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Abstract

We consider the problem of clustering N data points {xi}Ni=1 ∈ Rp,
into K number of clusters. We are dealing with high dimensional data
points in our scenario where p >> N , i.e. the number of features is
much greater than the number of data points.

In our work, we set out to solve this problem using subspace
clustering, assuming that our high dimensional data points lie in an
union of low dimensional subspaces. We try to solve the problem of
clustering in the context of multi view data. We find the
self-expression matrices from each of the views using Entropy Norm
formulation. Then, we find the consensus self-expression matrix by
taking the average of all the individual self-expression matrices.
Finally, we apply good neighbors post processing to obtain a sparser
and strongly connected self-expression matrix thus resulting in an
improved affinity graph. The resultant clusters are obtained using
Normalized spectral clustering.
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Chapter 1

Introduction

1.1 Introduction

Data is the buzzword of the 21st century. Every new technology that is
introduced leverages the use of data in some form or the other. Data
helps us make better and more efficient solutions to many real world
problems. A data set normally comprises of a bunch of observations,
each characterized by a set of features, which are the defining
properties of the data objects. In recent years, multi view data has
received much interest from researchers. In multi view data, each data
point can be represented using multiple feature sets. Each of these
feature sets correspond to a distinct view of the data points in the
multi view data set. Since, there are multiple views a.k.a. multiple
feature sets to describe the objects int the data set, these data sets are
known as multi view data sets. We have talked in detail about multi
view learning in Chapter 2.

The goal of unsupervised learning is to automatically label a set of
data points in a data set without human intervention. One of the main
research domains in the field of unsupervised learning is clustering. The
main objective of clustering is to partition the data points into different
partitions so that the points in one partition is similar to the points in
it’s own partition and different from points in other partitions. Many
researchers have tackled the problem of single view clustering, producing
noteworthy results. One of the most famous and widely used single
view clustering algorithm is Lloyd’s K-means algorithm published in
the year 1957. Many other related algorithms to K-means have also
been published like K-Medoids [15], KMeans++ [2] being some of the
famous ones.
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1.1. INTRODUCTION

Subspace based clustering methods assume that the data points in
the data set lie in a union of low dimensional subspaces. To recover the
clusters present in the data set, we need to extract the low dimensional
subspaces in which the data points lie. Here, we take advantage of the
self-expressive property, where each data points is represented as a
weighted combination of all the other points in the same subspace.
From the self-expressive matrix which is obtained by using the
coefficients of the linear representation, we find the affinity matrix, to
identify the different clusters. Subspace clustering has been studied in
the following papers [10],[30],[23],[24]. There are also some other
approaches to subspace based clustering, including statistical approach
[29], kernel based approach [33], algebraic-geometry approach like
GPCA [26] and iterative methods [5].

The main problem with using the above single view methods is that
they consider only the features from a single source, not considering
the feature from multiple sources. Different feature sets hold partly
independent information about the data set. As an example a video
can be described as a set of frames which have individual color
information along with textual content and other related meta data.
We use multi view data to take advantage of the complementary,
independent information present in the distinct feature sets.

[12] is one of the first papers that tried to cluster data from multiple
views. In the following years, after the idea of using multi view data
for clustering gained traction amongst researchers, many papers have
been published in this field. We will be highlighting some of the more
commonly used methods down below, but the readers are encouraged
to go through the survey paper by Yang et al. [32] to gain an in depth
idea about the research going on in this field.

In [36], the authors have proposed learning the affinity matrix,
consensus representation and final clustering labels matrix in a unified
representation using single step optimization. In [16], a joint graph
Laplacian is constructed after de-noising the information contained in
the individual views. Steifel manifolds and k-means are used to
optimize the objective function by minimizing the disagreement
between the cluster structures in the consensus view and the individual
views. In [28], the authors use manifold learning and tensor Singular
Value decomposition(t-SVD) to unearth the clusters by finding the
common hidden representation matrix, obtained from the individual
affinity matrices in each view. In [19], the authors have proposed a

10



1.2. OUR CONTRIBUTION

model which finds the affinity graphs, generates the partitions from the
graph, and then learns the weights given to the individual views by
generating multiple partitions and combining them using the learnt
view specific weights to get a shared partition, from which we can
derive the output cluster indicator matrix. Other latest works in this
field include [7],[34],[21],[37].

The research done so far on multi view subspace clustering, either
focus on optimizing the connectivity or the sparsity of the consensus
self-expression matrix, but not both. In our proposed multi view
subspace clustering using good neighbors algorithm, we have optimized
both the aforementioned properties in the affinity graph, thus
producing a consensus self-expression matrix better suited for
clustering data in the multi view domain.

1.2 Our Contribution

• We propose a subspace clustering method based on the concept of
good neighbors [31], which is also applicable to both single view
and multi view data.

• We incorporate the concept of Entropy norm [3] to find out the
self-expression matrices in the individual views, which is
computationally less demanding in comparison to other related
methods of computing the self-expression matrix.

1.3 Thesis Outline

The rest of the thesis is outlined as follows. Chapter 2 contains the
preliminary concepts related to our method. Chapter 3 summarizes the
related works done in Subspace clustering and Sparse subspace
clustering. Chapter 4 discusses our proposed Multi View Good
Neighbor Subspace Clustering(MVGNSC) Algorithm. In chapter 5, we
provide the results of our experiments, along with discussing the
complexity of our method. In chapter 6, we conclude our work and
provide some directions in which future work can be done to extend
our method.
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Chapter 2

Preliminaries

2.1 Multi-View Learning

In this era where high quality data is more easily available, and data
retrieval methods have become more sophisticated, data on an object
can be generated from multiple different views. This different views can
be visualised as different feature sets describing the objects in a data
set. So, in Multi view learning, different views of the same data object
can be fused together using advanced techniques to get a better idea
about the inherent properties present in the data objects.

In multi view data, each view has partial information about some
task which is used to gain knowledge about the given data set. Thus,
the different views on the same data object provide some complementary
information about the objects in the data set which can be exploited in
various ways. Multi view learning is divided into two major sub domains,
one is supervised learning and the other is unsupervised learning. This
dissertation deals with the unsupervised aspect of multi view learning,
specifically clustering.

The idea of clustering algorithms is to partition a set of data
objects into various clusters that preserve similarity of data within
clusters. In the context of multi view clustering, maintaining high
quality of clustering in individual views, while maintaining clustering
consistency across the different views is very difficult. Multi view
clustering can be implemented using some of the following general
multi view clustering paradigms

• Co-training style algorithms: This performs clustering on the
individual views by considering clustering information obtained
by clustering other views prior to it and using the corresponding
knowledge to achieve consistent clustering across the different
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2.1. MULTI-VIEW LEARNING

views. Many foundations of Co-training style algorithms were
provided in [4] by Bickel and Scheffer in 2004.

• Multi-kernel learning: Multi-kernel learning methods use
predefined kernels obtained from the different views to obtain the
clustering information. The final kernel used to obtain a
separation of the data objects into clusters is created through
linear or non-linear combination of the individual kernels.
MKKM-MR [18] is an example of Multi kernel learning method.

• Multi-view graph clustering: These category of methods uses the
affinity graph information from each of the individual views to
create a fusion graph. The resultant clustering is produced by
using some Graph-Cut algorithm like Spectral Clustering [25].

• Multi-view subspace clustering: In this category of methods, we
find the underlying subspace structures in the multi-view data set,
assuming that data objects lying in the same cluster lie on the
same underlying low dimensional subspace. We assume that data
in all the views share a common hidden feature representation,
and represent the data in the individual views using the same
representation. A widely used method for solving the multi view
subspace clustering problem is Non-negative Matrix
Factorization(NMF) [17]. A visual diagram explaining subspace
clustering in multi view domain is given in Fig 2.1.

• Multi-task multi-view clustering: In these methods, multiple
related tasks are performed together. A single view data is a task.
The clustering performance is boosted in single view data by
utilizing the relationships between these related tasks.

Multi view clustering has two major principles which are complementary
and consensus principles.

Complementary principle states that we need to leverage the power
of multiple views to describe a data object from accurately and
exhaustively. An example is that for video data, the data objects may
be represented with different feature sets like metadata feature set
describing the content information in a frame and also also various
image feature sets like HOG,LBP etc. Now that we have established
that we need multiple feature sets aka multiple views to better
understand the data object, we move on to the Consensus principle.
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2.2. SPARSE SUBSPACE CLUSTERING

Consensus principle states that in one view, if data objects x1 and
x2 are assigned the same cluster, then in the remaining views, the same
data points should not be assigned to different clusters. This maintains
clustering consistency across the different views, thus minimizing the
disagreement between different views.

Our method falls under the category of Multi-view subspace
clustering methods. Details about our method have been provided in
chapter 4 of this document.

Figure 2.1: Multi view Subspace clustering general procedure

2.2 Sparse Subspace Clustering

High dimensional data like text data, image data, video data often lie
close to low dimensional subspaces corresponding to various classes or
clusters to which the data objects belong. Sparse subspace clustering can
be used as a tool to find the low dimensional subspaces on which the data
points lie. Mapping the high dimensional data into lower dimensional
subspaces reduces the complexity as well as the memory requirement
of the algorithm. Noises which appear in high dimensional data are
also absent in the low dimensional representation, thus removing some
related irregularities, which improve clustering performance.

Sparse subspace clustering has been studied in many papers like [9]
and [10]. We find all the points lying on the same subspace, which helps
us identify the clusters. Here, we take advantage of the self-expressive
property [10] of the data set. The self-expressive property forms the
foundation of sparse subspace clustering. According to this property,
every data point can be represented as a weighted combination of all
the other points lying on a union of low dimensional subspaces. Sparse
representation of a point xi is the dl dimensional representation of the
point xi, where xi is expressed as the weighted sum of dl other points in
the subspace Sl. Sl is the subspace on which the point xi lies.

14



2.2. SPARSE SUBSPACE CLUSTERING

Figure 2.2: Example of a self-Expression Matrix

Mathematically, we can express this self-expressive property in the
following fashion.

xi = Xci, cii = 0 (2.1)

Here, X is the set of points which lie on a collection of low dimensional
subspaces. The constraint cii = 0 eliminates the case where xi can be
expressed as a linear weighted combination of itself. X can be treated as
a dictionary, where every point is expressed as a weighted combination of
the points in the same subspace. Here, ci , [ci1, ci2, . . . , ciN ]T represents
the list of coefficients using which xi can be represented as a weighted
combination of X, N being the size of the data set.

In the sparse representation of a data point xi, if data points xj lies
in a different subspace, cij = 0 and dl data points which lie on the same
subspace as xi have non-zero coefficients. Now, for each data point xi,
we get a column vector ci corresponding to the sparse coefficients of the
data point. The matrix C ∈ RN×N , which we obtain by concatenating
all the columns corresponding to the sparse coefficients is known as the
self-expression matrix as shown in Fig 2.2.

The self-expression matrix can be used to model the affinities
between the data points in the form of a matrix like structure. Thus,
the self-expression matrix is used as the affinity matrix. Treating the
self-expression matrix as the affinity matrix has some issues. In
general, the affinity matrix should be symmetric i.e the affinity
between xi and xj should be same as the affinity between xj and xi.
This is not the case in C. This is because even if xj may be present in
the sparse representation of xi, xi may not be present in the sparse
representation of xj. Thus, to make the affinity matrix symmetric, we
use W = |C|+|C|T

2 as the affinity matrix.
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2.3. GENERAL APPROACH FOR MULTI VIEW SUBSPACE
CLUSTERING

The self-expression matrix C is computed by solving the following
optimization problem using l1 regularization as defined in [10]

min
C
||X −XC||2F + λ||C||1 s.t. C(i, i) = 0, CT .1 = 1 (2.2)

Here, ||X −XC||2F is the squared loss which we need to minimize since
we want to make X = XC. The constraint that the sum of row values
of C should be 1 denotes that data points may also lie on a collection
of affine subspaces, not just linear subspaces. We have added another
constraint ||C||1 to represent that we mean to minimize the l1-norm
of the coefficient matrix C, which promotes sparsity in the coefficient
values, thus leading to a sparse solution.

Having formed the similarity graph or the affinity graph, the vertices
forming connected components in the graph belong to the same subspace
while there are no edges between vertices representing data points from
different subspaces. For n subspaces the affinity matrix should have the
following block-diagonal form

W =


C1 0 . . . 0
0 C2 . . . 0

...
0 0 . . . Cn

 Γ (2.3)

The above block-diagonal form is also visible in Fig 2.2. Here, Ci
represents the ith connected component of vertices and Γ represents
the permutation matrix.

2.3 General Approach for Multi view subspace
clustering

In multi view setting, we have a data set Xv ∈ Rdv×N . Xv denotes
the set of feature vectors in the vth view (v = 1, 2, . . . ,m), m being
the number of views and N being the number of data points. When
we perform subspace clustering on each of the views individually, then
we get self-expression matrix Zv for each of the views, the non-zero
elements in Zv corresponding to points in the same subspace. In most
of the solutions for multi view subspace clustering, clustering is done on
the individual views, and then the results are unified together to create
the consensus clustering self-expression matrix Z. To combine the multi
view subspace clustering results, subspace learning on different views

16



2.3. GENERAL APPROACH FOR MULTI VIEW SUBSPACE
CLUSTERING

can be performed simultaneously by minimizing the following objective
function

min
Zv,Z

∑
v

||Xv −XvZv||2F + λ
∑
v

||Z − Zv||

s.t. ZT
v .1 = 1, Zv(i, i) = 0

(2.4)

Here, Z is the consensus self expression matrix or the unified subspace
representation matrix. Although this is a viable solution, the data block
structures as shown in 2.2 may be dramatically different, so it may not
be easy to implement them as given in (2.4). Different strategies have
been suggested by different papers to counter the given issue. In the
paper [12], using a common indicator matrix F for all of their views has
been suggested, to maintain the consistency across the clustering results
in different views. They have minimized the following objective function

min
Zv,F

∑
v

||Xv −XvZv||2F + λ
∑
v

Tr(F T (Dv −Wv)F )

s.t. ZT
v 1 = 1, Zv(i, i) = 0, F TF = I

(2.5)

Here, Wv = |Zv|+|ZTv |
2 , and Dv represents the diagonal matrix for the vth

view.
In the paper [35], instead of reconstructing the data points using

original feature values, the aim is to uncover the underlying latent
representation present in all the data points. The main idea is that the
N data points from different views {X1, X2, . . . , Xm} share the same
latent representation {hi}Ni=1 in the latent space H. Since, a shared
latent space H is present across all the views, there will be a single
unified self-expression matrix Z obtained from the latent
representation. We can construct the data points in the different views
from the latent space H using models {M (1),M (2), . . . ,M (m)}, with
the expression x(v)i = M (v)hi + e

(v)
i

The latent representation learning and subspace clustering are done
collectively by solving the following optimization function

min
M,H,Z

Lh(X,MH) + λ1Lr(H,HZ) + λ2Ω(Z) (2.6)

Here, Lr represents the loss function associated with the data
reconstruction, while Lh representing the loss function related to
finding the latent space H that is shared by the data points in the
different views. Here, λ1 > 0 and λ2 > 0 balance the three terms.

As we can see in the above examples, normally subspace clustering
requires computation of a consensus self-expression matrix Z across all
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2.3. GENERAL APPROACH FOR MULTI VIEW SUBSPACE
CLUSTERING

the views by minimizing an objective function of the following general
form

min
Zv

∑
v

L(Xv, XvZv) + λΩ(Zv)

s.t. ZT
v 1 = 1 Zv(i, i) = 0

(2.7)

Zv is the subspace representation structure in each of the views. L is
the reconstruction loss and Ω is the regularization which is applied. Ω
is normally the l-norm of the subspace representation structure in the
views. Different norms lead to different representations of the same
subspace clustering problem, constraining the elements of Zv according
to the task at hand.
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Chapter 3

Related Work

3.1 Sparse Subspace clustering using Entropy Norm

This work was done in [3]. In this paper, an explicit connection has been
provided between sparse subspace clustering and spectral clustering to
reach the goal of finding a similarity or an affinity matrix between the
data points.

Let us look at spectral clustering from a general perspective. Let us
consider X to be a m × n data matrix, with m being the number of
features and n being the number of data points. For spectral clustering,
we need to solve the following optimization problem

min
H

Θ = Tr(HTLH) s.t. HTH = I (3.1)

So, spectral clustering can be in general defined as a trace minimization
problem. In this case, L is the laplacian matrix where it is defined as
L = D − W . D being the degree matrix and W being the affinity
matrix. The diagonal elements of D are the row sums of the matrix W .
H is the n× k cluster indicator matrix.

In sparse subspace clustering, which has been spoken of in depth in
section 2.2, to find the affinity matrix, in order to approximate for noisy
representations, the optimization problem is defined as the following

min
Z
||X −XZ||2F + λ||Z||1 s.t. diag(Z) = 0 ZT .1 = 1 (3.2)

With the self-expression matrix Z, W is computed as W = |Z|+ |Z|T .
W is symmetric and non negative in this scenario. Now, if we can show
Z to be a symmetric and non negative matrix, W is equivalent to Z.
Then, we need to solve the following minimization problem

min
Z
F s.t.Z = ZT , Z ≥ 0, diag(Z) = 0 (3.3)
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3.1. SPARSE SUBSPACE CLUSTERING USING ENTROPY NORM

Here, the objective function F is defined as in sparse subspace clustering
of the form F = L(X,XZ) +λΩ(Z), Ω(Z) being l1-norm of Z. We use
the l1-norm constraint on Z, since we want to find the sparse solutions
to the self-expressive representation problem. Entropy norm is selected
as the regularization term for the objective function F , we can write the
objective function as

F = L(X,XZ) + λ
n∑
i=1

n∑
j=1

zij ln zij (3.4)

For the rest of this section, we consider n as the number of elements in
the data set. We can use Lagrange multiplier to directly minimize F .
After minimizing w.r.t zij, we obtain

zij = exp(−1) exp(−fij
λ

) (3.5)

Here, fij = δL
δzij

.According to equation (3.5), we can see that Z is non
negative, and Z is symmetric if fij = fji. Furthermore, we need to add
the constraint ZT .1 = 1 to the optimization problem, since we are also
considering affine subspaces in the picture. We can again use Lagrange
multiplier to minimize F to obtain the following solution for zij

zij =
exp(−fij

λ )∑n
h6=i exp(−

fih
λ )

(3.6)

In the above equation, even if fij = fji, it is not possible to guarantee
that zij = zji, i.e. Z becomes symmetric. So, to make Z symmetric, the
constraints are relaxed, the constraint for the affine subspace is replaced
by the constraint

∑n
h6=i zih +

∑n
h6=j zhj = 2 for 1 ≤ i 6= j ≤ n. Keeping

the sum of any row and any column as 2 relaxes the constraints. If we
again use the Lagrange multiplier to solve for Z, we get

zij =
2 exp(−fij

λ )∑n
h6=i exp(−

fih
λ ) +

∑n
h6=j exp(−

fhj
λ )

(3.7)

If we use the Euclidean distance dij = ||xi − xj||2 as fij, then we can
rewrite equation (3.7) as the following

zij =
2 exp(− ||xi−xj ||

2

λ )∑n
h6=i exp(−

||xi−xh||2
λ ) +

∑n
h6=j exp(−

||xh−xj ||2
λ )

(3.8)
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3.2. SUBSPACE CLUSTERING VIA GOOD NEIGHBORS

Thus, compared to Sparse subspace clustering, Sparse subspace
clustering with entropy norm(SSCE) can directly compute the
similarity or the affinity matrix using the Gaussian kernel, thus
reducing the computation cost. Also, SSCE can obtain a non-negative,
symmetric affinity matrix which gives good results after spectral
clustering is applied on it.

3.2 Subspace clustering via Good Neighbors

We consider in this section that N is the number of data points.We
follow a similar post-processing procedure as given in [31]. This post
processing technique is used to optimize both subspace preservation
property and connectivity of the self representation system. Before we
go further, we must be acquainted with the Intra-subspace
projection dominance(IPD) [22] property of the self-expression
matrix Z. This states that the coefficient between samples in the same
subspace are greater than coefficients between samples in different
subspaces i.e. ∀xp, xq ∈ S and xk /∈ S, we have zpq ≥ zpk.

IPD supports the subspace preservation property. The generated
coefficient matrix must be such that both sparsity is increased to create
more compact clusters and connectivity among intra cluster samples is
increased. To create a sparser as well as well connected self-expression
matrix, we must prune away the weaker connections, while preserving
the stronger connections.

By the IPD property, we know that if xi and xj lie on the same
subspace, their zij values will be higher compared to the case where xi
and xj lie on different subspaces. Thus, a good way to prune out
erroneous connections in the affinity graph is to eliminate the
connections from xi to the elements xk which have low zik values.
Eliminating such connections from the affinity matrix still maintains
the subspace preservation property.

Thus, we can conserve the top η neighbors of xi which are computed
by maximizing

argmaxxk

N∑
k=1

|wik| (3.9)

The concept of η-neighbors is similar to the ones discussed in the paper
[22] [24]. wij is the element in the ith row and jth column of the affinity
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3.2. SUBSPACE CLUSTERING VIA GOOD NEIGHBORS

matrix W which is computed using

W =
|Z|+ |Z|T

2
(3.10)

The need to use W as the affinity matrix instead of Z, arises due to
the fact that Z may not be symmetric i.e. even if xi chooses xj in it’s
subspace representation, xj may not necessarily choose xi in it’s
subspace representation [10]. Thus, to make the affinity matrix
symmetric and Non-negative we use the above formulation of W .

This means that we take the η highest values from the ith row of
W to find out the η neighbors of xi. The caveat is that just preserving
the η neighbors for each of the elements xi may lead the algorithm to
be easily manipulated by noise in the data, since wrong connections are
maintained as maximum weighted edges are sensitive to both noise and
outliers. Also, the elements in each cluster may not form a connected
component. To improve connectivity, the concept of good neighbors is
introduced.

Good Neighbors [31] are chosen among the η-neighbors of an
element xi. xj will be a good neighbor of xi, if xi and xj have µ
common neighbors and xj is an η-neighbor of xi. In graph theoretical
language, we can say that the path between xi and xj contains µ
η-neighbors of xi. Here, let us represent the η neighbors of xi as
Nη(xi).

Good Neighbors xj is a good neighbor of xi if there exists µ samples
among the η neighbors of xj, {xjk}µk=1 ⊂ Nη(xj) that satisfy

µ∏
l=1

1xi∈Nη(xjl) = 1 (3.11)

In our case, since we want to preserve the strongest connections, we
have kept the value of µ = 1 in all of our experiments. µ controls the
connectivity of the affinity graph, whereas γ controls the sparsity of
the affinity graph. More hidden connections between xi and it’s good
neighbors improves the connectivity in each cluster, while restricting the
number of good neighbors to γ improves the sparsity of the graph, thus
improving the clustering results.

For every sample xi, we compute the good neighbors of xi, the
number of good neighbors that we consider for each element being γ,
N being the number of elements and store all the good neighbors in a
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3.2. SUBSPACE CLUSTERING VIA GOOD NEIGHBORS

good neighbor matrix N ∈ RN×γ. Each row in the good neighbor
matrix corresponds to the γ good neighbors of an element. Let us take
a look at the algorithm that we use for calculating the Good Neighbor
matrix N from the self-expression matrix Z.

Figure 3.1: Good Neighbors example

In the figure 3.1, xj is a good neighbor of xi assuming that the value of
µ is 1. Samples with gray circle are η neighbors of the corresponding
sample. The blue line shows that the elements xi, xj and xk lie on the
same path. The lines represent the connections in the affinity graph.

Algorithm 1: Good Neighbors Algorithm

Input: Z = [z1, z2, . . . , zN ] ∈ RN×N , γ, η, µ

1 The affinity matrix W is computed using (3.10);
2 Initialise N ∈ RN×γ with 0’s;
3 for i=1 to N do
4 η neighbors of xi, Nη(xi) = {xjk}ηk=1 are computed by (3.9);
5 num = 0 ;
6 for k=1 to η do
7 Compute sik for xik ∈ Nη(xi) by (3.12);
8 if sik ≥ µ and num < γ then
9 Ni = Ni ∪ xik ;

10 num = num+ 1 ;

11 if num < γ then
12 Ni = Ni ∪ {x̄}γ−num where x̄γ−num consists of elements

having the largest γ − num similarity in Nη(xi)

Output: Good Neighbor Matrix N
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3.2. SUBSPACE CLUSTERING VIA GOOD NEIGHBORS

Since, finding out whether xj is a good neighbor of xi according to
(3.11) is an NP-Hard problem, we find an easier way of traversing the η
neighbors of xi to find the good neighbors. As we have earlier pointed
out, for our experiments we set the value of µ = 1, which means that the
path connecting xi and one of it’s good neighbors must have a different
neighbor of xi in between. The connection score between xi and xj is
computed as follows

sij =

η∑
m=1

1xi∈Nη(xjm) (3.12)

The above equation signifies that the similarity score sij between xi and
xj, given that xj ∈ Nη(xi), is calculated by traversing the η-neighbors
of xj and checking how many elements among the η neighbors have xi
as their η-neighbor. If sij ≥ µ, then xj is a good neighbor of xi.

After computing the good neighbor matrix N , we construct Z∗ from
the affinity matrix W using the following transformation

z∗ij =


wij

(
∑γ
l=1 wil)

, for xj ∈ Ni

0 for xj /∈ Ni

(3.13)

The numerator consists of the affinity between xi and xj, and the
denominator consists of the sum of all the affinities from xi to all it’s
good neighbors. We introduce normalization to make sure that the
stronger connections do not affect the clustering results. After
constructing Z∗, we construct the affinity matrix W ∗ using the
equation

W ∗ =
|Z∗|+ |Z∗|T

2
(3.14)

After, we get the affinity matrix W ∗ is calculated, the final clustering is
obtained by applying Spectral Clustering [25] on the Laplacian Matrix.

24



Chapter 4

The proposed Multi View Good
Neighbor Subspace Clustering
Algorithm

4.1 Entropy Norm Formulation

If we use sparse subspace clustering to compute the affinity matrix W ,
it takes O(N 3) time. Thus, sparse subspace clustering, being
computationally expensive, is not suitable for large scale data.

Sparse subspace clustering with Entropy Norm(SSC-E)[3] is same as
spectral clustering using a Gaussian Kernel, if our objective is to learn
the affinity matrix. SSC-E produces a closed form solution for
computing the affinity matrix using Gaussian Kernel, reducing the
computational cost of sparse subspace clustering and producing a
non-negative, symmetric representation of the data set.

The self-expression matrix Z obtained from SSC-E forms a lower
bound on the normalized Gaussian Kernel

Z ≤ D−
1
2WD−

1
2 (4.1)

We calculate Z from the Gaussian Kernel using the following formulation

zij =
2 e−

||xi−xj ||
2

λ∑N
h6=i e

− ||xi−xh||
2

λ +
∑N

h6=j e
− ||xj−xh||

2

λ

(4.2)

The Z obtained hence can be treated as the data similarity matrix.
Let us look at the algorithm for computing the self-expression matrices
from the set of data points X ∈ RD×N , D being the intrinsic
dimension of the data points, and N being the number of data points.
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Algorithm 2: Entropy Norm Algorithm

Input: X = [x1, x2, . . . , xN ] ∈ RD×N , λ,N
1 Initialise S ∈ RN×N with zeros ;
2 for i=1 to N do
3 for j=1 to N do
4 if i==j then
5 S[i,j]=0 ;
6 else

7 S[i,j] = e−
||xi−xj ||

2

λ

8 Initialise Z ∈ RN×N with zeros ;
9 for i=1 to N do

10 for j=1 to N do
11 if i==j then
12 Z[i,j]=0 ;
13 else
14 Z[i,j] = 2S[i,j]∑

i S[i,:]+
∑
j S[j,:]

Output: Self Expression Matrix Z

In the above algorithm, we first store the values of the exponentials in
the two dimensional matrix S. The, using the stored values, we compute
the self-expression matrix Z. This computes the self-expression matrices
much faster, instead of using (3.6) directly to compute the elements of
Z.

4.2 Good Neighbors post processing

We perform good neighbors post processing on the self-expression
matrices Zi, which we obtained by Entropy norm formulation using the
concepts outlined in the section 4.1 and Algorithm 2. One difference
between the post processing technique given in the paper [31] and our
method is that, in the paper, they used SMR [13] to create the
self-expression matrices, as opposed to Entropy Norm in our paper.
The reason of using Entropy Norm instead of SMR was to take
advantage of the reduced computational complexity of Entropy Norm.

In our algorithm, we use the good neighbors post processing,
outlined in Algorithm 1, to sparsify the already sparse self-expression
matrix obtained from the entropy norm formulation. The quality of
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the clustering results obtained from Spectral clustering directly
depends on the quality of the self-expression matrices. Good neighbors
post processing technique improves sparsity, while retaining the
strongest connections, hence preserving the subspaces inherent in the
data set. The sparse self-expression matrix obtained after the good
neighbors post processing thus improves connectivity inside the
clusters and also minimizes the connection between clusters, creating a
block-like self-expression matrix as given in Fig 2.2.

4.3 The Algorithm

In our algorithm, we leverage the use of multiple views to get better
results in standard data sets. Multi view clustering takes advantage
of the complementary principle to create a better representation of the
data points, by observing them from different perspectives.

For our proposed algorithm, we have as input, multiple views of the
same data set. For each of the views in the data set, we create the self-
expression matrices Zv using Entropy Norm [3] formulation, since we get
faster generation of the self-expression matrices. In multi view setting,
we have m different views for N different multi view data objects. The
multi view data set can be represented as X where X is written as

X = [X1, X2, . . . , Xm], where Xi ∈ RDi×N (4.3)

Here, Di is the dimension of the ith view. After we have generated Zi
from each of the viewsXi, i ∈ [1, 2, . . . ,m] using [3], we find a consensus
self-expression matrix Z from the views using simple averaging technique
i.e Z =

(∑N
i=1 Zi

)
/N . The consensus self-expression matrix contains

clustering information from all the m views. Then we apply a post-
processing technique on Z as given in [31], to produce a sparser and
more connected self-expression matrix.

The increase in sparsity tends to prune out some of the weaker
connections from the affinity matrix and the increase in connectivity
helps in reducing the intra-cluster variance, thus making the clusters
more compact in nature.

Finally, after we get the sparser self-expression matrix Z∗, we find
out the affinity matrix using the formula W ∗ = Z∗+Z∗T

2 . Then, we
apply normalized spectral clustering technique [25] on the affinity
matrix W ∗ to obtain the inherent clusters present in the data. The
algorithm which we propose is given as follows:
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Algorithm 3: MVGNSC

Input: X = [X1, X2, . . . , Xm], Xi ∈ RDi×N , λ, η, µ, γ,K,
1 for i=1 to m do
2 Calculate Zi from Xi using Entropy Norm formulation;

3 Calculate the consensus matrix Z =
∑m
i=1 Zi
m ;

4 Calculate the sparser self-expression matrix Z∗ from Z using
[31];

5 Calculate the affinity matrix W ∗ = Z∗+Z∗T

2 an compute
segmentation from W ∗ by spectral clustering;

Output: Labels of samples L ∈ RN
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Chapter 5

Results

5.1 Complexity Analysis

For the first part of our MVGNSC algorithm, we need to compute the
individual self-expression matrices Zi for each of the m views.
Computing the self-expression matrix from each view takes O(N 2)
time, where N is the number of elements present in the data set. This
is because the time complexity for obtaining the self-expression matrix
through the closed form solution obtained using entropy norm is
O(N 2). Since there are m views, the total time taken to generate all
the self-expression matrices is O(mN 2). Calculating the consensus
matrix takes time equal to O(m), since we need to find the sum of all
the individual self-expression matrices before dividing by m.

After this, we find the sparser consensus self-expression matrix from
consensus Z using good neighbors post processing. To compute the
time complexity of using good neighbors post processing, let’s look at
Algorithm 1. In the first step, computing the affinity matrix W takes
O(1) i.e. constant time. Next, we compute the η neighbors of all the
elements {xi}Ni=1. Computing the η neighbor of each element takes
O(N) time, since we need to make a pass through all the elements in
the ith row of W to find the η largest elements. After we have
obtained the η neighbors, we need to loop over all the η neighbors to
compute the similarity scores with it’s η neighbors. Finding out the
good neighbors by computing the similarity scores takes O(η) time.
Since, we compute the good neighbors among all the η neighbors, the
time complexity for computing the good neighbors among the η
neighbors for a single element xi is O(η2).

As we previously observed, computing the η neighbors takes O(N)
time and computing the similarity scores for all the elements in the η
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5.1. COMPLEXITY ANALYSIS

neighbors takes O(η2) time. This is multiplicative, thus computing the
good neighbors for each element xi takes O(Nη2) time. Since, we find
the good neighbors for all the elements in the data set {xi}Ni=1, the total
time required to find the good neighbor matrix is O(N 2η2).

After we have the Good Neighbor matrix, to calculate the sparser
self expression matrix, we need an additional O(γN 2) time. Since, we
normalize the weights for each good neighbor of xi and make all the
other weights 0. Calculating the sparser affinity matrix is a constant
time operation. From the sparser affinity matrix, spectral clustering
takes O(N 3) time.

The total time complexity for the MVGNSC algorithm is thus
O(mN 2 +m+N 2η2 + γN 2 +N 3), which is effectively O(N 3).
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5.2 Setup

Configuration. For our experiments, we have used a machine with 128
GB RAM, an AMD Ryzen Threadripper 3960x processor and a RTX
3090 GPU.

Evaluated Methods. We compare the proposed MVGNSC algorithm
with state of the art Multi view graph based subspace clustering
methods like AMGL[20],MLRSSC[6], LMVSC[14], MSCIAS[27].The
parameters are tuned according to instructions given in the
corresponding papers to produce the best results.

Datasets. We have performed our experiments on four benchmark data
sets: Handwritten,Caltech-101-7,Caltech-101-20,Reuters.The
descriptions of the data sets are given in the table below

Table 5.1: Description of the data sets. Feature dimensions are provided inside
parentheses

View Handwritten Caltech7/20 Reuters
1 Profile Correlations(216) Gabor(48) Engish(21531)
2 Fourier Coefficients(76) Wavelet Moments(40) French(24892)
3 Karhunen Coefficients(64) CENTRIST(254) German(34251)
4 Morphological(6) HOG(1984) Italian(15506)
5 Pixel Averages(240) GIST(512) Spanish(11547)
6 Zernike Moments(47) LBP(928) -

Data size 2000 1474/2386 18758
Classes 10 7/20 6

Handwritten Digits data set [8] consists of a collection of
handwritten digits of 0 to 9. Two subsets consisting of 7 classes
(Caltech-7) and 20 (Caltech-20) classes are chosen for experimentation
from the Caltech-101 data set [11]. Reuters [1] data set consists of
documents written in English, French, German, Italian and Spanish, 5
different languages. Here, a subset of the entire data set consisting of
documents written in English and their translated counterparts are
used.

Metrics. For validating our results, we have used 3 commonly used
metrics. Accuracy (ACC), Normalized Mutual Information(NMI) and
Purity.
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5.3 Experimental results

5.3.1 Parameter Settings

Our Algorithm has five parameters λ,η,γ,µ and K. Among this, as
discussed before, we set the value of µ = 1, since the connection between
samples decreases in strength as the path length increases. Keeping the
value of µ as 1 signifies that there is 1 common neighbor between xi and
xj or similarly, according to the similarity score sij we have previously
defined, sij ≥ 1. The parameter γ controls the sparsity in the resultant
affinity graph. In our experiments, keeping the ratio of the value of γ
and η to be 2:5, we get identical results. Thus, as suggested by [31], set
the value of γ = 8 and the value of η = 20.
K represents the number of classes in each of the data sets, which

was fixed in each of the data sets. Setting the value of λ in the entropy
norm formulation turned out to be a bit tricky. In our experiments,
we are setting the same value of λ for each of the views for retrieving
the self-expression matrices of each view. First thing of note was that
up to a certain point, decreasing the value of λ resulted in improved
performance. After that point was reached, the performance of the
algorithm started to deteriorate, i.e. the accuracy started to decrease.
For our experiments, we found the best performance i.e. the point at
which the performance is maximized, by finding the covariance of the
data in each of the views, and then choosing a δ value equal to the
median value of the co variances from each of the views. Then, we
experimented with various values of λ which are selected from the set{

2δ, 1.5δ, δ, δ10 ,
δ
20 ,

δ
50

}
, δ being selected as above and chose the value

which gave the best results. The results are shown in the figures 5.5,
5.6, 5.7 for the Caltech-7 and the Handwritten Digits data sets.

5.3.2 On multi-view data sets

Table 5.2: Performance evaluation for Caltech-7 data set

Method ACC NMI Purity
AMGL 0.451 0.42 0.75

MLRSSC 0.37 0.211 0.41
MSCIAS 0.38 0.23 0.442
LMVSC 0.726 0.51 0.75
MVGNSC 0.762 0.56 0.84
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Table 5.3: Performance evaluation for Caltech-20 data set

Method ACC NMI Purity
AMGL 0.301 0.40 0.31

MLRSSC 0.28 0.26 0.30
MSCIAS 0.31 0.31 0.33
LMVSC 0.53 0.52 0.58
MVGNSC 0.478 0.55 0.65

Table 5.4: Performance evaluation for HandWritten Digits data set

Method ACC NMI Purity
AMGL 0.84 0.87 0.87

MLRSSC 0.76 0.74 0.87
MSCIAS 0.80 0.77 0.86
LMVSC 0.916 0.84 0.916
MVGNSC 0.948 0.89 0.948

Table 5.5: Performance evaluation for Reuters data set

Method ACC NMI Purity
AMGL 0.167 – –

MLRSSC 0.45 0.22 0.55
MSCIAS 0.49 0.27 0.60
LMVSC 0.589 0.334 0.614
MVGNSC 0.60 0.45 0.65

The value of η and γ has been set as 20 and 8 respectively, in all our
experiments. Setting these values gives desirable results, so, we do not
need to tweak these values further. For the Caltech-7 data set, the value
of λ is set as 50. For the Caltech-20 data set, the value of λ has been
set as 0.69, while for the Handwritten digits data set, we set the value
of λ as 10. For the Reuters data set, the value of λ was set to 0.29.

The figures 5.1 and 5.2 refer to the original clustering results in the
Caltech-7 data set and the obtained clustering result on the same data
set by using our method. The figures were obtained using t-SNE
technique. Figure 5.3 represents the clustering results obtained by our
method on the handwritten digits data set.
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Figure 5.1: Caltech-7 Original Labels

Figure 5.2: Caltech-7 Predicted Labels
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Figure 5.3: Handwritten Original Labels

Figure 5.4: Handwritten Predicted Labels
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Figure 5.5: NMI and Purity for Caltech-7 data set
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Figure 5.6: ACC for Caltech-7 and NMI for Handwritten digits data set
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Figure 5.7: Purity and ACC for Handwritten digits data set
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Clustering multi view data is very challenging, since to get good
clustering results, we need to maintain both connectivity and sparsity
of the affinity matrix. Most multi view subspace clustering methods
deal with optimizing one of them, thus sacrificing the other.In our
work, we showed that we can optimize both these properties to
improve the quality of our clusters. Our good neighbors algorithm is
based on Yang’s [31] work.

We also took advantage of the quadratic run time of the Entropy
Norm algorithm to obtain our self-expression matrix using Gaussian
approximation, instead of having to solve an optimization function using
solvers like quadprog, which are known to be very time consuming.

We also showed that we can leverage the advantage of multiple views
to get noteworthy clustering results by comparing to many state-of-
the-art algorithms in Multi view subspace clustering, thus showing that
a sparse, yet strongly connected affinity matrix can contribute to the
improvement in clustering results obtained using Spectral clustering as
shown in the section 5.3.

6.2 Future Work

Despite it’s good performance, our method MVGNSC has it’s
limitations and there is scope for improvement. One of the limitations
being that it considers each view has equal contribution to the
consensus matrix, since we take a simple average across all the views
to get the consensus matrix. This might not be the case, as some of
the views may be more noisy and more prone to errors when compared
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to other views. We can eliminate this issue by giving different weights
to each of the self-expression matrices of the different views and then
creating the consensus self expression matrix by considering a linear
combination of the individual self-expression matrices. The weights
may be learned using optimization. This will significantly improve the
clustering results by giving less weights to noisy views and taking
advantage of well distributed views.
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