Semi-Supervised Learning in Graph Neural

Networks: A Spectral Filtering Approach

Anish Anand

Semi-Supervised Learning in Graph Neural
Networks: A Spectral Filtering Approach

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in
Computer Science

by

Anish Anand

[Roll No: CS-2023]
under the guidance of

Dr. Swagatam Das.
Associate Professor and Head,

Electronics and Communication Sciences Unit

Z>» -0 Z—
e AT
MACA—=0Z=—

,1',_, . %
Fadaum edan

| UNITY IN DIVERSITY |

Indian Statistical Institute
Kolkata-700108, India
July 2022

To my family and my Supervisor.

CERTIFICATE

This is to certify that the dissertation entitled “Semi-Supervised Learning in
Graph Neural Networks: A Spectral Filtering Approach’ submitted by
Anish Anand to Indian Statistical Institute, Kolkata, in partial fulfillment for
the award of the degree of Master of Technology in Computer Science is a
bonafide record of work carried out by him under my supervision and guidance. The
dissertation has fulfilled all the requirements as per the regulations of this institute

and, in my opinion, has reached the standard needed for submission.

Dr. Swagatam Das

Associate Professor and Head,
Electronics and Communications Unit,
Indian Statistical Institute,
Kolkata-700108, INDIA.

Acknowledgments

I would like to show my deepest gratitude to my advisor, Prof. Dr. Swagatam Das,
ECSU, Indian Statistical Institute, Kolkata, for his guidance, continuous support,

and encouragement.

I would also like to thank Kushal Bose Senior Research Fellow, ECSU, Indian Statis-

tical Institute, Kolkata, for his valuable suggestions and discussions.

My deepest thanks to all the faculties of the Indian Statistical Institute, for their

valuable suggestions and discussions which contributed to my research work.

I owe my thanks to many people who have helped me in many ways these years. I want

to thank my family for their love and support. I am indebted to ISI for providing me

with an opportunity to learn and work in a lively scientific environment. I finally want
to mention some of the teachers, scientists, and friends with whom I have interacted
during these years: Mandar Mitra, Sandip Das, Malay Bhattacharya, Azad, Sachin,
Akhil, and Ayush.

Anish Anand
Indian Statistical Institute
Kolkata - 700108 , India.

Abstract

In this thesis, we investigated the general framework of Graph Neural Network for
node and graph classification tasks. We studied the phenomenon of over smooth-
ing and conducted experiments to validate them. We propose a novel spectral-based
Legendre Filter based on the Legendre polynomial to learn node features on graph-
structured data. We also described various aggregation schemes that can be employed
with the Legendre Filter to further improve information aggregation. Furthermore,
we proposed a novel algorithm that changes graph topology based on some heuristics
to improve overall classification accuracy. For Semi-Supervised learning, we demon-
strated that our proposed method performs better than GCN and Chebyshev Filter
on Citation Network datasets. Our proposed model outperformed GAT on Citeseer
and PubMed. For the full-supervised learning task, we showed that our method out-
performs all three baselines; GCN, GAT, and Chebyshev Filter on Citation Network
and WebKB datasets. We further showed that our method outperforms deep GNN
models like GCNII, JKNet on the WebKB dataset.

Contents

1 Introduction 7
1.1 Deep Learning on Graphs 7
1.2 Contents covered 8

2 Background Literature and Related Works 9
2.1 Basic Properties of Grapho 9

2.1.1 Centrality 9
2.2 The Graph Laplacian, 10
2.3 Graph Signal Processing L. 11
2.3.1 Graph Fourier Transform 11
2.4 The GNN Framework 12
2.4.1 Framework for Node Classification Task 12
2.4.2 Framework for Graph Classification Task 13
2.5 Training Parameters for Graph Neural Network 13
2.5.1 Training Parameters for Node Classification Task 13
2.5.2 Training Parameters for Graph Classification Task 14
2.6 Graph Filters 15
2.6.1 Spectral-Based Filter 15
2.6.2 Poly-Filter 16
2.6.3 Graph Convolutional Networks (GCN) 18

2

CONTENTS 3

2.7 Spatial-Based Filter 19
271 GraphSAGE 19
2.7.2 Graph Attention Networks (GAT) 20
2.7.3 Monti-Filter o 21

2.8 Over-Smoothing 21

29 DropEdge 23

2.10 Approximate Personalized Propagation of Neural Predictions (APPNP) 24

2.11 Geometric GCN 24

2.12 Jumping Knowledge Network (JKNet) 25

213 GONIT o 26

3 Proposed Approach 28

3.1 Preliminary 28

3.2 Legendre Filter 29
321 Special Case 31

3.3 Jacobi Filter 32

3.4 Aggregation Schemeso 33

3.5 Adaptive Edge Algorithm 34

4 Experiments and Results 37

4.1 DATASET 37

4.2 OverSmoothing Experiment 38

4.3 Node Degree vs Accuracy Test 39

4.4 Semi-Supervised Node Classification. 40

4.5 Full Supervised Node Classification 42

4.6 Hyper-Parameter Details 43

4.7 Adaptive Edge experiment 44

4.8 T-SNEPlots. 44

5 Future Work and Conclusion 49

CONTENTS

5.1 Conclusion 49
5.2 Future Work 49

List of Figures

4.1

4.2

4.3

4.4

4.5
4.6
4.7
4.8
4.9

From left to right: Cora and CiteSeer. Average Accuracy of GCN,
Legendre-Filter and Cheby-Filter for different values ogf K.

PubMed Dataset. Average Accuracy of GCN, Legendre-Filter and
Cheby-Filter for different values of K.

From left to right: Cora and CiteSeer. Average Accuracy of nodes is

plotted for different node degree.
From left to right: PubMed and Amazon Photos. Average Accuracy

of nodes is plotted for different node degree.
Dataset: Cora
Dataset: Citeseer
Dataset: PubMed.o
Dataset: Cora. ML.
Dataset: Amazon Photo. L.

4.10 Dataset: DBLP.
4.11 Dataset: Coauthor CS.

38

39

List of Tables

4.1
4.2

4.3

4.4

4.5

4.6
4.7
4.8

Dataset Statistics,

Average accuracy of Lower-Degree nodes (all the nodes whose degree<
3) and Higher-Degree nodes(all the nodes whose degree> 3).
For Semi-Supervised Learning task: Average Classification accuracy
results(%) on Citation Network Dataset; Cora, CiteSeer and PubMed.
Number in the parenthesis refer to number of layers used in corre-

sponding deep models. L

For Semi-Supervised Learning task : Average Classification accu-

racy results(%) on Amazon Photos (Amz.), Coauthor CS (CoCS.),
Cora.MLL and DBLP. Results are reported on our fixed train-
ing/validation/testing split.

For Full-Supervised Lrearning Task: Average Classification accuracy

results(%) on Cora, CiteSeer, PubMed, Cornell, Texas and Wisconsin.

Hyper-parameters of Legendre Filter for Table 4.3 and Table 4.4.
Hyper-parameters of Legendre Filter for Table 4.5.

For Semi-Supervised Learning task : Average Classification accuracy
results(%) on Amazon Photos are performing 100 runs of experiment.

Results are reported on out fixed training/validation/testing split.

41

42

43
43
44

44

Chapter 1

Introduction

1.1 Deep Learning on Graphs

Graphs provide a natural way to represent the data. Data from different domains
like social networks, chemistry, brain networks, citation network, transportation net-
work, and e-commerce product networks can be better represented through graphs.
Classical deep learning models work with tabular data assuming that each data point
is independent and identically distributed. But the assumption is inherently flawed
as we saw that data points in many data across different systems are related to each
other. Classical Deep Learning techniques have been proven powerful in the rep-
resentational learning task and have achieved benchmark performance in the areas
like Natural Language Processing, Computer Vision, Anamoly Detection, etc. How-
ever, classical deep learning methods consider data points independent and therefore
do not consider other data points while generating features. Since deep learning on
graphs takes into consideration the topology of graph-structured data, generating the
features takes into account the input features of other data points. Graph Neural
Network has more representational capacity for graph-structured data than classi-
cal deep learning models. Semi-Supervised learning comes into play when we have
a small number of labeled data and a huge number of unlabelled data. As we will
demonstrate in this work Graph, Neural Network significantly outperforms classical

deep learning methods on such a task.

8 1. Introduction

1.2 Contents covered

Now we briefly explain contents covered in subsequent chapters:

e Chapter 2: In this chapter, we studied the basic properties of Graph Laplacian
and its use in Graph Fourier Transform. Next, we investigated a general frame-
work for Graph Neural networks for node/graph classification tasks. Next, we
studied different approaches to designing filters and reviewed a couple of them.
We also investigated the phenomenon of over-smoothing in Graph Convolu-
tional Networks. Finally, we explored some deep architectures in Graph Neural

Networks.

e Chapter 3: In this chapter, we propose our novel spectral-based filter, namely,
Legendre Filter. Next, we discuss a particular case of our proposed filter. We
then generalize Legendre Filter to suggest Jacobi Filter based on Jacobi poly-
nomials. Finally, we propose a novel algorithm that changes graph topology

based on some heuristics to improve the model’s overall accuracy.

e Chapter 4: In this chapter, we conducted an over-smoothing experiment and
validated our conjecture empirically given in the previous chapter. Next, for the
semi-supervised learning task, we compared our model’s performance with three
baselines; Chebyshev Filter, GCN, and GAT on Citation Network, CoraML,
Amazon Photo, DBLP, Coauthor CS. We also include other SOTAs for com-
parison. We compared our model’s performance with shallow and deep models
on Citation Network and Web Network datasets for the full-supervised learning
task.

Chapter 2

Background Literature and
Related Works

2.1 Basic Properties of Graph

We begin with the definition of the graph and its properties.

Definition 1 A graph G = {V, E'} is defined by the node set V = {vy, vy, ...,v,} and
edge set E = {ey,eq,....,em} .

Definition 2 Given a graph G = {V, E} such that |V| =n. An adjacency matriz A
is defined as n x n matriz such that A;; = 1 if and only if v; and v; is connected by

an edge.

Definition 3 Given a graph G = {V, E}, degree of vertex v is defined as number of

adjacent vertices of v.

Theorem 1 Given a graph G = {V, E}, following result holds true.

S deg(v) = 2|

veV

2.1.1 Centrality

In a graph, centrality is the measure of how important a node is in the graph. There

are many types of centrality measures, we mention a few of them.

9

10 2. Background Literature and Related Works

e Degree Centrality: The importance of a node can be decided on the basis of the

number of edges connected to it. Hence, degree centrality is defined as

cen(v) = degree(v)

e Eigenvalue Centrality [3]: Degree centrality has one drawback. It gives equal
importance to all the adjacent nodes. Eigenvalue centrality is the eigenvector

of the adjacency matrix for a particular eigenvalue.
A-w=Xw

Here w contains the centrality score for all the nodes.

2.2 The Graph Laplacian

Given a graph G = {V, E} with adjacency matrix A and degree matrix D, graph
Laplacian [3] is defined as
L=D-A

There are many versions of the Laplacian matrix we mention two of them.

e Normalized Laplacian [3]: Normalized Laplacian is defined as

L,,=1—-D'"?AD'/?

e Random Walk Laplacian [3]: RW Laplacian is defined as
L,, =D7'L

RW Laplacian can also be thought of transition probability matrix of Random
Walk on the graph.

We state the following result from Chung [3]. Given a vector x and simple graph

Laplacian L following equation holds true

Le=) Y (2l] - afj])?

v, EV v; €N (v;)

2.3. Graph Signal Processing 11

Here N(v) represents neighbouring nodes of v. We mention the following theorem

from Chung [3]
Theorem 2 Given a graph G = {V, E}, the eigenvalues of L are positive.

Proof:
Let A and x be the eigenvalue and normalized eigenvector of L. Thus we have

2Tz = 1. From above equation it follows that,

0<zlLr=XeTo=)\

2.3 Graph Signal Processing

A graph signal comprises a graph G = {V, F'} and a mapping function on the vertex
set V to R? space.
f:V—-R?

Consider a single-channel signal f. If the values change slowly as we traverse through
the graph via the edges, then we say the signal f is smooth. It can be observed that

the signal is smooth if and only if the value of fTLf is small.

2.3.1 Graph Fourier Transform

Let f be a single channel graph signal. Suppose eigenvalue decomposition of graph
Laplacian L is given by L = UAUT. Here i*" column correspond to the i** eigenvector
u; of the graph Laplacian L.

Graph Fourier transform [25] of f is given by:

By observing following equation

12 2. Background Literature and Related Works

we conclude that smoothness of the eigenvector u; is measured by the eigenvalue
A;. Spectral graph signal f can be transformed back to spatial graph signal f using

Inverse Fourier Transform [25].

f=Uf

2.4 The GNN Framework

Graph Neural Networks are a collection of methods that seeks to apply deep learning
neural network to graph-structured data. Classical deep learning techniques are
designed to work well with tabular data, but it performs poorly when it comes to
graph-structured data. The research on GNNs goes back to Sperduti et al. [27] where
the neural network model was applied to graph-structured data, which motivated
further research (Gori et al. [16]) on using deep learning method on graphs. Graph
neural networks can be thought of as representational learning on graphs. For
node-focused tasks, it aims to learn better node representation which helps with the
node classification task. Graph-focused tasks aim to learn the representation for
the entire graph required for the graph classification task. Now we describe Graph
Neural Networks (Scarselli et al. [5]) framework for both node and graph-focused
tasks.

2.4.1 Framework for Node Classification Task

A framework of GNN for node classification task [14] can be viewed as composition of
graph filtering layer and application of non linear activation function. We denote the
filter by F' and activation function by a. Let G = {V, E'} be a graph with adjacency
matrix A. Let X € R"*? be the feature matrix. A GNN framework with [Graph

Filtering layers and [— 1 activation function is given by

X0 = F(A, a;_ (X))

2.5. Training Parameters for Graph Neural Network 13

Here, X© is the input feature, and X € R™% is the output feature obtained after
application of ¢ filter. ay is identity function, i.e. we don’t apply activation function

to input feature matrix X©.

2.4.2 Framework for Graph Classification Task

A framework of GNN for graph classification [9] tasks comprises the graph filtering
process, transformation through an activation function, and Graph Pooling [5] layer.
Graph pooling layer takes adjacency matrix and feature matrix as input and returns
modified adjacency matrix and new feature matrix. We denote the graph pooling
operation by Pool(). The general architecture consists of k blocks. Each block consists
of a series of graph filtering layers and activation functions. Graph Pooling layer is
applied to each of the blocks. Let input to the block with £ filtering layer is given by
(A" X™). The output of the block after the Pooling layer is:

X0 = F(A™, ay(X™) for i=1,2,...k.

Aout7Xout _ POOl(Am,X(k))

Graph Classification task can be viewed as a hierarchical process that slowly coarsens

the graph to generate graph-level features.

2.5 Training Parameters for Graph Neural Net-

work

2.5.1 Training Parameters for Node Classification Task

Let G = {V, E} be a graph with feature matrix and adjacency matrix given by X and
A respectively. We divide the vertex set V' = V; UV, into disjoint subsets of labeled
vertices and unlabeled vertices. The task of classification is to train a model based on
the labeled vertex set V} to predict the label of the unlabeled vertex set V,,;. Suppose
a GNN model is given by GNNModel(). For this task, any GNN model takes the

14 2. Background Literature and Related Works

entire graph as input. Suppose out of the final layer of the model is X%,
X = GNNModel(A, X;W,)

where W represents the model parameters to be trained. X°“ is passed through
softmax layer [8].
Y = Softmax(X°; W,)

where Y € R™ € here ¢ is the number of classes. We could also write the above
simply as

~

Y = gGNN(AaX7 W)

where W = W, and W,. Given a loss function I(-|-) (usually we take Cross Entropy
Loss Function [8] for classification task) we train the model to minimize the following

objective function
Ltrain = Z l(gGNN(Aa Xa W)za yz)

veV]

where y; is the true class label.

2.5.2 Training Parameters for Graph Classification Task

Suppose we have a training set Sy.ain = {Gi, y;} where G; is the graph and y; is the
label of the graph. The task of graph classification is to train a model based on the
training set Sy.qin to predict the label of the unlabeled graphs. Let GN N Model() be
the GNN model which takes graph G; as input and generates graph level feature.

X = GNNModel(A, Gi; W)
where X2 € R4, The output is passed through softmax layer to produce Y.
Y = Softmaz (X W,)
We could also write the above simply as

A

Y = genn (G, W)

2.6. Graph Filters 15

where W = W, and W,. Same as above model is trained to minimize the following
objective
Ltrain = Z l(gGNN<Gi7 W)7 yz>

Gi EStrain

2.6 Graph Filters

There are many different ways to design graph filters. Almost all of them can be

categorized into two categories:

e Spectral-Based Filter: Spectral-Based filter uses spectral graph theory to design

filtering layers in the spectral domain.

e Spatial-Based Filter: Spatial-Based Filter uses the graph topology and graph

structure information for feature refining.

As we will show in the next section, these two approaches are related. A

spectral-Based filter can be viewed as a Spatial-Based filter.

2.6.1 Spectral-Based Filter

We consider single-channel graph signal X € R". After applying Graph Fourier
Transform [25], we get following

X=UTx

where i'® column of U correspond to i'" eigenvector with \; as eigenvalue of L . The
ith element of the X is the i* Fourier component of u; with corresponding frequency
Ai. Now we use a function m() to modulate the frequency of the graph signal X. The
function m is defined on frequency set of graph signal. Following it, we apply inverse

Graph Fourier Transform to get the smoothened signal X'
X' =U-m(A)-UTX.

where A is the diagonal eigenvalue matrix. Since we do not know which frequencies
(eigenvalues) are important or how to modulate them, the problem thus becomes

finding the best-modulating function m for the given data. However, we can learn

16 2. Background Literature and Related Works

the function m through a data-driven approach.

2.6.2 Poly-Filter

Defferrard et al. [4] modelled the function using K** order polynomial.

K
A) =) wpAX
=0

It was shown by them that equation Um(A)U? can be transformed in terms of Lapla-

cian L. Hence there is no need for eigenvalue decomposition of L.
K
Um(MUT = > wUASUT

K
= Y w(UAUT -UAU" - - UAUT)

i=0
K

= E kaK
i=0

Hence the smoothened signal X is given by
X =UmMNUTX = ZkaKX

We state the following lemma described by Hammond et al [10].

Lemma 1 Let G be the graph, and L be the corresponding graph Laplacian matriz.

Then following equation holds true
Li=0 if d(vi,vy) >k

Output signal of node v; can be given by

-3 (St) vl

v; €V

2.6. Graph Filters 17

From above lemma we have Léj = 0 if d(v;,v;) > [. It follows that only nodes are
involved in the calculation that lies in the K-th hop neighborhood of the node v;.
Since only those nodes are involved in calculating the output feature of node v; that
lies in K-th hop neighborhood, the Poly-Filter can also be thought of as aggregating
information from nodes that lie in K — th hop neighborhood of v;. Thus, Poly-Filter
can also be thought of spatial-based filter.

Poly-Filter has many advantages but suffers from a major drawback. The basis used in
Poly-Filter is not orthogonal. Hence parameters become unstable during the learning

process.

Chebyshev Filter

To alleviate the above problem, Defferrard et al. [4] proposed to use Chebyshev poly-
nomial instead of the standard basis. Since Chebyshev polynomials are orthogonal in
[—1,1]. It makes the coefficients independent and hence are stable during the training

process. Chebyshev polynomials are given by following recursive relation
Tk(]ﬁ‘) = Qka,1<£L'> — Tk,Q(fﬂ)

The mapping function m based on Chebyshev polynomial is given by
K ~
m(A) = WiT(A)
=0

where A = /\2—A — [is transformed eigenvalue matrix. Output feature after applying

Cheby-Filter is given by
%= S rdxw,

=0

where L is transformed Laplacian given by

2L

L= T

>\max
One Limitation of Poly-Filer is that it fails to capture sharp changes in the frequency
response of the graph. The use of ARMA filter [13] to build graph convolution layer
has been proposed by Bianchi et al.[14].

18 2. Background Literature and Related Works

2.6.3 Graph Convolutional Networks (GCN)

Kipf and Welling [14] proposed a simple but effective filter by simplifying Cheby-
Filter and using renormalization trick. It has been proved in Spectral Graph Theory
(Chung. et al. [1]) that the eigenvalues of normalized graph Laplacian satisfy the
following;:

0= <A< " < Mgz < 2

Cheby-Filter was simplified by taking K =1 and A, = 2. It follows that

m(A) = weTo(A) + wiTH(A) = wol +wy(A—1)

Suppose = be a single channel graph signal, then the output signal x’ after simplyfying
Cheby-Filter is given by

g = Um(MUTx
= wor +wUA - DUz
= wor —wy (L — 1)z

= wWoT — w D~YV2AD Y2y

where L = I — D~Y/2AD~'/? is normalized graph Laplacian. Taking w = wg = —w;
we get
o' =w(l + D Y2AD Yy

Since the eigenvalues of (I + D~Y2AD~1/2) lies in [0, 2] stacking GCN might lead to
numerical instability. To solve this problem, they proposed a renormalization trick
where they replaced A by A and D by D, where A and D are adjacency matrix and

degree matrix after adding self-loops. Final feature becomes
' =w(DV2ADV?)g

For d;,, dimensional graph signal X € R"*%» output features after applying GCN is
given by
X' =D 'V2ADVAXW

2.7. Spatial-Based Filter 19

where X’ € R™*deut and W € R%in*dout jg the parameter matrix. Feature vector X

for node v; with feature vector X; can also be written as

X= > ;XjW

v €N (v;)U{vi} did;

Thus GCN can also be viewed as node aggregating information from immediate neigh-

bours.

2.7 Spatial-Based Filter

Now we discuss spatial-based filter.

2.7.1 GraphSAGE

Hamilton et al. [9] proposed GraphSAGE model that is based on sampling and
aggregating information from immediate neighbors to update node features. Given
a node v; with feature vector X; the output feature is generated using the following

process:
e Sampling: Ng(v;) = SAMPLE(N (v;), k)

o Aggregation: Xy, = AGGREGATE(X;, Vv; € Ng(v;))

Ch

e Update: X! = O-([Xi’X;VS(’Ui)]W)

Sampling function SAMPLE() samples k& nodes from the immediate neighbors of v;.
AGGREGATE() uses some aggregation scheme to combine the information from the
sampled nodes. Finally, the output feature is generated by concatenating the input
feature with the aggregated feature, followed by linear transformation and passing
through the activation function. There are different types of aggregation schemes, we

list a few of them:

e Mean Aggregator: Mean aggregator simply takes a channel-wise mean of the

sampled nodes.

20 2. Background Literature and Related Works

e LSTM Aggregator: LSTM aggregator considers sample features as sequential
data and applies LSTM [12] architecture to generate the output feature.

e Pooling Aggregator: Pooling Aggregator applies max, min, or avg pooling to
combine the information of the sampled nodes. Before applying Pooling, fea-
tures are usually transformed by passing through a linear layer followed by an

activation layer.

2.7.2 Graph Attention Networks (GAT)

Velikovic et al. [28] introduced attention-based architecture for the node classification
tasks. New feature for a node v; is generated by first assigning importance scores to
the nodes in its immediate neighborhood. Based on the importance score, information
from the neighboring nodes is aggregated. Let N(v;) be the set of immediate neighbors
of v; and h; be the feature vector. Importance score for each v; € N(v;) U {v;} is
computed as

eij = a(Wh;, Wh;)

where a() is the shared attention function given by
a(Wh;, Wh;) = LeakyReLU (b"[Wh;, Wh;])

where [-, -] is concatenation operation, LeakyReLU [32] is an activation function, and
W, b are parameter matrix. Importance scores are computed by normalizing e;;’s

using softmax layer
exp(e;;)
z’ukGN(’Ui)U{Ui} eXp(eikf)

Oéij =

Finally new node feature h! is computed using following equation

h; = Z a;iWh;

v; €N (v;)U{v;}

Furthermore K independent attention mechanism are performed in parallel to obtain

intermediate features using above equation. Finally all the intermediate features are

2.8. Over-Smoothing 21

concatenated to get the final node feature.

h; = i Z afjwkhi

vj EN(’L)Z‘)U{’UZ'}

2.7.3 Monti-Filter

Monti et al. [17] proposed a mixture model network (MonNet) to perform convolution

operations on graph-structured data. For each v; € N(v;) a pseudo co-ordinate is
defined as

(1o
C(’UZ',U]')— ﬁ’ﬁ

To measure the relation between the nodes v; and v; , Gaussian kernel [18] is applied

on the pseudo co-ordinate to get

ey = ex (el y) = "2l 0) —))

where both pu, > are the parameter matrix to be learned. Finally, node features are

generated using following equation

v €N (v;)

2.8 Over-Smoothing

Before discussing over-smoothing, we briefly discuss why GCN works? Consider a

single-layer GCN applied on feature matrix X. We have
Y = DTV2ADVPXW

Laplacian Smoothing explained in Taubin et al. [18] on feature matrix X with adja-
cency matrix A is given by
Y =1 —-~4D'L)X

22 2. Background Literature and Related Works

where L =

A and v controls the smoothing. If we set v = 1 and replace normalized
'L

D—
D~'L with symmetrically normalized Laplacian D~/2LD~1/2

Laplacian we get

Y = (] _ D—1/2ED—1/2)X _ (I . D—1/2(D . A)D_l/Q)X. — D YV2AiD12x

This shows that GCN is a special case of Laplacian Smoothing. Nodes that are
connected by an edge, Laplacian Smoothing makes their representation similar. Con-
sequently, it helps with classification task. This explains why GCN works really well.
Now, if we stack couple of layers of GCN unlike classical Convolutional Network [8]
average accuracy drops dramatically. It happens because all the node representation
become too much similar to each other. This phenomenon is called Over-Smoothing.

The following theorem due to Li et al[13]. formalizes the problem of over-smoothing.

Theorem 3 Let G be connected non-bipartite graph such that A is its adjacency
matriz. Suppose we have a single channel input h € R™. Then the following holds

true
lim (D~Y2AD™Y2)*h = \juy

k—o00

where wy is the eigenvector of D~Y2AD~Y2 corresponding to the largest eigenvalue

and Ay = ulh.

Proof:
Let L = I — D"Y2AD~/? be normalized Laplacian. The eigenvalues of L are given
by 0 =60, <0y <--- <6, <2 with corresponding eigenvectors uy, us, .., u,. In matrix

form eigenvalue decomposition of L is given by
L=UAU"
we can write D™/2AD~1/? as

D Y2AD V= - L=U(I-NU"T

2.9. DropEdge 23

Hence the eigenvalues of D™/2AD"2isgivenby 1 =1—6; > 1—0y > --- > 1—0, >
—1 with corresponding eigenvectors given by uy, us, ..., u,. Now we have

lim (D~Y2AD™Y2)kp = Jim (U(I — MU n
—00

k—o00

= lim U(I — A)*U"h

k—o00
= Udiag(1,0,0,,,0)0U"h
= uy - (ufh)

= Ny

It can be shown that u; = D'1. It follows that the node does not contain any
other information other than the degree of the node. In the theorem, we didn’t use
the activation function. However, Oono and Suzuki [19] showed similar results using
the ReLU [19] activation function. Interestingly, they showed that the use of ReLLU

activation actually speeds up the phenomenon of over-smoothing. 0

2.9 DropEdge

To tackle over-smoothing Rong et al. [24] proposed the Drop Edge technique; at each
training epoch, each edge is selected at random with probability p and is dropped
from the adjacency matrix. Following it model is trained on the graph with the new

adjacency matrix. Mathematically, it can be written as
Agrop = Unif(A, 1 —p) (2.1)

where Uni f() uniformly samples each edge and retains the corresponding edge with
probability 1 — p. The author also claims that the Drop Edge technique also helps
with the problem of over-fitting. The reasoning given is that; Updating node feature
can be seen as taking the weighted sum of all the neighboring nodes feature. In
each epoch, Drop Edge only allows selecting randomly sampled nodes from the set of

neighboring nodes to perform the aggregation. This helps to prevent overfitting.

24 2. Background Literature and Related Works

2.10 Approximate Personalized Propagation of
Neural Predictions (APPNP)

Approximate Personalized Propagation of Neural Predictions (APPNP) (Klicpera et
al. [15])is inspired by the Google PageRank [20] algorithm that allows the model to
go back to the initial residual with a teleportation probability of a. Let X be the
input feature matrix, and fp(-) be a fully connected neural network. Initial residuals

are calculated using the following equation
ho = fo(X)
In the next step, output features for K iteration are computed as follows:
R*H) = (1 —)DV2ADY2h® 4o by for 0< k< K —2
Finally, output features are passed through the softmax layer for classification
hE) = Softmaz((1 — a)D™V2ADY2RED 1o . py)

Till now we have discussed shallow models in Graph Neural Networks. Attempts have
been made to build deep models like ResGCN [22], IncepGCN [24], JKNet [33], etc
in Graph Neural Networks.

2.11 Geometric GCN

Geometric GCN (Pei et al. [21]) employs a three-stage aggregation scheme to update

the node features. We describe them below.

e Node embedding: This is a basic module that maps each node v to the latent

space. Give a node v with feature vector z,,, the mapping function is given by
fiv— 2z,

We can think z, to be the node’s position in the latent space.

e Structural neighborhood: Next phase of aggregation builds structural neigh-

2.12. Jumping Knowledge Network (JKNet) 25

borhood on the basis of latent space feature and node’s feature, and graph
geometry. given by
N(v) = {Ny(v), Ni(v), 7}

. Here N, (v) is the set of immediate neighbors of v, Ns(v) = {u |d(zy, z,) < p}
is the neighbors of v in latent space and 7 is relation operator. Relational
operator 7 is a function by

T(2y, 2y) =T

. Here r € R is geometric relationship between latent variables.

e Bi-level aggregation: Final aggregation combines two functions defined above.

Let h® = z,, the node’s feature h at ** layer is updated by

67(12,1:31 = p({h} |ue N;(v),7(2u,2,) =7}),Vi € {g,5},i € R.

mi;—i_l - qz’E{g,s},iER(egfr,—gl7 (27 T))

ALY = o (W - mbh.
The first equation says that nodes that have the same geometric relationship r
and that are in the same neighborhood 7 are aggregated using some aggregation

function p. Generated features in the first equation are then aggregated in the

I+1

next equation using aggregation function ¢. Finally, intermediate feature m;,,

is passed through linear layer and subsequently through non-linear activation

function to get the updated feature hit.

2.12 Jumping Knowledge Network (JKNet)

Jumping Knowledge Network (Xu et al. [33]) is an architecture that learns to com-
bine information from different neighborhoods to generate a feature vector. As we
discussed, stacking k layers of GCN can be viewed as aggregating information from
k-hop neighborhood. Suppose hq, ho,, hi are intermediate feature vector generated
by k layers of GCN such that i block generates h;. These feature vectors can be
viewed as information aggregated from different localities. JKNet combines all these
feature vectors by some aggregation scheme to produce the final output feature. This

allows the architecture to learn to combine information aggregated from different

26 2. Background Literature and Related Works

neighborhoods.

Some commonly used aggregation schemes are

e Concatenation: One simple way to generate output feature is to concatenate
all intermediate features CONCATENATE(hy, ho, ..., hi). Sometimes it’s desirable

to pass the concatenated feature through a linear layer.

e Max Pooling: We could perform channel-wise max-pooling to produce the out-

put feature. For i** channel, i channel of output feature is given by
R = max({h; : 1<1<k})

Channel that represents global property of the graph can learn from higher

order neighbors.

e LSTM attention: For each node v attention mechanism identifies the useful
neighborhood range. For each node v the features h§”), hg’), . h,(f) are fed to
a bi-LSTM [8] to generate forward and backward features f, f/ for each layer
respectively. Following it concatenated feature [f/, f/'] is passed through a linear
layer to produce importance score sj. Finally {s}'} is passed through softmax

layer to get attention scores. Hence final feature A" is computed as

K
h=>Y_ Softmax(s}) - hy

=1

2.13 GCNII

Chen et al. [2] combined the ideas mentioned below to build a deep architecture for
Graph Neural Networks.

e Initial Residual Connection: This idea is borrowed from APPNP [15] that allows
the model to go back to initial residuals with teleportation probability « to

generate a feature vector.

2.13. GCNII 27

e Identity Mapping: The idea of Identity mapping was introduced in ResNet
[11] to alleviate the problem of vanishing gradient in a very deep model. This

allowed model to go deep and achieve great representational capacity.

Let X be the feature matrix. Feature matrix is passed through a fully connected

layer to obtain initial residuals hyg.
ho = fo(X)
For a L layer model update rule is given by
W = o (((1 — o) D™VPADTPR® + Ozlho> (1 =Bl + ﬁsz)>

where g controls the effect of initial residuals hq at layer [and (; controls the effect

of identity mapping. 3 = log(A/l + 1) where A is a hyperparameter.

Chapter 3

Proposed Approach

3.1 Preliminary

For a graph GG with features matrix X, the graph filtering operation is given by
X' =Ury(NUT.

Here L = UTAU is the spectral decomposition of the graph Laplacian L and ~y
is a function that modulates the frequency component of the graph signal. While
designing the spectral filter, one obvious approach is to give full freedom to the set

of trainable parameters, that is

Y(Ar) = wi

One limitation of the above approach is for a large graph number of trainable param-
eters will be huge, making it difficult to train. To address this problem polynomial
filtering(Poly-Filter) operation was proposed by Defferrard et al. The function = is

given by truncated K order polynomial

K .
A =Yoo
=0

Poly-Filter is a simple and effective spectral-based filter that offers many advantages.
One limitation of Poly-Filter is that the basis used is not orthogonal, and hence

the coefficients are dependent on each other, making them unstable under updates

28

3.2. Legendre Filter 29

during the learning process. To alleviate this problem, we propose Legendre Filter

(Leg-Filter) based on the Legendre polynomial.

3.2 Legendre Filter

We first briefly discuss the properties of Legendre polynomial [23]. Legendre Poly-
nomials are a set of orthogonal polynomials that satisfy the following recurrence

relation:
(n+1)Piq(x) = (2n+ 1)zP,(x) —nP,_1(x) for n > 2

with Py(z) = 1, Pi(xz) = x. Legendre polynomials are orthogonal in [—1, 1] given by

following equation,

1 9 ‘
/_an(x)Pm(:v) i ifn=m

= 0 if n#m

Hence the function 7 is given by

V(A) = Z CHANY

Since Legendre Polynomials are orthogonal on range [—1, 1] we shift the eigenvalues

of graph Laplacian in the same range, hence shifted eigenvalue matrix A is given by

2A

A= —1

)\max
For a graph with feature matrix X, feature X’ obtained after applying Legendre filter

is given by
K

X'=> URMUTX6;

1=0

Lemma 2 For a graph G with Laplacian L following relation is true Vi > 0.

UP(MU" = P(L)

30 3. Proposed Approach

Here modified Laplacian L = 2 — 1.

)\maz

Proof:

We prove the lemma using induction. For ¢ = 0 we have
UPy(MUT =UUT = 1.

For : = 1 we have,

- 2A
UP(MNUT = UANUT =U (- I) Ut

2UAUT
= - uu”
/\maa:
2L .
= T~ I=L="(L)

Suppose for ¢« = k — 1 and 7 = k the equation holds true.

UP,(MUT = P._1(L)
UP(MU" = Py(L)

Fori=k+1,

UPe(MUT = U (%H ((Qk: +1AP(A) — k:Pk_l(]\)>) UT

2k +1_ - ~ k -
= AUTUP(MNUT — ——UP,_(NU"
k+1UUUk(U k+1U’“(v

2k +1- ~ k -

= LP,(L) — P (L
LR - A

_ k—-lu ((Qk +1)LP(L) — kPkfl(li)>
= %H(k: + 1)Pk+1([~/) = Pk—l—l(f’)'

For : = k 4+ 1 equation holds true, hence form induction the equation is true for all
1> 0. O

We define unnormalized Legendre Convolution operation on graph G with feature

3.2. Legendre Filter 31

matrix X as

We further normalize the Legendre polynomial Py (z) by multiplying it by a factor of

L) = \ 2k2+ 1P’“(E)

Finally, we define the normalized Legendre Convolution operation on graph G with

feature matrix X:

3.2.1 Special Case

For simplicity, we consider a single-channel graph signal. Filter operation on single-

channel graph for k = 2 is given by
. s
We take following assumptions; 6y = 26y, 60, = 36y, 0y = 0. 1t follows that,

y(A) = 6I+30A+ 2%(3]\2 —1)
= 30(A+A?)

We consider normalized graph Laplacian L given by L = I — D~/2AD~'/2. Eigen-
values of the graph Laplacian L are 0 = A\ < Ay - -+ < A\, < 2. Hence, we make the
following approximation:

/\max =2

32 3. Proposed Approach

It follows that A = A — I. Therefore we have following equation,

Uy(MUT = 30U —T+(A—1)*U"T
= 30U((A—T+ AN —2A+1)U”
= 30U(A* - AUT
= 30(L* - L)
= 0(—(I — D YV2PAD YD Y2AD™1/?)
_ 0’((D_1/2AD_1/2)2 _ D—l/QAD—l/Q)

For a graph with a d-dimensional feature above operation takes the following form:
X' = ((D—l/QAD—1/2)2 . D_1/2AD_1/2)X@

Legendre [31], Chebychev [29], and other orthogonal polynomials are special cases of
Jacobi polynomial. Hence, we generalize the Legendre filter and consequently define
Jacobi Filter.

3.3 Jacobi Filter

First, we briefly discuss some properties of the Jacobi polynomial [30]. Jacobi poly-

nomials are given by following recurrence relation,

onn+a+B)2n+a+p-2)Pz) = 2n+a+8—-1D){2n+a+p)
(2n+a+ 8 -2z +a® ~ BP0 (2)}
—2n+a+1)(n+p+1)
(2n + o+ /B)Pﬁg)(x) forn>2

Jacobi Polynomial for n = 0,1 are given by

P(z) = 1

PEOD() = (a+1)+(a+ B+)22

2

3.4. Aggregation Schemes 33

Jacobi Polynomials satisfies the following orthogonality condition:

1—2)%(1 —)8 P@B) () Plah) (1) =
1()" (L=2) B @) Bt) 2n+a+p+1 Tn+a+p+1)n!

/1 20t8+1 Tla+n+DI(B+n+1)
For a graph with feature matrix X, application of Jacobi Filter on feature matrix

results in X’ given by
K

X' =Y UP*(NUTX6,

=0

Using the above lemma, the unnormalized Jacobi Convolution operation is given by

X' =>"P*(L)xe;

We normalize the Jacobi Polynomial to get,

plas) _ 200071 Dlatn+ DIB+n+1) pap
2n+a+p+1 TI'(n+a+p+1)n! "

Finally, we define the Jacobi Convolution operation on graph G with feature matrix

X:
K

X' =>"pP*(L)xe;

3.4 Aggregation Schemes

As we discussed earlier Legendre Filter of order K can be thought as aggregating
information upto K-th hop neighbors. We propose an aggregation scheme to update
nodes’s feature. We fix the order (K) of the Legendre Filter. For k < K and node v,

let A denote the node feature after applying Legendre Filter of order k. For each

(1) h(2) h(3) ' hg,K)

node we have hy ', hy ', hy s .. . Updated node feature h! can be given as

2) h3)

R v e

1),h

v

h! = AGGREGATION({h
Following can we used to aggregate collected node features:

e Mean Pooling: We could simply take mean of {h»f,l), hl(,Q), h£,3), ey hS,K)} to up-

34 3. Proposed Approach

date the feature of the node v.

e Stochastic Mean Pooling: We fix some feature hy = h! for | < K. Next,
during training we choose each node feature h! for i # [with some probability
p. Suppose we get {1 hF2 . hEe} after choosing each feature with probability

v oY v)

p. Finally we take mean of {hg, h¥t, h¥2 ... hk~} to update node feature v.

v oY v)

e LSTM Aggregator: Features {hgl),hg),hg?’), ...,hl(,K)} can be treated as se-
quential data since h’ represent information aggregated upto i-th hop neighbors.

Updated node feature is given as

K
! 10
by, = E a;h,
1=1

Following the approach of JKNet [33], we learn the weights a/s using LSTM
architecture. Node features {h¥ h*2 .. hF 1 is fed to LSTM and output of
each LSTM block is passed through linear layer to get the score s'. The score
s’ is passed through the Softmax layer to get the weights os.

3.5 Adaptive Edge Algorithm

In this part of the work, we focus on Graph Topology to improve the accuracy of
the node classification task. During our experiments, we observed that the average
accuracy of higher degree nodes was significantly greater than the lower degree nodes.
The results of these experiments can be found in the next chapter. This led to the

following conjecture:

Conjecture 1 The average classification accuracy of nodes with a higher degree is

significantly greater than nodes with a lower degree.

We develop an adaptive Edge algorithm that changes the graph topology by adding
supernodes to the graph and also using various parameters like degree information
and predictive confidence.

Now, we propose the algorithm. The algorithm is divided into two phases. First,
we fix a particular model and a dataset. We train the model for a maximum of k

times, and the model is selected amongst them with the best validation accuracy for

3.5. Adaptive Edge Algorithm 35

the next phase. In the second phase of the algorithm, we add as many supernodes
to the graph as there are classes in the dataset. Next, we uniquely assign a label to
each of the supernodes. Now we add edges between training nodes and supernodes
belonging to the same class. For the rest of the nodes, we first get the predicted class
label by the model selected in the first phase. Next, we add edges between them
and supernodes based on the predicted class label and degree info. We also remove
interclass edges between the nodes based on predicted label and degree info. Finally,

we train the model on the modified graph. Pseudo Code for the same is given below.

Algorithm 1 BEST_MODEL(INPUT)

1. fori=1to K .

2 Initialize model, best_val = 9999.

3 val_loss = model. fit(data).val_loss().
4. 1f val_loss < best_val :

5 best_model = model

6. return best_model

Algorithm 2 ADD_EDGE()
1. for i in data.num_num_classes :

2. add new node v; to graph.

3 Initialize feature of v;,set class label 1.

4. for each v in data.training_set :

5 if v.class = i:

6. add edge e = (v, v;)

7. model = BEST_MODEL():

8. for each v not in data.training_set:

9 label = model.predict(v).

10. if deg[v] > deg_conf and pred[v] > pred_conf:
11. add edge e = (v, Ujaper)

12. return data.

36 3. Proposed Approach

Algorithm 3 REMOVE_EDGE()
1. for each e indata.edge_list :

2. let e = (v, w).

3. if deglv] > deg_conf and deglw] > deg_conf .

4. if predlv] > pred_conf and pred[w] > pred_conf :
5. Remove edge e from data.edge_list.

6. return data.

Now we define the terms used in the algorithm. BEST MODEL () runs the model K
times and returns the model with the best validation accuracy. The deg_conf allows
us to connect only higher degree vertices with supernode. Similarly, pred_con f
allows us to only those vertices whose log-softmax prediction is above the threshold.
During our experiments, we observed that the algorithm works well on models with

high classification accuracy.

Chapter 4
Experiments and Results

In this section, we measure the performance of the proposed Legendre Filter and

Adaptive Edge algorithm. We also report the results and plots of other experiments.

4.1 DATASET

For the semi-supervised node classification task, we use the benchmark standard
Citation Network dataset [34] - Cora, Citeseer, PubMed. In this dataset, nodes are
the documents, and edges correspond to the citations. Node features are the
bag-of-word representation of the document. Each node’s label belongs to one of the
academic topics. We also use Cora_ ML, and DBLP from the full Citation Network
dataset [7]. Next, we use the Coauthor CS dataset [26]. Here node represents the
author, and the edges between two nodes exist if they Co-authored a paper. Each
node’s label belongs to its respective field of study. Finally, we use the Amazon
Photo dataset [26]. Here, nodes represent goods, and there is an edge between the
nodes if both of them are bought frequently. The class label of each node is their
respective product category.

For the full-supervised node classification task, we also included Web Network
datasets [21]- Cornell, Wisconsin, and Texas along with the Citation Network
datasets. Here, each node is a web page, and edges correspond to hyperlinks. Each
node’s feature is a bag-of-word representation of the respective web page. Each
node’s label belongs to one of five categories- student, project, course, staff, and

faculty.

37

38

4. Experiments and Results

Table 4.1: Dataset Statistics

Datasets Nodes Edges Features Classes
Cora 2,708 10,556 1,433 7
Citeseer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3
Cora_ML 2,995 16,316 2,879 7
DBLP 17,716 105,734 1,639 4
Coauthor CS 18,333 163,788 6,305 15
Amazon

Photo 7,650 238,162 745 8
Cornell 183 295 1,703)
Wisconsin 259 499 1,703)
Texas 183 309 1,703)

4.2 OverSmoothing Experiment

It has been shown that a Poly-Filter of degree K can be simulated by stacking K

layers of GCN. In this experiment we plot average accuracy of GCN,
Legendre-Filter and Cheby-Filter for different values of K (1 < K < 10). For each

value of K average accuracy for each model is reported after performing 100 runs of

the experiment. It can be seen that GCN suffers hugely from oversmoothing. As for

the Poly-Filter our proposed Legendre-Filter performs significantly better compared

to Cheby-Filter for large values of K.

Accuracy
o
o

©
IS

02{ —— GCN
Leg-Filter
—e— Cheb-Filter

0.0

0‘8 .—/4'\

2 4

Figure 4.1: From left to right: Cora and CiteSeer.

6
K

1.0

0.8

Accuracy
o
o

o
IS

0.2

0.0

m

—— GCN
Leg-Filter
—e— Cheb-Filter

Legendre-Filter and Cheby-Filter for different values ogf K.

Average Accuracy of GCN,

4.3. Node Degree vs Accuracy Test 39

1.0

087 e—p

R

02{ —— GCN
Leg-Filter
—e— Cheb-Filter

Accuracy
o
o

I
>

0.0
2 4 6 8 10

K

Figure 4.2: PubMed Dataset. Average Accuracy of GCN, Legendre-Filter and Cheby-
Filter for different values of K.

4.3 Node Degree vs Accuracy Test

In this section we present the empirical results supporting C'onjecture 1. For the
experiment we fixed the degree = k for the given dataset. Following this, we
computed the average accuracy of the nodes corresponding to degree = k. We
repeated this process for all possible node degree’s in the graph. Citation network
dataset was used for this experiment, and Leg-Filter was used to train the model.

Results are mentioned in the Table 4.2.

Table 4.2: Average accuracy of Lower-Degree nodes (all the nodes whose degree< 3)
and Higher-Degree nodes(all the nodes whose degree> 3).

Lower-Degree Higher-Degree Num-Nodes Num-Nodes

Datasets (Avg.Accuracy) (Avg.Accuracy) (Lower Degree) (Higher Degree)
Cora 79.59 85.43 1068 1640
Citeseer 65.09 76.84 2174 1153
PubMed 76.57 83.21 12451 7266

We also observed that overall accuracy of the dataset is better if the dataset has

greater number of Higher-Degree nodes.

40

4. Experiments and Results

Accuracy
o o [
© o o
]

o
q

o
o
L

0.5 A

0 25 50 75 100 125 150
Node Degree

Figure 4.3: From left to right: Cora and CiteSeer.

plotted for different node degree.

175

1.0 4 e e me mmmmem. o

Accuracy
o 4
© o
) .

o
S

o
=
L

0.54

0 25 50 75 100 125 150
Node Degree

175

e o B
© b o
L L L

Accuracy
o © o ©o
» (5] o
L L

I
w

Accuracy

~
n

20 40 60 80 100
Node Degree

Average Accuracy of nodes is

200 400 600 800 1000
Node Degree

Figure 4.4: From left to right: PubMed and Amazon Photos. Average Accuracy of

nodes is plotted for different node degree.

4.4 Semi-Supervised Node Classification

e Baselines and Experimental Setup: For Semi-Supervised node

classification task we use the fixed standard training/validation/testing splits
for Citation network-Cora, CiteSeer, PubMed dataset as taken in GCN [Kipf
& Welling]. We take 20 nodes per class for training, 500 nodes for validation,
and 1000 nodes for testing. For Cora_ML, DBLP, Amazon Photo, and
Coauthor CS we took our fixed training/validation/testing splits. In this work

we compare our proposed Legendre-Filter and Legendre-Filter with stochastic
mean aggregation(Legendre Filter-M) with Cheby-Filter, GCN and GAT, but
we also include other SOTA; PPNP, IncepGCN, JKNET, GCNII for reference.
We used Pytorch Geometric [6] to implement out proposed Legendre Filter.

For optimization, we use Adam Optimizer. We use elu activation function for

4.4. Semi-Supervised Node Classification

41

all tasks. All the hyperparameters were tuned based on the validation set.

Early stopping is used if validation loss does not decrease after 100 epochs.

On all the datasets model is trained for 200 epochs. Details on

hyperparameters can be found in Table 4.6.

e Comparisions with SOTAs: We used Normalized Legendre Filter for all of

the classification task. We also trained Legendre Filter with stochastic mean

pooling (Legendre Filter-M) on cora dataset. Table 4.3 reports mean

classification accuracy along with the standard deviation on the test set of

different models after performing 100 runs of the experiment. For all the

models we reuse the metrics provided in Chen et al. For Chebyshev Filter we

reuse the metrics provided in Kipf & Welling. On Cora our model performs
better than Chebyshev Filter and GCN. On Citeseer and PubMed our model
performs better than Chebyshev, GCN and GAT. Interestingly, on PubMed
our shallow model performs marginally better than deep models like JKNet
and IncepGCN. On Amazon Photo and Cora_ML Legendre filter performs
better than Chebyshev Filter and GAT, but performs marginally poor than
GCN. On Coauthor CS Legendre filter performs better than all three
baselines. Finally, on DBLP Legendre Filter performs significantly better than

all three baselines.

Table 4.3: For Semi-Supervised Learning task: Average Classification accuracy re-
sults(%) on Citation Network Dataset; Cora, CiteSeer and PubMed. Number in the
parenthesis refer to number of layers used in corresponding deep models.

Method Cora CiteSeer PubMed
Chebyshev Filter 81.2 69.8 74.4

GCN 81.5 70.3 79.0

GAT 83.1 70.8 78.5
APPNP 83.3 71.8 80.1

JKNet 81.1 (4) 69.8 (16) 78.1 (32)
JKNet(Drop) 83.3 (4) 72.6 (16) 79.2 (32)
Incep(Drop) 83.5 (64) 72.7 (4) 79.5 (4)
GCNII 85.5 (64) 73.4 (32) 80.2(16)
Legendre Filter 82.67 £0.5 71.35+ 0.6 79.73+04
Legendre Filter-M 82.88 +0.6 - 79.86 +0.5

42 4. Experiments and Results

Table 4.4: For Semi-Supervised Learning task : Average Classification accuracy re-
sults(%) on Amazon Photos (Amz.), Coauthor CS (CoCS.), Cora_ML and DBLP.
Results are reported on our fixed training/validation/testing split.

Method Amz. CoCS. Cora_ ML DBLP
Chebychev Filter 86.68 91.14 76.14 75.72
GCN 91.64 92.56 81.59 71.17
GAT 89.55 92.16 80.93 72.25
Legendre Filter 90.62 £0.5 92.89+0.3 81.17£0.7 77.06+£1.8

4.5 Full Supervised Node Classification

e Baselines and Experimental Setup: Again, we use a normalized Legendre
Filter for this task. We use 6 datasets for the task- Cora, CiteSeer, PubMed,
Cornell, Wisconsin and Texas. For each of the datasets, in each run we
randomly split nodes of each class such that 60%, 20% and 20% is for training,
validation and testing, respectively. Classification accuracy is measured by
taking an average of accuracy over 10 runs. Adam optimizer is used for
optimization. Early stopping is used if validation loss does not decrease after
100 epochs. On all the datasets model is trained for 200 epochs. Details of
hyperparameter can be found in Table 4.5.

e Comparisions with SOTAs We use a normalized Legendre Filter for all the
datasets. Average classification accuracy for all the datasets after performing
10 runs is reported in Table 4.5. On all the datasets Legendre filter performs
better than all the shallow models. On Cora, Citeseer and Pubmed our model
performance is comparable with the deep models. On Cornell our model
performs better than almost all the deep models. On Texas and Wisconsin our

model performs better than all the deep models.

4.6. Hyper-Parameter Details 43

Table 4.5: For Full-Supervised Lrearning Task: Average Classification accuracy re-
sults(%) on Cora, CiteSeer, PubMed, Cornell, Texas and Wisconsin.

Method Cora CiteS. PubM. Corn. Texa. Wisc
GCN 85.77 73.68 88.13 52.70 52.16 45.88
GAT 86.37 74.32 87.62 54.32 58.38 49.41
Geom-GCN-I 85.19 77.99 90.05 56.76 57.58 58.24
Geom-GCN-P 84.93 75.14 88.09 60.81 67.57 64.12
Geom-GCN-S 85.27 74.71 84.75 55.68 59.73 56.67
APPNP 87.87 76.53 89.40 73.51 65.41 69.02
JKNet 85.25 (16) 75.85 (8) 88.94 (64) 57.30 (4) 56.49 (32) 48.82 (8)
JKNet(Drop) 87.46 (16) 75.96 (8) 89.45 (64) 61.08 (4) 57.30 (32) 50.59 (8)
Incep(Drop) 86.86 (8) 76.83 (8) 89.18 (4) 61.62 (16) 57.84 (8) 50.20 (8)
GCNII 88.49 (64) 77.08 (64) 89.57 (64) 74.86 (16) 69.46 (32) 74.12 (16
GCNIT* 88.01 (64) 77.13 (64) 90.30 (64) 76.49 (16) 77.84 (32) 81.57 (16
Legendre Filter 88.45 77.34 89.67 76.48 80.81 84.4

4.6 Hyper-Parameter Details

We used two layers of Legendre filter for all the datasets and experiments. We only
used dropout on second layer for all the datasets and experiments. We used elu
activation function. K denotes the order of Legendre polynomial and weight decay

is regularization factor.

Table 4.6: Hyper-parameters of Legendre Filter for Table 4.3 and Table 4.4.
Datasets | Hyper-parameters
Cora K =5, Ir: 0.005, hidden: 16, dropout: 0.8, weight decay = 0.0005
Cora K = 6, Ir: 0.005, hidden: 16, layerl dropout: 0.4, layer2 dropout:
(Leg-M) | 0.8, mean pool prob. = 0.8, i=5 (hg = h!), weight decay = 0.0005
Citeseer K =4, Ir: 0.01, hidden: 16, dropout: 0.6, weight decay = 0.005
PubMed | K =4, Ir: 0.01, hidden: 16, dropout: 0.8, weight decay = 0.001
PubMed | K = 5, Ir: 0.01, hidden: 16, layerl dropout: 0.4, layer2 dropout:
(Leg-M) | 0.8, mean pool prob. = 0.9, i=5 (hy = h’), weight decay = 0.0001
Amaz. K =4, Ir: 0.01, hidden: 16, dropout: 0.8, weight decay = 0.00005
Coauth. K =4, Ir: 0.005, hidden: 16, dropout: 0.8, weight decay = 0.0005
Cora_ML | K =4, Ir: 0.01, hidden: 16, dropout: 0.8, weight decay = 0.0005
DBLP K =4, Ir: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.0005

44 4. Experiments and Results
Table 4.7: Hyper-parameters of Legendre Filter for Table 4.5.

Datasets | Hyper-parameters

Cora K =5, Ir: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.0005
Citeseer K =4, Ir: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.0005
PubMed | K =4, Ir: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.0001
Corn. K =4, Ir: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.00005
Wisc. K =4, Ir: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.00005
Texa. K =4, Ir: 0.05, hidden: 16, dropout: 0.8, weight decay = 0.0001

4.7 Adaptive Edge experiment

We perform semi-supervised learning using adaptive edge algorithm on Amazon

datset. Accuracies before and after applying adaptive edge algorithm using GCN,

Legendre Filter and GAT are mentioned in table.

Table 4.8: For Semi-Supervised Learning task : Average Classification accuracy re-
sults(%) on Amazon Photos are performing 100 runs of experiment. Results are
reported on out fixed training/validation/testing split.

AdapEdge GCN Leg-Filter GAT
Before 91.64 90.62 89.55
After 92.41 £+0.1 90.89 0.1 91.85 +0.5

4.8 T-SNE Plots

In this section we report t-SNE plots for last layer of Legendre Filter for all the
datasets used in semi-supervised learning. Plots refer to two dimensional t-SNE

plots of the outputs of last layer of Legendre filter for different datasets.

4.8. T-SNE Plots

45

X2

X2

«

=5

label

eeo0ovo o
duLrNO AW

label

ee0oce
ANOU R W

Figure 4.6: Dataset: Citeseer

10

15

46 4. Experiments and Results

N o =

X2
o

=5

X1

Figure 4.7: Dataset: PubMed.

20 label

ousWwNEO

w, o
.

10 ':’-y-.. ..“‘.
f”*‘f"iﬂf"“ SR
W

X2

X1

Figure 4.8: Dataset: Cora_ML.

4.8. T-SNE Plots

label
® 6
o 4
e 3
10 : g
e 1
e 0
e 7
5
o &8 Suee®
Wl
o '..."1":%-.‘?%#
5 ¢ ‘lb %.‘- 'ﬂgg .-2,23" :"' °
o o aoy i :.-’ o o
R R e
-5
-10
-10 -5 0 5 10 15
X1
Figure 4.9: Dataset: Amazon Photo
label
100 : g
e 1
° 2
75
5.0
25
I
0.0
-2.5
=5.0
=75
-10.0 =75 =5.0 =25 0.0 25 5.0 7.5 10.0

Figure 4.10: Dataset: DBLP.

48

4. Experiments and Results

X2

75

5.0

25

0.0

-10.0

Figure 4.11: Dataset: Coauthor CS.

Chapter 5

Future Work and Conclusion

5.1 Conclusion

In this work, we proposed a novel spectral-based filter, Legendre-Filter, for a
semi-supervised node classification task for graph-structured data. Furthermore, we
proposed a novel algorithm that changes graph topology based on degree
information and other heuristics to improve the overall accuracy of a given model.
Our proposed Legendre Filter performs better than GCN, GAT, and Chebyshev
Filter for the semi-supervised learning task on almost all the datasets. For
full-supervised learning, our model performed better than all three baselines.
Furthermore, on a few datasets, our model even performed better than deep models
like JKNet, GCNII, etc.

5.2 Future Work

First, we briefly discuss the limitations of our approach. Being a shallow model, our
model has a limited representational capacity. Being a spectral-based filter, it
suffers from the same limitations as any other spectral-based filter.

One approach to improve the representational capacity of deep models like GCNII is
to combine an attention-based approach like GAT to compute the attention matrix

and combine it with the GCN block to generate output features.

49

Bibliography

1]

Bianchi, F.M., Grattarola, D., Livi, L., Alippi, C.: Graph neural networks with
convolutional ARMA filters. CoRR abs/1901.01343 (2019),
http://arxiv.org/abs/1901.01343

Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph
convolutional networks. In: TII, H.D., Singh, A. (eds.) Proceedings of the 37th
International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 119, pp. 1725-1735. PMLR (13-18 Jul 2020),
https://proceedings.mlr.press/v119/chen20v.html

Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society (1997)

Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks
on graphs with fast localized spectral filtering. CoRR abs/1606.09375 (2016),
http://arxiv.org/abs/1606.09375

F. Scarselli, M. Gori, A.C.T.M.H., Monfardini, G.: The graph neural network
model (2009)

Fey, M., Lenssen, J.E., Weichert, F., Miiller, H.: Splinecnn: Fast geometric
deep learning with continuous b-spline kernels. CoRR abs/1711.08920 (2017),
http://arxiv.org/abs/1711.08920

Fu, X., Zhang, J., Meng, Z., King, I.. MAGNN: metapath aggregated graph
neural network for heterogeneous graph embedding. CoRR abs/2002.01680
(2020), https://arxiv.org/abs/2002.01680

Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press,
Cambridge, MA, USA (2016), http://www.deeplearningbook.org

50

http://arxiv.org/abs/1901.01343
https://proceedings.mlr.press/v119/chen20v.html
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1711.08920
https://arxiv.org/abs/2002.01680
http://www.deeplearningbook.org

BIBLIOGRAPHY 51

[9] Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on
large graphs. CoRR abs/1706.02216 (2017),
http://arxiv.org/abs/1706.02216

[10] Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via
spectral graph theory (2009), https://arxiv.org/abs/0912.3848

[11] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 770-778 (2016)

[12] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Computation 9(8), 1735-1780 (1997)

[13] Isufi, E., Loukas, A., Simonetto, A., Leus, G.: Distributed time-varying graph
filtering. CoRR abs/1602.04436 (2016), http://arxiv.org/abs/1602.04436

[14] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. CoRR abs/1609.02907 (2016), http://arxiv.org/abs/1609.02907

[15] Klicpera, J., Bojchevski, A., Giinnemann, S.: Personalized embedding
propagation: Combining neural networks on graphs with personalized
pagerank. CoRR abs/1810.05997 (2018), http://arxiv.org/abs/1810.05997

[16] M. Gori, G.M., Scarselli, F.: A new model for learning in graph domains. in
Proc. of IJCNN 2, 729-734 (2005)

[17] Monti, F., Bronstein, M.M., Bresson, X.: Geometric matrix completion with
recurrent multi-graph neural networks. CoRR abs/1704.06803 (2017),
http://arxiv.org/abs/1704.06803

[18] Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press
(2012)

[19] Oono, K., Suzuki, T.: Optimization and generalization analysis of transduction
through gradient boosting and application to multi-scale graph neural
networks. CoRR abs/2006.08550 (2020), https://arxiv.org/abs/2006.08550

http://arxiv.org/abs/1706.02216
https://arxiv.org/abs/0912.3848
http://arxiv.org/abs/1602.04436
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.05997
http://arxiv.org/abs/1704.06803
https://arxiv.org/abs/2006.08550

52

BIBLIOGRAPHY

[20]

[21]

[22]

23]

[24]

[26]

28]

[29]

[30]

Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking;:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab
(November 1999), http://ilpubs.stanford.edu:8090/422/, previous
number = SIDL-WP-1999-0120

Pei, H., Wei, B., Chang, K.C., Lei, Y., Yang, B.: Geom-gcn: Geometric graph
convolutional networks. CoRR abs/2002.05287 (2020),
https://arxiv.org/abs/2002.05287

Pei, Y., Huang, T., van Ipenburg, W., Pechenizkiy, M.: Resgcn:
Attention-based deep residual modeling for anomaly detection on attributed
networks. CoRR abs/2009.14738 (2020), https://arxiv.org/abs/2009.14738

Polynomials, L.: Properties of Legendre Polynomials

Rong, Y., Huang, W., Xu, T., Huang, J.: The truly deep graph convolutional
networks for node classification. CoRR abs/1907.10903 (2019),
http://arxiv.org/abs/1907.10903

Sandryhaila, A., Moura, J.M.F.: Discrete signal processing on graphs: Graph
fourier transform. In: 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing. pp. 61676170 (2013)

Shchur, O., Mumme, M., Bojchevski, A., Giinnemann, S.: Pitfalls of graph
neural network evaluation. CoRR abs/1811.05868 (2018),
http://arxiv.org/abs/1811.05868

Sperduti, A., Starita, A.: Supervised neural networks for the classification of
structures. IEEE Transactions on Neural Networks 8(3), 714-735 (1997)

Velickovi¢, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.:
Graph attention networks (2017), https://arxiv.org/abs/1710.10903

Wikipedia contributors: Chebyshev polynomials — Wikipedia, the free
encyclopedia (2022), https://en.wikipedia.org/w/index.php?title=
Chebyshev_polynomials&oldid=1095221317, [Online; accessed 7-July-2022]

Wikipedia contributors: Jacobi polynomials — Wikipedia, the free
encyclopedia (2022), https://en.wikipedia.org/w/index.php?title=
Jacobi_polynomials&oldid=1069717800, [Online; accessed 7-July-2022]

http://ilpubs.stanford.edu:8090/422/
https://arxiv.org/abs/2002.05287
https://arxiv.org/abs/2009.14738
http://arxiv.org/abs/1907.10903
http://arxiv.org/abs/1811.05868
https://arxiv.org/abs/1710.10903
https://en.wikipedia.org/w/index.php?title=Chebyshev_polynomials&oldid=1095221317
https://en.wikipedia.org/w/index.php?title=Chebyshev_polynomials&oldid=1095221317
https://en.wikipedia.org/w/index.php?title=Jacobi_polynomials&oldid=1069717800
https://en.wikipedia.org/w/index.php?title=Jacobi_polynomials&oldid=1069717800

BIBLIOGRAPHY 53

[31] Wikipedia contributors: Legendre polynomials — Wikipedia, the free
encyclopedia (2022), https://en.wikipedia.org/w/index.php?title=
Legendre_polynomials&oldid=1093551457, [Online; accessed 7-July-2022]

[32] Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations
in convolutional network (2015), https://arxiv.org/abs/1505.00853

[33] Xu, K., L.C.T.Y.S.T.K.K., Jegelka: Representation learning on graphs with
jumping knowledge networks. ICML (2018),
https://arxiv.org/pdf/1806.03536

[34] Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning
with graph embeddings. CoRR abs/1603.08861 (2016),
http://arxiv.org/abs/1603.08861

https://en.wikipedia.org/w/index.php?title=Legendre_polynomials&oldid=1093551457
https://en.wikipedia.org/w/index.php?title=Legendre_polynomials&oldid=1093551457
https://arxiv.org/abs/1505.00853
https://arxiv.org/pdf/1806.03536
http://arxiv.org/abs/1603.08861

	Introduction
	Deep Learning on Graphs
	Contents covered

	 Background Literature and Related Works
	Basic Properties of Graph
	Centrality

	The Graph Laplacian
	Graph Signal Processing
	Graph Fourier Transform

	The GNN Framework
	Framework for Node Classification Task
	Framework for Graph Classification Task

	Training Parameters for Graph Neural Network
	Training Parameters for Node Classification Task
	Training Parameters for Graph Classification Task

	Graph Filters
	Spectral-Based Filter
	Poly-Filter
	Graph Convolutional Networks (GCN)

	Spatial-Based Filter
	GraphSAGE
	Graph Attention Networks (GAT)
	Monti-Filter

	Over-Smoothing
	DropEdge
	Approximate Personalized Propagation of Neural Predictions (APPNP)
	Geometric GCN
	 Jumping Knowledge Network (JKNet)
	GCNII

	 Proposed Approach
	Preliminary
	Legendre Filter
	Special Case

	Jacobi Filter
	Aggregation Schemes
	Adaptive Edge Algorithm

	Experiments and Results
	DATASET
	OverSmoothing Experiment
	Node Degree vs Accuracy Test
	Semi-Supervised Node Classification
	Full Supervised Node Classification
	Hyper-Parameter Details
	Adaptive Edge experiment
	T-SNE Plots

	Future Work and Conclusion
	Conclusion
	Future Work

