Wasserstein Auto-Encoder using
Residual Neural Network

By Md Azad Ansari

Wasserstein Auto-Encoder using Residual
Neural Network

Md Azad Ansari

Wasserstein Auto-Encoder using Residual
Neural Network

gISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Master of Technology
in
Computer Science

by

Md Azad Ansari

[Roll No: 52039]
Under the Guidance of

Dr. Rajat K De

Professor

Machine Intelligence Enit

Zr»r=—-—0Z—
M C = 1 Z =

UNITY IN DIVERSITY

Indian Statistical Institute

Kolkata-700108, India

July 2022

To my family and my guide

CERTIFICATE

This is to certify that the dissertation entitled “Wasserstein Auto-Encoder using
Residual Neural Network” submitted by Md Azad Ansari to Indian Statistical
Institute, Kolkata, in partial fulfillment for the award of the degree of Master of
Technology in Computer Science is a bonafide record of work carried out by him
under my supervision and guidance. The dissertation has fulfilled all the require-
ments as per the regulations of this Institute in my opinion, has reached the standard

needed for submission.

» mwh

Dr. Rajat K De
Professor,

Machine Intelligence Unit,
Indian Statistical Institute,

Kolkata-700108, INDIA.

Acknowledgments

I would like to showgmy highest gratitude to my advisor, Prof. Dr. Rajat K De,
Machine Intelligence Unit, Indian Statistical Institute, Kolkata, for his guidance and
continuous support and encouragement. He has literally taught me how to do good

research, and motivated me with great insights and innovative ideas.

My deepest thanks to all the teachers of Indian Statistical Institute, for their valuable

suggestions and discussions which added an important dimension to my research work.

I would also like to thank Anish, Ayush, Soham, and Sachin for his valuable sugges-

tions and discussions.

gmally, I am very much thankful to my parents and family for their everlasting

supports.

Last but not the least, I would like to thank all of my friends for their help and

support. I thank all those, whom I have missed out from the above list.

nd.

Md Azad Ansari
Indian Statistical Institute
Kolkata - 700108 , India.

Abstract

We propose the Wasserstein Auto-Encoder using Residual Neural Network (WAE-
Resnet)— an improved version of Wasserstein Auto-Encoder [7] for building a gen-
erative model of the data distribution. WAE is an alternative to Variational Auto-
encoders (VAE) as a method of getting the encoded data distribution to match the
prior distribution, which can be used for generative modeling.

WAE-ResNet minimizes a penalized form of the Wasserstein distance between the
latent model distribution and the target distribution, which used a different regu-
larizer from the one used by the Variational Auto-Encoder (VAE) [6]. Wasserstein
distance metric is used in WAE-ResNet to penalize the distance between the encoded

distribution and the prior, as opposed to the KL-divergence term used in VAESs.

We used ResNet architecture to improve the preservation of the features at the la-
tent space in WAE-ResNet. We implemented VAE, VAE-ResNet, WAE, and WAE-
ResNet. WAE-ResNet gives better results compared to the others. Generated image
quality is measured by Frechet Inception Distance (FID) score and Sharpness score.
WAE-ResNet has outperformed the other models with respect to FID and Sharpness

SCOTres.

Contents

1 Introduction 4
2 Preliminaries and Previous Works 6
2.1 Variational Auto-encoders (VAEs) 6
2.2 Wasserstein Auto-Encoder 00000 9
2.2.1 Optimal transport and its dual formulation 10

222 GAN-based penalty, 12

23 ResNet . . . oo 0 12
2.4 Fréchet Inception Distance 13
2.5 Sharpmess 13
2.6 Activation Functionso oo Lo 13
26.1 ReLU 13

2.6.2 SELU 14

3 Proposed Works 16
3.1 Introduction 16
3.2 Architecture of Encodero o000 17
3.21 Identity Block 20

3.2.2 Convolutional Block 21

4 Experiments and Results 22

CONTENTS 3
4.1 Hardware Requirement 22
4.2 Data-sets e 22
4.3 Baseline and Experimental setup 23

4.3.1 Variational Auto-encoder Experimental setup 23
4.3.2 Wasserstein Auto-encoder Experimental setup 25
4.3.3 Variational Auto-encoder with ResNet 27
4.3.4 Wasserstein Auto-encoder with ResNet 29
44 Results. 32
4.4.1 Interpolated Images., 32
442 Random Images 33
4.4.3 Reconstructed Images, 35

5 Conclusion and Future Work 37

51 Conclusion 37

5.2 Future Work 37

Chapter 1

Introduction

Deep learning-based generative models have been increasingly popular over the past
few vears as a result of some incredible advancements in the area. Deep generative
models have demonstrated an amazing capacity to develop highly realistic contents of
many kinds, such as images, texts, and sounds, by relying on well-designed network

architectures, a vast quantity of data, and smart training techniques.

Initially, supervised learning approaches were used to drive the field of representa-
tion learning, with impressive results using huge labeled data-sets. Unsupervised
generative modeling, in contrast, is used by probabilistic approaches focusing on low-
dimensional data-sets. Variational Auto-encoders (VAEs), while theoretically a well-
established method, have the limitation that when used on real-world images, they
frequently provide samples that are blurry [4.4]. Generative Adversarial Networks
(GANSs) [1] generate more impressive visual image quality when applied to natural
images, but come without an encoder. GANs have also drawbacks of being harder to

train and “mode collapse” problem.

Wasserstein Auto-Encoders (WAEs) is a generative model which generate fake im-
ages. WAEs use wasserstein distance to minimize the loss of auto-encoder instead of
KL divergence and JS divergence used in VAEs and GANs respectively. WAE does

not generate blurry image and also it handled the “mode collapse” problem.

(o

If we make a deeper neural network using a more convolution layer, the “vanish-
ing gradient problem” occurs. This happens because of the gradient-based learning
process and back-propagation in neural networks. Due to the “vanishing gradient
problem” | the network stops learning. To solve this problem ResNets are used. In
the Residual neural network, input from the previous layer is added directly to the
output of the other layer. Based on this observation, we combined the architectures

of VAE/WAE and ResNet to build a new model for the generative modeling task.

Using the ResNet architecture, we build an Encoder that will encode better informa-
tion at latent space variable specified by prior Gaussian distribution so that generator
model (decoder) can generate better image samples. We have used three 2D convo-
lutional layer to build the identity block and three 2D convolutional layer to build
the convolutional block. Using these identity and convolutional blocks, we build the
Encoder. Encoder takes input as image of size 128 x 128 and outputs 1D tensor of

size 64 and Decoder takes 1D tensor of size 64 and outputs image of size 128 x 128

We trained VAE, VAE-ResNet, WAE, and WAE-ResNet on a real data-set called
“CelebA” which has roughly 203k images. After evaluation, the FID score and sharp-
ness score of the generated test sample of WAE-ResNet model are better than other

implemented models.

Chapter 2
Preliminaries and Previous Works

Before introducing to my proposed framework, let us have some idea about the pre-

requisite concepts which have been used in my work.

2.1 Variational Auto-encoders (VAEs)

According to the definition of a variational auto-encoder [6], it is an auto-encoder
whose training is regulated to prevent over-fitting and to guarantee that the latent
space distribution has favourable qualities that support the generating process. Just
as a basic non-stochastic anto-encoder, a variational auto-encoder is an architecture
composed of both an “encoder” which encodes the data in latent space and a “de-
coder” that decodes the latent space to the original dimension. While training we
minimize the reconstruction loss between the initial input data and encoded-decoded
data. In VAEs, we encode input data as distribution at latent space instead of en-

coding as a single point.

gvariatioual autgencoder contains a specific probability model of data x and latent

aariables z. Now, joint probability of the model is given as

plx, z) = p(x|z)p(z).

The following is a description of the generative process..

2.1. Variational Auto-encoders (VAEs) 7

For every data point i:

e draw latent variable z; from latent space p(z)

e draw data-point z; from p(x|z)

4
The latent space variables are taken from prior distribution p(z). The likelihood of
data x is p(x|z) conditioned on latent variable z. p(x, z) is the joint probability dis-

tribution over the data and latent space variables.
Now, gccornposc this into likelihood and prior:

plx, z) = p(z|z)p(z).

Now, our goal is to infer a good latent space given the original data.

By Bayes theorem:
8. - rlre)
p(z)

p(z) is called the evidence and it is calculated by marginalizing the latent space

variables:

) = [plalp()dz

Unfortunately, the above equation takes exponential time to compute. Therefore, we

need to approximate this posterior distribution.

A family of distributions ¢,(z|x) is used to approximate the posterior. A is the vari-

ational parameter which indexes the family of distributions. Here, we are taking ¢
as Gaussian distribution. So, it will be the mean and variance of the latent space

rariables for every data-point A., = (pi,, 0’:}‘).

Kullback-Leibler divergence is used to measure the information loss when using

q posterior to approximate p posterior.

8 2. Preliminaries and Previous Works

Ligy(z HL)”p(zlL)) E, [log g:(z|x)] — Eyllog p(x,)] + log p(x)

To minimize the divergence, we have to find optimal variational parameter A.

The optimal approximation of posterior is

x) = arg min, KL(gx(z

0 (2 x)|[p(z

Above equation is impossible to be computed directly. So consider the following

function:

ELBO(N) = BEyllog p(z, z)] — Egllog ga(z

x)]

After rewriting the evidence becomes

Egp(a’:) = ELBO(X) + KL(qx(z|)][p(2]2))

The Jensen inequality states that the KL divergence is always larger than or equal
to zero. This suggests that in order to minimise the KL divergence, we must max-
imise the ELBO. Now, we can approximate posterior inference using Evidence Lower
BOund (ELBO). Instead of minimizing KL divergence between the approximate and

true posterior, we can maximize the Evidence Lower BOund which is equivalent.

In VAESs, there are only local latent space variables. As a result, we can divide the
Evidence Lower BOund into terms, each of which depends on a single data point.
Now, we can apply stochastic gradient descent with respect to the parameters A.

ELBO for single data-point is given by

ELBO;(A) = Eg, (z|x;)[log plxi|z)] — KL(gx(2

z|z:)||p(=

Let us make the connection to neural network architecture. Using inference network
xr,A) that takes x

as input and parameter A as output. Using generative network (Decoder), we will

(Encoder), we will parameterize the approximate posterior gq(z

2.2. Wasserstein Auto-Encoder 9

parametegize the likelihood p(x|z) that takes latent variables as input and output pa-
rameters to the data distribution py(z|z). The Encoder and Decoder have parameters
and ¢ respectively. These parameters are the neural network’s weights and biases.
We will use stochastic gradient descent to maximise the ELBO in order to optimise

these. We can write the ELBO and include the Encoder and Decoder parameters as

gLBO«-(Q, ¢) = Bq, (1) [log ps(x:|2)] — KL(go(z|2:)Ip(2))

This ELBO is the negative of the loss

ELBO,(6.6) = ~1(6.¢)

where,

E(Q, ¢) = —Eorg iz [108 ps(:2)] + KL(go(2]2:) [P (2))

Algorithm 1 Algorithm for Variational Auto-encoder

Ensure: Initialize the parameters for the encoder gq, decoder py
while (f,) not converged do
Sample {z;,2s,...,2,} from the training set
generate pu; and o; from gg(x;) fori=1,....n
generate Z; = ; + o6, where ¢ ~ N(0,1) fori=1,...,n
Update g4 and p, by descending:

_Ez}wqy{zkn][log p¢('lf’.i|£i)] + K’C(QH(EJTI)HP('Z))

end while=0

2.2 Wasserstein Auto-Encoder

In Wasserstein Auto-Encoder [7], we try to minimize ﬁc optimal transport cost [8]
W.(Px, Pg) between the true data distribution Px and the latent variable model
Ppr specified by prior distribution Pz of latent codes Z g&eZ and the generative
model Pg(X|Z) of the data points X € & given Z. The ?

reconstruct the encoded training data as measured by the cost ¢ in the resulting

ecoder tries to precisely

10 2. Preliminaries and Previous Works

optimization problem. The encoder aims to accomplish two opg\siug objectives: It
z = Ep, [Q(Z|X))]
to the prior Pz which is determined by any divergence Dz(Qz, Pz), and second, it

first attempts to match the training data’s encoded distribution

has to be ensured that the latent space codes which are provided to the decoder are

enough information so that it reconstructs the encoded training data.

2.2.1 Optimal transport and its dual formulation

gantorovich’s [1] formulation of the problem is defined as:

W.(Px, Pg) = E(xy)~r[c(X,Y)] (2.1)

inf
TEP(X~Px,Y~Pg)

where P(X ~ Py, Y ~ Pg) is L;ct of all joint distributions of (X,Y) with marginal
Py and P(ucspct:tivcl}', and ¢(z,y) : X X X - R, is any measurable cost function.
A specific teresting case is when (X, d) is metric space and c(x, y) = dP(x,y) for
p = 1. The p-Wasserstein distance is defined here as W)}, or the p-th root of We..

The following Kantorovich-Rubinstein duality holds, if e(x, y) = d(x, y) :

I’JVI(J”X, 1”(;') = sup EXNPX [f(X)] — Eympc [f(Y)] (2.2}

feFy
where Fy, is the class of all functions that are 1-Lipschitz bounded on (X, d).
Now, latent variable model Pg is defined as:

e first, on a latent space Z, a code z is taken as a sample from a fixed distribution

Py.

e second, with a possible random transformation, z is mapped to the image x €

X =R

This results in

polr) = f pelx|z)p.(z)dz, Ve e X (2.3)
z

For the shake of simplicity, we will take non-random decoders, i.e. generative models

2.2. Wasserstein Auto-Encoder 11

g(; (X|Z), which deterministically map Z to X = G(Z) for a given map G : Z — X.

Now, under this model, through the map G, the optimal transport cost takes a
simpler form as the transportation plan factors: Instead of finding aggoupling I' in
equation(2.1) between two random variables belonging to X’ space, gis sufficient
to identify a conditional distribution Q(Z|X) such that its Z marginal Qz(Z) :=

Ex.p,[Q(Z]X)] is similar to the prior distribution Pz, .
The objective of WAE is
DE‘L’AE&:PG) = inf EPXEQ(Z|X)[C(X,G(Z))] +/\.D3(Q3,Pz) (24)

Q(ZIX)eQ

where D is an arbitrary divergence between @, and Pg, 5 is any non-parametric
set of probabilistic encoders, and A > 0 is a hyper-parameter. Similar to VAE, WAE

also uses deep neural networks to parameterize the encoders @ and decoders G.

glgorithrn 2 Algorithm for Wasserstein Auto-encoder

equire: Regularization coefficient A > 0.
Initialize the parameters of the encoder (Jy, decoder G, and latent discriminator
D,
while (f, ¢) not converged do
Sample {1, s,...,2,} from the training set
Sample {z, 2y, ..., 2,} from the prior P,
Sample Z; from Qy(Z|z;) fori=1,...,n
Update D, by ascending:

% Z[log D, (z) + log(1 = D(%))]

Update 0y and G, by descending:

n

1
H [C(:["f:GQT-‘(Ei)) —A.l()g}'_).}.(ﬁl-)]

end while=0

12 2. Preliminaries and Previous Works

2.2.2 GAN-based penalty

As a penalty, Choose Dz(Qz, Pz) = Djs(Qz, Pz) and apply adversarial training to
estimate it. Real data points sampled from Py are distinguished from fake data points
taken from (Qz using an adversary, or discriminator, in the latent space Z. This result

is the WAE, GAN based penalty which is described in above Algorithm 2.

2.3 ResNet

More layers are added to a deep neural network in every successful architecture to
reduce the error rate after the first CNN-based architecture (AlexNet) that won the
ImageNet 2012 competition. This is effective for smaller numbers of layers, but when
we add more layers, a typical deep learning issue known as the Vanishing/Exploding
gradient arises. This results in the gradient becoming zero or being overly large.

Therefore, the training and test error rate similarly increases as the number of layers

20-layer

is increased.

training error (%)
test error (%)

20-layer

" ter. (1ed)

E 0] i

H] i 4
iter. (led)

Figure 2.1: Training and Test error

We can see from the following figure that a 20-layer CNN architecture performs bet-
ter on training and testing datasets than a 56-layer CNN architecture. The authors
-ame to the conclusion that error rate is caused by vanishing/exploding gradient after

further analysis of error rate.

This architecture introduces the idea of Residual Blocks to address the issue of the
anishing/exploding gradient. They employ the skip connections method in this
network. By skipping some layers in between, the skip connection connects activations
of a layer to subsequent layers. This forms a residual block. By stacking these residual

blocks, ResNets [2] are created.

2.4, Fréchet Inception Distance 13

2.4 ﬂéchet Inception Distance

Fréchet Inception Distance (FID) [3] is a metric for evaluating the performance of
generative networks., The FID score compares the collections of generated images

from generator and collections of real images from the given data-set.

Inception v3 model is used to capture the features of input images. Then the mean
and the variance of the features are caleulated. These statistics are caleulated for
both real and fake generated collection of images. Then, the distance between the

real and the fake images are calculate by Fréchet distance.

d* = [y — ol ‘f‘TT{Cl +Cy — Q(CICQ)”?'}

where, d*: distance with square unit, p;: feature-wise mean of real images, po:
feature-wise mean of fake images, C: feature-wise covariance of real images, Cy:

=St} 1 o= 2
feature-wise covariance of fake images, and ||;z1 — p2||3: the sum of the squares of the

means of the two vectors.

2.5 Sharpness
It is a metric for evaluating the sharpness of images. First, convert rgh’ image into

‘eray’ scale. Second, calculate its gradient. Third, add the square of the gradients.

Fourth, calculate square-root. Sixth, calculate average.

2.6 Activation Functions

2.6.1 ReLU

gnc rectified linear activation function, or (ReLU), is a linear function that, if the

input is positive, outputs the input directly; if not, it outputs zero.

14 2. Preliminaries and Previous Works

a=max(0, z)

S

Figure 2.2: ReLU Activation Function

2.6.2 SELU

Scaled Exponential Linear Units (SELU), are activation functions that induce self-
normalization. SELU activation functions automatically converge to a zero mean and

unit variance.

ﬁ B ifex >0
LU(z)= A

ae® —a ifx<0

where,

a & 1.6732632423543772848170429916717

A = 1.0507009873554804934193349852946

2.6. Activation Functions

-6 -4 -2 0 2

Figure 2.3: SELU Activation Function

Chapter 3

Proposed Works

3.1 Introduction

In this chapter, we describe the proposed work which improves the WAE FID and
Sharpness score. WAE uses the simple convolution layer to build the architecture of
Encoder, Decoder, and Discriminator. After experiment on building the architecture
of auto-encoder, we conclude that to improve the FID score of WAE, we have to build

the deeper (increase number of layers) architecture of encoder.

The major benefit of the very deep neural networks are that they can represent very
complex functions. However, one problem is encountered while training ie. “van-
ishing gradient problem”. This happens because of the gradient-based learning pro-
cess and back-propagation in neural networks. We know that to update the weights
and biases of the networks, we caleulate gradients and back-propagate the gradients
through the networks. But sometimes gradient becomes vanishingly small and it pre-
vents changing the value of weights and biases. Therefore, the Network stops learning

because the same values are propagated again and again.

To solve this problem, we have used the idea of identity mapping as described in
ResNet to build our Encoder to deal with the problem of vanishing gradient. Following
such approach, we are essentially creating an ensemble of ResNet which helps in the

rariance reduction of the model.

16

3.2. Architecture of Encoder 17

3.2 Architecture of Encoder

We build the encoder which will encode better information at latent space variable
()7 specified by prior distribution Pz so that generator model Pr(X|Z) can generate

better image samples.

Now, the latent variable model P is defined as:

e first, on a latent space Z, a code z is taken as a sample from a fixed distribution
Py.

e sccond, with a possible random transformation, z is mapped to the image x €

X =R4
This results in

pe(x) = ch(r£|z)pz(z)dz, Voee X (3.1)

1
For the shake of simplicity, we will take non-random decoders, i.e. generative models
Pr(X|Z), which deterministically map Z to X = G(Z) for a given map G : Z — X.

stage 1 slage 2 stage 3 sage 4 slage 5

—
nput cutpt
+ . » . . . J J
—_

Figure 3.1: Encoder

The details of the Encoder architecture is:

e Zero-padding: pads the input with a pad of (2,2)

18

3. Proposed Works

Stage 1: The 2D Convolution layer has 64 filters of kernel size (7,7) with a
stride of (2,2). BatchNormalization is applied to the channels axis=3 of the

input. MaxPooling uses a (3,3) window with a (1,1) stride.

Stage 2: The convolutional block uses three sets of filters [64, 64, 256] of kernel
size f=3 with stride s=1. The two identity blocks use 3 sets of filters [64, 64,

256 of kernel size f=3.

Stage 3: The convolutional block uses three sets of filters [128, 128, 512] of
kernel size =3 with stride s=2. The three identity blocks use 3 sets of filters
[128, 128, 512] of kernel size f=3.

Stage 4: The convolutional block uses three sets of filters [256, 256, 1024] of
kernel size f=3 with stride s=2. The three identity blocks use 3 sets of filters
[256, 256, 1024] of kernel size {=3.

Stage 5: The convolutional block uses three sets of filters [512, 512, 2048] of
kernel size =3 with stride s=2. The three identity blocks use 3 sets of filters
[512, 512, 2048] of kernel size {=3.

Average Pooling: The 2D AveragePooling uses a window of shape (2,2).

Flatten: Flatten layer is used to make 1D tensor.

Dense: The Fully Connected Dense layer use uints=64.

Let’s look at the fundamental residual block: The shorteut connection, also known as

a skip connection, is the most crucial idea in play here, as can be seen in the image

below. We can summarise the fundamental residual block using the illustration below:

The output of the residual block is defined as follows if X is the input and F(X) is

the layer’s output

3.2. Architecture of Encoder 19

X

A
weight layer

f(x) ! relu

weight layer

A

X
identity

From residual block, by using two weight layers to process the input X, F(X) is
produced. After that, it adds the original input data X and F(X) to get H(X).
Let's now assume that H(X) represents our ideal predicted output, matching X as
our initial input data. Obtaining the ideal F(X) is necessary to acquire the desired
result of H(X) = F(X)+X. Thisimplies that in order to obtain the optimum H(X),

the two weight layers of the residual block must be able to provide the desired F(X).

g(X) is obtained from X as follows:

F(X): X - W, = ReLU — W,

H(X) is obtained from F(X) as follows:

H(X) : F(X)+ X

The Hypothesis is that F(X) is easier to optimize than H(X). To understand, let us
take an example. Assume that the ideal H(X) equals X. Following is a stack of non-

inear layers a direct mapping, making learning an identity mapping challenging.
lmear layers for a direet mapping, making learning an identity mapping challenging

X—=>W =2 RelU - Wy — RelLU ... X

Therefore, it would be challenging 9) approximate the identity mapping with all of
these weights {1V, W5, ...} and ReLUs in the middle.

20 3. Proposed Works

Eow, if we define the ideal mapping H(X) = F(X) + X, then we just need to get
F(X) =0 as follows:

X =W, — ReLU — W, — ReLU ...0

It is easy to achieve the above. To get zero output, just set any weight to zero, and

then add X to get mapping H(X).

Fem———-
: | Batch Norm | i
| f :
: I 3x3 Conv I I

I
Se——
' RelLu | |
I I
| 1 I
: | Batch Norm | :
| f :
. 3x3 Conv | 1
| |

)

Figure 3.2: Identity Block

3.2.1 Identity Block

It is a residual block, which is used when input and output dimensions are the same
i.e. when the input X and output F(X) are of the same dimensions, the identity

shorteut can be directly used.

H(X)=F(X, W)+ X

3.2. Architecture of Encoder 21

3.2.2 Convolutional Block

It is a residual block, which is used when input and output dimensions are different

i.e. one convolution layer of kernel size (1,1) used with X to match the dimension of

of F(X).

H(X) = F(X, W)+ W.X

| 1x1 Conv

Figure 3.3: Convolutional Block

Chapter 4
Experiments and Results

In this chapter, we evaluate performance of the [roposcd WAE ResNet model. We
would like to test if WAE ResNet can simultaneously achieve (1) reasonable geometry
of the latent manifold, (ii) random samples of good visual quality, and (iii) accurate
reconstructions of data points. We have trained VAE, VAE ResNet, WAE and WAE

ResNet on real data-set, called “CelebA” which has 202599 images.

4.1 Hardware Requirement

All the experiments have been performed on Indian Statistical Institute Kolkata server

which has the following hardware

Table 4.1: Hardware Requirement

Model Name Memory
CPU | Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz | 197568076 kB (197.56 GB)
GPU Tesla P100-PCIE 16384 MB

4.2 Data-sets

We have used CelebFaces Attributes Dataset (CelebA) [9]. It is a large-scale

face attributes data-sets. There are 202599 images in this data-sets. Statistics of

22

4.3. Baseline and Experimental setup 23

data-sets are given in Table 4.1.

Table 4.2: Data-set Statistics

Data-set | Number of Images | Training Images | Test Images
CelebA 202599 162079 40520

4.3 Baseline and Experimental setup

For baseline we have used Variational Auto-encoder architecture and Wasserstein

Auto-encoder architecture.

4.3.1 Variational Auto-encoder Experimental setup
In VAEs, we have used Euclidian latent space Z = R% for grious d. depending on

the complexity of the data-set and standard Gaussian prior Pz = N (0,1,;). We have
used Gaussian Encoder Q(Z|X) = N(Z; j1p(X), £(X)) with mean py and diagonal
covariance 3 and Gaussian decoder Po(X|Z) = N(X;G,(Z), 08.14). Funetions pig,

¥ and G, are parameterized by the below neural networks.

Encoder:

e Layer 1: The 2D Convolution layer has 32 filters of kernel size (3,3) with a
stride of (2,2) and padding='same’. LeakyReLU used as activation function
with value (0.02) and BatchNormalization[4].

e Layer 2: The 2D Convolution layer has 64 filters of kernel size (3,3) with a
stride of (2,2) and padding='same’. LeakyReLU used as activation function

with value (0.02) and BatchNormalization.

e Layer 3: The 2D Convolution layer has 128 filters of kernel size (3,3) with
a stride of (2,2) and padding="same’. LeakyReLU used as activation function

with value (0.02) and BatchNormalization.

e Layer 4: The 2D Convolution layer has 256 filters of kernel size (3,3) with
a stride of (2,2) and padding="same’. LeakyReLU used as activation function

with value (0.02) and BatchNormalization.

24

4. Experiments and Results

e Layer 5: The 2D Convolution layer has 512 filters of kernel size (3,3) with
a stride of (2,2) and padding="same’. LeakyReLU used as activation function

with value (0.02) and BatchNormalization .
e Flatten: Flatten to make 1D tensor.

e Dense: Dense layer is applied with units=2048 and activation="selu’

Decoder:

e Layer 1: Dense layer has output units=2048 with activation='selu and Batch-

Normalization.

e Layer 2: Dense layer has output units=8192 with activation="selu and then

reshape with dimension [4, 4, 512]

e Layer 3: The 2D Transpose Convolution layer has 256 filters of kernel size
(3,3) with a stride of (2,2) and padding="same’. LeakyReLU used as activation

function with value (0.02) and BatchNormalization.

e Layer 4: The 2D Transpose Convolution layer has 128 filters of kernel size
(3,3) with a stride of (2,2) and padding="same’. LeakyReLU used as activation

function with value (0.02) and BatchNormalization.

e Layer 5: The 2D Transpose Convolution layer has 64 filters of kernel size
(3,3) with a stride of (2,2) and padding="same’. LeakyReLU used as activation

function with value (0.02) and BatchNormalization.

e Layer 6: The 2D Transpose Convolution layer has 32 filters of kernel size
(3,3) with a stride of (2,2) and padding="same’. LeakyReLU used as activation

function with value (0.02) and BatchNormalization.

e Layer 7: The 2D Transpose Convolution layer has 16 filters of kernel size
(3,3) with a stride of (2,2) and padding="same’. LeakyReLU used as activation

function with value (0.02) and BatchNormalization.

e Layer 8 The 2D Transpose Convolution layer has 3 filters of kernel size (3,3)
with a stride of (1,1) and padding='same’. Sigmoid used as activation function

and BatchNormalization.

4.3. Baseline and Experimental setup 25

Latent space dimension: 512

Optimizer: Adam[5] with learning rate = 0.001 and exponential decay rate =
0.5

Epochs: 100

4.3.2 Wasserstein Auto-encoder Experimental setup

In WAESs, depending on the complexity of the data set, we clnp%ycd Euclidian latent
(Z;0,0%1,) over Z
and a squared cost function c¢(z,y) = ||x — y|? for data-points =,y € X = R%. We

space Z = R% for various d., isotropic Gaussian prior Pz =

have used neural network architecture for encoder mapping py : X — Z and decoder
mapping G4 : Z — X with batch normalization. We have used discriminator of fully

connected neural networks with ReLU.

Encoder:

e Layer 1: The 2D Convolution layer has 128 filters of kernel size (5,5) with
a stride of (2,2) and padding='same’. Use BatchNormalization and ReLU as

activation function.

e Layer 2: The 2D Convolution layer has 256 filters of kernel size (5,5) with
a stride of (2,2) and padding="same’. Use BatchNormalization and ReLU as

activation function.

e Layer 3: The 2D Convolution layer has 512 filters of kernel size (5,5) with
a stride of (2,2) and padding="same’. Use BatchNormalization and ReLU as

activation function.

e Layer 4: The 2D Convolution layer has 1024 filters of kernel size (5,5) with
a stride of (2,2) and padding='same’. Use BatchNormalization and ReLU as

activation function.

e Layer 5: The 2D Convolution layer has 2048 filters of kernel size (5,5) with

a stride of (2,2)vand padding='same’. Use BatchNormalization and ReLU as

26 4. Experiments and Results

activation function.
e Flatten: Flatten to make 1D tensor.

e Dense: Dense layer is applied with units=64.

Decoder:

e Layer 1: Dense layer has output units=4*4*2048 with activation="ReLU’ and

BatchNormalization and then reshape with dimension [4, 4, 2048].

e Layer 2: The 2D Transpose Convolution layer has 1024 filters of kernel size
(5,5) with a stride of (2,2) and padding="same’. Use BatchNormalization and

activation="ReLU".

e Layer 3: The 2D Transpose Convolution layer has 512 filters of kernel size
(5,5) with a stride of (2,2) and padding="same’. Use BatchNormalization and

activation='ReLU".

e Layer 4: The 2D Transpose Convolution layer has 256 filters of kernel size
(5,5) with a stride of (2,2) and padding="same’. Use BatchNormalization and

activation='ReLU".

e Layer 5: The 2D Transpose Convolution layer has 128 filters of kernel size
(5,5) with a stride of (2,2) and padding="same’. Use BatchNormalization and

activation="ReLU".

e Layer 6: The 2D Transpose Convolution layer has 3 filters of kernel size (5,5)
with a stride of (2,2) and padding="same’. Use BatchNormalization and acti-

vation="sigmoid’.

Discriminator:

e Layer 1: Dense layer is applied with units=512 and activation="relu’.

e Layer 2: Dense layer is applied with units=512 and activation="relu’.

4.3. Baseline and Experimental setup 27

e Layer 3: Dense layer is applied with units=512 and activation="relu’.
e Layer 4: Dense layer is applied with units=512 and activation="relu’.

e Layer 5: Dense layer is applied with units=1 and activation="sigmoid’.
Latent space dimension: 64

Auto-encoder Optimizer: Adam with learning rate = 3¢ and exponential decay rate =
0.5

Discriminator Optimizer: Adam with learning rate = le * and exponential decay rate =
0.5

Gaussian Distribution’s standard deviation: 1.414

Epochs: 100

4.3.3 Variational Auto-encoder with ResNet

In VAE ResNet, we have used Euclidian latent space 2 = R*: forggarious d. depend-
ing on the complexity of the data-set and standard Gaussian prior Pz = N(0, I;). We
have used Gaussian Encoder Q(Z]|X) = N (Z; po(X), 2(X)) with mean iy and diag-
onal covariance ¥ and Gaussian decoder Pg(X|Z) = N(X; Gy(Z), 0%.1,). Functions

Hg, & and G, are parameterized by below neural networks.

Encoder:

e Zero-padding: pads the input with a pad of (2,2)

e Stage 1: The 2D Convolution layer has 64 filters of kernel size (7,7) with a
stride of (2,2). BatchNormalization is applied to the channels axis=3 of the

input. MaxPooling uses a (3,3) window with a (1,1) stride.

28

4. Experiments and Results

Stage 2: The convolutional block uses three sets of filters [64, 64, 256] of kernel
size =3 with stride s=1. The two identity blocks use 3 sets of filters [64, 64,

256 of kernel size f=3.

Stage 3: The convolutional block uses three sets of filters [128, 128, 512] of
kernel size =3 with stride s=2. The three identity blocks use 3 sets of filters
[128, 128, 512] of kernel size f=3.

Stage 4: The convolutional block uses three sets of filters [256, 256, 1024] of
kernel size =3 with stride s=2. The three identity blocks use 3 sets of filters
[256, 256, 1024] of kernel size {=3.

Stage 5: The convolutional block uses three sets of filters [512, 512, 2048] of
kernel size f=3 with stride s=2. The three identity blocks use 3 sets of filters

[512, 512, 2048] of kernel size {=3.
Average Pooling: The 2D AveragePooling uses a window of shape (2,2).
Flatten: Flatten layer is used to make 1D tensor.

Dnese: The Fully Connected Dense layer use uints=64.

Decoder:

Layer 1: Dense layer has output units=2048 with activation="selu and Batch-

Normalization.

Layer 2: Dense layer has output units=8192 with activation="selu and then

reshape with dimension [4, 4, 512]

Layer 3: The 2D Transpose Convolution layer has 256 filters of kernel size
(3,3) with a stride of (2,2) and padding="same’. LeakyReLU used as activation

function with value (0.02) and BatchNormalization.

Layer 4: The 2D Transpose Convolution layer has 128 filters of kernel size
(3,3) with a stride of (2,2) and padding="same’. LeakyReLU used as activation

function with value (0.02) and BatchNormalization.

4.3. Baseline and Experimental setup 29

e Layer 5: The 2D Transpose Convolution layer has 64 filters of kernel size
(3,3) with a stride of (2,2) and padding="same’. LeakyReLU used as activation

funtion with value (0.02) and BatchNormalization.

e Layer 6: The 2D Transpose Convolution layer has 32 filters of kernel size
(3,3) with a stride of (2,2) and padding="same’. LeakyReLU used as activation

function with value (0.02) and BatchNormalization.

e Layer 7: The 2D Transpose Convolution layer has 16 filters of kernel size
(3,3) with a stride of (2,2) and padding="same’. LeakyReLU used as activation

function with value (0.02) and BatchNormalization.

e Layer 8: The 2D Transpose Convolution layer has 3 filters of kernel size (3,3)
with a stride of (1,1) and padding='same’'. Sigmoid used as activation function

and BatchNormalization.
Latent space dimension: 512
Optimizer: Adam with lerning rate = 0.001 and exponential decay rate = 0.5
Epochs: 100

4.3.4 Wasserstein Auto-encoder with ResNet

In WAEs, depending on the complexity of the data set, we {}m[nyt}d Eunclidian latent
(Z;0,021,) over Z
and a squared cost function ¢(z,y) = ||z — y||? for data-points z,y € X = R=. We

space Z = R®% for various d., isotropic Gaussian prior Pz =

have used neural network architecture for encoder mapping py : X — Z and decoder
mapping Gy : Z — X with batch normalization. We have used discriminator of fully

connected neural networks with ReLU.

Encoder:

e Zero-padding: pads the input with a pad of (2,2)

30 4. Experiments and Results

e Stage 1: The 2D Convolution layer has 64 filters of kernel size (7,7) with a

stride of (2,2). BatchNormalization is applied to the channels axis=3 of the

input. MaxPooling uses a (3,3) window with a (1,1) stride.

e Stage 2: The convolutional block uses three sets of filters [64, 64, 256] of kernel
size f=3 with stride s=1. The two identity blocks use 3 sets of filters [64, 64,
256] of kernel size f=3.

e Stage 3: The convolutional block uses three sets of filters [128, 128, 512] of
kernel size f=3 with stride s=2. The three identity blocks use 3 sets of filters

[128, 128, 512] of kernel size f=3.

e Stage 4: The convolutional block uses three sets of filters [256, 256, 1024] of
kernel size f=3 with stride s=2. The three identity blocks use 3 sets of filters
[256, 256, 1024] of kernel size f=3.

e Stage 5: The convolutional block uses three sets of filters [512, 512, 2048] of
kernel size =3 with stride s=2. The three identity blocks use 3 sets of filters
[512, 512, 2048] of kernel size {=3.

e Average Pooling: The 2D AveragePooling uses a window of shape (2,2).
e Flatten: Flatten layer is used to make 1D tensor.

e Dnese: The Fully Connected Dense layer use uints=64.

Decoder:

e Layer 1: Dense layer has output units=4*4%2048 with activation="ReLU’ and

BatchNormalization and then reshape with dimension [4, 4, 2048].

e Layer 2: The 2D Transpose Convolution layer has 1024 filters of kernel size
(5,5) with a stride of (2,2) and padding="same’. Use BatchNormalization and

activation='ReLU".

e Layer 3: The 2D Transpose Convolution layer has 512 filters of kernel size
(5,5) with a stride of (2,2) and padding="same’. Use BatchNormalization and

activation='ReL1]".

4.3. Baseline and Experimental setup 31

e Layer 4: The 2D Transpose Convolution layer has 256 filters of kernel size
(5,5) with a stride of (2,2) and padding="same’. Use BatchNormalization and

activation="ReLU".

e Layer 5: The 2D Transpose Convolution layer has 128 filters of kernel size
(5,5) with a stride of (2,2) and padding="same’. Use BatchNormalization and

activation='ReLU".

e Layer 6: The 2D Transpose Convolution layer has 3 filters of kernel size (5,5)
with a stride of (2,2) and padding="same’. Use BatchNormalization and acti-

vation="sigmoid’.

Discriminator:

Layer 1: Dense layer is applied with units=512 and activation="relu’.

Layer 2: Dense layer is applied with units=512 and activation="relu’.

e Layer 3: Dense layer is applied with units=512 and activation="relu’.

Layer 4: Dense layer is applied with units=512 and activation="relu’.

Layer 5: Dense layer is applied with units=1 and activation="sigmoid’.
Latent space dimension: 64

Autoencoder Optimizer: Adam with learning rate = 3¢~* and exponential decay rate =
0.5

Discriminator Optimizer: Adam with learning rate = le™ and exponential decay rate =
0.5

Gaussian Distribution’s standard deviation: 1.414

Epochs: 100

32 4. Experiments and Results

4.4 Results

4.4.1 Interpolated Images

(b) Interpolated images of VAE ResNet

(¢) Interpolated images of WAE (d) Interpolated images of WAE ResNet

Figure 4.1: Interpolated images

Interpolated images of VAE, VAE-ResNet, WAE and WAE-ResNet are given in Figure

4.1. For each model in Figure 4.1, we selected the first and final two original images,

4.4. Results 33

while the rest images are created interpolated images. Interpolated images i.e. how
one image is transforming to the other image. Sharpness score of the interpolated
images are given in Table 4.3. WAE-ResNet interpolated images are better than other

models.

Table 4.3: Sharpness (larger is better) scores of Interpolated Images
I g IT g

Models Sharpness score
VAE 6.541
VAE ResNet 6.580
WAL 6.565
WAE ResNet 7.952

4.4.2 Random Images

Randomly generated images are given in Figure 4.2. We randomly select the value
from Gaussian distribution of size 64 and then decoder takes it as input and then
produce the image of size 128 X 128. FID and Sharpness scores of 10000 randomly
generated images are given in Table 4.4. WAE-ResNet FID and Sharpness scores are

better compare to other models.

Table 4.4: FID (smaller is better) and Sharpness (larger is better) scores of 10000
Random Images

Models FID score | Sharpness score
VAE 38.439 6.233
VAE ResNet 34.942 5.085
WAE 5.756 7.848
WAE ResNet 5.693 10.434

4. Experiments and Results

m

0
&

(a) Random images of VAE (b) Random images of VAE ResNet

)
£
3

= 218
jolnld
100

anos
D

v 2>
£

&
=
A

DA

(c¢) Random images of WAE (d) Random images of WAE ResNet

T

Figure 4.2: Random images

4.4. Results

35

4.4.3 Reconstructed Images

Figure 4.3: (a) Original Images, (b) VAEs Reconstructed Images, (¢) VAE-ResNet
Reconstructed Images, (d) WAEs Resconstructed Images and (e) WAE-ResNet Re-

constructed Images

Table 4.5: FID (smaller is better) and Sharpness (larger is better) scores of 40000

Reconstructed Images

Models FID score | Sharpness score
VAE 13.008 6.013
VAE ResNet 10.901 7.607
WAE 5.449 7.187
WAE ResNet 4.155 9.172

Reconstructed images are given in Figure 4.3, and WAE-ResNet gives better results

compared to VAE, VAE-ResNet, and WAE. To compare the quality of original image

samples and generated images samples, we use FID (Fréchet Inception Distance) (3]

36 4. Experiments and Results

and report the results on CelebA dataset based on 40000 test samples. We also

evaluate the sharpness of generated image samples using the gradient square method.

%hapter 5]

Conclusion and Future Work

5.1 Conclusion

In this work, we have developed different architecture of Encoder for WAEs using
ResNet, which uses the identity mapping, i.e. we have added the output of previ-
ous layer directly to output of next three layers. This has resulted in better feature

preservation at latent space.

We have used ResNet architecture with VAEs and WAEs to improve the performance
of base line VAEs and WAEs. The FID scores that we have got from WAE-ResNet
proves that gives better result for the generative modeling task, i.e. interpolation
of images, reconstruction of test images and also random generartion. In addition,
average sharpness of the generated images are better than generated images obtained
by the VAEs, VAE ResNet and WAE models. Interpolated images of WAE-ResNet

also looks sharper compared to the others.

5.2 Future Work

After implementing ResNet architecture to encoder, we have observed that the gen-
erative capacity of the model improved significantly. Therefore, we conclude that the
generative capacity of the model is strongly dependent on the type of architecture

used for encoder/decoder. Future works could be in the direction of development of

38

5. Conclusion and Future Work

novel architectures for encoder and decoder.

Bibliography

Goodfellow, [.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial networks (2014), https:
//arxiv.org/abs/1406.2661

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015), https://arxiv.org/abs/1512.03385

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans
trained by a two time-scale update rule converge to a local nash equilibrium
(2017), https://arxiv.org/abs/1706.08500

loffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training

by reducing internal covariate shift (2015)
Kingma, D.P., Lei, J.: Adam: A method for stochastic optimization (2014)

Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013), https://
arxiv.org/abs/1312.6114

Tolstikhin, 1., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders
(2017), https://arxiv.org/abs/1711.01558

Villani, C.: Topics in optimal transportation (2003)

Ziwei Liu, Ping Luo, X.W., Tang, X.: Deep learning face attributes in the wild
(2005)

Wasserstein Auto-Encoder using Residual Neural Network

ORIGINALITY REPORT

1 5%

SIMILARITY INDEX

PRIMARY SOURCES

B B BB A

B B B

ﬁtg(ni;{.org 398 words — 5%
IIriwtt;rrniry.isical.ac.in:8080 170 words — 2%
§tietrkn]ettjb'com 132 words — 2%
Jl-riea:nr:{io 110 words — 1 %
stackoverflow.com 0 words — 1 0%

Internet

‘ ingyu Chen,Jln Li, Xuguang I_.an, Nannlng Zheng 42 words — 1 /0
Generalized Zero-shot Learning via Multi-modal

Aggregated Posterior Aligning Neural Network", IEEE

Transactions on Multimedia, 2020

Crossref

escholarship.org 38 words — | 0%

Internet

tojql.net 24 words — < %

Internet

researchsystem.canberra.edu.au

Internet

— — — —
EN w N —

— —
(@) U

19 words — < 1%

Long Xu, Ylng"\Nel, Chenhe Dpng, Chuagiao Xu, 18 words — < ’I /0
Zhaofu Diao. "Wasserstein Distance-Based Auto-
Encoder Tracking", Neural Processing Letters, 2021

Crossref

0
core.ac.uk 18 words — < 190
. 0
IEtte.r:eltldeshare.net 17 words — <] %
. 0
d.lib.msu.edu 16 words — <] Y

Internet

. " . . 0
Li, Yac?. On Robus:t'nesst and' EfflClenc.y of !\/Iachlne1 t words — < 1 /0
Learning Systems.", University of California,

Davis, 2020

ProQuest

machinelearningmastery.com <1 0%
Internet 14 words —
openreview.net 14 words — < 1 0/0

Internet

ON <14 WORDS
ON <14 WORDS

