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Notations & Abbreviations

e(z) e2πiz

a ∼ b a ≤ b < 2b

f(x) ∼ g(x) f(x)/g(x)→ 1, as x→∞

α� A |α| ≤ cA, c some absolute postive constant

α�f A |α| ≤ c(f)A, c(f) some postive constant depending on f

α = Of (A) |α| ≤ c(f)A

ε an arbitrarily small constant

C∞c (X) set of compactly supported smooth functions with support in X
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Introduction

Automorphic L-functions play a significant role in the modern number theory. The

most classic examples of such functions are the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

, <(s) > 1, (0.0.1)

and the Dirichlet L-function

L(s, χ) =
∞∑
n=1

χ(n)

ns
=
∏
p

(
1− χ(p)

ps

)−1

, <(s) > 1, (0.0.2)

where χ is a Dirichlet character modulo M and p runs through all primes. The

above functions are related to the study of prime numbers. In fact non-vanishing of

ζ(1+it), t ∈ R, gives us the prime number theorem and the non-vanishing of L(1, χ)

yields the Dirichlet theorem for primes in an arithmetic progression (see [23]). The

Riemann zeta function ζ(s) was considerably studied by B. Riemann in his famous

memoir in 1860. He proved that ζ(s) has a meromorphic continuation on the whole

complex plane C with a simple pole at s = 1 and satisfies a functional equation of

the form (see [23])

ξ(s) =
1

2
π−s/2s(s− 1)Γ

(s
2

)
ζ(s) = ξ(1− s). (0.0.3)

Thus ζ(s) is well understood in the half plane <s > 1 (due to the absolute con-

vergence) and <s < 0 (due to the functional equation). In the memoir, Riemann

proposed a conjucture, famously known as the Riemann Hypothesis, that all the

3



4 Introduction

‘non-trivial’ zeros of ζ(s) lie on the ‘critical’ line <(s) = 1/2. It has numerous re-

markable applications in number theory, one of them being the Lindelöf Hypothesis

which asserts that

ζ(1/2 + it)�ε (1 + |t|)ε,

for any ε > 0. A similar phenomenon occurs for the Dirichlet L-function L(s, χ) or

more generally for any degree, d ≥ 1, automorphic L-function

L(s, F ) =
∞∑
n=1

λF (n)

ns
=
∏
p

d∏
j=1

(
1− αj(p)

ps

)−1

, <(s) > 1,

where λF (n)’s are the normalised (λF (1) = 1) Fourier coefficients of an automorphic

form F and αj(p), 1 ≤ j ≤ d, are the local parameters of L(s, F ) at p. Like ζ(s),

L(s, F ) has a meromorphic continuation (with at most poles at s = 0 and s = 1)

and satisfies a functional equation of the form (see [42])

Λ(s, F ) = q(F )s/2π−ds/2
d∏
j=1

Γ

(
s+ κj

2

)
L(s, F ) = ε(F )Λ(1− s, F̄ ), (0.0.4)

where q(F ) is the conductor, ε(F ) is the root number of L(s, F ), κj’s (∈ C) are the

Langlands parameters of L(s, F ) at infinity and F̄ is the dual form of F .

It is one of the most sought-after problems to understand the size of L(s, F ) on

the critical line <(s) = 1/2. It turns out that the size of L(1/2 + it, F ) can be

expressed in terms of the analytic conductor q(t, F ), which is defined as (see [[42],

Chapter 5])

q(t, F ) = q(F )
d∏
j=1

(3 + |1/2 + it+ κj|). (0.0.5)

Using the functional equation and the Phragmén-Lindelöf convexity principle, it fol-

lows that

L(1/2 + it, F )�ε q(t, F )1/4+ε. (0.0.6)
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The above bound is known as the convexity bound. It is conjectured that

L(1/2 + it, F )�ε q(t, F )ε,

with any ε > 0. This is known as the generalized Lindelöf Hypothesis which follows

from the Grand Riemann Hypothesis (GRH). In many applications (which we discuss

shortly), the crucial step is to improve on the convexity bound for the relevent L-

functions, in the sense of reducing the exponent 1/4 by a positive number, however

small that number may be. Such bounds are known as subconvexity bounds. Mostly,

in applications, one seeks subconvexity estimates with respect to some subfamily (i.e.

only one of the parameters t, q(F ) or (κj) varies). If t varies (F is fixed), we call it

t-aspect, if q(F ) varies, we call it level aspect and if (κj) varies, we call it spectral

aspect. Getting subconvexity bounds is a challanging task and has remained open

for most L-functions. Moreover, for higher degree L-functions, the subconvexity

problem becomes even more difficult due to the increase in the complexity of the

L-functions and the lack of sufficient tools. The purpose of this thesis to obtain

subconvex bounds for some specific degree six L-functions in the spectral aspect.

Now we briefly recall some important instances of subconvexity bounds and their

applications.

0.1 Degree one L-functions

For degree one L-functions, for ζ(s), the first t-aspect subconvexity bound was

proved by Hardy-Littlewood (written down by Landau [52] in 1924) and Weyl [90]

using ‘Weyl differencing trick’ in 1921 independently, who proved the following result:

ζ(1/2 + it)�ε (1 + |t|)1/4−1/12+ε,

for any ε > 0. Since then it has been improved by several people and the latest

bound (13/84 + ε) is due to Bourgain [16]. A beautiful application of the t-aspect

subconvexity for ζ(s) was given by Ingham in 1937 (see [[19], Chapter V]), who
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proved that

ζ(1/2 + it)�ε (1 + |t|)c+ε ⇒ π(x+ xθ)− π(x) ∼ xθ

log x
,

for any θ > (1 + 4c)/(2 + 4c). Thus, corresponding to the current bound, which is

13/84, we get

π(x+ x34/55+ε)− π(x) ∼ x34/55+ε

log x
,

which also implies that pn+1−pn < p
34/55+ε
n , for sufficiently large n, where pn denotes

the nth prime number (see [38] and [5] also for more details on gaps between primes).

Another interesting application was given by Conrey, Ghosh and Gonek [21] who

showed that if ζ(1/2 + it) �ε (1 + |t|)c+ε then the number of simple zeros of ζ(s)

inside the rectangle

{s = σ + it : 0 < σ < 1, 0 < t < T}

are at least T θ−ε for any ε > 0 and T large enough, where

θ = max{1/(1 + 6c), (
√

1 + 16c+ 16c2 − 1− 4c)/4c}.

Note that we expect all the zeros to be simple.

In the level aspect, i.e., when the modulus M of χ tends to ∞, the first subcon-

vexity bound for L(s, χ) is due to Burgess [17], who proved that

L(1/2, χ)�ε M
1/4−1/16+ε. (0.1.1)

He used a variant of the Weyl differencing trick but in a purely arithmetic context

and with significant differences. In a breakthrough work, around four decades later,

Conrey and Iwaniec [22] improved the Burgess bound to the Weyl strength bound

L(1/2, χ)�ε M
1/4−1/12+ε

when χ is a quadratic character. They used the moment method along with the
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non-negativity of the L-value L(1/2, f×χ), where f is a holomorphic or Maass cusp

form for SL(2,Z). This result was recently extended to any Dirichlet characters by

Petrow and Young [79], [80] following the ideas of [22]. In the depth aspect (i.e.,

when χ is a Dirichlet character modulo M r, M prime and r →∞) , the latest bound

is due to Milićević [66] who proved the following sub-Weyl bound

L(1/2, χ)� (M r)1/6−δ,

for some δ > 0. He developed the theory of p-adic exponent pairs to achieve the

above result.

0.2 Degree two L-functions

For degree two L-functions, the first t-aspect subconvexity bounds were proved by

Good [31] and Meurman [68] for holomorphic and Maass cusp forms for SL(2,Z)

respectively. They used spectral theory of the hyperbolic Laplacian to achieve the

following Weyl strength bound

L(1/2 + it, f)�ε,f [(1 + |t|)2]1/4−1/12+ε, (0.2.1)

for any ε > 0. where f is a holomorphic or Maass cusp form for SL(2,Z). In [43],

Jutila gave simplified proof of the above bound using summation formulae. Using

the delta symbol approach developed by Munshi [71], Aggarwal and Singh [4] and

Acharya, Maiti, Singh and the author [1] also obtained the t-aspect subconvex bound

of the above strength.

In the level aspect, subconvexity problem for GL(2) L-functions were settled by

Duke, Friedlander and Iwaniec in a series of articles [[24]-[28]] (see also Blomer-

Harcos-Michel [8]). They developed the amplification method to achieve these re-

sults. A striking application of these results is the uniform distribution of certain

lattice points in Z3 on a sphere centered at the origin with increasing radius, without

imposing Linnik’s condition and in a quantitative sense (see [63]). Indeed, consider
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the set

Vn = {m/|m| ∈ S2;m ∈ Z3, |m|2 = m2
1 +m2

2 +m2
3 = n}.

Then Vn’s are uniformly distributed on S2 as n→∞ through integers n such that n

square-free and n 6≡ 0, 4, 7 mod 8. Cogdell, Piatetsky-Shapiro and Sarnak (see [20]),

obtained subconvexity for some twists of a holomorphic Hilbert modular form over a

totally real number field and resolved remaining cases of Hilbert’s eleventh problem,

which asks which integers are integrally represented by a given quadratic form over

a number field. This result was later improved (getting a Burgess-type exponent)

by Blomer and Harcos [12] and hence they obtained a better error term in Hilbert’s

eleventh problem. In the twist aspect, Munshi [75] applied the GL(2) delta symbol

approach (see [74]) and obtained the following Burgess type bound

L(1/2, f × χ)�f,ε M
1/2−1/8+ε,

where χ is a Dirichlet character modulo M , a prime (the same exponent (in a more

general setting) was previously known by Blomer-Harcos [11] using a different ap-

proach). In this same paper, he also recovered Burgess’s bound (0.1.1) by taking f

an Eisenstein series (Burgess bound for GL(2) was previously known due to Bykovskii

[18] using the moment method approach). Following the GL(1) delta symbol ap-

proach (see [71]), Munshi and Singh [76] obtained the following Weyl strength bound

L(1/2, f × χ)�f,ε (M r)1/2−1/6+ε,

where χ is a primitive character of modulus M r, M prime and r ≡ 0 mod 3.

In the spectral aspect, Iwaniec [40] proved subconvex bounds for Hecke Maass cusp

forms for SL(2,Z) using the amplification method. In a groundbreaking work, Michel

and Venkatesh [65] proved subconvexity bounds for any GL(2) L-functions over

number fields uniformly in all parameters. Their approach uses tools of representation

theory of adele groups and the proof is based on the realization of L-functions as

periods.
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0.3 Degree three L-functions

Let π be a Hecke-Maass cusp form of type (ν1, ν2) for SL(3, Z). Let the normalised

Fourier coefficinets of π be given by λπ(m1,m2) (so that λπ(1, 1) = 1 ). The

Langlands parameters (α1, α2, α3) associated with π are defined as (see [30])

α1 = −ν1 − 2ν2 + 1, α2 = −ν1 + ν2, and α3 = 2ν1 + ν2 − 1. (0.3.1)

The dual form π̃ has Langlands parameters (−α3,−α2,−α1). The L-series associ-

ated with π is given by

L(s, π) =
∞∑
n=1

λπ(1, n)

ns
, <(s) > 1. (0.3.2)

L(s, π) satisfies a functional equation of the form

γ(s, π)L(s, π) = γ(s, π̃)L(1− s, π̃),

where

γ(s, π) =
3∏
j=1

π−s/2Γ

(
s− αj

2

)
.

The first subconvexity result for a GL(3) L-function was proved by X. Li [58]. For

a self-dual (π̃ = π) Hecke-Maass cusp form for SL(3, Z), she proved the following

t-aspect subconvex bound

L(1/2 + it, π)�π,ε [(1 + |t|)3]1/4−1/48+ε. (0.3.3)

Her method was motivated by the Conrey-Iwaniec [22] moment method. This result

relied on non-negativity of the central values L(1/2, π×f), where f is holomorphic/

Maass cusp form for SL(2,Z), for which self-duality of π was necessary (see [54]).

Thus her approach does not work for generic GL(3) forms.

In the level aspect, Blomer [9] proved a subconvex bound for quadratic twists

of self-dual GL(3) L-functions using the moment method approach. Indeed Blomer

used the Kuznetsov trace formula for GL(2) and the Voronoi formula for GL(3) to
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prove the following bound

L(1/2, π × χ)�π,ε M
5/8+ε,

where M is a large squarefree odd integer and χ is a primitive quadratic character

modulo M . In this result also, non-negativity of central values of centain L-functions

was playing a crucial role. Hence a new approach was needed to tackle the subcon-

vexity problem for generic π and non-quadratic χ.

In a series of papers ([69]-[73]), Munshi developed a new and ingenious approach,

popularly known as the delta method, to resolve the subconvexity problem for any

degree three L-functions that allowed him to generalize Li’s and Blomer’s results.

In [72], Munshi used the Petersson trace formula as a delta method to prove the

following level aspect subconvex bound

L(1/2, π × χ)�π,ε M
3/4−1/1612+ε, (0.3.4)

where π is a Hecke- Maass cusp form for SL(3,Z) and χ is a Dirichlet character

modulo M . While proving it he had to assume the Ramanujan conjecture and the

Ramanujan-Selberg conjecture. In [74], he removed these conditions and improved

the above exponent to 3/4 − 1/308 + ε by introducing ‘mass transfer trick’. By

analysing Munshi’s method [72] more closely Holowinsky and Nelson [35] simplified

his proof by developing ‘a key identity’ and obtained a better exponent 3/4−1/36+ε.

Their idea was extended by Lin [59] to the t-aspect who obtained the following

uniform bound

L(1/2 + it, π × χ)�π,ε ((1 + |t|)M)3/4−1/36+ε.

In [71], Munshi used Kloosterman’s version of the circle method to prove the following

t-aspect subconvex bound

L(1/2 + it, π)�π,ε (1 + |t|)3/4−1/16+ε, (0.3.5)

for any SL(3,Z) Hecke-Maass cusp form π. Thus he generalised Li’s result (0.3.3) for
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all GL(3) L-functions. The conductor lowering trick was the new and crucial input

in this paper. In [3], Aggarwal simplified Munshi’s proof of (0.3.5) and obtained a

better exponent 3/4 − 3/40 + ε. In the depth aspect (twists of π by a character χ

of prime power modulus pn, p odd prime and n→∞), Sun and Zhao [86] followed

Munshi’s t-aspect [71] approach and obtained the following subconvex bound

L(1/2, π × χ)�π,ε p
3/4(pn)3/4−3/40+ε.

In the spectral aspect, the first subconvex estimate was given by Blomer and

Buttcane [10] for a GL(3) form in a breakthrough work. They considered the case

when the Langlands parameters (αi)’s of π are in generic positions, i.e., away from

the Weyl chamber walls and away from self-dual forms. Let

αi � T, |αi − αj| � T, 1 ≤ i 6= j ≤ 3,

(A � B means c1|A| ≤ |B| ≤ c2|A| for some positive constants c1 and c2). Then

they proved

L(1/2, π)� T 3/4−1/120000. (0.3.6)

They implemented an amplified fourth moment averaged over GL(3) forms with

Langlands parameters in an ball of radius O(T ε) about π. Application of the GL(3)

Kuznetsov formula was the main and crucial input in this case. They did not address

the case when the Langlands parameters are in non-generic positions, i.e., are close to

the Weyl chambers, as, in this case, ‘the spectral measure’ drops, so that the average

over GL(3) forms becomes less powerful. In a recent preprint [49], the author along

with Mallesham and Singh proved subconvexity for GL(3) L-functions whenever the

Langlands parameters are in non-generic positions. In fact, we prove a more general

result by considering the Rankin-Selberg L-functions associated to GL(3) and GL(2)

forms. Using similar ideas we also consider the generic position case. Indeed we get

a result of type (0.3.6) (with a better exponent 3/4-1/16) under some assumption.
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0.4 Rankin-Selberg L-functions

Let f and g be holomorphic Hecke cusp forms of weights kf and kg respectively or

Hecke-Maass cusp forms of Laplace eigenvalues 1/4 + ν2
f and 1/4 + ν2

g respectively

for SL(2,Z). Let λf (n) and λg(n) be the normalised Fourier coefficients of f and g

respectively. The Rankin-Selberg L-series associated to f and g is given by

L(s, f ⊗ g) = ζ(2s)
∞∑
n=1

λf (n)λg(n)

ns
, <(s) > 1. (0.4.1)

The above series has a analytic continuation to all of C, except for g = f , in which

case, there is a simple pole at s = 1. The Rankin-Selberg L-function is known

to be automorphic (see [81]). In fact, it is an example of a degree 4 automorphic

L-function.

In the weight aspect (when f is a holomorphic cusp form of large weight kf and

g is a holomorphic cusp form of fixed weight kg), Sarnak [83] proved the following

subconvex bound

L(1/2, f ⊗ g)�g,ε k
1−7/165+ε
f . (0.4.2)

In the same article, he gave a beautiful application of this result in equidistribution.

Corresponding to f we associate a density µf ( normalized to be a probability measure

on SL(2,Z)\H) given by

µf := yk|f(z)|2 dx dy

y2
.

Quantum unique ergodicity (QUE) conjecture says that, as kf →∞ or νf →∞, we

have

µf
w−→ 1

Vol(SL(2,Z)\H)

dx dy

y2
(0.4.3)

(in the sense of integration against continuous functions of compact support on

SL(2,Z)\H). From Watson’s thesis [89] it follows that a subconvex estimate (as kf

varies) for the special value L(1/2, f ⊗f ⊗ g) of this degree 8 L-function will resolve
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the QUE with a power saving error term. Moreover it follows easily that

L(s, f ⊗ f ⊗ g) = L(s, sym2f ⊗ g)L(s, g). (0.4.4)

Thus the QUE follows from the subconvexity of L(1/2, sym2f⊗g), which is a degree

six Rankin-Selbeg L-function associated to a GL(3) form sym2f and a GL(2) form g.

Furthermore if f is a CM form then L(s, sym2f⊗g) factors as L(s, h⊗g)L(s, g×χ),

where h is a cusp form for SL(2,Z) and χ is a Dirichlet character. Thus Sarnak [83]

deduces QUE for CM forms using (0.4.2). Using similar ideas, Lau, Liu and Ye [55]

further improved the the exponent in (0.4.2) to 2/3 + ε.

In the t-aspect, Michel and Venketesh [65] proved subconvexity bounds using

representation theoritic approach. Recently, using a similar approach, Blomer, Jana

and Nelson [13] obtained a Weyl strength subconvex bound

L(1/2 + it, f ⊗ g)�f,g,ε (1 + |t|)2/3+ε.

Using the delta symbol approach, Acharya, Sharma and Singh [2] also obtained a

subconvex bound with exponent 9/10 + ε ( weaker than the Weyl bound).

In the level aspect, Kowalski, Michel and Vanderkam [48], Michel [62], Harcos

and Michel [32], and Michel and Venkatesh [64] settled the subconvexity problem in

the case when the level of f varies and the level of g is fixed. In [62], Michel gives a

striking application to the equidistribution of Gross-Heegner points on Shimura curves

associated to definite quaternion algebras over Q, while in [32], Harcos and Michel

provide the equidistribution of incomplete Galois orbits of Heegner points on Shimura

curves associated with indefinite quaternion algebras over Q. In the case, when the

levels Pf and Pg, say, of both the forms f and g vary, subconvexity is known, in a

certain range, due to Holowinsky and Munshi [33]. They used the amplified second

moment method to achieve the following result

L(1/2, f ⊗ g)�f,g,ε (PfPg)
1/2−δ(η)+ε,

for some δ(η) > 0 and (Pf , Pg) = 1 with Pf ∼ P η
g , 0 < η < 2/21. Ye [91] extended
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this for all η assuming that the form with the smaller level is holomorphic. Ye’s result

was recently generalised to all forms (holomorphic and Maass) by Raju [85], getting

a much better exponent, using the delta method approach.

0.5 GL(3)×GL(2) L-functions

Let π be a Hecke–Maass cusp form of type (ν1, ν2) for SL(3,Z) with the normalised

Fourier coefficients λπ(n1, n2) and with the Langlands parameters (αi)1≤i≤3 and f

be a holomorphic/Maass Hecke cusp form for SL(2,Z) with the normalised Fourier

coefficients λf (n). Let 1/4 + ν2
f , νf > 0, be the Laplace eigenvalue of the Hecke

Maass cusp f or kf be the weight of the holomorphic Hecke cusp form f . The

associated Rankin–Selberg L-series is given by (see Section 1.3)

L(s, π × f) =
∑∑
n,r≥1

λπ(n, r)λf (n)

(nr2)s
, <(s) > 1. (0.5.1)

This series is known to be automorphic (see [47]) and in fact, it is a example of a

degree 6 automorphic L function. The above series extends to an entire function

and satisfies a functional equation of the following form (see [15] for details)

γ(s, π × f)L(s, π × f) = επ×f γ(1− s, π̄ × f̄)L(1− s, π̄ × f̄),

with a gamma factor of degree 6

γ(s, π × f) = π3s

2∏
j=1

3∏
i=1

Γ

(
s+ βj − αi

2

)
,

where β1 = (kf−1)/2, β2 = (kf +1)/2 if f is a holomorphic form and β1 = εf−iνf ,

β2 = εf + iνf if f is a Maass form. Here εf = 0 if f is an even Maass form

and εf = −1 if f is an odd form. Subconvexity for this class of Rankin–Selberg

L-functions is a holy grail for eminent number theorists. Indeed, subconvexity esti-

mates for L(1/2, π × f) in the GL(3) level and in the GL(3) spectral aspect (see

(0.4.4)) resolves the quantum unique ergodicity (QUE) conjecture (see (0.4.3)) in

the quantitative sense. One can also recover subconvexity for some lower degree



0.5. GL(3)×GL(2) L-functions 15

L-functions from the subconvexity of this class of Rankin–Selberg L-functions (by

taking π or f an Eisenstein series).

The first subconvex bound for such L-functions in the GL(2) spectral aspect is

due to X. Li [58]. She considered π to be a self-dual GL(3) form and obtained the

following result

L(1/2, π × f)�π,ε (1 + |νf |)11/8+ε, (0.5.2)

She adapted Conrey-Iwaniec [22] moment method to prove the above result. In fact,

she analysed the first moment average of L(s, π × uj) over an orthonormal basis

uj, j ≥ 1, of even Hecke-Maass cusp forms for SL(2,Z). Non-negativity of the

central values L(1/2, π × f), which is a deep result due to Lapid [54], played a key

role in her proof, for which self-duality of π was necessary. Thus her approach does

not work for generic GL(3) forms. The main purpose of this thesis is to generalise

Li’s spectral aspect result (0.5.2) to all SL(3,Z) forms (see Theorem 0.7.1). We

discuss it in Chapter 2.

Following Li’s approach, Blomer [9] considered L(s, π × f × χ), where π is a

self-dual form and χ is a primitive quadratic character modulo M and obtained the

following twist aspect subconvex bound

L(1/2, π × f × χ)�π,f,ε M
5/4+ε.

Non-negativity of the central values L(1/2, π×f×χ) was the key input in this result

also. In the GL(2) level aspect, using the amplified first moment approach, Khan

[45] proved the following bound

L(1/2, π × f)�π P
3/4−1/2001
f ,

under the assumption ∑
n<L

λf (n)2 �ε L
1−ε,

for L > P
1/4+1/2001
f , where Pf , a prime number, is the level of a GL(2) form f
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and π is a self dual GL(3) form. He also uses the deep result of Lapid [54] on non-

negativity of the central values L(1/2, π×f). Thus new ideas were needed to resolve

the subconvexity problem for this class of Rankin-Selberg L-functions for generic π

and non-quadratic χ.

In a recent pioneering work, Munshi [77] considered the t-aspect subconvexity

problem for GL(3)×GL(2) L-functions and he obtained the following bound

L (1/2 + it, π × f)�ε,f,π (1 + |t|)3/2−1/51+ε, (0.5.3)

where π is any (not necessarily self-dual) Masss cusp form for SL(3,Z), and f is

a Holomorphic/Maass cusp form for SL(2,Z). Munshi applied the delta method

approach, which he developed in a series of articles [69]-[73], along with the conductor

lowering trick which he introduced in [71]. More specifically, he used the delta

method of Duke, Friedlander and Iwaniec (DFI) (see [[42], Chapter 20]) to separate

the oscillatory factors. The key input in this paper was his observation that the

character sum, emerging after the summation formulae, essentially boils down to an

additive character, which is very specific to Rankin–Selberg convolutions of the type

GL(n + 1)×GL(n). The exponent 3/2−1/51 was recently improved to 3/2−3/20

by Lin and Sun [61] following a similar approach.

Following Munshi’s template, Sharma [84] considered the same problem in the

twist aspect. Indeed, he proved the following bound

L(1/2, π × f × χ)�π,f,ε M
3/2−1/16+ε,

for any SL(3,Z) form π and SL(2,Z) form f . Here χ is any (non-necessarily

quadratic) Dirichlet character modulo M , a prime. Thus he generalised Blomer’s

result [9] to all GL(3) forms and all Dirichlet characters. Moreover, he also improved

Holowinsky and Nelson’s exponent [35], 3/4 − 1/36, to 3/4 − 1/32 by taking f

an Eisenstein series. The key input in this paper was the implementation of the

mass transfer trick, which was introduced by Munshi in [74]. Following Sharma’s ap-

proach, Lin, Michel and Sawin [60] generalised his result by replacing χ by a ‘generic

trace function’. In the depth aspect, the author along with Mallesham and Singh
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[50] adapted Munshi’s t-aspect template [77] in the p-adic setting and obtained the

following subconvex bound

L(1/2, π × f × χ)�π,f,ε (M r)3/2−3/20+ε,

where χ is a primitive Dirichlet character modulo M r, M a prime and r ≥ 2. In the

hybrid level aspect, the author, Munshi and Singh [51] applied the DFI delta method

approach and obtained the following subconvex bound

L(1/2, π × f)�ε (P 2
πP

3
f )1/4−δ, δ > 0,

in the range P
1/2
f < Pπ < P

3/2
f , where Pπ is a prime which is the level of a GL(3)

form π and Pf is a prime such that (Pf , Pπ) = 1 and it is the level of a GL(2)

form f . A crucial observation in this paper was that the conductor lowering trick

was not necessary and thus the proof was less technical and cleaner (in comparision

with other articles of Munshi). We note that if one could extend the above result to

Pf = 1, it would resolve the QUE in the level aspect.

Motivated by Munshi’s t-aspect result [77], we considered the spectral aspect

case. In a recent priprint, the author, Mallesham and Singh [49] proved subconvexity

for L(1/2, π× f) in the GL(3) spectral aspect (in non-generic and generic positions

(under some assumptions)). We take up the GL(2) spectral aspect case in this thesis.

We state it in Section 0.7 and give the proof in Chapter 2.

0.6 Other higher degree L-functions

For other higher degree L-functions subconvexity problem is open in the level aspect,

expect for the triple product L-functions on GL(2), in which case it was proved by

Venkatesh [88]. More precisely, he proved the following subconvex bound

L(1/2, f × g × h)�g,h P
1−δ
f ,
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for some δ > 0, where f , g and h are some GL(2) form with Pf being the level of f .

He used representation theoretic approach to achieve this result. In the same year,

Bernstein and Reznikov [7] considered the same L-function in the spectral aspect

and proved the following result

L(1/2, f × g × h)�g,h,ε (1 + |νf |)2−1/3+ε,

where νf is the spectral parameter of the GL(2) form f . Their approach was also

representation theoritic. Recently, Blomer, Jana and Nelson [13] improved their expo-

nent (5/3) to the Weyl strength subconvex exponent 4/3 by combining representation

theory, local harmonic analysis, and analytic number theory altogether.

A few months ago, Nelson [78] announced an extraordinary result, in which he

resolved the subconvexity problem for any GL(n) L-functions in the t-aspect and the

spectral aspect (having ‘uniform parameter growth’). His method uses a lot of tools

from representation theory and is motivated by the fundamental work of Michel and

Venkatesh [65]. We note that Nelson’s result also covers the result proved in this

thesis. However our method is quite different, less technical and uses only tools from

analytic number theory. Moreover, needless to say, our exponents are better then his

expontents in the corresponding setup.

0.7 Statement of results

Let π be a Hecke-Maass cusp form of type (ν1, ν2) for SL(3,Z) with the Langlands

parameters (α1, α2, α3) and f be a holomorphic cusp form with weight kf or a Hecke-

Maass cusp form corresponding to the Laplacian eigenvalue 1/4 + ν2
f , νf ≥ 1, for

SL(2,Z). Let L(1/2, π × f) be the central value of the Rankin-Selberg L-series

(0.5.1) at 1/2.
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0.7.1 GL(2) spectral aspect

As the main result, we prove the following theorem in this thesis, which gives the

GL(2) spectral aspect subconvexity bound for the Rankin-Selberg L-functions asso-

ciated to π and f . We will follow Remark 2.0.3 for the notations.

Theorem 0.7.1. Let π and f be as above. Let νf � kf . Then we have

L (1/2, π × f)�π,ε k
3/2−1/51+ε
f , (0.7.1)

for any ε > 0.

The above theorem generalises Li’s GL(2) spectral aspect result [58] to all GL(3)

forms.

0.8 Discussion on the proof

The method of proof of the above result is motivatived by Munshi’s t-aspect result

[77], which we discuss briefly.

0.8.1 Munshi’s approach

We recall from (0.5.3) that Munshi proves the following result

L (1/2 + it, π × f)�ε,f,π (1 + |t|)3/2−1/51+ε,

for any ε > 0. Upon using the functional equation, the problem boils down to getting

some cancellations in the following sum

∑
n∼N

λπ(n, 1)λf (n)n−it, N � t3.

He initiates the proof by applying the DFI delta method (to separate λπ(n, 1) and

λf (n)n−it ) along with the conductor lowering trick (to reduce the modulus in the
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DFI). Thus he ends up into

∫ 2K

K

∑
q∼Q

∑?

amod q

∑
n∼N

λπ(n, 1)nive

(
an

q

) ∑
m∼N

λf (m)m−i(t+v)e

(
−am
q

)
dv,

where K is a parameter K < t which he chooses optimally later and Q = t3/2/
√
K.

Here the situation seems to be worse a priori, as we have lost N in the above sum.

However he gains structurely and he manages to gain it back later.

In the second step he applies summation formulae to the sum over n and m, and

he saves
√
NK/t in the m-sum and N1/4/K3/4 in the n-sum. Then he analyses the

v-integral in which he gets square-root cancellations, in other words, he saves
√
K.

The analysis of the a-sum also gives square-root cancellations and he saves
√
q from

it. Hence in total he saves N/t so far and he is left with the following sum

∑
q∼Q

∑
n∼K3/2N1/2

λπ(1, n)
∑

m∼t2/K

λf (m)CI,

in which he needs to save t and a bit more, say, tη. Here I is an integral transform

which oscillates like niK with respect to n, and the character sum C is given by

C =
∑∗

amod q

S (ā, n; q) e

(
ām

q

)
≈ qe

(
−m̄n

q

)
.

Next he applies Cauchy to break the involution and arrives at

∑
n∼K3/2N1/2

∣∣∣∣∣∑
q∼Q

∑
m∼t2/K

λf (m)e

(
−m̄n

q

)
I

∣∣∣∣∣
2

,

in which t2 (plus extra) is needed to be saved. In the end game strategy, he applies

the Poisson summation formula to the sum over n. In the zero frequency he saves

t2Q/K which is more then t2 provided K < t. In the non-zero frequencies, he saves

K3/2N1/2/(
√
Q2K) × Q, which is good enough if K > t1/2. Thus he succeeds by

chosing K optimally between
√
t and t. Notice that there is an extra Q in the saving

of the non-zero frequencies. It is a crucial factor which he obtains due to the additive

(with respect to n) character e (−m̄n/q), which comes due to the GL(3) × GL(2)
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structure. This is the key input in this paper.

0.8.2 Our approach

On applying the functional equation, our problem boils down to getting cancellations

in

S(N) =
∑
n∼N

λπ(n, 1)λf (n),

where N � k3
f in Theorem 0.7.1. To prove Theorem 0.7.1, following Munshi, we ap-

ply DFI delta method to separate λπ(n, 1) and λf (n) along with the conductor lower

trick. Then applications of summation formulae followed by Cauchy and Poisson gives

us the result. We also get the structural advantage of the GL(3)×GL(2) type and

hence we are able to save more (than the usual) in the Poisson. The main technical

input of this theorem is to get square-root cancellations in the integral transforms.

Indeed, after summation formulae, the integral transform (for f holomorphic) looks

like

I =

∫
U(y)e(ay1/3)Jkf−1(b

√
y) dy,

where a � t, for some t < kf to be chosen later, b � kf and U is a smooth bump

function supported on [1/2, 5/2] (here the symbol A � B means c1k
−ε
f |A| ≤ |B| ≤

c2k
ε
f |A| for some positive constants c1 and c2). Here the argument by1/2 of the

Bessel function is in ‘transitional range’ ( b � kf ), in which case, a ‘nice’ asymptotic

expansion (uniform in kf ) is not known. We get desired cancellations (I � 1/kf )

using the integral representation

Jk−1(x) =
1

2π

∫ π

−π
e

(
(k − 1)τ − x sin τ

2π

)
dτ,

followed by a chain of stationary phase analysis. We discuss full details of the proof

in Chapter 2.





Chapter 1

Preliminary lemmas

We will use some known lemmas in the proof of our results. We will record them in

this chapter.

1.1 Automorphic form for GL(2)

In this section, we recall some basic facts about automorphic forms for SL(2,Z) (for

details see [41] and [42]).

1.1.1 Holomorphic cusp forms

Let f be a holomorphic Hecke cusp of weight kf for the full modular group SL(2,Z).

The Fourier expansion of f at ∞ is given by

f(z) =
∞∑
n=1

λf (n)n(k−1)/2 e(nz), z ∈ H,

where we assume that f is arithmetically normalized so that λf (1) = 1. We have

the following well-known estimate due to Deligne:

|λf (n)| ≤ d(n), n ≥ 1, (1.1.1)

23
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where d(n) is the divisor function. The Hecke L-function associated with the form

f is given by

L(s, f) =
∞∑
n=1

λf (n)

ns
=
∏
p

(
1− λf (p)p−s + p−2s

)−1
, <s > 1.

Hecke proved that L(s, f) admits an analytic continuation to the whole complex

plane and satisfies the functional equation

Λ(s, f) = ε(f) Λ(1− s, f),

where ε(f) is a root number and f is the dual form of f , and the completed L-

function is given by

Λ(s, f) = π−s Γ

(
s+ (kf + 1)/2

2

)
Γ

(
s+ (kf − 1)/2

2

)
L(s, f).

We now state the Voronoi summation formula for the form f .

Lemma 1.1.1. Let λf (n) be as above and g be a smooth, compactly supported

function on (0,∞). Let a, q ∈ Z with (a, q) = 1. Then we have

∞∑
n=1

λf (n) e

(
an

q

)
g(n) =

2πikf
q

∞∑
n=1

λf (n) e

(
−dn
q

)
h(n),

where ad ≡ 1(mod q) and

h(y) =

∫ ∞
0

g(x) Jkf−1

(
4π
√
xy

q

)
dx.

Proof. See [[29], P. 792]. See [[48], Theorem A.4] also for general level.
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1.1.2 Maass cusp forms

Let f be a Hecke-Maass cusp form for SL(2,Z) with Laplace eigenvalue 1/4 + ν2
f .

The Fourier series expansion of f at ∞ is given by

f(z) =
√
y
∑
n 6=0

λf (n)Kiνf (2π|n|y)e(nx),

where Kiνf (y) is the Bessel function of the third kind and f is normalized so that

λf (1) = 1. The Ramanujan-Petersson conjecture predicts that

|λf (n)| ≤ d(n).

The work of H. Kim and P. Sarnak [46] tells us that |λf (n)| � n7/64+ε. The L-

function associated with the form f is given by

L(s, f) =
∞∑
n=1

λf (n)

ns
, <s > 1.

It extends to an entire function and satisfies a functional equation of the form

Λ(s, f) = ε(f)Λ(1− s, f),

where ε(f) is the root number with |ε(f)| = 1 and the completed L-function Λ(s, f)

is given by

Λ(s, f) = π−sΓ

(
s+ ε+ iν

2

)
Γ

(
s+ ε− iν

2

)
L(s, f).

Here ε = 0 if f is even and ε = 1 if f is odd. We now recall Rankin-Selberg bound

for the Fourier coefficients in the following lemma.

Lemma 1.1.2. Let λf (n) be the normalised Fourier coefficients of a holomorphic/-

Maass cusp form. Then we have

∑
1≤n≤x

|λf (n)|2 �ε C(f)εx1+ε, (1.1.2)
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where C(f) = k2
f if f is holomorphic and C(f) = 1 + ν2

f if f is a Maass form.

Proof. Iwaniec [[40], Lemma 1].

Next we state the Voronoi formula for Maass cusp forms.

Lemma 1.1.3. Let λf (n) be as above and g be a smooth, compactly supported

function on (0,∞). Let a, q ∈ Z with (a, q) = 1. Then we have

∞∑
n=1

λf (n) e

(
an

q

)
h(n) = q

∑
±

∞∑
n=1

λf (n)

n
e

(
∓dn
q

)
H±

(
n

q2

)
,

where ad ≡ 1 mod q and

H±(y) =
ε

(1∓1)/2
f

4π2i

∫
σ

(π2x)−s(C+(−s)± C−(−s))g̃(−s) ds,

with

C+(s) =
Γ
(

1+s+iνf
2

)
Γ
(

1+s−iνf
2

)
Γ
(
−s+iνf

2

)
Γ
(
−s−iνf

2

) , C−(s) =
Γ
(

2+s+iνf
2

)
Γ
(

2+s−iνf
2

)
Γ
(

1−s+iνf
2

)
Γ
(

1−s−iνf
2

) .
Here εf = ±1 depending on f even or odd.

Proof. See [[48], Theorem A.4].

1.2 Automorphic forms for GL(3)

In this section, we will recall some results about the Maass cusp forms for SL(3,Z).

This section, except for notation, is taken from [58]. Let π be a Hecke-Maass

cusp form of type (ν1, ν2) for SL(3,Z). Let λπ(n, r) denote the normalised Fourier

coefficients of π. Let

α1 = −ν1 − 2ν2 + 1, α2 = −ν1 + ν2 and α3 = 2ν1 + ν2 − 1



1.2. Automorphic forms for GL(3) 27

be the Langlands parameters for π (see [30]). The dual form π̃ has Langlands

parameters (−α3,−α2,−α1). The L-series associated with π is given by

L(s, π) =
∞∑
n=1

λπ(1, n)

ns
, <(s) > 1. (1.2.1)

L(s, π) satisfies a functional equation of the form

γ(s, π)L(s, π) = γ(s, π̃)L(1− s, π̃),

where

γ(s, π) =
3∏
j=1

π−s/2Γ

(
s− αj

2

)
.

Let g be a compactly supported smooth function on (0,∞) and

g̃(s) =

∫ ∞
0

g(x)xs−1dx

be its Mellin transform. For ` = 0 and 1, we define

γ`(s) :=
π−3s− 3

2

2

3∏
i=1

Γ
(

1+s+αi+`
2

)
Γ
(−s−αi+`

2

) . (1.2.2)

Set γ±(s) = γ0(s)∓ γ1(s) and let

G±(y) =
1

2πi

∫
(σ)

y−s γ±(s) g̃(−s) ds, (1.2.3)

where σ > −1+max{−<(α1),−<(α2),−<(α3)}. With the aid of the above termi-

nology, we now state the GL(3) Voronoi summation formula in the following lemma:

Lemma 1.2.1. Let g(x) and λπ(n, r) be as above. Let a, ā ∈ Z, q ∈ N with

(a, q) = 1, and aā ≡ 1(mod q). Then we have

∞∑
n=1

λπ(n, r)e

(
an

q

)
g(n)

= q
∑
±

∑
n1|qr

∞∑
n2=1

λπ(n1, n2)

n1n2

S (rā,±n2; qr/n1)G±

(
n2

1n2

q3r

)
,
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where S(a, b; q) is the Kloosterman sum which is defined as follows:

S(a, b; q) =
∑?

xmod q

e

(
ax+ bx̄

q

)
.

Proof. See [67].

We also need to extract the oscillations of the integral transform G±. To this

end, we have the following lemma:

Lemma 1.2.2. Let G±(x) be as above, and g(x) ∈ C∞c (X, 2X). Then for any

fixed form π, any integer K ≥ 1 and xX � 1, we have the following expression for

G±(x):

x

∫ ∞
0

g(y)
K∑
j=1

cj(±)e
(
3(xy)1/3

)
+ dj(±)e

(
−3(xy)1/3

)
(xy)j/3

dy +OK

(
(xX)

−K+5
3

)
,

where cj(±) and dj(±) are some constants depending only on αi’s, for i = 1, 2, 3.

Proof. See [[57], Lemma 6.1].

The following lemma, which gives the Ramanujan conjecture on average, is also

well-known.

Lemma 1.2.3. We have

∑∑
n2
1n2≤x

|λπ(n1, n2)|2 �ε C(π)ε x1+ε,

where C(π) =
∏3

i=1(1 + |αj|) is the analytic conductor of π.

Proof. See [56].
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1.3 GL(3)×GL(2) L-functions

The Rankin-Selberg L-series associated to π and f is given by

L(s, π × f) =
∑∑
n,r≥1

λπ(n, r)λf (n)

(nr2)s
, <(s) > 1. (1.3.1)

The above series extends to an entire function and satisfies a functional equation of

the following form

γ(s, π × f)L(s, π × f) = επ×f γ(1− s, π̄ × f̄)L(1− s, π̄ × f̄),

where επ×f is the root number having modulus 1 and γ(s, π× f) is a gamma factor

of degree 6

γ(s, π × f) = π3s

2∏
j=1

3∏
i=1

Γ

(
s+ βj − αi

2

)
,

where β1 = (kf−1)/2, β2 = (kf +1)/2 if f is a holomorphic form and β1 = εf−iνf ,

β2 = εf + iνf if f is a Maass form. Here εf = 0 if f is even and εf = 1 if f is odd.

Later, we will be estimating L(1/2, π × f). The following lemma expresses it in

terms of a weighted Dirichlet series.

Lemma 1.3.1. Let βj − αi � t, t� 1, for all i and j. Then L(1/2, π × f) has the

following expression

∑∑
n,r≥1

λπ(n, r)λf (n)

(nr2)1/2
V

(
nr2

t3

)
+ επ×f

∑∑
n,r≥1

λπ(n, r)λf (n)

(nr2)1/2
V

(
nr2

t3

)
,

(1.3.2)

where V (x) is a smooth function satisfying

xjV (j)(x)�A (1 + |x|)−A,

for any positive integer A and j ≥ 0.
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Proof. See [[42], page 100].

Thus the above lemma limits both sums in (1.3.2) effectively to the terms with

nr2 � t3+ε, as V (nr2/t) is negligibly small, ( t−A for any A > 1) for nr2 � t3+ε.

We now estimate L(1/2, π × f) in terms of an exponential sum.

Lemma 1.3.2. Let π and f be as above, with π fixed. Then, for large νf � kf and

any θ such that 0 < θ < 3/2, we have

L (1/2, π × f)�π,ε k
ε
f sup
r≤kθf

sup
k3−θf /r2≤N≤k3+εf /r2

|Sr(N)|
N1/2

+ k
(3−θ)/2+ε
f , (1.3.3)

where Sr(N) is a sum of the form

Sr(N) :=
∞∑
n=1

λπ(n, r)λf (n)V
( n
N

)
, (1.3.4)

for some smooth function V supported in [1, 2] and satisfying V (j)(x)�j k
ε
f for any

integer j ≥ 0.

Proof. By Lemma 1.3.1, we see that

L(1/2, π × f) =
∑∑
n,r≥1

λπ(n, r)λf (n)

(nr2)1/2
V

(
nr2

t3

)
+ επ×f dual sum,

where V (x) is a smooth function which is negligibly small if x� tε. We proceed with

the first sum as the calculations for the dual sum are the same. Note that t � kf ,

as π is fixed. Hence we see that

L (1/2, π × f)�

∣∣∣∣∣ ∑∑
nr2�k3+εf

λπ(n, r)λf (n)

(nr2)1/2
V

(
nr2

k3
f

)∣∣∣∣∣
≤

∣∣∣∣∣ ∑
r≤k(3+ε)/2f

1

r

∑
n≤k3+εf /r2

λπ(n, r)λf (n)

n1/2
V

(
nr2

k3
f

)∣∣∣∣∣.
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We split the above sum as follows:

∑
r≤k(3+ε)/2f

∑
n≤k3+εf /r2

=
∑
r≤kθf

∑
k3−θf /r2≤n≤k3+εf /r2

+
∑
r≤kθf

∑
n<k3−θf /r2

+
∑

kθf<r≤k
(3+ε)/2
f

∑
n≤k3+εf /r2

,

where θ > 0 is a constant which will be chosen later optimally. Using the Ramanujan

bound on average

∑∑
n2
1n2≤x

|λπ(n1, n2)|2 � x1+ε,
∑

1≤n≤x

|λf (n)|2 �ε x
1+ε,

we see that the last two sums are bounded by k
(3−θ)/2+ε
f . Hence we arrive at

L (1/2, π × f)�

∣∣∣∣∣ ∑
r≤kθf

1

r

∑
k3−θf /r2≤n≤k3+εf /r2

λπ(n, r)λf (n)

n1/2
V

(
nr2

k3
f

)∣∣∣∣∣+ k
(3−θ)/2+ε
f .

Using a smooth dyadic partition of unity U , we see that the inner most sum is at

most

sup
k3−θf /r2≤N≤k3+εf /r2

∞∑
n=1

λπ(n, r)λf (n)

n1/2
U
( n
N

)
V

(
nr2

k3
f

)
,

which can be written as

sup
k3−θf /r2≤N≤k3+εf /r2

|Sr(N)|
N1/2

,

where

Sr(N) :=
∞∑
n=1

λπ(n, r)λf (n)Vr,N

( n
N

)
,

with Vr,N(x) = x−1/2U(x)V (Nr2x/k3
f ). Note that Vr,N(x) is supported on [1, 2]

and satisfies V
(j)
r,N(x) �j k

ε
f (the bound independent of r and N) for any integer

j ≥ 0. Henceforth we ignore the dependence on r and N and assume that Vr,N is

the same function for all r and N and call it V (x) (abusing notation). Finally, taking

supremum over r, we get the lemma.
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1.4 DFI delta method

Let δ : Z→ {0, 1} be defined by

δ(n) =

1 if n = 0;

0 otherwise.

The above function can be used to separate the oscillations involved in a sum, say,∑
n∼X a(n) b(n). Furthermore, we seek a nice Fourier expansion of δ(n). We men-

tion here an expansion for δ(n) which is due to Duke, Friedlander and Iwaniec (see

[[42], Chapter 20]). Let L ≥ 1 be a large real number. For n ∈ [−2L, 2L], we have

δ(n) =
1

Q

∑
1≤q≤Q

1

q

∑?

amod q

e

(
na

q

)∫
R
g(q, x) e

(
nx

qQ

)
dx, (1.4.1)

where Q = 2L1/2. The ? on the sum indicates that the sum over a is restricted by

the condition (a, q) = 1. The function g is the only part in the above formula which

is not explicitly given. Nevertheless, we only need the following properties of g in

our analysis ( for the proof, see [[36], Lemma 15] and [[2], Lemma 2.1]) . For any

B > 1, we have

1. g(q, x) = 1 + h(q, x), with h(q, x) = OB

(
Q

q

(
q

Q
+ |x|

)B)
.

2. |x|j ∂
j

∂xj
g(q, x)�j logQmin

{
Q

q
,

1

|x|

}
, j ≥ 1.

3. g(q, x)�B |x|−B.

4.

∫
R
|g(q, x)|+ |g(q, x)|2 dx�ε Q

ε. (1.4.2)

Using the third property we observe that the effective range of the x-integral in

(1.4.1) is [−Qε, Qε]. We record the above observations in the following lemma.
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Lemma 1.4.1. Let δ be as above. Let L ≥ 1 be a large parameter. Then, for

n ∈ [−2L, 2L], we have

δ(n) =
1

Q

∑
1≤q≤Q

1

q

∑?

amod q

e

(
na

q

)∫
R
W (x/Qε)g(q, x) e

(
nx

qQ

)
dx+O(L−2020),

where Q = 2L1/2, g is a function satisfying (1.4.2) and W (x) is a non-negative

smooth bump function supported in [−2, 2], with W (x) = 1 for x ∈ [−1, 1] and

W (j)(x)�j 1, for j ≥ 0.

Proof. See [[42], Chapter 20], [[36], Lemma 15] and [[2], Lemma 2.1].

1.5 Bessel function

In this section, we will recall some well-known expansions of the Bessel functions of

the first kind. For k ≥ 2 an integer, let Jk−1 be the Bessel function of the first kind

and of order k − 1, which is defined as

Jk−1(x) =
1

2π

∫ π

−π
e

(
(k − 1)τ − x sin τ

2π

)
dτ, (1.5.1)

for any x ∈ R. The following lemma gives an expression for the Bessel function when

the order k is fixed.

Lemma 1.5.1. For fixed k, we have

Jk−1(2πx) = e(x)Wk−1(x) + e(−x)W k−1(x),

where Wk−1 is a smooth function satisfying

xjWk−1
(j)(x)�j, k

1√
x
,

for x� 1 and j ≥ 0.

Proof. See [[34], Sec. 4.5].
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In the analysis of the integral transforms in Chapter 2, we require a uniform

asymptotic expansion of Jk−1(x) for large values of k and x. The following lemma

provides one such asymptotic expansion.

Lemma 1.5.2. Let x ≥ (k − 1)1+ε/2 be a positive real number. Then, as k → ∞,

we have

Jk−1(x) =

(
2

π(k − 1)w

)1/2
[

cos (Z(w))
∞∑
j=0

Pj
(

1
w−tan−1 w

)
(k − 1)j

]

+

(
2

π(k − 1)w

)1/2
[

sin (Z(w))
∞∑
j=1

Pj
(

1
w−tan−1 w

)
(k − 1)j

]
, (1.5.2)

where Z(w) = (k − 1)(w − tan−1w)− π/4 and

w =

(
x2

(k − 1)2
− 1

)1/2

,

and Pj is a polynomial of the degree j with coefficients which are bounded functions

of k − 1 and log(x/(k − 1)) with P0 ≡ 1.

Proof. Let x = (k − 1) sec β, with 0 < β < π/2. Thus, as x ≥ (k − 1)1+ε/2, we

have sec β ≥ (k − 1)ε/2 and

ξ := (k − 1)(tan β − β) ≥ (k − 1)(
√

(k − 1)ε − 1− π/2).

Thus, on using formula (63) on page 58 of [53], we get

Jk−1((k − 1) sec β) =

(
2

π(k − 1) tan β

)1/2
cos f1(β)

∞∑
j=0

Pj

(
1

tanβ−β

)
(k − 1)j


+

(
2

π(k − 1) tan β

)1/2
sin f1(β)

∞∑
j=1

Pj

(
1

tanβ−β

)
(k − 1)j

 ,
where f1(β) = (k − 1)(tan β − β) − π/4, and Pj represents a polynomial of the

degree j with coefficients which are bounded functions of k − 1 and log sec β with

P0 ≡ 1. Now substituting (k − 1) sec β = x and tan β = w, we get the lemma.
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The expansion (1.5.2) can be truncated at any stage to get

Corollary 1.5.3. Under the assumptions of Lemma 1.5.2, we have

Jk−1(x) =
∑
±

ε(±)
2019∑
j=0

e
(
± (k−1)(w−tan−1 w)

2π

)
Pj
(

1
w−tan−1 w

)
√
πw1/2(k − 1)j+1/2

+O

(
1

k2020

)
,

where ε(±) ∈ {1,−1}.

Proof. The statement follows directly from Lemma 1.5.2.

For 0 < x ≤ (k − 1)1−ε/2, we have the following lemma.

Lemma 1.5.4. Let x = (k − 1)z with 0 < z � (k − 1)−ε/2. Then for k > k0(ε),

where k0(ε) is a large absolute constant (depending on ε), we have

Jk−1(x)� exp{−(k − 1)/6}.

Proof. By Lemma 4.2 of [82], we have

|Jk−1((k − 1)z)| ≤ A1(k − 1)−1/2(1− z2)−1/4 exp

{
−1

3
(k − 1)(1− z2)3/2

}
,

for 0 < z ≤
√

1− 1
(k−1)2/3

, k ≥ 16 and some absolute constant A1. Note that, by

assumption, we have z ≤ (k − 1)−ε/2. Thus, 1− z2 ≥ 1/22/3 for k > k0(ε), and we

get

|Jk−1((k − 1)z)| ≤ A121/6 exp

{
−1

6
(k − 1)

}
.

Hence the lemma follows.

1.6 Gamma function

In this section we recall standard properties of the gamma function and Stirling’s

asymptotic formula for the gamma function Γ(s). For any z : | arg z| ≤ π − ε, we

have

Γ (z) =

√
2π

z

(z
e

)z{J−1∑
j=0

aj
zj

+Oε,J

(
1

|z|J

)}
, J ≥ 1, (1.6.1)
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where aj’s are some absolute constants depending upon ε only (see [42]). Further-

more for z = σ + iτ with fixed σ ∈ R, |τ | ≥ 10 and any M > 0, we have

Γ(σ + iτ) = e−
π
2
|τ | |τ |σ−

1
2 exp

(
iτ log

|τ |
e

)
gσ,M(τ) +Oσ,M(|τ |−M), (1.6.2)

where τ jg
(j)
σ,M(τ)�j,σ,M 1 for j ≥ 0.

We also record Legendre’s duplication formula

Γ(z)

Γ(1/2− z)
=

cos(πz) Γ(2z)√
π 22z−1

. (1.6.3)

1.7 Stationary phase analysis

We also require to estimate the exponential integral of the form

I =

∫ b

a

g(x)e(f(x))dx, (1.7.1)

where f and g are real valued smooth functions on the interval [a, b]. We recall the

following lemma on exponential integrals.

Lemma 1.7.1. Let I, f and g be as above. Let V (g) denotes the total variation of

g(x) on [a, b] plus the maximum modulus of g(x) on [a, b]. Then, if f ′ is monotone

and |f ′(x)| ≥ µ1 > 0 for x ∈ [a, b], we have I � V (g)/µ1. For r > 1, let

|f (r)(x)| ≥ µr > 0. Then we have I �r V (g)/µ
1/r
r . Moreover, let f ′(x) ≥ B and

f (j)(x)� B1+ε for j ≥ 2 together with Supp(g) ⊂ (a, b) and g(j)(x)�a,b,j 1. Then

we have

I �a,b,j,ε B
−j+ε.

Proof. See [[71], Subsection 2.2] and [[39], Lemma 5.1.2, Lemma 5.1.4].

The above lemma can be used for r = 1 whenever the phase function f does not

have any stationary point. We will also apply it for r = 2 and 3. In case there is a

single stationary point, we use the following stationary phase expansion.
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Lemma 1.7.2. Let I, f and g be as above. Let 0 < δ < 1/10, X, Y , U , Q > 0,

Z := Q+X + Y + b− a+ 1, and assume that

Y ≥ Z3δ, b− a ≥ U ≥ QZ
δ
2

√
Y
.

Further, assume that g satisfies

g(j)(x)�j
X

U j
, for j = 0, 1, 2, . . .

Suppose that there exists a unique x0 ∈ [a, b] such that f ′(x0) = 0, and the function

f satisfies

f ′′(x)� Y

Q2
, f (j)(x)�j

Y

Qj
, for j = 1, 2, 3, . . . .

Then we have

I =
e(f(x0))√
f ′′(x0)

b3δ−1Ac∑
n=0

pn(x0) +OA,δ

(
Z−A

)
,

pn(x0) =
eπi/4

n!

(
i

2f ′′(x0)

)n
G(2n)(x0),

where A > 0 is arbitrary, and

G(x) = g(x)e(F (x)), with F (x) = f(x)− f(x0)− 1

2
f ′′(x0)(x− x0)2.

Furthermore, each pn is a rational function in f ′, f ′′, . . . , satisfying

dj

dxj0
pn(x0)�j,n X

(
1

U j
+

1

Qj

)((
U2Y

Q2

)−n
+ Y −

n
3

)
.

Proof. See [[14], Lemma 8.1].





Chapter 2

GL(3)×GL(2) L-functions: GL(2)

spectral aspect

Let π be a Hecke-Maass cusp form of type (ν1, ν2) for SL(3,Z) with the Langlands

parameters (α1, α2, α3) and f be a holomorphic cusp form with weight kf or a Hecke-

Maass cusp form corresponding to the Laplacian eigenvalue 1/4 + ν2
f , νf ≥ 1, for

SL(2,Z). The Rankin-Selberg L-series associated to π and f is given by

L(s, π × f) =
∑∑
n,r≥1

λπ(n, r)λf (n)

(nr2)s
, <(s)� 1, (2.0.1)

where λπ(n, r) and λf (n) are the normalised Fourier coefficients of π and f re-

spectively. The above series extends to an entire function and satisfies a functional

equation of the following form

γ(s, π × f)L(s, π × f) = ikfγ(1− s, π̄ × f̄)L(1− s, π̄ × f̄),

with a gamma factor of degree 6

γ(s, π × f) = π3s

2∏
j=1

3∏
i=1

Γ

(
s+ βj − αi

2

)
,

where β1 = (kf−1)/2, β2 = (kf +1)/2 if f is a holomorphic form and β1 = εf−iνf ,

β2 = εf + iνf if f is a Maass form. Here εf = 0 if f is even and εf = 1 if f is

39
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odd. In this chapter, we will analyse L(s, π × f) at the central point 1/2. More

specifically, we are interested in estimating L(1/2, π× f) with respect to the GL(2)

form f , keeping π fixed. Let νf � kf . Then using the Phragmén-Lindelöf principle,

we see that

L(1/2, π × f)�π,ε (k6
f )

1/4+ε.

Note that k6
f is the analytic conductor in this case (see (0.0.5)). It is an interesting

problem to improve the exponent 1/4. Indeed, the first improvement in this case was

made by Li [58] for the self-dual forms π. In this chapter, we will prove Theorem

0.7.1, which will generalise Li [58]’s result to all π (not necessarily self-dual). Recall

from Theorem 0.7.1 that we need to prove the following

L (1/2, π × f)�π,ε k
3/2−1/51+ε
f , (2.0.2)

for any ε > 0. Using Lemma 1.3.2, we see that

L (1/2, π × f)�π,ε k
ε
f sup
r≤kθf

sup
k3−θf ≤Nr2≤k3+εf

|Sr(N)|
N1/2

+ k
(3−θ)/2+ε
f , (2.0.3)

where Sr(N) is a sum of the form

Sr(N) :=
∞∑
n=1

λπ(n, r)λf (n)V
( n
N

)
, (2.0.4)

for some smooth function V supported in [1, 2], satisfying V (j)(x) �j k
ε
f for any

integer j ≥ 0 and
∫
R V = 1. We prove the following proposition.

Proposition 2.0.1. For 0 < η < 1, we have

Sr(N)

N1/2k
3/2+ε
f

� k
−1/2+2η
f + r1/2k

−η/2
f + r1/2

k
3/2−η/2
f

N1/2
+ k

−1/6+3η/4
f , (2.0.5)

where the implied constant depends on η.
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Theorem 0.7.1 follows from Proposition 2.0.1. Indeed, using k3−θ
f � Nr2 � k3+ε

f

and r � kθf in (2.0.5), we get

Sr(N)

N1/2k
3/2+ε
f

� k
−1/2+2η
f + k

θ/2−η/2
f + k

2θ−η/2
f + k

−1/6+3η/4
f .

Hence to get subconvexity, we need all of the above exponents to be negative. So

the first and the third term gives 1/4 > η > 4θ, and consequently the third and the

fourth terms dominate the rest. Thus the above bound reduces to

Sr(N)

N1/2k
3/2+ε
f

� k
2θ−η/2
f + k

−1/6+3η/4
f .

The optimal choice for η is given by η = 8θ/5 + 2/15. On plugging this in (2.0.3),

we get

L(1/2, π × f)� k
3/2+6θ/5−1/15+ε
f + k

3/2−θ/2+ε
f ,

and with the optimal choice θ = 2/51, we get Theorem 0.7.1. In the rest of the

chapter we prove Proposition 2.0.1.

Remark 2.0.2. We will carry out the whole analysis for the holomorphic cusp form

f , as the analysis for the Maass forms is similar. Indeed, in this case, we use the

Rankin-Selberg bound (1.1.2) in place of Delinge’s bound. We refer to [37] to see

complete details.

Remark 2.0.3 (Notation). In this chapter, the notation α � A will mean that for

any ε, there is a constant c such that |α| ≤ ckεfA. α � A means c1k
−ε
f A ≤ α ≤

c2k
ε
fA. For notational convenience, we will ignore f from kf and write k in place

of kf . By negligibly small we mean O(k−A) for any A > 1. In particular we take

A = 2020.
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2.1 The delta method and outline of the proof

Let’s consider

Sr(N) =
∞∑
n=1

λπ(n, r)λf (n)V
( n
N

)
. (2.1.1)

A trivial estimation (applying the Cauchy inequality followed by the Rankin-Selberg

bound) of the above sum gives us Sr(N) � N . Thus, to prove Proposition 2.0.1,

we need to show some cancellations in Sr(N).

2.1.1 An application of the delta method

As a first step, following Munshi [77], we separate the oscillatory terms λπ(n, r)

and λf (n) involved in (2.1.1). We use the delta method of Duke, Friedlander and

Iwaniec as a device to separate these terms. We also apply the conductor lowering

trick introduced by Munshi in [71]. For this purpose, we introduce an extra t-integral.

In fact, we rewrite Sr(N) as

Sr(N) =
1

T

∫
R
V

(
t

T

) ∞∑∑
n,m=1
n=m

λπ(n, r)λf (m)
( n
m

)it
V
( n
N

)
U
(m
N

)
dt,

=
1

T

∫
R
V

(
t

T

) ∞∑∑
n,m=1

δ(n−m)λπ(n, r)λf (m)
( n
m

)it
V
( n
N

)
U
(m
N

)
dt,

(2.1.2)

where kε < T := k1−η < k1−ε is a parameter which will be chosen later optimally,

and U is a smooth function supported in [1/2, 5/2] with U(x) = 1 forx ∈ [1, 2], and

U (j)(x) �j 1 for any integer j ≥ 0. Recall that we have
∫
R V = 1. Consider the

t-integral

1

T

∫
R
V

(
t

T

)(m
n

)it
dt.

On applying integration by parts repeatedly, we observe that the above integral is

negligibly small unless |n − m| � kεN/T . Thus the t-integral reduces the size of
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the equation n = m. Thus, on applying Lemma 1.4.1 to (2.1.2) with L = kεN/T ,

and Q = kε
√
N/T , we see that Sr(N) is transformed into

Sr(N) =
1

QT

∫
R
W (x/Qε)

∫
R
V

(
t

T

) ∑
1≤q≤Q

g(q, x)

q

∑?

amod q

×
∞∑
n=1

λπ(n, r)e

(
an

q

)
e

(
nx

qQ

)
nitV

( n
N

)
×
∞∑
m=1

λf (m)m−ite

(
−am
q

)
e

(
−mx
qQ

)
U
(m
N

)
dt dx+O(k−2020).

Next we break the q-sum into dyadic segments q ∼ C, with 1� C � Q and write

Sr(N) =
∑

1�C�Q
dyadic

Sr(N,C) +O(k−2020), (2.1.3)

where

Sr(N,C) =
1

QT

∫
R
W (x/Qε)

∫
R
V

(
t

T

)∑
q∼C

g(q, x)

q

∑?

amod q

×
∞∑
n=1

λπ(n, r)e

(
an

q

)
e

(
nx

qQ

)
nitV

( n
N

)
×
∞∑
m=1

λf (m)m−ite

(
−am
q

)
e

(
−mx
qQ

)
U
(m
N

)
dt dx. (2.1.4)

2.1.2 Sketch of the proof

In this subsection, we will discuss rough ideas to get non-trivial cancellations in Sr(N)

given in (2.1.4). For simplicity, we consider the generic case, i.e., N = k3, r = 1

and q ∼ Q =
√
N/T = k3/2/T 1/2. Thus Sr(N) is roughly given by

1

QT

∫ 2T

T

∑
q∼Q

1

q

∑?

amod q

∑
n∼N

λπ(n, 1)nite

(
an

q

) ∑
m∼N

λf (m)m−ite

(
−am
q

)
dt.

Note that we have ignored the x-integral, as it does not contribute in the generic

case, and we have also supressed all the weight functions. On estimating the above

sum trivially, we get Sr(N) � N2+ε. Hence, to get non-trivial cancellations, we
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need to save N plus a little more, say, kδ. In other words, we need to show

Sr(N)� N2/(Nkδ),

for some δ > 0. In the next step, we dualize the sum over n and m (we give full

details in Section 2.2). Consider the sum over n

S3 =
∑
n∼N

λπ(n, 1)nite

(
an

q

)
.

On applying the GL(3) Voronoi summation formula to the above sum, we arrive at

(see Lemma 2.2.1)

S3 ≈
N2/3

q

∑
n2∼Q3T 3/N

λπ(1, n2)

n
1/3
2

S(ā,±n2; q) I3(...),

where I3(...) is an integral transform in which we need to get square root cancellations,

i.e., need to show I3(...) � 1/
√
T (obtaining this bound is necessary, otherwise we

won’t get sufficient savings at the last). Next we apply the GL(2) Voronoi formula

to the sum over m and we get (see Lemma 2.2.3 for details)

∑
m∼N

λf (m)m−ite

(
−am
q

)
≈ N

q

∑
m∼Q2k2/N

λf (m)e

(
ām

q

)
I2(...),

where I2(...) is an integral transform in which we need to get full cancellations, i.e.,

need to show I2(...) � 1/k (proving this bound is a necessary step to obtain our

main result). Next we analyse the sum over a which is given by

C =
∑∗

amod q

S (ā, n2; q) e

(
ām

q

)
≈ qe

(
−m̄n2

q

)
.

We observe that the above sum becomes an additive character with respect to n2

(which saves us extra q when we apply the poisson after Cauchy). Thus, we arrive

at the following expression of Sr(N):

1

QT
N

Q2T
N

Q

∑
q∼Q

∑
n2∼T 3/2N1/2

λπ(1, n2)
∑

m∼k2/T

λf (m)e

(
−m̄n2

q

)
J,
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where J is an integral transform involving the t-integral, I2(...) and I3(...). We analyse

it in Section 2.4. We observe that

J� T 1√
T

1√
T

1

k
.

Note that a saving of
√
T comes from the t-integral, another saving of

√
T comes

from the GL(3)-integral and the saving of k comes from the GL(2) integral. The

factor T reflects the length of the t-integral. Thus, on plugging it in place of J, we

see that

Sr(N)�
∑
q∼Q

∑
n2∼T 3/2N1/2

|λπ(1, n2)|
∣∣∣∣ ∑
m∼k2/T

λf (m)e

(
−m̄n2

q

)
J

∣∣∣∣
� QT 3/2N1/2k

2

T
1

k
� Nk.

Thus we now need to save k1+δ. Next we apply Cauchy’s inequality to the sum over

n2 to get rid of the GL(3) coefficients. Thus we arrive at (see Subsection 2.3.1)

(T 3/2N1/2)1/2

 ∑
n2∼T 3/2N1/2

∣∣∣∑
q∼Q

∑
m∼k2/T

λf (m) e

(
−m̄n

q

)
I
∣∣∣2
1/2

.

The end game strategy is to apply the Poisson to the sum over n2 (we carry out

the details in Subsection 2.3.2). Opening the absolute value square followed by the

Poisson, we observe that we save the whole length, i.e., k2Q/T in the zero-frequency

(n2 = 0 case) which suffices if k2Q/T > k2 which implies that T < k. On the other

hand, in the non-zero frequencies (n2 6= 0 case), we save

T 3/2N1/2

(Q2T )1/2
.

Here the factor Q2T in the denominator reflects the size of the conductor, which is

given by

conductor = arithmetic conductor× analytic conductor.
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Note that the arithmetic conductor is of size Q2 and the analytic conductor is of size

T (because J oscillates like niT2 with respect to n2). We also save Q due to the

presence of the additive character e(−m̄n/q). Thus the total savings in the non-zero

frequencies turns out to be

T 3/2N1/2

(Q2T )1/2
×Q = T N1/2,

which suffices if T N1/2 > k2 which boils down to T > k1/2. Hence, to succeed, we

must ensure that k1/2 < T < k, which is done by chosing T optimally.

2.2 Applications of Voronoi formulae

In this section, we will analyse the sum over n and m in (2.1.4) using the Voronoi

summation formulae.

2.2.1 The GL(3) Voronoi

Let’s consider the sum over n

S3 :=
∞∑
n=1

λπ(n, r)e

(
an

q

)
e

(
nx

qQ

)
nitV

( n
N

)
(2.2.1)

in (2.1.4). We analyze it using the GL(3) Voronoi summation formula (see Lemma

1.2.1). In the present set-up, we have g(n) = e (nx/qQ)nitV (n/N) and X = N .

Thus, on applying Lemma 1.2.1 to the above sum, we get

S3 = q
∑
±

∑
n1|qr

∞∑
n2=1

λπ(n1, n2)

n1n2

S (rā,±n2; qr/n1)G± (n?2) , (2.2.2)

where n?2 := n2
1n2/(q

3r) and G±(n?2) is the integral transform defined in (1.2.3). Next

we extract the oscillations of the integral transform G±(n?2) using Lemma (1.2.2),
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which gives the following expression for G±(n?2) in the range n?2N � kε

n?2

∫ ∞
0

g(z)

K0∑
j=1

cj(±)e(3(n?2z)1/3) + dj(±)e(−3(n?2z)1/3)

(n?2z)j/3
dz +Oε(k

−2020),

(2.2.3)

where K0 = [6060
ε

+ 5] + 1 with [.] denoting the greatest integer function. From

now on we will continue our analysis with the terms corresponding to j = 1, as

other terms can be treated in a similar way and in fact, give us better estimates (see

Remark 2.2.2). Thus on plugging the above expression corresponding to the term

j = 1 into (2.2.2), we arrive at

N2/3+it

qr2/3

∑
±

∑
n1|qr

n
1/3
1

∞∑
n2=1

λπ(n1, n2)

n
1/3
2

S(rā,±n2; qr/n1)I3(n2
1n2, q, x),

where

I3(n2
1n2, q, x) :=

∫ ∞
0

z−1/3V (z)zite

(
Nxz

qQ
± 3(Nn2

1n2z)1/3

qr1/3

)
dz. (2.2.4)

On applying the change of variable z 7→ z3 followed by the integration by parts

(differentiating 3z2V (z3)zi3te(Nxz3/qQ) and integrating e(±3(Nn2
1n2)1/3z/qr1/3))

j-times to the above integral, we observe that

I3(n2
1n2, q, x)�j

(
T +

N |x|
qQ

)j (
qr1/3

(Nn2
1n2)1/3

)j
,

for any integer j ≥ 0, and it is negligibly small if

n2
1n2 ≥ kε max

{
C3T 3r

N
, T 3/2N1/2r

}
=: N0. (2.2.5)
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Recall that q ∼ C. Now it remains to analyse G±(n?2) for n?2N � kε, which is given

as

G±(n?2) =
1

2πi

∫
(σ)

(n?2)−s γ±(s)g̃(−s) ds

=
1

2π

∫ ∞
−∞

(n?2)−σ−iτ γ±(σ + iτ) g̃(−σ − iτ) dτ. (2.2.6)

We will consider this case in Subsection 2.6.3. We conclude this subsection by

summarising the above discussion in the following lemma.

Lemma 2.2.1. Let S3 be as in (2.2.1). Then, for n?2N = n2
1n2N/(q

3r) � kε, we

have

S3 =
N2/3+it

qr2/3

∑
±

∑
n1|qr

n
1/3
1

∑
n2≤N0/n2

1

λπ(n1, n2)

n
1/3
2

S(rā,±n2; qr/n1) I3(n2
1n2, q, x),

+ other lower order terms +O(k−2020), (2.2.7)

where I3(n2
1n2, q, x) is the integral transform defined in (2.2.4) and N0 is the range

of n2
1n2 defined in (2.2.5). For the non-generic case n?2N � kε, we have

S3 = q
∑
±

∑
n1|qr

∞∑
n2=1

λπ(n1, n2)

n1n2

S (rā,±n2; qr/n1)G± (n?2) , (2.2.8)

where G±(n?2) is the integral transform (2.2.6).

Remark 2.2.2. The other lower order terms come from the expression of (2.2.3)

corresponding to j = 2, 3.... On comparing it with the main term (j = 1), we see

that the integral transforms in these terms are exactly same as that of the main term.

However, there is an extra factor (n?2N)(j−1)/3 in the denominator (after the change

of variable z → Nz). For instance, for j = 2, it is (n?2N)1/3 which is of size T in

the generic case. Thus the final bound turns out to be 1/T times the final bound of

the main term. We save even more for other j. From now on, we will proceed with

the main term of (2.2.7).
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2.2.2 GL(2) Voronoi

We now consider the sum over m in (2.1.4), which is given as

S2 :=
∞∑
m=1

λf (m)m−ite

(
−am
q

)
e

(
−mx
qQ

)
U
(m
N

)
. (2.2.9)

On applying the GL(2) Voronoi summation formula (see Lemma 1.1.1) to the above

sum with g(m) = m−ite(−mx/(qQ))U(m/N), we get

S2 =
2πik

q

∞∑
m=1

λf (m)e

(
ām

q

)∫ ∞
0

y−ite

(
−xy
qQ

)
U
( y
N

)
Jk−1

(
4π
√
my

q

)
dy

=
2πikN1−it

q

∞∑
m=1

λf (m)e

(
ām

q

)∫ ∞
0

U(y)y−ite

(
−Nxy
qQ

)
Jk−1

(
4π
√
mNy

q

)
dy,

Next we analyse the integral transform

I2(m, q, x) :=

∫ ∞
0

U(y)y−ite

(
−Nxy
qQ

)
Jk−1

(
4π
√
mNy

q

)
dy. (2.2.10)

to determine the range of m. We claim that I2(m, q, x) is negligibly small unless

M :=
C2(k − 1)2k−ε

N
≤ m ≤ kε max

(
(k − 1)2C2

N
, T
)

=: M0. (2.2.11)

In fact, in the range m < M , we have

4π
√
mNy/q ≤ 4π

√
mNy/C < 4π

√
5/2(k − 1)1−ε/2 � (k − 1)1−ε/2.

Thus, by Lemma 1.5.4, the integral transform I2(m, q, x) is negligibly small.

Now we consider the range m > M0. We note that 4π
√
mNy/q > (k − 1)1+ε/2.

Thus, we can apply Langer’s expansion (see Lemma 1.5.2) for the Bessel function

Jk−1. On applying Corollary 1.5.3 with x = 4π
√
mNy/q, we see that I2(m, q, x),

up to a negligible error term, is given by

2019∑
j=0

1

(k − 1)j+1/2

∫ ∞
0

Uj(y)y−ite

(
−Nxy
qQ

)
e

(
±(k − 1)(w − tan−1w)

2π

)
dy,
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where Uj(y) = U(y)Pj ((w − tan−1w)−1)w−1/2 with

w =

(
x2

(k − 1)2
− 1

)1/2

=

(
16π2mNy

q2(k − 1)2
− 1

)1/2

,

and Pj is a polynomial of the degree j with coefficients which are bounded functions

of k. Note that w > ((k − 1)ε − 1)1/2. Thus

w − tan−1w = w − π

2
+ tan−1 1

w
� w �

√
mN

C(k − 1)
,

and U
(`)
j (y) �` k

ε` for any integer ` ≥ 0. Next we apply integration by parts

`-times to the above y-integral. To this end, let g(y) = Uj(y)y−ite
(
−Nxy
qQ

)
and

h(y) = ±i(k − 1)(w − tan−1w). We now write the y-integral as follows:

∫ ∞
0

g(y) eh(y) dy =

∫ ∞
0

g(y)

h′(y)
h′(y) eh(y) dy =

∫ ∞
0

g(y)

h′(y)
d(eh(y)).

By integration by parts, we see that

∫ ∞
0

g(y) eh(y) dy = −
∫ ∞

0

eh(y) d

(
g(y)

h′(y)

)
= −

∫ ∞
0

g1(y) eh(y) dy,

where g1(y) = d
dy

g(y)
h′(y)

. Note that

g1(y) =
h′(y)g′(y)− g(y)h′′(y)

(h′(y))2
� |g

′(y)|
|h′(y)|

� (T +N |x|/(qQ))

(k − 1)
√
mN/(q(k − 1))

,

as h′′(y) � h′(y) � (k − 1)
√
mN

q(k−1)
and g(y) � kε. We iterate the same procedure

with the new y-integral
∫∞

0
g1(y) eh(y) dy and we thus get

I2(m, q, x)�`

(
T +

N |x|
qQ

)`(
1

(k − 1)
√
mN/(q(k − 1))

)`
�
(
T C√
M0N

+
N |x|

Q
√
M0N

)`
�
(
kεT
k

+
1

kε

)`
� 1

kε`
.

Upon taking ` sufficiently large, we get the claim. We end this subsection by sum-

marizing the above arguments in the following lemma.
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Lemma 2.2.3. Let S2 be the sum over m as given in (2.2.9). Then we have

S2 =
2πikN1−it

q

∑
M≤m≤M0

λf (m)e

(
ām

q

)
I2(m, q, x) +O(k−2020), (2.2.12)

where

I2(m, q, x) =

∫ ∞
0

U(y)y−ite

(
−Nxy
qQ

)
Jk−1

(
4π
√
mNy

q

)
dy,

and M and M0 are the ranges of m defined in (2.2.11).

2.3 Cauchy and Poisson

After the applications of the Voronoi formulae and applying Lemma 2.2.1 and Lemma

2.2.3 to (2.1.4), we see that Sr(N) in (2.1.3) given by

N5/3

QT r2/3

∑
1�C�Q

dyadic

∑
q∼C

1

q3

∑?

amod q

∑
±

∑
n1|qr

n
1/3
1

×
∑

n2≤N0/n2
1

λπ(n1, n2)

n
1/3
2

S(rā,±n2; qr/n1)

×
∑

M≤m≤M0

λf (m)e

(
ām

q

)
J±(m, n2

1n2, q) +O(k−2020), (2.3.1)

where

J±(m, n2
1n2, q) =

∫
R

∫
R
W (x/Qε) g(q, x) I2(m, q, x) I3(n2

1n2, q, x)V

(
t

T

)
dt dx.

(2.3.2)

We recall that we are in the situation where the n2 variable satisfies n2
1n2N/q

3r � kε.

We will keep this fact in mind from now on. In this section, we will analyse (2.3.1)

using the Cauchy inequality and the Poisson summation formula.



52 Chapter 2. GL(3)×GL(2) L-functions: GL(2) spectral aspect

2.3.1 Cauchy’s inequality

On writing q = q1q2 with q1|(n1r)
∞, (n1r, q2) = 1, we see that the expression in

(2.3.1) is dominated by

sup
C�Q

N5/3 logQ

QT r2/3C3

∑
±

∑
n1

(n1,r)
�C

n
1/3
1

∑
n1

(n1,r)
|q1|(n1r)∞

∑
n2≤N0/n2

1

|λπ(n1, n2)|
n

1/3
2

×
∣∣∣ ∑
q2∼C/q1

∑
M≤m≤M0

λf (m)C±(q, n2,m)J±(m,n2
1n2, q)

∣∣∣, (2.3.3)

where the character sum C±(q, n2,m) = C±(...) is defined as

C±(...) :=
∑?

amod q

S(rā,±n2; qr/n1)e

(
ām

q

)
=
∑
d|q

dµ
(q
d

) ∑?

αmod qr/n1

n1α≡−mmod d

e

(
± ᾱn2

qr/n1

)
.

We note that q is q1q2 and the q2 variable in the sum over q2 in (2.3.3) satisfies

(q2, n1r) = 1. From now on we will keep these facts in mind and use them whenever

required.

Next we analyse the expression inside | |. We first split the sum over m into dyadic

blocks m ∼M1, M �M1 �M0 and then apply the Cauchy inequality to the sum

over n2 in (2.3.3) to arrive at

Sr(N)� sup
M�M1�M0

C�Q

N5/3(QM0)ε

QT r2/3C3

∑
±

∑
n1

(n1,r)
�C

n
1/3
1 Θ1/2

∑
n1

(n1,r)
|q1|(n1r)∞

√
Ω±,

(2.3.4)

where

Θ =
∑

n2�N0/n2
1

|λπ(n1, n2)|2

n
2/3
2

, (2.3.5)

and

Ω± =
∑

n2�N0/n2
1

∣∣∣ ∑
q2∼C/q1

∑
m∼M1

λf (m)C±(q, n2,m)J±(m,n2
1n2, q)

∣∣∣2. (2.3.6)
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Recall that

(k − 1)2C2

N
k−ε = M �M1 �M0 = kε max

(
(k − 1)2C2

N
, T
)
,

N0 = kε max

{
(CT )3 r

N
, T 3/2N1/2r

}
. (2.3.7)

2.3.2 The Poisson summation formula

Next we apply the Poisson summation formula to the sum over n2 with the modulus

q := q1q2q
′
2r/n1 in (2.3.6). To this end, we first split the sum over n2 into dyadic

blocks n2 ∼ Ñ/n2
1, Ñ � N0. Then opening the absolute value square in (2.3.6), we

arrive at

Ω± =
∑∑
q2, q′2∼C/q1

∑∑
m,m′∼M1

λf (m)λf (m
′) ∆±,

where

∆± =
∑
Ñ

∑
n2∈Z

φ

(
n2

1n2

Ñ

)
C±(q, n2,m)C±(q′, n2,m′)J±(m,n2

1n2, q)J±(m′, n2
1n2, q′),

q′ = q1q
′
2 and φ(w) is a non-negative smooth function supported on [2/3, 3] with

φ(w) = 1 for w ∈ [1, 2] and φ(j)(w)�j 1. Now applying the change of variable

n2 → n2q + β, β mod q,

we get the following expression for ∆±:

∆± =
∑
Ñ

∑
β mod q

C±(q, β,m)C±(q′, β,m′)

×
∑
n2∈Z

φ

(
n2q + β

Ñ/n2
1

)
J±(m,n2

1(n2q + β), q) J±(m′, n2
1(n2q + β), q′).
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On applying the Poisson summation formula to the sum over n2 , we arrive at

Ω± =
∑
Ñ

Ñ

n2
1

∑∑
q2, q′2∼C/q1

∑∑
m,m′∼M1

λf (m)λf (m
′)
∑
n2∈Z

C±J±, (2.3.8)

where

C± =
1

q

∑
β mod q

C±(q, β,m) C±(q′, β,m′) e

(
n2β

q

)
=
∑∑

d|q
d′|q′

dd′µ
(q
d

)
µ

(
q′

d′

) ∑?

αmod qr/n1

n1α≡−mmod d

∑?

α′mod q′r/n1

n1α′≡−m′mod d′

±ᾱq′2∓ᾱ′q2≡−n2 mod q

1, (2.3.9)

and

J± =

∫
R
φ(w) J±(m, Ñw, q) J±(m′, Ñw, q′) e

(
− n2Ñw

q1q2q′2rn1

)
dw. (2.3.10)

Now on applying the Ramanujan bound (1.1.1) for the Fourier coefficients λf (m)

and λf (m
′), we get

Ω± � kε sup
Ñ�N0

Ñ

n2
1

∑∑
q2, q′2∼C/q1

∑∑
m,m′∼M1

∑
n2∈Z

|C±||J±|, (2.3.11)

as there are at most logN0(� kε) many Ñ ’s.

2.4 Estimates for the integral transform

In this section we will analyse the integral transform

J± =

∫
R
φ(w) J±(m, Ñw, q) J±(m′, Ñw, q′) e

(
− n2Ñw

q1q2q′2rn1

)
dw, (2.4.1)
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where

J±(...) =

∫
R

∫
R
W (x/Qε) g(q, x) I2(m, q, x) I3(Ñw, q, x)V

(
t

T

)
dt dx

=

∫
R
W (x/Qε)g(q, x)

∫
R
V

(
t

T

)∫ ∞
0

U(y)y−it
∫ ∞

0

V (z)zit−1/3

× e

(
Nx(z − y)

qQ
± 3(NÑwz)1/3

qr1/3

)
Jk−1

(
4π
√
mNy

q

)
dz dy dt dx,

(2.4.2)

and J±(m′, Ñw, q′) is similarly defined. Recall that NÑ/q3r � kε. We first analyse

J±(m, Ñw, q).

Lemma 2.4.1. Let J±(...) = J±(m, Ñw, q) be as above. Let Iz−y and Lz−y denote

the x and the t-integral respectively in J±(...). Then either Iz−y or Lz−y is negligibly

small unless |u| = |z − y| � kεC/(QT ).

Proof. We consider two cases.

Case 1. q ∼ C � Q1−ε.

Consider the integral over x in (2.4.2) which is given by

Iz−y =

∫
R
W (x/Qε)g(q, x)e

(
Nx(z − y)

qQ

)
dx

= Qε

∫
R
W (x)g(q, xQε)e

(
NxQε(z − y)

qQ

)
dx.

We now split the above integral as

∫
R
... dx =

∫ Q−2ε

−Q−2ε

... dx+

∫
D

... dx,

where D = [−2, 2]\[−Q−2ε, Q−2ε]. Note that, for x ∈ [−Q−2ε, Q−2ε], we have

g(q, xQε) = 1 + h(q, xQε) = 1 +O

(
Q

q

(
q

Q
+ |x|Qε

)B)
� 1 +O(Q−2020).

Thus, in this range, we can replace g(q, xQε) by 1 at the cost of a negligible error

term. Then by repeated integration by parts we see that the integral is negligibly
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small unless

|z − y| � kεC/(QT ). (2.4.3)

Now we consider the complementary range, i.e., x ∈ D. Note that, using the second

property (see (1.4.2)) of q(q, x), we have

xj
∂j

∂xj
g(q, xQε)� logQmin

{
Q

q
,

1

|x|Qε

}
� Q3ε.

Thus, on using integration by parts repeatedly, we see that the integral is negligibly

small unless (2.4.3) holds true.

Case 2. q ∼ C � Q1−ε.

In this case, we consider the t-integral in (2.4.2) which is given by

Lz−y =

∫
R
V

(
t

T

)(
z

y

)it
dt.

Now applying the change of variable t→ tT followed by integration by parts repeat-

edly, we conclude that the t-integral is negligibly small unless

|z − y| � kε/T � k2εC/(QT ).

Thus, combining Case 1 and Case 2, we get the lemma.

Lemma 2.4.2. Let J±(...) = J±(m, Ñw, q) be as in (2.4.2). Then we have

J±(m, Ñw, q) =

∫
R
V

(
t

T

)∫
u� kεC

QT

Iu I±(m, Ñw, q) du dt+O(k−2020), (2.4.4)

where Iu and I±(m, Ñw, q) are the integrals defined in (2.4.6) and (2.4.7) respec-

tively, with the weight function Uu,t satisfying U
(j)
u,t (y)�j k

εj for j ≥ 0.

Proof. Using Lemma 2.4.1, we write z − y = u with u � kεC/(QT ) in (2.4.2).

Thus we see that

J±(m, Ñw, q) =

∫
R
V

(
t

T

)∫
u� kεC

QT

Iu I±(m, Ñw, q) du dt+O(k−2020), (2.4.5)
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where

Iu =

∫
R
W (x/Qε)g(q, x)e

(
Nxu

qQ

)
dx, (2.4.6)

and

I±(m, Ñw, q) =

∫ ∞
0

Uu,t(y)e

(
±3(NÑw(y + u))1/3

qr1/3

)
Jk−1

(
4π
√
mNy

q

)
dy,

(2.4.7)

with Uu,t(y) = U(y)V (y + u)(1 + u/y)it−1/3. Note that, for y ∈ Supp(U), we have

∂j

∂yj

(
1 +

u

y

)it
=

∂j

∂xj
exp

(
it log

(
1 +

u

y

))
�j k

εj, j ≥ 0.

Thus U
(j)
u,t (y)�j k

εj for j ≥ 0. Hence the lemma follows.

The analysis for J±(m′, Ñw, q′) is exactly same. We record it in the following

lemma.

Lemma 2.4.3. Let J±(m′, Ñw, q′) be the integral transform defined by replacing

q by q′ and m by m′ in (2.4.2). Let Iz′−y′ and Lz′−y′ denote the x′ and t′-integral

respectively in J±(m′, Ñw, q′). Then either Iz′−y′ or Lz′−y′ is negligibly small unless

|u′| = |z′ − y′| � kεC/(QT ), and in which case, we have

J±(m′, Ñw, q′) =

∫
R
V

(
t′

T

)∫
u′� kεC

QT

Iu′ I±(m′, Ñw, q′) du′ dt′ +O(k−2020),

(2.4.8)

where Iu′ and I±(m′, Ñw, q′) are the integrals corresponding to (2.4.6) and (2.4.7)

respectively.

On plugging the expressions from (2.4.4) and (2.4.8) into (2.4.1), we see that

J± =

∫
R

∫
R
V

(
t

T

)
V

(
t′

T

)∫
u� kεC

QT

∫
u′� kεC

QT

Iu Iu′ J± du′ du dt′ dt+O(k−2020),

(2.4.9)



58 Chapter 2. GL(3)×GL(2) L-functions: GL(2) spectral aspect

where

J± :=

∫
R
φ(w) I±(m, Ñw, q) I±(m′, Ñw, q′) e

(
− n2Ñw

q2q′2q1rn1

)
dw, (2.4.10)

which we will analyse now. We have the following proposition:

Proposition 2.4.4. Let J± be the integral transform defined as above. Then J± is

negligibly small unless

n2 � kε
CN1/3r2/3n1

q1Ñ2/3
:= N2, (2.4.11)

in which case we have

J± �
kεC2

M1N
. (2.4.12)

Furthermore, if q ∼ C � k1+ε and n2 6= 0, then we have

J± �
Cr1/3k2/3

k2(NÑ)1/3
. (2.4.13)

Before proving the propositon, we will analyze I±(m, Ñw, q) and I±(m′, Ñw, q′).

We have the following lemma.

Lemma 2.4.5. Let I±(m, Ñw, q) be the integral transform defined in (2.4.7). Let

b = 4π
√
mN/q and a = a(q, r) := 3(NÑ)1/3/(qr1/3). Then I±(m, Ñw, q) is

negligibly small unless a ≤ kεb . In the case, a ≤ k−εb, we have

I±(m, Ñw, q)� kε/b.

Furthermore, if q ∼ C � k1+ε, then b � k and we have

I±(m, Ñw, q) =
e (F (τ0))√
F ′′(τ0)

c3a
9/2w3/2

b5τ 5
0

√
1− τ 2

0

U2
u,t

((
4πaw1/3

3bτ0

)6
)

+O
(
k−2020

)
,

(2.4.14)
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where τ0 is the stationary point of the phase function

F (τ) =
(k − 1) sin−1 τ

2π
+

16π2a3w

27b2τ 2
,

which is given by (2.4.27), c3 = c2 e(1/8) = 3
√

2(4π/3)5e(1/4) and U2
u,t is a smooth

bump function satisfying U
2(j)
u,t �j k

εj. In the remaining case, i.e., k−εb ≤ a ≤ kεb,

I±(m, Ñw, q) is given by

c2a
9/2w3/2

b5

∫ 1

b1/2

1

τ 5
√

1− τ 2
U1
u,t

((
4πaw1/3

3bτ

)6
)
e (F (τ)) dτ +O

(
k−2020

)
,

where b1 := 4π(2/3)1/3a/(3(2.5)1/6b). Here U1
u,t is a smooth bump function satisfy-

ing U
1(j)
t,u �j k

εj.

Remark 2.4.6. From the statement of Lemma 2.2.1, we infer that a� kε. We will

keep on using this fact form now on (without mentioning it explicitly).

Proof. Let’s recall from (2.4.7) that

I±(m, Ñw, q) =

∫ ∞
0

Uu,t(y)e

(
±3(NÑw(y + u))1/3

qr1/3

)
Jk−1

(
4π
√
mNy

q

)
dy

=

∫ 5/2

1/2

Uu,t(y) e
(
±aw1/3(y + u)1/3

)
Jk−1 (b

√
y) dy. (2.4.15)

Consider the term e(±aw1/3(y + u)1/3). It can be written as

e(±aw1/3(y + u)1/3) = e(±aw1/3y1/3) e(±aw1/3y1/3((1 + u/y)1/3 − 1)).

Note that
∂j

∂yj
e(±aw1/3y1/3((1 + u/y)1/3 − 1))�j k

εj, j ≥ 0.

This is obvious for j = 0. We will verify it for j = 1 (for other j, it follows similarly).

Let f(y, w) := ±aw1/3y1/3((1 + u/y)1/3 − 1). Thus for j = 1 we have

∂

∂y
e(f(y, w)) = e(f(y, w))(±a)w1/3

(
(1 + u/y)1/3 − 1

3y2/3
− u

3y5/3(1 + u/y)2/3

)
.
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Thus, using y, w � 1 and (1 + u/y)1/3 − 1� u, we see that

∂

∂y
e(f(y, w))� au� (NÑ)1/3

Cr1/3

Ckε

QT
� (NN0)1/3

Qr1/3

Qkε

QT
� kε,

where we used (2.3.7) for the expression of N0. Hence we can insert e(f(y, w)) into

the weight function Uu,t(y). Thus we arrive at the following expression:

I± := I±(m, Ñw, q) =

∫ 5/2

1/2

U0
u,t(y) e

(
±aw1/3y1/3

)
Jk−1 (b

√
y) dy, (2.4.16)

where U0
u,t(y) = Uu,t(y)e(f(y, w)) is the new weight function

supported in [1/2, 5/2] and satisfying U
0(j)
u,t (y)�j k

εj, j ≥ 0. (2.4.17)

To analyze (2.4.16) further, we use an integral representation of the Bessel func-

tion Jk−1. Thus, on applying (1.5.1) to the Bessel function Jk−1, we see that

I± =
1

2π

∫ π

−π
ei(k−1)τ

∫ 5/2

1/2

U0
u,t(y)e

(
±aw1/3y1/3 − b

√
y sin τ/2π

)
dy dτ.

We now split the τ -integral as follows:

∫ π

−π
... dτ =

∫ π/2

0

... dτ +

∫ π

π/2

... dτ +

∫ 0

−π/2
... dτ +

∫ −π/2
−π

... dτ.

Let I
(i)
± denote the i-th integral in the right hand side of the above expression for

i = 1, 2, 3 and 4. Let’s first consider I
(1)
± which is defined as follows:

I
(1)
± =

1

2π

∫ π/2

0

ei(k−1)τ

∫ 5/2

1/2

U0
u,t(y)e

(
±aw1/3y1/3 − b

√
y sin τ/2π

)
dy dτ.

(2.4.18)

Next we apply stationary phase analysis to the y-integral. By the change of variable

y → y3, we arrive at the following expression of the y-integral

∫ 3
√

5/2

3
√

1/2

3y2U0
u,t(y

3)e
(
±aw1/3y − by3/2 sin τ/2π

)
dy.
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Note that if we have negative sign with a, then the above integral is negligibly small

by Lemma 1.7.1. Thus, we proceed with the y-integral of I
(1)
+ , which is given by

∫ 3
√

5/2

3
√

1/2

3y2U0
u,t(y

3)e
(
aw1/3y − by3/2 sin τ/2π

)
dy.

Here the phase function is given by f1(y) = aw1/3y− by3/2 sin τ/2π. On computing

the first order derivative, we see that the stationary point occurs at y0 =
(

4πaw1/3

3b sin τ

)2

.

Note that

3
√

1/2 ≤ y0 ≤ 3
√

5/2 ⇐⇒ 4π

3

aw1/3

b(2.5)1/6
≤ sin τ ≤ 4π

3

aw1/3

b(0.5)1/6
.

Let b1 := 4π
3

a(2/3)1/3

b(2.5)1/6
and b2 := 4π

3
31/3a

b(0.5)1/6
. We consider three cases.

Case 1. a ≥ kεb.

In this case we have b1 ≥ 2. Thus there is no stationary point in the range

[(1/2)1/3, (5/2)1/3]. Moreover,

f ′1(y) = aw1/3 − 3b
√
y sin τ/(4π)� b, f

(j)
1 (y)� b, j ≥ 2.

Hence, by Lemma (1.7.1), the integral is negligibly small. This proves the first part

of the lemma.

Case 2. a ≤ k−εb.

In this case we have 0 < b1/2 < 2b2 � k−ε < 1. we now split the τ -integral in

(2.4.18) as follows:

∫ π/2

0

... dτ =

∫ sin−1(b1/2)

0

... dτ +

∫ sin−1 2b2

sin−1(b1/2)

... dτ +

∫ π/2

sin−1 2b2

... dτ.

Note that the first and the third integrals of the right side of the above expression

are negligibly small due to the absence of the stationary point. Hence it boils down
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to analyse the second integral which is given by

∫ sin−1 2b2

sin−1(b1/2)

ei(k−1)τ

∫ 3
√

5/2

3
√

1/2

3y2U0
u,t(y

3)e
(
aw1/3y − by3/2 sin τ/2π

)
dy dτ. (2.4.19)

On applying the stationary phase analysis ( Lemma 1.7.2) to the y-integral with the

parameters X = Q = 1, U = k−ε, δ = 1/11 and Y = a, we see that, it is given by

e(f1(y0))√
|f ′′1 (y0)|

b3δ−1Ac∑
n=0

pn(y0) +O(a−A),

for any arbitrary large A > 0, where p0(y0) = c1y
2
0U

0
u,t(y

3
0), c1 = 3e(1/8), y0 =(

4πaw1/3

3b sin τ

)2

, dj

dyj0
pn(y0)�n,j

kεj

an/3
� kεj and f1(y) = aw1/3y−by3/2 sin τ/2π. Hence,

on plugging the values of y0, f1(y0), f ′′1 (y0) and choosing A large enough, we, upto

a negligible small error term, get the following expression for the y-integral:

c2a
9/2w3/2

b5 sin5 τ
U1
u,t

((
4πaw1/3

3b sin τ

)6
)
e

(
16π2a3w

27b2 sin2 τ

)
, (2.4.20)

where c2 = c1

√
2(4π/3)5 and U1

u,t is the new weight function. On plugging the above

expression in place of the y-integral into (2.4.19), we arrive at

c2a
9/2w3/2

b5

∫ sin−1 2b2

sin−1(b1/2)

1

sin5 τ
U1
u,t

((
4πaw1/3

3b sin τ

)6
)
e

(
(k − 1)τ

2π
+

16π2a3w

27b2 sin2 τ

)
dτ.

On applying the change of variable sin τ → τ , we arrive at

c2a
9/2w3/2

b5

∫ 2b2

b1/2

1

τ 5
√

1− τ 2
U1
u,t

((
4πaw1/3

3bτ

)6
)
e (F (τ)) dτ, (2.4.21)

where

F (τ) =
(k − 1) sin−1 τ

2π
+

16π2a3w

27b2τ 2
.
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Next we apply the second derivative bound to the above integral. On computing the

first and the second order derivative of F (τ), we see that

F ′(τ) =
(k − 1)

2π
√

1− τ 2
− 32π2a3w

27b2τ 3
,

F ′′(τ) =
(k − 1)τ

2π(1− τ 2)3/2
+

32π2a3w

9b2τ 4
� a3

b2τ 4
� b2

a
. (2.4.22)

Thus on applying Lemma 1.7.1 to (2.4.21), we see that (2.4.21) is bounded by

Var g + max |g|
min

√
F ′′(τ)

� kεa9/2

b5(a/b)5
√
b2/a

=
kε

b
,

where Var g denotes the total variation of the weight function

g(τ) =
c2a

9/2w3/2U1
u,t

((
4πaw1/3/3bτ

)6
)

b5τ 5
√

1− τ 2
.

Hence I
(1)
± � kε/b. On analyzing other I

(i)
± ’s in a similar fashion, we get

I± = I±(m,N0w, q)� kε/b.

Now we proceed to prove (2.4.14). We will give details for I
(1)
± only, as the analysis

for other I
(i)
± ’s is similar. Let q ∼ C � k1+ε. Note that this condition assures that

b � k, as, by (2.3.7), we have

k−ε(k − 1)2C2/N �M1 � kε max
(
(k − 1)2C2/N, T x2

)
� kε(k − 1)2C2/N.

(2.4.23)

We also have

a =
3(NÑ)1/3

qr1/3
� (NN0)1/3

qr1/3
� kε

√
T N
C

�
√
T N
k1+ε

� (kT )1/2, (2.4.24)
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The second inequality follows from (2.3.7). Indeed we have N0 � kεT 3/2
√
Nr.

Thus

a� (kT )1/2 = k1−η/2 < k � b, (2.4.25)

as T = k1−η < k. We now apply the stationary phase analysis to (2.4.21). The

stationary point of the phase function F (τ) occurs at τ0, where τ0 satisfies

(k − 1)

2π
√

1− τ 2
0

=
32π2a3w

27b2τ 3
0

⇐⇒ τ 3
0√

1− τ 2
0

=

(
4π

3

)3
a3w

b2(k − 1)
.

Simplifying it further, we see that τ0 satisfies the polynomial equation

τ 6 − c2(1− τ 2) = 0,

where c = c(w) :=
(

4π
3

)3 a3w
b2(k−1)

. Upon letting τ 2
0 = τ1, the above polynomial reduces

to the cubic polynomial equation τ 3
1 − c2(1− τ1) = 0, which can be solved using the

Cardano’s method. In fact, as the discriminant of the cubic is negative, it has only

one real root which can be found as follows: Let θ1 + θ2 be the real root. Upon

substituting it into the cubic, we get

θ3
1 + θ3

2 + (3θ1θ2 + c2)(θ1 + θ2)− c2 = 0,

which leads to the following system of equations:

3θ1θ2 + c2 = 0, θ3
1 + θ3

2 − c2 = 0,

from which θ1 and θ2 are found using the quadratic equation formula. Thus the real

root is given by

3

√
c2

2
+

√
c4

4
+

c6

27
+

3

√
c2

2
−
√

c4

4
+

c6

27
.
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Hence we get

τ0 = τ0(w) =

 3

√
c2

2
+

√
c4

4
+

c6

27
+

3

√
c2

2
−
√

c4

4
+

c6

27

1/2

=
6

√
c2

2
+

√
c4

4
+

c6

27

1− 3

c2

(√
c4

4
+

c6

27
− c2

2

)2/3
1/2

=
6

√
c2

2
+

√
c4

4
+

c6

27

1− 3

c2

(√
c4

4
+

c6

27
− c2

2

)2/3
1/2

. (2.4.26)

Now expanding the above expression using the binomial theorem, we see that

τ0 = τ0(w) = c1h(w) + c3(h(w))3 + c3(h(w))5...+ c2n−1(h(w))2n−1 + ...,

(2.4.27)

where ci’s, i = 1, 3, 5, · · · , are some non-zero explicit absolute constants and

h(w) =
aw1/3

b2/3(k − 1)1/3
.

Note that the series in (2.4.27) is convergent and each binomial expansion in (2.4.26)

is justified as c � a3/(b2(k − 1)) � k−3η/2. Next we analyse the higher order

derivatives of the phase function F (τ). On using (2.4.22) and computing other

higher order derivatives of F (τ), we get

F ′′(τ) � b2/a = a(a/b)−2, F ′(τ)� a(a/b)−1,

F (j)(τ) =
(k − 1)

2π

dj−2

dτ j−2

τ

(1− τ 2)3/2
+

32π2a3w

9b2

dj−2(τ−4)

dτ j−2
� a(a/b)−j, j ≥ 3,

where we used the fact a� b � k and

dj−2

dτ j−2

τ

(1− τ 2)3/2
�j,ε 1, b1/2 ≤ τ ≤ 2b2 < 1.
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On computing the derivatives of the weight function

g(τ) =
c2a

9/2w3/2U1
u,t

((
4πaw1/3/3bτ

)6
)

b5τ 5
√

1− τ 2
,

we see that

g(i)(τ)� a−1/2 (a/b)−i , i = 0, 1, 2, ...

Thus, on applying Lemma 1.7.2 with X = a−1/2, Q = U = a/b and Y = a to the

τ -integral in (2.4.21), we get (2.4.14).

Case 3. k−εb ≤ a ≤ kεb.

In this case we can assume that b1/2 < 1, otherwise, we get back to the starting

point of the discussion in Case 1. Consider I
(1)
± which is given by

I
(1)
± =

1

2π

∫ π/2

0

ei(k−1)τ

∫ 5/2

1/2

U0
u,t(y)e

(
±aw1/3y1/3 − b

√
y sin τ/2π

)
dy dτ.

(2.4.28)

We split the τ -integral as fellows:

∫ π/2

0

... dτ =

∫ sin−1(b1/2)

0

... dτ +

∫ π/2

sin−1(b1/2)

... dτ.

The first integral on the right side is negligibly small due to the absence of the

stationary point. Consider the second integral which is given by

∫ π/2

sin−1(b1/2)

ei(k−1)τ

∫ 3
√

5/2

3
√

1/2

3y2U0
u,t(y

3)e
(
aw1/3y − by3/2 sin τ/2π

)
dy dτ. (2.4.29)

On analyzing the y-integral like Case 2, we get the lemma.

Next we consider I±(m′, Ñw, q′) which is defined by replacing m by m′ and q by

q′ in (2.4.7). On analysing I±(m′, Ñw, q′) like I±(m, Ñw, q), we get the following

lemma

Lemma 2.4.7. Let I±(m′, Ñw, q′) be as above. Let b′ = 4π
√
m′N/q′ and a′ =

a′(q′, r) := 3(NÑ)1/3/(q′r1/3). Then I±(m′, Ñw, q′) is negligibly small unless a′ ≤
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kεb′ . In the case, a′ ≤ k−εb′, we have

I±(m′, Ñw, q′)� kε/b′.

Furthermore, if q′ ∼ C � k1+ε, then we have

I±(m′, Ñw, q′) =
e (f2(τ ′0))√
f ′′2 (τ ′0)

c3a
′9/2w3/2

b′5τ ′50

√
1− τ ′20

U2
u′,t′

((
4πa′w1/3

3b′τ ′0

)6
)

+O
(
k−2020

)
,

(2.4.30)

where τ ′0 is the stationary point of the phase function

f2(τ ′) =
(k − 1) sin−1 τ ′

2π
+

16π2a′3w

27b′2τ ′2
,

given by replacing h(w) by h′(w) = a′w1/3/(b′2/3(k − 1)1/3) in (2.4.27) and c3 =

c2e(1/8) = 3
√

2(4π/3)5e(1/4). In the remaining case, i.e., k−εb′ ≤ a′ ≤ kεb′,

I±(m′, Ñw, q′) is given by

c2a
′9/2w3/2

b′5

∫ 1

b′1/2

1

τ ′5
√

1− τ ′2
U1
u′,t′

((
4πa′w1/3

3b′τ ′

)6
)
e (f2(τ ′)) dτ ′,

where b′1 := 4π(2/3)1/3a′/(3(2.5)1/6b′).

Proof of Proposition 2.4.4. Consider the integral transform J±

J± :=

∫
R
φ(w) I±(m, Ñw, q) I±(m′, Ñw, q′) e

(
− n2Ñw

q2q′2q1rn1

)
dw, (2.4.31)

where

I±(m, Ñw, q) =

∫ 5/2

1/2

Uu,t(y) e
(
±aw1/3y1/3

)
Jk−1 (b

√
y) dy.

Note that
∂j

∂wj
I±(m, Ñw, q)� aj, j ≥ 0.

Similarly, it follows that

∂j

∂wj
I±(m′, Ñw, q′)� a′j, j ≥ 0.
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Hence, on applying integration by parts j-times to the w-integral in (2.4.31), we see

that

J± � (kε+a+a′)j
(
q2q
′
2q1rn1

n2Ñ

)j
�

(
(NÑ)1/3

Cr1/3

)j (
C2rn1

q1n2Ñ

)j
=

(
N1/3Cr2/3n1

q1n2Ñ2/3

)j
.

Thus, J± is negligibly small if

N1/3Cr2/3n1

q1n2Ñ2/3
� 1

kε
⇐⇒ n2 � kε

CN1/3r2/3n1

q1Ñ2/3
.

Next we prove the bound J± � kεC2/(M1N).

Case 1. a 6� b, i.e., a′ � a� k−εb � k−εb′ or a′ � a� kεb � kεb′.

In the case a� kεb, on applying Lemma 2.4.5 to I±(m, Ñw, q), we see that J± is

negligibly small. In the other case, i.e., a′ � a� k−εb � k−εb′, on applying Lemma

2.4.5 and Lemma 2.4.7 to (2.4.31), we get

J± ≤
∫
R
φ(w) |I±(m, Ñw, q)| |I±(m′, Ñw, q′)| dw � kε

bb′
� kεC2

M1N
, (2.4.32)

Case 2. a � b, i.e., k−εb� a� kεb.

On applying the last part of Lemma 2.4.5 and Lemma 2.4.7 to (2.4.31), we see

that

J± �
(aa′)9/2

(bb′)5

∫ 1

b1/2

∫ 1

b′1/2

1

τ 5
√

1− τ 2

1

τ ′5
√

1− τ ′2

×
∣∣∣ ∫ 3

2/3

g3(τ, τ ′, w)e (wf3(τ, τ ′)) dw
∣∣∣ dτ dτ ′, (2.4.33)

where

f3(τ, τ ′) =
16π2a3

27b2τ 2
− 16π2a′3

27b′2τ ′2
− n2Ñ

q2q′2q1rn1

and

g3(τ, τ ′, w) = φ(w)w3U1
u,t

((
4πaw1/3

3bτ

)6
)
Ū1

u′,t′

((
4πa′w1/3

3b′τ ′

)6
)
.
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On applying the change of variable τ → 1/
√
τ , τ ′ → 1/

√
τ ′, we arrive at

J± �
(aa′)9/2

(bb′)5

∫ 4/b21

1

∫ 4/b′21

1

τ 3/2

2
√
τ − 1

τ ′3/2

2
√
τ ′ − 1

×
∣∣∣ ∫ 3

2/3

g3(1/
√
τ , 1/
√
τ ′, w)e

(
16π2a3w

27b2
f4(τ, τ ′)

)
dw
∣∣∣ dτ dτ ′,

(2.4.34)

where

f4(τ, τ ′) = τ − a′3b2

a3b′2
τ ′ − 27n2Ñb2

16π2q2q′2q1rn1a3
.

Now using the change of variable

a′3b2

a3b′2
τ ′ +

27n2Ñb2

16π2q2q′2q1rn1a3
→ τ ′

we arrive at the following expression of the w-integral in (2.4.34):

∫ 3

2/3

g3(..., w)e

(
w

16π2a3

27b2
(τ − τ ′)

)
dw.

On applying integration by parts repeatedly, we see that the above integral is negli-

gibly small unless

|τ − τ ′| � kεb2/a3.

Now writing τ − τ ′ = τ2, with τ2 � kεb2/a3, and estimating all the integrals in

(2.4.34) trivially, we get

J± �
(aa′)9/2

(bb′)5

kεb2

a3
� 1

(bb′)1/2

kε

b
� kεC2

M1N
,

where we used the fact a′ � a � b � b′. Hence we get (2.4.12). Now we proceed

to prove the last part. Let q ∼ C � k1+ε. Note that we also have q′ ∼ C � k1+ε.

Note that in this situation we have a � k−εb, a′ � k−εb′ and b � b′ � k (see

(2.4.23) and (2.4.25)). On substituting the main term of I±(m, Ñw, q) from (2.4.14)

and the main term of I±(m′, Ñw, q′) from (2.4.30) into (2.4.31), we arrive at the
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following expression:

c2
3(aa′)9/2

(bb′)5

∫
R
φ1(w)e (f5(w)) dw, (2.4.35)

where

φ1(w) =
1√
f ′′(τ0)

1

τ 5
0

√
1− τ 2

0

1√
f ′′2 (τ ′0)

1

τ ′50

√
1− τ ′20

× U2
u,t

((
4πaw1/3

3bτ0

)6
)
Ū2

u′, t′

((
4πa′w1/3

3b′τ ′0

)6
)
, (2.4.36)

and

f5(w) =
(k − 1)(sin−1 τ0 − sin−1 τ ′0)

2π
+

16π2

27

(
a3w

b2τ 2
0

− a′3w

b′2τ ′20

)
− Ñn2w

q2q′2q1rn1

,

in which we apply the third derivative bound. Recall from (2.4.27) that

τ0 = τ0(w) = c1h(w) + c3(h(w))3 + c3(h(w))5...+ c2n−1(h(w))2n−1 + ...,

(2.4.37)

with

h(w) =
aw1/3

b2/3(k − 1)1/3
, b =

4π
√
mN

q
and a =

3(NÑ)1/3

qr1/3
.

and τ ′0 is similarly defined. On applying the change of variable w → w3 in (2.4.35),

we see that the phase function is given by

(k − 1)(sin−1 τ0(w3)− sin−1 τ ′0(w3))

2π

+
16π2

27

(
a3w3

b2τ 2
0 (w3)

− a′3w3

b′2τ ′20 (w3)

)
− Ñn2w

3

q2q′2q1rn1

.

On applying the Taylor series expansion of sin−1 τ0(w3), we see that

sin−1 τ0(w3) = τ0(w3) + (τ0(w3))3/6 + · · ·

= d1h(w3) + d3(h(w3))3 + · · ·

= d1
aw

b2/3(k − 1)1/3
+ d3

a3w3

b2(k − 1)
+ · · · ,
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where d1, d3 · · · are some absolute constants. Thus,

d3

dw3
sin−1 τ0(w3)� a3

b2(k − 1)
.

Similarly,
d3

dw3
sin−1 τ ′0(w3)� a′3

b′2(k − 1)
.

Next we consider a3w3/(b2τ 2
0 (w3)). On applying the Taylor series expansion, we get

a3w3

b2τ 2
0 (w3)

=
(k − 1)(h(w3))3

τ 2
0 (w3)

=
(k − 1)h(w3)

c2
1

(
1 +

c3(h(w3))3

c1h(w3)
+ · · ·

)−2

=
(k − 1)h(w3)

c2
1

(
1− 2c3(h(w3))3

c1h(w3)
− · · ·

)
=

(k − 1)

c2
1

(
h(w3)− 2c3(h(w3))3

c1

− · · ·
)

Thus,
d3

dw3

a3w3

b2τ 2
0 (w3)

� a3

b2
.

A similar analysis also gives us

d3

dw3

a′3w3

b′2τ ′20 (w3)
� a′3

b′2
.

Hence, upon combining the above estimates, we conclude that

d3f5(w3)

dw3
= O

(
a3

b2
+

a′3

b′2

)
− 6Ñn2

q2q′2q1rn1

.

Since n2 6= 0, we note that

a3

b2
+

a′3

b′2
� NÑ

C3rk2
� (k3/r2)Ñ

C2rk3+ε
� Ñ

kεC2r(n1, r)
� Ñ

kε(C2/q1)rn1

� k−ε6Ñ |n2|
q2q′2q1rn1

.

In the first inequality, we used the fact a � a′, b � b′ � k. For the second

inequality, we used Nr2 � k3+ε and C � k1+ε, while for the second last inequality,

(n1, r) ≥ n1/q1, is being used. Hence, we see that

∣∣∣d3f5(w3)

dw3

∣∣∣ =
∣∣∣O(a3

b2
+

a′3

b′2

)
− 6Ñn2

q2q′2q1rn1

∣∣∣� a3

b2
+

a′3

b′2
� NÑ

C3rk2
.
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On computing the variation of φ1(w), given in (2.4.36), we see that

Varφ1 �
1√
b2/a

1

(a/k)5

1√
b′2/a′

1

(a′/k)5
� 1

b2/a

1

(a/k)10
, (2.4.38)

where we used F ′′(τ0) � b2/a, f ′′2 (τ ′0) � b′2/a′, τ0 � a/(b2/3(k − 1)1/3) � a/k

and τ ′0 � a′/k. Hence, on applying the third derivative bound (see Lemma 1.7.1) to

(2.4.35), we see that (2.4.35) is bounded by

c2
3(aa′)9/2

(bb′)5

Varφ1 + max |φ1|
min |f5(w3)|1/3

� a9

b10

1

b2/a

1

(a/k)10

(C3rk2)1/3

(NÑ)1/3
� Cr1/3k2/3

k2(NÑ)1/3
.

Hence we get Proposition 2.4.4.

We conclude this section by giving a final estimation of the main integral J±
defined in (2.4.1) in the following corollary.

Corollary 2.4.8. Let J± be the integral transform defined as in (2.4.1). Then we

have

J± �
kεC4

Q2M1N
. (2.4.39)

Furthermore, if C � k1+ε and n2 6= 0, then we have

J± �
kεC2

Q2

Cr1/3k2/3

k2(NÑ)1/3
. (2.4.40)

Proof. Let’s recall from (2.4.9) that

J± =

∫
R

∫
R
V

(
t

T

)
V

(
t′

T

)∫
u� kεC

QT

∫
u′� kεC

QT

Iu Iu′ J± du′ du dt′ dt+O(k−2020),

where

Iu =

∫
R
W (x/Qε)g(q, x)e

(
Nxu

qQ

)
dx,
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and Iu′ is similarly defined. On applying the bound J± � kεC2/(M1N) from Propo-

sition 2.4.4, we see that

|J±| �
kεC2

M1N

∫
R

∫
R
V

(
t

T

)
V

(
t′

T

)∫
u� kεC

QT

∫
u′� kεC

QT

|Iu| |Iu′| du′ du dt′ dt.

(2.4.41)

Consider the u-integral

∫
u� kεC

QT

|Iu| du�
∫
u� kεC

QT

∫
R
W (x/Qε)|g(q, x)|dx du� kεC

QT
Qε,

where we used Property 4 (see (1.4.2)) of g(q, x). The same bound holds for the

u′-integral as well. Thus, on plugging these bounds into (2.4.41) and estimating the

t and t′-integral trivially, we get (2.4.39). On analysing the u, u′, t and t′-integrals

as above and applying the bound (2.4.13) from Proposition 2.4.4, we get the second

part of the corollary.

2.5 Analysis of the zero frequency: n2 = 0

With all the ingredients in the hands, we now give final estimates for Sr(N), given

in (2.3.4), in the present and coming sections. The zero frequency case, i.e., n2 = 0,

needs to be analysed diffenently. Let Ω0
± denote the contribution of the zero frequency

to Ω±, given in (2.3.8), and let S0
r (N) denote the contribution of Ω0

± to Sr(N). We

have the following lemma:

Lemma 2.5.1. Let Ω0
± and S0

r (N) be defined as above. Then we have

Ω0
± �

kεN0C
6r

q1n2
1Q

2N
(C +M1),

and

S0
r (N)� kεr1/2N1/2k3/2−η/2,

where T = k1−η.
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Proof. Let’s recall from (2.3.11) that

Ω0
± �kε sup

Ñ�N0

Ñ

n2
1

∑∑
q2, q′2∼C/q1

∑∑
m,m′∼M1

|C±| |J±|. (2.5.1)

Consider the congruence condition

±ᾱq′2 ∓ ᾱ′q2 ≡ n2 mod q1q2q
′
2r/n1

given in the expression (2.3.9) of C±. For n2 = 0, it follows that q2 = q′2 and α = α′.

Hence, we get

C± =
∑∑
d, d′|q

dd′µ
(q
d

)
µ
( q
d′

) ∑?

α mod qr/n1

n1α≡−mmod d
n1α≡−m′mod d′

1

�
∑∑
d, d′|q

(d,d′)|(m−m′)

dd′
qr

n1[d/(n1, d), d′/(n1, d′)]
�

∑∑
d, d′|q

(d,d′)|(m−m′)

dd′
qr

[d, d′]
.

On plugging the above expression and the bound J± � kεC4/(Q2M1N) from Corol-

lary 2.4.8 into (2.5.1), we get

Ω0
± � kε sup

Ñ�N0

Ñ

n2
1

∑
q2∼C/q1

qr
∑∑
d, d′|q

(d, d′)
∑∑
m,m′∼M1

(d, d′)|(m−m′)

kεC4

Q2M1N

� kεN0C
4

n2
1Q

2M1N

∑
q2∼C/q1

qr
∑∑
d, d′|q

(M1(d, d′) +M2
1 )

� kεN0C
4

n2
1Q

2M1N

∑
q2∼C/q1

qr(M1q +M2
1 )� kεN0C

6r

q1n2
1Q

2N
(C +M1).

Hence we have the first part of the lemma. On substituting the above bound in place

of Ω± in (2.3.4), we see that S0
r (N) is dominated by

sup
M1�M0
C�Q

N5/3+ε

QT r2/3C3

∑
n1

(n1,r)
�C

n
1/3
1 Θ1/2

∑
n1

(n1,r)
|q1|(n1r)∞

C3(N0r)
1/2

n1q
1/2
1 Q
√
N

(√
M1 +

√
C
)
.
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Recall that Θ is defined in (2.3.5) as

Θ =
∑

n2�N0/n2
1

|λπ(n1, n2)|2

n
2/3
2

.

Executing the q1-sum trivially and replacing the range for n1 by the longer range

n1 � Cr, we get

S0
r (N)� kε sup

M1�M0
C�Q

N2/3(N0r)
1/2

r2/3
√
N

∑
n1�Cr

(n1, r)
1/2

n
7/6
1

Θ1/2
(√

M1 +
√
C
)
.

Next we evaluate the n1-sum, using Cauchy’s inequality and the Rankin-Selberg

bound (see Lemma 1.2.3), as follows:

∑
n1�Cr

(n1, r)
1/2

n
7/6
1

Θ1/2 �

[ ∑
n1�Cr

(n1, r)

n1

]1/2
∑∑
n2
1n2≤N0

|λπ(n1, n2)|2

(n2
1n2)2/3

1/2

�π,ε N
1/6+ε
0 .

(2.5.2)

Thus we arrive at

S0
r (N)� kε

N2/3N
2/3
0

r1/6
√
N

(√
M0 +

√
Q
)
. (2.5.3)

Note that

Q = kε
√
N/T � k3/2+ε/

√
T � k2+ε/T � k2+εQ2/N.

The second inequality follows because of T < k. We also have

M0 = kε max
(
(k − 1)2C2/N, T

)
� k2+εQ2/N

and

N0 = kε max
{

(CT )3 r/N, T 3/2N1/2r
}
� kε(QT )3r/N � kεT 3/2

√
Nr.
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Finally, upon using the above bounds in (2.5.3), we get

S0
r (N)� kεr2/3T N

r1/6
√
N

kQ√
N
� kεr1/2N1/2k3/2−η/2.

Hence the lemma follows.

2.6 Analysis of the non-zero frequencies: n2 6= 0

It now remains to estimate Sr(N) corresponding to the non-zero frequencies, i.e.,

n2 6= 0. We will consider two cases, small q ’s and large q’s. To start with, we

analyse the character sum C± given in (2.3.9). We have the following lemma.

Lemma 2.6.1. Let C± be as in (2.3.9). Then, for n2 6= 0, we have

C± �
q2

1 r(m,n1)

n1

∑∑
d2|(q2,n1q′2∓mn2)
d′2|(q′2,n1q2±m′n2)

d2d
′
2 .

Proof. Let’s recall from (2.3.9) that

C± =
∑∑

d|q
d′|q′

dd′µ
(q
d

)
µ

(
q′

d′

) ∑?

αmod qr/n1

n1α≡−mmod d

∑?

α′mod q′r/n1

n1α′≡−m′mod d′

±ᾱq′2∓ᾱ′q2≡−n2 mod q1q2q′2r/n1

1.

Using the Chinese Remainder theorem, we observe that C± can be dominated by a

product of two sums C± � C
(1)
± C

(2)
± , where

C
(1)
± =

∑∑
d1,d′1|q1

d1d
′
1

∑?

β mod
q1r
n1

n1β ≡ −m mod d1

∑?

β′ mod
q1r
n1

n1β′ ≡ −m′ mod d′1

±βq′2∓β′q2+n2 ≡ 0 mod q1r/n1

1

and

C
(2)
± =

∑∑
d2|q2
d′2|q′2

d2d
′
2

∑?

β mod q2
n1β ≡ −m mod d2

∑?

β′ mod q′2
n1β′ ≡ −m′ mod d′2

±βq′2∓β′q2+n2 ≡ 0 mod q2q′2

1.
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On analysing the second sum C
(2)
± , we get β ≡ −mn̄1 mod d2 and β′ ≡ −m′n̄1 mod d′2,

as (n1, q2q
′
2) = 1. Then using the congruence modulo q2q

′
2, we conclude that

C
(2)
± �

∑∑
d2|(q2,n1q′2∓mn2)
d′2|(q′2,n1q2±m′n2)

d2d
′
2.

In the first sum C
(1)
± , the congruence condition determines β′ uniquely in terms of β,

and hence

C
(1)
± �

∑∑
d1,d′1|q1

d1d
′
1

∑?

β mod q1r/n1

n1β ≡ −m mod d1

1� r q2
1 (m,n1)

n1

.

Hence we have the lemma.

2.6.1 Sr(N) for small q

In this subsection, we will estimate Sr(N) for small values of q. Let Ω 6=0
± denote

the part of Ω± (defined in (2.3.8)) which is complement to Ω0
± ( contribution of

n2 6= 0) and let S 6=0
r (N) denote the part of Sr(N) corresponding to Ω 6=0

± . We have

the following lemma.

Lemma 2.6.2. Let Ω 6=0
± and S 6=0

r (N) be as above. Then, for C � k1+ε, we have

Ω 6=0
± �

kεr2C7(T N)1/2

n2
1q1Q2M1N

(
C2n1

q2
1

+
CM1n1

q1

+M2
1

)
. (2.6.1)

Furthermore, let S 6=0
r, small(N) denote the contribution of C � k1+ε to S 6=0

r (N). Then

we have

S 6=0
r,small(N)� r1/2k3−η/2, (2.6.2)

where T = k1−η.
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Proof. We start by analysing Ω6=0
± which is defined using (2.3.11). On applying

Lemma 2.6.1 for C± in (2.3.11), we get the following expression for Ω6=0
± :

Ω6=0
± �

kεq2
1r

n3
1

sup
Ñ�N0

Ñ
∑∑
q2, q′2∼

C
q1

∑∑
d2|q2
d′2|q′2

d2d
′
2

∑ ∑ ∑
m,m′∼M1 n2∈Z−{0}
n1q′2∓mn2≡ 0 mod d2
n1q2±m′n2≡ 0 mod d′2

(m,n1)|J±|.

On using the bound J± � kεC4/(Q2M1N) from Corollary 2.4.8, and Proposition

2.4.4 for the range of n2, we get, upto a negligible error term, the following expression

for Ω6=0
±

kεq2
1rC

4

n3
1Q

2M1N
sup
Ñ�N0

Ñ
∑∑
q2, q′2∼

C
q1

∑∑
d2|q2
d′2|q′2

d2d
′
2

∑ ∑ ∑
m,m′∼M1 1≤|n2|�N2

n1q′2∓mn2≡ 0 mod d2
n1q2±m′n2≡ 0 mod d′2

(m,n1).

Further writing q2d2 in place of q2 and q′2d
′
2 in place of q′2, we arrive at

Ω6=0
± �

kεq2
1rC

4

n3
1Q

2M1N
sup
Ñ�N0

Ñ
∑∑
d2,d′2�C/q1

d2d
′
2

∑∑
q2∼ C

d2q1

q′2∼
C

d′2q1

∑ ∑ ∑
m,m′∼M1 1≤|n2|�N2

n1q′2d
′
2∓mn2≡ 0 mod d2

n1q2d2±m′n2≡ 0 mod d′2

(m,n1).

(2.6.3)

Next we count the number of m and m′ in the above expression as follows:

∑
m∼M1

n1q′2d
′
2∓mn2≡ 0 mod d2

(m,n1) ≤
∑
`|n1

`
∑

m∼M1/`

n1q′2d
′
2`∓mn2≡ 0 mod d2

1

≤
∑
`|n1

`

(
(d2, n2) +

M1

`d2/(d2, n2)

)

� nε1(d2, n2)

(
n1 +

M1

d2

)
.
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In the above estimate we have used the fact (d2, n1) = 1, and hence ` can be inverted

modulo d2. We now count the number of m in a similar fashion as follows:

∑
m′∼M1

n1q2d2±m′n2≡ 0 mod d′2

1�
(

(d′2, n1q2d2, n2) +
M1

d′2/(d
′
2, n1q2d2, n2)

)

= (d′2, n1q2d2)

(
1 +

M1

d′2

)
.

Thus the number of m and m′ in (2.6.3) is dominated by

kε(d′2, n1q2d2) (d2, n2)

(
n1 +

M1

d2

)(
1 +

M1

d′2

)
.

On substituting the above bound in (2.6.3), we arrive at

kεq2
1rC

4

n3
1Q

2M1N
sup
Ñ�N0

Ñ
∑∑
d2,d′2�C/q1

d2d
′
2

∑∑
q2∼ C

d2q1

q′2∼
C

d′2q1

×
∑

1≤|n2|�N2

(d′2, n1q2d2)(d2, n2)

(
n1 +

M1

d2

)(
1 +

M1

d′2

)
.

Now summing over n2, and q′2, we get the following expression:

kεq1rC
5

n3
1Q

2M1N
sup
Ñ�N0

ÑN2

∑∑
d2,d′2�C/q1

d2

∑
q2∼ C

d2q1

(d′2, n1q2d2)

(
n1 +

M1

d2

)(
1 +

M1

d′2

)
.

Next we sum over d′2 to get

Ω 6=0
± �

kεq1rC
5

n3
1Q

2M1N
sup
Ñ�N0

ÑN2

∑
d2�C/q1

d2

∑
q2∼ C

d2q1

(
n1 +

M1

d2

)(
C

q1

+M1

)
.

Finally executing the remaining sums, we get

Ω6=0
± �

kεrC6

n3
1Q

2M1N
sup
Ñ�N0

ÑN2

(
Cn1

q1

+M1

)(
C

q1

+M1

)
. (2.6.4)
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Note that, using the expression N2 = kεCN1/3r2/3n1/(q1Ñ
2/3) from (2.4.11) and

N0 � kεT 3/2
√
Nr from (2.3.7), we have

sup
Ñ�N0

ÑN2 � kε
Cr2/3n1

q1

(NÑ)1/3 � kε
Cr2/3n1

q1

(NN0)1/3 � kεrn1

q1

(T N)1/2C.

(2.6.5)

Hence, on plugging the above expression into (2.6.4), we arrive at

Ω 6=0
± �

kεr2C7(T N)1/2

n2
1q1Q2M1N

(
Cn1

q1

+M1

)(
C

q1

+M1

)
� kεr2C7(T N)1/2

n2
1q1Q2M1N

(
C2n1

q2
1

+
Cn1M1

q1

+M2
1

)
. (2.6.6)

Hence we get the first part of the lemma. Let’s consider the third term on the right

side of the above expression. On substituting it in place of Ω± in Sr(N) in (2.3.4),

we arrive at

sup
M�M1�M0

C�k1+ε

N5/3+ε

QT r2/3C3

∑
±

∑
n1

(n1,r)
�C

n
1/3
1 Θ1/2

∑
n1

(n1,r)
|q1|(n1r)∞

(
r2C7(T N)1/2M1

n2
1q1Q2N

)1/2

� sup
M�M1�M0

C�k1+ε

N5/3+ε

QT r2/3C3

r(T N)1/4C7/2M
1/2
1

Q
√
N

∑
n1�Cr

n
−2/3
1 Θ1/2

∑
n1

(n1,r)
|q1|(n1r)∞

1

q
1/2
1

� sup
M�M1�M0

C�k1+ε

N5/3+ε

QT r2/3

r(T N)1/4C1/2M
1/2
1

Q
√
N

∑
n1�Cr

√
(n1, r)

n
7/6
1

Θ1/2

� kεr1/2k3−η/2,

where in the second last inequality, we used

∑
n1�Cr

√
(n1, r)

n
7/6
1

Θ1/2 �π,ε N
1/6+ε
0

from (2.5.2), C � k1+ε, N0 � kεr
√
NT 3/2 and M0 � k4+ε/N as C � k1+ε. We

now consider the second term in the right hand side of (2.6.6). We see that its
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contribution to Sr(N) in (2.3.4) is given by

sup
M�M1�M0

C�k1+ε

N5/3+ε

QT r2/3C3

∑
±

∑
n1

(n1,r)
�C

n
1/3
1 Θ1/2

∑
n1

(n1,r)
|q1|(n1r)∞

(
r2C7(T N)1/2C

n1q2
1Q

2N

)1/2

� sup
M�M1�M0

C�k1+ε

N5/3+ε

QT r2/3C3

r(T N)1/4C7/2C1/2

Q
√
N

∑
n1�Cr

n
−1/6
1 Θ1/2

∑
n1

(n1,r)
|q1|(n1r)∞

1

q1

� sup
M�M1�M0

C�k1+ε

N5/3+ε

QT r2/3

r(T N)1/4C

Q
√
N

∑
n1�Cr

(n1, r)

n
7/6
1

Θ1/2

� k3−η/2.

In the second last inequality, we used the bound

∑
n1�Cr

(n1, r)

n
7/6
1

√
Θ�

[ ∑
n1�Cr

(n1, r)
2

n1

]1/2
∑∑
n2
1n2≤N0

|λπ(n1, n2)|2

(n2
1n2)2/3

1/2

�π,ε r
1/2N

1/6+ε
0 .

Lastly we consider the the first term in (2.6.6). We observe that

C2n1

q2
1M1

� n1

q2
1

Nkε

k2
� n1k

1+ε

q1

,

where we used M1 � C2k2/(Nkε) (see (2.3.7)). Note that while analysing the

second term we had the factor n1C/q1, in which we bound C by k1+ε later. Now

on estimating the q1 and n1 sum as done in the analysis of the second term we see

that the contribution of the first term is dominated by the contribution of the second

term. Finally on combining all the estimates we get the lemma.

2.6.2 Estimates for generic q

Now we tackle the case when C � k1+ε and n2 6= 0. Let S 6=0
r,generic(N) denote

the part of S 6=0
r (N) which is complement to S 6=0

r,small(N) (i.e., the contribution of

C � k1+ε) and n2 6= 0 to Sr(N). We have the following lemma.
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Lemma 2.6.3. Let S 6=0
r,generic(N) be as above. Then we have

S 6=0
r,generic(N)� N1/2k3/2−1/6+3η/4. (2.6.7)

Proof. Let’s recall (see (2.6.4)) from the analysis of Ω6=0
± in the proof of Lemma 2.6.2

that

Ω 6=0
± �

kεrC6

n3
1Q

2M1N
sup
Ñ�N0

ÑN2

(
Cn1

q1

+M1

)(
C

q1

+M1

)
. (2.6.8)

To get this, we had used the bound J± � kεC4/(Q2M1N). For C � k1+ε, we have

a better bound for J± (see Corollary 2.4.8). In fact, we have

J± �
kεC2

Q2

Cr1/3k2/3

k2(NÑ)1/3
� kεC4

Q2M1N

Cr1/3k2/3

(NÑ)1/3
, (2.6.9)

where we used
√
M1N/C � k for C � k1+ε. Thus, on using the above bound, we

see that

Ω6=0
± �

kεrC6

n3
1Q

2M1N
× Cr1/3k2/3 × sup

Ñ�N0

ÑN2

(NÑ)1/3

(
Cn1

q1

+M1

)(
C

q1

+M1

)
.

(2.6.10)

Recall from (2.6.5) that

sup
Ñ�N0

ÑN2

(NÑ)1/3
� kε

Cr2/3n1

q1

, (2.6.11)

and

sup
Ñ�N0

ÑN2

(NÑ)1/3
=

N0N2

(NN0)1/3
.

Thus, we see that

Ω6=0
± �

kεrC6

n3
1Q

2M1N
× Cr1/3k2/3 × N0N2

(NN0)1/3

(
C2n1

q2
1

+
Cn1M1

q1

+M2
1

)
.

(2.6.12)
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On comparing it with (2.6.6), we observe that we have an extra factor

Cr1/3k2/3

r1/3(NT )1/2
� Qk2/3

(NT )1/2
= kη−1/3+ε

in this case. Hence we get

Ω6=0
± �

kεr2C7(T N)1/2

n2
1q1Q2M1N

× kη−1/3

(
C2n1

q2
1

+
Cn1M1

q1

+M2
1

)
.

Note that
C2n1

q2
1M1

� n1

q2
1

Nkε

k2
� n1Nk

ε

q1k2
,

where we used M1 � C2k2/(Nkε) (see (2.3.7)). Thus, we see that

C2n1

q2
1M1

+
Cn1

q1

+M1 �
n1Nk

ε

q1k2
+
Qn1

q1

+M0

� n1Nk
ε

q1k2
+
n1k

ε

q1

√
N

T
+
Q2k2+ε

N

� (n1, r)Nk
ε

k2
+ (n1, r)k

ε

√
N

T
+
k2+ε

T

� (n1, r)k
1+ε

r2
+

(n1, r)k
3/2+ε

rT 1/2
+
k2+ε

T
� k2+ε

T
,

where we used M0 � Q2k2+ε/N , Nr2 � k3+ε, Q = kε
√
N/T , T � k and

n1/q1 ≤ (n1, r). Thus we see that

Ω 6=0
± �

kεr2C7(T N)1/2

n2
1q1Q2N

× kη−1/3 × k2+ε

T
, .

On substituting it into Sr(N), we arrive at

sup
C�Q

N5/3+ε

QT r2/3C3

∑
±

∑
n1

(n1,r)
�C

n
1/3
1 Θ1/2

∑
n1

(n1,r)
|q1|(n1r)∞

(
r2C7(T N)1/2

n2
1q1Q2N

)1/2

× k5/6+η/2

√
T

� sup
C�Q

N5/3+ε

QT r2/3C3

r(T N)1/4C7/2

Q
√
N

∑
n1�Cr

n
−2/3
1 Θ1/2

∑
n1

(n1,r)
|q1|(n1r)∞

1

q
1/2
1

× k5/6+η/2

√
T

� sup
C�Q

N5/3+ε

QT r2/3

r(T N)1/4C1/2

Q
√
N

∑
n1�Cr

√
(n1, r)

n
7/6
1

Θ1/2 × k5/6+η/2

√
T

� N1/2k3/2−1/6+3η/4.
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Hence the lemma follows.

2.6.3 Estimates for the error term

In this subsection, we give estimates for Sr(N) corresponding to the non-generic case

n?2N � kε (see Lemma 2.2.1). Recall from (2.2.8) that, if n?2N = n2
1n2N/(q

3r)�

kε, then we have

S3 = q
∑
±

∑
n1|qr

∞∑
n2=1

λπ(n1, n2)

n1n2

S (rā,±n2; qr/n1)G± (n?2) , (2.6.13)

where G±(n?2) is a integral transform given in (2.2.6). On plugging (2.6.13) and

(2.2.12) in place of S3 and S2 respectively into (2.1.4) we arrive at

Sr(N) =
2πikN1−it

QT
∑

1≤q≤Q

1

q

∑
±

∑
n1|qr

∑
n2� q3rkε

n21N

λπ(n1, n2)

n1n2

×
∑

M≤m≤M0

λf (m) C±(...) I4(q,m, n2
1n2) +O(k−2020), (2.6.14)

where

C±(...) :=
∑?

amod q

S(rā,±n2; qr/n1)e

(
ām

q

)
=
∑
d|q

dµ
(q
d

) ∑?

αmod qr/n1

n1α≡−mmod d

e

(
± ᾱn2

qr/n1

)
� (n1, q)

(
q +

qr

n1

)
, (2.6.15)

and

I4(q,m, n2
1n2) =

∫
R
W (x/Qε)

∫
R
V

(
t

T

)
g(q, x) I2(m, q, x)G± (n?2) dt dx,

with

I2(m, q, x) =

∫ ∞
0

U(y)y−ite

(
−Nxy
qQ

)
Jk−1

(
4π
√
mNy

q

)
dy,
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and

G±(n?2) =
1

2πi

∫
(σ)

(n?2)−s γ±(s)g̃(−s) ds

=
N it

2π

∫ ∞
−∞

γ±(σ + iτ)

(n?2N)σ+iτ

∫ ∞
0

e

(
z1Nx

qQ

)
V (z1) z−σ−iτ+it

1

d z1

z1

dτ, (2.6.16)

where σ > −1+max{−<(α1),−<(α2),−<(α3)}. On analysing the x and t-integral

like in Lemma 2.4.1, we get the following restriction

|z1 − y| � kεq/QT .

Thus, on replacing z1 by y + u with u� kεq/QT , we essentially arrive at

I4(q,m, n2
1n2) =

1

2π

∫ ∞
−∞

γ±(σ + iτ)

(n?2N)σ+iτ

∫
R
V

(
t

T

)
N it

∫
u� kεq

QT

Iu I5(...) du dtdτ,

where

Iu =

∫
R
W (x/Qε)g(q, x)e

(
Nxu

qQ

)
dx,

and

I5(...) = I5(m, q, u, τ) =

∫ ∞
0

Ut,u,τ (y)y−iτJk−1

(
4π
√
mNy

q

)
dy,

with Ut,u,τ (y) = U(y)y−σ(1 + u/y)−σ−iτ+it. The analysis of the above integral is

similar to I± which is analysed in Lemma 2.4.5. Indeed, by the z1-integral in (2.6.16),

we observe that τ � N |x|/qQ. Now going back to I±, we note that N |x|/qQ �

(NÑ)1/3/qr1/3 (see (2.2.4)). Thus τ � (NÑ)1/3/qr1/3. Hence, in terms of the

oscillations of the phase functions, both the integrals, I5(...) and I± are same. Thus

using the stationary phase analysis as done in Lemma 2.4.5, we see that

I5(m, q, u, τ)� kεq1/2

(mN)1/4
.
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We now move the contour σ in (2.6.16) to the left up to σ = −5/2 passing

through the poles given by

1 + σ + iτ + αi + `

2
= 0 ⇐⇒ σ + iτ = −1− αi − `.

Thus, on treating the u and t-integral trivially, we get

I4(q,m, n2
1n2)� (n?2N)5/2 kεq3/2

Q(mN)1/4

∫ ∞
−∞
|γ±(−5/2 + iτ)|dτ

+
kεq3/2

Q(mN)1/4

∑
`=0,1

3∑
i=1

(n?2N)1+`+<αi .

Now using the Stirling bound

|γ±(−5/2 + iτ)| � (1 + |τ |)3(−5/2+1/2) = (1 + |τ |)−6,

we arrive at

I4(q,m, n2
1n2)� kεq3/2

Q(mN)1/4

(
(n?2N)5/2 +

∑
`=0,1

3∑
i=1

(n?2N)1+`+<αi

)
.

Note that (n?2N)5/2 = (n?2N)1/2+2 � kε(n?2N)1/2, and

3∑
i=1

(n?2N)1+`+<αi =
3∑
i=1

(n?2N)1/2+βi � kε(n?2N)1/2,

as 1 + `+ <αi = 1/2 + βi for some βi > 0. Thus we get

I4(q,m, n2
1n2)� kεq3/2

Q(mN)1/4
(n?2N)1/2 =

kε(n2
1n2)1/2N1/4

Qm1/4r1/2
. (2.6.17)

Thus, on plugging the above bound, the bound (2.6.15) for C±(...) and |λf (m)| � mε

into (2.6.14), we arrive at

Sr(N)�
∑

1≤q≤Q

N5/4M
3/4
0

Q2T r1/2

∑
n1|qr

∑
n2� q3rkε

n21N

|λπ(n1, n2)|
n1n2

n1n
1/2
2

(
1 +

r

n1

)
. (2.6.18)
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We estimate the sum over n1 and n2 as follows:

∑
n1|qr

∑
n2� q3rkε

n21N

|λπ(n1, n2)|
n1n2

(n2
1n2)1/2

(
1 +

r

n1

)

�
∑
n1|qr

∑
n2� q3rkε

n21N

|λπ(n1, n2)| r
√
n2

�

 ∑∑
n2
1n2�kεq3r/N

|λπ(n1, n2)|2
1/2

∑
n1|qr

∑
n2� q3rkε

n21N

r2

n2


1/2

� kεq3/2r3/2

√
N

.

Hence we get

Sr(N)�kε
∑

1≤q≤Q

N5/4M
3/4
0

Q2T r1/2

q3/2r3/2

√
N
� k3/2+εNr

T 2
�
√
Nk1+2η+ε, (2.6.19)

where we used M0 � k2+ε/T and Nr2 � k3+ε.

Finally pulling together the bounds from Lemma 2.5.1, Lemma 2.6.2, Lemma

2.6.3 and the bound for the error term (2.6.19) we get Proposition 2.0.1.
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