[Xre = τ′]

Pr[Xid = τ′]
≥
(

1−
k

∑
i=1

24σ2(Wi
2 )

22n − 2qd
2ρ −

2σ

2n

)
,

where σ is the number of message blocks queried and ρ is the size of the tag.
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Proof. Let τ′ = (τe, τd, kh, T̃) be a good transcript. Since in the ideal world,
the encryption oracle is perfectly random and the decryption oracle always
rejects,

Pr[Xid = τ′] =
1
2n ·

r

∏
t=1

1
2nlt
· 1

2nqe
, (2.34)

where r is the number of groups of nonces and lt the updated number of
generated keystream blocks for group t.

We say that a permutation Π is compatible with τe if

(A) :

{
∀i ∈ [qe], j ∈ [li],Π(N̂i)⊕ Π(0∥Ni∥⟨j⟩) = Si[j]
∀i ∈ [qe]Π(N̂i)⊕ Π(X̂i) = Ti,

and is compatible with τd if

(B) : ∀a ∈ [qd],Π(N̂′a)⊕ Π(X̂′a) ̸= T′a∥β,

where ⟨j⟩ denotes the (n/4− 1)-bit binary representation of the non-zero
integer j. Π is compatible with τ′ if it is compatible with both τe and τd. Let
Comp(τ) denote the set of all permutations that are compatible with τ. Then

pre(τ) := Pr[Xre = τ′] =
1
|Kh|

· Pr[Π $←− Perm : Π ∈ Comp(τ)]

(due to randomness of the hash key Ek(0))
= 2−n · Pr[(A), (B) holds]. (2.35)

On modelling the system of equations and non-equations into a graph
theoretic setting by translating the system of σ + qe equations and 2n−ρqd
non-equations into a graph Gτ′ . As τ′ is a good transcript, it is induced by
the good graph Gτ′ (i.e. it satisfies the NC, NPL and NCL conditions). Thus
by Thm. 4, assuming ξ ≤ 2n/8σℓ with c = 1, σi−1 ≤ σk ≤ 2σ and α ≤ σ
gives

Pr[(A), (B) holds] ≥ 1
2nqe

r

∏
t=1

1
2nlt
·
(

1−
k

∑
i=1

6σ′2i−1(
W ′i
2 )

22n − 2qd
2ρ −

2σ

2n

)
, (2.36)

where k is the number of components of Gτ′ , W ′i denotes the size of the ith

component and σ′i = W ′1 + . . . W ′i .
The result follows from Eqn.s (2.34), (2.35) and (2.36), and the inequality

σ′i−1 ≤ σ′k = (W ′1 + . . . + W ′k) ≤ 2σ.

Next, dividing Eqn. (2.36) by Eqn. (2.34) gives

Pr[Xre = τ′]

Pr[Xid = τ′]
≥ 1−

(
k

∑
i=1

24σ2(W ′i
2 )

22n +
2qd
2ρ +

2σ

2n

)
; (2.37)
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observe that

(
k
∑

i=1

24σ2(
W′i
2 )

22n + 2qd
2ρ + 2σ

2n

)
depends upon the transcript τ′, so

that we can write it as the function ϕ(τ′) and calculate the expectation of
ϕ (Xid) as follows:

E [ϕ (Xid)] =

(
2qd
2ρ +

2σ

2n +
24σ2

22n E

[
k

∑
i=1

(
W ′i
2

)])
. (2.38)

It is easy to see that (W ′i
2 )≤(

Wi
2 )(

2ℓ
2 ) (where ℓ is the maximum number of

message blocks and Wi is as in the proof of Theorem 2). Therefore,

E

[
k

∑
i=1

(
W ′i
2

)]
≤ 2ℓ2E

[
k

∑
i=1

(
Wi

2

)]
≤ 2ℓ2E

[
k

∑
i=1

(
W̃i

2

)]
+ 4qeℓ

2. (2.39)

Moreover from Eqn. (2.26),

E

[
k

∑
i=1

(
W̃i

2

)]
≤

qe

∑
i1 ̸=i2

E[Ii1i2 ] +
µ

∑
i1 ̸=i2

E[ Ĩi1i2 ] ≤ q2
eℓ/2n + µ2/2, (2.40)

where the almost xor universal probability of the truncated PolyHash is at
most 2ℓ/2n. Finally, from Eqn.s (2.38), (2.39) and (2.40), we have

E[ϕ(Xid)] ≤
(

2qd
2ρ +

2σ

2n +
48σ4ℓ

23n +

(
5σℓµ

2n

)2

+
96σ3ℓ

22n

)
, (2.41)

where we assume ℓqe ≈ σ, the total number of message blocks queried.
Since ξ ≥ µ and ξ ≤ 2n/8σℓ, assuming µ ≤ 2n/8σℓ (otherwise the

bound holds trivially) lets us choose ξ = 2n/8σℓ. Hence, the bound stated in
Eqn. (2.29) follows from Eqn. (1.2), Lemma 5, Eqn. (2.41), and σ ≤ 2n/48.

The privacy bound of CWC+ is thus derived from Eqn. (2.29) by setting
µ = 0 and the bound stated in Eqn. (2.29) is itself the authenticity bound of
CWC+.
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Abstract

Observing the growing popularity of random permutation (RP)-based
designs (e.g, Sponge), Bart Mennink in CRYPTO 2019 has initiated an inter-
esting research in the direction of RP-based pseudorandom functions (PRFs).
Both are claimed to achieve beyond-the-birthday-bound (BBB) security of
2n/3 bits (n being the input block size in bits) but require two instances of
RPs and can handle only one-block inputs. In this work, we extend research
in this direction by providing two new BBB-secure constructions by com-
posing the tweakable Even-Mansour appropriately. Our first construction
requires only one instance of an RP and requires only one key. Our second
construction extends the first to a nonce-based Message Authentication Code
(MAC) using a universal hash to deal with multi-block inputs. We show
that the hash key can be derived from the original key when the underlying
hash is the Poly hash. We provide matching attacks for both constructions to
demonstrate the tightness of the proven security bounds.

Keywords – PDMMAC, Davis-Meyer, PRF, MAC, permutation, beyond
the birthday bound security.



3. On the Composition of Single-Keyed Tweakable Even-Mansour for Achieving
BBB Security

3.1. Introduction

There is significant research on the design of PRFs from PRPs and vice versa.
The most relevant work based on PRP-from-PRF has been the Luby-Rackoff
construction [97]. However, constructions in this direction are not very
popular as PRPs are easier to build than PRFs and several cryptographic
designs desire instantiation with PRFs. In fact, the research community has
found it a better proposition to go the other way around - constructing PRFs
from PRPs, as a PRP can be more easily designed from a PRF than a PRF
from a PRP.

Permutation-Based Designs

With the advent of public permutation-based designs and the efficiencies
of permutations in the forward direction, several inverse-free hash and
authenticated encryption schemes have been proposed. The most prominent
of such designs are the Sponge designs introduced in SHA3 through the
Keccak hash [24], this research direction later being extended by popular
designs like PHOTON [80]. Several AEAD designs like Keyed Sponge [2, 25,
21, 106], SPONGENT [39], ASCON [64], Beetle [46] have later been proposed.
Permutation-based designs generally provide lower security bounds and it
can be highly interesting to design RP-based PRFs with BBB security on the
permutation size. In CRYPTO 2019 [53], Mennink et al. studied permutation-
based PRFs and proposed two BBB secure constructions denoted as SOEM
and SOKAC. However, both designs are not minimal in structure and cannot
handle arbitrary-length data. Both use two independent instances of random
permutations and at least one randomly sampled key. They are deterministic
and do not handle nonce. In this chapter, we explore this direction of re-
search and address the following relevant questions: Can we design minimally
structured PRF? (i.e, with one instance of random permutation) Does there exist a
nonce-based MAC constructed using an RP which is again minimal in structure
and can handle arbitrary-length data? We found the answer to be “yes”, and we
mainly propose two BBB secure deterministic and nonce-based designs us-
ing only one instance of a random permutation and one uniformly sampled
construction key. We list our contributions below.

3.1.1. Motivation

The initial motivation for our construction arises from the fact that there
are no single key, single permutation-based MACs with BBB security. No
similar BBB secure permutation-based (or even nonce-based) MAC con-
struction currently exists other than SoEM22 [53], which is also based on
two permutations. In fact, [53] also provides birthday bound attacks for
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the 2-permutations-1-keyed (π1, π2, K) and 1-permutation-2-keyed (π, K1,
K2) constructions, thus leaving no scope for improvement in SoEM. It is
therefore clear that a sequential construction is required for a minimization;
SoKAC [53] is the only existing sequential construction, a birthday bound
attack to which is present in [118].

Two variants of SoKAC, namely SoKAC1 and SoKAC21 seem to have the
following inconsistencies:

1. The authors claim a birthday bound security of SoKAC1 in Proposition
5 of [53], whose proof claims a distinguishing attack that does not
seem to work. Hence, a corrected attack is required for SoKAC1.

2. SoKAC21 is claimed to achieve a tight 2n/3-bit security in Proposition 6

of [53], accompanied by an attack with a query complexity ofO
(
22n/3).

This security is proved flawed in [118], which shows a birthday bound
attack on SoKAC21.

The main reason behind the above inconsistencies is the fixing of the input
to the second permutation π2 (or π) by the output of the first permutation
π1 (or π). Thus, although the final tag is a sum of the outputs of π1, π2 and
a secret key, the fixing of the permutation input prevents construction of a
transcript-inducing graph and subsequent use of Mirror theory.
This implies that the current form of SoKAC may not be a convincing
construction to build upon. Our construction takes a different direction
from SoKAC, and is inspired by DWCDM [62] - the output of only one
permutation is involved in the tag generation and the sum of permutations
occurs between the two permutation instances, allowing a query fixing the
input and output of the construction (not the permutations) to be clearly
described by an inducing graph, which was not the case in SoKAC. Thus,
Mirror theory in its present form can be directly applied to our construction.

3.1.2. Our Contributions

We address the problem of designing a generic BBB secure MAC based on a
RP with the minimal structure. The term “minimal” refers to the number of
instances of the internal mathematical components (similar to DWCDM -
Decrypted Wegman-Carter with Davies-Meyer, which minimizes the number
of block cipher instances). Our proposal only uses one key and two calls of
the same permutation (one forward and one inverse). The key is used to
generate three sub-keys that are injected in between the two permutation
calls. Precisely:

• We propose a deterministic MAC denoted by PDMMAC (Permutation-
based Davis-Meyer) using one permutation and one key instance. We
prove its PRF (which also upper bounds the MAC security) security
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Table 3.1.: Comparison of existing PRFs. #Keys and #Primitives denote number of key and
primitive instances.

#Key #Primitive MAC Security Nonce Multi-Block
Construction Instances Instances in n-bits (tightness) Based Inputs

Based on permutations

PDMMAC [This work] 1 1 2n/3 (tight)
PDM∗MAC [This work] 1 + 1 (hash key) 1 2n/3 (tight) ✓ ✓
1K-PDM∗MAC [This work] 1 1 2n/3 (tight) ✓ ✓
SoEM1 [53] 2 1 - (birthday attack)
SoEM21 [53] 1 2 - (birthday attack)
SoEM22 [53] 2 2 2n/3 (tight)
SoKAC1 [53] 2 1 - (birthday attack)
SoKAC21 [53] 1 2 - (birthday attack) [118]

Based on Block Ciphers

EDM [55] 2 2 2n/3 (not tight)
EWCDM [55] 2 + 1 (hash key) 2 2n/3 (not tight) ✓ ✓
DWCDM [62] 1 + 1 (hash key) 1 2n/3 (not tight) ✓ ✓
1K-DWCDM [62] 1 1 2n/3 (not tight) ✓ ✓

up to 22n/3 queries under the random permutation model. We provide
a proof using the coefficients-H technique. The bound has been proven
to be tight with a matching attack with query complexity 22n/3.

• The previous result sparks curiosity about the achievability of 2n/3-bit
security by a minimal construction that can process arbitrary length
inputs. We propose a nonce-based MAC denoted by PDM∗MAC using
an additional keyed hash. We provide a BBB secure nonce-based MAC
security proof of 22n/3 query complexity under the nonce-respect
scenario. We show the tightness of the proven security bound by
demonstrating a matching attack.

• We propose a one-keyed instance of PDM∗MAC denoted by 1K-PDM∗MAC
by instantiating the hash key Kh as Kh = π(K), where π is the under-
lying RP. In addition, the underlying nonce is chosen to be non zero
and the hash function is chosen as Poly hash. This instance achieves
the same security bound as PDM∗MAC.

Table 3.1 describes the structures of several well-known constructions in
terms of primitives and other design properties.

3.2. Mirror Theory

Mirror Theory: Mirror theory is a tool for finding the number of solutions to
affine systems of equalities and non-equalities. Mirror theory by Patarin [113,
122, 120, 121] provides a lower bound on such a number for a finite set
of affine bi-variate equations, which is such that its variables are sampled
without replacement. The proof is verifiable up to a bound of 2n/3 bits.
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Equation-Inducing Graph: Consider an undirected graph Geq = (Veq,Eeq,L),
where Veq = {X1, . . . , Xm} and the edge-label function L : Eeq → F2n assigns
a label λ to each edge e ∈ Eeq.
If each vertex Xi is assumed to represent a unique variable (also denoted
Xi, for the sake of convenience), then such a graph Geq can be considered to
induce a system of equations defined by-

Xi ⊕ Xj = λi,j, whenever ei,j := {Xi, Xj} ∈ Eeq and L(ei,j) = λi,j.

Observe that should any of the following cases occur, the graph Geq might
induce a system of equations which is either inconsistent or has redundant
equations:

• Existence of a cycle: A cycle arises in Geq if there exists a sequence of
edges {Xi1 , Xj1}, . . . , {Xir , Xjr} ∈ Eeq such that Xja = Xia+1 ∀ a ∈ [r− 1]
and Xjr = Xi1 . A loop i.e. Xi = Xj for some edge {Xi, Xj} ∈ E is also
considered a cycle.

• Zero Path Label: The path label of a path P of edges in Eeq is defined
as L(P) = ∑

e∈P
L(e). Thus, a zero path-label arises when there exists a

path P in G such that L(P) = 0.

Extended Mirror Theory: Extended mirror theory gives a lower bound
for the number of solutions to a combination of a system of bi-variate
affine equations (as in Mirror Theory) and a system of bi-variate affine
non-equations of the form Xi ⊕Yi ̸= c. [72] contains a detailed treatment of
such a combination of systems.

Equations-and-Non-Equations-Inducing Graph: Consider an undirected
graph Geq = (Veq,Eeq,Leq), where Veq = {X1, . . . , Xm} and the edge-label
function Leq : Eeq → F2n assigns a label λ to each edge e ∈ Eeq.

If each vertex Xi is assumed to represent a unique variable (also denoted
Xi, for the sake of convenience), then such a graph Geq can be considered to
induce a system of equations defined by-

Xi ⊕ Xj = λi,j, whenever Ei,j := {Xi, Xj} ∈ Eeq and Leq(Ei,j) = λi,j.

Now consider an undirected graph Geq,neq = (V,Eeq ⊔ Eneq,L), where
Veq = {X1, . . . , Xm} ⊆ V = {X1, . . . , Xv} and the edge-label function
L : Eeq ⊔ Eneq → F2n assigns a label λ to each edge e ∈ Eeq ⊔ Eneq.
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Again assuming each vertex Xi, Geq,neq can be considered to induce a system
of equations and a system of non-equations defined by-

Xi ⊕ Xj = λi,j, whenever ei,j := {Xi, Xj} ∈ Eeq and
L(ei,j) = λi,j, ∀Xi, Xj ∈ Veq

X′i ⊕ X′j ̸= λ′i,j, whenever e′i,j := {X′i , X′j} ∈ Eneq and

L(e′i,j) = λ′i,j, ∀X′i , X′j ∈ V.

Let Geq,neq = (V,Eeq ⊔ Eneq,L) be a graph that induces a system of affine
bivariate equations and non-equations over α distinct variables. Suppose
Geq,neq has α vertices and q′m + qv edges with |Eeq| = q′m, |Eneq| = qv. Let
C1, . . . , Ck be all the components (i.e. maximal subgraphs where any two
vertices are connected to each other by a path) of Geq = (V,Eeq,L

∣∣
Eeq

), Ci

of size wi, and let σi = (w1 + · · · + wi). Denote by ξmax, the size of the
component of Geq with the maximum number of vertices. Using an extended
version of mirror theory, we can provide a lower bound on the number of
injective solutions when the maximum component size is ξmax. We now state
the following lemma, which summarizes the result of Theorem 3 in [72]

Lemma 7. The total number of injective solutions chosen from a set Z of size
2n − c, for some c ≥ 0, for the induced system of equations and non-equations
Geq,neq is at least:

(2n)α

(
1−

k

∑
i=1

6σ2
i−1(

ξi
2 )

22n − 2(qv + cα)

2n

)
,

provided σkξmax ≤ 2n/4, and assuming σ0 = 0.

This lemma thus provides a bound for a solution from a subset of {0, 1}n.
However, applying this lemma to our results (Thm. 6, 7 and 8 ) generates
the term p(p+q)

2n for the non-equations, as c takes the value p, which is not a
constant. We wish for a beyond-the-birthday bound on this number, which
could possibly have been achieved by the results in [62, 62] . In spite of this
providing a stronger bound, there are two problems. First, non-equations
are unaccounted, which could be easily included (by the same method as
in the proof of Cor. 2). Second, a maximum component size of only 2 is
allowed for the equations-inducing subgraph. A modification of this result
is presented here (Cor. 1 and Cor. 2), which not only takes non-equations
into account and allows for a maximum size of 3 for equation-components,
but also provides an improved bound.
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3.2.1. Extended Mirror Theory

Some Probability Results

Recall the following result from [62]: Let S′ ⊆ {0, 1}n be a subset of size

(2n − s′) and Un ← {0, 1}n. Let (V, W)
$←−−

wor
S′(2) be a WOR sample of size 2

drawn from S′. Then,

V ⊕W ≻ϵ1(s′) Un over F⋆
2n := F2n \ {0n}, (3.1)

where ϵ1(s′) is a quantity with value at most s′2
(2n−s′)2 . This result can be

extended for three random variables as follows:

Lemma 8. Let S′ ⊆ {0, 1}n be a subset of size (2n − p′) and Un, Vn ← {0, 1}n.

Let (P, Q, R) $←−−
wor

S′ be a WOR sample of size 3 drawn from S′(3). Then,

(P⊕Q, Q⊕ R) ≻ϵ2(p′) (Un, Vn), (3.2)

where ϵ2(p′) is a quantity with value at most 3·2n·p′2−p′3

(2n−p′)3 .

The proof is similar to that provided by [62] for Eqn. (3.1):

Proof. Consider a set S′ of size 2n− p′, and three random variables P, Q, R $←−−
wor

S′. Fix λ1, λ2 ∈ F2n . For i ∈ {1, 2, 3}, let

Ai = {(a1, a2, a3)|a1 ⊕ a2 = λ1, a2 ⊕ a3 = λ2, ai ̸∈ S′},

so that |Ai| ≤ p′. Thus,

{(p, q, r) ∈ S′(3)|p⊕ q = λ1, q⊕ r = λ2} =
{(p, p⊕ λ1, p⊕ λ1 ⊕ λ2)|p ∈ {0, 1}n} \ (A1 ∪ A2 ∪ A3),

which is a set of size no less than 2n − 3p′. Hence,

Pr
[

P⊕Q=λ1,
Q⊕R=λ2

]
=

2n − |A1 ∪ A2 ∪ A3|
(2n − p′)(2n − p′ − 1)(2n − p′ − 2)

≥ 2n − 3p′

(2n − p′)(2n − p′)(2n − p′)

=
1

22n

(
1− 3 · 2n · p′2 − p′3

(2n − p′)3

)
.
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Results on Mirror Theory

Eqn.s (3.1) and (3.2) can be easily extended for systems of equations as
follows-

Corollary 1. Let S′ ⊆ {0, 1}n be a subset of size (2n − p′) and

(X1, X2, . . . , Xt, Y1, Y2, . . . , Yt, Z1, Z2, . . . Zt)
$←−−

wor
S′

be a WOR sample of size 3t drawn from S′(3). Then for constants λ1, λ2, . . . , λ2t
in {0, 1}n,

Pr [(X1⊕Y1=λ1)∧(X2⊕Y2=λ2)∧...∧(Xt⊕Yt=λt)] ≥
1
2n

(
1− t · p′2

(2n − p′)2

)
, (3.3)

by Eqn. (3.1), and

Pr
[(

X1⊕Y1=λ1,
Z1⊕Y1=λ2

)
∧
(

X2⊕Y2=λ3,
Z2⊕Y2=λ4

)
∧ . . . ∧

(
Xt⊕Yt=λ2t−1,

Zt⊕Yt=λ2t

)]
≥ 1

22nt

(
1− 3t · 2n · p′2

(2n − p′)3

)
,

(3.4)
by Eqn. (3.2) of Lemma 8.

Proof. Observe that by Eqn. (3.1),

Pr [(X1 ⊕Y1 = λ1) ∧ (X2 ⊕Y2 = λ2) ∧ . . . ∧ (Xt ⊕Yt = λt)]

= Pr

[
X1⊕Y1=λ1

∣∣∣∣∣ X1,Y1∈S′
are distinct

]
× · · · × Pr

[
Xt⊕Yt = λt

∣∣∣∣∣ Xt,Yt∈S′
\{X1,...,Xt−1,Y1,...,Yt−1}

are distinct

]

≥ 1
2n

(
1− ϵ1(p′)

)
× 1

2n

(
1− ϵ1(p′ − 2)

)
· · · × 1

2n

(
1− ϵ1(p′ − (2t− 2))

)
≥

t

∏
i=1

1
2n

(
1− ϵ1(p′)

)
≥ 1

2nt

t

∑
i=1

1
2n

(
1− ϵ1(p′)

)
≥ 1

2nt

(
1− tp′2

(2n − p′)2

)
.

Similarly, by Eqn. (3.2),

Pr
[(

X1⊕Y1=λ1,
Z1⊕Y1=λ2

)
∧
(

X2⊕Y2=λ3,
Z2⊕Y2=λ4

)
∧ . . . ∧

(
Xt⊕Yt=λ2t−1,

Zt⊕Yt=λ2t

)]
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= Pr
[

X1⊕Y1=λ1,
Z1⊕Y1=λ2

∣∣ X1,Y1,Z1∈S′
are distinct

]
× Pr

[
X2⊕Y2=λ3,
Z2⊕Y2=λ4

∣∣ X2,Y2,Z2∈S′\{X1,Y1,Z1}
are distinct

]
...

× Pr
[

Xt⊕Yt=λ2t−1,
Zt⊕Yt=λ2t

∣∣∣∣ Xt,Yt,Zt∈S′\{X1,...,Xt−1,Y1,...,Yt−1,Z1,...,Zt−1}
are distinct

]
≥ 1

22n

(
1− ϵ2(p′)

)
× 1

22n

(
1− ϵ2(p′ − 3)

)
· · · × 1

22n

(
1− ϵ2(p′ − 3(t− 1))

)
≥

t

∏
i=1

1
22n

(
1− ϵ2(p′)

)
≥ 1

22nt

(
1−

t

∑
i=1

ϵ2(p′)

)
≥ 1

22nt

(
1− 3t · 2n · p′2

(2n − p′)3

)
.

The following bound on probability of a valid solution for a combination
of a system of equations and a system of non-equations can also be obtained
from Eqn.s (3.1) and (3.2)-

Corollary 2. Let Geq,neq =
(
V,Eeq ⊔ Eneq,L

)
be an equations-and-non-equations-

inducing graph such that the subgraph Geq only has components of size 2 or 3. If∣∣V \ Veq
∣∣ = qv and λi (i ∈ [qm]) are edge-labels of the edges in Eeq in the same

order as the components, then the probability of the induced systems of equations
and non-equations attaining any solution from a set S′ ⊆ {0, 1}n of size (2n − p′)
for all the variables represented only by the vertices in Veq is bounded by-

1
2nqm

(
1− 1200q3

m + 312(p′ + 3qv)q2
m + 2(p′ + 3qv)2qm

22n

)(
1− qv

2n

)
. (3.5)

Proof. Suppose G= has exactly qm − t components with-

1. t components (Xi, Yi, Zi)
t
i=1 of size 3 and

2. qm − 2t components (Xi, Yi)
qm−2t
i=t+1 of size 2.

. Let wi,j be the number of edges in Eneq that connect one vertex of the ith

component of G= to one vertex of its jth component. Also let w(v) be the
number of edges in Eneq from some vertex in V \ Veq incident on a vertex
v ∈ Veq. The number of solutions for all the variables represented by vertices
in Veq can then be computed as-

Pr
[(

X1⊕Y1=λ1,
Z1⊕Y1=λ2

)
,
(

X1⊕Y1=λ2,
Z1⊕Y1=λ4

)
, . . . ,

(
Xt⊕Yt=λ2t−1,

Zt⊕Yt=λ2t

)
,
(Xt+1⊕Yt+1=λ2t+1),(Xt+2⊕Yt+2=λt+2),

...,(Xqm−2t⊕Yqm−2t=λqm)

]
= Pr

[
X1⊕Y1=λ1,
Z1⊕Y1=λ2

∣∣ X1,Y1,Z1∈S′
are distinct

]
× Pr

[
X2⊕Y2=λ3,
Z2⊕Y2=λ4

∣∣ X2,Y2,Z2∈S′\{X1,Y1,Z1}
are distinct

]
...
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× Pr
[

Xt⊕Yt=λ2t−1,
Zt⊕Yt=λ2t1

∣∣∣∣ Xt,Yt,Zt∈S′\{X1,...,Xt−1,Y1,...,Yt−1,Z1,...,Zt−1}
are distinct

]
× Pr

[
Xt+1⊕Yt+1=λ2t+1

∣∣∣∣∣ Xt+1,Yt+1∈S′
\{X1,...,Xt,Y1,...,Yt,Z1,...,Zt}

are distinct

]
...

× Pr

[
Xqm−t⊕Yqm−t=λqm

∣∣∣∣∣ Xqm−t,Yqm−t∈S′

\{X1,...,Xqm−t,Y1,...,Yqm−t,Z1,...,Zqm−t}
are distinct

]
.

The vertices in Geq,neq representing X1, Y1 and Z1 can be chosen after
removing one value from S′ for each non-equation edge joining one of these
vertices to some other vertex of Geq,neq. Thus, the choice for their values
must be made from a set of size p′ + w(X1) + w(Y1) + w(Z1). Next, X2,
Y2 and Z2 can be chosen only after all the previously assigned values, all
values conflicting with any non-equation edges connecting X2, Y2 and Z2
to some vertex in V \ Veq and all values conflicting with any non-equation
edges joining some vertex of the first component (i.e. X1, Y1 or Z1) with the
second component (i.e. X2, Y2 or Z2) are removed from the set S′. This leaves
a set of size no less than p′ + 3 + w(X2) + w(Y2) + w(Z2) + w1,2. Similar
calculations for the remaining components give the following lower bound
for Pr

[(
X1⊕Y1=λ1,Z1⊕Y1=λ2,...,
Xt⊕Yt=λ2t−1,Zt⊕Yt=λ2t

)
,
(

Xt+1⊕Yt+1=λ2t+1,...,
Xqm−2t⊕Yqm−2t=λqm

)]
:

1
22n

(
1− ε2

(
p′ + w(X1) + w(Y1) + w(Z1)

))
× 1

22n

(
1− ε2

(
p′ + 3 + w(X2) + w(Y2) + w(Z2) + w1,2

))
...

× 1
22n

(
1− ε2

(
p′ + 3(t− 1) + w(Xt) + w(Yt) + w(Zt) +

t−1

∑
j=1

wj,t

))

× 1
2n

(
1− ε1

(
p′ + 3t + w(Xt+1) + w(Yt+1) +

t

∑
j=1

wj,t+1

))
...

× 1
2n

(
1− ε1

(
p′ + 3t + 2(qm − t− 1) + w(Xqm−t) + w(Yqm−t) +

qm−t−1

∑
j=1

wj,qm−t

))
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≥ 1
22n

(
1− 24(p′ + 3qv)2

22n

)

× 1
22n

(
1− 24(p′ + 3 + 3qv + 9)2

22n

)
...

× 1
22n

(
1− 24(p′ + 3(t− 1) + 3qv + 9(t− 1))2

22n

)

× 1
2n

(
1− 4(p′ + 3t + 2qv + 6t)2

22n

)
...

× 1
2n

(
1− 4(p′ + 3t + 2(qm − t− 1) + 2qv + 6t + 4(qm − t− 1))2

22n

)

≥ 1
22nt

(
1− 24

22n

t−1

∑
i=0

(p′ + 12i + 3qv)
2

)

× 1
2n(qm−2t)

(
1− 4

22n

qm−t

∑
i=t

(p′ + 7t + 6i + 2qv)
2

)

≥ 1
22nt

(
1− 24

22n

(
48q3

m + 12(p′ + 3qv)q2
m + (p′ + 3qv)

2qm

))

× 1
2n(qm−2t)

(
1− 4

22n

(
12q3

m + 6(p′ + 2qv)q2
m + (p′ + 2qv)

2qm

))
, since t ≤ qm.

Next, observe that the only vertices in V that remain after this computation
are those connected by edges in Eneq. The number of valid solutions for these
vertices is minimum when they form a single component. Since there can be
at most 2q′v ≤ 2qv vertices in V \ Veq, the lower bound for the probability of
any combination of values represented by these 2q′v vertices is:
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Pr
[ (

X′1 ⊕ X′2 ̸= λ′1
)
∧
(
X′2 ⊕ X′3 ̸= λ′2

)
∧

. . . ∧
(

X′2q′v−1 ⊕ X′2q′v
̸= λ′2q′v−1

) ]
= 1− Pr

[ (
X′1 ⊕ X′2 = λ′1

)
∨
(
X′2 ⊕ X′3 = λ′2

)
∨

. . . ∨
(

X′2q′v−1 ⊕ X′2q′v
= λ′2q′v−1

) ]
≥ 1−

(
Pr
[
X′1 ⊕ X′2 = λ′1

]
+ Pr

[
X′2 ⊕ X′3 = λ′2

]
+

. . . + Pr
[

X′2q′v−1 ⊕ X′2q′v
= λ′2q′v−1

] )

≥ 1−
2q′v−1

∑
a=1

1
2n

(
1− p′2

(2n − p′)2

)

= 1− (2q′v − 1) (2n − 2p′)
(2n − p′)2

≥ 1− q′v
2n , since 2p′ ≤ 2n/2.

Since q′v ≤ qv, any solution to the combined systems of equations and
non-equations must therefore have a probability of at least-

1
2nqm

(
1− 1200q3

m + 312(p′ + 3qv)q2
m + 2(p′ + 3qv)2qm

22n

)(
1− qv

2n

)
.

3.3. Related Work

We describe some constructions relevant for our proposals. We have also
identified an issue in the cryptanalysis of SoKAC proposed in CRYPTO-
19 [53].
Tweakable Even-Mansour: Even and Mansour pioneered the design and
analysis of random permutation-based blockciphers [76]. Let π be an ideal
n-bit (public) permutation and K1, K2 ∈ {0, 1}n be the secret keys. The
Even-Mansour construction is defined as follows:

EMK1,K2 [π](x) := π(x⊕ K1)⊕ K2, ∀x ∈ {0, 1}n.
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When K1 = K2, we simply write EMK1 [π]. In order to incorporate a tweak
t in the Even-Mansour construction, Cogliati et al. replace the round keys
by some functions fi(Ki, t) and called it Tweakable Even-Mansour (TEM)
construction. This is exactly the spirit of the TWEAKEY framework intro-
duced by Jean et al. [91]. In this chapter, we consider the following simple
instantiation of TEM.

TEMK[π](x, t) := π(x⊕ (2t · K))⊕ (2t · K), ∀x, t ∈ {0, 1}n.

Here, 2 denotes a primitive element in the binary field {0, 1}n. Other similar
known approaches can be found in [96, 126, 54, 102] etc.
Davis-Meyer: For a permutation π (public or keyed), Davis Meyer con-
struction is defined as DM[π](x) := π(x) ⊕ x. This method has been
popularly adopted to design both hash and PRF from an ideal permu-
tation or cipher. When the permutation π is a blockcipher eK, we write
DMK[e](x) := eK(x)⊕ x.

3.4. PDMMAC and PDM∗MAC Constructions

3.4.1. Specification and Security of PDMMAC

Specification of PDMMAC: Let K $←− {0, 1}n and π
$←− Perm(n). The

PRF that we propose in this chapter is a construction that takes a message
M ∈ {0, 1}n as an input and return n-bit tag T := PDMMACπ

K(M). The
construction PDMMAC is defined as

T = π−1 (π(K⊕M)⊕ 3K⊕M)⊕ 2K. (3.6)

Design Rationale: Our design PDMMAC is motivated by DDM. Let

TEMK(t, M) = π(M⊕ 2t · K)⊕ 2t · K

be a specific instantiation of the tweakable Even-Mansour construction. The
construction PDMMAC can be equivalently described as (see Fig.3.1)

T = TEM−1
K (1,TEMK(0, M)⊕M) . (3.7)

Security of PDMMAC: We prove that PDMMAC for one instance of uni-
form π and uniform key K is secure up to attack complexity O(22n/3). We
also propose an attack matching this bound.
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M

K

⊕ π

K

⊕ ⊕

2 · K

⊕ π−1

2 · K

T⊕

TEM(0, ·) TEM−1(1, ·)

Figure 3.1.: The construction PDMMAC

Theorem 6. Let M ∈ M, and consider PDMMACπ
K based on one permutation

π
$←− Perm({0, 1}n) and one key K $←− {0, 1}n. For any distinguisher D making

at most q construction queries at most p primitive queries to π±, we have,

AdvprfPDMMAC(D) ≤
q2 + 2q3 + 3pq2 + p2q + 8q(p + q)2

22n

+
6 + q + q

√
3np +

√
6npq + p

√
3nq

2n .

The proof for this theorem can be found in Sect. 3.5. Note that the domi-

nating term of advantage is

√
3n(pq2 + qp2)

22n . So the construction is secure

as long as p, q≪ 22n/3

n1/3 .

A Matching Attack with O(22n/3) Queries: We have a matching attack
(up to the logarithmic factor). The attack is similar to that of PDM∗MAC,
and henceforth omitted. We include the attack for PDM∗MAC instead of
PDMMAC as it is more robust.

3.4.2. Specification and Security of PDM∗MAC

Specification of PDM∗MAC: The previous construction does not al-
low arbitrary-length messages. We now propose a construction similar

to DWCDM, which uses a single ideal permutation π
$←− Perm(n) and an

n-bit key K. To process a message M ∈ {0, 1}∗, a hash function H with
a key Kh sampled independently of K is required, which is almost xor-
universal, regular and 3-way regular. The construction PDM∗MAC for an
n-bit nonce N and a message M ∈ {0, 1}∗, with B = {0, 1}n computes
T = PDM∗MACπ

K,Kh
(N, M) as follows:

T = π−1 (π(K⊕ N)⊕ 3K⊕ N ⊕HKh(M)
)
⊕ 2K. (3.8)
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Instance of H: PolyHash [108] is an example of a keyed hash which is ℓ
2n -

regular, AXU and 3-way regular, where ℓ is the maximum number of n-bit
blocks. The hash first uses an injective 10∗ (one followed by zeros) padding
to pad an input M ∈ {0, 1}∗ to multiple of n-bits. Precisely, M∥10j =
M1∥M2∥ . . . ∥Mℓ where j = n− |M| mod n− 1. The hash value is generated
as

PolyH(M) = Mℓ · Kh ⊕Mℓ−1 · K2
h ⊕ · · · ⊕M1 · Kℓ

h.

Design Rationale: This construction is motivated by DWCDM. Like PDM-
MAC, the nonce and the hash of the message are XOR-ed between two
permutation calls. Similar designs have been adapted for DWCDM from
DDM. The construction PDM∗MAC can be equivalently described as (see
Fig.3.2)-

T = TEM−1
K
(
1,TEMK(0, N)⊕ N ⊕HKh(M)

)
. (3.9)

N

K

⊕ π

K

⊕

HKh(M)

⊕

2 · K

⊕ π−1

2 · K

T⊕

TEMK(0, ·) TEM−1
K (1, ·)

Figure 3.2.: The construction PDM∗MAC

Security of PDM∗MAC: We prove the security of PDM∗MAC up to an
attack complexity of O(22n/3) for one instance of uniform π and uniform
key K. We also propose an attack matching this bound in Fig. 3.3.

Analysis of the attack: Observe that since IK := {(i, a) |Ni ⊕ ũa = K} has
sizeO(2n/3) for each value K ∈ K, and for the values q = p1 = p2 = 2 · 22n/3,
the set ExtK has size O(1) with high probability. Furthermore, if K⋆ denotes
the true key of the construction, then Pr[K⋆ ∈ K̂] = Pr [|ExtK⋆ | ≥ 2] ≥ 1

4 ,
and thus, the expected size, E

[∣∣K̂∣∣], of the guess-key set K̂ is O(1).

Theorem 7. Let n ∈ N , and consider PDM∗MACπ
K,Kh

based on one permutation

π
$←− Perm({0, 1}n), one key K $←− {0, 1}n and one hash key Kh

$←− {0, 1}n. For
any distinguisher D making at most qm construction queries, at most p primitive
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A Matching Attack on PDM∗MAC with O(22n/3) Queries

1 : Make queries (N1, M), . . . , (Nq, M) with q = 2 · 22n/3 to authentication

oracle O
(

say Ni = ⟨i⟩2n/3∥0n/3 for i < 22n/3,

Ni = ⟨i− 22n/3 + 1⟩2n/3∥1∥0n/3−1 for 22n/3 ≤ i < 2 · 22n/3
)

;

receive responses Ti = O(Mi), i ∈ [q].

2 : Make ũ1, . . . , ũp1 forward queries to the primitive π with p1 = 2 · 22n/3(
say ũa = 0n/3∥⟨a⟩2n/3 for a < 22n/3, ũa = 0n/3−1∥1∥⟨a− 22n/3 + 1⟩2n/3

for 22n/3 ≤ a < 2 · 22n/3
)

; receive responses ṽa = π(ũa), a ∈ [p1].

3 : Make ỹ1, . . . , ỹp2

$←−−
wor
{0, 1}n backward queries to the primitive π

with p2 = 2 · 22n/3; receive responses x̃b, b ∈ [p2].
4 : Set ExtK := {(i, a, b) ∈ [q]× [p1]× [p2] :

(Ni ⊕ ũa = K) ∧ (Ti ⊕ x̃b = 2K)} and set K̂ = ϕ.
5 : For all K ∈ K with |ExtK| ≥ 2, carry out the following check :

For all pairs of tuples (i, a, b) ̸= (i′, a′, b′) in ExtK,

if (Ni ⊕ ṽa ⊕ ỹb ⊕ Ni′ ⊕ ṽa′ ⊕ ỹb′ = 0) , then add K to K̂.

Figure 3.3.: Interaction of the adversary with (O, π), where O is either the random
oracle or the real construction oracle PDM∗MACπ

K and the primitive π.

queries to π± and at most qv queries to the verification oracle, we have

AdvMAC
PDM∗MAC(D) ≤ qvϵ+

q2
m(1 + 1202qm + 3p + 312(p + qm + 3qv)) + p2(qm + qv)

22n +

2(p + qm + 3qv)2qm

22n +

6 + 2q2
mϵ + qm +

√
6npqm + qm

√
3np + p

√
3nqm + 3q2

mqvϵ + qv

2n .

The proof for this theorem can be found in Sect. 3.6. If we assume ϵ ≈ 2−n,

the dominating term of advantage is

√
3n(pq2

m + qm p2)

22n . So the construction

is secure as long as p, q≪ 22n/3

n1/3 .
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3.4.3. Single Keyed Version of PDM∗MAC: 1K-PDM∗MAC

The PDM∗MAC construction calls one permutation, one key K associated
with the permutation and one independent hash key Kh. We extend the spec-
ification of PDM∗MAC to a single keyed version denoted by 1K-PDM∗MAC.
We use the technique of instantiating the hash key Kh by Kh = π(K). We also
assume that N ̸= 0 and H is Poly hash. However, this technique is similar
to that used in DWCDM (where Kh = EK(0)). We prove that 1K-PDM∗MAC
for one instance of uniform π and uniform key K is secure up to attack
complexity O(22n/3).

Theorem 8. Let n ∈ N , and consider 1K-PDM∗MACπ
K based on one permutation

π
$←− Perm({0, 1}n), one key K $←− {0, 1}n. For any distinguisher D making at

most qm construction queries, at most p primitive queries to π± and at most qv
queries to the verification oracle, we have

AdvMAC
1K−PDM∗MAC(D) ≤ qvϵ+

q2
m(1 + 1202qm + 3p + 312(p + qm + 3qv)) + p2(qm + qv)

22n +

2(p + qm + 3qv)2qm

22n +

6 + q2
mϵ(2 + 3qv) + 3qm + 2p +

√
6npqm + qm

√
3np + p

√
3nqm + qv

2n .

The proof for this theorem can be found in Sect. 3.7.

3.5. Proof of Theorem 6

We use Coefficient-H technique [75, 132] (described in Sect. 1.5.1) to prove
the theorem. The details are given below.

Game Description

We denote by q, the number of queries that D makes to one of the construc-
tion oracles PDMMACπ

K or φ, the queries being summarized by the transcript
τq = {(M1, T1), . . . , (Mq, Tq)}. D also makes p queries to the primitive π,
which are summarized by τp = {(ũ1, ṽ1), . . . , (ũp, ṽp)}. It may be assumed
without loss of generality that both τq and τp have distinct elements.

After D has interacted with the oracles but before it has output its decision,
the key K is also revealed to it. In the real world, this is the key used in the
construction, while in the ideal world, it is a dummy value drawn uniformly
at random from {0, 1}n. The full transcript of the interaction is denoted by
τ = (τq, τp, K). The set of all attainable transcripts is denoted by T , and we
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partition T as Tgood ⊔ Tbad, as described shortly. We let Xre be the random
variable that takes values τ ∈ T when D interacts with the real world and
Xid to be the random variable that takes values τ ∈ T when D interacts with
the ideal world.

Transcript Equations Induced by the Distinguishing Game

This distinguishing game results in a system of equations obtained through
the queries to the construction and primitive oracles. These are of the form-

Construction equations:

π(M1 ⊕ K)⊕ π(T1 ⊕ 2K) = 3K⊕M1
...

π(Mq ⊕ K)⊕ π(Tq ⊕ 2K) = 3K⊕Mq

Queries to primitive π:

π(ũ1) = ṽ1
...

π(ũp) = ṽp

Furthermore, these equations can be expressed graphically as described in
the supplementary material.

3.5.1. Bad Events

A transcript τ = (τq, τp, K) is said to be in Tbad and is called a bad transcript
if and only if at least one of the following is satisfied-

Collision amongst two construction queries-

- B1. There exist i ̸= j ∈ [q] such that
(
Ti ⊕Mj = 3K

)
∧
(
Tj ⊕Mi = 3K

)
.

Collision within one construction query-

- B2. There exists i ∈ [q] such that Ti ⊕Mi = 3K.

Collision amongst three construction queries-

- B3. There exist i, j, k ∈ [q] such that Ti ⊕Mj = Tj ⊕Mk = 3K.
- B4. There exist i, j, k ∈ [q] such that Ti = Tj = Tk.
- B5. There exist i, j, k ∈ [q] such that Ti = Tj = Mk ⊕ 3K.

Collision amongst two construction queries and one primitive query-

- B6. There exist i ̸= j ∈ [q], k ∈ [p] such that
(

Mi ⊕ Tj = 3K
)
∧

(2K⊕ Ti = ũk).

- B7. There exist i ̸= j ∈ [q], k ∈ [p] such that
(

Mi ⊕ Tj = 3K
)
∧(

K⊕Mj = ũk
)
.
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Figure 3.4.: Collisions amongst construction equations and/or primitive queries -
figurative and graphical representations of the bad events.
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Collision amongst one construction queries and two primitive queries-

- B8. There exist i ∈ [q], j, k ∈ [p] such that (K⊕Mi = ũk)∧
(
2K⊕ Ti = ũj

)
.

Any transcript τ ∈ Tgood = T \ Tbad is said to be a good transcript. A
figurative and graphical description of the bad events is given in Fig.3.4.
In addition, a circled vertex in any graph describing a bad event denotes a
collision with a primitive query.

Probability of Bad Transcripts

Now, Pr[τ ∈ Tbad] ≤
8

∑
i=1

Pr[Bi].

Probability of events B1, B2, B4 and B5. Consider event B1. Since there
are q construction queries (with randomness only in Ti and Tj, but

not in Mi and Mj), Pr[B1] ≤ q2

22n , Pr[B2] ≤ q
2n , Pr[B4] ≤ q3

22n and

Pr[B5] ≤ q3

22n .
Probability of event B3. Let A3 be any constant value.

Define Ω3 = {(j, i, k)|Tj ⊕Mj = Ti ⊕Mk}. Then-

Pr[B3] = Pr
[(

Tj ⊕Mj = Ti ⊕Mk
)
∧
(
3K = Tj ⊕Mk

)]
≤ Pr

[(
3K = Tj ⊕Mk

)
∧ (|Ω3| ≥ A3)

]
+

Pr
[(

3K = Tj ⊕Mk
)
∧ (|Ω3| ≤ A3)

]
≤ Pr[|Ω3| ≥ A3] ·

1
2n + A3 ·

1
2n .

If A3 =
pq2

2n +
√

6npq
2n , then by Lemma 23 of appendix B,

Pr[B7] ≤ pq2

22n +

√
6npq
2n +

2
2n .

Probability of event B6. Since there are q construction queries and p

queries to the primitive, Pr[B6] ≤ pq2

22n .
Probability of event B7. Let A7 be any constant value.

Define Ω7 = {(j, i, k)|Tj ⊕ 3Mj = Mi ⊕ 3ũk}. Then-

Pr[B7] = Pr
[(

Tj ⊕ 3Mj = Mi ⊕ 3ũk
)
∧
(
3K = Tj ⊕Mi

)]
≤ Pr

[(
3K = Tj ⊕Mi

)
∧ (|Ω7| ≥ A7)

]
+

Pr
[(

3K = Tj ⊕Mi
)
∧ (|Ω7| ≤ A7)

]
≤ Pr[|Ω7| ≥ A7] ·

1
2n + A7 ·

1
2n .
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If A7 =
pq2

2n + q
√

3np, then by Lemma 22 of appendix B,

Pr[B7] ≤ pq2

22n +
q
√

3np
2n +

2
2n .

Probability of event B8. Let A8 be any constant value.
Define Ω8 = {(i, k, j)|2Mi ⊕ Ti = 2ũk ⊕ ũj}. Then-

Pr[B8] = Pr
[(

2Mi ⊕ Ti = 2ũk ⊕ ũj
)
∧
(
2K = Ti ⊕ ũj

)]
≤ Pr

[(
2K = Ti ⊕ ũj

)
∧ (|Ω8| ≥ A8)

]
+

Pr
[(

2K = Ti ⊕ ũj
)
∧ (|Ω8| ≤ A8)

]
≤ Pr[|Ω8| ≥ A8] ·

1
2n + A8 ·

1
2n .

If A8 =
p2q
2n + p

√
3nq, then by Lemma 22 of appendix B,

Pr[B8] ≤ p2q
22n +

p
√

3nq
2n +

2
2n .

Thus,

Pr[τ ∈ Tbad] ≤
q2 + 2q3 + 3pq2 + p2q

22n +
6 + q + q

√
3np +

√
6npq + p

√
3nq

2n .

3.5.2. Good Transcripts

Observe that any good transcript τ ∈ Tgood must necessarily be induced by
a graph Gτ

eq, which satisfies the following conditions:

• There is no cycle in Gτ
eq = (Veq,Eeq,Leq).

• There is no path P in Gτ
eq such that Leq(P) := ∑

e∈P
L(e) = 0.

Also, it may perhaps contain some circled vertices (denoting collisions with
some permutation queries). In fact, every component of Gτ

eq has size at
most 3, due to the restrictions of bad events B3, B4 and B5. Furthermore,
no component of Gτ

eq of size 3 has a circled vertex due to B6 and B7, and
components of size 2 may have at most one circled vertex due to B8. We first
modify the good transcripts so as to make certain that none of the vertices
of Gτ

eq are circled, as follows:

• If there exists i ∈ [q] and k ∈ [p] such that K⊕Mi = ũk, then remove
(Mi, Ti) from τq and add (2K⊕ Ti, 3K⊕Mi ⊕ ṽk) to τp.
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• If there exists i ∈ [q] and j ∈ [p] such that 2K⊕ Ti = ũj, then remove
(Mi, Ti) from τq and add (K⊕Mi, 3K⊕Mi ⊕ ṽj) to τp.

Denote the new transcript of primitive queries by F, so that |F| = p′ = p + s
and q′ = q− s. Let S′ = {0, 1}n \ {ṽk | (ũk, ṽk) ∈ F}. Denoting Q = T ⊕ 2K
and P = M⊕ K, assume that for a modified good transcript τ, there are t1
construction equations of the form

π(P1)⊕ π(Q) = λ1

π(P2)⊕ π(Q) = λ2,

t2 construction equations of the form

π(P)⊕ π(Q1) = λ1

π(Q1)⊕ π(Q2) = λ2,

and q′ − t1 − t2 construction equations of the form π(P)⊕ π(Q) = λ.
Let pre be the probability of a modified transcript τ satisfying the system of
equations π(Mi ⊕ K)⊕ π(Ti ⊕ 2K) = 3K⊕Mi, i ∈ [q′].

Good Transcript Analysis

The probabilities that Xre and Xid attain a particular value τ can be computed
as

Pr[Xid = τ] =
1

2nq ·
1

(2n)p
· 1

2n and

Pr[Xre = τ] = pre ·
1

(2n)p′
· 1

2n ,

where pre can be computed using Eqn.s (3.1) and (3.2)) as follows.

Probability that construction equations are satisfied.

Cases I and II.
(
π(P2i−1)⊕π(Qi) =πλ2i−1, ß(P2i)⊕π(Qi) =λ2i or

π(P2t1+j)⊕πQt1+2j) =λ2t1+2j−1,πQt1+2j−1)⊕πQt1+2j) =λ2t1+2j
)
.

By Eqn. (3.4),

Pr
[

π(P1)⊕π(Q1)=λ1,π(P2)⊕π(Q1)=λ2,...,
π(P2t1+t2 )⊕π(Qt1+2t2−1)=λ2t1+2t2−1,π(Qt1+2t2−1)⊕π(Qt1+2t2 )=λ2t1+2t2

]
≥ 1

22n(t1+t2)

(
1− 3 · q′ · 2n · p′2

(2n − p′)3

)
, since t1 + t2 ≤ q′.
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Case III.
(
π(P2t1+t2+l)⊕πQt1+2t2+l) =λ2t1+2t2+l

)
.

By Eqn. (3.3),

Pr
[

π(P2t1+t2+1)⊕π(Qt1+2t2+1)=λ2t1+2t2+1,...,
π(Pq′−t2

)⊕π(Qq′−t1
)=λq′

]

≥ 1
2n(q′−2t1−2t2)

(
1− q′ · p′2

(2n − p′)2

)
, since q′ − 2t1 − 2t2 ≤ q′.

Thus, pre ≥
1

2nq′

(
1− 3 · q′ · 2n · p′2

(2n − p′)3

)(
1− q′ · p′2

(2n − p′)2

)
≥ 1

2nq′

(
1− 6 · 2n · q(p + q)2

22n

)(
1− 2 · 2n · q(p + q)2

22n

)
(

since q ≥ q′,
2
2n ≥ p′ ≥ p and (p + q) ≥ p′

)
≥ 1

2nq′

(
1− 8 · 2n · q(p + q)2

22n

)
.

Thus,
Pr [Xre]

Pr [Xid]
≥ 2nq

2nq′ ·
(2n)p

(2n)p′
·
(

1− 8q(p + q)2

22n

)
≥
(

1− 8q(p + q)2

22n

)
,

i.e.
Pr [Xre]

Pr [Xid]
≥

(
1− ϵgood

)
, where ϵgood =

8q(p + q)2

22n .

3.6. Proof of Theorem 7

We use Coefficient-H technique [75, 132] (described in Sect. 1.5.1) to prove
the theorem.

Forging Game

An upper bound for the nonce-based MAC advantage can be computed
by adapting the distinguishing game in Sect. 1.2.2 (the game is described
in Page 5, [68]) as follows. D makes qm queries to one of the construc-
tion (authentication, or Auth) oracles PDM∗MACπ

K,Kh
or φ, the queries being

summarized by the authentication transcript

τm
0 = {(N1, M1, T1), . . . , (Nqm , Mqm , Tqm)},

and by qv, the number of verification queries that D makes to one of
the construction (verification, or Ver) oracles Verπ

K,Kh
or ⊥, the queries be-

ing summarized by the verification transcript τv
0 = {(N′1, M′1, T′1, b1), . . .
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, (N′qv , M′qv , T′qv , bqv)}, where ∀a, ba ∈ {0, 1} are the output values of the veri-
fication oracle (in the real world, the oracle checks if Auth(N′a, M′a) = T′i , and
returns 1 or 0 according to whether the equality holds or not, respectively,
while in the ideal world, ba = 0 for all a). D also makes p queries to the
primitive π, which are summarized by τp = {(ũ1, ṽ1), . . . , (ũp, ṽp)}. It may
be assumed without loss of generality that each of τm

0 , τv
0 , τ has distinct

elements.
After D has interacted with the oracles but before it has output its decision,

the keys K and Kh are also revealed to it. In the real world, these are the
keys used in the construction, while in the ideal world, they are dummy
values drawn uniformly at random from {0, 1}n. The full transcript of the
interaction is denoted by τ = (τm

0 , τv
0 , τp, K, Kh). The set of all attainable

transcripts is denoted by T , and we partition T as Tgood ⊔ Tbad, as described
shortly.

Transcript Equations Induced by the Forging Game: The system of equa-
tions has a similar form, and is extended by a system of non-equations, as
given below-

Authentication equations:

π(N1 ⊕ K)⊕ π(T1 ⊕ 2K) = 3K⊕ N1 ⊕ H1
...

π(Nqm ⊕ K)⊕ π(Tqm ⊕ 2K) = 3K⊕ Nqm ⊕ Hqm

Verification non-equations:

π(N′1 ⊕ K)⊕ π(T′1 ⊕ 2K) ̸= 3K⊕ N′1 ⊕ H′1
...

π(N′qv ⊕ K)⊕ π(T′qv ⊕ 2K) ̸= 3K⊕ N′qv ⊕ H′qv

Queries to primitive π:

π(ũ1) = ṽ1
...

π(ũp) = ṽp,

where Hi = HKh(Mi), ∀i ∈ [qm] and H′j = H′Kh
(M′j), ∀j ∈ [qv].

3.6.1. Bad Events

A transcript τ = (τm
0 , τv

0 , τp, K, Kh) is said to be in Tbad and is called a bad
transcript if and only if there exists a tuple (Ni, Mi, Ti) ∈ τm

0 , (N′a, M′a, T′a) ∈

87



3. On the Composition of Single-Keyed Tweakable Even-Mansour for Achieving
BBB Security

τv
0 and (ũj, ṽj), (x̃k, ỹk) ∈ τp such that at least one of the following is satisfied-

Collision amongst two authentication queries-

- B1. There exist i ̸= j ∈ [qm] such that(
Ti = Tj

)
∧
(

Ni ⊕ Hi = Nj ⊕ Hj
)

.

- B2. There exist i ̸= j ∈ [qm] such that(
Ti ⊕ Nj = 3K

)
∧
(

Ni ⊕ Hi = Nj ⊕ Hj
)

.

- B3. There exist i ̸= j ∈ [qm] such that(
Ti ⊕ Nj = 3K

)
∧
(
Tj ⊕ Ni = 3K

)
.

Collision within one authentication query-

- B4. There exists i ∈ [qm] such that Ti ⊕ Ni = 3K.

Collision amongst three authentication queries-

- B5. There exist i, j, k ∈ [qm] such that Ti ⊕ Nj = Tj ⊕ Nk = 3K.
- B6. There exist i, j, k ∈ [qm] such that Ti = Tj = Tk.
- B7. There exist i, j, k ∈ [qm] such that Ti = Tj = Nk ⊕ 3K.

Collision amongst two authentication queries and one primitive query-

- B8. There exist i ̸= j ∈ [qm], k ∈ [p] such that(
Ni ⊕ Tj = 3K

)
∧ (2K⊕ Ti = ũk) .

- B9. There exist i ̸= j ∈ [qm], k ∈ [p] such that(
Ni ⊕ Tj = 3K

)
∧
(
K⊕ Nj = ũk

)
.

Collision amongst one authentication query and two primitive queries-

- B10. There exist i ∈ [qm], j, k ∈ [p] such that

(K⊕ Ni = ũk) ∧
(
2K⊕ Ti = ũj

)
.

Collision amongst one verification query and two primitive queries-

- B11. There exist a ∈ [qv], j, k ∈ [p] such that(
K⊕ N′a = ũk

)
∧
(
2K⊕ T′a = ũj

)
.

Collision amongst one authentication and one verification query-
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- B12. There exist i ∈ [qm], a ∈ [qv] such that(
Ni = N′a

)
∧
(

Hi = H′a
)
∧
(
Ti = T′a

)
.

Collision amongst two authentication queries and one verification query, with an
extra condition-

- B13. There exist i, j ∈ [qm], a ∈ [qv] such that(
Hi ⊕ Hj ⊕ H′a = Ni ⊕ Nj ⊕ N′a ⊕ 2K

)
and(

N′a = Ni
)
∧
(
Ti ⊕ Nj = 3K

)
∧
(
Tj = T′a

)
.

- B14. There exist i, j ∈ [qm], a ∈ [qv] such that(
Hi ⊕ Hj ⊕ H′a = Ni ⊕ Nj ⊕ N′a ⊕ 2K

)
and(

T′a ⊕ Ni = 3K
)
∧
(
Ti ⊕ Nj = 3K

)
∧
(
Tj ⊕ N′a = 3K

)
.

- B15. There exist i, j ∈ [qm], a ∈ [qv] such that(
Hi ⊕ Hj ⊕ H′a = Ni ⊕ Nj ⊕ N′a ⊕ 2K

)
and(

N′a = Ni
)
∧
(
Ti = Tj

)
∧
(
T′a ⊕ Nj = 3K

)
.

Any transcript τ ∈ Tgood = T \ Tbad is said to be a good transcript. A figura-
tive and graphical description of the bad events is provided in appendix C.
In these figures, a circled vertex in any graph describing a bad event denotes
a collision with a primitive query.

Probability of Bad Transcripts

Now, Pr[τ ∈ Tbad] ≤
15

∑
i=1

Pr[Bi].

Probability of events B1, B2, B3, B4, B6 and B7. Consider event B1. Since
there are qm authentication queries (with randomness only in Ti and
Tj, but not in Ni and Nj) and since H is an ϵ-differential hash function,

Pr[B1] ≤ q2
mϵ

2n . Similarly, Pr[B2] ≤ q2
mϵ

2n , Pr[B3] ≤ q2
m

22n , Pr[B4] ≤ qm

2n ,

Pr[B6] ≤ q3
m

22n and Pr[B7] ≤ q3
m

22n .
Probability of event B5. Let A5 be any constant value.

Define Ω5 = {(j, i, k)|Tj ⊕ Nj = Ti ⊕ Nk}. Then-

Pr[B5] = Pr
[(

Tj ⊕ Nj = Ti ⊕ Nk
)
∧
(
3K = Tj ⊕ Ni

)]
≤ Pr

[(
3K = Tj ⊕ Ni

)
∧ (|Ω5| ≥ A5)

]
+

Pr
[(

3K = Tj ⊕ Ni
)
∧ (|Ω5| ≤ A5)

]
≤ Pr[|Ω5| ≥ A5] ·

1
2n + A5 ·

1
2n .
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If A5 =
pq2

m
2n +

√
6npqm

2n , then by Lemma 23 of appendix B,

Pr[B5] ≤ pq2
m

22n +

√
6npqm

2n +
2
2n .

Probability of event B8. Since there are qm authentication queries and p

queries to the primitive, Pr[B8] ≤ pq2
m

22n .
Probability of event B9. Let A9 be any constant value.

Define Ω9 = {(j, i, k)|Tj ⊕ Nj = Ti ⊕ Nk}. Then-

Pr[B9] = Pr
[(

Tj ⊕ 3Nj = Ni ⊕ 3ũk
)
∧
(
3K = Tj ⊕ Ni

)]
≤ Pr

[(
3K = Tj ⊕ Ni

)
∧ (|Ω9| ≥ A9)

]
+

Pr
[(

3K = Tj ⊕ Ni
)
∧ (|Ω9| ≤ A9)

]
≤ Pr[|Ω9| ≥ A9] ·

1
2n + A9 ·

1
2n .

If A9 =
pq2

m
2n + qm

√
3np, then by Lemma 22 of appendix B,

Pr[B9] ≤ pq2
m

22n +
qm
√

3np
2n +

2
2n .

Probability of event B10. Let A10 be any constant value.
Define Ω10 = {(i, k, j)|2Ni ⊕ Ti = 2ũk ⊕ ũj}. Then-

Pr[B10] = Pr
[(

2Ni ⊕ Ti = 2ũk ⊕ ũj
)
∧
(
2K = Ti ⊕ ũj

)]
≤ Pr

[(
2K = Ti ⊕ ũj

)
∧ (|Ω10| ≥ A10)

]
+

Pr
[(

2K = Ti ⊕ ũj
)
∧ (|Ω10| ≤ A10)

]
≤ Pr[|Ω10| ≥ A10] ·

1
2n + A10 ·

1
2n .

If A10 =
p2qm

2n + p
√

3nqm, then by Lemma 22 of appendix B,

Pr[B10] ≤ p2qm

22n +
p
√

3nqm

2n +
2
2n .

Probability of event B11. Since there are qv verification queries and p

queries to the primitive, Pr[B11] ≤ p2qv

22n .

Probability of event B12. Since there are qv verification queries and H is
an ϵ-differential hash function, Pr[B12] ≤ qvϵ.
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Probability of events B13, B14 and B15. For all three events, Hi ⊕ Hj ⊕
H′a = (Ni ⊕ Nj ⊕ N′a)⊕ 3K. Since there are qm authentication queries
and qv verification queries and assuming H is an ϵ-3-way-regular hash

function, Pr[B13], Pr[B14] and Pr[B15] are all at most
q2

mqvϵ

2n .

Thus,

Pr[τ ∈ Tbad] ≤
q2

m + 2q3
m + 3pq2

m + p2qm + p2qv

22n

+
2q2

mϵ + qm + qm
√

3np +
√

6npqm + p
√

3nqm + 6 + 3q2
mqvϵ

2n + qvϵ.

3.6.2. Good Transcripts

Observe that any good transcript τ ∈ Tgood must necessarily be induced by
a graph Gτ

eq,neq, which satisfies the following conditions:

• There is no cycle of equation-inducing edges in Gτ
eq = (Veq,Eeq,L

∣∣
Eeq

).

• There is no path P in Gτ
eq such that L(P) := ∑

e∈P
L(e) = 0.

• For all the cycles C in Gτ
eq,neq whose edge set consists of all but one

equation edges e ∈ Eeq and exactly one non-equation edge e′ ∈ Eneq,
L(C) ̸= 0.

It may perhaps contain some circled vertices (denoting collisions with some
permutation queries). It shall be assumed that the edges in Eτ

eq are continu-
ous edges, colored green, and edges in Eτ

neq are dotted edges, colored red.
In fact, every component of Gτ

eq has size at most 3, due to the restrictions of
bad events B5, B6 and B7. Furthermore, no component of Gτ

eq of size 3 has a
circled vertex due to B8 and B9, and components of size 2 of Gτ

eq as well as
Gτ

eq,neq may have at most one circled vertex due to B10 and B11. Finally, the
restrictions by bad events B13, B14 and B15 ensure that Gτ

eq,neq satisfies the
condition L(C) ̸= 0 for a cycle containing exactly one non-equation edge.

We first modify the good transcripts in such a way that no vertices remain
circled:

• If there exists i ∈ [qm] and k ∈ [p] such that K⊕ Ni = ũk, then remove
(Ni, Mi, Ti) from τm

0 and add (2K⊕ Ti, 3K⊕ Ni ⊕ Hi ⊕ ṽk) to τp.
• If there exists i ∈ [qm] and j ∈ [p] such that 2K⊕ Ti = ũj, then remove

(Ni, Mi, Ti) from τm
0 and add (K⊕ Ni, 3K⊕ Ni ⊕ Hi ⊕ ṽj) to τp.

Denote the new set of primitive transcripts by F, so that |F| = p′ = p + s
and q′m = qm − s. Let S′ ⊆ {0, 1}n such that S′ = {0, 1}n \ {ṽk | (ũk, ṽk) ∈ F}.
Let pre be the probability of a modified transcript τ satisfying the system of
equations π(Ni ⊕ K)⊕ π(Ti ⊕ 2K) = 3K⊕ Ni ⊕HKh(Mi), i ∈ [q′].
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Good Transcript Analysis

The probabilities of Xre and Xid attaining a particular value τ can be com-
puted as follows-

Pr[Xid = τ] =
1

2nqm
· 1 · 1

(2n)p
·
(

1
2n

)2

and

Pr[Xre = τ] = pre ·
1

(2n)p′
·
(

1
2n

)2

.

Probability that authentication equations and verification non-equations
are satisfied.

By Corollary 2,

Pr



(
π(P1)⊕π(Q1)=λ1,π(P2)⊕π(Q1)=λ2,...,

π(P2t1+t2 )⊕π(Qt1+2t2−1)=λ2t1+2t2−1,π(Qt1+2t2−1)⊕π(Qt1+2t2 )=λ2t1+2t2
π(P2t1+t2+1)⊕π(Qt1+2t2+1)=λ2t1+2t2+1,...,

π(Pq′m−t2
)⊕π(Qq′m−t1

)=λq′m

)
∧((

π(X′1)⊕π(X′2) ̸=λ′1

)
∧
(

π(X′2)⊕π(X′3) ̸=λ′2

)
∧...∧

(
π(X′

2q′v−1
)⊕π(X′

2q′v
) ̸=λ′

2q′v−1

))


≤ 1

2nq′m

(
1− 1200q′m

3 + 312(p′ + 3qv)q′m
2 + 2(p′ + 3qv)2q′m

22n

)(
1− qv

2n

)
.

Therefore, pre must be at least 1
2nqm

(
1− 1200q3

m+312(p′+3qv)q2
m+2(p′+3qv)2qm

22n

)(
1−

qv
2n

)
, so that-

Pr [Xre]

Pr [Xid]
≥ 2nqm

2nq′m
·
(2n)p

(2n)p′

(
1− qv

2n

) (
1− 1200q′m

3 + 312(p′ + 3qv)q′m
2 + 2(p′ + 3qv)2q′m

22n

)
≥

(
1− qv

2n

)
·
(

1− 1200q3
m + 312(p + qm + 3qv)q2

m + 2(p + qm + 3qv)2qm

22n

)
,

since q′m ≤ qm, p′ ≤ p + qm

≥
(
1− ϵgood

)
, where

ϵgood =
qv

2n +
1200q3

m + 312(p + qm + 3qv)q2
m + 2(p + qm + 3qv)2qm

22n .

3.7. Proof of Theorem 8

The proof is similar to that of PDM∗MAC, except for some extra bad cases.
We add the following cases after B15. The cases are as follows.
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- B16. There exists i ∈ [qm] such that Ti = 3K.
- B17. There exists i ∈ [qm] such that π(Ni ⊕ K)⊕HKh(Mi)⊕ Ni ⊕ 3K =

Kh.
- B18. There exists k ∈ [p] such that ũk = K.
- B19. There exists k ∈ [p] such that ỹk = Kh.

Probability of B16. There are qm authentication queries. Hence, Pr[B16] ≤
qm

2n .

Probability of B17. In this case, Ni and Mi are fixed. Thus, Pr[B17] =
Pr[π(Ni ⊕ K) ⊕ 3K = HKh(Mi) ⊕ Ni ⊕ Kh]. As K and Kh are inde-

pendently sampled in the ideal world, we obtain Pr[B17] ≤ qm

2n , by
conditioning H.

Probability of B18 and B19. Since there are p queries to the primitive,

Pr[B18], Pr[B19] ≤ p
2n .

Good Transcript Analysis

The good transcript analysis is exactly the same except in this case Pr[Xre =

τ] = pre · 1
(2n)p′

·
(

1
2n

)
(as only the construction key K needs to be sampled,

the last term in the expression is 1
2n instead ( 1

2n )2). However, this does not
change the lower bound of Pr[Xre]

Pr[Xid]
.

3.8. Summary

Our designs are minimal in structure in the number of permutation and key
instances. However, PDMMAC makes two calls to one permutation π, one
forward call to π and another inverse call to π−1. We already know that
PRFs with one permutation call can not provide more than birthday bound
security and hence we need at least two calls to the permutation. Thus, the
question

Can we design a BBB secure PRF with one permutation with two forward calls?
remains unanswered and the design of such a construction can be interesting
to the community. A possible approach to proceed with this problem is to
prove the 2n/3-bit BBB security of SoKAC1. This design has been mentioned
to be at most n/2-bit secure [53] accompanied by a birthday bound attack.
However, the attack is possibly wrong and SoKAC1 may provide 2n/3-bit
BBB security.
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Abstract

In CRYPTO 2019, Chen et al. initiated interesting research in the direction
of designing PRFs based on public permutations. They proposed SoEM22
and SoKAC21, two beyond the birthday bound secure n-bit to n-bit PRF
constructions built on public permutations, where n is the size of the permu-
tation. However, both constructions require two independent instances of
public permutations. In FSE 2020, Chakraborti et al. proposed a single public
permutation-based n-bit to n-bit beyond the birthday bound secure PRF, to
which they referred as PDMMAC. Although the construction is minimal in
the number of permutations, it requires an inverse call of its underlying
permutation. Coming up with a beyond the birthday bound secure public
permutation-based n-bit to n-bit PRF with a single permutation and two
forward calls was left as an open problem in their paper. In this work,
we propose pEDM, a single permutation-based n-bit to n-bit PRF with two
calls that does not require invertibility of the permutation. We have shown
that our construction is secure against all adaptive information-theoretic
distinguishers that make roughly up to 22n/3 construction and primitive
queries. Moreover, we have also shown a matching attack with similar query
complexity that establishes the tightness of our security bound.

Keywords – Public permutations, EDM, PDMMAC, Expectation Method.



4. Permutation-Based EDM: An Inverse-Free BBB Secure PRF

4.1. Introduction

Most permutation-based cryptographic schemes generally provide a lower
security bound with respect to the permutation state size. For example,
most sponge-based modes provide c/2 bits of security (exceptions are [46,
58]), where c < b is the capacity of the permutation, and b is its total state
size. As the state size of a permutation is typically larger than the block
size of a message (e.g. the state size of KECCAK is 1600 bits), the birthday
bound is nevertheless adequate in practice. Birthday bound solutions are
inadequate for, say lightweight permutations such as SPONGENT [40] and
PHOTON [80], whose state sizes go as low as 88 and 100 bits, respectively.
Thus, designing public permutation-based cryptographic schemes that pro-
vide beyond the birthday bound security with respect to the permutation
state size can be highly interesting.

Chen et al. initiated research in this direction in [53], where they proposed
two fixed input- and fixed output-length beyond the birthday bound secure
PRFs based on public permutations – one in parallel mode and the other in
sequential mode. They showed that the sum of two independent instances
of the Even-Mansour [76] cipher in parallel mode, which they refer to as
SoEM22 -

SoEM22π1,π2
k1,k2

(x) := π1(x⊕ k1)⊕ π2(x⊕ k2)⊕ k1 ⊕ k2,

provides a tight 2n/3-bit security. This construction was extended by Bhat-
tacharya et al. [28], where they showed beyond the birthday bound security
of the domain-separated variant of SoEM22. They also proved that one can-
not reduce the number of keys of SoEM22 without degrading the security
bound to the birthday limit. Chen et al. also proposed a sequential-mode
sum SoKAC21 -

SoKAC21π1,π2
k (x) := π2(π1(x⊕ k)⊕ k)⊕ π1(x⊕ k)⊕ k,

which they proved to have a tight 2n/3-bit security. Later in [118], Nandi
exhibited a birthday bound attack on SoKAC21, hence falsifying the security
claim of this construction. In [47], Chakraborti et al. proposed PDMMAC, a
beyond the birthday bound secure single permutation-based fixed input-
and fixed output-length PRF that operates in sequential mode. The design
of PDMMAC gets its motivation from the Decrypted Davis-Meyer (DDM)
construction,

DDM(x) := π−1(π(x)⊕ x).

PDMMAC requires an n-bit key k and an n-bit public permutation π to
generate its output:

PDMMACπ
k (x) := π−1(π(x⊕ k)⊕ (x⊕ 3k))⊕ 2k.
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They extended the construction to a BBB secure single-permutation and
single-keyed variant of the nonce-based MAC 1. Although minimally struc-
tured, PDMMAC and its related MAC constructions (i.e. PDM∗MAC [47] and
1K-PDM∗MAC [47]) require invertibility of the permutation π (similar to the
design of DWCDM [62]). However, the inverse call in PDMMAC somewhat
brings down one of the advantages of using cryptographic permutations in
a mode – efficiency of evaluating the permutation in the forward direction.
In fact, designing a BBB secure single permutation-based PRF with two for-
ward calls was stated as an open problem in [47]. Not only this, inverse-free
designs have become an important design aspect of cryptography today as
designs that rely solely on forward call(s) of permutation(s) create a very
low footprint in a combined implementation of the mode [29]. Therefore,
we do not as yet have any BBB secure single permutation-based fixed input-
and fixed output-length PRF that operates in sequential mode with two
forward calls 2.

4.1.1. Our Contribution

In this chapter, we propose pEDM, the first fixed input- and fixed output-
length single permutation-based beyond the birthday bound secure PRF
that operates in sequential mode without requiring an inverse call of the
permutation. Our design is motivated by the EDM construction. In particular,
pEDM with a 2n-bit key and n-bit public permutation takes an n-bit input
and returns an n-bit output as follows:

pEDMπ
k1,k2

(x) := π(π(x⊕ k1)⊕ (x⊕ k1)⊕ k2)⊕ k1.

We have shown that pEDM is secure against all adaptive information theo-
retic distinguishers that make roughly up to 22n/3 construction and primitive
queries. We also show a matching attack, thus establishing the tightness of
this security bound. While we could directly realize a permutation-based
PRF by instantiating the block cipher of the single-keyed variant of EDM with
a 2-round Even-Mansour cipher, this would lead to four permutation calls
with keys totalling 6n bits. Compared to such a straightforward solution, our
construction altogether saves two permutation calls and 4n bits of the key.
Although pEDM uses a single permutation call with no inverse functionality,
the number of keys required is one more than the number of keys required
in PDMMAC. Presently, we do not know whether our construction is prone

1A single permutation-based nonce-based MAC that does not require invertibility of
the permutation was also proposed in [70]

2Chen et al. [53] showed an n/2-bit attack on SoKAC1; SoKAC1π
k1,k2

(x) = π(π(x ⊕
k1)⊕ k2)⊕ π(x⊕ k1)⊕ k2 ⊕ k1. However, Chakraborti et al. [47] claimed that the attack
was possibly wrong and showed a 2n/3-bit attack on it. They also conjectured the tightness
of this attack bound.
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to the birthday attack with a single key. However, we believe it can be proven
secure beyond the birthday bound with only an n-bit key. We show the PRF
advantage of this construction through an extended distinguishing game
and apply the expectation method to bound its distinguishing advantage.
In table 4.1, we compare the structures of several public permutation-based
PRFs with single-block input, single-block output- and multi-block input,
multi-block output-designs.

Table 4.1.: Comparison table for permutation-based PRFs. n denotes the state size of the
permutation and Inv indicates whether the construction requires an inverse
call of the permutation. s := n − log(w + 1), where w ≥ 1 is the size of a
chunk in a CENC-based construction. The last three constructions require a
keyed hash function with at most ℓ blocks of input. The number of keys for
these constructions includes the hash keys as well. All the constructions except
CENCPP∗ and DS-CENCPP∗ require two permutation calls. Although SoKAC1
was shown to have a birthday bound attack and SoKAC21 was shown beyond the
birthday bound secure in [53], Chakraborti et al. [47] believed that the birthday
bound attack on SoKAC1 was possibly wrong and showed an attack on it with
a 22n/3-query complexity. Moreover, Nandi [118] has shown a birthday bound
attack on SoKAC21.

Constructions (perm, keys) Inv (i/p, o/p) Sec
SoEM1 [53] (1, 2) x (n, n) Θ(n/2)
SoEM21 [53] (2, 1) x (n, n) Θ(n/2)
SoEM22 [53] (2, 2) x (n, n) Θ(2n/3)

SoKAC1 [53] (†) (1, 2) x (n, n) Ω(2n/3)
SoKAC21 [53] (2, 1) x (n, n) Θ(n/2)
PDMMAC [47] (1, 1) ✓ (n, n) Θ(2n/3)
DS-SoEM [28] (1, 2) x (n− 1, n) Θ(2n/3)

pEDM [This Chapter] (1, 2) x (n, n) Θ(2n/3)
CENCPP∗ [28] (w + 1, 2) x (n, wn) O(2n/3)

DS-CENCPP∗ [28] (1, 2) x (s, wn) O(2n/3)
nEHtMp [70] (1, 2) x (n− 1 + ℓn, n) Θ(2n/3)

PDM∗MAC [47] (1, 2) ✓ (n + ℓn, n) Θ(2n/3)
1K-PDM∗MAC [47] (1, 1) ✓ (n + ℓn, n) O(2n/3)

We would like to mention here that DS-CENCPP∗ with w = 1 is a parallel
construction with an (n − 1)-bit input, and requires field multiplication
with a primitive element to derive its 2n-bit keys. However, our proposed
construction is sequential with an n-bit input and does not require field
multiplication to derive the keys. Although both of them have similar
security bounds (i.e. 22n/3), pEDM requires a lesser state size in hardware
implementation as compared to the parallel construction DS-CENCPP∗ due
to its sequential nature.
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4.2. pEDM: Permutation-Based Encrypted Davis
Meyer

In this section, we propose pEDM, the first permutation-based sequential
beyond the birthday bound secure pseudorandom function with two for-
ward permutation calls. Our construction is the permutation variant of the
Encrypted Davis-Meyer (EDM) construction with two independent n-bit
round keys k1 and k2. pEDM takes an n-bit input M masked with an n-bit
round key k1 to generate the input of the first permutation call. The resulting
permutation output is masked with k2 ⊕M⊕ k1 to generate the input for
the second permutation call. The second permutation output is then masked
with the round key k1 to generate the final output T. A schematic diagram
of the construction is shown in Fig. 4.1.

M ⊕ π

k1 k2

⊕ π

k1

⊕ T

Figure 4.1.: The pEDM construction with independent keys k1 and k2, and an n-bit
permutation π.

In the following, we prove that pEDM is 2n/3-bit secure in the public
permutation model, where n is the state size of the permutation.

4.2.1. Security of pEDM

We show that pEDM is secure against all adversaries that make roughly
22n/3 construction and primitive queries in the random permutation model.
The following result states the security of pEDM, the proof of which can be
found in Sect. 4.3.

Theorem 9. Let π
$←− Perm be an n-bit public random permutation and let

k1, k2
$←− {0, 1}n be two independent n-bit keys. Then the PRF advantage for

any (q, p)-distinguisher against the construction pEDMπ
k1,k2

that makes at most q
construction queries and p primitive queries is given by

Advprf
pEDM(q, p) ≤ 12q2

N4/3 +
2pq
N4/3 +

15q
N2/3 +

2
√

q
N1/3 +

32pq2

N2 +
7qp2

N2 +
24q3

N2

+
2q3/2

N
+

2p
N4/3 +

3p
√

nq
N

+
2p
√

q
N

+
q
√

p
N

+
p3/2

N
+

2
N

.
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Remark 2. We would like to mention here that omitting the key k1 in the feed-
forward connection of pEDM realizes the construction π(π(M⊕k1)⊕M⊕k2)⊕
k1 = T, which has a similar level of security. Thus, our proposed construction can
be viewed as a 2-round key-alternating cipher based on the permutation-based Davis-
Meyer construction along with an additional permutation, whereas the construction
π(π(M⊕ k1)⊕M⊕ k2)⊕ k1 = T can be viewed as the Even-Mansour cipher-
based Davies-Meyer construction followed by a permutation. We believe both are
similar in performance and security.

4.2.2. Matching Attack on pEDM

In this section, we show a key-recovery attack on pEDM matching with
Theorem 9, with a total of q = 22n/3+1 construction queries and 2p = 22n/3+2

primitive queries (Fig. 4.2). The idea of the attack is to collect in a set Sk1
for each key k1, a triplet of query indices (i, a, b) ∈ [q]× [p]× [p] such that
(Mi ⊕ k1 = x̃a) ∧ (Ti ⊕ k1 = ṽb). k1 is considered a candidate guess-key if
the number of triplets (i, a, b) in Sk1 such that

x̃a ⊕ ỹa ⊕ ũb = x̃a′ ⊕ ỹa′ ⊕ ũb′

is at least 2. We show that the true key belongs to the set of candidate
guess-keys with high probability and the size of the set of candidate keys is
not very large.
Notation. For a tuple (M1, M2, . . . , Ms) of length s (each Mi ∈ {0, 1}n),

(M1, M2, . . . , Ms)
wor←−− {0, 1}n denotes M1

$←− {0, 1}n and ∀ i ≥ 2, Mi
$←−

{0, 1}n \ {M1, . . . , Mi−1}. Similarly, (M1, M2, . . . , Ms)
wr←− {0, 1}n denotes

M1
$←− {0, 1}n and ∀ i ≥ 2, Mi

$←− {0, 1}n (independent of all M1, . . . , Mi−1).

Claim. Let (k∗1 , k∗2) be the true key, i.e., the pair of keys used in the construction.
Then

Pr[k∗1 ∈ K] ≥ 0.687 (4.1)
Pr[|K \ {k∗1}| ≥ 128] ≤ 0.5. (4.2)

This claim shall be proved in the following section. Observe that the first
equation states that the true key k∗1 belongs to the set of candidate keys
with high probability, and the second equation states that the probability of
the number of candidate keys being no less than 128 is at most 1/2. Before
proceeding with the analysis of the attack, we recall the Chernoff bound for
the sum of independent Bernoulli trials:

Lemma 9. Let X1, X2, . . . , Xn be independent random variables following the
Bernoulli distribution such that Xi takes value 1 with probability pi for each i. Let
X = X1 + X2 + . . . + Xn and µ = E[X]. Then, for any 0 < δ < 1,

Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2.
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Stage-I: Construction and Primitive Queries

1 : Mi ∈ {0, 1}n ∀i wor←−− [22n/3+1], Ti ← pEDM(Mi[1])∀i ∈ [22n/3+1].

2 : x̃a
wor←−− {0, 1}n ∀a ∈ [22n/3+1], ỹa ← π1 (x̃a) ∀a ∈ [22n/3+1].

3 : U1 ←
{

x̃a | a ∈ [22n/3+1]
}

.

4 : ũb
wor←−− {0, 1}n \ U1 ∀b ∈ [22n/3+1], ṽb ← π1 (ũb) ∀b ∈ [22n/3+1].

5 : U2 ←
{

ũb | b ∈ [22n/3+1]
}

.

Stage-II: Backward Equation Check

1 : ∀k1 ∈ {0, 1}n,

Sk1 ←
{
(i, a, b) ∈ [22n/3 + 1]3 : Mi ⊕ x̃a = k1 = Ti ⊕ ṽb

}
.

Stage-II: Constructing the Guess Key Set

1 : K ← ϕ.
2 : ∀k1 ∈ {0, 1}n such that |Sk1 | ≥ 2,

if x̃a ⊕ va ⊕ ũb ⊕ x̃a′ ⊕ ỹa′ ⊕ ũb′ = 0 ∀(i, a, b) ̸= (i′, a′, b′) ∈ Sk1 ,
then K ← K ∪ {k1}.

3 : compute k2 ← Mi ⊕ k1 ⊕ ỹa ⊕ ũb, ∀k1 ∈ K.

Figure 4.2.: An attack on pEDM, where a computationally unbounded adversary
makes O

(
22n/3

)
queries to the construction and primitives.

4.2.3. Analysis of the Key-Recovery Advantage

In this section, we prove the claim in Sect. 4.2.2.
Step I: The true key belongs to the set of candidate keys. According to
step 2 of Stage-III of the algorithm, an element k1 belongs to the set K if the
following two conditions hold:

(a) |Sk1 | ≥ 2 and
(b) x̃a ⊕ ỹa ⊕ ũb = x̃a′ ⊕ ỹa′ ⊕ ũb′ , ∀ (i, a, b), (i′, a′, b′) ∈ Sk1 ,

(where Sk1 is the set of all triplets (i, a, b) ∈ (
[
22n/3+1])3 as defined in

Stage-II of the algorithm, i.e. Fig 4.2) such that

k1 = Mi ⊕ x̃a and
k1 = Ti ⊕ ṽb. (4.3)
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For the true key (k∗1 , k∗2), let zi := π(Mi⊕ k∗1)⊕ (Mi⊕ k∗1 ⊕ k∗2). Note that
all the random variables Mi as well as Mi ⊕ k∗1 are sampled without replace-
ment. π(Mi ⊕ k∗1) are also sampled without replacement, independent of
the variables Mi ⊕ k∗1 . Therefore, due to the result of [71, 60] on the sum of
two independent permutations, all zi follow the uniform distribution.

Observe next that for the first part k∗1 of the true key pair (k∗1 , k∗2), if
Eqn. (4.3) holds when the value k1 is replaced by the true key k∗1 for
some (i, a, b) ∈ (

[
22n/3+1])3, then the second part k∗2 can be computed as

k∗2 = x̃a ⊕ ỹa ⊕ ũb. Hence, the relation

x̃a ⊕ ỹa ⊕ ũb = x̃a′ ⊕ ỹa′ ⊕ ũb′

is automatically satisfied for the true key k∗1 and (i, a, b), (i′, a′, b′) ∈ Sk∗1
.

Therefore, to bound Eqn. (4.1), it suffices to bound the probability of exis-
tence of at least two distinct tuples (i, a, b), (i′, a′, b′) such that

k∗1 = Mi ⊕ x̃a = Ti ⊕ ṽb

k∗1 = Mi′ ⊕ x̃a′ = Ti′ ⊕ ṽb′ . (4.4)

Again, for the first part k∗1 of the true key pair (k∗1 , k∗2), if the following
equations are satisfied

k∗1 = Mi ⊕ x̃a

k∗1 = Mi′ ⊕ x̃a′

zi = ũb

zi′ = ũb′ (4.5)

for some (i, a, b), (i′, a′, b′) ∈ (
[
22n/3+1])3, then it satisfies (4.4). As a result, it

is enough to bound the probability that there exist at least two distinct tuples
(i, a, b), (i′, a′, b′) such that Eqn. (4.5) is satisfied. We bound this probability
in two stages. In the first stage, we bound the number of i such that zi ∈ U2
and we store such i in list L. Let LM be the set of all Mi ⊕ k∗1 such that
i ∈ L. In the second stage, we obtain a lower bound for the probability of
the number of a such that x̃a ∈ LM being at least 2.
Stage I. Let 1i be the indicator random variable that takes value 1 if and
only if zi ∈ U2. It is easy to see that 1i are independent Bernoulli random
variables with success probability 2

2n/3 . Let Z = (11 + . . . + 122n/3+1). Then
Z ∼ Bin(22n/3+1, 2

2n/3 ) and therefore, E[Z] = 4 · 2n/3. Applying the Chernoff
bound as stated in Lemma 9 with δ = 1/2, we get

Pr[Z > 2n/3+1] ≥ 1− 1
e2n/3−1 . (4.6)

It is therefore evident that the event bounding the size of L and in turn, the
size of LM by 2n/3 + 1, holds with high probability.
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Stage II. In order to bound the probability of existence of at least two distinct
tuples (i, a, b), (i′, a′, b) such that (4.4) holds, we bound the following:

Pr[|a : x̃a ∈ LM| ≥ 2]. (4.7)

Observe that Eqn. (4.7) is equivalent to

1−
(

Pr
[

x̃a /∈ LM, ∀a ∈
[
22n/3+1

]]
+

22n/3+1

∑
a=1

Pr [x̃a ∈ LM ∧ x̃b /∈ LM, ∀b ̸= a]

)
.

(4.8)
Since x̃1, . . . , x̃22n/3+1 are sampled without replacement from {0, 1}n and
|LM| = 2n/3+1,

Pr
[

x̃a /∈ LM, ∀a ∈
[
22n/3+1

]]
= Pr

[
x̃1, . . . , x̃22n/3+1 /∈ LM

]
≤ (2n − 2n/3+1)22n/3+1

(2n)22n/3+1

≤
(

1− 2
22n/3

)2·22n/3

≤ 1
e4 . (4.9)

Similarly,

22n/3+1

∑
a=1

Pr [x̃a ∈ LM ∧ x̃b /∈ LM, ∀b ̸= a]

=
22n/3+1

∑
a=1

Pr [x̃a ∈ LM] · Pr [x̃b /∈ LM, ∀b ̸= a]

≤
22n/3+1

∑
a=1

2n/3+1

(2n − 22n/3+1 + 1)
·
(

1− 2
22n/3

)2·22n/3−1

≤ 8
(

1− 2
22n/3

)−1

·
(

1− 2
22n/3

)2·22n/3

≤ 16
e4 , (4.10)

where the last inequality follows due to 1(
1− 2

22n/3

) ≤ 2 as n ≥ 3. Therefore,

from Eqn.s (4.8), (4.9) and (4.10), plugging in e ≤ 3 gives

Pr [k∗1 ∈ K] ≥ 1− 17
e4 . (4.11)

Step II: Bounding the size of K \ {k∗1}. We use Markov’s inequality to find
an upper bound for the probability that |K \ {k∗1}| ≥ 128 holds:

Pr [|K \ {k∗1}| ≥ 128] ≤
E [|K \ {k∗1}|]

128
. (4.12)
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Therefore, it is sufficient to bound the expected size of the set of candidate
keys K\{k∗1}. For each k1 ∈ {0, 1}n, let 1k1 be the indicator random variable
that takes value 1 if and only if there exist (i, a, b), (i′, a′, b′) such that

x̃a ⊕ ỹa ⊕ ũb = x̃a′ ⊕ ỹa′ ⊕ ũb′

k1 = Mi ⊕ x̃a

k1 = Ti ⊕ ṽb

k1 = Mi′ ⊕ x̃a′

k1 = Ti′ ⊕ ṽb′ . (4.13)

It is clear from the linearity of expectation that

∑
k1∈{0,1}n\{k∗1}

1k1 = |K \ {k
∗
1}| ⇒ E[|K \ {k∗1}|] = ∑

k1∈{0,1}n\{k∗1}
Pr
[
1k1 = 1

]
.

(4.14)
This reduces the problem to bounding the probability of 1k1 taking value
1. For a fixed choice of indices (i, a, b) and (i′, a′, b′), the above system of
equations holds with probability at most 2−5n as all the random variables
are independent from each other. The number of choices of such indices is
at most (2n/3+1)6. Therefore,

Pr
[
1k1 = 1

]
≤ 64

2n . (4.15)

Eqn.s (4.14) and (4.15) bound the expected size of the set of candidate keys
by at most 8. Setting this value in Eqn. (4.12), thus gives

Pr [|K \ {k∗1}| ≥ 128] ≤ 1/2,

which concludes the proof of the claim.
The distinguisher in the attack in Fig. 4.2 is information theoretically

bounded and its run time 3 is more than 2n. In particular, for each key
k1, the number of steps required to populate the set Sk1 is roughly 22n.
Therefore, Stage-II of the algorithm takes at most 24n operations. In step
2 of Stage-III, the algorithm requires at least one checking operation for
each set Sk1 , and therefore requires about 2n operations. This adds up to
give an overall time complexity of O(24n) for the algorithm; the number of
construction queries is 22n/3+1 and the total number of primitive queries is
22n/3+2.

3The time complexity of this adversary does not account for the number of times
the adversary makes offline primitive queries; it accounts solely for the time required to
compute local operations.
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4.3. Proof of Theorem 9

Let k = (k1, k2) ∈ {0, 1}2n be a pair of n-bit keys. We consider any informa-
tion theoretic deterministic distinguisher D that interacts with the following
oracles: (pEDMπ

k , π) in the real world and (RF, π) in the ideal world, where
RF is the random function over {0, 1}n to {0, 1}n. We call the first oracle
a construction oracle and the second a primitive oracle. Queries to the con-
struction oracle are called construction queries and to the primitive oracle,
primitive queries. A transcript τc = {(M1, T1), . . . , (Mq, Tq)} summarizes the
construction queries and a transcript τp = {(ũ1, ṽ1), . . . , (ũp, ṽp)}, the primi-
tives queries, with the assumption that D makes a total of q construction and
p primitive queries. Primitive queries can either be forward queries ũ to the
primitive π resulting in responses ṽ, or inverse queries ṽ to π−1 resulting in
responses ũ. Since we assume D to never make redundant queries, none of
the transcripts contain any duplicate elements.

We modify the experiment by releasing internal values to D after it has
finished its interaction with one of the oracles but has not yet output its deci-
sion bit. We also reveal the key k used in the construction in the real world,
and a pair of n-bit dummy keys k = (k1, k2) sampled uniformly at random
from the keyspace {0, 1}n in the ideal world, to the distinguisher. Thus, the
complete transcript is τ = (τc, τp, k). Since the modified experiment only
makes the distinguisher more powerful, the distinguishing advantage of D
in this experiment is no less than its distinguishing advantage in the former
one. Let Xre denote the random variable that takes as its value, a transcript
τ realized in the real world, and Xid the random variable that takes as its
value, a transcript τ realized in the ideal world. The probability of realizing
τ = (τc, τp, k) in the ideal (resp. real) world is called ideal (resp. real) inter-
polation probability. A transcript τ is attainable by D if its ideal interpolation
probability is non-zero. Let Θ denote the set of all attainable transcripts
and ϕ : Θ → [0, ∞) be a non-negative function that maps any attainable
transcript to a non-negative real value. Following these notations and using
the expectation method (1.2), we shall prove the following result:

Lemma 10. Let τ = (τc, τp, k) ∈ Θ be an attainable transcript. Let p(τ) :=

Pr[π $←− Perm(n) : pEDMπ
k −→ τc |π −→ τp]. Then

ρ(τ) :=
πre(τ)

πid(τ)
= p(τ) · 2nq.

Recall that pEDMπ
k −→ τc denotes pEDMπ

k (Mi) = Ti for all (Mi, Ti) ∈ τc,
i.e. π(π(Mi ⊕ k1)⊕Mi ⊕ k1⊕ k2)⊕ k1 = Ti, where k = (k1, k2). The proof
of this lemma is hence trivial, the ideal interpolation probability for a good
transcript being 1

(2n)p2nq (since the random function RF always outputs a
uniformly random n-bit string on each input query).
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4.3.1. Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcripts in
the ideal world. For a transcript τ = (τc, τp, k1, k2),

U :=
{

ũ ∈ {0, 1}n : (ũ, ṽ) ∈ τp
}

,
V :=

{
ṽ ∈ {0, 1}n : (ũ, ṽ) ∈ τp

}
,

α := |{(M, T) ∈ τc : M⊕ k1 ∈ U}| ,
β := |{(M, T) ∈ τc : T ⊕ k1 ∈ V}| ,
C :=

∣∣{(M, T), (M′, T′) ∈ τc : T = T′
}∣∣ ,

σ :=
∣∣{(M, T), (M′, T′), (M′′, T′′) ∈ τc : T ⊕M′ ⊕ k2 = M′′ ⊕ k1

}∣∣ ,
θ :=

∣∣{(ũ, ṽ), (ũ′, ṽ′) ∈ τp : ũ⊕ ṽ = ũ′ ⊕ ṽ′
}∣∣ .

We say that a construction query (M, T) ∈ τc is non-colliding if ∀(M′, T′) ∈
τc, T ̸= T′. The set of bad transcripts is characterized by identifying two-fold
collisions, as depicted in Fig. 4.3:

ũ ṽ ũ′ ṽ′

B.1

ũ ṽ ũ′ ṽ′

B.2

ũ ṽ M′ ⊕ k1

B.3

T′ ⊕ k1 ũ′ ṽ′

B.4

ũ ṽ
ũ′ ṽ′

B.6

ũ ṽ
ũ′ ṽ′

B.7

ũ ṽ ũ′ ṽ′

B.5

ũ ṽ

B.8

Figure 4.3.: Different cases of two-fold collisions. A red edge denotes a construc-
tion input/output collision with a primitive input/output, a blue edge
denotes a primitive input colliding with the input or output of some
construction query, and a green edge denotes a collision amongst similar
types.

Definition 3. An attainable transcript τ = (τc, τp, k) is called a bad transcript if
any one of the following holds:
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1. Inputs to (resp. outputs of) the two consecutive permutation calls
within one or two construction queries are not fresh:

- B.1: ∃ (M, T) ∈ τc, (ũ, ṽ), (ũ′, ṽ′) ∈ τp such that M⊕ k1 = ũ, ṽ⊕
ũ⊕ k2 = ũ′.

- B.2: ∃ (M, T) ∈ τc, (ũ, ṽ), (ũ′, ṽ′) ∈ τp such that T ⊕ k1 = ṽ, ũ ⊕
(M⊕ k1)⊕ k2 = ṽ′.

- B.3: ∃ (M, T), (M′, T′) ∈ τc, (ũ, ṽ) ∈ τp such that M⊕ k1 = ũ, ṽ⊕
ũ⊕ k2 = M′ ⊕ k1.

- B.4: ∃ (M, T), (M′, T′) ∈ τc, (ũ, ṽ) ∈ τp such that T ⊕ k1 = ṽ, ũ⊕
(M⊕ k1)⊕ k2 = T′ ⊕ k1.

2. The input and output of a construction query are both not fresh:

- B.5: ∃ (M, T) ∈ τc, (ũ, ṽ), (ũ′, ṽ′) ∈ τp such that M⊕ k1 = ũ, T ⊕
k1 = ṽ′.

3. Inputs to (resp. outputs of) the first (resp. second) permutation call
of two construction queries collide with the inputs (resp. outputs) of
two primitive queries, and the inputs to (resp. outputs of) the second
(resp. from first) permutation call for these two construction queries
also collide:

- B.6: ∃ (M, T), (M′, T′) ∈ τc, (ũ, ṽ), (ũ′, ṽ′) ∈ τp such that M⊕ k1 =
ũ, M′ ⊕ k1 = ũ′, ũ⊕ ṽ = ũ′ ⊕ ṽ′.

- B.7: ∃ (M, T), (M′, T′) ∈ τc, (ũ, ṽ), (ũ′, ṽ′) ∈ τp such that T ⊕ k1 =
ṽ, T′ ⊕ k1 = ṽ′, ũ⊕M = ũ′ ⊕M′.

4. Additional bad events:

- B.8: ∃ (M, T), (M′, T′) ∈ τc, (ũ, ṽ) ∈ τp such that M⊕ k1 = ũ, T =
T′.

- B.9: σ ≥ q2/2n/3.
- B.10: C ≥ q/2n/3.
- B.11: α ≥ √q.
- B.12: β ≥ √q.
- B.13: θ ≥ √p.

Recall that BadT ⊆ Θ is the set of all attainable bad transcripts and
GoodT = Θ \BadT is the set of all attainable good transcripts. We bound the
probability of bad transcripts in the ideal world as follows:

Lemma 11. Let τ = (τc, τp, k) be an attainable transcript. Then

Pr[Xid ∈ BadT] ≤ 3qp2

22n +
4pq2

22n +
3p
√

nq
2n +

2p
√

q
2n +

q
√

p
2n +

p3/2

2n

+
2q

22n/3 +
2
2n .
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Proof. Let τ = (τc, τp, k1, k2) be any attainable transcript. As k1 and k2 are
sampled uniformly and independently from the keyspace in the ideal world,
the union bound gives

Pr[Xid ∈ BadT] ≤ Pr[B.7∨ B.13] + ∑
1≤i≤13
i ̸=7,13

Pr[B.i]. (4.16)

We bound the probabilities of all bad events individually, adding which, we
obtain the lemma.

Bounding B.1. For fixed values (M, T) ∈ τc and (ũ, ṽ), (ũ′, ṽ′) ∈ τp,

Pr
[
k1 = M⊕ ũ, k2 = ũ′ ⊕ ṽ⊕ ũ

]
=

1
22n

due to randomness of the keys k1 and k2. Summing over all possible choices
of these values gives

Pr[B.1] ≤ qp2

22n . (4.17)

Bounding B.2. For fixed values (M, T) ∈ τc and (ũ, ṽ), (ũ′, ṽ′) ∈ τp,

Pr
[
k1 = T ⊕ ṽ, k2 = ṽ′ ⊕ ũ⊕ (M⊕ k1)

]
=

1
22n

by randomness of k1 and k2. Summing over all possible choices of these
values gives

Pr[B.2] ≤ qp2

22n . (4.18)

Bounding B.3. Fixing (M, T), (M′, T′) ∈ τc and (ũ, ṽ) ∈ τp,

Pr
[
k1 = ũ⊕M, k2 = ṽ⊕ (M′ ⊕ k1)⊕ ũ

]
=

1
22n

by randomness of k1 and k2. Summing over all possible choices of these
values gives

Pr[B.3] ≤ pq2

22n . (4.19)

Bounding B.4. Similar to B.3,

Pr[B.4] ≤ pq2

22n . (4.20)

Bounding B.5. Consider the set

BadK1 := {k1 ∈ {0, 1}n : ∃(M, T) ∈ τc, (ũ, ṽ), (ũ′, ṽ′) ∈ τp such that

k1 = M⊕ ũ = T ⊕ ṽ′}.
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Therefore, for any ∆ > 0,

Pr[B.5] = Pr[k1 ∈ BadK1]

= Pr [(k1 ∈ BadK1) ∧ (|BadK1| ≥ ∆)]
+Pr [(k1 ∈ BadK1) ∧ (|BadK1| < ∆)]

≤ Pr[|BadK1| ≥ ∆]] +
∆
2n . (4.21)

Clearly, |BadK1| ≤ Z , where Z := |{((M, T), ũ, ṽ′) ∈ τc × U × V : M⊕ ũ =
T ⊕ ṽ′}|. By Lemma 21,

Pr[|Z| ≥ qp2/2n + 3p
√

nq] ≤ 2/2n.

Therefore, setting ∆ = qp2/2n + 3p
√

nq in Eqn. (4.21) gives

Pr[B.5] ≤ qp2

22n +
3p
√

nq
2n +

2
2n . (4.22)

Bounding B.6∨B.13. Note that

Pr[B.6∨ B.13] ≤ Pr[B.13] + Pr[B.6∧ B.13]. (4.23)

To bound the probability of occurrence of B.13, we define an indicator
random variable 1ab that takes value 1 if and only if ∃ (ũa, ṽa), (ũb, ṽb) ∈ τp
such that ũa ⊕ ṽa = ũb ⊕ ṽb. For fixed values of a, b, Pr[1ab = 1] = 1/2n

as either both (ũa, ṽa), (ũb, ṽb) are backward queries with random values
for ũa, ũb, or at least one of them (say (ũb, ṽb)) is a forward query, with a
random value for ṽb. Hence, by the linearity of expectation,

E[θ] = ∑
ab

E[1ab] = ∑
ab

Pr[1ab = 1] ≤ p2

2n . (4.24)

Therefore, using Markov’s inequality, we have

Pr[B.13] = Pr[θ ≥ √p] ≤ E[θ]
√

p
≤ p3/2

2n , (4.25)

by Eqn. (4.24). Next, in order to bound the probability of occurrence of the
event B.6 ∧ B.13, we fix (M, T), (M′, T′) ∈ τc and (ũ, ṽ), (ũ′, ṽ′) ∈ τp. Then
the probability of the event (M⊕ k1 = ũ)∧ (M′ ⊕ k1 = ũ′)∧ (ũ⊕ ṽ = ũ′ ⊕ ṽ′)
is 1/2n due to the randomness of k1. This probability is well defined as
ũ ̸= ũ′.

Observe that the number of pairs (ũ, ṽ), (ũ′, ṽ′) ∈ τp that satisfy this event
is at most

√
p. Furthermore, the number of choices for (M, T) ∈ τc is q,
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which restricts the number of choices for (M′, T′) ∈ τc to at most 1 (since
choosing an (M, T) determines (M′, T′) as M′ = ũ′ ⊕ ũ⊕M). Hence,

Pr[B.6∧ B.13] ≤
q
√

p
2n . (4.26)

Combining Eqn.s (4.23), (4.25) and (4.26), we get

Pr[B.6∨ B.13] ≤
q
√

p
2n +

p3/2

2n . (4.27)

Bounding B.7. For fixed pairs (M, T), (M′, T′) ∈ τc and (ũ, ṽ), (ũ′, ṽ′) ∈ τp,
this event occurs with probability 1/22n due to independence of T and T′. As
the number of choices for (M, T), (M′, T′) is at most q2 and the number of
choices for (ũ, ṽ) is at most p, the number of choices for (ũ′, ṽ′) are restricted
to at most 1. Varying over all possible choices of (M, T), (M′, T′) ∈ τc and
(ũ, ṽ), (ũ′, ṽ′) ∈ τp, we have

Pr[B.7] ≤ pq2

22n . (4.28)

Bounding B.8. Fix (M, T), (M′, T′) ∈ τc and (ũ, ṽ) ∈ τp. Then

Pr
[
k1 = ũ⊕M, T = T′

]
=

1
22n .

Summing over all possible choices of (M, T), (M′, T′) ∈ τc, (ũ, ṽ) ∈ τp, we
have

Pr[B.8] ≤ pq2

22n . (4.29)

Bounding B.9. Consider an indicator random variable 1i1i2i3 , which takes
value 1 if and only if (Mi1 , Ti1), (Mi2 , Ti2), (Mi3 , Ti3) ∈ τc such that Ti1 ⊕
Mi2 ⊕ k2 = Mi3 ⊕ k1. Since Pr[1i1i2i3 = 1] = 1/2n for fixed values of i1, i2
and i3 (by the randomness of k1),

E[σ] = ∑
i1i2i3

E[1i1i2i3 ] = ∑
i1i2i3

Pr[1i1i2i3 = 1] ≤ q3

2n . (4.30)

Therefore, by Markov’s inequality,

Pr[B.9] = Pr[σ ≥ q2/2n/3] ≤ E[σ]
q2/2n/3 ≤

q
22n/3 (by Eqn. (4.30).) (4.31)

Bounding B.10. Consider an indicator random variable 1i1i2 , which takes
value 1 if and only if ∃ (Mi1 , Ti1), (Mi2 , Ti2) ∈ τc such that Ti1 = Ti2 . Since
Pr[1i1i2 = 1] = 1/2n for fixed i1, i2 (by the independence of Ti1 and Ti2),

E[C] = ∑
i1i2

E[1i1i2 ] = ∑
i1i2

Pr[1i1i2 = 1] ≤ q2

2n . (4.32)
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Therefore,

Pr[B.10] = Pr[C ≥ q/2n/3] ≤ E[C]
q/2n/3 ≤

q
22n/3 (by Eqn. (4.32)) . (4.33)

Bounding B.11. Again consider an indicator random variable 1ia, taking
value 1 if and only if ∃ (Mi, Ti) ∈ τc, (ũa, ṽa) ∈ τp such that Mi ⊕ k1 = ũa.
Fixing i, a implies Pr[1ia = 1] = 1/2n by the randomness of k1. Thus,

E[α] = ∑
ia

E[1ia] = ∑
ia

Pr[1ia = 1] ≤ qp
2n . (4.34)

Then by Markov’s inequality,

Pr[B.11] = Pr[α ≥ √q] ≤ E[α]
√

q
≤

p
√

q
2n (by Eqn. (4.34)) . (4.35)

Bounding B.12. Consider 1ia, taking value 1 if and only if ∃ (Mi, Ti) ∈
τc, (ũa, ṽa) ∈ τp such that Ti ⊕ k1 = ṽa. For fixed values i, a, since Pr[1ia =
1] = 1/2n by the randomness of k1,

E[β] = ∑
ia

E[1ia] = ∑
ia

Pr[1ia = 1] ≤ qp
2n . (4.36)

Therefore, using Markov’s inequality gives

Pr[B.12] = Pr[β ≥ √q] ≤ E[β]
√

q
≤

p
√

q
2n (by Eqn. (4.36)) . (4.37)

The result follows from Eqn.s (4.16)- (4.37).

4.3.2. Analysis of Good Transcripts

This section shows that for a good transcript τ = (τc, τp, k), realizing τ is
almost as likely in the real world as in the ideal world:

Lemma 12 (Good Lemma). Let τ = (τc, τp, k) ∈ GoodT be a good transcript,
and Xre, Xid be as defined previously. Then there exists a positive integer t such
that for 0 ≤ t ≤ q/2n/3,

Pr[Xre = τ]

Pr[Xid = τ]
≥ 1−

(
12q2

24n/3 +
2pq

24n/3 +
13q

22n/3 +
2pt
q2 +

2
√

q
2n/3 +

28pq2

22n +
4p2q
22n

+
24q3

22n +
2q3/2

2n

)
.
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4.3.3. Proof of Good Lemma

In this section, we prove Lemma 12 by establishing a lower bound for p(τ)
– since it is clear from Lemma 10 that to compute the ratio of real to ideal
interpolation probabilities for a good transcript τ, one must compare this
probability with 2nq.

Establishing a Lower Bound for p(τ)

τ = (τc, τp, k1, k2) being a good transcript, we now prove that the set of
construction queries τc can be partitioned into the following subsets:

QU := {(M, T) ∈ τc : M⊕ k1 ∈ U}
QV := {(M, T) ∈ τc : T ⊕ k1 ∈ V}
Q0 := {(M, T) ∈ τc : M⊕ k1 /∈ U , T ⊕ k1 /∈ V}

Observe first that QU ∪ QV ∪ Q0. By definition of bad transcripts, QU ∩
QV = ϕ and by definition of the subsets, QU ∩Q0 = ϕ,QV ∩Q0 = ϕ. Thus:

Proposition 1. Let τ = (τc, τp, k1, k2) ∈ GoodT be a good transcript. Then the
sets (QU ,QV ,Q0) are pairwise disjoint.

Since τ is a good transcript, α = |QU | ≤
√

q and β = |QV | ≤
√

q. Let
EU denote the event pEDMπ

k −→ QU . Similarly, let EV denote the event
pEDMπ

k −→ QV and E0 denote the event pEDMπ
k −→ Q0. It is easy to see

that

p(τ) = Pr[EU ∧ EV ∧ E0 |π −→ τp]

= Pr[EU ∧ EV |π −→ τp] · Pr[E0 | EU ∧ EV ∧ π −→ τp]. (4.38)

Therefore, it is enough to establish a good lower bound on the final two
probabilities to obtain a bound for τ.

To bound Pr[EU ∧ EV |π −→ τp], we define the following sets:

S1 := {M⊕ k1 : (M, T) ∈ QU}, S2 := {M⊕ k1 : (M, T) ∈ QV}
D1 := {T ⊕ k1 : (M, T) ∈ QU}, D2 := {T ⊕ k1 : (M, T) ∈ QV}

Note that S1 ⊆ U , |S1| = α, and D2 ⊆ V , |D2| = β. Since π −→ τp, π is
fixed on exactly p input-output pairs. Therefore, for each (M, T) ∈ QU , ∃!
(ũ, ṽ) ∈ τp such that M⊕k1 = ũ, so that π(M⊕ k) is well defined and equal
to ṽ. Similarly, for each (M, T) ∈ QV , ∃! (ũ, ṽ) ∈ τp such that T ⊕ k1 = ṽ,
so that π−1(T ⊕ k1) is well defined and equal to ũ. We can now define the
following two sets:

X1 := {π(M⊕ k1)⊕M⊕ k1 ⊕ k2 : (M, T) ∈ QU}
X2 := {π−1(T ⊕ k1)⊕M⊕ k1 ⊕ k2 : (M, T) ∈ QV}.
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Proposition 2. Every element of D1 is distinct and does not collide with any
primitive query output. Similarly, every element of S2 is distinct and does not
collide with any primitive query input.

Proof. The distinct property of D1 follows from ¬B.6. Moreover, if any
element of D1 collides with a primitive query output then it would satisfy
condition B.2. Thus, D1 ∩ V = ϕ ⇒ D1 ∩ D2 = ϕ and hence |D1| = α.
Similarly by definition, every element of S2 is unique and does not collide
with any primitive query input (otherwise satisfies condition B.2). Hence,
S2 ∩ U = ϕ⇒ S2 ∩ S1 = ϕ and hence |S2| = β.

Proposition 3. Every element of X1 is distinct and X1 ∩ S1 = ϕ,X1 ∩ S2 = ϕ.
Every element of X2 is distinct and X2 ∩D1 = ϕ,X2 ∩D2 = ϕ.

Proof. For the sake of contradiction, assume that π(Mi1 ⊕ k1)⊕Mi1 ⊕ k1 ⊕
k2 = π(Mi2 ⊕ k1) ⊕ Mi2 ⊕ k1 ⊕ k2 for some (Mi1 , Ti1), )(Mi2 , Ti2) ∈ QU .
However, this requires validity of the condition B.7, necessitating τ to
be a bad transcript. Thus, every element of X1 is distinct. Furthermore,
no element of X1 collides with any primitive query input, as otherwise
condition B.1 would be satisfied. This implies X1∩S1 = ϕ. Also, X1∩S2 = ϕ
follows due to ¬B.4. Thus, X1 ∩ U = ϕ ⇒ X1 ∩ S1 = ϕ and X1 ∩ S2 = ϕ.
Hence, |X1| = α.

Again assuming π−1(Ti1 ⊕ k1) ⊕ (Mi1 ⊕ k1) ⊕ k2 = π−1(Ti2 ⊕ k1) ⊕
(Mi2 ⊕ k1) ⊕ k2 for some (Mi1 , Ti1), (Mi2 , Ti2) ∈ QV forces the condition
B.8 to hold, necessitating τ to be a bad transcript. Thus, every element of X2
is distinct. Moreover, no element of X2 collides with any primitive query out-
put, as otherwise condition B.3 would be satisfied. This implies X2 ∩D2 = ϕ.
Since X2 ∩ D1 = ϕ follows due to ¬B.5, X2 ∩ V = ϕ ⇒ X2 ∩ D2 = ϕ and
X2 ∩D1 = ϕ. Hence, |X2| = β.

Consider the following two sequences:

Q1 := (π(Mi ⊕ k1)⊕Mi ⊕ k1 ⊕ k2, Ti ⊕ k1)(Mi,Ti)∈QU .

Q2 :=
(

Mi ⊕ k1, π−1(Ti ⊕ k1)⊕Mi ⊕ k1 ⊕ k2

)
(Mi,Ti)∈QV

.

From propositions 2 and 3, it follows that the domain of Q1 is disjoint from
the domain of Q2. Moreover, they are pairwise disjoint from U . Similarly,
the range of Q1 is disjoint from the range of Q2 and they are pairwise
disjoint from V . Therefore, X = (U ,X1,S2) and Y = (V ,D1,X2) are disjoint
collections. Thus, from Proposition 1,

Pr[EU ∧ EV |π −→ τp]

:= Pr[π $←− Perm(n) : X \ U π−→ Y \ V |π −→ τp]

=
1

(2n − p)α+β
. (4.39)
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We now bound Pr[E0 | EU ∧ EV ∧ π −→ τp]. For the sake of simplicity, we
rename the elements of Q0 as Q0 = {(M1, T1), (M2, T2), . . . , (Mq′ , Tq′)}, and
note that |Q0| = q′ = q− (α + β). Let us define sets

X = {M ∈ {0, 1}n : (M, T) ∈ (τc \ QU )}
Y = {T ∈ {0, 1}n : (M, T) ∈ Q0}
S = {(M, T) ∈ Q0 : ∀(M′, T′) ̸= (M, T) ∈ Q0, T ̸= T′},

where r = |Y|, S is the set of non-colliding queries of Q0 and s′ = |S|. Since
τ is a good transcript, s′ ≥ q− q

2n/3 , so as not to satisfy B.10. Thus, we must
bound the probability that a permutation π realizes Q0, i.e. we must bound
the number of permutations π that are already fixed on α + β input-output
pairs such that

∀(M, T) ∈ Q0, π(π(M⊕ k1)⊕M⊕ k1 ⊕ k2)⊕ k1 = T. (4.40)

Note that the equations in Eqn. (4.40) are not independent as the two
permutations are identical: for two queries (M, T) and (M′, T′) in Q0,
π(M⊕ k1)⊕M⊕ k1 ⊕ k2 = M ⊕ k1 implies π(M′ ⊕ k1) = T ⊕ k1. Simi-
larly, π(M⊕ k1) = T′ ⊕ k1 implies π(M′ ⊕ k1)⊕M′ ⊕ k1 ⊕ k2 = M⊕ k1.
One could count only the permutations π that are already fixed on α + β
input-output pairs such that for any query (M, T) ∈ Q0 , π(M⊕ k1)⊕M⊕
k1 ⊕ k2 /∈ X ⊕ k1. However this only leads to a birthday bound. To obtain a
beyond the birthday bound, we need to allow for collisions and a more pre-
cise counting. We shall thus consider permutations π that are already fixed
on α + β input-output pairs such that π(M⊕ k1)⊕M⊕ k1 ⊕ k2 = M′ ⊕ k1
for t pairs ((M, T), (M′, T′)) of distinct non-colliding queries, where t is a
sufficiently large value. However, care must be taken in choosing the t-pairs
of distinct non-colliding queries so as to not create incompatibility with
other queries.

Counting Collisions

To this end, we define an index set I = {i ∈ [q′] : (Mi, Ti) ∈ S}, and the
set I (2) = I (2) = {(i, j) : i, j ∈ I , i ̸= j} i.e. the set of all ordered pairs of
distinct elements of I .

Definition 4. For a fixed positive integer t, an unordered set of t ordered pairs of
indices

It = {(i1, j1), (i2, j2), . . . , (it, jt)} ⊆ I (2),
is good if it satisfies the following conditions:

1. for l ∈ [t], Mjl ⊕Mil are distinct.

114



4. Permutation-Based EDM: An Inverse-Free BBB Secure PRF

2. for l ∈ [t], Til ⊕Mjl are distinct.
3. for l ∈ [t], Mjl ⊕Mil ⊕ k2 /∈ V .
4. for l ∈ [t], Til ⊕Mjl ⊕ k2 /∈ U .
5. for l ∈ [t], Til ⊕ k2 ⊕Mjl /∈ X ⊕ k1.
6. for l ∈ [t], Mil ⊕ k2 ⊕Mjl /∈ Y ⊕ k1.
7. for l ∈ [t], Mjl ⊕Mil ⊕ k2 /∈ X2.
8. for l ∈ [t], Til ⊕Mjl ⊕ k2 /∈ X1.

We call an element in the set It a dependency pair.

Note that It is the set of t ordered pairs of indices of non-colliding queries.
We justify below why the conditions listed above, are not incompatible with
the other queries.
Rationale for the Conditions. A dependency pair (il, jl) ∈ It is depen-
dent in one of the following two ways:

(a) π(Mil ⊕ k1)⊕ (Mil ⊕ k1)⊕ k2 = Mjl ⊕ k1 or
(b) π(Mil ⊕ k1) = Tjl ⊕ k1

for permutations π that are already fixed on α + β input-output pairs. Such
a dependency pair is said to be of length 1. Thus, we have the following two
equalities:

(â) π(Mil ⊕ k1) = Mil ⊕Mjl ⊕ k2,
(b̂) π(Mjl ⊕ k1) = Mil ⊕Mjl ⊕ k2.

Both these equalities impose distinctness of the permutation outputs, which
justifies condition (1) of Defn. 4. They also require the permutation outputs
to not collide with any primitive output (i.e. the elements of V), as their
corresponding input does not collide with any primitive input (i.e. elements
of U ), validating condition (3). Similarly, Mil ⊕Mjl ⊕ k2 should not collide
with any element of Y ⊕ k1, establishing condition (6). Furthermore, Mil ⊕
Mjl ⊕ k2 should not collide with any element of X2, as (Mil , Til), (Mjl ,Tjl

) /∈
QV . This justifies conditions (7). Finally, since Eqn. (a) also imposes the
following equality:

(̂c) π(Mjl ⊕ k1) = Til ⊕ k1,

π(Mjl ⊕ k1) ⊕ (Mjl ⊕ k1 ⊕ k2) (or equivalently Til ⊕ Mjl ⊕ k2) should be
distinct, which accounts for condition (2). Moreover, it should not collide
with any other elements of X ⊕ k1, as it would otherwise extend the length
of the dependency pair by 1. This validates condition (5) of the definition.
Similarly Til ⊕ Mjl ⊕ k2 should not collide with any primitive inputs, as
Tjl ⊕k1 does not collide with any primitive output. This establishes condition
(4) of the definition. As Til ⊕Mjl ⊕ k2 should not collide with any element
of X2 (otherwise Tjl ⊕ k1 ∈ D1, which is not possible as (Mjl , Tjl) /∈ QU ),
this justifies condition (8).
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Lemma 13. Fix a positive integer t such that 0 ≤ t ≤ M. Then the number of
good sets It of t pairs of non-colliding queries is at least

|It| ≥
(s′)2t

t!

(
1− 4q

22n/3 −
2pt
q2 −

2
√

q
2n/3

)
.

Proof. First observe that amongst the s′(s′− 1) possible pairs of non-colliding
query indices (i1, j1), at most (2σ + 2p + α + β) of them do not satisfy
conditions (3)-(8). Indeed, by definition of a good transcript (more precisely,
bad event B.9), there cannot be more than σ pairs ((Mil , Til), (Mjl , Tjl))
such that Til ⊕Mjl ⊕ k2 ∈ X ⊕ k1, and there cannot be more than σ pairs
((Mil , Til), (Mjl , Tjl)) such that Mil ⊕ Mjl ⊕ k2 ∈ Y ⊕ k1. Similarly, due to
B.11, there cannot be more than α pairs such that Til ⊕Mjl ⊕ k2 ∈ X1 and
due to B.12, there cannot be more than β pairs such that Mjl ⊕Mil ⊕k2 ∈ X2.
Hence, we obtain a lower bound It as follows:

- (i1, j1) can be chosen from at least s′(s′ − 1)− 2σ− 2p− α− β possi-
bilities.

- Once (i1, j1) is fixed, i2 can be chosen freely from the remaining (s′− 2)
possibilities. Since j2 must be different from i1, j1 and i2, Mj2 ⊕Mi2 ̸=
Mj1 ⊕Mi1 and Ti2 ⊕Mj2 ̸= Ti1 ⊕Mj1 , the number of choices for j2 is
(s′ − 5); after removing the at most 2σ + 2p + α + β pairs of queries
not satisfying (3)-(8), there remain at least (s′− 2)(s′− 5)− 2σ− 2p−
α− β possibilities for the pair (i2, j2).

- Assuming (i1, j1), (i2, j2), (il−1, jl−1) are already selected, il can be cho-
sen freely from the (s′ − 2l + 2) remaining possibilities. As jl must
be different from i1, j1, . . . , il−1, jl−1, il and it must be such that Mjl ⊕
Mil ̸= Mjd ⊕Mid for d ∈ [l − 1], Til ⊕Mjl ̸= Tid ⊕Mjd for d ∈ [l − 1],
there are at least (s′ − 4l + 3) possibilities for jl. After removing at
most 2σ + 2p + α + β pairs not satisfying (3)-(8), there remain at least
(s′ − 2l + 2)(s′ − 4l + 3) − 2σ − 2p − α − β possibilities for the pair
(il, jl).

Since It is an unordered set of t pairs, the number |It| of good sets is at
least

|It| ≥
1
t!

t−1

∏
l=0

(
(s′ − 2l)(s′ − 4l − 1)− 2σ− 2p− α− β

)
.
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Therefore, |It| ≥
(s′)2t

t!

t−1

∏
l=0

(s′ − 2l)(s′ − 4l − 1)− 2p− 2σ− α− β

(s′ − 2l)(s′ − 2l − 1)

≥ (s′)2t

t!

t−1

∏
l=0

(
1− 2ls′ − 4l2 + 2p + 2σ + α + β

(s′ − 2l)(s′ − 2l − 1)

)
≥ (s′)2t

t!

t−1

∏
l=0

(
1− 2ls′ + 2p + 2σ + α + β

(s′ − 2M)2

)
(∵ l ≤ t ≤ M)

≥ (s′)2t

t!

(
1−

t−1

∑
l=0

2ls′ + 2p + 2σ + α + β

(s′ − 2M)2

)

≥ (s′)2t

t!

(
1− 2s′M2 + 2pt + 2σM + αM + βM

q2

)
(
∵ t ≤ M and s′ − 2M ≤ q

)
≥ (s′)2t

t!

(
1− 2M2

q
− 2pt

q2 −
2σM

q2 −
βM
q2 −

αM
q2

)
(
as s′ ≤ q

)
≥ (s′)2t

t!

(
1− 2q

22n/3 −
2pt
q2 −

2q
22n/3 −

2
√

q2n/3

)
(

as M ≤ q/2n/3, σ ≤ q2/2n/3 and α, β ≤ √q
)

≥ (s′)2t

t!

(
1− 2q

22n/3 −
2pt
q2 −

2q
22n/3 −

2
√

q
2n/3

)
(q ≥ 1)

≥ (s′)2t

t!

(
1− 4q

22n/3 −
2pt
q2 −

2
√

q
2n/3

)
.

We shall henceforth work with a fixed positive integer t such that 0 ≤
t ≤ M and a good set It = {(i1, j1), . . . , (it, jt)}. For a good set It, let
QIt := {(Mi, Ti) ∈ Q0 : (i, ⋆) ∈ It ∨ (⋆, i) ∈ It} . We shall now compute a
lower bound on the number of permutations π that are already fixed on
α + β input-output pairs and satisfy

π(π(M⊕ k1)⊕M⊕ k1 ⊕ k2)⊕ k1 = T, ∀(M, T) ∈ Q0 (4.41)

such that for any l ∈ [t], π(Mil ⊕ k1)⊕Mil ⊕ k1 ⊕ k2 = Mjl ⊕ k1. Such a
permutation π for the 2t queries appearing in It exists if and only if ∀l ∈ [t],

1. π(Mil ⊕ k1) = Mjl ⊕Mil ⊕ k2,
2. π(Mjl ⊕ k1) = Til ⊕ k1 and
3. π(Til ⊕Mjl ⊕ k2) = Tjl ⊕ k1.

This set of 3t equalities is input-output compatible as It is a good set. Now,
as the sets in the collection X+ = {X ⊕ k1,U ,X1, {Til ⊕Mjl ⊕ k2 : l ∈ [t]}}
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are pairwise disjoint, and so are the sets in the collection Y+ = {Y ⊕
k1,V ,X2, {Mjl ⊕ Mil ⊕ k2 : l ∈ [t]}, {Mil ⊕ Mjl ⊕ k2 : l ∈ [t]}}, we can
define

X ′ := X ⊕ k1 ∪ U ∪ X1 ∪ {Til ⊕Mjl ⊕ k2 : l ∈ [t]} and

Y ′ := Y ⊕ k1 ∪ V ∪ X2 ∪ {Mjl ⊕Mil ⊕ k2 : l ∈ [t]}
∪{Mil ⊕Mjl ⊕ k2 : l ∈ [t]}.

It is easy to see that |X ′| = q′+ p + α + t and |Y ′| = r + 2t + p + β, where
one may recall that r = |Y|. For the remaining queries in Q0 such that
(M, T) /∈ QIt , let q′′ = q′ − 2t = q− α − β − 2t, s′′ = s′ − 2t the number
of non-colliding queries in Q0 \ QIt and r′ = r− 2t the number of distinct
oracle responses appearing in these queries.
An approach similar to [55] allows us to regroup the elements of Q0 \ QIt
such that all queries with the same output become consecutive. We write
the queries as follows:

τ′ =



(
(M11, T1), . . . , (M1q1 , T1),

(M21, T2), . . . , (M2q2 , T2),
...

...
...

...

(Mr′,1, Tr′), . . . , (Mr′,qr′
, Tr′)

)
,

where T1, . . . , Tr′ are distinct. Furthermore, (q1 + . . . + qr′) = q′′. For the
ease of later computations, we assume that all non-colliding queries appear
first followed by colliding queries, i.e. qi = 1 for i ∈ [s′′] and qi > 1 for
i ∈ {s′′ + 1, . . . , r′}. Our goal is to obtain a lower bound on the number of
permutations π ∈ Perm(n) that are already fixed on α+ β input-output pairs,
and in addition to satisfying above 3t equalities, also satisfy the following:

∀(M, T) ∈ τ′, π(π(M⊕ k1)⊕M⊕ k1 ⊕ k2)⊕ k1 = T. (4.42)

We thus sample all intermediate values z = π−1(T ⊕ k1), which leads us to
the second step of the proof.

Sampling Intermediate Values

Consider a sequence z = (z1, z2, . . . , zr′) of r n-bit values. We say z is good if

1. each zi is distinct
2. for all i ∈ [r′], zi /∈ X ′
3. for all i ∈ [r′] and j ∈ [qi], zi ⊕Mi,j are distinct
4. for all i ∈ [r′] and j ∈ [qi], zi ⊕Mi,j ⊕ k1 ⊕ k2 /∈ Y ′.
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For any good tuple z = (z1, . . . , zr′), the equalities

∀i ∈ [r′], ∀j ∈ [qi], π(Mi,j ⊕ k1) = zi ⊕ k2 ⊕Mi,j ⊕ k1

∀i ∈ [r′], π(zi) = Ti ⊕ k1

are compatible with all previously defined input-output pairs. Likewise, a
permutation π satisfying these equations is such that π(π(M⊕ k1)⊕M⊕
k1 ⊕ k2) = T ⊕ k1 for all (M, T) ∈ τ′.

Lemma 14. Fix a positive integer t such that 0 ≤ t ≤ M and a good set It. Then
the number of good tuples z = (z1, . . . , zr′) is at least

Nz(t) ≥ (2n − q− p− α− β− 3t− r)s′′
s′′−1

∏
i=0

(
1− p + i

2n − (5q + p)− i

)
(2n)r′−s′′

(
1− 6q2

24n/3 −
2pq

24n/3

)
.

Proof. The number of valid choices for z1 is at least 2n − (q + p + α + t)−
q1(r + 2t+ p+ β) as z1 /∈ X ′ and z1⊕M1,j⊕k1⊕k2 /∈ Y ′ for j ∈ [q1], where
|X ′| = q + p + α + t and |Y ′| = r + 2t + p + β. Once the value of z1 is fixed,
z2 can be chosen in the following way:

• z2 ̸= z1
• z2 /∈ X ′
• z2 ⊕ k2 ⊕M2,j ⊕ k1 /∈ Y ′ for j ∈ [q2]
• z2 ̸= z1 ⊕M1,j ⊕M2,j′ for j ∈ [q1], j′ ∈ [q2].

Thus, the number of valid choices for z2 is at least 2n − 1− (q + p + α + t)−
q2(r + 2t + p + β + q1). In general, after choosing values for z1, . . . , zi−1, the
number of valid choices for zi is at least

2n − (i− 1)− (q + p + α + t)− qi

(
r + 2t + p + β +

i−1

∑
j=1

qj

)
.

This is because zi cannot be equal to z1, . . . , zi−1, which accounts for i− 1
terms in the above equation. The term (q + p + α + t) is present in the
equation as zi /∈ X ′, and j ∈ [qi], zi ⊕ k2 ⊕Mi,j ⊕ k1 /∈ Y ′, which establishes
the term qi(r + 2t + p + β). Lastly, zi ̸= zl ⊕Ml,j ⊕Mi,j′ for l ∈ [i− 1], j ∈
[ql], j′ ∈ [qi] explains the term qi(q1 + . . . + qi−1) in the equation. Therefore,
overall the number of good tuples z is at least

Nz(t) ≥
r′−1

∏
i=0

(
2n − (q + p + α + t)− i− qi+1

(
r + 2t + p + β +

i

∑
j=1

qj

))
.

(4.43)
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Next, we split Eqn. (4.43) into two parts – the first comprising the s′′ non-
colliding queries and the second, the colliding queries:

Nz(t) ≥
s′′−1

∏
i=0

(2n − (q + p + α + t)− i− r− 2t− p− β− i) ·

r′−1

∏
i=s′′

(
2n − (q + p + α + t)− i− qi+1

(
r + 2t + p + β +

i

∑
j=1

qj

))

≥
s′′−1

∏
i=0

(2n − (q + 2p + α + β + 3t)− 2i− r) ·

r′−1

∏
i=s′′

(
2n − (q + p + α + t)− i− qi+1

(
r + 2t + p + β +

i

∑
j=1

qj

))
.

(4.44)

Now,
s′′−1

∏
i=0

(2n − (q + 2p + α + β + 3t)− 2i− r)

= (2n − q− p− α− β− 3t− r)s′′ ·
s′′−1

∏
i=0

2n − q− 2p− α− β− 3t− 2i− r
2n − q− p− α− β− 3t− r− i

= (2n− q− p− α− β− 3t− r)s′′ ·
s′′−1

∏
i=0

(
1− p + i

2n − q− p− α− β− 3t− r− i

)

≥ (2n − q− p− α− β− 3t− r)s′′ ·
s′′−1

∏
i=0

(
1− p + i

2n − (5q + p)− i

)
, (4.45)

since α, β ≤ q, r ≤ q and 3t ≤ q. Also, for i ∈ {s′′, s′′ + 1, . . . , r′ − 2, r′ − 1},

q + p + α + t + i
≤ q + p + α + t + r′ − 1

(
as i ≤ r′1

)
= q + p + α + r− t− 1

(
as r′ = r− 2t

)
≤ 3q + p ( as α ≤ q, r− t− 1 ≤ q) , and (4.46)

r + 2t + p + β +
i

∑
j=1

qj

≤ r + 2t + p + β + q′′
(

as (q1 + . . . qr′) = q′′
)

= r + p + β + q′
(

as q′′ = q′ − 2t
)

≤ 3q + p
(

as q′ ≤ q, β ≤ q and r ≤ q
)

, so that (4.47)
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r′−1

∏
i=s′′

(
2n − (q + p + α + t)− i− qi+1

(
r + 2t + p + β +

i

∑
j=1

qj

))

=
r′−1

∏
i=s′′

(
2n − (q + p + α + t)− i− qi+1

(
r + 2t + p + β +

i

∑
j=1

qj

))

≥
r′−1

∏
i=s′′

(2n − (3q + p)− qi+1(3q + p)) (from Eqn.s (4.46) and (4.47))

≥ (2n)r′−s′′
r′−1

∏
i=s′′

(
2n − (3q + p)− qi+1(3q + p)

2n

)

≥ (2n)r′−s′′
r′−1

∏
i=s′′

(
1− qi+1(6q + 2p)

2n

)

≥ (2n)r′−s′′
(

1−
r′

∑
i=s′′

qi+1(6q + 2p)
2n

)

≥ (2n)r′−s′′

1−
(6q + 2p)

r′

∑
i=s′′

qi+1

2n


≥ (2n)r′−s′′

(
1− (6q + 2p)M

2n

) (
since

r′−1

∑
i=s′′

qi+1 ≤ M

)

≥ (2n)r′−s′′
(

1− 6q2

24n/3 −
2pq

24n/3

) (
since M ≤ q/2n/3

)
. (4.48)

Therefore, the result follows from Eqn.s (4.44), (4.45) and (4.48).

Final Calculation

As Sect. 4.3.3 fixes π on 3t input-output pairs and Sect. 4.3.3 fixes π on
q′′ + r′ input-output pairs, i.e. a total of 3t + q′′ + r′ = q′ + t + r′ pairs
(as q′′ = q′ − 2t), and also on p + α + β input-output pairs by the attack
transcript, Lemmas 13 and 14 imply

Pr[E0 | EU ∧ EV ∧ π −→ τp] ≥ ∑
0≤t≤M

|It| · Nz(t)
(2n − p− α− β)q′+t+r′

≥ (2n)r′−s′′ ·
(

1− 6q2

24n/3 −
2pq

24n/3

)
· ∑

0≤t≤M

[
(s′)2t

t!
·
(

1− 4q
22n/3 −

2pt
q2 −

2
√

q
2n/3

)

·
s′′−1

∏
i=0

(
1− p + i

2n − (5q + p)− i

)
· · (2

n − q− p− α− β− 3t− r)s′′

(2n − p− α− β)q′+t+r′

]
. (4.49)
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Therefore, from Lemma 10 and Eqn.s (4.38), (4.39) and (4.49),

ρ(τ) ≥ 2n(q+r′−s′′)

(2n − p)α+β
·
(

1− 6q2

24n/3 −
2pq

24n/3

)
·

∑
0≤t≤M

[
(s′)2t

t!
·
(

1− 4q
22n/3 −

2pt
q2 −

2
√

q
2n/3

)
·

s′′−1

∏
i=0

(
1− p + i

2n − (5q + p)− i

)
· (2

n − q− p− α− β− 3t− r)s′′

(2n − p− α− β)q′+t+r′

]
≥ 2n(α+β)

(2n − p)α+β︸ ︷︷ ︸
≥1

· (2n)r′−s′′

(2n − p− α− β− q′)r′−s′′︸ ︷︷ ︸
≥1

·

2nq′

(2n − p− α− β)q′
·

s′′−1

∏
i=0

(
1− p + i

2n − (5q + p)− i

)
︸ ︷︷ ︸

D.1

·
(

1− 6q2

24n/3 −
2pq

24n/3

)
·
(

1− 4q
22n/3 −

2pt
q2 −

2
√

q
2n/3

)
·
[

∑
0≤t≤M

(s′)2t · (2n − q− p− α− β− 3t− r)s′′

t! · (n− p− α− β− q′ − r′ + s′′)s′′+t

]
︸ ︷︷ ︸

D.2

. (4.50)

Computing D.1.

D.1 =
2nq′

(2n − p− α− β)q′
·

s′′−1

∏
i=0

(
1− p + i

2n − (5q + p)− i

)
(1)
≥

q′−1

∏
i=0

(
1 +

p + i
2n − p− i

)
·

s′′−1

∏
i=0

(
1− p + i

2n − (5q + p)− i

)
(2)
≥

q′−1

∏
i=0

[(
1 +

p + i
2n − p− i

)
·
(

1− p + i
2n − i− 5q− p

)]

≥
q′−1

∏
i=0

[
1−

(
5q(p + i) + p2 + 2pi + i2

(2n − p− i)(2n − p− i− 5q)

)]
(3)
≥

q′−1

∏
i=0

[
1− 20q(p + i)

22n − 4p2

22n −
8pi
22n −

4i2

22n

]
≥

(
1− 20pq2

22n −
20q3

22n −
4p2q
22n −

8pq2

22n −
4q3

22n

)
≥

(
1− 28pq2

22n −
4p2q
22n −

24q3

22n

)
, (4.51)
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where (1) holds as 2n − p− α− β ≤ 2n − p. (2) holds as s′′ ≤ q′ and (3)
holds as p + i ≤ 2n/2, p + i + 5q ≤ 2n/2.

Computing D.2.

D.2 = ∑
0≤t≤M

(s′)2t · (2n − q− p− α− β− 3t− r)s′′

t! · (2n − p− α− β− q′ − r′ + s′′)s′′+t

(1)
≥ ∑

0≤t≤M

(s′)2t

(s′)t(s′)t︸ ︷︷ ︸
E.1

· (s
′)t(s′)t

t!
· (2

n − q− p− α− β− s′)s′−t
(2n − q− p− α− β)s′︸ ︷︷ ︸

E.2

· (2n − q− p− α− β)s′

(2n − q− p− α− β− s′)s′−t
· (2n − q− p− α− β− 3t− r)s′′

(2n − p− α− β− q′ − r + s′)s′′+t︸ ︷︷ ︸
E.3

,

(4.52)

where (1) holds as r′ = r− 2t and s′′ = s′− 2t. Now, we individually bound
E.1 and E.3 as follows:

Computing E.1.

E.1 =
(s′)2t

(s′)t(s′)t
≥ (s′ − 2M)2t

(s′)2t ≥ 1− 4tM
s′

(4.53)

(2)
≥ 1− 4M2

q−M

(3)
≥ 1− 8M2

q

(4)
≥
(

1− 8q
22n/3

)
, (4.54)

where (2) follows as s′ ≥ q−M, (3) follows as q− 3M ≤ q/2 and finally
(4) follows as M = q/2n/3.

Computing E.3.

E.3 =
(2n−q−p−α−β)s′

(2n−q−p−α−β−s′)s′−t
·

(2n−q−p−α−β−3t−r)s′′
(2n−p−α−β−q′−r+s′)s′′+t

(5)
=

(2n−q−p−α−β)s′′+2t
(2n−q−p−α−β−s′)s′′+t

·
(2n−q−p−α−β−3t−r)s′′

(2n−p−α−β−q′−r+s′)s′′+t

=
(2n−q−p−α−β)s′′+t
(2n−q−p−r+s′)s′′+t

· (2
n−q−p−α−β−s′′−t)t
(2n−q−p−α−β−s′)t

·
(2n−q−p−α−β−3t−r)s′′
(2n−q−p−α−β−s′−t)s′′

(6)
=

(2n−q−p−α−β)s′′+t
(2n−q−p−r+s′)s′′+t︸ ︷︷ ︸

E.3.1

· (2n−q−p−α−β−s′+t)t
(2n−q−p−α−β−s′)t︸ ︷︷ ︸

≥1

· (2
n−q−p−α−β−3t−r)s′′

(2n−q−p−α−β−s′−t)s′′︸ ︷︷ ︸
E.3.2

,

where (5) and (6) follows as s′′ = s′ − 2t. Now, we individually bound E.3.1
and E.3.2 as follows:
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Computing E.3.1.

E.3.1 =
(2n − q− p− α− β)s′′+t
(2n − q− p− r + s′)s′′+t

=
s′′+t−1

∏
i=0

2n − q− p− α− β− i
2n − q− p− r + s′ − i

=
s′′+t−1

∏
i=0

(
1− α + β− r + s′

2n − q− p− i− r + s′

)

=
s′′+t−1

∏
i=0

(
1− α + β− (r− s′)

2n − q− p− i− r + s′

)
(7)
≥

s′′+t−1

∏
i=0

(
1− 2(α + β)

2n

)
(8)
≥

s′′+t−1

∏
i=0

(
1−

2
√

q
2n

)
(9)
≥
(

1− 2q3/2

2n

)
, (4.55)

where (7) follows as q + p + i + r− s′ ≤ 2n/2, (8) follows as α, β ≤ q and
(9) follows as s′′ + t ≤ q.

Computing E.3.2.

E.3.2 =
(2n − q− p− α− β− 3t− r)s′′

(2n − q− p− α− β− s′ − t)s′′

=
s′′−1

∏
i=0

(
1− 2t + r− s′

2n − q− p− α− β− s′ − t− i

)
(10)
≥

(
1− 2s′′(2M + r− s′)

2n

)
(11)
≥

(
1− 6s′′M

2n

)
(12)
≥
(

1− 6q2

24n/3

)
, (4.56)

where (10) follows as t ≤ M and q + p + α + β + s′ + t + i ≤ 2n/2. (11)
follows as r− s′ ≤ M and (12) follows as s′′ ≤ q and M = q/2n/3. Therefore,
from Eqn.s (4.55) and (4.56) and using the inequality (1 − a)(1 − b) ≥
(1− a− b) for a, b ≤ 1, we have

E.3 ≥
(

1− 2q3/2

2n − 6q2

24n/3

)
. (4.57)

Now combining Eqn.s (4.52), (4.53) and (4.57) and using the inequality
(1− a)(1− b) ≥ (1− a− b) for a, b ≤ 1, we have

D.2 ≥
(

1− 8q
22n/3 −

2q3/2

2n − 6q2

24n/3

)
· ∑

0≤t≤M
E.2. (4.58)
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Note that for a fixed t, E.2 = Hyp(t)N′,s′,s′ , where N′ = 2n − q− p− α− β
with parameters N′, s′ and s′. It is a well-known result that the expecta-
tion of the hypergeometric distribution with parameters N′, s′, s′ is s′2/N′.
Therefore, we have

D.2 ≥
(

1− 8q
22n/3 −

2q3/2

2n − 6q2

24n/3

)
· ∑

0≤t≤M
Hyp(t)N′,s′,s′ .

Now, using Markov’s inequality, we have

∑
t>M

Hyp(t)N′,s′,s′ ≤
s′2

q22n/3 ≤
q

22n/3 , (4.59)

where the first inequality appears due to the Markov’s inequality and the
second inequality follows as s′ ≤ q and M = q/2n/3. Therefore, from
Eqn.s (4.58) and (4.59) and by the inequality (1− a)(1− b) ≥ (1− a− b) for
a, b ≤ 1, we have

D.2 ≥
(

1− 9q
22n/3 −

2q3/2

2n − 6q2

24n/3

)
. (4.60)

Finally, combining Eqn.s (4.50), (4.51) and (4.60) and using the inequality
(1− a)(1− b) ≥ (1− a− b) for a, b ≤ 1, we have

ρ(τ) ≥

1−
(

12q2

24n/3 +
2pq

24n/3 +
13q

22n/3 +
2pt
q2 +

2
√

q
2n/3 +

28pq2

22n +
4p2q
22n +

24q3

22n +
2q3/2

2n

)
︸ ︷︷ ︸

ϕ(τ)

.

This completes the proof of Lemma 12. Now it only remains to compute the
expectation of ϕ(τ) as follows:

Computing the Expectation. We now compute the expectation of ϕ(τ)
over the randomness of the permutation π as follows:

Eπ [ϕ(τ)] = Eπ

[
2pt
q2

]
+

(
12q2

24n/3 +
2pq

24n/3 +
13q

22n/3 +
2
√

q
2n/3 +

28pq2

22n +
4p2q
22n +

24q3

22n +
2q3/2

2n

)
= 2p

q2 Eπ [t]+
(

12q2

24n/3 +
2pq

24n/3 +
13q

22n/3 +
2
√

q
2n/3 +

28pq2

22n +
4p2q
22n +

24q3

22n +
2q3/2

2n

)
.

Now, it remains to compute the expectation of the random variable t over the
randomness of the permutation π. Let ti be the indicator random variable
that takes the value 1 if π(Mi⊕k1)⊕Mi⊕k2 ∈ X , for 1 ≤ i ≤ M. Therefore,
it is easy to see that

Pr[ti = 1] = Pr[π(Mi ⊕ k1)⊕Mi ⊕ k2 ∈ X ] ≤ q′

2n .
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Since t = t1 + . . . + tM, due to the linearity of expectation, we have

Eπ[t] =
M

∑
i=1

Eπ[ti] =
M

∑
i=1

Pr[ti = 1] ≤ q′M
2n ≤

q2

24n/3 , (4.61)

where the last inequality appears as M = q/2n/3 and q′ ≤ q. Therefore, from
Eqn. (4.61), we have

Eπ[ϕ(τ)] ≤
12q2

24n/3 +
2pq

24n/3 +
13q

22n/3 +
2
√

q
2n/3 +

28pq2

22n +
4p2q
22n +

24q3

22n +
2q3/2

2n +
2p

24n/3 .

(4.62)

The result of Theorem 9 follows from the expectation method (1.1), Lemma 11

and Eqn. (4.62) which concludes the proof of the security result.

4.4. Summary

This chapter has proposed an inverse-free single permutation-based be-
yond the birthday bound secure PRF that requires 2n bit keys. The same
goal may also be achieved using the single permutation-based tweakable
Even-Mansour cipher [67]. However, this solution comes at the cost of im-
plementing the costly universal hash functions. Furthermore, parallel modes
like nEHtMp, SoEM22 or DS-SoEM also achieve beyond the birthday bound
PRF security, but again the former requires implementation of a universal
hash function, SoEM22 requires two independent permutations and DS-
SoEM takes an (n− 1)-bit input. It will be interesting to study the sequential
design of an inverse-free single permutation-based PRF with only an n bit
key. We believe that pEDM can be turned into a single permutation-oriented
beyond the birthday bound secure nonce based MAC by XORing an almost-
XOR universal hash function in between the two permutation calls (in a
similar vein as the EWCDM [56]).
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Abstract

Yasuda proposed a variable input-length PRF in CRYPTO 2011, called
PMAC Plus, based on an n-bit block cipher. PMAC Plus is a rate-1 construc-
tion and inherits the well-known PMAC parallel network with a low addi-
tional cost. However, unlike PMAC, PMAC Plus is secure roughly up to 22n/3

queries. Zhang et al. proposed 3kf9 in ASIACRYPT 2012, Naito proposed
LightMAC Plus in ASIACRYPT 2017, and Iwata et al. proposed GCM-SIV2
in FSE 2017 – all of them secure up to around 22n/3 queries. Their struc-
tural designs and corresponding security proofs were unified by Datta et
al. in their framework Double-block Hash-then-Sum (DbHtS). Leurent et al. in
CRYPTO 2018 and then Lee et al. in EUROCRYPT 2020 established a tight
security bound of 23n/4 on DbHtS. That PMAC Plus provides security for
roughly up to 23n/4 queries is a consequence of this result. In this chapter,
we propose a public permutation-based variable input-length PRF called
pPMAC Plus. We show that pPMAC Plus is secure against all adversaries that
make at most 22n/3 queries. We also show that the bound is essentially
tight. It is of note here that instantiation of each block cipher of pPMAC Plus
with the two-round iterated Even-Mansour cipher can yield a beyond the
birthday bound secure PRF based on public permutations. Altogether, the
solution incurs (2ℓ+ 4) permutation calls, whereas our proposal requires
only (ℓ+ 2) permutation calls, ℓ being the maximum number of message
blocks.

Keywords – PMAC Plus, Public Permutation, PRF from PRP, Sum-
Capture Lemma, Coefficients-H Technique
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5.1. Introduction

Beyond the Birthday Bound PRFs. Over the years, there have been many
proposals of beyond the birthday bound-secure PRFs. In [135], Yasuda
proposed SUM-ECBC, a beyond the birthday bound-secure PRF. SUM-ECBC
is a rate-1/2 sequential mode of construction with four block cipher keys
that offers about 2n/3-bit security. In [134], he proposed another beyond the
birthday bound-secure PRF, called PMAC Plus that also offers about 2n/3-bit
security. However, unlike SUM-ECBC, it is a rate-1 and parallel mode of
construction with three block cipher keys. In the following year, Zhang et
al. [136] proposed another candidate for a beyond the birthday bound-secure
PRF, called 3kf9, which is a rate-1 sequential mode of construction with three
block cipher keys and offers 2n/3-bit security. Following these works, Naito
proposed LightMAC Plus in [114], the first beyond the birthday bound-secure
PRF which is proven to have an ℓ independent beyond the birthday bound
and hence effectively offers a better security than that of all the earlier three
proposals. Datta et al. [63] proposed a single-keyed variant of the PMAC Plus
that offers a better security bound than that of PMAC Plus. In [61], Datta et al.
unified the design of all four beyond the birthday bound-secure PRFs (i.e.,
SUM-ECBC, PMAC Plus, 3kf9, LightMAC Plus) and gave a common security
proof for all of them. They also proposed a two-keyed version of SUM-
ECBC, PMAC Plus, 3kf9, LightMAC Plus and have shown that all of them
achieve roughly 2n/3-bit security. Interestingly, all these constructions share
a similar structural design and offer the same level of security. All this
motivated the unification of these designs and the provision of a common
security proof for all of them in [61].

Double block-Hash-then-Sum. DbHtS [61] is a generic methodology for
designing block cipher-based beyond the birthday bound-secure PRFs. It is
a composition of two constituent elements: (i) a double block hash function
that outputs a 2n-bit hash value of the input message and (ii) a sum function
used in the finalization phase that generates the final tag by XORing the
encryption (via two independent block ciphers) of two n-bit hash values. The
authors have shown that if the cover-free advantage (refers to the probability
that for a triplet of messages Mi, Mj, Mk, the first halves (i.e. the leftmost
n bits) of the hash values of Mi and Mj collide and the second halves (i.e.
the rightmost n bits) of the hash values of Mi and Mk collide) and the block-
wise universal advantage (refers to the probability of collision of either
of the halves of the hash values of any pair of distinct messages) of the
underlying double-block hash function is sufficiently low, then DbHtS is
secure up to 22n/3 adversarial queries. The authors have also shown the
applicability of their result by instantiating the two-keyed variants of SUM-
ECBC, PMAC Plus, 3kf9, LightMAC Plus and have proven 2n/3-bit security
for all of them. Using the generic result, authors have also improved the

129



5. Tight Security Analysis of the Public Permutation-Based PMAC Plus

Table 5.1.: Comparison table for permutation-based PRFs and MACs. n denotes the state
size of the permutation, which we also call block size. The last row describes
pPMAC Plus, proposed in this work. The second and third columns, i.e. #(π)
and #(k), respectively show the number of permutations and the number of keys
required by the construction. i/p (resp. o/p) size denotes the bit size of the input
(resp. output) to the construction. Constructions with a dagger symbol use keyed
hash functions and the number of keys they require includes the hash key as
well; they also take nonce as one of their inputs. Security bounds mentioned in
green denote lower bounds for which a matching upper bound isn’t yet proven,
while blue denotes tight bounds and red denotes upper bounds.

Constructions #(π) #(k) (i/p, o/p) size Security
SoEM1 [53] 1 2 (n, n) n/2
SoEM21 [53] 2 1 (n, n) n/2
SoEM22 [53] 2 2 (n, n) 2n/3
SoKAC1 [53] 1 2 (n, n) 2n/3 [47]
SoKAC21 [53] 2 1 (n, n) n/2 [118]
pEDM [73] 1 2 (n, n) 2n/3 [73]

PDMMAC [47] 1 1 (n, n) 2n/3
DS-SoEM [28] 1 2 (n− 1, n) 2n/3
CENCPP∗ [28] w + 1 2 (n, wn) 2n/3−log(w2)

DS-CENCPP∗ [28] 1 2 (n−log(w+1), wn) 2n/3−log(w4)

(†) nEHtMp [70] 1 2 (n− 1 + ℓn, n) 2n/3
(†) PDM∗MAC [47] 1 2 (n + ℓn, n) 2n/3

(†) 1K-PDM∗MAC [47] 1 1 (n + ℓn, n) 2n/3
Chaskey [112] 1 1 (ℓn, t) n/2 + 2−t

pPMAC Plus 1 3 (ℓn, n) 2n/3

security bound for SUM-ECBC and PMAC Plus.
In [95], Leurent et al. have shown attacks on all these constructions

with 23n/4-query complexity. Recently, Kim et al. [92] have proven 3n/4-bit
security of DbHtS and hence established the tightness of the bound for
SUM-ECBC, PMAC Plus, 3kf9 and LightMAC Plus.

Permutation-based cryptography. A block cipher is generally designed to
be efficient in evaluating the input in both forward and backward directions.
However, a closer inspection reveals that all the block cipher-based PRFs
discussed so far do not require the inverse mapping of the block ciphers.
Thus, a block cipher is an over-engineered primitive for block cipher-based
PRF constructions that do not require the inverse function of their underlying
primitives.

Concurrently with block ciphers, cryptographic permutations have evolved
as useful primitives. The primary feature of a cryptographic permutation

130



5. Tight Security Analysis of the Public Permutation-Based PMAC Plus

is that it does not use any key and hence does not require any separate
processing for it. The use of cryptographic permutations gained popular-
ity during the SHA-3 competition [127] as several submitted candidates
in the competition were based on this type of primitive. The selection of
the permutation-based Keccak sponge function as the SHA-3 standard has
further boosted the level of confidence of the community in using this prim-
itive. Today, permutation-based sponge-based constructions have become a
successful and full-fledged alternative to block cipher-based modes. In fact,
in the first round of the ongoing NIST lightweight competition [119], 24 out
of the 57 submitted constructions are based on cryptographic permutations,
and out of these 24, 16 permutation-based proposals have qualified for
round 2. These statistics depict the wide adoption of permutation-based
designs [46, 20, 26, 48, 59, 64] in the community. A long line of research has
also been carried out in the study of designing block ciphers and tweakable
block ciphers out of public random permutations. Iterated Even Mansour
(IEM) [51] and Tweakable Even-Mansour (TEM) [54] ciphers are notable
approaches in this direction.

PRFs Built from Public Permutations. Variable input-length PRFs built
using public permutations mostly follow sponge-type constructions. In-
herent drawbacks of such designs are that (i) they do not use the full
size of the permutation for guaranteeing security and (ii) they attain only
birthday bound security in the size of their capacity c, (except Bettle [46],
whose security bound is roughly the size of its capacity). It is obvious
that the sponge-type designs offering c/2-bit security are good in practice
when they are instantiated with large permutations such as Keccak [23].
However, just like large block ciphers, large permutations are not suitable
for a resource-constrained environment. In such a scenario, lightweight
permutations such as SPONGENT [40] and PHOTON [80] (whose state
sizes go as low as 88 and 100 bits respectively) are preferred over large
ones. The use of these lightweight permutations in birthday bound-secure
sponge constructions offers a practically inadequate security. Thus, to utilize
lightweight permutations in practice, the natural choice would be to design
a beyond the birthday bound-secure mode. In this regard, Chen et al. [53]
have proposed two instances of public permutation-based pseudo-random
functions, namely SoEM22 and SoKAC1. Both of them map an n-bit input to
an n-bit output and offer beyond the birthday bound security with respect
to the state size of the permutation. However, Nandi [118] has shown a
birthday bound attack on SoKAC1 and hence invalidated its beyond the
birthday bound security claim. Bhattacharjee et al. [28] have shown a public
permutation-based fixed input-length to variable output-length PRF called
XORPP∗ and its domain-separated variant called DS-XORPP∗. Both of these
constructions are built with a CENC [90]-style design and both of them have
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2n/3-bit security [28]. Chakraborti et al. [47] have proposed a beyond the
birthday bound-secure public permutation-based fixed input-length PRF,
called PDMMAC, a variable input-length PRF PDM∗MAC and its single-keyed
variant. Recently, Dutta et al. [73] have proposed another candidate for pub-
lic permutation-based PRFs, called pEDM, and have shown a tight 2n/3-bit
security. This line of research has been further extended in [69] by Dutta
and Nandi, where they have proposed a beyond the birthday bound-secure
nonce-based MAC build on top of public permutations.

5.1.1. Our Contribution

Given the state of the art in permutation-based cryptography, it is natural
to wonder whether we can design a variable input-length PRF based on
some lower-level primitive like public permutations instead of block ciphers
that offer beyond the birthday bound security. In this chapter, we provide
an answer in the positive. To this end, we propose a permutation-based
PMAC Plus construction, which we call pPMAC Plus. The permutation-based
variant of PMAC Plus is exactly similar to PMAC Plus with the following
exception: in the block cipher-based PMAC Plus construction, the output t is
defined as follows:

t = Ek1(Σ)⊕ Ek2(Θ),

where (Σ, Θ) is the 2n-bit output value of the underlying double-block
hash function PMAC Plus-Hash. For pPMAC Plus, we mask Σ and Θ with
k2 and follow by a domain separation through chopLSB(·)∥0, chopLSB(·)∥1,
respectively. Next, we replace both Ek1(·) and Ek2(·) by an n-bit public
random permutation π(·) (where k1 and k2 are two independently sampled
block cipher keys). While PMAC Plus-Hash is built from a block cipher Ek
(independent from Ek1 and Ek2), Ek is also replaced by π in pPMAC Plus-Hash,
the αth block of the input message masked with the string (2αk0 ⊕ 22αk1),
where k0, k1 and k2 are three independently sampled n-bit strings.

One can directly replace each block cipher of PMAC Plus with the two-
round iterated Even-Mansour cipher [52] or Mennnink’s SoEM22 construc-
tion [53] and obtain a beyond the birthday bound secure PRF based on public
permutations. While both the solutions incur (2ℓ+ 4) permutation calls, our
proposal requires only (ℓ+ 2) permutation calls, where ℓ is the maximum
number of message blocks. Furthermore, unlike PMAC Plus which has a
tight 3n/4-bit security, we have shown that pPMAC Plus achieves a tight
security bound of the order of 22n/3.
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5.2. pPMAC Plus: A Public Permutation-Based
BBB Secure MAC

In this section, we propose pPMAC Plus, a public permutation-based beyond
the birthday bound secure MAC. It takes an n-bit independent public per-
mutation π and three independent n-bit keys k0, k1 and k2. For processing
a message M ∈ {0, 1}∗, the padding function pad : {0, 1}∗ → ({0, 1}n)+

is applied on M that parses M into l blocks (M[1], M[2], . . . , M[l]) by con-
catenating 10∗ to the right so that for each i ∈ [l − 1], |M[i]| = n and
1 ≤ |M[l]| ≤ n.

pPMAC Plus
π
k0,k1,k2

(M)

1 : (Σ,Θ)←pPMAC Plus-Hash(M).

2 : return T←π(Σ)⊕π(Θ).

pPMAC Plus-Hash
π
k0,k1,k2

(M)

1 : (M[1],M[2],...,M[ℓ])←pad(M).
2 : (Σ, Θ)← (0n, 0n).
3 : for (i = 1; i ≤ ℓ; i ++)

4 : X ← 2ik0 ⊕ 22ik1 ⊕M[i].
5 : Yi ← π0(X).

6 : Σ← Σ⊕Yi, Θ← Θ⊕ 2l−i+1 ·Yi.
7 : return(chopLSB(Σ⊕k2)∥0,chopLSB(Θ⊕k2)∥1).

Figure 5.1.: pPMAC Plus is depicted on the left, while a permutation-based DbH
function of pPMAC Plus is shown on the right.

For each α ∈ [l], the message block M[α] of M is masked with 2αk0 ⊕
22αk1 before passing it through the permutation π. Output blocks of the
permutation are then XORed together, followed by masking with another key
k2 to generate an n-bit value Σ. Each output block of the hash permutation
instances is simply XORed in one case and multiplied by 2 before XORing
in another, and both are masked with the key k2 to generate output values Σ
and Θ, respectively. Finally, chopLSB (Σ⊕ k2) ∥0 and chopLSB (Θ⊕ k2) ∥1 are
passed through two copies of the same permutation π (as used in the hash
function) and the XOR of their outputs produces the MAC T. An algorithmic
description of pPMAC Plus is given in Fig. 5.1, and a pictorial illustration in
Fig. 5.2.

Remark 3. Note that the structural design of pPMAC Plus is similar to that of
PMAC Plus. The only difference of the former with the latter is that PMAC Plus
uses a block cipher E with three independent block cipher keys, whereas pPMAC Plus
replaces E by an n-bit random permutation π along with some masking elements
and domain separation. It is easy to see that directly replacing E in PMAC Plus
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Figure 5.2.: A message with ℓ blocks (after padding) is input into
pPMAC Plus−Hashπ

k0,k1,k2
, which produces outputs Σ and Θ.

These outputs are masked with a random key k2 before going through
a domain-separating function, and the final pPMAC Plus output is
produced by passing these two values through two permutations and
adding the resultants.

by the-two round iterated Even-Mansour cipher or SoEM22 construction [52]
immediately leads the security of the resulting construction to beyond the birthday
bound. However, both solutions pay a price for invoking the underlying permutation
twice to process a single message block. Therefore, processing an ℓ-block message
requires 2ℓ+ 4 permutation calls in the former approach and only ℓ+ 2 permutation
calls in ours.

5.2.1. Security of pPMAC Plus

In this section, we state that pPMAC Plus is secure against any information
theoretic adversary that makes roughly 22n/3 online and offline queries.

Theorem 10 (Security of pPMAC Plus). LetM be a non-empty finite set and
π a uniformly sampled n-bit public permutation. Let A be any distinguisher that
makes at most q construction queries and at most p primitive queries, and runs for
at most time t. Then

Advprf
pPMAC Plus(A) ≤

2
√

3nqp1p2 + 4
2n +

q3(5ℓ3 + 3ℓ2 + 8ℓ+ 4)
22n

+
6qp2l2 + 2q2pl + 2q2l

22n +
4q3 + 45q2p + 20qp2 + 5q2

22n .

The PRF security of pPMAC Plus is roughly at most 22n/3 when q ≈ p.
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5.3. A Key-Recovery Attack on pPMAC Plus

In this section, we show a matching key-recovery attack on pPMAC Plus with
a total of 22n/3+1 of each of construction and primitive queries. We refer the
readers to the full attack in Fig. 5.3.
Backward attack. The attack proceeds by first making 22n/3 construc-
tion queries of two-block messages Mi[1]∥Mi[2] for i ∈ [22n/3], and col-
lects the responses Ti. Next, it makes two sets of 22n/3 offline forward
queries – one with least significant bit (LSB) 0 and the other with LSB
1 – to the primitive permutation π, and collects their corresponding re-
sponses in lists L0 and L1, respectively. All these 2p = 22n/3+1 forward
queries and their responses are also collected into a list of pairs L =
{(x̃1, ỹ1), (x̃2, ỹ2), . . . , (x̃a, ỹa), . . . , (x̃2p, ỹ2p)}. A check of pairs (ṽb, z̃c) ∈ (L0×
L1) such that ṽb ⊕ z̃c = Ti provides triples (i, b, c) collected in a set S1. Com-
puting pairs (Σ̂, Θ̂) for all pairs of second-coordinates (ỹa1 , ỹa2) ∈ L

∣∣
2 ×L

∣∣
2

helps filter the elements of S1 by checking whether

Σ̂⊕ ũb = Θ̂⊕ w̃c,

where ũb and w̃c are the preimages of ṽb and z̃c respectively. If this check
passes, then the attack computes a candidate key k̂2, stores the corresponding
triple in S2 and then for all elements of S2, computes a pair of candidate
keys (k̂0, k̂1).
Removing false positives. In order to remove the false positive keys from
the set of candidates, the attack makes another 22n/3 construction queries
with messages of two blocks M′i [1]∥M′i [2], where M′i [1] = (Mi[1]⊕ 1) and
M′i [2] = Mi[2], and collects their corresponding responses T′i for i ∈ [22n/3].
Next, it evaluates pPMAC Plus on messages M′i [1]∥M′i [2], i ∈ [22n/3], with

the candidate key-triple
(

k̂0, k̂1, k̂2

)
. If the computed values match with

the received responses T′i , then this triple of keys (k̂0, k̂1, k̂2) stays in the
candidate key-list, otherwise, it is removed. We show that the true key
belongs to the set of potential candidate keys with a high probability and
that the size of the set of the candidate keys is not very large. We have thus
described a deterministic adversary A that recovers the key of pPMAC Plus
by making a total of 22n/3+1 construction queries and 22n/3+1 primitive
queries as shown in Fig. 5.3.
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5.3.1. Analysis of the Attack

First observe that for internal values xi[1] = Mi[1] ⊕ 2 · k0 ⊕ 22 · k1 and
xi[2] = Mi[2]⊕ 22 · k0 ⊕ 24 · k1 (Mi = Mi[1]∥Mi[2]), i ∈ [22n/3],

E
[∣∣∣{(i, a1, a2) ∈ [22n/3]× [22n/3+1]× [22n/3+1]}

∣∣∣ :

(xi[1] = x̃a1) ∧ (xi[2] = x̃a2)
]
= O(1).

Next, for internal values ui = yi[1]⊕ yi[2]⊕ k2 and wi = 22 · yi[1]⊕ 2 · yi[2]⊕
k2, i ∈ [22n/3],

E
[∣∣∣{(b, c) ∈ [22n/3]× [22n/3]}

∣∣∣ : (ui = ũb) ∧ (wi = w̃c)
]
= O(1).

Thus, bounding the number of queries to the construction and each of the
primitives by O

(
22n/3) ensures the presence of at least one tuple (a1, a2, b, c)

of primitive query indices that matches with true internal values correspond-
ing to a construction index i with high probability.

The backward attack checks for the validity of the equations induced by
the construction. First consider the set S1. It is computed over sets of sizes
q, p and p with a restriction of two conditions on n-bit strings. Therefore,

E [|S1|] = qp2

2n . Similarly, E [|S2|] = qp4

22n . Note here that only the indices b, c
that appear in tuples (i, b, c) ∈ S1 are considered for the check in step 7 of
the backward attack, and the corresponding construction query-index i is
used next for computing guess values (k̂0, k̂1) of the key-pair. Observe that
the probability depends on the sampling of values ỹa, and not on the keys,
as the hash computation of the message is not even considered so far.

By the same formula, the expected size of K is |S2| × q × 1
22n = q2 p4

24n .
Since q and p both have the same order O

(
22n/3), E [|K|] is O(1) when

q = O
(
22n/3). Finally, since the true key is in K with very high probability

due to the choice of lengths of the query-lists, the true key (k0, k1, k2) must
belong to K with very high probability. This demonstrates that the above is
indeed an O

(
22n/3) attack on pPMAC Plus.

5.4. Proof of Theorem 10

In this section, we prove Theorem 10. We often denote pPMAC Plus[π, k0, k1, k2]
simply by pPMAC Plus∗ when the primitives and the underlying keys are un-
derstood. We consider any information theoretic deterministic distinguisher
A that has access to a triplet of oracles in the real and the ideal worlds: In
the real world, it has access to the oracles Ore := (pPMAC Plus∗, π+, π−),
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where π is a uniformly chosen random n-bit permutation and k0, k1, k2 are
three independently and uniformly chosen random n-bit keys. In the ideal
world, it has access to the oracles Oid := ($, π+, π−), where π is again a
uniformly chosen n-bit random permutation. Queries to the first oracle in
either of the two worlds are called construction queries and queries to the
remaining oracles are called primitive queries. Note that as the primitive π
is a permutation, an adversary can make queries in the forward direction,
which we call forward primitive queries, as well as in the inverse direction,
which we call backward primitive queries. Throughout the proof, we assume
that neither does an adversary A make duplicate or redundant queries nor
does it make queries whose responses can be constructed from the previous
query-responses. We call such an adversary a non-trivial adversary. We also
assume that A makes q construction queries and p (forward and backward)
primitive queries in either of the two worlds.

Once an adversary has finished making all its queries, the keys k0, k1, k2
in the real world, and corresponding dummy values in the ideal world are
released to the adversary. Furthermore, the intermediate values
((xi[1], xi[2], . . . , xi [li]) , (yi[1], yi[2], . . . , yi [li]) , ui, vi, wi, zi) for each construc-
tion query i ∈ [q] are also released. These values represent the following:

xi[α] = Mi ⊕ 2αk0 ⊕ 21αk1 ∀ α ∈ [li] , yi[α] = π(xi[α]) ∀ α ∈ [li]

Σi = yi[1]⊕ . . .⊕ yi [li] , Θi = 2li · yi[1]⊕ . . .⊕ 2 · yi [li]
ui = chopLSB (Σi ⊕ k2) ∥0 , vi = π(ui)

wi = chopLSB (Θi ⊕ k2) ∥1 , zi = π(wi). (5.1)

5.4.1. An Outline of the Proof

We begin the proof by providing well-defined algorithms for the interaction
of an adversary with the real and ideal worlds. While the adversarial inter-
action with the real world only involves an online phase (since its responses
are true to the construction), the ideal world also requires an offline phase
for computation of certain output values so as to mimic the real world more
closely. These algorithms are detailed in Fig.s 5.4–5.8.

Stage I of the offline phase of the ideal world (Fig. 5.6) lists certain events
(which we call bad events), for which, the algorithm aborts; the probability of
occurrence of these events is computed next. This is the bad event analysis,
and can be found in Sect. 5.4.5.

The remaining cases are analyzed in the good transcript analysis (Sect. 5.5)
by proving that the ideal interpolation probability is very close to the
real interpolation probability. The computation for the real case is quite
straightforward, and the bound is given by Eqn. (5.52).

For the ideal world, all queries made by the adversary to the online and
offline oracles are indexed according to the respective algorithms. These
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indices are first split into those corresponding to free (non-repeating hash
output blocks) and single-colliding (collision in exactly one block of the
hash output) indices. An equivalence relation is defined according to the
collisions of the hash function outputs of the second category of indices so
as to classify the output definitions for both inputs. These steps are detailed
in Stages II (Fig. 5.7) and III (Fig. 5.8) of the offline phase of the ideal world.
This partitions all queried indices into the following sets:

1. F is the set of indices corresponding to free queries,
2. I contains the indices corresponding to queries with one hash output

block colliding with a primitive query input,
3. P c is the set of indices corresponding to queries with one of their hash

output blocks colliding with one of the hash-primitive inputs, and
4. Qc is the set of indices corresponding to queries with one of their

hash output blocks colliding with the corresponding block of the hash
output of another query.

5.4.2. Real World and Ideal World

In the real world, when an adversary A makes a construction query with
message M to pPMAC Plus∗, it receives the tag T ← pPMAC Plus∗(M). In
the ideal world, when A makes a construction query with message M to $,

it samples an n-bit tag T $←− {0, 1}n and returns it to A. In both the worlds,
A is allowed to make forward as well as backward primitive queries to
π. When A makes the ath forward query x̃a to π for a ∈ [2p], it samples

ỹa
$←− {0, 1}n \ {ỹ1, . . . , ỹa−1} and returns it to the adversary. Similarly, for

the ath backward query ỹa to π, it returns x̃a
$←− {0, 1}n \ {x̃1, . . . , x̃a−1} and

returns it to the adversary.
The behavior of the oracles in the real and ideal worlds is detailed in Fig.s 5.4
and 5.5. When all the queries and responses are finished, the real world
returns the key (k0, k1, k2) to A, whereas the ideal world behaves as depicted
in Fig.s 5.6, 5.7 and 5.8.

5.4.3. Offline Phase of the Ideal World

After the query-response phase, the ideal world samples three n-bit dummy
keys (k0, k1, k2), uniformly and independently of all the previously sampled
random variables. Then it starts computing the hash value of pPMAC Plus-Hash∗

for all the q queried messages. During this hash computation, if any of the
events mentioned in stage 1 of the game (shown in Fig. 5.6) occur, it is
aborted. The first event Coll addresses collisions between two inputs to the
hash-permutations of a particular construction query and inputs to any
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forward primitive query. 3-Coll takes care of collisions of a hash-permutation
input from one construction query with one input block each of hash-
permutations involved in two other construction queries. (Bad1-Bad3) occur
when there is a collision in both invocations of π involved in the sum func-
tion. Note that Bad2 and Bad3 guarantee that a collision of the value Σi of
the ith construction query with a primitive query x̃a ensures freshness of Θi,
and by symmetry, the same for Σi due to a primitive-value collision of Θi.
This makes certain that the output Ti ⊕ ỹa of Θi through π remains fresh.
However, if Ti ⊕ ỹa collides with any ỹa′ due to the sampling of Ti, then
permutation compatibility is violated. A similar violation arises when
chopLSB (Θi ⊕ k2) ∥0 collides with a primitive query x̃a, but the output of
Σi is not fresh. This event is captured in Bad4. The events Bad1 and Bad3
guarantee that a collision in exactly one half of the hash blocks of two
construction queries implies freshness of the other half. This also means
that their tags do not collide with each other. However, if they do happen to
collide with each other through sampling of the tags, permutation compati-
bility is again violated, as captured in Bad5. If the game is not aborted in
stage I, it proceeds to stage II.
In this stage, there may exist a set of indices for which exactly one hash
block collides with a primitive query. For example, if chopLSB (Σi ⊕ k2) ∥0
collides with ũb for some i ∈ [q] and for some b ∈ [p], then we remove i from
I and add Σi to Σ̃ and Θi to Θ̃, as well as chopLSB (Θi ⊕ k2) ∥1 to the domain
of π and Ti ⊕ ṽb to the range of π. Similarly, if chopLSB (Θi ⊕ k2) ∥0 collides
with w̃c for some i ∈ [q] and for some c ∈ [p], we remove i from I and
add Σi and Θi to Σ̃ and Θ̃ respectively, as well as chopLSB (Σi ⊕ k2) ∥0 to the
domain of π and Ti ⊕ z̃c to the range of π. Note that if chopLSB (Σi ⊕ k2) ∥0
collides with ũb, then Θi is fresh as Bad2 and Bad3 do not occur. Moreover,
Ti ⊕ ỹa is also fresh as Bad4 does not occur. Hence, the inclusion of Θi in the
set Dom(π1) and Ti ⊕ ỹa in Ran(π1) is sound. One can similarly argue that
the inclusion of Σi in Dom(π0) and Ti ⊕ y2

j in Ran(π0) is also sound.

For the remaining q− |I| indices, there may exist a set of free indices F for
which both blocks of the hash value are fresh in the set of 2(q− |I|) hash
block values. The oracle samples outputs for these fresh hash values without
replacement such that for any i ∈ F , the sampled outputs vi and zi sum up
to Ti.
The cases remaining in stage III are those for which exactly one block of
the hash value collides with that of another construction query. For all
i ∈ [q] \ (F ⊔ I), if the output of the colliding hash value, say Σi, is not
yet sampled, then the oracle samples its output without replacement, say
vi and sets the output of the remaining block, i.e., the output of Θi as the
sum of vi and Ti (see line 2 of stage III). Else, the oracle sets the output of
Σi to the already defined element and adjusts the output of the other block
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accordingly (see line 3 of stage III). Note that in the latter case, the oracle
does not sample the output. If the output of Θi (i.e., Ti ⊕ vi) happens to
collide with any previously sampled output or any element of Ran(π1) in
the above argument, then RCΣ is set to 1 (see line 4 of stage III) and aborts
the game. Similarly, the oracle sets RCΘ to 1 if the adjustment of the output
of Σi causes a collision with any previously sampled output or any element
of Ran(π0). Note that these events cannot hold for the real oracle as at least
one of Θi or Σi is always fresh in the tuple of 2(q− |I|) hash block values.
Finally, it returns all these sampled values along with the sampled hash key
to the distinguisher A.

5.4.4. Attack transcript

Let τc := {(M1, T1), (M2, T2), . . . , (Mq, Tq)} be the list of construction queries
and responses made by A. We call τc the construction query transcript. Let
τp := {(x̃1, ỹ1), . . . , (x̃2p, ỹ2p)} be the list of primitive queries and responses
made to π by A. The pair (τc, τp) constitutes the query transcript of the
attack. For convenience, we slightly modify the experiment by revealing the
keys (k0, k1, k2) and internal or random values to the distinguisher A (only
after it completes making all its queries but before it outputs its decision)
in addition to responses to the queries it makes. If A interacts with the
real world, then the actual key of the construction is revealed along with
the permutation outputs of the hash output blocks Σ and Θ, whereas for
the ideal world, a triplet of dummy n-bit keys (k0, k1, k2) is revealed. The
construction query transcript of the attack is thus

τ̂c =
(
(M1, T1, v1, z1), (M2, T2, v2, z2), . . . , (Mq, Tq, vq, zq), k0, k1, k2

)
.

Therefore, the query transcript of the attack is τ = (τ̂c, τp), where τp
can further be partitioned into τ0

p := {(ũb, ṽb) : ũb = ûb∥0 where ûb ∈
{0, 1}n−1, ∀b ∈ [p]} and τ1

p := {(w̃c, z̃c) : w̃c = ŵc∥1 where ŵc ∈ {0, 1}n−1,
∀c ∈ [p]}. Note that if A interacts with the real world, then

∀i ∈ [q], vi := π0 (chopLSB (Σi ⊕ k2) ∥0) := π (chopLSB (Σi ⊕ k2) ∥0) ,

zi := π1 (chopLSB (Θi ⊕ k2) ∥1) := π (chopLSB (Θi ⊕ k2) ∥1) ,

where (Σi, Θi) := pPMAC Plus-Hashπ
k0,k1,k2

(Mi). Moreover, a transcript τ in
the real world must satisfy the following conditions:

• vi ⊕ zi = Ti, ∀i ∈ [q].
• ∀a ∈ [2p], π(x̃a) = ỹa such that ∀b ∈ [p], π(ũb) = ṽb and ∀c ∈

[p], π(w̃c) = z̃c, where ũb = ûb∥0 and w̃c = ŵc∥1 for ûb, ŵc ∈ {0, 1}n−1.
• Σ̃ is permutation compatible with ṽ and Θ̃ is permutation compati-

ble with z̃ (note that (Σ̃, Θ̃) is uniquely determined by the message
tuple (M1, . . . , Mq), the tuple of keys k0, k1, k2 and the public random
permutation π).
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5.4.5. Definition and Probability of Bad Transcripts

Suppose X denotes the set of all attainable transcripts and Dre and Did the
random variables that take transcript τ induced in the real world and ideal
world respectively. An attainable transcript τ ∈ X is said to be bad if either
of the following bad flags

Coll, 3-Coll,Bad1,Bad2,Bad3,Bad4,Bad5,Bad6,RCΣ,RCΘ

is set to 1 as defined in Fig. 5.6. We define the event Bad as

Coll∨ 3-Coll∨

∨6
i=1 (Badi ∧ Coll∧ 3-Coll)︸ ︷︷ ︸

Bad∗i

 ∨ (RCΣ ∧ Coll∧ 3-Coll)︸ ︷︷ ︸
RC∗Σ

∨ (RCΘ ∧ Coll∧ 3-Coll)︸ ︷︷ ︸
RC∗Θ

.

Thus, BadT := {((Mi, Ti, vi, zi), (x̃a, ỹa)) ∈ (τ̂c, τp) : ((Mi, Ti, vi, zi), (x̃a, ỹa))
satisfies at least one condition boxed in Fig. 5.6} ⊆ X and GoodT :=
X \ BadT denote the set of bad and good transcripts, respectively. Hav-
ing identified the bad transcripts, we bound the probability of realizing
them in the ideal world in the following lemma.

Lemma 15. Let BadT be the set of all attainable bad transcripts and Did be the
random variable that takes a transcript τ induced in the ideal world. Then

Pr[Did ∈ BadT] ≤ ϵbad =
2
√

3nqp2 + 4
2n +

q3(10ℓ3 + 5ℓ2 + 4ℓ+ 8)
22n

+
q2p(2ℓ+ 9)

22n +
qp2(11ℓ2 + 4ℓ+ 8)

22n +
q2(2ℓ+ 5)

22n .

proof. Bounding the probability of the bad transcripts in the ideal world is
equivalent to bounding the probability of the event Bad in the ideal world.
Due to the union bound,

Pr[Bad] ≤ Pr[Coll] + Pr[3-Coll] +
6

∑
i=1

Pr[Bad∗i ] + Pr[RC∗Σ] + Pr[RC∗Θ]. (5.2)

In the following, we separately bound each of the above terms. By a slight
abuse of notation, we use the flag names to identify the corresponding event.
Before we bound the terms, we set up a few notations.
Notational set-up. Let U = {x̃a ∈ {0, 1}n : (x̃a, ỹa) ∈ τp} and V = {ỹa ∈
{0, 1}n : (x̃a, ỹa) ∈ τp} be the domain and range of the transcript of π. Let
(M1, . . . , Mq) be a tuple of q distinct messages such that the ith message
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Mi has ℓi blocks with ℓ = max{l1, . . . , lq}, being the maximum number of
message blocks amongst all the q messages. For two distinct fixed indices
i1, i2 ∈ [q], we define the set

NEQi1,i2 = {α ∈ min[li1 , li2 ] : Mi1 [α] ̸= Mi2 [α]}
∪ {α : min[li1 , li2 ] + 1 ≤ α ≤ max[li1 , li2 ]}.

In words, NEQi1,i2 refers to the set of all positions at which inputs to the
hash permutation π from message blocks of Mi1 and Mi2 differ. We denote
the inputs (resp. outputs) of these permutation instances as xi (resp. yi). In
particular, we write xi[α] to denote the permutation input corresponding
to the αth block of the ith message, i.e. xi[α] = Mi[α] ⊕ 2αk0 ⊕ 22αk1 and
yi[α] = π(xi[α]).
Bounding Coll. For a fixed choice of i ∈ [q], α ̸= β in [li] and a1, a2 ∈ [p], the
system of equations

2αk0 ⊕ 22αk1 = Mi[α]⊕ x̃a1 ,

2βk0 ⊕ 22βk1 = Mi[β]⊕ x̃a2

has rank 2. Since k0 and k1 are two independent n-bit keys, varying over all
possible choices of indices gives

Pr[Coll] ≤ qp2ℓ2

22n+1 . (5.3)

Bounding 3-Coll. For a fixed choice of i1, i2, i3 ∈ [q], and distinct α1 ∈ [li1 ], α2 ∈
[li2 ], α3 ∈ [li3 ], the system of equations

(2α1 ⊕ 2α2)k0 ⊕ (22α1 ⊕ 22α2)k1 = Mi1 [α1]⊕Mi2 [α2],

(2α1 ⊕ 2α3)k0 ⊕ (22α1 ⊕ 22α3)k1 = Mi1 [α1]⊕Mi3 [α3]

has rank 2. Since k0 and k1 are two independent n-bit keys, varying over all
possible choices of indices gives

Pr[3-Coll] ≤
q3(3ℓ

3 )

22n ≤ 5q3ℓ3

22n . (5.4)

Bounding Event Bad∗1. We fix three messages Mi1 , Mi2 and Mi3 where i1 ̸=
i2, i1 ̸= i3, such that Mi1 has li1 blocks, Mi2 has li2 blocks and Mi3 has li3
blocks. Consider the event

CollX(1) :
{
∃ j1, j2 ∈ {i1, i2, i3} and α ∈ [lj1 ], β ∈ [lj2 ], such that xj1 [α] = xj2 [β]

}
.
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Therefore,

Pr[Bad∗1 ] ≤ ∑
i1,i2,i3

(
Pr[Θi1 = Θi3 ∧ Coll∧ 3-Coll∧ CollX(1)]︸ ︷︷ ︸

(1)

+Pr[Σi1 = Σi2 ∧Θi1 = Θi3 ∧ Coll∧ 3-Coll∧ CollX(1)]︸ ︷︷ ︸
(2)

)
.(5.5)

Bounding (1): It is easy to see that for a fixed triplet of messages, the
probability of CollX(1) is at most (3ℓ

2 )/2n. Under this condition, Θi1 = Θi3
provides a non-trivial equation for some random variable yi′ [α

′]. Assuming
li1 ≤ li3 , let α ∈ [li1 ] (if it exists) be the largest index such that Mi1 [α] ̸= Mi3 [α].
Then either yi1 [α] or yi3 [α] is fresh and the equation Θi1 = Θi3 is non-trivial
for this random variable. On the other hand, if no such index α exists(i.e.
Mi1 [α] = Mi3 [α] for all α ∈ [li1 ] and li1 < li3), we can obtain a freshly sampled
random variable yi3 [β], for which Θi1 = Θi3 becomes non-trivial. Therefore,
the probability that this equation is satisfied is at most 1/(2n − 2ℓ) ≤ 2/2n,
assuming ℓ ≤ 2n−2, giving (1) an upper bound of (3ℓ

2 )/2n · 2/2n ≤ 9ℓ2/22n:

Pr[Θi = Θk ∧ Coll∧ 3-Coll∧ CollX(1)] ≤ 9ℓ2

22n . (5.6)

Bounding (2): We split this case into the following two subcases:

i2 = i3: Without loss of generality, assume li1 ≤ li2 . Note that if li1 = li2 , then
li2 must be at least 2 for Σi1 = Σi2 to yield a non-trivial equation. In
this case, we can easily find two freshly sampled random variables
yi1 [α] and yi2 [β] for which

(
Σi1 = Σi2

)
∧
(
Θi1 = Θi2

)
yields a system of

equations of rank 2. Hence by the rank argument (i.e. Lemma 25),

Pr[
(
Σi1 = Σi2

)
∧
(
Θi1 = Θi2

)
∧ Coll∧ 3-Coll∧ CollX(1)] ≤ 1

(2n − 2ℓ)2
.

(5.7)
In the particular case when li1 + 1 = li2 and NEQi1i2 = {li2}, if xi2 [li2 ] =
x̃a for some a ∈ [p], then Σi1 = Σi2 and Θi1 = Θi2 would boil down to

ỹa = 0n,(
2li1 ⊕ 2li1+1

)
yi1 [1]⊕ . . .

(
2⊕ 22

)
yi1 [li1 ]⊕ 2ỹa = 0n. (5.8)

As the second equation in 5.8 is non-trivial, and xi2 [li2 ] = x̃a holds
with probability at most 1/2n (the number of choices for x̃a is 1),

Pr[
(
Σi1 = Σi2

)
∧
(
Θi1 = Θi2

)
∧ Coll∧ 3-Coll∧ CollX(1)] ≤ 1

2n(2n − 2ℓ)
.

(5.9)
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In case li2 ≥ li1 + 2, we either determine β1, β2 ∈ {li1 + 1, . . . , li2} or
β1 ∈ [li1 ], β2 ∈ {li1 + 1, . . . , li2} such that yi2 [β1] and yi2 [β2] are freshly
sampled. In both instances,

(
Σi1 = Σi2

)
∧
(
Θi1 = Θi2

)
would result in

a system of equations having rank 2, and hence by the rank argument
(i.e. Lemma 25),

Pr[
(
Σi1 = Σi2

)
∧
(
Θi1 = Θi2

)
∧ Coll∧ 3-Coll∧ CollX(1)] ≤ 1

(2n − 2ℓ)2
.

(5.10)
Combining Eqn.s (5.7), (5.9) and (5.10), and assuming ℓ+ 1 ≤ 2n−2,
we have

Pr[
(
Σi1 = Σi2

)
∧
(
Θi1 = Θi2

)
∧ Coll∧ 3-Coll∧ CollX(1)] ≤ 10

22n . (5.11)

i2 ̸= i3: We approach this in five parts, the first four addressing cases when
either Mi1 is a prefix of one of Mi2 and Mi3 , or one of Mi2 and Mi3 is a
prefix of Mi1 , and the fifth when neither of the first four occur.
Mi1 is a prefix of Mi2 : Let li2 = li1 + 1 and xi2 [li2 ] = x̃a for some a ∈ [p].
Then Θi1 = Θi3 becomes a non-trivial equation, contributing a term
1/(2n − 3ℓ) to the bound. An additional 1/2n is contributed by the
event xi2 [li2 ] = x̃a (as the number of choices for x̃a is 1). Assuming
ℓ ≤ 2n−1/3, the bound is thus 2/22n. On the other hand, if xi2 [li2 ] is
fresh, then a freshly sampled random variable yi1 [⋆] can be found
such that Θi1 = Θi3 becomes a non-trivial equation. Therefore, Σi1 =
Σi2 , Θi1 = Θi3 becomes a system of equations of rank 2 (in yi2 [li2 ]
and yi1 [⋆]), and hence by the rank argument (i.e. Lemma 25), we
bound the probability of the event by 1/(2n − 3ℓ)2 ≤ 4/22n, assuming
3ℓ+ 1 ≤ 2n−1.
If li2 ≥ li1 + 2, then it is easy to find an index β ∈ {li1 + 1, . . . , li2} such
that yi2 [β] is freshly sampled. Moreover, we can find another index
α ∈ [li1 ] (or α ∈ [li3 ]) such that yi1 [α] (or yi3 [α]) is freshly sampled.
In both cases, Σi1 = Σi2 , Θi1 = Θi3 becomes a system of equations of
rank 2. Therefore, by the rank argument (i.e. Lemma 25) and assuming
3ℓ + 1 ≤ 2n−1, the probability of the event becomes at most 4/22n.
Thus,

Pr[Σi1 = Σi2 ∧Θi1 = Θi2 ∧ Coll∧ 3-Coll∧ CollX(1)] ≤ 10
22n . (5.12)

The other subcases can be argued similarly and their probabilities
bounded above by 10/22n.
We now assume that neither is Mi1 a prefix of Mi2 or Mi3 , and nor the
reverse. In this case, we can find an index α such that Mi1 [α] ̸= Mi2 [α]
and yi1 [α] is freshly sampled. Moreover, we can find another index
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β such that Mi1 [β] ̸= Mi3 [β] and yi3 [β] is freshly sampled. Σi1 =
Σi2 , Θi1 = Θi3 is a system of equations of rank 2 in these two variables,
and hence by the rank argument (i.e. Lemma 25) and by assuming
3ℓ+ 1 ≤ 2n−1,

Pr[Σi1 = Σi2 ∧Θi1 = Θi2 ∧ Coll∧ 3-Coll∧ CollX(1)] ≤ 4
22n . (5.13)

Therefore, combining Eqn.s (5.12) and (5.13), the assumption 3ℓ+ 1 ≤
2n−1 gives

Pr[Σi1 = Σi2 ∧Θi1 = Θi2 ∧ Coll∧ 3-Coll∧ CollX(1)] ≤ 14
22n . (5.14)

Finally, varying over all choices of i1, i2, i3 ∈ [q] and combining Eqn.s (5.5),
(5.6), (5.11) and (5.14) with the assumption that 3ℓ+ 1 ≤ 2n−1, we have

Pr[Bad∗1 ] ≤
3q3ℓ2

22n+1 +
4q3

22n . (5.15)

Bounding Event Bad∗2. For fixed indices i ∈ [q] and b, c ∈ [p], the event

(chopLSB (Σi ⊕ k2) ∥0 = ũb) ∧ (chopLSB (Θi ⊕ k2) ∥1 = w̃c)

can be reduced to the following system of equations:

yi[1]⊕ yi[2]⊕ . . .⊕ yi[li]⊕ k2 = ũb,

2li yi[1]⊕ 2li−1yi[2]⊕ . . .⊕ 2yi[li]⊕ k2 = w̃c. (5.16)

We split Bad∗2 into the following two cases:

Case (1): Suppose li = 1 and Mi[1]⊕ 2k0 ⊕ 22k1 collides with a primitive
query input x̃a′ for some a′ ∈ [2p]. In this case, (5.16) boils down to {ỹa′ ⊕
k2 = ũb, 2ỹa′ ⊕ k2 = w̃c}. The probability of occurrence of Bad∗2 can now be
bounded using the events Mi[1]⊕ 2k0 ⊕ 22k1 = x̃a′ and k2 = ỹa′ ⊕ ũb; the
probability of the first event is bounded by 2−n through the randomness
of k0, and the probability of the latter is bounded by 2−n through the
randomness of k2. Note that the number of choices for a′ is 2p, that for b,
c (each) is p, and that for i is q. For each of these choices of x̃a′ and ũb, the
number of choices for w̃c is 1. Hence,

Pr[Bad∗2 ] ≤
2qp2

22n . (5.17)

On the other hand, if Mi[1]⊕ 2k0 ⊕ 22k1 does not collide with any primitive
query, then yi[1] is fresh. Thus, (5.16) boils down to {yi[1]⊕ k2 = ũb, 2yi[1]⊕
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k2 = w̃c}. Note that the rank of this system of equations is 2. Varying over
all possible choices of b, c ∈ [p] and i ∈ [q] gives

Pr[Bad∗2 ] ≤
qp2

2n(2n − ℓ)
. (5.18)

Case (2): In this case, we assume li > 1. Let CollX(2) be the event that refers
to the collision of any two input blocks, i.e.

CollX(2) : {∃ α1, α2 ∈ [li], such that α1 ̸= α2, xi[α1] = xi[α2]} .

Therefore, we write

Pr[Bad∗2 ] ≤
q

∑
i=1

(
Pr[Eqn.s (5.16) hold ∧ CollX(2)]︸ ︷︷ ︸

(1)

+ Pr[Eqn.s (5.16) hold ∧ CollX(2)]︸ ︷︷ ︸
(2)

)
.

The joint event in (1) holds with probability at most (ℓ2)/22n (in which
the event CollX(2) contrinutes the term (ℓ2)/2n and the randomness of k2
contributes the term 1/2n). The event in (2) ensures the freshness of at
least one of the variables yi[1], . . . , yi[li]. Without loss of generality, let us
assume yi[1] is fresh. Given the values of all the other random variables yi[⋆]
in (5.16), the reduced system of equations {yi[1]⊕ k2 = c, 2yi[1]⊕ k2 = c′}
with rank 2 results in an upper bound of 1/2n(2n − ℓ). Varying (1) and (2)
over all choices of b, c ∈ [p] and i ∈ [q] gives

Pr[Bad∗2 ] ≤
qp2ℓ2

22n+1 +
qp2

2n(2n − ℓ)
. (5.19)

From Eqn.s (5.17), (5.18) and (5.19), and with the assumption that ℓ ≤ 2n−1,
we obtain

Pr[Bad∗2 ] ≤
5qp2ℓ2

22n +
2qp2

22n . (5.20)

Bounding Event Bad∗3. This event can be split into the following two sub-
events:

(1) :
{
∃ i1 ̸= i2 in [q] :

(
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0
)

∧
(
chopLSB

(
Θi1 ⊕ k2

)
∥1 ∈ Dom(π1)

)
∧ Coll∨ 3-Coll

}
,

(2) :
{
∃ i1 ̸= i2 in [q] :

(
chopLSB

(
Θi1 ⊕ k2

)
∥1 = chopLSB

(
Θi2 ⊕ k2

)
∥1
)

∧
(
chopLSB

(
Σi1 ⊕ k2

)
∥0 ∈ Dom(π0)

)
∧ Coll∨ 3-Coll

}
.
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Bounding (1): For fixed i1 ̸= i2 in [q] and a fixed c ∈ [p], the event is(
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0
)
∧
(
chopLSB

(
Θi1 ⊕ k2

)
∥1 = w̃c

)
∧ Coll ∧ 3-Coll. Without loss of generality, assume li1 ≥ li2 . Since the proba-
bility of (1) is zero for li1 ≤ 1, assume li1 ≥ 2. As before, we determine an
index β ∈ [li1 − 1]: If li1 > li2 , then β = li1 ; if li1 = li2 and NEQi1i2 = {li1},
then the probability becomes zero – so we set β = max

{
α ∈ NEQi1i2

}
( ̸= li1)

when li1 = li2 . Let

CollX
(3)
β :

{ (
∃ β1 ∈ [li1 ] : β1 ̸= β, xi1 [β] = xi1 [β1]

)
∨
(
∃ β2 ∈ [li2 ] : xi1 [β] = xi2 [β2]

) }
be the event that denotes the collision of xi1 [β] with at least one of the re-
maining input blocks. Also let Eβ denote the event

{
∃ a ∈ [p] : xi1 [β] = x̃a

}
.

Therefore, we write

Pr [(chopLSB(Σi1
⊕k2)∥0=chopLSB(Σi2⊕k2)∥0)∧(chopLSB(Θi1

⊕k2)∥1=w̃c)∧Coll∧3-Coll]

≤ Pr
[ (

chopLSB
(
Θi1 ⊕ k2

)
∥1 = w̃c

)
∧ Coll∧ 3-Coll∧ CollX

(3)
β

]
+ Pr

[ (
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0
)
∧

(
chopLSB

(
Θi1 ⊕ k2

)
∥1 = w̃c

)
∧ Coll∧ 3-Coll∧ CollX

(3)
β

]
≤ Pr

[ (
chopLSB

(
Θi1 ⊕ k2

)
∥1 = w̃c

)
∧ Coll∧ 3-Coll∧ CollX

(3)
β

]
+ Pr

[ (
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0
)
∧

(
chopLSB

(
Θi1 ⊕ k2

)
∥1 = w̃c

)
∧ Coll∧ 3-Coll∧ CollX

(3)
β ∧ Eβ

]
+ Pr

[ (
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0
)
∧

(
chopLSB

(
Θi1 ⊕ k2

)
∥1 = w̃c

)
∧ Coll∧ 3-Coll∧ CollX

(3)
β ∧ Eβ

]
. (5.21)
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We break this down into three manageable chunks:

E.1 := Pr
[ (

chopLSB
(
Θi1 ⊕ k2

)
∥1 = w̃c

)
∧ Coll∧ 3-Coll∧ CollX

(3)
β

]
,

E.2 := Pr
[ (

chopLSB
(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0
)

∧
(
chopLSB

(
Θi1 ⊕ k2

)
∥1 = w̃c

)
∧ Coll∧ 3-Coll∧ CollX

(3)
β ∧ Eβ

]
,

E.3 := Pr
[ (

chopLSB
(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0
)

∧
(
chopLSB

(
Θi1 ⊕ k2

)
∥1 = w̃c

)
∧ Coll∧ 3-Coll∧ CollX

(3)
β ∧ Eβ

]
.

1. In the sub-event (E.1), since the equation chopLSB
(
Θi1 ⊕ k2

)
∥1 = w̃c is

non-trivial, it can be bound by probability 2/2n using the randomness
of k2, and CollX

(3)
β holds with probability at most 2ℓ/2n. Thus, (E.1)

can be bound by
4ℓ/22n. (5.22)

2. We first consider the case when li1 = li2 + 1 and NEQi1i2 = {li1} in
(E.2). Since xi1 [li1 ] = x̃a, it boils the event(
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0
)

∧
(
chopLSB

(
Θi1 ⊕ k2

)
∥1 = w̃c

)
down to the following system of equa-

tions:

ỹa = 0n,

2li1 yi1 [1]⊕ 2li1−1yi1 [2]⊕ . . .⊕ 2yi1 [li1 ]⊕ k2 = w̃c. (5.23)

As the equation chopLSB
(
Θi1 ⊕ k2

)
∥1 = w̃c is non-trivial, its probabil-

ity can be at most 2/2n. Moreover, the probability that xi1 [li1 ] = x̃a is
bounded above by 1/2n (since the number of choices for a is 1). Thus,
this case of (E.2) can be bound by 2/22n.
We next consider the case when li1 > li2 in (E.2). As Eβ holds, yi1 [li1 ]

is not fresh. However, as Coll, 3-Coll and CollX
(3)
β also do not hold, at

least one of the variables yi1 [⋆] must be fresh, i.e. ∃ α ∈ NEQi1i2 \ {li1}
such that yi1 [α] is fresh. Without loss of generality, let us assume that
yi1 [1] is fresh. Given all other random variables yi1 [⋆] and yi2 [⋆] in

yi1 [1]⊕ yi1 [2]⊕ . . . yi1 [li1 ]⊕ yi2 [1]⊕ yi2 [2]⊕ . . .⊕ yi2 [li2 ] = 0n,

2li1 yi1 [1]⊕ 2li1−1yi1 [2]⊕ . . . 2yi1 [li1 ]⊕ k2 = w̃c, (5.24)
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we obtain yi1 [1] = d and 2li1 yi1 [1] ⊕ k2 = d′, for constants d and d′.
Hence,

Pr[Eqn. 5.24 holds ] ≤ 1
2n(2n − 2ℓ)

≤ 8
22n , assuming ℓ ≤ 2n−2.

Combining the above bounds the probability of (E.2) by

10
22n . (5.25)

3. In the event (E.3), it is easy to see that yi1 [li1 ] is fresh. Hence, given all
other random variables yi1 [⋆] and yi2 [⋆] in Eqn. (5.24), the system is
reduced to yi1 [li1 ] = d, 2yi1 [li1 ]⊕ k2 = d′ for some constants d and d′.
Hence, the probability of (E.3) has an upper bound of

4
2n(2n − 2ℓ)

≤ 8
22n , (5.26)

where the last inequality follows as ℓ ≤ 2n−1.

Varying over all possible choices of i1 ̸= i2 in [q] and c ∈ [p] and combin-
ing Eqn.s (5.21), (5.22), (5.25) and (5.26) gives

Pr[(1)] ≤ (4.5 + l)q2p
22n . (5.27)

Bounding (2): This is symmetric to (1). Hence, it can be similarly bounded:

Pr[(2)] ≤ (4.5 + l)q2p
22n . (5.28)

Therefore, from Eqn.s (5.27) and (5.28),

Pr[Bad∗3 ] = Pr[(1)] + Pr[(2)] ≤ (9 + 2l)q2p
22n . (5.29)

Bounding Bad∗4. This event can be split into the following two sub-events:

(1) :
{
∃ i ∈ [q], b, c ∈ [p] :

(
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0
)

∧ (Ti ⊕ ṽb = z̃c) ∧ Coll∨ 3-Coll
}

,

(2) :
{
∃ i ∈ [q], b, c ∈ [p] :

(
chopLSB

(
Θi1 ⊕ k2

)
∥1 = chopLSB

(
Θi2 ⊕ k2

)
∥1
)

∧ (Ti ⊕ z̃c = ṽb) ∧ Coll∨ 3-Coll
}

.

Bounding (1): We fix a message Mi consisting of li blocks. We also fix the
indices b and c. Now, we analyze the probability of the event in two cases:
(I) The ith construction query occurs after the bth and cth primitive queries.
(II) At least one of the primitive queries appears after the ith construction
query.
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Case I: As Ti is distributed uniformly at random and since the distribution
of k2 is independent of all the other random variables, we bound the
probability of the event by 1/22n. Varying over all possible choices of
i ∈ [q] and b, c ∈ [p], we have

Pr[Bad∗4 ] ≤
qp2

22n in case (I). (5.30)

Case II: Suppose the bth primitive query is the latest.

(a) If the primitive query is in the forward direction, then ṽb is ran-
domly distributed. Hence by the randomness of k2 and ṽb, we bound
the probability of the event to at most 2/2n. Varying over all possible
choices of i ∈ [q] and b, c ∈ [p], we have

Pr[Bad∗4 ] ≤
2qp2

22n in case (IIa). (5.31)

(b) If the bth primitive query is in the inverse direction, then ũb is
random. We bound the event Bad∗4 given the complement of the event

E :
{
|{(Ti, ṽb, z̃c) ∈ [q]× [p]× [p] : Ti = ṽb ⊕ z̃c}| ≥

qp2

2n +
√

3nqp2
}

.

As Pr[Bad∗4 ] ≤ Pr[Bad∗4 | E] + Pr[E] and as Pr[E] ≤ 2/2n according to
the sum-capture Corollary 5, for a fixed choice of i, b and c such that
Ti = ṽb ⊕ z̃c, the probability of the event chopLSB (Σi ⊕ k2) ∥0 = ũb is
at most 1/2n by the randomness of k2. As the number of choices for i,
b and c is at most qp2/2n +

√
3nqp2,

Pr[Bad∗4 ] ≤
qp2

22n +

√
3nqp2

2n +
2
2n in case (IIb). (5.32)

The analysis is exactly the same when the cth primitive query is the
latest. Therefore,

Pr[Bad∗4 ] ≤
qp2

22n +

√
3nqp2

2n +
2
2n . (5.33)

Bounding (2): The analysis for bounding this sub-event is exactly identical to
that of Bad∗4 . Thus

Pr[Bad∗4 ] ≤
2qp2

22n +
2
√

3nqp2

2n +
4
2n . (5.34)
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Bounding Bad∗5. We again begin by partitioning the event into two sub-events:

(1) :
{
∃ i1 ̸= i2 in [q] :

(
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0
)

∧
(
Ti1 = Ti2

)
∧ Coll∨ 3-Coll

}
(2) :

{
∃ i1 ̸= i2 in [q] :

(
chopLSB

(
Θi1 ⊕ k2

)
∥0 = chopLSB

(
Θi2 ⊕ k2

)
∥1
)

∧
(
Ti1 = Ti2

)
∧ Coll∨ 3-Coll

}
.

Bounding (1): For the two fixed distinct messages Mi1 and Mi2 , the event
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0 is reduced to the following

equations:

yi1 [1]⊕ yi1 [2]⊕ . . .⊕ yi1 [li1 ]⊕ yi2 [1]⊕ yi2 [2]⊕ . . .⊕ yi2 [li2 ] = 0n. (5.35)

Without loss of generality, assume li1 ≥ li2 . The probability of the event is
zero for li1 ≤ 1. Thus, we assume li1 ≥ 2. As before, we determine an index
β ∈ [li1 − 1] as follows: if li1 > li2 , then β = li1 . If li1 = li2 and NEQi1i2 = {li1},
then the probability of the event is again zero. So we set β = maxNEQi1i2
when li1 = li2 . Note the following event:

CollX
(4)
β :

{ (
∃ β1 ∈ [li1 ] : β1 ̸= β, xi1 [β] = xi1 [β1]

)
∨
(
∃ β2 ∈ [li2 ] such that xi1 [β] = xi2 [β2]

) }
.

Therefore, Pr
[
chopLSB

((
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0
)
∧ Coll

∧ 3-Coll
]
≤ Pr

[
CollX

(5)
β

]
︸ ︷︷ ︸

E.4

+

Pr
[
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0∧ Coll∧ 3-Coll∧ CollX

(5)
β

]
︸ ︷︷ ︸

E.5

(5.36)

Due to the randomness of k0 and k1, the first term (i.e. E.4) in Eqn. (5.36)
is bound by (ℓ− 1 + ℓ)/2n ≤ 2ℓ/2n. We split the analysis of E.5 into the
following two cases:

Case I: When li1 = li2 + 1 and NEQi1i2 = {li1}, if xi1 [li1 ] = x̃a for some
a ∈ [p], then ỹa = 0n. Therefore, the event occurs with a probability
of at most 1/2n due to the randomness of k0 and k1 (note that the
number of choices for x̃a is 1). On the other hand, if xi1 [li1 ] is fresh,
then yi1 [li1 ] is freshly sampled and hence for this random variable,
the rank 1 equation chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0 en-

sures a probability bound of 1/(2n − 2ℓ), by the rank argument (i.e.
Lemma 25).
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Case-II: When li1 ≥ li2 + 2, at least one β ∈ {li2 + 1, . . . , li1} can be certainly
found such that xi1 [β] is fresh and hence yi1 [β] is freshly sampled. For
this random variable yi1 [β], the rank 1 equation chopLSB

(
Σi1 ⊕ k2

)
∥0 =

chopLSB
(
Σi2 ⊕ k2

)
∥0 ensures a probability bound of 1/(2n − 2ℓ), by

the rank argument (i.e. Lemma 25).

Combining the above two cases and by assuming ℓ ≤ 2n−2gives

Pr
[
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0∧ Coll∧ 3-Coll∧ CollX

(5)
β

]
≤ 5

2n . (5.37)

Therefore from Eqn.s (5.36) and (5.37), and by the assumption ℓ ≤ 2n−2, we
have

Pr
[
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0∧ Coll∧ 3-Coll

]
≤ 2ℓ+ 5

2n .
(5.38)

Finally, from Eqn. (5.39), the fact that the event Ti1 = Ti2 is independent of
the event

(
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0
)
∧ Coll∧ 3-Coll, and

that for a fixed choice of i1 and i2, the probability that Ti1 = Ti2 holds is 2−n,
we have

Pr [(1)]
= ∑

i1,i2

(
Pr
[
Ti1 = Ti2

]
·

Pr
[(
chopLSB

(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0
)
∧ Coll∧ 3-Coll

] )
≤

1
2 q2(2ℓ+ 5)

22n ≤ q2ℓ+ 2.5q2

22n . (5.39)

Bounding (2): This event is symmetric to the first, and thus has the same
bound:

Pr [(2)] ≤ q2ℓ+ 2.5q2

22n . (5.40)

Therefore, from Eqn.s (5.39) and (5.40), we have

Pr[Bad∗5 ] = Pr[(1)] + Pr[(2)] ≤ 2q2ℓ+ 5q2

22n . (5.41)

Bounding Bad∗6. Consider the sub-event
(
chopLSB

(
Σi1 ⊕ k2

)
∥0 = xi1 [α]

)
∧(

chopLSB
(
Θi1 ⊕ k2

)
∥1 = xi3 [β]

)
∧ Coll∨ 3-Coll. This event can be expanded
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in terms of XOR operations on the hash permutation outputs as follows
(where α ∈ [li2 ] and β ∈ [li3 ] are arbitrary indices):

Pr [Bad∗6 ] = Pr
[ (

chopLSB
(
Σi1 ⊕ k2

)
∥0 = Mi2 [α]⊕ 2αk0 ⊕ 22αk1

)
∧
(
chopLSB

(
Θi1 ⊕ k2

)
∥1 = Mi3 [β]⊕ 2βk0 ⊕ 22βk1

)
∧ Coll∨ 3-Coll

]
≤ Pr

[
π
(

Mi1 [1]
)
⊕ . . .⊕ π

(
Mi1 [li]

)
= Mi2 [α]⊕ 2αk0 ⊕ 22αk1

]
×

Pr
[
2li π

(
Mi1 [1]

)
⊕ . . .⊕ 2π

(
Mi1 [li]

)
= Mi3 [β]⊕ 2βk0 ⊕ 22βk1

]
.

For fixed indices i1, i2, i3, the above probability is clearly (2−n)
2, by the

randomness of keys k0 and k1. Similarly, the probability of occurrence of
the remaining four sub-events is also (2−n)

2. Counting the choices for each
index thus gives

Pr[Bad∗6 ] ≤
q3l2 + 2qp2 + 2q3

22n . (5.42)

Bounding RC∗Σ. Recall the offline phase of the ideal oracle (Fig.s 5.6-5.8).
Denote the number of elements removed from the construction transcript of
an adversary in step 3 of stage II by s1, and the number of elements removed
in step 2 of stage III by s2. Thus q̂0 := q− (s1 + s2 + f ) denotes the number
of elements left in Σ̃ at the end of the offline phase, f as in step 10 of stage
III. Also let p̂0 :=

∣∣Dom (π0)∣∣, where the set Dom
(
π0) is as it stands at the

end of the offline phase. Thus p̂0 = p + (s1 + s2) (since p is the number of
primitive queries with LSB 0). q̂1 and p̂1 can be similarly defined. The bad
event occurs if for some i′ ̸= i in [q̂0], one of the following occurs:

(1) :
{
∃ c ∈ [ p̂0] (chopLSB (Σi ⊕ k2) ∥0 = chopLSB (Σi′ ⊕ k2) ∥0) ∧ (zi = z̃c)

}
(2) :

{
∃ j ∈ [q̂0] (chopLSB (Σi ⊕ k2) ∥0 = chopLSB (Σi′ ⊕ k2) ∥0) ∧

(
zi = zj

)}
,

where vi
$←− {0, 1}n \ Ran(π0).

Bounding (1): The sub-event zi = z̃c, i.e. vi = Ti ⊕ z̃c is a result of the
lazy sampling of vi, independent of the sub-event chopLSB (Σi ⊕ k2) ∥0 =
chopLSB (Σi′ ⊕ k2) ∥0. For a particular choice of i,i′ and c,

Pr
[
(chopLSB (Σi ⊕ k2) ∥0 = chopLSB (Σi′ ⊕ k2) ∥0) ∧ Coll∧ 3-Coll

]
× Pr [zi = z̃c] ≤

2ℓ+ 5
2n × Pr [zi = z̃c] (as already computed in Eqn. (5.39))

≤ 2ℓ+ 5
2n · 1

2n − q̂0
,
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where ℓ denotes the maximum number of message blocks amongst all q
queries. Summing over all choices of i, i′ and c bounds the probability to

q̂0(q̂0 − 1) p̂1 · (2ℓ+ 5)
22n . (5.43)

Bounding (2): We split this bad event into the following cases:

Case I: Suppose i′ ̸= j. As in (1), the sub-event zi = zj is a result of the lazy
sampling of zi, independent of the sub-event chopLSB (Σi ⊕ k2) ∥0 =
chopLSB (Σi′ ⊕ k2) ∥0. Thus, the probability of this case for a particular
choice of i,i′ and c is

Pi,i′,c = Pr[chopLSB (Σi ⊕ k2) ∥0 = chopLSB (Σi′ ⊕ k2) ∥0∧Coll∧ 3-Coll]

×Pr[zi = zj] ≤
2ℓ+ 5

2n × 1

2n − q̂0
(as already computed in Eqn. (5.39))

≤ 4ℓ+ 10
22n (since q̂0 ≤ 2n−1).

Summing over all possible choices of i,i′ and c, we obtain an upper
bound

q̂0(q̂0 − 1)(q̂0 − 2) · 4ℓ+ 10
22n . (5.44)

Case II: Now suppose i′ = i. vi
$←− {0, 1}n \ Ran(π0) is thus sampled first

and zi′ is then set to vi. This case eventually boils down to the joint
event

(
chopLSB (Σi ⊕ k2) ∥0 = chopLSB (Σi′ ⊕ k2) ∥0

)
∧
(
zi = zj

)
. If Ti =

Ti′ , then zi = zj is implied by the first sub-event. Therefore,

Pr
[
Ti = Ti′ ∧ (chopLSB (Σi ⊕ k2) ∥0 = chopLSB (Σi′ ⊕ k2) ∥0)

∧ Coll∧ 3-Coll
]

= Pr
[
(chopLSB (Σi ⊕ k2) ∥0 = chopLSB (Σi′ ⊕ k2) ∥0) ∧ Coll∧ 3-Coll

| Ti = Ti′
]
· Pr [Ti = Ti′ ]

≤ 2ℓ+ 5
2n × Pr [Ti = Ti′ ] (computed in Eqn. (5.39)) ≤ 2ℓ+ 5

22n , (5.45)

as all the q̂0 messages are fixed given T1, . . . , Tq̂0 . On the other hand, if
Ti ̸= Ti′ then zi ̸= vi′ ⊕ Ti′ and hence the probability becomes zero.
Summing over all (i, i′, j) with i < i′, the probability for this case is
bounded by

q̂0(q̂0 − 1)
2

· 2ℓ+ 5
22n . (5.46)
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Combining cases I and II, we have

Pr[(2)] ≤ q̂0(q̂0 − 1)(2q̂0 − 3) · 2ℓ+ 5
22n . (5.47)

Therefore, Pr[RC∗Σ] ≤ Pr[(1)] + Pr[(2)]

≤ q̂0(q̂0 − 1) · (2ℓ+ 5)
22n

(
2q̂0 − 3 + p̂1

)
≤ 2q(q− 1)(2ℓ+ 5)

22n (q + p) , (5.48)

since q̂0 ≤ q and p̂1 ≤ 2p.

Bounding RC∗Θ. The event RC∗Θ can be bound identically as RC∗Σ. Hence,

Pr[RC∗Θ] ≤
2q(q− 1)(2ℓ+ 5)

22n (q + p) . (5.49)

The final bound follows from Eqn.s (5.2)–(5.49).

5.5. Analysis of Good Transcripts

In this section, we show that realizing a good transcript τ = (τ̂c, τp) is
almost as likely in the real world as in the ideal world. For each i ∈ F , both
chopLSB (Σi ⊕ k2) ∥0 and chopLSB (Θi ⊕ k2) ∥1 are fresh for elements (Σi, Θi)
in Σ̃× Θ̃, as shown in line 9 of stage II of Fig. 5.7. Due to the changes made
in lines 2 and 6 of the same stage, repeating elements of Σ̃ (resp. Θ̃) are
moved to τp, and each such index i is added to I . Since these alterations do
not create any inconsistencies, the cardinality of τp increases. Assuming that
s1 + s2 elements are added to τp in step 3 and t1 + t2 elements in step 7, the
size of the modified transcript τ′p is p′ := 2p + s1 + s2 + t1 + t2 = p′0 + p′1
(where p′0 := p + s1 + s2 and p′1 := p + t1 + t2). Therefore, the number of
elements in the modified collections Σ̃ and Θ̃, which we denote by Σ̃∗ and
Θ̃∗ (resp.), is q′ := q− s1 − s2 − t1 − t2 at the end of stage II.
Moreover, as the transcript τ is good, for every i ̸∈ F ⊔ I , exactly one
of chopLSB (Σi ⊕ k2) ∥0 and chopLSB (Θi ⊕ k2) ∥1 is fresh in (Σ̃∗, Θ̃∗). Thus,
there are exactly (q′ + f ) fresh blocks (2 f fresh blocks corresponding to all
indices belonging to F and (2q′ − 2 f )/2 additional fresh blocks), and q′ − f
repeated blocks.
Let P c be the set of all indices corresponding to queries with one of their
hash output blocks colliding with one of the hash primitive inputs. We define
a relation ∼ on Qc := [q] \ F ⊔ I ⊔ P c as i1 ∼ i2 if

(
chopLSB

(
Σi1 ⊕ k2

)
∥0
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= chopLSB
(
Σi2 ⊕ k2

)
∥0
)
∨
(
chopLSB

(
Θi1 ⊕ k2

)
∥1 = chopLSB

(
Θi2 ⊕ k2

)
∥1
)
,

where Σi1 is an element of Σ̃∗ and Θi1 is an element of Θ̃∗. Note that as τ is
good, for any i1 ∼ i2, exactly one of the following two occurs:

(i) chopLSB
(
Σi1 ⊕ k2

)
∥0 = chopLSB

(
Σi2 ⊕ k2

)
∥0,

(ii) chopLSB
(
Θi1 ⊕ k2

)
∥1 = chopLSB

(
Θi2 ⊕ k2

)
∥1.

Furthermore, if i1 and i2 are related through (i), then any other index j ∈ Qc

cannot be related to i1 or i2 through (ii), and vice versa. Clearly, ∼ is an
equivalence relation. Thus, it partitions Qc, which in turn induces a partition
on Σ̃∗ and Θ̃∗. Let r0 be the number of equivalence classes of Σ̃∗ and r1
the number of equivalence classes of Θ̃∗. Let d0

i be the number of elements
in the ith equivalence class of Σ̃∗ and d1

i the number of elements in the ith

equivalence class of Θ̃∗. For each equivalence class of Σ̃∗ or Θ̃∗, we sample
an output for the least-indexed element, thus determining the (common)
output for all other elements in that class (see lines 4 and 11 of stage III in
Fig. 5.8). Due to the definition of S in line 12 of stage II, and due to lines
4, 5, 11 and 12 of stage III ∀ i ∈ [q′], vi ⊕ zi = Ti holds. Also, RCΣ or RCΘ
are not set to 1 (as τ is good), ensuring no range collision for two different
inputs. This proves the following result:

For a good transcript τ, the q′ tuples of input and output blocks of π0 and π1 are
permutation compatible, i.e. Σ̃∗ is permutation compatible with Ran(Π0)∪Ran(π0)

and Θ̃∗ is permutation compatible with Ran(Π1) ∪ Ran(π1).
This is useful for computing the ratio of the real to ideal interpolation

probabilities of a good transcript τ through the following lemma:

Lemma 16. Let τ = (τ̂q, τp) be a good transcript. Then

Pr [Dre = τ]

Pr [Did = τ]
≥ 1− 16qp2 + 16q2p + 4q3

22n .

proof. Ideal Interpolation Probability. Observe that the keys (k0, k1, k2),
the response tuple T̃, and the (lazily sampled) π0, π1, Π0 and Π1 are jointly
independent as each Ti is distributed independent of all the previously
sampled values of T, all outputs of π0 and π1, the keys k0, k1 and k2 as
well as Π0 and Π1 (in the offline phase of the game). Let B denote the event{(

Π0(chopLSB (Σi ⊕ k2) ∥0) = vi
)
∧
(
Π1(chopLSB (Θi ⊕ k2) ∥1) = zi

)
∀i ∈ F

}
.
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Therefore,

Pr[Did = τ] =
1

23n ·
1

2nq ·
1

(2n)p′0

· 1
(2n)p′1

· Pr
[
Π0(chopLSB (Σi ⊕ k2) ∥0) = vi

∧ Π1(chopLSB (Θi ⊕ k2) ∥1) = zi ∀i ∈ [q]
]

=
1

23n ·
1

2nq ·
1

(2n)p′0

· 1
(2n)p′1

· Pr[B] · Pr
[
Π0(chopLSB (Σi ⊕ k2) ∥0) = vi∧

Π1(chopLSB (Θi ⊕ k2) ∥1) = zi ∀i ∈ Qc | B
]

=
1

23n ·
1

2nq ·
1

(2n)p′0

· 1
(2n)p′1

· 1
|S| ·

1
(2n − f − p′0)r0

· 1
(2n − f − p′1)r1

. (5.50)

Recall here that Π0 and Π1 are defined in two steps:

1. Elements of S are sampled randomly for all free indices i ∈ F (line 13
of stage II in Fig. 5.7) and thus Pr[B] = |S|−1.

2. The remaining input-output values of Π0 and Π1 are defined through
lazy sampling (lines 4, 5, 11 and 12 of stage III in Fig. 5.8).

In the second step of the sampling process, the oracle samples permutation
outputs for r0 and r1 distinct values in such a manner that neither do they
collide with the values sampled in the first step, nor with the values in the
modified list τ′p. Hence, we have

Pr
[ (

Π0(chopLSB (Σi ⊕ k2) ∥0) = vi

)
∧
(
Π1(chopLSB (Θi ⊕ k2) ∥1) = zi

)
∀i ∈ Qc |B

]
=

1
(2n − f − p′0)r0

· 1
(2n − f − p′1)r1

.

Real Interpolation Probability. From the claim (5.5) stated previously in
this section, it is obvious that Σ̃∗ is permutation compatible with Ran(Π0) ∪
Ran(π0) and Θ̃∗ is permutation compatible with Ran(Π1) ∪ Ran(π1). There-
fore,

r0

∑
i=1

d0
i +

r1

∑
i=1

d1
i = |Qc| = (q′ − f ), (5.51)

since the number of non-fresh blocks is (q′ − f ). We define two sets:

U0 := {i ∈ Qc : chopLSB (Σi ⊕ k2) ∥0 is fresh in Σ̃∗},
U1 := {i ∈ Qc : chopLSB (Θi ⊕ k2) ∥1 is fresh in Θ̃∗}.

Clearly, u0 := |U0| = r0 + f +
r1

∑
i=1

d1
i , u1 := |U1| = r1 + f +

r0

∑
i=1

d0
i .
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One can easily verify that the number of distinct inputs to πb (b ∈ {0, 1}) is
ub := ub + p′b. Hence,

Pr[Dre = τ] =
1

23n ·
1

(2n)u0

· 1
(2n)u1

. (5.52)

Computing the ratio. From Eqn.s (5.52) and (5.50),

Pr[Dre = τ]

Pr[Did = τ]

(2)
=

2nq ·
(
(2n)p

)2 · (2n − f − p′0)r0 · (2n − f − p′1)r1 · |S|
(2n)u0 · (2n)u1

(3)
≥ 2n(q− f ) · A1 · A2 ·

(
1−

4 f p′0p′1 + 4 f 2(p′0 + p′1) + 4 f 3

22n

)
,

where A1:=
(

(2n−p′0) f ·(2
n− f−p′0)r0

(2n−p)u1+s1

)
, A2:=

(
(2n−p′1) f ·(2

n− f−p′1)r1
(2n−p)u2+t1

)
. (5.53)

Note that (3) follows from p′0 = p + s1 and p′1 = p + t1 and the following
result from Corollary 5:

|S| ≥
(2n − p′0) f · (2n − p′1) f

2n f ·
(

1−
4 f p′0p′1 + 4 f 2(p′0 + p′1) + 4 f 3

22n

)
︸ ︷︷ ︸

∆

,

where we assume that f + p′0 ≤ 2n−1 and f + p′1 ≤ 2n−1. Furthermore,

A1 =

 (2n − p′0) f+r0

(2n − p)s1 · (2n − p′0) f+r0 · (2n − p′0 − f − r0) r1
∑

i=1
d1

i


and

A2 =

 (2n − p′1) f+r1

(2n − p)t1 · (2n − p′1) f+r1 · (2n − p′1 − f − r1) r0
∑

i=1
d0

i


Therefore, from Eqn. (5.53),

P =
2n(q− f ) · ∆

(2n − p)s1 · (2n − p′0 − f − r0) r1
∑

i=1
d1

i

· (2n − p)t1 · (2n − p′1 − f − r1) r0
∑

i=1
d0

i

.

Due to Eqn. (5.51), the total number of terms in the denominator of P is

r0

∑
i=1

d0
i +

r1

∑
i=1

d1
i + s1 + t1 = q′ − f + s1 + t1 = q− f ,
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as q′ = q − s1 − t1. Not only does this number match exactly with the
number of terms in its numerator (except the constant ∆), but also each term
of the numerator (except ∆) is greater than each term of the denominator.
Thus the term-by-term ratio is at least 1 and hence P ≥ ∆. Finally, the
inequalities f ≤ q, p′0 ≤ 2p and p′1 ≤ 2p prove the result.

5.6. Summary

This chapter gives a tight security bound of the public permutation-based
pPMAC Plus construction. Unlike PMAC Plus, which is tightly secure for
23n/4 queries, the public permutation-based pPMAC Plus is tightly secure
for 22n/3 queries. Similar to pPMAC Plus, analysing the security of the pub-
lic permutation-based LightMAC Plus construction is an interesting open
problem.
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Construction and Primitive Queries

1 : choose distinct (Mi[1]∥Mi[2]) ∈ {0, 1}2n ∀i ∈ [22n/3]

2 : Ti ← pPMAC Plus (Mi[1]∥Mi[2]) ∀i ∈ [22n/3].

3 : choose distinct ũb ∈ {0, 1}n ∀b ∈ [22n/3]

4 : ṽb ← π1 (ũb) ∀b ∈ [22n/3].

5 : choose distinct w̃c ∈ {0, 1}n ∀c ∈ [22n/3]

6 : z̃c ← π2 (w̃c) ∀c ∈ [22n/3].

7 : {x̃1, x̃2, . . . , x̃22n/3+1} ← {ũb}22n/3

b=1 ∪ {w̃c}22n/3

c=1 .

8 : ỹa ← π0 (x̃a) , a ∈ [22n/3+1].

Backward Attack

1 : S1 ← ϕ.

2 : ∀(i, b, c) ∈ [22n/3]× [22n/3]× [22n/3], if ṽb ⊕ z̃c = Ti

3 : then S1 ← S1 ∪ {(i, b, c)}
4 : S2 ← ϕ.

5 : ∀(a1, a2, (i, b, c)) ∈ [22n/3+1]× [22n/3+1]× S1,

6 : compute Σ̂(a1,a2,(i,b,c)) ← ỹa1 ⊕ ỹa2

7 : compute Θ̂(a1,a2,(i,b,c)) ← 22 · ỹa1 ⊕ 2 · ỹa2 .

8 : if Σ̂(a1,a2,(i,b,c))
2 ⊕ ũb = Θ̂(a1,a2,(i,b,c))

2 ⊕ w̃c then

9 : k̂(a1,a2,(i,b,c))
2 ← Σ̂(a1,a2,(i,b,c))

2 ⊕ ũb

10 : S2 ← S2 ∪ {(a1, a2, (i, b, c))}.
11 : ∀(a1, a2, (i, b, c)) ∈ S2

12 : compute k̂(a1,a2,(i,b,c))
0 ← (23 ⊕ 24)−1 (2 ·Mi[1]⊕Mi[2]⊕ 2 · x̃a1 ⊕ x̃a2) ,

13 : compute k̂(a1,a2,(i,b,c))
1 ← (22 ⊕ 23)−1 (22 ·Mi[1]⊕Mi[2]⊕ 22 · x̃a1 ⊕ x̃a2

)
.

Removing False Positives

1 : T′i ← pPMAC Plus ((Mi[1]⊕ 1)∥Mi[2]) ∀i ∈ [22n/3].
2 : K ← ϕ

3 : ∀(a1, a2, (i, b, c)) ∈ S2,

4 : if T′i =pPMAC Plus

(
k̂
(a1,a2,(i,b,c))
0 ,k̂

(a1,a2,(i,b,c))
1 ,k̂

(a1,a2,(i,b,c))
2

)
((Mi [1]⊕1)∥Mi [2])∀i∈[22n/3],

5 : then K ← K ∪ {k̂(a1,a2,(i,b,c))
0 , k̂(a1,a2,(i,b,c))

1 , k̂(a1,a2,(i,b,c))
2 }.

6 : return K.

Figure 5.3.: An attack on pPMAC Plus, where a computationally unbounded adver-
sary makes O

(
22n/3

)
queries to the construction and primitives.
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Real-Online

1 : Dom(π0)← ϕ,Dom(π1)← ϕ,Ran(π0)← ϕ,Ran(π1)← ϕ.
2 : ∀i ∈ [q], on query Mi, output Ti ← pPMAC Plus∗(Mi).

3 : ∀b ∈ [p] such that ũb = ûb∥0, on query (ũb,+) to π0,

4 : output ṽb
$←− {0, 1}n \ Ran(π0) ∪ Ran(π1).

5 : Dom(π0)← Dom(π0) ∪ {ũb}.
6 : Ran(π0)← Ran(π0) ∪ {ṽb}.
7 : ∀c ∈ [p] such that w̃c = ŵc∥1, on query (w̃c,+) to π1,

8 : output z̃c
$←− {0, 1}n \ Ran(π0) ∪ Ran(π1).

9 : Dom(π1)← Dom(π1) ∪ {w̃c}.
10 : Ran(π1)← Ran(π1) ∪ {z̃c}.
11 : ∀a ∈ [p], on query (ỹa,−) to π such that

ỹa ̸∈ Ran(π0) ∪ Ran(π1), output x̃a
$←− {0, 1}n \

(
Dom(π0) ∪Dom(π1)

)
.

12 : if LSB(x̃a) = 0,

13 : then Dom(π0)← Dom(π0) ∪ {x̃a},Ran(π0)← Ran(π0) ∪ {ỹa}.
14 : else Dom(π1)← Dom(π1) ∪ {x̃a},Ran(π1)← Ran(π1) ∪ {ỹa}.
15 : Dom(π)← Dom(π0) ⊔Dom(π1),Ran(π)← Ran(π0) ⊔ Ran(π1).

Figure 5.4.: Description of the online phase of the real world. π0 is the restriction of
the permutation π to the domain {û∥0 : û ∈ {0, 1}n−1}, and similarly,
π1 is the restriction of the permutation π to the domain {ŵ∥1 : ŵ ∈
{0, 1}n−1}.
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Ideal-Online

1 : Dom(π0)← ϕ,Dom(π1)← ϕ,Ran(π0)← ϕ,Ran(π1)← ϕ.

2 : ∀i ∈ [q], on query Mi, output Ti
$←− {0, 1}n.

3 : ∀b ∈ [p] such that ũb = ûb∥0, on query (ũb,+) to π,

4 : output ṽb
$←− {0, 1}n \ Ran(π0) ∪ Ran(π1).

5 : Dom(π0)← Dom(π0) ∪ {ũb}.
6 : Ran(π0)← Ran(π0) ∪ {ṽb}.
7 : ∀c ∈ [p] such that w̃c = ŵc∥1, on query (w̃c,+) to π,

8 : output z̃c
$←− {0, 1}n \ Ran(π0) ∪ Ran(π1).

9 : Dom(π1)← Dom(π1) ∪ {w̃c}.
10 : Ran(π1)← Ran(π1) ∪ {z̃c}.
11 : ∀a ∈ [p], on query (ỹa,−) to π such that

ỹa ̸∈ Ran(π0) ∪ Ran(π1), output x̃a
$←− {0, 1}n \

(
Dom(π0) ∪Dom(π1)

)
.

12 : if LSB(x̃a) = 0,

13 : then Dom(π0)← Dom(π0) ∪ {x̃a},Ran(π0)← Ran(π0) ∪ {ỹa}.
14 : else Dom(π1)← Dom(π1) ∪ {x̃a},Ran(π1)← Ran(π1) ∪ {ỹa}.
15 : Dom(π)← Dom(π0) ⊔Dom(π1),Ran(π)← Ran(π0) ⊔ Ran(π1).

Figure 5.5.: Description of the online phase of the ideal world. π0 is the restriction of
the permutation π to the domain {û∥0 : û ∈ {0, 1}n−1}, and similarly,
π1 is the restriction of the permutation π to the domain {ŵ∥1 : ŵ ∈
{0, 1}n−1}.
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Ideal-Offline: Stage I

1 : (k0, k1, k2)
$←− ({0, 1}n)3.

2 : if ∃i ∈ [q], α ̸= β in [li] and a1 ̸= a2 for which x̃a1 , x̃a2 ∈ Dom(π) :(
Mi[α]⊕ 2αk0 ⊕ 22αk1 = x̃a1

)
∧
(

Mi[β]⊕ 2βk0 ⊕ 22βk1 = x̃a2

)
,

then Coll← 1, ⊥ .

3 : if ∃i1, i2, i3 ∈ [q], and distinct α1 ∈ [li1 ], α2 ∈ [li2 ], α3 ∈ [li3 ] :(
Mi1 [α1]⊕ 2α1 k0 ⊕ 22α1 k1 = Mi2 [α2]⊕ 2α2 k0 ⊕ 22α2 k1

)
∧
(

Mi1 [α1]⊕ 2α1 k0 ⊕ 22α1 k1 = Mi3 [α3]⊕ 2α3 k0 ⊕ 22α3 k1
)

,

then 3-Coll← 1, ⊥ .

4 : ∀i ∈ [q], (Σi, Θi)← pPMAC Plus-Hashπ
k0,k1,k2

(Mi). / ∗ Subroutine 5.1 ∗ /

5 : Σ̃←
{

Σ1, . . . , Σq
}

, Θ̃←
{

Θ1, . . . , Θq
}

.
6 : if ∃i1, i2, i3 ∈ [q] with i2 ̸= i1, i3 ̸= i1 :

(chopLSB(Σi1⊕k2)∥0=chopLSB(Σi2⊕k2)∥0)

∧ (chopLSB(Θi1⊕k2)∥1=chopLSB(Θi3⊕k2)∥1),

then Bad1 ← 1, ⊥ .

7 : if ∃i ∈ [q] :

chopLSB (Σi ⊕ k2) ∥0 ∈ Dom(π0) ∧ chopLSB (Θi ⊕ k2) ∥1 ∈ Dom(π1),

then Bad2 ← 1, ⊥ .

8 : if ∃i1 ̸= i2 ∈ [q] :
[(chopLSB(Σi1⊕k2)∥0=chopLSB(Σi2⊕k2)∥0)∧(chopLSB(Θi1⊕k2)∥1∈Dom(π1))]

∨[(chopLSB(Θi1⊕k2)∥1=chopLSB(Θi2⊕k2)∥1)∧(chopLSB(Σi1⊕k2)∥0∈Dom(π0))],

then Bad3 ← 1, ⊥ .

9 : if ∃i ∈ [q], b, c ∈ [p] :
[(chopLSB(Σi⊕k2)∥0=ũb)∧(Ti⊕ṽb=z̃c)]

∨[(chopLSB(Θi⊕k2)∥1=w̃c)∧(Ti⊕z̃c=ṽb)],

then Bad4 ← 1, ⊥ .

10 : if ∃ distinct i1, i2 ∈ [q] :
[(chopLSB(Σi1⊕k2)∥0=chopLSB(Σi2⊕k2)∥0)∧(Ti1=Ti2)]

∨[(chopLSB(Θi1⊕k2)∥1=chopLSB(Θi2⊕k2)∥1)∧(Ti1=Ti2)],

then Bad5 ← 1, ⊥ .

11 : if ∃i1, i2, i3 ∈ [q], b, c ∈ [p] and αin [li2 ] , β ∈ [li3 ] :
([chopLSB(Σi1⊕k2)∥0=xi2 [α]]∧[chopLSB(Θi1⊕k2)∥1=xi3 [β]])∨

([chopLSB(Σi1⊕k2)∥0=xi2 [α]]∧[chopLSB(Θi1⊕k2)∥1=w̃c])∨

([chopLSB(Σi1⊕k2)∥0=xi2 [α]]∧[chopLSB(Θi1⊕k2)∥1=chopLSB(Θi3⊕k2)∥1])∨

([chopLSB(Σi1⊕k2)∥0=ũb]∧[chopLSB(Θi1⊕k2)∥1=xi3 [β]])∨

([chopLSB(Σi1⊕k2)∥0=chopLSB(Σi1⊕k2)∥0]∧[chopLSB(Θi1⊕k2)∥1=xi3 [β]]),

then Bad6 ← 1, ⊥ .

12 : go to stage II .

Figure 5.6.: Stage I of the offline phase of the ideal oracle. The internal values xi[α]
are as defined in Eqn. (5.1).
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Ideal-Offline: Stage II

1 : ∀i ∈ [q] if (∃b ∈ [p] : chopLSB (Σi ⊕ k2) ∥0 = ũb)∨
(∃i2 ∈ [q] and α ∈ [li2 ] : chopLSB (Σi ⊕ k2) ∥0 = xi2 [α]) , then

2 : Σ̃← Σ̃ \ Σi and I ← I ∪ {i}.
3 : Dom(π1)← Dom(π1) ∪ {chopLSB (Θi ⊕ k2) ∥1}.
4 : Ran(π1)← Ran(π1) ∪ {Ti ⊕ ṽb}.
5 : ∀i ∈ [q]if (∃c ∈ [p] : chopLSB (Θi ⊕ k2) ∥1 = w̃c)∨

(∃i2 ∈ [q] and α ∈ [li2 ] : chopLSB (Θi ⊕ k2) ∥1 = xi2 [α]) , then

6 : Θ̃← Θ̃ \Θi and I ← I ∪ {i}.
7 : Dom(π0)← Dom(π0) ∪ {chopLSB (Σi ⊕ k2) ∥0}.
8 : Ran(π0)← Ran(π0) ∪ {Ti ⊕ z̃c}.
9 : F ← {i ∈ [q] \ I : (Σi ̸= Σi′) ∧ (Θi ̸= Θi′′) for any i′, i′′ ̸= i in [q] \ I}.

10 : f ← |F|.

11 : vi
$←− {0, 1}n \ Ran(π0) ∀i ∈ F .

12 : S ← {(vi, zi) ∈ {0, 1}n \ Ran(π0)× {0, 1}n \ Ran(π1) : vi ⊕ zi = Ti}i∈F .

13 : for (vi, zi)
$←− S :

14 : set Π0 (chopLSB (Σi ⊕ k2) ∥0)← vi,Π1 (chopLSB (Θi ⊕ k2) ∥1)← zi.

15 : Dom
(
Π0)← Dom

(
Π0) ∪ {chopLSB (Σi ⊕ k2) ∥0, } ,

Ran
(
Π0)← Ran

(
Π0) ∪ {vi}.

16 : Dom
(
Π1
)
← Dom

(
Π1
)
∪ {chopLSB (Θi ⊕ k2) ∥1} ,

Ran
(
Π0)← Ran

(
Π0) ∪ {vi}.

17 : go to stage III.

Figure 5.7.: Stage II of the offline phase of the ideal oracle.
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Ideal-Offline: Stage III

1 : ∀i ∈ [q],

Dom(π)← Dom(π0) ∪Dom(π1) ∪
{

Mi[α]⊕ 2αk0 ⊕ 22αk1 : α ∈ [li]
}

,

Ran(π)← Ran(π0) ∪ Ran(π1) ∪
{

π
(

Mi[α]⊕ 2αk0 ⊕ 22αk1
)

: α ∈ [li]
}

.

2 : ∀i ∈ [q] \ (F ⊔ I) such that ∃Σi′ ∈ Σ̃ with Σi = Σi′ ,

3 : if chopLSB (Σi ⊕ k2) ∥0 ̸∈ Dom(π) ∪Dom(Π0),

4 : then Π0 (chopLSB (Σi ⊕ k2) ∥0)← vi
$←− {0, 1}n \ Ran(Π0) ∪ Ran(π0)

and zi ← Ti ⊕ vi.

5 : else vi ← Π0 (chopLSB (Σi ⊕ k2∥ 0) and zi ← Ti ⊕ vi.

6 : Dom
(
Π0)← Dom

(
Π0) ∪ {chopLSB (Σi ⊕ k2) ∥0, } ,

Ran
(
Π0)← Ran

(
Π0) ∪ {vi}.

7 : Dom
(
Π1
)
← Dom

(
Π1
)
∪ {chopLSB (Θi ⊕ k2) ∥1} ,

Ran
(
Π1
)
← Ran

(
Π1
)
∪ {vi}.

8 : if zi ∈ Ran(Π1) ∪ Ran(π1), then RCΣ ← 1 ,

Π1 (chopLSB (Θi ⊕ k2) ∥1)← zi,⊥ .

9 : ∀i ∈ [q] \ (F ⊔ I) such that ∃Θi′′ ∈ Θ̃ with Θi = Θi′′ ,

10 : if chopLSB (Θi ⊕ k2) ∥1 ̸∈ Dom(π) ∪Dom(Π1),

11 : then Π1 (chopLSB (Θi ⊕ k2) ∥1)← zi
$←− {0, 1}n \ Ran(Π1) ∪ Ran(π1)

and zi ← Ti ⊕ zi.

12 : else zi ← Π1 (chopLSB (Θi ⊕ k2∥ 1) and vi ← Ti ⊕ zi.

13 : Dom
(
Π0)← Dom

(
Π0) ∪ {chopLSB (Σi ⊕ k2) ∥0, } ,

Ran
(
Π0)← Ran

(
Π0) ∪ {vi}.

14 : Dom
(
Π1
)
← Dom

(
Π1
)
∪ {chopLSB (Θi ⊕ k2) ∥1} ,

Ran
(
Π0)← Ran

(
Π0) ∪ {vi}.

15 : if vi ∈ Ran(Π0) ∪ Ran(π0), then RCΘ ← 1 ,

Π0 (chopLSB (Σi ⊕ k2) ∥0)← vi,⊥ .

16 : Dom(π)← Dom(π0) ⊔Dom(π1), Ran(π)← Ran(π0) ⊔ Ran(π1).

17 : Dom(Π)← Dom(Π0) ⊔Dom(Π1), Ran(Π)← Ran(Π0) ⊔ Ran(Π1).

Figure 5.8.: Stage III of the offline phase of the ideal oracle. Boxed statements denote
bad events. Whenever a bad event is set to 1, the game gets immediately
aborted (denoted ⊥) and returns the remaining values of the transcript
arbitrarily.
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Abstract

In CRYPTO’21, Shen et al. have proved in the ideal cipher model that
the Two-Keyed-DbHtS construction is secure up to 22n/3 queries in the multi-
user setting independent of the number of users, where the underlying
double-block hash function H of Two-Keyed-DbHtS is realized as the con-
catenation of two independent n-bit keyed hash functions (HKh,1,HKh,2) such
that each of the n-bit keyed hash functions is O(2−n) universal and regular.
They have also demonstrated the applicability of their result to the key-
reduced variants of DbHtS MACs, including 2K-SUM-ECBC, 2K-PMAC Plus
and 2K-LightMAC Plus without requiring domain separation techniques and
proved 2n/3-bit multi-user security of these constructions in the ideal cipher
model. Recently, Guo and Wang invalidated the security claim of Shen et
al.’s result by exhibiting three constructions, which are the instantiations of
the Two-Keyed-DbHtS framework, such that each of their n-bit keyed hash
functions is O(2−n) universal and regular, while the constructions them-
selves are secure only up to the birthday bound. In this work, we show a
sufficient condition on the underlying Double-block Hash ( DbH) function,
under which we prove 3n/4-bit multi-user security of the Two-Keyed-DbHtS
construction in the ideal-cipher model. As an instantiation, we show that
the two-keyed Polyhash-based DbHtS construction is multi-user secure up
to 23n/4 queries in the ideal-cipher model. Furthermore, due to the generic
attack on DbHtS constructions by Leurent et al. in CRYPTO’18, our derived
bound for the construction is tight.

Keywords – DbHtS, PRF, Polyhash, Coefficients-H Technique, Mirror
Theory.



6. Tight Multi-User Security Bound of DbHtS

6.1. Introduction

Multi-user security of DbHtS. The security bounds of DbHtS constructions
discussed in the previous chapter(s) are those in which adversaries are given
access to some keyed oracles for a single unknown randomly sampled
key. Such a model is known as the single-user security model, i.e. when the
adversary interacts with one specific machine in which the cryptographic
algorithm is deployed and tries to compromise its security. However, in
practice, cryptographic algorithms are usually deployed in more than one
machine. For example, AES-GCM [101, 74] is now widely used in the TLS
protocol to protect web traffic and is currently used by billions of users
daily. Thus, the security of DbHtS constructions in the multi-key setting is
worth investigating; we ask, “to what extent the number of users will affect the
security of DbHtS constructions?”, where adversaries are successful if they
compromise the security of one out of many users. Thus, the adversary’s
winning condition is a disjunction of single-key winning conditions.
The notion of multi-user (mu) security was introduced by Biham [32] in
symmetric-key cryptanalysis and by Bellare, Boldyreva, and Micali [11] in
the context of public-key encryption. In the multi-user setting, attackers have
access to multiple machines such that a particular cryptographic algorithm F
is deployed in each machine with independent secret keys. An attacker can
adaptively distribute its queries across multiple machines with independent
keys. Multi-user security considers attackers that succeed in compromising
the security of at least one machine.

Multi-user security for block ciphers is different from multi-user security
for modes. In the single-key setting, the best attacks against block cipher
such as AES do not improve with increased data complexity. However,
in the multi-key environment, they do, as first observed by Biham [32]
and later refined as a time-memory-data trade-off by Biryukov et al. [33].
These results demonstrate how one can take advantage of the fact that
recovering a block cipher key out of a large group of keys is much easier
than targeting a specific key. The same observation can be applied to any
deterministic symmetric-key algorithm, as done for MACs by Chatterjee
et al.[50]. A more general result guarantees that the multi-user advantage
of an adversary for a cryptographic algorithm is at most u times its single user
advantage. Therefore, for any cryptographic algorithm, a multi-user security
bound involving a factor u is easily established using a hybrid argument that
shows the upper bound of the adversarial success probability to be roughly
u times its single-user security advantage. Bellare and Tackmann [18] first
formalized a multi-user secure authenticated encryption scheme and also
analyzed countermeasures against multi-key attacks in the context of TLS
1.3. However, they derived a security bound that also contained the factor u.
Such a bound implies a significant security drop of the construction when

168



6. Tight Multi-User Security Bound of DbHtS

the number of users is large, and in fact, this is precisely the situation faced
in large-scale deployments of AES-GCM such as TLS.

As evident from [14, 18, 42, 85, 86, 99, 111], it is a challenging problem to
study the security degradation of cryptographic primitives with the number
of users, even when its security is known in the single-user setting. Studies
of multi-user security of MACs are somewhat scarce in the literature except
for the work of Chatterjee et al. [50], and a very recent work of Andrew et
al. [110], and Bellare et al. [14]. The first two consider a generic reduction
for MACs, in which the security of the primitive in the multi-user setting is
derived by multiplying the number of users u by the single-user security.

In CRYPTO’21, Shen et al. [128] have analyzed the security of DbHtS in
the multi-user setting. It is worth noting here that by applying the generic
reduction from the single-user to the multi-user setting, the security bound
of DbHtS would have capped at worse than the birthday bound, i.e. uq4/3/2n,
when each user made a single query and the number of users reached q.
Thus, a direct analysis was needed for deriving the multi-user bound of the
construction. Shen et al. [128] have shown that in the multi-user setting, the
two-keyed 1 DbHtS paradigm,

Two-Keyed-DbHtS(M) := EK(HKh,1(M))⊕ EK(HKh,2(M)),

is secure up to 22n/3 queries in the ideal-cipher model when the 2n-bit
double-block hash function is the concatenation of two independent n-bit
keyed hash functions HKh,1 and HKh,2. In particular, they have shown that
if both HKh,1 and HKh,2 are O(2−n)-regular and O(2−n)-universal 2, then the
multi-user security bound of the two-keyed DbHtS is of the order of

qpℓ
2k + n

+
q3

22n +
q2p + qp2

22k ,

where q is the total number of MAC queries across all u users, p is the
total number of ideal cipher queries, ℓ is the maximum number of message
blocks among all queries and n, k are the block size and the key size of
the block cipher respectively. Note that the above bound is independent of
the number of users u, which can be adaptively chosen by the adversary
and grows as large as q. Besides this result, Shen et al. have also shown
that 2K-SUM-ECBC [61], 2K-PMAC Plus [61] and 2K-LightMAC Plus [61] are
all secure roughly up to 22n/3 queries (including all MAC and ideal cipher
queries) in the multi-user setting independent of the number of users, where
these constructions do not employ domain separation techniques.

1two-keyed stands for one hash key and one block cipher key.
2A family of keyed hash function is said to be ϵ1-regular if for any x and y, the

probability that a randomly sampled hash function from the family maps x to y is ϵ1; it
is said to be ϵ2-universal if for any distinct x, x′, the probability that a randomly sampled
hash function from the family yields a collision on the pair (x, x′) is ϵ2.
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Remark 4. In their paper [61], Datta et al. named the two-keyed variants of
SUM-ECBC, PMAC Plus and LightMAC Plus as 2K-SUM-ECBC, 2K-PMAC Plus
and 2K-LightMAC Plus respectively, where for each of these constructions, the
domain separation technique ensured disjointness of the set of values of Σ and Θ.
However, in [128], Shen et al. considered the same constructions but without any
domain separation, and refer to them using the same names. Henceforth, we shall
implicitly mean the non domain-separated variants only (unless otherwise stated)
when referring to the two-keyed constructions 2K-SUM-ECBC, 2K-PMAC Plus and
2K-LightMAC Plus.

6.1.1. Issue with the CRYPTO’21 Paper [128]

In this section, we discuss three issues with [128]. The first two issues ex-
amine flaws in the security analysis of the construction and the last issue
points out a flawed security claim of the construction. We begin by iden-
tifying the first issue. The Two-Keyed-DbHtS framework was proven to be
multi-user secure up to 22n/3 queries in the ideal-cipher model [128] un-
der the assumption that each of the underlying n-bit independent keyed
hash functions is O(2−n)-universal and regular. As an instantiation of the
framework, [128] showed 2n/3-bit multi-user security of 2K-SUM-ECBC,
2K-LightMAC Plus and 2K-PMAC Plus in the ideal-cipher model. In the se-
cuirty proof of these instantiated constructions, they only bounded the
regular and the universal advantages of the corresponding hash functions
(i.e., the DbH of 2K-SUM-ECBC, 2K-LightMAC Plus and 2K-PMAC Plus) up
to O(ℓ/2n), where ℓ is the maximum number of message blocks amongst
all queries. However, the regular and universal advantages of the underly-
ing double block hash functions of the above three constructions were not
proven in the ideal-cipher model; instead, the authors bounded them in the
standard model, where the adversary is not allowed to query the underlying
block ciphers of the corresponding hash functions. In other words, consider-
ing the example of 2K-LightMAC Plus, while bounding the probability of the
event Σi = Σj (where Σi = Σj ⇒ Yi

1 ⊕ Yi
2 ⊕ . . .⊕ Yi

ℓi
= Y j

1 ⊕ Y j
2 ⊕ . . .⊕ Y j

ℓj

and Yi
a = EK(Mi

a∥⟨a⟩s)), the authors have simply assumed that at least one
of variables Y in the above equation will be fresh, thus providing sufficient
entropy for bounding the event. However, the authors have conspicuously
missed the fact that existence of such a variable Y may not always be guar-
anteed in the ideal cipher model. For example, suppose an adversary makes
the following three forward primitive queries:

1. forward query with (x∥⟨1⟩s) and obtains y1
2. forward query with (x′∥⟨1⟩s) and obtains y2
3. forward query with (x′′∥⟨2⟩s) and obtains y3
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Let us assume that the (albeit probabilistic) event y1 ⊕ y2 ⊕ y3 = 0 occurs.
Suppose the adversary makes two more queries: the first, a construction
query with (x) and the second, a construction query with (x′∥x′′). Then,
one cannot find any fresh variable Y in the following equations:

Y1
1 = Y2

1 ⊕Y2
2 .

Therefore, to prove the security of such block cipher-based DbHtS construc-
tions in the ideal-cipher model, one needs to consider the fact that the
regular or universal advantage of the underlying double block hash func-
tions must be bounded under the assumption that the adversary makes
primitive queries to the underlying block cipher. We therefore believe that to
prove the security of the constructions in the ideal-cipher model for the block
cipher-based DbH function, one needs to provide a generalized definition of
the universal and regular advantages in the ideal-cipher model and prove
their security under this model, which was missing in [128].

The second issue is regarding the good transcript analysis of the Two-
Keyed-DbHtS construction. In Fig. 4 of [128], the authors have identified the
set of (i, a) ∈ [u]× [qi], which they denoted as F(J), such that both Σi

a and
Θi

a are fresh. They have also defined a set S(J),

S(J) := {(W i
a, Xi

a) ∈ {0, 1}n \ Ran(Φj)
(2|F(J)|) : W i

a ⊕ Xi
a = Ti

a}.

Then for all (i, a) ∈ F(J), (Ui
a, Vi

a) is sampled from S(J) and is set as the
permutation output of Σi

a and Θi
a, respectively. Finally, they have provided

a lower bound on the cardinality of the set S(J) from Lemma 2. Noting that
Lemma 2 proves the cardinality of the set

S := {(Ui, Vi) ∈ ({0, 1}n)(2q) : Ui ⊕Vi = Ti}

to be at least 2n(2n − 1) . . . (2n − 2q + 1)/2nq · (1− 6q3/22n), which is used
to obtain a lower bound on |S(J)|, reveals a fallacy as the two sets S and
S(J) are not isomorphic to each other.

The third issue is regarding the flawed security claim of the Two-Keyed-
DbHtS construction in [128]. In Theorem 1 of [128], Shen et al. show that
when the underlying double block hash function of the Two-Keyed-DbHtS
construction is the concatenation of two independent n-bit keyed hash
functions such that each is O(2−n)-universal and O(2−n)-regular, Two-Keyed-
DbHtS achieves 2n/3-bit multi-user security in the ideal-cipher model. In a
recent work by Guo and Wang [83], the authors came up with three concrete
constructions that are instantiations of the Two-Keyed-DbHtS paradigm such
that the underlying double block hash function of each of the three construc-
tions is the concatenation of two independent n-bit keyed hash functions.
Guo and Wang also show that each of the n-bit hash functions for these three
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constructions meets the O(2−n)-universal and O(2−n)-regular advantages.
However, the constructions have a birthday bound distinguishing attack. As
a consequence, the security bound of Two-Keyed-DbHtS as proven in Theo-
rem 1 of [128] stands flawed. We would like to mention here that the attack
holds only for those instances of Two-Keyed-DbHtS where the underlying
DbH is the concatenation of two independent n-bit hash functions and it
does not have any domain separation. In fact, authors of [83] were not able
to show any birthday bound attack on 2K-PMAC Plus and 2K-LightMAC Plus
as the underlying DbH function of these two constructions is not the con-
catenation of two independent n-bit keyed hash functions. However, it is
to be noted that as the double block hash function for 2K-SUM-ECBC is the
concatenation of two independent n-bit CBC functions, the attack of [83]
holds for it.

6.1.2. Our Contribution

In this chapter, we prove that the Two-Keyed-DbHtS construction is multi-user
secure up to 23n/4 queries in the ideal-cipher model. To prove it, we first
define the notion of a good double-block hash function, which informally
means that the concatenation of two independent n-bit keyed hash functions
is “good” if each has negligible universal and regular advantages, and the
probability that the outputs of two hash function colliding for any pair of
messages M, M′ is zero. Then, we prove that if the underlying 2n-bit DbH
function of the Two-Keyed-DbHtS construction is good, such that each of
the n-bit keyed hash functions is ϵreg-regular and ϵuniv-universal, then the
multi-user security of our construction in the ideal-cipher model is of the
order

9q4/3

8 · 2n +
3q8/3

2 · 22n +
q2

22n +
9q7/3

8 · 22n +
8q4

3 · 23n +
q

2n +
2u2

2kh+k +
2q2

2n+k

+
2qpϵreg

2k +
q2ϵuniv

2n +
2q2ϵreg

2kh
+ 3q4/3ϵuniv +

q2ϵ2
univ
2

+
2qp
2n+k ,

where q is the total number of MAC queries across all u users, p is the
total number of ideal-cipher queries, n is the block size of the block cipher,
kh is the size of the hash key and k is the key size of the block cipher of
the construction. As an instantiation of the Two-Keyed-DbHtS framework,
we have proved that C2[PH-DbH, E], the Polyhash-based Two-Keyed-DbHtS
construction which was proposed in [61] and proven to be secure up to
22n/3 queries in the single-user setting, is multi-user secure up to 23n/4

queries in the ideal-cipher model. The security proof of the construction
crucially depends on a refined result of mirror theory over an abelian group
({0, 1}n,⊕), where one systematically estimates the number of solutions to
a system of equations to prove the security of the finalization function of
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the construction up to 23n/4 queries. Due to the attack result of Leurent et
al. [95] on the DbHtS paradigm with 23n/4 queries, the multi-user security
bound of our construction is tight.

6.2. Mirror Theory

Recall from Sect. 2.3 that a graph G = (V ,S) inducing a system of affine
equations over {0, 1}n,⊕ is a good graph if it has no cycles and if no path
label is equal to 0. Furthermore, If G is a bipartite graph with a vertex set
V = P ⊔Q such that:

• each vertex from P represents the left variable in one of the affine
equations and the vertex in Q to which an edge joins it represents the
right variable in the equation, and

• there are no isolated vertices,

then we shall call G a good bipartite graph. Note that a good bipartite graph
G contains no cycle. Therefore, G can be decomposed into its connected
components, all of which are trees; let

G = C1 ⊔ C2 ⊔ . . . ⊔ Cα ⊔D1 ⊔D2 ⊔ . . . ⊔Dβ

for some α, β ≥ 0, where Ci denotes a component of size greater than 2,
and Di denotes a component size of 2. We write C = C1 ⊔ C2 ⊔ . . . ⊔ Cα and
D = D1 ⊔D2 ⊔ . . . ⊔Dβ.

Assigning any value to a vertex in P allows the labeled edges to uniquely
determine the values of all the other vertices in the component containing
P, since G contains no cycle. The values in the same component are all
distinct as λ(P) ̸= 0n for any path P . The number of possible assignments
of distinct values to the vertices in G is (2n)(|P|+|Q|). One may expect that
when such an assignment is chosen uniformly at random, it would satisfy
all the equations in G with probability 2−nq, where q denotes the number
of edges (i.e., equations) in G. Indeed, we can prove that the number of
solutions is closed to (2n)(|P|+|Q|) /2nq, up to a certain error. Formally, we
have the following result:

Lemma 17. Let G be a good bipartite graph, and let q and qc denote the number of
edges of G and C, respectively. Let v be the number of vertices of G. If q < 2n/8,
then the number of solutions to G, denoted h(G), satisfies

h(G)2nq

(2n)v
≥
(

1− 9(qc)2

8 · 2n −
3qcq2

2 · 22n −
q2

22n −
9(qc)2q
8 · 22n −

8q4

3 · 23n

)
.

We refer the reader to [92] for a proof of the lemma.
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6.3. The Two-Keyed DbHtS Construction

In this section, we describe the Two-Keyed Double-block Hash-then-Sum
(Two-Keyed-DbHtS) construction to build a beyond the birthday bound secure
variable input-length PRF. Let H1 : Kh × {0, 1}∗ → {0, 1}n and H2 : Kh ×
{0, 1}∗ → {0, 1}n be two keyed hash functions. Based on H1 and H2, we
define the Double-block Hash (DbH) function H : Kh × Kh × {0, 1}∗ →
{0, 1}2n as follows:

H(L1,L2)(M) = (H1
L1
(M),H2

L2
(M)). (6.1)

We compose this DbH function with a very simple and efficient single-keyed
XOR function XORK(x, y) = EK(x)⊕EK(y), where EK is an n-bit block cipher
and the block cipher key K is independent of the hash key (L1, L2), to realize
the two-Keyed-DbHtS construction as follows (For the sake of brevity, we
refer to Two-Keyed-DbHtS by simply C2):

C2[H,E](M) := XORK(H
1
L1
(M),H2

L2
(M)).

We use the name Two-Keyed-DbHtS, counting the hash key as one key and
the XOR function key (independent of the hash key) as the other. Most
beyond the birthday bound secure variable input-length PRFs like 2K-SUM-
ECBC, 2K-PMAC Plus and 2K-LightMAC Plus are specific instantiations of the
Two-Keyed-DbHtS paradigm. These constructions have been proven secure
up to 22n/3 queries in the standard model [61] for a single-user setting.
In [128], all these three constructions have been proven secure up to 22n/3

queries in the ideal-cipher model for a multi-user setting. We note here that
as the XOR function is not a PRF over two blocks, we can not apply the
traditional Hash-the-PRP composition result directly on the security analysis
of the two-keyed DbHtS. Thus, we need a different type of composition
result that utilizes higher security properties of its underlying DbH function
instead of merely the universal or regular property.

Definition 5. Let H1 : Kh×{0, 1}∗ → {0, 1}n and H2 : Kh×{0, 1}∗ → {0, 1}n

be two n-bit keyed hash functions. We say that the double-block hash function
H : Kh ×Kh × {0, 1}∗ → {0, 1}2n defined in Eqn. (6.1) is good if it satisfies the
following conditions:

• H1 is a family of ϵreg-regular and ϵuniv-universal functions.
• H2 is a family of ϵreg-regular and ϵuniv-universal functions.
• For every M, M′ ∈ {0, 1}∗,

Pr[L1
$←− Kh, L2

$←− Kh : H1
L1
(M) = H2

L2
(M′)] = 0.

The first two conditions imply that the regular and universal advantages
of both the hash functions should be negligible, whereas the last condition
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indicates that the first hash output for any message cannot collide with the
second hash output. Having defined the Two-Keyed-DbHtS construction, we
now state and prove its security.

Theorem 11. Let K,Kh and M be three non-empty finite sets. Let E : K ×
{0, 1}n → {0, 1}n be an n-bit block cipher. Let H1 : Kh × {0, 1}∗ → {0, 1}n and
H2 : Kh × {0, 1}∗ → {0, 1}n be two n-bit keyed hash functions such that each
is ϵreg-regular and ϵuniv-universal. Let H : Kh ×Kh × {0, 1}∗ → {0, 1}2n be a
good double-block hash function as defined in Eqn. (6.1). Then any computationally
unbounded distinguisher making a total of q construction queries across all u users
and a total of p primitive queries to the block cipher E can distinguish C2 from an
n-bit uniform random function with prf advantage

AdvmPRF
C2

(u, q, p, ℓ) ≤ 9q4/3

8 · 2n +
3q8/3

2 · 22n +
q2

22n +
9q7/3

8 · 22n +
8q4

3 · 23n +
q

2n

+
2u2

2kh+k +
2q2

2n+k +
2qpϵreg

2k +
q2ϵuniv

2n +
2q2ϵreg

2kh

+3q4/3ϵuniv +
q2ϵ2

univ
2

+
2qp
2n+k .

6.4. Proof of Theorem 11

We consider a computationally unbounded non-trivial deterministic distin-
guisher A that interacts with a pair of oracles in either the real world or the
ideal world, described as follows: in the real world, A is given access to u
independent instances of C2, i.e., to a tuple of u oracles (C2[(Li

1, Li
2, Ki)])i∈[u],

where each (Li
1, Li

2) is independent of (Lj
1, Lj

2), Ki is independent of K j and

E
$←− BC(K, {0, 1}n) is an ideal block cipher. Additionally, A has access to the

oracle E±, underneath the construction C2. In the ideal world, A is given ac-
cess to (i) a tuple of u independent random functions (RF1, . . . ,RFu), where
each RFi is the random function over {0, 1}∗ to {0, 1}n that can be equiva-
lently described as a procedure that returns an n-bit uniform string on input

of any arbitrary message, and (ii) the oracle E±, where E
$←− BC(K, {0, 1}n)

is an ideal block cipher, sampled independently of the sequence of u in-
dependent random functions. In both worlds, the first oracle is called the
construction oracle and the latter, the ideal cipher oracle. Using the ideal cipher
oracle, a distinguisher A can evaluate any query x under its chosen key J. A
query to the construction oracle is called a construction query and to that of
the ideal cipher oracle is called an ideal cipher query. Note that A can make
either forward (i.e. queries to E with a chosen key and input), or inverse (i.e.
queries to E−1 with a chosen key and input) ideal cipher queries. The ideal
oracle is depicted in Fig.s 6.1 and 6.2.
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6.4.1. Description of the Ideal World

The ideal world consists of two phases: (i) the online and (ii) the offline phase.
Before the game begins, we sample u independent functions f1, f2, . . . , fu
uniformly at random from the set of all functions Func({0, 1}∗, {0, 1}n) that
map an arbitrary-length string to an n-bit string. We also sample an n-
bit block cipher E from the set of all block ciphers with a k-bit key and
an n-bit input. In the online phase, when the distinguisher makes the ath

construction query for the ith user — Mi
a — to the construction oracle, it

returns Ti
a ← fi(Mi

a). Similarly, if the distinguisher makes a forward (resp.
inverse) primitive query with a chosen block cipher key J and an input x to
the ideal cipher oracle, it returns E(J, x) (resp. E−1(J, x)). However, if any
response of the construction queries is an all-zero string 0n, then the bad
flag Bad-Tag is set to 1 and the game is aborted. After this interaction is over,

Online Phase of Oideal

1 : E
$←− BC(K, {0, 1}n);

Construction Query:

2 : On ath query of ith user Mi
a, return Ti

a
$←− {0, 1}n;

3 : if ∃(i, a) : Ti
a = 0 then Bad-Tag← 1 , ⊥;

Primitive Query:

4 : On jth forward query with chosen key J j and input uj
α,

return vj
α ← EJ j(uj

α);

5 : On jth backward query with chosen key J j and input vj
α,

return uj
α ← E−1

J j (v
j
α);

6 : Dom(EJ j)← Dom(EJ j) ∪ {uj
α}, Ran(EJ j)← Ran(EJ j) ∪ {vj

α};

Figure 6.1.: Online Phase of the Ideal oracle $: Boxed statements denote bad events.
Whenever a bad event is set to 1, the ideal oracle immediately aborts
(denoted as ⊥) and returns the remaining values of the transcript in an
arbitrary manner. So, if the game aborts for some bad event, then its
previous bad events must not have occurred.

the offline phase begins. In this phase, we sample u pairs of dummy hash

keys (Li
1, Li

2)i∈[u]
$←− Kh×Kh and u dummy block cipher keys (Ki)i∈[u]

$←− K,
where Li

1 (resp. Li
2) is the left (resp. right) hash key for the ith user and Ki is its

block cipher key. If the block cipher key and a left (resp. right) hash key of the
ith
1 user collides with the block cipher key and left (resp. right) hash key of

the ith
2 user, then we set the flag BadK to 1 and abort the game. If the game
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is not aborted, then we can compute a pair of 2n-bit hash values (Σi
a, Θi

a) for
all queries across u users, where we often refer to Σi

a ← H1
Li

1
(Mi

a) as the left

hash output and to Θi
a ← H2

Li
2
(Mi

a) as the right hash output for the ath query

of the ith user.
Now, if the block cipher key of the ith user and the left hash or right hash

output for its ath query collides with some chosen ideal cipher key and one
of the corresponding inputs of the forward ideal cipher query, then we set
the bad flag Bad1 to 1 and abort the game.

For the ith user, if the left or right hash outputs for two of its queries
collide and the corresponding responses also collide with each other (i.e.,
Σi

a = Σi
b, Ti

a = Ti
b), then we consider it to be a bad event. Similarly, for a pair

of users i1 and i2, if their left or right hash outputs collide with each other
and the corresponding responses also collide with each other, then we again
consider it to be a bad event. If at least one of the above bad events occurs,
we set Bad2 to 1 and abort the game. We also set another flag Bad3 to 1 and
abort the game if for the ith user, the number of the pairs of queries whose
either left or right hash outputs collide with each other is at least q2/3

i , where
qi is the number of queries made by the ith user. Finally, we set the flag Bad4
to 1 if at least one of the following events holds: (a) for the ith user, two left
hash outputs collide and their corresponding right hash outputs also collide,
or (b) for the ith user, there exists a tuple of four query indices a, b, c, d such
that either (i) Σi

a = Σi
b, Θi

b = Θi
c, Σi

c = Σi
d or (ii) Θi

a = Θi
b, Σi

b = Σi
c, Θi

c = Θi
d

holds. As the DbH function H is good, Σi
a cannot collide with Θi

b.
If the game is not aborted at this stage, then it follows that none of the

bad events have occurred. All the query-response pairs belong to exactly
one of the sets Q= or Q ̸= as defined in lines 1 and 11 of Fig. 6.3, where Q=

is the set of all queries across all users such that the block cipher key of
the ith user collides with an ideal cipher key, but none of its hash outputs
collide with any ideal cipher query, and Q ̸= is the set of all queries across
all users such that the block cipher key of the ith user does not collide with
any ideal cipher key. We also define two additional sets: I= and I ̸= for
Q= and Q ̸=, where I= (resp. I ̸=) is the set of all i such that (i, ⋆) ∈ Q=

(resp. (i, ⋆) ∈ Q ̸=). We partition I= into r non-empty equivalence classes
I=1 , I=2 , . . . , I=r based on the relation that the ith user-key Ki collides with J j

if and only if i ∈ I=j . Similarly, we partition I ̸= into s equivalence classes
based on the equivalence relation i ∼ j if and only if Ki = K j. Now, for the
jth equivalence class of I=, we consider the tuple

Σ̃j :=
⋃

i∈I=j

{(Σi
1, Σi

2, . . . , Σi
qi
)}, Θ̃j :=

⋃
i∈I=j

{(Θi
1, Θi

2, . . . , Θi
qi
)}.

Note that due to the event in line number 7.(b) (resp. 7.(d)) of Fig. 6.2, we
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Offline Phase of Oideal

1 : (Li
1, Li

2)i∈[u]
$←− Kh ×Kh; (Ki)i∈[u]

$←− K;

2 : if ∃b ∈ {1, 2} and i1, i2 ∈ [u] such that Ki1 = Ki2 ∧ Li1
b = Li2

b ;

3 : then BadK← 1 , ⊥;

4 : ∀i ∈ [u], ∀a ∈ [qi] : (Σi
a, Θi

a)← (H1
Li

1
(Mi

a),H
2
Li

2
(Mi

a));

5 : if one of the following holds:

(a) ∃i ∈ [u], j ∈ [s], u[0]jα ∈ Dom(EJ j), such that Ki = J j ∧ Σi
a = u[0]jα;

(b) ∃i ∈ [u], j ∈ [s], u[1]jα ∈ Dom(EJ j), such that Ki = J j ∧ Θi
a = u[1]jα;

6 : then Bad1← 1 , ⊥;
7 : if one of the following holds:

(a) ∃i ∈ [u], a, b ∈ [qi], such that Σi
a = Σi

b ∧ Ti
a = Ti

b;

(b) ∃i1, i2 ∈ [u], a ∈ [qi1 ], b ∈ [qi2 ], such that Ki1 = Ki2 ∧ Σi1
a = Σi2

b ;

(c) ∃i ∈ [u], a, b ∈ [qi], such that Θi1
a = Θi1

b ∧ Ti1
a = Ti1

b ;

(d) ∃i1, i2 ∈ [u], a ∈ [qi1 ], b ∈ [qi2 ], such that Ki1 = Ki2 ∧ Θi1
a = Θi2

b ;

8 : then Bad2← 1 , ⊥;
9 : if one of the following holds:

(a) ∃i ∈ [u], such that
∣∣∣{(a, b) : Σi

a = Σi
b

}∣∣∣ ≥ q2/3
i ;

(b) ∃i ∈ [u], such that
∣∣∣{(a, b) : Θi

a = Θi
b

}∣∣∣ ≥ q2/3
i ;

10 : then Bad3← 1 , ⊥;
11 : if one of the following holds:

(a) ∃i ∈ [u], a, b ∈ [qi] such that Σi
a = Σi

b ∧ Θi
a = Θi

b;

(b) ∃i ∈ [u], a, b, c, d ∈ [qi] such that Σi
a = Σi

b ∧ Θi
b = Θi

c ∧ Σi
c = Σi

d;

(c) ∃i ∈ [u], a, b, c, d ∈ [qi] such that Θi
a = Θi

b ∧ Σi
b = Σi

c ∧ Θi
c = Θi

d;

12 : then Bad4← 1 , ⊥;
13 : go to subroutine 6.3;

Figure 6.2.: Offline Phase of the Ideal oracle $: Boxed statements denote bad events.
Whenever a bad event is set to 1, the ideal oracle immediately aborts
(denoted as ⊥) and returns the remaining values of the transcript in an
arbitrary manner. So, if the game aborts for some bad event, then we
may assume that the previous bad events have not occurred.
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Offline Phase of Oideal, Sampling Phase

1 : Q= :={(i,a)∈[u]×[qi ] : ∃j∈[s], Ki=J j, Σi
a /∈Dom(E

J j ), Θi
a /∈Dom(E

J j )};
2 : I= :={i∈[u]:(i,⋆)∈Q=}=I=1 ⊔I=2 ⊔...⊔I=r ; // i∈I=j ⇔Ki=J j

3 : ∀j ∈ [r] : Σ̃j =
⋃

i∈I=j

{(Σi
1, Σi

2, . . . , Σi
qi
)}, Θ̃j =

⋃
i∈I=j

{(Θi
1, Θi

2, . . . , Θi
qi
)};

4 : ∀j ∈ [r] do the following steps:

5 : ∀i ∈ I=j let Σi
a be not fresh in (Σi

1, Σi
2, . . . , Σi

qi
);

6 : if Σi
a /∈ Dom(EJ j),

then Ψ(Σi
a)← Zi

1,a
$←− {0, 1}n \ Ran(EJ j), Zi

2,a ← Zi
1,a ⊕ Ti

a;

7 : else Zi
1,a ← Ψ(Σi

a), Zi
2,a ← Zi

1,a ⊕ Ti
a;

8 : if Zi
2,a ∈ Ran(EJ j) then Bad-Samp← 1 , ⊥;

9 : else Dom(EJ j)← Dom(EJ j) ∪ {(Σi
a, Θi

a)},
Ran(EJ j)← Ran(EJ j) ∪ {(Zi

a, Zi
a ⊕ Ti

a)};
10 : ∀(i, a) ∈ Q= : Ψ(Σi

a)← Zi
1,a, Ψ(Θi

a)← Zi
2,a;

11 : Q ̸= :={(i,a)∈[u]×[qi ] : ∀j∈[s], Ki ̸=J j};
12 : I ̸= :={i∈[u] : (i,⋆)∈Q ̸=}=I ̸=1 ⊔I

̸=
2 ⊔...⊔I ̸=r′ ; // i∈I ̸=j ⇔Ki=K j

13 : ∀j ∈ [r′] : f j := distinct number of elements in the tuple Σ̃j ∪ Θ̃j;

14 : ∀j ∈ [r′] : (Zi
1,a, Zi

2,a)i∈I ̸=j ,a∈[qi ]

$←− Sj,

Sj := {(Qi
a, Ri

a)i∈I ̸=j ,a∈[qi ]
∈ ({0, 1}n)( f j) : Qi

a ⊕ Ri
a = Ti

a};

15 : ∀j ∈ [r′] : do the following steps:

16 : Dom(EJ)← Dom(EJ) ∪ {(Σi
a, Θi

a) : i ∈ I ̸=j , a ∈ [qi]};

Ran(EJ)← Ran(EJ) ∪ {(Zi
1,a, Zi

2,a) : i ∈ I ̸=j , a ∈ [qi]};

17 : ∀(i, a) ∈ Q ̸= : Ψ(Σi
a)← Zi

1,a, Ψ(Θi
a)← Zi

2,a;

18 : return (Σi
a, Θi

a, Zi
1,a, Zi

2,a)(i,a)∈[u]×[qi ];

Figure 6.3.: Offline Phase of the Ideal oracle $, where we sample the output of the
hash values.

have Σi1
a ̸= Σi2

b (resp. Θi1
a ̸= Θi2

b ) for i1, i2 ∈ I=j and a ∈ [qi1 ], b ∈ [qi2 ]. If Σi
a

is not fresh in the tuple (Σi
1, Σi

2, . . . , Σi
qi
) for some (i, a) ∈ I=j × [qi] and the

output of Σi
a has not been sampled yet, then we sample the its output Zi

1,a
from outside the range of EJ j and set the output of Θi

a as the xor of Zi
a and
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Ti
a (see line 6 of Fig. 6.3). Otherwise, we set the output of Σi

a to the already
defined element and adjust the output of the other hash value accordingly
(see line 7 of Fig. 6.3). Note that in the latter case, we do not sample the
output. In the above adjustment, if the output of Θi

a happens to collide with
any previously sampled output, then we set flag Bad-Samp to 1 and abort
the game (see line 8 of Fig. 6.3). This event cannot hold for the real oracle,
as Θi

a is fresh in (Θi
1, Θi

2, . . . , Θi
qi
) for i ∈ I=j and a ∈ [qi]. If the above flag

is not set to 1, then the sampling for the output of Σi
a, where (i, a) ∈ Q=

preserves permutation compatibility. Finally, for all other (i, a) ∈ Q ̸=, we
sample Zi

1,a and Zi
2,a such that Zi

1,a ⊕ Zi
2,a = Ti

a.

6.4.2. Attack Transcript

We summarize here, the interaction between the distinguisher and the
challenger in a transcript. The set of all construction queries for u in-
stances are summarized in a transcript τc = τ1

c ∪ τ2
c ∪ . . . ∪ τu

c , where
τi

c = {(Mi
1, Ti

1), . . . , (Mi
qi

, Ti
qi
)} denotes the query-response transcript gener-

ated from the ith instance of the construction. Moreover, we assume that
A has chosen s distinct ideal cipher keys J1, . . . , Js such that it makes pj

ideal cipher queries to the block cipher with the chosen key J j. We summa-
rize the ideal cipher queries in a transcript τp = τ1

p ∪ τ2
p ∪ . . . ∪ τs

p, where

τ
j
p = {(uj

1, vj
1), . . . , (uj

pj , vj
pj), J j} denotes the transcript of the ideal cipher

queries when the chosen ideal cipher key is J j. We assume that A makes
qi construction queries for the ith instance and pj ideal cipher queries (in-
cluding forward and inverse queries) with chosen ideal cipher key J j. We
also assume that the total number of construction queries across u instances
is q, i.e., q = (q1 + . . . + qu) and the total number of ideal cipher queries is
p = (p1 + . . . + ps). Since A is non-trivial, none of the transcripts contain
any duplicate elements.

We modify the experiment by releasing internal information to A after it
has finished its interaction but has not yet output the decision bit. In the
real world, we reveal all the keys (Li

1, Li
2, Ki) for all u instances used in the

construction. In the ideal world, we sample them uniformly at random from
their respective key spaces and reveal them to the distinguisher. Once the
keys are revealed to the distinguisher, A can compute (Σi

a, Θi
a, Ψ(Σi

a), Ψ(Θi
a)),

where the function Ψ, defined for the ideal world, is given in Fig. 6.3, whereas
for the real world, we define Ψ as follows:

Ψ(Σi
a) = EKi(Σi

a), Ψ(Θi
a) = EKi(Θi

a).

Therefore, each transcript τc
i is now modified to include the corresponding

intermediate input-output values for the ith instance of the construction.
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Thus,

τi
c = {(Mi

1, Ti
1, Σi

1, Θi
1, Ψ(Σi

1), Ψ(Θi
1)), . . . , (Mi

qi
, Ti

qi
, Σi

qi
, Θi

qi
, Ψ(Σi

qi
), Ψ(Θi

qi
))}.

In all the following, the complete construction query transcript is

τc =
u⋃

i=1

τi
c

and the complete transcript is τ = τc ∪ τp. The modified experiment only
makes the distinguisher more powerful and hence the distinguishing advan-
tage of A in this experiment is no less than its distinguishing advantage in
the former.

Therefore, to prove the security of the construction using the coeffients-H
technique (Theorem 1), we need to identify the set of bad transcripts and
compute an upper bound for their probability in the ideal world. Then we
find a lower bound for the ratio of the real to ideal interpolation probability
for a good transcript. We have already identified the bad transcripts in
Fig.s 6.1, 6.2 and 6.3. Therefore, it only remains to bound the probability of
bad transcripts in the ideal world and provide a lower bound for the ratio
of the real to ideal interpolation probability for a good transcript. Having
explained the coeffients-H technique in the view of our construction, it
follows that for each i ∈ [u], C2[E, (Li

1, Li
2), Ki] 7→ τi

c denotes the following:

1. Σi
a = (H1

Li
1
(Mi

a)), Θi
a = (H2

Li
2
(Mi

a)),

2. EKi(Σi
a) = Ψ(Σi

a),EKi(Θi
a) = Ψ(Θi

a), and
3. EKi(Σi

a)⊕ EKi(Θi
a) = Ti

a.

6.4.3. Bounding the Probability of Bad Transcripts

We call a transcript τ = (τc, τp) bad if at least one of the flags is set to
1 during the generation of the transcript in Fig.s 6.1, 6.2 and 6.3. Recall
that Bad-Tag ⊆ Θ is the set of all attainable bad transcripts and GoodT =
Θ \ Bad-Tag is the set of all attainable good transcripts. We bound the
probability of bad transcripts in the ideal world as follows.

Lemma 18. Let τ = (τc, τp) be any attainable transcript. Let Xid and Θb be defined
as above. Then

Pr[Xid ∈ Bad-Tag] ≤ q
2n +

2u2

2kh+k +
2qpϵreg

2k +
q2ϵuniv

2n +
2q2ϵreg

2kh

+3q4/3ϵuniv +
q2ϵ2

univ
2

+
2qp
2n+k +

2q2

2n+k .
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Proof. Using the union bound, we write

Pr[Xid ∈ Bad-Tag] ≤ Pr[Bad-Tag] + Pr[BadK] +
4

∑
i=1

Pr[Badi] + Pr[Bad-Samp].

(6.2)
We individually bound each bad event and then use Eqn. (6.2) to derive the
result. In the subsequent analysis, we assume that |Kh| = kh and |K| = k.

Bounding Event Bad-Tag
▷ Bounding B.13: For a fixed choice of indices, the probability of the

event can be bound by 1/2n as the outputs of the construction queries are
sampled uniformly and independently of other random variables. Therefore,
by summing over all possible choices of indices, we have

Pr[Bad-Tag] ≤ q
2n . (6.3)

Bounding Event BadK
▷ Bounding BadK.1: For a fixed choice of indices, the probability of the

event can be bound by 1/2kh+k as the event Ki1 = Ki2 is independent of
Li1

b = Li2
b for each b ∈ {1, 2}. Therefore, summing over all possible choices

of indices, we have

Pr[BadK] ≤ 2u2

2kh+k . (6.4)

Bounding Event Bad1 | BadK

We say that the event Bad1 | BadK holds if either of the events defined in
line 5.(a) or in line 5.(b) of Fig. 6.2 holds. We refer to the event defined in
line 5.(a) as B.11 and refer to the event defined in line 5.(b) as B.12

▷ Bounding B.11 | BadK: For a fixed choice of indices, Σi
a = u[0]jα is bound

by the regular advantage of the hash function H1
Li

1
. As the hash key Li

1 is

independent of the block cipher key Ki, we have

Pr[B.11 | BadK] ≤ ∑
i∈[u]
a∈[qi]

∑
j∈[s]

α∈[pj]

Pr[Ki = J j] · Pr[Σi
a = u[0]jα]

= ∑
i∈[u]
a∈[qi]

∑
j∈[s]

α,β∈[pj]

ϵreg ·
1
2k

(1)
≤

qpϵreg

2k , (6.5)

where (1) holds due to the fact that (q1 + . . .+ qu) = q and (p2
1 + . . .+ p2

s ) ≤
p2.
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▷ Bounding B.12 | BadK: With an identical argument, one can show that the
probability of the event B.12 can be bounded by qpϵreg

2k , i.e.,

Pr[B.12 | BadK] ≤
qpϵreg

2k . (6.6)

Therefore, combining Eqn. (6.5) and Eqn. (6.6), we have

Pr[Bad1 | BadK] = Pr[B.11 | BadK∨ B.12 | BadK] ≤
2qpϵreg

2k . (6.7)

Bounding Event Bad2 | BadK

We say that the event Bad2 | BadK holds if either of the events defined in
line 7.(a) or in line 7.(b) or line 7.(c) or in line 7.(d) of Fig. 6.2 holds. We refer
to the event defined in line 7.(a) as B.21, in line 7.(b) as B.22, in line 7.(c) as
B.23 and finally in line 7.(d) as B.24

▷ Bounding B.21 | BadK: For a fixed choice of indices, we analyze the
probability of the event

Σi
a = Σi

b ∧ Ti
a = Ti

b.

Due to independence of the hash key Li
1 and Ti

a, the probability of this joint
event can be bound by the universal property of the H1 hash function and
the randomness of Ti

a. Therefore,

Pr[B.21 | BadK] ≤ ∑
i∈[u], a,b∈[qi]

Pr[Σi
a = Σi

b ∧ Ti
a = Ti

b] ≤
q2ϵuniv

2n+1 . (6.8)

▷ Bounding B.22 | BadK: We bound the event given BadK, i.e. even if the
block cipher keys for users i1 and i2 collide, their corresponding hash keys,
i.e., Li1

1 and Li2
2 do not collide. Given this event, for a fixed choice of indices,

we bound Σi1
a = Σi2

b using the regular property of the hash function H1 with
the randomness of the hash key Li1

1 . Moreover, the first event is independent
of the second event and can thus be bound exactly by 2−kh . Therefore,

Pr[B.22 | BadK] ≤ ∑
i1,i2∈[u]

a∈[qi1
],b∈[qi2 ]

ϵreg ·
1

2kh
≤

q2ϵreg

2kh
. (6.9)

▷ Bounding B.23 | BadK and B.24 | BadK: Bounding B.23 | BadK and
B.24 | BadK is identical to bounding B.21 | BadK and B.22 | BadK respectively.
Hence,

Pr[B.23 | BadK] ≤ q2ϵuniv

2n+1 , Pr[B.24 | BadK] ≤
q2ϵreg

2kh
. (6.10)

183



6. Tight Multi-User Security Bound of DbHtS

Therefore, combining Eqn. (6.8)-Eqn. (6.10),

Pr[Bad2 | BadK] ≤ Pr[B.21 | BadK] + Pr[B.22 | BadK] + Pr[B.23 | BadK] +

Pr[B.24 | BadK] ≤ q2ϵuniv

2n +
2q2ϵreg

2kh
. (6.11)

Bounding Event Bad3 | BadK

We say that the event Bad3 | BadK holds if either of the events defined in
line 9.(a) or in line 9.(b) of Fig. 6.2 holds. We refer to the event defined in
line 9.(a) as B.31 and in line 9.(b) as B.32

▷ Bounding B.31 | BadK and B.32 | BadK: We first bound the event B.31 | BadK.
For a fixed choice of indices, we define an indicator random variable Ii

a,b
which takes the value 1 if Σi

a = Σi
b, and 0 otherwise. Let Ii = ∑

a,b
Ii

a,b. By

linearity of expectation,

E[Ii] = ∑
a,b

E[Ii
a,b] = ∑

a,b
Pr[Σi

a = Σi
b] ≤

q2
i ϵuniv

2
.

Now,

Pr[B.31 | BadK] ≤ ∑
i∈[u]

Pr[|{(a, b) ∈ [qi]
2 : Σi

a = Σi
b}| ≥ q2/3

i ]

=
u

∑
i=1

Pr[Ii ≥ q2/3
i ]

(1)
=

u

∑
i=1

q2
i ϵuniv

2q2/3
i

≤ q4/3ϵuniv

2
, (6.12)

where (1) holds due to the Markov inequality.
Similar to B.31 | BadK, we bound B.32 | BadK as follows:

Pr[B.32 | BadK] ≤ q4/3ϵuniv

2
. (6.13)

Therefore, combining Eqn. (6.12) and Eqn. (6.13), we have

Pr[Bad3 | BadK] = Pr[B.31 | BadK∨ B.32 | BadK] ≤ q4/3ϵuniv. (6.14)

Bounding Event Bad4 | BadK

We say that the event Bad4 | BadK holds if either of the events defined in
line 11.(a) or in line 11.(b) or in line 11.(c) of Fig. 6.2 holds. We refer to the
event defined in line 11.(a) as B.41, line 11.(b) as B.42 and in line 11.(c) as
B.43.
▷ Bounding B.41 | BadK: Due to independence of the hash key Li

1 and
Li

2, for a fixed choice of indices, the probability of this joint event can be
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bound by the universal property of the individual hash functions H1 and H2.
Therefore, varying over all possible choices of indices, we have

Pr[B.41 | BadK] ≤ ∑
i∈[u]

a,b∈[qi]

Pr[Σi
a = Σi

b ∧Θi
a = Θi

b]

= ∑
i∈[u]

a,b∈[qi]

Pr[Σi
a = Σi

b] · Pr[Θi
a = Θi

b]

≤
q2ϵ2

univ
2

. (6.15)

▷ Bounding B.42 | BadK and B.43 | BadK: We first bound the event B.42 | BadK.
We bound this event given B.31. This results in the fact that for a fixed i ∈ [u],
the number of quadruples (a, b, c, d) such that Σi

a = Σi
b, Σi

c = Σi
d holds is at

most q4/3
i . For a fixed choice of such quadruples, the event Θi

b = Θi
c holds

with probability at most ϵuniv due to the universal property of the hash
function H2. Therefore,

Pr[B.42 | B.31∧ BadK] ≤ ∑
i∈[u]

q4/3
i ϵuniv ≤ q4/3ϵuniv. (6.16)

Similar to B.42, we bound B.43 as follows:

Pr[B.43 | B.31∧ BadK] ≤ q4/3ϵuniv. (6.17)

Combining Eqn. (6.15), Eqn. (6.16) and Eqn. (6.17), we have

Pr[Bad4 | BadK] ≤
q2ϵ2

univ
2

+ 2q4/3ϵuniv. (6.18)

Bounding Event Bad-Samp | BadK
We consider bounding this event as a union of several events, namely for a
fixed i ∈ [u], j ∈ [s] and a ∈ [qi], we define

BSi,j,a := Ki = J j ∧ Zi
a ⊕ Ti

a ∈ Ran(EJ j).

Then we say that the event Bad-Samp | BadK holds if there exists an i ∈ [u]

and j ∈ [s] such that BSi,j,a holds, where Zi
a

$←− {0, 1}n \ Ran(EJ j). We first fix
an index j ∈ [s], which determines I=j , an index i ∈ I=j and a ∈ [qi]. For this
choice of indices, the probability that Ki = J j ∧ Zi

1,a ⊕ Ti
a ∈ Ran(EJ j) holds

is at most 2−(k+n) · (pj + qj). This is due to the fact that the cardinality of
Ran(EJ j) is bounded above by (pj + qj), where qj is the number of tuples
(Σi

a, Θi
a)i∈I=j ,a∈[qi]

which have been added into the set Dom(EJ j) such that
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Ki = J j. Moreover, as the event Ki = J j is independent of Zi
1,a ⊕ Ti

a ∈
Ran(EJ j), by taking the union bound, we have

Pr[Bad-Samp] ≤
s

∑
j=1

∑
i∈I=j

∑
a∈[qi]

1
2k ·

pj + qj

2n − (pj + qj)
≤ 2qp + 2q2

2n+k . (6.19)

Note that the number of choices for (i, a) is at most q and the number of
choices for j is s. Thus, summing over all possible choices of (i, j, a) and by
assuming pj ≤ p and p ≤ 2n−1 gives Eqn. (6.19).

Finally, the result follows combining Eqn.s (6.3)-(6.19).

6.4.4. Analysis of Good Transcripts

In this section, we compute a lower bound for the ratio of the real to ideal
interpolation probability for a good transcript. We first consider the set
of transcripts Q=. For each j ∈ [s] and for each i ∈ I=j , we consider the
sequence

Σ̃i := (Σi
1, Σi

2, . . . , Σi
qi
), Θ̃i := (Θi

1, Θi
2, . . . , Θi

qi
).

From this sequence, we construct a bipartite graph Gi, where the nodes
in one partition represent values Σi

a and the nodes in other, Θi
a; an edge

connects the nodes Σi
a and Θi

a. If Σi
a = Σi

b, then we merge the corresponding
nodes into a single node, and similarly for Θi

a = Θi
b. This allows us to break

the graph into wi components. As the transcript is good, it is easy to see
that each component is acyclic and contains a path of length at most 3. Let
vi be the total number of nodes of the graph Gi. Similar to Q=, we consider
Q ̸=. For each j ∈ [r′] and for each i ∈ I ̸=j , consider the sequence

Σ̃i := (Σi
1, Σi

2, . . . , Σi
qi
), Θ̃i := (Θi

1, Θi
2, . . . , Θi

qi
).

Similar to Gi, we construct a bipartite graph Hi, one of whose partitions
represents the nodes corresponding to Σi

a and the other, the nodes corre-
sponding to Θi

a; an edge connects the nodes corresponding to Σi
a and Θi

a. If
two nodes represent the same values, we merge them into a single node. Let
w′i be the number of components of Hi and v′i be the total number of vertices.
Then for a good transcript τ = (τc, τp), realizing τ is almost as likely in the
real world as in the ideal world:

Lemma 19 (Good Lemma). Let τ = (τc, τp) ∈ GoodT be a good transcript. Let
Xre and Xid be defined as above. Then

Pr[Xre = τ]

Pr[Xid = τ]
≥ 1− 9q4/3

8 · 2n −
3q8/3

2 · 22n −
q2

22n −
9q7/3

8 · 22n −
8q4

3 · 23n .
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Proof. We are now ready to calculate the real interpolation probability. For
this, we must bound the total number of input-output pairs on which the
block cipher E — with different keys — is executed. As the transcript re-
leases the 2kh-bit hash keys and the k-bit block cipher key for each user, it
contributes to a term 2−(2kh+k) in the real interpolation probability calcula-
tion. Now, for each j ∈ [r], the block cipher E with key J j is evaluated on a
total of

pj + ∑
i∈I=j

vi

input-output pairs. For the remaining ideal cipher keys, with which none of
the users’ block cipher keys have collided, we have pj input-output pairs,
which are fixed due to the evaluation of the block cipher with those ideal
cipher keys. Moreover, for each j ∈ [r′], the block cipher E is evaluated on a
total of ∑

i∈I ̸=j

v′i input-output pairs with key K j. Summarizing the above,

Pr[Xre = τ] =
u

∏
i=1

1
22kh+k ·

 r

∏
j=1

1
(2n)pj+ ∑

i∈I=j
vi)



· ∏
j∈[s]\[r]

1
(2n)pj)

·

 r′

∏
j=1

1
(2n) ∑

i∈I ̸=j

v′i)

 . (6.20)

Ideal Interpolation Probability: The term
u
∏
i=1

2−nqi , which is contributed

to the ideal interpolation probability due to the sampling of responses of
the adversarial query, samples 2kh-bit hash keys and k-bit block cipher keys
for all u users. For each j ∈ [r], and for each i ∈ I=j , we construct the graph
Gi as defined above. It is easy to see that for each j ∈ [r] and for each i ∈ I=j ,
the graph Gi good. Next, for each j ∈ [r] and for each i ∈ I=j , we sample the
value of a node for each component of the graph Gi. Hence, for j ∈ [r], the
total number of sampled points is

pj + ∑
i∈I=j

wi.

Moreover, for each j ∈ [s] \ [r], the total number of sample points is pj.
Subsequently, we consider the set of transcripts Q ̸=. For each j ∈ [r′], and
for each i ∈ I ̸=j , we construct the graph Hi as defined above, and compute
the set Sj for each j ∈ [r′] as defined in line 14 of Fig. 6.3 (which is defined
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as the number of tuples (Qi
a, Ri

a) such that Qi
a ⊕ Ri

a = Ti
a for all i ∈ I ̸=j and

for all a ∈ [qi]). In summary,

Pr[Xid = τ] =
u

∏
i=1

1
2nqi
·

u

∏
i=1

1
22kh+k ·

 r

∏
j=1

1
(2n)pj+ ∑

i∈I=j
wi)


· ∏

j∈[s]\[r]

1
(2n)pj)

·
(

r′

∏
j=1

1
|Sj|

)
. (6.21)

Calculation of the ratio: By plugging in the value of |Sj| from Lemma 17

into Eqn. (6.21) and then taking the ratio of Eqn. (6.20) to Eqn. (6.21), we

188



6. Tight Multi-User Security Bound of DbHtS

have

p(τ) =
u

∏
i=1

2nqi ·
r

∏
j=1

(2n)pj+ ∑
i∈I=j

wi

(2n)pj+ ∑
i∈I=j

vi

·
r′

∏
j=1

|Sj|
(2n) ∑

i∈I ̸=j

v′i

=
u

∏
i=1

2nqi ·
r

∏
j=1

12n − pj − ∑
i∈I=j

wi
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·
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≥ 1−
r′

∑
j=1

∑
i∈I ̸=j

(
9q4/3

i
8 · 2n +

3q8/3
i

2 · 22n +
q2

i
22n +

9q7/3
i

8 · 22n +
8q4

i
3 · 23n

)
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(

9q4/3

8 · 2n +
3q8/3

2 · 22n +
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9q7/3

8 · 22n +
8q4

3 · 23n

)
,

since qci ≤ q2/3
i for all i ∈ I ̸=j such that j ∈ [r′]. Note that for each j ∈ [r],

∑
i∈I=j

(vi − wi) denotes the total number of edges in the graph
⋃

i∈I=j
Gi, which

is ∑
i∈I=j

qi. Similarly, for each j ∈ [r′], ∑
i∈I ̸=j

(v′i − w′i) denotes the total number

of edges in the graph
⋃

i∈I ̸=j

Hi, which is ∑
i∈I ̸=j

qi.

6.5. Instantiation of the Two-Keyed-DbHtS with
PolyHash

PolyHash [37, 31, 131] is a very efficient algebraic hash function. For a fixed
natural number n, it first samples an n-bit key L uniformly at random from
{0, 1}n. To apply this function on a message M ∈ {0, 1}∗, we first apply an
injective padding function 10∗ (i.e. append a bit 1 followed by a minimum
number of zeroes to the message M so that the total number of bits in
the padded message becomes a multiple of n). Let the padded message be
M∗ = M1∥M2∥ . . . ∥Ml , where l is the number of n-bit blocks in it. Then, we
define the PolyHash function as follows:

PH(L, M∗) := M1 · Ll ⊕M2 · Ll−1 ⊕ . . .⊕Ml · L,

where l is the number of blocks of M. If the size of the message M is a
multiple of n, then we do not apply the padding function and apply the
PolyHash function on the message M itself as follows:

PH(L, M) = M1 · Ll ⊕M2 · Ll−1 ⊕ . . .⊕Ml · L.

In both equations, the multiplications are defined in the field GF(2n). Then
PolyHash [108] is ℓ/2n-regular, ℓ/2n-axu and ℓ/2n-universal, where ℓ is the
maximum number of message blocks (the proof of the lemma is related to a
result on the number of distinct roots of a polynomial):

Lemma 20. Let PH be the PolyHash function as defined above. Then PH is ℓ/2n-
regular, ℓ/2n-almost-xor universal and ℓ/2n-universal.
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Proof. We first compute the regular advantage of the hash function. Clearly,
PH(L, M) = ∆ is a polynomial in L with constant term ∆with degree at most
ℓ. PH(L, M)⊕ ∆ is a non-zero polynomial and hence, ϵreg = ℓ/2n, where ℓ
is the maximum number of message blocks amongst all q messages, as the
maximum number of roots for the polynomial PH(L, M)⊕ ∆ is ℓ. Moreover,
for any two distinct messages M and M′, PH(L, M)⊕ PH(L, M′)⊕ ∆ is a
non-zero polynomial in L with degree at most ℓ, and hence the maximum
number of roots this polynomial can have is ℓ. Therefore, the almost-xor-
universal advantage of PH is ℓ/2n.

From Lemma 20, a simple corollary immediately follows:

Corollary 3. Let fixb(PH) be the variant of the PolyHash function in which the least
significant bit of the n-bit output of the function is fixed to bit b. Then, fixb(PH) is
a 2ℓ/2n-regular, 2ℓ/2n-almost-xor universal and 2ℓ/2n-universal hash function.

We now define the PolyHash-based double-block hash function, (PH-DbH
function):

PH-DbH(L1, L2, M) :=

fix0(PH(L1, M))︸ ︷︷ ︸
H1

L1

, fix1(PH(L2, M))︸ ︷︷ ︸
H2

L2

 . (6.22)

Thus, two independent instances of the PolyHash function keyed with two
independent keys L1 and L2 are applied separately to a message M, and the
least significant bit of their output is replaced with bits 0 and 1 respectively.
The PolyHash-based DbHtS construction can now be defined directly from
the Two-Keyed-DbHtS construction as follows: encrypt fix0(PH(K1, M)) and
fix1(PH(K2, M)) through a block cipher EK and xor the result together to
produce the output. An algorithmic description of the construction is shown
in Fig. 6.4. Clearly, the PH-DbH function is a good double-block hash function

PH-DbHtS(K1, K2, K, M)

1 : Σ = fix0(PH(K1, M));
2 : Θ = fix1(PH(K2, M));
3 : T = EK(Σ)⊕ EK(Θ);

return T;

PH(L, M)

1 : M1∥ . . . ∥Mℓ
n←− M∥10∗;

2 : Y = M1 · Lℓ ⊕M2 · Lℓ−1 ⊕ · · · ⊕Mℓ · L;
return Y;

Figure 6.4.: The PH-DbHtS construction with PH-DbH as the underlying double-
block hash function. M1∥M2∥ . . . ∥Mℓ

n←− M∥10∗ denotes the parsing of
message M∥10∗ into n bit strings.

191



6. Tight Multi-User Security Bound of DbHtS

as the individual hash functions H1 and H2 are both 2ℓ/2n-regular and
universal. Furthermore, for a randomly chosen pair of keys L1, L2, and for
any pair of messages M, M′ ∈ {0, 1}∗,

Pr[fix0(PH(L1, M)) = fix1(PH(L,M′))] = 0.

Therefore, combining the Corollary 3 with Theorem 11, we derive the fol-
lowing security of PolyHash-based DbHtS (for the sake of brevity, we write Π
to denote the PH-DbHtS construction):

Theorem 12. Let K be a non-empty finite set. Let E : K× {0, 1}n → {0, 1}n be
an n-bit block cipher and PH-DbH : ({0, 1}n × {0, 1}n)× {0, 1}∗ → ({0, 1}n)2

be the PolyHash-based double-block hash function as defined above. Then any
computationally unbounded distinguisher making a total of q construction queries
across all u users such that each queried message is at most ℓ blocks long with
ℓ ≤ 2n−2 and a total of p primitive queries to the block cipher E can distinguish Π
from an n-bit uniform random function with advantage

AdvmPRF
Π (u, q, p, ℓ) ≤ 9q4/3

8 · 2n +
3q8/3

2 · 22n +
q2

22n +
9q7/3

8 · 22n +
8q4

3 · 23n +
q

2n

+
2u2

2n+k +
4qpℓ
2n+k +

4q2ℓ

22n +
4q2ℓ

2n+k +
8q4/3ℓ

2n +
4q2ℓ2

22n +
2qp
2n+k +

2q2

2n+k .

Remark 5. We would like to mention that the definition of the PolyHash function
used in this chapter is different from that used in [83]. Nevertheless, one can also
establish the 3n/4-bit multi-user security of the PolyHash-based DbHtS construction
with the PolyHash function used in [83].

6.6. Summary

In this chapter, we have shown that the Two-Keyed DbHtS construction
is multi-user secure up to 23n/4 queries in the ideal cipher model. As an
instantiation of the result, we have shown that Polyhash-based DbHtS pro-
vides 3n/4-bit multi-user security in the ideal cipher model. Combining
it with the generic result on the attack complexity of DbHtS makes the
bound tight. However, we cannot apply this result to analyze the security of
2K-SUM-ECBC, 2K-PMAC Plus and 2K-LightMAC Plus. This is because their
underlying DbH functions are based on block ciphers, and our proof tech-
nique does not support analysis of their security in the ideal cipher model
as the underlying DbH function of these constructions is built from block
ciphers. We believe that proving 3n/4-bit security of the DbHtS construction
based on block cipher-based double-block hash functions needs a careful
study.
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7. Conclusion

Various designs of message authentication codes that possess beyond the
birthday bound security were detailed in this work.

Chapter 1 proposed a nonce-based, block cipher-based construction nE-
HtM (nonce-based Enhanced Hash-then-Mask), which is 2n/3-bit secure
when the nonce is respected. It also introduced a concept of faulty nonces
and showed that the security of nEHtM degrades gracefully with the number
of faulty nonces. Chapter 2 proposed a permutation-based MAC dubbed
PDMMAC (Permutation-based Davies-Meyer MAC) and its variants, thus
obtaining pseudorandom functions from PRPs. It proved 2n/3-bit tight se-
curity for these constructions. In continuation, chapter 3 proposed the pEDM
(permutation-based Encrypted Davies-Meyer) MAC, which is an inverse-
free permutation-based MAC with a single instance of the permutation.
This construction was shown to possess tight 2n/3-bit security. Next, chap-
ter 4 proposed another permutation-based construction called the p-DbHtS
(permutation-based Double-block Hash-then-Sum), which also has tight
2n/3-bit security. Chapter 5 continued exploration of the DbHtS construc-
tion, proving tight 3n/4-bit security of the block cipher-based DbHtS in the
multi-user setting. It also described a PolyHash-based instantiation of the
construction with the same security.

Furthermore, this work also extended Patarin’s Mirror Theory with some
new theorems, as well as other results such as multicollision theorems,
variants of the sum-capture lemma and other counting results.
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Appendix A. A Simple Result on
Probability

In this section, we recall two simple probability results from [67] that shall
prove useful in the proof of security of the pEDM construction (4).

Proposition 4. Let Q̃ = (Q1, . . . ,Qs+1) be an (s + 1)-tuple of ordered pairs
such that for j ∈ [s + 1], Qj := ((xj

1, yj
1), . . . , (xj

qj , yj
qj)). Moreover, for each j, j′ ∈

[s + 1], Let Dom(Qj) ∩Dom(Qj′) = ϕ and Ran(Qj) ∩ Ran(Qj′) = ϕ. Therefore,
X = (Dom(Q1), . . . ,Dom(Qs+1)) and Y = (Ran(Q1), . . . ,Ran(Qs+1)) are two
disjoint collections of finite sets such that for each j ∈ [s + 1], |Dom(Qj)| =
|Ran(Qj)| = qj. Then,

Pr
[
π

$←− Perm(n) : X \Dom(Qs+1)
π−→ Y \ Ran(Qs+1) | π −→ Qs+1

]
=

1
(N − qs+1)q1+...+qs

.

Setting s = 1 in the above proposition gives the following simple corollary:

Corollary 4. For two sets Q1 = ((x1
1, y1

1), . . . , (x1
q1

, y1
q1
)) of cardinality q1 and

Q2 = ((x2
1, y2

1), . . . , (x2
q2

, y2
q2
)) of cardinality q2 such that Dom(Q1)∩Dom(Q2) =

ϕ and Ran(Q1) ∩ Ran(Q2) = ϕ,

Pr[π $←− Perm(n) : π −→ Q1 | π −→ Q2] =
1

(N − q2)q1

.
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Appendix B. Variants of the Sum
Capture Lemma

In this section, we state a few variants of the sum capture lemma [6] used
in [52]. Informally stated, the result bounds the value

µ(A) := max
B,C⊆GF(2n)

|{(a, b, c) ∈ A×B × C : a = b⊕ c}|

by at most q|B||C|/2n (except in cases with negligible probability of occur-
rence), when choosing a random subset A of GF(2n) (or more generally, of
any abelian group). Chen et al. [52] proved the result in a different setting,
in which A arises from the interaction of an adversary with a random per-
mutation π

(
A = x⊕ y : (x, y) ∈ Q, where Q is the transcript of interaction

between the adversary and the permutation
)
. We present here, a similar

lemma.
Let us first recall some results in Fourier analysis over Zn

2 of size q = 2n.

Notation. Given a subset S ⊂ {0, 1}n, the characteristic function of S is the
function IS : {0, 1}n → {0, 1} such that IS(s) = 1 if and only if s ∈ S . Given
two real-valued functions f , g : {0, 1}n → R, the inner product of f and g is
given by

⟨ f , g⟩ = E[ f g] =
1
2n ∑

x∈{0,1}n

f (x)g(x),

and the convolution of f and g is given by

( f ⋆ g)(x) = ∑
y∈{0,1}n

f (y)g(x⊕ y), ∀ x ∈ {0, 1}n.

For α ∈ {0, 1}n, the character associated with α is the function

χα : {0, 1}n → {+1,−1}, x −→ (−1)α·x.

χ0 is called the principal character and all other χα ( ̸= 1) for α ̸= 0 are called
non-principal characters. For α ∈ {0, 1}n, we define the αth Fourier coefficient
of a real-valued function f : {0, 1}n → R as

f̂ (α) := ⟨ f , χα⟩ =
1
2n ∑

x∈{0,1}n

f (x)(−1)α·x.

The coefficient corresponding to α = 0 is called the principal Fourier coefficient
and all other coefficients are non-principal Fourier coefficients. Note that the
principal Fourier coefficient for a characteristic function IS of a set S is

ÎS(0) =
|S|
2n .
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Having defined the necessary notations, one may now recall the following
three important results for functions f , g : {0, 1}n → R, a constant α ∈
{0, 1}n and a set S ⊆ {0, 1}n:

∑
x∈{0,1}n

f (x)g(x) = 2n ∑
α∈{0,1}n

f̂ (α)ĝ(α), (B.1)

( f̂ ⋆ g)(α) = 2n f̂ (α)ĝ(α), (B.2)

∑
α∈{0,1}n

|ÎS(α)|2 =
|S|
2n . (B.3)

Finally, note the following two definitions of parameters associated with Q:

Φα,β(Q) := 22n|ÎQ(α, β)| = | ∑
(x,y)∈Q

(−1)α·x⊕β·y|,

Φ(Q) := max
α ̸=0,β ̸=0

Φα,β(Q).

We are now ready to state our sum-capture lemma:

Lemma 21. Let RF ∈ Func ({0, 1}n) and D be a probabilistic distinguisher that
makes q adaptive queries to RF. Let Q = ((x1, y1), . . . , (xq, yq)) denote the tran-
script of interaction of D with RF. For any two subsets U and V of {0, 1}n, let

µ(Q,U ,V) = |{((x, y), u, v) ∈ Q× U × V : x⊕ u = y⊕ v}| .

Then assuming 9n ≤ q ≤ 2n/2,

Pr
RF,ω

[
∃U ,V ⊆ {0, 1}n : µ(Q,U ,V) ≥ q|U ||V|

2n + 3
√

nq|U ||V|
]
≤ 2

2n , (B.4)

where the probability is over random choices of RF and random coins ω of D.

Proof. To bound µ(Q,U ,V), consider the following two sets: N = U ×
V = {(u, v) : u ∈ U , v ∈ V} and K = {(k, k) : k ∈ {0, 1}n}. Note that
((x, y), u, v) ∈ Q × U × V if and only if ∃k ∈ {0, 1}n such that (x, y) ⊕
(u, v) = (k, k). Therefore,
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µ(Q,U ,V) = ∑
(x,y)∈({0,1}n)2

∑
(u,v)∈({0,1}n)2

IQ(x, y)IN (u, v)IK(x⊕ u, y⊕ v)

= ∑
(x,y)∈({0,1}n)2

IQ(x, y) ∑
(u,v)∈({0,1}n)2

IN (u, v)IK(x⊕ u, y⊕ v)

= ∑
(x,y)∈({0,1}n)2

IQ(x, y)(IN ⋆ IK)(x, y)

= 22n ∑
(α,β)∈({0,1}n)2

ÎQ(α, β)( ̂IN ⋆ IK)(α, β) (by Eqn. (B.1))

= 24n ∑
(α,β)∈({0,1}n)2

ÎQ(α, β)ÎN (α, β)ÎK(α, β) (by Eqn. (B.2))

= 24n |Q|
22n
|N |
22n
|K|
22n + 24n ∑

(α,β) ̸=(0,0)
ÎQ(α, β)ÎN (α, β)ÎK(α, β)

(separating principal Fourier coefficients from
non-principal ones)

=
q|U ||V|

2n + 24n ∑
(α,β) ̸=(0,0)

ÎQ(α, β)ÎN (α, β)ÎK(α, β),

(follows from the cardinality of Q,N and K). (B.5)

Now, ÎN (α, β) =
1

22n ∑
(u,v)∈({0,1}n)2

IN (u, v)(−1)α·u⊕β·v

=
1

22n ∑
(u,v)∈({0,1}n)2

IU (u)IU (u)(−1)α·u⊕β·v

=
1

22n

(
∑

u∈({0,1}n)

IU (u)(−1)α·u
)(

∑
v∈({0,1}n)

IV (v)(−1)β·v
)

= ÎU (α)ÎV (β), (B.6)

and ÎK(α, β) =
1

22n ∑
(x,y)∈({0,1}n)2

IK(x, y)(−1)α·x⊕β·y

=
1

22n ∑
y∈({0,1}n)

(−1)α·y⊕β·y. (B.7)
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Eqn. (B.7) evaluates to 0 if β = α. Therefore, from Eqn.s (B.5), (B.6) and (B.7),

µ(Q,U ,V) =
q|U ||V|

2n + 23n ∑
α ̸=0

ÎQ(α, α)ÎU (α)ÎV (α)

≤ q|U ||V|
2n + 23n ∑

α ̸=0
|ÎQ(α, α)| · |ÎU (α)| · |ÎV (α)|

≤ q|U ||V|
2n + 2nΦ(Q) ∑

α ̸=0
|ÎU (α)| · |ÎV (α)|, (B.8)

where the last inequality follows due to the definition Φ(Q) := |ÎQ(α, α)| ≤
Φ(Q)/22n. Next, by the Cauchy-Schwartz inequality,

∑
α ̸=0
|ÎU (α)| · |ÎV (α)| ≤

√
∑
α ̸=0
|ÎU (α)|2 ·

√
∑
α ̸=0
|ÎV (β)|2 ≤ 1

2n

√
|U ||V|. (B.9)

Plugging Eqn. (B.9) into Eqn. (B.7) then gives

µ(Q,U ,V) ≤ q|U ||V|
2n + Φ(Q)

√
|U ||V|. (B.10)

From Lemma 5 of [52] we know that if A1, . . . , Aq is a sequence of ran-
dom variables taking values in {+1,−1} such that for all i ∈ [q] and all
(a1, . . . , ai−1) ∈ ({+1,−1})i−1,

Pr[Ai = 1 | (A1, . . . , Ai−1) = (a1, . . . , ai−1)] ≤
1
2
+ ϵ, (B.11)

for some ϵ ∈ [0, 1/2], then for any δ ∈ [0, 1],

Pr

[
q

∑
i=1

Ai ≥ q(2ϵ + δ)

]
≤ e

qδ2
12 .

We claim the following using this lemma:
Claim. Assume 9n ≤ q ≤ 2n/2, and let D be a probabilistic distinguisher
that makes q adaptive queries to RF. Let Q = ((x1, y1), . . . , (xq, yq)) denote
the transcript of interaction with RF to D. Then

Pr
RF,ω

[Φ(Q) ≥ 3
√

nq] ≤ 2
2n ,

where the probability is over the randomness of RF and the random coin ω of the
distinguisher D.

The proof of this claim is similar to that of Lemma 6 of [52]. Define random
variables Ai = (−1)α·xi⊕β·yi ((xi, yi) ∈ Q) i. Then |(A1 + A2 + . . . + Aq)| =

214



Appendix B. Variants of the Sum Capture Lemma

Φα,β(Q). For the ith query with input xi, the output yi is a uniform random
variable over a set of size 2n. Moreover, once xi is fixed, there are exactly
2n/2 values yi such that Ai = 1, since β ̸= 0. Therefore,

Pr[Ai = 1 | (A1, . . . , Ai−1) = (a1, . . . , ai−1)] =
2n/2

2n =
1
2

.

Hence, ϵ = 0 in Eqn. (B.11), and so,

Pr[
q

∑
i=1

Ai ≥ qδ] ≤ e−
qδ2
12 .

Setting A′i = −Ai, a similar reasoning gives

Pr[
q

∑
i=1

Ai ≤ −qδ] ≤ e−
qδ2
12 .

Combining these two equations, we obtain

Pr[Φ(Q) ≥ qδ] ≤ 2e−
qδ2
12 ,

and the result follows when δ =
√

12 log 2n/q. This makes q ≥ 9n, which
implies δ ≤ 1 and

√
12 log 2 ≤ 3.

Let T⋆ be a multiset of size q.Recall lemma 1 of [55]:
Let T∗ be a multiset of q ≥ 1 uniformly random and independently chosen elements
of {0, 1}n. Then-

Pr
[

µ(T∗) ≥ q3

2n + q
√

3nq
]
≤ 2

2n .

The following is also another corollary of this lemma:

Corollary 5. Let T∗ be a multiset of q (≥ 1) uniformly random and independently
chosen elements of {0, 1}n. Then assuming 9n ≤ q ≤ 2n−1,

Pr
T∗

[
∃U ,V ⊆ {0, 1}n : µ(T∗,U ,V) ≥ q|U ||V|

2n + 3
√

nq|U ||V|
]
≤ 2

2n , (B.12)

where the probability is taken over the uniform distribution of the multiset T∗.

This lemma can be slightly altered by simply taking the sizes of the
multiset T∗ and the sets A, B to be q, p1, p2, respectively:

Lemma 22. Let T⋆ = {T1, . . . , Tq} be the multiset of all the tags received through
q (≥ 1) distinct queries to the construction.

Pr
[
µ (T⋆) ≥ p1p2q

2n +
√

3np1p2q
]
≤ 2

2n . (B.13)
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If the set A is replaced by a multiset A∗, then this result is further modified
into the following lemma:

Lemma 23. Let T∗, A∗ be multisets of {0, 1}n and B ⊆ {0, 1}n. Define-

µ(T∗, A∗, B) = |{(t, a, b) ∈ T∗ × A∗ × B : t = a⊕ b}| and

µ(T∗) = max
A∗,B

|T∗|=q1,|A∗|=q2,|B|=p

µ(T∗, A∗, B).

If T∗, A∗ are multisets of respectively q1, q2 uniformly random and independently
chosen elements of {0, 1}n and B is a subset of {0, 1}n of size p, then

Pr

[
µ(T∗) ≥ q1q2p

2n +

√
3np(q1 + q2)

2n

]
≤ 2

2n . (B.14)

Proof.

µ(T∗, A∗, B) = ∑
t,a∈{0,1}n

δT∗(t)δA∗(a)1B(b)

= ∑
t∈{0,1}n

δT∗(t) (δA∗ ⋆ 1B) (t)

= 2n ∑
α∈{0,1}n

δ̂T∗(α)
(

̂δA∗ ⋆ 1B

)
(α)

= 22n ∑
α∈{0,1}n

δ̂T∗(α)δ̂A∗(α)1̂B(α)

= 22nδ̂T∗(0)δ̂A∗(0)1̂B(0) + 22n ∑
α ̸=0

δ̂T∗(α)δ̂A∗(α)1̂B(α),

where δ̂T∗(0) =
|T∗|
2n , δ̂A∗(0) =

|A∗|
2n , 1̂B(0) =

|B|
2n imply

µ(T∗, A∗, B) =
q1q2p

2n + 22n ∑
α ̸=0

δ̂T∗(α)δ̂A∗(α)1̂B(α)

≤ q1q2p
2n + 22n ∑

α ̸=0

∣∣∣δ̂T∗(α)
∣∣∣ ∣∣∣δ̂A∗(α)

∣∣∣ ∣∣∣1̂B(α)
∣∣∣

≤ q1q2p
2n + Φ(T∗)Φ(A∗) ∑

α ̸=0

∣∣∣1̂B(α)
∣∣∣ ,

where Φ(T∗) = max
α ̸=0

{
2n
∣∣∣δ̂T∗(α)

∣∣∣}
and Φ(A∗) = max

α ̸=0

{
2n
∣∣∣δ̂A∗(α)

∣∣∣} .
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Now,

∑
α

∈ {0, 1}n
∣∣∣1̂B(α)

∣∣∣2 ≥ (
∑
α

̸= 0
∣∣∣1̂B(α)

∣∣∣)2

− 2 · ∑
0≤α<β<2n

∣∣∣1̂B(α)
∣∣∣ · ∣∣∣1̂B(β)

∣∣∣
=⇒ ∑

α ̸=0

∣∣∣1̂B(α)
∣∣∣ ≤

√√√√ |B|
2n + 2 ∑

0≤α<β<2n

∣∣∣1̂B(α)
∣∣∣ · ∣∣∣1̂B(β)

∣∣∣ ≤
√
|B|
2n .

Therefore, µ(T∗, A∗, B) ≤ q1q2 p
2n + Φ(T∗)Φ(A∗) ·

√
p

2n . Since this holds for
any A∗, B ⊆ {0, 1}n, it follows that

q1q2p
2n +

√
p

2n · C ≤ µ(T∗) ≤ q1q2p
2n + Φ(T∗)Φ(A∗) ·

√
p

2n

for some appropriate value of C, which implies Pr
[
µ(T∗) ≥ q1q2 p

2n +
√

p
2n · C

]
≤

Pr [Φ(T∗)Φ(A∗) ≥ C]. Denote T∗ = {t1, . . . , tq1} and A∗ = {a1, . . . , aq2} us-
ing arbitrary orders. Then-

Φ(T∗) = max
α ̸=0

{
2n ·

∣∣∣δ̂T∗(α)
∣∣∣}

= max
α ̸=0


∣∣∣∣∣∣ ∑
x∈{0,1}n

δT∗(x) · (−1)α·x

∣∣∣∣∣∣


= max
α ̸=0


∣∣∣∣∣∣ ∑
x∈{0,1}n

q1

∑
i=1

1{ti}(x) · (−1)α·x

∣∣∣∣∣∣


= max
α ̸=0

{∣∣∣∣∣ q1

∑
i=1

(−1)α·ti

∣∣∣∣∣
}

.

Similarly, Φ(A∗) = max
α ̸=0

{∣∣∣∣∣ q2

∑
j=1

(−1)α·aj

∣∣∣∣∣
}

.

∴ Φ(T∗)Φ(A∗) = max
α ̸=0

{∣∣∣∣∣ q1

∑
i=1

(−1)α·ti

∣∣∣∣∣
}
·max

α ̸=0

{∣∣∣∣∣ q2

∑
j=1

(−1)α·aj

∣∣∣∣∣
}

= max
α ̸=0

{∣∣∣∣∣ q1

∑
i=1

(−1)α·ti ·
q2

∑
j=1

(−1)α·aj

∣∣∣∣∣
}

= max
α ̸=0


∣∣∣∣∣∣ ∑
(i,j)∈[q1]×[q2]

(−1)α·(ti+aj)

∣∣∣∣∣∣

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For α ̸= 0, denoting A(α)
(i,j) = (−1)α·(ti+aj) and A(α) = ∑

(i,j)∈[q1]×[q2]
(−1)α·(ti+aj),

one obtains Φ(T∗)Φ(A∗) = max
α ̸=0

{∣∣∣A(α)
∣∣∣}. The random variable A(α) is the

sum of q1 + q2 independent random variables A(α)
(i,j) such that Pr

[
A(α)
(i,j) = 1

]
=

Pr
[

A(α)
(i,j) = −1

]
= 1

2 . Therefore, by the Chernoff bound given in Corollary

4.8 of [109], for any a > 0, Pr
[∣∣∣A(α)

∣∣∣ ≥ a
]
≤ 2e−a2/2(q1+q2).

Let C ≥
√

3n(q1 + q2). Then Pr
[∣∣∣A(α)

∣∣∣ ≥ C
]
≤ 2e−C2/2(q1+q2)

=⇒ Pr
[

µ(T∗) ≥ q1q2p
2n +

√
p

2n · C
]
≤ Pr [Φ(T∗)Φ(A∗) ≥ C]

= Pr
[

max
α ̸=0

{∣∣∣A(α)
∣∣∣} ≥ C

]
≤ ∑

α ̸=0
Pr
[∣∣∣A(α)

∣∣∣ ≥ C
]

≤ 2e−C2/2(q1+q2) ≤ 2
2n ,

since e3/4 ≥ 2.
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Appendix C. Figures Describing
Bad Events for
PDM∗MAC

B.1 π π−1 π π−1

λi λj

Ti = Tj

B.2 π π−1 π π−1

λi λj

Ti ⊕ 2K = Nj ⊕ K

B.3 π π−1 π π−1

Ni ⊕ K = Tj ⊕ 2K

Ti ⊕ 2K = Nj ⊕ K

B.4 π π−1

Ti ⊕ 2K = Ni ⊕ K

B.5

π π−1

π π−1

π π−1

Ti ⊕Mj = 3K

Tj ⊕Mk = 3K

B6.

π π−1

π π−1

π π−1

Ti = Tj = Tk
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B.7

π π−1

π π−1

π π−1

Ti = Tj = Nk ⊕ 3K

B.8

π π−1

π π−1

π

Ni ⊕ K = Tj ⊕ 2K

Ti ⊕ 2K = ũk

B.9

π π−1

π π−1

π

Ni ⊕ K = Tj ⊕ 2K

Nj ⊕ K = ũk

B.10

π π−1

π

π

Ni ⊕ K = ũk

Ti ⊕ 2K = ũj

B.11

π π−1

π

π

N′a ⊕ K = ũk

T′a ⊕ 2K = ũj

B.12

π π−1

π π−1

Ni = N′a

Ti = T′a

λ′a λi
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B.13

π π−1

π π−1

π π−1

Ti ⊕ 2K = Nj ⊕ K

Tj = T′a
Ni = N′a

⊕λ = 0

B.14

π π−1

π π−1

π π−1

Ti ⊕ 2K = Nj ⊕ K

Tj ⊕ 2K = N′a ⊕ K
Ni ⊕ K = T′a ⊕ 2K

⊕λ = 0

B.15

π π−1

π π−1

π π−1

Ti = Tj ⊕ K

Nj ⊕ K = T′a ⊕ 2K
Ni = N′a

⊕λ = 0
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Appendix D. Sum of Two
Independent Random
Permutations Under a
Conditional
Distribution

Let E be a block cipher over n-bits. Based on E, we define the sum function
as follows:

sumk1,k2(x) := Ek1(x)⊕ Ek2(x), x ∈ {0, 1}n.

The security of the sum of two identical random permutations (i.e., when
k1 = k2) under conditional distribution has been studied in [63]. This chapter
requires the same result with the change that instead of two identical random
permutations, it considers the permutations to be independent (i.e., k1 and
k2 are independently sampled). Proof of the lemma is straightforward and
similar to that of Theorem 2 of [63]. Hence we omit the proof.

Lemma 24. Let Y1 ⊆ {0, 1}n and Y2 ⊆ {0, 1}n be two sets of size s1 and s2
respectively. Let t̃ := (t1, . . . , tr) be a block tuple of length r. We define the following
set:

H := {(h1
i , h2

i )i : h1
i ⊕ h2

i = ti ∀i ∈ [r], (hb
i )i ∈ ({0, 1}n \ Yb)

(r) ∀b ∈ [2]}.

Then we have the following lower bound on the cardinality of H:

|H| ≥ (2n − s1)r(2n − s2)r

2nr

(
1− rs1s2 + r2(s1 + s2) + r3

(2n − s1 − r)(2n − s2 − r)

)
.

Moreover, if s1 + r ≤ 2n−1 and s2 + r ≤ 2n−1, then we have

|H| ≥ (2n − s1)r(2n − s2)r

2nr

(
1− 4rs1s2 + 4r2(s1 + s2) + 4r3

22n

)
.
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Appendix E. Some Results on
Linear Algebra

Let A be a matrix of dimension s× t defined over {0, 1}n. Aij denotes the
element in its ith row and jth column. For a column vector C̃ of dimension
s× 1, A∥C̃ denotes the augmented matrix of dimension s× (t + 1). For any
row vector R̃ := (r1, . . . , rt) of dimension 1× t, transpose of row vector R̃,
denoted as R̃T, denotes the column vector

R̃T :=


r1
r2
...
rt


of dimension t× 1. One can represent any system of s linear equations with
t unknowns Ỹ := (Y1, . . . , Yt) defined over {0, 1}n, denoted as L, as a matrix
A of dimension s× t, where the ith equation Li := ai1 · Y1 ⊕ . . .⊕ ait · Yt =
ci, where ci ∈ {0, 1}n, corresponds to the ith row vector of A as ãi :=
(ai1, . . . , ait). We say L is consistent if it has at least one solution, otherwise
we call it inconsistent. For L to be consistent, one must have rank(A) =
rank(A∥C̃), where the rank of a matrix A is defined as the maximum number
of linearly independent columns of A and C̃ = (c1, . . . , cs)T. L has a unique
solution if rank(A) = t and it has many solutions if rank(A) < t.

Let A · ỸT = C̃ represent a system of s linear equations with t unknowns
Ỹ defined over {0, 1}n, where rank(A) = r and the elements of A are from
{0, 1}n. Let Ỹ wor←−− Y ⊆ {0, 1}n and C̃ is any arbitrary column vector of
dimension s × 1 with its elements from {0, 1}n. Thus, the probability of
realizing a particular solution is at most 1

(|Y|−t+r)r
as stated formally in the

following lemma, proof of which can be found in [63].

Lemma 25. Let Ỹ := (Y1, . . . , Yt) be without replacement samples from a set
Y ⊆ {0, 1}n and A be a matrix of dimension s× t defined over {0, 1}n. Then, for
any given column vector C̃ of dimension s× 1 over {0, 1}n, we have

Pr[(A)s×t · ỸT = C̃] ≤ 1
(|Y| − t + r)r

,

where r = rank(A).
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