
Semi-Supervised Learning in Graph Neural
Networks: A Spectral Filtering Approach

Anish Anand

Semi-Supervised Learning in Graph Neural
Networks: A Spectral Filtering Approach

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in

Computer Science

by

Anish Anand
[Roll No: CS-2023]

under the guidance of

Dr. Swagatam Das.

Associate Professor and Head,

Electronics and Communication Sciences Unit

Indian Statistical Institute

Kolkata-700108, India

July 2022

To my family and my Supervisor.

CERTIFICATE

This is to certify that the dissertation entitled “Semi-Supervised Learning in

Graph Neural Networks: A Spectral Filtering Approach’ submitted by

Anish Anand to Indian Statistical Institute, Kolkata, in partial fulfillment for

the award of the degree of Master of Technology in Computer Science is a

bonafide record of work carried out by him under my supervision and guidance. The

dissertation has fulfilled all the requirements as per the regulations of this institute

and, in my opinion, has reached the standard needed for submission.

Dr. Swagatam Das
Associate Professor and Head,

Electronics and Communications Unit,

Indian Statistical Institute,

Kolkata-700108, INDIA.

Acknowledgments

I would like to show my deepest gratitude to my advisor, Prof. Dr. Swagatam Das,

ECSU, Indian Statistical Institute, Kolkata, for his guidance, continuous support,

and encouragement.

I would also like to thank Kushal Bose Senior Research Fellow, ECSU, Indian Statis-

tical Institute, Kolkata, for his valuable suggestions and discussions.

My deepest thanks to all the faculties of the Indian Statistical Institute, for their

valuable suggestions and discussions which contributed to my research work.

I owe my thanks to many people who have helped me in many ways these years. I want

to thank my family for their love and support. I am indebted to ISI for providing me

with an opportunity to learn and work in a lively scientific environment. I finally want

to mention some of the teachers, scientists, and friends with whom I have interacted

during these years: Mandar Mitra, Sandip Das, Malay Bhattacharya, Azad, Sachin,

Akhil, and Ayush.

Anish Anand

Indian Statistical Institute

Kolkata - 700108 , India.

Abstract

In this thesis, we investigated the general framework of Graph Neural Network for

node and graph classification tasks. We studied the phenomenon of over smooth-

ing and conducted experiments to validate them. We propose a novel spectral-based

Legendre Filter based on the Legendre polynomial to learn node features on graph-

structured data. We also described various aggregation schemes that can be employed

with the Legendre Filter to further improve information aggregation. Furthermore,

we proposed a novel algorithm that changes graph topology based on some heuristics

to improve overall classification accuracy. For Semi-Supervised learning, we demon-

strated that our proposed method performs better than GCN and Chebyshev Filter

on Citation Network datasets. Our proposed model outperformed GAT on Citeseer

and PubMed. For the full-supervised learning task, we showed that our method out-

performs all three baselines; GCN, GAT, and Chebyshev Filter on Citation Network

and WebKB datasets. We further showed that our method outperforms deep GNN

models like GCNII, JKNet on the WebKB dataset.

1

Contents

1 Introduction 7

1.1 Deep Learning on Graphs . 7

1.2 Contents covered . 8

2 Background Literature and Related Works 9

2.1 Basic Properties of Graph . 9

2.1.1 Centrality . 9

2.2 The Graph Laplacian . 10

2.3 Graph Signal Processing . 11

2.3.1 Graph Fourier Transform . 11

2.4 The GNN Framework . 12

2.4.1 Framework for Node Classification Task 12

2.4.2 Framework for Graph Classification Task 13

2.5 Training Parameters for Graph Neural Network 13

2.5.1 Training Parameters for Node Classification Task 13

2.5.2 Training Parameters for Graph Classification Task 14

2.6 Graph Filters . 15

2.6.1 Spectral-Based Filter . 15

2.6.2 Poly-Filter . 16

2.6.3 Graph Convolutional Networks (GCN) 18

2

CONTENTS 3

2.7 Spatial-Based Filter . 19

2.7.1 GraphSAGE . 19

2.7.2 Graph Attention Networks (GAT) 20

2.7.3 Monti-Filter . 21

2.8 Over-Smoothing . 21

2.9 DropEdge . 23

2.10 Approximate Personalized Propagation of Neural Predictions (APPNP) 24

2.11 Geometric GCN . 24

2.12 Jumping Knowledge Network (JKNet) 25

2.13 GCNII . 26

3 Proposed Approach 28

3.1 Preliminary . 28

3.2 Legendre Filter . 29

3.2.1 Special Case . 31

3.3 Jacobi Filter . 32

3.4 Aggregation Schemes . 33

3.5 Adaptive Edge Algorithm . 34

4 Experiments and Results 37

4.1 DATASET . 37

4.2 OverSmoothing Experiment . 38

4.3 Node Degree vs Accuracy Test . 39

4.4 Semi-Supervised Node Classification 40

4.5 Full Supervised Node Classification 42

4.6 Hyper-Parameter Details . 43

4.7 Adaptive Edge experiment . 44

4.8 T-SNE Plots . 44

5 Future Work and Conclusion 49

4 CONTENTS

5.1 Conclusion . 49

5.2 Future Work . 49

List of Figures

4.1 From left to right: Cora and CiteSeer. Average Accuracy of GCN,

Legendre-Filter and Cheby-Filter for different values ogf K. 38

4.2 PubMed Dataset. Average Accuracy of GCN, Legendre-Filter and

Cheby-Filter for different values of K. 39

4.3 From left to right: Cora and CiteSeer. Average Accuracy of nodes is

plotted for different node degree. 40

4.4 From left to right: PubMed and Amazon Photos. Average Accuracy

of nodes is plotted for different node degree. 40

4.5 Dataset: Cora . 45

4.6 Dataset: Citeseer . 45

4.7 Dataset: PubMed. 46

4.8 Dataset: Cora ML. 46

4.9 Dataset: Amazon Photo. 47

4.10 Dataset: DBLP. 47

4.11 Dataset: Coauthor CS. 48

5

List of Tables

4.1 Dataset Statistics . 38

4.2 Average accuracy of Lower-Degree nodes (all the nodes whose degree≤
3) and Higher-Degree nodes(all the nodes whose degree> 3). 39

4.3 For Semi-Supervised Learning task: Average Classification accuracy

results(%) on Citation Network Dataset; Cora, CiteSeer and PubMed.

Number in the parenthesis refer to number of layers used in corre-

sponding deep models. 41

4.4 For Semi-Supervised Learning task : Average Classification accu-

racy results(%) on Amazon Photos (Amz.), Coauthor CS (CoCS.),

Cora ML and DBLP. Results are reported on our fixed train-

ing/validation/testing split. 42

4.5 For Full-Supervised Lrearning Task: Average Classification accuracy

results(%) on Cora, CiteSeer, PubMed, Cornell, Texas and Wisconsin. 43

4.6 Hyper-parameters of Legendre Filter for Table 4.3 and Table 4.4. . . 43

4.7 Hyper-parameters of Legendre Filter for Table 4.5. 44

4.8 For Semi-Supervised Learning task : Average Classification accuracy

results(%) on Amazon Photos are performing 100 runs of experiment.

Results are reported on out fixed training/validation/testing split. . 44

6

Chapter 1

Introduction

1.1 Deep Learning on Graphs

Graphs provide a natural way to represent the data. Data from different domains

like social networks, chemistry, brain networks, citation network, transportation net-

work, and e-commerce product networks can be better represented through graphs.

Classical deep learning models work with tabular data assuming that each data point

is independent and identically distributed. But the assumption is inherently flawed

as we saw that data points in many data across different systems are related to each

other. Classical Deep Learning techniques have been proven powerful in the rep-

resentational learning task and have achieved benchmark performance in the areas

like Natural Language Processing, Computer Vision, Anamoly Detection, etc. How-

ever, classical deep learning methods consider data points independent and therefore

do not consider other data points while generating features. Since deep learning on

graphs takes into consideration the topology of graph-structured data, generating the

features takes into account the input features of other data points. Graph Neural

Network has more representational capacity for graph-structured data than classi-

cal deep learning models. Semi-Supervised learning comes into play when we have

a small number of labeled data and a huge number of unlabelled data. As we will

demonstrate in this work Graph, Neural Network significantly outperforms classical

deep learning methods on such a task.

7

8 1. Introduction

1.2 Contents covered

Now we briefly explain contents covered in subsequent chapters:

• Chapter 2: In this chapter, we studied the basic properties of Graph Laplacian

and its use in Graph Fourier Transform. Next, we investigated a general frame-

work for Graph Neural networks for node/graph classification tasks. Next, we

studied different approaches to designing filters and reviewed a couple of them.

We also investigated the phenomenon of over-smoothing in Graph Convolu-

tional Networks. Finally, we explored some deep architectures in Graph Neural

Networks.

• Chapter 3: In this chapter, we propose our novel spectral-based filter, namely,

Legendre Filter. Next, we discuss a particular case of our proposed filter. We

then generalize Legendre Filter to suggest Jacobi Filter based on Jacobi poly-

nomials. Finally, we propose a novel algorithm that changes graph topology

based on some heuristics to improve the model’s overall accuracy.

• Chapter 4: In this chapter, we conducted an over-smoothing experiment and

validated our conjecture empirically given in the previous chapter. Next, for the

semi-supervised learning task, we compared our model’s performance with three

baselines; Chebyshev Filter, GCN, and GAT on Citation Network, CoraML,

Amazon Photo, DBLP, Coauthor CS. We also include other SOTAs for com-

parison. We compared our model’s performance with shallow and deep models

on Citation Network and Web Network datasets for the full-supervised learning

task.

Chapter 2

Background Literature and

Related Works

2.1 Basic Properties of Graph

We begin with the definition of the graph and its properties.

Definition 1 A graph G = {V,E} is defined by the node set V = {v1, v2, ..., vn} and

edge set E = {e1, e2, ..., em} .

Definition 2 Given a graph G = {V,E} such that |V | = n. An adjacency matrix A

is defined as n × n matrix such that Aij = 1 if and only if vi and vj is connected by

an edge.

Definition 3 Given a graph G = {V,E}, degree of vertex v is defined as number of

adjacent vertices of v.

Theorem 1 Given a graph G = {V,E}, following result holds true.∑
v∈V

deg(v) = 2|E|

2.1.1 Centrality

In a graph, centrality is the measure of how important a node is in the graph. There

are many types of centrality measures, we mention a few of them.

9

10 2. Background Literature and Related Works

• Degree Centrality: The importance of a node can be decided on the basis of the

number of edges connected to it. Hence, degree centrality is defined as

cen(v) = degree(v)

• Eigenvalue Centrality [3]: Degree centrality has one drawback. It gives equal

importance to all the adjacent nodes. Eigenvalue centrality is the eigenvector

of the adjacency matrix for a particular eigenvalue.

A · w = λ · w

Here w contains the centrality score for all the nodes.

2.2 The Graph Laplacian

Given a graph G = {V,E} with adjacency matrix A and degree matrix D, graph

Laplacian [3] is defined as

L = D−A

There are many versions of the Laplacian matrix we mention two of them.

• Normalized Laplacian [3]: Normalized Laplacian is defined as

Lnor = I −D−1/2AD−1/2

• Random Walk Laplacian [3]: RW Laplacian is defined as

Lrw = D−1L

RW Laplacian can also be thought of transition probability matrix of Random

Walk on the graph.

We state the following result from Chung [3]. Given a vector x and simple graph

Laplacian L following equation holds true

xTLx =
∑
vi∈V

∑
vj∈N(vi)

(x[i]− x[j])2

2.3. Graph Signal Processing 11

Here N(v) represents neighbouring nodes of v. We mention the following theorem

from Chung [3]

Theorem 2 Given a graph G = {V,E}, the eigenvalues of L are positive.

Proof:

Let λ and x be the eigenvalue and normalized eigenvector of L. Thus we have

xTx = 1. From above equation it follows that,

0 ≤ xTLx = λxTx = λ

. □

2.3 Graph Signal Processing

A graph signal comprises a graph G = {V,E} and a mapping function on the vertex

set V to Rd space.

f : V → Rd

Consider a single-channel signal f . If the values change slowly as we traverse through

the graph via the edges, then we say the signal f is smooth. It can be observed that

the signal is smooth if and only if the value of fTLf is small.

2.3.1 Graph Fourier Transform

Let f be a single channel graph signal. Suppose eigenvalue decomposition of graph

Laplacian L is given by L = UΛUT . Here ith column correspond to the ith eigenvector

ui of the graph Laplacian L.

Graph Fourier transform [25] of f is given by:

f̂ = UTf

By observing following equation

uT
i Lui = λi

12 2. Background Literature and Related Works

we conclude that smoothness of the eigenvector ui is measured by the eigenvalue

λi. Spectral graph signal f̂ can be transformed back to spatial graph signal f using

Inverse Fourier Transform [25].

f = Uf̂

.

2.4 The GNN Framework

Graph Neural Networks are a collection of methods that seeks to apply deep learning

neural network to graph-structured data. Classical deep learning techniques are

designed to work well with tabular data, but it performs poorly when it comes to

graph-structured data. The research on GNNs goes back to Sperduti et al. [27] where

the neural network model was applied to graph-structured data, which motivated

further research (Gori et al. [16]) on using deep learning method on graphs. Graph

neural networks can be thought of as representational learning on graphs. For

node-focused tasks, it aims to learn better node representation which helps with the

node classification task. Graph-focused tasks aim to learn the representation for

the entire graph required for the graph classification task. Now we describe Graph

Neural Networks (Scarselli et al. [5]) framework for both node and graph-focused

tasks.

2.4.1 Framework for Node Classification Task

A framework of GNN for node classification task [14] can be viewed as composition of

graph filtering layer and application of non linear activation function. We denote the

filter by F and activation function by a. Let G = {V,E} be a graph with adjacency

matrix A. Let X ∈ Rn×d be the feature matrix. A GNN framework with l Graph

Filtering layers and l − 1 activation function is given by

X(i) = Fi(A, ai−1(X
(i−1)))

2.5. Training Parameters for Graph Neural Network 13

Here, X(0) is the input feature, and X(i) ∈ Rn×di is the output feature obtained after

application of ith filter. a0 is identity function, i.e. we don’t apply activation function

to input feature matrix X(0).

2.4.2 Framework for Graph Classification Task

A framework of GNN for graph classification [9] tasks comprises the graph filtering

process, transformation through an activation function, and Graph Pooling [5] layer.

Graph pooling layer takes adjacency matrix and feature matrix as input and returns

modified adjacency matrix and new feature matrix. We denote the graph pooling

operation by Pool(). The general architecture consists of k blocks. Each block consists

of a series of graph filtering layers and activation functions. Graph Pooling layer is

applied to each of the blocks. Let input to the block with k filtering layer is given by

(Ain, X in). The output of the block after the Pooling layer is:

X(i) = Fi(A
in, ai(X

in)) for i = 1, 2, ..., k.

Aout, Xout = Pool(Ain, X(k))

Graph Classification task can be viewed as a hierarchical process that slowly coarsens

the graph to generate graph-level features.

2.5 Training Parameters for Graph Neural Net-

work

2.5.1 Training Parameters for Node Classification Task

Let G = {V,E} be a graph with feature matrix and adjacency matrix given by X and

A respectively. We divide the vertex set V = Vl ⊔ Vul into disjoint subsets of labeled

vertices and unlabeled vertices. The task of classification is to train a model based on

the labeled vertex set Vl to predict the label of the unlabeled vertex set Vul. Suppose

a GNN model is given by GNNModel(). For this task, any GNN model takes the

14 2. Background Literature and Related Works

entire graph as input. Suppose out of the final layer of the model is Xout.

Xout = GNNModel(A,X;Wg)

where W represents the model parameters to be trained. Xout is passed through

softmax layer [8].

Ŷ = Softmax(Xout;Ws)

where Ŷ ∈ Rn×c, here c is the number of classes. We could also write the above

simply as

Ŷ = gGNN(A,X,W)

where W = Wg and Ws. Given a loss function l(·|·) (usually we take Cross Entropy

Loss Function [8] for classification task) we train the model to minimize the following

objective function

Ltrain =
∑
v∈Vl

l(gGNN(A,X,W)i, yi)

where yi is the true class label.

2.5.2 Training Parameters for Graph Classification Task

Suppose we have a training set Strain = {Gi, yi} where Gi is the graph and yi is the

label of the graph. The task of graph classification is to train a model based on the

training set Strain to predict the label of the unlabeled graphs. Let GNNModel() be

the GNN model which takes graph Gi as input and generates graph level feature.

Xout
i = GNNModel(A,Gi;Wg)

where Xout
i ∈ R1×d. The output is passed through softmax layer to produce Ŷi.

Ŷ = Softmax(Xout;Ws)

We could also write the above simply as

Ŷ = gGNN(G,W)

2.6. Graph Filters 15

where W = Wg and Ws. Same as above model is trained to minimize the following

objective

Ltrain =
∑

Gi∈Strain

l(gGNN(Gi,W), yi)

2.6 Graph Filters

There are many different ways to design graph filters. Almost all of them can be

categorized into two categories:

• Spectral-Based Filter: Spectral-Based filter uses spectral graph theory to design

filtering layers in the spectral domain.

• Spatial-Based Filter: Spatial-Based Filter uses the graph topology and graph

structure information for feature refining.

As we will show in the next section, these two approaches are related. A

spectral-Based filter can be viewed as a Spatial-Based filter.

2.6.1 Spectral-Based Filter

We consider single-channel graph signal X ∈ Rn. After applying Graph Fourier

Transform [25], we get following

X̂ = UTX

where ith column of U correspond to ith eigenvector with λi as eigenvalue of L . The

ith element of the X̂ is the ith Fourier component of ui with corresponding frequency

λi. Now we use a function m() to modulate the frequency of the graph signal X̂. The

function m is defined on frequency set of graph signal. Following it, we apply inverse

Graph Fourier Transform to get the smoothened signal X̂ ′.

X̂ ′ = U ·m(Λ) · UTX.

where Λ is the diagonal eigenvalue matrix. Since we do not know which frequencies

(eigenvalues) are important or how to modulate them, the problem thus becomes

finding the best-modulating function m for the given data. However, we can learn

16 2. Background Literature and Related Works

the function m through a data-driven approach.

2.6.2 Poly-Filter

Defferrard et al. [4] modelled the function using Kth order polynomial.

m(Λ) =
K∑
i=0

wkΛ
K

It was shown by them that equation Um(Λ)UT can be transformed in terms of Lapla-

cian L. Hence there is no need for eigenvalue decomposition of L.

Um(Λ)UT =
K∑
i=0

wkUΛKUT

=
K∑
i=0

wk(UΛUT · UΛUT · · · UΛUT)

=
K∑
i=0

wkL
K

Hence the smoothened signal X̂ is given by

X̂ = Um(Λ)UTX =
K∑
i=0

wkL
KX.

We state the following lemma described by Hammond et al [10].

Lemma 1 Let G be the graph, and L be the corresponding graph Laplacian matrix.

Then following equation holds true

Lk
ij = 0 if d(vi, vj) > k

Output signal of node vi can be given by

X̂[i] =
∑
vj∈V

(
K∑
l=0

wiL
l
ij

)
X[i]

2.6. Graph Filters 17

From above lemma we have Ll
ij = 0 if d(vi, vj) > l. It follows that only nodes are

involved in the calculation that lies in the K-th hop neighborhood of the node vi.

Since only those nodes are involved in calculating the output feature of node vi that

lies in K-th hop neighborhood, the Poly-Filter can also be thought of as aggregating

information from nodes that lie in K − th hop neighborhood of vi. Thus, Poly-Filter

can also be thought of spatial-based filter.

Poly-Filter has many advantages but suffers from a major drawback. The basis used in

Poly-Filter is not orthogonal. Hence parameters become unstable during the learning

process.

Chebyshev Filter

To alleviate the above problem, Defferrard et al. [4] proposed to use Chebyshev poly-

nomial instead of the standard basis. Since Chebyshev polynomials are orthogonal in

[−1, 1]. It makes the coefficients independent and hence are stable during the training

process. Chebyshev polynomials are given by following recursive relation

Tk(x) = 2kTk−1(x)− Tk−2(x)

The mapping function m based on Chebyshev polynomial is given by

m(Λ) =
K∑
i=0

WiTk(Λ̃)

where Λ̃ = 2Λ
λmax

− I is transformed eigenvalue matrix. Output feature after applying

Cheby-Filter is given by

X̂ =
K∑
i=0

Ti(L̃)XWi

where L̃ is transformed Laplacian given by

L̃ =
2L

λmax

− I

One Limitation of Poly-Filer is that it fails to capture sharp changes in the frequency

response of the graph. The use of ARMA filter [13] to build graph convolution layer

has been proposed by Bianchi et al.[14].

18 2. Background Literature and Related Works

2.6.3 Graph Convolutional Networks (GCN)

Kipf and Welling [14] proposed a simple but effective filter by simplifying Cheby-

Filter and using renormalization trick. It has been proved in Spectral Graph Theory

(Chung. et al. [1]) that the eigenvalues of normalized graph Laplacian satisfy the

following:

0 = λ1 < λ2 < · · · < λmax < 2

Cheby-Filter was simplified by taking K = 1 and λmax = 2. It follows that

m(Λ) = w0T0(Λ̃) + w1T1(Λ̃) = w0I + w1(Λ− I)

Suppose x be a single channel graph signal, then the output signal x′ after simplyfying

Cheby-Filter is given by

x′ = Um(Λ)UTx

= w0x+ w1U(Λ− I)UTx

= w0x− w1(L− I)x

= w0x− w1D
−1/2AD−1/2x

where L = I −D−1/2AD−1/2 is normalized graph Laplacian. Taking w = w0 = −w1

we get

x′ = w(I +D−1/2AD−1/2)x

Since the eigenvalues of (I +D−1/2AD−1/2) lies in [0, 2] stacking GCN might lead to

numerical instability. To solve this problem, they proposed a renormalization trick

where they replaced A by Ã and D by D̃, where Ã and D̃ are adjacency matrix and

degree matrix after adding self-loops. Final feature becomes

x′ = w(D̃−1/2ÃD̃−1/2)x

For din dimensional graph signal X ∈ Rn×din output features after applying GCN is

given by

X ′ = D̃−1/2ÃD̃−1/2XW

2.7. Spatial-Based Filter 19

where X ′ ∈ Rn×dout and W ∈ Rdin×dout is the parameter matrix. Feature vector X ′
i

for node vi with feature vector Xi can also be written as

X ′
i =

∑
vj∈N(vi)∪{vi}

1√
didj

XjW

Thus GCN can also be viewed as node aggregating information from immediate neigh-

bours.

2.7 Spatial-Based Filter

Now we discuss spatial-based filter.

2.7.1 GraphSAGE

Hamilton et al. [9] proposed GraphSAGE model that is based on sampling and

aggregating information from immediate neighbors to update node features. Given

a node vi with feature vector Xi the output feature is generated using the following

process:

• Sampling: NS(vi) = SAMPLE(N(vi), k)

• Aggregation: X ′
NS(vi)

= AGGREGATE(Xj,∀vj ∈ NS(vi))

• Update: X ′
i = σ([Xi, X

′
NS(vi)

]W)

Sampling function SAMPLE() samples k nodes from the immediate neighbors of vi.

AGGREGATE() uses some aggregation scheme to combine the information from the

sampled nodes. Finally, the output feature is generated by concatenating the input

feature with the aggregated feature, followed by linear transformation and passing

through the activation function. There are different types of aggregation schemes, we

list a few of them:

• Mean Aggregator: Mean aggregator simply takes a channel-wise mean of the

sampled nodes.

20 2. Background Literature and Related Works

• LSTM Aggregator: LSTM aggregator considers sample features as sequential

data and applies LSTM [12] architecture to generate the output feature.

• Pooling Aggregator: Pooling Aggregator applies max, min, or avg pooling to

combine the information of the sampled nodes. Before applying Pooling, fea-

tures are usually transformed by passing through a linear layer followed by an

activation layer.

2.7.2 Graph Attention Networks (GAT)

Velikovic et al. [28] introduced attention-based architecture for the node classification

tasks. New feature for a node vi is generated by first assigning importance scores to

the nodes in its immediate neighborhood. Based on the importance score, information

from the neighboring nodes is aggregated. LetN(vi) be the set of immediate neighbors

of vi and hi be the feature vector. Importance score for each vj ∈ N(vi) ∪ {vi} is

computed as

eij = a(Whi,Whj)

where a() is the shared attention function given by

a(Whi,Whj) = LeakyReLU(bT [Whi,Whj])

where [·, ·] is concatenation operation, LeakyReLU [32] is an activation function, and

W, b are parameter matrix. Importance scores are computed by normalizing eij’s

using softmax layer

αij =
exp(eij)∑

vk∈N(vi)∪{vi} exp(eik)

Finally new node feature h′
i is computed using following equation

h′
i =

∑
vj∈N(vi)∪{vi}

αijWhi

Furthermore K independent attention mechanism are performed in parallel to obtain

intermediate features using above equation. Finally all the intermediate features are

2.8. Over-Smoothing 21

concatenated to get the final node feature.

h′
i = ||Kk=1

∑
vj∈N(vi)∪{vi}

αk
ijW

khi

2.7.3 Monti-Filter

Monti et al. [17] proposed a mixture model network (MonNet) to perform convolution

operations on graph-structured data. For each vj ∈ N(vi) a pseudo co-ordinate is

defined as

c(vi, vj) =

(
1√
di
,

1√
dj

)
To measure the relation between the nodes vi and vj , Gaussian kernel [18] is applied

on the pseudo co-ordinate to get

eij = exp

(
−1

2
(c(vi, vj)− µ)TΣ−1(c(vi, vj)− µ)

)
where both µ,Σ are the parameter matrix to be learned. Finally, node features are

generated using following equation

h′
i =

∑
vj∈N(vi)

eijhj.

2.8 Over-Smoothing

Before discussing over-smoothing, we briefly discuss why GCN works? Consider a

single-layer GCN applied on feature matrix X. We have

Y = D̃−1/2ÃD̃−1/2XW

Laplacian Smoothing explained in Taubin et al. [18] on feature matrix X with adja-

cency matrix A is given by

Y = (I − γD̃−1L̃)X

22 2. Background Literature and Related Works

where L̃ = D̃−Ã and γ controls the smoothing. If we set γ = 1 and replace normalized

Laplacian D̃−1L̃ with symmetrically normalized Laplacian D̃−1/2L̃D̃−1/2 we get

Y = (I − D̃−1/2L̃D̃−1/2)X = (I − D̃−1/2(D̃ − Ã)D̃−1/2)X. = D̃−1/2ÃD̃−1/2X

This shows that GCN is a special case of Laplacian Smoothing. Nodes that are

connected by an edge, Laplacian Smoothing makes their representation similar. Con-

sequently, it helps with classification task. This explains why GCN works really well.

Now, if we stack couple of layers of GCN unlike classical Convolutional Network [8]

average accuracy drops dramatically. It happens because all the node representation

become too much similar to each other. This phenomenon is called Over-Smoothing.

The following theorem due to Li et al[13]. formalizes the problem of over-smoothing.

Theorem 3 Let G be connected non-bipartite graph such that A is its adjacency

matrix. Suppose we have a single channel input h ∈ Rn. Then the following holds

true

lim
k→∞

(D̃−1/2ÃD̃−1/2)kh = λ1u1

where u1 is the eigenvector of D̃−1/2ÃD̃−1/2 corresponding to the largest eigenvalue

and λ1 = uT
1 h.

Proof:

Let L̃ = I − D̃−1/2ÃD̃−1/2 be normalized Laplacian. The eigenvalues of L̃ are given

by 0 = θ1 < θ2 < · · · < θn < 2 with corresponding eigenvectors u1, u2, .., un. In matrix

form eigenvalue decomposition of L̃ is given by

L̃ = UΛUT

we can write D̃−1/2ÃD̃−1/2 as

D̃−1/2ÃD̃−1/2 = I − L̃ = U(I − Λ)UT

2.9. DropEdge 23

Hence the eigenvalues of D̃−1/2ÃD̃−1/2 is given by 1 = 1−θ1 > 1−θ2 > · · · > 1−θn >

−1 with corresponding eigenvectors given by u1, u2, ..., un. Now we have

lim
k→∞

(D̃−1/2ÃD̃−1/2)kh = lim
k→∞

(U(I − Λ)UT)kh

= lim
k→∞

U(I − Λ)kUTh

= Udiag(1, 0, 0, , , 0)UTh

= u1 · (uT
1 h)

= λ1u1

It can be shown that u1 = D̃−11. It follows that the node does not contain any

other information other than the degree of the node. In the theorem, we didn’t use

the activation function. However, Oono and Suzuki [19] showed similar results using

the ReLU [19] activation function. Interestingly, they showed that the use of ReLU

activation actually speeds up the phenomenon of over-smoothing. □

2.9 DropEdge

To tackle over-smoothing Rong et al. [24] proposed the Drop Edge technique; at each

training epoch, each edge is selected at random with probability p and is dropped

from the adjacency matrix. Following it model is trained on the graph with the new

adjacency matrix. Mathematically, it can be written as

Adrop = Unif(A, 1− p) (2.1)

where Unif() uniformly samples each edge and retains the corresponding edge with

probability 1 − p. The author also claims that the Drop Edge technique also helps

with the problem of over-fitting. The reasoning given is that; Updating node feature

can be seen as taking the weighted sum of all the neighboring nodes feature. In

each epoch, Drop Edge only allows selecting randomly sampled nodes from the set of

neighboring nodes to perform the aggregation. This helps to prevent overfitting.

24 2. Background Literature and Related Works

2.10 Approximate Personalized Propagation of

Neural Predictions (APPNP)

Approximate Personalized Propagation of Neural Predictions (APPNP) (Klicpera et

al. [15])is inspired by the Google PageRank [20] algorithm that allows the model to

go back to the initial residual with a teleportation probability of α. Let X be the

input feature matrix, and fθ(·) be a fully connected neural network. Initial residuals

are calculated using the following equation

h0 = fθ(X)

In the next step, output features for K iteration are computed as follows:

h(k+1) = (1− α)D̃−1/2ÃD̃−1/2h(k) + α · h0 for 0 ≤ k ≤ K − 2

Finally, output features are passed through the softmax layer for classification

h(K) = Softmax((1− α)D̃−1/2ÃD̃−1/2h(K−1) + α · h0)

Till now we have discussed shallow models in Graph Neural Networks. Attempts have

been made to build deep models like ResGCN [22], IncepGCN [24], JKNet [33], etc

in Graph Neural Networks.

2.11 Geometric GCN

Geometric GCN (Pei et al. [21]) employs a three-stage aggregation scheme to update

the node features. We describe them below.

• Node embedding: This is a basic module that maps each node v to the latent

space. Give a node v with feature vector xv, the mapping function is given by

f : v → zv

We can think zv to be the node’s position in the latent space.

• Structural neighborhood: Next phase of aggregation builds structural neigh-

2.12. Jumping Knowledge Network (JKNet) 25

borhood on the basis of latent space feature and node’s feature, and graph

geometry. given by

N(v) = {Ng(v), Ns(v), τ}

. Here Ng(v) is the set of immediate neighbors of v, Ns(v) = {u |d(zv, zu) < ρ}
is the neighbors of v in latent space and τ is relation operator. Relational

operator τ is a function by

τ(zu, zv) → r

. Here r ∈ R is geometric relationship between latent variables.

• Bi-level aggregation: Final aggregation combines two functions defined above.

Let h0
v = xv, the node’s feature hl

v at th layer is updated by

ev,l+1
(i,r) = p({hl

u |u ∈ Ni(v), τ(zu, zv) = r}),∀i ∈ {g, s}, i ∈ R.

ml+1
v = qi∈{g,s},i∈R(e

v,l+1
(i,r) , (i, r))

hl+1
v = σ(Wl ·ml+1

v).

The first equation says that nodes that have the same geometric relationship r

and that are in the same neighborhood i are aggregated using some aggregation

function p. Generated features in the first equation are then aggregated in the

next equation using aggregation function q. Finally, intermediate feature ml+1
v

is passed through linear layer and subsequently through non-linear activation

function to get the updated feature hl+1
v .

2.12 Jumping Knowledge Network (JKNet)

Jumping Knowledge Network (Xu et al. [33]) is an architecture that learns to com-

bine information from different neighborhoods to generate a feature vector. As we

discussed, stacking k layers of GCN can be viewed as aggregating information from

k-hop neighborhood. Suppose h1, h2,, hk are intermediate feature vector generated

by k layers of GCN such that ith block generates hi. These feature vectors can be

viewed as information aggregated from different localities. JKNet combines all these

feature vectors by some aggregation scheme to produce the final output feature. This

allows the architecture to learn to combine information aggregated from different

26 2. Background Literature and Related Works

neighborhoods.

Some commonly used aggregation schemes are

• Concatenation: One simple way to generate output feature is to concatenate

all intermediate features CONCATENATE(h1, h2, ..., hK). Sometimes it’s desirable

to pass the concatenated feature through a linear layer.

• Max Pooling: We could perform channel-wise max-pooling to produce the out-

put feature. For ith channel, ith channel of output feature is given by

hi = max({hi
l : 1 ≤ l ≤ k})

Channel that represents global property of the graph can learn from higher

order neighbors.

• LSTM attention: For each node v attention mechanism identifies the useful

neighborhood range. For each node v the features h
(v)
1 , h

(v)
2 , ..., h

(v)
k are fed to

a bi-LSTM [8] to generate forward and backward features f v
l , f

v
l for each layer

respectively. Following it concatenated feature [f v
l , f

v
l] is passed through a linear

layer to produce importance score svl . Finally {svl } is passed through softmax

layer to get attention scores. Hence final feature hv is computed as

h =
K∑
l=1

Softmax(svl) · hv
l

.

2.13 GCNII

Chen et al. [2] combined the ideas mentioned below to build a deep architecture for

Graph Neural Networks.

• Initial Residual Connection: This idea is borrowed from APPNP [15] that allows

the model to go back to initial residuals with teleportation probability α to

generate a feature vector.

2.13. GCNII 27

• Identity Mapping: The idea of Identity mapping was introduced in ResNet

[11] to alleviate the problem of vanishing gradient in a very deep model. This

allowed model to go deep and achieve great representational capacity.

Let X be the feature matrix. Feature matrix is passed through a fully connected

layer to obtain initial residuals h0.

h0 = fθ(X)

For a L layer model update rule is given by

h(l+1) = σ
((

(1− αl)D̃
−1/2ÃD̃−1/2h(l) + αlh0

)
((1− βl)In + βlWl)

)
where αl controls the effect of initial residuals h0 at layer l and βl controls the effect

of identity mapping. βl = log(λ/l + 1) where λ is a hyperparameter.

Chapter 3

Proposed Approach

3.1 Preliminary

For a graph G with features matrix X, the graph filtering operation is given by

X ′ = Uγ(Λ)UT .

Here L = UTΛU is the spectral decomposition of the graph Laplacian L and γ

is a function that modulates the frequency component of the graph signal. While

designing the spectral filter, one obvious approach is to give full freedom to the set

of trainable parameters, that is

γ(λk) = wk

One limitation of the above approach is for a large graph number of trainable param-

eters will be huge, making it difficult to train. To address this problem polynomial

filtering(Poly-Filter) operation was proposed by Defferrard et al. The function γ is

given by truncated Kth order polynomial

γ(Λ) =
K∑
i=0

ΘiΛ
i

Poly-Filter is a simple and effective spectral-based filter that offers many advantages.

One limitation of Poly-Filter is that the basis used is not orthogonal, and hence

the coefficients are dependent on each other, making them unstable under updates

28

3.2. Legendre Filter 29

during the learning process. To alleviate this problem, we propose Legendre Filter

(Leg-Filter) based on the Legendre polynomial.

3.2 Legendre Filter

We first briefly discuss the properties of Legendre polynomial [23]. Legendre Poly-

nomials are a set of orthogonal polynomials that satisfy the following recurrence

relation:

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) for n ≥ 2

with P0(x) = 1, P1(x) = x. Legendre polynomials are orthogonal in [−1, 1] given by

following equation, ∫ 1

−1

Pn(x)Pm(x) =
2

2n+ 1
if n = m

= 0 if n ̸= m

Hence the function γ is given by

γ(Λ) =
K∑
i=0

ΘiPi(Λ)

Since Legendre Polynomials are orthogonal on range [−1, 1] we shift the eigenvalues

of graph Laplacian in the same range, hence shifted eigenvalue matrix Λ is given by

Λ̃ =
2Λ

λmax

− I

For a graph with feature matrix X, feature X ′ obtained after applying Legendre filter

is given by

X ′ =
K∑
i=0

UPi(Λ̃)U
TXΘi

Lemma 2 For a graph G with Laplacian L following relation is true ∀i ≥ 0.

UPi(Λ̃)U
T = Pi(L̃)

30 3. Proposed Approach

Here modified Laplacian L̃ = 2L
λmax

− I.

Proof:

We prove the lemma using induction. For i = 0 we have

UP0(Λ̃)U
T = UUT = I.

For i = 1 we have,

UP1(Λ̃)U
T = U Λ̃UT = U

(
2Λ

λmax

− I

)
UT

=
2UΛUT

λmax

− UUT

=
2L

λmax

− I = L̃ = P1(L̃).

Suppose for i = k − 1 and i = k the equation holds true.

UPk−1(Λ̃)U
T = Pk−1(L̃)

UPk(Λ̃)U
T = Pk(L̃)

For i = k + 1,

UPk+1(Λ̃)U
T = U

(
1

k + 1

(
(2k + 1)Λ̃Pk(Λ̃)− kPk−1(Λ̃)

))
UT

=
2k + 1

k + 1
U Λ̃UTUPk(Λ̃)U

T − k

k + 1
UPk−1(Λ̃)U

T

=
2k + 1

k + 1
L̃Pk(L̃)−

k

k + 1
Pk−1(L̃)

=
1

k + 1

(
(2k + 1)L̃Pk(L̃)− kPk−1(L̃)

)
=

1

k + 1
(k + 1)Pk+1(L̃) = Pk+1(L̃).

For i = k + 1 equation holds true, hence form induction the equation is true for all

i ≥ 0. □

We define unnormalized Legendre Convolution operation on graph G with feature

3.2. Legendre Filter 31

matrix X as

X ′ =
K∑
i=0

Pk(L̃)XΘi.

We further normalize the Legendre polynomial Pk(x) by multiplying it by a factor of√
2

2k+1
,

P̃k(L̃) =

√
2

2k + 1
Pk(L̃)

Finally, we define the normalized Legendre Convolution operation on graph G with

feature matrix X:

X ′ =
K∑
i=0

P̃k(L̃)XΘi.

3.2.1 Special Case

For simplicity, we consider a single-channel graph signal. Filter operation on single-

channel graph for k = 2 is given by

γ(Λ̃) = θ0I + θ1Λ̃ +
θ2
2
(3Λ̃2 − I)

We take following assumptions; θ2 = 2θ0, θ1 = 3θ0, θ0 = θ. It follows that,

γ(Λ̃) = θI + 3θΛ̃ + 2
θ

2
(3Λ̃2 − I)

= 3θ(Λ̃ + Λ̃2)

We consider normalized graph Laplacian L given by L = I − D−1/2AD−1/2. Eigen-

values of the graph Laplacian L are 0 = λ1 < λ2 · ·· < λn < 2. Hence, we make the

following approximation:

λmax = 2

32 3. Proposed Approach

It follows that Λ̃ = Λ− I. Therefore we have following equation,

Uγ(Λ̃)UT = 3θU(Λ− I + (Λ− I)2)UT

= 3θU((Λ− I + Λ2 − 2Λ + I)UT

= 3θU(Λ2 − Λ)UT

= 3θ(L2 − L)

= θ′(−(I −D−1/2AD−1/2)D−1/2AD−1/2)

= θ′((D−1/2AD−1/2)2 −D−1/2AD−1/2)

For a graph with a d-dimensional feature above operation takes the following form:

X ′ = ((D−1/2AD−1/2)2 −D−1/2AD−1/2)XΘ

Legendre [31], Chebychev [29], and other orthogonal polynomials are special cases of

Jacobi polynomial. Hence, we generalize the Legendre filter and consequently define

Jacobi Filter.

3.3 Jacobi Filter

First, we briefly discuss some properties of the Jacobi polynomial [30]. Jacobi poly-

nomials are given by following recurrence relation,

2n(n+ α + β)(2n+ α + β − 2)P (α,β)
n (x) = (2n+ α + β − 1){(2n+ α + β)

(2n+ α + β − 2)x+ α2 − β2)P
(α,β)
n−1 (x)}

−2(n+ α + 1)(n+ β + 1)

(2n+ α + β)P
(α,β)
n−2 (x) for n ≥ 2

Jacobi Polynomial for n = 0, 1 are given by

P
(α,β)
0 (x) = 1

P
(α,β)
1 (x) = (α + 1) + (α + β + 1)

x− 1

2

3.4. Aggregation Schemes 33

Jacobi Polynomials satisfies the following orthogonality condition:∫ 1

−1

(1−x)α(1−x)βP (α,β)
n (x)P (α,β)

m (x) =
2α+β+1

2n+ α + β + 1

Γ(α + n+ 1)Γ(β + n+ 1)

Γ(n+ α + β + 1)n!
δnm

For a graph with feature matrix X, application of Jacobi Filter on feature matrix

results in X ′ given by

X ′ =
K∑
i=0

UP
(α,β)
i (Λ̃)UTXΘi

Using the above lemma, the unnormalized Jacobi Convolution operation is given by

X ′ =
K∑
i=0

P
(α,β)
k (L̃)XΘi.

We normalize the Jacobi Polynomial to get,

˜
P

(α,β)
n =

√
2α+β+1

2n+ α + β + 1

Γ(α + n+ 1)Γ(β + n+ 1)

Γ(n+ α + β + 1)n!
P (α,β)
n

Finally, we define the Jacobi Convolution operation on graph G with feature matrix

X:

X ′ =
K∑
i=0

˜
P

(α,β)
n (L̃)XΘi.

3.4 Aggregation Schemes

As we discussed earlier Legendre Filter of order K can be thought as aggregating

information upto K-th hop neighbors. We propose an aggregation scheme to update

nodes’s feature. We fix the order (K) of the Legendre Filter. For k ≤ K and node v,

let h
(k)
v denote the node feature after applying Legendre Filter of order k. For each

node we have h
(1)
v , h

(2)
v , h

(3)
v , ..., h

(K)
v . Updated node feature h′

v can be given as

h′
v = AGGREGATION({h(1)

v , h(2)
v , h(3)

v , ..., h(K)
v })

Following can we used to aggregate collected node features:

• Mean Pooling: We could simply take mean of {h(1)
v , h

(2)
v , h

(3)
v , ..., h

(K)
v } to up-

34 3. Proposed Approach

date the feature of the node v.

• Stochastic Mean Pooling: We fix some feature h0 = hl
v for l ≤ K. Next,

during training we choose each node feature hi
v for i ̸= l with some probability

p. Suppose we get {hk1
v , hk2

v , ..., hkn
v } after choosing each feature with probability

p. Finally we take mean of {h0, h
k1
v , hk2

v , ..., hkn
v } to update node feature v.

• LSTM Aggregator: Features {h(1)
v , h

(2)
v , h

(3)
v , ..., h

(K)
v } can be treated as se-

quential data since hi
v represent information aggregated upto i-th hop neighbors.

Updated node feature is given as

h′
v =

K∑
i=1

αih
i
v

Following the approach of JKNet [33], we learn the weights α′
is using LSTM

architecture. Node features {hk1
v , hk2

v , ..., hkn
v } is fed to LSTM and output of

each LSTM block is passed through linear layer to get the score siv. The score

siv is passed through the Softmax layer to get the weights α′
is.

3.5 Adaptive Edge Algorithm

In this part of the work, we focus on Graph Topology to improve the accuracy of

the node classification task. During our experiments, we observed that the average

accuracy of higher degree nodes was significantly greater than the lower degree nodes.

The results of these experiments can be found in the next chapter. This led to the

following conjecture:

Conjecture 1 The average classification accuracy of nodes with a higher degree is

significantly greater than nodes with a lower degree.

We develop an adaptive Edge algorithm that changes the graph topology by adding

supernodes to the graph and also using various parameters like degree information

and predictive confidence.

Now, we propose the algorithm. The algorithm is divided into two phases. First,

we fix a particular model and a dataset. We train the model for a maximum of k

times, and the model is selected amongst them with the best validation accuracy for

3.5. Adaptive Edge Algorithm 35

the next phase. In the second phase of the algorithm, we add as many supernodes

to the graph as there are classes in the dataset. Next, we uniquely assign a label to

each of the supernodes. Now we add edges between training nodes and supernodes

belonging to the same class. For the rest of the nodes, we first get the predicted class

label by the model selected in the first phase. Next, we add edges between them

and supernodes based on the predicted class label and degree info. We also remove

interclass edges between the nodes based on predicted label and degree info. Finally,

we train the model on the modified graph. Pseudo Code for the same is given below.

Algorithm 1 BEST MODEL(INPUT)

1. for i = 1 to K :.

2. Initialize model, best val = 9999.

3. val loss = model.fit(data).val loss().

4. if val loss < best val :

5. best model = model

6. return best model

Algorithm 2 ADD EDGE()

1. for i in data.num num classes :

2. add new node vi to graph.

3. Initialize feature of vi, set class label i.

4. for each v in data.training set :

5. if v.class = i:

6. add edge e = (v, vi)

7. model = BEST MODEL():

8. for each v not in data.training set:

9. label = model.predict(v).

10. if deg[v] ≥ deg conf and pred[v] ≥ pred conf :

11. add edge e = (v, vlabel)

12. return data.

36 3. Proposed Approach

Algorithm 3 REMOVE EDGE()

1. for each e indata.edge list :

2. let e = (v, w).

3. if deg[v] ≥ deg conf and deg[w] ≥ deg conf :.

4. if pred[v] ≥ pred conf and pred[w] ≥ pred conf :

5. Remove edge e from data.edge list.

6. return data.

Now we define the terms used in the algorithm. BEST MODEL() runs the model K

times and returns the model with the best validation accuracy. The deg conf allows

us to connect only higher degree vertices with supernode. Similarly, pred conf

allows us to only those vertices whose log-softmax prediction is above the threshold.

During our experiments, we observed that the algorithm works well on models with

high classification accuracy.

Chapter 4

Experiments and Results

In this section, we measure the performance of the proposed Legendre Filter and

Adaptive Edge algorithm. We also report the results and plots of other experiments.

4.1 DATASET

For the semi-supervised node classification task, we use the benchmark standard

Citation Network dataset [34] - Cora, Citeseer, PubMed. In this dataset, nodes are

the documents, and edges correspond to the citations. Node features are the

bag-of-word representation of the document. Each node’s label belongs to one of the

academic topics. We also use Cora ML, and DBLP from the full Citation Network

dataset [7]. Next, we use the Coauthor CS dataset [26]. Here node represents the

author, and the edges between two nodes exist if they Co-authored a paper. Each

node’s label belongs to its respective field of study. Finally, we use the Amazon

Photo dataset [26]. Here, nodes represent goods, and there is an edge between the

nodes if both of them are bought frequently. The class label of each node is their

respective product category.

For the full-supervised node classification task, we also included Web Network

datasets [21]- Cornell, Wisconsin, and Texas along with the Citation Network

datasets. Here, each node is a web page, and edges correspond to hyperlinks. Each

node’s feature is a bag-of-word representation of the respective web page. Each

node’s label belongs to one of five categories- student, project, course, staff, and

faculty.

37

38 4. Experiments and Results

Table 4.1: Dataset Statistics

Datasets Nodes Edges Features Classes
Cora 2,708 10,556 1,433 7
Citeseer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3
Cora ML 2,995 16,316 2,879 7
DBLP 17,716 105,734 1,639 4
Coauthor CS 18,333 163,788 6,805 15
Amazon
Photo

7,650 238,162 745 8

Cornell 183 295 1,703 5
Wisconsin 259 499 1,703 5
Texas 183 309 1,703 5

4.2 OverSmoothing Experiment

It has been shown that a Poly-Filter of degree K can be simulated by stacking K

layers of GCN. In this experiment we plot average accuracy of GCN,

Legendre-Filter and Cheby-Filter for different values of K (1 ≤ K ≤ 10). For each

value of K average accuracy for each model is reported after performing 100 runs of

the experiment. It can be seen that GCN suffers hugely from oversmoothing. As for

the Poly-Filter our proposed Legendre-Filter performs significantly better compared

to Cheby-Filter for large values of K.

Figure 4.1: From left to right: Cora and CiteSeer. Average Accuracy of GCN,
Legendre-Filter and Cheby-Filter for different values ogf K.

4.3. Node Degree vs Accuracy Test 39

Figure 4.2: PubMed Dataset. Average Accuracy of GCN, Legendre-Filter and Cheby-
Filter for different values of K.

4.3 Node Degree vs Accuracy Test

In this section we present the empirical results supporting Conjecture 1. For the

experiment we fixed the degree = k for the given dataset. Following this, we

computed the average accuracy of the nodes corresponding to degree = k. We

repeated this process for all possible node degree’s in the graph. Citation network

dataset was used for this experiment, and Leg-Filter was used to train the model.

Results are mentioned in the Table 4.2.

Table 4.2: Average accuracy of Lower-Degree nodes (all the nodes whose degree≤ 3)
and Higher-Degree nodes(all the nodes whose degree> 3).

Datasets
Lower-Degree
(Avg.Accuracy)

Higher-Degree
(Avg.Accuracy)

Num-Nodes
(Lower Degree)

Num-Nodes
(Higher Degree)

Cora 79.59 85.43 1068 1640
Citeseer 65.09 76.84 2174 1153
PubMed 76.57 83.21 12451 7266

We also observed that overall accuracy of the dataset is better if the dataset has

greater number of Higher-Degree nodes.

40 4. Experiments and Results

Figure 4.3: From left to right: Cora and CiteSeer. Average Accuracy of nodes is
plotted for different node degree.

Figure 4.4: From left to right: PubMed and Amazon Photos. Average Accuracy of
nodes is plotted for different node degree.

4.4 Semi-Supervised Node Classification

• Baselines and Experimental Setup: For Semi-Supervised node

classification task we use the fixed standard training/validation/testing splits

for Citation network-Cora, CiteSeer, PubMed dataset as taken in GCN [Kipf

& Welling]. We take 20 nodes per class for training, 500 nodes for validation,

and 1000 nodes for testing. For Cora ML, DBLP, Amazon Photo, and

Coauthor CS we took our fixed training/validation/testing splits. In this work

we compare our proposed Legendre-Filter and Legendre-Filter with stochastic

mean aggregation(Legendre Filter-M) with Cheby-Filter,GCN and GAT, but

we also include other SOTA; PPNP, IncepGCN, JKNET, GCNII for reference.

We used Pytorch Geometric [6] to implement out proposed Legendre Filter.

For optimization, we use Adam Optimizer. We use elu activation function for

4.4. Semi-Supervised Node Classification 41

all tasks. All the hyperparameters were tuned based on the validation set.

Early stopping is used if validation loss does not decrease after 100 epochs.

On all the datasets model is trained for 200 epochs. Details on

hyperparameters can be found in Table 4.6.

• Comparisions with SOTAs: We used Normalized Legendre Filter for all of

the classification task. We also trained Legendre Filter with stochastic mean

pooling (Legendre Filter-M) on cora dataset. Table 4.3 reports mean

classification accuracy along with the standard deviation on the test set of

different models after performing 100 runs of the experiment. For all the

models we reuse the metrics provided in Chen et al. For Chebyshev Filter we

reuse the metrics provided in Kipf & Welling. On Cora our model performs

better than Chebyshev Filter and GCN. On Citeseer and PubMed our model

performs better than Chebyshev, GCN and GAT. Interestingly, on PubMed

our shallow model performs marginally better than deep models like JKNet

and IncepGCN. On Amazon Photo and Cora ML Legendre filter performs

better than Chebyshev Filter and GAT, but performs marginally poor than

GCN. On Coauthor CS Legendre filter performs better than all three

baselines. Finally, on DBLP Legendre Filter performs significantly better than

all three baselines.

Table 4.3: For Semi-Supervised Learning task: Average Classification accuracy re-
sults(%) on Citation Network Dataset; Cora, CiteSeer and PubMed. Number in the
parenthesis refer to number of layers used in corresponding deep models.

Method Cora CiteSeer PubMed
Chebyshev Filter 81.2 69.8 74.4
GCN 81.5 70.3 79.0
GAT 83.1 70.8 78.5
APPNP 83.3 71.8 80.1
JKNet 81.1 (4) 69.8 (16) 78.1 (32)
JKNet(Drop) 83.3 (4) 72.6 (16) 79.2 (32)
Incep(Drop) 83.5 (64) 72.7 (4) 79.5 (4)
GCNII 85.5 (64) 73.4 (32) 80.2(16)
Legendre Filter 82.67 ±0.5 71.35± 0.6 79.73± 0.4
Legendre Filter-M 82.88 ±0.6 - 79.86 ±0.5

42 4. Experiments and Results

Table 4.4: For Semi-Supervised Learning task : Average Classification accuracy re-
sults(%) on Amazon Photos (Amz.), Coauthor CS (CoCS.), Cora ML and DBLP.
Results are reported on our fixed training/validation/testing split.

Method Amz. CoCS. Cora ML DBLP
Chebychev Filter 86.68 91.14 76.14 75.72
GCN 91.64 92.56 81.59 71.17
GAT 89.55 92.16 80.93 72.25
Legendre Filter 90.62 ±0.5 92.89±0.3 81.17±0.7 77.06±1.8

4.5 Full Supervised Node Classification

• Baselines and Experimental Setup: Again, we use a normalized Legendre

Filter for this task. We use 6 datasets for the task- Cora, CiteSeer, PubMed,

Cornell, Wisconsin and Texas. For each of the datasets, in each run we

randomly split nodes of each class such that 60%, 20% and 20% is for training,

validation and testing, respectively. Classification accuracy is measured by

taking an average of accuracy over 10 runs. Adam optimizer is used for

optimization. Early stopping is used if validation loss does not decrease after

100 epochs. On all the datasets model is trained for 200 epochs. Details of

hyperparameter can be found in Table 4.5.

• Comparisions with SOTAs We use a normalized Legendre Filter for all the

datasets. Average classification accuracy for all the datasets after performing

10 runs is reported in Table 4.5. On all the datasets Legendre filter performs

better than all the shallow models. On Cora, Citeseer and Pubmed our model

performance is comparable with the deep models. On Cornell our model

performs better than almost all the deep models. On Texas and Wisconsin our

model performs better than all the deep models.

4.6. Hyper-Parameter Details 43

Table 4.5: For Full-Supervised Lrearning Task: Average Classification accuracy re-
sults(%) on Cora, CiteSeer, PubMed, Cornell, Texas and Wisconsin.

Method Cora CiteS. PubM. Corn. Texa. Wisc.
GCN 85.77 73.68 88.13 52.70 52.16 45.88
GAT 86.37 74.32 87.62 54.32 58.38 49.41
Geom-GCN-I 85.19 77.99 90.05 56.76 57.58 58.24
Geom-GCN-P 84.93 75.14 88.09 60.81 67.57 64.12
Geom-GCN-S 85.27 74.71 84.75 55.68 59.73 56.67
APPNP 87.87 76.53 89.40 73.51 65.41 69.02
JKNet 85.25 (16) 75.85 (8) 88.94 (64) 57.30 (4) 56.49 (32) 48.82 (8)
JKNet(Drop) 87.46 (16) 75.96 (8) 89.45 (64) 61.08 (4) 57.30 (32) 50.59 (8)
Incep(Drop) 86.86 (8) 76.83 (8) 89.18 (4) 61.62 (16) 57.84 (8) 50.20 (8)
GCNII 88.49 (64) 77.08 (64) 89.57 (64) 74.86 (16) 69.46 (32) 74.12 (16)
GCNII∗ 88.01 (64) 77.13 (64) 90.30 (64) 76.49 (16) 77.84 (32) 81.57 (16)
Legendre Filter 88.45 77.34 89.67 76.48 80.81 84.4

4.6 Hyper-Parameter Details

We used two layers of Legendre filter for all the datasets and experiments. We only

used dropout on second layer for all the datasets and experiments. We used elu

activation function. K denotes the order of Legendre polynomial and weight decay

is regularization factor.

Table 4.6: Hyper-parameters of Legendre Filter for Table 4.3 and Table 4.4.

Datasets Hyper-parameters
Cora K = 5, lr: 0.005, hidden: 16, dropout: 0.8, weight decay = 0.0005
Cora
(Leg-M)

K = 6, lr: 0.005, hidden: 16, layer1 dropout: 0.4, layer2 dropout:
0.8, mean pool prob. = 0.8, i= 5 (h0 = hi

v), weight decay = 0.0005
Citeseer K = 4, lr: 0.01, hidden: 16, dropout: 0.6, weight decay = 0.005
PubMed K = 4, lr: 0.01, hidden: 16, dropout: 0.8, weight decay = 0.001
PubMed
(Leg-M)

K = 5, lr: 0.01, hidden: 16, layer1 dropout: 0.4, layer2 dropout:
0.8, mean pool prob. = 0.9, i= 5 (h0 = hi

v), weight decay = 0.0001
Amaz. K = 4, lr: 0.01, hidden: 16, dropout: 0.8, weight decay = 0.00005
Coauth. K = 4, lr: 0.005, hidden: 16, dropout: 0.8, weight decay = 0.0005
Cora ML K = 4, lr: 0.01, hidden: 16, dropout: 0.8, weight decay = 0.0005
DBLP K = 4, lr: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.0005

44 4. Experiments and Results

Table 4.7: Hyper-parameters of Legendre Filter for Table 4.5.

Datasets Hyper-parameters
Cora K = 5, lr: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.0005
Citeseer K = 4, lr: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.0005
PubMed K = 4, lr: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.0001
Corn. K = 4, lr: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.00005
Wisc. K = 4, lr: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.00005
Texa. K = 4, lr: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.0001

4.7 Adaptive Edge experiment

We perform semi-supervised learning using adaptive edge algorithm on Amazon

datset. Accuracies before and after applying adaptive edge algorithm using GCN,

Legendre Filter and GAT are mentioned in table.

Table 4.8: For Semi-Supervised Learning task : Average Classification accuracy re-
sults(%) on Amazon Photos are performing 100 runs of experiment. Results are
reported on out fixed training/validation/testing split.

AdapEdge GCN Leg-Filter GAT
Before 91.64 90.62 89.55
After 92.41 ±0.1 90.89 ±0.1 91.85 ±0.5

4.8 T-SNE Plots

In this section we report t-SNE plots for last layer of Legendre Filter for all the

datasets used in semi-supervised learning. Plots refer to two dimensional t-SNE

plots of the outputs of last layer of Legendre filter for different datasets.

4.8. T-SNE Plots 45

Figure 4.5: Dataset: Cora

Figure 4.6: Dataset: Citeseer

46 4. Experiments and Results

Figure 4.7: Dataset: PubMed.

Figure 4.8: Dataset: Cora ML.

4.8. T-SNE Plots 47

Figure 4.9: Dataset: Amazon Photo.

Figure 4.10: Dataset: DBLP.

48 4. Experiments and Results

Figure 4.11: Dataset: Coauthor CS.

Chapter 5

Future Work and Conclusion

5.1 Conclusion

In this work, we proposed a novel spectral-based filter, Legendre-Filter, for a

semi-supervised node classification task for graph-structured data. Furthermore, we

proposed a novel algorithm that changes graph topology based on degree

information and other heuristics to improve the overall accuracy of a given model.

Our proposed Legendre Filter performs better than GCN, GAT, and Chebyshev

Filter for the semi-supervised learning task on almost all the datasets. For

full-supervised learning, our model performed better than all three baselines.

Furthermore, on a few datasets, our model even performed better than deep models

like JKNet, GCNII, etc.

5.2 Future Work

First, we briefly discuss the limitations of our approach. Being a shallow model, our

model has a limited representational capacity. Being a spectral-based filter, it

suffers from the same limitations as any other spectral-based filter.

One approach to improve the representational capacity of deep models like GCNII is

to combine an attention-based approach like GAT to compute the attention matrix

and combine it with the GCN block to generate output features.

49

Bibliography

[1] Bianchi, F.M., Grattarola, D., Livi, L., Alippi, C.: Graph neural networks with

convolutional ARMA filters. CoRR abs/1901.01343 (2019),

http://arxiv.org/abs/1901.01343

[2] Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph

convolutional networks. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th

International Conference on Machine Learning. Proceedings of Machine

Learning Research, vol. 119, pp. 1725–1735. PMLR (13–18 Jul 2020),

https://proceedings.mlr.press/v119/chen20v.html

[3] Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society (1997)

[4] Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks

on graphs with fast localized spectral filtering. CoRR abs/1606.09375 (2016),

http://arxiv.org/abs/1606.09375

[5] F. Scarselli, M. Gori, A.C.T.M.H., Monfardini, G.: The graph neural network

model (2009)

[6] Fey, M., Lenssen, J.E., Weichert, F., Müller, H.: Splinecnn: Fast geometric

deep learning with continuous b-spline kernels. CoRR abs/1711.08920 (2017),

http://arxiv.org/abs/1711.08920

[7] Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: metapath aggregated graph

neural network for heterogeneous graph embedding. CoRR abs/2002.01680

(2020), https://arxiv.org/abs/2002.01680

[8] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press,

Cambridge, MA, USA (2016), http://www.deeplearningbook.org

50

http://arxiv.org/abs/1901.01343
https://proceedings.mlr.press/v119/chen20v.html
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1711.08920
https://arxiv.org/abs/2002.01680
http://www.deeplearningbook.org

BIBLIOGRAPHY 51

[9] Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on

large graphs. CoRR abs/1706.02216 (2017),

http://arxiv.org/abs/1706.02216

[10] Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via

spectral graph theory (2009), https://arxiv.org/abs/0912.3848

[11] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image

recognition. In: 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). pp. 770–778 (2016)

[12] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural

Computation 9(8), 1735–1780 (1997)

[13] Isufi, E., Loukas, A., Simonetto, A., Leus, G.: Distributed time-varying graph

filtering. CoRR abs/1602.04436 (2016), http://arxiv.org/abs/1602.04436

[14] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. CoRR abs/1609.02907 (2016), http://arxiv.org/abs/1609.02907

[15] Klicpera, J., Bojchevski, A., Günnemann, S.: Personalized embedding

propagation: Combining neural networks on graphs with personalized

pagerank. CoRR abs/1810.05997 (2018), http://arxiv.org/abs/1810.05997

[16] M. Gori, G.M., Scarselli, F.: A new model for learning in graph domains. in

Proc. of IJCNN 2, 729–734 (2005)

[17] Monti, F., Bronstein, M.M., Bresson, X.: Geometric matrix completion with

recurrent multi-graph neural networks. CoRR abs/1704.06803 (2017),

http://arxiv.org/abs/1704.06803

[18] Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press

(2012)

[19] Oono, K., Suzuki, T.: Optimization and generalization analysis of transduction

through gradient boosting and application to multi-scale graph neural

networks. CoRR abs/2006.08550 (2020), https://arxiv.org/abs/2006.08550

http://arxiv.org/abs/1706.02216
https://arxiv.org/abs/0912.3848
http://arxiv.org/abs/1602.04436
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.05997
http://arxiv.org/abs/1704.06803
https://arxiv.org/abs/2006.08550

52 BIBLIOGRAPHY

[20] Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:

Bringing order to the web. Technical Report 1999-66, Stanford InfoLab

(November 1999), http://ilpubs.stanford.edu:8090/422/, previous

number = SIDL-WP-1999-0120

[21] Pei, H., Wei, B., Chang, K.C., Lei, Y., Yang, B.: Geom-gcn: Geometric graph

convolutional networks. CoRR abs/2002.05287 (2020),

https://arxiv.org/abs/2002.05287

[22] Pei, Y., Huang, T., van Ipenburg, W., Pechenizkiy, M.: Resgcn:

Attention-based deep residual modeling for anomaly detection on attributed

networks. CoRR abs/2009.14738 (2020), https://arxiv.org/abs/2009.14738

[23] Polynomials, L.: Properties of Legendre Polynomials

[24] Rong, Y., Huang, W., Xu, T., Huang, J.: The truly deep graph convolutional

networks for node classification. CoRR abs/1907.10903 (2019),

http://arxiv.org/abs/1907.10903

[25] Sandryhaila, A., Moura, J.M.F.: Discrete signal processing on graphs: Graph

fourier transform. In: 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing. pp. 6167–6170 (2013)

[26] Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph

neural network evaluation. CoRR abs/1811.05868 (2018),

http://arxiv.org/abs/1811.05868

[27] Sperduti, A., Starita, A.: Supervised neural networks for the classification of

structures. IEEE Transactions on Neural Networks 8(3), 714–735 (1997)

[28] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.:

Graph attention networks (2017), https://arxiv.org/abs/1710.10903

[29] Wikipedia contributors: Chebyshev polynomials — Wikipedia, the free

encyclopedia (2022), https://en.wikipedia.org/w/index.php?title=

Chebyshev_polynomials&oldid=1095221317, [Online; accessed 7-July-2022]

[30] Wikipedia contributors: Jacobi polynomials — Wikipedia, the free

encyclopedia (2022), https://en.wikipedia.org/w/index.php?title=

Jacobi_polynomials&oldid=1069717800, [Online; accessed 7-July-2022]

http://ilpubs.stanford.edu:8090/422/
https://arxiv.org/abs/2002.05287
https://arxiv.org/abs/2009.14738
http://arxiv.org/abs/1907.10903
http://arxiv.org/abs/1811.05868
https://arxiv.org/abs/1710.10903
https://en.wikipedia.org/w/index.php?title=Chebyshev_polynomials&oldid=1095221317
https://en.wikipedia.org/w/index.php?title=Chebyshev_polynomials&oldid=1095221317
https://en.wikipedia.org/w/index.php?title=Jacobi_polynomials&oldid=1069717800
https://en.wikipedia.org/w/index.php?title=Jacobi_polynomials&oldid=1069717800

BIBLIOGRAPHY 53

[31] Wikipedia contributors: Legendre polynomials — Wikipedia, the free

encyclopedia (2022), https://en.wikipedia.org/w/index.php?title=

Legendre_polynomials&oldid=1093551457, [Online; accessed 7-July-2022]

[32] Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations

in convolutional network (2015), https://arxiv.org/abs/1505.00853

[33] Xu, K., L.C.T.Y.S.T.K.K., Jegelka: Representation learning on graphs with

jumping knowledge networks. ICML (2018),

https://arxiv.org/pdf/1806.03536

[34] Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning

with graph embeddings. CoRR abs/1603.08861 (2016),

http://arxiv.org/abs/1603.08861

https://en.wikipedia.org/w/index.php?title=Legendre_polynomials&oldid=1093551457
https://en.wikipedia.org/w/index.php?title=Legendre_polynomials&oldid=1093551457
https://arxiv.org/abs/1505.00853
https://arxiv.org/pdf/1806.03536
http://arxiv.org/abs/1603.08861

	Introduction
	Deep Learning on Graphs
	Contents covered

	 Background Literature and Related Works
	Basic Properties of Graph
	Centrality

	The Graph Laplacian
	Graph Signal Processing
	Graph Fourier Transform

	The GNN Framework
	Framework for Node Classification Task
	Framework for Graph Classification Task

	Training Parameters for Graph Neural Network
	Training Parameters for Node Classification Task
	Training Parameters for Graph Classification Task

	Graph Filters
	Spectral-Based Filter
	Poly-Filter
	Graph Convolutional Networks (GCN)

	Spatial-Based Filter
	GraphSAGE
	Graph Attention Networks (GAT)
	Monti-Filter

	Over-Smoothing
	DropEdge
	Approximate Personalized Propagation of Neural Predictions (APPNP)
	Geometric GCN
	 Jumping Knowledge Network (JKNet)
	GCNII

	 Proposed Approach
	Preliminary
	Legendre Filter
	Special Case

	Jacobi Filter
	Aggregation Schemes
	Adaptive Edge Algorithm

	Experiments and Results
	DATASET
	OverSmoothing Experiment
	Node Degree vs Accuracy Test
	Semi-Supervised Node Classification
	Full Supervised Node Classification
	Hyper-Parameter Details
	Adaptive Edge experiment
	T-SNE Plots

	Future Work and Conclusion
	Conclusion
	Future Work

