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Abstract

The demand for lightweight cryptographic protocols has skyrocketed in the previous
decade, especially for many resource-constrained devices such as IoT end nodes and
RFID tags. The goal of lightweight cryptography is to use less memory, processing
resources, and power to create a less secure but adequate security solution on devices
with limited resources. As a result, lightweight cryptographic protocols should be easier
and faster to use than traditional ones. The National Institute of Standards and Tech-
nology (NIST) began a standardization process in 2018 for lightweight cryptographic
(LWC) encryption schemes that have at least one scheme with a key length of 128 bits
and can achieve security against adversaries capable of making 250 − 1 byte queries
and 2112 computations. Running a good feedback loop on a specified lightweight prim-
itive is a typical approach to designing such schemes. In more technical terms, such
approaches process data input into fixed-sized chunks. Following initialization, the
primitive output is passed through a suitable function with one of these partial data
inputs to provide acceptable output and feedback for the primitive’s subsequent exe-
cution. In this thesis, we start by looking at existing schemes that use pseudo-random
permutations as the underlying primitive and can be thought of as different variations
of the Sponge scheme. We give all such structures a new name Transform-then-Permute
and do a security analysis. We show that we can reduce the security of such schemes to
a graph theoretic security game called the ”multi-chain security game,” based on the
underlying feedback function of the Transform-then-Permute design. Then, for various
feedback functions, we employ various techniques to limit an adversary’s advantage
against this game. As a result, we developed some novel or significantly enhanced
security bounds for popular permutation-based authenticated encryption techniques.
Finally, we aim to design authenticated encryption techniques to process the most data
possible in each protocol iteration. We construct and examine two generalized systems,
Full-rate Transform-then-Permute and mF, which use a pseudo-random permutation and
a tweakable block cipher as their underlying primitives, respectively. We illustrate how
to instantiate these general structures to meet the NIST LwC requirement.
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Introduction
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2 Introduction

1.1 Lightweight Ctryptography

The lightweight cryptography trades off implementation costs, execution times, security,

performance, and energy consumption on devices with limited resources. Lightweight

cryptography’s goal is to create a less solid but adequate security solution that can

operate in resource-constrained devices using less memory, computational power, and

energy. IoT end nodes and RFID tags [89] are just two examples of the wide range

of low-resource devices affected by lightweight cryptography. Standard cryptographic

protocols like AES [92] and SHA3 [52], which function well in computer systems, are

challenging to implement due to implementation size, throughput or speed, and en-

ergy consumption. Therefore, it is easy to anticipate that lightweight cryptographic

protocols will be easier to use and faster than traditional cryptographic protocols.

The need for lightweight cryptographic protocols has significantly increased over the

past decade. The National Institute of Standards and Technology (NIST) has started

a process to standardize lightweight cryptographic (LWC) encryption techniques to

meet this need. Most of the NIST lightweight cryptography standardization process

submissions fall into one of three general categories.

• Permutation Based.

• (Tweakable) block cipher based.

• Stream cipher based and others.

We tabulate the 52 first-round candidates for the NIST LwC standardization pro-

cess in Table 1.1 along with some citations to their security analysis. Note that these
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citations are not exhaustive. Readers can find many detailed surveys about the stan-

dardization process in [91, 107, 106].

Permutation Based (Tweakable) block cipher based Stream cipher based, and others.

ACE [80, 7, 74, 24, 82] COMET [58, 72, 16, 59] Bleep64
ASCON [47, 97] ESTATE [102, 31] CLAE

CiliPadi FlexAEAD Grain-128AEAD [62, 41]
CLX ForkAE [10, 4] Quartet

DryGASCON [105] GIFT-COFB [8] Triad
Elephant [113, 104, 25, 110] HyENA [32, 33]

Fountain LAEM
GAGE Lilliput-AE

Gimli [61, 27, 78, 54] Limdolen
HERN LOTUS-AEAD, and LOCUS-AEAD [29, 30]

ISAP [50, 45] mixFeed [71, 72, 75]
KNOT [111] Pyjamask [56, 51]

ORANGE [49, 70] Qameleon
Oribatida [23] Remus [66, 60]

PHOTON-Beetle Romulus [66]
Shamash SAEAES [90]

SIV-TEM-PHOTON Saturnin [28]
SNEIK Simple

SPARKLE [12, 11, 81] SIV-Rijndael
SPIX [73] SKINNY-AEAD [13]
SpoC [73] Spook [88, 15]

Subterranean 2.0 [77, 63, 103] SUNDAE-GIFT [40]
Sycon Thank Goodness It’s Friday (TGIF)

WAGE [3] TinyJAMBU [109, 100]
Xoodyak [112, 79] TRIFLE

Yarará

Table 1.1: Classification of NIST LwC candidates.

1.2 Sponge-based AEAD Schemes

Bertoni et al. first suggested the Sponge function as a method of operation for variable

output length hash functions at the ECRYPT Hash Workshop [17]. Since several of

the proposals in the NIST’s SHA-3 competition were based on the Sponge paradigm, it

attracted immediate attention. Most notably, of the five finalists, Keccak [22] emerged

victorious, followed by JH, [108]. In due course, the Sponge mode found use in message

authentication [17, 21], pseudorandom sequence generation [19], and the ”duplex mode”
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for authenticated encryption [20]. Twelve Sponge-based entries were made specifically

for the recently finished CAESAR competition to develop authenticated encryption with

associated data (AEAD) systems. The lightweight applications (resource-constrained

settings) use-case winner Ascon [46] also takes advantage of the duplex form of authen-

ticated encryption.

At a very high level, Sponge-type constructions consist of a b-bit state, split into a

c-bit inner state, called the capacity, and an r-bit outer state, called the rate, where

b = c+ r. Traditionally, in Sponge-like modes, data absorption and squeezing are done

via the rate part, i.e., r bits at a time. SpoC [2], a round 2 submission to the NIST

LwC standardization process, is a notable exception, where the absorption is done via

the capacity part, and the squeezing is done via the rate part. In [18], Bertoni et al.

proved that the Sponge construction is indifferentiable from a random oracle with a

birthday-type bound in the capacity. While it is well-known that this bound is tight

for hashing, for keyed applications of the Sponge, especially authenticated encryption

schemes, such as duplex mode, the security could be significantly higher.

1.2.1 Existing Security Bounds for Sponge-type AEAD Schemes

Sponge-type authenticated encryption is mostly done via the duplex construction [20].

The duplex mode is a stateful construction that consists of an initialization interface

and a duplexing interface. Initialization creates an initial state using the underlying

permutation π, and each duplexing call to π absorbs and squeezes r bits of data. The

security of Sponge-type AEAD modes can be represented and understood in terms

of two parameters, namely the data complexity D (total number of initialization and

duplexing calls to π), and the time complexity T (total number of direct calls to π).
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Initially, Bertoni et al. [20] proved that duplex is as strong as Sponge, i.e. secure up

to DT ≪ 2c. Mennink et al. [87] introduced the full-state duplex and proved that this

variant is secure up to DT ≪ 2κ, D ≪ 2c/2, where κ is the key size. Jovanovic et al.

[68] proved privacy up to D ≪ min{2b/2, 2κ}, T ≪ min{2b/2, 2c−log2 r, 2κ}, and integrity

up to DT ≪ 2c, D ≪ min{2c/2, 2κ, 2τ}, T ≪ min{2b/2, 2c−log2 r, 2κ}, where τ denotes

the tag size. Note that integrity has an additional restriction that D ≪ 2c/2, where D is

dominated by the decryption data complexity. Daemen et al. [43] gave a generalization

of duplex that has built-in multi-user security. Very recently, a tight privacy analysis

[69] is provided. However, one of the dominating restrictions present in all of the

existing integrity analysis of duplex authenticated encryption is DT ≪ 2c. Moreover,

no forgery attack with a matching bound is known. A recent variant of duplex mode,

called the Beetle mode of operation [35], modifies the duplexing phase by introducing

a combined feedback based absorption/squeezing, similar to the feedback paradigm of

CoFB [36]. In [35], Chakraborti et al. showed that feedback based duplexing actually

helps in improving the security bound, mainly to get rid of the condition DT ≪ 2c.

They showed privacy up to DT ≪ 2b, D ≪ 2b/2, T ≪ 2c, and integrity up to D ≪

min{2b/2, 2c−log2 r, 2r}, T ≪ min{2c−log2 r, 2r, 2b/2}, with the assumptions that κ = c and

τ = r.

From all the available analysis, it is evident the security of a Sponge type design,

increasing r degrades the security, and if 2r ≥ min{2b−log T , 2b−logD} then all the existing

constructions become insecure. ORANGE-Zest [39] is our round 2 submission to the

ongoing NIST LwC standardization process where some extra-state is induced in the

encryption/decryption protocol to construct a full-rate Sponge type AEAD scheme. Do-

braunig et al. [49] showed that the ORANGE-Zest mode is insecure by constructing
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an adversary which forges successfully after making only two encryption queries.

Sponge-type AEAD in the Context of NIST LwC Standardization Process

In it’s report [106], NIST classifies all the 17 permutation based lightweight AEAD

candidates selected for round 2 of it’s LwC standardization process as follows :

• Classical sponge with public permutation : DryGASCON, Gimli, KNOT, Sub-

terranean 2.0, Xoodyak

• Classical sponge with stronger initialization and finalization : ACE, ASCON,

SPIX, Spook, WAGE

• Classical sponge with keyed permutation : SAEAES, TinyJAMBU

• Modified sponge with public permutation : ORANGE, Oribatida, PHOTON-

Beetle, SPARKLE, SpoC.

Out of these, Xoodyak, ASCON, TinyJAMBU, PHOTON-Beetle and SPARKLE

were further promoted as the finalists.

According to NIST’s call for proposals, an AEAD scheme must have one primary

member with a key length of 128 bits and be secure up to 2112 computations and 250−1

byte queries. A traditional Sponge-based scheme must have a capacity size of at least

160-bit. All Sponge-based submissions to NIST LwC standardization process use at

least 192-bit capacity, except the round 1 submission CLX. Mege [84], in the 1st round;

official comments described how to mount an attack on the primary variant of CLX.

On the other hand, the known bound for Beetle imposes certain limitations on the

state size and rate. Specifically, Beetle-based schemes require approximately 120-bit
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capacity and approximately 120-bit rate, i.e., a permutation size of at least 240 bits to

achieve NIST LwC requirements.

In light of the ongoing NIST LwC standardization process, it is an interesting prob-

lem to investigate whether these limitations can be relaxed.

1.3 (Tweakable) Block Cipher-based AEAD Schemes

A block cipher is a cryptographic primitive consisting of two algorithms namely (E,D)

such that the deterministic function E takes a fixed length key and a fixed length (also

called a block) message as input to produce a single block of ciphertext output. In

notation, E : {0, 1}κ × {0, 1}n → {0, 1}n is a function such that, for all K ∈ {0, 1}κ,

EK is a permutation. For any given K ∈ {0, 1}κ and any M,C ∈ {0, 1}n, we have

D(K,C) = M if and only if E(K,M) = C.

A tweakable block cipher (TBC) [76] is a deterministic function Ẽ which takes a

fixed length tweak along with a fixed length key and a block of message to output a

single block of ciphertext, such that it acts as a family of block ciphers. In notation,

Ẽ : {0, 1}t × {0, 1}κ × {0, 1}n → {0, 1}n is a function such that there exists a family of

block ciphers {Etw} such that for, each tw ∈ {0, 1}t, Ẽ(tw,K,M) = Etw(K,M).

1.3.1 Security of TBC-based AEAD Modes.

For many AEAD modes [38, 64, 65, 67, 57] with an underlying TBC Ẽ and a given key

K, the encryption algorithm works as follows. It takes an initial input IV and then

computes Y0 = Ẽ(tw0, K, IV ) where the tweak tw0 depends on the nonce and perhaps,
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some other parameters. To process the ith block of message (or associated data), it uses

a feedback function FB, which takes Yi−1 and Mi as inputs and Xi and Ci as outputs

(only Xi in case of AD). It then outputs Yi = Ẽ(tw0, K,Xi) which is used to process

the next block of associated data or message. After processing the entire message, the

next TBC output is used as the input for the tag generation protocol. In an AEAD

scheme with appropriate feedback function FB, one can bound the privacy and the

forgery advantage of any adversary as

Advpriv
AEAD(T,D) ≤ Advtprp

Ẽ
(T,D) (1.1)

Advforge
AEAD(T,D) ≤ Advtprp

Ẽ
(T,D) +O(

D

2n
) (1.2)

where T,D are respectively the time and data complexity of the adversaries playing the

security games and n is the TBC state size. Hence, the security of such a TBC-based

AEAD scheme can be bounded by bounding the TPRP advantage of the underlying

TBC.

A dedicated TBC construction is conjectured to have security; hence, we can in-

stantiate the mode with such a secure TBC. In addition to the dedicated constructions,

there are some known constructions of TBC based on a block cipher. For example,

XEX [99] has birthday-bound security.

AEAD modes such as Remus-N [64] and mixFeed [38] use explicit block cipher based

TBC constructions as their underlying TBC. Given a block cipher E and a feedback

function ρ, the ICE1 TBC (used in Remus-N1) uses a key derivation function KDF

which takes inputs K and N and outputs L = ρ(EK(N)). Given input X and tweak

(N,ω, i), it then outputs EK′(X), where K ′ = 2iL ⊕ ω. As described in [44], an
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adversary can make D queries with a fixed input 0n and varying the tweaks to get D

outputs Y1, . . . , YD. Notice that ICE1 uses two block cipher calls, the first one is used

as the key derivation function and the second one is used as the encryption function

with the key which is derived from the key derivation output of the first. So, let

K1, . . . , KD ∈ {0, 1}κ be those intermediate keys. Now, if the adversary pre-computes

Y ′1 , . . . , Y
′
T by making T primitive block cipher calls with input 0n and keys K ′1, . . . , K

′
T

then the probability that Yi = Y ′j and hence Ki = K ′j for some 1 < i < D, 1 < j < T is

bounded by DT
2κ

. Hence

Advtprp
ICE1(T,D) ≈ DT

2κ
.

Security of TBC-based AEAD in the Context of NIST LwC Standardization

Process

Note that while constructing any TBC, a general objective is to achieve security with

T close to 2κ. For instance, according to NIST [93], T ≥ 2112 for n ≥ 128 and T ≥ 2224

when n = 256. Hence, a bound such as the above doesn’t provide adequate security

as it limits the size of D. Accordingly, given D ≥ 250, ICE1 doesn’t satisfy NIST

requirements. The authors of [44] also extended the above attack to Remus-N1. ICE2

(used in Remus-N2) provides higher security of the form DT/22κ. Still, it uses an

auxiliary key (which can be viewed as a combination of XEX and ICE1) which costs

some additional state to hold this auxiliary key. This cost motivates the following

question.

Can we have an instantiation of TBC based on block cipher without using any

auxiliary key but still provide adequate security (for instance, up to the NIST

desired level) ?
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At a glance, it seems impossible to design such a TBC. However, we show that such

security is possible for the AEAD mode based on a TBC, which does not use any aux-

iliary key. We must have new reductions than what we usually have (as mentioned in

Eq.1.1-1.2). The distinguishing attack for Remus-N1 [64] requires fixing the associated

data block as it is the input of the underlying block cipher, which can be avoided if

the first block is defined to be nonce. This principle is adapted in mixFeed [38]. Both

mixFeed [38] and Remus [64] are similar in nature (as described above) with two main

differences. First, they use different feedback functions, which do not affect security.

The second difference is that unlike Remus, mixFeed processes the nonce before process-

ing the associated data and hence uses one extra TBC call. In the nonce-respecting

model, the inputs of the block cipher vary in the case of mixFeed. Hence, the attack

due to [44] can be avoided.

1.4 Our Contributions

In this thesis, inspired by the NIST LwC requirements, we extend a long line of research

on the security of Sponge-type and TBC-based AEAD schemes.

In Chapter 4, we study Sponge-type AEAD construction with a generalization of the

feedback function used in the duplexing interface, that encompasses the feedback used

in Sponge-duplex, Beetle, SpoC etc. We call it the Transform-then-Permute construc-

tion. We show that the AEAD security of this Transform-then-Permute construction

is bounded by the adversary’s ability to construct a special data structure, called the

multi-chains. In particular, we show that for a specific class of feedback functions con-

taining the Beetle and SpoC modes, optimal AEAD security is achieved. Further, we



Our Contributions 11

derive improved security bound for generic Sponge-duplex schemes. We also show a

matching attack exploiting the multi-chains. As a corollary of this, we give

1. a security proof validating the security claims of SpoC,

2. an improved and tight bound for Beetle.

3. an improved (not tight) bound for general Sponge-duplex.

In Chapter 5, we introduced a full-rate sponge-type general construction inspired by

the Transform-then-Permute construction with the extra state. We dubbed it the Full-

rate Transform-then-Permute construction (frTtP in short). We show that the extra state

compensates for the increase in the size of the rate part and makes the construction

secure. We further show with a suitable initiation of this extra-state, one can achieve a

full-rate Sponge type mode with security up to D ≪ 2c/2, T ≪ 2c. We further introduce

our full-rate Sponge-based AEAD scheme called ORANGE-Zest which is a 2nd round

candidate in the NIST LwC standardization process. We show that the weakness in the

full-rate construction ORANGE-Zest is due to an improper initialization protocol.

With a proper initialization function, maintaining the properties mentioned in our

theorem statement, one can get a secure full-rate Sponge-type AEAD scheme using

the ORANGE-Zest feedback function. In addition, we have also considered some

full-rate feedback functions used in block-cipher based constructions such as CoFB

[36] and HyENA [34], and show that with some proper modifications these feedback

functions can also be used to construct secure full-rate Sponge-type modes.

Finally, in Chapter 6, we formalize the TBC-based AEAD mode, which is used in

mixFeed, and we call it mF. We reduce the security of the mF mode in terms of the
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security of the underlying TBC against two newly introduced input restricted adver-

saries, namely (1) the µ-respecting TPRP adversary and (2) (µ, λ)-multi commitment

prediction adversary. These two notions are non-standard but weaker than standard

TPRP security notions because an adversary is µ-respecting if it can make at most

µ queries with the same input. Consider a nonce-respecting AEAD scheme where the

nonce is processed in the beginning. Since the initial TBC input is not repeated and the

other TBC inputs depend on their previous TBC outputs, we can consider the security

of the underlying TBC in terms of µ-respecting adversaries with small µ. In the case

of mF mode in nonce-respecting setup, we can choose µ to be about n to achieve the

following bounds.

Advpriv
mF (T,D) ≤ Advµ-tprp

Ẽ
(T,D) +O

(
µ2D

2n

)
(1.3)

Advforge
mF (T,D) ≤ Adv

(µ,D)-mcp

Ẽ
(T,D) + 2 ·Advµ-tprp

Ẽ
(T,D)

+O
(
µ2D

2n

)
+

2D

2
n
2

. (1.4)

where, the new security advantage terms Advµ-tprp

Ẽ
and Adv

(µ,D)-mcp

Ẽ
respectively

denote the adversarial advantage of any µ-respecting TPRP adversary and any (µ,D)-

multi commitment prediction adversary. For more detailed definitions, see Section 6.2.

We then study these two security notions for two instantiations of TBC. mixFeed

is one such instantiation. For mixFeed, we claimed the scheme’s security under the

assumption that the AES key scheduling algorithm has a small number of short per-

mutation cycles. Hence, the probability of finding a key in those cycles is also small.



Our Contributions 13

Khairallah [72] observed that if this assumption is violated, it may lead to weak-key

attacks on mixFeed. Later, Leurent et al. [75] confirmed this observation by explicitly

finding a large number of short cycles in the AES key scheduling algorithm. We try

to interpret this weakness in our general notations and conclude that the weakness is

only due to the use of the AES key schedule in the Key updation function. Our second

instantiation of TBC based on block cipher using primitive element multiplication (we

call the overall AEAD mFprim) achieves the bounds,

Advµ-tprp

Ẽ
(T,D) ≈ µT

2n
. (1.5)

Adv
(µ,D)-mcp

Ẽ
(T,D) ≈ µT

2n
+

D

2
n
2

. (1.6)

Plugging these results in our previous results, we obtain that the mFprim mode is

well secured within the NIST requirements.
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2.1 Notational Setup

We start by setting up a few mathematical notations which will be followed throughout

this thesis. For any n ∈ N, (n] (res. [n]) signifies the set {1, 2, . . . , n} (res. {0, 1, . . . , n}).

{0, 1}n denotes the set of bit strings of length n, {0, 1}∗ :=
⋃

n≥0{0, 1}n, and Perm(n)

signifies the set of all permutations over {0, 1}n. We say that the two distinct strings

a = a1 . . . am and b = b1 . . . bm′ have a common prefix of length n ≤ min{m,m′}

if ai = bi for all i ∈ (n], and an+1 ̸= bn+1. ⌈x⌉n (res. ⌊x⌋n) designates the most

(res. least) significant n bits of any bit string x with |x| ≥ n. For any rn bit string

a ∈ {0, 1}rn , (a1, . . . , an)
r← a denotes the parsing of a into r bit strings a1, . . . , an such

that a = an∥ · · · ∥a1. We define the falling factorial (n)k := n(n− 1) · · · (n− k + 1).

For any finite set X , (X )q signifies the set of all q-tuples with distinct elements

from X . X←$X signifies the uniform sampling of X from X , which is independent

of all other previously sampled random variables. An uniform sampling of t random

variables X1, . . . ,Xt from X without replacement is denoted by (X1, . . . ,Xt)
wor← X .

2.2 Mathematical Background

Proposition 1. [83] Given any m× n matrix A and n× l matrix B with entries in a

field F,

rank(A ·B) ≤ min{rank(A), rank(B)}.
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Corollary 1. For any n× n square matrix A with entries in a field F,

rank(Ai) ≥ rank(An) ∀i ∈ N.

Proposition 2. For any m×m matrix A and n×m matrix B with entries in a field

F,

rank


A
B


 ≤ rank(A) + rank(B).

Theorem 1. (Sylvester rank inequality)[83] For any m×n matrix A and n× k matrix

B with entries in a field F,

rank(AB) ≥ rank(A) + rank(B)− n.

Proposition 3. (Markov’s inequality)[53] If X is a nonnegative random variable and

a > 0,

Pr [X > a] ≤ Ex [X]

a
.
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2.3 Results on Multicollision

In this section, we briefly revisit some valuable results on the expected value of max-

imum multicollision in some specific types of samples. This problem has seen a lot of

interest (see, for instance, [55, 6, 101, 96]) in the context of the complexity of hash

table1 probing. However, most of the results available in the literature are given in

asymptotic forms. We state some relevant results in a more concrete form, following

similar proof strategies and probability calculations as before. Moreover, we also extend

these results for samples that, although not uniform, have high entropy, almost close

to uniform.

2.3.1 Expected Maximum Multicollision in a Uniform Ran-

dom Sample

Let X1, . . . ,Xq←$D where |D| = N and N ≥ 2. We denote the maximum multicollision

random variable for the sample as mcq,N . More precisely, mcq,N = maxa |{i : Xi = a}|.

For any integer ρ ≥ 2,

Pr [mcq,N ≥ ρ] ≤
∑
a∈D

Pr [|{i : Xi = a}| ≥ ρ]

≤ N ·
(
q
ρ

)
Nρ

≤ N · qρ

Nρρ!

≤ N ·
(

qe

ρN

)ρ

.

1A famous data structure used for efficient searching applications.
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We justify the inequalities in the following way: The first inequality is due to the union

bound. If there are at least ρ indices for which Xi takes value a, we can choose the first

ρ indices in
(
q
ρ

)
ways. This justifies the second inequality. The last inequality follows

from the simple observation that eρ =
∑
i≥0

ρi/i! ≥ ρρ/ρ!. Thus, we have

Pr [mcq,N ≥ ρ] ≤ N ·
(

qe

ρN

)ρ

. (2.1)

For any positive integer-valued random variable Y bounded above by q, we define an-

other random variable Y′ as

Y′ =


ρ− 1 if Y < ρ

q otherwise.

Clearly, Y ≤ Y′ and

Ex [Y] ≤ (ρ− 1) + q · Pr [Y ≥ ρ].

Using Eq. (2.1), and the above relation we can prove the following results for the

expected value of maximum multicollision. We write mcoll(q,N) to denote Ex [mcq,N ].

So from the above relation,

mcoll(q,N) ≤ (ρ− 1) + qN ·
(

qe

ρN

)ρ

(2.2)

for all positive ρ. We use this relation to prove an upper bound of mcoll(q,N) by

plugging in some suitable value for ρ.
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Proposition 4. For N ≥ 4, n = log2N ,

mcoll(q,N) ≤


4 log2 q

log2 log2 q
if 4 ≤ q ≤ N

5n
⌈

q
nN

⌉
if N < q

Proof. We first prove the result when q = N . A simple algebra shows that for n ≥ 2,(
e log2 n

4n

)
≤ n−

1
2 . In other words,

(
e
ρ

)ρ
≤ N−2 where ρ = 4n/ log2 n. So

mcoll(q,N) ≤ ρ− 1 + N2 ·
(
e

ρ

)ρ

≤ ρ.

When q < N , we can simply bound Ex [mcq,N ] ≤ Ex [mcq,q] ≤ 4 log2 q
log2 log2 q

.

For N < q ≤ Nn, we choose ρ = 4n. Now,

mcoll(q,N) ≤ 4n− 1 + nN2 ×
(e

4

)4n
≤ 4n− 1 + nN2/4n ≤ 5n.

When q ≥ nN , we can group them into ⌈q/nN⌉ samples each of size exactly nN

(we can add more samples if required). This would prove the result when q ≥ nN .

Remark 1. Note that, similar bound as in Proposition 4 can be achieved in the case

of non-uniform sampling. For example, when we sample X1, . . . ,Xq
wor← {0, 1}b and then

define Yi = ⌈Xi⌉r for some r < b. In this case, we have

Pr
[
Yi1 = a, · · · ,Yiρ = a

]
≤ (2b−r)ρ

(2b)ρ
≤ 1

2rρ
.

This can be easily justified as we have to choose the remaining b − r bits distinct (as
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X1, . . . ,Xq must be distinct). So, the same bound as given in Proposition 4 can be applied

for this distribution.

2.3.2 A Special Example of Non-Uniform Random Sample

In this thesis, we consider the following non-uniform random samples. Let x1, . . . , xq

be distinct and y1, . . . , yq be distinct b bits. Let Π denote the random permutation

over b bits, Π2 := Π ◦ Π denotes the composition of Π with itself. We define Zi,j =

Π(xi) ⊕ Π−1(yj). Now, for all distinct i1, . . . , iρ, distinct j1, . . . , jρ and a ∈ {0, 1}b, we

want to bound Pr
[
Zi1,j1 = a, · · · ,Ziρ,jρ = a

]
. By abuse of notations we write both ik

and jk as k.

Let N := 2b. We can assume a = 0b. Since otherwise, we consider Π′(x) = Π(x)⊕ a

which is also a random permutation and consider y′i = yi ⊕ a instead of yi, ∀1 ≤ i ≤ ρ.

Note that y′i’s are clearly distinct. So the problem reduces to bounding

θ := Pr
[
Π2(x1) = y1, · · · ,Π2(xρ) = yρ

]
=
∑
cρ

Pr [Π(x1) = c1,Π(c1) = y1, · · · ,Π(xρ) = cρ,Π(cρ) = yρ]

We say that cρ valid if ci = xj if and only if cj = yi. The set of all such valid

tuples is denoted as V . For any valid cρ, define S := {x1, . . . , xρ} ∪ {c1, . . . , cρ}. Then,

Pr [Π(x1) = c1,Π(c1) = y1, · · · ,Π(xρ) = cρ,Π(cρ) = yρ] = 1
(N)|S|

. On the other hand, if

cρ is not valid then the above probability is zero. Let Vs be the set of all valid tuples

for which |S| = s.

If |S| = 2ρ − k, then we must have exactly k many pairs (i1, j1), . . . , (ik, jk) such
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that ci = xj. Now the number of ways this k-many pairs can be chosen is bounded

by ρ2k. The remaining ρ − k many ci’s can be chosen in (N − k)ρ−k ways. Hence,

|V2ρ−k| ≤ ρ2k(N − k)ρ−k.

Pr
[
Π2(xi) = yi ∀1 ≤ i ≤ ρ

]
=

2ρ∑
s=ρ

∑
cρ∈Vs

Pr [Π(xi) = ci,Π(ci) = yi ∀1 ≤ i ≤ ρ]

≤
2ρ∑
s=ρ

|Vs|
(N)s

≤
ρ∑

k=0

|V2ρ−k|
(N)2ρ−k

≤
ρ∑

k=0

ρ2k(N − k)ρ−k
(N)2ρ−k

≤
ρ∑

k=0

ρ2(ρ−k)

(N − 2ρ)ρ

≤

(
ρ∑

k=0

1

ρ2k

)
·
(

ρ2

N − 2ρ

)ρ

≤ 2 ·
(

ρ2

N − 2ρ

)ρ

Since the sample space {(xi, yj)}i,j∈[q] is of size q2, we denote the maximum multicollision

random variable for the sample as mc′q2,N . Then we have by a similar analysis as in the

previous section,

Pr
[
mc′q2,N ≥ ρ

]
≤ 2N ·

(
q2

ρ

)
·
(

ρ2

N − 2ρ

)ρ

≤ 2N

(
q2eρ

N − 2ρ

)ρ

.

We write mcoll′(q2, N) to denote Ex
[
mc′q2,N

]
. So from the above relation,

mcoll′(q2, N) ≤ (ρ− 1) + 2q2N ·
(

q2eρ

N − 2ρ

)ρ

Proposition 5. For b > 16,

mcoll′(q2, N) ≤ 4b

log2 b

⌈
b2q2

N

⌉
.
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Proof. Let b2q2 ≤ N . Since N > 216, ρ = 4b
log2 b

=⇒ q2 ≤ N−2ρ
ρ2

. Hence, 2q2N ·(
q2eρ
N−2ρ

)ρ
≤ N2 ·

(
e
ρ

)ρ
. Now,

(
e
ρ

)ρ
≤
(
e
4

)4b ≤ 1
N2 =⇒ N2 ·

(
e
ρ

)ρ
≤ 1.

Now for q2 ≥ N
b2

we can group the q2 samples into
⌈
b2q2

N

⌉
groups each of size exactly

N
b2

(we can add more samples if required). This would prove the bounds.

2.3.3 A Generalization of the Non-Uniform Random Sample

Here, we study a generalization of the above problem, which will be useful when a non-

invertible linear function is sandwiched between two random permutation calls. For

example, this happens in case of PHOTON-Beetle [9] and duplex [20].

Let x1, . . . , xq be distinct and y1, . . . , yq be distinct b-bit strings. Let Π denote the

random permutation over b bits, L : {0, 1}b → {0, 1}b be a linear function with rank

rank(L), and φ := Π ◦L ◦Π. We define Zi,j = L(Π(xi))⊕Π−1(yj). Now, for all distinct

i1, . . . , iρ, distinct j1, . . . , jρ and a ∈ {0, 1}b, we want to bound Pr
[
Zi1,j1 = a, · · · ,Ziρ,jρ = a

]
.

By a slight abuse of notations we write both ik and jk as k.

Let N := 2b. We can assume a = 0b. Since otherwise, we consider Π′(x) = Π(x⊕ a)

which is also a random permutation and consider x′i = xi⊕ a instead of xi, ∀1 ≤ i ≤ ρ.

Note that x′i’s are clearly distinct. So the problem reduces to bounding

θ := Pr [φ(x1) = y1, · · · , φ(xρ) = yρ]

=
∑
cρ

Pr [Π(x1) = c1,Π(L(c1)) = y1, · · · ,Π(xρ) = cρ,Π(L(cρ)) = yρ]

For all 1 ≤ i ≤ ρ, let di = L(ci). We say that cρ valid if di = xj if and only if cj = yi. The
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set of all such valid tuples is denoted as V . For any valid cρ, define S := {x1, . . . , xρ} ∪

{d1, . . . , dρ}. Then, Pr [Π(x1) = c1,Π(d1) = y1, · · · ,Π(xρ) = cρ,Π(dρ) = yρ] = 1
(N)|S|

.

On the other hand, if cρ is not valid then the above probability is zero. Let Vs be the

set of all valid tuples for which |S| = s.

We say that di is old if di = xj for 1 ≤ i, j ≤ ρ. If |S| = 2ρ − k, then we must

have exactly k many pairs (i1, j1), . . . , (ik, jk) such that di = xj. Now, the number

of ways these k-many pairs can be chosen is bounded by ρ2k. This fixes all old di

values. Then, the number of ci values corresponding to old di values is bounded by at

most ρ2kÑk where Ñ = 2b−rank(L), as once we fix the b− rank(L) bits there is a unique

solution for L(ci) = di. Once we fix the ci values corresponding to the old di values,

then the remaining ρ − k many ci’s can be chosen in (N − k)ρ−kÑ
ρ−k ways. Hence,

|V2ρ−k| ≤ ρ2k(N − k)ρ−kÑ
ρ.

Pr [φ(xi) = yi ∀1 ≤ i ≤ ρ] =

2ρ∑
s=ρ

∑
cρ∈Vs

Pr [Π(xi) = ci,Π(di) = yi, ∀1 ≤ i ≤ ρ]

≤
2ρ∑
s=ρ

|Vs|
(N)s

≤
ρ∑

k=0

|V2ρ−k|
(N)2ρ−k

≤
ρ∑

k=0

ρ2k(N − k)ρ−kÑ
ρ

(N)2ρ−k
≤

ρ∑
k=0

ρ2(ρ−k)Ñρ

(N − 2ρ)ρ

≤

(
ρ∑

k=0

1

ρ2k

)
·
(

ρ2Ñ

N − 2ρ

)ρ

≤ 2 ·
(

ρ2Ñ

N − 2ρ

)ρ

Since the sample space {(xi, yj)}i,j∈[q] is of size q2, we denote the maximum multicollision

random variable for the sample as m̃cq2,N,rank(L). Then, we have by a similar analysis as
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in the previous section,

Pr
[
m̃cq2,N,rank(L) ≥ ρ

]
≤ 2N ·

(
q2

ρ

)
·
(

ρ2Ñ

N − 2ρ

)ρ

≤ 2N

(
q2eρÑ

N − 2ρ

)ρ

.

We write m̃coll(q2, N, rank(L)) to denote Ex
[
m̃cq2,N,rank(L)

]
. So from the above relation,

m̃coll(q2, N, rank(L)) ≤ (ρ− 1) + 2q2N ·

(
q2eρÑ

N − 2ρ

)ρ

.

Finally, we have the following upper bound on m̃coll(q2, N, rank(L)).

Proposition 6. For b > 16,

m̃coll(q2, N, rank(L)) ≤ 4b

log2 b

⌈
b2q2

2rank(L)

⌉
.

Proof. Let b2q2 ≤ 2rank(L). Since N > 216, ρ = 4b
log2 b

=⇒ q2 ≤ N−2ρ
ρ2Ñ

. Hence,

2q2N ·
(

q2eρ
N−2ρ

)ρ
≤ N2 ·

(
e
ρ

)ρ
. Now,

(
e
ρ

)ρ
≤
(
e
4

)4b ≤ 1
N2 =⇒ N2 ·

(
e
ρ

)ρ
≤ 1.

Now, for b2q2 > 2rank(L) we can group the q2 samples into
⌈

b2q2

2rank(L)

⌉
groups each of size

exactly 2rank(L)

b2
(we can add more samples if required). This would prove the bounds.

Remark 2. Note that, for rank(L) = b, m̃coll(q2, N, rank(L)) = mcoll′(q2, N).

2.3.4 Multicollisions in Context of the Analysis of Sponge-type

AEAD

In a later chapter, we will use the bound on the expected number of multicollisions to

give tight security bound for Transform-then-Permute and some of its instantiations.
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Here, we note that multicollisions have been previously studied in context with the

duplex mode, most notably in [43] and [69]. However, there is a fundamental difference

between our approach and the previously used strategies in [43, 69]. In the following,

r, c and b have their usual meaning in context of Sponge, i.e., b = r + c.

In [43], the authors try to upper bound a parameter called the multicollision limiting

function νq
r,c. Assume we distribute q balls into 2r bins, one at a time, where the bin for

each ball is selected uniformly at random and independent of other choices. Then, νq
r,c is

defined as the smallest natural number x such that Pr [mcq,2r > x] < x/2c. On a closer

inspection of the proof, one can see that the νq
r,c is dependent upon b and λ = q2−r.

The authors derive bounds for νq
r,c, for three cases, viz. λ < 1, λ = 1, and λ > 1.

In [69], the authors upper bound Pr [mcq,2r > ρ] to q/S, where S = min{2b/2, 2c}

and ρ is viewed as a function of r and c. Basically, based on the value of r and c,

they derive choices for ρ, such that the desired probability is bounded by q/S. To

derive sharp bounds on ρ for various choices of r and c, they employ a detailed analysis

involving Sterling’s approximation and Lambert W function.

In contrast to the above strategies, we are interested in good estimates for the

expectation of mcq,2r depending upon the relationship between q and 2r. Further, our

analysis is much more straightforward.
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2.4 Security Definitions of AEAD

Authenticated Encryption with Associated Data: An authenticated en-

cryption scheme with associated data functionality, or AEAD in short [59], is a tuple of

deterministic algorithms AEAD = (enc, dec), defined over the key space K, nonce space

N , associated data space A, message space M, ciphertext space C, and tag space T ,

where:

enc : K ×N ×A×M→ C × T and dec : K ×N ×A× C × T →M∪ {⊥}.

Here, enc and dec are called the encryption and decryption algorithms, respectively,

of the AEAD. Further, it is required that dec(K,N,A, enc(K,N,A,M)) = M for any

(K,N,A,M) ∈ K ×N ×A×M. For all key K ∈ K, we write encK(·) and decK(·) to

denote enc(K, ·) and dec(K, ·), respectively. In this paper, we have K,N ,A,M, T ⊆

{0, 1}∗ and C =M, so we use M instead of C wherever necessary.

2.4.1 Privacy

The privacy advantage [98] of an adversary A over an AEAD is defined as Advpriv
AEAD(A ) =

|Pr [A encK = 1]−Pr
[
A $ = 1

]
|, where $ returns a random output string that is the same

length as the output size of encK The AEADK ’s privacy advantage is given by

Advpriv
AEAD(q, σ, t) = max

A
Advpriv

AEAD(A )
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where the total number of blocks in all of the encryption queries is at most σ and the

maximum is calculated over all of the nonce-respecting adversaries A that are running

in time t and making at most q encryption queries.

2.4.2 Forgery

We say that a nonce-respecting oracle adversary A encK ,decK forges AEAD = (encK , decK)

if A is able to make a fresh and valid query (N,A,C, T ) to decK . By fresh query, we

mean that the adversary does not make any previous query (N,A,M) to encK such that

encK(N,A,M) = (C, T ). We say a decryption query is valid, if decK(N,A,C, T ) ̸=⊥.

The forging advantage [98] of an adversary A is written as

Advforge
AEAD(A ) = Pr

[
A encK ,decK forges

]
and we write

Advforge
AEAD(q, σ, t) = max

A
Advforge

AEAD(A )

where the maximum is taken over all adversary A running in time t, making at most

qe nonce-respecting encryption queries with maximum σe blocks and making at most

qd decryption queries with maximum σd blocks. We define q = qe + qd and σ = σe + σd.

Note that the decryption queries are not necessarily nonce-respecting i.e. nonce can be

repeated in the decryption queries and, an encryption query and a decryption query

can use the same nonce. However, all nonces used in encryption queries are distinct.
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2.4.3 AEAD Security in the Random Permutation Model

Let Π←$Perm(b), Func denote the set of all functions from N × A ×M to M× T

such that for any input (∗, ∗,M) the output is of length |M | + t for some predefined

constant t and Γ←$Func. Let ⊥ denote the degenerate function from (N ,A,M, T ) to

{⊥}. For simplicity, we simply refer to the oracle that corresponds to a function (such

as enc, Π etc.) by its own name. The superscript ± designates a two-way access to Π.

Definition 1. Let AEΠ be an AEAD scheme, based on the random permutation Π,

defined over (K,N ,A,M, T ). The AEAD advantage of any nonce respecting adversary

A against AEADΠ is defined as,

Advaead
AEADΠ

(A ) :=

∣∣∣∣∣ Pr
K ←$K
Π±

[
A encK ,decK ,Π±

= 1
]
− Pr

Γ,Π±

[
A Γ,⊥,Π±

= 1
]∣∣∣∣∣ . (2.3)

Note that A encK ,decK ,Π±
denotes A ’s response after its interaction with encK , decK ,

and Π±, respectively. Similarly, A Γ,⊥,Π±
denotes A ’s response after its interaction with

Γ, ⊥, and Π±.
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2.5 Security Definitions of Tweakable Block Cipher

Tweakable Block cipher: A tweakable block cipher, or TBC in short, is a de-

terministic algorithm Ẽ, defined over the key space K, tweak space T , message cum

ciphertext space M as

Ẽ : K × T ×M→M.

For all key K ∈ K, we write ẼK(·) to denote Ẽ(K, ·). A TBC with M = {0, 1}n is

called an n-bit TBC. In this thesis, we have K, T ⊆ {0, 1}∗.

2.5.1 TPRP-Security

Let Ẽ be an n-bit tweakable block cipher with tweak space T . The TPRP-advantage

[76] of Ẽ against an oracle adversary A is defined as

Advtprp

Ẽ
(A ) = |Pr

[
A ẼK = 1

]
− Pr

[
A Π̃ = 1

]
|

where Π̃ is chosen uniformly from the set of all functions π̃ : T × {0, 1}n → {0, 1}n,

where, for every tw ∈ T , π̃(tw, ·) is a permutation on {0, 1}n. We call Π̃ a tweakable

random permutation. We write Advtprp

Ẽ
(q, t) = maxA Advtprp

Ẽ
(A ) where maximum is

taken over all adversaries A running in time t making at most q queries.
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2.6 Coefficient H Technique

Consider any deterministic yet computationally bounded adversary A using a black box

type interaction with one of two oracles O0 and O1 and trying to differentiate between

them. The query-response tuple associated with A ’s interaction with its oracle is called

its transcript. A transcript ω may also contain any other information that the oracle

decides to reveal to the distinguisher at the end of the game’s query-response phase.

This expanded definition of transcript will be taken into consideration. Suppose Θ1

(res. Θ0) denotes the random transcript variable for A ’s interaction with O1 (res. O0).

The interpolation probability of ω with regard to O is the probability of obtaining a

given transcript ω in the security game with an oracle O. Since A is deterministic,

this probability only depends on the transcript ω and the oracle O. A transcript ω is

said to be attainable if Pr [Θ0 = ω] > 0. We now state the coefficient H technique(or

simply the H-technique), a simple yet powerful tool developed by Patarin [94] in form

of a theorem. A proof of this theorem can be found in a number of papers including

[95, 42, 86].

Theorem 2 (H-technique [94, 95]). Let Ω be the set of all transcripts that are attainable.

For some ϵbad, ϵratio > 0, suppose there is a set Ωbad ⊆ Ω satisfying the following:

• Pr [Θ0 ∈ Ωbad] ≤ ϵbad;

• For any ω /∈ Ωbad, ω is attainable and

Pr [Θ1 = ω]

Pr [Θ0 = ω]
≥ 1− ϵratio.



32 Preliminaries

Then the distinguishing advantage for any adversary A can be bounded as

AdvO1(A ) ≤ ϵbad + ϵratio.
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3.1 Introduction

In this chapter, we consider a security game that we call a multi-chain security game.

In this game, an adversary A interacts with a random permutation and its inverse. Its

goal is to construct multiple walks having the same labels. We first need to describe

some notations which would be required to define the security game.

3.2 Graph Structure and Multi-chain

Let L = ((u1, v1), . . . , (ut, vt)) be a list of pairs of b-bit elements such that u1, . . . ut are

distinct and v1, . . . , vt are distinct. For any such list of pairs, we write domain(L) =

{u1, . . . , ut} and range(L) = {v1, . . . , vt}.

Let L be a linear function over b bits. Given such a list we define a labeled directed

graph GLL which we call the chain graph over the set of vertices range(L) ⊆ {0, 1}b as

follows: A directed edge vi → vj with label x (also denoted as vi
x→ vj) is in the graph

if L(vi) ⊕ x = uj. We can similarly extend this to a label walk W from a node w0 to

wk as

W : w0
x1→ w1

x2→ w2 · · ·
xk→ wk.

We simply denote it as w0
x−→ wk where x = (x1, . . . , xk). Here k is the length of the

walk. We simply denote the directed chain graph GLL by GL wherever the linear function

L is understood from the context.

Definition 2. Let L be a fixed linear function over b bits. Let r, τ ≤ b be some pa-

rameters. We say that a set of labeled walks {W1, . . . ,Wp} forms a multi-chain with
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a label x := (x1, . . . , xk) in the graph GL if for all 1 ≤ i ≤ p, Wi : vi0
x−→ vik and

⌈u1
0⌉r = · · · = ⌈up

0⌉r and ⌈v1k⌉τ = · · · = ⌈vpk⌉τ . We also say that the multi-chain is of

length k. The labeled walks Wi are also called chains in this context.

Note that if {W1, . . . ,Wp} is a multi-chain then so is any subset of it. Also, there

can be a different set of multi-chains depending on the starting and ending vertices and

different x = (x1, . . . , xk). Let Wk denote the maximum order of all such multi-chains

of length k. For a fixed linear function L, Wk is completely determined by L. Now we

describe how the list L is being generated through an interaction of an adversary A

and a random permutation.

3.2.1 Multi-Chain Security Game

Consider an adversary A interacting with a b-bit random permutation Π±. Suppose,

the adversary A makes at most t interactions with Π±. Let (xi, diri) denote ith query

where xi ∈ {0, 1}b and diri is either + or − (representing forward or inverse query). If

diri = +, it gets response yi as Π(xi), else the response yi is set as Π−1(xi). After t

interactions, we define a list L of pairs (ui, vi) where (ui, vi) = (xi, yi) if diri = +, and

(ui, vi) = (yi, xi) otherwise. So we have Π(ui) = vi for all i. We call the tuple of triples

θ := ((u1, v1, dir1), . . . , (ut, vt, dirt)) the transcript of the adversary A interacting with

Π±. We also write θ′ = ((u1, v1), . . . , (ut, vt)) which only stores the information about

the random permutation. For the sake of simplicity we assume that the adversary makes

no redundant queries and so all u1, . . . ut are distinct and v1, . . . , vt are distinct. For

a linear function L consider the directed chain graph Gθ′ . For any k, we have already
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defined Wk. Now we define the maximum multi-chain advantage as

µt = max
A

max
k

Ex

[
Wk

k

]
.

3.2.2 Bounding µt for Invertible L Functions

In this subsection, we derive concrete bounds for µt under a special assumption that

the underlying linear function is invertible.

Theorem 3. If the linear function L is invertible, then we have

µt ≤ mcoll(t, 2τ ) + mcoll(t, 2r) + mcoll′(t2, 2b). (3.1)

Proof of Theorem 3: We first make the following observation which is straightfor-

ward as L is invertible.

Observation 1: If vi
x→ vk and vj

x→ vk then vi = vj.

We now describe some more notations related to multi-chains:

1. Let Wfwd,a denote the size of the set {i : diri = +, ⌈vi⌉τ = a} and maxa W
fwd,a

is denoted as Wfwd. This denotes the maximum multi-collision among τ most

significant bits of forward query responses.

2. Similarly, we define the multi-collision for backward query responses as follows:

Let Wbck,a denote the size of the set {i : diri = −, ⌈ui⌉r = a} and maxa W
bck,a is

denoted as Wbck.

3. In addition to the multicollisions in forward only and backward only queries, we
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consider multicollisions due to both forward and backward queries. Let Wmitm,a

denote size of the set {(i, j) : diri = +, dirj = −, L(vi)⊕uj = a} and maxa W
mitm,a

is denoted as Wmitm.

Now, we state an intermediate result which is the main step of the proof.

Lemma 1. For all possible interactions, we have

Wk ≤ Wfwd + Wbck + k ·Wmitm.

Proof. We can divide the set of multi-chains into three sets:

Forward-only chains: Each chain is constructed by Π queries only. By definition,

the size of such multi-chain is at most Wfwd.

Backward-only chains: Each chain is constructed by Π− queries only. By defini-

tion, the size of such multi-chain is at most Wbck.

Forward-backward chains: Each chain is constructed by using both Π and Π−

queries. Let us denote the size of such multi-chain by Wfwd-bck
k .

Then, we must have

Wk ≤ Wfwd + Wbck + Wfwd-bck
k .

Now, we claim that Wfwd-bck
k ≤ k ·Wmitm. Suppose Wfwd-bck

k = w. Then, it is sufficient to

show that there exist an index j ∈ [k], such that the size of the set {i : (dirij−1, dir
i
j) ∈

{(+,−), (−,+)}, L(vij−1)⊕ui
j = xj} ≥ ⌈w/k⌉. This can be easily argued by pigeonhole

principle, given Observation 1. The argument works as follows:
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For each of the individual chain Wi, we have at least one index j ∈ [k] such

that (dirij−1, dir
i
j) ∈ {(+,−), (−,+)}. We put the i-th chain in a bucket labeled j,

if (dirij−1, dir
i
j) ∈ {(+,−), (−,+)}. Note that, it is possible that the i-th chain can

co-exist in multiple buckets. But more importantly, it will exist in at least one bucket.

As there are k buckets and w chains, by pigeonhole principle, we must have one bucket

j ∈ [k], such that it holds at least ⌈w/k⌉ chains.

Now we complete the proof of Theorem 3. Observe that Wfwd and Wbck are the

random variables corresponding to the maximum multicollision in a truncated random

permutation sample of size t, and corresponds to Remark 1 of subsection 2.3.1. Further,

if we denote xi := ui and yi := L(vi) ∀i ∈ [t] then using Observation 1, Wmitm is the

random variable corresponding to the maximum multicollision in a sum of random

permutation sample of size t2, i.e., the special distribution in subsection 2.3.2. Now,

using linearity of expectation, we have

µt ≤ Ex
[
Wfwd

]
+ Ex

[
Wbck

]
+ Ex

[
Wmitm

]
≤ mcoll(t, 2τ ) + mcoll(t, 2r) + mcoll′(t2, 2b).

3.2.3 Bounding µt for Non-invertible L Functions

In the case of invertible functions, Observation 1 facilitates a fairly simple argument in

favor of an upper bound on µt in terms of some multicollision sizes. However, the same

observation does not apply to non-invertible functions. Specifically, Lemma 1 is not

guaranteed to hold. For example, now the adversary can try to create a binary tree-like

structure using forward queries only. We have to accommodate such attack strategies
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to upper bound µt.

Let Collapse denote the event that there exists distinct i and j, such that diri =

dirj = +, and L(yi) = L(yj). We say that a transcript L is collapse-free if the event

¬Collapse holds. The following result is a variant of lemma 1 for collapse-free tran-

scripts.

Lemma 2. For all possible collapse-free transcripts, we have

Wk ≤ Wfwd + Wbck + k ·Wmitm.

Proof. We can again divide the set of multi-chains into three sets:

Forward-only chains: Each chain is constructed by Π queries only. We collect all

such chains into a list FWD.

Backward-only chains: Each chain is constructed by Π− queries only. We collect

all such chains into list BCK.

Forward-backward chains: Each chain is constructed by using both Π and Π−

queries.

For the set of forward-backward chains, consider the smallest index j such that for

two1 distinct chains Wi and Wi′ we have vij = vi
′
j , i.e. the two chains merge. Since, the

transcript is collapse-free, we must have dirij−1 = − or diri
′

j−1 = −, or both. Now, we

may have two cases:

1We may have more than two distinct chains merging at the same index. For brevity we consider
only two. The general case can be handled in exactly the same manner.



40 Multi-Chain Graphs

1. Without loss of generality assume that only dirij−1 = −. Now, if we traverse

back along the walk Wi from vertex vij, then either we get all backward edges

(i.e. dirij′ = − for all j′ < j), or there exists a j′ < j such that dirij′ = + and

dirij′+1 = −. In the first case we insert Wi in BCK, and in the second case we

collect Wi in list MITM.

2. Suppose dirij−1 = − and diri
′

j−1 = −. In this case, we traverse both Wi and Wi′

and collect them in either BCK or MITM using the preceding argumentation.

We follow similar approach for all indices (in increasing order) where two or more

chains merge collecting chains in either BCK or MITM. Once, we have exhausted all

merging indices, we are left with some uncollected chains. We claim that these chains

are disjoint of each other. This is easy to argue as for any pair of merged chains the

chains with backward edge are already collected before. So all that is remaining is a

collection of disjoint chains. Further, each of these chains must contain an index j such

that (dirj, dirj+1) ∈ {(+,−), (−,+)}. We collect all these remaining chains in the list

MITM′. Thus, we have

Wk = |FWD|+ |BCK|+ |MITM|+ |MITM′|.

By using the collapse-free property of L we get |FWD| ≤ Wfwd, and |BCK| ≤ Wbck by

definition. Further, by using the Pigeonhole argument used in the proof of Lemma 1,

we get |MITM|+ |MITM′| ≤ k ·Wmitm.

Finally, we get the following upper bound on µt for non-invertible L functions.

Theorem 4. If the linear function L is non-invertible and L is collapse-free, then we
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have

µt ≤ mcoll(t, 2τ ) + mcoll(t, 2r) + m̃coll(t2, 2b, rank(L)). (3.2)

Proof. As before Ex
[
Wfwd

]
≤ mcoll(t, 2r), Ex

[
Wbck

]
≤ mcoll(t, 2τ ). Further, Wmitm

is the multicollision random variable m̃ct2,2b,rank(L) defined in subsection 2.3.3. Thus,

Ex
[
Wmitm

]
≤ m̃coll(t2, 2b, rank(L)). The result follows from linearity of expectation.

Remark 3. Theorem 4 has a limited applicability. Specifically, it holds only when L

is collapse-free. A straightforward upper bound on Pr [Collapse] is t2/2rank(L), where

t denotes the size of L and rank(L) denotes the rank of linear function L. At times

this bound is weaker than the bound achievable from a more straightforward approach

of using the loose upper bound of µt ≤ t.

3.3 Multi-chain Security Game with Extra State

In this section, we re-define the multi-chain graph structure to incorporate an extra

state of size c bits and call it a c-extended multi-chain graph. Then we define an

adversary A which interacts with a random permutation and its inverse. Its goal is to

construct c-extended multi-chains. We start by describing a few notations which would

be required to define the security game.

Labeled Walk: Let L = ((u1, v1), . . . , (ut, vt)) be a list of pairs of b-bit elements

such that u1, . . . , ut are distinct and v1, . . . , vt are distinct. For any such list of pairs,

we write domain(L) = {u1, . . . , ut} and range(L) = {v1, . . . , vt}.

Let L be a linear function over b + c bits with the transformation matrix

A B

C D

.
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Given such a list we define a labeled directed graph GL
L over the set of vertices range(L)×

{0, 1}c ⊆ {0, 1}b+c as follows: A directed edge (vi, si) → (vj, sj) with label x (also

denoted as (vi, si)
x→ (vj, sj)) is in the graph if L((vi, si)) ⊕ (x, 0c) = (uj, sj). We call

this a c-extended multi-chain graph. We can similarly extend this to a label walk W

from a node (w0, s0) to (wk, sk) as

W : (w0, s0)
x1→ (w1, s1)

x2→ (w2, s2) · · ·
xk→ (wk, sk).

We simply denote it as (w0, s0)
x−→ (wk, sk) where x = (x1, . . . , xk). Here k is the

length of the walk. We simply denote the directed graph GL
L by GL wherever the linear

function L is understood from the context.

Definition 3. Let G be a c-extended multi-chain graph as defined above. given any

fixed level (x1, . . . , xl), we say the set of l length walks {Wi : (ui
0, s

i
0)

(x1,...,xl)−→ (ui
l, s

i
l)}

form a c-extended multi-chain if and only if ui
l = uj

l for all i ̸= j.

Notice that if W is a c-extended multi-chain then so is any subset of W . Consider

the set of all c-extended multi-chains in G of length k. Let Wk denote the size of the

largest of all such c-extended multi-chains of length k.

3.3.1 Adversarial Game

Consider an adversary A interacting with a random permutation Π. Let the query

transcript be of the form Θ = {(Ui,Wi, diri)}i,qp where diri = + if the i th query is

a forward one and diri = − otherwise. Consider a linear function L = {0, 1}b+c →

{0, 1}b+c and the graph GL
Θ.
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Define

µqp := max
k>0

Ex

[
|Wk|
k

]
.

Our objective is to upper bound µqp in GL
Θ i.e. to restrict the adversary A ’s ability

to generate c-extended multi-chains. To bound µqp , we first define an event FBAD.

FBAD : Let S denote the set of all pairs of vertices in GΘ such that there is a collision

in range(Θ). In notation,

S : {{(vi, s1), (vj, s2)} | vi, vj ∈ range(Θ); s1, s2 ∈ {0, 1}s; L(v1, s1) = L(v2, s2)}

define FBAD to be the event that |S| > n.

Proposition 7. Ex [|S|] ≤ T 2

2rank(L)−2c+1 .

Proof. For each i ̸= i′ ∈ [1, T ] define

Ii,i′ =


1 if {(Vi, s1), (Vj, s2)} ∈ S

0 otherwise.
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Then

Ex [|S|] = Ex

 ∑
Vi,Vj∈range(Θ)
s1,s2∈{0,1}c

I{i,i′}


=

∑
Vi,Vj∈range(Θ)
s1,s2∈{0,1}c

Ex
[
I{i,i′}

]

≤
∑

Vi,Vj∈range(Θ)
s1,s2∈{0,1}c

Pr [L(Vi, s1) = L(Vj, s2)]

≤ T 222c

2rank(L)+1
.

Corollary 2.

Pr [FBAD] ≤ T 2

n2rank(L)−2c+1
.

Proof. This follows from Proposition 3 and Proposition 7.

Proposition 8. Consider the c-extended multi-chain graph GL
Θ. If event FBAD does

not hold, then

µqp ≤ n + 2c.

Proof. We proceed through induction on k to show Wk ≤ nk + 2c. The proposition

follows from the definition of µqp .

Given any (x1, . . . , xk) ∈ {0, 1}bkand(v, s) ∈ V (GL
Θ) consider the set of walks

Mk
(v,s) := {(ui, si)

(x1,...,xk)−→ (v, s)|ui ∈ V (GL
Θ)}. Clearly every c-extended multi-chain
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of length k is a subset of some
⋃

s∈{0,1}c
Mk

(v,s) . Hence

Wk ≤ max
v∈range(Θ)

∑
s∈{0,1}c

|Mk
(v,s)|.

First suppose k = 1. Note that an edge (ui, si)
x→ (v, s) ∈M1

v,s if and only if

L ·

ui

si

⊕
x

0

 =

v
s

 (3.3)

Since FBAD doesn’t occur, for any v ∈ range(Θ),
∑

s∈{0,1}c
|M(v,s)|>1

(|M1
(v,s)| − 1) ≤ n.

Hence

W1 ≤
∑

s∈{0,1}c
1 +

∑
s∈{0,1}c
|M1

(v,s)
|>1

(|M1
(v,s)| − 1) ≤ n + 2c.

Now suppose Wk−1 ≤ n(k−1)+2c. Given (v, s) ∈ V (GL
Θ) for every walk (ui, si)

(x1,...,xk)−→

(v, s) there exist an unique (wi, ti) ∈ V (GL
Θ) such that (ui, si)

x1→ (wi, ti) and (wi, ti)
(x2,...,xk)−→

(v, s). Hence,

Wk ≤ Wk−1 +
∑

(wi,ti)∈V (GL
Θ)

|M1
(wi,ti)

|>1

(|M1
(wi,ti)

| − 1)

≤ Wk−1 + n [Since FBAD does not hold.]

≤ kn + 2c.
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Corollary 3. Consider the c-extended multi-chain graph GL
Θ. If L is invertible, then

µqp ≤ 2c.

Proof. Note that if L is invertible then |S| = 0 and as a consequence FBAD does not

occur. Hence we can take n = 0.

3.4 Related Work

In [85] Mennink analyzed the Key-prediction security of Keyed Sponge using a special

type of data structure that is close to but different from our chain graph structure.

Here we give a brief overview of Mennink’s work in our notations and describe how our

structure is different from the structure considered by him.

Let L = ((u1, v1), . . . , (ut, vt)) be a list of pairs of b-bit elements such that u1, . . . ut

are distinct and v1, . . . , vt are distinct. Let c < b be any positive integer. For any such

list of pairs, we write domain(L) = {u1, . . . , ut} and range(L) = {v1, . . . , vt}. Given such

a list we define a labeled directed graph GL over the set of vertices range(L) ⊆ {0, 1}b

as follows: A directed edge vi → vj with label x (also denoted as vi
x→ vj) is in the

graph if vi ⊕ x∥0c = uj. We can similarly extend this to a label walk W from a node

w0 to wk as

W : w0
x1→ w1

x2→ w2 · · ·
xk→ wk.

We simply denote it as w0
x−→ wk where x = (x1, . . . , xk). Here k is the length of

the walk. The set yieldc,k(L) consists of all possible labels x such that there exists a
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k-length walk of the form 0b x→ wk in the graph GL.

Consider the graph, GL. The configuration of a walk from w0 to wk is defined as

a tuple C = (C1, . . . , Ck) ∈ {0, 1}k where Ci = 0 if wi−1
xi−→ wi comes from a forward

primitive query and Ci = 1 if it corresponds to an inverse primitive query.

Mennink provided an upper bound of yieldc,k(L) by bounding the maximum number

of possible labeled walks from 0b to any given wk ∈ {0, 1}b with a given configuration

C.

The use of tools like multi-collision and the similarity in the data structure of [85]

with our multi-chain structure can be misleading. Here we try to discuss the difference

between them and show that the underlying motivation behind both the problems is

philosophically as different as possible.

Note that using a multi-chain structure, we try to bound the number of different

walks with the same label and distinct starting points whereas yieldc,k(L) is the number

of different walks with the same starting point namely 0b and distinct labels. Hence the

multi-chain structure deals with a different problem than yieldc,k(L). A notable change

in our work is to deal with multicollision of the sum of two permutation calls (we call

it meet in the middle multicollision, see definition of Wmitm). This computation is not

straightforward like usual computation of expectation of multi-collision (see Subsection

2.3.2).
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4.1 Introduction

In this chapter, we study a Sponge-type AEAD construction called Transform-then-Permute

(or TtP) with a generalization of the feedback function used in the duplexing interface.

We give tight security bound for the special case when the feedback function is invert-

ible. In Section 4.2 we define the Transform-then-Permute construction in details. In

Section 4.3, using the multi-chain security game from Section 3.1 we give a complete se-

curity proof of the AEAD security bound given in Theorem 5. In Section 4.4, we show

that the TtP generalization encompasses the feedback functions used in Sponge AE,

Beetle, SpoC etc. Particularly, Beetle and SpoC modes fall under the class where the

feedback functions are invertible, and hence for those modes, optimal AEAD security

is achieved. In Section 4.5 we extend our result for the general Sponge duplex construc-

tion. Finally, in Section 4.6, we give some attack strategies to justify the tightness of

our bounds.
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4.2 Transform-then-Permute Construction

In this section, we describe the Transform-then-Permute (or TtP in short) construction

in detail.

4.2.1 Parameters and Components

We first describe some parameters of our wide family of AEAD algorithms.

1. State-size: The underlying primitive of the construction is a b-bit public permu-

tation. We call b the state size of the permutation.

2. Key-size: Let κ denote the key-size. Here we assume κ < b.

3. Nonce-size: In this thesis, we consider fixed size nonce. Let ν denote the size of

nonce.

4. Rate: Let r, r′ ≤ b denote the rate of processing message and associate data

respectively. The capacity is defined as c := b− r.

Let N0 be the set of all non-negative integers and θ := b− κ− ν. For x ∈ N0, we define

a(x) :=


0 if x ≤ θ

⌈x−θ
r′
⌉ otherwise

Parsing Function: Let D = N∥A where N ∈ {0, 1}ν and A ∈ {0, 1}∗ with a :=

a(|A|).
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– Case |A| ≤ θ: parse(N,A) = D ∥ 0θ−|A| ∈ {0, 1}b−κ.

– Case |A| > θ: parse(N,A) := (IV,A1, . . . , Aa) where D = IV ∥D′, IV ∈ {0, 1}b−κ

and (A1, . . . , Aa)
r′← D′. Note that |D′| = |A| − θ and so when we parse D′ to

blocks of size r′, we get a(|A|) = ⌈ |A|−θ
r′
⌉ many blocks.

In addition to parsing N∥A, we also parse a message or ciphertext Z as (Z1, . . . , Zm)
r←

Z into m blocks of size r where m = ⌈|Z|/r⌉.

We define t := a + m to be the total number of blocks corresponding to an input

query of the form (N,A,Z).

Domain Separation: To every pair of non-negative integers (|A|, |Z|) with a = a(|A|),

m = ⌈|Z|/r⌉, and for every 0 ≤ i ≤ a + m, we associate a small integer δi where

δi =


0 if i ̸∈ {a} ∪ {t}

1 if (i = a ∧ r′ | |A| − θ) ∨ (i = t ∧ r | |M |)

2 otherwise.

We collect all these δ values through the following function DS(|A|, |Z|) = (δ0, δ1, . . . , δa+m).

Encoding Function: Let DDS := {0, 1}2 × {0, 1, 2} and rmax = max{r, r′}. Let

encode : {0, 1}≤rmax ×DDS → {0, 1}b

be an injective function such that for any D,D′ ∈ {0, 1}x, 1 ≤ x ≤ rmax and for all

∆ ∈ DDS, we have encode(D,∆)⊕ encode(D′,∆) = 0b−x∥(D⊕D′). Actual description
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of this encode function is determined by the construction.

Format Function: We define a formatting function Fmt which maps a triple (N,A,M)

to (D0, . . . , Da+m) ∈ ({0, 1}b)a+m+1 where a := a(|A|) and m = ⌈|Z|/r⌉. The exact de-

scription of format function is described in Algorithm 1.

Algorithm 1 Description of the format function (Fmt)
function Fmt(N,A,Z)

a← a(|A|), m← ⌈|Z|/r⌉
(A0, A1, . . . , Aa)← Parse(N,A)

(Z1, . . . , Zm)
r← Z

(δ0, . . . , δt)← DS(|A|, |Z|)
for i = 0 to a do

if i = a and m = 0 then

Di ← encode(Ai, (0, 1, δi))

else

Di ← encode(Ai, (0, 0, δi))

for i = 1 to m do

Da+i ← encode(Zi, (1, 0, δi+m))

return (D0, . . . , Dt)

Lemma 3. Given any two tuples (N,A,Z) ̸= (N ′, A′, Z ′) and Fmt(N,A,Z) = (D0, . . . , Dt)

and Fmt(N ′, A′, Z ′) = (D′0, . . . , D
′
a′+m′), we have

1. (D′0, . . . , D
′
a) ̸= (D0, . . . , Da) whenever (N,A) ̸= (N ′, A′) and a ≤ a′.

2. (D′a, . . . , D
′
t) ̸= (Da, . . . , Dt) whenever (N,A) = (N ′, A′) and m ≤ m′.

Proof. We write parse(N,A) = (A0, A1, . . . , Aa) and parse(N ′, A′) = (A′0, A
′
1, . . . , A

′
a′).

1. Let (N,A) ̸= (N ′, A′). Then we have (A0, A1, . . . , Aa) ̸= (A′0, A
′
1, . . . , A

′
a′). Now

if, a < a′ then we have Da = encode(Aa, 0, δ) where δ ∈ {1, 2} and D′a =
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encode(A′a, 0, 0). Hence by injectivity of encode we have Da ̸= D′a. If a = a′

then there exists non-negative i ≤ a such that Ai ̸= A′i and hence Di ̸= D′i.

2. Let (N,A) = (N,A′). Then we have (A0, Ai, . . . , Aa) = (A′0, A
′
i, . . . , A

′
a). Note

that m,m′ both cannot be 0. So if m = 0, then m′ > 0 =⇒ Da = encode(Aa, 0, δ)

for some δ ∈ {1, 2} and D′a = encode(Aa, 0, 0). Hence Da ̸= D′a. Let m,m′ > 0

then if, m < m′ then we have Dt = encode(Mm, 1, δ) where δ ∈ {1, 2} and

D′a = encode(M ′
m, 1, 0). Else if m = m′, then there exists positive i ≤ m such

that Mi ̸= M ′
i . Hence Da+i ̸= D′a+i.

Feedback functions: We also need some linear functions Lad, Le : {0, 1}b → {0, 1}b

which are used to process associate data and message respectively in an encryption

algorithm.

Now, given a linear function L : {0, 1}b → {0, 1}b, 1 ≤ x ≤ r, the following function

L′ : {0, 1}b × {0, 1}x × DDS → {0, 1}b × {0, 1}x, is used to process the j-th block Z

(either a plaintext or a ciphertext) using the output Y of the previous invocation of the

random permutation:

L′(Y, Z,∆) = (X := L(Y ) ⊕ encode(Z,∆), Z ′ := ⌈Y ⌉|Z| ⊕ Z)

For 1 ≤ i ≤ r, let Ld,i(x) := Le(x)⊕
(
0b−i∥⌈x⌉i

)
. Then, it is easy to see from the property

of encoding function that L′d,|C|(Y,C,∆) = (X,C) if and only if L′e(Y,M,∆) = (X,C).

Figure 4-1 provides an illustration how a message block is processed.
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ΠXold

⊕ M

C

Le ⊕

encode(M,∆)

Π

−r

−c

|
b Xnew

Ynew

Figure 4-1: Illustration of the feedback process for a message block M of |M | bits. Here
encode(M,∆) represents some encoding of |M | bits string to a b-bit string as described above
and Le is a linear transformation applied on b-bit strings.

ΠK∥N L′
ad

encode(A1,∆1)

L′
ad

encode(Aa,∆a)

Π L′
e

encode(M1,∆a+1)

C1

L′
e

encode(Mm,∆a+l)

Cm

Π T|
⌈·⌉τ

Figure 4-2: Schematic of the Transform-then-Permute AEAD mode. Here we assume |N | =
b−κ, L′ad(Y,A) = Lad(Y )⊕A. Lad, L

′
e, encode functions and ∆ values are as described before.

4.2.2 Description of the Transform-then-Permute AEAD

We describe the Transform-then-Permute construction in Algorithm 2 which generalizes

duplexing method used in sponge-type AEADs. Figure 4-2 illustrates a simple case

when |N | = b− κ.

4.2.3 Security Analysis of TtP

We prove the following result on the AE security of Transform-then-Permute when the

linear functions Ld,i and Le are invertible for all 1 ≤ i ≤ r. Let qp, qe and qd define the

number of primitive, encryption and decryption queries respectively by an adversary

and let σe and σd define all the data blocks processed, including nonce, associated data

and message, in those encryption and decryption queries, respectively.
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Algorithm 2 Description of Encryption/Decryption algorithms of the Transform-then-
Permute mode with Associated data. X = (x =? y : p, q) means X = p if x = y and
X = q otherwise.

1: function Enc(K,N,A,M)

2: a← a(|A|), m← ⌈|M |/r⌉
3: (D0, D1, . . . , Da+m)← Fmt(N,A,M)

4: (M1, . . . ,Mm)
r←M

5: X0 ← K∥0b−κ ⊕D0

6: Y0 ← Π(X0)

7: for i = 1 to a do

8: Xi ← Lad(Yi−1)⊕Di

9: Yi ← Π(Xi)

10: for j = 1 to m do

11: i = a+ j

12: Xi ← Le(Yi−1)⊕Di

13: Cj ←Mj ⊕ ⌈Yi−1⌉|Mj |

14: Yi ← Π(Xi)

15: T ← ⌈Ya+m⌉τ
16: return (C1∥ . . . ∥Cm, T )

1: function Dec(K,N,A,C, T )

2: a← a(|A|), m← ⌈|C|/r⌉
3: (D0, D1, . . . , Da+m)← Fmt(N,A,C)

4: (C1, . . . , Cm)
r← C

5: X0 ← K∥0b−κ ⊕D0

6: Y0 ← Π(X0)

7: for i = 1 to a do

8: Xi ← Lad(Yi−1)⊕Di

9: Yi ← Π(Xi)

10: for j = 1 to m do

11: i = a+ j

12: Xi ← Ld,|Ci|(Yi−1)⊕Di

13: Mj ← Cj ⊕ ⌈Yi−1⌉|Cj |

14: Yi ← Π(Xi)

15: T ← ⌈Ya+m⌉τ
16: return T ′ =? T : M1∥ . . . ∥Mm,⊥
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Theorem 5. Let TtP be a construction where Ld,i for all i ∈ [r] and Le are invertible.

For any (qp, qe, qd, σe, σd)-adversary A , we have

Advaead
inv-TtP(A ) ≤ σdmcoll(qp, 2

τ )

2c
+

σdmcoll(qp, 2
r)

2c
+

σdmcoll′(q2p, 2
b)

2c

+
qp
2κ

+
2qd
2τ

+
2σd(σ + qp)

2b
+

6σeqp
2b

+
2qpmcoll(σe, 2

r)

2c

+
qpmcoll(σe, 2

τ )

2b−τ +
σe + qp

2b
+

qpσdmcoll(σe, 2
r)

22c
.
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4.3 Proof of Theorem 5

The proof employs the coefficient H-technique of Theorem 2. To apply this method we

need to first describe the ideal world which basically tries to simulate the construction.

The real world behaves the same as the construction and would be described later. For

the sake of notational simplicity, we assume the size of the nonce is at most b−κ. Later

we mention how one can extend the proof when the nonce size is more than b− κ. We

also assume that the adversary makes exactly qp, qe, and qd many primitive, encryption,

and decryption queries respectively.

4.3.1 Ideal World and Real World

Online Phase of Ideal World. The ideal world responds to three oracles, namely

encryption queries, decryption queries, and primitive queries in the online phase.

(1) On Primitive Query (Wi, diri):

The ideal world simulates Π± query honestly.1 In particular, if diri = 1, it sets

Ui ← Wi and returns Vi = Π(Ui). Similarly, when diri = −1, it sets Vi ← Wi and

returns Ui = Π−1(Vi).

(2) On Encryption Query Qi := (Ni,Ai,Mi):

It samples Yi,0, . . . ,Yi,ti←$ {0, 1}b where ti = ai + mi, ai = a(|Ai|) and mi =

⌈ |Mi|
r
⌉. Then, it returns (Ci,1∥ · · · ∥Ci,mi

,Ti) where (Mi,1, . . . ,Mi,mi
)

r← Mi , Ci,j =

⌈Yi,ai+j−1⌉|Mi,j | ⊕Mi,j for all j ∈ [mi] and Ti ← ⌈Yi,ti⌉τ .

1For example, one can use lazy sampling to simulate random permutation.
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(3) On Decryption Query Qi := (N∗i ,A
∗
i ,C

∗
i ,T

∗
i ):

According to our convention we assume that the decryption query is always non-

trivial. So the ideal world returns abort symbol M∗i := ⊥.

Offline Phase of Ideal World. After completion of oracle interaction (the above

three types of queries possibly in an interleaved manner), the ideal oracle sets E , ,D,P

to denote the set of all query indices corresponding to encryption, decryption and

primitive queries respectively. So E ⊔ D ⊔ P = [qe + qd + qp] and |E| = qe, |D| = qd,

|P| = qp. Let the primitive transcript ωp = (Ui,Vi, diri)i∈P and let ω′p := (Ui,Vi)i∈P .

The decryption transcript ωd := (M∗i )i∈D where M∗i is always ⊥.

Now we describe some extended transcript (releasing additional information) for en-

cryption queries. It samples K←$ {0, 1}κ. For all i, let Fmt(Ni,Ai,Mi) = (Di,0, . . . , Di,ti)

and for every 0 ≤ j ≤ ti, the intermediate input (X-value) is defined as

Xi,j =


Di,0 ⊕K∥0b−κ if j = 0

Le(Yi,j−1)⊕Di,j if 1 ≤ j ≤ ti

The encryption transcript ωe = (Xi,jYi,j)i∈E,j∈[0..ti]. So, the transcript of the adversary

consists of ω := (Q,ωp, ωe, ωd) where Q := (Qi)i∈E∪D.

Real World. In the online phase, the AE encryption and decryption queries and

direct primitive queries are faithfully responded to based on Π±. Like the ideal world,

after the completion of interaction, the real world returns all X-values and Y -values

corresponding to the encryption queries only. Note that a decryption query may return

Mi which is not ⊥.
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4.3.2 Bad Transcripts

We define the bad transcripts into two main parts. We first define bad events due to

encryption and primitive transcript. The following bad events say that (i) there is a

collision among inputs/outputs of ωp and ωe (ii) there is a collision among input/outputs

of ωe. So, given that there is no such collision, all inputs and outputs are distinct and

hence ωe ∪ ωp is permutation compatible (can be realized by random permutation).

More formally, we define the following bad events:

B1: For some (U,V) ∈ ωp, K = ⌊U⌋κ.

B2: For some i ∈ E , j ∈ [ti], Yi,j ∈ range(ωp), (in other words, range(ωe)∩ range(ωp) ̸=

∅)

B3: For some i ∈ E , j ∈ [ti], Xi,j ∈ domain(ωp), (in other words, domain(ωe) ∩

domain(ωp) ̸= ∅)

B4: For some (i ∈ E , j ∈ [ti]) ̸= (i′ ∈ E , j′ ∈ [ti′ ]), Yi,j = Yi′,j′ ,

B5: For some (i ∈ E , j ∈ [ti]) ̸= (i′ ∈ E , j′ ∈ [ti′ ]), Xi,j = Xi′,j′ ,

Now we describe the bad event due to decryption queries. Suppose the bad events

(B1 ∨ · · · ∨ B5) as defined above due to encryption queries and primitives don’t occur

i.e. we have ωp ∪ ωe is permutation compatible. Suppose Π′ is the partially defined

permutation defined over the domain of ωp ∪ ωe and mapping the corresponding range

elements. For each decryption query Qi = (N∗i ,A
∗
i ,C

∗
i ,T

∗
i ), we compute ai = a(|A∗i |),

mi = ⌈|C∗i |/r⌉ and Fmt(N∗i ,A
∗
i ,C

∗
i ) = (D∗i,0, . . . , D

∗
i,ti

). We define p′i is the largest index

j for which the input Xj is in the domain of ωe ∪ ωp while we run the decryption
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algorithm using Π′ for Qi. Consider the case, p′i = ti i.e. the complete decryption

algorithm computation for the query is determined by the ωe ∪ ωp transcript. In such

a case we define bad (called mBAD) if the corresponding tag also matches. Note that

for this bad transcript the real world should not abort the decryption query. Now we

define all bad events in a more formal way.

Definition of pi. Before we define p′i, we first define pi which is the input index we can

compute for the decryption query only using encryption queries transcript. Formally,

pi is defined as −1 if for all i′ ∈ E , Ni′ ̸= N∗i . Otherwise, there exists a unique i′ ∈ E

such that Ni′ = N∗i (as we consider nonce-respecting adversary only). Let pi + 1 denote

the length of the longest common prefix of (Di′,0, · · · , Di′,ti′
) and (D∗i,0, · · · , D∗i,ti). Note

that pi = −1 in case there is no common prefix.

We now define Y∗i,0..pi = Yi′,0..pi , X
∗
i,0..pi

= Xi′,0..pi when pi ≥ 0 and

X∗i,pi+1 =


Le(Yi′,pi) ⊕ D∗i,pi+1 if pi ≥ 0.

K∥N∗i if pi = −1.

By Lemma 3, pi < ti, pi < ti′ . By definition of longest common-prefix, we have

X∗i,pi+1 ̸= Xi′,pi+1.

Definition of p′i. If pi < ai or if X∗i,pi+1 /∈ domain(ωp) define p′i = pi. Else, we further

extend X∗-values and Y∗-values based on the primitive transcript ωp. Let xi,j := D∗i,j

for all i ∈ D, 1 ≤ j ≤ ti. If there is a labeled walk (in the labeled directed graph

induced by ωp as described in Section 3.1 from Y∗i,pi+1 with label (xi,pi+2, . . . , xi,j) then
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we denote the end node as Y∗i,j. In notation we have

Y∗i,pi+1

(xi,pi+2,...,xi,j)−→ Y∗i,j.

Let p′i denote the maximum of all such possible j’s. For all those i and j in which Y∗i,j

has been defined as described above, we define X∗i,j+1 := Ld(Y
∗
i,j)⊕ xi,j+1.

Bad events due to the decryption queries in the transcript:

mBAD: For some i ∈ D with p′i = ti and ⌈Y∗i,ti⌉τ = T∗i .

B6: For some i ∈ D, p′i < ti and, X∗i,p′i+1 ∈ domain(ωe) ∪ domain(ωp).

We write BAD to denote the event that the ideal world transcript Θ0 is bad. Then, with

a slight abuse of notations and union bound, we have

BAD = mBAD ∪
( 6⋃

i=1

Bi

)
. (4.1)

Lemma 4 upper bounds the probability of mBAD and Lemma 5 upper bounds the prob-

ability of
⋃6

i=1 Bi. The proofs of Lemma 4 and 5 are postponed to Subsections 4.3.4

and 4.3.5, respectively.

Lemma 4. Let µqp be the maximum multi-chain advantage (see Subsection 3.2.1) over

qp primitive queries. Then, we have

Pr [mBAD] ≤
σd · µqp

2c
.
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Lemma 5. For qp < 2b−1, we have

Pr

[
6⋃

i=1

Bi

]
≤ qp

2κ
+

6σeqp
2b

+
2σ2

e

2b
+

σe + qp
2b

+
2qpmcoll(σe, 2

r)

2c

+
qpmcoll(σe, 2

r)

2b−τ +
qpσdmcoll(σe, 2

r)

22c
.

4.3.3 Good Transcript Analysis

The motivation for all the bad events would be clear from the understanding of a good

transcript (i.e., not a bad transcript). Let ω = (Q,ωp, ωe, ωd) be a good transcript. For

the sake of notation simply we ignore the query transcript Q as it is not required to

compute the probability of a transcript.

1. The tuples ωe is permutation compatible and disjoint from ωp. So union of tuples

ωe ∪ ωp is also permutation compatible.

2. Let D1 (type-1 decryption query) be the set of all i ∈ D, if p′i = ti with ⌈Y∗i,ti⌉τ ̸=

T∗i . In this case, decryption algorithm should abort with probability one. Set of

all other indices is denoted as D2 (type-2 decryption query). In this case, p′i < ti

but X∗i,p′i+1 ̸∈ domain(ωe∪ωp). So, Y∗i,p′i+1 value and subsequent Y -values will have

almost b-bit entropy. Thus, with a negligible probability we may not abort the

query.

Ideal World Interpolation Probability. Let Θ0 and Θ1 denote the transcript

random variable obtained in the ideal world and real world respectively. As noted

before, all the input-output pairs for the underlying permutation are compatible. In
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the ideal world, all the Y values are sampled uniform at random; the list ωp is just the

partial representation of Π; and all the decryption queries are degenerately aborted;

whence we get

Pr[Θ0 = ω] =
1

2bσe(2b)qp
.

Here σe denotes the total number of blocks present in all encryption queries including

nonce. In notation σe = qe +
∑

i mi.

Real World Interpolation Probability. In the real world, for ω we denote

the encryption query, decryption query, and primitive query tuples by ωe, ωd and ωp,

respectively. Then, we have

Pr[Θ1 = ω] = Pr[Θ1 = (ωe, ωp, ωd)]

= Pr[ωe, ωp] · Pr[ωd | ωe, ωp]

= Pr[ωe, ωp] · (1− Pr[¬ωd | ωe, ωp])

≤ Pr[ωe, ωp] ·

(
1−

∑
i∈D2

Pr[¬ωd,i | ωe, ωp]

)
(4.2)

Here we have slightly abused the notation to use ¬ωd,i to denote the event that the i-th

decryption query successfully decrypts and ¬ωd is the union ∪i∈D2¬ωd,i (i.e. at least

one decryption query successfully decrypts). The encryption and primitive queries are

mutually permutation compatible, so we have

Pr
Θ1

[ωe, ωp] = 1/(2b)σe+qp ≥ Pr
Θ0

[ωe, ωp].

Now we show an upper bound PrΘ1 [¬ωd,i | ωe, ωp] ≤ 2(σ+qp)

2b
+ 2

2τ
for every type-2

decryption query. We quickly recall that Fmt(N∗i ,A
∗
i ,C

∗
i ) = (D∗i,0, . . . , D

∗
i,ti

). So, ¬ωd,i
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is same as ⌈Π(X∗i,ti)⌉τ = T∗i where X∗i,j values have been defined recursively as follows

X∗i,j = Ld

(
Π(X∗i,j−1)

)
⊕D∗i,j, p′i + 1 < j ≤ ti.

Let I and O denote the set of inputs and outputs for Π which are present in the

transcript (ωe, ωp). Recall that X∗i,p′i+1 is fresh, i.e., X∗i,p′i+1 ̸∈ I.

Claim 1. Pr
[
X∗i,j is fresh

]
≥ (1− 2(σe+qp+ti)

2b
) ∀ p′i + 1 < j ≤ ti.

Proof. Since X∗i,p′i+1 is not the last block, then the next input block may collide with

some encryption or primitive input block with probability at most σe+qp
2b−σe−qp . Applying

this same argument for all the successive blocks till the last one, we get that if none of

the previous block input collides then the probability that the last block input collides

is at most
(σe+qp+ti−p′i+2)

2b−σe−qp−ti+p′i+2
≤ 2(σe+qp+ti)

2b
.

Claim 2. Pr[¬ωd,i | X∗i,j are fresh ] ≤ 2
2τ

.

Proof. Since the last input block X∗i,ti is fresh, hence Π(X∗i,ti) = T∗i with probability at

most 2/2τ (provided σe + qp ≤ 2b−1 which can be assumed, since otherwise our bound

is trivially true).

Let Ej denote the event that X∗i,j is fresh and E := ∧tij=p′i+1Ej

Using the claims, we have

Pr
Θ1

[¬ωd,i | ωe, ωp] ≤ Pr
Θ1

[¬ωd,i ∧ E | ωe, ωp] + Pr[Ec].

≤ 2

2τ
+

ti∑
j=p′i+1

σd + σe + qp
2b−1 .
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The last inequality follows from the above claims. Now, we can proceed by using the

union bound as follows.

Pr[¬ωd | ωe, ωp] ≤
∑
i∈D

2ti(σe + qe + σd)

2b
+

2

2τ

≤ 2σd(σe + σd + qp)

2b
+

2qd
2τ

=
2σd(σ + qp)

2b
+

2qd
2τ

Finally, Theorem 5 follows from the H-technique (Theorem 2) combined with Theorem

3, Lemma 4, Lemma 5 and Eq. (4.2).

Remark 4. As described in the algorithm, in the case where nonce size is greater than

b− κ, we treat the excess length of the nonce as part of the associated data. For such a

TtP construction the internal values of the encryption transcripts are chosen in a prefix

respecting manner. Suppose the i, i′-th queries (Di,0, . . . , Di,ti) and (Di′,0, . . . , Di′,tj)

have a maximum common prefix of length pi and let without loss of generality i < i′.

Then we set Yi,j = Yi′,j and Xi,j = Xi′,j∀0 ≤ j ≤ pi. The rest of the proof remains the

same.

4.3.4 Proof of Lemma 4 (Multi-chain Bad Transcript Analysis)

Suppose the event holds for the i-th decryption query and N∗i = Ni′ . So,
(
X∗i,pi+1,Y

∗
i,pi+1

)
must be the one of the starting node of the multi-chain. Hence as in Definition 2,

if (U, V ) be any other starting node of the multi-chain, then we must have ⌈U⌉r =

⌈X∗i,pi+1⌉r. Now as before , let Wti−pi denote the maximum size of the set of multi-chain
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of length ti − pi, induced by Ld and ωp. As ⌊Yi′,pi⌋c is chosen at random (and inde-

pendent of ωp), and C∗i,pi+1 is fixed, the probability to hold mBAD for i-th decryption

query is at most Wmi
/2c given the transcript ωp. So by union bound, the conditional

probability Pr[mBAD | ωp] ≤
∑

i∈D
Wmi

2c
.

Since the decryption query data complexity of the adversary is bounded by σd blocks

we have
∑

i∈Dmi ≤ σd. Now,

∑
i∈D

Wmi
≤
∑
i∈D

(
max
k≤mi

Wk

k
×mi

)
≤ max

k

Wk

k
× σd.

Hence,

Pr [mBAD] ≤
∑
i∈D

Ex [Wmi
]

2c
≤ max

k
Ex

[
Wk

k

]
× σd

2c
≤

σd · µqp

2c
.

4.3.5 Proof of Lemma 5 (Bad Transcript Analysis)

From the union bound we have

Pr

[
6⋃

i=1

Bi

]
≤ Pr [B1] + Pr [B2] + Pr [B3|¬B1] + Pr [B4]

+ Pr [B5] + Pr [B6|¬B1].

It is sufficient to upper bound each of these individual probabilities. We bound the

probabilities of these events in the following:

Bounding Pr[B1]: This is basically the key recovery event, i.e., the event that the ad-
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versary recovers the master key K by direct queries to the internal random permutation

(can be both forward or backward). For a fixed entry (U,V) ∈ ωp, the probability that

K = ⌊U⌋κ is bounded by at most 2−κ, as K is chosen uniform at random from {0, 1}κ.

Thus, we have

Pr[B1] ≤ qp
2κ

.

Bounding Pr[B2] : This event can be analyzed in several cases as below:

Case 1: ∃i, j, a, Yi,j = Va, encryption after primitive: Since Yi,j are chosen uniformly at

random, this case can be bounded for fixed i, j, a with probability at most 1/2b. We

have at most σe many (i, j) pairs and qp many a indices. Hence this case can be bounded

by at most σeqp/2b.

Case 2: ∃i, j, a, Yi,j = Va, dira = +, encryption before primitive: This case can be bounded

by probability at most 1/(2b − qp + 1). We have at most σe many (i, j) pairs and qp

many a indices. Thus this can be bounded by at most σeqp/(2b − qp + 1) ≤ 2σeqp/2b

(as qp ≤ 2b−1).

Case 3: ∃i, j ̸= ti, a, Yi,j = Va, dira = −, encryption before primitive: Here the adver-

sary has access to ⌈Yi,j⌉r, as this value has already been released. Let Φout denote the
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number of multicollisions among all ⌈Yi′,j′⌉r values. Now, we have

Pr[Case 3] =
∑
Φout

Pr[Case 3 | Φout] · Pr[Φout]

≤
∑
Φout

Φout × qp
2c

· Pr[Φout]

≤ qp
2c
× Ex [Φout]

≤ qpmcoll(σe, 2
r)

2c
.

Case 4: ∃i, a, Yi,ti = Va, dira = −, encryption before primitive: This case is same as

case-3 plugging in r as τ and c as b− τ . So, Pr[Case 4] ≤ qpmcoll(σe,2τ )

2b−τ .

By using the union bound, we have

Pr[B2] ≤ 3σeqp
2b

+
qpmcoll(σe, 2

r)

2c
+

qpmcoll(σe, 2
τ )

2b−τ .

Bounding Pr[B3|¬B1] : This means ∃i, j, a, Xi,j = Ua where j > 0 (as B1 does not

hold). So, we can have the following cases with j > 0:

Case 1: ∃i, j, a, Xi,j = Ua, encryption after primitive: This case can be bounded by prob-

ability at most 1/2b, as Yi,j−1 is chosen uniform at random and Le in invertible. We

have at most σe many (i, j) pairs and qp many a indices. Thus this can be bounded by

at most σeqp/2b.

Case 2: ∃i, j, a, Xi,j = Ua, dira = −, encryption before primitive: This case can be bounded

by probability at most 1/(2b − qp + 1). We have at most σe many (i, j) pairs and qp

many a indices. Thus this can be bounded by at most 2σeqp/2b.
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Case 3: ∃i, j, a, Xi,j = Ua, dira = +, encryption before primitive: Since Le is invertible,

we can define V′ = L−1e (Ua⊕Dj). Then using the invertibility of Le we have this event

is same as the event ∃i, 0 < j, Yi,j−1 = V′ for some V′ ∈ ωp. Since j ≤ ti we have this

event is the same as Case 3 of B2. Hence,

Pr[Case 3] ≤ qpmcoll(σe, 2
r)

2c
.

Pr[B3|¬B1] ≤ 3σeqp
2b

+
qpmcoll(σe, 2

r)

2c
.

Bounding Pr[B4] and Pr[B5]: The probability of this event can be simply bounded

by birthday paradox and so it is at most σe(σe − 1)/2b.

Bounding Pr[B6|¬B1]: This event can be analyzed in several cases.

Case 1 p′i < ai: Since during associated data processing no information is leaked to the

adversary and Y ∗i,j-s are sampled uniformly at random hence for p′i < ai , the distribution

function of X∗i,p′i+1 = Y ∗i,p′i
⊕D∗i,p′i+1 is uniform. Hence

Pr [Case 1] ≤ σe + qp
2b

.

Case 2 ai ≤ pi ≤ p′i: This corresponds to the case when either the first non-trivial de-

cryption query block doesn’t match any primitive query or it matches a primitive query

and follows a partial chain and then matches with some encryption query block. Do-

ing similar analysis as in Case 3 of B3|¬B1, The probability that this happens for i-th

decryption is at most qp/2c × miΦout/2c. Summing over all i ∈ D, the conditional
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probability is at most qpσdΦout

22c
. By taking expectation we obtain the following:

Pr[Case 3] ≤ qpσdmcoll(σe, 2
r)

22c
.

Pr [B6|¬B1] ≤ σe + qp
2b

+
qpσdmcoll(σe, 2

r)

22c
.

By adding all these probabilities we prove our result.

4.4 Instantiating TtP and Application of Theorem

5

Now, we describe how Transform-then-Permute can capture a wide class of permutation-

based sequential constructions such as duplex (or Sponge AE), Beetle, and SpoC, in

which the only non-linear operation is the underlying permutation. We further show

that Beetle and SpoC fall under a special class of TtP constructions where the feedback

functions are invertible and hence we can apply Theorem 5 in those cases. Finally, we

discuss the case of Sponge AE which doesn’t belong to this special class.
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4.4.1 How to Convert a Generalized Sponge-type Construction

to TtP

Let L : {0, 1}b × {0, 1}r → {0, 1}b × {0, 1}r be any linear function defined by the

transformation matrix L =

L1,1 L1,2

L2,1 L2,2

 consisting of b × b matrix L1,1, b × r matrix

L1,2, r× b matrix L2,1, r× r matrix L2,2. Consider the Sponge-type construction which

takes state input Xi and data input Mi and generate the data output Ci and next state

input Xi+1 as follows:

Yi = Π(Xi);

Xi+1

Ci

 = L ·

 Yi

Mi


As L2,1 · Y + L2,2 ·M = C, the rank of L2,2 must be r, otherwise encryption is not a

bijective function from message space to ciphertext space. For the sake of simplicity we

can assume that L2,2 = Ir (the identity matrix of size r). Otherwise, we can redefine

message block as M ′ = L2,2 ·M .

Now, we observe that rank of L2,1 is r. If not, then there exists a non-zero vector γ

such that γ · L2,1 = 0. Hence, γ ·M = γ · C holds with probability 1. In case of ideal

permutation as γ is non-zero and C is chosen uniformly independent of M , this event

occurs with probability 1
2
. Hence the privacy advantage of any adversary for such a

construction will be ≥ 1
2
. As rank of L2,1 is r, there exists an invertible matrix Zb×b

such that L2,1 · Z = Ir∥0r×(b−r). Let Le = L1,1 · Z. Then by simple matrix algebra we
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have Xi+1

Ci

 =

 Le L1,2

Ir∥0r×(b−r) Ir

 ·
Y ′i
Mi


where Y ′i = Z−1 ·Yi. Note that, multiplication by an invertible matrix is a permutation

and composition of a random permutation with a public permutation is again a random

permutation. Hence, we can redefine the random permutation output as Z−1 · Π(Xi).

Let us denote encode(M) = L1,2 ·M and hence the general linear function based Sponge-

type construction boils down to the construction TtP.

4.4.2 New Improved Security of Beetle

In Beetle [35], the linear function Le is defined as Le(y∥x1∥x2) 7→ (y∥x2∥x2⊕x1), where

(y, x1, x2) ∈ {0, 1}c × {0, 1}r/2 × {0, 1}r/2. The linear function Ld,i is defined by

Ld,i(y∥x1∥x2) =


(y∥x2∥⌊x2 ⊕ x1⌋r/2−i∥⌈x1⌉i) for 0 ≤ i ≤ r/2

(y∥⌊x2⌋r−i∥⌈x2 ⊕ x1⌉i−r/2∥x1) for r/2 ≤ i ≤ r

,

where (y, x1, x2) ∈ {0, 1}c × {0, 1}r/2 × {0, 1}r/2. Clearly the Le and Ld,i functions are

invertible for all 0 ≤ i ≤ r. Further, they have full rank.

Remark 5. The PHOTON-Beetle [9] design which is a finalist in the NIST LwC stan-

dardization process uses a feedback function that is a linear transformation of the feed-

back function of Beetle [35]. By applying the conversion method as described in Sub-

section 4.4.1 the PHOTON-Beetle design can be viewed as a TtP design with the same

linear function Le as described above.
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Previous Bound: In [35], the authors proved that for any (qp, qe, qd, σe, σd)-adversary

A ,

Advaead
Beetle(A ) ≤ 2(σe + qp)σd

2b
+

(
σe + qp

2r−1 +
qp
2c

)r

+
rσd

2c
+

qv
2r
. (4.3)

The primary version of PHOTON-Beetle [9] has r = τ = c = 128 and b = 256. Compar-

ing with the σ and qp values prescribed by NIST we have 2r = 2τ ≥ qp ≥ σ and 2b ≥ b2q2p.

The secondary version of PHOTON-Beetle [9] has r = 32, c = 224, τ = 128 and b = 256.

Comparing with the σ and qp values prescribed by NIST we have 2τ ≥ qp ≥ σ, σ ≥ 2r

and 2b ≥ b2q2p.

By Eq. 4.3 the advantage of Beetle is bounded by
( qp
2r−1

)r
. So, for Beetle to be

secure, r has to be large. It can be noticed that the primary version of PHOTON-Beetle

has r = 128 > 112. Hence by Eq. 4.3, it is secure within the NIST LwC requirements.

For secondary version of PHOTON-Beetle, we have r = 32 < 112 and hence Eq. 4.3

does not guarantee the security for this version under NIST LwC requirements.

New Improved Bound: Since the feedback function of Beetle is invertible, we can

apply Theorem 5. Specifically, we have

Corollary 4. For any (qp, qe, qd, σe, σd)-adversary A , its AEAD advantage against the

primary version of PHOTON-Beetle is as follows

Advaead
PHOTON-Beetle(A ) ≤ 4τσd

2c
+

4rσd

2c
+

4bσd

2c
+

qp
2κ

+
2qd
2τ

+
2σd(σ + qp)

2b
+

6σeqp
2b

+
8rqp
2c

+
4τqp
2b−τ +

σe + qp
2b

+
4rqpσd

22c
.

The AEAD advantage of A against the secondary version of PHOTON-Beetle is as
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follows

Advaead
PHOTON-Beetle(A ) ≤ 4τσd

2c
+

4σd · qp
2b

+
4bσd

2c
+

qp
2κ

+
2qd
2τ

+
2σd(σ + qp)

2b
+

16σeqp
2b

+
4τqp
2b−τ +

σe + qp
2b

+
5qpσdσe

2b+c
.

Corollary 4 follows from Theorem 5, and Proposition 4 and 5. Further, using the

relation that σ ≤ qp (as per NIST LwC requirements) we can bound the advantage in

case of primary version as,

Advaead
PHOTON-Beetle(A ) ≤ qp

2κ
+

13rqp
2c

,

and the secondary version as,

Advaead
PHOTON-Beetle(A ) ≤ qp

2κ
+

17qpσ

2b
.

Clearly, by this new improved security bound, it is proved that both the primary and

the secondary version of PHOTON-Beetle are secured under the NIST requirements.

The major difference between our analysis and the analysis of [35] is that we use the

expected number of multi-chains to bound the security of Beetle, whereas in [36], it was

only done using multicollision probability at the rate part. This is the reason why our

new bound is much tighter than the existing one.
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4.4.3 Security of SpoC

In SpoC [2], the linear function Le is identity, and the linear function Ld is defined by

the mapping L(x, y) 7→ (x, x∥0c−r⊕ y), where (x, y) ∈ {0, 1}r×{0, 1}c. Clearly, Le and

Ld functions are involutions, and hence invertible. Further, it is easy to check that they

have full rank.

Corollary 5. For any (qp, qe, qd, σe, σd)-adversary A , the AEAD advantage of A against

the primary version of SpoC is given by,

Advaead
SpoC(A ) ≤ 5qpσd

2c+τ
+

5qpσd·
2b

+
4b3q2pσd

2b+c
+

qp
2κ

+
2qd
2τ

+
2σd(σ + qp)

2b

+
6σeqp

2b
+

8rqp
2c

+
4τqp
2b−τ +

σe + qp
2b

+
4rqpσd

22c

Corollary 5 follows from Theorem 5, and Proposition 4 and 5. The primary version of

SpoC mode of AEAD has r = τ = 64, b = 192. Using the NIST prescribed values of σ

and qp we have σ < 2r but 2r = 2τ ≤ qp and 2b ≤ b2q2p. Further, using the relation that

σ ≤ qp (as per NIST LwC requirements) we can bound the advantage as,

Advaead
SpoC(A ) ≤ qp

2κ
+

2σ

2τ
+

13qpσ

2b
.

4.4.4 Interpretation of Corollary 4 and 5 in Lieu of NIST LwC

Keeping in mind the NIST LwC requirement of time complexity qp = 2112 and data

complexity rσ = 253 we try to find out the smallest possible permutation under which
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the Beetle and SpoC modes can achieve security. We take 2r ≤ σ ≤ qp ≤ 2c. We further

assume that σ ≤ 2τ ≤ qp and 2b ≤ b2q2p. Then, by applying Proposition 4 and 5 to

simplify and improve the bounds in Corollary 4 or 5, we have

Advaead
SpoC/Beetle(A ) ≤ qp

2κ
+

2σ

2τ
+

17σqp
2b

.

It can be easily verified that Beetle and SpoC instantiated with a permutation of size

at least 165-bit with a r = 32-bit rate can achieve security close to the NIST LwC

requirements. For instance, Beetle and SpoC instantiated with the 176-bit permutation

from the SPONGENT family [26] achieves NIST LwC requirements. Further, we note

that there could be a possibility to further reduce the constants appearing in the above

expression using a finer analysis. Specifically, if we ignore the constants, a 160-bit

permutation with a r = 32-bit rate suffices for NIST LwC requirements.
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4.5 Sponge as a Transform-then-Permute Mode

Note that the general Sponge construction can be viewed as an instantiation of TtP. In

case of the original Sponge construction, the Ld function is defined by Ld(x, y) 7→ (0r, y)

where (x, y) ∈ {0, 1}r × {0, 1}c. Note that the Ld function is not invertible. Hence the

results of Theorem 3 can not be applied in case of original Sponge. However since Le

is invertible, with a similar analysis as in the case of TtP we get,

Corollary 6. For any (qp, qe, qd, σe, σd)-adversary A , its AEAD advantage against the

general Sponge is given by

Advaead
Sponge(A ) ≤

σd · µqp

2c
+

qp
2κ

+
2qd
2τ

+
2σd(σ + qp)

2b
+

6σeqp
2b

+
2qpmcoll(σe, 2

r)

2c

+
qpmcoll(σe, 2

τ )

2b−τ +
σe + qp

2b
+

qpσdmcoll(σe, 2
r)

22c
.

Bounding µqp in the case of Sponge is an interesting problem that we deal with next.

We must mention that it seems very hard to have a tight estimate of µqp for Sponge

AEAD. A straightforward estimate of µqp leads to the known security bound of σdqp/2c.

Hence to bound µqp for the general Sponge AEAD we start by defining a new type of

graph structure called ”the query graph structure”.
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4.5.1 Query Graph Structure

Let b > c be two integers and L = {(U1, V1), (U2, V2), . . . , (UT , VT )} ⊆ {0, 1}b × {0, 1}c

be a set of tuples such that for all i ̸= j, Ui ̸= Uj. We consider a directed graph GL (

denoted simply as G whenever L is understood from the context) with set of vertices

V (GL) = range(L) ∪ {⌈U⌉c | U ∈ domain(L)}, label set {0, 1}b−c and the set of all

labeled edges of the form u
x−→ v for all (u∥x, v) ∈ L. Given u0, ul ∈ V (G) we define

a directed walk of length l with label (x1, . . . , xl) ∈ {0, 1}(b−c)l from u0 to ul if and

only if there exists vertices u1, . . . , ul−1 ∈ V (G) such that for all i ∈ {1, . . . , l} we have

ui−1
xi−→ ui. We denote this walk by

u0
x1−→ u1

x2−→ · · · xl−1−→ ul−1
xl−→ ul

or we simply write u0
x−→ ul where x := (x1, . . . , xl). Given u, v ∈ V (G) we define the

distance between u and v as length of the shortest walk from u to v and denote it by

d(u, v). In notation,

d(u, v) := min
{
l ∈ N | ∃(x1, . . . , xl); u

x1,...,xl→ v in G
}
.

Definition 4. Given a directed graph G, a vertex v ∈ V (G) is called a collision point

if there exists vertices u, u′ ∈ V (G) and labels x, x′ ∈ {0, 1}b−c, u∥x ̸= u′∥x′ such that

u
x→ v and u′

x′
→ v in G.

Definition 5. A vertex u ∈ V (G) is called a collision vertex if for some

x1, . . . , xl ∈ {0, 1}b−c and some collision point v ∈ V (G) there exists a walk u
x1,...,xl−→ v.

We say v is a collision point of u.
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Definition 6. Let u be any collision vertex in G. Note that u may have multiple

collision points. Define the degree of a collision vertex as its distance from its nearest

collision point. In notation,

degree(u) = min{d(u, v) | v is a collision point of u}.

Lemma 6. Let λk denote the number of collision vertices of degree k in V (G). Then,

λk+1 ≤ λk ∀k ∈ N.

Proof. First, we show that for each collision vertex of degree k+1 there exists a collision

vertex of degree k. Consider a collision vertex u ∈ V (G) of degree k+1 ∈ N with nearest

collision point v ∈ V (G). Let u
x1→ u1

x2→ · · · xk+1→ v be the walk of length k + 1 from u

to v. Then by definition, none of u1, . . . , uk is a collision point. Hence u1 is a collision

vertex of degree ≤ k. Now suppose u1 is a collision vertex of degree l < k. Let v′ be the

nearest collision point of u1. Then, there exists a walk u1
(y1,...,yl)−→ v′ in G for some labels

y1, . . . , yl ∈ {0, 1}b−c. But then u
(x1,y1,...,yl)−→ v′ in G. Hence u has degree l + 1 < k + 1,

a contradiction. Hence u1 has degree k.

Further, if u′ is another collision vertex of degree k + 1 in G with nearest collision

point v1, then u1 can’t be a vertex in the u′ to v1 walk. This is because d(u′, u1) ̸= 1

since d(u, u1) = 1 and u1 is not a collision point, and if 1 < d(u′, u1) < k + 1, then

d(u1, v
′) < k and hence u

x1→ u1
y−→ v′ is a path from u to v′ in G of length < k + 1

implying u is a collision vertex of degree < k + 1, a contradiction.

Hence we have an injective mapping from the set of collision vertices of degree k+ 1

to the set of collision vertices of degree k in G, and the lemma is proved.
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4.5.2 Query Graph Security Games

Π

x1

u0
Π

x2

u1 u2
Π

xl

ul−1 ul

f

x1

u0 f

x2

f

xl

u1 u2 ul−1 ul

Figure 4-3: Labeled walks of length l in query graph GΩ: u0
(x1,...,xl)−−−−−−→ ul. Here the adversary

A is interacting with a random permutation Π or a random function f .

Consider an adversary A which makes T forward/backward queries to a random

permutation Π : {0, 1}b → {0, 1}b. Let the query transcript be of the form Ω′ =

{(Ui,Wi, diri)}Ti=1, where diri = + if the i th query is a forward one and diri = −

otherwise. Define Ω = {(Ui, Vi, diri)}Ti=1 where Vi = ⌈Wi⌉c for all i ∈ [T ]. As above, we

may sometimes omit the + sign when we mean only forward queries and the notation

Ω to also denote the set {(Ui, Vi)}Ti=1.

Let S denote the set of all pairs of distinct indices such that there is a collision due

to forward queries in range(Ω), where Ω can be either of the above query transcripts.

In notation,

S :=
{
{i, i′}

∣∣ (Ui, Vi,+), (Ui′ , Vi′ ,+) ∈ Ω; i ̸= i′; Vi = Vi′
}
.
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Proposition 9. Ex [|S|] ≤ T 2

2c+1 .

Proof. For each i ̸= i′ ∈ [T ], define

Ii,i′ =


1 if {i, i′} ∈ S

0 otherwise.

Then,

Ex [|S|] = Ex

 ∑
i,i′∈[T ]

I{i,i′}


=
∑

i,i′∈[T ]

Ex
[
I{i,i′}

]
≤

∑
i ̸=i′∈[T ]

Pr [Vi = Vi′ ]

≤ T 2

2c+1
.

Now we consider the directed graph GΩ for both the transcripts and have a look at

their collision vertices. In this case, since the adversary can make adaptive backward

queries, every vertex of V (GΩ) can be a collision vertex with a probability of 1. Hence

we are not interested in estimating the number of collision vertices in the whole of the

query graph. Instead, we consider a particular family of subgraphs of the query graph

with a fixed set of labels and try to estimate the expected number of collision vertices

in each of these subgraphs.

For any set of labels χ := {xi

∣∣xi ∈ {0, 1}b−c ∀i ∈ [l]} define Gχ ⊆ GΩ to be the
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subgraph generated by the labels in χ. Our objective is to bound the number of collision

vertices in Gχ for any χ ⊆ {0, 1}b−c. To do this, we start by defining a bad event with

respect to the query transcript Ω.

BBAD : There exists x ∈ χ and {(Ui1 , Vi1 ,−), . . . , (Uin1+1 , Vin1+1 ,−)} ⊆ Ω such that

⌊Uik⌋b−c = x for all k ∈ [1, n1 + 1].

Proposition 10. (bounding BBAD)

Pr [BBAD] ≤ mcoll(T, 2b−c)

n1

.

Proof. This follows from the definition of mcoll(T, 2b−c) and Markov’s inequality.

Proposition 11. Given any χ ⊆ {0, 1}b−c, let ξχk be the number of collision vertices of

degree k in the directed graph Gχ as defined above. If BBAD doesn’t occur, then

Ex [ξχk ] ≤ 2n1|χ|+
T 2

2c
.

Proof. We start by bounding the number of collision vertices of degree 1.

Consider the subgraph Gf of G corresponding to only the forward queries. Observe

that since the adversary has control over Ui for all the forward queries, it can restrict

its forward queries in such a way that every edge in Gf has a label in the set χ i.e. Gf

is a subgraph of Gχ.

Now a vertex u ∈ V (Gf ) is a collision vertex of degree 1 in Gχ if and only if one of

the following events occurs.

• u is a collision vertex of degree 1 in Gf . A similar analysis as before bounds the
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number of such u by 2|S|.

• u is not a collision vertex of degree 1 in Gf but there exists an edge u
x→ v in Gf

and a backward query of the form (Ui, v,−) ∈ Ω with ⌊Ui⌋b−c ∈ χ. Since BBAD

doesn’t occur number of such u is bounded above by n1 · |χ|.

Since BBAD doesn’t occur we have |V (Gχ) \ V (Gf )| ≤ n1l.

Hence we have ξχ1 ≤ 2n1 · |χ|+ 2|S|. Using Lemma 6, Proposition 9 and linearity of

expectation we get Proposition 11.
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4.5.3 Bounding µqp for Sponge AEAD

Given any AEAD adversary A of Sponge, let Θ := {(Ui, Vi, diri)}i∈[qp] denote the

primitive transcript received by A . By abuse of notation let Θ also denote the set

{(Ui, Vi)}i∈[qp]. Let L : {0, 1}b → {0, 1}b be the linear function defined by L(v) =

⌈v⌉c∥0b−c. Consider the multichain graph GΘ generated by the linear function L in Θ.

Note that if a set of walks {W1, . . . ,Wp} is a multi-chain then so is any subset of it.

Also there can be different multi-chains depending on the starting and ending vertices

and different x = (x1, . . . , xk).

Note that in the security proof of TtP, the analysis of multi-chain graph appears

only in the analysis of decryption query (see Section 4.3.4). In the last block processing

the most significant c bits of the previous chain output is simply xor-ed with a constant

(which depends on the Sponge construction and not on the ciphertext) before forwarding

as the last chain input. Hence while bounding µqp in Corollary 6, it is enough to

consider only the multi-chains in GΘ with labels (x1, . . . , xk), k ≤ σd such that ⌈xj⌉c =
δM if j = k

0c otherwise.

.

We redefine Wk to denote the maximum order of all such multi-chains of length

k ≤ σd.

µqp := max
A

max
k≤σd

Ex

[
Wk

k

]
.

Finally, we define an event we call TBAD.
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TBAD : There exists x ∈ {0, 1}b−c and

{(Ui1 , Vi1 ,−), . . . , (Uin2+1 , Vin2+1 ,−)} ⊆ Θ

such that ⌊Uik⌋b−c = x for all k ∈ [1, n1 + 1].

Lemma 7.

Pr [TBAD] ≤ mcoll(qp, 2
b−c)

n2

.

Proof. This follows from the definition of mcoll and Markov’s inequality.

Given a fixed label (x1, . . . , xk) k ≤ σd and p ∈ N, let {V j
0

(x1,...,xk)−→ V j
k }j∈[p] be a

multi-chain of length k. Let x0 := ⌊V j
0 ⌋b−c, vk := ⌊V j

k ⌋τ .

Define χ = {x0, ⌊x1⌋b−c, . . . , ⌊xk−1⌋b−c}. Then |χ| ≤ σd.

Now consider the query graph Gχ
Ω generated by ω = {(U, ⌈V ⌉c) | (U, V ) ∈ Θ}.

Proposition 12. If TBAD doesn’t occur in Θ and BBAD doesn’t happen in Ω then

µqp ≤ 2n1σd + n2 +
q2p
2c

+ mcoll(qp, 2
τ ).

Proof. Note that V
x→ V ′ in GΘ, such that ⌈x⌉c = 0 implies ⌈V ⌉c

⌊x⌋b−c→ ⌈V ′⌉c in Gχ
Ω.

Hence for each j ∈ [p] there exist a unique walk ⌈V j
0 ⌉c

(x0,⌊x1⌋b−c,...,⌊xk−1⌋b−c)−→ vj in Gχ
Ω

such that (vj∥0b−c ⊕ xk, V
j
k ) ∈ Θ.

Let v ∈ {0, 1}c be such that (v∥0b−c ⊕ xk, ∗∥vk) ∈ Θ. Then v must satisfy one of

the conditions bellow:

• for all j ∈ [p], vj ̸= v.
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• There exists j ∈ [p] such that vj = v is a collision point in Gχ
Ω.

• There exists j ∈ [p] such that vj = v is not a collision point in Gχ
Ω.

Note that if vj = v for some j ∈ [p] is a collision point in Gχ
Ω then ⌈V j

0 ⌉c is a collision

vertex of degree ≤ k− 1 in Gχ
Ω. Again if vj = v for some j ∈ [p] is not a collision point

in Gχ
Ω then ⌈V j

0 ⌉c ̸= ⌈V
j′

0 ⌉c for all j′ ̸= j ∈ [p]. Hence,

p ≤
∣∣{v ∈ {0, 1}c | (v∥0b−c ⊕ xk, ∗∥vk) ∈ Θ}

∣∣+
∑

k′≤k−1

ξχk′ .

Since {V j
0

(x1,...,xk)−→ V j
k }j∈[p] is any arbitrary multi-chain of length k in GΘ we have,

for all k,

Wk ≤
∣∣{v ∈ {0, 1}c | (v∥0b−c ⊕ xk, ∗∥vk) ∈ Θ}

∣∣+ (k − 1)ξχ1 .

Hence,

µqp ≤ Ex
[∣∣{v ∈ {0, 1}c | (v∥0b−c ⊕ xk, ∗∥vk) ∈ Θ}

∣∣]+ Ex [ξχ1 ]. (4.4)

Now it remains to bound Ex
[∣∣{v ∈ {0, 1}c | (v∥0b−c ⊕ xk, ∗∥vk) ∈ Θ}

∣∣].
Lemma 8. If TBAD doesn’t occur in Θ then,

Ex
[∣∣{v ∈ {0, 1}c | (v∥0b−c ⊕ xk, ∗∥vk) ∈ Θ}

∣∣] ≤ n2 + mcoll(qp, 2
τ ).
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Proof. Since TBAD doesn’t occur in Θ,

∣∣{v ∈ {0, 1}c | (v∥0b−c ⊕ xk, ∗∥vk,−) ∈ Θ}
∣∣ ≤ n2.

Now, by the definition of mcoll(qp, 2
τ ),

∣∣{v ∈ {0, 1}c | (v∥0b−c ⊕ xk, ∗∥vk,+) ∈ Θ}
∣∣ ≤ mcoll(qp, 2

τ ).

Proposition 12 follows from Eq. 4.4, Proposition 11 and Lemma 8.

4.5.4 Security Bound for Sponge AEAD

Consider any AEAD adversary making qp permutation queries, qe encryption queries

with a total number of σe data blocks and qd encryption queries with a total number of

σd data blocks. Define σ := σe + σd. Then given any positive real number n1, we can

upper bound the AEAD advantage of the Sponge construction in the following way:
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Corollary 7. For any positive integers n1, n2

AdvAEAD
Sponge(σe, σd, qp) ≤

qp
2κ

+
2qd
2τ

+
2σ(2σ + qp)

2b
+

6σeqp
2b

+
σe + qp

2b

+
mcoll(qp, 2

b−c)

n1

+
mcoll(qp, 2

b−c)

n2

+
2qpmcoll(σe, 2

r)

2c

+
n1σ

2
d

2c
+

n2σd

2c
+

σdq
2
p

22c
+

σdmcoll(qp, 2
τ )

2c

+
qpmcoll(σe, 2

τ )

2b−τ +
qpσdmcoll(σe, 2

r)

22c
.

4.5.5 Interpretation of Corollary 7

For practical purposes assume that σ ≪ qp ≪ min{2τ , 2c} ≤ max{2τ , 2c} ≪ 2b. Then

the dominating terms in Corollary 7 is n1σ2

2c
+

σq2p
22c

+ mcoll(qp,2b−c)

n2
+ mcoll(qp,2b−c)

n1
. If qp ≪ 2b−c

take n1 = n2 = b− c, else take n1 = n2 = (b−c)qp
2b−c . Ascon, which is a finalist in the

NIST LwC competition, has two variants both of which uses a tag size of 128 bits.

Assume qp ≤ 2112 and (b − c)σ ≤ 253 as prescribed by NIST [93]. Hence, plugging

in the Ascon parameters [48] in Corollary 7 we conclude that both the variants can

achieve security by using a capacity of size c ≥ 140. In other words, Ascon128 (resp.

Ascon128a) is secured within NIST parameters with an underlying permutation of

state size b ≥ 204 (resp. b ≥ 205).
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4.6 Matching Attack on Transform-then-Permute

Now we see some matching attacks for the bound. We explain the attacks for the

simplified version (by considering empty associated data).

1. Suppose µqp maximizes for some adversary B interacting with Π. Now, the AE

algorithm A will run the algorithm B to get the primitive transcript ωp. We first

make qd many encryption queries with single block messages with distinct nonces

N1, . . . , Nqd and hence for all 1 ≤ i ≤ qd, ⌈Yi,0⌉r, ⌈Xi,1⌉r and ⌈Yi,1⌉τ values are

known. Suppose for length mi, the multi-chain for the graph induced by ωp start

from the nodes (whose r most significant bits of the domain is ui) to the nodes

(whose τ most significant bits of the range is Ti) and with label xi. Now we choose

the appropriate ciphertext C∗1 such that ⌈X∗i,1⌉r = ui. Moreover, we choose C∗i,j

such that C∗i,j is same as xi,j (here we assume that B makes queries so that the

labels are compatible with encoding function).

Now, we make decryption queries (Ni, C
∗
i , Ti). With probability Wmi

/2c, the

ith forgery attempt would be successful. Then maximizing
Wmi

mi
and by taking

expectation, we achieve the desired success probability.

2. Guessing the key K through primitive query would lead to a key-recovery and

hence all other attacks. The correct guess of the key can be easily detected by

making some more queries for each guess to compute an encryption query. This

attack requires qp = O(2κ). Similarly, random forging gives a success probability

of forging about O(qd/2τ ).

3. Another attack strategy can be adapted to achieve σeqp/2b bound. We look for a
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collision among X-values and primitive-query inputs. This can be again detected

by adding one or two queries to each guess. The same attack works with suc-

cess probability qpmcoll(σe, 2
r)/2c if we make primitive queries after making all

encryption queries.

4. A similar attack strategy can be adapted to achieve qpmcoll(σe, 2
r)/2b−τ bound.

We look for a collision among T -values and primitive-query inputs where primitive

queries are done after the encryption queries to predict the unknown b− τ bits of

the final output value.

These attacks show that the bounds in Theorem 5 and Corollary 6 are tight.
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4.7 Conclusion

In this chapter, we defined a general Sponge-type construction called Transform-then-

Permute. We showed that the Sponge-duplex AEAD construction and many other

popular Sponge-type constructions such as PHOTON-Beetle, SpoC can be viewed as

instantiations of Transform-then-Permute. We also analyzed the security of Transform-

then-Permute and, consequently, derived tight security bounds for PHOTON-Beetle and

SpoC, which shows that both of these constructions are well secure within the NIST

prescribed bounds. We also derive an upper bound for general Sponge AEAD.

Note that all the security bounds in this chapter necessitate a high value of c = b−r;

hence, the security of all constructions mentioned in this chapter dictates a low rate of

message absorption per permutation call. This is a limitation of such constructions as it

dictates many permutation calls per encryption/decryption query. In the next chapter,

we will overcome this limitation and try to construct Sponge-type constructions that can

achieve the maximum possible message absorption rate without compromising security.
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frTtP AEAD: Design and Analysis
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5.1 Introduction

In this chapter we concentrate our focus towards increasing the rate part in Sponge-type

constructions. An increase in the rate part of a Sponge-type construction leads to less

number of permutation calls per encryption/decryption query, which directly impacts

the runtime of such constructions. For example, if the rate of message absorption is

doubled, the number of permutation calls decreases by a factor of 2, and consequently

( ignoring the other factors ), the runtime of the encryption/decryption also decreases

by a factor of 2. The runtime attains its minimum when the rate of message absorption

reaches its maximum. But, this increase in rate doesn’t come without consequences

(security degradation, for example). Consider, for example, the Transform-then-Permute

construction with encryption feedback function Le as defined in Chapter 4. We say that

a Transform-then-Permute AEAD has Full-rate if r = b. We start by showing that a Full-

rate Transform-then-Permute construction is not secure.

Proposition 13. A full-rate Transform-then-Permute AEAD is not secure.

Proof. Consider a TtP construction with full-rate i.e. r = b. Then the encryption

feedback function E can be written as

E =

E1 E3
Ib Ib


The weakness of the construction comes from the fact that at each internal state dur-

ing the encryption query the previous permutation output can be completely recovered

as Y = M ⊕ C. More formally an adversary A can forge as follows.
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• A makes encryption queries of the form (N,M) where |N | = b − κ, |M | = b to

recieve response (C, T ).

• A computes D1 = Fmt(ϕ,M),Y0 = C ⊕D1.

• A choses C ′ ∈ {0, 1}b such that C ′ ̸= C and makes a forging query of the form

(N,C ′, T ′) where D′1 = Fmt(ϕ,C ′), and T ′ = ⌈Π (Y0 ⊕D′1)⌉τ .

Hence to secure a full-rate Sponge-type construction it is necessary to introduce an

extra secrete state. In Section 5.1 we define a Full-rate Transform-then-Permute ( frTtP

in short) construction using extra state in details. We also talk about the security of

such a construction and how it should be interpreted in the context of the NIST LwC

competition. Then in Section 5.5 we give an instantiation of an frTtP construction

called ORANGE-Zest which was submitted to the NIST LwC competition. We then

discuss the weakness of the original ORANGE-Zest proposal and make necessary

modifications to achieve a fully secured variant of it. Finally, in Section 5.6 we consider

some other popular full-rate feedback functions available in the literature and try to

construct secure frTtP constructions using these feedback functions.
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5.2 Full-rate Transform-then-Permute AEAD with Ex-

tra State

We now define a Full-rate Transform-then-Permute (frTtP in short) AEAD mode which

uses an s-bit extra secret state. The necessity of this extra-state is evident from Propo-

sition 13. As before consider a frTtP encryption protocol with a permutation Π of state

size b bits, key size κ, nonce size b− κ and tag size τ .

Initialization: Given any encryption query of the form (N,A,M) the encryption al-

gorithm generates (D1, . . . , Da, . . . , Da+m) := Fmt(A,M) and defines X0 = K∥N ;Y0 =

Π(X0). Additionally the algorithm uses an extra-state initialization protocol to generate

the initial extra-state S0.

Data Processing and Ciphertext Generation: For i ∈ [1, l] and a linear feedback

function E : {0, 1}2b+s → {0, 1}2b+s, the algorithm recursively calculates Yi, Si, Ci as

follows:

(Xi, Si, Ci) = E(Yi−1, Si−1, Di); Yi = Π(Xi).

Ciphertext and Tag Generation: Finally the protocol outputs ⌊Cl∥ · · · ∥Ca+1⌋|M |

as the ciphertext and ⌊Yl⌋τ as the tag.
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5.2.1 Formal Representation of the Feedback Function

Let b, s, τ denote the permutation state size and the extra state size of a Full-rate

Transform-then-Permute mode that uses an extra state.

Let E : {0, 1}2b+s → {0, 1}2b+s be any feedback function defined by E(Y, S,M) =

(X,S ′, C). By abuse of notation, let E =


E1 E2 E3

E4 E5 E6

E7 E8 E9

 be the transformation matrix

such that 
X

S ′

C

 = E


Y

S

M

 .

Further, define D =


D1 D2 D3

D4 D5 D6

D7 D8 D9

 such that,


X

S ′

M

 = D


Y

S

C

⇔

X

S ′

C

 = E


Y

S

M

 .

Necessary Properties of the Encryption and Decryption Submatrices

Proposition 14. If E and D are the encryption and decryption feedback function of a

secured frTtP construction, then E ,D must satisfy the following conditions.

(C1) rank(E9) = rank(D9) = b,
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(C2) rank(E8) = rank(D8) ̸= 0.

(C3) rank(

[
E7 E8

]
), rank(

[
D7 D8

]
) = b.

Proof. (C1) follows from the observation that if rank(E9) ̸= b, then there exists M ̸= M ′

such that E9 ·M = E9 ·M ′, and hence the decryption function will not be deterministic.

rank(D9) = b follows from a similar argument.

(C2) follows from the fact that if rank(E8) = 0 or rank(D8) = 0 then the inter-

nal Y state values are completely determined and hence the adversary can forge the

construction in the same way as the frTtP construction with no extra-state.

For (C3), suppose rank(

[
E7 E8

]
) ̸= b. Then, there exists a non zero vector γ such

that γ · (
[
E7 E8

]
) = 0. Hence, γ · C = γ ·M with probability 1.

Our Simplified Assumptions on the Encryption and Decryption Submatrices

Now we make some further assumptions on the feedback function E and try to justify

why these assumptions can be made.

(P1) E9 = D9 = Ib,

(P2) E6 = D6 = 0.

(P3) E7 = D7 = Ib.

To justify (P1), since rank(E9) = b one can simply define M ′ = E9 ·M , and proceed

with that.
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For (P2), observe that since M is known, it doesn’t contribute to the randomness

of the extra state, and hence taking E6 = 0 doesn’t affect the security of the AEAD

scheme. D6 = 0 follows from E6 = 0 and assumption (P1).

Finally, we admit that (P3) is a much stronger assumption than the necessary con-

dition (C3) and is made just for the simplicity of calculations in a very special class of

general frTtP feedback functions. We do not have any matching attack on frTtP to jus-

tify (P3). Nonetheless, as we will see in Section 5.6, many full-rate feedback functions

used in popular constructions such as COFB, HyENA satisfy this condition. More-

over, in the feedback functions used in Transform-then-Permute constructions without

the extra state, (P3) is a necessary condition.

Assuming (P3), define Π′ = E7 · Π. Then, through a proper modification of E we

may assume E7 = Ib.

From assumptions (P1), (P2), (P3) and simple linear algebraic calculations, we can

make the following observations :

D1 = E1 ⊕ E3; D2 = E2 ⊕ E3 · E8; Di = Ei ∀3 ≤ i ≤ 9. (5.1)

With these simplifications, we can represent our frTtP feedback function E by Figure

5-1.
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E

M
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S

X
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C

≡ Y E1

+

C

E8S
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+

E3

E2

S

X

M

Figure 5-1: Simplified Representation of an frTtP feedback function.

5.2.2 Extra state Generation Protocol

Consider a frTtP construction with extra state size s and linear feedback function

E as defined above. Note that, during associated data processing no information is

leaked. The weakness of the construction comes from the information leaked due

to the ciphertext output during message processing. More formally, suppose an ad-

versary makes an encryption query of the form (N,A,M) such that Fmt(A,M) =

(D1, · · · , Da, Da+1, Da+m) to recieve response (Ca+m∥ · · · ∥Ca+1, T ) then even if Si = 0

for all 0 ≤ i ≤ a− 1, the adversary cannot compute Yi.

Proposition 15. For any encryption query (N,A,M) define a := ⌈|A|/b⌉. If Sa is

independent or linearly dependent on N then there exist a forging adversary against the

frTtP construction.

Proof. For A ∈ {0, 1}⋆,M ∈ {0, 1}b, suppose an adversary makes two encryption queries

(N1, A,M) ̸= (N2, A,M) such that for i = 1, 2, Fmt(A,M) = (D1, . . . , Da, Da+1). Now



Full-rate Transform-then-Permute AEAD with Extra State 101

suppose Si
a is independent of N i. Then clearly S1

a = S2
a. Let (C1, T 1), (C2, T 2) be the

respective query responses.

Then we have

Y 1
a = E8 · S1

a ⊕ C1 ⊕Da+1; Y 2
a = E8 · S1

a ⊕ C2 ⊕Da+1.

which implies

Y 1
a = Y 2

a ⊕ C1 ⊕ C2.

i.e.,

X1
a+1 = D1 · Y 1

a ⊕D2 · S1
a ⊕D3 · C1 = D1Y

2
a ⊕D2 · S1

a ⊕D1(C
1 ⊕ C2)⊕D3 · C1.

Hence if an adversary chooses C∗ ∈ {0, 1}b in such a way that D3 · (C∗ ⊕ C1) =

D1 · (C1 ⊕ C2) then (N2, A2, C∗, T 1) is a valid forgery.

The non-linearity follows through a similar analysis with S1
a ⊕ S2

a = F · (N1 ⊕N2)

where F is some s × ν linear matrix. Here (N2, A2, C∗, T 1) is a valid forgery where

D3 · (C∗ ⊕ C1) = D1 · (C1 ⊕ C2 ⊕ E8 · F · (N1 ⊕N2))⊕D2 · F · (N1 ⊕N2).

Proposition 16. For any encryption query (N,A,M) define a = ⌈|A|/b⌉. If Sa is

linear function of Ya, then there exist a distinguishing adversary against the frTtP con-

struction.

Proof. Suppose Sa = ρ(Ya). Then (Ib⊕E8 · ρ)Ya = Ca+1⊕Da+1. If rank(Ib⊕E8 · ρ) = b

then Ya can be calculated as (Ib ⊕ E8 · ρ)−1 · (Ca+1 ⊕ Da+1). If rank((Ib ⊕ E8 · ρ)) < b
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then there exists vector γ such that γ · (Ib⊕E8 ·ρ) = 0 which implies γ ·Ca+1 = γ ·Da+1

with probability 1.

Note that for an encryption query (N,A,M) if a = ⌈|A|/b⌉ then it is not nec-

essary to generate the extra-state values S0, . . . , Sa−1. However, since an adversary

can make encryption/decryption query without associated data, for uniformity of the

construction we assume that the extra state is initialized in the beginning for every

encryption/decryption query. If we assume that the underlying primitive Π is the

only nonlinear component in our frTtP construction then given any linear functions

ρ : {0, 1}b → {0, 1}s, ρ′ : {0, 1}κ×{0, 1}ν → {0, 1}b, a natural choice for the initial extra-

state would be ρ◦Π◦ρ′(N,K). By Proposition 16, ρ′(N,K) ̸= K∥N which is the case in

many AEAD protocols such as CoFB [36]. However, we can assume ρ′(N,K) ̸= K∥N

if |A| > 0 for all (N,A,M). One way to ensure |A| > 0 for all (N,A,M) is to redefine

(D1, . . . , Dl) := Fmt(pad(A), Z) where pad(A) = 0b−x−11∥A, x = |A| mod b for all en-

cryption queries of the form (N,A,Z) and decryption queries of the form (N,A,Z, T ).

From now on by abuse of notation we write Fmt(A,M) to mean Fmt(pad(A),M) and

take ρ′(N,K) = K∥N .

The frTtP structure is depicted in Figure 5-2 where the initial extra state is calcu-

lated as S0 = ρ(Y0), for some linear function ρ : {0, 1}b → {0, 1}s.
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Figure 5-2: A frTtP AEAD with extra state. Here (D1, . . . , Dl) = Fmt(A,M). ρ : {0, 1}b →
{0, 1}s is a linear function of rank s.

5.3 Security of frTtP AEAD with Extra State

In this section, we try to bound the advantage of any AEAD adversary making qp many

primitive queries, qe many encryption queries with a total of σe many blocks and qd

many decryption queries with a total of σd many blocks against the frTtP construction

defined in Section 5.1.

Consider an frTtP construction with the encryption and decryption feedback func-

tions E and D respectively. We consider a linear function ρ : {0, 1}b → {0, 1}s of

rank s for processing the initial extra-state with transformation matrix ρ (by abuse of

notation). Define

r3 := rank(Es3); r8 = rank(Es8);

r12 := rank ((E1 · E8 ⊕ E2)s) ; r45 := rank ((E4 · E8 ⊕ E5)s) ;

r′45 := rank ((Is ⊕ E4 · E8 ⊕ E5)s) .
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Further define,

re := rank


E1 E2
E4 E5


 ; rd := rank


D1 D2

D4 D5


 .

Theorem 6. The AEAD advantage of all adversaries making qp many primitive queries,

a total of σe blocks in encryption queries, and a total of σd blocks in decryption queries

against an frTtP construction with s bit extra-state as defined above, can be bounded as

follows

AdvAEAD
frTtP (qp, σe, σd) ≤

qp
2κ

+
10σeqp
2re−r45

+
2σ2

e

2re−r45
+

qpµqpσd

2rd
+

2σd

2τ
+

3σd(σ + qp)

2rd−r45

+
qpmcoll(σe, 2

τ )

2b−τ +
2qpmcoll(σe, 2

b+s−r45−r8)

2re+r8−s−b

+
σdσe

2r12+r3+r45+r′45−b−2s
+

σdqpmcoll(σe, 2
b+s−r45−r8)

2re+rd+r8−r45−b−s
.

Where, σ := σe + σd and µqp is defined as the adversarial advantage against the s-

extended multi-chain graph formed by adversarial primitive queries and linear function

Ld :=

D1 D2

D4 D5

.

5.3.1 Interpretation of Theorem 6

Consider any conventional Sponge type constructions such as Beetle. For Beetle [35],

where r bits of message is absorbed per primitive call with state size b, Chakraborty

et. al. [37] showed that
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AdvAEAD
Beetle (qp, σ) ≤ qp

2κ
+

2σ

2τ
+O

(
σ + qp
2b−r

)
+O

( σqp
22b−2r

)
+O

(
σq2p

22b−r

)
.

Assuming qpσ ≪ 2b, Beetle construction is secure with a data absorption rate r ≪

b− log(σ + qp).

If the feedback function of an frTtP construction is chosen in such a way that

r8 = r12 = r45 = r′45 = s, r3 = b and re = rd = b+s. Then Theorem 6 can be re-written

as

Corollary 8. If r5 = r8 = r12 = r45 = r′45 = s, r3 = b and re = rd = b + s, then

AdvAEAD
frTtP (qp, σ) ≤ qp

2κ
+

2σ

2τ
+O

(σqp
2b

)
+O

(
σ2 + qp

2s

)
.

From Corollary 8 it is evident that, If we assume qpσ ≪ 2b then with use of an extra

state of size s≫ log(σ2 + qp), we can construct a secured full-rate Sponge type AEAD

schemes where maximum possible message absorption per primitive call is achieved.

Hence we observe that in such an frTtP construction the b− r bit increase in the data

absorption rate as compared to Beetle is compensated by using a b − r bit extra-state

(assuming σ2 < qp).
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5.4 Proof of Theorem 6

5.4.1 Ideal World and Defining the Bad Transcripts

The ideal world responds to three oracles, namely encryption queries, decryption queries,

and primitive queries in the online phase.

(1) On Primitive Query (Wi, diri):

The ideal world simulates Π± query honestly. In particular, if diri = 1, it sets

Ui ← Wi and returns Vi = Π(Ui). Similarly, when diri = −1, it sets Vi ← Wi and

returns Ui = Π−1(Vi).

(2) On Encryption Query Qi := (Ni,Ai,Mi):

It samples Yi,0, . . . , Yi,li←$ {0, 1}b where ai = ⌈|pad(Ai)|/b⌉, mi = ⌈|Mi|/b⌉ and

li = ai + mi. For all 1 ≤ j ≤ li it then calculates

Si,j =


ρ · Yi,0 if j = 0

E j−15 · (E4 ⊕ E5 · ρ) · Yi,0 ⊕
j−1⊕
k=1

E j−1−k5 · E4 · Yi,k otherwise.

Finally it returns (Ci,Ti) where (Di,1 . . . , Di,li) := Fmt(pad(Ai),Mi) and ∀ ai+1 ≤

j ≤ li

Ci,j = Yi,j−1 ⊕ E8 · Si,j−1 ⊕Di,j;

Ci = ⌊Ci,li∥ · · · ∥Ci,ai+1⌋|Mi|.
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Ti = ⌊Yi,li⌋τ .

(3) On Decryption Query Qi := (N∗i ,A
∗
i ,C

∗
i ,T

∗
i ):

According to our convention we assume that the decryption query is always non-

trivial. So the ideal world returns abort symbol M∗i := ⊥.

Offline Phase of Ideal World. After completion of oracle interaction (the above

three types of queries possibly in an interleaved manner), the ideal oracle sets E,D,P to

denote the sets of all the query indices corresponding to the encryption, decryption and

primitive queries respectively. So E⊔D⊔P = [qe+qd+qp] where |E| = qe, |D| = qd, |P| =

qp. Let the primitve transcript be ωp = (Ui, Vi, diri)i∈P. Denote ω′p := (Ui, Vi)i∈P. Let

the decryption transcript ωd = (M∗i )i∈D where M∗i is always ⊥.

Now we describe the extended transcript for the encryption queries. It samples

K←$ {0, 1}κ. For all i ∈ E and j ∈ [0, li], we define

Xi,j =


K∥Ni if j = 0

E1 · Yi,j−1 ⊕ E2 · Si,j−1 ⊕ E3 ·Di,j otherwise.

where, (Di,1, . . . , Di,li) := Fmt(pad(Ai),Mi).

The encryption transcript ωe = (Xi,j, Yi,j, Si,j)i∈E,j∈[0,li]. So the transcript of the

adversary consists of ω = (Q,ωe, ωd, ωp) where Q := (Qi)i∈P⊔E⊔D.

Bad Transcripts due to Encryption Queries

We now consider some events that may occur due to the primitive and encryption query

transcript.
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BAD1: ∃(U, V ) ∈ ωp : K = ⌈U⌉κ.

BAD2: ∃i ∈ E, j ∈ [li] such that Yi,j ∈ range(ω′p).

BAD3: ∃ i ∈ E, j ∈ [li] such that Xi,j ∈ domain(ω′p) .

BAD4: ∃ (i, j) ̸= (i′, j′) such that Yi,j = Yi′,j′ , where i ∈ E, j ∈ [li], i
′ ∈ E, j′ ∈ [li′ ].

BAD5: ∃ (i, j) ̸= (i′, j′) such that Xi,j = Xi′,j′ , where i ∈ E, j ∈ [li], i′ ∈ E, j′ ∈

[li′ ].

We point out that these events broadly represent some collisions in the internal

states. More formally, if these events do not occur then the partial permutation function

Π′ generated by ωp ∪ ω′e is permutation compatible. Hence we call them bad events.

Bad Transcripts due to Decryption Queries

Suppose BADenc doesn’t occur i.e. Π′ as defined above is permutation compatible.

Given any decryption query (N∗i , A
∗
i , C

∗
i , T

∗
i ), i ∈ D we define a∗i = ⌈|pad(A∗i )|/b⌉,

m∗i = ⌈|C∗i |/b⌉ and l∗i := a∗i + m∗i . Let (D∗i,1, . . . , D
∗
i,l∗i

) := Fmt(pad(A∗i ), C
∗
i ). Let pi

denotes the length of the longest common prefix for the ith decryption query with the

encryption query. Formally, it is define as follows:

pi =


−1, if ∀i′ ∈ E, N∗i ̸= Ni′

k, if ∃i′ ∈ E : N∗i = Ni′ , ∀j ∈ [k < li] : D∗i,j = Di′,j, D∗i,k+1 ̸= Di′,k+1

li − 1, otherwise.
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Further, for all i ∈ D and 0 ≤ j ≤ pi, we define the internal states of the ith

decryption query as follows:

X∗i,j = Xi′,j,

Y ∗i,j = Yi′,j,

S∗i,j = Si,j,

X∗i,pi+1 = D1 · Y ∗i,pi ⊕D2 · S∗i,pi ⊕D3 ·D∗i,pi+1,

S∗i,pi+1 = Si′,pi+1.

Note that by property of Fmt function, X∗i,pi+1 ̸= X∗i′,pi+1.

If ai′ ≤ pi using Y ∗pi+1, we consider all possible labeled walks (Y ∗pi+1, S
∗
pi+1)

(D∗
i,pi+2,...,D

∗
i,j)−−−−−−−−−→

(Y ∗i,p′i
, S∗i,j) in the s-extended multi-chain graph GLd

ωp
where Ld =

D1 D2

D4 D5

. Let jmax

denote the maximum of all such js.

Next, we define a new variable p′i in the following way.

p′i =


pi if pi < ai′ or X∗i,pi+1 /∈ domain(ω′p)

jmax Otherwise.

Finally, we define

X∗i,p′i+1 = D1 · Y ∗i,p′i ⊕D2 · S∗i,p′i ⊕D3 ·D∗i,p′i+1,

S∗p′i+1 = D4 · Y ∗i,p′i ⊕D5 · S∗i,p′i .

With these definitions, we consider the following two events that occur due to the
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decryption queries.

BAD6: ∃i ∈ D, p′i = li and ⌊Y ∗i,li⌋τ = T ∗i .

BAD7: ∃i ∈ D, p′i ≤ li − 1 and (X∗i,p′i+1) ∈ domain(ωe).

.

5.4.2 Bounding the Bad Events

Bounding the Bad Events due to Encryption

Define,

BADenc :=
5⋃

i=1

BADi.

Lemma 9.

Pr [BADenc] ≤
qp
2κ

+
10σeqp
2re−r45

+
2σ2

e

2re−r45
+

qpmcoll(σe, 2
τ )

2b−τ

+
qpmcoll(σe, 2

b+s−r45−r8)

2r45+r8−s
+

qpmcoll(σe, 2
b+s−r45−r8)

2re+r8−b−s
.

Proof. We start by bounding the individual bad events. Lemma 9 then follows from

the union bound.

Bounding BAD1: For some (U, V ) ∈ ωp, K = ⌈U⌉κ.

This is basically the key recovery event, i.e., the event that the adversary recovers

the master key K by direct queries to the internal random permutation (can be both

forward or backward). For a fixed entry (U, V ) ∈ ω′p, the probability that K = ⌈U⌉κ
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is bounded by at most 2−κ, as K is chosen uniform at random from {0, 1}κ. Thus, we

have

Pr [BAD1] ≤ qp
2κ

.

Bounding BAD2: This event can be analyzed in several cases as below

Case 1. ∃i, j, a such that Yi,j = Va, encryption after primitive Since Yi,j are cho-

sen uniformly at random, this case can be bounded for fixed i, j, a with probability at

most 1/2b. We have at most σe many (i, j) pairs and qp many a indices. Hence this

case can be bounded by at most σeqp/2b.

Case 2: ∃i, j, a, Yi,j = Va, dira = +, encryption before primitive: This case can be bounded

by probability at most 1/(2b − qp + 1). We have at most σe many (i, j) pairs and qp

many a indices. Thus this can be bounded by at most σeqp/(2b − qp + 1) ≤ 2σeqp/2b

(assuming qp ≤ 2b−1).

Case 3: ∃i,j < li, a, Yi,j = Va, dira = −, encryption before primitive:

For 0 ≤ j < ai Yi,j is chosen uniformly at random and no output is generated hence

probability of this case is bounded by at most 2σeqp/2b.

Proposition 17. For ai + 1 ≤ j ≤ li the adversary can know at most b−s(r45−s)− r8

bits of Yi,j+1.

Proof. Note that Yi,0 is unknown and random. For j ≥ a + 1, with simple matrix

algebra we can rewrite Yi,j as
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Yi,j = E8 · (E4 · E8 ⊕ E5)j · ρ(Yi,0)⊕
j−1∑
k=1

(E4 · E8 ⊕ E5)k−1 · E4 · (Ck ⊕Dk).

Lemma 10. rank(E8 · (E4 · E8 ⊕ E5)j · ρ) ≥ r45 + r8 − s.

Proof.

rank(E8 · (E4 · E8 ⊕ E5)j · ρ) ≥ rank(E4 · E8 ⊕ E5)s + r8 − s [by Theorem 1]

= r45 + r8 − s.

Proposition 17 follows from Lemma 10.

Let Φout denote the number of multicollisions among all Yi′,j′ values. Then,

Pr[Yi,j = Va] =
∑
Φout

Pr[Case 3 | Φout] · Pr[Φout]

≤
∑
Φout

Φout × qp
2r45+r8−s

· Pr[Φout]

≤ qp
2r45+r8−s

× Ex [Φout]

≤ qpmcoll(σe, 2
b+s−r45−r8)

2r45+r8−s
.

Hence

Pr [Case 3] ≤ 2σeqp/2b +
qpmcoll(σe, 2

b+s−r45−r8)

2r45+r8−s
.

Case 4: ∃i, a, Yi,li = Va, dira = −, encryption before primitive:
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This case is similar to Case 3. The only difference is that the adversary has access

to ⌊Yi,li⌋τ . Hence doing a similar analysis as in the previous case we have

Pr [Case 4] ≤ qpmcoll(σe, 2
τ )

2b−τ .

Since all the cases are exhaustive we have

Pr [BAD2] ≤ 5σeqp
2b

+
qpmcoll(σe, 2

b+s−r45−r8)

2r45+r8−s
+

qpmcoll(σe, 2
τ )

2b−τ .

Bounding BAD3 \ BAD1:

Note that this event occurs if and only if there exists i ∈ E, j ∈ [1, li], k ∈ P

such that

[
E1 E2

]Yi,j−1

Si,j−1

 = Uk. Since Yi,j−1 is chosen uniformly at random and

Si,j−1 =
j−2⊕
k=1

E j−2−k5 E4Yi,k ⊕ E j−25 (E4 ⊕ E5ρ)Yi,0 implies Si,j−1 is calculated independently

of Yi,j−1, probability of this event is bounded by 2b+r45−re × Pr [BAD2 \ Case 4]. Hence,

Pr [BAD3 \ BAD1] ≤ 5σeqp
2re−r45

+
qpmcoll(σe, 2

b+s−r45−r8)

2re+r8−s−b
.

Bounding BAD4: Since all the Yi,j’s are chosen uniformly at random,

Pr [BAD4] ≤ σe(σe − 1)

2b
.
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Bounding BAD5: Since all Yi,j’s are chosen uniformly at random and Si,j is independent

of Yi,j,

Pr [BAD5] ≤ σe(σe − 1)

2re−r45
.

Summing over all the above bounds and using the union bound we have Lemma

9.

Bounding the Bad Event Due to Decryption

Lemma 11. Let Ld : {0, 1}b+c → {0, 1}b+c be the linear function with the transfor-

mation matrix

D1 D2

D4 D5

. Consider the s-extended multi-chain graph GLd
ωp

and µqp as

defined before.

Pr [BAD6] ≤
qpµqpσd

2rd
. (5.2)

Proof. Suppose the event holds for the i-th decryption query and N∗i = Ni′ for some

i′ ∈ E. We use the s-extended multi-chain structure to bound the probability of BAD6.

Specifically, mBAD implies that the decryption query is completed via a walk in Gωp with

starting node (Y ∗i,pi+1, S
∗
i,pi+1) and ending node (V, S) ∈ V (Gωp) such that ⌊V ⌋τ = T ∗i .

This is equivalent to the condition that (Y ∗i,pi+1, S
∗
i,pi+1)

(D∗
i,pi+2,...,D

∗
i,li

)

−→ is an element of

an li − pi length s-extended multi-chain with label (D∗i,pi+2, . . . , D
∗
i,li

) terminating at

some V ∈ range(ωp) such that ⌊V ⌋τ = T ∗i . Now since the adversary can make both

forward/backward primitive queries, number of such V is bounded by qp.
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Hence the probability that BAD6 holds for the i-th decryption query is bounded by

Pr[BAD6 | ωp] ≤ qp ×
∑

(Y ′,S′)
(D∗

i,pi+2
,...,D∗

i,li
)

−→ (V,S)

Pr
[
Y ∗i,pi+1 = Y ′ ∩ S∗i,pi+1 = S ′

]

≤ qp × µqp(li − pi)

× Pr

 Ld ·

Y ∗i,pi
S∗i,pi

⊕ E3 ·
D∗i,pi+1

0s×1

 =

X ′
S ′

 ∣∣∣∣(X ′, Y ′) ∈ Θ, S ′ ∈ {0, 1}s


≤

qp × µqp(li − pi)

2rd
.

Hence varying over all i ∈ D, given a transcript ωp

Pr[BAD6 | ωp] ≤
∑
i∈D

qp × µqp(li − pi)

2rd

≤
qpµqp

2rd

∑
i∈D

(li − pi)

≤
qpµqpσd

2rd

where the last inequality follows from the fact that
∑

i∈D(li − pi) < σd.

Lemma 12.

Pr [BAD7 | ¬BADenc] ≤
σe + qp
2rd−r45

+
σdσe

2r12+r3+r45+r′45−b−2s
+

σdqpmcoll(σe, 2
b+s−r45−r8)

2re+rd+r8−r45−b−s
.

Proof. To bound BAD7 notice that this event can be subdivided into three cases.
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Case 1: p′i < ai′ Since no information is leaked during the associated data processing of

the encryption queries Yi′,0, . . . , Yi′,p′i
are sampled uniformly at random. Since Si′,p′i

is

completely determined by Y ′i′,0, · · · , Yi′,p′i−1 hence it is independent of Yi′,p′i
. Further,

X∗i,p′i+1 = D1 · Yi′,p′i
⊕D2 · Si′,p′i

⊕D3 ·D∗i,p′i .

Hence at least rd − r45 bits of X∗i,p′i+1 is random.

Hence Pr [Case 1] ≤ σe+qp
2rd−r45

.

Case 2: ∃i′ ∈ E, j ∈ [mi′ ] s.t. ai′ ≤ p′i = pi and X∗i,pi+1 = Xi′,j

Note that, by definition of p′i there exists an i′′ ∈ E such that Yi′′,pi = Y ∗i,pi and

Si′′,pi = S∗i,pi

.

Hence, this event occurs if and only if

E3 · (D∗i,pi+1 ⊕ ·Di′,j) = D1 · (Yi′,j−1 ⊕ Yi′′,pi)⊕D2 · (Si′,j−1 ⊕ Si′′,pi).

By simple matrix algebra, this reduces to the condition

E3 ·D∗i,pi+1 = (E1 · E8 ⊕ E2) · (E4 · E8 ⊕ E5)pi ·
(
ρ(Yi′,0)⊕ (E4 · E8 ⊕ E5)j−pi · ρ(Yi′′,0)

)
⊕ χ
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for some known χ.

Now note that by definition of pi either i′ ̸= i′′ or i′ = i′′ but j > pi + 1. For the

first case, we have Yi′,0, Yi′′,0 are independent and random.

When i′ = i′′, j > pi + 1 we have,

E3 ·D∗i,pi+1 = (E1 · E8 ⊕ E2) · (E4 · E8 ⊕ E5)pi · (I ⊕ E4 · E8 ⊕ E5)j−pi · ρ(Yi,0)⊕ χ.

Hence, probability that any of these happens in the i th query is bounded by at

most σe

2r12+r45+r′45−2s
.

Further given everything else fixed there are at most 2b−r3 many possible choices

of D∗i,pi+1. Hence given any i this event can be bounded by at most σe

2r12+r45+r′45−2s+r3−b
.

Varying over all i ∈ D we have

Pr [Case 2] ≤ σdσe

2r12+r3+r45+r′45−2s−b
.

Case 3: p′i > pi and ∃i′ ∈ E, j ∈ [mi′ ] s.t. X∗i,p′i+1 = Xi′,j

This corresponds to the case when the first nontrivial decryption query block matches

a primitive query and follows a partial chain before and then matches an encryption

query block. Hence, doing a similar analysis as in event BAD3 the probability of this

case occuring in the i th decryption query is bounded by qp
2rd−r45

× mimcoll(σe,2b+s−r45−r8 )

2re+r8−s−b

Summing over all i ∈ D we have

Pr [Case 3] ≤ σdqpmcoll(σe, 2
b+s−r45−r8)

2re+rd+r8−r45−b−s
.
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Since all 3 cases are exhaustive we have the lemma.

5.4.3 Real World and Good Transcript Analysis

In the online phase, the AE encryption and decryption queries and direct primitive

queries are faithfully responded to based on Π±. Like the ideal world, after the com-

pletion of interaction, the real world returns all X-values Y -values and S-values corre-

sponding to the encryption queries only. Note that a decryption query may return Mi

which is not ⊥.

Consider a good transcript ω = (ωp, ωe, ωd). Suppose for all 0 ≤ j ≤ p′i, Y
∗
i,j, S

∗
i,j

and X∗i,j+1 are defined as before. We observe the following:

1. The tuples ωe is permutation compatible and disjoint from ωp. So union of tuples

ωe ∪ ωp is also permutation compatible.

2. For all i ∈ D we have either p′i = li−1 and (X∗i,mi
, ⋆∥T ∗i ) ∈ ωp∪ωe (call it a Type-1

decryption query) or p′i < li − 1 but X∗i,p′i+1 /∈ ωp ∪ ωe(call it a Type-2 decryption

query). Type-1 decryption queries would be rejected due to BAD6 . For Type-2

decryption query, observe that X∗i,p′i+1 is fresh i.e. it has never been queried before

by the adversary. So Π(X∗i,p′i+1) is random over a large set. This would ensure

with high probability that such decryption queries will also be rejected.

With these observations, we next analyze the good transcripts.

Good Transcript Analysis: Fix a good transcript ω. Let Θ0 and Θ1 denote the transcript

random variable obtained in the ideal world and real-world respectively. As observed
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above, all the input-output pairs for the underlying permutation are compatible. In

the ideal world, all the Y values are sampled uniformly at random; the list ωp is just

the partial representation of Π and all the decryption queries are degenerately aborted.

Hence we get

Pr [Θ0 = w] ≤ 1

2bσe(2b)qp

Here σe denotes the total number of blocks present in all encryption queries including

nonce. In notation σe =
∑
i∈E

li.

In the real world, for ω we denote the encryption query, decryption query, and

primitive query tuples by ωe, ωd and ωp, respectively. Then, we have

Pr[Θ1 = ω] = Pr[Θ1 = (ωe, ωp, ωd)]

= Pr[ωe, ωp] · Pr[ωd | ωe, ωp]

= Pr[ωe, ωp] · (1− Pr[¬ωd | ωe, ωp])

≤ Pr[ωe, ωp] ·

(
1−

∑
i∈D

Pr[¬ωd,i | ωe, ωp]

)
(5.3)

Here we have slightly abused the notation to use ¬ωd,i to denote the event that

the i-th decryption query successfully decrypts and ¬ωd is the union ∪i∈D2¬ωd,i (i.e. at

least one decryption query successfully decrypts). The encryption and primitive queries

are mutually permutation compatible, so we have

Pr
Θ1

[ωe, ωp] =
1

(2b)σe+qp

≥ Pr
Θ0

[ωe, ωp].

Proposition 18. PrΘ1 [¬ωd,i | ωe, ωp] ≤ 2(σ+qp)

2rd−r45
+ 2

2τ
for every Type-2 decryption query.
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Proof. We recall that ¬ωd,i occurs if and only if ⌊Π(X∗i,mi
)⌋τ = T ∗i where X∗i,p′i+1 is fresh.

Further, for all p′i + 1 < j ≤ li, X
∗
i,j values have been defined recursively as follows

X∗i,j = D1 ·
(
Π(X∗i,j−1)

)
⊕D2 · S∗i,j−1 ⊕D3 ·D∗i,j.

Claim 1. Pr[X∗i,j is fresh ] ≥ (1− 2(σe+qp+mi)

2rd−r45
) ∀ p′i + 1 < j ≤ li.

Proof. Since X∗i,p′i+1 is not the last block, then the next input block may collide with

some encryption or primitive input block with probability at most σe+qp
2rd−r45−σe−qp

. Apply-

ing similar argument for all the successive blocks till the last one, we get that if none of

the previous block input collides then the probability that the last block input collides

is at most
(σe+qp+li−p′i+2)

2rd−r45−σe−qp−li+p′i+2
≤ 2(σe+qp+mi)

2rd−r45
.

Claim 2. Pr[¬ωd,i | X∗i,j are fresh ] ≤ 2
2τ
.

Proof. Since the last input block X∗i,li is fresh, hence ⌊Π(X∗i,li)⌋τ = T ∗i with probability

at most 2/2τ (provided σe+qp ≤ 2b−1 which can be assumed, since otherwise our bound

is trivially true).

Let Ej denote the event that X∗i,j is fresh and E := ∧mi

j=p′i+1Ej

Using the claims, we have

Pr
Θ1

[¬ωd,i | ωe, ωp] ≤ Pr
Θ1

[¬ωd,i ∧ E | ωe, ωp] + Pr[¬E].

≤ 2

2τ
+

li∑
j=p′i+1

σd + σe + qp
2rd−r45−1

.
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The last inequality follows from the above claims. Now, we can proceed by using the

union bound as follows.

Pr[¬ωd | ωe, ωp] ≤
∑
i∈D

(
2mi(σe + qp + σd)

2rd−r45
+

2

2τ

)
≤ 2σd(σe + σd + qp)

2rd−r45
+

2qd
2τ

=
2σd(σ + qp)

2rd−r45
+

2qd
2τ

. (5.4)

Theorem 6 follows from Theorem 2, Lemma 9,11,12 and Proposition 18.
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5.5 ORANGE-Zest as a Full-Rate Transform-then-

Permute AEAD

5.5.1 ORANGE-Zest

Y

S

X

ρ Pad

M C

Y

S

X

ρ Pad

M C

S ≪

Chop

Feedbackenc or (FB+) Feedbackdec or (FB−)

ρ
V

KeyStream

Figure 5-3: Feedback process for ORANGE-Zest: KeyStream module or the function ρ de-
scribes how the key-stream is defined. Feedback functions describe to define the next input X
for the block cipher and the ciphertext (for encryption feedback) and message (for decryption
feedback). The black circular dot represents the mult operation which is nothing but the
αδM -multiplication to the most significant half of Y (the previous block cipher output). Note
that δM = 0, 1, 2 for imtermediate block, complete last block, partial last block respectively
.The gray circular dot represents the mult operation which is nothing but the α-multiplication
to S. Here, Pad and Chop, pads and chops appropriate amounts of bits from MSB or LSB
sides. The exact definitions of these process can be found in Algorithm 3
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Algorithm 3 The ORANGE-Zest algorithm. Permutation state size b = 2n, extra-state
size s = n, tag size τ = n.

1: function ORANGE-Zest[P].enc(K,N,A,M)

2: (Aa−1, . . . , A0)
2n← A

3: (Mm−1, . . . ,M0)
2n←M

4: if a = 0,m = 0 then

5: T ← ⌊P((K ⊕ 2)∥N)⌋n
6: return (λ, T )

7: if a = 0,m ̸= 0 then

8: (C,U)← proc txt(K, (K ⊕ 1)∥N,M,+)

9: return (C, proc tg(U))

10: C ← λ

11: if a ̸= 0 then

12: (U, S)← proc hash(K∥N,A, 1, 2)

13: if m ̸= 0 then

14: (C,U)← proc txt(K,U,M,+)

15: return (C, proc tg(U))

16: function ORANGE-Zest[P].dec(K,N,A,C, T )

17: (Aa−1, . . . , A0)
2n← A

18: (Cm−1, . . . , C0)
2n← C, M ← λ

19: if a = 0,m = 0 then

20: T ′ ← ⌊P((K ⊕ 2)∥N)⌋n

21: if a = 0,m ̸= 0 then

22: (M,U)← proc txt(K, (K ⊕ 1)∥N,C,−)
23: T ′ ← proc tg(U)

24: if a ̸= 0 then

25: (U, S)← proc hash(K∥N,A, 1, 2)

26: if m ̸= 0 then

27: (M,U)← proc txt(K,U,C,−)

28: T ′ ← proc tg(U)

29: if T ̸= T ′ then

30: return ⊥
31: else

32: return (M,⊤)

1: function proc hash(X,D, c0, c1)

2: (Dd−1, . . . , D0)
2n← D

3: X0 ← X

4: for i = 0 to d− 2 do

5: Yi ← E(Xi)

6: Xi+1 ← Yi ⊕Di

7: c← (2n | |Dd−1|)?c0 : c1

8: Yd−1 ← E(Xd−1)

9: S ← ⌈Yd−1⌉n
10: Yd−1 ← mult(c, Yd−1)

11: Xd ← Yd−1 ⊕ pad(Dd−1)

12: return (Xd, S)

13: function proc txt(S0, U0, D, dir)

14: (Dd−1, . . . , D0)
2n← D

15: for i = 0 to d− 1 do

16: Vi ← E(Ui)

17: if i = d− 1 then

18: c← (2n | |Dd−1|)?1 : 2

19: Vi ← mult(c, Vi)

20: KSi ← Feed(Si, Vi)

21: D′
i ← Di ⊕ ⌊KSi⌋|Di|

22: if dir = ” + ” then Di ← D′
i

23: Si+1 ← ⌈Vi⌉n
24: Ui+1 ← Vi ⊕ pad(Di)

25: return (D′, Ud)

26: function Feed(S, Y )

27: (Y b, Y t)
n← Y

28: Z ← (Y b ⊕ αS)∥(Y t ≪ 1)

29: return Z

30: function mult(c, V )

31: (V b, V t)
n← V

32: return αc · V b ∥ V t

33: function proc tg(U)

34: return ⌊P(U)⌋n
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5.5.2 Security Analysis of ORANGE-Zest

In the first round of official comments, Dobraunig et. al. [49] showed that the construc-

tion is insecure by providing a successful forgery attack. Later Kairallah et. el. [70]

showed that the modified version of ORANGE-Zest suffers from the attack due to

full-state tag generation. In this section, we first discuss the attacks by Dobraunig et.

al. in our notations, and then we show that a modified ORANGE-Zest construction

can be viewed as an frTtP construction, and thus with a limited-sized tag generation it

is fully secure.

Proposition 19. [49] ORANGE-Zest is not secure.

We see that the attack [49] arises from the construction of ORANGE-Zest where

if no associated data is used then the secret key is taken as the initial extra-state value

and hence doesn’t depend on the nonce which is a necessary condition as discussed

in Proposition 16. Consequently an adversary as defined in the proof of proposition

16 can successfully forge the ORANGE-Zest construction. Next, we show that this

weakness is only due to the initial extra-state generation protocol and is not a weakness

of the ORANGE-Zest feedback function.

The ORANGE-Zest feedback function can be represented as follows:
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EORANGE-Zest =



Ib−c ⊕ A−1 0(b−c)×c

0c×(b−c) 0c×c


0(b−c)×c

Ic

 Ib[
0c×(b−c) α · Ic

]
0c 0c×b

Ib

0(b−c)×c

Ic

 Ib



where Ab−c =

0(b−c−1)×1 Ib−c

1 01×(b−c)

.

Let ρ : {0, 1}b → {0, 1}c be defined as ρ(X) = ⌊X⌋c ∀X ∈ {0, 1}b. Then rρ = c.

Further re-define Fmt(N,A,M) = Fmt(N, pad(A),M) where pad(A) = 0b−x−11∥A, x =

|A| mod b for all A ∈ {0, 1}∗. We call the frTtP construction, which uses Fmt as the for-

matting function, ρ(Π(Key∥Nonce)) as the initial extra secret state and EORANGE-Zest

as the underlying feedback function, the ORANGE-Zestmod construction.

We can easily note that r3 = b; r12 = r45 = r′45 = r8 = c. Further, re = rd = b + c.

Corollary 9.

AdvAEAD
ORANGE-Zestmod

(σ, qp) ≤
qp
2κ

+
2σ

2τ
+O

(σqp
2b

)
+O

(
σ2 + qp

2c

)
.

5.6 frTtP: More Instantiations

In this section, we try to discuss some concrete instantiations of the general Full-rate

Transform-then-Permute construction. More specifically we use some full-rate feedback

functions used in popular block cipher based full-rate AEAD modes such as CoFB
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HyENA and show that with slight modifications they can also be used securely in the

frTtP constructions.

5.6.1 frTtP with CoFB Feedback

The CoFB [36] feedback function can be represented as bellow.

ECoFB =


G

0 b
2

I b
2

 Ib

0 b
2
×b α · I b

2
0 b

2
×b

Ib 0b× b
2

Ib


,

where G is a square matrix of size b, such that both G and G⊕ Ib are non-singular.

Now consider an frTtP which uses ECoFB as the underlying feedback function and an

extra state initialisation protocol as discussed in Section 5.2.2 and call it COFBSponge

construction.

Proposition 20. COFBSponge AEAD is insecure.

Proof. Note that in COFB feedback function r8 = 0 and hence COFBSponge does

not satisfy condition (C3) in Proposition 14.

We modify the COFB feedback function such that E8 ̸= 0 b
2
. In particular we take

E8 =

0 b
2

I b
2

, then r8 = b/2.
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ECoFBmod
=



G

0 b
2

I b
2

 Ib

0 b
2
×b α · I b

2
0 b

2
×b

Ib

0 b
2

I b
2

 Ib


Since G and G+ Ib are invertible, re = rd = 3b

2
. Note that r12 = b/2, r3 = b. Further

since, E4 = 0 b
2
×b and E5 = α · Ib/2 we have r45 = r′45 = b

2
.

Corollary 10.

AdvAEAD
COFBSpongemod

(σ, qp) ≤
qp
2κ

+
2σ

2τ
+O

(σqp
2b

)
+O

(
σ2 + qp

2
b
2

)
.

5.6.2 frTtP with HyENA Feedback

The HyENA [34] feedback function can be represented as bellow.

EHyENA =



I b
2

0 b
2

0 b
2

0 b
2


0 b

2

I b
2

 Ib

0 b
2
×b α · I b

2
0 b

2
×b

Ib 0b× b
2

Ib


,

Now consider an frTtP which uses EHyENA as the underlying feedback function and an

extra state initialisation protocol as discussed in Section 5.2.2 and call it HyENASponge

construction.
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Proposition 21. HyENASponge AEAD is insecure.

Proof. Note that in HyENA feedback function r8 = 0 and hence HyENASponge does

not satisfy condition (C3) in Proposition 14.

We modify the HyENA feedback function so that E8 ̸= 0 b
2
. In particular we take

E8 =

0 b
2

I b
2

. Then r8 = b
2
. We further modify E1 =

α · I b
2

0 b
2

0 b
2

0 b
2

 so that rd = re = 3b
2

.

EHyENAmod
=



α · I b
2

0 b
2

0 b
2

0 b
2


0 b

2

I b
2

 Ib

0 b
2

α · I b
2

0 b
2

Ib

0 b
2

I b
2

 Ib


Note that r12 = b/2, r3 = b. Further since, E4 = 0b/2×b and E5 = α · Ib/2 we have

r45 = r′45 = b
2
.

Corollary 11.

AdvAEAD
HyENASpongemod

(σ, qp) ≤
qp
2κ

+
2σ

2τ
+O

(σqp
2b

)
+O

(
σ2 + qp

2
b
2

)
.
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5.7 Conclusion

In this chapter, we introduced a general full-rate Sponge type construction called the

frTtP, which uses an extra-state as compensation for increasing the size in the rate

part. We further showed that an frTtP construction could achieve security up to D ≪

2c/2, T ≪ 2c when this extra-state is initialized properly, and the underlying feedback

function satisfies some suitable conditions. As a consequence, we showed that the

weakness in the full-rate construction ORANGE-Zest [39] was due to an improper

initialization protocol, and with a proper initialization function, one can get a secure

full-rate Sponge-type AEAD scheme using the ORANGE-Zest feedback function.

We also considered some full-rate feedback functions used in popular constructions like

CoFB and HyENA and showed that with some proper modifications, these feedback

functions could also be used to construct secure full-rate Sponge-type modes.

As noted, an increase in the rate of message absorption in encryption/decryption

protocol leads to the higher efficiency of an AEAD construction in terms of runtime.

Hence attaining the maximum possible rate of message processing per primitive call is

a desired property in any AEAD. In this chapter, we tried to construct full-rate light-

weight AEAD constructions using permutation as the underlying primitives. Since

block cipher is another popular choice as primitive in AEADs, constructing a light-

weight block-cipher-based AEAD, which attains the maximum possible message ab-

sorption rate per block cipher call, is an important cryptographic problem. In the next

chapter, we will try to address this.
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Chapter 6

Designing a TBC-based Full-rate AEAD

131
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6.1 Introduction

In this chapter, our primary goal is to design a lightweight block (tweakable) cipher-

based AEAD scheme, that should be efficient, provide high performance, and be able

to perform well in low-end devices. In addition, we also demand robustness in security.

While designing such a scheme we keep in mind the following.

Maximal Rate

The design must guarantee the maximum possible rate of message absorption per

block (tweakable) cipher calls so as to maximize efficiency in terms of run-time.

Minimal State The design must guarantee appropriate implementation character-

istics on both lightweight and high-performance systems and must have a state size

that is equal to the block size of the underlying cipher.

Inverse-Free An authenticated algorithm with no inverse should be used in the

design. No decryption call to the underlying block cipher is necessary for the algo-

rithm’s validated encryption or decryption. This greatly reduces the overall hardware

footprint, particularly for solutions that incorporate authorized encryption and verified

decryption.

Minimally Xored Mixture Feedback We use a minimum number of xors to

process each block. This makes the design simpler and has a very low footprint in

software. The rationale behind having a mixture of plaintext and ciphertext feedback

is to achieve NIST-aimed security. During encryption, we ensure 192-bit entropy for

each block process. We have a 128-bit dynamic secret key and 64-bits LSB of the inputs

that influence the 64-bits LSB of the previous block cipher call.
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While decrypting, we have 64-bit MSB of the previous outputs going to the cor-

responding position of the next input. This would provide about 64-bit security for

forgery attempts.

In Section 6.2, we define some newly introduced security definitions associated with

AEAD modes and tweakable block ciphers. In Section 6.3, we introduce the TBC-

based AEAD scheme called mF. In Section 6.4, we reduce the security of the mF mode

to the security of the underlying TBC against the newly introduced TBC security

games defined in Section 6.2. In Section 6.5, we define a new TBC construction using

a block cipher and a key updation function (KUF) and upper bound the advantages

of any adversary playing those new TBC security games against it. In Section 6.6, we

consider the mF mode under this new TBC and derive an upper bound on the security

of such a mode. Finally, in Section 6.7, we make a theoretical comparison between an

instantiation of mF mode called the mFprim mode of AEAD and some other existing

TBC-based lightweight AEAD schemes.
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6.2 Security Definitions for µ-respecting Adversaries

6.2.1 µ-respecting TPRP-security

Let µ be a positive integer. We define µ-TPRP advantage of Ẽ to be Advµ-tprp

Ẽ
(q, t) =

max
A

Advtprp

Ẽ
(A ) where the maximum is taken over all µ-respecting adversaries A (i.e.

the number of queries (tw,X) by A with a same plaintext input X is at most µ)

running in time t. When the tweakable block cipher is instantiated in the ideal cipher

model, the time parameter t denotes the number of ideal cipher calls.

6.2.2 Multi-Commitment Prediction

Let n be a positive integer. Let A be an adversary which has oracle access to an n-bit

tweakable block cipher Ẽ with a tweak space T in the first phase.

PHASE 2:

1. After all the queries of the first phase are done, it makes at most λ commitments

of the form (twi, xi, yi) where xi, yi ∈ {0, 1}
n
2 , twi ∈ T .

2. A makes prediction queries of the form (tw′j, Xj) such that (tw′j, Xj) are fresh

i.e., ∀j, (tw′j, Xj) has never been queried before.

We say that any adversary A wins the λ-multi-commitment-prediction game if for

some prediction query tuple (tw′j, Xj) there exist a commitment tuple (twi, xi, yi) such

that

twi = tw′j; xi = ⌈Xj⌉n
2
; ⌊ẼK(twi, Xj)⌋n

2
= yi.
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The λ-multi-commitment-predicting advantage of an adversary A is defined as

Advλ-mcp

Ẽ
(A ) = Pr

[
A Ẽwins the λ-multi-commitment-prediction game

]

and we write,

Advλ-mcp

Ẽ
(q, t) = max

A
Advλ-mcp

Ẽ
(A )

where maximum is taken over all adversaries A running in time t making at most q

queries.

We define (µ, λ)-mcp advantage of A to be

Adv
(µ,λ)-mcp

Ẽ
(q, t) = max

A
Advλ-mcp

Ẽ
(A )

where the maximum is taken over all adversaries as defined above with the additional

restriction that they make µ-respecting queries in the first phase of the game.

We would like to note that in the ideal cipher model the (µ, λ)-multi-commitment

prediction security is defined in the same way as above with an additional restriction

that the adversary doesn’t make any primitive calls to E in the phase-2.

6.2.3 Multicollision Security Game

We say that an adversary A with oracle access to O produces a µ-multicollision if it

makes µ distinct queries x1, . . . , xµ to O, for which all responses are identical. The
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Figure 6-1: Phase 2 of the (λ, µ)-mcp game between A and CH. The Phase 1 CH queries
are responded similarly to as in the case of the µ-TPRP game. For Phase 2 queries, the µ-
restriction is lifted. Note that the Phase 2 queries and predictions can be done in any order.
The only condition is that a prediction (tw′j , Xj) must be fresh i.e., it has not been queried
before.

A CH
Commitment:

((twj , xj , yj)j=1,...,λ

Prediction queries

(tw′′
n+1, X

′
n+1)

Yn+1

...

(tw′′
n+λ, X

′
n+λ)

Yn+λ

µ-multicollision-advantage of the adversary A is defined as

Advµ-mcoll
O (A ) = Pr

[
A O produces µ-multicollision

]
and Advµ-mcoll

O (q) = max
A

Advµ-mcoll
O (A ), where maximum is taken over all adversaries

A making at most q queries.
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6.3 The mF Mode of AEAD

We start by defining the positive feedback function FB+ which takes a chain input Y

of size n-bits and a data input M of size less than or equal to n-bits to generate a data

output C of size |M |-bits and a chain output of size n. The negative feedback function

can be described in a similar way. The general description of the feedback functions

can be understood from Figures 6-2 and 6-3. For the case when the data input M has

length n, the feedback functions can be described in a much simpler way. If |M | = n,

then FB+(Y,M) = (X,C), where C = Y ⊕M and X = ⌈C⌉n/2∥⌊M⌋n/2. Similarly, if

|C| = n, then FB−(Y,C) = (X,M), where M = Y ⊕ C and X = ⌈C⌉n/2∥⌊M⌋n/2.

Let Ẽ be a tweakable block cipher with state size n and tweak-size t > n − 8.

We define the mF mode of AEAD using this TBC as follows. Given any data D, we

define d :=
⌈
|D|
n

⌉
. We parse the data D into d parts of n bit data blocks. In notation

(Dd, . . . , D1)
n← D, where |Dd| =


n if n | |D|

r if ∃r > 0 s.t |D| ≡ r mod n.

Given any data (N,A,M) ∈ {0, 1}n−8×{0, 1}∗×{0, 1}∗ and distinct but predefined

{a1, . . . , a6}, we define (a, δA) and (m, δM) depending on |A| and |M | using the Fmt

function as described in Algorithm 4. We restrict the values of a,m such that a+m+2 ≤

2t−n+8. With this setup, the mF mode encryption with the secret key K, simply outputs

ẼK(0t, N∥0610) as the tag if both a,m = 0. Else it sets N ′ = N∥071 if a = 0 and

N ′ = N∥08 if a ̸= 0. It takes ((N ′, 0), N∥08) as the first tweakable block cipher input

to generate Y0.

Associated data Processing: It parses (Aa, . . . , A1)
n← A. For each i ∈ [0, a− 1], it
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evaluates FB+(Yi, Ai+1) to generate (Xi+1, ⋆) and use ((N ′, i), Xi+1) as the next TBC

input to generate Yi+i. Finally, it makes another TBC call with input ((N ′, a+ 1), Ya⊕

δA) to generate Ya+1. It outputs Ya+1 as tag, if m = 0.

Message Processing: It parses (Mm, . . . ,M1)
n←M . For each i ∈ [a+1, l] it evaluates

FB+(Yi,Mi−a) to generate (Xi+1, Ci−a) and use ((N ′, i), Xi+1) as the next TBC input

to generate Yi+i. Finally it makes another TBC call with input ((N ′, l + 2), Yl+1 ⊕ δM)

to generate the tag. It outputs (Cm, . . . , C1) as the ciphertext.

Let pad be 0∗1 padding function. ⊥ represents invalid. P1 ? a1 : a2 evaluates to

a1 if P1 is true and a2 otherwise. P1 & P2 ? a1 : a2 : a3 : a4 evaluates to a1 if both

P1 and P2 are true, to a2 if only P1 is true, to a3 if only P2 is true and to a4 if none of

P1 , P2 are true. Feed(⋆, ⋆, dir) :=


FB+ if dir = +

FB− if dir = −.
. Then, with these notations,

mF mode of AEAD can be best understood from Figure 6-4 and Algorithm 4.

FB+

M

Y

C

X ≡ Y +/

⌊⌋|M|
pad ⌈X⌉|Y |/2/

⌈⌉|Y |/2

C

M

pad ⌊X⌋|Y |/2/

⌊⌋|Y |/2

Figure 6-2: The FB+ Function in mF. pad is 0∗1 padding.
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Algorithm 4 mF Mode

1: function mF[E].enc(K,N,A,M)

2: ((a, δA), (m, δM))← Fmt(A,M)

3: if a = 0,m = 0 then

4: T ← ẼK(0t, N∥0610)

5: return (λ, T )

6: else if a = 0 then N ′ ← N∥071

7: else N ′ ← N∥08

8: T ← ẼK((N ′, 0), N∥08)

9: C ← λ

10: if a ̸= 0 then

11: (∗, T )← proc txt(N ′, 0, K, T,A, δA,+)

12: if m ̸= 0 then

13: (C, T )← proc txt(N ′, a + 1, K, T,M, δM ,+)

14: return (C, T )

15: function mF[E].dec(K,N,A,C, T )

16: ((a, δA), (m, δC))← Fmt(A,C)

17: if a = 0,m = 0 then

18: (T ′, ∗)← EK(N∥0610)

19: return (T = T ′)? ⊤ : ⊥
20: else if a = 0 then N ′ ← N∥071

21: else N ′ ← N∥08

22: T ← ẼK((N ′, 0), N∥08)

23: C ← λ

24: if a ̸= 0 then

25: (∗, T ′)← proc txt(N ′, 0, K, T ′, A, δA,+)

26: if m ̸= 0 then

27: (M,T ′)← proc txt(N ′, a + 1, K, T ′, C, δC ,−)

28: if T ̸= T ′ then

29: return ⊥
30: else

31: return (M,⊤)

1: function Fmt(A,M)

2: (Aa−1, . . . , A0)
n← A

3: (Mm−1, . . . ,M0)
n←M

4: δA ← (n | |Aa−1|) & (m = 0)? a1 : a2 : a3 : a4

5: δM ← (n | |Mm−1|)? a6 : a5

6: return ((a, δA), (m, δM ))

7: function proc txt(N, l,K, Y0, D, δD, dir)

8: (Dd, . . . , D1)
n← D

9: for i = 1 to d do

10: (Xi, D
′
i)← Feed(Yi − 1, Di, dir)

11: Yi ← ẼK((N, l + i), Xi)

12: Xd+1 ← Yd ⊕ 0n−4∥δD
13: Yd+1 ← ẼK((N, l + d+ 1), Xd+1)

14: return (D′, Yd+1)

15: function Feed(Y,D,dir)

16: D′ ← D ⊕ ⌊Y ⌋|D|

17: if dir = ” + ” then

18: B ← ⌈pad(D′)⌉n/2∥⌊pad(D)⌋n/2
19: if dir = ”− ” then

20: B ← ⌈pad(D)⌉n/2∥⌊pad(D′)⌋n/2
21: X ← B ⊕ Y

22: return (X,D′)
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FB−

C

Y

M

X ≡ Y +/

⌊⌋|C|
pad ⌊X⌋|Y |/2/

⌊⌋|Y |/2

M

C

pad ⌈X⌉|Y |/2/

⌈⌉|Y |/2

Figure 6-3: The FB− Function in mF. pad is 0∗1 padding.

.

Ẽ
(N ′,0)
K FB+

A1

FB+

Aa

Ẽ
(N ′,a)
K

+

δA

Ẽ
(N ′,a+1)
K

N∥08
Y0 X1 Ya−1 Xa Ya Xa+1 Ya+1

FB+

M1

C1

FB+

Mm

Cm

Ẽ
(N ′,l+1)
K

+

δM

Ẽ
(N ′,l+2)
K

Ya+1 Xa+2 Yl Xl+1 Yl+1 Xl+2 T

Figure 6-4: Block diagram formF encryption. Here, N ′ = N∥x, where x = 08/071 depending
on the condition that (a ̸= 0) or (a = 0 & m ̸= 0) respectively. We define l = a+m. δA,δM
are as defined in Figure 4

.
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6.4 Security Reductions of mF

Here, we give upper bounds on the privacy advantage and forging advantage of mF

against any adversary B. For notational reference, see Figure 6-4.

6.4.1 Privacy

Theorem 7. For any privacy adversary B of mF, there is an µ-TPRP adversary A

of Ẽ, such that

Advpriv
mF (B) ≤ Advµ-tprp

Ẽ
(A ) + σ

(
1 +

(µ + 1)2

2n

)(
σ

2
n
2

)µ

,

where σ is the total number of queries by A .

Proof. Note that mF is the mode based on a tweakable block cipher Ẽ. If we replace

Ẽ by an n-bit tweakable random permutation P with same tweak space, we denote

the construction as mFP . From the construction it is easy to see that all tweaks used

in the tweakable random permutation while we execute nonce-respecting queries are

distinct. Hence, all output bits of mFP are random, so it is equivalent to the oracle $.

So, Advpriv
mF (B) = Pr

[
BmFP = 1

]
− Pr

[
BmFẼ = 1

]
.

By using straightforward reduction, one can construct an adversary A ′ which mainly

simulates the mode mFO, where O (which is either P or ẼK) is the challenge oracle

of A ′. Clearly, Advpriv
mF (B) ≤ Advtprp

Ẽ
(A ′). However, A ′ does not necessarily follow

µ-input-respecting for small µ. So we follow a slightly different strategy to define A .

It is basically same as A ′, except that it aborts and returns 0 whenever it is going to
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violate µ-input-restriction. More precisely, it maintains a list of all queries (twi, Xi) to

its challenger. If for some i, there exists µ+ 1 number of j < i with Xj = Xi, it aborts

(instead of making the query) and returns zero. When it does not abort, it returns

whatever B returns. Now,

Pr
[
BmFP = 1

]
− Pr

[
BmFẼ = 1

]
≤ Pr

[
BmFP = 1 ∩A doesn’t Abort

]
+ Pr

[
A PAborts

]
− Pr

[
BmFẼ = 1 ∩A doesn’t Abort

]
≤(1) (Pr

[
A P = 1

]
− Pr

[
A mFẼ = 1

]
)

+ Pr
[
A PAborts

]
≤(2) Advµ-tprp

Ẽ
(A ) + σ

(
1 +

(µ + 1)2

2n

)(
σ

2
n
2

)µ

.

The inequality (1) follows from the definition that A returns 1 if and only if it does

not abort and B returns 1. We now bound Pr
[
A P Aborts

]
≤ σ

(
1 + (µ+1)2

2n

)(
σ

2
n
2

)µ

which justifies inequality (2) above.

Consider the event that A P Aborts i.e., ∃{i1, . . . , iµ+1} ∈ [1, σ] such that A needs

to make µ + 1 queries of the form (twij , Xij) to P such that Xij = Xij′
∀j, j′ ∈ [1, µ +

1]. Now, note that for all such queries, if the previous query by A is of the form

(twij−1, Xij−1) and it received the output Yij−1, then

⌊Xij⌋n2 = ⌊Yij−1 ⊕ Cij⌋n2

for some known Ci1 , . . . , Ciµ+1 . Now consider an oracle OP which takes input of the

form (twi, Xi, Ci) and outputs zi = ⌊Yi ⊕ Ci⌋n
2

as response, where Yi = P (twi, Xi).
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Then, clearly,

Pr
[
A P Aborts

]
≤ Adv

(µ+1)-mcoll
OP

(σ)

.

Finally, to bound Adv
(µ)-mcoll
OP

(σ), let ωd = ((Ni, ji), Xi, zi)i∈E be the online tran-

script of any adversary playing µ-mcoll game with OP .

The µ-multi collision occurs if ∃i1, . . . , iµ ∈ [1, σ] such that zik = zil for all k, l ∈

[1, µ].

Note that the probability of µ-multi collision is highest when the tweak is the same

for all the queries.

In that case, for a given x ∈ {0, 1}n
2 and fixed ik ∈ [1, σ] number of possible tuples

of (Yik , CiK ) such that zik = ⌊Yik⊕Cik⌋n2 = x is bounded by 2
n
2 . Hence, varying over all

i1, . . . , iµ ∈ [1, σ], we have number of possible tuples (Yi1 , Ci1), . . . , (Yiµ , Ciµ) such that

zik = ⌊Yik ⊕ Cik⌋n2 = x ∀k ∈ [1, µ] is bounded by 2
µn
2 .

Varying over all x ∈ {0, 1}n
2 and for all combination of i1, . . . , iµ ∈ [1, σ], we have

number of ways in which µ-multi collision occurs is at most
(
σ
µ

)
2

(µ+1)n
2 .

Hence, we have
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Lemma 13.

Advµ-mcoll
Op

(σ) = Pr [µ-mcoll] ≤
(
σ
µ

)
2

(µ+1)n
2

(2n)µ

≤ σ

(
1 +

µ2

2n

)(
σ

2
n
2

)µ−1

.
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6.4.2 Forgery

Define an oracle OẼK
, which takes a query input of the form (tw,X,C) and returns

X ′ = C ⊕
(
0

n
2 ∥⌊ẼK(tw,X)⌋n

2

)
.

We can similarly define OP , where the the tweakable block cipher above is replaced

by tweakable random permutation P . For any (µ + 1)-multicollision (µ + 1)-input-

restricting adversary C with oracle access to OẼK
, there is an (µ + 1)-multicollision

adversary C ′ with oracle access to OP , such that

Adv
(µ+1)-mcoll

Ẽ
(C ) ≤ Advµ-tprp

Ẽ
(C ′) + σ

(
1 +

(µ + 1)2

2n

)(
σ

2
n
2

)µ

.

This follows from the standard reduction and Lemma 13 .

Theorem 8. For any nonce-respecting forging adversary B of mF making qe encryp-

tion queries with σe encryption query blocks, qd decryption queries with σd decryption

query blocks, there is (i) (µ, σd)-mcp adversary A of Ẽ, and (ii) (µ+ 1)-multicollision

adversary C with oracle access to OẼK
(as defined above), such that

Advforge
mF (B) ≤ Adv

(µ,σd)-mcp

Ẽ
(A ) + 2 ·Advµ-tprp

Ẽ
(C ′)

+ σ

(
1 +

(µ + 1)2

2n

)(
σ

2
n
2

)µ

+
2σe

2
n
2

.

Let B be any forging adversary of mF. Suppose B makes qe encryption queries

with σe encryption query blocks and qd forging attempts with effectively σd encryption

blocks. We construct a (µ, σd)-mcp adversary A which uses B to win the (µ, σd)-multi-
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commitment-prediction game of Ẽ.

The Reduction Game

Let CH be a (µ, λ)-mcp challenger. A acts as a forgery challenger for B, as follows:

Phase 1 :

I. Whenever B sends an encryption query of the form (N i, Ai,M i)i∈[1,qe],

A. A responds to the query by computing (Ci, T i) by making the required ẼK

queries to CH.

B. In the previous step, A always follows the restriction that no more than µ

queries to Ẽ have the same input. Otherwise, it aborts.

II. For every decryption query of the form (N∗j, A∗j, C∗j, T ∗j)j∈[1,qd], A simply re-

sponds it with ⊥.

III. When all the encryption and decryption queries by B have been responded, A

revisits all the decryption queries made by B. For each j ∈ [1, qd], A proceeds

as follows:

A. A checks if B has previously made any encryption query (N i, Ai,M i) and

received output of the form (Ci, T i) such that N i = N∗j and defines an in-



Security Reductions of mF 147

teger pj as follows:

(a) if there doesn’t exist any encryption query (N i, Ai,M i) from B such

that N i = N∗j, then A sets pj = −1.

(b) Else if ∃(N i, Ai,M i) such that N i = N∗j but T i ̸= T ∗j or li < l∗j , then

A sets pj = −1.

(c) Else if ∃(N i, Ai,M i) such that N i = N∗j but li > l∗j and T ∗j ̸= Y i
l∗j+2,

then A sets pj = −1.

(d) Else if ∃(N i, Ai,M i) such that N i = N∗j but li > l∗j and T ∗j = Y i
l∗j+2,

then A sets pj = 0.

(e) Else if p′j ∈ Z≥0 be such that pad(C∗jm∗
j−k

) = pad(Ci
mi−k), ∀k ∈ [0, p′j) but

pad(C∗jm∗
j−p′j

) ̸= pad(Ci
mi−p′j

), then

(i) A defines pj =


p′j + 1 if if⌈pad(C∗jm∗

j−p′j
)⌉n

2
= ⌈pad(Ci

mi−p′j
)⌉n

2

p′j + 2 otherwise .

(ii) A defines

∆j := ⌊pad(C∗jm∗
j−pj+1)⌋n2 ⊕ ⌊pad(Ci

mi−pj+1)⌋n2 .

B. If pj = −1, 0; A computes Y ∗jk for all k ∈ [0, l∗j − pj] and else computes

Y ∗jk for all k ∈ [0, l∗j − pj + 1] with the help of CH following the restriction
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that no more than µ queries to Ẽ have the same input. In that case A aborts.

Remark 6. If there exists a common prefix between (N i, Ai, Ci) and (N∗j, A∗j, C∗j),

then A already has computed up to the common prefix length during encryption

query and thus need not send any new encryption query to CH for computation

up to that point.

Phase 2 (Commitment):

For each j ∈ [1, qd],

I. If pj = −1, then,

A. Note that A knows Y ∗jl∗j+1 from Phase 1.

B. A sets commitment of the form ((N∗j, l∗j + 2), ⌈Y ∗jl∗j+1⌉n2 , ⌊T
∗j⌋n

2
).

II. If pj = 0, then,

A. A sets ⌊Y ∗jl∗j+1⌋n2 = ⌊Y i
l∗j+1 ⊕Di

l∗j+1 ⊕ δM∗j⌋n
2
, where

Di
l∗j+1 =


Y i
l∗j+1 ⊕ Ai

l∗j+2 if l∗j < ai

δAi if l∗j = ai

Ci
i∗j−a+1 if l∗j > ai.



Security Reductions of mF 149

B. A sets commitment of the form ((N∗j, l∗j + 1), ⌈C∗jm∗
j
⌉n

2
, ⌊Y ∗jl∗j+1⌋n2 ).

III. If pj ̸= 0,−1, then A makes pj commitments of the form

(tw∗jk , x∗jk , y∗jk )k∈[l∗j−pj+2,l∗j+1],

where

tw∗jk = (N∗j, k);x∗jk = ⌈C∗jm∗
j−pj+1⌉n2 ;

y∗jk =


⌊Y i

k⌋n2 ⊕∆j if k = l∗j − pj + 2

⌊Y i
k⌋n2 Otherwise.

Phase 2 (Prediction):

For each j ∈ [1, qd]

I. If pj = −1, then

A. It calculates X∗jl∗j+2 = Y ∗jl∗j+1 ⊕ δM∗j .

B. It sends prediction query of the form ((N∗j, l∗j + 2), X∗jl∗j+2).

II. If pj = 0, then

A. Note that A knows Y ∗jl∗j
from Phase 1.

B. A then sets X∗jl∗j+1 = (0
n
2 ∥⌊Y ∗jl∗j

⌋n
2
)⊕ C∗jm∗

j
.

C. finally A send ((N∗j, l∗j + 1), X∗jl∗j+1) as a prediction query.
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III. If pj ̸= 0,−1, then

A. Note that, A knows Y ∗jl∗j−pj+1 from Phase 1.

B. for k = l∗j − pj + 2 to l∗j + 1,

(a) A knows the value of Y ∗jk−1.

(b) A then sets X∗jk = (0
n
2 ∥⌊Y ∗jlk−1⌋n2 )⊕ C∗jk−1.

(c) It sends (tw∗jk , X∗jk ) as a prediction query and recieves Y ∗jk .

Understanding the Reduction Game

The adversary A ’s actions on receiving an encryption query are quite simple. To each

decryption query, A simply responds ⊥. Now, we try to understand how the adversary

A generates the commitments and the predictions depending upon the queries of B.

Notice that for each decryption query by B, A sets an integer flag p taking values in

[−1,mi]. Moreover, it makes at least one commitment and at least one prediction for

each decryption query.

For simplicity, we assume that B makes only one decryption query of the form

(N∗, A∗, C∗, T ∗).

Here, we only discuss the most complex case, i.e., when there exists an encryption

query of the form (N,A,M) with response (C, T ), such that N∗ = N ; l∗ = l and

T ∗ = T . The adversary looks for the maximum possible common suffix between C
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and C∗. Assume that the last p′ blocks of C and C∗ are identical. Then, depending

on whether the most significant half of the last non-identical blocks of C and C ′ are

identical or not, the flag is set to p′+ 2 or p′+ 1, respectively. With the help of CH, A

simulates the mF decryption protocol to compute Y ∗l−p+1 before exiting Phase 1.

Note that adversary A knows all the {Yl−p+2, · · · , Yl+1} values from the encryption

transcript generated for B. The adversary simply sets p commitments of the form

((N, l − p + 2), ⌈Cm∗−p+1⌉n
2
, ⌊Yl−p+2⌋n

2
), · · · , ((N, l + 1), ⌈Cm∗⌉n

2
, ⌊Yl+1⌋n

2
). Finally, A

returns to simulating the decryption protocol starting from Y ∗l−p+1 by sending prediction

queries of the form ((N, l − p + k), X∗l−p+k)k∈[2,p+1] to CH.

Remark 7. When B makes more than one decryption query, A doesn’t make any pre-

diction query before generating commitments corresponding to all the decryption queries.

Let CBAD denote the event that A receives an encryption query of the form (N i, Ai,M i)

to output a response of the form (Ci, T i), such that, for some 1 ≤ c ≤ li we have

⌊X i
c⌋n2 = ⌊Y i

c−1⌋n2 ⊕ ⌊δM⌋n2 for some arbitrary M .

Lemma 14.

Pr [CBAD] ≤ 2σe

2
n
2

+ Advµ-tprp

Ẽ
(C ′).

Proof. Since CBAD occurs only during the encryption queries, by a standard reduction

technique there exists a µ-TPRP adversary C ′ such that

Pr [CBAD] ≤ Pr [CBADP ] + Advµ-tprp

Ẽ
(C ′)

where CBADP denotes the event CBAD when A has oracle access to P .
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Now, Let A have oracle access to P . Then, during the i-th encryption query, we

have ⌊X i
c⌋n2 =


⌊Ai

c⌋n2 if c ≤ ai

⌊Y i
c−1⌋n2 ⊕ ⌊δAi⌋n

2
if c = ai + 1

⌊M i
c⌋n2 if c > ai + 1.

.

Now since all the Y i
j values are generated uniformly at random and ⌊δAi⌋n

2
̸= ⌊δM⌋n

2

for any M . Hence, for any i ∈ (q] and any M , Pr [CBAD] ≤ 1

2
n
2

. Since, δM takes at

most 2 values, depending on whether n|M or not, varying over all i, j, we have the

lemma.

Corollary 12. If the event CBAD doesn’t hold, then for any decryption query (N∗j, A∗j, C∗j, T ∗j),

such that N∗j = N i, li > l∗j and T ∗j = Y i
l∗j+2, then X∗jl∗j+1 ̸= X i

l∗j+1.

Proof. Note that, T ∗j = Y i
l∗j+2 =⇒ X∗jl∗j+2 = X i

l∗j+2. Now, since Y ∗jl∗j+1 = X∗jl∗j+2 ⊕ δM∗j

and since CBAD doesn’t hold, Y ∗jl∗j+1 ̸= Y i
l∗j+1, which implies X∗jl∗j+1 ̸= X i

l∗j+1.

Proposition 22. Suppose A never Aborts and CBAD never occurs. If (N∗j, A∗j, C∗j, T ∗j)

is a valid forgery, for some j ∈ [1, qd] then for some k ∈ [−1, pj] we have (tw∗jk , X∗jk ) is

a successful prediction query tuple.

We postpone the proof of Proposition 22 to Subsection 6.4.3.

Proof of Theorem 8

For all encryption query of the form (N i, Ai,M i), A can correctly simulate as it has

access to ẼK .



Security Reductions of mF 153

Note that Proposition 22 means, that, given A doesn’t abort and CBAD doesn’t occur

for any encryption query by B, the (µ, σd)-mcp adversary A makes a valid prediction

whenever the forging adversary B makes a successful forgery. Hence, by Proposition

22,

Pr [A wins (µ, σd)-mcp game]

≥ Pr
[
B Forges i-th query for some i ∈ [1, qd]|A doesn’t Abort ∩ CBAD

]
Hence,

Pr [B Forges] ≤ Pr
[
B Forges i-th query for some i ∈ [1, qd]|A doesn’t Abort ∩ CBAD

]
+ Pr [A Aborts] + Pr [CBAD]

≤ Pr [A wins (µ, σd)-mcp game] + Pr [A Aborts] + Pr [CBAD]

≤ Adv
(µ,σd)-mcp

Ẽ
(A ) + 2 ·Advµ-tprp

Ẽ
(C ′)

+ σ

(
1 +

(µ + 1)2

2n

)(
σ

2
n
2

)µ

+
2σe

2
n
2

.

6.4.3 Proof of Proposition 22

Let (N∗j, A∗j, C∗j, T ∗j) be a valid forgery. Depending on the value of pj, we divide it

into three cases.

CASE-1: If pj = −1.

In the commitment phase the adversary A commits ((N∗j, l∗j +2), ⌈Y ∗jl∗j+1⌉n2 , ⌊T
∗j⌋n

2
)

as described above.
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Notice that if N i ̸= N∗j for all encryption query of the form (N i, Ai,M i) then

(N∗j, l∗j + 2) is fresh.

If N i = N∗j and l∗j = li but T i ̸= T ∗j, then since (N∗j, l∗j + 2) = (N i, li + 2), we

must have ((N∗j, l∗j + 2), X∗jl∗j+2) is fresh.

If N i = N∗j and l∗j > li then we again have (N∗j, l∗j + 2) is fresh.

Let N i = N∗j and l∗j < li. If T ∗j ̸= Yl∗j+2 then we have ((N∗j, l∗j + 2), X∗jl∗j+2) is fresh.

Hence, if any of the above condition is satisfied then ((N∗j, l∗j +2), X∗jl∗j+2) is fresh i.e.

((N∗j, l∗j + 2), X∗jl∗j+2) has never been queried before by A to CH, ⌈X∗jl∗j+2⌉n2 = ⌈Y ∗jl∗j+1⌉n2
and ẼK((N∗j, l∗j + 2), X∗jl∗j+2) = T ∗j. Hence, we see that ((N∗j, l∗j + 2), X∗jl∗j+2) is a valid

prediction query with respect to the commitment ((N∗j, l∗j + 2), ⌈Y ∗jl∗j+1⌉n2 , ⌊T
∗j⌋n

2
) .

CASE-2: If pj = 0

We have, N i = N∗j, l∗j < li and T ∗j = Yl∗j+2. Then, we must have X∗jl∗j+2 = X i
l∗j+2

and

⌊Y ∗jl∗j+1⌋n2 = ⌊Y i
l∗j+1⌋n2 ⊕ ⌊D

i
l∗j+1⌋n2 ⊕ ⌊δM∗j⌋n

2

where Di
l∗j+1 is as defined in Phase 2.

In the commitment phase, the adversary A commits ((N∗j, l∗j+1), ⌈C∗jm∗
j
⌉n

2
, ⌊Y ∗jl∗j+1⌋n2 )

as described above. Now, by Proposition 12, we have ((N∗j, l∗j + 1), X∗jl∗j+1) is fresh.

Moreover, it is a valid prediction query.
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CASE-3: If pj ̸= −1, 0

There exist an i ∈ [1, qe] such that N∗j = N i, a∗j + m∗j = ai + mi = l∗j , T
∗j = T i.

Now consider the two cases :

I. First, let p′j ∈ Z≥0 be such that C∗jm∗
j−k

= Ci
mi−k,∀k ∈ [0, p′j) and C∗jm∗

j−p′j
̸= Ci

mi−p′j

but ⌈C∗jm∗
j−p′j
⌉n

2
= ⌈Ci

mi−p′j
⌉n

2
. In this case, pj = p′j+2. We have, by suffix property,

∆j ̸= 0 and

⌊Y ∗jlj−pj+2⌋n2 = ⌊Y i
lj−pj+2⌋n2 ⊕∆j.

i.e. X∗jlj−pj+2 ̸= X i
lj−pj+2.

II. Now, let p′j ∈ Z≥0 be such that C∗jm∗
j−k

= Ci
mi−k,∀k ∈ [0, pj) and ⌈C∗jm∗

j−p′j
⌉n

2
̸=

⌈Ci
mi−p′j

⌉n
2
. Then pj = p′j + 1 and, by the suffix property,

⌊Y ∗jl∗j−pj+2⌋n2 = ⌊Y i
l∗j−pj+2⌋n2 .

Since ⌈C∗jm∗
j−pj+1⌉n2 ̸= ⌈C

i
mi−pj+1⌉n2 ,

X∗jl∗j−pj+2 ̸= X i
l∗j−pj+2.

Hence, we conclude that (tw∗jl∗j−pj+2, X
∗j
l∗j−pj+2) is fresh in both cases.
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In the commitment phase, the adversary commits (tw∗jk , x∗jk , y∗jk ) for all k ∈ [l∗j −

pj + 2, l∗j + 1].

If (tw∗jlj−pj+2, X
∗j
l∗j−pj+2) is a valid prediction query with respect to (tw∗jl∗j−pj+2, x

∗j
l∗j−pj+2, y

∗j
l∗j−pj+1),

we are done.

If not, then C∗jm∗
j−pj+2 = Ci

mi−pj+2.

⌊Y ∗jl∗j−pj+2⌋n2 ̸= ⌊Y
i
l∗j−pj+2⌋n2 .

i.e. X∗jl∗j−pj+3 ̸= X i
l∗j−pj+3.

Hence, we have (tw∗jl∗j−pj+3, X
∗j
l∗j−pj+3) is fresh.

Inductively, suppose (tw∗jl∗j , X
∗j
l∗j

) is not a valid prediction query. Then as C∗jm∗
j

= Ci
mi
,

⌊Y ∗jl∗j
⌋n

2
̸= ⌊Y i

l∗j
⌋n

2

i.e. X∗jl∗j+1 ̸= X i
l∗j+1

Hence (tw∗jl∗j+1, X
∗j
l∗j+1) is fresh.

Since N∗j = N i, a∗j + m∗j = ai + mi = l∗j , T
∗j = T i =⇒ X∗jl∗j+2 = X i

l∗j+2. Hence,

Y ∗jl∗j+1 = Y i
l∗j+1.
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Finally, since (N∗j, A∗j, C∗j, T ∗j) is a valid forgery it must be that

ẼK(tw∗jl∗j+1, X
∗j
l∗j+1) = Y ∗jl∗j+1.

Hence, (tw∗jl∗j+1, X
∗j
l∗j+1) must be a valid prediction query.
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6.5 A Block Cipher-based Tweakable Block Cipher

Construction

Let ρ : {0, 1}n → {0, 1}n be any bijective function and ρi denotes i consecutive ap-

plications of ρ. We call ρ, the key updation function (KUF) of the tweakable block

cipher.

Definition 7. Given any fixed KUF ρ, define

νρ := max
l<2n

1

l
· Pr

[
rK ≤ l

∣∣K $←− {0, 1}n
]
.

Where for all K ∈ {0, 1}n, rK is defined as the smallest positive integer such that

ρrK (K) = K.

Notice that if ρ(K) = α · K, where α is a primitive polynomial of degree n, then

νρ = 0. Leurent et al. [75] showed that if ρ is the 11-th round-key function in the AES

key scheduling algorithm, then νρ ≥ 0.44
14018661024

.

Consider a block cipher E : {0, 1}n × {0, 1}n → {0, 1}n. Then, for any integer

t > n, we define the tweakable block cipher Ẽ : {0, 1}n × {0, 1}t × {0, 1}n → {0, 1}n

as, Ẽ(K, tw,X) := E(Ktw, X), where Ktw := ρi(E(K,N)). Here, we parse tw to get

N = ⌊tw⌋n; i is the decimal integer representation of ⌈tw⌉t−n.
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(N, i)

X

Ẽ
Y

K

≡ /
N

K

E
KN

ρi

ρi(KN)

X

E
Y

Figure 6-5: A block cipher based tweakable block cipher construction.

.

Remark 8. If the key size κ of the block cipher is less than the state size n, then we

can take the ρ function with domain and range {0, 1}κ and chop KN appropriately. If

κ > n, we can generate the updated key suitably by multiple applications of ρ. Since

there exist many popular block ciphers with κ = n, in this paper we restrict our analysis

to these types of block ciphers only.
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6.5.1 Bounding µ-TPRP Security of Ẽ

Here we try to bound the µ-TPRP security of the tweakable block cipher Ẽ. Let A be

any µ-respecting adversary playing the µ-TPRP game that makes at most t primitive

queries and d online queries.

We assume that the adversary doesn’t make repetitive or redundant queries.

The Ideal World and Analysis of Bad Events

Let P and E denote the index set of primitive queries and encryption queries respec-

tively.

In ideal world, the oracle chooses random functions P : {0, 1}n × {0, 1}n → {0, 1}n

and Q : T × {0, 1}n → {0, 1}n such that for all K ∈ {0, 1}n we have P (K, ⋆) as a

random permutation and for all tw ∈ T we have Q(tw, ⋆) as a random permutation.

Primitive Query: In the Ideal world for the i-th primitive query of the form (Ki, X i)

it computes Y i = P (Ki, X i) and sends it as a response.

Define ωt = (Ki, X i, Y i)i∈P to be the primitive transcript.

Online Query: On receiving the i-th input query of the form ((N i, ji), X i) it com-

putes Y i = Q((N i, ji), X i) and sends it as the response.
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Offline Computation : Oracle Chooses K ∈ {0, 1}n uniformly at random. It then

chooses a permutation Π : {0, 1}n → {0, 1}n uniformly at random from the set of all

permutations over {0, 1}n. It then defines KN i := ⌊Π(N i)⌋n and Ki = ρj
i
(KN i).

Define ωd = (K, ((N i, ji), X i, Y i, Ki)i∈E , ) to be the online transcript.

Define ω = (ωt, ωd) be the transcript for the adversary in the ideal world.

Bad Events: We now look at the ideal world transcript ω. We identify all the possible

events where there is an input or output collision between different types of query-

response tuples in ω i.e. between the inputs or outputs of (Ki, Xi, Y
i)i∈P , (K, twi, Ki)i∈E

and (Ki, X i, Y i)i∈E . The 6 possible input collisions are:

(I1) (Ki, X i) = (Ki′ , X i′), i, i′ ∈ P

(I2) (K, twi) = (K, twi′), i, i′ ∈ E

(I3) (Ki, X i) = (Ki′ , X i′), i, i′ ∈ E

(I4) (K, twi) = (Ki′ , X i′), i ∈ E , i′ ∈ P

(I5) (K, twi) = (Ki′ , X i′), i, i′ ∈ E

(I6) (Ki, X i) = (Ki′ , X i′), i ∈ E , i′ ∈ P .

Similarly, the 6 possible output collisions are :

(O1) (Ki, Y i) = (Ki′ , Y i′), i, i′ ∈ P

(O2) (K,Ki) = (K,Ki′), i, i′ ∈ E
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(O3) (Ki, Y i) = (Ki′ , Y i′), i, i′ ∈ E

(O4) (K,Ki) = (Ki′ , Y i′), i ∈ E , i′ ∈ P

(O5) (K,Ki) = (Ki′ , Y i′), i, i′ ∈ E

(O6) (Ki, Y i) = (Ki′ , Y i′), i ∈ E , i′ ∈ P .

We ignore cases I1 and O1 as the adversary doesn’t make redundant queries. Sim-

ilarly, we also ignore case I2 as it simply means that the adversary has made multiple

encryption queries with the same tweak. We consider the cases I4, I5, O4 and O5 as

subcases of the event that K = Ki for some i ∈ E ∪ P . We call this event as BAD1.

Similarly, we consider cases I3, O2 and O3 as subcases of the event that for some i, i′ ∈ E

we have Ki = Ki′ . Since the subcase where twi = twi′ is already considered in BAD1

it is enough to consider the subcase where twi ̸= twi′ . Define this event as BAD2. We

denote the event that case I6 occurs as BAD3. Finally, we denote the event that case O6

occurs as BAD4.

In notation:

BAD1: For some i ∈ E ∪ P , we have Ki = K.

BAD2: For some i1 ̸= i2 ∈ E , we have (N i1 , ji1) ̸= (N i2 , ji2) but Ki1 = Ki2 .

BAD3: For some i ∈ E and i′ ∈ P , we have (Ki, X i) = (Ki′ , X i′).

BAD4:For some i ∈ E and i′ ∈ P , we have (Ki, Y i) = (Ki′ , Y i′).
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Note that, in the ideal world, BAD1 implies that the adversary couldn’t guess the

sectionret key. Further BAD2, BAD3 and BAD4 means that the input-output tuples in ωt

and ωd are distinct i.e. permutation compatible.

Definition 8.

BAD =
4⋃

i=1

BADi.

We call a transcript ω bad if event BAD occurs.

Lemma 15.

Pr [BAD] ≤ d · νρ +
t + d

2n
+

d2

2n+1
+

2µt

2n
+

(
d

µ+1

)
(2n)µ

.

Proof. Here, we try to bound the distinct bad events defined above.

Bounding BAD1: Fix i ∈ P ∪ E . Since K is chosen uniformly at random, we have

probability that Ki = K is at most 1
2n

. similar varying over all i,

Pr [BAD1] ≤ d + t

2n

.

Bounding BAD2: This event can be divided into the following cases.

Case 1: (N i1 ̸= N i2) In this case, since Π is a random permutation, KN i1 ̸= KN i2

are distinct and independent. Hence probability that Ki1 = Ki2 is at most 1
2n

. Varying

over all i1, i2 ∈ E we have,
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Pr [Case 1] ≤ d2

2n+1
.

Case 2: (N i1 = N i2 ; ji1 ̸= ji2) In this case we have KN i1 = KN i2 .

Hence Case 2 event occurs if and only if, ρ(j
i1−ji2 )(KN i) = KN i i.e., (ji1 − ji2) is

divisible by the periodicity of KN i (say rKNi
).

Note that queries of this form arise due to the encryption query of B with nonce

N i in the privacy game.

Let li denote the number of blocks in the encryption query of B with nonce N i.

Then for all ii, i2, such that N i1 = N i2 = N i, we have |ji1 − ji2| ≤ li i.e. ri ≤ li, and by

Definition 7, probability that, Case 2 holds is at most li · νρ.

Now, varying over all possible i, and from the observation that
∑

i li ≤ d, we have,

Pr [Case 2] ≤
∑
i

li · νρ ≤ d · νρ.

Since the above two cases are mutually exclusive, we have

Pr [BAD2] ≤ d2

2n+1
+ d · νρ.

Bounding BAD3: For a given i′ ∈ P , let the adversary make the primitive query

(Ki′ , X i′). Then, there can be at most µ encryption query of the form ((N ik , jik), X i′)k∈[1,µ],ik∈E ,
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and hence, at most µ (Kik , X i′)k∈[1,µ],ik∈E tuples. Now, since Kik are chosen uniformly

at random during encryption query, we have, for a given ik ∈ E , probability that

Kik = Ki′ is at most 1
2n

. Hence, for a given i′ ∈ P , probability that ∃i ∈ E s.t.

(Ki, X i) = (Ki′ , X i′) is at most µ
2n
. Varying over all i′, we have

Pr [BAD3] ≤ µt

2n
.

Bounding BAD4: To bound BAD4 we first define an event BADY as follows:

BADY: ∃i1, . . . iµ+1 ∈ E s.t. Y ik = Y il ∀k, l ∈ [1, µ + 1].

Then by union bound we have

Pr [BAD4] ≤ Pr [BADY] + Pr
[
BAD4|BADY

]
.

Bounding BADY: Since for each i ∈ E , Y i is chosen uniformly at random, given

i1, . . . , iµ+1 ∈ E , probability that Y ij = Y ij , for all j ∈ [1, µ+1] is at most 1
(2n)µ

. Hence,

varying over all choices of i1, . . . , iµ+1, we have

Pr [BADY] ≤
(

d
µ+1

)
(2n)µ

.

Bounding BAD4|BADY : For a given i′ ∈ P , let the adversary’s primitive transcript

be (Ki′ , ⋆, Y i′). Then, there can be at most µ encryption transcripts of the form
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((N ik , jik), ⋆, Y i′)k∈[1,µ],ik∈E , and hence, at most µ (Kik , Y i′)k∈[1,µ],ik∈E tuples. Since Kik

are chosen uniformly at random during encryption query, we have for a given ik ∈ E ,

probability that Kik = Ki′ is at most 1
2n

. Hence, for a given i′ ∈ P probability, that

∃i ∈ E s.t. (Ki, Y i) = (Ki′ , Y i′) is at most µ
2n
. Varying over all i′, we have

Pr
[
BAD4|BADY

]
≤ µt

2n
.

Hence we get

Pr [BAD4] ≤
(

d
µ+1

)
(2n)µ

+
µt

2n
.

Finally, adding all the probabilities, we get the Lemma.

Real World and Good Transcript Analysis

The real world has oracle EK . All the primitive queries and the encryption queries are

responded to based on the responses of EK .

By good transcript, we mean any transcript which is not bad. Now consider a good

transcript ω = (ωt, ωd). Let Θ0 and Θ1 be the transcript random variable obtained in

the ideal world and real world respectively.

Note that by definition of the good transcript, the input-outputs of ωt and ωd in the

ideal world are independent yet permutation compatible. Hence, we have

Pr [Θ0 = ω] =
∏
ti

1

(2n)ti
× 1

2n
× 1

(2n)d
× 1

(2n)d
,
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where ti denotes the number of primitive queries with the key K ′i ∈ {0, 1}n. i.e,∑
i ti = t.

Now, note that in the real world the primitive queries and online queries are per-

mutations compatible.

Hence, we have Pr [Θ1 = ω] =
∏
ki

1
(2n)ki

× 1
2n
× 1

(2n)d
, where ki = di + ti such that

ti denotes the number of primitive queries with key Ki and di denotes the number of

encryption queries of the form (N l, jl, X) such that K l = Ki. Note that
∑

i ki = d + t.

Hence

Pr [Θ1]

Pr [Θ0]
=

∏
ti

(2n)ti × 2n × (2n)d × (2n)d∏
ki

(2n)ki × 2n × (2n)d

=

∏
i

(2n)ti × (2n)d∏
i

(2n)ti+di

=
(2n)d∏

i

(2n − ti)di
> 1.

Hence by H-coefficient technique, we have Theorem 9.

Theorem 9.

Advµ-tprp

Ẽ
(d, t) ≤ d · νρ +

t + d

2n
+

d2

2n+1
+

2µt

2n
+

(
d

µ+1

)
(2n)µ

.
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6.5.2 Bounding (µ, λ)-mcp Security of Ẽ

Here we try to bound the advantage of a µ-respecting adversary A making t primitive

queries and d online queries playing the (µ, λ)-multi commitment prediction game with

a challenger CH. We assume that the adversary doesn’t make repetitive or redundant

queries.

Game 0:

We define the original (µ, λ)-mcp security game between A and CH as Game 0. Define

P , E1 and E2 respectively as the set of query indices of Phase 1 primitive queries,

Phase 1 encryption queries and Phase 2 encryption queries.

Phase 1:

Primitive Query: For the i-th primitive query of the form (Ki, X i)i∈P , CH com-

putes Y i = E(Ki, X i) and sends it as a response.

Define ωt = (Ki, X i, Y i)i∈P to be the primitive transcript.

Online Query: Oracle Chooses K ∈ {0, 1}n uniformly at random. On receiving

the i-th input query of the form ((N i, ji), X i)i∈E1 if the query is µ-respecting then CH

computes KN i = E(K,N i), Ki = ρj
i
(KN i) and outputs Y i = E(Ki, X) as response.

Else, it aborts.

Phase 2:
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Commitment Generation: A sends λ commitments of the form (twi, xi, yi)i∈[1,λ]

to CH.

Primitive Queries: A doesn’t make any primitive query in phase 2 .

Prediction Queries: Whenever A makes a fresh prediction query of the form

((N i, ji), X i) for some i ∈ E2, CH computes KN i = E(K,N i), Ki = ρj
i
(KN i) and

outputs Y i = E(Ki, X) as response.

Let ωe1 = ((N i, ji), X i, Y i)i∈E1 and ωe2 = ((N i, ji), X i, Y i)i∈E2 be the phase 1 and

phase 2 online transcript of the adversary.

Define ωe = ωe1 ∪ ωe2 as the overall online transcript of the adversary. Define

ω = (ωt, ωe) as the transcript of A .

Game 1:

We now define a newly modified security game called Game 1. Here, CH chooses ran-

dom a function Q : T × {0, 1}n → {0, 1}n such that for all tw ∈ T we have Q(tw, ⋆) is

a random permutation. CH acts similar to a Game 0 challenger except in the case of

phase-1 online queries.

Phase 1 online Query: On receiving the i-th input query of the form ((N i, ji), X i)i∈E1

if the query is µ-respecting then CH computes Y i = Q((N i, ji), X i) and sends it as the

response. Else, it aborts.
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We say that any adversary A wins Game 1 if for some prediction query tuple

((Nk, jk), Xk) there exist a commitment tuple (twi, xi, yi) such that

twi = (Nk, jk); xi = ⌈Xk⌉n
2
; ⌊ẼK(twi, Xk)⌋n

2
= yi.

AdvGame 1
Ẽ

(d, t) = max
A

Pr
[
A Ẽwins Game 1

]
.

where the maximum is taken over all adversaries A running in time t making at

most d queries.

Proposition 23. Given any (d, t)-adversary A playing Game 0 ( or Game 1) there

exists a (d, t + 2d)-adversary B playing µ-TPRP security game such that,

Pr [A wins Game 0 ] ≤ Pr [A wins Game 1 ] + Advµ-tprp

Ẽ
(B).

Proof. We construct the (d, t+2d)-adversary B playing against an a µ-TPRP challenger

CH as follows :

• Whenever A makes a phase-1 primitive query B makes the same primitive query

to the µ-TPRP challenger CH and forwards the response to A .

• B chooses K ∈ {0, 1}n uniformly at random.
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• Whenever A makes a phase-1 encryption query B makes the same encryption

query to the µ-TPRP challenger CH and forwards the response to A .

• On receiving the commitments from A , B does nothing.

• Whenever A makes a prediction query of the form ((N i, ji), X i) for some i ∈ E2,

B makes a primitive query to CH to receive KN i = E(K,N i). It then conputes

Ki = ρj
i
(KN i) and makes a second primitive query to output Y i = E(Ki, X) as

response.

• Whenever A wins ( resp. loses ) B sends 1 (resp. 0) to CH.

From the construction, it is clear that whenever CH is a real ( resp. ideal ) oracle

adversary B simulates perfectly as a Game 0 ( resp. Game 1 ) oracle to the adversary

A . Hence

Pr [A wins Game 0] = Pr [B → 1 | CH real ]

Pr [A wins Game 1] = Pr [B → 1 | CH ideal ]

Hence,
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∣∣∣Pr [A wins Game 0]− Pr [A wins Game 1]
∣∣∣ =

∣∣∣∣Pr [B → 1 | CH real]

− Pr [B → 1 | CH ideal ]

∣∣∣∣
= Advµ-tprp

Ẽ
(B).

Proposition 24.

AdvGame 1
Ẽ

(d, t) ≤ λt

2
3n
2

+
λ

2
n
2
−1 .

Proof. Consider the following event due to Phase 2.

BAD5: For some i ∈ [1, λ] and i′ ∈ P , we have a commitment ((N i, ji), xi, yi) such that

(Ki, xi) = (Ki′ , ⌊X i′⌋n
2
) where Ki := ρj

i · EK(N i).

Claim 3.

Pr [BAD5] ≤ λt

2
3n
2

.

Proof. Fix i ∈ [1, λ] and i′ ∈ P . Since KN i is distributed uniformly at random, and

there is no primitive query after commitment, we have probability that (Ki, xi) =

(Ki′ , ⌈X i′⌉n
2
) is at most 1

2
3n
2

. varying over all i, i′, we have the claim.

Claim 4.

Pr
[
A wins Game 1

∣∣ BAD5] ≤ λ

2
n
2
−1 .
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Proof. Suppose ((N i, ji), X i) is a valid prediction for some i ∈ E2. Let (twj, xj, yj) be

the commitment corresponding to this prediction. Since BAD5 doesn’t occur there is

no primitive query of the form (Ki, X i) in phase-1. Now suppose there are κi many

primitive queries in phase-1 of the form (Ki, ⋆). Then the probability that ⌊Y i⌋n
2

= yi

is bounded by 2
n
2

2n−κ . Since κ ≤ t, assuming t ≤ 2n−1 and varying over all i we have the

claim.

Proposition 24 follows from Claims 3 and 4.

Theorem 10.

Adv
(µ,λ)-mcp

Ẽ
(d, t) ≤ d · νρ +

t + 3d

2n
+

d2

2n+1
+

2µ(t + 2d)

2n
+

(
d

µ+1

)
(2n)µ

+
λt

2
3n
2

+
λ

2
n
2
−1 .

Proof. From Proposition 23 we have for any (d, t)-adversary A we have we have a

(d, t + 2d)-adversary B such that

AdvGame 0(A ) ≤ AdvGame 1(A ) + Advµ-tprp

Ẽ
(B)

Taking maximum over all such (d, t)-adversaries A we have

AdvGame 0(d, t) ≤ AdvGame 1(d, t) + Advµ-tprp

Ẽ
(d, t + 2d).

Now plugging in the appropriate values from Proposition 24 and Theorem 7 we have

Theorem 10.
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6.5.3 Some Instantiation of the New TBC

Consider a block cipher AES’ which is a variation of AES [92] in the sense that, unlike

the original scheme, it calls the AES-MixColumn operation in the last round and also

outputs the 11-th round key in the AES key schedule. It then uses the new key to

process the next data block. Since the key outputs only depend on the previous key

input and are independent of the data inputs, this operation can be run in parallel and

mixFeed can be viewed as an mF construction with n = 128 and the 11-th round key

function in the AES key scheduling algorithm as the KUF.

Table 6.1: The RCON Values

i 1 2 3 4 5 6 7 8 9 10 11
RCON(i) 01 02 04 08 10 20 40 80 1b 36 6c

Next consider a TBC which uses AES’ as the underlying block cipher and with

abuse of notation call it AES’. Khairallah [72] observed that AES’ is prone to practical

forgery due to the existence of small periodic cycles in AES key schedule algorithm.

Later, Leurent et. al. [75] confirmed Mustafa’s observations by giving a practical attack

with a success probability of 0.44(with data complexity 220GB). In our notations, if

l = 14018661024, then Pr
[
rK ≤ l,K

$←− {0, 1}128
]
≈ 0.44. Plugging in this value in

Definition 7, we get, for AES’ TBC, σνρ ≥ 246×0.44
14018661024

≫ 1 in Theorems 9 and 10.
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Algorithm 5 AES’ Block Cipher. To apply a chain of block cipher, we perform an
extra round of AES’ Key-Schedule and use that round key as the initial key of the
next call of AES’. As described in the Introduction the second output of Emodule only
depends on the first input K and we define this function as ϕ(K).

1: function E(K;X)

2: (W47, . . . ,W0)← KeyGen(K)

3: for i = 1 to 10 do

4: X ← X ⊕ (W4i−1,W4i−2,W4i−3,W4i−4)

5: X ← SubBytes(X)

6: X ← ShiftRows(X)

7: X ← MixColumns(X)

8: X ← X ⊕ (W43,W42,W41,W40)

9: K ← (W47,W46,W45,W44)

10: return (X,K)

11: function KeyGen(K)

12: (K15, . . . ,K0)
8← K

13: for i = 0 to 3 do

14: Wi ← (K4i+3,K4i+2,K4i+1,K4i)

15: for i = 4 to 47 do

16: Y ←Wi−1

17: if i%4 = 0 then

18: Y ← SubWords(Y ≪ 8)

19: Y ← Y ⊕ RCONi/4

20: Wi ←Wi−4 ⊕ Y

21: return (W47, . . . ,W0)

1: function SubBytes(X)

2: (X15, . . . , X0)
8← X

3: for i = 0 to 15 do

4: Xi ← AS(Xi)

5: return X

6: function Shiftrows(X)

7: (X15, . . . , X0)
8← X

8: for i = 0 to 3 do

9: for j = 0 to 3 do

10: Y4i+j ← X4i+((j+i)%4)

11: return Y

12: function MixColumns(X)

13: M ←


2 3 1 1

3 1 1 2

1 1 2 3

1 2 3 1


14: Y ←M ·X
15: return Y
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Next, we show that the weakness in AES’’ TBC is only a weakness of the AES key

schedule [92] and not of the TBC in general. More specifically, we describe a specific

TBC construction called AESprim which is well secured.

For any primitive polynomial α of degree n, we define ρ(x) = α · x ∀x ∈ {0, 1}n.

Consider the TBC construction of Section 6.5 with ρ as its KUF. When AES is used as

the underlying block cipher we call this TBC as AESprim.

(N, i)

X

Ẽ
Y

K

≡
N

K

E
KN

αi

αi ·KN

X

E
Y

Figure 6-6: A tweakable block cipher with linear KUF. Here α is any primitive polynomial
of degree n.

.

Corollary 13.

Advµ-tprp
AESprim

(d, t) ≤ d · νρ +
t + d

2n
+

d2

2n+1
+

2µt

2n
+

(
d

µ+1

)
(2n)µ

.

Corollary 14.

Adv
(µ,λ)-mcp
AESprim

(d, t) ≤ d · νρ +
t + 3d

2n
+

d2

2n+1
+

2µ(t + 2d)

2n
+

(
d

µ+1

)
(2n)µ

+
λt

2
3n
2

+
λ

2
n
2
−1 .

Remark 9. If the linearity of multiplication by a primitive polynomial α becomes prob-

lematic under some block cipher designs, one could define ρ(K) = P−1(α · P (K)) for

some nonlinear permutation P . This preserves the cycle structure of the multiplication

by α but can be arbitrarily nonlinear depending on P .
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6.6 mF Under the New TBC

In this section, we consider the mF construction under the new TBC construction de-

fined in Section 6.5. Note that in such a case the mF mode of AEAD can be implemented

as a block cipher-based construction. Unlike Figure 6-5, where each TBC call can be

seen to be using two block cipher calls, we can process the nonce N with key K only

once, to get KN and then we store KN as the initial key. The rekeying can be done in

parallel, by applying the KUF (ρ) to the previous key while processing each data block.

In this way, we can process the whole encryption-decryption query with only 1 extra

block cipher call. Further, the number of bits processed per primitive block cipher call

is asymptotical to n.

Theorem 11.

Advpriv

mF,Ẽ
(σ, t) ≤ σνρ +

t + σ

2n
+

σ2

2n+1
+

2µt

2n
+

(
σ

µ+1

)
(2n)µ

+ σ

(
1 +

(µ + 1)2

2n

)(
σ

2
n
2

)µ

.

Theorem 12.

Advforge

mF,Ẽ
(σ, t) ≤ 3σ · νρ +

3(1 + 2µ)t

2n
+

3σ2

2n+1
+

(5 + 4µ)σ

2n
+

3
(

σ
µ+1

)
(2n)µ

+
σt

2
3n
2

+
σ

2
n
2
−2 + σ

(
1 +

(µ + 1)2

2n

)(
σ

2
n
2

)µ

.

Proof. Theorems 11 and 12 can be derived from Theorem 7 and 8 respectively by

appropriately plugging in the security bounds for Ẽ derived in Section 6.5.

Corollary 15. Consider the mF mode of AEAD with AESprim TBC and call it mFprim.

For any adversary running in time t and making at most q encryption and decryption(in
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case of forgery) query with total of at most σ blocks,

Advpriv
mFprim

(σ, t) ≤ t + σ

2n
+

σ2

2n+1
+

2µt

2n
+

(
σ

µ+1

)
(2n)µ

+ σ

(
1 +

(µ + 1)2

2n

)(
σ

2
n
2

)µ

.

Advforge

mFprim,Ẽ
(σ, t) ≤ 3(1 + 2µ)t

2n
+

3σ2

2n+1
+

(5 + 4µ)σ

2n
+

3
(

σ
µ+1

)
(2n)µ

+
σt

2
3n
2

+
σ

2
n
2
−2 + σ

(
1 +

(µ + 1)2

2n

)(
σ

2
n
2

)µ

.

Where n is the state size and µ is the number of multi collisions allowed in the input

of the tweakable block cipher. For all calculations, take µ ≥ 4.

6.6.1 Interpretation of the Above Bounds

According to NIST requirement, σ ≤ 246 and t ≤ 2112. Following the recommendation

in [38], we take n = κ = 128. Then, taking µ = 4, we have σ

(
1+ (µ+1)2

2n

)(
σ

2
n
2

)µ

< 2−25,

and hence, the dominating term is 2µt
2n

in Theorem 11 and 5µt
2n

+ 3σ

2
n
2

in Theorem 12, which

are both less than 2−10. Hence, by Corollary 15 we conclude that the mFprim mode is

well secured within the complexity bounds specification of NIST.
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6.7 mF Mode as a Lightweight AEAD

In this section, we try to give a theoretical comparison between the mFprim mode and

some other tweakable block cipher designs in the NIST LwC [93] competition. Ignoring

the different types of overheads required in practical implementations, we define the

state size as the number of bits required to hold the key, auxiliary keys such as masking

key (if any), block cipher state, and round key.

We have tabulated theoretical comparisons of different TBC-based AEAD schemes.

A more practical, implementation-based comparison is beyond the scope of this paper

and can be left as a future research problem.

Table 6.2: A theoretical comparison of different TBC-based lightweight AEAD schemes.
Here the TBC of mFprim is considered with AES-128/128 as the underlying block cipher.

Mode State
Size (in-
cludes
key-size)

Block
Size

Tweak
Size

# Pass Bits
Pro-
cessed
per
primi-
tive call

Inverse-
free

Romulus-N1 [65] 512 128 384 1 128 yes
Romulus- M1 [65] 512 128 384 2 64 yes
SKINNY-AEAD
(M1) [14]

640 128 384 1 128 No

QAMELEON [5] 640 128 384 1 128 No
LILLIPUT-I-128
[1]

576 128 320 1 128 No

mFprim 384 128 0 1 128 yes
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6.8 Conclusion

In this chapter, our aim was to construct a lightweight block-cipher-based AEAD, which

attains the maximum possible message absorption rate per block cipher call using small

effective state-size. We started by constructing a TBC-based AEAD scheme mF, which

can be viewed as an abstraction of mixFeed mode. We have proven that the security of

the said mF mode can be reduced to the security of its underlying TBC. We constructed

a new block cipher-based TBC construction and bound the security advantages of any

adversary against mF mode using this TBC. We have tried to interpret the results of

[75] in our notations and confirmed the observation made in [72] that in the case of

mixFeed the security of the underlying TBC depends on the periodicity of the AES key

scheduling algorithm. Finally, to show that the said weakness is restricted to the use

of AES key scheduling algorithm and that it doesn’t affect the mF mode in general, we

have constructed an explicit TBC construction and showed that the mFprim mode using

this TBC achieves the desired security within the NIST parameters.
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In this thesis, inspired by the immense popularity of lightweight devices, we ana-

lyzed two popular paradigms of lightweight authenticated encryption protocols, namely,

Sponge-type AEADs and TBC-based AEADs. We showed that most of the Sponge types

AEADs can be viewed as an instantiation of the Transform-then-Permute protocol. A

tight security bound is achieved for a particular class of the TtP protocol where decryp-

tion feedback functions are invertible. For the general Sponge, improved security bound

without any matching attack can be derived. Keeping in mind the ongoing NIST LwC

requirements, our results show that designs like Beetle, SpoC, Ascon, Xoodyak, etc.

are well secured in the lightweight sense. Next, we focused on increasing the rate of

data absorption in a Sponge type construction. We showed that with a proper extra-

state initialization and suitably modified full-rate feedback functions used in popular

schemes such as CoFB, HyENA etc., we can construct Sponge type full-rate AEAD

schemes which absorb data at the maximum possible rate and still meet desired secu-

rity requirements. Note that the tightness of security bounds in all these Sponge-based

constructions is based on the tightness of bounding the advantages of graph-structure

adversaries defined in this thesis. Hence further analysis of these graph structures is an

interesting research problem.

Finally, we turned our focus toward block cipher-based AEAD schemes. We designed

and analyzed a generalized TBC-based AEAD scheme called mF. We also constructed

a generalized block cipher-based tweakable block cipher, which can be used as the

underlying TBC in the mF protocol so that the mF construction can be viewed as a

block cipher-based AEAD scheme. Finally, we gave an instantiation called mFprim and

showed that it is well secured in the lightweight sense. We also shared a theoretical

comparison between mFprim and some existing lightweight TBC-based AEAD schemes.
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In the end, implementation security (SCA/faults) analysis of all the above con-

structions is beyond the scope of this thesis and is a significant open problem for the

future.
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